
OSF™DCE
Application Development Guide

OPEN SOFTWARE FOUNDATION

OSF™ DeE
Application Development Guide

Revision 1. 0

Open Software Foundation

-I ~T- R-Prentice Hall, Englewood Cliffs, New Jersey 07632

Cover design: BETH FAGAN
Cover illistration: STEVE LEWONTIN

This book was formatted with troff

Published by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or
consequential damages in connection with the furnishing, performance, or use of this material.

Copyright ©1993 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the
following:

• © Copyright 1990, 1991 Digital Equipment Corporation

• © Copyright 1990, 1991 Hewlett-Packard Company

• © Copyright 1989, 1990, 1991 Transarc Corporation

• © Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG

• © Copyright 1990, 1991 International Business Machines Corporation

• © Copyright 1988, 1989 Massachusetts Institute of Technology

• © Copyright 1988, 1989 The Regents of the University of California

All rights reserved.
Printed in the U.S.A.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN: 0-13-643826-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

THIS DOCUMENT AND THE SOFTWARE DECRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND
MAY BE USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH
THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OFTHE DOCUMENT
AND SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S. and other countries.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 is a trademark of Digital Equipment Corporation.

HP, Hewlett-Parkard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS and Transarc are registered trademarks of the Transarc Corporation.

Episode is a trademark of the Transarc Corporation.

AIX and RISC System/6000 are trademarks of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

X/Open is a trademark of the X/Open Company Limited in the U.K. and other countries.

PostScript is a trademark of Adobe Systems Incorporated.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE.

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth
in Section 52.227-19 of the FARS Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a).
This computer software is submitted with "restricted rights." Use, duplication or disclosure is subject to the
restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer Software-Restricted
Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the
"Alternate III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface .

Audience

Applicability

Purpose.

Document Usage .

Related Documents

Typographic and Keying Conventions

Problem Reporting

Pathnames of Directories and Files in DCE
Documentation

Part 1. Overview of DeE Application Development

Chapter 1. DCE Application Development Steps. .

1.1 Introduction to DCE Application Development .

xxxix

xxxix

xl

xl

xl

xli

xli

xlii

xlii

1-1

1-1

1.2 Content Overview of Part 1 . . . 1-2
1.2.1 Topics Covered in Part 1 . 1-2
1.2.2 Topics Not Covered in Part 1 1-3

1.3 DCE Application Development 1-4

1.4 Overview of the DCE Application Development
Steps 1-6

1.5 The DCE Application Development Steps 1-10
1.5.1 Step AI/Client and Server: Generate the Interface

UUID. • . 1-10
1.5.2 Step A2/Client and Server: Determine the Interface

Version Number 1-11

OSF DeE Application Development Guide

Contents

ii

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

1.5.13

1.5.14

1.5.15

1.5.16

1.5.17

1.5.18

1.5.19

1.5.20

1.5.21

1.5.22
1.5.23
1.5.24

1.5.25
1.5.26

1.5.27

Step A3/Client and Server: Write the .idl
File .
Step A4/Client and Server: Write the .acf
File
Step A5/Client and Server: Process the Files with the
IDL Compiler . . .
Step B l/Server: Define the Manager
EPVs •• .••..•
Step B2/Server: Register the Objectffype UUID
Associations with the RPC Runtime ••.
Step B3/Server: Register the Interface, Type UUID,
and EPV with RPC Runtime .
Step B4/Server: Specify
Multithreadedness. •
Step B5/Server: Tell RPC Runtime What Protocol
Sequences to Use .
Step B6/Server: Request for Bindings from RPC
Runtime . ..
Step B7/Server: Register the Authentication
Information with RPC Runtime .
Step B8/Server: Establish the Server Principal
Identity • •..••
Step B9/Server: Plan What To Do When the Server
Terminates . .
Step B 10/Server: Register the Binding Information
with the Endpoint Mapper •
Step B II/Server: Export the Binding Information to
the N amespace (CDS) .
Step B 12/Server: Listen for Incoming Service
Requests .• . .
Step Cl/Client: Import the Binding Information from
the Namespace (CDS) • ..••
Step C2/Client: Annotate the Binding Handle for
Security • ..
Step C3/Client: Invoke an RPC Interface
Operation •
Step Dl/Server: Wake Up in Manager
Routine •
Step D2/Server: Get the Client's PAC
Step D3/Server: Get the Object's ACL •
Step D4/Server: Make the Authorization
Decision •• •• .•
Step D5/Server: Service the Request .
Step D6/Server: Return the Results to the
Client. .•.•
Step D7/Server: Continue the Listen
Loop. •

1-12

1-14

1-18

1-19

1-20

1-22

1-31

1-32

1-35

1-35

1-36

1-37

1-39

1-42

1-42

1-43

1-46

1-48

1-51
1-51
1-52

1-53
1-54

1-55

1-55

OSF DeE Application Development Guide

1.5.28 Step El/Client: Wake Up After the RPC
Call • . . ••.

1.5.29 Step E2/Clierit: Continue • .

Chapter 2. Guidelines for Server Writers

2.1 Using the Name Service Interface
2.1.1 Introduction to Using NSI
2.1.2 Binding to an Object
2.1.3 Junctions.
2.1.4 Name Service Terminology
2.1.5 Binding • • .
2.1.6 Partial Binding and the Endpoint

Mapper . • . . . • . .
2.1.7 Interface Ambiguity and Partial

Bindings . . • • .
2.1.8 Using Object UUIDs to Avoid Binding

Ambiguity . . . • . .
2.1.9 An Object-Oriented Namespace .
2.1.10 Setting Up an Object-Oriented

Namespace. . . • • .
2.1.11 Groups and Profiles .
2.1.12 Three Models for Accessing Binding

Information • . . • .

. ..

2.1.13 Models Based on Non-CDS Databases • . • •
2.1.14 An Object-Oriented Model with Grouped Binding

Information . • . . .
2.1.15 Server and Client Steps
2.1.16 Global Organization of the

Namespace • .

2.2 Thread-Safe Programming
2.2.1 Introduction to Thread-Safe

2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10

Programming . . •
What Thread-Safe Means. .
Making Code Thread-Safe
How Code Becomes Multithreaded .
Memory Management in Threads
Mutexes • • . . .
Methods for Synchronizing Threads
Thread-Specific Storage
Other Programming Consideratibns. .
DCE Threads and DCE RPC . .

2.3 Managing the Server's Authentication Key •
2.3.1 Introduction to Authentication
2.3.2 Server Key Storage and Retrieval
2.3.3 Setting Up the Server Key File
2.3.4 Acquiring a Login Context

OSF DeE Application Development Guide

Contents

1-56
1-56

2-1

2-1
2-2
2-6
2-6
2-9

2-13

2-15

2-17

2-19
2-23

2-24
2-27

2-29
2-32

2-34
2-35

2-42

2-43

2-43
2-44
2-47
2-49
2-49
2-50
2-55
2-57
2-58
2-60

2-61
2-61
2-63
2-64
2-65

iii

Contents

2.3.5 Using the Key
2.3.6 Typical Tasks in Managing the Key
2.3.7 Key Management Routines

2.4 Writing an ACL Manager
2.4.1 Introduction to Writing an ACL

Manager
2.4.2 Design Guidelines
2.4.3 How ACL Interfaces Work in the Registry

Server
2.4.4 IDL Definitions.
2.4.5 Representation of Objects with ACLs in the

Namespace

2.5 Additional Guidelines
2.5.1 Initialization and Configuration . .
2.5.2 Availability and Performance of

Services . . .
2.5.3 Management

Chapter 3. A Sample DCE Application.

3.1 Developing a DCE Application

3.2

3.1.1 The Purpose of Stub Files .
3.1.2 IDL Output Default Filenames

A Complete Sample Application: timop
3.2.1 What timop Does
3.2.2 The timop Program and Security
3.2.3 Source Files. .
3.2.4 Building timop
3.2.5 Running timop
3.2.6 Stopping timop
3.2.7 Further Exercises
3.2.8 The timop Program: A Sample DCE

Application

Part 2. DeE Threads

Chapter 4. Introduction to Multithreaded Programming. .

4.1 Advantages of Using Threads

4.2 Software Models for Multithreaded
Programming
4.2.1 Boss/W orker Model
4.2.2 Work Crew Model . .
4.2.3 Pipelining Model
4.2.4 Combinations of Models .

2-65
2-68
2-70

2-72

2-72
2-73

2-73
2-77

2-78

2-79
2-80

2-86
2-87

3-1

3-1
3-5
3-5

3-6
3-6
3-7
3-8
3-9
3-9

3-10
3-10

3-11

4-1

4-2

4-3
4-3
4-3
4-4
4-5

iv OSF DeE Application Development Guide

4.3 Potential Disadvantages with Multithreaded
Programming . .

Chapter 5. Thread Concepts and Operations

5.1 Thread Operations •
5.1.1 Starting a Thread .
5.1.2 Terminating a Thread .
5.1.3 Waiting for a Thread to Terminate
5.1.4 Deleting a Thread .

5.2 Attributes Objects ...
5.2.1 Creating an Attributes Object
5.2.2 Deleting an Attributes Object
5.2.3 Thread Attributes
5.2.4 Mutex Attributes .
5.2.5 Condition Variable Attributes

5.3 Synchronization Objects
5.3.1 Mutexes. . .
5.3.2 Condition Variables
5.3.3 Other Synchronization Methods .

5.4 One-Time Initialization Routines .

5.5 Thread-Specific Data

5.6 Thread Cancellation .

5.7 Thread Scheduling

Chapter 6. Programming with Threads .

6.1 Calling UNIX Services
6.1.1 Jacket Routines. .
6.1.2 Blocking System Calls
6.1.3 Calling fork() in a Multithreaded

Environment

6.2 Using Signals .
6.2.1 Types of Signals .
6.2.2 DCE Threads Signal Handling
6.2.3 Alternatives to Using Signals

6.3 Nonthreaded Libraries . • .
6.3.1 Working with Nonthreaded Software .
6.3.2 Changing Nonthreaded Code to be Thread

Reentrant

6.4 Avoiding Nonreentrant Software
6.4.1 Global Lock. . .
6.4.2 Thread-Specific Storage

6.5 Avoiding Priority Inversion •

OSF DeE Application Development Guide

Contents

4-5

5-1

5-2
5-2
5-3
5-3
5-4

5-4
5-5
5-5
5-6
5-9
5-9
5-9

5-10
5-12
5-15
5-15

5-16

5-17
5-18

6-1

6-2
6-2
6-5

6-5

6-7
6-7
6-9

6-10

6-11
6-12

6-12

6-13
6-13
6-14

6-14

v

Contents

6.6 Using Synchronization Objects
6.6.1 Race Conditions
6.6.2 Deadlocks . . • .

6.7 Signaling a Condition Variable

Chapter 7. Using the DCE Threads Exception-Returning
Interface • • •

7.1 Syntax for C

7.2 Invoking the Exception-Returning Interface

7.3 Operations on Exceptions
7.3.1 Declaring and Initializing an Exception

Object • .
7.3.2 Raising an Exception . . • • . . • • •
7.3.3 Defining a Region of Code Over Which Exceptions

Are' Caught . . •
7.3.4 Catching a Particular Exception or All

Exceptions • • .
7.3.5 Defining Epilogue Actions for a Block . • . .
7.3.6 Importing a System-Defined Error Status into the

Program as an Exception . . .

7.4 Rules and Conventions for Modular Use of
Exceptions. • .'.

7.5 DCE Threads Exceptions and Definitions

Chapter 8. DCE Threads Example

8.1 Details of Program Logic and Implementation .

Part 3. DCE Remote Procedure Call

Part 3A. Using Remote Procedure Call

Chapter 9. Introduction to Remote Procedure Calls

9.1 General Requirements for Distributing an
Application

9.2 The RPC Model
9.2.1 RPC Interfaces . .
9.2.2 RPC Services
9.2.3 RPC Objects

9.3 The Parts of an RPC Application
9.3.1 RPC Application Code

6-15
6-15
6-16

6-16

7-1

7-2

7-4
7-5

7-5
7-6

7-6

7-7
7-7

7-8

7-8
7-11

8-1

8-2

9-1

9-2

9-4
9-4
9-6
9-7

9-8
9-9

vi OSF DeE Application Development Guide

9.3.2 Stubs. .
9.3.3 The RPC Runtime .

9.4 DCE RPC and the Distributed Computing
Environment

9.5 Overview of DCE RPC Development Tasks .

Chapter 10. Basic DCE RPC Components

10.1 DCE UUID Generator

10.2 DCE RPC Interface Definition Language .

10.3 DCE IDL Compiler

10.4 DCE RPC Daemon

10.5 Network Data Representation Transfer Syntax .

10.6 DCE RPC Runtime ..
10.6.1 Communications Operations
10.6.2 Directory Service Interface

Operations . .
10.6.3 Endpoint Operations
10.6.4 Authentication Operations . .
10.6.5 Miscellaneous Runtime Operations .

10.7 DCE RPC Control Program .

Chapter 11. Building an Application .

11.1 Writing an Interface Definition .
11.1.1 Generating an Interface UUID
11.1.2 Naming the Interface
11.1.3 Specifying Interface Attributes
11.1.4 Import Declarations
11.1.5 Constant Declarations .
11.1.6 Type Declarations .
11.1.7 Operation Declarations
11.1.8 The binop Interface Definition

11.2 Running the IDL Compiler .

11.3 Writing the Client Code. .
11.3.1 Overview of the binop Client Program
11.3.2 The client.c Source Code .

11.4 Writing the Server Code. •
11.4.1 Overview of the binop Server Program .
11.4.2 The server.c Source Code .
11.4.3 The manager.c Source Code

11.5 A Sample binop Application . .
11.5.1 Building the binop Programs .

OSF DeE Application Development Guide

Contents

9-9
9-10

9-12

9-13

10-1

10-2

10-3

10-6

10-8

10-9

10-9
10-10

10-11
10-11
10-11
10-12

10-13

11-1

11-1
11-2
11-4
11-4
11-5
11-5
11-6
11-7
11-8

11-9

11-10
11-10
11-11

11-13
11-13
11-14
11-17

11-18
11-18

vii

Contents

11.5.2 Running the binop Programs .

Chapter 12. Effects of Remoteness

12.1 Direct Implications of Remoteness

12.2 Communications Protocols .

12.3 Universal Unique Identifiers

12.4 Binding Information •. ..
12.4.1 Server Binding Information
12.4.2 Defining a Compatible Server . • •
12.4.3 Obtaining Binding Information of a Compatible

Server•
12.4.4 Client Binding Information

12.5 Endpoints . .
12.5.1 Well-Known Endpoints
12.5.2 Dynamic Endpoints

12.6 Context Handles

12.7 Execution Semantics. .

12.8 Communications Failures

12.9 Scaling .

Chapter 13. Basic DCE RPC Runtime Operations •

13.1 Overview of Basic Operations .

13.2 Basic Tasks of an Unauthenticated Remote Procedure
Call •

13.3 Basic Runtime Routines .

13.4 Server Initialization Tasks .
13.4.1 Assigning Types to Objects
13.4.2 Registering Interfaces • •
13.4.3 Selecting RPC Protocol Sequences .
13.4.4 Obtaining a List of Server Binding

Handles . .
13.4.5 Registering Endpoints. . . .
13.4.6 Making Binding Information Accessible to

Clients
13.4.7 Listening for Calls .

13.5 Methods for Managing Bindings

13.6 Obtaining Server Binding Handles
13.6.1 Using String Bindings to Obtain Binding

Information .
13.6.2 Searching a Namespace

11-19

12-1

12-2

12-3

12-4

12-5
12-6
12-8

12-10
12-14

12-16
12-16
12-17

12-18

12-19

12-21

12-21

13-1

13-2

13-4

13-6

13-7
13-8

13-10
13-13

13-13
13-14

13-15
13-18

13-19

13-23

13-23
13-24

viii OSF DeE Application Development Guide

13. 7 Using Authenticated RPC
13.7.1 Authentication .
13.7.2 Authorization . .
13.7.3 Authenticated RPC Routines .

Chapter 14. Advanced DCE RPC Topics

14.1 Advanced Name Service Interface Topics
14.1.1 Structure ofNSI Name Service Entries: NSI

Attributes •. .
14.1.2 Searching the Namespace for Binding

Information . .

14.2 Threads of Execution in RPC Applications
14.2.1 Remote Procedure Call Threads .
14.2.2 Cancels ..
14.2.3 Multithreaded RPC Applications

14.3 Nested Remote Procedure Calls

14.4 Routing Remote Procedure Calls
14.4.1 Obtaining an Endpoint
14.4.2 Buffering Call Requests
14.4.3 Queuing Incoming Calls
14.4.4 Selecting a Manager

Chapter 15. Name Service Interface Usage .

15.1 NSI Directory Service Entries .
15.1.1 Structure of Entry Names .
15.1.2 Server Entries
15.1.3 Groups
15.1.4 Profiles ••
15.1.5 Guidelines for Constructing Names of Directory

Service Entries .
15.1.6 Selecting the Starting Entry
15.1.7 Environment Variables

15.2 Strategies for Using Directory Service Entries
15.2.1 Using Server Entries
15.2.2 Using Groups
15 .2.3 Using Profiles

15.3 Models for Defining RPC Servers .
15.3.1 Service Model
15.3.2 Resource Model

Chapter 16. Guidelines for Error Handling .

16.1 Exceptions •

16.2 The fault_status Attribute

16.3 The comm_status Attribute

OSF DeE Application Development Guide

Contents

13-27
13-28
13-30
13-32

14-1

14-1

14-2

14-4

14-14
14-15
14-18
14-20

14-22

14-25
14-27
14-32
14-33
14-36

15-1

15-2
15-2
15-4
15-6
15-8

15-11
15-16
15-16

15-17
15-17
15-18
15-20

15-21
15-22
15-29

16-1

16-2

16-3

16-3

ix

Contents

1604 Determining Which Method to Use for Handling
Exceptions . . . •

16.5 Examples of Error Handling .•..
16.5.1 The Matrix Math Server Example
16.5.2 The Stock Quote Application

Example

Part 3B. Language Syntax and Usage

Chapter 17. Interface Definition Language . .

17.1 The Interface Definition Language File

17.2 Syntax Notation Conventions
17.2.1 Typography . . .

17.3

1704

17.2.2 Special Symbols

IDL Lexical Elements
17.3.1 Identifiers
17.3.2 Keywords . • . • .
17.3.3 Punctuation Characters
17.304 White Space ..•.
17.3.5 Case Sensitivity

IDL Versus C . . .
1704.1 Declarations
1704.2 Data Types
1704.3 Attributes

17.5 Interface Definition Structure
17.5.1 Interface Definition Header
17.5.2 Interface Definition Body .

17.6 Overview of IDL Attributes

17.7 Interface Definition Header Attributes
17.7.1 The uuid Attribute . . • . .
17.7.2 The version Attribute
17.7.3 The endpoint Attribute
17.704 The pointer_default Attribute
17.7.5 The local Attribute. • • • .
17.7.6 Rules for Using Interface Definition Header

Attributes •..••..
17.7.7 Examples of Interface Definition Header

Attributes •.•••.

17.8 Import Declarations

17.9 Constant Declarations . . • . • .
17.9.1 Integer Constants

16-4

16-5
16-5

16-6

17-1

17-1

17-2
17-2
17-2

17-3
17-3
17-4
17-4
17-4
17-5

17-5
17-6
17-6
17-6

17-7
17-7
17-7

17-8

17-9
17-10
17-10
17-12
17-13
17-13

17-14

17-14

17-14

17-15
17-16

x OSF DeE Application Development Guide

17.9.2 Boolean Constants
17.9.3 Character Constants . . . • • . . • .
17.9.4 String Constants .••..•.•..
17.9.5 NULL Constants . • . • • • . • . .

17.10 Type Declarations . • . . • . • • . •
17.10.1 Type Attributes
17.10.2 Base Type Specifiers
17.1 0.3 Construct~d Type Specifiers . •..•
17.10.4 Predefined Type Specifiers . . • • • • •
17.10.5 Type Declarator . . • . • . .

17.11 Operation Declarations
17.11.1 Operation Attributes . • . •
17.11.2 Operation Attributes: idempotent, broadcast, and

maybe

17.12 Parameter Declarations .

17.13 Basic Data Types . • . . . • . . • . • . •
17.13.1 Integer Types
17.13.2 Floating-Point Types . . •
17.13.3 The char Type •
17.13.4 The boolean Type . • . . •
17.13.5 The byte Type . . • . • . . .
17.13.6 The void Type. ..••....
17.13.7 The handle_t Type •
17.13.8 The error_status_t Type
17.13.9 International Characters • • • • . • . •

17.14 Constructed Data Types .
17.14.1 Structures
17.14.2 Unions
17.14.3 Enumerations • . . .
17.14.4 Pipes .
17.14.5 Arrays
17.14.6 Strings
17.14.7 Pointers ..•.••.••..
17.14.8 Customized Handles •
17.14.9 Context Handles

17.15 Associating a Data Type with a Transmitted
Type•

17.16 Migration Attributes
17.16.1 The v I_array Attribute
17.16.2 The vI enum Attribute
17.16.3 The v1=string Attribute
17.16.4 The v l_struct Attribute

Chapter 18. Attribute Configuration Language

OSF DeE Application Development Guide

Contents

17-16
17-17
17-17
17-17

17-18
17-18
17-19
17-20
17-20
17-21

17-21
17-22

17-22

17-23

17-25
17-25
17~26
17-26
17-26
17-27
17-27
17-28
17-28
17-29

17-30
17-30
17--,.32
17-34
17-34
17-41
17-47
17-48
17-64
17-66

17-72

17-75
17-75
17-76
17-76
17-76

18-1

xi

Contents

18.1 Syntax Notation Conventions

18.2 Attribute Configuration File
18.2.1 Naming the ACF · .
18.2.2 Compiling the ACF
18.2.3 ACF Features . ·

18.3 Structure . . .
18.3.1 ACF Interface Header . . · 18.3.2 ACF Interface Body
18.3.3 The include Statement
18.3.4 The auto_handle Attribute
18.3.5 The explicit_handle Attribute
18.3.6 The implicit_handle Attribute
18.3.7 The comm_status and fault_status

Attributes . . · · 18.3.8 The code and nocode Attributes
18.3.9 The in_line and oueof_line Attributes
18.3.10 The represent_as Attribute .
18.3.11 The enable_allocate Attribute
18.3.12 The heap Attribute

18.4 Summary of Attributes · .

Part 3C. Supplemental Information

Chapter 19. Summary of Runtime Routines.

19.1 Summary ofRPC Stub-Support Routines .

19.2 Summary ofRPC Runtime Routines

Chapter 20. Language Grammar Synopsis

20.1 Interface Definition Language . .

·

.

18-1

18-2
18-2
18-2
18-3

18-3
18-4
18-5
18-6
18-6
18-8

18-10

18-11
18-14
18-15
18-17
18-20
18-21

18-23

19-1

19-1

19-2

20-1

20-1

20.2 Attribute Configuration Language 20-9

Chapter 21. Using NCS in a DCE RPC Environment • . • . . 21-1

21.1 Using Compatibility Features .••. 21-1

21.2 Migrating an Application to DCE RPC . • . • •• 21-3
21.2.1 Translating an Interface Definition from NIDL to

IDL . . • • . • . • . • • 21-3
21.2.2 Updating Runtime Calls • • . • . . •. 21-4

Part 4. DCE Directory Service

Chapter 22. DCE Directory Service Overview 22-1

xii OSF DeE Application Development Guide

22.1 Introduction to Part 4
22.1.1 Part 4 Document Usage · · 22.1.2 Directory Service Tools

22.2 U sing the DCE Directory Service ·
22.3 DCE Directory Service Concepts

22.4 Structure of DCE Names
22.4.1 DCE Name Prefixes
22.4.2 Names of Cells · · 22.4.3 CDS Names · . . · 22.4.4 GDSNames · · · 22.4.5 Junctions in DCE Names · · 22.4.6 Application Names · ·

22.5 The Federated DCE N amespace
22.5.1 The GDS Namespace · · 22.5.2 The CDS N amespace · 22.5.3 Other N amespaces · · · ·

22.6 Programming Interfaces to the DCE Directory
Service . . · · .
22.6.1 The X/Open Directory Service

Interface · · · 22.6.2 The RPC Name Service Interface
22.6.3 Namespace Junction Interfaces

Part 4A. CDS Application Programming

Chapter 23. Programming in the CDS Namespace . .

23.1 Initial Cell Namespace Organization .
23.1.1 The Cell Profile. . • .
23.1.2 The LAN Profile . . • •
23.1.3 The CDS Clearinghouse
23.1.4 The Hosts Directory
23.1.5 The Subsystems Directory
23.1.6 The /: DFS Alias
23.1. 7 The DFS and Security Service

Junctions. . . • . • .

·
·
·

23.2 Recommended Use of the CDS Namespace .
23.2.1 Storing Data in CDS Entries • . •
23.2.2 Access Control for CDS Entries . .

23.3 Valid Characters and Naming Rules for CDS
23.3.1 Metacharacters . . . •
23.3.2 Additional Rules
23.3.3 Maximum Name Sizes

OSF DeE Application Development Guide

. . .

·

·
·

· . .

Contents

22-1
22-2
22-3

22-3

22-4

22-8
22-9

22-10
22-12
22-12
22-13
22-13

22-14
22-15
22-17
22-18

22-19

22-19
22-19
22-20

23-1

23-2
23-4
23-4
23-4
23-5
23-5
23-6

23-6

23-7
23-7

23-12

23-16
23-18
23-20
23-22

xiii

Contents

23.4 Use of Object Identifiers .•••.

Chapter 24. XDS and the DCE Cell Namespace • .

24.1 Introduction to Accessing CDS with XDS
24.1.1 Using the Reference Material in this

Chapter . • . . • . .
24.1.2 What You Cannot Do with XDS .
24.1.3 What Must Be Set Up • . . • . .

24.2 XDS Objects • •• .•..
24.2.1 Object Attributes . . • .
24.2.2 Interface Objects and Directory

Objects • •
24.2.3 Directory Objects and Namespace

Entries • . • .
24.2.4 Values That an Object Can Contain. .
24.2.5 Building a Name Object . . •
24.2.6 A Complete Object ••.•.
24.2.7 Class Hierarchy ..•.••
24.2.8 Class Hi~rarchy and Object Structure
24.2.9 Public and Private Objects and XOM . . • •
24.2.10 XOM Objects and XDS Library

Functions .••.•.••.

24.3 Accessing CDS Using the XDS Step-by,..Step

23-25

24-1

24-1

24-2
24-3
24-3

24-4
24-6

24-7

24-9
24-10
24-11
24-14
24-15
24-15
24-16

24-17

Procedure • . . • . .'. . • •. 24-17
24.3.1 Reading and Writing Existing CDS Entry Attributes

Using XDS . • 24-17
24.3.2 Creating New CDS Entry Attributes ..•• 24-36

24.4 Object-Handling Techniques
24.4.1 Using XOM to Access CDS .
24.4.2 Dynamic Creation of Objects

24.5 XDS/CDS Object Recipes . • . •
24.5.1 Input XDS/CDS Object Recipes. •
24.5.2 Input Object Classes for XDS/CDS

Operations . . . • . .

24.6 Attribute and Data Type Translation

Part 4B. GDS Application Programming

Chapter 25. GDS API: Concepts and Overview

25.1 Directory Service Interfaces

25.2 The X.500 Directory Information Model .
25.2.1 Directory Objects • . . • .

24-40
24-41
24-44

24-45
24-45

24-46

24-61

25-1

25-2

25-3
25-3

xiv OSF DeE Application Development Guide

25.3

25.2.2 Attribute Types. . .
25.2.3 Object. Identifiers
25.2.4 Object Entries

X.500 Naming Concepts
25.3.1 Distinguished Names .
25.3.2 Relative Distinguished Names and Attribute Value

Assertions
25.3.3 Multiple AVAs
25.3.4 Aliases
25.3.5 Name Verification

25.4 Schemas

25.5

25.4.1 The ODS Standard Schema
25.4.2 The Structure Rule Table
25.4.3 The Object Class Table
25.4.4 The Attribute Table
25.4.5 Defining Subclasses

Abstract Syntax Notation 1 . .
25.5.1 ASN.1 Types
25.5.2 Basic Encoding Rules .

25.6 ODS as a Distributed Service . . .
25.6.1 The Directory Access Protocol
25.6.2 The Directory System Protocol
25.6.3 Referral
25.6.4 Chaining.
25.6.5 The Directory User Agent Cache
25.6.6 ODS Configurations
25.6.7 ODS Security

Chapter 26. XOM Programming

26.1 OM Objects

26.2

26.1.1 OM Object Attributes .
26.1.2 Object Identifiers .
26.1.3 C Naming Conventions
26.1.4 Public Objects
26.1.5 Private Objects . . .
26.1.6 Object Classes . . .

Packages
26.2.1 The Directory Service Package
26.2.2 The Basic Directory Contents

Package
26.2.3 The Global Directory Service Package .
26.2.4 Package Closure

26.3 Workspaces

26.4 Storage Management

OSF DeE Application Development Guide

Contents

25-5
25-5
25-7

25-9
25-9

25-10
25-11
25-12
25-14

25-15
25-15
25-16
25-19
25-23
25-25

25-26
25-27
25-28

25-28
25-30
25-30
25-30
25-31
25-33
25-37
25-38

26-1

26-2
26-2
26-6
26-7

26-10
26-20
26-22

26-29
26-29

26-30
26-31
26-32

26-32

26-33

xv

Contents

26.5 OM Syntaxes for Attribute Values •
26.5.1 Enumerated Types .
26.5.2 Object Types
26.5.3 Strings • . • .
26.5.4 Other Syntaxes .

26.6 Service Interface Data Types
26.6.1 The OM_descriptor Data Type . . . • . .
26.6.2 Data Types for XOM API Calls .

26.7 OM Function Calls
26.7.1 Summary of OM Function Calls .
26.7.2 Using the OM Function Calls

26.8 XOM API Header Files •
26.8.1 XOM Type Definitions and Symbolic Constant

Definitions
26.8.2 XOM API Macros

Chapter 27. XDS Programming

27.1 XDS Interface Management Functions . . • .

27.2

27.3

27.4

27.5

27.6

27.7

27.1.1 The ds_initialize() Function Call
27.1.2 The ds_ version() Function Call . .
27.1.3 The ds_shutdown() Function Call

Directory Connection Management Functions . • . .
27.2.1 A Directory Session • • .
27.2.2 The ds_bind() Function Call . . . • .
27.2.3 The ds_unbind() Function Call . • • .
27.2.4 Automatic Connection Management

XDS Interface Class Definitions • . . . • .
27.3.1 Example: The DS_C_FILTER Class
27.3.2 The DS_C_CONTEXT Parameter

Directory Class Definitions . • . . .

The Global Directory Service Package . . • .
27.5.1 Authentication .
27.5.2 Access Control . . .
27.5.3 DUA Cache . . .

Directory Operation Functions .

Directory Read Operations•.
27.7.1 Reading an Entry from the Directory • . • .
27.7.2 Step 1: Export Object Identifiers for Required

Directory Classes and Attributes •....
27.7.3 Step 2: Declare Local Variables . •
27.7.4 Step 3: Build Public Objects . • . • . • .
27.7.5 Step 4: Create an Entry-Information-Selection

Parameter . • . . . •

26-36
26-36
26-38
26-38
26-39

26-40
26-40
26-44

26-45
26-45
26-46

26-52

26-53
26-53

27-1

27-2
27-2
27-4
27-5

27-6
27-6
27-6
27-8
27-9

27-9
27-9

27-10

27-11

27-13
27-13
27-14
27-15

27-16

27-16
27-17

27-18
27-19
27-20

27-20

xvi OSF DeE Application Development Guide

27.8

27.7.6 Step 5: Perform the Read Operation

Directory Search Operations . . . •
27.8.1 Searching the Directory
27.8.2 Step 1: Export Object Identifiers
27.8.3 Step 2: Declare Local Variables . . .
27.8.4 Step 3: Build Public Objects for the name Parameter

to ds_searchO . . •
27.8.5 Step 4: Specify the Portion of the DIT To Be

Searched.
27.8.6 Step 5: Create a Filter
27.8.7 Step 6: Create an Entry-Information-Selection

Parameter •
27.8.8 Step 7: Perform the Search Operation

27.9 Directory Modify Operations
27.9.1 Modifying Directory Entries
27.9.2 Step 1: Export Object Identifiers for Required

Directory Classes and Attributes
27.9.3 Step 2: Declare Local Variables . .
27.9.4 Step 3: Build Public Objects
27.9.5 Step 4: Create Descriptor Lists for

Attributes
27.9.6 Step 5: Perform the Operations

Chapter 28. Sample Application Programs

28.1 General Programming Guidelines .

28.2 The example.c Program
28.2.1 The example.c Code . . •
28.2.2 Error Handling .

28.3 The acl.c Program
28.3.1 The acl.c Code • . .
28.3.2 The acl.h Header File .
28.3.3 The acl.h Code . .

28.4 The teldir.c Program . •
28.4.1 Predefined Static Public Objects .
28.4.2 Partially Defined Static Public

Objects •
28.4.3 Dynamically Defined Public Objects
28.4.4 Main Program Procedural Steps
28.4.5 The teldir.c Code

Part 4C. XDS/XOM Supplementary Information

Chapter 29. XDS Interface Description . .

OSF DeE Application Development Guide

Contents

27-22

27-26
27-26
27-29
27-30

27-31

27-31
27-32

27-34
27-34

27-37
27-38

27-39
27-39
27-40

27-42
27-44

28-1

28-2

28-2
28-6

28-12

28-14
28-18
28-36
28-37

28-46
28-46

28-48
28-49
28-50
28-52

29-1

xvii

Contents

29.1 XDS Conformance to Standards

29.2 The XDS Functions

29.3 The XDS Negotiation Sequence

29.4 The session Parameter

29.5 The context Parameter

29.6 The XDS Function Arguments
29.6.1 Attribute and Attribute Value

Assertion •.....
29.6.2 The Entry-Information-Selection

Parameter
29.6.3 The name Parameter

29.7 XDS Function Call Results . • .
29.7.1 The invoke_id Parameter . . . • .
29.7.2 The result Parameter
29.7.3 The DS_status Return Value .

29.8 Synchronous Operations. • . .

29.9 Security and XDS

29.10 Other Features of the XDS Interface . •
29.10.1 Automatic Connection Management
29.10.2 Automatic Continuation and Referral

Handling. . . • .

Chapter 30. XDS Class Definitions

30.1 Introduction to OM Classes

30.2 OM Class Hierarchy

30.3 DS_C_ACCESS_POINT

30.4 DS_C_ADDRESS

30.5 DS_C_ATTRIBUTE. . .

30.6 DS_C_ATTRIBUTE_LIST. .

30.7 DS_C_AVA . . . • .

30.8 DS_C_COMMON_RESULTS • .

30.9 DS_C_COMPARE_RESULT .

29-2

29-3

29-5

29-6

29-6

29-7

29-8

29-9
29-10

29-10
29-11
29-11
29-12

29-12

29-13

29-13
29-13

29-14

30-1

30-1

30-2

30-4

30-5

30-5

30-6

30-7

30-7

30-8

30-9

30-15

30-16

xviii OSF DeE Application Development Guide

30.15 DS_C_ENTRY_INFO_SELECTION .

30.16 DS_C_ENTRY_MOD

30.17 DS_C_ENTRY_MOD_LIST

30.18 DS_C_EXT

30.19 DS_C_FILTER

30.20 DS_C_FILTER_ITEM

30.21 DS_C_LIST_INFO .

30.22 DS_C_LIST_INFO_ITEM . . .

30.23 DS_C_LIST_RESULT . .

30.24 DS_C_NAME. • • . .

30.25 DS_ C_ OPERATION_PROGRESS

30.26 DS_C_PARTIAL_OUTCOME_QUAL

30.27 DS_C_PRESENTATION_ADDRESS

30.28 DS_C_READ_RESULT. . .

30.29 DS_C_RELATIVE_NAME. .

30.30 DS_C_SEARCH_INFO . .

30.31 DS_C_SEARCH_RESULT .

30.32 DS_C_SESSION . .

Chapter 31. XDS Errors•

31.1 OM Class Hierarchy .

31.2 DS_C_ERROR

31.3 DS_C_ABANDON_FAILED

31.4 DS_C_ATTRIBUTE_ERROR .

31.5 DS_C_ATTRIBUTE_PROBLEM .

31.6 DS_C_COMMUNICATIONS_ERROR .

31.7 DS_C_LIBRARY_ERROR .

31.8 DS_C_NAME_ERROR . . .

31.9 DS_C_REFERRAL . • .

31.10 DS_C_SECURITY_ERROR

31.11 DS_C_SERVICE_ERROR . .

31.12 DS_C_SYSTEM_ERROR . .

OSF DeE Application Development Guide

Contents

30-17

30-18

30-20

30-21

30-21

30-22

30-24

30-26

30-28

30-29

30-30

30-30

30-32

30-33

30-34

30-35

30-36

30-37

30-38

31-1

31-2

31-3

31-6

31-7

31-8

31-9

31-10

31-12

31-13

31-13

31-14

31-16

xix

Contents

31.13 DS_C_UPDATE_ERROR

Chapter 32. Basic Directory Contents Package .

32.1 Selected Attribute Types

32.2 Selected Object Classes • .
32.3 OM Class Hierarchy .
32.4 DS_C_FACSIMILE_PHONE_NBR

32.5 DS_C_POSTAL_ADDRESS

32.6 DS_C_SEARCH_CRITERION

32.7 DS_C_SEARCH_GUIDE

32.8 DS_C_TELETEX_TERM_IDENT

32.9 DS_C_TELEX_NBR

Chapter 33. MHS Directory User Package

33.1 MDUP Attribute Types .

33.2 MDUP Object Classes

33.3 MDUP OM Class Hierarchy

33.4 MH_C_OR_ADDRESS . . .

33.5 MC_C_OR_NAME • . • . .

33.6 DS_C_DL_SUBMIT_PERMS .

Chapter 34. Global Directory Service Package

34.1 GDSP Attribute Types

34.2 GDSP Object Classes

34.3 GDSP OM Class Hierarchy

34.4 DSX_C_GDS_ACL . . • .

34.5 DSX_C_GDS_ACL_ITEM .

34.6 DSX_C_GDS_CONTEXT . .

34.7 DSX_C_GDS_SESSION

Chapter 35. Information Syntaxes

35.1 Syntax Templates

35.2 Syntaxes

35.3 Strings • • . .

35.4 Representation of String Values

35.5 Relationship to ASN.l Simple Types

31-17

32-1

32-2

32-15

32-16

32-17

32-18

32-18

32-20

32-21

32-22

33-1

33-2

33-6

33-7

33-7

33-28

33-28

34-1

34-2

34-6

34-7

34-8

34-9

34-10

34-15

35-1

35-1

35-2

35-3

35-5

35-6

xx OSF DeE Application Development Guide

35.6 Relationship to ASN.1 Useful Types

35.7 Relationship to ASN.1 Character String Types .

35.8 Relationship to ASN.1 Type Constructors

Chapter 36. XOM Service Interface

36.1 Standards Conformance .

36.2 XOM Data Types. . .
36.2.1 OM_boolean
36.2.2 OM_descriptor .
36.2.3 OM_enumeration
36.2.4 OM_exclusions .
36.2.5 OM_integer . .
36.2.6 OM_modification
36.2.7 OM_object
36.2.8 OM_object_identifier
36.2.9 OM_private_object
36.2.10 OM_public_object. .
36.2.11 OM_return_code
36.2.12 OM_string .
36.2.13 OM_syntax
36.2.14 OM_type
36.2.15 OM_type_list
36.2.16 OM_value . . .
36.2.17 OM_value_length .
36.2.18 OM_value_position
36.2.19 OM_workspace .

36.3 XOM Functions

36.4 XOM Return Codes . .

Chapter 37. Object Management Package

37.1 Class Hierarchy

37.2 Class Definitions
37.2.1 OM_C_ENCODING
37.2.2 OM_C_EXTERNAL
37.2.3 OM_C_OBJECT

Part 5. DCE Distributed Time Service

Chapter 38. Introduction to the Distributed Time Service API

38.1 DTS Time Representation
38.1.1 Absolute Time Representation
38.1.2 Relative Time Representation

OSF DeE Application Development Guide

Contents

35-6

35-7

35-8

36-1

36-2

36-2
36-5
36-5
36-7
36-8
36-8
36-9
36-9

36-10
36-12
36-13
36-13
36-14
36-15
36-16
36-17
36-17
36-19
36-19
36-19

36-20

36-22

37-1

37-1

37-2
37-2
37-3
37-5

38-1

38-2
38-2
38-5

xxi

Contents

38.2 Time Structures .
38.2.1 The utc Structure
38.2.2 The tm Structure .
38.2.3 The timespec Structure
38.2.4 The reltimespec Structure

38.3 DTS API Header Files

38.4 DTS API Routine Functions

Chapter 39. Time-Provider Interface .

39.1 General TPI Control Flow . .
39.1.1 ContactProvider Procedure
39.1.2 ServerRequestProviderTime

Procedure

39.2 Time-Provider Process IDL File

39.3 Initializing the Time-Provider Process

39.4 Time-Provider Algorithm

39.5 DTS Synchronization Algorithm

39.6 Running the Time-Provider Process

39.7 Sources of Additional Information •

Chapter 40. DTS API Routines Programming Example

Part 6. DeE Security Service

Chapter 41. Overview of Security

41.1 Purpose and Organization of This Part of the
Guide

41.2 About Authenticated RPC

41.3 UNIX System Security and DCE Security

41.4 What Authentication and Authorization Mean

41.5 Authentication, Authorization, and Data Protection in
Brief

41.6 Summary of DCE Security Services and
Facilities .
41.6.1 Interfaces to the Security Server •
41.6.2 Interfaces to the Login Facility
41.6.3 Interfaces to the Key Management

Facility . • • . . • .
41.6.4 Interfaces to the ID Map Facility

38-8
38-8
38-9

38-10
38-10

38-11

38-11

39-1

39-2
39-5

39-6

39-7

39-11

39-14

39-15

39-16

39-16

40-1

41-1

41-1

41-2

41-2

41-3

41-4

41-6
41-7
41-9

41-10
41-10

xxii OSF DeE Application Development Guide

41.6.5 Interfaces to the Access Control List
Facility

41.6.6 DCE Implementations of UNIX System Program
Interfaces

41.7 Relationships Between the Security Service and DCE
Applications

41.8 DTS, the Cell Namespace, and Security
41.8.1 DTS and Security
41.8.2 The Cell Namespace and the Security

Namespace •

Chapter 42. Authentication

42.1 Background Concepts
42.1.1 Principals
42.1.2 Cells and Realms . .
42.1.3 The Shared-Secret Authentication

Protocol . •
42.1.4 Protection Levels .•
42.1.5 Data Encryption Mechanisms

42.2 A Walk-Through of the Shared-Secret Authentication
Protocol. • .
42.2.1 A Walk-Through of User

Authentication .
42.2.2 A Walk-Through ofDCE Application

Authentication .

42.3 Intercell Authentication. .. .
42.3.1 Authentication Service Surrogates
42.3.2 Intercell Authentication by Trust

Peers .

Chapter 43. Authorization .

43.1 DCE Authorization. .
43.1.1 Object Types and ACL Types
43.1.2 ACL Manager Types
43.1.3 Access Control Lists
43.1.4 ACL Entries .
43.1.5 Access Checking
43.1.6 Examples of ACL Checking .

43.2 Name-Based Authorization .

Chapter 44. The Registry Application Program Interface .

44.1 Binding to a Registry Site

44.2 The Registry Database. .• ..
44.2.1 Creating and Maintaining PGO Items

OSF DeE Application Development Guide

Contents

41-10

41-11

41-11

41-12
41-12

41-12

42-1

42-2
42-2
42-3

42-4
42-4
42-5

42-5

42-6

42-11

42-18
42-18

42-19

43-1

43-1
43-2
43-4
43-4
43-5
43-9

43-15

43-19

44-1

44-1

44-3
44-4

xxiii

Contents

44.2.2 Creating and Maintaining Accounts
44.2.3 Registry Properties and Policies .
44.2.4 Miscellaneous Registry Routines

Chapter 45. The Login Application Program Interface

45.1 Establishing Login Contexts
45.1.1 Validating the Login Context and Certifying the

Security Server . •
45.1.2 Validating the Login Context Without Certifying the

Security Server .. .
45.1.3 Example of a System Login Program

45.2 Context Inheritance .
45.2.1 The Initial Context .
45.2.2 Private Contexts

45.3 Handling Expired Certificates of Identity

45.4 Importing and Exporting Contexts .

45.5 Changing a Groupset .

45.6 Miscellaneous Login API Functions
45.6.1 Getting the Current Context .
45.6.2 Getting Information from a Login

Context.. .
45.6.3 Getting Password and Group Information for Local

Process Identities
45.6.4 Releasing and Purging a Context

Chapter 46. The Key Management Application Program Interface .

46.1 Retrieving a Key .

46.2 Changing a Key

46.3 Automatic Key Management

46.4 Deleting Expired Keys

46.5 Deleting a Compromised Key .

Chapter 47. The Access Control List Application Program
Interfaces

47.1 The Client-Side API . .
47.1.1 Binding to an ACL .
47.1.2 ACL Editors and Browsers
47.1.3 Testing Access • .
47.1.4 Errors.

47.2 The Server-Side API. . . . •
47.2.1 The ACL Manager Interface .
47.2.2 The ACL Network Interface .

44-6
44-7
44-9

45-1

45-2

45-3

45-4
45-4

45-5
45-5
45-6

45-6

45-7

45-8

45-9
45-9

45-9

45-9
45-10

46-1

46-2

46-3

46-4

46-4

46-5

47-1

47-2
47-3
47-3
47-4
47-5

47-5
47-5
47-8

xxiv OSF DeE Application Development Guide

Chapter 48. The ID Map Application Program Interface

Part 7. DeE Distributed File Service

Chapter 49. DCE Distributed File Service Overview •

49.1 Writing DFS Applications . • • .
49.1.1 Related DCE Components ..•.
49.1.2 The DFS Application Programming

Interface . . •

49.2 Overview of the DCE Distributed File Service
Architecture

49.3 Component Overview · . · 49.3.1 The DCE Local File System · 49.3.2 The Virtual File System Interface
(VFS+) . .

49.3.3 The Cache Manager · 49.3.4 The File Exporter · 49.3.5 The Fileset Server · .
49.3.6 The Fileset Location Database and

Server . · .
49.3.7 The Replication Server
49.3.8 The BOS Server

49.4 An Example ofDFS File Access
Synchronization

Chapter 50. General Cache Manager Operations

·

50.1 Extensions to the ioct1() System Call .

· ·
·

50.2 Using the pioct1() System Call. . .
50.2.1 System, Cell, and Fileset Operations
50.2.2 The Cache • .

·

·
·
·

50.2.3 Other Operations

50.3 Using the afs_syscall() System Call

.

50.3.1 Retrieving ACLs . . •
50.3.2 Setting ACLs . . •
50.3.3 Copying ACLs

50.4 Syntax Summary . . .
50.4.1 The ioct1() Call .
50.4.2 The pioct1() Call
50.4.3 The afs_syscall() Call

Chapter 51. Manipulating Filesets ..•.

51.1 DCE and DFS API Terminology Differences

OSF DeE Application Development Guide

Contents

48-1

49-1

49-2
49-2

49-5

49-6

49-8
49-8

49-15
49-16
49-18
49-23

49-25
49-26
49-27

49-28

50-1

50-2

50-2
50-4
50-9

50-11

50-12
50-13
50-13
50-14

50-14
50-14
50-15
50-17

51-1

51-2

xxv

Contents

51.2 Parameters, Types, and Return Values

51.3 Data Types

51.4 Authorization Requirements

51.5 The VC Functions: General Fileset Operations .
51.5.1 Parameters ...
51.5.2 Creating and Deleting Filesets
51.5.3 Moving, Renaming, and Backing Up

Filesets. .• .
51.5.4 Saving and Restoring Changes to

Filesets .
51.5.5 Setting Fileset Quotas . . .
51.5.6 Synchronizing the Database and File

Server. .
51.5.7 Getting Information About Filesets .
51.5.8 Syntax Summary

51.6 The VL Functions: Interacting with the Fileset Location
Database ..
51.6.1 The Fileset Location Database Entry
51.6.2 Fileset Location .
51.6.3 Fileset Entry Maintenance ..
51.6.4 Obtaining Configuration Information
51.6.5 Syntax Summary

51.7 The FTSERVER Functions: Interacting with the Fileset
Server •
51.7.1 Basic Transaction Functions .
51.7.2 Creating, Deleting, and Cloning

Filesets
51.7.3 Getting and Modifying Fileset Status
51.7.4 Dumping, Restoring, and Moving

Filesets • . •
51.7.5 Enumerating Filesets, Aggregates, and

Transactions
51.7.6 Syntax Summary

Chapter 52. The BOS Server: Monitoring File Server Processes

52.1 Common Arguments .

52.2 Configuration Files

52.3 Process Monitoring
52.3.1 Bnodes. .
52.3.2 Creating and Deleting Bnodes
52.3.3 Changing and Examining Bnode

Instances. . . •
52.3.4 Stopping and Starting Bnode

Instances .

51-3

51-3

51-4

51-4
51-5
51-5

51-6

51-7
51-9

51-9
51-10
51-11

51-15
51-16
51-19
51-22
51-32
51-32

51-39
51-40

51-43
51-46

51-52

51-54
51-56

52-1

52-2

52-3

52-3
52-3
52-5

52-6

52-8

xxvi OSF DeE Application Development Guide

Index

52.4 Server Key Maintenance

52.5 Installing Binaries

52.6 Authorization Issues . • .

52.7 Miscellaneous Functions

52.8 Syntax Summary .

OSF DeE Application Development Guide

Contents

52-10

52-11

52-12

52-13

.52-14

Index-l

xxvii

Contents

List of Figures

Figure 1-1. The Combined Effect of IDL and the RPC Runtime

Figure 1-2. The DCE Steps: The Five Basic Phases Illustrated .

Figure 1-3. Objectffype and Interface{fype/EPV Registration •

Figure 1-4. RPC Server Runtime Dispatching on the Basis of Object
Type

Figure 2-1. How a Name Turns into an Object

Figure 2-2. A Namespace Junction .

Figure 2-3. Client and Server Use of the Name Service •

Figure 2-4. The Endpoint Mapper Completes a Binding. •

Figure 2-5. Print Server Entries in Namespace

Figure 2-6. Print Server Name Entries with Object UUIDs •

Figure 2-7. Separate Printer Name Entries •

Figure 2-8. Object-Oriented Namespace Organization

Figure 2-9. The Export Operation in a Model with Grouped
Bindings • • • •

Figure 2-10. Importing from a Model That Uses Grouped Bindings .

Figure 2-11. Authenticated RPC and the Server Key

Figure 2-12. ACL Interfaces in the Registry Server

Figure 3-1. How an Executable DCE Application is Produced •

Figure 4-1. Work Crew Model

Figure 4-2. Pipelining Model .

Figure 5-1. Thread State Transitions

Figure 5-2. Only One Thread Can Lock a Mutex •

Figure 5-3. Thread A Waits on Condition Ready, Then Wakes Up and
Proceeds

1-5

1-7

1-29

1-30

2-5

2-8
2-14

2-16

2-18
2-20
2-22

2-26

2-38
2-41

2-62

2-74

3-3
4-4

4-5
5-2

5-10

5-13

xxviii OSF DeE Application Development Guide

Contents

Figure 5-4. Thread B Signals Condition Ready

Figure 5-5. Flow with SCHED_FIFO Scheduling .

Figure 5-6. Flow with SCHED _RR Scheduling

Figure 5-7. Flow with SCHED _OTHER Scheduling •

Figure 9-1. Tasks for Distributing an Application

Figure 9-2. Role of the RPC Interface

Figure 9-3. The Parts of an RPC Application

Figure 9-4. Marshalling and Unmarshalling Between ASCII and EBCDIC
Data

Figure 9-5. Interrelationships During a Remote Procedure Call

Figure 9-6. Generating Stubs . .

Figure 9-7. Building a Simple Client and Server .

Figure 10-1. Relationship of RPC Application and Stub Code to Runtime
Operations •

Figure 12-1. A Binding .

Figure 12-2. Server Binding Information and Binding Handles on a
Server .

Figure 12-3. Server Binding Information and a Binding Handle on a
Client

Figure 12-4. Information Used to Identify a Compatible Server . .

Figure 12-5. Client Binding Information Resulting from a Remote Procedure
Call .

Figure 13-1. Basic Tasks of a Remote Procedure Call .

Figure 13-2. Typical Initialization Calls of an RPC Server

Figure 13-3. How Objects Correspond to Types

Figure 13-4. Manager Types

Figure 13-5. Exporting Server Binding Information

Figure 13-6. Methods of Binding Management .

Figure 13-7. Basic String Binding Calls of an RPC Client

Figure 13-8. Calls for NSI Search Operations by RPC Clients

Figure 13-9. Importing Server Binding Information

Figure 14-1. NSI Attributes

Figure 14-2. The import_next and lookup_next Search Algorithm Within a Single
Entry

OSF DeE Application Development Guide

5-14

5-19

5-20

5-20

9-3

9-6

9-8

9-10

9-11

9-14

9-15

10-10

12-2

12-7

12-8

12-10

12-15

13-5

13-8

13-10

13-12

13-17

13-21

13-24

13-25

13-26

14-3

14-7

xxix

Contents

Figure 14-3. Local Application Thread During a Procedure Call

Figure 14-4. Server Application Thread and Multiple Call Threads .

Figure 14-5. Execution Phases of an RPC Thread .

Figure 14-6. Concurrent Call Threads Executing in Shared Address
Space

Figure 14-7. Phases of a Cancel in an RPC Thread .

Figure 14-8. A Multithreaded RPC Application Acting as Both Server and
Client

Figure 14-9. Phases of a Nested RPC Call

Figure 14-10; Phases of a Nested RPC Call to Client Address Space •

Figure 14-11. Steps in Routing Remote Procedure Calls

Figure 14-12. Mapping Information and Corresponding Endpoint Map
Elements

Figure 14-13. Decisions for Looking Up an Endpoint

Figure 14-14. A Request Buffer at Full Capacity

Figure 14-15. Stages of Call Routing by a Server Process .

Figure 14-16. Decisions for Selecting a Manager

Figure 15-1. Parts of a Global Name .

Figure 15-2. Possible Information in a Server Entry

Figure 15-3. Possible Mappings of a Group .

Figure 15-4. Possible Mappings of a Profile .

Figure 15-5. Priorities Assigned on Proximity of Members

Figure 15-6. Service Model: Interchangeable Instances on Two
Hosts

Figure 15-7. Service Model: Interchangeable Instances on One Host

Figure 15-8. Service Model: Distinct Instances on One Host

Figure 15-9. Resource Model: A System-Specific Application •

Figure 15-10. Resource Model: A Single Server Entry for Each
Server .

Figure 15-11. Resource Model: A Separate Server Entry for Each
Object .

Figure 22-1. A Federated DCE Namespace .

Figure 22-2. GDS Namespace Entries arid Directory Objects

Figure 23-1. The Cell N amespace After Configuration

14-14

14-15

14-16

14-17

14-19

14-21

14-22

14-24

14-26

14-28

14-30

14-33

14-35

14-38

15-4

15-6

15-7

15-10

15-21

15-24

15-25

15-28

15-33

15-35

15-37

22-14

22-16

23-3

xxx OSF DeE Application Development Guide

Figure 23-2. A Possible Namespace Structure

Figure 23-3. Valid Characters in CDS, GDS, and DNS Names

Figure 24-1. One Object Descriptor

Figure 24-2. A Complete Object Represented

Figure 24-3. A Three-Layer Compound Object .

Figure 24-4. Directory Objects and XDS Interface Objects

Figure 24-5. Directory Objects and Namespace Entries

Figure 24-6. The DS_C_READ_RESULT Object Structure .

Figure 24-7. The DS_ENTRY_INFO Object Structure

Figure 24-8. The DS_C_ATTRIBUTE Object Structure

Figure 24-9. The DS_C_ATTRIBUTE_LIST Object

Figure 24-10. DS_C_DS_DN Object Attributes . . .

Figure 24-11. The DS_C_ENTRY _MOD_LIST Object

Figure 24-12. The DS_C_ENTRY _INFO_SELECTION Object

Figure 25-1. XDS: Interface to GDS and CDS .

Figure 25-2. The Structure of the DIB

Figure 25-3. Object Identifiers.

Figure 25-4. A Directory Entry Describing Organizational Person .

Figure 25-5. A Distinguished Name in a Directory Information Tree

Figure 25-6. An Alias in the Directory Information Tree . •

Figure 25-7. A Subtree Populated by Aliases . . • . • . .

Figure 25-8. SRT DIT Structure for the GDS Standard Schema

Figure 25-9. A Partial Representation of the Object Class Table

Figure 25-10. The Relationship Between Schemas and the DIT

Figure 25-11. The Relationship Between the DSA and the DUA

Figure 25-12. An Example of a Referral

Figure 25-13. An Example of Chaining

Figure 25-14. GDS Components

Figure 26-1. The Internal Structure of an OM Object .

Figure 26-2. Mapping the Class Definition of
DS_C_ENTRY_INFO_SELECTION .

OSF DeE Application Development Guide

Contents

23-10

23-17

24-5

24-6

24-7

24-9

24-10

24-28

24-31

24-34

24-49

24-51

24-56

24-59

25-3

25-4

25-6

25-8

25-10

25-13

25-14

25-18

25-21

25-25

25-29

25-31

25-32

25-34

26-3

26-5

xxxi

Contents

Figure 26-3. A Representation of a Public Object Using a Descriptor
List • . . . • . . • . . . •

figure 26-4. A Descriptor List for the Public Object: country

Figure 26-5. The Distinguished Name of "Peter Piper" in the DIT

Figure 26-6. Building a Distinguished Name

Figure 26-7. A Simplified View of the Structure of a Distinguished
Name . . . •

Figure 26-8. Client-Generated and Service-Generated Objects

Figure 26-9. The OM Class DS_C_ENTRY_INFO_SELECTION

Figure 26-10. A Comparison of Two Classes With and Without an

Figure 26-11. A Complete Description of Concrete OM Class
DS_C_ATTRIBUTE. • . . •

Figure 26-12. Data Type OM_descriptor_struct .

Figure 26-13. Initializing Descriptors

Figure 26-14. An Object and a Subordinate Object .

Figure 26-15. The Read Result . . . • • .

Figure 26-16. Extracting Information Using om_get()

Figure 27-1. Output from ds_readO: DS_C_READ_RESULT

Figure 27-2. Subtree for the acl.h Sample Program

Figure 27-3. OM Class DS_C_FILTER . • • . •

Figure 27-4. OM Class DS_C_SEARCH_RESULT

Figure 27-5. A Sample Directory Tree • . .

Figure 27-6. OM Class DS_C_LIST_RESULT • . •

Figure 28-1. Entries with User Credentials Added to the Directory
Tree • •

Figure 36-1. OM_String Elements

Figure 38-1. ISO Format for Time Displays . .

Figure 38-2. Variations to the ISO Time Format

Figure 38-3. Full Syntax for a Relative Time

Figure 38-4. Syntax for Representing a Duration

Figure 38-5. DTS API Routines Shown by Functional Grouping ••..

Figure 39-1. DTS/Time-Provider RPC Calling Sequence . . .

26-11

26-13

26-14

26-17

26-18

26-19

26-23

26-24

26-27

26-41

26-42

26-43

26-50

26-51

27-24

27-28

27-33

27-36

27-38

27-46

28-16

36-15

38-3

38-4

38-5

38-6

38-12

39-4

xxxii OSF DeE Application Development Guide

Figure 41-1. Shared-Secret Authentication and DCE Authorization in
Brief

Figure 41-2. DCE Security and the DCE Application Environment .

Contents

41-5

41-11

Figure 42-1. Representational Conventions Used in Authentication Walk-Through
Illustrations 42-6

Figure 42-2. Client Acquires Ticket-Granting Ticket .

Figure 42-3. Client Acquires Privilege-Ticket-Granting Ticket .

Figure 42-4. Client Sets Authentication and Authorization
Information

Figure 42-5. Client Principal Makes Application Request

Figure 42-6. Application Server Challenges Client

Figure 42-7. Application Server Responds to Client's Request

Figure 43-1. Derivation of ACL Defaults

Figure 47-1. ACL Program Interfaces

Figure 49-1. The Organization of the DFS Cache Manager

OSF DeE Application Development Guide

42-8

42-10

42-13

42-14

42-16

42-17

43-3

47-2

49-17

xxxiii

Contents

List of Tables

Table 2-1. Some Examples of Objects

Table 7-1. DCE Threads Exceptions

Table 12-1. Assessment of Mechanisms for Obtaining Binding
Information .•........•..

Table 12-2. Execution Semantics for DCE RPC Calls. . •

Table 13-1. Runtime Routines Associated with Basic Runtime
Operations • . •

Table 15-1. NSI next Operations • • . •

Table 17-1. IDL Attributes . . • . . • . •

Table 17-2. Base Data Type Specifiers

Table IS-I. Summary of the ACF Attributes

Table 23-1. Metacharacters and Their Meaning •••.

Table 23-2. Summary of CDS, ODS, and DNS Characteristics

Table 23-3. Maximum Sizes of Directory Service Names

Table 23-4. T61 Syntax . . • . • . . . • • . •

Table 23-5. Combinations of Diacritical Characters and Basic
Letters . . . • . • . . . • . . • •

Table 24-1. Directory Service Functions with their Required Input
Objects . . . • . • • . . • • . • • . .

Table 24-2. CDS Attributes to OM Syntax Translation

Table 24-3. OM Syntax to CDS Data Types Translation .

Table 25-1. Object Identifiers for Selected Attribute Types

Table 25-2. Structure Rule Table Entries

Table 25-3. Object Class Table Entries

Table 25-4. Object Identifiers for Selected Directory Classes

2-23

7-11

12-13

12-20

13-6

15-15

17-S

17-19

IS-23

23-19

23-21

23-22

23-23

23-24

24-46

24-61

24-62

25-7

25-16

25-19

25-22

xxxiv OSI': DeE Application Development Guide

Table 25-5. Attribute Table Entries

Table 25-6. Syntax for the Simple ASN.1 Types

Table 25-7. Cache Attributes: Read Cache First . . . • . • . • .

Table 25-8. Cache Attributes: Read DSA First • . • . • . .

Table 25-9. Cache Attributes: Read DSA Only. .

Table 25-10. Cache Attributes: DSX_ USEDSA is OM_FALSE

Table 25-11. Cache Attributes: DSX_DUA_CACHE is OM_FALSE

Table 25-12. Cache Attributes: Error . . • • .

Table 26-1. C Naming Conventions for XDS

Table 26-2. C Naming Conventions for XOM

Table 26-3. Comparison of Private and Public Objects

Table 26-4. Description of an OM Attribute Using Syntax Enum(*)

Table 26-5. Description of an OM Attribute Using Syntax Object(*)

Table 27-1. Representation of Values for Selected Attribute Types .

Table 27-2. Mapping of XDS API Functions to the Abstract

. . .

Services. • . • • . . . • . .

Table 29-1. The XDS Interface Functions

Table 30-1. OM Attributes of DS_C_ACCESS_POINT

Table 30..;..2. OM Attributes ofDS_C..;..ATTRIBUTE

Table 30-3. OM Attribute of DS_C_ATTRIBUTE_LIST .

Table 30-4. OM Attributes ofDS_C_COMMON_RESULTS

Table 30-5. OM Attributes ofDS_C_COMPARE..;..RESULT. •

Table 30-6. OM Attributes ofDS_C_CONTEXT . • . •

Table 30-7. OM Attributes ofDS_C_CONTINUATION_REF

Table 30-8. OM Attribute of DS_C_DS_DN

Table 30-9. OM Attribute of DS_C_DS_RDN • . • . •

Table 30-10. OM Attributes of DS_C_ENTRY_INFO . • •

Table 30-11. OM Attributes of DS_C_ENTRY _INFO_SELECTION

Table 30-12. OM Attribute ofDS_C_ENTRY_MOD

Table 30-13. OM Attribute ofDS_C_ENTRY_MOD_LIST

Table 30-14. OM Attributes of DS_C_EXT

Table 30-15. OM Attributes ofDS_C_FILTER

OSF DeE Application Development Guide

Contents

25-24

25-27

25-36

25-36

25-36

25-37

25-37

25-37

26-9

26-9

26-21

26-37

26-38

27-12

27-16

29-4

30-4

30-6

30-7

30-8

30-9

30-10

30-15

30-16

30-17

30-18

30-19

30-20

30-21

30-22

30-23

xxxv

Contents

Table 30-16. OM Attributes of DS_C_FILTER_ITEM . .

Table 30-17. OM Attributes of DS_C_LIST_INFO . . •

Table 30-18. OM Attributes of DS_C_LIST_INFO_ITEM .

Table 30-19. OM Attributes of DS_C_LIST_RESULT . .

Table 30-20. OM Attributes of DS_C_OPERATION_PROGRESS

Table 30-21. OM Attributes of a
DS_C_PARTIAL_OUTCOME_QUAL

Tuble 30-22. OM Attributes of DS_C_PRESENTATION_ADDRESS

Table 30-23. OM Attribute of DS_C_READ_RESULT . .

Table 30-24. OM Attributes of DS_C_SEARCH_INFO

Table 30-25. OM Attributes of DS_C_SEARCH_RESULT

Table 30-26. OM Attributes of DS_C_SESSION

Table 31-1. OM Attribute of DS_C_ERROR

Table 31-2. OM Attributes of DS_C_ATTRIBUTE_ERROR

Table 31-3. OM Attributes of DS_C_ATTRIBUTE_PROBLEM

Table 31-4. OM Attribute of DS_C_NAME_ERROR

Table 32-1. Object Identifiers for Selected Attribute Types . . .

Table 32-2. Representation of Values for Selected Attribute Types .

Table 32-3. Object Identifiers for Selected Object Classes

Table 32-4. OM Attributes of DS_C_FACSIMILE_PHONE_NBR .

Table 32-5. OM Attribute of DS_C_POSTAL_ADDRESS

Table 32-6. OM Attributes of DS_C_SEARCH_CRITERION

Table 32-7. OM Attributes of DS_C_SEARCH_GUIDE . • .

Table 32-8. OM Attributes of DS_C_TELETEX_TERM_IDENT

Table 32-9. OM Attributes of DS_C_TELEX_NBR

Table 33-1. Object Identifiers for MDUP Attribute Types

Table 33-2. Representation of Values for MDUP Attribute Types

Table 33-3. Object Identifiers for MDUP Object Classes .

Table 33-4. Attributes Specific to MH_C_OR_ADDRESS

Table 33-5. Forms of Originator/Recipient Address

Table 33-6. Attribute Specific to MH_C_OR_NAME. .

Table 33-7. OM Attributes of DS_C_DL_SUBMIT_PERMS

30-24

30-27

30-28

30-29

30-31

30-32

30-34

30-35

30-36

30-37

30-38

31-3

31-7

31-8

31-12

32-4

32-6

32-16

32-17

32-18

32-19

32-21

32-22

32-23

33-3

33-4

33-6

33-8

33-23

33-28

33-29

xxxvi OSF DeE Application Development Guide

Table 34-1. Object Identifiers for GDSP Attribute Types

Table 34-2. Representation of Values for GDSP Attribute Types

Table 34-3. Object Identifier for GDSP Object Classes

Table 34-4. OM Attributes of DSX_C_GDS_ACL. .

Table 34-5. OM Attributes ofDSX_C_GDS_ACL_ITEM

Table 34-6. OM Attributes of DSX_C_GDS_CONTEXT .

Table 34-7. Default DSX_C_GDS_CONTEXT. . . .

Table 34-8. OM Attributes of DSX_C_GDS_SESSION

Table 34-9. Default DSX_C_GDS_SESSION

Table 35-1. String Syntax Identifiers

Table 35-2. Syntax for ASN.1's Simple Types •

Table 35-3. Syntaxes for ASN.1's Useful Types

Table 35-4. Syntaxes for ASN.1's Character String Types

Table 35-5. Syntaxes for ASN.1's Type Constructors .

Table 36-1. XOM Service Interface Data Types

Table 36-2. Assigning Meanings to Values

Table 36-3. XOM Service Interface Functions . . .

Table 36-4. OM Functions and their Corresponding Abbreviations .

Table 36-5. XOM Service Interface Return Codes . . .

Table 37-1. Attributes Specific to OM_C_ENCODING

Table 37-2. Attributes Specific to OM_C_EXTERNAL

Table 37-3. Attribute Specific to OM_C_OBJECT. .

Table 38-1. Absolute Time Structures

Table 38-2. Relative Time Structures

Table 49-1. Compatibility Between Open Tokens

OSF DeE Application Development Guide

Contents

34-3

34-4

34-7

34-8

34-9

34-10

34-14

34-15

34-16

35-4

35-6

35-7

35-7

35-8

36-3

36-17

36-20

36-23

36-24

37-2

37-4

37-5

38-8

38-8

49-22

xxxvii

Preface

The aSF DeE Application Development Guide provides information about
how to program the Application Programming Interfaces (APIs) provided
for each OSpTM Distributed Computing Environment (DCE) component.

Audience

This guide is written for application programmers with UNIX operating
system and C language experience who want to develop and write
applications to run on DCE.

OSF DeE Application Development Guide xxxix

Preface

Applicability

Purpose

This is Revision 1.0 of this document. It applies to the OSF™ DCE Version
1.0 offering and related updates. See your software license for details.

The purpose of this guide is to assist programmers in developing
applications using DCE. After reading this guide, you should be able to
program the Application Programming Interfaces provided for each DCE
component.

Document Usage

xl

This guide is organized into the following seven parts:

• For an overview of DCE application development, see "Part 1. Overview
of DCE Application Development."

• For information about the DCE Threads Application Programming
Interface, see "Part 2. DCE Threads."

• For information about the DCE Remote Procedure Call Application
Programming Interface, see "Part 3. DCE Remote Procedure Call."

• For information about the DCE Directory Service Application
Programming Interface, see "Part 4. DCE Directory Service."

• For information about the DCE Distributed Time Service Application
Programming Interface, see "Part 5. DCE Distributed Time Service."

• For information about the DCE Security Service Application
Programming Interface, see "Part 6. DCE Security Service."

• For information about the DCE Distributed File Service Application
Programming Interface, see "Part 7. DCE Distributed File Service."

OSF DeE Application Development Guide

Preface

Related Documents

For additional information about the Distributed Computing Environment,
refer to the following documents:

• Introduction to aSF DCE

• aSF DCE User's Guide and Reference

• aSF DCE Application Development Reference

• aSF DCE Administration Guide

• aSF DCE Administration Reference

• aSF DCE Porting and Testing Guide

• Application Environment Specification (AES)IDistributed Computing

• aSF DCE Technical Supplement

• aSF DCE Release Notes

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that you
must use literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you
must supply.

Constant width
Examples and information that the system displays appear in
constant width typeface.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an item in
format and syntax descriptions.

A vertical bar separates items in a list of choices.

OSF DeE Application Development Guide xli

Preface

< > Angle brackets enclose the name of a key on the keyboard.

Horizontal ellipsis points indicate that you can repeat the
preceding item one or more times.

This document uses the following keying conventions:

<Ctrl-x> or AX

The notation <Ctrl-x> or AX followed by the name of a key
indicates a control character sequence. For example, <Ctrl-c>
means that you hold down the control key while pressing <c>.

<Return> The notation <Return> refers to the key on your terminal or
workstation that is labeled with the word Return or Enter, or
with a left arrow.

Problem Reporting

If you have any problems with the software or documentation, please
contact your software vendor's customer service department.

Pathnames of Directories and Files in DeE
Documentation

xlii

For a list of the pathnames for directories and files referred to in this
document, see the OSF DCE Administration Guide and the OSF DCE
Release Notes.

OSF DeE Application Development Guide

Overview of DCE Application
Development

Part 1

Chapter 1

DCE Application Development Steps

This chapter, and the two that follow it, make up the first part of the aSF
DeE Application Development Guide. Together, these first three chapters
offer an introduction to the fundamental aspects of DCE application
programming. The reader of this guide is assumed to be an experienced
programmer.

1.1 Introduction to DeE Application Development

The majority of this first chapter consists of a fairly detailed overview of
each of the separate steps that a developer usually has to perform (or have
the application perform) from the beginning of coding to the end of
execution of a successful DCE application. Chapter 3 describes a practical
example of this process: a complete working DeE example application,
timop. Chapter 2 consists of detailed discussions of some of the
fundamental DCE features and services, including use of the name service,
coding an ACL manager, security key management, thread-safe
programming practices, and other topics.

Before you begin a serious study of the contents of any part of this guide, or
indeed of any other book in the DCE documentation set, you should read the

OSF DeE Application Development Guide 1-1

Overview of DeE Application Development

Introduction to aSF DeE. It contains clear and comprehensive overviews,
with illustrations, of all the DCE components and of the integrated DCE as a
whole; many concepts and details are explained there that are necessary to a
full understanding of what is described here.

If you do not find information about topics you are interested in either in this
guide or in the aSF DeE Application Development Reference, you should
also look in the aSF DeE Administration Guide and the aSF DeE
Administration Reference. For example, the DCE Cell Directory Service is
not accessed directly by applications (except through DCE RPC NSI or
through DCE XDS) so most of the discussion of CDS as a separate
component is found in the administration documentation. Although the DCE
Security Service is documented in the development books, certain aspects of
it important to application developers (for example, adding new principals
to the security registry database) are found only in the administration books.

1.2 Content Overview of Part 1

The following subsections contain additional information about the first
three chapters of this guide.

1.2.1 Topics Covered in Part 1

1-2

The following DCE components are described and discussed in some detail
in the first three chapters of this guide:

• DCE Threads Service

• DCE Cell Directory Service (DCE CDS), accessed through the DCE
RPC NSI (Name Service Interface)

• DCE Remote Procedure Call (DCE RPC)

• DCE Security Service

Explicit use of all these components is necessary for most DCE
applications; you cannot usually get by without them.

In addition, routines from the DCE Distributed Time Service are used in the
timop example application described in Chapter 3.

OSF DeE Application Development Guide

DeE Application Development Steps

1.2.2 Topics Not Covered in Part 1

The following DCE components are not discussed in these first three
chapters:

• DCE Global Directory Service (DCE GDS), including the Global
Directory Agent

• DCE Distributed File System (DCE DFS)

• X/Open Directory Service Application Programming Interface (XDS
API) and XOM (Object Management) Interface

DCE GDS is used for looking up names that are held in directories not
located in the local cell. GDS is automatically utilized by the DCE RPC
Name Service Interface (NSI) when a nonlocal name is looked up (unless
the cell uses DNS as its global directory service); thus, normal application
use of GDS is handled implicitly by NSI.

Similarly, applications use DCE DFS whenever they access DFS files; the
application routine calls remain the same on this level, and no special
programming techniques are required.

XDS API is a general interface into the DCE Directory Service as a whole,
both to CDS and GDS. Applications do not require this interface in order to
accomplish client/server rendezvous, since this is taken care of by DCE
RPCNSI.

Although the DCE Directory Service is a very versatile database which can
be used to store and retrieve all kinds of data, the main use of a directory
service for distributed applications is to provide a standard facility by which
servers can advertise their location to clients. NSI works with a greatly
reduced subset of predefined directory entry types that are tailored to this
need. Developers can thus avoid having to contend with functionality they
do not need, and concentrate on the details of client/server rendezvous.

Thus, the XDS interface is for developers who need access to the full
functionality of the DCE Directory Service as a generic directory service.
Some likely uses of XDS may occur in the development of the following:

• Alternative versions of DCE tools, such as the CDS namespace browser
(a utility that allows users to view the contents of CDS directories), or
other administrative utilities and commands

OSF DeE Application Development Guide 1-3

Overview of DeE Application Development

• Software that needs to access directory services in conformance with the
X.SOO protocols, such as:

- FTAM (File Transfer and Management) applications

- XAOO mail system applications

- Applications that use X.SOO for routing

There is no restriction against your using XDS in any DCE application if
you wish, but its typical uses fall outside the bounds of the discussion in
these first three chapters. However, XDS does offer a functionality that can
be of more immediate interest to DCE application developers. This involves
the creation and addition of non-NSI attributes to name service entries, thus
allowing· extra application-defined information to be stored in an
application's namespace entries. A sample program showing how to do this
can be found in Chapter 24 of this guide.

Of course, all of the DCE components are treated in detail in their separate
parts in this guide, even though not all of them are discussed in this
introductory part of the guide.

1.3 DeE Application Development

1-4

Most of the effort of developing a DCE application usually lies in the
familiar steps of planning, writing and compiling the necessary C code,
linking the result with the DCE library and other modules, and executing it
(perhaps repeatedly). However, there is an important preliminary task that
must be performed before you write any other code. Before you can
implement the application's client and server, you must write and compile
an interface definition file in which you define the application's client/server
interface.

This interface, defined in the DCE Interface Definition Language (IDL) ,
consists of a set of "remote call prototypes" for the remote procedure calls
your client(s) will be requesting your server(s) to execute. After you have
written this file, you compile it with the DCE IDL compiler. The final output
of IDL compilation is a pair of object files, one for the server module and
one for the client, which you must later link with the compiled output of
your server and clien~ implementation code. These two IDL output files

OSF DeE Application Development Guide

DeE Application Development Steps

contain the server and client stub code, where all the details of remote
execution, data transfer, and so on, are managed.

The IDL compiler also generates a header file for inclusion in the server and
client source files. It contains all the definitions and declarations that result
from the IDL file definitions. Among these are, for example; the interface
specification data structure, which will be used at runtime to describe the
interface being defined here.

Once you have linked the stub files (and the DCE library) to their respective
client and server modules, the IDL-generated stubs make the client and
server seem to communicate directly through the operation signatures you
defined in the original .idl file, although in actuality client/server
communications pass back and forth through layers of stub and runtime
processing, which are necessary to send and receive the data over the
network. Figure 1-1 illustrates how the combination of IDL (by means of the
stubs it generates) with the RPC runtime routines shields both client and
server from the details of network communications.

Figure 1-1. The Combined Effect of IDL and the RPC Runtime

RPC Client

Calling
Code

Apparent Path
of Data

due to IDL

and RPC

Return Data

Input Arguments

Actual Path of Data

RPC Server
Remote

Procedure
Call

RPC
Interface

Server
Stub

The first sections of Chapter 3 of this guide contain a fuller description of all
the input possibilities to IDL, as well as all the different kinds of output it
can generate.

OSF DCE Application Development Guide 1-5

Overview of DeE Application Development

Once the work of defining an interface has been completed, the task of
implementing the interface (that is, coding the operations, along with the
rest of the necessary initialization and management routines, in some
programming language) begins. The rest of this chapter consists of detailed
explanations of the DCE application development steps from start to finish.
For a practical example of the result of such a process, refer to the code for
timop, which is described in Chapter 3. For more detailed discussions of
some of the DCE services and techniques for utilizing them, see Chapter 2.

Each of the DCE components (with the exception of CDS, which is accessed
through the RPC-integrated NSI) is discussed in depth in separate parts of
this guide. You should also refer often to the OSF DeE Application
Development Reference, which contains reference pages for all of the DCE
library routines mentioned in the following sections.

1.4 Overview of the DeE Application Development
Steps

1-6

The rest of this chapter consists of a step-by-step checklist of every single
one of the decisions that a programmer must make in developing a typical
DCE application. Each set of decisions or choices is combined into one step.
The combination of all these steps takes you from the initial coding stages
into and through the normal course of execution of the application itself.
The underlying intention of this arrangement is to give you a useful mental
model of the overall code development process.

Figure 1-2 summarizes the organization of the steps.

OSF DeE Application Development Guide

DeE Application Development Steps

Figure 1-2. The DCE Steps: The Five Basic Phases Illustrated

[A1-AS]

Client Server ! [81-812J! s" Up

...................... ~
Import ! [C1-C3] ! Listen l Binding

Service
Invoke ,RPC [01-07] Request

Operation !. ~

Wake Up
[E1,E2]

Continue

Interface
A Definition

Code

Figure 1-2 is divided into five basic phases, which are identified by the
letters A through E along the right side of the figure. Each of these larger
phases consists of a series of steps or decisions that normally occur in the
development of a DCE application. The individual steps are indicated by the
bold numbers in brackets; each one is described in detail in the following
text.

Almost all of the steps in B through E consist of very specific choices
regarding how, or whether, various DCE library routines are to be called.
Steps B2 through E2 (phases B through E) can be taken together as a walk
through of the client-side and server-side code of a typical DCE application.

The first phase, A, represents a series of things that must occur before
anything else in the development process can happen; namely, the IDL file
definition and compilation.

Thus, the 5 basic phases of DCE application development are as follows:

A. CLIENT and SERVER: Define the RPC/lDL interface
[Steps Al to AS]

B. SERVER: Set up and listen [Steps Bl to B12]

C. CLIENT: Bind to and invoke the server [Steps Cl to C3]

D. SERVER: Service request(s) [Steps Dl to D7]

E. CLIENT: Receive the results [Steps El to E2]

OSF DCE Application Development Guide 1-7

Overview of DeE Application Development

1-8

Following is an overview list of all 29 steps, separated into the 5 main
phases previously described. Each step's numeral is followed by a / (slash)
and the terms Client and/or Server to indicate whether it applies to the
application's server or client, or both.

A. CLIENT and SERVER: Define the RPC/IDL interface.

Al!Client and Server: Generate the interface UUID.

A2/Client and Server: Determine the interface version number.

A3/Client and Server: Write the .idl file.

A4/Client and Server: Write the .acf file (optional).

AS/Client and Server: Process the files with the IDL compiler.

B. SERVER: Set up and listen.

Bl!Server: Define the manager Entry Point Vectors (EPVs).

B2/Server: Register the object/type UUID associations with RPC
runtime.

B3/Server: Register the interface, type UUID, and EPV with RPC
runtime.

B4/Server: Specify multithreadedness.

BS/Server: Tell RPC runtime what protocol sequences to use.

B6/Server: Request the bindings from RPC runtime.

B7/Server: Register the authentication information with RPC runtime.

BS/Server: Establish the server principal identity.

B9/Server: Plan what to do when the server terminates.

BIO/Server: Register the binding information with the endpoint mapper.

BII/Server: Export the binding information to the namespace (CDS).

BI2/Server: Listen for incoming service requests.

OSF DeE Application Development Guide

DeE Application Development Steps

C. CLIENT: Bind to and invoke the server.

ClIClient: Import the binding information from the namespace (CDS).

C2/Client: Annotate the binding handle for security.

C3/Client: Invoke an RPC interface operation.

D. SERVER: Service the request.

Dt/Server: Wake up in manager routine.

D2/Server: Get the client's Privilege Attribute Certificate (PAC).

D3/Server: Get the object's Access Control List (ACL).

D4/Server: Make the authorization decision.

DS/Server: Service the request.

D6/Server: Return the results to the client.

D7/Server: Continue the listen loop.

E. CLIENT: Receive the results.

ElIClient: Wake up after the RPC call.

E2/Client: Continue.

OSF DeE Application Development Guide 1-9

Overview of DeE Application Development

1.5 The DeE Application Development Steps

The following subsections describe the 29 DCE application development
steps.

1.5.1 Step AI/Client and Server: Generate the Interface UUID

1-10

The first step in developing any DCE application is to define its interface;
these definitions are contained in an .idl file, written by the developer. Part
of the definition of the interface is its UUID, which is a 128-bit Universal
Unique Identifier that identifies it far and wide throughout DCE. Executing
the uuidgen command with the -i option, for example:

uuidgen -i > your _inteiface _ name.idl

will generate a file containing the skeleton of an interface definition and a
newly generated UUID for the interface.

The uuidgen command is a general UUID manufacturing utility. It is used
(among its other uses) to generate blocks of UUIDs for inclusion in data
declarations, and so on. (Refer to the uuidgen(lrpc) reference page in the
aSF DeE Application Development Reference.)

1.5.1.1 The Purpose of UUIDs

UUIDs are used to identify many different things in DCE. These "things"
can be broadly distinguished into two categories: interfaces and objects.
UUIDs that identify interfaces are commonly called "interface UUIDs,"
and those that identify objects (see the beginning of Chapter 2 for more
information about objects) are called, "object UUIDs." However, a UUID
in and of itself is neutral data that can be applied to the identification of
anything; all UUIDs differ in value, but they are all the same type of value.

An interface UUID is the inalienable "fingerprint" that a server affixes to
the array of operations that it offers; any client that wants to remotely
execute any of these operations must present that same interface UUID to
the server, thus ensuring that the client gets what it asks for, and nothing but

OSF DeE Application Development Guide

DeE Application Development Steps

that. This matching of interface UUIDs is done transparently to the
application programmer by the server's RPC runtime code, which is located
in the server stub. The client's copy of the interface UUID is located in its
stub code. Clients must always be linked to a server stub module in order to
access that server. The stub modules, as will shortly be discussed, come
from the IDL compiler.

1.5.1.2 Summary

To sum up, interface UUIDs are never manipulated by clients. They do not
appear in bindings or among the remote call parameters. They are, however,
contained in a server's NSI-exported namespace entries so that NSI can
make sure that clients import bindings only to servers that offer the same
interface that the clients are seeking.

1.5.2 Step A2/elient and Server: Determine the Interface Version
Number

The version attribute of an interface, specified in the .idl file, is used to give
a major and minor version number to the interface.

A "version" of an interface is the result of compiling and linking some
particular version of implementation source code with IDL-processed
output, producing an executable version of the application. Thus, there can
be more than one existing version of an interface implementation identified
by the same UUID, ~ut distinguished by version numbers. When the RPC
runtime compares the interface in an incoming remote procedure call to that
offered by the server (as described in Step C3, Section 1.5.20), it allows the
call to proceed only if all of the following are true:

• The UUIDs identifying the interface assumed by the client and the
interface exported by the server are the same.

• The interface assumed by the client and the interface exported by the
server have the same major version number.

OSF DeE Application Development Guide 1-11

Overview of DeE Application Development

• The interface assumed by the client has a minor version number less
than or equal to that of the interface exported by the server.

Thus, correct use of the version number attribute allows an application to
have different versions of an interface in existence and yet not have to be
concerned about any resulting client/server interface incompatibilities;
always, that is, provided that the version differences are accurately assessed
by the programmer and expressed in the version numbering. Since the
version attribute value is determined by the programmer, it is the
programmer's responsibility to make sure that interface versions that seem
to be compatible by version number actually are compatible with respect to
the implemented operations.

For further information on how to use the version attribute, see Chapter 17.

1.5.3 Step A3/Client and Server: Write the .idl File

1-12

The .idl file is where the set of remote operations that will constitute the
interface are defined. Although writing the .idl file is listed as a Client and
Server step, there is only one .idl file (per interface). The default output of
its compilation by the IDL compiler will be a pair of stub files, one for the
client and one for the server; a header file is also output by IDL (see Section
3.1 in Chapter 3 of this guide). For a detailed discussion of all aspects of the
.idl file, read Chapter 17 of this guide.

The server implementations of the remote operations are written in C source
code, which is compiled and then linked to the stub code output by IDL. The
interfaces to these operations are defined and characterized in the .idl file, in
IDL language. Thus, an .idl file's contents are like a set of "network
prototypes" for a set of operations. The IDL definitions determine not only
how the operations "look" to client and server (that is, the operations' call
signatures, parameter types, and so on), but also what the data looks like
when it is transmitted back and forth between clients and servers in a
distributed application.

The IDL language is declarative, not procedural. Its look is much like C.
Some of the important attributes that it is used to specify are the following:

OSF DeE Application Development Guide

DeE Application Development Steps

• For interfaces:

uuid

version

endpoint

Specifies a string that contains the interface's UUID. (See
Step AI, Section 1.S.1.)

Specifies the interface major and minor version number.
(See Step A2, Section 1.S.2.)

Specifies well-known endpoints (if any) for the interface.
(See Step BS, Section 1.S.10.)

• For parameters:

in Signifies a parameter whose value is passed from the client
to the server.

out Signifies a parameter whose value is passed from the
server to the client.

• For data types:

handle Specifies a customized binding handle. (See Step A4,
Section 1.S.4.)

context handle
A context handle is a pointer to state information used by
the server, which is maintained across RPCs; for example,
a file pointer. The client is not supposed to do anything
with this pointer; it merely passes it to subsequent calls as
needed, and it is used internally by the remote calls. This
allows applications to have such things as remote calls that
handle file operations much as local calls would; that is, a
client application can remotely open a file, get back a
handle to it, and then perform various other remote
operations on it, passing the context handle as an argument
to the calls. A context handle can be used across interfaces
(where a single server offers the multiple interfaces), but it
can belong only to the client who caused it to be activated.
A context rundown routine can also be declared. This
installs a routine into the callee's stub that will
automatically be called to reclaim (run down) the
pointed-to resource in the event of a communications
break between the server and client. For example, in the
case of the "remote file pointer" just mentioned, the
context rundown routine would simply close the file.

OSF DeE Application Development Guide 1-13

Overview of DeE Application Development

transmit_as Allows you to associate specified complex data types with
a set of routines (which you must write) that will be
implicitly called by the stub code to translate the data into
(and back out of) other formats, either to improve the
efficiency of transmission or for other reasons.

Operation attributes include specifiers for execution semantics; that is,
whether the operation can be safely executed more than once, whether a
response is expected, and so on. The default is that operations can be
executed at-most-once. Operations parameters (the arguments supplied by
the client when it makes the remote call) can be specified as input to the
server, output to the client, or both.

For further information on the IDL compiler and the IDL language, see the
IDL chapters in Part 3 of this guide, as well as the idl(lrpc) reference page
in the aSF DeE Application Development Reference.

1.5.4 Step A4/Client and Server: Write the .acf File

1-14

The Attribute Configuration File (.act) is an optional additional input file to
the IDL compiler; if present, it affects IDL's output in various ways.

The difference between the purpose of the .idl and an .acf file is that while
the .idl file defines how the network communications between the client and
server are handled, the .acf file, if one is present, affects only the interaction
between the stub code modules and the developer code that they support. In
other words, changing the contents of an .acf file has no effect on the
network communications between the client and server.

Nevertheless, some of the features offered by an .acf file are very important,
and they cannot be obtained by any other means. The sample DCE
application, timop, which is described in Chapter 3, has an Attribute
Configuration File in order that two attributes (namely, out_of_line
marshalling and comm status) can be declared. These attributes must be
declared in an .acf file; they cannot be declared in an .idl file. (The
comm status attribute allows the status code of a communications failure
that occurs in an RPC to be stored as a parameter or returned as a result,
rather than being raised to the caller code as an exception.)

OSF DeE Application Development Guide

DeE Application Development Steps

Another very important function of the .acf file is the specification of a
binding method to be used by remote clients of the application. Three
methods are available:

• auto handle

• implicit_handle

• explicit_handle (the default)

Because explicit_handle is the default, it is not declared in timop.acf, even
though timop uses the explicit method. All three binding methods are
briefly described later in Section 1.5.4.2, and definitive descriptions of them
can be found in Chapter 18 of this guide. The binding method you choose
determines how much attention your server's clients will have to devote to
the upkeep of their binding handles.

1.5.4.1 Binding Handles

A binding handle is simply the data structure that represents the client's
current relationship with the server.

This relationship is determined by several items of data. Perhaps the most
important is the protocol sequence and network address information
necessary to maintain communications between the client and server;
however, these are not the only contents of a binding handle. It can contain
an object UUID as well. This, if present, is matched (when the client first
tries to establish contact with a server) against the object UUIDs registered
at the destination host by the resident servers. This allows servers to target
their exported bindings unambiguously back to themselves, and not to other
servers that may happen to offer the same interface. For further information
about UUIDs, see Chapter 2. For further information on the use of object
UUIDs, see Steps B2 (Section 1.5.7), B3 (Section 1.5.8), and BID (Section
1.5.15).

A binding can also contain various kinds of security information. For further
information about this possibility, see Step C2 (Section 1.5.19).

There are two types of binding handle: primitive and customized (the latter
is sometimes referred to as "generic" in the DCE documentation).

• Primitive handles must be used when the automatic binding method is
employed (see Section 1.5.4.2 for more information about binding

OSF DeE Application Development Guide 1-15

Overview of DeE Application Development

1-16

methods); they can be used with the other two binding methods as well.
The timop DCE sample application client (see Chapter 3 of this guide)
uses the explicit binding method with primitive binding handles.

Primitive binding handles contain all the information that is needed by a
client to bind to a server. They are specified with the predefined
handle _ t type in the .idl file; in application code they are declared as
rpc_hinding_handle_t. This is a predefined type that contains (when
filled) the bound-to object's network location and, optionally, an object
UUID; it does not contain an interface UUID.

• Customized handles are application-specific data types designed to meet
the special needs of the appplication they are to be used by. They are
specified in the .idl file with the handle attribute; you must supply the
type. If your application uses customized handles, you must also supply
routines to do the following things:

- Receive a customized handle, generate its primitive-handle
equivalent, and return the primitive handle. (The name of this routine
is custom_hindO, and it returns an rpc_hinding_handle_t.)

This routine is called implicitly by the client stub whenever a remote
call is made by the client with a customized handle.

- Receive a customized handle and its primitive equivalent, and,
typically, free the primitive handle and any unneeded resources
associated with the customized handle. (The name of this routine is
custom_unhind(), and it returns void.)

This routine is implicitly called by the client stub after it receives
the response to an RPC from the server.

In short, these two routines allow the customized handle to seem to have the
same characteristics as a primitive handle in the client code. Note that these
two routines are not defined or otherwise mentioned in the .idl file; they are
part of the application source code.

Note also that using either kind of handle makes no difference to the way
the incoming calls look to the server; this is a matter for the client's
convenience, one way or the other. Servers always export only primitive
handles.

OSF DeE Application Development Guide

DeE Application Development Steps

1.5.4.2 Binding Methods

Binding methods allow applications (on the client side) to determine how
much responsibility they want to assume for the management of their
bindings. None of these methods make much difference in what the server
has to do, although use of the auto_handle method does require that the
bindings be exported to the namespace (which they usually are anyway,
regardless of the method used).

The following three methods are available. Each is specified by an .acf
attribute.

• If the auto_handle attribute is declared for the interface, the client never
even sees the handle: it does not appear as an argument in remote calls,
and it is automatically imported from the namespace. The operation
definitions coded in the .idl file must not contain the binding handle in
their argument lists. Also, the server must export its bindings into the
namespace; string bindings (see Step B5, Section 1.5.10) will not work.

A client using an automatic handle will be automatically rebound to a
server under some circumstances if a break in communications occurs.

• To use the implicit method, you declare in the .acf file a global variable
with the implicit_handle attribute. The client is responsible for
importing a binding itself, or for getting it some other way. It must then
assign this binding to the implicit_handle global variable. From then on
it can make remote calls without specifying the handle as an argument
or otherwise bothering with it. The stub code passes the handle to the
RPC runtime when remote procedure calls are executed; the handle does
not appear among the call arguments.

An explicitly specified handle in the argument list for an operation
overrides the implicit_handle attribute for that operation.

Use of the auto_handle and implicit_handle methods is mutually
exclusive for the same client.

• The explicit_handle method is illustrated both in the timop code
described in Chapter 3, and in the binding steps that follow in the
present chapter (namely, Steps C1, C2, and C3, Sections 1.5.18, 1.5.19,
1.5.20, respectively). With the explicit method, the binding handle is
passed as an argument explicitly by the client in every remote procedure
call it makes. U sing this method allows the client to alter the binding in
various ways if and when it chooses. For example, explicit handles allow

OSF DeE Application Development Guide 1-17

Overview of DeE Application Development

the client to switch type UUIDs in the handle, in order to reach different
server type managers (assuming that the server implements multiple
type managers). For further information about type UUIDs, which are a
kind of object UUID, see Step B3 (Section 1.5.8).

The timop application demonstrates another reason why a client might
need explicit handles: timop's client code is multithreaded, and each of
the threads binds to the server on its own. Neither the automatic nor the
implicit binding method would permit such multibinding, since only one
auto_handle or implicit_handle can be used by a single client at a time.

For further information on attribute configuration files, see Chapter 18,
which describes .acf file syntax. For further information on the IDL
compiler, see the idl(lrpc) reference page in the OSF DeE Application
Development Reference.

1.5.5 Step AS/Client and Server: Process the Files with the IDL
Compiler

1-18

Section 3.1 describes the IDL compilation process in some detail, and
explains the part this process plays in the production of an executable
distributed application. The present section consists of a summary
description of the IDL compiler's input and output.

IDL's input is an xxx.idl and (optionally) an xxx.acf file. Its default output is
a header (xxx.h) file that contains definitions and declarations derived from
the input for general use in the development source code, and two stub files,
one for the client and one for the server, which contain runtime code for
marshalling and unmarshalling, message handling, and all the other details
of managing network communications. The stub files are output as object
code (xxx_csttib.o and xxx_sstub.o) suitable for linking with the developer's
compiled code. The IDL compiler generates C source code as an
intermediate step in the compilation process, and the output of this step can
also be saved in a pair of files (xxx _ cstub.c and xxx _ sstub.c).

IDL automatically includes the DCE RPC management interface in the
compiled stub code. This allows all DCE applications to use the

OSF DeE Application Development Guide

DeE Application Development Steps

rpc_mgmt_ ... O routines, which consist of various operations that allow
callers to learn interesting things about servers, or in some cases to remotely
perform useful operations at servers.

In order for a pair of client and server stubs to interoperate, they should be
generated from the same interface definition (.idl) file, but they do not have
to be generated with the same Attribute Configuration File (.act). The
compatibility rules for interface version numbers also apply (see Step AI,
Section 1.5.1).

For further information on the IDL compiler, see the idl(lrpc) reference
page in the aSF DeE Application Development Reference.

1.5.6 Step Bl/Server: Define the Manager EPVs

"Manager" is the DCE term for the part of a server that actually
I implements a set of interface operations, as distinguished from the more or
less generic server code that initializes the server as a whole, obtains and
exports its binding information, and so on (see timop_manager.c in Section
3.2.6.8 for an example). Manager Entry Point Vectors (EPVs) are the data
structures in which are recorded the entry addresses of the application
routines that implement the server's operations, as offered through its
interface. The server's stub code uses the EPV to dispatch incoming RPCs to
the requested operations. A default manager EPV is generated automatically
by the IDL compiler and defined (that is, correct addresses are filled into it)
in the output header file.

If more than one version of the same interface is to be supported by the
same server, one EPV will be needed for each additional interface version.
Interface version numbers are specified by the version attribute in the .idl
file. The type manager RPC runtime mechanism, properly utilized, allows a
server to declare multiple EPVs under the same interface, and to have the
RPC runtime vector the incoming remote calls to the correct
implementation code. See Step B3 for further information.

OSF DeE Application Development Guide 1-19

Overview of DeE Application Development

1.5.7 Step B2/Server: Register the Object/Type UUID Associations
with the RPC Runtime

1-20

The server makes the RPC library call

repeatedly to associate whatever objects it expects will appear in incoming
RPCs with a type UUID. The association is made between each of the
expected incoming object UUIDs and the type UUID.

A type UUID is nothing but a special kind of object UUID. "Type" in this
context refers to a group of ordinary object UUIDs that have all been
associated (via a series of calls, as shown here, to rpc_object_set_typeO)
with another specially generated common object UUID, which can then be
used to identify that group of objects collectively.

The type UUIDs in tum will be associated (in Step B3, Section 1.5.8) with
the entry points of manager modules in the server. An incoming RPC that
contains a "typed" object UUID in its binding will be automatically
vectored by the server's runtime to the appropriate associated type manager.

The creation of object UUIDs, the determination of what (if anything)
constitutes an object for a server application, and the association of these
objects' UUIDs into collective types are all application design decisions. If
an application makes use of object UUIDs, it makes them accessible to
clients by exporting them with its bindings; how this is done can be seen in
Step B 11 (Section 1.5.16).

1.5.7.1 Object UUIDs

Object UUIDs have a double use in the routing of RPCs, and you may at first
find this a bit confusing. One use, which involves typing into object groups,
was described in Section 1.5.7.

Object UUIDs are also used in the DCE RPC binding mechanism. The
details of RPC binding are explained briefly in Steps B5 (Section 1.5.10)
and B10 (Section 1.5.15), and more thoroughly in Section 2.1.5 of Chapter 2.
It all comes down to this: clients normally import only partial bindings from
the namespace. These will carry them only as far as the RPC daemon on the

OSF DeE Application Development Guide

DeE Application Development Steps

destination server's host; it is the daemon's job to complete the binding with
a dynamic endpoint.

This means that some registration of bindings must be done by a server at its
host RPC daemon (rpcd, also known as an endpoint mapper). Step BID
(Section 1.5.15) describes an example of this. The minimum two items that
have to be registered are interface UUIDs and bindings (the latter of which
contains the server's dynamically allocated endpoints). With this
information available, the endpoint mapper can inspect the incoming RPCs
interface UUIDs, select one of the endpoints that was registered under them,
and complete the partial bindings. In addition, a server can register its object
UUIDs with its endpoint mapper. This allows lookups of endpoints by object
UUID rather than interface UUID; the advantage is that object UUIDs are
much more specific than interface UUIDs, which may be registered by
mUltiple servers at the same host.

Thus, the type UUIDs and the type manager vectoring mechanism have
nothing to do with the use of the object UUIDs themselves as lookups for
the host endpoint mapper. The former occurs after the latter happens, at the
server. Note also that the latter typically happens only once in an
uninterrupted client/server session; after the partial binding is completed,
communications proceed directly between the client and server. Type
manager vectoring, on the other hand, occurs again and again, every time an
incoming RPC contains a typed object UUID.

1.5.7.2 Initializing the Mechanisms that Rely on Object UUIDs

The very different nature of the two mechanisms just discussed (type
manager vectoring and endpoint mapping) is somewhat obscured by the
order in which they are initialized in the steps in this chapter. The following
list shows the relevant server steps, with an indication in each instance of
which mechanism they belong to or are related to:

Step B2

Step B3

Step BI0

Groups of object UUIDs are associated under type UUIDs in
the RPC runtime; related to the type vectoring mechanism.

Each type UUID is associated with a manager EPV (in the
RPC runtime); related to the type vectoring mechanism.

Object UUIDs and server endpoints are registered with the
server's endpoint mapper; related to the endpoint mapping
mechanism.

OSF DeE Application Development Guide 1-21

Overview of DeE Application Development

Step B11 The server bindings (containing the object UUIDs) are
exported into the namespace; related to the endpoint mapping
mechanism.

See Figure 1-4 for a schematic illustration of how object typing is used by
the RPC runtime to vector remote calls to the correct server manager code.

Note that it is not necessary to call rpc_object_set_typeO at all if you
intend to register only one interface (see Step B3, Section 1.5.8) and you do
so with a nil mgr _type _ uuid.

As mentioned previously, a much more detailed discussion of the use of
object UUIDs in bindings can be found in Section 2.1.8.

1.5.8 Step B3/Server: Register the Interface, Type UUID, and EPV
with RPC Runtime

1-22

The server makes the RPC library call

rpc_server_register_if(if_handle, rngr_type_uuid, rngr_epv,
&status);

to register the interface specified by if_handle with the RPC runtime. By
specifying mgr _type _ uuid and mgr _ epv, the server can arrange things so
that incoming RPCs whose bindings contain object UUIDs that fall into its
(the server's) registered type will be vectored by the RPC runtime to the
registered manager.

This option is useful even when only one manager (often called a "type
manager' ') is implemented. It allows the server (in conjunction with Step
B2) to register categories of object UUIDs with the RPC runtime, and then
to export bindings with those UUIDs into the namespace. Incoming calls
containing partial bindings that have been imported from the namespace
entries that the server exported to will be certain to reach that server, even
though other servers on the same host may have exported the same interface.
For a fuller explanation of binding, see Section 2.1.5.

OSF DeE Application Development Guide

DeE Application Development Steps

1.5.8.1 Type Managers

Generally speaking, type managers are a way of dynamically tailoring
interfaces to the various types of object presented to the server for its
operations. For example, in the print service application that we have been
discussing, the interface could be set up to handle different kinds of printers.
Clients would request the same print operations through the same printer
interface, but these requests would be dispatched by the RPC runtime to
different implementations of the requests, depending on the type of the
printer object UUID that is accompanying the incoming RPC. The different
implementation modules in the server are called type managers; for each
registered type of object there is a different set of routines implementing the
interface. When there is only one type of object (the default case), there is
only one manager in the server; this is how the term "manager" is usually
used.

Normally, this runtime dispatching mechanism is triggered by the object
UUID (if there is one) in the binding the client uses to make the remote call.
The server, when it starts up, makes a series of calls in order to do the
following:

• Associate each of the possible incoming object UUIDs with an object
type

• Register each object and associated manager module with the RPC
runtime

From then on, the dispatching of incoming calls is handled entirely by the
RPC runtime. Where there is more than one type manager registered by the
server, and an incoming call does not contain an object UUID in its binding,
the runtime either chooses a default manager or rejects the call.

Of course, an application can always choose to do its own dispatching of
requests among whatever object type handlers it chooses to implemenL
However, the mechanism provided by the DCE RPC runtime is a very
convenient organizational tool and can help keep the interface code clean.

The following subsections describe in outline form the steps that you can
follow in coding a print server application with two type managers: one for
line printers and one for laser printers.

OSF DeE Application Development Guide 1-23

Overview of DeE Application Development

1-24

1.5.8.2 IDL Definitions

The first step is to plan and write the interface definition. First you run the
uuidgen command

uuidgen -i > printer _if.idl

to create a skeletal IDL file with the name printer _if.idl. The file will
contain an interface UUID and version number and nothing else; the rest of
the necessary IDL code must be completed by the developer (namely, you).

1.5.8.3 Printer Interface Definition

It is up to the application developer to both define and implement the printer
interface operations. Here it will be assumed that this has been done, and
that the interface is defined in the file printer _if.idl, and implemented in
two .c files, one for each of the type managers.

The two print manager types will be the following:

L PR

LS PR

The L _ PR type manager will manage line printers.

The LS _ PR type manager will manage laser printers.

In order to arrange things for the RPC runtime to dispatch requests between
the two managers, some additional initialization code is required.

When the completed printer _if.idl file is processed by the IDL compiler,
the default output will be a printer _if.h file, as well as client stub and
server stub files, whose default names will be printer _if_cstub.c and
printer Jf _ sstub.c, respectively.

The default behavior of IDL is to generate a manager EPV structure in the
server stub, consisting of one field for each of the operations defined in the
interface definition file. If there is only one server manager type, and if the
names of the routines in the manager code are the same as the operations in
the interface definition file, then declarations in the server stub code
automatically initialize (by name) the EPV structure with the addresses of
the appropriate manager routines.

If there is more than one manager type (as is the case in this example), the
procedure is different. The interface definition file should be processed with

OSF DeE Application Development Guide

DeE Application Development Steps

the -no _ mepv option; this prevents the generation of an initialized
management EPV structure in the server stub code. This now becomes the
responsibility of the manager code modules, and is done as follows.

Each manager module must declare its own EPV structure variable. The
declaration of the structure type is automatically generated by IDL in its
header file output and can be found there. In the present example it will be
assumed that the type name is printerJf_vl_O_epv_t. Since the
initialization of these structures is done in the manager code, the managers'
implementations of the interface operations can have arbitrary names,
although it is a good idea to maintain some correspondence for the sake of
clarity.

To show how all this works, the following is a skeletal representation of
parts of the two manager code modules. First, the L _ PR type manager
module:

#include printer_if.h

static void Ipr_opl(< ... args ... >

{ < ... code ... > };

static void Ipr_op2(< ... args ... >)

{ < ... code ... > };

static void Ipr_op3(< ... args ... >)
{ < ... code ... > };

< ... >

globaldef printer_if_vl_O_epv_t line-printer_vl_O_rnanager_epv
= {lpr_opl, Ipr_op2, Ipr_op3, < ... > };

And for the LS _ PR type manager:

#include printer_if.h

static void ls-pr_opl(< ... args ... >)
{ < ... code ... > };

static void ls-pr_op2(< ... args ... >

OSF DeE Application Development Guide 1-25

Overview of DeE Application Development

1-26

{ < ... code ... > };

static void ls-pr_op3(< ... args ... >)

{ < ... code ... > }:

< ... >

globaldef printer_if_vl_O_epv_t ls-printer_vl_O_manager_epv =
{ls-pr_opl, ls-pr_op2, ls-pr_op3, < ... > }:

Note that the placement of addresses in these vectors is significant; requests
are vectored through the interface to operations in one of the two managers,
so the addresses in the vector should be the same as their corresponding
definition in the .idl file.

1.5.8.4 Server Initialization at Runtime

This subsection lists the routine calls that a server with multi type managers
would normally have to make in order to initialize itself. Most of these calls
will have to be made by any server; they can be seen in context in the
timop_server.c file, part of the source code for the timop DCE sample
application described in Chapter 3. Definitive information on all the calls
can be found in the aSF DeE Application Development Reference. (Note
that authentication and key management is ignored here.)

1. Create a UUID for each object to be exported. This is done only the
first time the server is started. For example:

uuid_create((uuid_t *) printer_obj, &status):

2. Create manager type object UUIDs. This is done only the first time the
server is started. These object UUIDs should thereafter be stored in a
local file and read in by the server whenever it is restarted. If the file
cannot be found or read, new UUIDs can be generated. For example:

uuid_create((uuid_t *) line-printer_type, &status):

uuid_create((uuid_t *) 1 s-printer_type, &status);

OSF DeE Application Development Guide

DeE Application Development Steps

3. Associate object UUID(s) with type UUID(s). This call will be made
repeatedly, as many times as is necessary to associate all the objects
with their types. For example:

rpc_object_set_type«uuid_t *) printer_obj,
(uuid_t *) ls-printer_type,
&status)i

4. Register the interface(s), type UUIDs, and EPVs with the RPC
runtime. This is where type managers, if any, are registered. This call
may be (and probably will be) made more than once. For example:

rpc_server_register_if(printer_if_vl_O_s_ifspec,
(uuid_t *) line-printer_type,
(rpc_mgr_epv_t) line-printer_vl_O_

manager_epv,&status)i

rpc_server_register_if(printer_if_vl_O_s_ifspec,
(uuid_t *) ls-printer_type,
(rpc_mgr_epv_t) Is-printer_vl_O_
manager_epv,&status)i

5. Request bindings under the specified protocol sequence from the RPC
runtime. For example:

rpc_server_use-protseq«unsigned_char_t *) protseq,
max_calI_requests,
&status) i

6. Get the binding handle(s).

The bindings retrieved with this call are full bindings: they include
endpoint information. However, as explained elsewhere in this
chapter, endpoint information is not exported by the name service into
the namespace with the rest of the binding when
rpc_ns_hinding_exportO (see step 8) is called. Instead, endpoints
are registered locally with the host's endpoint mapper, which will
intercept inbound RPCs with partial bindings, insert a registered
endpoint, and send it on to the server. For example:

rpc_server_in~bindings«rpc_binding_vector_t **)
binding_vector,&status)i

OSF DeE Application Development Guide 1-27

Overview of DeE Application Development

1-28

7. Register the endpoints with the endpoint mapper. Again, this call will
be repeated for each object the server intends to separately export into
the namespace and register with the RPC runtime. The object's UUID,
which was generated earlier by a call to uuid _ create(), is here
associated with the binding that the server intends to export to the
object's name entry, and registered with the endpoint mapper.

The purpose of this call is to associate specific endpoints (server
addresses) with specific object UUIDs, so that the host endpoint
mapper will be able to complete partial bindings in incoming RPCs
and send them to the correct destination server. For example:

rpc_ep_register(printer_if_vl_O_s_ifspec,
(rpc_binding_vector_t *) binding_vector,
(uuid_vector_t *) object_uuid_vector,
(unsigned_char_t *) annotation,
&status);

(Do not confuse this call with the rpc_server _register _if 0 call
described in step 4, which is used to register interfaces and manager
types with the RPC runtime.)

8. Export the object's binding into the namespace. In this example, only
a single (partial) binding, rather than a binding vector, will be
exported for each specific object into that object's name entry. For
example:

rpc_ns_binding_export(entry_name_syntax,
(unsigned_char_t *) entry_name,
printer_if_vl_O_s_ifspec,
(rpc_binding_vector_t *) binding_
vector, (uuid_vector_t *) object_
uuid_vector,&status);

Figure 1-3 illustrates how (1) object UUIDs are registered under type
UUIDs with the RPC runtime, and then (2) how interface UUID/type
UUID/EPV combinations are registered separately. The result is that when
(3) the server's RPC runtime detects an object UUID in an incoming remote
procedure call, it attempts to look up an associated type UUID for that
object. If it finds one, it then looks to see whether that type has been
associated with the incoming interface UUID; if so, the incoming call is
vectored into the EPV associated with that interface/type combination.

OSF DeE Application Development Guide

DeE Application Development Steps

The group of object UUIDs identified by (1) in the figure is the information
that the server registers with the RPC runtime. This can also be interpreted
as the UUID information contained in an RPC incoming from a client. The
areas for the storage of the information identified by numbers (2) and (3) are
maintained by the server's runtime.

Figure 1-3. Object/Type and Interface/Type/EPV Registration

I
I

Interface UUIDs
are registered with
an EPV, or with a
Type UUID/EPV
combination.

®
Interface UUID ~ Interface UUID

Object UUID Interface UUID
(optional)

Interface UUID
I
I

I
I

UIDs that identify G) Object U
objects m
are group
under UU
each obje

an aged by the server
ed and registered Object UUID(s)
IDs that identify
ct's type. Object UUID(s)

Object UUID(s)

Object UUID(s)

Object UUID(s)

Object UUID(s)

I
I

Type UUID EPV

Type UUID EPV

Type UUID EPV

I I
I I

o Object UUIDs in
remote calls can

incoming
be looked
untime) by Type UUID

Type UUID

Type UUID

Type UUID

Type UUID

Type UUID

up (by the RPe r
type, and the re
be vectored to th

mote call can
e EPVthat

with it. was associated

Note that type manager UUID and EPV do not have to be registered if there
is only one EPV, which is the IDL-generated default. NULLs can then be
passed for these arguments instead.

Figure 1-4 illustrates how the server's RPC runtime dispatches RPCs to the
two different type managers, depending on the object type of the incoming
call's object UUID.

OSF DeE Application Development Guide 1-29

Overview of DeE Application Development

Figure 1-4. RPC Server Runtime Dispatching on the Basis of Object Type

1-30

RPC Runtime

Incoming I 1. Which object type?
RPe I 2. Dispatch the request.

~

op1
r--

~ op2 f---+ t- r-'+-
~

op3
r--

r--

r--

r--

'---

Interface t t
Ipr_op1 I s-pr_op1

Ipr_op2 Is-pr_op2

Ipr_op3 Is-pr_op3

L_PR LS_PR
Routines Routines

t t

When a remote call is received by the server's runtime, the runtime looks for
an object UUID in the call's argument list. If one is found, the runtime next
determines whether that object UUID has been associated with a type
UUID. If it has been, the runtime vectors the request to the manager code
that has been registered with that type. Thus, in the figure, if op2 was
requested, and the object UUID contained in the argument list for the
incoming call was registered with the Is_printer_type UUID, then the
request is vectored to the Is _pr _ op2 routine.

Note that object/type associations have nothing to do with endpoint
registration (see Step B 10, Section 1.5.15).

OSF DCE Application Development Guide

DeE Application Development Steps

Note also that the arrows in Figure 1-4 do not necessarily represent
activities that occur across the network.

1.5.9 Step B4/Server: Specify Multithreadedness

The max_calls_exec parameter to the rpc _server _listenO routine specifies
how many incoming requests (from different clients) the server is prepared
to handle concurrently. In effect, max _calls _exec specifies the upper limit
for the number of RPC threads that will be spawned by the RPC runtime to
handle incoming remote procedure calls. Thus, an important side effect of
rpc_server_listenO, when the specified concurrency is greater than 1, is to
create multiple threads of execution in the server.

The threads are automatically spawned to handle whatever operation is
requested by the client. If the maximum number of manager threads is
already active and more incoming calls arrive, the RPC runtime buffers
them in a call request buffer. In DCE Version 1.0, the capacity of this buffer
is a maximum of eight times the value specified in the max_calls_exec
parameter to rpc _server _listen(). As active operations are completed and
threads are terminated, new threads are spawned to handle the buffered
calls. Incoming calls beyond the call request buffer capacity are rejected
(with an error code) by the RPC runtime.

Although the manager threads are automatically spawned and terminated by
the RPC runtime, the developer is responsible for coding the manager
routines according to thread-safe guidelines so that the threads will execute
properly. For further information on thread-safe programming practices, see
Section 2.2.

OSF DeE Application Development Guide 1-31

Overview of DeE Application Development

1.5.10 Step B5/Server: Tell RPC Runtime What Protocol Sequences
to Use

1-32

The server calls the RPC library routine

rpc_server_use-protseq(protseq, max_calI_requests, &status};

or

to obtain a set of endpoints on which to receive incoming calls. This routine
only causes the endpoints to be allocated; they are not returned to the server
by this routine (see Step B6, Section 1.5.11, for an explanation of how that
happens).

In this step, the server begins the process of actually setting up the
information that its clients will need in order to bind to it. There are several
ways the server can do this. The usual method is to request from the RPC
runtime a vector of binding handles; the server then distributes these
handles into entries in the namespace, where they can be located and
imported by clients.

However, not everything that was in the handles is exported. To reduce wear
and tear on the replicated namespace, the dynamic part of the binding
information (namely, the host endpoint address) is held back by the RPC
runtime. Next the server must register the same bindings again, this time
with its host's endpoint mapper (the RPC daemon, rpcd, resident on every
DCE machine); this time the endpoints are not withheld by the runtime.
Later on, partial bindings incoming from clients will each be intercepted by
the server's host's endpoint mapper, filled in with a valid endpoint, and sent
on to the client's server. Note that the intervention of the endpoint mapper
occurs only on a client's first call to a server; after the binding has been
filled in with an endpoint, subsequent calls go straight to the server.

OSF DeE Application Development Guide

DeE Application Development Steps

1.5.10.1 Well-Known Endpoints

There are, however, other binding possibilities. Two will be mentioned here.
The first involves well-known endpoints. A server that uses well-known
endpoints does so by declaring them (with the endpoint attribute) in its .idl
file. At the present step it calls the routine

rpc_server_use_all-protseqs_if(max_call_requests,
if_handle, &status};

or

rpc_server_use-protse~if(protseq, max_calI_requests,
if_handle, &status};

to have a vector of binding handles made up for it; but instead of getting a
. dynamically allocated set of endpoints in the handles, as would happen with
a call to rpc_server_use_allyrotseqsO or rpc_server_useyrotseqO, it
receives the endpoint and protocol information that was coded in the
interface specification (or in the argument, if the latter call is chosen). The
server needs these binding handles in order to be able to put something out
in the namespace that clients can import and use to make remote calls with.
It exports the handles as described in Step B11 (Section 1.5.16). The binding
handles are returned to the server in the following step.

1.5.10.2 String Bindings

A server can also use string bindings. Doing this allows an application to
avoid using the namespace and name service altogether. However, in this
case, the server assumes the responsibility for making sure that the binding
is compatible; that is, that its protocol sequence is supported by both the
RPC runtime and the operating system. The rpc _network _ioqyrotseqs()
routine returns a vector of all the supported protocol sequences, and
rpc _network_is _protse<L valid() tests whether a given sequence is
supported (see Step C1, Section 1.5.18, for further information).

OSF DeE Application Development Guide 1-33

Overview of DeE Application Development

1-34

To convert a binding handle (obtained in Step B6, Section 1.5.11) to a string
binding, the server calls

rpc_binding_to_string_binding(binding_handle, string_binding,
&status);

The resulting string can be sent by any convenient means to the client, or
deposited in some place where the client can pick it up later. Once the client
has possession of the string, it calls

rpc_binding_frOffi_string_binding(str_binding, binding_handle,
&status)

to transform the string back into a usable handle.

1.5.10.3 Summary

The point of the foregoing discussion is to show that none of the namespace
registration and exporting operations is absolutely indispensable under all
conditions. A client could receive a string binding from user input, construct
a binding handle from it, and initiate RPC operations with its server, all
without any intervention on the part of the name service or endpoint mapper
(assuming that the server uses well-known endpoints).

The binding and name service routines tend to combine functionality in
various ways that can obscure some of the things that actually occur when
they are called. You should not be confused by this.

OSF DeE Application Development Guide

DeE Application Development Steps

1.5.11 Step B6/Server: Request for Bindings from RPC Runtime

The server calls the RPC library routine

in order to obtain the binding handles that the RPC runtime created for it in
the previous step.

1.5.12 Step B7/Server: Register the Authentication Information with
RPC Runtime

The server makes the RPC library call

rpc_server_register_auth_info(server-princ_name, authn_svc,
get_key_fn, arg, &status);

to register an authentication service to use for authenticated RPC.

The decision whether or not to use authenticated RPC is something of a
cooperative matter between the client and the server. The server registers its
preferences in the present call, but when the client calls
rpc_hinding_set_authJnfoO, it registers its preferences about these same
things. The client's and server's choices are not required to agree in order
for the client to successfully reach the server. If the client's authentication
and authorization choices do not agree with what the server expects, it is up
to the server to decide whether or not to go ahead with the operations, and
how far to cooperate with client requests. See Steps C2 (Section 1.5.19) and
D4 (Section 1.5.24) for further details.

This is the essential server-side call to set up authenticated RPC.

OSF DeE Application Development Guide 1-35

Overview of DeE Application Development

1.5.13 Step BS/Server: Establish the Server Principal Identity

1-36

When first invoked, a server process uses the login context of the user who
invoked it, until it assumes its own identity by accessing its secret key,
which is analogous to a user's password, and using it to get its own login
context. The first in the series of calls it would have to make to perform this
switch-over is the following:

sec_login_setup_identity{princ_name, flags, &login_context,
&status) ;

The server passes its principal name (at this time it is running under the
context of whatever principal invoked it); it receives its own login context
in return, which it will need in order to validate its identity. It then makes
the following call in order to get its secret key (in fact, its password):

sec_key_rngrnt---9"et_key{authn_svc, arg, princ_name, key_vno,
&keydata, &status);

It can now make the following call to validate its own identity; if successful,
the server's runtime will receive a ticket-granting ticket from the Security
Service's authentication service. Possession of this ticket is a prerequisite
for getting tickets to any other service, and these tickets are what
authenticated RPC is based on.

sec_login_validate_identity{login_context, passwd,
res et-passwd, auth_src, &status);

If all goes well, the next (and final) call will retrieve the server's own login
context, which it can then use in a call to rpc_hinding_set_authJnfoO.

At this point the server has everything it needs (assuming that it knows its
principal name) to either register its authentication information with the
RPC runtime prior to receiving authenticated requests from clients, or if it
wishes, to authenticate itself to some other server.

Of course, it is possible for a server simply to continue using its inherited
login context. In that case, all it needs to do is make the last-mentioned call

OSF DeE Application Development Guide

DeE Application Development Steps

in order to explicitly get its login context. If it does not yet know its
principal name, it can first make the following call:

sec_login~et-pwent(login_context, &pwent, &status};

The (inherited) principal name will be found in pwent.pw _name.

When a server has its own identity, it takes on responsibility for the upkeep
of its password, which was returned by sec_key_mgmt_get_key() in the
sequence above. What this involves is described in greater detail in Chapter
2 in Section 2.3.

1.5.14 Step B9/Server: Plan What To Do When the Server
Terminates

From the point of view of the server, the call to rpc_server _listen() blocks
until one of the server's manager routines calls the
rpc_mgmt_stop_serverJistening() routine, or until a client makes a
successful remote rpc_mgmt_stop_server_listening() call to the server.

When either of these things happens, the RPC runtime stops accepting
incoming client requests to the server. When all the currently executing
operations are completed, the call to rpc _server _listen() returns.

Server operations can also be terminated by an exception or signal. DCE
Threads defines all exceptions as "terminating," which means that
execution must be caught by an exception handler (if one exists) and then be
resumed there, or the process will be terminated. Certain signals are defined
by DCE Threads as exceptions, which means that these signals have the
same general characteristics as exceptions.

For more information on the DCE Threads exception handling interface, see
Chapter 7.

OSF DeE Application Development Guide 1-37

Overview of DeE Application Development

1-38

1.5.14.1 Management Interface

The rpc_mgmt_stop_server_listeningO routine is part of the DCE RPC
management interface, a group of routines that allows clients or servers to
find out various facts about the characteristics of a server, and (in some
cases) to alter them. All of the management routines have names beginning
with rpc_mgmt_; details about each of them can be found in the aSF DeE
Application Development Reference.

One of the management routines, rpc_mgmt_set_authorization_fnO,
allows a server to install a monitor routine to intercept clients' remote calls
to some of the management routines. When a client calls one of these
routines (for example, rpc_mgmt_stop_server_listeningO) in order to
perform some task on that server, the server's installed routine is
automatically called first by the RPC runtime. The routine receives a copy
of the calling client's binding, and an argument identifying the management
call attempted. The server can now decide what to do with the attempt:
returning TRUE from the monitor routine allows the original call to
proceed, while returning FALSE causes an error to be returned to the calling
client.

1.5.14.2 Server Termination

If (or when) the server terminates execution, it should unregister and
unexport any information it previously caused to be placed in the
namespace or its host's endpoint mapper. This will prevent future
prospective clients from being misled into attempting to reach the server
when it does not exist, and also will help to conserve resources in the
namespace and the local endpoint database. Note that this namespace
housekeeping should be performed in addition to whatever other
application-specific cleanup may be required before termination.

Executing the following series of routines will properly clean up after an
application that exported partial bindings in the normal fashion. The first
call is

rpc_ns_binding_unexport (entry _name_syntax, entry_name,
if_handles, obj_uuid_vector, &status);

OSF DeE Application Development Guide

DeE Application Development Steps

This routine removes from the specified namespace entry the server's
previously exported binding handles.

rpc_ep_unregister(if_handle, binding_vector, obj_uuid_vector,
&status);

This routine unregisters the server's address information from the local
endpoint mapper's database.

This routine unregisters from the RPC runtime the (previously registered)
association between the if_handle and the server's manager EPV. If more
than one manager EPV was registered for the server, this routine can be used
to unregister one or all of them.

1.5.15 Step BI0/Server: Register the Binding Information with the
Endpoint Mapper

The server makes the RPC library routine call

rpc_ep_register(if_handle, binding_vector, obj_uuid_vector,
annotation, &status);

to register the (dynamically allocated) endpoints that were returned in the
binding handles it just acquired. If the server uses well-known endpoints, it
does not have to call this routine. However, it does no harm to do so, since
prospective clients that happen to possess only a partial binding will not
necessarily be able to re~ch the server otherwise.

OSF DeE Application Development Guide 1-39

Overview of DeE Application Development

1-40

1.5.15.1 The Purpose of Registering Endpoints

The purpose of registering endpoints together with object UUIDs is to
account for all possible incoming object UUIDs (that is, object UUIDs that
could appear in incoming partial bindings arriving at the endpoint mapper),
and to associate with each of them one of the server's allocated endpoints.
Then the endpoint mapper can simply look up the object UUID, find an
endpoint, insert it into the binding, and send the RPC on to its destination.

The server has received (in its binding handles) a certain number of
endpoints dynamically allocated on its host machine. However, prospective
clients who import this binding information from the namespace will start
out with partial bindings when they first try to contact their server, and the
partial binding will get them only as far as the server's host's endpoint
mapper daemon, rpcd. The purpose of rpc _ ep _register() is to let the
endpoint mapper know what endpoints belong to the server so that it can fill
in the partial bindings as they arrive and route the incoming remote calls on
their proper ways. Subsequent remote calls executed with the same bindings
will go straight to the server, since the bindings are now complete.

An incoming RPC always has an interface UUID associated with it;
therefore, if a server registers all of its endpoints with the interface it is
offering, this will usually be sufficient for the endpoint mapper to send the
incoming requests to one of the servers that offer the desired interface, even
if there is more than one such server active on the machine. However, if the
application is designed in such a way that the binding operation should not
be generalized to the interface but must be made more specific (in other
words, this server's clients should always bind to this server and no other,
even if some other server happens to offer the same interface), then object
UUIDs must be used to accomplish this.

Of course, the server's interface UUID must also be included in each object
UUID/endpoint mapping, since no RPC will pass the endpoint mapper if it
does not have a matching interface UUID for its destination server.
Therefore, the endpoint mapper takes either two or three types of item to be
registered, namely

• Interface UUID

• Endpoints

or

OSF DeE Application Development Guide

DeE Application Development Steps

• Interface UUID

• Endpoints

• Object UUIDs

It then generates a cross-product table of all possible combinations of all
values of the items. This allows it to find a good endpoint for every possible
valid object UUID/interface UUID combination.

1.5.15.2 Summary

The endpoint mapper is the first point of decision for an incoming RPC with
a partial binding. The mapper makes its decision solely on the basis of the
contents of its endpoint map. The object/type and manager EPV
registrations that were done in Steps B2 and B3 have no effect on the
endpoint mapper. Only after a client request arrives at the server does the
server's runtime routines vector the request among multiple managers, if
type managers have been registered by the server. The endpoint mapper
knows nothing about registered object types. (See Step B5, Section 1.5.10,
for a further explanation of the role of the endpoint mapper in the binding
process.)

Note that the call

rpc_ep_register_no_replace(if_handle, binding_vector,
obj_uuid_vector, annotation,
&status) ;

is used (instead of rpc_ep_registerO) if multiple instances of the same
server will be running on the same host. In other words, calling
rpc _ ep _register_no _replace() a second time with the same interface
UUID, object UUID, and protocol sequence will not replace the earlier
entries in the endpoint map, but merely add new ones. Obviously, different
binding vectors should be passed in the different calls.

OSF DeE Application Development Guide 1-41

Overview of DeE Application Development

1.5.16 Step Bll/Server: Export the Binding Information to the
Namespace (CDS)

The server makes the RPC library call

rpc_ns_binding_export (entry _name_syntax, entry_name,
if_handle, binding_vector,
obj_uuid_vector, &status);

to export the allocated binding handles to the namespace. In the usual case,
where the server's endpoints have been dynamically allocated to it, the
endpoint information will not be included in the exported handles. Instead,
this information will be filled in by the host's endpoint mapper as the
partially bound handles arrive at the host in incoming RPCs (see Step B10,
Section 1.5.15). However, if the endpoints are well-known, they will be
included in the exported binding handles, and clients will thus import fully
bound handles.

It is recommended that only one binding handle/object UUID pair be
exported to each namespace entry, even though it is possible to export more
than one of each per entry. Doing this will ensure that there is a strict
determinable mapping from each name entry to each bound-to object.

A client must have a binding handle in order to reach a server, but it does
not have to get the handle from the name service. See Step B5 (Section
1.5.10) for an explanation of the use of string bindings.

1.5.17 Step B12/Server: Listen for Incoming Service Requests

1-42

The server calls the RPC library routine

in order to do the following:

• Specify the maximum number of concurrent remote procedure calls to
execute

OSF DeE Application Development Guide

DeE Application Development Steps

• Begin listening for incoming calls

This call normally begins a "semi-infinite" loop, execution of which is
terminated only by one of the following events:

• One of the server's manager routines calls
rpc _ mgm t _stop_server _listening().

• One of the server's clients makes a remote call to
rpc _ mgm t _stop_server _listening(). (Note that the server can intercept
such a remote call and either allow or prevent it by installing a
rpc _ mgmt _set_authorization _fn()).

• A signal or exception.

(See also Step B9, Section 1.5.14.)

1.5.18 Step C1/CHent: Import the Binding Information from the
Namespace (CDS)

The first important thing that the client does is to acquire a binding to the
server it wants to request services from. From the client's point of view,
there are several binding choices to be made.

The first choice is in regard to the binding method to be used; however, this
is determined and implemented in Step A4 (Section 1.5.4) as part of the
development coding process (the .acf file). The binding method chosen has
an effect both on what the client has to do in the present step to acquire
bindings, and subsequently on what it must do to maintain them. In this
step, it will be assumed that either the explicit or implicit method was
chosen. If auto-binding were chosen, there would be no need for a
discussion, since the client would then have nothing to do.

OSF DeE Application Development Guide 1-43

Overview of DeE Application Development

1-44

1.5.18.1 Getting a Handle

The second choice involves how to get a binding handle. Again, this is a
choice that is at least partially dependent on things that have already
occurred. The client can always generate a binding handle for itself; the
problem is where to get the information that belongs in it. There are two
general solutions:

• The client imports from the namespace binding handles that already
contain the necessary information, or

• The client receives the information in string form from user input, from
a file, from another server, or from any other source. It then converts the
string into a binding by calling rpc_hinding_from_string_hinding().

The normal way for a server to make its location known to clients is to
export its binding information into the namespace. The client can then call
the RPC name service library routines

rpc_ns_binding_import_begin (entry _name_syntax, entry_name,
if_handle, obj_uuid, &import_
context, &status);

rpc_ns_binding_import_next(import_context, &binding_handle,
&status) ;

to import one or more bindings from the specified namespace entry. The
name service sees to it that only compatible bindings exported under the
specified interface, with the optionally specified object UUID, will be
returned to the client. (Note that the interface specification is not contained
in the binding, although it is exported to the namespace entry where it is
used by the name service for matching entries to prospective importers.) The
object UUID specified by obj_ uuid is contained in the binding, if it is
present. This is the object UUID that was (optionally) registered under a
type UUID in Step B2 (Section 1.5.7). Even if obj_uuid is not specified in
the import call, it will be returned in the binding handle(s) if it was exported
by the server in Step B11 (Section 1.5.16).

OSF DeE Application Development Guide

DeE Application Development Steps

1.5.18.2 Entry Name

To detennine how the client knows the entry name to import from, use the
simplest and most flexible mechanism: have the user type it in on the
command line. This is the method used by the timop client (see
timop _ client.c in Section 3.2.6.5).

1.5.18.3 Binding Compatibility

The protocol sequence used must be supported by both the RPC runtime and
the operating system on the client's machine. However, the RPC runtime
implicitly takes care of binding compatibility when it returns bindings to
importing clients; only compatible bindings are returned.

The routines rpc _network JnlLprotseqs() and
rpc _network Js _protselL valid() can be used to return all supported
protocol sequences and to detennine whether a specified protocol is
supported, respecti vel y.

To find what protocol sequence is used in a binding handle, make the
following series of calls:

rpc_binding_to_string_binding(binding_handle, &string_binding,
&status) ;

rpc_string_binding-parse(string_binding, NULL, &protseq, NULL,
NULL, NULL, &status);

Now all you have to do is compare strings.

Note that in timop the client's compatible protocol is hardcoded into the
program. The server generates its bindings with the
rpc _server _use _ all_protseqs() call so that, on its side, there is no need for
any further testing.

OSF DeE Application Development Guide 1-45

Overview of DeE Application Development

1.5.19 Step C2/Client: Annotate the Binding Handle for Security

1-46

Now that the client has a binding, it is almost ready to begin RPC
operations. One last preliminary task remains; namely, to specify various
security-related parameters to the RPC runtime, which will govern the
(security) conduct of the ensuing client/server relationship. If the client does
not require authentication, it can skip this step completely. The result will
be that no authentication will take place between the client and server. It
will then be up to the server to decide how far to go with an unauthenticated
client (see Step D4, Section 1.5.24).

1.5.19.1 Preparation

What the client usually really wants to do here is call the routine
rpc_hinding_set_authJnfoO in order to specify all the necessary security
parameters. However, when it does this, it should be able to specify its
server's principal name so that the server it binds to can be authenticated to
the client. (The server's principal name is the name by which the server is
known to the Security Service.) The client must also supply a handle to its
own login context when it calls rpc_hinding_set_auth_infoO.

There are several ways to determine the server's principal name:

• The server's principal name could be hardcoded in the client. This is not
recommended practice for reasons of robustness and flexibility.

• The client can be handed the name as input from the command line
when it is invoked.

• The name can be stored in the namespace.

• The principal name can be the same as the name entry (binding
information) name.

• The client can query the server's principal name by calling
rpc_mgmt_inCLprinc_nameO. It can then check group membership by
calling sec_rgy_pgo_is_memherO.

The reason for checking group membership has to do with authorization
related decisions that the client may need to consider. It is not necessarily
enough to know that a server has a certain identity; it may also be necessary
that it belong to a certain group in order for it to be fully authorized, from

OSF DeE Application Development Guide

DeE Application Development Steps

the client's point of view, to receive the data that the client will send. In
other words, the client may need to make a decision about the server similar
in nature to that which the server makes about the client in Step D4 (Section
1.5.24), when it checks the client's authorization, via ACLs, to do the things
it wants to do. Security can be just as important for the client as for the
server; this is the justification for having to make the extra calls described
here.

Getting the client's login context is done with the following Security
Service library routine:

However, this is not usually necessary. The client can, by passing a NULL
value to rpc_hinding_set_authJnfoO (see Section 1.5.19.2), simply use its
default login context.

In any case, note that this login context already exists; the client merely
retrieves it. (The client inherited its login context from the user principal
who executed it.) The client can now set up for authenticated RPC.

1.5.19.2 Setting Up for Authenticated RPC

The client makes the following call in order to set up the security
characteristics of the communications it is about to enter into with the
server:

rpc_binding_set_auth_info(binding_handle, server-princ_name,
protect_level, authn_svc,
login_context, authz_svc, &status);

The security parameters specified here include protect _level for level of
protection performed (for example, authenticate only at the beginning of
each RPC, or authenticate everything received by the server), authn_svc for
the authentication service (no authentication at all can be specified here),
and authz _svc for the type of client authorization information that will be
supplied to the server (see Steps D2 to D4, Sections 1.5.22 to 1.5.24 for
more details).

OSF DeE Application Development Guide 1-47

Overview of DeE Application Development

The usual practice is to pass NULL for login _context here, and thus use the
default context.

Note that it is the client who chooses whether or not to use authenticated
RPC, as well as the level of authentication, and how much authorization
infonnation about itself to send. It is then up to the server to accept this
arrangement or reject it, or to allow some limited operation with the client,
or whatever else it might decide. The server decides which authentication to
use (in Step B7, Section 1.5.12). The client also specifies an authentication
service (in authn _svc), but if this differs from what the server specified, the
call to rpc_hinding_set_authJnfoO will fail and an error will be returned
to the client.

There is an important difference between the rationales of authentication
and authorization. Authentication is perfonned by the RPC rundme and is
only indirectly felt by client and server; authorization, however, is for the
most part implemented explicitly in the server code if it is implemented at
all. This difference is the reason for the larger number of authentication
related arguments that have to be specified in this step. More about this
subject can be found in Steps D2 to D4 (Sections 1.5.22 to 1.5.24), where the
transactions are seen from the server's point of view.

For further infonnation about authenticated RPC, see Chapters 13 and 42.
Chapter 2 contains sections on server key management, which is part of the
authenticated RPC mechanism, and on the practical details involved in
writing an ACL manager.

1.5.20 Step C3/Client: Invoke an RPC Interface Operation

1-48

This step is the culmination of all the foregoing steps; here the client makes
its first remote call to the server. This call, which will obviously be
application specific (its definition was specified in the application's .idl file
in Step A3 (Section 1.5.3), and possibly modified by the .acf file written in
Step A4 (Section 1.5.4)), will look something like the following:

my_rpc_op(binding_handle, argl, arg2, arg3);

OSF DeE Application Development Guide

DeE Application Development Steps

Note that the presence of the binding handle as a parameter means that
explicit binding handles are being used (again, a Step A4 decision).

Note also that after all the preceding talk about interfaces, no interface
handle appears in the parameter list. The RPC runtime takes care internally
of making sure that the interface offered by the server exactly matches what
the client expects. The my_rpc_opO routine was (or should have been)
defined as part of the application's interface back in Step A3. When the
client calls my _rpc _ opO in the present step, the client stub code (whichJ
was generated during the IDL compilation step) will include the correct
UUID for the interface the routine is associated with in the data sent out on
the network. The RPC runtime uses the interface specification included with
each RPC as a "fingerprint" to ensure that the operation being requested of
a server is in fact implemented by that server. This ensures that interface
compatibility is never dependent on the vagaries of application code.

1.5.20.1 The Possibility of Binding Failure

Perhaps the most important thing to mention about this step is that it may
not at first succeed. Remember that the client imported a partial binding to
the server. Completion of the binding, and therefore of the remote call,
depends on the endpoint mapper's being able to successfully complete the
incoming binding with a good endpoint for either the specified server (if one
is specified) or for one of its own choosing. This in tum depends on the up
to-dateness of the host's endpoint database, and that depends on such things
as other servers' being conscientious about unregistering themselves when
terminating, and so on. Even the target host specified may not be valid when
the call is made because of anyone of the various network problems that
can occur.

In other words, the client should regard an unused binding not as a firm
promise that comes directly from the server, but rather as a well-meant
expression of intent passed on by the name service and based on
circumstances not entirely under anyone's control. This is the reason for the
series of binding import calls described in Step Cl (Section 1.5.18).

OSF DeE Application Development Guide 1-49

Overview of DeE Application Development

1-50

The prudent thing for a client to do after importing a binding is, therefore, to
assume that it will have to perform one or more times a series of steps
something like the contents of the following loop:

1. Annotate the binding handle for security.

2. Try it out: attempt a remote call with it.

3. If the call succeeds, discard the binding import context and proceed to
step 5 in this loop.

4. Otherwise, if the call fails, import the next binding and return to step
1 in this loop.

5. Proceed with remote operations until finished.

If all imported bindings happen to fail, this could be because the client's
cache of bindings has become stale. The client could then try calling
rpc_ns_mgmt_handle_set_exp_ageO with a low time-out value, and then
retry the above loop. A last resort could be to allow the user to type in a
string binding.

Note that if you are using the auto-binding method and the binding becomes
unusable for some reason, the RPC runtime will rebind under most
conditions.

1.5.20.2 The Result of Successful Binding

If my _rpc _ op() or its equivalent does succeed, the binding will as a result
be complete (even if it was partial before), and the information in it can be
regarded with much more assurance from then on. Subsequent remote
procedure calls by the client to the same server will go straight to the
bound-to server.

OSF DeE Application Development Guide

DeE Application Development Steps

1.5.21 Step D1/Server: Wake Up in Manager Routine

As explained in Step B4 (Section 1.5.9), server threads are automatically
spawned by the RPC runtime in the server manager to handle incoming
remote procedure calls from clients. The number of calls that can be
concurrently handled depends on the value of the max_calls _exec parameter
specified in the call to rpc_serverJistenO (see Step B4, Section 1.5.9). The
thread is created by the RPC runtime and begins execution in the operation
requested. When the operation is completed, the thread is automatically
terminated (by the RPC runtime).

For further details on server multithreading, see Step B4 and Section 2.2.
See also Part 2 of this guide and the aSF DeE Application Development
Reference for a comprehensive discussion of DCE Threads.

1.5.22 Step D2/Server: Get the Client's PAC

As mentioned in the previous step, authentication, if it was specified by the
client, has already occurred if the client's request is received by the server
manager. If the client fails to authenticate itself to the server runtime, its
remote procedure call fails.

Authentication, if specified by the client and offered by the server, is
performed by the RPC runtime; it is not a responsibility of the application
code. However, it is up to the application to formulate its own security
policy with regard to the client, based on the following:

• The level at which the client has been authenticated .

• The client's authorization; that is, whether the client should be allowed
to access resources it may request.

In order to find out the client's authentication and authorization information,
the server calls the following RPC library routine:

rpc_binding_in~auth_client(binding_handle, privileges,
server-princ_name, protect_level,
authn_svc, authz_svc, &status)i

OSF DeE Application Development Guide 1-51

Overview of DeE Application Development

The parameters in this call are analogous to the similarly named parameters
in the registration routines called in Step C2 (Section 1.5.19). The server can
learn what level of authentication, what authentication service, and what
server principal name the client specified. Of most interest, however, are the
privileges and authz _svc parameters.

The privileges parameter is a pointer to whatever infonnation the client is
willing to let the server know about its privilege attributes; authz _svc tells
what this infonnation is. It could be anyone of the following:

• The client's Privilege Attribute Certificate (PAC), containing the client's
principal and group UUIDs. These can be used to look up the client's
privilege attributes in Access Control Lists, whose entries are keyed by
principal and group UUID.

• The client's principal name (a string). This also can be used to look
through Access Control Lists, provided that the lists have been
annotated with such name strings.

• Nothing. The client chooses not to provide any authorization
infonnation.

From now on, it is the server's decision, as implemented by the developer,
how to respond to the client's requests for services and resources, depending
on the security infonnation the server has learned about it. A non-ACL
based strategy may be implemented using the client's principal name string
for lookups. The ACL-based strategy, which is supported by a DCE
interface, is described further in the next step.

1.5.23 Step D3/Server: Get the Object's ACL

1-52

This step is reached if the client requests access to any object, resource, or
service that is managed by the server, to which ACLs are attached. As
previously mentioned, the application must implement its own ACL
manager if it wants to use ACLs to control access to its resources. For
further details on how to go about creating an ACL manager, see Section
2.4.

In order to allow applications to as easily as possible offer an ACL interface
that is unifonn with that used by the DCE components themselves, the
remote ACL interface has been built into the DCE library, and client
applications can perfonn operations on ACLs through another interface, also

OSF DeE Application Development Guide

DeE Application Development Steps

part of the DCE library, which calls through the remote interface to the
appropriate manager. The remote interface, consisting of rdacl_ ... O calls,
must be implemented by the server application; clients execute the local
sec _ acl_ ... () routines, which are linked to every DCE application as part of
Iibdce.

For the client, all that is necessary is to possess a binding to the object
whose ACL is to be operated on. As long as the application exposes the
resources it manages as accessible objects (via the namespace), then the
DCE ACL interface provides for a client's being able to bind to the object
by calling sec_acl_bindO. (In fact, this kind of object-oriented binding
model can be very useful, and is discussed in further detail in Chapter 2.)
Note that the sec_acl_ ... O routines use an "ACL handle" to specify the
object whose ACL is to be accessed, so sec_acl_bindO must always be
called to obtain this handle, even if the client is already bound to the
object's server.

There is also a user interface into the ACL operations, embodied in the
acl_ edit command. At the server level, definitions for a local internal
management interface, consisting of sec _ acl_ mgr _ .•. () calls, are given in
the Security Service section of the aSF DCE Application Development
Reference, which also contains reference pages for the other two ACL
interfaces. This suggested interface is based on one used internally by the
Security Service itself. (See the aSF DCE User's Guide and Reference for
further information on acl_ edit.)

1.5.24 Step D4/Server: Make the Authorization Decision

In this step, the server's ACL manager inspects the ACL of the resource or
object under question, determines whether the client is authorized for the
requested access, and takes the appropriate action. The algorithm used to do
all this is application dependent.

The application may choose to implement more than one type of ACL
(reflecting the different kinds of objects and resources to be protected), thus
resulting in several "type managers." For more information on this
possibility, see Section 2.4 in Chapter 2.

OSF DeE Application Development Guide 1-53

Overview of DeE Application Development

Although it is up to the application to implement its own ACL storage,
testing algorithms and manager types, there are certain DCE-wide design
conventions that should be kept in mind and departed from only for good
reason. Among these are the following:

• Standard DCE ACL entry types: the kinds of entry that can occur in an
Access Control List (for example, user, group, and so on).

• Standard privilege attributes: the kinds of access that a principal can
have to a protected object (for example, read, write, and so on).

• Standard inheritance rules: these rules govern the default characteristics
of ACLs created for newly created objects.

• Standard access algorithm: the order in which the contents of a Privilege
Attribute Certificate are matched against the various possible entry
types.

Information about these topics for application developers designing their
own ACL model can be found in the aSF DeE User's Guide and Reference,
where all the DCE authorization conventions are described in detail.

1.5.25 Step D5/Server: Service the Request

1-54

If the client's request is determined to be properly authorized, then the
requested operation can proceed.

Note that this step and Steps D3 and D4 are somewhat intertwined.
Something like the following could occur:

1. The server wakes up in some routine defined in its manager code. For
example, if the client executed the call my_rpc_op() (see Step C3,
Section 1.5.20), then the server will wake up in the routine that
implements this remote call.

2. Execution of the my _rpc _ op() routine requires the insert privilege
for the application's database my_database. So my_rpc_op() begins
by checking the client's relevant privilege attribute by making an
internal call to the application's ACL manager.

OSF DeE Application Development Guide

DeE Application Development Steps

3. If the client is found to have the requisite privilege, my _rpc _ opO
proceeds.

Obviously, other dispatching schemes are possible.

The remote procedure executed in this step is written by the application
developer.

1.5.26 Step D6/Server: Return the Results to the Client

At the completion of the operation, the RPC thread that was automatically
spawned to execute it is terminated by the RPC runtime. As far as the server
is concerned, it is still blocking on the call to rpc _server _listen() which
was made back in Step B4 (Section 1.5.9). If max_calls_exec was specified
to be greater than 1 in that call, other threads may still be executing at this
time in response to other requests that have been received from other
clients. In any case, the call to rpc_server_listenO will not return until one
of the server's own management routines, or a client, makes a successful
call to rpc_mgmt_stop_server_listeningO. If this happens, the RPC
runtime will stop accepting incoming client requests to the server. When all
the currently executing operations have been completed, the call to
rpc _server _listen() will return.

The other way that execution can be thrown out of the rpc_server_listenO
call is as a result of a signal or exception. For more about this possibility,
see Step B9 (Section 1.5.14).

1.5.27 Step D7/Server: Continue the Listen Loop

From the server's point of view, the result of completing the remotely called
routine is that it reenters the "listen" loop it entered in Step B 12 (Section
1.5.17), waiting for further remote calls. The server's runtime handles all the
communications details of actually sending any requested data to the client.

OSF DeE Application Development Guide 1-55

Overview of DeE Application Development

1.5.28 Step El/Client: Wake Up After the RPC Call

From the client's point of view, the server's return at the end of its remotely
called routine results in the client's returning from a seemingly locally
executed routine.

1.5.29 Step E2/Client: Continue

1-56

The client now goes on about its business, which may include performing
other remote procedure calls.

Note that there is no housekeeping burden placed on the client with regard
to the termination of the relationship with a server. However, a long-lived
client might want to make use of the rpc _ hinding_ free() or
rpc _ hinding_ vector _free() routines to free memory that was allocated for
no-longer-used handles. The client could also call
rpc_ns_hindingJrnport_doneO to clean up the resources used by the NSI
routines. If another binding handle will be needed later on, then
rpc_ns_hindingJrnport_hegin() will be recalled.

OSF DeE Application Development Guide

Chapter 2

Guidelines for Server Writers

This chapter consists of detailed discussions of some of the fundamental
DCE services. Use of a DCE service or facility usually has two aspects,
depending on whether you consider it from the point of view of a server or
of a client. The server-side details are usually more numerous and more
complex, and sometimes the client-side aspect disappears entirel y.
However, there are client-side implications in all of the discussions in this
chapter.

2.1 Using the Name Service Interface

Correct use of the DCE RPC Name Service Interface (NSI) is essential to
the operation of a distributed application, since NSI is the medium through
which the application's distributed parts must find each other. NSI works
with named database entries which are hierarchically organized into
subdirectories and referenced by the familiar pathname convention.

OSF DeE Application Development Guide 2-1

Overview of DeE Application Development

2.1.1 Introduction to Using NSI

2-2

It is important to remember that names and objects are separate things in
DCE. Consider, for example, these two DCE names:

/ .. .Itinseltown.org/dce/printers/macmillan

/ .. .Itinseltown.org/dce/employees/goethe

These strings are not filenames or file directory names; if you attempt to
execute the Is command on them, you will only get an error message. They
are pathnames that identify entries in the DCE Directory Service, which is
DCE's database for storing distributed information. This database is often
informally referred to as "the namespace."

The most important type of distributed information stored in the namespace
is information that enables RPC clients to rendezvous with RPC servers; it
is called "binding information." The Directory Service can be used to hold
other kinds of data too, but the main subject of the following discussions
will be its use as a binding repository.

The set of binding name entries is like a huge data structure of pointers from
object names to object locations, and the Directory Service is used mostly as
a public DCE locational database, enabling servers to advertise themselves
and the objects and resources that they manage, and clients in tum to find
and access them. You should never confuse objects with their names; the
two are separate things. In particular, the directory service data associated
with a name is held in one place (namely, the directory server's database),
while the data associated with the object named is held in other place
(namely, the object server's database).

How then, you may ask, are filenames represented in DCE? Here are two
examples of remote filenames:

/ .. .Itinseltown.org/fs/doc/jones/app.gd/chap2.ps

/ .. .Itinseitown.org/fs/doc/tolstoy/novels/war _and _peace/chap2.ps

As you may have guessed, these too are namespace entries, but the entries in
this case refer to remote files, and the entry name as a whole is the remote
filename.

OSF DeE Application Development Guide

Guidelines for Server Writers

What makes these names different from the other two names given earlier is
their third element

fsl

which identifies a "junction" from the DeE Directory Service's namespace
into the DeE Distributed File Service's own, separately maintained,
namespace. How junctions work is explained in Section 2.1.3. However, the
essence of the matter is that I .. .ltinseltown.org/fs is the DFS file server's
DeE namespace entry, and any attempt by a file service client to access a
file object whose name begins with I .. .ltinseltown.org/fs will implicitly bind
to this server, which will then be responsible for finding, in its own
namespace, the file object referred to by doc/jones/app.gd/chap2.ps or
doc/tolstoy/novels/war _and _peace/chap2.ps, and performing the requested
operations on it.

2.1.1.1 The UUID

Thus, it is a mistake to suppose that a name is identical to an object. The
name merely points in the direction of the object it names. Objects do,
however, have identifiers. These are the 128-bit Universal Unique Identifier
(UUID) data structures, which are the identities that the DeE components
recognize. They are not usually seen by users, although they play a part in
the object-finding process.

UUIDs are used within DeE to identify all sorts of things. From the
standpoint of the application programmer, they have two main uses: to
identify objects and to identify interfaces.

2.1.1.2 Object UUIDs

Although "object" is necessarily a rather vague term, a reasonable
definition would be the following: an object is any DeE entity that can be
accessed by a client, and which can be represented by a namespace entry
and identified therein by a UUID. This category can include servers,
devices, and other resources. UUIDs that are used in this way are called
"object UUIDs" in order to distinguish them from the other main use of

OSF DeE Application Development Guide 2-3

Overview of DeE Application Development

2-4

UUIDs, namely to identify interfaces ("interface UUIDs"). The difference
between these two uses consists only in the way the UUIDs are interpreted
by the name service and RPC runtime. Note that it follows from this
discussion that an interface is usually not an object. Clients do not normally
access an interface as such; the interface is rather a description of the rules
of access.

As far as the DCE RPC and name service mechanisms are concerned, it is
enough if a client is brought into contact with some server, as long as that
server offers the service the client is looking for; in other words, as long as
the server offers the interface the client wants to use. To accomplish this
rendezvous, interface UUIDs are sufficient. They are also mandatory. There
cannot be a client/server relationship without an interface, and the entire
RPC runtime mechanism is dependent on the concept of interfaces.

Object UUIDs are different. The RPC runtime usually does not care if they
are present or not. But if they are present, they activate various runtime
mechanisms that allow clients and servers to be much more specific (always
within the bounds of a given interface) about what servers are bound to,
and/or what resources the servers will use to fulfill the clients' requests.
How this works is explained later in this chapter.

2.1.1.3 Interface UUIDs

Every IDL-compiled interface specification has its own UUID associated
with it, and the IDL-generated stub routines include this interface UUID
with every operation request or return sent over the network by clients and
servers. In this way receiving stubs ensure that they and the sending stubs
are sharing exactly the same interface. If the interface UUIDs are different,
or are not present, then the remote call will not be completed. But interface
UUIDs, although they are required, play only a secondary role in a client's
finding the interface (that is, finding a server that offers the interface); the
main tool for this is NSI, which makes use of the DCE Directory Service, as
explained later on in this part of the chapter.

OSF DeE Application Development Guide

Guidelines for Server Writers

2.1.1.4 Summary: Names and UUIDs

Both names and UUIDs identify objects. But names are separable from the
objects they identify, and are only as trustworthy as the binding information
their entries contain. UUIDs, on the other hand, are inalienable identifiers.
Once the desired binding information for an interface or an interface/object
combination has been found and used, the name that was used to retrieve it
can be forgotten; it is of no further use. This is not true of either interface or
object UUIDs.

Note that names become completely unnecessary only if clients have some
other means of obtaining valid binding information for the desired service,
such as string bindings. (See Step B5, Section 1.5.10 in Chapter 1, for more
information.)

Figure 2-1 illustrates how the information a client finds through a name is
turned into network contact with the object named.

Figure 2-1. How a Name Turns into an Object

Object

~ ... ~r ... ! . :
: Server :
• I
L

Binding

Name

1. Finds the object. 2. Makes contact. 3. Accesses the object.

OSF DeE Application Development Guide 2-5

Overview of DeE Application Development

2.1.2 Binding to an Object

The difference between, for example, reading a local file on a single
machine and performing the same read on a remote file in DeE is like the
difference between reading information from a phone book yourself and
dialing an operator for the same information. The remote operation requires
the addition of another active entity that can be requested to perform it,
since you cannot. Associated with every piece of remote data available on a
network is a remote server to manage that data and make it available. The
user may not see the server; even the client may be unaware of it, but it is
there.

The DeE documentation often speaks of "binding to an object." In reality,
clients can bind only to servers, which then may be requested to perform
operations on objects that are under their management. However, it is
possible for a server to put bindings into namespace entries that are named
for the objects that it manages. Furthermore, these exported bindings can be
tagged with object UUIDs in such a way that incoming remote calls from
clients can be applied by the server to the object whose name entry the
binding was read from (the details of this technique are described later in
this chapter). When an application uses this kind of binding model, it is
reasonable to say that the client is logically bound to the object, although it
is physically always bound to the server that manages the object.

2.1.3 Junctions

2-6

Namespace junctions are another example of the "hidden server" effect.
The following remote filename was discussed earlier:

/ .. .!tinseltown.org/fs/doc/jones/app.gd/chap2.ps

and there it was explained that

doc/jones/app.gd/chap2.ps

is an entry in DeE DFS's own namespace, while

/ .. .!tinseltown.org/fs

OSF DeE Application Development Guide

Guidelines for Server Writers

is a DeE namespace entry. Suppose a user enters the following:

Is -I / .. .Itinseltown.org/fs/doc/jones/app.gd

The clerk agent program (called as a result of the user's entering Is) will
bind to the remote file server via its 1 .. .Itinseltown.org/fs DeE namespace
entry, and pass to it the residual DFS entry name doc/jones/app.gd, along
with other parameters. The Is command behaves this way because the
underlying (VFS+ layer) system calls are coded that way. The DFS server
then performs the request (note that the details of interaction within DFS are
somewhat more complex than implied by this description). The user only
types the command line; the rest is done by DeE, and a directory listing
appears on the user's screen.

Because the VFS+ system routines, which are used by all possible clients of
DFS services (for example, commands like Is and rm, library routines like
fopenO and fcioseO), know about the remote file server at
1 .. .Itinseltown.org/fs and bind to it correctly, the transition from the DeE to
the DFS namespace is completely transparent to users. And this is how
junctions work. As long as all possible clients behave correctly with a name
that includes a junction, the junction will not be perceptible to the clients'
users.

2.1.3.1 A Junction Example

Figure 2-2 illustrates the principle of junctions. A junction server, which is
reached normally through binding information in the DeE namespace,
maintains its own namespace of named objects. The junction server's clients
allow users to refer to these objects by actually concatenating the server's
entry name and an object's "internal" name. The client then in effect
breaks this string apart by contacting the server named in the first part of the
string, and passing to it the second part, which is a valid name withIn the
server's namespace. The client's user seems to access the 'object directly.

OSF DeE Application Development Guide 2-7

Overview of DeE Application Development

Figure 2-2. A Namespace Junction

2-8

Object

Name

Object Object Object

Name Name Name

~ "'" t :
....... ~~ : .::.: ,. ... ~

: Junction :
: Server :
L •••• l'

I
I

: L~···1
: Bmdmg :
~··········1
: Name :
a. •••••••••• J

I
I
I

Client

Object

Name

The dashed lines in Figure 2-2 show the progress of the Client's efforts to
get access to the desired Object, which involves acquiring a binding to the
Junction Server, making contact with it, and passing to it the Object's
Name. The solid line shows the apparent direct access to the Object that the
Client's user seems to enjoy. The dotted lines show other possible paths of
access to the other Objects that the Server manages.

Junction protocol is generally a private matter between an application's
clients and servers. However, the ad_edit command uses a generalized
protocol.

2.1.3.2 Junctions and the ACL Editor

The binding routines that ad_edit uses are discriminating enough to detect
a junction anywhere in an entry name that is passed to it. This allows a
distributed application to have its own namespace for objects with ACLs on
them, rather than burdening the DCE namespace by separately exporting
binding information for everyone of these objects. The separate objects
have to be made publicly accessible somehow because entities should be

OSF DeE Application Development Guide

Guidelines for Server Writers

able to access ACLs directly, regardless of whether they happen to already
be in contact with the server that manages the ACL'ed object, and indeed
regardless of whether or not they happen to be a client of the particular
server to which the objects belong.

Suppose, for example, a user enters

acl_ edit / .. .Itinseltown.org/dce/dce _print/cotta

in order to interactively edit the ACL for the printer object cotta, where
1 .. .Itinseltown.org/dce/dce _print is the namespace entry for a print server,
and there is no / .. .Itinseltown.org/dce/dce _print/cotta entry in the DCE
namespace. The binding routine, sec _ acl_ bind(), which is called internally
by acl_ edit, receives an error when it tries to bind to the object cotta.
However, the DCE Directory Service also tells it how much of the name it
passed is valid. The sec _ acl_ bind() routine then retries the binding
operation, this time through the valid entry name
(/ .. .Itinseltown.org/dce/dce_print), and passes the residual part of the name
(cotta) as a parameter. Now it is up to the application ACL manager to
interpret the residual name correctly and find the requested ACL.

2.1.4 Name Service Terminology

As was mentioned at the beginning of Chapter 1, DeE RPC NSI is an RPC
based interface that uses the DCE Cell Directory Service (CDS) as its
database. The NSI routines do not constitute a general interface into CDS as
such; they are a set of specialized routines whose purpose is simply to
provide ways for RPC servers to advertise themselves to RPC clients, and
for clients to find and bind to them.

In fact there is no public general API (Application Programming Interface)
to CDS. There is a general CDS interface that is used internally by the DCE
components, but applications normally access CDS through NSI.
Applications can get full access to CDS, if necessary, by using the XDS
interface. For further information on this possibility, see Section 2.1.4.2
later in this chapter, and Parts 4A and 4B of this guide. See also the
discussion of Directory Service interfaces in Chapter 3 of the Introduction
to aSF DeE.

OSF DeE Application Development Guide 2-9

Overview of DeE Application Development

2-10

2.1.4.1 CDS Entries

NSI uses a subset of the many possible kinds of CDS entry in order to
accomplish its tasks. CDS entries are characterized by the CDS attributes
they have; each entry can have one or more such attributes. Each separate
attribute defines that entry's ability to contain one or more items of a
particular kind of simple or complex information. Section 2.1.4.2 discusses
CDS attributes in more detail.

The name service creates and uses CDS entries that use only the following
four attributes:

• binding

• object

• group

• profile

The entry has a field that can contain one or more sets of
binding information. When the field is read, a binding
handle that contains the necessary information from one of
these sets is returned, in no particular order.

The entry has a field that can contain one or more object
UUIDs. When the field is read, one of the UUIDs is
returned, in no particular order.

The entry has a field that can contain a pool of one or more
references to other (independently existing) NSI entries;
each time the field is read, one of these entries is returned.
Different entries are returned on successive reads, but the
order of return is undefined. Note that the "other NSI
entries" referred to in the group can themselves be server or
group entries. As a result, the act of reading from a group
attribute can, depending on the actual API routine called,
lead to a series of nested operations. Any nesting is
transparent to the client application, however, which seems
to perform a simple read and to receive the contents of a
single entry in return.

The entry has a field that can contain one or more
prioritized elements, each of which consists of a reference
to another (independently existing) NSI entry. When the
field is read, the elements are read in a specified order. The
entry referred to in the element may itself be a server or a
group or a profile. As a result, any element may in fact,
depending on the actual API routine called, resolve on
access to a nested path of referred-to entries. As with group
entries, this is transparent to the client application.

OSF DeE Application Development Guide

Guidelines for Server Writers

Although a single entry could contain both group and profile attributes (and
for that matter, binding and object attributes as well), it is not a good idea to
mix attributes in this way because the results of importing (reading) from
such an entry are too indeterminate.

The typical name service entries are as follows:

• server entry

• group entry

• profile entry

Contains a binding and an object attribute, making it
suitable for containing the necessary binding
information for a single server.

Contains a group attribute.

Contains a profile attribute.

There are no official names for hybrid entries that contain other
combinations of attributes, which is perhaps another reason for not creating
such entries.

The general name for entries that contain any of these attributes is "NSI
entries," since they are a by-product and tool of the NSI DeE RPC library
routines.

2.1.4.2 CDS Entry Attributes

Within the DCE Directory Service, entry attributes such as the four
previously described attributes are identified by Object Identifiers (aIDs).
This is an exception to the general rule that things in DCE are identified by
UUID.

aIDs are not seen by applications that restrict themselves to using only the
name service routines (rpc_Ds_ ... ()), but these identifiers are important for
applications that use the X/Open Directory Services (XDS) interface to
create new attributes for use with namespace entries.

As was seen in the immediately preceding sections, the name service makes
use of only four different entry attributes in various application-specified or
administrator-specified combinations. CDS, however, contains definitions
for many more than these, and attributes from this supply of already existing
ones can be added by applications to NSI entries through the XDS interface.
Attributes that already exist are already properly identified, so applications
that use these attributes do not have to concern themselves with the aIDs,
except to the extent of making sure that they handle them properly.

OSF DeE Application Development Guide 2-11

Overview of DeE Application Development

2-12

A further possibility is that an application requires new attributes for use
with namespace entries. Such attributes can be created using the XDS
interface. When it creates new attributes, the application is responsible for
tagging them with new, properly allocated aIDs.

Unlike UUIDs, aIDs are not generated by command or function call. They
originate from the International Standards Organization (ISO), which
allocates them in hierarchically organized blocks to recipients. Each
recipient (typically an organization of some kind) is then responsible for
ensuring that the aIDs it received are used uniquely.

For example, the OlD

1.3.22.1.1.4

identifies the NSI profile entry attribute. This number was assigned by the
Open Software Foundation out of a block of numbers, beginning with the
digits 1.3.22, which was allocated to it by ISO, and OSF is responsible for
making sure that 1.3.22.1.1.4 is not used to identify any other attribute.

When applications have occasion to handle aIDs, they do so directly, since
the numbers do not change and should not be reused. However, for users'
convenience, CDS also maintains a file (called
/opt/dcelocal/etc/cds_attributes) that lists string equivalents for all the
aIDs in use in a cell, in entries like the following one:

1.3.22.1.1.4 byte

This allows users to see RPC_Profile in output, rather than the mysterious
1.3.22.1.1.4. Further details about the cds attributes file and aIDs can
be found in the aSF DeE Administration Guide.

Broadly speaking, the procedure you should follow to create new attributes
on CDS entries consists therefore of three steps:

1. Request and receive, from your locally designated authority, aIDs for
the attributes you intend to create.

2. Update the cds_attributes file with the new attributes' aIDs and
labels; that is, if you want your application to be able to use string
name representations for aIDs in output.

3. Using XDS, write the routines to create, add, and access the attributes.

OSF DeE Application Development Guide

Guidelines for Server Writers

Non-NSI attributes on NSI entries can be very useful, even though you
cannot access the extra attributes through the name service routines but
must use XDS instead.

2.1.5 Binding

In order to highlight the essentials of name lookup and storage and the
management of binding information, many details of DCE RPC operation
are either greatly simplified in the following descriptions or omitted
altogether. Refer to Part 3 of this guide for the definitive explanations of the
mechanics of binding.

A binding is a package of information that describes how a client can
contact and communicate with a particular server. Although the underlying
protocol that implements the communication can be connectionless or
connection-oriented, the relationship itself is still expressed as a binding.

2.1.5.1 Importing and Exporting Bindings

The name service exists to store server binding information into the cell
namespace, and to retrieve that information for clients. Using NSI, servers
export their binding information to be stored under meaningful names, and
clients import these bindings by looking up those names. Thus, the
locations of the servers can change, but clients can continue to use the same
names to get bindings to the servers. Figure 2-3 shows how client and server
use the name service.

OSF DeE Application Development Guide 2-13

Overview of DeE Application Development

Figure 2-3. Client and Server Use of the Name Service

2-14

Client Server

RPC RPC
Runtime Runtime

Impo rtB;"d;~ ~ortB;"d; ngs

CDS Namespace

When a prospective client attempts to import binding information from a
namespace entry that it looks up by name, the binding is checked by NSI for
compatibility with the client. This is done by comparing interface UUIDs.
The client presents an interface UUID when it begins the binding import
operation; the UUID of the interface being offered is exported to the name
entry, but not in the binding handle itself, by the server. If these interface
UUIDs match, then the binding handle contained in the entry is considered
compatible by the RPC runtime and is returned to the client. If more than
one handle is contained in the entry (this is often the case), they are returned
one by one on successive imports. NSI also checks for protocol
compatibility.

The import routines will return only client-compatible bindings, but a client
can sift through the returned bindings and make its own choice as to which
ones to use, based on its own criteria. The technique by which this is done
consists of converting the bindings into string bindings, and then inspecting
(or comparing) the strings. (See Step C1, Section 1.5.18 in this guide.)

Note that binding handles do not include an interface UUID. Binding
handles do contain a host address, an endpoint, and an optional object
UUID, among other things. The interface UUID is associated with the
interface's stub code, which inserts it into outgoing RPCs and checks it in
incoming ones, thus guaranteeing client/server operational compatibility.
This allows binding handles to be used very flexibly: once a client has
successfully bound to a server, it can utilize any of the interfaces that server
offers, simply by making the desired remote call.

OSF DCE Application Development Guide

Guidelines for Server Writers

2.1.5.2 Summary

The mapping from name to server that occurs when bindings are imported
from the namespace is indirect because binding is a two-step process: first
the binding handle is obtained by lookup from a named entry, and then the
handle is used to reach a server. The crucial point is that the imported
handle will not usually contain a complete binding to a specific server
(namely, the one that happened to export it). Completion of the partial
binding occurs later, when the client makes its first remote procedure call;
the RPC runtime uses UUIDs, not names, to determine how it should
complete a binding.

2.1.6 Partial Binding and the Endpoint Mapper

Binding handles imported by clients from the namespace normally contain
only partial binding information. The exported binding information is
sufficient to locate the RPC daemon on the server's host (the machine the
server resides on), but it does not yet include a specific endpoint (UDP or
TCP port number) for the desired service on that host.

The reason for omitting dynamic endpoint information in exported binding
handles is to avoid unnecessary multiplication of accesses to the namespace.
Since dynamically generated endpoints are necessarily reassigned every
time a server starts up, entering them into the namespace (and thus forcing
CDS to propagate the new information throughout the various directory
replicas) would greatly increase namespace housekeeping chores.

Thus, the last step in the binding process is obtaining an endpoint. The step
is performed transparently as far as the client is concerned. It is
accomplished by the DCE RPC endpoint mapper daemon, rpcd, when the
client makes its first call to the partially bound-to server. The rpcd daemon
manages its own private database qf server endpoints for the host on which
it is located. The endpoints are registered by the servers as part of their
startup routine.

The binding information that accompanies a prospective client's first remote
procedure call takes that call to the well-known endpoint of rpcd on the
exporting server's host machine. The endpoint mapper now takes over. It
looks up a valid endpoint for the requested service, copies it into the binding
handle, and transfers the call to that endpoint. Subsequent calls from the

OSF DeE Application Development Guide 2-15

Overview of DeE Application Development

client, which now has a binding with one of the server's endpoints, will
bypass the endpoint mapper.

The endpoint mapper picks an appropriate endpoint for an incoming partial
binding by matching interface UUIDs by default. Any endpoint that has
been registered under an interface UUID that matches the incoming
interface UUID, which identifies the interface requested by the prospective
client, is eligible for selection. This mapping process is called
"forwarding" when it occurs with connectionless protocols, and
"mapping" when it occurs with connection-oriented protocols.

Figure 2-4 shows the endpoint mapper completing a binding.

Figure 2-4. The Endpoint Mapper Completes a Binding

2-16

Client's Machine Server's Machine

Client Server

RPC RPC
Runtime Subsequent Calls Runtime

----~ t
...... Endpoint

Mapper
(rpcd)

There is an exception to this scheme. Some servers are designed to occupy
well-known addresses. The endpoint mapper itself, rpcd, is reached in this
way, making its accessibility independent of whether or not the namespace
is accessible. The endpoint(s) of a well-known address do not change; they
are usually specified in the application's interface specification (contained
in its .idl file; see Step A3 in Chapter 1, Section 1.5.3, of this guide).
Bindings to servers that use well-known endpoints are already complete at
the time of import; the endpoint mapper never sees these bindings.

OSF DCE Application Development Guide

Guidelines for Server Writers

2.1.7 Interface Ambiguity and Partial Bindings

The interface UUID, which was generated by the IDL compiler, uniquely
identifies the set of operations that the client will access through that
interface. In short, it identifies the interface. An interface UUID may also
happen to identify a server which offers that interface. But if more than one
server on the same host offers the same interface (which could easily be the
case), the interface UUID alone will not be sufficient to identify a specific
server. The result is that if a remote call comes in with such an ambiguous
interface and a partial binding, the endpoint mapper will have to randomly
choose anyone of its eligible registered endpoints, complete the binding
with it, and send the call on to that server.

Imagine several print servers residing on the same machine (see Figure 2-5).
Each server manages a group of printers that share a common physical
location. All the printers in room "A" are managed by the ' , A" print
server, all the printers in room "B" by the "B" print server, and so on. Now
suppose each of these servers has a separate entry in the namespace. (See
Figure 2-5 for the sequence of events that occurs.)

OSF DeE Application Development Guide 2-17

Overview of DeE Application Development

Figure 2-5. Print Server Entries in Namespace

2-18

Client's Machine Servers' Machine

Client Print Print Print Print
Server Server Server Server

A B C D
RPC

Runtime

~ -
~ ?". ® .If? .~ ?-,: " 3 / -;

--®---~=.r-,,-, £~/ . ® Endpoint I
'\

Mapper

~ Namespace

Namesof_~ "-
"A" "B" "C" "D"

Entries ~

Identical Inter- Inter- Inter- Inter-
Exported - face face face face
Interfaces Printer Printer Printer Printer

~
Identical Server Server Server Server
Exported _ A B C D
Partial Partial Partial Partial Partial
Bindings Binding Binding Binding Binding

~

The following steps describe the sequence of events shown in Figure 2-5:

1. The Client imports a partial binding to the Printer interface from the
entry" A" in the Namespace.

2. The Client makes its first call with the binding it imported from "A."

3. The Endpoint Mapper at Print Server A's host, when it receives the
call from the Client, has no way of knowing which of the four Print
Servers it should map the call to, since all four servers have registered
their endpoints under the same interface. It therefore picks one at
random to complete the binding.

The entry names are different, but the partial binding information contained
in the entries is identical, since the servers' host machine is the same. The
interface UUID included in the call is no help, since that same interface is
offered by all the servers. A client seeking a print server may not care to
which server (and thus to which printer) its request goes, but then again, it

OSF DeE Application Development Guide

Guidelines for Server Writers

may care. If it does, there is a way it can specify a server so that the
endpoint mapper can select an appropriate endpoint to complete the partial
binding.

2.1.8 Using Object UUIDs to Avoid Binding Ambiguity

Binding handles can contain, besides host address and endpoint information,
an object UUID as well. The endpoint mapper will try to match an object
UUID contained in a binding handle with one of the object UUIDs
associated with its map of registered endpoints. This allows even a partial
binding to specify a target more precisely than just by host machine. Since
object UUIDs are generated by the uuid _ create() function call (see the
OSF DeE Application Development Reference), servers can create as many
of them as they need. Steps B2 (Section 1.5.7) and B3 (Section 1.5.8) in
Chapter I of this guide show how the server sets up the object UUID
mapping mechanism.

For the print server example discussed in the previous section, the
namespace entries for the servers could be set up as shown in Figure 2-6.

OSF DeE Application Development Guide 2-19

Overview of DeE Application Development

Figure 2-6. Print Server Name Entries with Object UUIDs

Client's Machine Servers' Machine

Client Print Print Print Print
Server Server Server Server

A B C D

RPC
Runtime

~ ~ f®'i Eodpo;o' I '\
Mapper

"'"
Namespace

Names of_ ~
'\.

"A" "B" "C" "D"
Entries ~

Interface Inter- Inter- Inter- Inter-

UUIDs face face face face
Printer Printer Printer Printer

~

Server Server Server Server

Contents of A B C D

partial bind- Partial Partial Partial Partial

ings are diff- Binding Binding Binding Binding

erentiated - + + + +

by object Server Server Server Server
A's B's C's D's UUIDs

Object Object Object Object
UUID UUID UUID UUID

~

The following steps describe the sequence of events shown in the preceding
figure:

1. The Client imports a partial binding to the Printer interface from the
entry "A" in the N amespace.

2. The Client makes its first call with the binding it imported from "A."

3. This time the Endpoint Mapper at Print Server A's host is able to
match the call with A's registered endpoints, because the endpoints
have been registered with both the Printer interface and Print Server
A's Object UUID, and the incoming call's partial binding also
contains Print Server A's Object UUID.

2-20 OSF DeE Application Development Guide

Guidelines for Server Writers

Each server has exported a set of partial bindings that differs from all other
servers' by its object UUID (which thus becomes, in effect, a server ID). If,
for example, Server A has properly registered its endpoints with the same
object UUID as the one it exported its bindings with, the Endpoint Mapper
will make sure that a partial binding exported from Server A's name entry
will result in a full binding to Server A.

Now suppose that each print server sets up a separate namespace entry for
each printer it manages. The printers themselves would, in effect, be
identified by their own object UUIDs (see Figure 2-7).

OSF DeE Application Development Guide 2-21

Overview of DeE Application Development

Figure 2-7. Separate Printer Name Entries

2-22

Printer ~ Printer

~II
Printer

II
Printer I "Thorpe" "Field" "Batey" "Cotta"

\\ \1 Printer Printer

~I
Printer I Printer

"Murray" "Ridler" "Milford" "Tonson"

'" \ /
Servers' , '\ '" \/
Machine

Print Print Print Print
Server Server Server Server

A B C D

I Endpoint
Export Export Export Export

Mapper
Partial Partial Partial Partial
Bindings Bindings Bindings Bindings

Namespace

,.
~~~es -

"Thorpe" "Field" "Batey" "Cotta" 

~ 
Server A Server B Server C Server D 

Partial Binding Binding Binding Binding 

Bindings - "Thorpe's" "Field's" "Batey's" "Cotta's" 
Object Object Object Object 
UUID UUID UUID UUID 

Entry ~ 
- "Murray" "Ridler" "Milford" "Tonson" 

Names ----.. 
Server A Server B Server C Server D 

Partial Binding Binding Binding Binding 

Bindings - "Murray's" "Ridler's" "Milford's" "Tonson's" 
Object Object Object Object 
UUID UUID UUID UUID ----.. 

Now a client will be able to access a specific printer by importing a binding 
handle from that printer's name entry. The endpoint mapper at the target 
host would compare the object UUID in the partial binding with the object 
UUIDs registered by the print servers, and select an appropriate server. The 
server in tum would also use the object UUID to select the correct printer 
for the request, if it managed more than one printer. A namespace set up in 
this way with a separate entry that contains a unique object UUID for each 
accessible service resource is called an "object-oriented" namespace. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.1.9 An Object-Oriented Namespace 

"Object-specific entries" are namespace entries that each contain binding 
information only for one specific object or resource, as demonstrated in the 
last printer service shown in Figure 2-7. "Object" can mean any of several 
things, depending on what kind of service the application's servers are 
offering. Table 2-1 shows some examples of objects. 

Table 2-1. Some Examples of Objects 

Service Object(s) 

Printing A specific printer 
Process Server A specific server 
Queue Service The print queue,the kill 

queue, the backup queue 

Thus, for a client that wants to have a file printed, it is natural to allow it to 
specify a printer as a destination. Therefore, the client would bind to the 
print server through a name entry that specifies a printer. To send something 
to a different printer, the client would import a binding from the name entry 
for that other printer. The server may (or may not) be identical, but the 
object UUID in the binding handle returned would uniquely specify the one 
printer represented by that entry. 

On the other hand, consider an application that returns statistics about the 
processes currently active on a group of machines. In this case it would be 
reasonable to regard the server as the object. In the narriespace entries for 
such an application, each entry would uniquely represent one server. A 
client would import a binding from the name entry for the server it wanted 
to work with. 

In other words, "object" is a handy way of saying "the thing that clients 
will want to access" in order to accomplish the task set for the application. 
If the namespace is organized correctly, clients will be able to import 
bindings from these objects' entries. 

OSF DeE Application Development Guide 2-23 



Overview of DeE Application Development 

2.1.10 Setting Up an Object-Oriented Namespace 

2-24 

Once you have distinguished the objects your application uses, you must 
decide on an appropriate set of names for the entries themselves. The entries 
can be created either by the application (server), if it has the necessary 
privileges, or by a system administrator using the rpccp command interface. 
(See Section 2.5.1.3 for further information on this step.) 

After the entries have been created, each server must do the following: 

1. Create an object UUID for each object managed by the server under 
an interface, insert it into the binding handle(s) for that object, and 
export the handle(s) for each object to a separate entry in the 
namespace. 

Note that the object UUID should be generated and exported in 
general only once per created namespace entry, and not each time the 
server starts up (see the example that follows of how to do this). When 
a newly restarted server exports its partial bindings, nothing actually 
happens in the namespace because the partial binding information 
remains the same (unless the server has moved to a different 
machine). However, if the object UUIDs are regenerated, then the 
change in exported information will force needless update activity in 
CDS, which is where the entries exist. 

2. Register with the endpoint mapper the full bindings (including 
endpoints) obtained for the interface; rpc_ep_registerO performs 
this operation. 

One way of avoiding unnecessary regeneration of object UUIDs would be to 
have a restarted server check the namespace for the presence of its 
previously exported object UUIDs, as demonstrated in the following code 
fragment. Refer to the aSF DeE Application Development Reference for 
further information on the function calls. 

have_object = false; 

/* Create an inquiry context for inspecting the object */ 
/* UUIDs exported to "rrw_entry_name"... * / 
rpc_ns_entry _obj ect_in~begin (rrw _entry _name_syntax, rrw _entry_name, 

&context, &st); 

/* If we successfully created context, look at */ 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

/* object UUIDs... */ 

if (st == rpc_s_ok) 

/* Try to get one object UUID from the entry... */ 

rpc_ns_entry_object_in~next(context, &obj, &st); 

/* If an object UUID is there already, we don't */ 

/ * need to generate another one... * / 
have_object = (st == rpc_s_ok) 

/* Delete the inquiry context... */ 
rpc_ns_entry_object_in~done(&context, &st); 

/* If there were no object UUIDs in the entry, */ 

/* generate one now... * / 
if (! have_object) 

uuid_create(&obj, &st); 

/* Put it in an object UUID vector ... 
objvec.count 1; 
objvec.id[O] = &uuid; 

*/ 

/* Export bindings. If an object UUID was generated, */ 

/* export it too... */ 
rpc_ns_binding_export ( my_ent ry_name_synt ax , IT!Y_entry_name, 

my_inter face_spec , my_bindings, 
have_object? NULL : &objvec, &st); 

Whenever you want to offer more than one instance of the same interface on 
the same host, you must distinguish by object UUID the binding information 
in the name entries exported by the servers, if it is important to distinguish 
among the servers when binding to them. Otherwise, the endpoint mapper's 
selection of an endpoint with which to complete the binding from among all 
the servers on that host that offer the appropriate interface will be random. 

Figure 2-8 illustrates what such an object-oriented namespace should look 
like. 

OSF DeE Application Development Guide 2-25 



Overview of DeE Application Development 

Figure 2-8. Object-Oriented Namespace Organization 

2-26 

ObjectA.'~ IObject8.1~ Object C.1 l J Object C.3 

Object C.2 ~ ~ Object C.4 ObjectA.2~ I Object B.2 ~ 

Servers' 

~ 
~ V 

Machine 

Server Server Server 
A B C 

I Endpoint I 
Mapper 

Export Export ~port 
Bindings Bindings Bindings 

Namespace ~ 
Server A Server B Server C Server C 
Binding, Binding, Binding, Binding, 

ObjectA.1 Object B.1 Object C.1 Object C.3 
UUID UUID UUID UUID 

Server A Server B Server C Server C 
Binding, Binding, Binding, Binding, 

ObjectA.2 Object B.2 Object C.2 Object C.4 
UUID UUID UUID UUID 

Each entry has a name denoting the object represented, although the names 
are not shown in this figure. (See Section 2.5.1.3 for further discussion on 
this topic.) 

Under this model, clients bind to servers via named objects in the 
riamespace, each of which contains enough specific information in its partial 
binding to allow the endpoint mapper at the destination host to choose an 
appropriate endpoint for the incoming RPC. 

By setting a namespace up this way, however, you do not necessarily restrict 
yourself to this one model for accessing binding information. Through the 
use of two other types of entry, groups and profiles, which can be 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

superimposed on the simple object model, you can set up models where 
clients bind to abstractions such as services, or directly to the servers 
themselves. These techniques are described in the next section. 

Nevertheless, at this point you have enough information to set up a 
namespace that consists of an entirely "flat" expanse of separate resource 
entries. Bindings can be imported by clients by looking up specific names. 
If the client has no specific name to look up, or if the lookup on the name(s) 
it has fails, it has no alternative way of binding to a server. 

2.1.11 Groups and Profiles 

N arne lookups can be made more flexible with two other types of entry; 
namely, groups and profiles. 

2.1.11.1 Group Entries 

A group entry consists essentially of multiple independent other entries 
whose names are also associated under the group name. These "other" 
entries can be simple (single-name) entries, or they may themselves be 
group entries. Doing an import from the group entry will return the contents 
(the binding handles) of its included entries (which are called "members"), 
but the selection is made by the DCE RPC runtime, and from the client's 
point of view is undefined and implementation dependent. 

In practice, the way this works with the usual binding import operations is 
as follows. Clients normally import bindings by first calling 
rpc_ns_hindingJrnport_heginO to set up an import context. Once this is 
done, successive calls to rpc_ns_hinding_irnport_nextO will return 
binding handles from namespace entries until the handles have all been 
returned or the client decides to stop; the client decides which handle(s) to 
use based on its own criteria. When it is finished importing, it calls 
rpc_ns_hindingJrnport_doneO to free the context. (Several examples of 
this technique are illustrated later on in this chapter; the client code for 
tirnop, the DCE sample application described in Chapter 3 of this guide, 
also contains an example.) 

OSF DeE Application Development Guide 2-27 



Overview of DeE Application Development 

2-28 

The kind of entry the information is returned from is usually unknown to the 
client, which needs to know only a name to look up and the interface UUID 
by which it wants to bind. If the name is that of a simple server entry, then 
the bindings contained in that entry only will be returned. If the name is of a 
group entry, then bindings will be returned from members (single entries) of 
the group, selected (by the RPC runtime) in an undefined order. If one or 
more members of the group are themselves groups, then the same thing 
happens recursively whenever these lower-level groups are accessed. 

Note that the group entry and its members are separate things. The group 
entry can be deleted, but its former members will continue to exist as 
independent entries, unless they too are explicitly deleted. Thus, you can 
implement a namespace organization where the same bindings can be 
imported through individual simple entries or through group entries, 
depending on how the client is coded. (See Chapter 15 for more details on 
group entries.) 

2.1.11.2 Profiles 

A profile entry specifies a search path or hierarchy of search paths to be 
followed through the namespace in order to obtain a binding to a server that 
offers a specified interface. 

When a client imports from an entry that happens to be a profile, successive 
imports (accomplished by calling rpc _ os _ biodingJrn port _ next( » return 
the contents of entries that are read as a result of following the specified 
path through the namespace. All this is transparent to the client, which sees 
only the bindings returned. Profiles can be used to set up default paths and 
groups of paths for users. The RPC_DEFAULT_ENTRY_NAME 
environment variable, which is the default entry name used by the name 
service in import operations, usually contains the name of a profile. 

As with groups, the entries contained in profiles, which are called 
"elements," exist independently of the profile entry itself. 

A very important property of profiles is that they allow clients to know little 
or nothing about the organization of the namespace itself. Using the default 
case as an example, consider the following: if the profile at 
RPC_DEFAULT_ENTRY_NAME has been set up with elements 
containing entries for all possible active servers for a particular application, 
then clients can simply import from this name and trust the profile 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

mechanism to walk through the various compatible possibilities and return 
binding handles via successive calls to rpc_ns_hinding_import_nextO. 
(Note that a profile entry is not limited to containing entries for just one 
interface; thus, RPC_DEFAULT_ENTRY_NAME could be set up to 
contain all the defaults for a cell.) (See Chapter 15 for a detailed discussion 
of profiles.) 

2.1.11.3 Summary of N amespace Entry Types 

Clients access binding information in the namespace by looking up (by 
name) one of three different kinds of entry: 

• A server entry 

• A group entry, which contains other entries whose contents are returned 
to the caller when it reads the group entry 

• A profile entry, which specifies a path of entries to be searched whose 
contents are returned to the caller when it reads the profile entry 

Lookups behave differently depending on the kind of entry read. If an entry 
is a simple server entry, then the search begins and ends right there, whether 
successful or not. If the entry is a group, then the lookup is more 
complicated. A binding will be returned from among those that are found to 
be compatible by the name service, but within that category the selection is 
undefined. If the entry is a profile, then a specified path of entries is 
searched. The entries in this path may themselves be other profiles, or 
groups, or simple entries. The search continues until either a compatible 
binding is found, or the entire path has been unsuccessfully traversed. 

2.1.12 Three Models for Accessing Binding Information 

By adding groups and profiles to the object-speci fic namespace organization 
originally described, you can implement any or all of the following three 
basic models for accessing binding information: 

• Clients bind to services 

• Clients bind to servers 

OSF DeE Application Development Guide 2-29 



Overview of DeE Application Development 

2-30 

• Clients bind to resources or objects 

Each of the three models is described in the following sections. 

2.1.12.1 Access By Services 

Servers have separate namespace entries; each server distinguishes the 
bindings it exports with its own identifier; that is, an object UUID that it 
generates for itself the first time it starts up. These separate server entries 
are also members of group namespace entries, which represent services. The 
criteria for membership in a service group is that all the servers in it export 
the interface that identifies that service. (They may happen to export other 
interfaces as well.) 

Clients, in effect, bind to services by importing their binding handles from 
the group entries. Note, however, that the server-specific entries still exist 
independently and are accessible to lookup. 

This model is appropriate for applications where clients do not care which 
server they happen to bind to or where that server is located as long as it 
offers the desired service. The eligible servers are pooled into a group entry 
from which bindings to one of them are selected in an undefined order and 
returned whenever a client performs an import operation from the group 
entry. 

2.1.12.2 Access By Servers 

In this model, distinct servers have separate and distinct name entries, and 
clients import bindings directly from the server entries. Hence, an 
application using this kind of binding model will ' 'own" just as many 
simple entries in the namespace as there are active servers. 

Since the client in this model is looking for a specific server, imports will be 
done directly from the server entries. The only exception to this rule would 
be where two or more instances of a server were active on the same host, 
and it was indifferent to the client as to which one it is bound to. The entries 
for the multiple same-host servers then could be put into a group entry, and 
binding imports done from the group. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.1.12.3 Access By Objects 

Servers operate on or manage multiple objects. Clients use these objects 
(via the servers) as resources. For each such resource, the server creates a 
separate namespace entry and exports its binding information there, 
distinguishing each object entry with its (the object's) own object UUID. 

An example of this model is the printer service that was previously 
described. Clients will import directly from the name entry of the resource 
they want to use. For this kind of application, there will generally be more 
namespace entries than active servers, since each server presumably 
manages more than one object. If the name entries have been set up 
correctly and the servers have properly registered the object UUIDs they 
created, there will be no difficulty in routing any partial binding to the 
correct server (namely, the server that manages the object or resource 
specified). 

2.1.12.4 Summary of Binding Models 

Although the name service allows other approaches, we recommend that 
whenever possible you use the object-oriented scheme to organize your 
namespace entries. There are at least two good reasons for doing so. First, it 
is easy to administer; at the simple entry level, things really are simple. 
Second, this is the most flexible foundation for building other more 
complicated access models using group entries and profiles. 

The separate name entries in your namespace should contain bindings that 
will unambiguously resolve to specific server instances. Since interface 
UUIDs are often offered by more than one server, more information than 
just an interface UUID is needed in order to give an RPC with a partial 
binding the required specificity. Object UUIDs provide this extra 
information. When using object UUIDs to distinguish bindings in this way, 
servers must take care to preserve their uniqueness across name entries. 

Finally, profile entries allow clients to walk through a specified search path 
of namespace entries and yet be completely ignorant of the actual names 
themselves. While name independence may not be desirable for an object
based or resource-based distributed ,application, it can be a powerful 
mechanism when used with other models. 

OSF DeE Application Development Guide 2-31 



Overview of DeE Application Development 

As you are setting up the namespace organization for your application, 
remember that there is not a direct exact mapping from names to bound 
servers. Different names, once imported from, may resolve to identical 
bindings if the partial bindings were exported on the same interface, from 
the same host, and not otherwise distinguished from each other by object 
UUIDs. It is the application developer's responsibility to tailor an 
application's export and import procedures so that this mapping behaves as 
intended. 

2.1.13 Models Based on Non-CDS Databases 

2-32 

The three models previously described are not mutually exclusive; if the 
namespace is set up correctly, all three can coexist at the same time. All 
three of the models are implemented through the functionality of the DCE 
RPC name service. 

Although the emphasis in this discussion has been placed on the storage and 
retrieval of binding information, the namespace entries can be used to store 
additional states for objects. In order to do this, an application would have to 
create additional attributes on the CDS entries it intended to use because the 
name service recognizes only the four NSI attributes: binding, object, group, 
and profile. 

Such additional entry attributes would be created and accessed through 
XDS. However, whenever you find yourself contemplating extending the 
name service in this manner, you should carefully consider whether the 
name service (and, consequently, CDS) is the best mechanism for doing 
what you want to do. For some further discussion of what is involved in 
adding attributes to CDS entries, see Section 2.1.4.2, earlier in this chapter. 

In the preceding example, where an object-oriented namespace containing 
separate entries for individual printers was described, only the identifier for 
the printer (the object UUID) and the binding for the server that managed it 
were stored in the CDS entry. Other information, such as what jobs are 
currently queued for the printer, who owns the jobs, and so on, was 
maintained by the server. This data could be stored in CDS only by creating 
new attributes to put it in, but it would be changing too quickly for CDS to 
efficiently keep up with it anyway. The performance of both the application 
and CDS would suffer from such an arrangement. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

It is possible to imagine distributed applications whose resources (the 
objects they are managing) are of such a nature that they could be more 
efficiently managed through a private application-implemented database. 
Suppose the number of managed objects is very large, or that the state of the 
objects is volatile. It would certainly be a bad idea to try to use CDS to 
store this kind of information, which would be changing much more rapidly 
than CDS's ability to propagate the updates. 

2.1.13.1 Example of a Privately Managed Database 

As an example of such a privately managed database, consider a print 
service where jobs are submitted not to individual printers, but rather to a 
generic printer service. The client, Ipr, binds (probably through a group 
entry) to some certain print server, and sends the job to be printed to that 
server, which then, after some thought, sends the job to one of the printers 
that it manages. 

Consider, for example, what happens if a user invokes the client cancel 
sometime later to stop a job. If, for example, the original command was 

lpr War_and_Peace.ps 

and the subsequent request to cancel is 

cancel War_and _ Peace.ps 

then how does the server that cancel binds to find the right job to delete? 
There is no guarantee that cancel will bind to the same server that happened 
to receive the original print request, so having each print server keep track 
of its own jobs would not be the answer. 

One way to keep track of jobs queued would be to have a dedicated "job 
location server" as part of the application. Each time a print server queued a 
job to a printer it would record the fact (with all the pertinent details) with 
the location server. Whenever a job completed, the server would again 
notify the location server to remove its record of that job from its database. 
A client cancel then binds first to the location service, where it receives the 
name of the print server associated with the job it wants to cancel. It then 
looks up that name, binds to the right print server, and sends the cancel 
request. In effect, the location server has become a name service for cancel. 

OSF DeE Application Development Guide 2-33 



Overview of DeE Application Development 

This method of organizing activity results in a split-model database. The 
print servers' binding information is managed through CDS, as usual, and 
the location server manages other more volatile information associated with 
those same servers. 

Another way a server could maintain its own database of named objects 
would be by implementing a junction. (See Section 2.1.3 earlier in this 
chapter.) 

2.1.13.2 Combining Models 

In designing a binding access model for an application, consider also 
whether it may be appropriate to combine some of the models previously 
discussed. In the print service application, it may be desirable for servers to 
also offer a management interface to specific servers rather than to specific 
objects; for example, Ipr, lpq, and Iprm are generic application clients, so it 
is appropriate for them to bind to printer objects, but if lpr _ mgmt is 
supposed to manage characteristics of a whole service, then it should bind to 
servers. 

2.1.14 An Object-Oriented Model with Grouped Binding 
Information 

2-34 

The following variation on the object-oriented binding model shows how 
the group attribute can be used in object entries. In this model, each of the 
object entries contains, as before, an object UUID that will uniquely 
identify (either to the endpoint mapper on the exporting server's machine, 
and/or to the server itself) the object referred to by that entry. However, the 
object entries do not contain any binding information. Instead, a group 
attribute in each object entry refers clients' import operations back to the 
server's own separate entry, which contains the binding information for that 
server. 

The namespace ingredients of this model are the following: 

• A single namespace entry for the server, which contains a binding 
attribute and, possibly, an object attribute. Thus, this entry contains all 
the binding information that is exported to the namespace by the server. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

• One namespace entry for each object that the server offers. Each entry 
contains an object attribute that contains that object's UUID, and a 
group attribute that refers back to the exporting server's namespace 
entry. 

Note that the object entries consist of a combination of attributes not 
encountered before (object and group). Although unorthodox combinations 
of attributes are not generally recommended, they can sometimes be useful, 
as in this example. 

The advantage of this scheme is that it greatly reduces the amount of 
server-provoked export activity into the namespace. When the server is first 
activated it creates all the namespace entries, exports the objects' UUIDs 
into the object entries, and initializes the group attributes to refer to the 
server entry. It exports its binding information into the server entry only. 
From then on, whenever it is restarted, all the server needs to do is re-export 
its binding information into the single server entry. Everything else remains 
the same; that is, the objects' UUIDs have not changed, nor has the name of 
the server entry to which the object entries' group attributes refer. Thus, 
instead of exporting bindings to everyone of its object entries on subsequent 
startups, the server exports to only one entry. 

Of course, if the system were restarted or the namespace reinitialized, then 
the original start-up process would have to be repeated. 

The slight disadvantage of this scheme occurs on the client side, where the 
import process becomes somewhat more complicated than it would be if all 
necessary information (both binding and object UUID) could be read in 
from the same entry. 

2.1.15 Server and Client Steps 

The following subsections describe in detail, from both the server's and the 
client's side, how this model works. 

OSF DeE Application Development Guide 2-35 



Overview of DeE Application Development 

2-36 

2.1.15.1 Server Export 

This section lists the steps that the server must perform to set up and 
initialize its namespace. Each step consists of the NSI function that must be 
called to perform the operation. 

1. uuid _ create( } 

To create an object UUID for each object that the server intends to 
export. 

2. rpc _server _register _ if( } 

To register interface(s) and EPVs with the RPC runtime. (This is also 
where manager types, if any, are registered.) 

3. rpc _server _use _ all_protseqs( } 

To request bindings from the RPC runtime for each object. 

4. rpc _server _inCL hindings( } 

To get the binding handles for each object. 

5. rpc _ ns _ hinding_ export( } 

To export the binding information of the objects' common server to its 
own separate name entry. This step is performed only onee for each 
collection of objects managed by the same server. 

The final three steps set up the grouped collection of service objects: 

6. rpc _ ns _ hinding_ export( } 

To export each object's object UUID to its own simple name entry. A 
NULL is passed as the binding_vee parameter to specify that only an 
object UUID, and no bindings are being exported. 

Note that each object UUID must be exported to both the object name 
entry and the server entry; therefore, this call will be made twice. 

7. rpc_ns_group_rnhr_add(} 

To add the server's name entry (created in the first step) as the sole 
member of an NSI group attribute in each of the separate objects' name 
entries created in the second step. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

8. rpc _ ep _register() 

To register each object's UUID with the server's host machine's endpoint 
mapper. 

Unlike the object-oriented model originally discussed, where there was a 
set of binding handles in each object entry, and where each object's set 
of handles was registered with that object's UUID in this step, there is 
only one set of binding handles in the grouped model. Therefore, when 
registering object UUIDs with the endpoint mapper, an application that 
uses the grouped model should reregister the same set of handles with 
each object UUID. The point of this step is to make sure that, when 
presented with an object UUID in an incoming RPC, the endpoint 
mapper can look that UUID up in its database and find an endpoint that 
has been registered with it. Registering the server's bindings (that is, 
endpoints) with all object UUIDs will accomplish this. 

Step 6 is made necessary by the way the ACL editor's binding mechanism 
works. (Applications gain access to the ACLs that an application maintains 
on its objects through the client agent ad_edit, which uses a standard 
DCE-wide interface for ACL operations.) The ad_edit mechanism contains 
code that allows it to bind to the server that implements the ACL manager 
responsible for the object whose ACL is desired. However, these 
generalized binding routines necessarily conform to certain fixed ways of 
doing things. If the ad_edit binding mechanism obtains an exported 
object's object UUID from the object entry, it will use that object UUID in 
its subsequent import through the group attribute. 

Thus, the object UUID will be contained in the handle structure that the 
client presents to the rpc_ns_hindingJrnport_nextO call, expecting it to 
be filled in with binding information. However, the RPC runtime always 
tries to match such an input object UUID with a UUID contained in the 
entry that the caller is trying to import from. If no matching object UUID is 
found, no binding information will be returned. Thus, all the single object 
UUIDs separately exported to the object entries must be exported to the 
server entry as well, if the exported objects are to have ACLs accessible 
through the ad_edit mechanism. 

Figure 2-9 illustrates the resulting namespace arrangement. 

OSF DeE Application Development Guide 2-37 



Overview of DeE Application Development 

Figure 2-9. The Export Operation in a Model with Grouped Bindings 

2-38 

Server's Host Machine Namespace 

Server Entry 

Server 
Bindings 

Create object entries for service objects. 

Server Server Server Server 
Group Group Group Group 

Attribute Attribute Attribute Attribute 

"A" "B" "C" "0" 
Object Object Object Object 
UUIO UUIO UUIO UUIO 

This generic server manages four objects, called simply "A," "B," "C," 
and "D." One entry is created for each of these objects, and a separate entry 
is created for the server itself, where the binding information is held. 

The result of all this is that there is now one more namespace entry for a 
given service instance than there would have been with the object-oriented 
model discussed earlier. The group attribute in each entry is a level of 
indirection that allows the server to dispense with exporting many copies of 
the same thing. 

If a directory with the proper permissions has been set up for it in the 
namespace by the system administrator, a server should be able to create the 
object entries simply by making the calls described here. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.1.15.2 Client Import 

To bind to an object managed by the server as previously described, a client 
performs the following series of library calls: 

1. rpc_ns_entry_object_inlLbeginO 

To set up an object inquiry context. 

2. rpc _ ns _entry _object JnlL next( ) 

To return the object UUID that the server exported to the object's entry. 

This UUID will allow the server host's endpoint mapper to accurately 
map the incoming remote procedure call to the server that exported this 
entry. The UUID may also be used by the server itself to determine 
which object the client wants to access. Note that although this set of 
library routines is designed to accommodate schemes in which multiple 
object UUIDs have been exported to the same entry, the model described 
here requires that only one object UUID (the unique identifier of the 
object to bind to) be exported. 

3. rpc _ ns _entry _object _ inlL donee ) 

To delete the object inquiry context. 

4. rpc _ ns _ bindingJmport _ begin( ) 

To set up a binding import context. 

An alternative to using the binding import routines would be to use the 
group member inquiry (rpc_ns_group_mbrJnlL"'O) routines to learn 
the name of the entry referred to in the group attribute, and then to do a 
direct import from that entry. 

The reason for using the rpc _ ns _group _ mbr JnlL ... () routines, rather 
than the normal import functions (rpc_ns_binding_ ... O), would be to 
make sure that the group (and not some other) attribute in the entry is 
read. The rpc_ns_bindingJmport_nextO routine is defined to 
successively exhaust the contents of an entry's 

• binding attribute 

• group attribute 

• profile attribute 

OSF DeE Application Development Guide 2-39 



Overview of DeE Application Development 

2-40 

Since the model described here employs object entries with only group 
attributes and no binding or profile attributes, using the normal import 
routine should work fine. 

5. rpc_ns_bindingJrnport_nextO 

To read the entry's group attribute. 

The name service's access to (and return of the binding handle from) the 
entry's group attribute is transparent and unerring because there is only 
one set of binding information associated with a given entry in this 
scheme, and that information is found only in the group attribute. Note 
that if there had been more than one member in the group, which in fact 
is generally the case when group attributes are used, then the order of 
return would be random. Or if there had been binding information 
associated with both attributes, then here also the order in which binding 
handles would be returned would be random; that is, the caller may get a 
handle from the simple name attribute first, and then the handles 
exported to the group members, or it may get one or more of the group's 
member's handles, then one or more of the simple entry's handles, and so 
on. 

6. rpc _ ns _ bindingJrnport _ done() 

To delete the binding import context. 

7. rpc _binding_set _ object() 

To insert the object's object UUID into the imported binding handle. 

Figure 2-10 illustrates this activity. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

Figure 2-10. Importing from a Model That Uses Grouped Bindings 

Server's Host Machine Namespace 

Server Entry 

Server 

CQ ... 
Bindings 

(I 1- \ ~\ 
I I \ 

~ 
........... I I \ ' 

I I \ " 
I I \ , 

/ I \ ' 

~ 
I I \ ' 

Server ~/ I \ '\ 

Server Server Server Server 
Group Group Group Group 

0/ Attribute Attribute Attribute Attribute 

"A" "B" "CO "0" 
Object Object Object Object 
UUID UUID UUID UUID 

I Endpoint I 
Mapper , 

,~ Cllenl's Machine 
Call through 
to server. Import binding information for ObJect "A", 

N Client 

The client shown in the figure imports a binding for object "A." This 
becomes (through the group attribute) a referral back to the server's entry 
where the bindings are held, and a binding is indirectly imported from the 
server entry. The object UUID for "A" is read, in a separate operation, 
directly from the object's entry. With this information in its binding handle, 
the client makes its first remote call through the server's interface. The call 
finds its way to the endpoint mapper via the partial binding information, and 
the endpoint mapper completes the binding by looking up the object UUID, 
which was registered there by the server. 

OSF DeE Application Development Guide 2-41 



Overview of DeE Application Development 

2.1.16 Global Organization of the Namespace 

2-42 

Since DCE is designed to support very large namespaces, it uses a 
hierarchical service for binding. The global scale is separated into cells 
whose boundaries are administratively defined. For example, a company 
using DCE may have a cell containing its employees and local services. The 
cell namespace administrator could decide to put all the service entries in a 
single directory if the cell were small. 

Both the import and export name service operations support default values 
deriv~d from environment variables; for example, 
RPC_DEFAULT_ENTRY_NAME. The environment variables can be set 
by start-up files to the name of a well-known directory within the cell. The 
only remaining decision then will be how to name the actual entries within 
the directory. One easy method is to use mnemonic names, or names of 
interf~ces such as binop, spm_library, and so on. If these entries are only 
being accessed by clients through profiles, their names will not be directly 
visible to the client anyway. 

But now imagine a larger organization. The administrator will want to 
define some naming hierarchy based on geography, organization, or other 
criteria. Somewhere within this hierarchy some writable directories (or 
parent directories) would be created, which could contain server entries, 
profiles, and so on. If clients are using only profiles to access bindings, then 
this organization will still be transparent to them. If clients want to bind to 
specific servers or objects, then more attention must be paid to the names 
given the servers' or objects' entries. The names should in some way reflect 
the organization, geography, or other relevant aspects of the server or 
object. 

In summary, the important points to keep in mind are the following: 

• The model should be appropriate for the organization and permit 
efficient administration of the namespace. 

• There should be simple guidelines for naming objects and services so 
that users have a good chance of guessing the right answer. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.2 Thread-Safe Programming 

The following subsections describe thread-safe programming. 

2.2.1 Introduction to Thread-Safe Programming 

DCE contains a user-space threads package both for use in client 
applications and in order to allow concurrent request handling in servers. 
The DCE Threads functionality is made available through a pthreads 
interface. If the underlying operating system has its own (kernel) threads 
package, the DCE pthreads interface becomes an interface into the native 
threads implementation. 

It is possible to write DCE applications without explicit multithreading, 
although RPC always employs multithreading on its own. However, it is 
worth your while to use DCE Threads, particularly in server applications. 
When developing a new multithreaded application or converting a single
threaded application into a multithreaded application, you must employ 
some special coding practices to ensure that the concurrent threads do not 
interfere with each other in various ways during execution. There are two 
kinds of code to which this principle applies: 

• The multithreaded code itself, which must be made safe. 

• The code in libraries used by threaded applications. 

The second case further subdivides into two scenarios. If you are developing 
a multithreaded application that uses nonthreaded libraries, you must access 
the routines in such libraries in a thread-safe way. On the other hand, if you 
are writing a library, you should bear in mind that thread-safeness is 
desirable even if the library routines themselves are not intended to be 
multithreaded, since the routines may be called by multithreaded 
applications. The following subsection offers some guidelines on how to 
ensure thread-safeness in your code. 

One important feature of DCE Threads, namely the exception handling 
interface, is not discussed in this section. In general, only topics that relate 
directly to thread-safe programming are discussed in this section. For a 

OSF DeE Application Development Guide 2-43 



Overview of DeE Application Development 

comprehensive discussion of DCE Threads, including an example program, 
refer to Part 2 of this guide, and to Chapter 1 of the OSF DeE Application 
Development Reference. 

2.2.2 What Thread -Safe Means 

2-44 

The only resources private to a thread, as opposed to a process, are the 
following: 

• A program counter value; that is, the address of the instruction the 
thread is about to execute . 

• A stack pointer value; that is, a certain amount of memory allocated to 
the thread at its creation, in which its local variables are stored. 

Thread-safeness is mostly a measure of the integrity of memory, both local 
and global, when code is executed by more than one thread. Suppose that 
the stacksize allocated for a group of threads is adequate; in other words, 
there is enough space on the stack to accommodate all the local variables 
created as the result of the deepest possible nesting of subroutine calls 
during the threads' lives. Making the code thread-safe then becomes a 
matter mainly of making sure that all operations by threads on global data 
are atomic; that is, not interrupted by other operations on the same global 
data (or other instantiations of the same operations) being executed by other 
threads that are executing the same code. The local variables are taken care 
of by the threads' local storage allocated to them at their creation. Consider 
a subroutine called navigate in which the following statement appears: 

longitude = longitude + 1; 

where longitude is a global variable. An application cannot just spawn a 
group of threads and release them on this statement. The unrestricted 
execution of the multiple threads of the machine instructions compiled from 
this "simple" statement on the same (because it is global) variable, all 
interfering with each other in a completely indeterminate way, will result in 
longitude containing a useless value when the threads have finished with it. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.2.2.1 Locks 

The remedy for this difficulty is to make sure, by means of special coding 
practices, that only one thread has access to the global variable for the 
duration of its operation(s) on the variable. The data structures associated 
with these coding practices are usually called "locks," but you should not 
be mislead by this term; there are no "built-in" barriers to access to any 
data. All locking mechanisms depend for their efficacy on certain routines 
being explicitly called at the right times, both before and after access to the 
sensitive data. In the remainder of this section, the terms "lock" and 
"unlock" will occasionally be used as handy abbreviations for the two 
halves of this process, which is described in more detail in Section 2.2.6. 

Locks can also be used to regulate threads' access to executable code. This 
is the "brute-force" way to make a section of code thread-safe, at the cost 
of temporarily losing most of the benefits of multiple threading. For 
example, consider the following code fragment from an imaginary threaded 
application: 

latitude = current_latitude ( ); 
date = get_date ( ); 
speed = current_speed(); 

where the routine get _ date() belongs to an unthreaded library. The call to 
get _ date() can be made thread-safe simply by surrounding it with a global 
lock: 

latitude = current_latitude ( ); 

/* acquire global lock before calling unthreaded routine */ 
pthread_lock~lobal_np( ); 
date = get_date ( ); 
/* unlock access for other thread(s) */ 
pthread_unlock~lobal_np( ); 

speed = current_speed(); 

The result is that access to the routine get _ date() is serialized; that is, it can 
be called and executed by only one thread at a time. Further discussion of 
global locking can be found later in this chapter. 

OSF DeE Application Development Guide 2-45 



Overview of DeE Application Development 

2-46 

Note that there is nothing intrinsically unsafe in the statement 

longitude = longitude + Ii 

as long as longitude is a local variable. 

2.2.2.2 Summary 

In summary, code can be thread-safe in either of two basic ways: 

• By being thread reentrant; in other words, the code uses only local 
storage, and can be safely executed by multiple threads of execution as 
is. Thread-reentrant code actually uses threads, but does so safely . 

• By being made accessible to only one thread at a time; that is, each 
currently executing thread locks the code from access by any other 
threads, which wait in tum for their chance to lock and execute the code. 
This is the "brute-force" approach, which results in safe execution at 
the cost of the advantages that would be derived from multithreading. In 
other words, the code is made thread-safe by not using threads. 

Note: "Code" is used in this context to mean both executable 
statements and data storage space. 

The two approaches are not mutually exclusive within an application. 
Thread-reentrant code will often have to make use of locking mechanisms 
in order to serialize access to global data or other critical sections of code. 

Threads are a sort of trick played on the operating system; that is, they 
allow a process to temporarily multiply itself over a certain section of 
iterated code and thus execute the totality of the iterations faster. However, 
none of the operating system's housekeeping mechanisms are aware that the 
original process has suddenly become several threads of execution. So it is 
up to the process itself to provide the protection for its address space that 
would otherwise (if the separate threads were separate processes) have been 
provided by the operating system. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.2.3 Making Code Thread -Safe 

The following two subsections describe how to make sure that 
multithreaded code will execute safely and correctly, and how you can 
safely use nonthreaded code with a multithreaded application. 

2.2.3.1 Thread-Reentrant Code 

Truly threaded (as opposed to merely thread-safe) code is thread reentrant, 
which means that the code can be safely subjected to execution by multiple 
threads. Locking mechanisms are used to access global variables (and any 
unthreaded code), but for the most part the threads execute concurrently, 
subject to the scheduling and priority policy, until they are terminated. 

Following is a list of the guidelines you should follow in order to produce 
thread-reentrant code: 

• Use the proper locking mechanisms to access global variables. 

• Use the global locking mechanism to access unthreaded code. 

• Make sure that the threads' stacksize attribute is adequate to 
accommodate the deepest possible nesting of subroutine calls that can 
occur during the threads' lives. . 

• If for some reason it is awkward or not possible to use the stack for local 
storage, use the pthread _ keycreate() mechanism to set up a private 
static storage space for the separate threads. 

• Make sure that your compiler generates thread-reentrant code. 

• Document the code as being thread reentrant. 

OSF DeE Application Development Guide 2-47 



Overview of DeE Application Development 

2-48 

2.2.3.2 Using Nonthreaded Code As Is 

If your threaded application calls routines from libraries that you either 
know or suspect to be nonthreaded, you will have to surround all "unsafe" 
library calls with the global locking mechanism. This is the only way to 
ensure that only one thread of execution is active in the library at a time. 

There is only one global lock. It is acquired by a successful call to 
pthreadJock_global_npO, and released by calling 
pthread_unlock_global_npO. From within your application code, you can 
make calls to nonthreaded library routines safe in the following way: 

/* since my own routines are presumably correctly coded for */ 

/* threading, no other precautions are necessary... */ 

my_own_routine(num); 

/* However, only one thread at a time can be allowed to */ 

/* access the code in the next call, since it's in a */ 

/* nonthreaded library... */ 

pthread_lock-91obal_np( ); 
nonthreaded_routine( ); 
pthread_unlock-91obal_np( ); 

/* Back in my own --presumably thread-safe-- code, I can */ 

/* now continue as before... */ 
another_of_my_routines( ); 

As with any threaded routine, you should imagine this code being executed 
simultaneously by several threads at runtime; each of them is at some 
indeterminate point in the code, using its own separate copies of local 
variables, but only one copy for each global variable. However, at the call to 
pthread Jock _global_ np() each one must pause (if another thread already 
holds the lock), queue up, and execute nonthreaded_routineO separately, 
one at a time. 

If you have access to the unsafe code, you can position the lock operations 
on the other side of the subroutine calls at the beginnings and ends of the 
subroutines themselves. 

Note that it is essential to use the one global lock to serialize all of an 
application's accesses to unthreaded libraries, even though it may appear 
from the application code that the accesses can be safely synchronized with 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

multiple local locks. The reason for this is that you cannot be sure what is 
going on inside these libraries, where there could be various unsafe 
interactions that would escape any local locking scheme. 

2.2.4 How Code Becomes Multithreaded 

Multithreading occurs in a DCE application in either of two ways. 

The first is by explicit calls to pthread_createO. The application code 
passes to pthread _ create(), among other things, the address of a routine 
that the thread, once created, will execute. The thread lasts until it either 
returns from this routine or is explicitly terminated by a call to 
pthread _ cancel(), pthread _ detach(), or pthread _ exit(). Calls to other 
routines can occur before this happens. Note that this is the usual way 
threads are created and terminated. 

Multithreading can also occur implicitly in DCE server applications, when 
the server begins listening for incoming client requests by calling the 
routine rpc_server_listenO. If the max_call_requests parameter, which 
specifies the maximum number of incoming calls the server is willing to 
concurrently handle, is greater than 1, then the RPC runtime will spawn up 
to that number of threads for the server's manager routine as the calls come 
in. Note that implicit multithreading in the server is the server side of the 
RPC thread concept. This means that you should follow thread-safe 
programming practices in coding server manager routines, even though you 
are not explicitly creating the threads. 

2.2.5 Memory Management in Threads 

You can adjust the stacksize attribute for server manager threads, before 
they are created, by calling the rpc_mgmt_set_server_stack_sizeO 
routine. There are also DCE RPC routines that allow you to perform 
memory management specially tailored for the requirements of manager 
threads. These routines are part of the RPC "stub support" interface, so 
called because these routines are also used in the IDL-generated stub code 
to perform various memory management tasks. All of the routines have 
names beginning with rpc_ss_, and can be looked up in the OSF DeE 
Application Development Reference. 

OSF DeE Application Development Guide 2-49 



Overview of DeE Application Development 

You should refer to the memory management information in Chapter 17 of 
this guide for further information about the use of the stub support routines 
in the server manager. However, one important detail will be mentioned 
here. When extra memory has to be dynamically allocated within some 
server manager thread for the purpose of performing a client-requested 
operation, it is very important that this memory be deallocated when the 
server-side operation completes execution. This ensures that the server will 
not continue to accumulate dead memory from operation to operation, 
growing bigger and bigger until catastrophe occurs. The amount of memory 
occupied by a server should remain constant across RPC operations. 

If you use the rpc_ss_allocate() routine to allocate extra memory required 
within a manager thread, the memory will be automatically deallocated, 
along with any memory that was allocated within the server stub (for 
marshalling, unmarshalling, and so on), by the RPC runtime when the 
server-side operation completes execution. To use this mechanism within 
threads that you explicitly spawn from a manager thread, you should first 
call the rpc_ss_get_thread_handleO routine in order to get the handle of 
the manager thread. You should then pass this handle to the threads that 
were newly created by pthread _ create(). If any of these threads call 
rpc_ss_allocateO, they must first call rpc_ss_set_thread_handleO in 
order to associate the manager's thread handle with any allocation requests 
made by calling rpc _ ss _ allocate() in this thread. 

The details of this technique are described in the reference page for 
rpc_ss_get_thread_handleO in the aSF DeE Application Development 
Reference, and in Chapter 17 of this guide. 

2.2.6 Mutexes 

2-50 

As seen in the previous section, there are times when you must restrict 
access to some data or area of code to only one thread at a time. DCE 
Threads provides several mechanisms for accomplishing this. The global 
lock, which was demonstrated in Section 2.2.3.2, is one of these. The global 
lock, however, is an extreme measure that is not usually necessary. The 
more usual locking mechanism is the' 'mutex" (mutual exclusion object). 

Mutexes, in contrast to the global lock, are embodied in data structures that 
you declare and optionally initialize. There can be any number of mutexes 
in an application; the idea is that each mutex is dedicated to serializing 
thread access to one particular data structure or block of code. However, 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

their use is similar to that of the global lock. A call to 
pthread_mutex_lockO or pthread_mutex_trylockO is placed before the 
statements that access the sensitive code. The first statement executed after 
completion of the sensitive statements is a call to 
pthread _ mutex _ unlock( ). 

Any thread that approaches code locked by a mutex has to execute the call 
to pthread _ mutex Jock() or pthread _ mutex _ trylock() first. If no other 
thread is currently holding the mutex, the result of either call is that the 
calling thread acquires the mutex and continues on through the following 
code. While this is going on, access is blocked to any other thread (or 
threads) that tries to do the same thing; that is, with pthread_IDutex_lockO 
the thread will simply block on the call, while with 
pthread_mutex_trylockO a value is returned (without blocking), 
indicating that the mutex was not acquired. 

At the end of the stretch of protected code, the first thread encounters the 
call to pthread _ mutex _ unlock(); once this call is executed, the mutex is 
released and can be acquired either by a waiting thread or by the next thread 
that happens to reach the mutex acquisition routine. Suppose the acquisition 
routine is pthread _ mutex Jock(), which means that the second thread has 
so far been blocking on the call. This call in the second thread now returns 
with that thread holding the mutex; the thread now proceeds to execute the 
subsequent code. 

Note again that the only thing that prevents the threads from "barging" into 
the locked code is the call to pthread _ mutex _lock( ) or 
pthread _mutex _ trylock( ) that precedes it. 

There are three kinds of mutexes: fast, recursive, and nonrecursive. The 
advantage of the second type is that it can be locked more than once by the 
same thread without having been unlocked first. Doing this with a fast 
mutex will result in a deadlock, a condition where the thread will never 
return from the second attempt to acquire the mutex. Nonrecursive mutexes 
cannot be relocked like this; however, they cause an error to be returned if it 
is attempted, rather than deadlocking. Once a mute x has been declared, you 
can initialize it as the kind you want by associating a properly filled-in 
attribute's object with it in a call to pthread _ mutex Jnit(). The global lock 
is a recursive mutex. 

A typical use for mutexes is to serialize multithreaded access to an 
application's global variables (where a different mutex is associated with 
each variable), or to other shared data or code that is known to be accessed 
only within the application. On the other hand, the global lock is called for 

OSF DeE Application Development Guide 2-51 



Overview of DeE Application Development 

2-52 

in situations where you do not know what the ramifications of certain 
accesses (typically into other libraries) are, and thus you cannot be sure that 
what look like separate accesses into different libraries do not actually clash 
because of hidden interdependencies between the two. In such cases, the 
only safe procedure is to serialize accesses to all of the libraries with the 
same lock. 

2.2.6.1 When Signaling a Condition Variable Results in Its 
Deletion 

Consider the following code fragment executed by a "releasing" thread: 

< ... > 

/* Change shared variables to allow some other thread to proceed */ 

<---- Point A 
<---- Statement 1 

Now consider the following code fragment executed by a "potentially 
blocking" thread: 

pthread_mutex_lock (m); 
while (! predicate ... 

pthread_cond_wai t (cv, m); 

Note that it is possible for a potentially blocking thread to execute at Point 
A, find the predicate TRUE, and therefore not be blocked on the condition 
variable. In general, this does not cause a problem, but there is one 
exceptional set of circumstances. This arises when the released thread is the 
owner of the condition variable and is free to delete it without any further 
synchronization with the releasing thread. The released thread may thus 
delete the condition variable at Point A before the pthread _ cond _ signal( ) 
is executed by the releasing thread. This will result in an attempt to signal a 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

nonexistant condition variable. The error is only optionally detected III 

POSIX or in the DeE Threads architecture. 

The situation described can occur when the releasing thread is a 
"dependent" thread and the waiting thread is the "master" thread; and in a 
code sequence such as the one just illustrated, the last dependent thread tells 
the master that it is safe to deallocate the variables shared by master and 
dependent. 

In situations where the very act of signaling a condition variable may cause 
the condition variable to become deleted, it is best to signal or broadcast 
with the mutex held. For example: 

< ... > 

/* Change shared variables to allow some other thread to proceed */ 

pthread_cond_signal (CV)i 

pthread_mutex_unlock (m)i 

<---- Statement 1 

Of course, there are many ways to code races with threads, but the situation 
described above is a particularly important one to beware of. 

2.2.6.2 Using pthread_cancel() to Terminate a Thread 

The pthread _ cancel() routine allows a thread to cancel itself or another 
thread. The routine is fully described in the aSF DeE Application 
Development Reference and in Part 2 of this guide. Its use is 
straightforward, but if you use it to cancel a thread that makes use of 
mutexes or condition variables, you should keep in mind the following 
aspect of its operation. 

The canceled thread receives the cancel in the form of an exception. If the 
thread has not disabled its cancelability by a call to pthread_setcancel(), 
its effect is to immediately terminate the thread. However, if the thread 
happens to have acquired a mutex (including the global lock) when it is 
canceled, the mutex will remain in its locked state and no other thread will 

OSF DeE Application Development Guide 2-53 



Overview of DeE Application Development 

2-54 

be able to acquire it. Moreover, the data that was protected by the mutex 
may be in an inconsistent state as a result of the thread's having been 
canceled in the middle of its operation on the data. 

The easiest way to prevent this is simply to disable cancels before entering 
code for which access has been restricted by a mutex. If this is undesirable, 
you can explicitly handle a cancel by coding an exception-handling block. 
The DCE Threads exception handling interface is described in Chapter 7 of 
this guide. 

This same possibility exists with condition variables, since the variable is 
protected by a mutex. An example of handling a cancel (or any other 
exception) while using a condition variable follows. It is substantially the 
same example that appears in Part 2 of this guide. 

#include <pthread_exc.h> 

< ... > 

/* First, lock the mutex that protects the condition variable */ 

/* and the predicate... */ 
pthread_mutex_Iock(some_object.mutex)i 

/* Add this thread to the total number of threads waiting for */ 

/* the condition ... */ 

/* Enter the exception handling block... */ 

TRY 

/* Test the predicate condition... */ 

while (! some_object.data_available) 

/* If the desired condition is not yet true, wait for */ 

/* it to become true. This next call also auto- */ 

/* matically releases the mutex... */ 

pthread_cond_wait(some_object.condition, some_object.mutex)i 

/* Code to access data_available goes here */ 

< ... > 

OSF DeE Application Development Guide 



GUidelines for Server Writers 

/* If a "cancel" exception occurs during the call to */ 
/* pthread_cond_wait(), the thread will resume execution */ 

/* in the FINALLY block following... */ 

FINALLY 

/* Remove this thread from the total number of threads */ 
/* waiting for the condition... */ 
some_object.num_waiters = some_object.num_waiters - 1; 

/* Release the mutex, and then continue with the 
/* exception --i.e., cancel ... 
pthread_mutex_unlock(some_object.mutex); 

ENDI'RY 

*/ 
*/ 

" 

Note that in order to handle the cancel as an exception, you must #include 
the pthread _ exc.h header file rather than pthread.h; this allows you to use 
the DCE Threads exception iriterface. 

Further information on mutexes can be found in Part 2 of this guide, and in 
the aSF DeE Application Development Reference. 

2.2.7 Methods for Synchronizing Threads 

There are a couple of ways that cooperation among the threads can be 
synchronized at critical points in the code: by using condition variables or 
by calling the pthread .Join() routine. 

2.2.7.1 Condition Variables 

A condition variable causes threads to wait at a certain point in the code 
until a specified condition attains a specified state. The mechanism actually 
requires three objects: 

• A global variable, called the "predicate," which contains the present 
state of the condition 

• The condition variable, which DCE Threads uses to maintain a queue of 
all the threads currently waiting on the condition 

OSF DeE Application Development Guide 2-55 



Overview of DeE Application Development 

2-56 

• A mutex, which regulates access both to the predicate and to the 
condition variable 

U sing the condition variable mechanism is a multistep process. First, the 
thread acquires the mutex, then it reads the predicate. If the condition is 
already satisfied by the current state of the predicate, the thread does not 
have to wait; it releases the mutex and continues on. If the predicate is not 
yet in the desired state, then instead of releasing the mutex the thread calls 
the pthread _ cond _ wait( ) routine with the condition variable and the mutex 
as parameters. The thread blocks on this call, and at the same time the 
mutex is automatically unlocked so that 

• The predicate can be read by other threads 

• Other threads can be queued on to the condition variable 

• The predicate itself can be updated 

Meanwhile, another thread elsewhere should be either monitoring or 
performing some activity whose progress will eventually require the 
predicate to be updated to the waited-for state. When that happens, this 
second thread will 

1. Acquire the condition variable's mutex 

2. Update the contents of the predicate 

3. Signal one of the waiting threads to wake up by calling 
pthread_cond_signal(), or signal all of the waiting threads to wake 
up by calling pthread _ cond _ broadcast( ) 

4. Release the mute x 

The thread was able to quickly acquire the mutex because, as each of the 
waiting threads acquired it and then called pthread _ cond _ wait(), the 
mutex was automatically released again. Each of the waiting threads went 
to sleep thinking that it possessed the mutex, although in fact none of the 
threads did so at that time. 

When the waiting thread(s) called pthread_cond_wait(), they did so in a 
while loop whose continuation condition depended on the state of the global 
predicate variable. When a thread wakes up, it returns from the wait call and 
automatically reacquires the condition variable mutex. This time, the 
predicate's new state drops the thread out of the while loop; the mutex is 
explicitly released, and the thread continues on through the code. (Putting 
the wait call in a loop guards against spurious wakeups: if the predicate has 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

not changed when the thread is awakened, the thread will stay in the loop 
and recall pthread _ cond _ wai t( ).) 

If pthread _ cond _ timedwait( ) is used instead of pthread _ cond _ wait(), the 
waiting thread will wait only a specified amount of time for the specified 
condition to change to the desired state. At the expiration of this interval, 
the thread will wake up (return from the call) just as if it had been signaled 
to do so. This type of wait should be combined with a compound condition 
in order to specify different subsequent actions for the thread, depending on 
why it woke up. 

2.2.7.2 Expli~it1y Joining Threads 

Another way to synchronize thread activity is by using the pthread .Join( ) 
routine. The calling thread passes the identifier of the thread it wants to 
"join" with; the result is that the calling thread blocks until the specified 
thread terminates. 

Further information on both of these techniques, together with an example 
program, can be found in Part 2 of this guide, and in the aSF DeE 
Application Development Reference. 

2.2.8 Thread-Specific Storage 

As was mentioned at the beginning of this section, threads depend for their 
local storage on a certain amount of memory allocated to them from the 
stack when they are created. Once a thread has been created, this 
"stacksize" attribute cannot be altered. 

Since most compilers do not check for stack overflow, you should ensure 
that your thread stack is big enough to accommodate the deepest possible 
nesting of calls that could occur in the thread. DeE Threads has a routine 
(pthread _ attr _getstacksize( )) that allows you to check the stacksize. You 
can also change the stacksize attribute of a thread before creating the 
thread, by calling 

1. The pthread _ attr _ create() routine to create the attribute object 

OSF DeE Application Development Guide 2-57 



Overview of DeE Application Development 

2. The pthread _ attr _ setstacksize( ) routine to set the desired stacksize 

3. The pthread_createO routine, passing the attribute object as a 
parameter to create the thread 

For situations where, for whatever reason, it is not feasible to use the stack 
for local storage, DCE Threads provides a mechanism for allocating 
thread-specific static storage. The following steps should be performed: 

1. Call the pthread _ keycreate() routine to generate a key that will be 
used by the threads to reference the static storage. Note that this step 
should be performed before the threads are created, and it should be 
performed only once; there is only one key, which is shared by the 
threads. 

2. Create the threads. 

3. Within the threads, if static storage is required, allocate the memory, 
and then associate the memory with the key by calling 
pthread _ setspecific( ). 

4. At any time thereafter, call pthread _getspecific() to retrieve the 
address of the thread's static storage. 

This technique is handy for avoiding having to pass data explicitly down 
through many layers of function calls within a thread. 

Further information about all of these topics can be found both in Part 2 of 
this guide, and in the aSF DeE Application Development Reference. 

2.2.9 Other Programming Considerations 

2-58 

The following subsections describe various other safety-related aspects of 
multithread programming. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.2.9.1 Forking in a Threaded Application 

The fork() system call causes the creation of an exact clone of the caller's 
address space, resulting in the execution by two address spaces of the same 
code. In order to avoid the problems that would arise in a threaded 
environment when one thread, possibly without the others' knowledge, 
executes a fork(), the POSIX model defines fork() to result in the 
propagation only of the calling thread. Any other active threads are 
immediately terminated without notice. 

The abrupt destruction of the other threads means that any mutexes they 
may have been holding at the time of the fork() will persist in the locked 
(and therefore unacquirable) state. On the other hand, assuming that the call 
to fork() is followed by a call to exec(), then the outstanding mutexes will 
remain so only until exec() is called, when the new process space will be 
reini tialized. 

Thus, "out-of-state" mutexes are a problem for the forked thread only in the 
interval between the fork() and the exec(). Even so, as long as no calls 
occur here to routines outside the application, you can determine whether 
the thread is going to encounter any mutexes that could have been locked by 
the destroyed threads. However, it is impossible to be sure of this if calls 
into other libraries, which may have hidden interdependencies, occur in this 
interval. 

Aside from these considerations, there is also the question of what happens 
when execO completes and execution returns to the original forking (and 
now lone) thread, which is left with an address space that may contain out
of-state mutexes (as well as an inconsistent state in the data protected by the 
mutexes) as a result of the fork(). 

For cases where forking in the presence of threads is felt to be necessary, 
DeE Threads provides a mechanism, the atfork() call, which allows you to 
install "fork handler" routines for an application or a library. These 
routines will be automatically run as follows: 

• A routine that will be run just prior to the fork in the parent process; that 
is, just before all of the other threads are terminated 

• A routine that will be run in the child process just after the fork occurs; 
that is, just after all the other threads are terminated 

• A routine that will be run in the parent process just after the fork occurs; 
that is, just before the parent (forking) thread resumes execution 

OSF DeE Application Development Guide 2-59 



Overview of DeE Application Development 

Further infonnation about atfork() can be found in Part 2 of this guide, and 
in the aSF DeE Application Development Reference. 

2.2.9.2 Restrictions on Software Interrupts and Exceptions 

From a portable point of view, it is unspecified in which thread (on which 
stack) a software interrupt handler will run. It is also unspecified what 
happens if an exception propagates out of a software interrupt handler. 

As a consequence, a software interrupt handler must not allow an exception 
to propagate out of it. The reason is that the exception could be caught by 
some random exception handler in some thread and result in strange 
behavior. 

Thus, it is best to avoid complicated coding in a software interrupt routine. 
If you must write a software interrupt handler, ideally you should just 
release a waiting thread using the previously mentioned signal or enqueue 
functions. Note that this has the advantage of minimizing the code in the 
software interrupt, which benefits the application by reducing the latency 
and increasing the throughput for such interrupts. 

2.2.10 DCE Threads and DCE RPC 

2-60 

DCE RPC internally uses a vendor-provided threading facility, POSIX 
pthreads. There is wide variation in the completeness and/or transparency 
of the various pthread implementations provided by vendors. The 
limitations of a given pthread implementation are inherited by any 
application that uses DCE RPC, including applications that unknowingly 
use libraries that internally happen to use DCE RPC. 

The DCE RPC runtime has internal threads that need to run in a timely 
fashion; correct operation of the runtime depends on this. Typically, this 
means that the application or pthreads implementation must neither perfonn 
nor allow operations that block the entire process. 

Refer to the platfonn's or vendor's pthread release notes to detennine what 
limitations the implementation has. If you are developing a library that uses 
RPC, you should instruct users of this library to refer to the pthreads release 
notes. Limitations may include, but are not limited to, the necessity of using 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

thread-safe libraries, and compliance with POSIX nonprocess-blocking call 
behavior for system and library calls. 

2.3 Managing the Server's Authentication Key 

The following subsections describe how you manage the server's 
authentication key. 

2.3.1 Introduction to Authentication 

The essence of authenticated RPC is that a client attempting to access a 
server must present a "ticket" to that server in order to prove its identity at 
each remote procedure call before the call can proceed any further. This 
server-specific ticket was previously acquired by the client's RPC runtime 
from the authentication service; it encrypted the client's Privilege Attribute 
Certificate (PAC) using a secret key known only to the server and the 
authentication service, and then it sent this ticket back to the client's 
runtime for presentation to the server's runtime. The PAC contains the 
client's UUID. If the server's runtime can decrypt the ticket using the server 
key, that means that this client (identified by its UUID in the PAC inside the 
ticket) got a validly encrypted ticket to this server (whose key was used to 
encrypt the ticket) from the authentication service, which is the only entity 
aside from the server that has access to the server key. This constitutes the 
"authentication" of the client. The authentication service was satisfied with 
the client's representation of itself, and the ticket the client presents is the 
proof of this. The server can now use the client's PAC to determine the 
client's authorization. 

Note that all this back-and-forth ticket manipulation is performed by the 
RPC runtime; it is not the responsibility of applications. The runtime is also 
not responsible for the keys used to encrypt and decrypt the tickets; these 
must be supplied by the entities that intend to use them. 

The server's key has a second use. If the server has to perform remote 
procedure calls to some other server (in other words, needs to become a 
client itself), the server's key is used as the basis of a login-like 

OSF DeE Application Development Guide 2-61 



Overview of DeE Application Development 

authentication process that produces a privilege ticket-granting ticket that 
the server's runtime can use to get tickets to servers. 

In fact the "server key" is the server's encrypted password. The server sees 
a plaintext string that is exactly analogous to a user's (human principal's) 
password. From this a key appropriate to the designated enciphering 
mechanism is generated, as needed, by the authentication service or the 
server's runtime. Server key management arises from the need to provide 
servers with the means to remember, change, and manipulate their keys as 
human users are able to do. 

Figure 2-11 illustrates the client/server authentication process, and also 
includes some details about server key management that are discussed later 
in this section. 

Figure 2-11. Authenticated RPC and the Server Key 

2-62 

Client 
Runtime 

Server Runtime: 
decrypts PAC, 
interprets clients 
UUIO 
=> Seal is good, 
=> 10 is good. 

- - -

Authentication 
Service 

"Seal of Approval" 
is encryption 
with server's key. 

\ 

[]J 
All Server Keys 

The process by which the client convinces the authentication service of its 
identity is not illustrated here. Nor does this figure show all the separate 
steps required for the client's runtime to get the ticket from the 
authentication service, then present the ticket to the server, and so forth. 

OSF DCE Application Development Guide 



Guidelines for Server Writers 

This figure is intended to illustrate only the concept of ticket encryption and 
decryption as the basis of authenticated RPC. 

There are numerous details of the authentication process that are not 
pertinent here and therefore ignored; a lengthy description of authentication 
can be found in Chapter 40. The rest of this section is a short discussion of 
the server's secret key, explaining how it is generated and stored, and how 
(and why) it is managed. 

Note: The term "key" is used loosely throughout this section. 
Although it properly means only the key derived from the 
password, it is often used to describe the plaintext string as 
well. 

2.3.2 Server Key Storage and Retrieval 

The current server key is actually stored in two places: 

• In a local key data file, by the server 

A default local file is created by the Security Service when the server 
key itself is first created by a system administrator running the rgy _edit 
command. This file is owned by root, and in order to access it with the 
key management routines, the server itself must also be running as root. 
However, the server can also specify its own local file as an argument to 
any of the key management routines. 

This copy is used by the server runtime routines to decrypt incoming 
client tickets, and is also used when the server needs to acquire a login 
context. 

• In the Security Service registry, by the Security Service 

This copy is used by the authentication service to encrypt tickets, for 
clients, to the server. 

The key itself, which is in plaintext, is sent over the network as infrequently 
as possible. 

The key management routines mainly affect the server's local copy, but 
some of the routines have an indirect effect on the registry copy in that they 
provide for updating of the registry copy when the local copy is changed. 

OSF DeE Application Development Guide 2-63 



Overview of DeE Application Development 

Server key files are often referred to as "key tab" files elsewhere in the 
documentation. 

2.3.3 Setting Up the Server Key File 

2-64 

In order to possess a password, a server must be a principal; that is, it must 
have an account in the Security Service registry. There are two ways this 
can be accomplished. 

First, the server may simply inherit the login context, including the 
principal identity, of the user who invoked it. In this case there is no need 
for server key management as such because the key is derived from the 
human user's password, and the user is responsible for that management. 
The sample DCE application timop (described in Chapter 3) operates this 
way. 

The second way a server can become a principal is by getting its own 
registry account. This is done by a system administrator running the 
rgy _edit command with the ktadd subcommand. This process, which 
consists of two separate steps (first, adding the account; then, creating the 
server's key) is described in detail both in the OSF DCE Administration 
Guide and in the OSF DCE Adminstration Reference. When this command 
is executed, a key data file is created for the server that contains its key. The 
default local file created by the system administrator as root is 
IkrbS/vSsrvtab on the local machine, where rgy _edit is run. The file can be 
created elsewhere by specifying a pathname relative to the current working 
directory: 

rgy _edit => ktadd -p my_server _account -f /krbS/mysrvtab 

When first invoked, a server process uses the login context (that is, a handle 
to the principal identity and secret key) of the user who invoked it until it 
can access its own secret key. This initial login context must have access to 
the file or device that stores the key. The procedure that is followed is 
described in Section 2.3.4. (See also Step B12, Section 1.5.17 in Chapter 1 
of this guide.) 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.3.4 Acquiring a Login Context 

As previously mentioned, a server when first invoked inherits the login 
context of the principal that invoked it. This identity may be sufficient for 
the application's purposes; however, if it needs to assume its own identity, 
which is what key management is all about, then it has to call the following 
routines in order to accomplish the switchover: 

1. sec _login_setup _identity() 

The server passes its own principal name to this routine, and it receives 
a login context (sec _login _handle _ t structure), which is one of the 
things it will need to validate its new (true) identity. 

2. sec_key_mgmt_get_key() 

The server retrieves its password (key) in a sec_passwd_rec_t structure. 

3. sec_login_validate Jdentity() 

This call establishes the server's network credentials (the principal's 
ticket-granting ticket received from the authentication service). 

4. sec _login _get_current _ context() 

Retrieves the server's login context. 

If all has gone well, the server has successfully switched to its "own" 
identity, and can use its login context to receive authenticated requests from 
clients or to authenticate itself to other servers. See Steps B7 (Section 
1.5.12) and B8 (Section 1.5.13) in Chapter 1 of this guide for the former 
case, and Step C2 (Section 1.5.19) for the latter case. 

2.3.5 Using the Key 

For the server the central authentication routine, which must be called 
before clients can conduct authenticated RPC operations with it, is 

rpc_server_register_auth_info(server-princ_name, authn_svc, 
get_key_fn, arg, status); 

which among other things tells the RPC runtime where the server wants its 
local key to be read from when tickets incoming from authenticated clients 

OSF DeE Application Development Guide 2-65 



Overview of DeE Application Development 

2-66 

are decrypted. Thus, if a server wants to use its own (nondefault) local key 
file, it should create the file before making this call if it does not already 
exist. 

A server can create a local key file by calling the key management routine 

sec_key_mgrnt_change_key(authn_service, arg, principal_name, 
key_Vilo, keydata, 
garbage_collect_time, status); 

where, if the arg parameter is non-NULL, it is interpreted to specify the 
server's local key file. The server supplies the key in keydata. If a file is 
specified, it is created (if it does not already exist) with read/write 
protection for the owner. To use the default file, the server must be running 
as root, since this file is created and owned by root. The specified key file 
should always be local, not accessed across a remote DFS mount point; 
otherwise, file accesses will result in the key contents being transmitted 
across the network. 

The other important parameters to rpc _server _register _ auth Jnfo() are 

authn service 

princ_name 

key_vno 

keydata 

Specifies which authentication service is used for 
the rpc _server _register _ auth _ info() call. 

The server's principal name (a string). 

When a server's key is changed, the former key is 
not automatically deleted from the local storage. 
Instead, each version of a key is tagged with a 
version number. Clients with tickets encrypted (by 
the authentication service) with an earlier version 
key can still be authenticated by the server runtime, 
as long as those earlier versions are retained in the 
local storage. In order to find out what the next 
eligible key version number is, 
sec_key_mgmt_get_next_kvnoO can be called, or 
o (zero) can be passed to specify the next 
appropriate version number. 

A pointer to a sec _passwd _rec _ t structure that 
contains either the server's new plaintext password 
or a pre-encrypted (in some arbitrary manner by the 
server) buffer. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

garbage_collect _time This is an output parameter; it infonns the server 
when it will have to call 
sec_key_mgmt_garbage_collectO to get rid of 
obsoleted keys. 

get_key In When this parameter is non-NULL, it specifies the 
address of a server-supplied key retrieval function. 

See also the reference pages for the key management routines in the aSF 
DeE Application Development Reference for information about other key 
parameters. 

The server may wish to generate and store its key in some other hardware
specific way. The authentication mechanism provides for this by allowing a 
server-supplied key retrieval routine to be specified in the 
rpc _server _register _ auth _info() call. This now becomes the routine that 
the RPC runtime will call to get the server key for decrypting incoming 
tickets. However, doing this means also that the sec_key _ mgmt _ ... 0 
routines can no longer be used to manage that server's key storage. 

A server that installs its own key retrieval routine becomes completely 
responsible for the generation and maintenance of its key, as well as its 
synchronization with the registry copy of the key. It must provide its own 
functionality and mechanisms for all these things. When it changes its local 
key copy, it will have to call a routine like sec_rgy_acct_passwdO to 
update the registry copy. Maintaining earlier key versions, garbage 
collection of outdated keys, and so on, must all be implemented by the 
server. 

The server-supplied routine is expected to be called by the runtime in the 
following form: 

where get_key_fnO is the name of the server-supplied function. Its 
parameters are 

arg 

princ_name 

key_type 
I 

Pathname to the server-maintained local key storage. 

Server's principal name. 

A pointer to a sec _passwd _type _ t indicating the 
encipherment system with which the key is to be used. 

Indicates the key version number. This is contained in 
the sec _passwd _ rec _ t structure. 

OSF DeE Application Development Guide 2-67 



Overview of DeE Application Development 

key 

status 

Returned by the routine; this is a pointer to an array of 
sec _passwd _ rec _ t. 

Returned by the routine; this is a pointer to a status 
code. 

2.3.6 Typical Tasks in Managing the Key 

2-68 

The following subsections describe how the key management routines can 
be used and combined to perfonn useful tasks. 

2.3.6.1 Updating a Key in Response to Cell Password Expiration 
Policy 

Passwords do not usually last forever. Password expiration policy is set by 
the cell system administrator, and it affects the validity of server keys just 
as it does that of user passwords. Once a password's lifetime expires, it can 
no longer be used either to acquire a login context or as a key to encrypt or 
decrypt authentication tickets. (Note that this has nothing directly to do 
with ticket lifetimes; see Section 2.3.6.3 for infonnation about maintaining 
previous version keys.) 

If a server's password expires between invocations so that it does not have a 
valid login context for its principal name, then a context is created using the 
latest key available in the server's key file. If no such key is available, then 
the sec_key _ mgmt _ e _key_unavailable error is returned by the key 
management routines, meaning that the server process was unable to 
authenticate itself to the authentication service. A new password will then 
have to be created by the system administrator. 

A more likely and potentially more troublesome problem is the expiration 
of a server's password, and hence the key derived from it, during a session. 
If this happens, the result will be not only that the server will not be able to 
acquire a login context and authenticate itself to other servers, but also that 
any outstanding tickets held by the server's clients will suddenly become 
invalid, and authenticated RPC will stop. 

The sec_key _ mgmt _manage _ key( ) routine will prevent this. The intention 
of this routine is to relieve server writers of the responsibility of 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

determining when a server's key should be changed in response to the 
registry's password expiration policy. 

This routine should be invoked from a server thread dedicated to this 
purpose. Once called, it will run indefinitely; it will never return during 
normal operation. The sec_key _ mgmt _manage _ key() routine queries the 
registry for the expiration policy for the principal named in the call. It then 
idles until a short time before the server's current key is due to expire, when 
it calls sec_key _ mgmt _generate _ key() to produce a new random key 
before the old one can expire. If necessary, it also calls 
sec_key _ mgmt _garbage _ collect( ). 

Note again that a server providing its own key retrieval routine, specified in 
rpc _server _register _ auth Jnfo(), is responsible for monitoring password 
expiration policy and taking appropriate action itself; it cannot use 
sec_key_mgmt_manage_keyO to do this. 

2.3.6.2 Changing the Key 

There is more than one way a server can change its key. The variations 
depend on the following: 

• Whether the registry's copy is changed at the same time as the server's 
local copy or some time later 

• Whether the server supplies its own new key value or requests the 
Security Service to generate a random value for it 

• What is done about previous version keys in the server's local storage 

The option of (temporarily) not changing the registry's server key copy 
while changing the local copy is useful for propagating a key change among 
slave replicas of a server. 

It is up to the application to set its own key version maintenance policy, but 
there should be no reason for retaining outdated keys in the local storage; 
the sec_key _ mgmt _garbage _ collect() routine should be used to delete 
them. 

There is also the possibility that a server's key could be changed by a 
system administrator in response to some perceived security compromise. 
The server should be aware of this possibility with regard to any 
assumptions it makes about its current key value or key version number. 

OSF DeE Application Development Guide 2-69 



Overview of DeE Application Development 

2.3.6.3 Maintaining Previous Version Keys 

What happens if a server key is changed while clients still hold unused 
tickets to that server? Tickets have lifetimes, just as passwords do, and 
when clients' unused tickets are renewed automatically by the system, the 
renewals are issued against the current key. In order not to inconvenience 
clients holding unused unexpired tickets, the Security Service maintains 
key version numbers. Each server key has a version number, and tickets 
issued against that key also bear that key's version number. When a key is 
changed, the previous version is not automatically deleted. Thus, when 
outdated tickets are presented, the runtime applies the correct version key to 
them, if it still exists. 

However, there is no reason to retain old version keys indefinitely. The 
sec_key_mgmt_garbage_collectO routine will, when called, delete all 
keys in the local storage that are older than the maximum ticket lifetime in 
effect. 

Tickets presented by clients with key version numbers that no longer exist 
in the server's key file are not honored. A server can always delete either 
the current or an earlier version key from its storage. The 
sec_key_mgmt_delete_keyO routine allows the caller to specify a key 
version number, and sec_key_mgmt_get_Dth_keyO can be used to scan 
the local storage for all existing key versions. 

2.3.7 Key Management Routines 

2-70 

The following is a list of all the specific operations a server can perform on 
its key with the default key management interface; it is arranged by 
functionality. For complete information on each routine, refer to the aSF 
DeE Application Development Reference. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

• Change to a new key: 

- Change both the local and registry copies: 

The sec_key _ mgmt _change _ key() routine changes a key to a 
specified value. 

The sec_key_mgmt_gen_rand_key() routine followed by 
sec_key _ mgmt _change _ key() changes a key to a system-generated 
value. 

- Change the local copy: 

The sec_key _ mgmt _set _ key() routine changes a key to a specified 
value. 

The sec_key_mgmt_gen_rand_key() routine followed by 
sec_key_mgmt_set_key() changes a key to a system-generated 
value. 

• Retrieve a key from local storage: 

- Current key: sec_key _ mgmt _get _ key( ) 

- Specific key: sec_key_mgmt_get_nth_key() 

• Delete a key from local storage: 

- Current key: sec_key_mgmt_deJete_key() 

- Current type key: sec_key_mgmt_deJete_key_type() 

• Conform to cell password expiration policy: 

- sec_key _ mgmt _manage _ key( ) 

• Miscellaneous operations: 

- sec_key_mgmt_free_key() 

- sec_key _ mgmt _garbage _ collect() 

- sec_key _ mgmt _get_next _ kvno( ) 

OSF DeE Application Development Guide 2-71 



Overview of DeE Application Development 

2.4 Writing an ACL Manager 

The following subsections contain some general information about how to 
write an ACL manager. 

2.4.1 Introduction to Writing an ACL Manager 

2-72 

This text is intended to give some practical helpful hints on the most 
important things you must know in order to write your own ACL manager 
for a DCE application. For design and other information you should refer to 
Part 6 of this Guide and to the Security sections of the following books: 

• OSF DeE Application Development Reference 

Contains reference pages for the ACL interface routines discussed later 
in this section . 

• OSF DeE User's Guide and Reference 

Contains detailed discussions of ACL format and usage as well as 
reference pages for the acl_ edit command. 

Although several of the DCE components have their own ACL managers, 
these can be used to create and maintain ACLs only for those components' 
own objects. For example, if you add an entry to the namespace, then CDS 
will automatically attach an ACL to that entry, which CDS's ACL manager 
will be responsible for maintaining. The same thing is true when you add a 
principal to the registry, or when you create a DFS file or directory. All 
DCE components tie into the ACL interface described in the OSF DeE 
Application Development Reference. This interface is made up of all the 
sec _ acl_ ... ( ) calls (more information about this appears later in this 
section). This means that any application can use these calls on any of the 
DCE components' ACLs, provided that the application is properly bound to 
the desired server. 

However, applications that define their own objects must provide their own 
ACL manager for those objects, if ACLs are desired. Consider the print 
service described earlier in this chapter. If each printer is given its own 
entry in the namespace, as recommended, then CDS will maintain ACLs for 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

those entries; but the ACLs will pertain to the entries, not to the printer 
objects themselves. If it is desirable for the service to maintain ACLs on the 
printers, then the service must provide its own ACL manager to do so. 

2.4.2 Design Guidelines 

When designing an ACL manager, you should conform to the following 
guidelines: 

• The DCE ACL guidelines as defined in the aSF DeE User's Guide and 
Reference. 

• The standard DCE ACL interface as defined in the aSF DeE 
Application Development Reference. This interface is defined by the set 
of rdacl_ ... () calls. The application's ACL manager must support this 
interface. 

2.4.3 How ACL Interfaces Work in the Registry Server 

The DCE Security Service, for its part, provides the sec_acl_ ... () calls as 
entry points in the DCE library (libdce). A remote client linked to this 
library (as all DCE applications should be) can now bind to and access this 
application's ACLs via the sec_acl_ ... () calls. The acl_edit command is a 
command-line interface to these same sec_acl_ ... () calls. The 
sec_acl_mgr_ ... () set is a third group of ACL-related calls described in the 
aSF DeE Application Development Reference. These are routines used 
locally within the server. The following subsections provide more 
information on the routines themselves, as well as the terminology used in 
regard to DCE ACLs. 

OSF DeE Application Development Guide 2-73 



Overview of DeE Application Development 

2.4.3.1 ACL Interface Routines 

Figure 2-12 illustrates how the sec_acl_ ... O, rdacl_ ... O, and 
sec_acl_mgr_ ... O ACL interfaces interact in the DCE registry server. 

Figure 2-12. ACL Interfaces in the Registry Server 

2-74 

Client 
Application 

(usually 
ael_ed·it) 

I 
I 
I 
I 
I 
I 

libdee 

J-------
I Security Client 
I Stub Code 
~------

~ee_aeL Calls 

Lower-Level ACL Routines 

Registry 
Server 

The Client application in the figure could be the acl_edit command, or it 
could be any other client that wants to access a registry ACL. The DCE 
library, Iibdce, contains (among many other things) the sec_acl_ ... O entry 
points and the rdacl_ ... O client stub code, which is used by the sec_acl...O 
calls. A client linked to Iibdce.a simply executes the sec_acl_ ... O calls as 
it would any local function. 

These in tum call the remote rdacl_ ... O routines, which are implemented in 
the registry server. In other words, the ACL routine calls made by the client 
pass through two interfaces: a local explicit one (the sec_acl_ ... O calls), 
and the remote one (the rdacl_ ... O calls), which is utilized by the 
sec_acl_ ... O routines. Applications never call the rdacl_ ... O routines; they 
call ·the sec acl ... () routines. This arrangement relieves the client 
application of some of the details of managing server bindings and so on. 

Within the server, the sec_acl_mgr_ ... O routines are a local interface into 
the ACL routines used by the server itself and by the rdacl_ ... () routines as 
necessary. In other words, there are two avenues into the direct ACL
manipulation routines: one via the sec_acl_ ... O calls for remote clients, and 
the other via the local sec _ acl_ mgr _ ... () calls for the server itself. 

OSF DCE Application Development Guide 



Guidelines for Server Writers 

The lowest-level ACL routines, where the ACL storage is actually 
manipulated, do not constitute a formal interface and are not visible to any 
but the rdacl_ ••. () and sec_acl_mgr_ •.. () routines. 

All three of these formal interfaces (sec_acl_ ... O, rdacl_ ... O, and 
sec_acl_mgr_ ... O) are documented in the aSF DeE Application 
Development Reference. The intended use of these three sets of reference 
pages is as follows: 

sec_acl_ ... O When developing client application code, refer to these 
reference pages to learn how to make the necessary 
calls to access and manipulate ACLs. 

rdacl_ ... ( ) When developing server application code, refer to 
these reference pages to learn what ACL-manipulation 
routines you must implement, what their behavior and 
call signatures should be, and so forth. 

sec_acl_mgr_ ... O When developing server application code, refer to 
these reference pages as a guide and example of the 
repertory of ACL-management calls a server should 
implement locally for its own use. 

The organization of an application-specific ACL manager should be similar 
to this scheme. The sec_acl_ •.. O calls executed by a client would still come 
from libdce, only now a different set of rdacl_ ... O routines would be 
remotely executed, namely the specific application's (assuming, of course, 
that the client is bound to this server). Implementing the rdacl_ ... () 
interface makes the application's ACLs accessible via the acl_edit 
command. It would be up to the application developer to decide whether to 
implement the sec_acl_mgr_ ... O interface for the server's use; doing so 
would help to organize the manager's internal functionality. 

2.4.3.2 An Important Note on Terminology 

DCE has proven to be in some respects more extensive than the English 
language. A result is that in a few cases terminology is shared by 
functionality that is not in fact similar in behavior. 

The term "type manager" is used in the DCE RPC documentation to 
describe a way of allowing a server to offer multiple implementations of the 
same interface to its clients. Incoming remote calls from various clients, all 

OSF DeE Application Development Guide 2-75 



Overview of DeE Application Development 

2-76. 

of whom are calling through the same interface, are switched by the RPC 
runtime to the appropriate interface implementation in the server on the 
basis of object UUIDs in the incoming calls. For more information on how 
this works, see Step B2 (Section 1.5.7) in Chapter 1 of this guide. An object 
UUID of a given type (the typing is done by the server as part of its setup) 
will vector its RPC to the server's appropriate manager code; hence the 
term "type manager." 

On the other hand, ACL managers often implement more than one type of 
ACL. The differences among these types are characterized by the different 
sets of possible privileges that are appropriate for the object that is to be 
protected. Thus, one can quite naturally speak of "ACL type managers," 
which contain within a server's ACL manager the code that implements the 
different ACL formats. However, these ACL submanagers do not use the 
RPC vector-typing mechanism, and the two types of manager should not be 
confused because they are quite different. 

To simplify this concept, ACL managers typically handle everything 
themselves. If ACLs in various formats are supported, then the ACL 
manager itself is responsible on receipt of an incoming client request for 
calling the correct subroutine to perform the request. The sec _ acl_ ... ( ) 
routines expect a manager_type parameter, by which the client can 
explicitly specify the ACL type desired. 

Furthermore, the manager_type parameter should not be confused with the 
sec _ acl_ type parameter, which is used to distinguish among certain basic 
kinds of ACL that apply to all of the ACL manager types. The following list 
will perhaps make the distinctions clearer: 

manager _ type Specifies a particular ACL type among several that 
may be implemented by an ACL manager. For 
example, a print server might implement ACLs both on 
individual printers and on groups of printers; the two 
types of ACL would have different sets of privileges, 
and would be implemented by different routines within 
the manager. 

Specifies one of three basic kinds of ACLs that are 
common to all the manager types: 

• The Object ACL controls access to an object. 

<0 The Initial Container Creation ACL serves as a 
default template for ACLs on newly created objects 
that can contain other objects. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

• The Initial Object Creation ACL serves as a default 
template for ACLs on noncontainer objects. 

When ACLs are created, they are always created as a side effect of creating 
an instance of the object they are associated with. Thus, there must be a set 
of default templates at hand for an ACL manager to use when objects are 
created; the sec _ acl_ type parameter is the specifier for the desired template 
in a sec _ acl_ ... ( ) call. 

2.4.4 IDL Definitions 

If you are developing an ACL manager that is intended to use the standard 
ACL interface, making it accessible both to users via the acl_edit command 
and to applications via the sec _ acl_ ... () routines, there is no need to write 
an .idl file. All you need to do is compile (with IDL) the rdaclif.idl file 
supplied with DCE, which is located at 

dce-root-dir /install/ machine _name /opt/dcen.n/share/includeidce 

and link the server stub output with your server code. The client-side stubs 
are part of lib dee and so are automatically linked to any client application. 
For more information on the IDL process, see Steps Al to AS (Sections 
1.S.1 to 1.S.S) in Chapter 1, and also Chapter 3 of this guide. In addition, 
Part 3 of this guide contains chapters on using IDL. 

Under no circumstances should you generate a new UUID for this interface. 
One of the things that make the standard DCE ACL interface work is that 
all implementations of the interface are identified by the same interface 
UUID, and all ACL clients bind through it. If you were to generate your 
"own" interface UUID and build an .idl file around it that you then 
compiled and linked to your server application, clients would never be able 
to bind to your manager (at least not using the standard ACL library 
routines) because the standard ACL interface UUID that the client-side 
libdce code would be seeking to bind through would not be the one 
exported by your server. 

OSF DeE Application Development Guide 2-77 



Overview of DeE Application Development 

However, you do have to code your own implementations of the ACL 
interface. In doing so, you should refer to the reference pages for the 
rdacl_",O routines in the aSF DeE Application Development Reference. 
These routines describe the operations you must implement, namely 

• rdacl_lookupO 

• rdacl_replace() 

• rdacl_get _ access( ) 

• rdacl_ test _ access( ) 

• rdacl test access_on _ behalf( ) 

• rdacl_get _ manager _ types( ) 

• rdacl_get _printstring( ) 

• rdacl_get_referral() 

2.4.5 Representation of Objects with ACLs in the Namespace 

2-78 

The binding requirements for an ACLed object are summed up in the 
reference page for sec_acl_bindO, which is the routine that user 
applications call to obtain a binding to such an object. The ACL editor 
command acl_ edit uses this same routine. An ACLed object must be 
bindable by name, which means that clients must be able to obtain an 
unambiguous binding to the object (actually, to the server that manages that 
object) by importing from that object's entry in the namespace. 

Thus, there are three general rules that must be observed by applications 
that maintain ACLs on objects: 

• If the object's ACL is to be generally accessible through the DCE user 
interface (the sec_acl_, .. O calls and the acl_edit command), then the 
object must have an entry in the namespace; sec _ acl_ bind() looks up 
and imports through an entry name, nothing else. (See the note at the 
end of this section on using namespace junctions.) 

• Moreover, the binding(s) exported to the object's entry must contain an 
object UUID that is registered by the server and that uniquely identifies 
the object so that the sec_acl_bindO mechanism can unambiguously 
reach the object through its server. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

• Finally, all object UUIDs for objects with ACLs must be registered with 
the ACL interface UUID at the endpoint mapper by using 
rpc_ep_registerO. (See Step BIO (Section 1.5.15) in Chapter 1 of this 
guide for an example of how this is done.) 

The sec _ acl_ bind() routine specifies the NULL interface when it performs 
its import. This allows applications that offer the ACL interface to not 
export it via rpc _ ns _ binding_ export(), which would greatly increase the 
size of the namespace. Of course, the interface UUID is used in the actual 
ACL operations, and is checked in incoming stubs by clients' and servers' 
respective runtimes. This is why the server registers the interface using 
rpc_ep_registerO, although it does not export it (with 
rpc _ ns _ binding_ export( )). 

The result of all this is that the object-oriented namespace organization 
illustrated in Figure 2-8 and described in Section 2.1.10 would work fine 
with an ACL manager implemented in the application server. The ACL 
interface is not exported into the namespace; all that is necessary is to make 
sure that each object's entry is unambiguously identified by its own object 
UUID in the exported partial bindings. 

Note: Objects with ACLs can also be made available to users and 
clients through a namespace junction, which is a way of 
implementing a server-private namespace. This can relieve 
CDS of the burden of having to maintain separate entries for 
many objects. For more information on junctions, see Section 
2.1.3. 

2.5 Additional Guidelines 

DCE gives you a set of tools and services that compartmentalizes the huge 
number of interrelated tasks involved in designing and implementing a 
distributed application into a manageable set of integrated services, which 
you can combine to build powerful distributed applications. Ideally, the 
applications that you build with DCE should similarly, where possible, 
consist of reusable, combinable, and robust functionality that will be easy 
to use and maintain. 

One of the most powerful of the DCE tools is the RPC Interface Definition 
Language (IDL) , which allows you to design services and service 

OSF DeE Application Development Guide 2-79 



Overview of DeE Application Development 

characteristics with this principle of modularity in mind. Good interface 
design in the IDL sense means organizing things so that the set of calls 
processed by a single server consists of related calls. In this way, the 
service can be used by as many clients as possible (who, it must be 
remembered, could themselves also be servers). If the interfaces are 
generalized enough, you can reuse them among other servers and combine 
them so that you get new functionality and the same kind of synergy that 
you have with the traditional UNIX tools. 

To do this, server writers should keep the following in mind: 

• Server code should be "production quality." That is, it should 

- Be multithreaded to increase efficiency. 

- Make use of security resources, including ACLs and authenticated 
RPC. 

• Servers, once installed, should be locatable under (as nearly as possible) 
all circumstances. 

The following subsections discuss some of the specific DCE topics related 
to accomplishing these things. 

2.5.1 Initialization and Configuration 

2-80 

The following subsections contain discussions of various aspects of starting 
a server process, whether for the first time or after it has already been active 
for some time and perhaps accumulated stored state information. 

2.5.1.1 Storage of Configuration Information 

Configuration information such as 

• The cell the server is in 

• The server's principal name 

• The server's group 

• Database filename(s) 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

should be held externally in local files to minimize dependence on the 
network, and be read in by servers at startup. This allows the information 
and the application to be dynamically configurable. 

A server should not rely on any particular namespace structure. The names 
for server entries, object or resource entries, and so on, should either be read 
in from some local external storage or prompted for from the user who is 
installing the application. 

If a server is to run under its own principal identity, an entry will have to be 
created for it in the Security Registry. This is done with the rgy _ edit 
command. For further information, see the aSF DeE Administration 
Reference. See also Section 2.3 of this chapter. 

2.5.1.2 Registering Binding Infonnation 

There should always be bindings for only one server per entry in the 
namespace. Moreover, the entry should always contain enough information 
to ensure that a client can bind to the specific intended server, or instance of 
service, represented by that entry. This usually means including an object 
UUID in the handle as well. Since the ACL editor does not use 
rpc _ ep _resolve _ binding(), the binding handle received from an import 
operation must contain an object UUID. 

In order to support the ACL editor, all object UUIDs for objects with ACLs 
must be registered with the ACL interface at the endpoint mapper. 

2.5.1.3 Choosing a Directory N arne 

The names that a distributed application depends on to store and retrieve 
server location information (bindings) should, as far as possible, be indirect; 
in other words, you should rely on the name service group and profile entry 
mechanisms to find entry names of servers. This makes it easy to 
reconfigure the application. Rather than changing some part of the server or 
client code, you change the group or profile entry with cdscp. It also puts 
less strain on the namespace by keeping as much "hard" location 
information as possible out in the open in the namespace itself where it can 
be maintained. 

OSF DeE Application Development Guide 2-81 



Overview of DeE Application Development 

2-82 

An obvious alternative to hardcoding would be to use system-level 
environment variables. But this too should be avoided because it increases 
management overhead. Names and paths will change, and applications 
should not deal directly with hardcoded names at all. 

Try to keep entry names intuitive and clear. This applies to groups and 
profiles, as well as to the simple server entries. On the other hand, if you are 
using one or more levels of entry indirection, keep the names appropriately 
indirect as well. For example, it would not make sense to call a group 
printer entry floor _3 _printers if the entry was intended to contain printers 
from any location. 

From this basic principle the following guidelines are derived: 

• Is a service always associated with a host (as, for example, a process 
server)? If so, then put it in the host directory. If not, put it somewhere 
else more appropriate. Do not use misleading names. 

• Names of entries should never be encoded directly in programs because 
hardcoded names are not configurable and are not easily changeable. If 
the application is moved, it will probably have to be recompiled. 
Instead, the entry name should be extracted from some external place, 
such as a local file or an environment variable. 

• You should not create names in specific locations in the namespace. In 
other words, names should not be hardcoded into specific paths in the 
namespace hierarchy. Hardcoded names will unnecessarily constrain 
the namespace and make it hard to maintain. 

• Every name in a profile or group should be global so that the entry will 
work no matter what cell it happens to be installed in. 

Names are often assigned by applications in response to user input of 
various kinds. The following guidelines apply to such assignments: 

• If a name or name service entry is to represent an RPC server, the user 
should be allowed to determine what name to assign by using normal 
RPC binding mechanisms to locate the server. 

• If the name or name service entry will represent a directory, a non-RPC 
server, or an entry other than a server, applications should be able to use 
configuration profiles to locate the assigned name of the resource. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.5.1.4 Namespace Usage Guidelines 

Following are some basic guidelines that a new user of DCE can use when 
setting up the DCE namespace. 

1. To place the server principal in the security namespace, assuming 
that your server is called my_server, you could start by putting it at 

/.:/hosts/hostname/my _server 

Then, after testing it, you could move it to 

/.:/subsys/my _company/my_server 

or to some other well-known place, such as 

/.:/applications/my _server 

2. To place the server binding information in the cell namespace, 
assuming you call your server my_server, you could export the 
bindings to 

/.:/subsys/my _company/my_server 

This would be good especially if you used 
1.:/subsys/my_company/my_server (see step 1). You could then use 
the same name for the binding entry and the server principal name. 

The entries for principal and for binding would be distinct (the former 
being located physically in the security space, the latter under the 
CDS namespace cell root), even though the names were the same. 

OSF DeE Application Development Guide 2-83 



Overview of DeE Application Development 

2-84 

3. To place the files your application uses (for example, mail message 
files for a mail application, posting files for a bulletin board 
application, and so forth), if access to the files is only through the 
server, then you want the files to be somewhere in dee local (not in 
dceshared). If the files are to be operated on directly by users, they 
could go in 

/.:/fs/opt/my _company/my _ application/ 

The default path prefix for dcelocal is set to /opt/dcelocal during the 
DCE configuration process. Note that this is a pathname in the 
machine's file system, not a CDS pathname. For a discussion of the 
differences between the two, see Section 2.1.1. 

For further information about the structure of dee local and the DCE 
namespace in general, see the OSF DeE Administration Guide. 

2.5.1.5 Changing a Server's Location 

Consider whether it is likely that the server will ever be moved, either to a 
different location within the same cell or to a different cell. If the server 
depends on locally held databases that also will have to be moved, then 
provision will have to be made to move the files in a machine-independent 
way. For example, a "transfer server" could be brought up on the new host 
to receive the files sent to it by the old host, which it would then store 
locally. The data would have been automatically converted to the 
appropriate machine format by the server stubs. 

One of the most important consequences of moving a server involves 
security. Authenticated RPC depends on a database (the Security Service 
Registry, which contains a principal entry for the server, if the server runs 
under its own identity) and a local file (the server's key data file). Moving 
the server to a different cell may make its registry entry unfindable, unless 
its principal name is expressed as a global name. Moving the server within 
the same cell may likewise cause it to lose its key data file. You can guard 
against this by expressing the name in cell-global form, or by designing 
your key management module so that it can create a new key data file if 
necessary. For details on the server's key data file, see Section 2.3. 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

2.5.1.6 Robustness 

Ensuring that a server comes up smoothly with all its resources, or that it at 
least comes up (if at all possible), is a part of designing robust server code. 
The ability of a server to struggle to activate itself even under adverse 
circumstances may be defined as the complement of graceful degradation. 

For example, if a resource or service that a server depends on is not 
available, the server should create a thread that will wait and try to access 
the resource or service again later. In any case where it is possible that 
access could be delayed because of the vagaries of network performance, 
access should be retried for a reasonable amount of time before giving up 
and failing. On the other hand, if access is denied, for example, for security 
reasons, then it is appropriate to fail the operation with an informative error 
message. 

Or suppose two servers that are supposed to establish contact with each 
other are unable immediately to do so. Here again, it is a good idea to wait 
a while and then try again. A consequence of proceeding this way is that 
clients may fail in the meantime, but this is far preferable to having the 
servers fail instead, which would probably require the intervention of a 
system administrator to recover from. 

If contact cannot be established with the name service, binding alternatives 
should be provided. This can work for both clients and servers. Clients can 
prompt the user for a hostname, and then combine this with a partial string 
binding to try to complete the call. If all else fails, a client should try (or 
allow the user to try) binding to a local instance of the server. 

The CDS entry 1.:/hostslhostnamelself (where 1.:1 is the DCE notation for 
the local cell name and hostname is the valid name of a host machine) is 
defined to always contain binding information that will allow clients of any 
service running on the specified host to import a binding handle for use in 
operations on servers running at that host. Importing from this entry should 
always allow a client to bind to a local version of the server. 

Similarly, servers should always try to access a local version of a database 
when they cannot make contact with the remote version. 

OSF DeE Application Development Guide 2-85 



Overview of DeE Application Development 

2.5.2 Availability and Performance of Services 

2-86 

The following subsections deal with aspects of server operation that depend 
on the presence or performance of various DCE or other network services. 

2.5.2.1 Coping with Inconsistent Binding Data 

Because the DCE Directory Service is a partially replicated database, data 
received from it may not be consistent throughout the replicas. As a result, 
applications must be prepared to encounter out-of-date data and deal with it 
in a reasonable way. 

To give an internal DCE example: When a DFS (Distributed File Service) 
client looks up a DFS mount point, the name service returns the address of 
the server providing access to that mount point. However, this address 
could be out of date. This will be true, for example, if the mount point has 
changed but the change has not yet been propagated to the replica being 
used by the client. As a result, the attempted connection will fail. The DFS 
client is prepared to recover from this situation gracefully, and application 
clients should behave similarly in analogous circumstances. 

It should always be remembered that an imported binding is not guaranteed 
to work. Servers can suddenly become inactive or unavailable for various 
reasons, leaving stale exported bindings behind in the namespace. Clients 
should always be prepared to retry failed bindings or import another when 
the one just imported has failed to work. 

2.5.2.2 Slow N arne Service Response 

Applications should expect that name service requests will sometimes take 
a long time to complete. 

Most simple name (server entry) or attribute (group or profile) lookups will 
respond quickly. However, some interactions can take considerably longer, 
such as a lookup on a branch of the namespace that is physically distant and 

OSF DeE Application Development Guide 



Guidelines for Server Writers 

has not been recently accessed (and is therefore not cached), or a search 
operation. Applications that are not prepared to accept arbitrary delays in 
completing a request should either 

• Bound the time permitted for the request, or 

• Be prepared to abandon the request (after warning the user, if 
appropriate) if it takes longer than desired to complete. 

2.S.3 Management 

The following two subsections discuss some management aspects of server 
design. 

2.5.3.1 Binding with the Management Interface 

The DeE RPC management interface consists of the rpc_mgmt_ •.. O calls, 
which allow clients to perform various operations on, and find out various 
things about servers. All servers automatically offer the management 
interface; the IDL compiler sees to this. 

However, as a result of this universal availability, the saine "ambiguous 
call" problem that was discussed earlier in this chapter occurs when a 
client makes a management call (for example, 
rpc_mgmt_bindingJs_server_listeningO) with a partial binding. Since 
all the servers on any target host presumably export the managemeilt 
interface, the endpoint mapper at that host has no way to select a particular 
server that does so. 

The solution is for the client to use the the rpc _ ep _resolve ~ binding() call, 
which takes a (typically partial) binding and an interface, and contacts the 
endpoint mapper on the remote host to find a server that offers that 
interface; the call then returns with a completed binding. 

Suppose a client, having just imported a partial binding to print server A, 
wanted to make a management call to that server. The client would call 
rpc _ ep _resolve _ binding(), passing the partial binding it just imported; if 
successful, the call would return a full binding to print server "A." 

OSF DeE Application Development Guide 2-87 



Overview of DeE Application Development 

2-88 

The client could now use this completed binding handle to perform any 
management operation on print server "A"; the binding would get the call 
to the server, and the management interface UUID would select the desired 
interface among those offered by the server. 

For more information on the management interface itself, see Step B9 
(Section 1.5.14) in Chapter 1 of this guide, and the aSF DeE Application 
Development Reference. 

2.5.3.2 Shutdown Considerations 

If a server is going down, it should unexport its entries and unregister its 
endpoints. A filled-up or somewhat-overwritten namespace will cause 
robust clients to take longer; nonrobust clients will fail. 

OSF DeE Application Development Guide 



Chapter 3 

A Sample DCE Application 

This chapter consists of an introduction to the commented client and server 
source code for timop, a sample DCE application. The source files 
themselves are located at dce-root-dir/src/test/sample. The chapter begins 
with a discussion of IDL (Interface Definition Language) and the interface 
definition process. 

3.1 Developing a DeE Application 

As was explained at the beginning of Chapter 1, the first step in coding a 
DCE application is to define one or more interfaces through which the 
application's clients and servers will communicate. Interfaces are defined in 
a declarative C-like Interface Definition Language and then compiled by the 
IDL compiler. 

Interfaces, like most other objects and entities in DCE, are identified by the 
system by associating each one with a 128-bit Universal Unique Identifier 
(UUID). Generating a UUID for your application's interface is the very first 
step in the IDL process. 

OSF DeE Application Development Guide 3-1 



Overview of DeE Application Development 

3-2 

Executing the uuidgen command with the -i option, as follows: 

uuidgen -i > pandaemonium.idl 

will cause a skeleton .idl file to be generated, containing a new UUID and 
very little else; it is your task to add the rest. 

Thus, the development cycle for a DeE application is as follows: 

1. Write and compile the .idl file. 

2. Write and compile the server implementation code. 

3. Write and compile the client implementation code. 

4. Link the server object code with the server stub code and the DeE 
library. 

5. Link the client object code with the client stub code and the DeE 
library. 

6. Try running the compiled application. 

Some of the steps may have to be executed repeatedly. 

Figure 3-1 illustrates this process as it might be followed for both the server 
and the client modules of timop. 

OSF DeE Application Development Guide 



A Sample DeE Application 

Figure 3-1. How an Executable DCE Application is Produced 

SerV8r 
Compilation 

Client Compilation 

Server'. Machine 

Client's Machine 

Both the server and the client compilation phases are illustrated. As noted in 
the figure, these can occur on different machines. Note that the interface 
UUID is generated only once. 

OSF DCE Application Development Guide 3-3 



Overview of DeE Application Development 

3-4 

The circled numbers in boldface in the figure indicate the order of 
development steps, as follows: 

1. Run uuidgen to get a skeleton .idl file containing a newly generated 
UUID. Complete the file with your interface operation definitions. 

2. Compile the completed interface definition file with the IDL 
compiler. 

3. Write the source code implementation of the interface operations in 
various .c and .h files, and compile them with the header file output by 
the IDL compiler. 

4. Link the output of the previous step with the stub module produced by 
the IDL compiler, and the DCE library, Iibdce. 

Of the server files shown in the figure, the application developer is 
responsible for writing the following: 

timop.idl 

timop.acf 

A skeleton is generated by uuidgen 

An optional file that affects interaction between the 
stub and code module 

timop _manager.c Implementation of interface operations 

timop _server.c Server setup and related routines 

timop _refmon.c Server reference monitor 

timop _server.h Server data declarations 

Of the client files shown in the figure, the developer is responsible for 
writing (besides timop.idl and timop.acf, which are the same source files as 
were used for the server compilation) timop _ ciient.h, timop _ ciient.c, and 
finally a timop _ aux.h auxiliary header file, which in timop is the same for 
both the server and the client. 

An attribute configuration file (timop.acf in the figure) is usually optional; it 
contains input to the IDL compiler that alters the IDL output in various 
ways. Also optional are the auxiliary files (aux), which contain support 
routines for the client or server stub modules. 

There is one other important option. The IDL compiler actually operates by 
first creating C source modules, and then invoking the C compiler to 
produce its object file output form the C source. Normally the C source files 
are then deleted. You can specify that the C source be kept, in which case 
the stub and auxiliary source files will appear as output too. This possibility 

OSF DeE Application Development Guide 



A Sample DeE Application 

is shown in dotted lines in the figure. Note that the IDL compiler's use of the 
C compiler is not shown in the figure. 

A server can implement more than one interface. The interfaces would be 
defined in separate .idl files and compiled separately by the IDL compiler. 
The implemented interface operations in various source code files would 
then be linked with the IDL output. 

3.1.1 The Purpose of Stub Files 

The client and server stub files that are the output of the IDL compiler 
consist of RPC routines that handle all the mechanical details of packaging 
and unpackaging data into messages to be sent over the network, as well as 
the actual sending and receiving. All this is done in accordance with the 
specifications you made in the .idl and .acf input files. The .idl file 
specifications determine how the client/server interaction will occur over 
the network (the network protocol). The specifications in the .acf file, if the 
file exists, affect only the way the client's and/or server's application code 
interacts with what goes on in their respective stubs. 

3.1.2 IDL Output Default Filenames 

If the input .idl file to the IDL compiler is named thorndyke.idl, then the 
output files will have the following default names: 

• Stub Files 

thorndyke _ cstub.o and thorndyke _ cstub.c for the client 

thorndyke_sstub.o and thorndyke_sstub.c for the server 

• Header File 

thorndyke.h 

• Auxiliary Files 

thorndyke _ caux.o and thorndyke _ caux.c for the client 

thorndyke_saux.o and thorndyke_saux.c for the server 

OSF DeE Application Development Guide 3-5 



Overview of DeE Application Development 

It is usually a good idea to give the .idl files a name of the form xxx Jf.idl 
(where the if signifies "interface file"), since the default name 
transformation in the IDL output can obscure the files' origin. That way you 
will always know that a file named xyzJf.h was generated from an .idl file. 

3.2 A Complete Sample Application: timop 

The timop program is a tutorial DCE application sample. It exercises the 
basic DCE technologies: Threads, RPC, Directory, Time, and Security. It is 
not intended to be a model of application techniques in general. A 
production application would probably feature such things as better fault 
management, the use of getopt(), a Motif interface, internationalization, 
performance optimization, and so on; none of which are really important for 
this tutorial. The timop sample just tries to perform in a straightforward 
illustrative way, insofar as that is possible given the complexity of the 
technologies involved. 

It is assumed that you have a DCE cell up and running. This means that your 
system must support thread-safe system interfaces (for example, for 
printf( ». You must also be registered as a DCE principal, or at least know 
the password of a principal in your cell, in order to do authenticated RPC; 
and you must be authorized to use certain of the cell's facilities (for 
example, to execute rgy _edit and place objects in the namespace). 

3.2.1 What timop Does 

3-6 

The timop program has two parts, a client and a server, which are 
implemented by the timop_client and timop_server processes, 
respectively. 

The server offers just one remote operation: clients can learn the span of 
time it takes the server to calculate the factorial of a random number 
specified by the client. The client spawns a number of threads, each of 
which makes parallel remote calls of this operation to designated servers. 
The client then prints out the name, invocation order, and time spans 
reported by the servers, and the random numbers it asked the servers to take 

OSF DeE Application Development Guide 



A Sample DeE Application 

the factorial of; it also prints out a total time span that encompasses all the 
job events at the servers and the sum of the random numbers. 

The program uses only UDP (User Datagram Protocol) as a least common 
denominator transport provider. Authentication and integrity-secure RPC 
are used to make sure the communicated data is correct, and a small degree 
of authorization (named-based, not ACLs) is used as well. The Directory 
Service is used to identify the servers and to mediate the RPC binding 
between client and servers. 

All time calculations are done in UTC with TDF = 0 (the Z (Zulu) or UTC 
reference time zone, corresponding to and generally equivalent to the 
classical UT GMT time zone), not local civil time, because the client(s) and 
server(s) may be in different tirrie zones. Note that the server and client 
clocks are all different physical clocks, but they are all commensurable with 
one another because they are synchronized by DTS. 

3.2.2 The timop Program and Security 

Since timop uses the Security Service, the timop clients and servers must 
run as security principals. But in accordance with the tutorial goals of this 
example, only a minimal usage is made of security. With the code as 
supplied, timop _client is run as a principal named / .. .Imycell/tclient, and 
timop _server is run as a principal named / .. .Imycell/tserver. These names 
should be changed to suit your environment by modifying timop _ aux.h (for 
example, both tclient and tserver could be the person executing the 
program). 

The default login contexts used are tclient and tserver. In other words, 
when you execute timop_client or timop_server, you must dce_login as 
the principal tclient or tserver, respectively, to run the client or server. We 
run timop _server with the key of tserver; you therefore need to install the 
key of tserver into the key file /tmp/tkeyfile, for example, which you 
should have exclusive read/write permission to. (See the comments in 
timop_server.h in Section 3.2.8.6 for instructions on how to do this.) 

Note that only a simple form of authorization is used, based on principal 
names, not ACLs; it is the programmer's responsibility to implement an 
ACL manager and use ACL-based authorization. Default source code for 
ACL management is supplied with DCE, but to have used it in this example 
would have made the code much too unwieldy. 

OSF DeE Application Development Guide 3-7 



Overview of DeE Application Development 

3.2.3 Source Files 

3-8 

The timop program is built from the following source files: 

• Makefile.timop 

The make file 

• timop.idl 

The IDL file 

• timop.acf 

The ACF file 

• timop _ aux.h 

The auxiliary header file 

• timop _ client.h 

The client header file 

• timop _ client.c 

The client program 

• timop _server.h 

The server header file 

• timop_server.c 

The server program 

• timop _manager.c 

The manager routines 

• timop_refmon.c 

The server reference monitor 

These files are located at dce-root-dir/src/test/sample. 

"Manager" is generic RPC terminology for the part of the server that 
actually handles the remote operation(s). In the usual practice, as illustrated 
here, server.c contains the nonapplication-specific routines that start up and 
initialize the server, and manager.c contains the application-specific 
routines that (among other things) implement the remote operations offered. 

OSF DeE Application Development Guide 



A Sample DeE Application 

3.2.4 Building timop 

To build timop, change the contents of Makefile.timop to suit your 
environment, then issue the following command: 

make -f Makefile.timop 

You will have to do this separately for every machine architecture you want 
to use. 

3.2.5 Running timop 

To run timop, install timop_client and timop_server on the machines you 
want to use, and issue commands something like the following, using names 
chosen to suit your environment. 

On one machine, enter: 

timop _server 1.:/foo 

where 1.:/foo is the name in the namespace you want this server to have. 
You should do this either in the background (&), or on another terminal, or 
in another window. 

Wait until you get the message: 

Server /.:/foo ready. 

then enter: 

timop _client 1.:/foo 

This will print out results continuously. 

On multiple machines in the same cell, enter: 

timop _server 1.:/foo 
timop _server 1.:/bar 
timop_server 1.:lzot 

OSF DeE Application Development Guide 

# on machine A 
# on machine B 

# on machine C 

3-9 



Overview of DeE Application Development 

timop _client 1.:/foo 1.:/bar I.:/zot 
timop _client I.:/zot 1.:/bar 1.:/foo 

# on machine D 
# on machine E 

Note however that if the machines are not in the same cell, you must use 
fully qualified names beginning with I ... , not beginning with I.: as in the 
example. 

3.2.6 Stopping timop 

You must kill clients and servers by hand, either by using the interrupt key 
or with a combination of the ps and kill commands. This will leave server 
binding information in the endpoint map and namespace, which is normal 
for persistent servers. The information can always be removed by hand later 
on with the cdscp and rpccp system administration commands, if necessary. 

3.2.7 Further Exercises 

3-10 

After getting timop running, it would be a good exercise for you to figure 
out how it all works by modifying the code in various ways. In the process 
of doing this you can start to write your own applications. Some suggestions 
(other than the improved error-checking procedures, and so on, that were 
previously mentioned) are offered as follows: 

• Get timop running over some transports other than UDP. 

• Intentionally introduce some threads race conditions in order to 
experiment with the meaning of reentrancy. You can also fix the 
asctime() bug that was intentionally left in the code. 

• Parallelize the client in a different way, perhaps by using 
pthread _ exit() and pthread ..Join() instead of pthread _ cond _signal() 
and pthread _ cond _ waite ). 

• Receive just one reply from one server, canceling the other outstanding 
jobs when the first reply arrives. 

• Handle server returns from within the listen loop. Doing this means you 
will have to clean the server binding information from the endpoint map 
and namespace. You may want to experiment with the 

OSF DeE Application Development Guide 



A Sample DeE Application 

pthread_signal_to_cancel_npO library routine and the exception 
handling interface (the TRY, FINALLY, and END TRY constructs). For 
more information, see Chapter 7 of this guide. 

• Create a namespace service group, instead of a collection of individually 
named server instances. 

• Create Version 1.1 of timop to contain an additional operation 
consisting of an additive version of the multiplicative factorial operation 
(n += i instead of n *= i). 

• V se context handles and some DTS primitives to return per-client 
cumulative job times. 

• Create a server that supports two managers, each offering a separate 
implementation of the factorial operation: one implementation remains 
the same as in the present version, while the new one (accessed by a 
different object VVID) computes the factorial in decreasing order. 

• Working with some other users,· make the clients and servers run under 
several principal identities. An even better way of doing this would be to 
have your security administrator create some extra identities for you to 
experiment with. (These extra identities would also be useful in the 
following exercise.) 

• Implement an ACL manager for the timop service, add ACL entries for 
several principals and groups, and test the ACL manager by running the 
clients under various principal identities. 

• Replace the no-op factorial operation with some operation or operations 
that would be really useful in your environment. This is the first step in 
creating your own DCE application. 

3.2.8 The timop Program: A Sample DeE Application 

The following subsections present the source code for timop. 

OSF DeE Application Development Guide 3-11 



Overview of DeE Application Development 

3.2.8.1 The timop.idl Source File 

Following are the IDL specifications for timop, contained in timop.idl: 

/* 
** timop.idl 
** 
** IDL interface specification for remote time operations. 
*/ 

/* We need explicit handles in timop because our client has mUltiple 
(actually, multi-threaded) RPCs bound to multiple explicitly-specified 
servers. */ 

[uuid(Ocf616d8-b858-11c9-8078-02608cOa03a7), 
version(1.0)] 

interface timop 
{ 

} 

3-12 

/* DTS timestamps are already in a universal format, 
so are opaque to (the presentation layer of) the RPC 
(16 = sizeof(utc_t». */ 

const small 
typedef byte 

SIZEOF_TIMESTAMP = 16; 
timestamp_t[SIZEOF_TIMESTAMP]; 

/* Failure value for remote status indications. */ 
const long TIMOP_ERR = -1; 

/* Get the time span to do a job (random factorial). */ 
[idempotent] 
void timop~etspan( 

[in] handle_t 
[in] long 
[out] timestamp_t 
[out] long 
[in,out] error_status_t 

handle, 
rand, 
timestamp, 
* status-p , 
*remote_status-p); 

OSF DeE Application Development Guide 



A Sample DeE Application 

3.2.8.2 The timop.acf Source File 

Following are the attribute configuration specifications for timop, contained 
in timop.acf: 

/* 
** tirnop.acf 
** 
** Attribute configuration file for tirnop interface. 
*/ 

/* Do all marshalling out-of-line. */ 
[out_of_line] 
interface tirnop 
{ 

/* Declare remote_status-p to be a cornm_status and 
fault_status parameter. */ 

tirnop~etspan( 

[cornm_status, fault_status] 

3.2.8.3 The timop_aux.h Source File 

Following is the auxiliary information for timop, contained in timop_aux.h: 

/* 
** 
** 
** 
** 
** 

*/ 

Auxiliary info for tirnop example. 
There are other ways to do these things, but we're just 
illustrating the basics here. 

/* Principal names for this sample application. 
Change them to suit your environment. * / 

#define CLIENT_PRINC_NAME (unsigned_char_t *)I/ ... /II'!Ycell/tclient" 
#define SERVER_PRINC_NAME (unsigned_char_t *)I/ ... /II'!Ycell/tserver" 

OSF DeE Application Development Guide 3-13 



Overview of DeE Application Development 

/* Well-known object uuid for this sample application. */ 
#define Oill_UUID (unsigned_char_t *)12541af56-43a2-11ca-a9f5-02608cOffe49" 

3.2.8.4 The timop_client.h Source File 

Following are the contents oftimop's client header file, timop_client.h: 

/* 
** timop_client.h 
** 
** Client header file for timop interface. 
*/ 

#define MAX_SERVERS 10 /* single-digit server_nurn's, 0 ... 9 */ 
#define CLIENT_NUM -1 /* not equal to any server_nurn * / 
#define MAX_RANDOM (10*1000*1000) /* big, to observe threads in action */ 
#define DO_WORK_OK 0 /* pass */ 
#define DO_WORK_ERR 1 /* fail */ 

/* Package up do_work() args in a struct, because 
pthreads start routines take only one argument. */ 

typedef struct work_arg { 
int server_nurn; /* as ordered in arg list */ 
unsigned_char_t 
rpc_binding_handle_t 
idl_Iong_int 
int 

work_arg_t; 

/* Prototypes for client. */ 
int rnain(int _1, char *_2[]); 
void do_work(work_arg_t *_1); 

*server_name; 
bind_handle; 
rand; 
status; 

/* as named in arg list */ 
/* binding handle to server */ 
/* input to the rpc call */ 
/* returned from do_work( ) */ 

void print_report (unsigned_char_t *_1, int _2, utc_t *_3, long _4); 

3-14 OSF DeE Application Development Guide 



A Sample DeE Application 

3.2.8.5 The timop_client.c Source File 

Following is the source code for the timop client application, contained in 
timop _ client.c: 

/* 

** timop_client.c 
** 

** Client program for timop interface. 
*/ 

#include <errno.h> 
#include <stdio.h> 
#include <dce/rpc.h> 
#include <pthread.h> 
#include <time.h> 
#include <dce/utc.h> 
#include "timop.h" 
#include "timop_aux.h" 
#include "timop_client.h" 

long Rand; 
int Workers; 
pthread_rnutex_t Work_mutex; 

/* sum of random numbers * / 

/* number of active worker threads 
/* guard access to Workers, Rand */ 

*/ 

pthread_cond_t Work_cond; /* condition variable for Workers==O */ 

/* 

* main( ) 

* 
* 
*/ 

int 
main ( 

Get started, and main loop. 

int 
char 

int 
work_arg_t 
unsigned_char_t 

argc, 
*argv[] ) 

server_num, nservers, ret; 
work_arg[MAX_SERVERS]; 
* server_name [MAX_SERVERS] , 

OSF DeE Application Development Guide 3-15 



Overview of DeE Application Development 

3-16 

rpc_binding_handle_t 
unsigned32 

* string_binding , *protseq; 
bind_handle [MA2CSERVERS] ; 
status; 

utc_t 
struct trn 

start_utc, stop_utc, span_utc; 
time_tm; 

uuid_t 
rpc_ns_handle_t 
pthread_t 

obj_uuid; 
import_context; 
thread_id[MAX_SERVERS]; 

/* Check usage and initialize. */ 
if (argc < 2 I I (nservers = argc-1) > MAX_SERVERS) { 

fprintf(stderr, 
"Usage: %s server_name ... (up to %d server_name's) ... \n", 
argv [ 0], MAX_SERVERS); 

exit (1) ; 

for (server_num = 0; server_num < nservers; server_num += 1) { 
server_name [server_num] = (unsigned_char_t *) argv[l+server_num] ; 

/* Initialize object uuid. */ 
uuid_from_string(OBJ_UUID, &obj_uuid, &status); 
if (status != uuid_s_ok) { 

fprintf (stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit (1); 

/* Import binding info from namespace. */ 
for (server_num = 0; server_num < nservers; server_num += 1) { 

/* Begin the binding import loop. */ 
rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce, 

server_name [server_num], timop_v1_0_c_ifspec, 
&obj_uuid, &import_context, &status); 

if (status != rpc_s_ok) { 
fprintf (stderr, "FAULT: %s: %d\n", _FILE_, _LINE_); 
exit (1) ; 

/* Import bindings one at a time. */ 
while (1) { 

rpc_ns_binding_import_next(import_context, 

OSF DeE Application Development Guide 



A Sample DeE Application 

&bind_handle [server_num], &status); 
if (status !~ rpc_s_ok) { 

fprintf(stderr, "FAULT: %s:%d\n" , __ FILE __ , 
__ LINE __ ) : 

exit(l): 

/* Select, say, the first binding over UDP. */ 
rpc_binding_to_string_binding (bind_handle [server_num], 

&string_binding, &status): 
if (status !~ rpc_s_ok) { 

fprintf(stderr, "FAULT: %s:%d\n", __ FILE __ , 
__ LINE __ ) ; 

exit(l); 

rpc_string_binding-parse(string_binding, NULL, 
&protseq, NULL, NULL, NULL, &status); 

if (status !~ rpc_s_ok) { 
fprintf(stderr, nFAULT: %s:%d\n", __ FILE __ , 

__ LINE __ ) : 
exit (1) : 

rpc_string_free(&string_binding, &status): 
ret ~ strcmp(protseq, Hncadg_ip_udpn); 

rpc_string_free(&protseq, &status): 
if (ret == 0) { 

break: 

/* End the binding import loop. */ 
rpc_ns_binding_import_done(&import_context, &status); 
if (status != rpc_s_ok) { 

fprintf(stderr, nFAULT: %s:%d\nn, __ FILE __ , __ LINE __ ); 
exit(l); 

/* Annotate binding handles for security. */ 
for (server_num = 0; server_num < nservers: server_num += 1) { 

rpc_binding_set_auth_info(bind_handle[server_num], 
SERVER_PRINe_NAME, rpc_c-protect_level-pkt_integ, 
rpc_c_authn_dce_secret, NULL /*default login context*/, 

OSF DeE Application Development Guide 3-17 



Overview of DeE Application Development 

3-18 

rpc_c_authz_name, &status); 
if (status != rpc_s_ok) 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit (1) ; 

/* Initialize mutex and condition variable. */ 

ret = pthread_mutex_init(&Work_mutex, pthread_mutexattr_default); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n R
, _FILE_, _LINE_); 

exit(l); 

ret = pthread_cond_init(&Work_cond, pthread_condattr_default); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit(l); 

/* Initialize random number generator. */ 

srandom(time (NULL) ) ; 

/* Initialize work args that are constant throughout main loop. */ 

for (server_num = 0; server_num < nservers; server_num += 1) { 
work_arg[server_num].server_num = server_num; 
work_arg[server_num].server_name = server_name[server_num]; 
work_arg[server_num].bind_handle = bind_handle[server_num]; 

/* Print out the year and date, just once. */ 

ret = utc-gettime(&start_utc); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit(l); 

~et = utc-9ffit~e (&time_tm, NULL, NULL, NULL, &start_utc); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit(l); 

fprintf(stdout, "\n%24.24s UTC (Z time zone)\n\n", asctime(&time_tm)); 

OSF DeE Application Development Guide 



A Sample DeE Application 

/* Main loop -- never exits -- interrupt to quit. */ 
while (1) { 

/* Per-loop initialization. We're single-threaded here, so 
locks and reentrant random number generator unnecessary. */ 

Rand = 0; 

Workers = nservers; 
for (server_mIm = 0; server_nurn < nservers; server_nurn += 1) { 

work_arg [server_nurn] . rand = random ( ) %MAX_RANDOM; 

/* Get client's start timestamp. */ 
ret = utc-gettime(&start_utc); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 

exit (1); 

/* Spawn a worker thread for each server. */ 
for (server_nurn = 0; server_nurn < nservers; server_nurn += 1) { 

ret = pthread_create(&thread_id[server_num], 
pthread_attr_default, (void *)do_work, 
(void *)&work_arg[server_nurn]); 

if (ret == -1) { 
fprintf (stderr, "FAULT: %s: %d\n", _FILE_, 

_LlNE_) ; 

exit(l); 

/* Reap the worker threads; pthread_cond_wait() semantics 
requires it to be coded this way. */ 

ret = pthread_mutex_lock(&Work_mutex); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 

exit(l); 

while (Workers != 0) { 
ret = pthread_cond_wait(&Work_cond, &Work_mutex); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, 

_LlNE_) ; 

OSF DeE Application Development Guide 3-19 



Overview of DeE Application Development 

3-20 

exit(l); 

ret = pthread_mutex_unlock(&Work_mutex); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 

exit (1) ; 

/* Reclaim storage. */ 

for (server_num = 0; server_num < nservers; server_num += 1) { 
ret = pthread_detach(&thread_id[server_num]); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, 

_LlNE_) ; 

exit(l); 

/* Any failures? */ 

for (server_num = 0; server_num < nservers; server_num += 1) { 
if (work_arg[server_num] . status != DO_WORK_OK) { 

exit (1); 

/* Get client's stop timestamp. */ 

ret = utc~ettime(&stop_utc); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 

exit(l); 

/* Calculate the span of client's start and stop timestamps. */ 

ret = utc_spantime(&span_utc, &start_utc, &stop_utc); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 

exit(l); 

/* Print total results. */ 

print_report ((unsigned_char_t *)" (client)", CLIENT_NUM, 

OSF DeE Application Development Guide 



/* 

* 
* 
* 
* 
*/ 

A Sample DeE Application 

&span_utc, Rand}; 

/* Not reached. */ 

Do the work. This is done in parallel threads, so we want it 
(and the subroutine print_report() it calls} to be reentrant. 

int 
unsigned_char_t 
rpc_binding_handle_t 
idl_long_int 
error_status_t 
timestamp_t 

server_num, *status-p, ret; 
* server_name; 
bind_handle; 
rand, status; 
remote_status 
timestamp; 

/* Unpackage the args into local variables. */ 
server_num = work_arg-p->server_num; 
server_name = work_arg-p->server_name; 
bind_handle = work_arg-p->bind_handle; 
rand = work_arg-p->rand; 
status-p = &work_arg-p->status; 

/* Do the RPC! */ 
timop~etspan(bind_handle, rand, timestamp, &status, &remote_status}; 
if (remote_status != rpc_s_ok) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_}; 
*status-p = DO_WORK_ERR; 
pthread_exit (NULL) ; 
/* Not reached. */ 

if (status != rand) { 
fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_}; 

OSF DeE Application Development Guide 3-21 



Overview of DeE Application Development 

/* 

* 
* 
* 

3-22 

*status-p = DO_WORK_ERR; 
pthread_exit (NULL); 
/* Not reached. */ 

/* Print report. Not a critical section here because print_report ( ) 
is supposed to be implemented to be reentrant. */ 

print_report (server_name, server_num, (utc_t *)timestamp, rand); 

/* Update Rand and decrement Workers. As implemented, it is a 
critical section, so must be locked. */ 

ret = pthread_mutex_lock(&Work_mutex); 
if (ret == -1) { 

fprintf (stderr, "FAULT: %s: %d\n", _FILE_, _LINE_); 
exit(l); 

Workers -= 1; 
if (Workers == 0) { 

/* Last worker signals main thread. */ 
ret = pthread_cond_signal(&Work_cond); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit(l); 

Rand += rand; 
ret = pthread_mutex_unlock(&Work_mutex); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit(l); 

/* Done. */ 

*status-p = DO_WORK_OK; 
pthread_exit (NULL); 
/* Not reached. */ 

print_report ( ) 

Print DTS timestamp interval, to millisecond granularity. 

OSF DeE Application Development Guide 



* 
* 
* 
* 
*/ 

void 

A Sample DeE Application 

Implemented this way so it is reentrent (assuming all the underlying 
as subroutines it calls are reentrant) . 
This kind of timestamp manipulation is always messy -- see the 
manual for the formats of structures and print-strings we use. 

print_report ( 
unsigned_char_t 
int 

* server_name , 
server_num, 
*utc-p, 

#define 
#define 
#define 
#define 
#define 
#define 

utc_t 
long 

LINE_LEN 
COL1 
COL2 
COL3a 
COL3b 
COL4 
char 

int 
long 
struct tm 

rand) 

78 

o 
44 
47 

60 
70 

asctime_buf[26J, ascinacc_buf[26], 
time_ns_buf[10J, inacc_ns_buf[10J, 
report[LINE_LEN+3J; 

inacc_sec, ret; 
time_ns, inacc_ns; 
time_tm, inacc_tm; 

/* Print server_name into report. Pad or truncate as necessary. */ 
sprintf(report+COLl, "%*.*s ", COL2-2, COL2-2, (char *)server_name); 

/* Print server_num into report. */ 
if (server_num != CLIENT_NUM) 

sprintf(report+COL2, "%l.ld 
else { 

sprintf (report+COL2, "%1.1s 11* II) ; 

/* Format utc-p and print it into report. */ 
ret = utc-9ffitime(&time_tm, &time_ns, &inacc_tm, &inacc_ns, utc-p); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 

OSF DeE Application Development Guide 3-23 



Overview of DeE Application Development 

/* 

** 
** 

3-24 

exit (1) ; 

memcpy(asctime_buf, asctime(&time_tm), 26); /* reentrancy bug! */ 
memcpy(ascinacc_buf, asctime(&inacc_tm), 26); /* reentrancy bug! */ 
sprintf (time_ns_buf, "%9. 9d", time_ns); 
sprintf (inacc_ns_buf, "%9. 9d", inacc_ns); 
inacc_sec = inacc_tm.tm-yday*24*60*60 + inacc_tm.tm_hour*60*60 + 

inacc_tm.tm_min*60 + inacc_tm.tm_sec; 
sprintf(report+COL3a, "%8.8s.%3.3sI", asctime_buf+11, 

time_ns_buf) ; 
if (inacc_tm.tm-year != -1) { 

sprintf(report+COL3b, "%4.4d.%3.3s 

else 
sprintf(report+COL3b, "%8.8s 

/* Print rand into report. */ 
if (server_num != CLIENT_NUM) 

"infinity") ; 

sprintf (report+COL4, "%8d\n", rand); 
else { 

sprintf(report+COL4, "%8d\n\n", rand); 

/* OUtput report. */ 

fprintf(stdout, "%s", report); 
return; 

3.2.8.6 The timop_server.h Source File 

Following are the contents of the timop server's header file, 
timop_server.h: 

OSF DeE Application Development Guide 



A Sample DeE Application 

** Server header file for timop interface. 
*/ 

/* num of objs supported */ #define NUM_OBJS 1 
#define MAX_CONC_CALLS_PROTSEQ 5 
#define MAX_CONC_CALLS_TOTAL 10 

/* max conc calls per protseq */ 

/* max conc calls total */ 

/* Success/failure for remote procedures. */ 

#define GETSPAN_OK 0 /* pass */ 

#define GETSPAN_ERR 1 /* fail */ 

/* Defines for access control. */ 

#define GETSPAN_OP 1 /* requested operation */ 

#define GRANT_ACCESS 0 /* reference monitor success */ 

#define DENY_ACCESS 1 /* reference monitor failure */ 

#define IS_AUTHORIZED 0 /* authorization success */ 

#define NOT_AUTHORIZED 1 /* authorization failure */ 

/* Server key table for this example. Change name of keyfile to suit your 
environment, and populate it with "rgy_edit ktadd tserver /trnp/tkeyfile". * / 

#define KEYFILE "/trnp/tkeyfile" 
#define KEYTAB 

/* Prototypes for server. */ 

int rnain(int _1, char *_2[]); 

"FILE:" ## KEYFILE 

void getspan_ep(rpc_binding_handle_t _1, idl_Iong_int _2, timestamp_t _3, 
idl_Iong_int *_4, error_status_t *_5); 

int do~etspan(idl_long_int _1, timestamp_t _2); 
int ref_mon (rpc_binding_handle_t _1, int _2); 
int is_authorized(unsigned_char_t *_1, int _2); 

3.2.8.7 The timop_server.c Source File 

Following is the timop server application setup source code, contained in 
timop _server .c: 

/* 

** 

** 

OSF DeE Application Development Guide 3-25 



Overview of DeE Application Development 

** Server program for timop interface. 
*/ 

#include <stdio.h> 
#include <dce/rpc.h> 
#include "timop.h" 
#include "timop_aux.h" 
#include "timop_server.h" 

/* Declare manager EPV. This EPV could be bulk-initialized here, 
but we do prefer to do it one operation at a time in main(). */ 

/* 

* main ( ) 

* 
* 
*/ 

int 
main ( 

3-26 

Get started -- set up server the way we want it, and call listen loop. 

int 
char 

unsigned_char_t 
rpc_binding_vector_t 
unsigned32 
int 
uuid_t 
struct 

unsigned32 count; 

argc, 
*argv[] ) 

* server_name ; 
*bind_vector-p; 
status; 
i; 

uuid_t *uuid [NUM_OBJS] ; 

/* Check usage and initialize. */ 
if (argc != 2) { 

fprintf(stderr, "Usage: %s namespace_server_name\n", argv[O]); 
exit (1) ; 

OSF DeE Application Development Guide 



A Sample DeE Application 

/* Initialize manager EPV (just one entry point in this example). */ 

manager_epv.timop~etspan = getspan_ep; 

/* Initialize object uuid (just one in this example). */ 

uuid_from_string(OBJ_UUID, &obj_uuid, &status); 
if (status != uuid_s_ok) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 
exit (1) ; 

/* Initialize type uuid (just one in this example). */ 

uuid_create(&type_uuid, &status); 
if (status != uuid_s_ok) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 
exit(l); 

/* Register object/type uuid associations with rpc runtime. */ 

rpc_object_set_type(&obj_uuid, &type_uuid, &status); 
if (status != rpc_s_ok) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 
exit(l); 

/* Register interface/type_uuid/epv associations with rpc runtime. */ 

rpc_server_register_if(timop_v1_0_s_ifspec, &type_uuid, 
(rpc_mgr_epv_t)&manager_epv, &status); 

if (status != rpc_s_ok) { 
fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 
exit(l); 

/* Tell rpc runtime we want to use all supported protocol sequences. */ 

rpc_server_use_all-protseqs(MAX_CONC_CALLS_PROTSEQ, &status); 
if (status != rpc_s_ok) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 
exit(l); 

OSF DeE Application Development Guide 3-27 



Overview of DeE Application Development 

3-28 

/* Ask the runtime which binding handle(s) it's going to let us use. */ 
rpc_server_in~bindings(&bind_vector-p, &status): 
if (status != rpc_s_ok) 

fprintf (stderr, "FAULT: %s: %d\n", _FILE_, _LINE_): 
exit(l): 

/* Register authentication info with rpc runtime. */ 
rpc_server_register_auth_info(SERVER_PRINC_NAME, 

rpc_c_authn_dce_secret, NULL /*default key retrieval function*/, 
KEYTAB /*server key table for this example*/, &status); 

if (status != rpc_s_ok) 
fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit(l); 

/* Establish server's login context(s), if necessary. 
In this example we just use the default login context, 
so we do NOTHING here. */ 

/* Decide what to do upon server termination. It would be prudent 
to handle signals and decide what to do if the listen loop returns 
(e.g., clean exported info out of endpoint map and namespace, 
something that is not usually done for a persistent server), 
but since this is just an example we don't do those things here. */ 

/* Register binding info with endpoint map. */ 
rpc_ep_register(timop_vl_O_s_ifspec, bind_vector-p, 

(uuid_vector_t *)&obj_uuid_vec, 
(unsigned_char_t *) "timop server, version 1.0", &status); 

if (status != rpc_s_ok) { 
fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit(l); 

/* Export binding info to the namespace. */ 
rpc_ns_binding_export(rpc_c_ns_syntax_dce, server_name, 

timop_vl_O_s_ifspec, bind_vector-p, 
(uuid_vector_t *)&obj_uuid_vec, &status)i 

if (status != rpc_s_ok) 
fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 

OSF DeE Application Development Guide 



A Sample DeE Application 

exit(l); 

/* Listen for service requests (semi-infinite loop). */ 

fprintf(stdout, "Server %s ready.\n", server_name); 
rpc_server_listen(MAX_CONC_CALLS_TOTAL, &status); 
if (status != rpc_s_ok) { 

fprintf (stderr, "FAULT: %s: %d\n", _FILE_, _LINE_); 
exit (1) ; 

/* Returned from listen loop. We haven't arranged for this. */ 

fprintf (stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
exit (1); 

3.2.8.8 The timop_manager.c Source File 

Following is the timop server application-specific source code, contained in 
timop_manager.c: 

/* 

** 

** 

** Manager routines for timop interface. 
*/ 

#include <stdio.h> 
#include <dce/utc.h> 
#include "timop.h" 
#include "timop_aux.h" 
#include "timop_server.h" 

/* 

* 
* 
* Entry point for timoP-getspan() operation. 

* Note it is reentrant, so we can have a multi-threaded server. 

OSF DeE Application Development Guide 3-29 



Overview of DeE Application Development 

*/ 

void 
getspan_ep( 

rpc_binding_handle_t 
idl_Iong_int 
timestamp_t 
idl_Iong_int 
error_status_t 

int 

bind_handle, 
rand, 
timestamp, 
*statusJ), 
*remote_statusJ)) 

ret; 

/* Call reference monitor, to make authorization decision. */ 
ret = ref_mon(bind_handle, GETSPAN_OP); 

/* 

if (ret == DENY_ACCESS) { 
*statusJ) = TIMOP_ERR; 
return; 

/* Service the request, i.e., do the actual remote procedure. */ 
ret = do~etspan(rand, timestamp); 
if (ret == GETSPAN_ERR) { 

*statusJ) = TIMOP_ERR; 
return; 

/* Return the input random number as a status value (1= TIMOP_ERR). */ 
*statusJ) = rand; 
/* Return all results to client, and resume listen loop. */ 
return; 

* do~etspan ( ) 

* 
* Do the actual remote procedure. 
*/ 

int 
do~etspail ( 

idl_Iong_int 

3-30 

rand, 

OSF DeE Application Development Guide 



A Sample DeE Application 

long 
volatile long 
int 
utc_t 

timestamp} 

i; 
n; 

ret; 
start_utc, stop_utc; 

/* Get server's start timestamp. */ 
ret = utc~ettime(&start_utc}; 
if (ret == -I) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 
return(GETSPAN_ERR); 

/* Do service (here a random factorial, but could be anything). */ 
for (n = i = 1; i <= rand; i += 1) { 

n *= i; /* Burn cpu -- use your imagination. */ 

/* Get server's stop timestamp. */ 
ret = utc~ettime(&stop_utc); 
if (ret == -I) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LINE_); 
return(GETSPAN_ERR); 

/* Calculate the span of server's start and stop timestamps. */ 
ret = utc_spantime«utc_t *)timestamp, &start_utc, &stop_utc); 
if (ret == -1) { 

fprintf(stderr, "FAULT: %s:%d\n", _FILE_, _LlNE_); 
return(GETSPAN_ERR); 

/* Success. */ 
return(GETSPAN_OK); 

OSF DeE Application Development Guide 3-31 



Overview of DeE Application Development 

/* 

3.2.8.9 The timop_refmon.c Source Files 

Following is the timop server application reference monitor source code, 
contained in timop _refmon.c: 

** timop_refmon.c 
** 

** Reference monitor for timop example. 
*/ 

#include <stdio.h> 
#include "timop_aux.h" 
#include "timop.h" 
#include "timop_server.h" 

* 
* 
* 
*/ 

3-32 

Reference monitor for timop. 
It checks generalities, then calls is_authorized{) to check specifics. 

rpc_binding_handle_t 
int 

int 
rpc_authz_handle_t 
unsigned_char_t 
unsigned32 

/* Get client auth info. */ 

bind_handle, 
requested_op) 

ret; 
privs; 
*client-princ_narne, *server-princ_narne; 
protect_level, authn_svc, authz_svc, 

status; 

rpc_binding_in~auth_client (bind_handle, &pri vs, &server-princ_narne, 
&protect_level, &authn_svc, &authz_svc, &status); 

if (status != rpc_s_ok) { 
fprintf{stderr, "FAULT: %s:%d\n", __ FILE __ , __ LINE __ ); 

OSF DeE Application Development Guide 



A Sample DeE Application 

return(DENY_ACCESS)i 

/* Check if selected authn service is acceptable to us. */ 
if (authn_svc != rpc_c_authn_dce_secret) { 

fprintf (stderr, "FAULT: %s:%d\n", _FILE_, _LINE_) i 

return(DENY_ACCESS)i 

/* Check if selectea protection level is acceptable to us. */ 
if (protect_level != rpc_c-protect_level-pkt_integ 
&& protect_level != rpc_c-protect_level-pkt-privdCY) { 

fprintf (stderr, "FAULT: %s:%d\n", _FILE_, _LINE_) i 
return(DENY_ACCESS)i 

/* Check if selected authz service is acceptable to us. */ 
if (authz_svc != rpc_c_authz_name) 

fprintf (stderr, "FAULT: %s: %d\n", _FILE_, _LINE_) i 
return(DENY_ACCESS)i 

/* If rpc_c_authz_dce were being used instead of rpc_c_authz_name, 
privs would be a PAC (sec_id-pac_t *), not a name as it is here. */ 

client-princ_name = (unsigned_char_t *)privsi 

/* Check if selected server principal name is supported. */ 

if (strcmp(server-princ_name, SERVER_PRINC_NAME) != 0) { 
fprintf (stderr, "FAULT: %s:%d\n", _FILE_, _LINE_) i 
return(DENY_ACCESS)i 

/* Now that things seem generally OK, check the specifics. */ 
ret = is_authorized (client-princ_name, requested_op)i 
if (ret == NOT_AUTHORIZED) { 

fprintf (stderr, "FAULT: %s:%d\n", _FILE_, _LINE_) i 
return(DENY_ACCESS)i 

/* Cleared all the authorization hurdles -- grant access. */ 

return(GRANT_ACCESS)i 

OSF DeE Application Development Guide 3-33 



Overview of DeE Application Development 

/* 

* is_authorized ( ) 

* 
* Check authorization of client to the requested service. 
* This could be arbitrarily application-specific, but we keep it simple. 
* A normal application (i.e., one using PACs & ACLs) would be using 
* sec_acl_mgr_is_authorized() instead of this function. 
*/ 

int 
is_authorized ( 

unsigned_char_t 
int 

*client-princ_name, 
requested_op) 

3-34 

/* Check if we want to let this client do this operation. */ 
if (strcmp(client-princ_name, CLIENT_PRINe_NAME) == a 
&& requested_op == GETSPAN_OP) { 

/* OK, we'll let this access happen. */ 
return(IS_AUTHORIZED)i 

/* Sorry, Charlie. */ 
return(NOT_AUTHORIZED)i 

OSF DeE Application Development Guide 



Part 2 
DeE Threads 





Chapter 4 

Introduction to Multithreaded 
Programming 

DeE Threads is a user-level (nonkemel) threads package based on the 
pthreads interface specified by POSIX in l003.4a, Draft 4. This chapter 
introduces multithreaded programming, which is the division of a program 
into multiple threads (parts) that execute concurrently. In addition, this 
chapter describes four software models that improve multithreaded 
programming performance. 

A thread is a single sequential flow of control within a program. It is the 
active execution of a designated routine, including any nested routine 
invocations. Within a single thread, there is a single point of execution. 
Most traditional programs consist of a single thread. 

Threads are lightweight processes that share a single address space. Each 
thread shares all the resources of the originating process, including signal 
handlers and descriptors. Each thread has its own thread identifier, 
scheduling policy and priority, err no value, thread-speci fic data bindings, 
and the required system resources to support a flow of control. 

OSF DeE Application Development Guide 4-1 



DeE Threads 

4.1 Advantages of Using Threads 

4-2 

With a threads package, a programmer can create several threads within a 
process. Threads execute concurrently, and within a multithreaded process, 
there are at any time multiple points of execution. Threads execute within a 
single address space. Multithreaded programming offers the following 
advantages: 

• Performance 

Threads improve the performance (throughput, computational speed, 
responsiveness, or some combination of these) of a program. Multiple 
threads are useful in a multiprocessor system where threads run 
concurrently on separate processors. In addition, multiple threads also 
improve program performance on single processor systems by permitting 
the overlap of input and output or other slow operations with 
computational operations. 

You can think of threads as executing simultaneously, regardless of the 
number of processors present. You cannot make any assumptions about 
the start or finish times of threads or the sequence in which they execute, 
unless explicitly synchronized. 

• Shared Resources 

An advantage of using multiple threads over using separate processes is 
that the former share a single address space, all open files, and other 
resources. 

• Potential Simplicity 

Multiple threads can reduce the complexity of some applications that 
are inherently suited for threads. 

OSF DeE Application Development Guide 



Introduction to Multithreaded Programming 

4.2 Software Models for Multithreaded Programming 

The following subsections describe four software models for which 
multithreaded programming is especially well suited: 

• Boss/worker model 

• Work crew model 

• Pipe lining model 

• Combinations of models 

4.2.1 Boss/Worker Model 

In a boss/worker model of program design, one thread functions as the boss 
because it assigns tasks to worker threads. Each worker performs a different 
type of task until it is finished, at which point the worker interrupts the boss 
to indicate that it is ready to receive another task. Alternatively, the boss 
polls workers periodically to see whether or not each worker is ready to 
receive another task. 

A variation of the boss/worker model is the work queue model. The boss 
places tasks in a queue, and workers check the queue and take tasks to 
perform. An example of the work queue model in an office environment is a 
secretarial typing pool. The office manager puts documents to be typed in a 
basket, and typists take documents from the basket to work on. 

4.2.2 Work Crew Model 

In the work crew model, multiple threads work together on a single task. 
The task is divided into pieces that are performed in parallel, and each 
thread performs one piece. An example of a work crew is a group of people 
cleaning a house. Each person cleans certain rooms or performs certain 
types of work (washing floors, polishing furniture, and so forth), and each 
works independently. 

OSF DeE Application Development Guide 4-3 



DeE Threads 

Figure 4-1 shows a task performed by three threads in a work crew model. 

Figure 4-1. Work Crew Model 

Task 

Thread A 

Setup Thread B Cleanup 

Thread C 

(Time) 

4.2.3 Pipelining Model 

4-4 

In the pipelining model, a task is divided into steps. The steps must be 
performed in sequence to produce a single instance of the desired output, 
and the work done in each step (except for the first and last) is based on the 
preceding step and is a prerequisite for the work in the next step. However, 
the program is designed to produce mUltiple instances of the desired output, 
and the steps are designed to operate in a parallel time frame so that each 
step is kept busy. 

An example of the pipelining model is an automobile assembly line. Each 
step or stage in the assembly line is continually busy receiving the product 
of the previous stage's work, performing its assigned work, and passing the 
product along to the next stage. A car needs a body before it can be painted, 
but at anyone time numerous cars are receiving bodies, and then numerous 
cars are being painted. 

In a multithreaded program using the pipelining model, each thread 
represents a step in the task. Figure 4-2 shows a task performed by three 
threads in a pipelining model. 

OSF DCE Application Development Guide 



Introduction to Multithreaded Programming 

Figure 4-2. Pipelining Model 

Task 

Thread A Thread B Thread C 

(Time) 

4.2.4 Combinations of Models 

You may find it appropriate to combine the software models in a single 
program if your task is complex. For example, a program could be designed 
using the pipelining model, but one or more steps could be handled by a 
work crew. In addition, tasks could be assigned to a work crew by taking a 
task from a work queue and deciding (based on the task characteristics) 
which threads are needed for the work crew. 

4.3 Potential Disadvantages with Multithreaded 
Programming 

When you design and code a multithreaded program, consider the following 
problems and accommodate or eliminate each problem as appropriate: 

• Potential Complexity 

The level of expertise required for designing, coding, and maintaining 
multithreaded programs may be higher than for most single-threaded 
programs because multithreaded programs may need shared access to 
resources, mutexes, and condition variables. Weigh the potential benefits 
against the complexity and its associated risks. 

OSF DeE Application Development Guide 4-5 



DeE Threads 

4-6 

• N onreentrant Software 

If a thread calls a routine or library that is not reentrant, use the global 
locking mechanism to prevent the nonreentrant routines from modifying 
a variable that another thread modifies. Section 6.4 discusses 
nonreentrant software in more detail. 

Note: A multithreaded program must be reentrant; that is, it must 
allow multiple threads to execute at the same time. 
Therefore, be sure that your compiler generates reentrant 
code before you do any design or coding work for 
multithreading. (Many C, Ada, Pascal, and BLISS 
compilers generate reentrant code by default.) 

If your program is nonreentrant, any thread 
synchronization techniques that you use are not 
guaranteed to be effective. 

• Priority Inversion 

Priority inversion prevents high-priority threads from executing when 
interdependencies exist among three or more threads. Section 6.5 
discusses priority inversion in more detail. 

• Race Conditions 

A type of programming error called a "race condition" causes 
unpredictable and erroneous program behavior. Section 6.6.1 discusses 
race conditions in more detail. 

• Deadlocks 

A type of programming error called a "deadlock" causes two or more 
threads to be blocked from executing. Section 6.6.2 discusses deadlocks 
in more detail. 

• Blocking Calls 

Certain system or library calls may cause an entire process to block 
while waiting for the call to complete, thus causing all other threads to 
stop executing. Section 6.1.2 discusses blocking in more detail. 

OSF DeE Application Development Guide 



Chapter 5 

Thread Concepts and Operations 

This chapter discusses concepts and techniques related to DeE Threads. 
The following topics are covered: 

• Thread operations 

• Attributes objects 

• Synchronization objects 

• One-time initialization code 

• Thread-specific data 

• Thread cancellation 

• Thread scheduling 

For detailed information on the multithreading routines referred to in this 
chapter, see the reference page for that routine in the aSF DeE Application 
Development Reference. 

OSF DeE Application Development Guide 5-1 



DeE Threads 

5.1 Thread Operations 

A thread changes states as it runs, waits to synchronize, or is ready to be run. 
A thread is in one of the following states: 

• Waiting 

The thread is not eligible to execute because it is synchronizing with 
another thread or with an external event. 

• Ready 

The thread is eligible to be executed by a processor. 

• Running 

The thread is currently being executed by a processor. 

• Tenninated 

The thread has completed all of its work. 

Figure 5-1 shows the transitions between states for a typical thread 
implementation. 

Figure 5-1. Thread State Transitions 

""'--w_a""!"'iti_ng----'H . Ready 

t 
I~ Running H Terminated 

The operations that you can perfonn include starting, waiting for, 
tenninating, and deleting threads. 

5.1.1 Starting a Thread 

5-2 

To start a thread, create it using the pthread _ create() routine. This routine 
creates the thread, assigns specified or default attributes, and starts 
execution of the function you specified as the thread's start routine. A 
unique identi fier (handle) for that thread is returned from the 
pthread _ create( ) routine. 

OSF DeE Application Development Guide 



Thread Concepts and Operations 

5.1.2 Terminating a Thread 

A thread exists until it terminates and the pthread _ detach() routine is 
called for the thread. The pthread _ detach() routine can be called for a 
thread before or after it terminates. If the thread tenninates before 
pthread _ detach() is called for it, then the thread continues to exist and can 
be synchronized (joined) until it is detached. Thus, the object (thread) can 
be detached by any thread that has access to a handle to the object. 

Note that pthread _ detach() must be called to release the memory allocated 
for the thread objects so that this storage does not build up and cause the 
process to run out of memory. For example, after a thread returns from a 
call to join, it detaches the joined-to thread if no other threads join with it. 
Similarly, if a thread has no other threads joining with it, it detaches itself so 
that its thread object is deallocated as soon as it terminates. 

A thread terminates for any of the following reasons: 

• The thread returns from its start routine; this is the usual case. 

• The thread calls the pthread _ exit( ) routine. 

The pthread _ exit() routine terminates the calling thread and returns a 
status value, indicating the thread's exit status to any potential joiners. 

• The thread is canceled by a call to the pthread _ cancel() routine. 

The pthread _ cancel() routine requests termination of a specified thread 
if cancellation is permitted. (See Section 5.6 for more information on 
canceling threads and controlling whether or not cancellation is 
permi tted.) 

• An error occurs in the thread. 

5.1.3 Waiting for a Thread to Terminate 

A thread waits for the termination of another thread by calling the 
pthread --ioin() routine. Execution in the current thread is suspended until 
the specified thread terminates. If multiple threads call this routine and 
specify the same thread, all threads resume execution when the specified 
thread terminates. 

OSF DeE Application Development Guide 5-3 



DeE Threads 

If you specify the current thread with the pthread join() routine, a 
deadlock results. (See Section 6.6.2 for more information.) 

Do not confuse pthread join() with other routines that cause waits and that 
are related to the use of a particular multithreading feature. For example, 
use pthread _ cond _ wait() or pthread _ cond _ timedwait() to wait for a 
condition variable to be signaled or broadcast (see Section 5.3.2 for 
information about condition variables). 

5.1.4 Deleting a Thread 

A thread is automatically deleted after it terminates; that is, no explicit 
deletion operation is required. Use pthread_detachO to free the storage of 
a terminated thread. Use pthread_cancelO to request that a running thread 
terminate itself. 

If the thread has not yet terminated, the pthread _ detach() routine marks 
the thread for deletion, and its storage is reclaimed immediately when the 
thread terminates. A thread cannot be joined or canceled after the 
pthread _ detach() routine is called for the thread, even if the thread has not 
yet terminated. 

If a thread that is not detached terminates, its storage remains so that other 
threads can join with it. Storage is reclaimed when the thread is eventually 
detached. 

For more information, see Section 5.1.2. 

5.2 Attributes Objects 

5-4 

An attributes object is used to describe the behavior of threads, mutexes, 
and condition variables. This description consists of the individual attribute 
values that are used to create an attributes object. Whether an attribute is 
valid depends on whether it describes threads, mutexes, or condition 
variables. 

When you create an object, you can accept the default attributes for that 
object, or you can specify an attributes object that contains individual 
attributes that you have set. For a thread, you can also change one or more 

OSF DeE Application Development Guide 



Thread Concepts and Operations 

attributes after thread execution starts; for example, calling the 
pthread _ setprio() routine to change the priority that YOll specified with the 
pthread _ aUr _ setprio( ) routine. 

The following subsections describe how to create and delete attributes 
objects and describe the individual attributes that you can specify for 
different objects. 

5.2.1 Creating an Attributes Object 

To create an attributes object, use one of the following routines, depending 
on the type of object to which the attributes apply: 

• The pthread _ aUr _ create( ) routine for thread attributes objects 

• The pthread _ condaUr _ create( ) routine for condition variable 
attributes objects 

• The pthread _ mutexaUr _ create() routine for mutex attributes objects 

These routines create an attributes object containing default values for the 
individual attributes. To modify any attribute values in an attributes object, 
use one of the set routines described in the following subsections. 

Creating an attributes object or changing the values in an attributes object 
does not affect the attributes of objects previously created. 

5.2.2 Deleting an Attributes Object 

To delete an attributes object, use one of the following routines: 

• The pthread _ aUr _ delete( ) routine for thread attributes objects 

• The pthread _ condaUr _ delete() routine for condition variable attributes 
objects 

• The pthread _ mutexaUr _ delete( ) routine for mutex attributes objects 

Deleting an attributes object does not affect the attributes of objects 
previously created. 

OSF DeE Application Development Guide 5-5 



DeE Threads 

5.2.3 Thread Attributes 

5-6 

A thread attributes object allows you to specify values for thread attributes 
other than the defaults when you create a thread with the pthread _ create( ) 
routine. To use a thread attributes object, perfonn the following steps: 

1. Create a thread attributes object by calling the 
pthread attr create() routine. 

2. Call the routines discussed in the following subsections to set the 
individual attributes of the thread attributes object. 

3. Create a new thread by calling the pthread _ create() routine and 
specifying the identifier of the thread attributes object. 

You have control over the following attributes of a new thread: 

• Scheduling policy attribute 

• Scheduling priority attribute 

• Inherit scheduling attribute 

• Stacksize attribute 

5.2.3.1 Scheduling Policy Attribute 

The scheduling policy attribute describes the overall scheduling policy of 
the threads in your application. A thread has one of the following scheduling 
policies: 

• SCHED _FIFO (First In, First Out) 

The highest-priority thread runs until it blocks. If there is more than one 
thread with the same priority, and that priority is the highest among 
other threads, the first thread to begin running continues until it blocks. 

• SCHED _ RR (Round Robin) 

The highest-priority thread runs until it blocks; however, threads of 
equal priority, if that priority is the highest among other threads, are 
timesliced. (Timeslicing is a mechanism that ensures that every thread is 
allowed time to execute by preempting running threads at fixed 
intervals.) 

OSF DeE Application Development Guide 



Thread Concepts and Operations 

• SCHED_OTHER, SCHED_FG_NP (Default) 

All threads are timesliced. SCHED OTHER and SCHED FG NP do - - -
the same thing; however, SCHED_FG_NP is simply more precise 
tenninology. The FG stands for foreground and the NP stands for 
nonportable. All threads running under the SCHED _ OTHER and 
SCHED _ FG _ NP policy, regardless of priority, receive some 
scheduling. Therefore, no thread is completely denied execution time. 
However, SCHED _OTHER and SCHED _ FG _ NP threads can be 
denied execution time by SCHED _FIFO or SCHED _ RR threads. 

Routines implemented by DCE Threads that are not specified by Draft 4 
of the POSIX l003.4a standard are indicated by an _np suffix on the 
name. These routines are not portable. 

• SCHED _ BG _ NP (Background) 

Like SCHED OTHER and SCHED_FG_NP, SCHED_BG_NP 
ensures that all threads, regardless of priority, receive some scheduling. 
However, SCHED _ BG _ NP can be denied execution by the 
SCHED _FIFO or SCHED _ RR policies. The BG stands for 
background and the NP stands for nonportable. 

The following two methods are used to set the scheduling policy attribute: 

• Set the scheduling policy attribute in the attributes object, which 
establishes the scheduling policy of a new thread when it is created. To 
do this, call the pthread _ attr _ setsched( ) routine. 

• Change the scheduling policy of an existing thread (and at the same 
time, the scheduling priority) by calling the pthread _ setscheduler( ) 
routine. 

Section 5.7 describes and shows the effect of scheduling policy on thread 
scheduling. 

5.2.3.2 Scheduling Priority Attribute 

The scheduling priority attribute specifies the execution of a thread. This 
attribute is expressed relative to other threads on a continuum of minimum 
to maximum for each scheduling policy. 

OSF DeE Application Development Guide 5-7 



DeE Threads 

5-8 

A thread's priority falls within one of the following ranges, which are 
implementation defined: 

• PRI FIFO MIN to PRI FIFO MAX - - --
• PRI RR MIN to PRI RR· MAX - - - -
• PRI OTHER MIN to PRI OTHER MAX - - - -
• PRI FG MIN NP to PRI FG MAX NP - - - - - -
• PRI BG MIN NP to PRI BG MAX NP - - - - - -

Section 5.7 describes how to specify priorities between the minimum and 
maximum values, and it also discusses how priority affects thread 
scheduling. 

The following two methods are used to set the scheduling priority attribute: 

• Set the scheduling priority attribute in the attributes object, which 
establishes the execution priority of a new thread when it is created. To 
do this, call the pthread _ attr _ setprio() routine. 

• Change the scheduling priority attribute of an existing thread by calling 
the· pthread_setprioO routine. (Call the pthread_setschedulerO 
routine to change both the scheduling priority and scheduling policy of 
an existing tJ'lread.) 

5.2.3.3 Inherit Scheduling Attribute 

The inherit scheduling attribute specifies whether a newly created thread 
inherits the scheduling attributes (scheduling priority and policy) of the 
creating thread (the default), or uses the scheduling attributes stored in the 
attributes object. Set this attribute by calling the 
pthread _ attr _setinheritsched() routine. 

OSF DeE Application Development Guide 



Thread Concepts and Operations 

5.2.3.4 Stacksize Attribute 

The stacksize attribute is the mInImUm size (in bytes) of the memory 
required for a thread's stack. The default value is machine dependent. Set 
this attribute by calling the pthread _ aUr _ setstacksize() routine. 

5.2.4 Mutex Attributes 

A mutex attributes object allows you to specify values for mutex attributes 
other than the defaults when you create a mutex with the 
pthread _ mutex Jnit() routine. 

The mutex type attribute specifies whether a mutex is fast, recursive, or 
nonrecursive. (See Section 5.3.1 for definitions.) Set the mutex type 
attribute by calling the pthread _ mutexaUr _ setkind _ np() routine. (Any 
routine with the _ np suffix is nonportable.) If you do not use a mutex 
attributes object to select a mutex type, calling the pthread _ mutex _ initO 
routine creates a fast mutex by default. 

5.2.5 Condition Variable Attributes 

Currently, attributes affecting condition variables are not defined. You 
cannot change any attributes in the condition variable attributes object. 

Section 5.3.2 describes the purpose and uses of condition variables. 

5.3 Synchronization Objects 

In a multithreaded program, you must use synchronization objects whenever 
there is a possibility of corruption of shared data or conflicting scheduling of 
threads that have mutual scheduling dependencies. The following 
subsections discuss two kinds of synchronization objects: mutexes and 
condition variables. 

OSF DeE Application Development Guide 5-9 



DeE Threads 

5.3.1 Mutexes 

A mutex (mutual exclusion) is an object that mUltiple threads use to ensure 
the integrity of a shared resource that they access, most commonly shared 
data. A mutex has two states: locked and unlocked. For each piece of 
shared data, all threads accessing that data must use the same mutex; each 
thread locks the mutex before it accesses the shared data and unlocks the 
mutex when it is finished accessing that data. If the mutex is locked by 
another thread, the thread requesting the lock is blocked when it tries to lock 
the mutex if you call pthread _ mutex Jock() (see Figure 5-2). The blocked 
thread continues and is not blocked if you call pthread _ mutex _ trylockO. 

Figure 5-2. Only One Thread Can Lock a Mutex 

5-10 

I block I 

Thread A Thread B 

Each mutex must be initialized. (To initialize mutexes as part of the 
program's one-time initialization code, see Section 5.4.) To initialize a 
mutex, use the pthread _ mutex Jnit() routine. This routine allows you to 
specify an attributes object, which allows you to specify the mutex type. 
The following are types of mutexes: 

• A fast mutex (the default) is locked only once by a thread. If the thread 
tries to lock the mutex again without first unlocking it, the thread waits 
for itself to release the first lock and deadlocks on itself. 

This type of mutex is called "fast" because it can be locked and 
unlocked more rapidly than a recursive mutex. It is the most efficient 
form of mutex. 

• A recursive mutex can be locked more than once by a given thread 
without causing a deadlock. The thread must call the 
pthread _ mutex _ unlock() routine the same number of times that it 
called the pthread _ mutex _lock() routine before another thread can 

OSF DCE Application Development Guide 



Thread Concepts and Operations 

lock the mutex. Recursive mutexes have the notion of a mutex owner. 
When a thread successfully locks a recursive mutex, it owns that mutex 
and the lock count is set to 1. Any other thread attempting to lock the 
mutex blocks until the mutex becomes unlocked. If the owner of the 
mutex attempts to lock the mutex again, the lock count is incremented, 
and the thread continues running. When an owner unlocks a recursive 
mutex, the lock count is decremented. The mutex remains locked and 
owned until the count reaches 0 (zero). It is an error for any thread other 
than the owner to attempt to unlock the mutex. 

A recursive mutex is useful if a thread needs exclusive access to a piece 
of data, and it needs to call another routine (or itself) that needs 
exclusive access to the data. A recursive mutex allows nested attempts 
to lock the mutex to succeed rather than deadlock. 

This type of mutex requires more careful programming. Never use a 
recursive mutex with condition variables because the implicit unlock 
performed for a pthread _ cood _ wait() or pthread _ cood _ timedwait( ) 
may not actually release the mutex. In that case, no other thread can 
satisfy the condition of the predicate. 

• A nonrecursive mutex is locked only once by a thread, like a fast mutex. 
If the thread tries to lock the mutex again without first unlocking it, the 
thread receives an error. Thus, nonrecursive mutexes are more 
informative than fast mutexes because fast mutexes block in such a case, 
leaving it up to you to determine why the thread no longer executes. 
Also, if someone other than the owner tries to unlock a nonrecursive 
mutex, an error is returned. 

To lock a mutex, use one of the following routines, depending on what you 
want to happen if the mutex is locked: 

• The pthread _ mutex _lock() routine 

If the mutex is locked, the thread waits for the mutex to become 
available. 

• The pthread _ mutex _ trylock( ) routine 

If the mutex is locked, the thread continues without waItmg for the 
mutex to become available. The thread immediately checks the return 
status to see if the lock was successful, and then takes whatever action is 
appropriate if it was not. 

When a thread is finished accessing a piece of shared data, it unlocks the 
associated mutex by calling the pthread _ mutex _ uolock() routine. 

OSF DeE Application Development Guide 5-11 



DeE Threads 

If another thread is waiting on the mutex, its execution is unblocked. If more 
than one thread is waiting on the mutex, the scheduling policy (for more 
information, see Section 5.2.3.1) and the thread scheduling priority (for 
more information, see Section 5.2.3.2) determine which thread acquires the 
mutex. 

You can delete a mute x and reclaim its storage by calling the 
pthread _ mutex _ destroy() routine. Use this routine only after the mutex is 
no longer needed by any thread. Mutexes are automatically deleted when 
the program terminates. 

5.3.2 Condition Variables 

5-12 

A condition variable allows a thread to block its own execution until some 
shared data reaches a particular state. Cooperating threads check the shared 
data and wait on the condition variable. For example, one thread in a 
program produces work-to-do packets and another thread consumes these 
packets (does the work). If the work queue is empty when the consumer 
thread checks it, that thread waits on a work-to-do condition variable. When 
the producer thread puts a packet on the queue, it signals the work-to-do 
condition variable. 

A condition variable is used to wait for a shared resource to assume some 
specific state (a predicate). A mutex, on the other hand, is used to reserve 
some shared resource while the resource is being manipulated. For 
example, a thread A may need to wait for a thread B to finish a task X before 
thread A proceeds to execute a task Y. Thread B can tell thread A that it has 
finished task X by using a variable they both have access to, a condition 
variable. When thread A is ready to execute task Y, it looks at the condition 
variable to see if thread B is finished (see Figure 5-3). 

OSF DeE Application Development Guide 



Thread Concepts and Operations 

Figure 5-3. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds 

unlock 

lock 

I 
Thread A 

First, thread A locks the mutex named mutex _ready that is associated with 
the condition variable. Then it reads the predicate associated with the 
condition variable named ready. If the predicate indicates that thread B has 
finished task X, then thread A can unlock the mutex and proceed with task 
Y. If the condition variable predicate indicated that thread B has not yet 
finished task X, however, then thread A waits for the condition variable to 
change. Thread A calls the wait primitive. Waiting on the condition 
variable automatically unlocks the mutex, allowing thread B to lock the 
mutex when it has finished task X (see Figure 5-4). 

OSF ~CE Application Development Guide 5-13 



DeE Threads 

Figure 5-4. Thread B Signals Condition Ready 

5-14 

Thread B 

Thread B updates the predicate named ready associated with the condition 
variable to the state thread A is waiting for. It also executes a signal on the 
condition variable while holding the mutex mutex _ready. Thread A wakes 
up, verifies that the condition variable is in the correct state, and proceeds to 
execute task Y (see Figure 5-3). 

Note that although the condition variable is used for explicit 
communications among threads, the communications are anonymous. 
Thread B does not necessarily know that thread A is waiting on the 
condition variable that thread B signals. And thread A does not know that it 
was thread B that woke it up from its wait on the condition variable. 

Use the pthread_coodJoitO routine to create a condition variable. To 
create condition variables as part of the program's one-time initialization 
code, see Section 5.4. 

Use the pthread _ cood _ waitO routine to cause a thread to wait until the 
condition is signaled or broadcast. This routine specifies a condition 
variable and a mutex that you have locked. (If you have not locked the 
mutex, the results of pthread _ cood _ wait() are unpredictable.) This routine 

OSF DCE Application Development Guide 
I 



Thread Concepts and Operations 

unlocks the mutex and causes the calling thread to wait on the condition 
variable until another thread calls one of the following routines: 

• The pthread _ cond _signal() routine to wake one thread that is waiting 
on the condition variable 

• The pthread _ cond _ broadcast() routine to wake all threads that are 
waiting on a condition variable 

If you want to limit the time that a thread waits for a condition to be 
signaled or broadcast, use the pthread _ cond _ timedwait() routine. This 
routine specifies the condition variable, mutex, and absolute time at which 
the wait should expire if the condition variable is not signaled or broadcast. 

You can delete a condition variable and reclaim its storage by calling the 
pthread_cond_destroy() routine. Use this routine only after the condition 
variable is no longer needed by any thread. Condition variables are 
automatically deleted when the program terminates. 

5.3.3 Other Synchronization Methods 

There is another synchronization method that is not anonymous: the join 
primitive. This allows a thread to wait for another specific thread to 
complete its execution. When the second thread is finished, the first thread 
unblocks and continues its execution. Unlike mutexes and condition 
variables, the join primitive is not associated with any particular shared 
data. 

5.4 One-Time Initialization Routines 

You probably have one or more routines that must be executed before any 
thread executes code in your application, but must be executed only once 
regardless of the sequence in which threads start executing. For example, 
you may want to create mutexes and condition variables (each of which 
must be created only once) in an initialization routine. Multiple threads can 
call the pthread _ once() routine, or the pthread _ once() routine can be 
called multiple times in the same thread, resulting in only one call to the 
specified routine. 

OSF DeE Application Development Guide 5-15 



DeE Threads 

Use the pthread_onceO routine to ensure that your application 
initialization routine is executed only a single time; that is, by the first 
thread that tries to initialize the application. This routine is the only way to 
guarantee that one-time initialization is performed in a multithreaded 
environment on a given platform. The pthread _ once( ) routine is of 
particular use for runtime libraries, which are often called for the first time 
after multiple threads are created. 

5.5 Thread-Specific Data 

5-16 

The thread-speci fic data interfaces allow each thread to associate an 
arbitrary value with a shared key value created by the program. 

Thread-specific data is like a global variable in which each thread can keep 
its own value, but is accessible to the thread anywhere in the program. 

Use the following routines to create and access thread-speci fic data: 

• The pthread _ keycreate( ) routine to create a unique key value 

• The pthread _ setspecific( ) routine to associate data with a key 

• The pthread _getspecific() routine to obtain the data associated with a 
key 

The pthread _ keycreate() routine generates a unique key value that is 
shared by all threads in the process. This. key is the identifier of a piece of 
thread-speci fic data. Each thread uses the same key value to assign or 
retrieve a thread-specific value. This keeps your data separate from other 
thread-specific data. One call to the pthread_keycreateO routine creates a 
cell in all threads. Call this routine to specify. a routine to be called to 
destroy the context value associated with this key when the thread 
terminates. 

The pthread_setspecificO routine associates the address of some data with 
a specific key. Multiple threads associate different data (by specifying 
different addresses) with the same key. For example, each thread points to a 
different block of dynamically allocated memory that it has reserved. 

The pthread _getspecific( ) routine obtains the address of the thread-speci fic 
data value associated with a specified key. Use this routine to locate the data 
associated with the current thread's context. 

OSF DeE Application Development Guide 



Thread Concepts and Operations 

5.6 Thread Cancellation 

Canceling is a mechanism by which one thread terminates another thread 
(or itself). When you request that a thread be canceled, you are requesting 
that it terminate as soon as possible. However, the target thread can control 
how quickly it terminates by controlling its general cancelability and its 
asynchronous cancelability. 

The following is a list of the pthread calls that are cancellation points: 

• The pthread_setasynccancel() routine 

• The pthread _ testcancel ( ) routine 

• The pthread _delay _ np() routine 

• The pthread .Join( ) routine 

• The pthread _ cond _ wait() routine 

• The pthread _ cond _ timedwait( ) routine 

General cancelability is enabled by default. A thread is canceled only at 
specific places in the program; for example, when a call to the 
pthread _ cond _ wait() routine is made. If general cancelability is enabled, 
request the delivery of any pending cancel request by using the 
pthread _ testcancel( ) routine. This routine allows you to permit 
cancellation to occur at places where it may not otherwise be permitted 
under general cancelability, and it is especially useful within very long 
loops to ensure that cancel requests are noticed within a reasonable time. 

If you disable general cancelability, the thread cannot be tenninated by any 
cancel request. Disabling general cancel ability means that a thread could 
wait indefinitely if it does not come to a normal conclusion; therefore, be 
careful about disabling general cancelability. 

Asynchronous cancelability, when it is enabled, allows cancels to be 
delivered to the enabling thread at any time, not only at those times that are 
permitted when just general cancelability is enabled. Thus, use 
asynchronous cancellation primarily during long processes that do not have 
specific places for cancel requests. Asynchronous cancelability is disabled 
by default. Disable asynchronous cancelability when calling threads 
routines or any other runtime library routines that are not explicitly 
documented as cancel-safe. 

OSF DeE Application Development Guide 5-17 



DeE Threads 

Note: If general cancelability is disabled, the thread cannot be 
canceled, regardless of whether asynchronous cancelability is 
enabled or disabled. The setting of asynchronous cancelability 
is relevant only when general cancelability is enabled. 

Use the following routines to control the canceling of threads: 

• The pthread_setcancelO routine to enable and disable general 
cancelability 

• The pthread_testcancelO routine to request delivery of a pending 
cancel to the current thread 

• The pthread _setasynccancel() routine to enable and disable 
asynchronous cancelability 

• The pthread _ cancel( ) routine to request that a thread be canceled 

5.7 Thread Scheduling 

5-18 

Threads are scheduled according to their scheduling priority and how the 
scheduling policy treats those priorities. To understand the discussion in this 
section, you must understand the concepts in the following sections of this 
chapter: 

• The "Scheduling Policy Attribute" section (5.2.3.1) discusses 
scheduling policies, including how each policy handles thread 
scheduling priority. 

• The "Scheduling Priority Attribute" section (5.2.3.2) discusses thread 
scheduling priorities. 

• The "Inherit Scheduling Attribute" section (5.2.3.3) discusses 
inheritance of scheduling attributes by created threads. 

To specify the minimum or maximum priority, use the appropriate symbol; 
for example, PRI _ OTHER _MIN or PRI _ OTHER_MAX. To specify a 
value between the minimum and maximum priority, use an appropriate 
arithmetic expression. For example, to specify a priority midway between 
the minimum and maximum for the default scheduling policy, specify the 
following concept using your programming language's syntax: 

OSF DeE Application Development Guide 



Thread Concepts and Operations 

If your expression results in a value outside the range of minimum to 
maximum, an error results when you use it. Priority values are integers. 

To show results of the different scheduling policies, consider the following 
example: a program has four threads, called threads A, B, C, and D. For 
each scheduling policy, three scheduling priorities have been defined: 
minimum, middle, and maximum. The threads have the priorities shown in 
the following table: 

Thread Priority 

A Minimum 
B Middle 
C Middle 
D Maximum 

Figures 5-5 through 5-7 show execution flows, depending on whether the 
threads use the SCHED_FIFO, SCHED_RR, or SCHED_OTHER 
(default) scheduling policy. Assume that all waiting threads are ready to 
execute when the current thread waits or terminates and that no higher 
priority thread is awakened while a thread is executing (during the flow 
shown in each figure). 

Figure 5-5 shows a flow with SCHED FIFO (First In, First Out) 
scheduling. 

Figure 5-5. Flow with SCHED_FIFO Scheduling 

All four threads are timesliced. Threads with higher priority are generally 
scheduled when more than one thread is ready to run; however, to ensure 
fairness, all threads are given some time. The effective priority of threads 
may be modified over time by the scheduler, depending on the use of 
processor resources. 

OSF DCE Application Development Guide 5-19 



DeE Threads 

Figure 5-6 shows a flow with SCHED _ RR (Round Robin) scheduling. 

Figure 5-6. Flow with SCHED_RR Scheduling 

D~B~C~B~C~A~ 

Thread D executes until it waits or terminates; then threads Band C are 
timesliced because they both have middle priority; then thread A executes. 

Figure 5-7 shows a flow with SCHED_OTHER (default) scheduling. 

Figure 5-7. Flow with SCHED_OTHER Scheduling 

5-20 

D~B~C~A~B~C~ 

Thread D executes until it waits or terminates; then threads B, C, and A are 
timesliced, even though thread A has a lower priority than the other two. 
Thread A receives less execution time than thread B or C if either is ready 
to execute as often as thread A is. However, the default scheduling policy 
protects thread A against being blocked from executing indefinitely. 

Because low-priority threads eventually run, the default scheduling policy 
protects against the problem of priority inversion discussed in Section 6.5. 

OSF DCE Application Development Guide 



Chapter 6 

Programming with Threads 

This chapter discusses issues you face when writing a multithreaded 
program and how to deal with those issues. 

The topics discussed in this chapter are as follows: 

• Calling UNIX services 

• Using signals 

• Nonthreaded libraries 

• Avoiding nonreentrant software 

• Avoiding priority inversion 

• Using synchronization objects 

• Signaling a condition variable 

OSF DeE Application Development Guide 6-1 



DeE Threads 

6.1 Calling UNIX Services 

On a UNIX system that does not have kernel support for threads, making 
system and library calls from within a multithreaded program raises the 
following issues: 

• System calls may not be thread-reentrant. 

• If a system call blocks, it blocks the entire process instead of blocking 
the calling thread only. 

6.1.1 Jacket Routines 

6-2 

To resolve the previous two issues, DCE Threads provides jacket routines 
for a number of UNIX system calls. Threads call the jacket routine instead 
of the UNIX system service; this allows DCE Threads to take action on 
behalf of the thread before or after calling the system service. For example, 
the jacket routines ensure that only one thread calls any particular service at 
a time to avoid problems with system calls that are not thread-reentrant. 

Jacket routines are provided for UNIX input and output system calls 
(documented in the UNIX Programmer's Manual) and the forkO and 
sigactionO system calls. Jackets are not provided for any other UNIX 
system calls or for any of the C runtime library services (documented in the 
UNIX Programmer's Manual). See /usr/include/dce/cma_ux.h for the full 
list of jacket routines. 

6.1.1.1 Input and Output Jacket Routines 

Jacket routines are provided for routines that perform input and output 
operations. Examples of these operations are as follows: 

• Open or create files, pipe symbols, and sockets 

• Send and receive messages on sockets 

• Read and write files and pipe symbols 

OSF DeE Application Development Guide 



Programming with Threads 

Jacket routines are provided for Input/Output services so that DeE Threads 
can determine when to issue or block the service call based on the results of 
the select() system call. For these UNIX services, DeE Threads can 
determine whether issuing the system call causes the process to block. If the 
system call causes the process to block, DeE Threads blocks only the 
calling thread and schedules another thread to run in its place. 

Periodically, DeE Threads checks whether the original calling thread can 
issue its operation without blocking the process. When the thread runs 
without blocking the process, that thread is placed back into the queue of 
ready threads, and at its tum, the thread resumes execution and issues the 
system call. Therefore, the jacket routines provide thread-synchronous I/O 
operations where otherwise the system calls block the entire process. 

6.1.1.2 The fork( ) Jacket Routine 

Jackets are provided for the fork() system call. A specific thread 
environment must exist in the forked process when it resumes (begins) 
execution. These jacket routines allow code to be executed in the context of 
the new process before the user code resumes execution in it. 

6.1.1.3 The atfork( ) Routine 

The atfork() routine allows an application or library to ensure predicted 
behavior when the fork() routine is used in a multithreaded environment. 
Using the fork() routine from a threaded application or from an application 
that uses threaded libraries can result in unpredictable behavior. For 
example, one thread has a mutex locked, and the state covered by that mutex 
is inconsistent while another thread calls the fork() routine. In the child 
process, the mutex will be in the locked state, and it cannot be unlocked 
because only the forking thread exists in the child process. Having the child 
reinitialize the mutex is unsatisfactory because this approach does not 
resolve the question of how to correct the inconsistent state in the child. 

OSF DeE Application Development Guide 6-3 



DeE Threads 

6-4 

The atfork( ) routine provides a way for threaded applications or libraries to 
protect themselves when a fork() occurs. The atfork() routine allows you 
to set up routines that will run at the following times: 

• Prior to the fork( ) in the parent process 

• After the fork() in the child process 

• After the fork() in the parent process 

Within these routines you can ensure that all mutexes are locked prior to the 
fork() and that they are unlocked after the fork(), thereby protecting any 
data or resources associated with the mutexes. You can register any number 
of sets of atfork( ) routines; that is, any number of libraries or user programs 
can set up atfork( ) routines and they will all execute at fork( ) time. 

Note: Using the atfork() routine can potentially cause a deadlock if 
two applications or libraries call into one another using calls 
that require locking. Specifically, when these component's 
routines use the atfork() routine to run prior to the fork in the 
parent process, a deadlock may occur when these routines are 
executing. 

6.1.1.4 Using the Jacketed System Calls 

You do not have to rename your system calls to take advantage of the jacket 
routines. Macros put the jacket routines into place when you compile your 
program; these macros rename the jacketed system calls to the name of the 
DCE Threads jacket routine. Thus, a reference to the DCE Threads jacket 
routine is compiled into your code instead of a reference to the system call. 
When the code is executed, it calls the jacket routine, which then calls the 
system on your code's behalf. 

If you do not wish to use any of the jacket routines, you can add the 
following line to your program before any of the thread header files: 
#define _CMA_NOWRAPPERS_. By adding this definition, you prevent the 
jacket routines from being substituted for the real routines. 

If you wish to use most of the jackets but do not wish to use a specific 
jacket, you can undefine a specific jacket by adding the following directive 
after the thread header files: #undef <routine_name>. For example, to 
not use the fork jacket, you can add: #undef fork. 

OSF DeE Application Development Guide 



Programming with Threads 

6.1.2 Blocking System Calls 

DCE Threads provides jacket routines that make certain system calls 
thread-synchronous. If calling one of these jacketed system calls would 
normally block the process, the jacket routine ensures that only the calling 
thread is blocked and that the process remains available to execute other 
threads. Examples of jacketed system calls include read(), write(), 
open(), socket(), send(), and recv(). 

If a thread makes a call to any of the other nonjacketed blocking system 
calls (or if it calls one of the jacketed system calls without going through 
the jacket), then when the system call blocks the thread, it blocks the whole 
process, preventing any other threads in the process from executing. 
Examples of nonjacketed system calls include wait( ), sigpause( ), 
msgsnd( ), msgrcv(), and semop(). 

Some care must be used when calling nonjacketed blocking system calls 
from a multithreaded program. Other threads in the program may not be 
able to tolerate not running for an extended period of time while the process 
blocks for the system call. If your program must make use of such system 
calls, the calling thread should specify a nonblocking or polling option to 
the system call. If the call is not successful, then the calling thread should 
retry; however, to prevent the retry code from becoming a hot loop, a yield 
or delay function call should be inserted into the path. This gives other 
threads in the program a chance to run between poll attempts. 

6.1.3 Calling fork( ) in a Multithreaded Environment 

The fork() system call creates an exact duplicate of the address space from 
which it is called, resulting in two address spaces executing the same code. 
Problems can occur if the forking address space has multiple threads 
executing at the time of the fork(). When multithreading is a result of 
library invocation, threads are not necessarily aware of each other's 
presence, purpose, actions, and so on. Suppose that one of the other threads 
(any thread other than the one doing the fork()) has the job of deducting 
money from your checking account. Clearly, you do not want this to happen 
twice as a result of some other thread's decision to call fork(). 

Because of these types of problems, which in general are problems of 
threads modifying persistent state, POSIX defined the behavior of fork() in 

OSF DeE Application Development Guide 6-5 



DeE Threads 

6-6 

the presence of threads to propagate only the forking thread. This solves the 
problem of improper changes being made to persistent state. However, it 
causes other problems, as discussed in the next paragraph. 

In the POSIX model, only the forking thread is propagated. All the other 
threads are eliminated without any form of notice; no cancels are sent and 
no handlers are run. However, all the other portions of the address space are 
cloned, including all the mutex state. If the other thread has a mutex 
locked, the mutex will be locked in the child process, but the lock owner 
will not exist to unlock it. Therefore, the resource protected by the lock will 
be permanently unavailable. 

The fact that there may be mutexes outstanding only becomes a problem if 
your code attempts to lock a mutex that could be locked by another thread at 
the time of the fork(). This means that you cannot call outside of your own 
code between the call to forkO and the call to execO. Note that a call to 
malloc(), for example, is a call outside of the currently executing 
application program and may have a mutex outstanding. The following code 
obeys these guidelines and is therefore safe: 

fork (); 
a = 1+2; /* some inline processing */ 
exec () ; 

Similarly, if your code calls some of your own code that does not make any 
calls outside of your code and does not lock any mutexes that could possibly 
be locked in another thread, then your code is safe. 

One solution to the problem of calling fork() in a multithreaded 
environment exists. (Note that this method will not work for server 
application code or any other application code that is invoked by a callback 
from a library.) Before an application performs a forkO followed by 
something other than exec(), it must cancel all of the other threads. After it 
joins the canceled threads, it can safely fork() because it is the only thread 
in existence. This means that libraries that create threads must establish 
cancel handlers that propagate the cancel to the created threads and join 
them. The application should save enough state so that the threads can be 
recreated and restarted after the fork( ) processing completes. 

OSF DeE Application Development Guide 



Programming with Threads 

6.2 Using Signals 

The following subsections cover three topics: types of signals, DCE Threads 
signal handling, and alternatives to using signals. 

6.2.1 Types of Signals 

Signals are delivered as a result of some event. UNIX signals are grouped 
into the following four categories of pairs that are orthogonal to each other: 

• Terminating and synchronous 

• Terminating and asynchronous 

• Nonterminating and synchronous 

• N onterminating and asynchronous 

The action that DCE Threads takes when a particular signal is delivered 
depends on the characteristics of that signal. 

6.2.1.1 Terminating Signals 

Terminating signals result in the termination of the process by default. 
Whether a particular signal is terminating or not is independent of whether 
it is synchronously or asynchronously delivered. 

6.2.1.2 Nonterminating Signals 

N onterminating signals do not result in the termination of the process by 
default. 

N onterminating signals represent events that can be either internal or 
external to the process. The process may require notification or ignore these 
events. When a nonterminating asynchronous signal is delivered to the 

OSF DeE Application Development Guide 6-7 



DeE Threads 

6-8 

process, DeE Threads awakens any threads that are waiting for the signal. 
This is the only action that DeE Threads takes because, by default, the 
signal has no effect. 

6.2.1.3 Synchronous Signals 

Synchronous signals are the result of an event that occurs inside a process 
and are delivered synchronously with respect to that event. For example, if a 
floating-point calculation results in an overflow, then a SIGFPE (floating
point exception signal) is delivered to the process immediately following 
the instruction that resulted in the overflow. 

Synchronous, terminating signals represent an error that has occurred in the 
currently executing thread. 

6.2.1.4 Asynchronous Signals 

Asynchronous signals are the result of an event that is external to the 
process and are delivered at any point in a thread's execution when such an 
event occurs. For example, when a user running a program types the 
interrupt character at the terminal (generally <Ctrl-c», a SIGINT 
(interrupt signal) is delivered to the process. 

Asynchronous, terminating signals represent an occurrence of an event that 
is external to the process, and if unhandled, results in the termination of the 
process. When an asynchronous terminating signal is delivered, DeE 
Threads catches it and checks to see if any threads are waiting for it. If 
threads are waiting, they are awakened, and the signal is considered handled 
and is dismissed. If there are no waiting threads, then DeE Threads causes 
the process to be terminated as if the signal had not been handled. 

OSF DeE Application Development Guide 



Programming with Threads 

6.2.2 DeE Threads Signal Handling 

DeE Threads provides the POSIX sigwait() service to allow threads to 
perfonn activities similar to signal handling without having to deal with 
signals directly. It also provides a jacket for sigaction() that allows each 
thread to have its own handler for synchronous signals. 

In order to provide these mechanisms, DeE Threads installs signal handlers 
for most of the UNIX signals during initialization. 

DeE Threads do not provide handlers for several UNIX signals. Those 
signals and a reason why handlers are not provided are listed in the 
following table. 

Signal Reason Handler Is Not Provided 

SIGKILL and SIGSTOP These signals cannot be caught 
by user mode code. 

SIGTRAP Catching this signal interferes 
with debugging. 

SIGTSTP and SIGQUIT These signals are caught only 
while a thread has issued a 
sigwait() call because their 
default actions are otherwise 
valuable. 

6.2.2.1 The POSIX sigwait( ) Service 

The DeE Threads implementation of the POSIX sigwait() service allows 
any thread to block until one of a specified set of signals is delivered. A 
thread waits for any of the asynchronous signals, except for SIGKILL and 
SIGSTOP. 

A thread cannot wait for a synchronous signal. This is because synchronous 
signals are the result of an error during the execution of a thread, and if the 
thread is waiting for a signal, then it is not executing. Therefore, a 
synchronous signal cannot occur for a particular thread while it is waiting, 

OSF DeE Application Development Guide 6-9 



DeE Threads 

and so the thread waits forever. POSIX stipulates that the thread must block 
the signals (using the UNIX system service sigprocmaskO) it waits for 
before calling sigwait(). 

6.2.2.2 The POSIX sigaction( ) Service 

The DeE Threads implementation of the POSIX sigaction() service allows 
for per-thread handlers to be installed for catching synchronous signals. The 
sigaction() routine only modifies behavior for individual threads and only 
works for synchronous signals. Setting the signal action to SIG _ DFL for a 
specific signal will restore the thread's default behavior for that signal. 
Attempting to set a signal action for an asynchronous signal is an error. 

6.2.2.3 The itimer VTALARM 

DeE Threads installs a handler for the itimer VTALARM. Therefore, 
VTALARM is unavailable for use by other applications. 

6.2.3 Alternatives to Using Signals 

6-10 

Avoid using UNIX signals in multithreaded programs. DeE Threads 
provides alternatives to signal handling. These alternatives are discussed in 
more detail in Sections 6.6 and 6.7. 

Note: In order to implement these alternatives, DeE Threads must 
install its own signal handlers. These are installed when DeE 
Threads initializes itself, typically on the first thread-function 
call. At this time, any existing signal handlers are replaced. 

Following are several reasons for avoiding signals: 

• They cannot be used in a modular way in a multithreaded program. 

• They are unnecessary when used as an asynchronous programming 
technique in a multithreaded program. 

OSF DeE Application Development Guide 



Programming with Threads 

• There are almost no threads services available at signal level. 

• There is no reliable, portable way to modify predicates. 

• The signal-handler interface is unsuitable for use with threads. (For 
example, there is one signal action per signal per process, there is one 
signal mask per process, and sigpause( ) blocks the whole process.) 

In a multithreaded program, signals cannot be used in a modular way 
because, on most current UNIX implementations, signals are inherently a 
process construct. There is only one instantiation of each signal and of each 
signal handler routine for all of the threads in an application. If one thread 
handles a particular signal in one way, and a different thread handles the 
same signal in a different way, then the thread that installs its signal handler 
last handles the signal. This applies only to asynchronously generated 
signals; synchronous signals can be handled on a per-thread basis using the 
DCE Threads sigaction( ) jacket. 

Do not use asynchronous programming techniques in conjunction with 
threads, particularly those that increase parallelism such as using timer 
signals and I/O signals. These techniques can be complicated. They are also 
unnecessary because threads provide a mechanism for parallel execution 
that is simpler and less prone to error where concurrence can be of value. 
Furthermore, most of the threads routines are not supported for use in 
interrupt routines (such as signal handlers), and portions of runtime libraries 
cannot be used reliably inside a signal handler. 

6.3 Nonthreaded Libraries 

As programming with threads becomes common practice, you need to 
ensure that threaded code and nonthreaded code (code that is not designed 
to work with threads) work properly together in the same application. For 
example, you may write a new application that uses threads (for example, 
an RPC server), and link it with a library that does not use threads (and is 
thus not thread-safe). In such a situation you can do one of the following: 

• Work with the nonthreaded software. 

• Change the nonthreaded software to be thread-safe. 

OSF DeE Application Development Guide 6-11 



DeE Threads 

6.3.1 Working with Nonthreaded Software 

Thread-safe code is code that works properly in a threaded environment. To 
work with nonthread-safe code, associate the global lock with all calls to 
such code. 

You can implement the lock on the side of the routine user or the routine 
provider. For example, you can implement the lock on the side of the 
routine user if you write a new application like an RPC server that uses 
threads, and you link it with a library that does not. Or, if you have access to 
the nonthreaded code, the locks can be placed on the side of the routine 
provider, within the actual routine. Implement the locks as follows: 

1. Associate one lock, a global lock, with execution of such code. 

2. Require all of your threads to lock prior to execution of nonthreaded 
code. 

3. Perform an unlock when execution is complete. 

By using the global lock you ensure that only one thread executes in outside 
libraries, which may call each other, and in unknown code. Using a single 
global lock is safer than using multiple local locks because it is difficult to 
be aware of everything a library may be doing or of the interactions that 
library can have with other libraries. 

6.3.2 Changing Nonthreaded Code to be Thread-Reentrant 

6-12 

Thread-reentrant code is code that works properly while multiple threads 
execute it concurrently. Thread-reentrant code is thread-safe, but thread
safe code may not be thread-reentrant. Document your code as being 
thread-safe or thread-reentrant. 

More work is involved in making code thread-reentrant than in making code 
thread-safe. To make code thread-reentrant, do the following: 

1. Use proper locking protocols to access global or static variables. 

2. Use proper locking protocols when you use code that is not thread
safe. 

3. Store thread-speci fic data on the stack or heap. 

OSF DeE Application Development Guide 



Programming with Threads 

4. Ensure that the compiler produces thread-reentrant code. 

5. Document your code as being thread-reentrant. 

/' 

6.4 Avoiding Nonreentrant Software 

The following subsections discuss two methods to help you avoid the 
pitfalls of nonreentrant software. These methods are as follows: 

• Global lock 

• Thread-specific storage 

6.4.1 Global Lock 

Use a global lock, which has the characteristics of a recursive mutex, 
instead of a regular mutex when calling routines that you think are 
nonreentrant. (When in doubt, assume the code is nonreentrant.) 

The pthread_Iock_global_npO routine is a locking protocol that is used to 
call nonreentrant routines, often found in existing library packages that 
were not designed to run in a multithreaded environment. 

The way to call a library function that is not reentrant from a multithreaded 
program is to protect the function with a mutex. If every function that calls 
a library locks a particular mutex before the call and releases the mutex 
after the call, then the function completes without interference. However, 
this is difficult to do successfully because the function may be called by 
many libraries. A global lock solves this problem by providing a universal 
lock. Any code that calls any nonreentrant function uses the same lock. 

To lock a global lock, call the pthread_global_lock_npO routine. To 
unlock a global lock, call the pthread _global_unlock _ np( ) routine. 

Note: Many COBOL and FORTRAN compilers generate inherently 
nonreentrant code. Many C, Ada, Pascal, and BLISS 
compilers generate reentrant code by default. It is possible to 
write nonreentrant code in the reentrant languages by not 
following a locking protocol. 

OSF DeE Application Development Guide 6-13 



DeE Threads 

6.4.2 Thread-Specific Storage 

To avoid nonreentrancy when writing new software, avoid using global 
variables to store data that is thread-speci fic data. (See Section 5.5 for 
more information.) 

Alternatively, allocate thread-specific data on the stack or heap and 
explicitly pass its address to called routines. 

6.5 Avoiding Priority Inversion 

6-14 

Priority inversion occurs when interaction among three or more threads 
blocks the highest-priority thread from executing. For example, a high
priority thread waits for a resource locked by a low-priority thread, and the 
low-priority thread waits while a middle-priority thread executes. The 
high-priority thread is made to wait while a thread of lower priority (the 
middle-priority thread) executes. 

To avoid priority inversion, associate a priority with each resource and 
force any thread using that object to first raise its priority to that associated 
with the object. This method of avoiding priority inversion is not a 
complete solution because all threads will then block at the same ceiling 
priority and be unblocked in FIFO order rather than by their actual priority. 

The SCHED _OTHER (default) scheduling policy prevents priority 
inversion from causing a complete blockage of the high-priority thread 
because the low-priority thread is permitted to execute and release the 
resource. The SCHED _FIFO and SCHED _ RR policies, however, do not 
force resumption of the low-priority thread if the middle-priority thread 
executes indefinitely. 

OSF DeE Application Development Guide 



Programming with Threads 

6.6 Using Synchronization Objects 

The following subsections discuss the use of mutexes to prevent two 
potential problems: race conditions and deadlocks. Also discussed is why 
you should signal a condition variable with the associated mutex locked. 

6.6.1 Race Conditions 

A race condition occurs when two or more threads perform an operation, 
and the result of the operation depends on unpredictable timing factors; 
specifically, when each thread executes and waits and when each thread 
completes the operation. 

An example of a race condition is as follows: 

1. Both A and B are executing (X = X + 1). 

2. A reads the value of X (for example, X = 5). 

3. B comes in and reads the value of X and increments it (making X = 
6). 

4. A gets rescheduled and now increments X. Based on its earlier read 
operation, A thinks (X+ 1 = 5+1 = 6). X is now 6. It should be 7 
because it was incremented once by A and once by B. 

To avoid race conditions, ensure that any variable modified by more than 
one thread has only one mutex associated with it. Do not assume that a 
simple add operation can be completed without allowing another thread to 
execute. Such operations are generally not portable, especially to 
multiprocessor systems. If it is possible for two threads to share a data 
point, use a mutex. 

OSF DeE Application Development Guide 6"':"'15 



DeE Threads 

6.6.2 Deadlocks 

A deadlock occurs when one or more threads are permanently blocked from 
executing because each thread waits on a resource held by another thread in 
the deadlock. A thread can also deadlock on itself. 

The following is one technique for avoiding deadlocks: 

1. Associate a sequence number with each mutex. 

2. Lock mutexes in sequence. 

3. Do not attempt to lock a mutex with a sequence number lower than 
that of a mutex the thread already holds. 

Another technique, which is useful when a thread needs to lock the same 
mutex more than once before unlocking it, is to use a recursive mutex. This 
technique prevents a thread from deadlocking on itself. 

6.7 Signaling a Condition Variable 

6-16 

When you are signaling a condition variable and that signal may cause the 
condition variable to be deleted, it is recommended that you signal or 
broadcast with the mutex locked. 

The recommended coding for signaling a condition variable appears at the 
end of this chapter. The following two C code fragments show coding that 
is not recommended. The following C code fragment is executed by a 
releasing thread: 

pthread_rnutex_lock (rn); 
/* Change shared variables to allow */ 
/* another thread to proceed */ 
pthread_rnutex_unlock (rn); <---- Point A 
pthread_cond_signal (cv); <---- Statement 1 

OSF DeE Application Development Guide 



Programming with Threads 

The following C code fragment IS executed by a potentially blocking 
thread: 

pthread_mutex_lock (m); 
while (! predicate ... 

pthread_cond_wai t (cv, m); 

Note: It is possible for a potentially blocking thread to be running at 
Point A while another thread is interrupted. The potentially 
blocking thread can then see the predicate true and therefore 
not become blocked on the condition variable. 

Signaling a condition variable without first locking a mutex is not a 
problem. However, if the released thread deletes the condition variable 
without any further synchronization at Point A, then the releasing thread 
will fail when it attempts to execute Statement 1 because the condition 
variable no longer exists. 

This problem occurs when the releasing thread is a worker thread and the 
waiting thread is the boss thread, and the last worker thread tells the boss 
thread to delete the variables that are being shared by boss and worker. 

The following C code fragment shows the recommended coding for 
signaling a condition variable while the mutex is locked: 

pthread_mutex_lock (m); 
/* Change shared variables to allow */ 
/* some other thread to proceed */ 

pthread_cond_signal (CV)i 

pthread_mutex_Uillock (m)i 

OSF DeE Application Development Guide 

<---- Statement 1 

6-17 





Chapter 7 

Using the DCE Threads Exception
Returning Interface 

DeE Threads provides the following two ways to obtain infonnation about 
the status of a threads routine: 

• The routine returns a status value to the thread. 

• The routine raises an exception. 

Before you write a multithreaded program, you must choose only one of the 
preceding two methods of receiving status. These two methods cannot be 
used together in the same code module. 

The POSIX P1003.4a (pthreads) draft standard specifies that errors be 
reported to the thread by setting the external variable errno to an error code 
and returning a function value of -1. The threads reference pages document 
this status-value-returning interface (see the aSF DeE Application 
Development Reference). However, an alternative to status values is 
provided by DeE Threads in the exception-returning interface. 

This chapter introduces and provides conventions for the modular use of the 
exception-returning interface to DeE Threads. 

OSF DeE Application Development Guide 7-1 



DeE Threads 

7.1 Syntax for C 

7-2 

Access to exceptions from the C language is defined by the macros in the 
exc _ handling.h file. The exc _ handling.h header file is included 
automatically when you include pthread_exc.h (see Section 7.2). 

The following example shows the syntax for handling exceptions: 

TRY 
tIY_block 

[CATCH (exception_name) 
handler_block] ... 

[CATCH_ALL 
handler_block] 

ENDTRY 

A try_block or a handler_block is a sequence of statements, the first of 
which may be declarations, as in a normal block. If an exception is raised in 
the try_block, the catch clauses are evaluated in order to see if anyone 
matches the current exception. 

The CATCH or CATCH_ALL clauses absorb an exception; that is, they 
catch an exception propagating out of the try_block, and direct execution 
into the associated handler _block. Propagation of the exception, by 
default, then ends. Within the lexical scope of a handler, it is possible to 
explicitly cause propagation of the same exception to resume (this is called 
"reraising" the exception), or it is possible to raise some new exception. 

The RERAISE statement is allowed in any handler statements and causes 
the current exception to be reraised. Propagation of the caught exception 
resumes. 

The RAISE ( exception_name) statement is allowed anywhere and causes a 
particular exception to start propagating. For example: 

TRY 
sort(); /* Call a function that may raise an exception. 

* An exception is accomplished by longjumping 
* out of some nested routine back to the TRY 
* clause. Any output parameters or return values 
* of the called routine are therefore indeterminate. 
*/ 

OSF DeE Application Development Guide 



Using the DeE Threads Exception-Returning Interface 

CATCH (pthread_cancel_e) 
printf ("Alerted while sorting\n"); RERAISE; 

CATCH_ALL 
printf("Some other exception while sorting\n"); RERAISE; 

ENDI'RY 

In the preceding example, if the pthread _ cancel_ e exception propagates 
out of the function call, the first printf is executed. If any other exception 
propagates out of sort, the second printf is executed. In either situation, 
propagation of the exception resumes because of the RERAISE statement. 
(If the code is unable to fully recover from the error, or does not understand 
the error, it needs to do what it did in the previous example and further 
propagate the error to its callers.) 

The following shows the syntax for an epilogue: 

TRY try_block 
[FINALLY final_block] 
ENDI'RY 

The final_block is executed whether the try_block executes to completion 
without raising an exception, or if an exception is raised in the try_block. If 
an exception is raised in the try_block, propagation of the exception is 
resumed after executing the final_block. 

Note that a CATCH_ALL handler and RERAISE could be used to do this, 
but the epilogue code would then have to be duplicated in two places, as 
follows: 

TRY 
try_block 

CATCH_ALL 
final_block 
RERAISE; 

ENDI'RY 

{ final_block } 

A FINALLY statement has exactly this meaning, but avoids code 
duplication. 

OSF DeE Application Development Guide 7-3 



DeE Threads 

Note: The behavior of FINALLY along with the CATCH or 
CATCH ALL clauses is undefined. Do not combine them for 
the same try_block. 

Another example of the FINALLY statement is as follows: 

pthread __ mutex_lock (some_object.mutex); 
some_object.nurn_waiters = some_object.nurn_waiters + 1; 
TRY 

while (! some_obj ect . data_available) 
pthread_cond_wait (some_object.condition); 

/* The code to act on the data_available goes here */ 
FINALLY 

some_object.nurn_waiters = some_object.nurn_waiters - 1; 
pthread_mutex_unlock (some_object.mutex); 

ENDrRY 

In the preceding example, the call to pthread _ cond _ wait() could raise the 
pthread_cancel_e exception. The final_block ensures that the shared data 
associated with the lock is correct for the next thread that acquires the 
mutex. 

7.2 Invoking the Exception-Returning Interface 

To use the exception-returning interface, replace 

#include <pthread.h> 

with the following include statement: 

#include <pthread_exc.h> 

7-4 OSF DeE Application Development Guide 



Using the DeE Threads Exception-Returning Interface 

7.3 Operations on Exceptions 

An exception is an object that describes an error condition. Operations on 
exception objects allow errors to be reported and handled. If an exception is 
handled properly, the program can recover from errors. For example, if an 
exception is raised from a parity error while reading a tape, the recovery 
action may be to retry 100 times before giving up. 

The DCE Threads Exception-Returning Interface allows you to perform the 
following operations on exceptions: 

• Declare and initialize an exception object 

• Raise an exception 

• Define a region of code over which exceptions are caught 

• Catch a particular exception or all exceptions 

• Define epilogue actions for a block 

• Import a system-defined error status into the program as an exception 

These operations are discussed in the following subsections. 

7.3.1 Declaring and Initializing an Exception Object 

Declaring and initializing an exception object documents that a program 
reports or handles a particular error. Having the error expressed as an 
exception object provides future extensibility as well as portability. 
Following is an example of declaring and initializing an exception object: 

EXCEPTION parity_error; /* Declare it */ 
EXCEPTION_INIT (parity_error); /* Initialize it */ 

OSF DeE Application Development Guide 7-5 



DeE Threads 

7.3.2 Raising an Exception 

Raising an exception reports an error, not by returning a value, but by 
propagating an exception. Propagation involves searching all active scopes 
for code written to handle the error or code written to perfonn scope
completion actions in case of any error, and then causing that code to 
execute. If a scope does not define a handler or epilogue block, then the 
scope is simply tom down as the exception propagates through the stack. 
This is sometimes referred to as "unwinding the stack." DeE Threads 
exceptions are tenninating; there is no option to make execution resume at 
the point of the error. (Execution resumes at the point where the exception 
was caught.) 

If the exception is unhandled, the thread is tenninated. This provides 
increased manageability by confining an error to a well-defined portion of a 
program. An example of raising an exception is as follows: 

RAISE (parity_error); 

7.3.3 Defining a Region of Code Over Which Exceptions Are Caught 

7-6 

Defining a region of code over which exceptions are caught allows you to 
call functions that can raise an exception and specify the recovery action. 

Following is an example of defining an exception-handling region (without 
indicating any recovery actions): 

TRY { 

read_tape (); 
} 

ENDI'RY; 

OSF DeE Application Development Guide 



Using the DeE Threads Exception-Returning Interface 

7.3.4 Catching a Particular Exception or All Exceptions 

It is possible to discriminate among errors and perform different actions for 
each error. 

Following is an example of catching a particular exception and specifying 
the recovery action (in this case, a message). The exception is reraised 
(passed to its callers) after catching the exception and executing the 
recovery action: 

TRY { 

read_tape (); 
} 

CATCH (parity_error) 
printf ("Oops, parity error, program terminating\n") ; 
printf ("Try cleaning the heads! \n") ; 
RERAISE; 
} 

ENDTRY 

7.3.5 Defining Epilogue Actions for a Block 

A FINALLY mechanism is provided so that multithreaded programs can 
restore invariants as certain scopes are unwound; for example, restoring 
shared data to a correct state and releasing locks. This is often the ideal 
way to define, in one place, the cleanup activities for normal or abnormal 
exit from a block that has changed some invariant. 

Following is an example of specifying an invariant action whether or not 
there is an error: 

lock_tape_drive (t); 
TRY 

TRY 

read_tape (); 
CATCH (parity_error) 

printf ("Oops, parity error, program terminating\n"); 
printf ("Try cleaning the heads! \n"); 
RERAISE; 

OSF DeE Application Development Guide 7-7 



DeE Threads 

ENDrRY 

/* Control gets here only if no exception is raised */ 
/* ... Now we can use the data off the tape */ 

FINALLY 
/* Control gets here normally, or if any exception is raised */ 
unlock_tape_dri ve (t); 

ENDrRY 

7.3.6 Importing a System-Defined Error Status into the Program as 
an Exception 

Most systems define error messages by integer-sized status values. Each 
status value corresponds to some error message text that should be 
expressed in the user's own language. The capability to import a status 
value as an exception permits the DeE Threads Exception-Returning 
Interface to raise or handle system-defined errors as well as programmer
defined exceptions. 

An example of importing an error status into an exception is as follows: 

The parity_error exception can then be raised and handled like any other 
exception. 

7.4 Rules and Conventions for Modular Use of 
Exceptions 

7-8 

The following rules ensure that exceptions are used in a modular way so 
that independent software components can be written without requiring 
knowledge of each other: 

• Use unique names for exceptions. 

A naming convention makes sure that the names for exceptions that are 
declared EXTERN from different modules do not clash. 

OSF DeE Application Development Guide 



Using the DeE Threads Exception-Returning Interface 

The following convention is recommended: 

For example, pthread _ cancel_e. 

• Avoid putting code in a TRY routine that belongs before it. 

The TRY only guards statements for which the statements in the 
FINALLY, CATCH, or CATCH_ALL clauses are always valid. 

A common misuse of TRY is to put code in the try_block that needs to 
be placed before TRY. An example of this misuse is as follows: 

TRY 

handle = open_file (file_name); 
/* Statements that may raise an exception here */ 

FINALLY 
close (handle); 

ENDTRY 

The preceding FINALLY code assumes that no exception is raised by 
open_file. This is because the code accesses an invalid identifier in the 
FINALLY part if open_file is modified to raise an exception. The 
preceding example needs to be rewritten as follows: 

handle = open_file (file_name); 
TRY 

/* Statements that may raise an exception here */ 
} 

FINALLY 
close (handle); 

ENDTRY 

The code that opens the file belongs prior to TRY, and the code that 
closes the file belongs in the FINALLY statement. (If open_file raises 
exceptions, it may need a separate try_block.) 

• Raise exceptions to their proper scope. 

Write functions that propagate exceptions to their callers so that the 
function does not modify any persistent process state before raising the 

OSF DeE Application Development Guide 7-9 



DeE Threads 

7-10 

exception. A call to the matching close call is required only if the 
open_file operation is successful in the current scope. 

If open_file raises an exception, the identifier will not be written, so 
open_file must not require that close be called when open_file raises an 
exception; that is, open_file should not be part of the TRY clause 
because that means close is called if open_file fails, and you cannot 
close an unopened file. 

• Do not place a RETURN or nonlocal GOTO between TRY and 
ENDTRY. 

It is invalid to use RETURN or GOTO, or to leave by any other means, 
a TRY, CATCH, CATCH ALL, or FINALLY block. Special code is 
generated by the ENDTRY macro, and it must be executed. 

• Use the ANSI C volatile attribute. 

Variables that are read or written by exception-handling code must be 
declared with the ANSI C volatile attribute. Run your tests with the 
optimize compiler option to ensure that the compiler thoroughly tests 
your exception-handling code. 

• Reraise exceptions that are not fully handled. 

You need to reraise any exception that you catch, unless your handler 
performs the complete recovery action for the error. This rule permits an 
unhandled exception to propagate to some final default handler that 
prints an error message to terminate the offending thread. (An unhandled 
exception is an exception for which recovery is incomplete.) 

A corollary of this rule is that CATCH_ALL handlers must reraise the 
exception because they may catch any exception, and usually cannot do 
recovery actions that are proper for every exception. 

Following this convention is important so that you also do not absorb a 
cancel or thread-exit request. These are mapped into exceptions so that 
exception handling has the full power to handle all exceptional 
conditions from access violations to thread exit. (In some applications, it 
is important to be able to catch these to work around an erroneously 
written library package, for example, or to provide a fully fault-tolerant 
thread.) 

• Declare only static exceptions. 

For compatibility with C++, you need to only declare static exceptions. 

OSF DeE Application Development Guide 



Using the DeE Threads Exception-Returning Interface 

7.5 DeE Threads Exceptions and Definitions 

Table 7-1 lists the DCE Threads exceptions and briefly explains the 
meaning of each exception. Exception names beginning with pthread _ are 
raised as the result of something happening internal to the DCE Threads 
facility and are not meant to be raised by your code. Exceptions beginning 
with exc_ are generic and belong to the exception facility, the underlying 
system, or both. The pthread-specific extensions are listed followed by the 
generic extensions, each in alphabetical order. 

Table 7-1. DCE Threads Exceptions 

Exception 

pthread_badparam_e 
pthread_canceLe 
pthread_defer_q_full_e 

pthread_existence_e 
pthread_in_use_e 
pthread_nostackmem_ e 

pthread_stackovf_e 
pthread_unimp_e 
pthread_use_error_e 
exc_decovf_e 

Definition 

An improper parameter was used. 
A thread cancellation is in progress. 
No space is currently available to process an 
interrupt request. 
The object referenced does not exist. 
The object referenced is already in use. 
No space is currently available to create a new 
stack. 
An attempted stack overflow was detected. 
This is an unimplemented feature. 
The requested operation is improperly invoked. 
An unhandled decimal overflow trap exception 
occurred. 
The operation failed due to an insufficient 
quota. 
An unhandled floating-point division by zero 
trap exception occurred. 
An unhandled floating-point overflow trap 
exception occurred. 
An unhandled floating-point underflow trap 
exception occurred. 
The data or object could not be referenced. 

OSF DCE Application Development Guide 7-11 



DCE Threads 

7-12 

Exception 

exc_SIGBUS_e 
exc_SIGEMT _e 
exc_SIGFPE_e 

exc_SIGILL_e 
exc_SIGIOT_e 
exc_SIGPIPE_e 
exc_SIGSEGV _e 

exc_SIGSVS_e 
exc_SIGTRAP _e 

Definition 

There is insufficient virtual memory for the 
requested operation. 
An unhandled integer divide by zero trap 
exception occurred. 
An unhandled integer overflow trap exception 
occurred. 
There is insufficient privilege for the requested 
operation. 
An unhandled privileged instruction fault 
exception occurred. 
An unhandled reserved addressing fault 
exception occurred. 
An unhandled reserved operand fault exception 
occurred. 
An unhandled bus error signal occurred. 
An unhandled EMT trap signal occurred. 
An unhandled floating-point exception signal 
occurred. 
An unhandled illegal instruction signal occurred. 
An unhandled lOT trap signal occurred. 
An unhandled broken pipe signal occurred. 
An unhandled segmentation violation signal 
occurred. 
An unhandled bad system call signal occurred. 
An unhandled trace or breakpoint trap signal 
occurred. 
An unhandled CPU time limit exceeded signal 
occurred. 
An unhandled file-size limit exceeded signal 
occurred. 
An unhandled subscript out-of-range trap 
exception occurred. 
An uninitialized exception was raised. 

OSF DeE Application Development Guide 



Chapter 8 

DCE Threads Example 

The example in this chapter shows the use of DCE Threads in a C program 
that performs a prime number search. The program finds a specified number 
of prime numbers, then sorts and displays these numbers. Several threads 
participate in the search: each thread takes a number (the next one to be 
checked), sees if it is a prime, records it if it is prime, and then takes another 
number, and so on. 

This program shows the work crew model of programming (see Section 
4.2.2). The workers (threads) increment a number (current_ num) to get 
their next work assignment, which in this case is the same task as before, but 
with a different number to check for a prime. As a whole, the worker threads 
are responsible for finding a specified number of prime numbers, at which 
point their work is completed. 

OSF DeE Application Development Guide 8-1 



DeE Threads 

8.1 Details of Program Logic and Implementation 

8-2 

The number of workers to be used and the requested number of prime 
numbers to be found are defined constants. A macro is used to check for bad 
status (bad status returns a value of 1), and to print a given string and the 
associated error value upon bad status. Data to be accessed by all threads 
(mutexes, condition variables, and so forth) are declared as global items. 

Worker threads execute the prime search routine, which begins by 
synchronizing with the boss (or parent) thread using a predicate and a 
condition variable. Always enclose a condition wait in a predicate loop to 
prevent a thread from continuing if it receives a spurious wakeup. The lock 
associated with the condition variable must be held by the thread when the 
condition wait call is made. The lock is implicitly released within the 
condition wait call and acquired again when the thread resumes. The same 
mutex must be used for all operations performed on a specific condition 
variable. 

After the parent sets the predicate and broadcasts, the workers begin finding 
prime numbers until canceled by a fellow worker who has found the last 
requested prime number. Upon each iteration the workers increment the 
current number to be worked on and take the new value as their work item. 
A mutex is locked and unlocked around getting the next work item. The 
purpose of the mute x is to ensure the atomicity of this operation and the 
visibility of the new value across all threads. This type of locking protocol 
needs to be performed on all global data to ensure its visibility and protect 
its integrity. 

Each worker thread then determines if its current work item (a number) is 
prime by trying to divide numbers into it. If the number proves to be 
nondivisible, it is put on the list of primes. Cancels are explicitly turned off 
while working with the list of primes in order to better control any cancels 
that do occur. The list and its current count are protected by locks, which 
also protect the cancellation process of all other worker threads upon finding 
the last requested prime. While still under the prime list lock, the current 
worker checks to see if it has found the last requested prime, and if so unsets 
a predicate and cancels all other worker threads. Cancels are then reenabled. 
The canceling thread falls out of the work loop as a result of the predicate 
that it unsets. 

OSF DeE Application Development Guide 



DeE Threads Example 

The parent thread's flow of execution is as follows: set up the environment, 
create worker threads, broadcast to them that they can start, join each thread 
as it finishes, and sort and print the list of primes. 

• Setting up of the environment requires initializing mutexes and the one 
condition variable used in the example. 

• Creation of worker threads is straightforward and utilizes the default 
attributes (pthread_attr_default). Note again that locking is performed 
around the predicate on which the condition variable wait loops. In this 
case, the locking is simply done for visibility and is not related to the 
broadcast function. 

• As the parent joins each of the returning worker threads, it receives an 
exit value from them that indicates whether a thread exited normally or 
not. In this case the exit values on all but one of the worker threads are 
-1, indicating that they were canceled. 

• The list is then sorted to ensure that the prime numbers are in order from 
lowest to highest. 

The following pthread routines are used in this example: 

• pthread _ cancel() 

• pthread _ cond _ broadcast( ) 

• pthread _ cond _init() 

• pthread _ cond _ waite ) 

• pthread_create() 

• pthread _ detach( ) 

• pthread _ exit( ) 

• pthread join( ) 

• pthread _ mutex _init() 

• pthread _ mutex Jock( ) 

• pthread _ mute x _ unlock( ) 

• pthread _setcancel() 

• pthread _ testcancel ( ) 

• pthread Jield( ) 

OSF DeE Application Development Guide 8-3 



DeE Threads 

The following is the DCE Threads example: 

#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
/* 

* Constants used by the example. 
*/ 

#define 
#define 
/* 

workers 
request 

5 

110 
/* Threads to perform prime check */ 
/* Number of primes to find */ 

* Macros 
*/ 

#define check(status,string) 
/* 

* Global data 
*/ 

if (status -1) perror (string) 

pthread_mutex_t prime_list; /* Mutex for use in accessing the prime */ 
pthread_mutex_t current_mutex; /* Mutex associated with current number * / 
pthread_mutex_t cond_mutex; /* Mutex used for ensuring CV integrity */ 
read_cond_t cond_var; /* Condition variable for thread start */ 
int current_num= -1;/* Next number to be checked, start odd */ 
int 
int 
int 
pthread_t 
/* 

thread_hold= 1; /* Number associated with condition state */ 
count = 0 ; /* Count of prime numbers - index to primes * / 
primes[request];/* Store prime numbers - synchronize access */ 
threads[workers];/* Array of worker threads */ 

* Worker thread routine. 

* 
* Worker threads start with this routine, which begins with a condition 
* wait designed to synchronize the workers and the parent. Each worker 
* thread then takes a turn taking a number for which it will determine 
* whether or not it is prime. 

* 
*/ 

void 
prime_search (pthread_addr_t arg) 

div_results; 
numerator; 
denominator; 

/* DIV results: quot and rem 
/* Used for determing primeness 
/* Used for determing primeness 

*/ 

*/ 

*/ 

8-4 OSF DeE Application Development Guide 



DeE Threads Example 

int cut_off; /* Number being checked div 2 */ 

int notifiee; /* Used during a cancellation */ 

int prime; /* Flag used to indicate primeness */ 

int my_number; /* Worker thread identifier */ 

int status; /* Hold status from pthread calls */ 

int not_done=l; /* Work loop predicate */ 

my_number = (int)arg; 
/* 

* Synchronize threads and the parent using a condition variable, for 
* which the predicate (thread_hold) will be set by the parent. 
*/ 

status = pthread_mutex_Iock (&cond_mutex); 
check(status,"1:Mutex_Iock bad status\n"); 

while (thread_hold) { 
status = pthread_cond_wait (&cond_var, &cond_mutex); 
check(status,"3:Cond_wait bad status\n"); 
} 

status = pthread_mutex_unlock (&cond_mutex); 
check(status,"4:Mutex_unlock bad status\n"); 
/* 

* Perform checks on ever larger integers until the requested 
* number of primes is found. 
*/ 

while (not_done) { 

/* cancellation point */ 

pthread_testcancel ()i 

/* Get next integer to be checked */ 

status = pthread_mutex_Iock (&current_ffiutex); 
check(status,"6:Mutex_Iock bad status\n"); 

current_num = current_num + 2; 
numerator = current_num; 

/* Skip even numbers */ 

status = pthread_mutex_unlock (&current_mutex); 
check(status,"9:Mutex_unlock bad status\n"); 

/* Only need to divide in half of number to verify not prime */ 

OSF DeE Application Development Guide 8-5 



DeE Threads 

8-6 

cut_off = numerator/2 + 1; 
prime = 1; 

/* Check for prime; exit if something evenly divides */ 

for (denominator = 2: ((denominator < cut_off) && (prime)): 
denominator++ ) 

prime = numerator % denominator: 

if (prime != 0) { 

/* Explicitly turn off all cancels */ 

pthread_setcancel(CANCEL_OFF): 

/* 

* Lock a mutex and add this prime number to the list. Also, 
* if this fulfills the request, cancel all other threads. 
*/ 

status = pthread_mutex_Iock (&prime_Iist): 
check(status,"10:Mutex_Iock bad status\n"): 

if (count < request) 
primes [count] = numerator: 
count++; 

else if (count 
not_done = 0: 
count++: 

request) { 

for (notifiee = 0; notifiee < workers; notifiee++) { 
if (notifiee != my_number) { 

status = pthread_cancel ( threads[notifiee] ): 
check(status,"12:Cancel bad status\n"): 

status = pthread_mutex_unlock (&prime_Iist); 
check(status,"13:Mutex_unlock bad status\n"): 

/* Reenable cancels */ 

pthread_setcancel(CANCEL_ON); 
} 

OSF DeE Application Development Guide 



DeE Threads Example 

pthread_testcancel (); 
} 

pthread_exi t (IT!Y _number) ; 
} 

main() 
{ 

int worker_num; 
int exit_value; 
int list; 
int status; 
int index1; 
int index2; 
int temp; 
int not_done; 

* Create mutexes 
*/ 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

Counter used when indexing workers */ 

Individual worker's return status */ 

Used to print list of found primes */ 

Hold status from pthread calls */ 

used in sorting prime numbers */ 

Used in sorting prime numbers */ 

Used in a swap; part of sort */ 

Indicates swap made in sort */ 

status = pthread_mutex_init (&prime_Iist, pthread_mutexattr_default); 
check(status,"15:Mutex_init bad status\n"); 
status = pthread_mutex_init (&cond_mutex, pthread_mutexattr_default); 
check (status, "16: Mutex_ini t bad status \n II ) ; 

status = pthread_mutex_init (&current_mutex, pthread_mutexattr_default); 
check (status, "17 : Mutex_init bad status\n"); 

/* 

* Create conditon variable 
*/ 

status = pthread_cond_init (&cond_var, pthread_condattr_default); 
check(status,"45:Cond_init bad status\n"); 

/* 

* Create the worker threads. 
*/ 

for (worker_num = 0; worker_num < workers; worker_num++) { 
status = pthread_create ( 

&threads[worker_num], 
pthread_attr_default, 
prime_search, 
(pthread_addr_t)worker_num); 

check(status,"19:pthread_create bad status\n"); 

OSF DeE Application Development Guide 8-7 



DeE Threads 

/* 

* Set the predicate thread_hold to zero, and broadcast on the 
* condition variable that the worker threads may proceed. 
*/ 

status = pthread_mutex_lock (&cond_mutex); 
check (status, "20 : Mutex_lock bad status\n"); 

thread_hold = 0; 

status = pthread_cond_broadcast (&cond_var); 
check(status,"20.5:cond_broadcast bad statusO); 

status = pthread_mutex_unlock (&cond_mutex); 
check(status,"21:Mutex_unlock bad status\n"); 
/* 

* Join each of the worker threads inorder to obtain their 
* summation totals, and to ensure each has completed 
* successfully. 

* 
* Mark thread storage free to be reclaimed upon termination py 
* detaching it. 
*/ 

for (worker_num = 0; worker_num < workers; worker_num++) { 

status = pthread~oin ( 
threads[worker_num], 
&exit_value ); 

check (status, "23 :Pthread~oin bad status\n"); 

if (exit_value == worker_num) printf("thread terminated normally\n"); 

status = pthread_detach ( &threads[worker_num] ); 
check(status,"25:pthread_detach bad status\n"); 
} 

/* 

8-8 

* Take the list of prime numbers found py the worker threads and 
* sort them from lowest value to highest. The worker threads work 
* concurrently; there is no guarantee that the prime numbers 
* will be found in order. Therefore, a sort is performed. 
*/ 

OSF DeE Application Development Guide 



DeE Threads Example 

not_done = 1; 
for (index1 = 1; ((index1 < request) && (not_done)); index1++l { 

for (index2 = 0; index2 < index1; index2++) { 

/* 

if (primes [index1] < primes[index2]) 
temp = primes [index2] ; 
primes [index2] = primes[index1]; 
primes [index1] = temp; 
not_done = 0; 

* Print out the list of prime numbers that the worker threads 
* found. 
*/ 

printf (liThe list of %d primes follows:\n", request); 
printf ("%d" ,primes [0]) ; 

for (list = 1; list < request; list++) 
printf (",%d", primes[list]); 
} 

printf (" \n") ; 
} 

OSF DeE Application Development Guide 8-9 





Part 3 

DCE Remote Procedure Call 





Part 3A 

U sing Remote Procedure Call 

Part 3A describes the Remote Procedure Call (RPC) model and the basic 
concepts of DCE RPC. It contains a brief tutorial on how to develop RPC 
applications. This part also discusses the basic DCE RPC operations, the 
impact of remoteness on RPC applications, the use of the directory service 
interface, advanced RPC topics, and the use of exception handling. 





Chapter 9 

Introduction to Remote Procedure 
Calls 

The Remote Procedure Call (RPC) model is a well-tested, industry-wide 
framework for distributing applications. An RPC executes a procedure 
located in a separate address space from the calling code. This is a remote 
procedure. 

Applications that use remote procedure calls (RPC applications) look and 
behave much like local applications. However, an RPC application is 
divided into two parts: an RPC server, which offers one or more sets of 
remote procedures, and an RPC client, which makes remote procedure calls 
to RPC servers. A server and its clients generally reside on separate systems 
and communicate over a network. RPC applications depend on the RPC 
runtime. Any RPC runtime controls network communications for RPC 
applications. The DCE RPC runtime supports additional tasks, such as 
finding servers for clients and managing servers. 

An RPC application uses dispersed computing resources such as CPU s, 
databases, devices, and services. The following are examples of RPC 
applications: 

• A calendar-management application that allows authorized users to 
access the personal calendars of other users . 

• A graphics application that processes data on central CPUs and displays 
the results on workstations. 

OSF DeE Application Development Guide 9-1 



Using Remote Procedure Call 

• A manufacturing application that shares changing information about 
assembly components among design, inventory, scheduling, and 
accounting programs located on different computers. 

9.1 General Requirements for Distributing an 
Application 

9-2 

RPC technology meets the basic requirements of a distributed application. 
These requirements include the following: 

• Clients finding the appropriate servers 

• Data conversion for operating in a heterogeneous environment 

• Network communications 

Distributing an application involves performing tasks such as managing 
communications, finding servers, providing security, and so forth. Without a 
convenient mechanism for these distributed computing tasks, writing 
distributed applications is difficult, expensive, and error-prone. A standalone 
distributed application needs to perform all of these tasks itself. RPC 
software performs distributed computing tasks for RPC applications, which 
can focus on issuing remote procedure calls, executing called procedures, 
and handling exceptions. 

RPC software provides flexible code fragments that perform a full range of 
distributed computing tasks. RPC code fragments resemble code fragments 
of any high-level language and can be linked with client and server 
application code to form an RPC application. 

Figure 9-1 shows the basic tasks that are necessary for distributing an 
application. 

OSF DeE Application Development Guide 



Introduction to Remote Procedure Calls 

Figure 9-1. Tasks for Distributing an Application 

Client Tasks 

Call the remote procedure. 

Server Tasks 

Select the network protocols. 

Advertise RPC interfaces and objects in 
a name service database. 

Listen for calls. 

Find a compatible server that offers the 
called procedure. 

Establish a relationship with the server. 
wait 

Convert arguments to network data representation 
and assemble data into network data packets. 

Transmit the input arguments. 

wait 

Receive the call. 

Disassemble the network data packets and convert the 
input arguments into local data representation. 

Create the server context (if needed for multiple calls). 

Invoke the called procedure. 

Execute the remote procedure. 

Convert the results (output arguments and/or return value,or exeption) to 
network data representation and assemble data into network data packets. 

Transmit the results. 

Receive the results. 

Disassemble network data packets and convert the 
results into local data representation or handle errors. 

Pass the results to the calling code. 

19 Handle the exceptions. 

OSF DeE Application Development Guide 

Legend: 

o = Traditional application tasks. 

o = Distributed application tasks. 

9-3 



Using Remote Procedure Call 

9.2 The RPC Model 

The RPC model is derived from the programming model of local procedure 
calls and takes advantage of the fact that every procedure contains a 
procedure declaration. The procedure declaration defines the interface 
between the calling code and the called procedure. All calls to a procedure 
must conform to the procedure declaration. 

The procedure declaration defines the call syntax and parameters of the 
procedure; for example, consider the function get_sum written here in the C 
language: 

long get_sum(long first, long second) ~ 
{ 

/* Add two input numbers and return their sum. */ (3) 
long sum; 
sum = first + second; 
return (sum) ; 

The preceding example shows the following: 

1. Procedure declaration 

2. Operations 

9.2.1 RPC Interfaces 

9-4 

Traditionally, calling code and called procedures share the same address 
space and are linked. In an RPC application, the calling code and the called 
remote procedures are not linked; rather, they communicate indirectly 
through an RPC interface. An RPC interface is a logical grouping of 
operations, data types, and constants that serves as a unique network 
contract for a set of remote procedures. DCE RPC interfaces are compiled 
from formal interface definitions written by application developers using the 
DCE Interface Definition Language (IDL). Each RPC interface contains a 
Universal Unique Identifier (UUID), which is a hexadecimal number that 
can identify an entity. A UUID that identifies an RPC interface is known as 
an interface UUID. The interface UUID ensures that the interface can be 
uniquely identified across all possible network configurations. 

OSF DeE Application Development Guide 



Introduction to Remote Procedure Calls 

In addition to an interface UUID, each RPC interface contains major and 
minor version numbers. Together, the interface UUID and version numbers 
form an interface identifier that identifies an instance of an RPC interface 
across systems and through time. 

The following example shows the use of IDL in a simple interface definition 
for a math application. 

[uuid(A01D0280-2D27-11C9-9FD3-08002BOECEF1)] (2) 
interface math 

const long ARRAY_SIZE = 10; (3) 

typedef long array_type[ARRAY_SIZE]; 

long get_sum([in] long first, 

[in] long second); 

void get_sums([in] array_type a, 

[in] array_type b, 

[out] array_type c); 

The interface definition contains the following: 

1. Interface header 

2. Constant and data type declarations 

3. Operation declaration of get_sum remote procedure 

4. Operation declaration of get_sums remote procedure 

An RPC interface exists independently of specific applications. Each RPC 
interface can be implemented by any set of procedures that conforms to the 
interface definition. The operations of an interface are exactly the same for 
all implementations of the save version of the interface. This makes it 
possible for clients from different applications to call the same interface, 
and servers from different applications to offer the same interface. 

OSF DeE Application Development Guide 9-5 



Using Remote Procedure Call 

Figure 9-2 shows the role of an RPC interface in a remote procedure call. 
The client contains calling code that makes two procedure calls. The first is 
a remote procedure call to Procedure A. The second is a local procedure call 
to Procedure B, which then makes a remote procedure call to Procedure C. 

Figure 9-2. Role of the RPC Interface 

Local Program Remote Program 

mainO R 

r ... A( I 

I 

Blr I 
I 
I 
I 

Procedure B I 
I ... C( 

L 

PC Interfac -------, 
"...-... 

../ A( \) /" 
'---

e 

I Procedure A 
I ... 
I 
I 
I 
I 
I 
I 
I 
I Procedure C ... 

"...-... 
../ C( \ ) /" ___ ~-:....J 

Clients can use any practical combination of RPC interfaces, whether 
offered by the same or different servers. For example, using a database 
access interface, a client on a graphics workstation can call a remote 
procedure on a database server to fetch data from a central database. Then, 
using a statistics interface, the client can call a procedure on another server 
on a parallel processor to analyze the data from the central database and 
return the results to the client for display. 

9.2.2 RPC Services 

9-6 

The simplest RPC application uses only one RPC interface. However, an 
application can use multiple RPC interfaces, and frequently, an integral set 
of RPC interfaces work together as an RPC service. An RPC service is a 
logical grouping of one or more RPC interfaces. For example, you can write 
a calendar service that contains only a personal calendar interface or a 
calendar service that contains additional RPC interfaces such as a 
scheduling interface for meetings. 

Different services can share one or more RPC interfaces. For example, an 
administrative-support application can include an RPC interface from a 

OSF DCE Application Development Guide 



Introduction to Remote Procedure Calls 

calendar service. A client that calls that calendar interface service, without 
specifying a specific calendar, may use a server for either the calendar 
service or the administrative service. 

9.2.3 RPC Objects 

DCE RPC enables clients to find servers that offer specific RPC objects. An 
RPC object is an entity that an RPC server defines and identifies to its 
clients. Frequently, an RPC object is a distinct computing resource such as a 
particular database, directory, device, process, or processor. Identifying a 
resource as an RPC object enables an application to ensure that clients can 
use an RPC interface to operate on that resource. An RPC object can also be 
an abstraction that is meaningful to an application such as a service or the 
location of a server. 

RPC objects are defined by application code. The RPC runtime provides 
substantial flexibility to applications about whether, when, and how they use 
RPC objects. RPC applications generally use RPC objects to enable clients 
to find and access a specific server. When servers are completely 
interchangeable, using RPC objects may be unnecessary. However, when 
clients need to distinguish between two servers that offer the same RPC 
interface, RPC objects are essential. If the servers offer distinct computing 
resources, each server can identify itself by treating its resources as RPC 
objects. Alternatively, each server can establish itself as an RPC object that 
is distinct from other instances of the same server. 

RPC objects also enable a single server to distinguish among alternative 
implementations of an RPC interface, as long as each implementation 
operates on a distinct type of object. To offer multiple implementations of 
an RPC interface, a server must identify RPC objects, classify them into 
types, and associate each type with a specific implementation. 

The set of remote procedures that implements an RPC interface for a given 
type of object is known as a "manager." The tasks performed by a manager 
depend on the type of object on which the manager operates. For example, a 
manager of a queue-management interface may operate on print queues, 
while another manager may operate on batch queues. 

OSF DeE Application Development Guide 9-7 



Using Remote Procedure Call 

9.3 The Parts of an RPC Application 

An RPC server or client contains application code, one or more RPC stubs, 
and a copy of the RPC runtime. 

An RPC stub is an interface-specific code module that uses an RPC 
interface to pass and receive arguments. A server and a client contain 
complementary stubs for each RPC interface they share. RPC application 
code is the code written for a specific RPC application by the application 
developer. Application code implements and calls remote procedures, and 
also calls any RPC runtime routines the application needs. The DCE RPC 
runtime manages communications for RPC applications. In addition, a 
library of runtime routines enables RPC applieations to set up their 
communications, manipulate information about servers, and perform 
optional tasks such a remotely managing servers and accessing security 
information. 

Figure 9-3 shows the relationship of application code, stubs, and the RPC 
runtime in the server and client portions of an RPC application. 

Figure 9-3. The Parts of an RPC Application 

9-8 

RPC Client 

Legend: 

RPC Server 

Runtime Calls 

Remote 
Procedures 

CJ = Code written and compiled by the application developer. 

CJ = Code provided by the RPC mechanisms. 

OSF DCE Application Development Guide 



Introduction to Remote Procedure Calls 

9.3.1 RPC Application Code 

RPC application code differs for servers and clients. Minimally, server 
application code contains the remote procedures that implement one RPC 
interface, and the corresponding client contains calls to those remote 
procedures. 

9.3.2 Stubs 

A stub uses its RPC interface to pass call arguments. The stub performs 
basic support functions for remote procedure calls. For instance, stubs 
prepare input and output arguments for transmission between systems with 
different forms of data representation. The stubs use the RPC runtime to 
send and receive remote procedure calls. The client stub can also use the 
runtime to find servers for the client. 

When a client application calls a remote procedure, the client stub first 
prepares the input arguments for transmission. The process for preparing 
arguments for transmission is known as "marshalling." Marshalling 
converts call arguments into a byte-stream format and packages them for 
transmission. Upon receiving call arguments, a stub unmarshalls them. 
Unmarshalling is the process by which a stub disassembles incoming 
network data and converts it into application data using a format that the 
local system understands. Marshalling and unmarshalling both occur twice 
for each remote procedure call; that is, the client stub marshalls input 
arguments and unmarshalls output arguments, and the server stub 
unmarshalls input arguments and marshalls output arguments. Marshalling 
and unmarshalling permit client and server systems to use different data 
representations for equivalent data. For example, the client system can use 
ASCII characters and the server system can use EBCDIC characters (see 
Figure 9-4). 

OSF DeE Application Development Guide 9-9 



Using Remote Procedure Call 

Figure 9-4. Marshalling and Unmarshalling Between ASCII and EBCDIC Data 

Remote Procedure Call 

Client Stub Server Stub 

M I h II" unm~rshalling 
~ affi a Ing ~ 

Input Argument I ASCII I :.-'--r------r------'.-> I EBCDIC I 
Byte-Steerun Fmmal ~ 

I .-: .- ______ L _____ :1 
Output Argument ASCII I ( EBCDIC ) 

,~ 'I 
Unmarshalling Mjrshalling 

I 

The DCE IDL compiler (a component of the DCE RPC software) generates 
stubs by compiling an RPC interface definition written by application 
developers. The compiler generates marshalling and unmarshalling routines 
for IDL data types. For application-specific types of data, a developer must 
supply user-defined marshalling routines. 

To build the client for an RPC application, a developer links client 
application code to a client stub for each RPC interface of the application; 
to build the server, the developer links the server application code to the 
corresponding server stubs. 

9.3.3 The RPC Runtime 

9-10 

In addition to one or more RPC stubs, every RPC server and RPC client is 
linked with a copy of the RPC runtime. Runtime operations perform tasks 
such as controlling communications between clients and servers and finding 
servers for clients on request. Stubs exchange arguments through their local 
RPC runtimes. The client runtime transmits remote procedure calls to the 
server. The server runtime receives the calls and dispatches each call to the 
appropriate server stub. The server runtime passes the call results to the 
client runtime. The DCE RPC runtime supports an Application 
Programming Interface (API) used by RPC application code to call runtime 
routines. 

OSF DCE Application Development Guide 



Introduction to Remote Procedure Calls 

Server application code must also contain server initialization code that 
calls RPC runtime routines when the server is starting up and shutting down. 
Client application code can also call RPC runtime routines. Server and 
client application code can also contain calls to RPC stub-support routines. 
Stub-support routines allow applications to perform programming tasks such 
as allocating and freeing memory storage. 

Figure 9-5 shows the roles of application code, RPC stubs, and RPC 
runtimes during a remote procedure call. 

Figure 9-5. Interrelationships During a Remote Procedure Call 

RPC Client 

Calling Code 

RPC Server 

Remote 
Procedures 

T-®-I i ___ _ 
RPC Interface 

Output Arguments/ I 

L ___ ~~~ ~a~e ___ ...1 

Input Arguments 

Legend: 

D = Code written and compiled by the application developer. 

D = Code provided by the RPC mechanisms. 

The following steps describe the interrelationships of the components of 
RPC applications, as shown in the previous figure: 

1. The client's application code makes a remote procedure call, passing 
the input arguments to the stub for the called RPC interface. 

OSF DCE Application Development Guide 9-11 



Using Remote Procedure Call 

2. The client's stub marshalls the input arguments and dispatches the 
call to the client's RPC runtime. 

3. The client's RPC runtime transmits the input arguments over the 
communications network to the server's RPC runtime, which 
dispatches the call to the server stub for the called RPC interface. 

4. The server's stub uses its copy of the RPC interface to unmarshall the 
input arguments and pass them to the called remote procedure. 

S. The procedure executes and returns any results (output arguments or a 
return value or both) to the server's stub. 

6. The server's stub marshalls the results and passes them to the server's 
RPC runtime. 

7. The server's RPC runtime transmits the results over the 
communications network to the client's RPC runtime, which 
dispatches them to the client's stub. 

8. The client's stub uses its copy of the RPC interface to unmarshall 
output arguments and pass them to the calling code. 

9.4 DCE RPC and the Distributed Computing 
Environment 

9-12 

DCE RPC is a fully integrated part of the distributed computing 
environment. The communications capabilities of DCE RPC are used by 
clients and servers of other DCE components. In tum, RPC uses services 
provided by the following other DCE components: the Threads Service, the 
Cell Directory Service, and the Security Service. 

To help RPC clients find RPC servers, RPC applications typically use a 
namespace. A namespace is a collection of information about applications, 
systems, and any other relevant computing resources. A namespace is 
maintained by a directory service such as the Cell Directory Service (CDS). 
DCE RPC provides a Name Service Interface (NSI) that is independent of 
any particular directory service. CDS, however, is the only directory 
service available for DCE RPC Version 1.0 applications. 

NSI communicates with supported directory services for both RPC 
applications and the RPC control program. NSI insulates RPC applications 
from the intricacies of using a directory service. An RPC server uses NSI to 

OSF DeE Application Development Guide 



Introduction to Remote Procedure Calls 

store information about itself in a namespace, and a client uses NSI to 
access information about a server that meets the client's requirements for a 
specific RPC interface and object, among other things. The client uses this 
information to establish a relationship, known as a "binding," with the 
server. 

Thread services are also important to DCE RPC. A thread is a single 
sequential flow of control with one point of execution on a single processor 
at any instant. Multiple threads can coexist in a single process. DCE RPC 
uses threads internally for its own operations. For a discussion of threads 
and remote procedure calls, see Chapter 14, which describes advanced DCE 
RPC topics. DCE RPC also provides an environment where RPC 
applications can use thread services. 

The DCE RPC runtime provides RPC applications with a programming 
interface to the DCE Security Service. The RPC authentication interface 
enables RPC clients and servers to mutually authenticate (that is, prove the 
identity of) each other. An authenticated remote procedure call provides 
client authorization information and authentication information to servers. 
Authorization information includes the privileges a client has and the 
identities a client is associated with at the time of a call. By comparing 
client authorization information to access control lists, a server can find out 
whether a client is eligible to use a requested remote procedure. Client 
authentication information identifies a client to a server. 

9.5 Overview of DCE RPC Development Tasks 

The tasks involved in developing an RPC application resemble those 
involved in developing a local application. As an RPC developer, you 
perform the following basic tasks: 

1. Design your application, deciding what procedures you need and 
which, if any, will be remote procedures. 

2. Use the Universal Unique Identifier (UUID) generator to generate a 
UUID for your new interface. 

3. Use the Interface Definition Language (IDL) to describe the RPC 
interface for the planned remote procedures. 

OSF DeE Application Development Guide 9-13 



Using Remote Procedure Call 

4. Use the DCE IDL compiler to compile the IDL code to generate 
object code for the client stub and server stub. Figure 9-6 illustrates 
this task. 

Figure 9-6. Generating Stubs 

Interface 
Definition 

File 

IDL Compiler 

Note: Optionally, instead of generating object code for stubs, 
the DCE IDL compiler can generate the stubs as C 
source code. Stub source code is ANSI C compliant. It 
contains conditional preprocessor logic that allows most 
C compilers to compile them. 

5. Write or modify application code using a compatible programming 
language; that is, a language that can be linked with C and can invoke 
C procedures, so the application code works with the stubs. 

Application code includes several kinds of code, as follows: 

a. Remote procedures 

b. Remote procedure calls 

c. Initialization code (calls to RPC stub-support or runtime 
routines) 

d. Any non-RPC code your application requires 

6. Generate object code from application code. 

7. Create an executable client and server from the object files. Figure 
9-7 illustrates this task. 

9-14 OSF DeE Application Development Guide 



Introduction to Remote Procedure Calls 

For the client, link object code of the client stub(s) and the client 
application with the RPC runtime and any other needed runtime 
libraries. 

For the server, link object code for the server stub(s), the initialization 
routines, and the set(s) of remote procedures with the RPC runtime 
and any other needed runtime libraries. 

Figure 9-7. Building a Simple Client and Server 

RPC and 
Other DCE 

Runtime 
Libraries 

Calling 
Code 

Client 
Stub 

Server 
Stub 

Server 
Initialization 

Code 

Remote 
Procedure 

Code 

RPC and 
Other DCE 

Runtime 
Libraries 

8. After initial testing, distribute the new application by separately 
installing the server and client executable images on systems on the 
network. 

OSF DCE Application Development Guide 9-15 





Chapter 10 

Basic DCE RPC Components 

This chapter introduces the following DCE RPC components: 

• DCE UUID generator 

• DCE RPC Interface Definition Language 

• DCE IDL compiler 

• DCE RPC daemon 

• Network Data Representation (NDR) transfer syntax 

• DCE RPC runtime 

• DCE RPC control program 

OSF DeE Application Development Guide 10-1 



Using Remote Procedure Call 

10.1 DeE UUID Generator 

10-2 

The UUID generator is an interactive utility that creates UUIDs (Universal 
Unique Identifiers). A UUID is a hexadecimal number that contains 
information that makes it unique from all other UUIDs. This information 
includes a timestamp of the UUID's creation time and an identifier of the 
host of origin. The significance of a given UUID depends entirely on its 
context; for example, a UUID is an interface UUID only if so declared in an 
interface definition, as follows: 

uuid(D07B6948-85BA-llCA-80AE-08002B245A28) 

Various uses of UUIDs are discussed in Chapter 12 of this guide. 

Run the UUID generator by using the uuidgen command. This command 
offers several options, including creating a template RPC interface 
definition file (an .idl file) containing a newly generated interface UUID. 
For example, the following command generates a template for the Calendar 
interface: 

$ uuidgen -i -0 Calendar .idl 

The resulting Calendar .idl file contains the following text: 

uuid(2FAC8900-31F8-11CA-B331-08002B13D56D), 
version(l.O) 
] 

interface INTERFACENAME 

The RPC interface developer replaces the text INTERFACENAME with 
the actual interface name; in this example, Calendar. 

Note: A recommended convention is that you should use the RPC 
interface name defined in the file in the name of the .idl file; 
for example, Calendar .idl. 

OSF DeE Application Development Guide 



Basic DCE RPC Components 

10.2 DCE RPC Interface Definition Language 

Developing an RPC application involves writing and compiling an interface 
definition for a specific RPC interface that is written in the DCE Interface 
Definition Language (IDL). IDL is a high-level descriptive language whose 
syntax resembles that of ANSI C. DCE RPC interface definitions contain 
two basic components: 

• An interface header 

An RPC interface header contains an interface UUID, interface version 
numbers, and an interface name. An RPC interface name is an easy-to
read local name that is not guaranteed to be unique; it is merely a 
convenience. It is helpful if the interface name reflects the nature or 
purpose of the RPC interface. 

• An interface body 

An RPC interface body declares any application-specific data types and 
constants, and contains directives for including data types and constants 
from other RPC interfaces. The interface body also contains the 
operation declaration of each remote procedure to be accessed through 
the RPC interface. An operation declaration identi fies the parameters of 
a procedure in terms of their data types, access method, and call order, 
and declares the data type of the return value (if any). 

For more information, see Chapter 17, which discusses IDL syntax and its 
usage. 

The following example shows the RPC interface definition, Calendar .idl, 
of the Calendar interface. 

OSF DeE Application Development Guide 10-3 



Using Remote Procedure Call 

10-4 

/* Calendar.idl */ 

uuid(2FAC8900-31F8-11CA-B331-08002B13D56D), 
version(l.O) 

interface Calendar 

/* Type Declarations */ 

/* The opaque calendar object implemented as a 
* context handle to provide resource cleanup, and 
* implicit binding information. */ 

typedef [context_handle] void *Cal_Calendar_t; 

/* The name of the owner of a calendar */ 
typedef [string] char Cal_String_t[]; 
typedef Cal_String_t Cal_Username_t; 

/* enumeration of months for use in Cal_Time_t */ 
typedef enum { 

January, February, March, April, May, June, July, 
August, September, October, November, December 
} Cal_Month_t; 

/* Specification of a time */ 
typedef struct { 

short year; 
Cal_Month_t month; 
short day; 
short hour; 
short minute; 
} Cal_Time_t; 

/* Specification of an entry on the calendar */ 
typedef struct { 

Cal_Time_t time; 
long length; /* in minutes */ 
[ptr] Cal_String_t *description; 
} Cal_Appointment_t; 

/* List of values returned from calendar operations */ 
typedef enum { 

Cal_s_ok, 
Cal_s_no_such_appointment, 
Cal_s_no_current_appointment, 
Cal_s_no_such_calendar 
} Cal_Status_t; 

OSF DeE Application Development Guide 



Basic DCE RPC Components 

/* Operations Declarations */ 

/* Create the calendar for a user and return a calendar object. */ 
Cal_Calendar_t Cal_create ( 

[in] Cal_Username_t user 
) i 

/* Open the calendar of a specific user and return a 
* calendar object. Set the current calendar location 
* to the first appointment that has not yet passed. */ 

Cal_Calendar_t Cal_open ( 
[in] Cal_Username_t user 
) i 

/* Close a calendar */ 
void Cal_close( 

[in, out] Cal_Calendar_t *calendar 
) i 

/* Add a new appointment in the calendar. 
* has no effect upon the current calendar 

Cal_Status_t Cal_add_appointment( 
[in] Cal_Calendar_t calendar, 
[in] Cal_Appointment_t *appointment 
) i 

This 
location. */ 

/* Get the first appointment in the calendar and reset the 
* current calendar location to the specified appointment. */ 

Cal_Status_t Cal_get_first( 
[in] Cal_Calendar_t calendar, 
[out] Cal_Appointment_t *appointment 
) i 

/* Get the next appointment in the calendar based 
* upon the current calendar location. */ 

Cal_Status_t Cal_get_next( 
[in] Cal_Calendar_t calendar, 
[out] Cal_Appointment_t *appointment 
) i 

/* Delete the appointment at the current calendar location. */ 
Cal_Status_t Cal_delete_current_appointment( 

[in] Cal_Calendar_t calendar 
) i 

OSF DeE Application Development Guide 10-5 



Using Remote Procedure Call 

Using IDL, a programmer can write a definition of an RPC interface for any 
set of procedures. An RPC interface such as this sample Calendar interface 
can be implemented using any programming language, such as Pascal or 
FORTRAN, under the following conditions: 

• The object code must be linkable with the C object code of the stubs. 

• The procedure declarations must conform to the operation declarations 
of the RPC interface definition and the calling sequences must be 
compatible. 

10.3 DCE IDL Compiler 

10-6 

The DCE IDL compiler (idl) processes RPC interface definitions written in 
IDL and generates header files and stub object code. (The compiler can 
generate source code for the stubs written in ANSI C.) The code generated 
from a~ RPC interface definition by the compiler includes client and server 
stubs that contain the RPC interface. 

The compiler also generates a data structure called the interface 
specification, which contains identifying and descriptive information about 
the compiled interface, and creates a companion global variable, the 
interface handle, which is a reference to the interface specification. Each 
header file generated by the IDL compiler contains the reference the 
application code needs to access the interface handle. The interface handle 
allows the application code to refer to the interface specification in calls to 
the RPC runtime. Runtime operations obtain required information about the 
interface, such as its UUID and version numbers, directly from the interface 
specification. 

Developers can tailor how an RPC interface appears to local application 
code and how the local application code interacts with the RPC interface. 
Along with the interface definition file, the compiler searches for an 
optional attribute-configuration file. The Attribute Configuration File (ACF) 
is written in the Attribute Configuration Language, which is a companion 
language to IDL. An ACF modifies how the compiler interprets an RPC 
interface definition. For example, an ACF can specify a subset of operations 
declarations for a client stub so that the client stub contains declarations for 
only the operations that the client application code needs for its remote 
procedure calls. 

OSF DeE Application Development Guide 



Basic DCE RPC Components 

The following are some of actions that can be specified using an ACF: 

• Omitting operations from the client stub's copy of the RPC interface 

Limiting the client's access to the remote procedures offered by servers 
reduces the size of the client stub. 

• Representing a local data type as a network data type 

An application can equate an application-specific local data type to an 
IDL-specific data type that is declared in an RPC interface definition. 
The application must define the local data type to the stub. An interface 
definition can define the local data type, or the attribute configuration 
file can contain an include statement for a file containing a definition of 
the local type. 

The application must also provide the routines that switch between the 
local data type and the network data type. The stubs call these routines 
whenever the application passes the local data type in a remote 
procedure call. 

• Defining how a client establishes a binding with a server that 
implements the called interface 

The available methods of managing bindings are discussed in Chapter 
13. 

• Specifying how arguments of nonscalar data types are marshalled for 
transmission and unmarshalled 

By default, every data type is marshalled and unmarshalled by inline 
code, which is part of the direct control flow in the stubs and which 
recurs for every parameter of the data type. However, for any nonscalar 
data type declared in an RPC interface definition, an ACF can relocate 
marshalling and unmarshalling functions into out-of-line code. Out-of
line code occurs only once per server and once per client. The same 
code is used to marshall and unmarshall all parameters of the out-of-line 
data type. The out-of-line code for a given data type resides in an 
auxiliary file that is linked into the client and server, along with the 
stubs that use it. For large data structures used for parameters of more 
than one operation, out-of-line code reduces the amount of code in an 
application, but also reduces execution speed. 

OSF DeE Application Development Guide 10-7 



Using Remote Procedure Call 

For information on the ACF attributes that produce these and other actions 
in the stubs of a given RPC interface definition, see Chapter 18, which 
discusses the Attribute Configuration Language syntax and usage. 

The following example shows an ACF (Calendar.acf), which is intended to 
be used when compiling Calendar.idl. For two data types declared in the 
IDL file, the ACF file declares out-of-line marshalling and unmarshalling. 

/* Calendar.acf */ 

[auto_handle] interface Calendar 
{ 

typedef [out_of_line] Cal_String_ti 
typedef [out_of_line] Cal_Appointment_ti 

10.4 DCE RPC Daemon 

10-8 

The RPC daemon (rpcd) is a process that provides the endpoint map 
service. This service maintains the local endpoint map for local RPC 
servers and looks up endpoints for RPC clients. An endpoint is the address 
of a specific instance of a server that is executing in a particular address 
space on a given system (a server instance). Each endpoint can be used on a 
system by only one server at a time. 

An endpoint map is a system-specific database where servers register their 
endpoints and associated addressing information (the host address, 
information about communications protocol, and so on). A server registers 
endpoints separately for each of its RPC interfaces and any RPC objects 
offered with the interface. 

If a client makes a remote procedure call to a system without providing an 
endpoint, the endpoint map service searches its endpoint map for the 
endpoint of a compatible server. Among other things, a compatible server 
offers the requested RPC interface, and if requested, the RPC object. On 
finding a suitable endpoint, the map service returns the endpoint to the 
client's runtime, which sends the call to the server at that endpoint. 

When a server stops running, its map elements become outdated. Although 
the endpoint map service routinely removes any map element containing an 

OSF DeE Application Development Guide 



Basic DCE RPC Components 

outdated endpoint, a lag time exists during which stale entries remain. If a 
remote procedure call uses an endpoint from an outdated map element, the 
call fails to find a server. To prevent clients from receiving stale data from 
the endpoint map, before a server stops, it should remove its own map 
elements. 

10.5 Network Data Representation Transfer Syntax 

A transfer syntax is a set of encoding rules used for the network' 
transmission of data and the conversion to and from different local data 
representations. A shared transfer syntax enables communications between 
systems that represent local data differently. DCE RPC currently uses a 
single transfer syntax, Network Data Representation (NDR). NDR encodes 
data into a byte stream for transmission over a network. A transfer syntax 
such as NDR enables machines with different formats to exchange data 
successfully. 

Note: The DCE RPC communications protocols support the 
negotIatIOn of transfer syntax. However, at present, the 
outcome of a transfer-syntax negotiation is always NDR. 

10.6 DCE RPC Runtime 

Every system running an RPC server or client must possess an RPC runtime. 
The DCE RPC runtime manages communications for RPC application. In 
addition, the DCE RPC runtime provides a library of routines to support 
RPC applications. An Application Programming Interface (API) enables 
server application code and client application code to call RPC routines to 
access runtime operations. 

The basic classes of runtime operations include the following: 

• Communications operations that establish communications links, 
transmit and receive remote procedure calls, and affect how data is 
transmitted 

• Name Service Interface (NSI) operations that access namespaces for 
RPC applications 

OSF DeE Application Development Guide 10-9 



Using Remote Procedure Call 

• Endpoint operations that allow servers to add server addressing 
infonnation to and remove it from the local endpoint map 

• Authentication operations that affect the type of authentication, 
protection level, and type of authorization used for communications 
between a client and server 

• Miscellaneous classes of operations, such as the VVID operations, 
which allow applications to manipulate VUIDs, and the management 
operations, which provide a number of management operations, such as 
stopping servers 

Note: In addition to the API, stubs use a private Stub Programming 
Interface (SPI). The SPI routines are unavailable to 
application code. 

Figure 10-1 shows the relationship of RPC application and stub code to the 
basic kinds of runtime operations. 

Figure 10-1. Relationship of RPC Application and Stub Code to Runtime 
Operations 

[ Application Code ] -----r--1--
r--------------~~l~~~ -------------l RPC Runtime Application Programming Interface 

10.6.1 Communications Operations 

10-10 

A binding (the relationship between an RPC client and server involved in a 
remote procedure call) requires that a communications link (a network 
pathway) exist between the client and the server. The communications 
operations use the underlying layers of network software to establish a 
communications link and transfer data between a client and a server. To 

OSF DCE Application Development Guide 



Basic DCE RPC Components 

initialize, RPC servers must make a number of calls to communications 
operations; for example, for selecting the protocol sequences to use and 
registering with the endpoint map. 

10.6.2 Directory Service Interface Operations 

To advertise RPC interfaces and objects to clients, servers use a directory 
service interface. A directory service interface maintains a namespace. A 
namespace is a repository of uniquely named entries that store information 
about computing resources for applications. Distributing an application 
often involves installing copies of the server on several systems whose 
locations may be subject to change and are often unknown to clients. The 
operations of the DCE RPC Name Service Interface (NSI) provide a means 
for using a directory service to store and access information about RPC 
servers. NSI routines insulate RPC applications from the intricacies of 
naming. An RPC server can use NSI to advertise one or more of its RPC 
interfaces, its RPC objects, and its server addressing information in a 
namespace. Using the NSI export operation, an RPC server can place 
information about its interfaces, objects, and addresses into its own 
namespace entry (known as a server entry). RPC clients can access that 
information using the NSI import operation. 

10.6.3 Endpoint Operations 

An endpoint is an address of a specific server instance. DCE RPC endpoint 
operations allow servers to register and remove (unregister) their own 
endpoints from the local endpoint map. 

10.6.4 Authentication Operations 

The most common use of authentication operations is to prove the identity 
of a client to a server and of a server to a client so that appropriate 
authorization decisions can be made. For example, before a banking 
application can transfer money from one account to another, the server must 

OSF DeE Application Development Guide 10-11 



Using Remote Procedure Call 

verify the identity of the client that is requesting the transfer and determine 
whether or not the client is authorized for that transaction. The RPC 
authentication operations manipulate authentication attributes that are used 
by RPC applications. Also, the RPC authentication operations dictate how 
identities are communicated between clients and servers. 

Note: DCE RPC Version 1.0 supports authenticated RPC for the 
connectionless (datagram) protocol only. 

10.6.5 Miscellaneous Runtime Operations 

10-12 

The RPC runtime offers several other kinds of operations to RPC 
applications. The most significant are operations that manipulate UUIDs 
and that manage RPC applications. The runtime also provides other 
operations such as requesting the error text of a given status code. 

10.6.5.1 UUID Operations 

UUID operations provide a set of operations to applications for creating 
and manipulating UUIDs. 

Note: The UUID runtime routines are distinct from the UUID 
generator, which is an interactive utility that uses the UUID 
operations. 

10.6.5.2 Management Operations 

The RPC runtime performs management tasks on request such as setting 
communications timers, gathering selected kinds of information, and 
stopping a server from listening for remote procedure calls. 

The management operations are separated into local and remote operations. 
Local management operations operate on only the calling application. 
Remote management operations allow remote control of servers from the 
local system or from remote systems. 

A remote management interface makes the remote management operations 
accessible to remote management calls coming from the network. Linking 

OSF DeE Application Development Guide 



Basic DCE RPC Components 

server application code and stubs with the RPC runtime library 
automatically incorporates this remote management interface into every 
RPC server. Therefore, any server on the target system is capable of 
processing remote management calls. A caller must specify either an 
endpoint or object UUID when calling any routine of the remote 
management interface. If the client specifies an object UUID that is 
offered by several servers, the endpoint map service selects the endpoint of 
one of those servers for the client. 

Note: The term "manager" refers to a set of remote procedures. 
The term "management program" refers to a program that 
manages an RPC application or the RPC runtime by calling 
management routines such as the 
rpc_mgmt_is_server_listening() routine or the 
rpc _ mgmt _ ep _ unregister( ) routine. 

10.7 DCE RPC Control Program 

The RPC control program (rpccp) is an interactive management utility for 
the administrators and users of RPC applications. The control program 
provides one means for managing namespace entries and endpoint 
mapping. Many operations of the RPC directory service interface are 
accessible using the control program. Individuals with the necessary 
permission can add entries to and remove them from a namespace, can add 
information to and remove it from those entries, and can retrieve 
information. Also, the control program enables showing and unregistering 
endpoint map elements (or mappings) from the local endpoint map and any 
remote endpoint map. 

The rpccp command used alone starts the RPC control program, as 
follows: 

$ rpccp 

By prefacing specific control program commands with rpccp, you can 
enter commands at the system prompt or from within a shell script 
(command procedure), for example: 

$ rpccp show server 1.:/building_l/server _entry_name 

OSF DeE Application Development Guide 10-13 



Using Remote Procedure Call 

10-14 

You can enter the specific commands of the control program interactively 
at the rpccp> prompt, for example: 

rpccp> show server /.:/department/server _entry_name 

OSF DeE Application Development Guide 



Chapter 11 

Building an Application 

This chapter explains how to write an interface definition in the DCE RPC 
Interface Definition Language (IDL) and illustrates the basic features of 
IDL. As an example, we present an interface definition for binop (binary 
operations), a very simple application that uses RPC to add pairs of integers 
on a remote server. The remainder of the chapter describes how to develop, 
build, and run the binop client and server programs. 

11.1 Writing an Interface Definition 

The first step in developing a distributed application is to write an interface 
definition file in IDL. The IDL compiler, idl, uses the information in an 
interface definition to generate a header file, client stub files, and server stub 
files. The IDL compiler produces header files in C and can produce stubs 
either as C source files or as object files. For applications that use certain 
data types or certain features of RPC, the IDL compiler also generates client 
or server auxiliary files, or both, which contain support routines that are 
called by the stubs. (The binop example does not require auxiliary files.) 

For some applications, you may also need to write an Attribute 
Configuration File (ACF) to accompany the interface definition. If an ACF 

OSF DeE Application Development Guide 11-1 



Using Remote Procedure Call 

exists, the IDL compiler interprets the ACF when it compiles the interface 
definition. Information in the ACF is used to modify the code that the 
compiler generates. (The binop example does not require an ACF.) 

An IDL interface definition consists of a header and a body. The body can 
contain the following constructs: 

• Import declarations 

• Constant declarations 

• Type declarations 

• Operation declarations 

IDL declarations resemble declarations in ANSI C. IDL is purely a 
declarative language, so, in some ways, an IDL interface definition is like a 
C header file. However, an IDL interface definition must specify the extra 
information that is needed by the remote procedure call mechanism. Most 
of this information is expressed via IDL attributes. IDL attributes can apply 
to types, to type members, to operations, to operation parameters, or to an 
interface as a whole. An attribute is represented in [ ] (brackets) before the 
item to which it applies. 

A comment can be inserted at any place in an interface definition where 
white space is permitted. IDL comments, like C comments, begin with /* (a 
slash and an asterisk) and end with */ (an asterisk and a slash). 

The remainder of this section briefly explains how to create an interface 
definition and gives simple examples of each kind of IDL declaration. For a 
detailed description ofIDL, refer to Chapter 17. For information on the IDL 
compiler, see the idl(lrpc) reference page in the aSF DeE Application 
Development Reference. 

11.1.1 Generating an Interface UUID 

11-2 

The first step in building an RPC application is to generate a skeletal 
interface definition file and a UUID for the interface. Every interface in an 
RPC application must have a Universal Unique Identifier (UUID). When 
you define a new interface, you must generate a new UUID for it. (In an 
object-oriented application, every object and object type must also have a 
non-nil UUID.) 

OSF DeE Application Development Guide 



Building an Application 

Typically, you run uuidgen with the -i option. The -i option produces a 
skeletal interface definition file and includes the generated UUID for the 
interface. For example: 

$ uuidgen -i > binop.idl 
$ cat binop.idl 

uuid(443f4b20-a100-11c9-baed-OB001e021Bcb), 
version (1) 
] 

interface INTERFACENAME 

The first part of the skeletal definition is the header, which specifies a 
UUID, a version number, and a name for the interface. The last part of the 
definition is { } (an empty pair of braces); import, constant, type, and 
operation declarations go between these braces. 

By convention, the names of interface definition files end with the suffix 
.idl. To construct names for its output files, the IDL compiler replaces .idl 
with other suffixes, which by default are as follows: 

• .h for header files 

• cstub.c for client stub files 

• sstub.c for server stub files 

• _ caux.c for client auxiliary files 

• _ saux.c for server auxiliary files 

For example, compilation of a chess.idl interface definition file would 
produce a chess.h header file, a chess cstub.c client stub file, and a 
chess_sstub.c server stub file. (The IDL compiler can also produce stubs in 
object format by invoking a C compiler, in which case the .c portion of the 
suffix is typically replaced by .0.) 

For more information on the UUID generator, see the uuidgen(lrpc) 
reference page in the aSF DeE Application Development Reference. 

OSF DeE Application Development Guide 11-3 



Using Remote Procedure Call 

11.1.2 Naming the Interface 

After you have used uuidgen to generate a skeletal interface definition, 
replace the dummy string INTERFACENAME with the name of your 
interface. 

By convention, the name of an interface definition file is the same as the 
name of the interface it defines, with the suffix .idl appended. For example, 
the definition for a bank interface would reside in a bank.idl interface 
definition file, and if the application required an ACF, its name would be 
bank.acf. 

The IDL compiler incorporates the interface name in identifiers it constructs 
for various data structures and data types, so the length of an interface name 
can be at most 17 characters. (Most IDL identifiers have a maximum length 
of 31 characters.) 

11.1.3 Specifying Interface Attributes 

11-4 

Interface attributes are defined within [ ] (brackets) in the header of the 
interface definition. The definition for any remote interface needs to specify 
the uuid and version interface attributes, so these are included in the 
skeletal definition that uuidgen produces. 

If an interface is called only locally and never remotely, it can be given the 
local attribute, which causes the compiler to generate only header files, not 
stubs, for the interface. 

If an interface is exported by servers on well-known endpoints, these 
endpoints must be specified via the endpoint attribute. Interfaces that use 
dynamic endpoints do not have this attribute. (A well-known endpoint is a 
stable address on the host, while a dynamic endpoint is an address that the 
RPC runtime requests for the server.) 

For detailed information about all the interface attributes, see Chapter 17. 

OSF DeE Application Development Guide 



Building an Application 

11.1.4 Import Declarations 

The IDL import declaration specifies another interface definition whose 
types and constants are used by the importing interface. 

The import declaration allows you to collect declarations for types and 
constants that are used by several interfaces into one common file. For 
example, if you are defining two database interfaces named db lookup and 
dbupdate, and these interfaces have many constants in common, you can 
declare those constants in a dbconstants.idl file and import this file in the 
dblookup.idl and dbupdate.idl interface definitions. For example: 

import "dbconstants.idl"; 

By default, the IDL compiler resolves relative pathnames of imported files 
by looking first in the current working directory and then in the system IDL 
directory. The -I option of the IDL compiler allows you to specify additional 
directories to search. You can thereby avoid putting absolute pathnames in 
your interface definitions. For example, if an imported file has the absolute 
pathname /dbproject/src/dbconstants.idl, then the IDL compiler option 
-I/dbproject/src allows you to import the file by its leaf name, 
dbconstants.idl. 

11.1.5 Constant Declarations 

The IDL const declaration allows you to declare integer, Boolean, 
character, string, and null pointer constants, as in the following examples: 

const short TEN = 10; 
const boolean VRAI = TRUE; 
const char* JSB = "Joharm Sebastian Bach"; 

OSF DeE Application Development Guide 11-5 



Using Remote Procedure Call 

11.1.6 Type Declarations 

11-6 

To support application development in a variety of languages and to support 
the special needs of distributed applications, IDL provides an extensive set 
of data types, including the following: 

• Simple types, such as integers, floating-pointing numbers, characters, 
Booleans, and the primitive binding-handle type handle_t (equivalent to 
rpc _ binding_handle _ t) 

• Constructed types, such as strings, structures, unions, arrays, pointers, 
and pipes 

• Predefined types, including ISO international character types and the 
error status type error _status_t 

The IDL typedef declaration lets you give a name to any of these types. 

The general form of a type declaration is 

typedef [type_attribute, ... ] type _specifier type_declarator, ... ; 

where the bracketed list of type attributes is optional. The type_specifier 
specifies a simple type, a constructed type, a predefined type, or a named 
type. Each type _declarator is a name for the type being defined. As in C, 
arrays and pointers are declared by the type _ declarator constructs [ ] 
(brackets) and an * (asterisk) rather than by type _specifier constructs. 

The following type declaration defines integer32 as a name for a 32-bit 
integer type: 

typedef long integer32; 

The type specifier constructs for structures and unions permit the 
application of attributes to members. In the following example, one member 
of a structure is a conformant array (an array without a fixed upper bound), 
and the size is attribute names another member of the structure that at 
runtime provides information about the size of the array: 

typedef struct { 
long dsize; 
[size_is(dsize)] float darray[]; 
} dataset; 

OSF DeE Application Development Guide 



Building an Application 

11.1.7 Operation Declarations 

Operation declarations specify the signature of each operation in the 
interface, including the operation name, the type of data returned (if any), 
and the types of all parameters passed (if any) in a call. 

The general form of an operation declaration is 

[operation_attribute, ... J type _specifier operation_identifier (parameter_declaration, ... ); 

where the bracketed list of operation attributes is optional. Among the 
possible attributes of an operation are idempotent, broadcast, and maybe, 
which specify semantics to be applied by the RPC runtime mechanism when 
the operation is called. If an operation when called once can safely be 
executed more than once, the IDL declaration of the operation needs to 
specify the idempotent attribute; idempotent semantics allow remote 
procedure calls to execute more efficiently. 

The type specifier specifies the type of data returned by the operation. 

The operation _identifier names the operation. Although operation names are 
arbitrary, a common convention is to use the name of an interface as a prefix 
for the names of its operations. For example, a bank interface may have 
operations named bank_open, bank_close, bank_deposit, 
bank_withdraw, and bank_balance. 

Each parameter _declaration in an operation declaration declares a 
parameter of the operation. A parameter _declaration takes the following 
form: 

[parameter_attribute, ... J type _specifier parameter_declarator 

Every parameter attribute must have at least one of the parameter attributes 
in and out to specify whether the parameter is passed as an input, as an 
output, or in both directions. The type _specifier and parameter _declarator 
specify the type and name of the parameter. 

Output parameters must be passed by reference and therefore must be 
declared as pointers via the pointer operator * (an asterisk). 

OSF DeE Application Development Guide 11-7 



Using Remote Procedure Call 

In applications that use explicit handles, you must supply a handle as the 
first parameter in each operation declaration, as in the following example: 

void exp_op( 
[in] handle_t h, 
[in] long a, 
[in] long b, 
[out] long *c 
) ; 

In applications that use an implicit handle or use automatic handles (an ACF 
feature), operations do not require handle parameters: 

void irnp_op( 
[in] long a, 
[in] long b, 
[out] long *c 
) ; 

11.1.8 The hinop Interface Definition 

11-8 

Following is the IDL definition for the binop interface, which resides in the 
binop.idl file: 

uuid(443f4b20-alOO-llc9-baed-08001e0218cb), 
version(l.O) 
] 

interface binop 
{ 

[idempotent] 
void binop_add 
( 

) ; 

[in] handle_t h, 
[in] long a, 
[in] long b, 
[out] long *c 

OSF DeE Application Development Guide 



/ 

Building an Application 

The hinop IDL definition defines Version 1.0 of the hinop interface. No 
well-known endpoints are specified in the interface header; servers 
exporting this interface listen on dynamic endpoints. 

The interface contains one operation, hinop _add, which is declared to be 
idempotent. Because the hinop application uses explicit handles, the 
operation has a handle as its first parameter. The handle is of the primitive 
handle type handle _ t. The other inputs and the output are 32-bit integers. 

The hinop interface requires no import, constant, or type declarations. 

11.2 Running the IDL Compiler 

After you have written an interface definition, run the IDL compiler to 
generate header and stub files. 

To run the IDL compiler, you need to have the environment variable 
NLSPATH set so that the compiler can find its catalog of diagnostic 
messages. The value of this variable must include the string dirl % N, where 
dir is the directory in which the idl.cat file resides. A general C shell 
command that includes the string dirl%N and that sets NLSPATH follows: 

% setenv NLSPATH dceshared/nls/msg/LANG/%N 

Note that LANG is a variable instead of a literal. A specific example of this 
general command follows: 

% setenv NLSPATH /usrflib/nls/msg/en _ US.88591/ % N 

The compiler offers many options that, for example, allow you to choose 
what C compiler or C preprocessor commands are run, what directories are 
searched for imported files, which of the possible output files are generated, 
and how the output files are named. 

When you compile the definition of a remote interface, you must ensure that 
the system IDL directory is among those that the compiler searches for 
imported files because any remote interface implicitly imports rpc.idl. 

OSF DeE Application Development Guide 11-9 



Using Remote Procedure Call 

The binop.idl interface definition can be compiled by the following 
command: 

% idl binop.idl -keep c_source 

This compilation produces a header file, binop.h; a client stub file, 
binop_cstub.c; and a server stub file, binop_sstub.c. Because the IDL 
compiler option -keep c_source is specified, the compiler produces stubs in 
C source code rather than in object format. 

For complete information on running the IDL compiler, see the idl(lrpc) 
reference page in the aSF DeE Application Development Reference. 

11.3 Writing the Client Code 

The following subsections describe the client program for the binop 
application, whose interface definition was shown earlier in this chapter. 

11.3.1 Overview of the binop Client Program 

11-10 

The binop client program takes three arguments and is invoked as follows: 

$ client protseq hostid passes 

The binop application requires users of the client program to specify a host 
on which the server program is running. The client program therefore does 
not need to use RPC directory service interface calls to obtain information 
about server locations from the DCE CDS namespace. 

As specified in the binop.idl interface definition, the binop application uses 
explicit handles, and these handles are of the primitive RPC binding handle 
type. The client therefore passes a binding handle of type 
rpc_binding_handle_t as the first parameter of the binop_add operation. 
The client uses information from the command line to compose an RPC 
string binding, then converts the string binding to a primitive binding 
handle. At runtime, when the client makes its first remote procedure call, the 
handle is only partially bound because the client does not know the 

OSF DeE Application Development Guide 



Building an Application 

particular endpoint on which the server is listening; for delivery of its 
requests to the server endpoint, the client depends on the endpoint mapping 
service of an rpcd on the server host. 

Because binop exists just for pedagogical purposes, users of the client 
program do not actually supply inputs to be added. The client program loops 
through a set of inputs that it generates. 

11.3.2 The client.c Source Code 

This section presents client.c, the source code module for the binop client. 
The module is printed in three parts: the code that precedes the main 
function, the main function, and a do _ calls function. 

The cHent.c module includes binop.h, a header file for the binop interface 
generated by the IDL compiler. 

#include <stdio.h> 
#include IIbinop.h ll 

The client main function performs the following major steps: 

1. It checks the command-line arguments. 

2. It calls rpc_binding_from_string_bindingO to convert the string 
binding into a primitive binding handle. 

3. It prints the string binding, just for diagnostic purposes, then calls 
rpc _string_free() to free the memory that was allocated for the string 
by the RPC runtime. 

4. It calls the do_calls function for the number of passes specified on the 
command line, then prints the following summary of results: 

int rnain(int ac, char *av[]) 
{ 

rpc_binding_handle_t 
error_status_t 
idl_char 
int 

bh; 
st, error_in~st; 
*string_binding; 
pass, passes, failures 0; 

OSF DeE Application Development Guide 11-11 



Using Remote Procedure Call 

if (ac ! = 3) { 
fprintf(stderr, "Usage: %s address passes\n", av[O]); 
exit(l); 

passes = atoi(av[2]); 

string_binding = (idl_char *) argv[l]; 

<Check for errors.> 

printf ("Bound to %s\n", string_binding); 

<Check for errors.> 

for (pass = 0; pass < passes; pass++) 
printf ("PASS %d\n", pass); 
failures += do_calls(bh, passes); 

} 

printf("Surnma:ry: %d passes, %d failures\n", passes, failures); 

After each call to an RPC runtime routine, the client program checks the 
returned status parameter, and if the status is not error _status_ok, it calls 
dee_error JnfL text() and prints the returned error message text. 

Note: Unlike production-quality software, the hinop example does 
not do any exception handling. As a result, it may terminate 
abnormally if unexpected events occur during a remote 
procedure call. For example, if the hinop server is stopped 
while the client is still running, the client will abort. 
Production-quality applications should place all remote 
procedure calls within the scope of a TRY ... CATCH 
exception handler, thus guarding against unexpected runtime 
events. Applications can also check for server failures by 
using the eomm_status attribute in the ACF. 

11-12 OSF DeE Application Development Guide 



Building an Application 

The do_calls function makes a series of remote procedure calls to perform 
the binop _add operation and check the sums: 

do_calls(rpc_binding_handle_t h, int passes) 
{ 

idl_long_int i, n; 
char buf[100]; 
int failures; 

failures = 0; 

for (i = 1; i <= CALLS_PER_PASS; i++) { 
binop_add(h, i, i, &n); 
if (n != i+i) { 

printf ("Two times %ld is Nar %ld\n", i, n); 
if (failures == 0) failures = 1; 

return(failures); 

11.4 Writing the Server Code 

The following subsections describe the server program for the binop 
application. 

11.4.1 Overview of the binop Server Program 

The binop server program takes one argument and is invoked as follows: 

$ server protseq 

Because the binop client program derives a binding handle from 
information supplied by its users, the binop server program does not need to 
establish an entry for itself in the DCE CDS namespace. However, because 

OSF DeE Application Development Guide 11-13 



Using Remote Procedure Call 

the binop server uses dynamic endpoints that are not known to the client, 
the server does need to register its endpoint in the endpoint map on its host. 

The binop server program has two user-written modules: 

• The server.c module contains the server main function and performs 
the initialization and registration required to export the binop interface . 

• The manager.c module contains the code that actually implements the 
binop _add operation. 

11.4.2 The server.c Source Code 

In this section, the server.c module is printed in several successive pieces, 
with an explanation preceding each piece. 

Like client.c, the server.c module includes binop.h: 

#include <stdio.h> 
#include <dce/exc_handling.h> 
#include "binop.h" 

The server declares as external variables the manager EPV, which is defined 
in the manager.c module, and the nil UUID, which it will supply in 
registrations as an object UUID and object-type UUID: 

extern binop_vl_O_epv_t binop_vl_O_rnanager_epvi 
extern uuid_t uuid_nili 

In the first part of the main function, the server calls 
rpc _network Js _protse~ validO to check that its argument specifies a 
protocol sequence that is supported on its host both by the RPC runtime 
library and by the operating system: 

int rnain(int ac, char *av[]) 
{ 

11-14 

rpc_binding_vector-p_t 
error_status_t 
idl_boolean 

bveci 
st, error_in~sti 
validfarnilYi 

OSF DeE Application Development Guide 



Building an Application 

if (ac != 2) { 

*string_binding; 
i; 

fprintf(stderr, "Usage: %s family\n", av[O]); 
exit (1) ; 

validfamily = rpc_network_is-protse~valid((idl_char *)av[l], &st); 
if (st != error_status_ok) { 

fprintf(stderr, "Cannot check protocol sequence - %s\n", 
dce_error_in~text(st, &error_in~st»; 

exit (1); 

if (!validfamily) 
fprintf(stderr, "Protocol sequence %s is not valid\n", av[l]); 
exit (1); 

The server calls rpc_server_use_protseq() to obtain an endpoint on which 
to listen: 

rpc_server_use-protseq ( (idl_char *) av [1], MAX_CONCURRENT_CALLS, &st); 
if (st != error_status_ok) { 

fprintf(stderr, "Cannot use protocol sequence - %s\n", 
dce_error_in~text(st, &error_in~st»; 

exit (1) ; 

The server calls rpc_server _register Jf(), supplying its interface specifier 
(defined in binop.h), to register its interface with the RPC runtime: 

rpc_server_register_if(binop_v1_0_s_ifspec, &uuid_nil, 
NULL, &st); 

if (st != error_status_ok) { 
printf ("Cannot register interface - %s\n", 

dce_error_in~text(st~ &error_in~st»; 

exit(l); 

OSF DeE Application Development Guide 11-15 



Using Remote Procedure Call 

11-16 

To obtain a vector of binding handles that it can use when registering its 
endpoint, the server calls rpc _server _in<L bindings(). It then obtains, 
prints, and frees a string binding: 

rpc_server_in~bindings{&bvec, &st); 
if (st != error_status_ok) { 

} 

printf ("Cannot inquire bindings - %s\n", 
dce_error_in~text{st, &error_in~st)); 

exit (1); 

printf ( "Bindings: \n" ) ; 
for (i = 0; i < bvec->count; i++) { 

rpc_binding_to_string_binding{bvec->binding_h[il, 
&string_binding, &st); 

printf {"%s\n", (char *) string_binding) ; 

A call to rpc _ ep _register() registers the server endpoint in the local 
endpoint map: 

rpc_ep_register{binop_v1_0_s_ifspec, bvec, (uuid_vector-p_t) NULL, 
(unsigned_char-p_t) "binop version 1.0 server", &st); 

To begin listening for remote procedure call requests, the server calls 
rpc _server _Iisten(). This call is placed within the TRY of a TRY, 
CATCH_ALL, ENDTRY sequence so that if the server receives a signal 
while it is listening, it can unregister its interface and its endpoint before it 
exits, as follows: 

TRY { 

printf ("Listening ... \n"); 
rpc_server_listen (MAX_CONCURRENT_CALLS, &st); 
if (st != error_status_ok) 

OSF DeE Application Development Guide 



Building an Application 

fprintf (stderr, "Error: %s\n", 
dce_error_in~text(st, &error_in~st))i 

} 

printf ("Unregistering endpoint\n") i 
rpc_ep_unregister(binop_vl_O_s_ifspec, bvec, 

(uuid_vector-p_t) NULL, &st)i 

} ENDI'RYi 

For information on the macros for exception handling, see Part 2 of this 
guide. 

11.4.3 The manager.c Source Code 

The manager.c module includes binop.h, where the EPV type 
binop _ vl_ 0_ epv _tis defined. The name of the EPV type, 
binop _ vl_ 0_ epv _ t, was constructed by the IDL compiler when it compiled 
the binop.idl interface definition. 

The manager module also defines the function binop _add, as follows: 

#include "binop.h" 

void binop_add( 
handle_t h, 
idl_long_int a, 
idl_long_int b, 
idl_long_int *c) 

{ 

*c = a + bi 

OSF DeE Application Development Guide 11-17 



Using Remote Procedure Call 

11.5 A Sample binop Application 

The following subsections describe how to build and run the binop 
programs. 

11.5.1 Building the hinop Programs 

11-18 

The client side of the binop application is the client program, which is built 
from the following: 

• The user-written client.c client module 

• The IDL-compiler-generated binop _ cstub.c client stub module 

• Libraries for the RPC runtime, for IDL stub support, and for the Threads 
facility 

The server side of the binop application is the server program, which is 
built from the following: 

• The user-written server.c server module 

• The user-written manager.c manager module 

• The IDL-compiler-generated binop_sstub.c server stub module 

• Libraries for the RPC runtime, for IDL stub support, and for the Threads 
facility 

These programs can be built by make with a make file such as the following: 

IF = binop 

IDL = /opt/dce/bin/idl 
I FLAGS -keep c_source 
CFLAGS = -g -I. 

FROMIDL = $(IF).h $(IF)_cstub.c $(IF)_sstub.c 

COBJ = $ (IF)_cstub.o client.o 
SOBJ = $(IF)_sstub.o server.o rnanager.o 

OSF DeE Application Development Guide 



default: client server 

client: $ (COBJ) 
$(CC) -0 client $(COBJ) $ (LIBS) 

server: $ (SOBJ) 
$(CC) -0 server $(SOBJ) $ (LIBS) 

client.o server.o manager.o: $(IF).h 

$ (FROMIDL) : $ (IDL) $(IF) .idl 
$ (IDL) $(IF) .idl $(IFLAGS) 

clean: 
$(RM) -f $(FROMIDL) $ (COBJ) $ (SOBJ) 

11.5.2 Running the binop Programs 

Building an Application 

Running the binop application involves starting the server program and 
running the client program. Before starting the server program, you need to 
ensure that the rpcd process is running on the server host. For more 
information, see the description of the Remote Procedure Call daemon 
(rpcd) earlier in Chapter 10, and in the OSF DCE Administration Guide and 
the rpcd(Srpc) reference page in the OSF DCE Administration Reference. 

The server program might be started on an IP host named lulu as follows: 

$ .Iserver ncadg_ip_udp 

Bindings: 
ncadg_ip_udp:l.2.3.4[1234] 
Listening ... 

The client might then be run on another host as follows: 

$ client ncadgJp_udp:1.2.3.4[1234] 5 

Bound to @ncadg_ip_udp:lulu[] 
PASS 0 

OSF DeE Application Development Guide 11-19 



Using Remote Procedure Call 

11-20 

PASS 1 
PASS 2 
PASS 3 
PASS 4 
Surmna:ry: 5 passes, 0 failures 
$ 

The server program can be terminated at any time by a quit signal, which on 
many systems can be generated by <Ctrl-c>: 

$ .Iserver ncadgJp _ udp 

Bindings: 
ncadg_ip_udp:l.2.3.4[1234] 
Listening ... <Ctrl-c> 
Unregistering endpoint 
$ 

Many errors can occur when applications such as binop execute. In 
general, errors that occur when a remote procedure call executes are 
reported as exceptions. For example, exceptions that the client side of 
binop could raise if the server suddenly and unexpectedly halts include (but 
are not limited to) rpc_x_comm_failure and rpc_x_call_timeout. Other 
ways to respond to these errors are available through the comm _status and 
fault_status attributes in an interface definition or attribute configuration 
file. Explanations of these attributes appear in Chapter 18. Also, see 
Chapter 16, which explains the guidelines for error handling. 

As mentioned earlier in this chapter, Part 2 of this guide contains 
information about the macros for exception handling. If an exception 
occurs that the client application does not handle, it causes the client to 
terminate with an error message. The client's termination could include a 
core dump or other system-dependent error reporting method. Detailed 
explanations of RPC status codes and RPC exceptions are in the 
rpc_status_codes(7rpc) reference page in the aSF DeE Application 
Development Reference. 

OSF DeE Application Development Guide 



Chapter 12 

Effects of Remoteness 

DCE RPC provides a call environment that behaves essentially like a local 
call environment. However, some special requirements are imposed on 
remote procedure calls by the remoteness of calling code to the called 
procedure. "Remoteness" refers to the distribution of calling and called 
code among different address spaces that usually reside in physically 
separate computers linked by communications networks. Therefore, a 
remote procedure call may not always behave exactly like a local procedure 
call. 

This chapter discusses the following topics: 

• Direct implications of remoteness 

• Communications protocols 

• Universal unique identifiers 

• Binding infonnation 

• Obtaining binding infonnation of a compatible server 

• Endpoints 

• Context handles 

• Execution semantics 

OSF DeE Application Development Guide 12-1 



Using Remote Procedure Call 

• Communications failures 

• Scaling 

12.1 Direct Implications of Remoteness 

Remoteness has the following direct implications: 

• Client/server relationship: binding 

Like a local procedure call, a remote procedure call depends on a static 
relationship between the calling code and the called procedure. In a 
local application, this relationship is established by linking the calling 
and called code. Linking gives the calling code access to the address of 
each procedure to be called. Enabling a remote procedure call to go to 
the right procedure requires a similar relationship (called a "binding") 
between a client and a server. A binding is a temporary relationship that 
depends on a communications link between the client and server RPC 
runtimes. A client establishes a binding over a specific protocol 
sequence to a specific host system and endpoint. Figure 12-1 illustrates 
a binding. 

Figure 12-1. A Binding 

12-2 

Client's System Server's System 

Network 
I 

I I 

I ( ) Network 
RPC & Comm. Protocols Address 

Client 

I 
Server 

I 
I Endpoint 

• Lack of shared memory 

The calling code and called remote procedure reside in different address 
spaces, generally on separate systems. The calling and called code 
cannot share global variables or other global program states such as 
open files. All data shared between the caller and the called remote 
procedure must be specified as procedure parameters. Unlike a local 
procedure call that commonly uses the call-by-reference passing 

OSF DeE Application Development Guide 



Effects of Remoteness 

mechanism for input/output parameters, remote procedure calls with 
input/output parameters have copy-in/copy-out semantics due to the 
differing address spaces of the calling and called code. These two 
passing mechanisms are only slightly different, and most procedure calls 
are not sensitive to the differences between call-by-reference and copy
in/copy-out semantics . 

• Independent failure 

Distributing a calling program and the called procedures to physically 
separate machines increases the complexity of procedure calls. 
Remoteness introduces issues such as a remote system crash, 
communications links, naming and binding issues, security problems, 
and protocol incompatibilities. Such issues can require error handling 
that is unnecessary for local procedure calls. Also, as with local 
procedure calls, remote procedure calls are subject to execution errors 
that arise from the procedure call itself. 

12.2 Communications Protocols 

A communications link depends on a set of communications protocols. A 
communications protocol is a clearly defined set of operational rules and 
procedures for communications. 

Communications protocols include a transport protocol (from the Transport 
Layer of the OSI network architecture) such as the Transmission Control 
Protocol (TCP) or the User Datagram Protocol (UDP); and the 
corresponding network protocol (from the OSI Network Layer) such as the 
Internet Protocol (IP). 

For an RPC client and server to communicate, their RPC runtimes must use 
at least one identical communications protocol, including a common RPC 
protocol, transport protocol, and network protocol. An RPC protocol is a 
communications protocol that supports the semantics of the DCE RPC API 
and runs over specific combinations of transport and network protocols. 
DCE RPC provides two RPC protocols: the connectionless RPC protocol 
and the connection-oriented RPC protocol. 

• Connectionless (Datagram) RPC protocol 

This protocol runs over a connectionless transport protocol such as UDP. 
The connectionless protocol supports broadcast calls. 

OSF DeE Application Development Guide 12-3 



Using Remote Procedure Call 

• Connection-oriented RPC protocol 

This protocol runs over a connection-oriented transport protocol such as 
TCP. 

Each binding uses a single RPC protocol and a single pair of transport and 
network protocols. Only certain combinations of communications protocols 
are functionally valid (are actually useful for interoperation); for instance, 
the RPC connectionless protocol cannot run over connection-oriented 
transport protocols such as TCP. DCE RPC supports the following 
combinations of communications protocols: 

• RPC connection-oriented protocol over the Internet Protocol Suite, 
Transmission Control Protocol (TCPIIP) 

• RPC connectionless protocol over the Internet Protocol Suite, User 
Datagram Protocol (UDPIIP) 

12.3 Universal Unique Identifiers 

12-4 

A Universal Unique Identifier (UUID) is a hexadecimal number. Each 
UUID contains information, including a timestamp and a host identifier. 

Applications use UUIDs to identify many kinds of entities. DCE RPC 
identifies several kinds of UUIDs, according to the kind of entities each 
identifies: 

• Interface UUID 

A UUID that identifies a specific RPC interface. An interface UUID is 
declared in an RPC interface definition and is a required element of the 
interface. For example: 

uuid(2FAC8900-31F8-11CA-B331-08002B13D56D), 

• Object UUID 

A UUID that identifies an entity for an application; for example, a 
resource, a service, or a particular instance of a server. An application 
defines an RPC object by associating the object with its own UUID 
known as an object UUID. The object UUID exists independently of the 
object, unlike an interface UUID. If different servers offer the same 
RPC object, the servers typically use different object UUIDs to identify 

OSF DeE Application Development Guide 



Effects of Remoteness 

it. A server usually generates UUIDs for its objects as part of 
initialization. A given object UUID is meaningful only while a server is 
offering the corresponding RPC object to clients. 

Note: To distinguish a specific use of an object UUID, a UUID is 
sometimes labeled for the entity it identifies. For example, 
an object UUID that is used to identify a particular 
instance of a server is known as an instance UUID . 

• Type UUID 

A UUID that identifies a class of RPC objects and an associated 
manager (the set of remote procedures that implements an RPC interface 
for objects of that type). 

Servers can create object and type UUIDs by calling the uuid _ create( ) 
routine. 

12.4 Binding Information 

In general terms, binding information is information about one or more 
potential bindings. Binding information includes a set of information that 
identifies a server to a client or a client to a server. Each instance of binding 
information contains all or part of a single address. The RPC runtime 
maintains binding information for RPC servers and clients. To make a 
specific instance of locally maintained binding information available to a 
given server or client, the runtime creates a local reference known as a 
binding handle. Servers and clients use binding handles to refer to binding 
information in runtime calls or remote procedure calls. A server obtains a 
complete list of its binding handles from its RPC runtime. A client obtains 
one binding handle at a time from its RPC runtime. 

Binding information includes the following components: 

• A protocol sequence: A valid combination of communications protocols 
represented by a character string. Each protocol sequence typically 
includes a network protocol, a transport protocol, and an RPC protocol 
that works with them. 

An RPC server tells the runtime which protocol sequences to use when 
listening for calls to the server, and its binding information contains 
those protocol sequences. 

OSF DeE Application Development Guide 12-5 



Using Remote Procedure Call 

• Network addressing information: Includes the network address and the 
endpoint of a server. 

- The network address identifies a specific host system on a network. 
The format of the address depends on the network protocol portion 
of the protocol sequence. 

- The endpoint acts as the address of a specific server instance on the 
host system. The format of the endpoint depends on the transport 
protocol portion of the protocol sequence. For each protocol 
sequence a server instance uses, it requires a unique endpoint. A 
given endpoint can be used by only one server per system, on a first
come, first-served basis. 

• Transfer Syntax: The server's RPC runtime must use a transfer syntax 
that matches one used by the client's RPC runtime. 

• RPC protocol version numbers: The client and server runtimes must use 
compatible versions of the RPC protocol specified by the client in the 
protocol sequence. The major version number of the RPC protocol used 
by the server must equal the specified major version number. The minor 
version number of the RPC protocol used by the server must be greater 
than or equal to the specified minor version number. 

12.4.1 Server Binding Information 

12-6 

Binding information for a server is known as server binding information. A 
binding handle that refers to server binding information is known as a server 
binding handle. The use of server binding handles differs on servers and 
clients. 

• On a server 

Servers use a list of server binding handles. Each represents one way to 
establish a binding with the server. Before exporting binding 
information to a namespace, a server tells the RPC runtime which RPC 
protocol sequences to use for the RPC interfaces the server supports. 
For each protocol sequence, the server runtime creates one or more 
server binding handles. Each server binding handle refers to binding 
information for a single potential binding, including a protocol 
sequence, a network (host) address, an endpoint (server address), a 
trarisfer syntax, and an RPC protocol version number. 

OSF DeE Application Development Guide 



Effects of Remoteness 

A server obtains a list of its server binding handles from the RPC 
runtime. The server uses this list for asking the RPC runtime to perform 
operations that involve binding information such as exporting it to a 
server entry in the namespace or registering endpoints. 

Figure 12-2 illustrates how a server uses server binding handles to refer 
to all of its own binding information. 

Figure 12-2. Server Binding Information and Binding Handles on a Server 

Server 

Application Code 

Runtime 

Legend: 

- - ~ = Refers to binding information . 

• On a client 

A client uses a single server binding handle that refers to the server 
binding information the client needs for making one or more remote 
procedure calls to a given server (see Figure 12-2). Server binding 
information on a client contains binding information for one potential 
binding. 

Figure 12-3 illustrates how a client uses a server binding handle to refer 
to server binding information from which the client establishes a 
particular binding with a specific server. 

OSF DeE Application Development Guide 12-7 



Using Remote Procedure Call 

Figure 12-3. Server Binding Information and a Binding Handle on a Client 

Client 

Application Code 

Runtime 

Legend: 

- -... = Refers to binding information. 

On a client, server binding information always includes a protocol 
sequence and the network address of the server's host system. However, 
sometimes a client obtains binding information that lacks an endpoint, 
resulting in a partially bound binding handle. A partially bound binding 
handle corresponds to a system, but not to a particular server instance. 
When a client makes a remote procedure call using a partially bound 
binding handle, the client runtime gets an endpoint either from the 
interface specification or from the endpoint map on the server's system. 
Adding the endpoint to the server binding information results in a fully 
bound binding handle, which contains an endpoint and corresponds to a 
specific server instance. 

12.4.2 Defining a Compatible Server 

12-8 

Compatible binding information identifies a server whose communications 
capabilities (RPC protocol and protocol major version number, network and 
transport protocols, and transfer syntax) are compatible with those of the 
client. Compatible binding information is sufficient for establishing a 
binding. However, binding information is insufficient for ensuring that the 
binding is to a compatible server; that is, a server that also offers the 
requested RPC interface and RPC object (if any). 

When requesting a binding, a client imposes requirements on its RPC 
runtime that ensure that the binding is with a compatible server. This 

OSF DCE Application Development Guide 



Effects of Remoteness 

additional information includes an RPC interface identifier and an object 
UUID, as follows: 

• Interface identifier: The interface UUID and version numbers of an RPC 
interface: 

- Interface UUID: The interface UUID, unlike the interface name, 
clearly identi fies the RPC interface across time and space. 

- Interface version number: The combined major and minor version 
numbers identify one generation of an interface. 

Version numbers allow multiple versions of an RPC interface to 
coexist. Strict rules govern valid changes to an interface and 
determine whether different versions of an interface are compatible. 
For a description of these rules, see Chapter 17 on IDL syntax and 
usage. 

The runtime uses the version number of an RPC interface to decide 
whether the version offered by a given server is compatible with the 
version requested by a client. The offered and requested interface are 
compatible under the following conditions: 

- The interface requested by the client and the interface offered by 
the server have the same major version number. 

- The interface requested by the client has a minor version number 
less than or equal to that of the interface offered by the server . 

• An object UUID: A Universal Unique Identifier that identifies a 
particular object. 

An object is a distinct computing resource, such as a particular database, 
a specific RPC service that a remote procedure can access, and so on; for 
example, personal calendars are RPC objects to a calendar service. 
Accessing an object requires including its object UUID with the binding 
information used for establishing a binding. A client can request a 
specific RPC object when requesting new binding information, or the 
client can ask the runtime to associate an object UUID with binding 
information the client already has available. 

Sometimes the object UUID is the nil UUID, which contains only zeros, 
00000000-0000-0000-0000-000000000000; when calling an RPC 
runtime routine, you can represent the nil UUID by specifying NULL. 
In this case, the object UUID does not represent any object. Often, 
however, the object UUID represents a specific RPC object and is a 

OSF DeE Application Development Guide 12-9 



Using Remote Procedure Call 

non-nil value. To create a non-nil object UUID, a server calls the 
uuid _ create() routine, which returns a non-nil UUID that the server 
then associates with a particular object. 

If a client requests a non-nil object UUID, the client runtime uses that 
UUID as one of the criteria for a compatible server. When searching the 
namespace for server binding information, the client runtime looks for 
the requested interface identifier and object UUID. The endpoint map 
service uses this same information to help identify a map element 
corresponding to a compatible server. 

Figure 12-4 illustrates the aspects of a server and its system that is identified 
by the client's server binding information, requested interface identifier, and 
requested object UUID. 

Figure 12-4. Information Used to Identify a Compatible Server 

Protocol 
Sequence 

Interface UUID and 

Network 

Comm. Protocols 

Version Numbers -------f.------...... 
Object UUID ----------i--l~ 

12.4.3 Obtaining Binding Information of a Compatible Server 

12-10 

When a client initiates a series of related remote procedure calls, the RPC 
runtime tries to establish a binding, which requires the address of a 
compatible server. Establishing a binding requires that the client possess 
binding information of a compatible server. 

OSF DCE Application Development Guide 



Effects of Remoteness 

A compatible server is a server that meets the following criteria: 

• Offers the requested RPC interface 

• Offers the requested RPC object (if any) 

• Shares a common communications environment with the client; that is, 
the client and server RPC runtimes must support the following: 

- At least one common pair of transport and network protocols such as 
UDP/IP or TCP/IP 

- At least one common transfer syntax such as NDR 

- The same DCE RPC protocol (connection-oriented or connectionless 
protocol) and RPC protocol major version number 

An RPC client can use compatible binding information obtained from either 
a namespace or from a string representation of the binding information. 

• A namespace 

Usually, a server exports binding information for one or more of its 
interface identifiers and its object UUIDs, if any, to an entry in a 
namespace. The namespace is provided by a directory service such as 
the DCE Cell Directory Service (CDS). The namespace entry to which a 
server exports binding information is known as a server entry. 

To learn about a server that offers a given RPC interface and object, if 
any, a client can import binding information from a server entry 
belonging to that server. A client can delegate the finding of servers 
from the namespace to a stub. In this case, if a binding is accidentally 
broken, the RPC runtime automatically tries to establish a new binding 
with a compatible server. 

• A string representation of binding information 

Occasionally, a client can receive binding information in the form of a 
string (also known as a "string binding"). The client can receive a 
string binding (or the information to compose a string binding) from 
many sources; for example, an application-specific environment 
variable, a file, or the application user. The client must call the RPC 
runtime to convert a string binding to a binding handle. The RPC 
runtime stores the binding information from the string binding and 
creates a binding handle that refers to the binding information. The 
runtime returns this binding handle to the client to use for remote 
procedure calls. 

OSF DeE Application Development Guide 12-11 



Using Remote Procedure Call 

12-12 

Establishing a binding can also involve requesting an endpoint from the 
RPC daemon of the server's system. 

12.4.3.1 Format of String Representations of Binding Information 

String representations of binding information have several possible 
components. The binding information can include an RPC protocol 
sequence, a network address, and an endpoint. The protocol sequence is 
mandatory; the endpoint is optional; and for a server on the client's system, 
the network address is optional. Also, a string binding optionally associates 
an object UUrD with the binding information. 

The string bindings have the following format: 

obj-uuid@rpc-protocol-seq:network-addr[endpoint,option-name=opt-
value ... ] 

or 

obj-llllid@rpc-protocol-seq:network-addr[endpoint=endpoint,option
name=opt-value ... ] 

The following example string binding contains all possible components: 

B07122E2-83DF-11C9-BE29-08002B1110FA@ncacn_ip_tcp:16.20.15.25[2001] 

The following example string binding contains only the protocol sequence 
and network address: 

For more information about this format, see the RPC introduction reference 
page, intro(3rpc), in the aSF DeE Application Development Reference. 

OSF DeE Application Development Guide 



Effects of Remoteness 

12.4.3.2 Evaluation of Mechanisms for Obtaining Binding 
Information 

Sometimes, string bindings are useful, for example, when developing and 
testing an application. However, string bindings are inappropriate as the 
principal way of providing binding information to clients. For moderate to 
large environments and for small environments that may expand, 
applications should use the directory service to advertise binding 
information. 

Table 12-1 summarizes the distinctions between using string bindings and 
using the Directory Service. 

Table 12-1. Assessment of Mechanisms for Obtaining Binding Information 

String Bindings 

Convenient for small RPC 
environments; for example, a 
development or test environment. 
Eliminates the overhead of 
installing, configuring, and 
understanding a directory service. 

Requires mutual management. 

Suitable only for static end-user 
environments. 

Binding information has no user
friendly name associated with it. A 
complicated string binding must be 
communicated out of band (in a file, 
on paper, in a mail message, and 
so forth) to every client that wants to 
use the binding information. If the 
binding information is modified, all 
the users must update their copy of 
the information manually. 

OSF DeE Application Development Guide 

Directory Service 

Convenient for large RPC 
environments. Initial overhead of 
understanding and configuring a 
directory service is balanced by 
easier management over time. 

Management of data in a directory 
service is more automated. 

Effective in dynamic end-user 
environ ments. 

Binding information is stored in a 
named server entry. Data can be 
dynamic. Servers can automatically 
place their binding information in the 
namespace. Changes in binding 
information are made once by a 
server or administrator and then 
propagated automatically by the 
directory service to the replicas of 
the data. 

12-13 



Using Remote Procedure Call 

String Bindings 

Decentralized ad hoc administration 
of binding information. Limited 
ability to control access to the 
information. 

Limited selection of servers and 
services; limited ability to control or 
influence selection. 

Directory Service 

Centralized administration of data in 
a namespace. Sophisticated 
access control is possible. 

Supports searching for and 
choosing services based on an 
interface identifier and object UUID. 
Clients access data by specifying an 
entry name. NSI groups and 
profiles in directory service entries 
provide search paths for importing 
binding information. 

12.4.4 Client Binding Information 

12-14 

When making a remote procedure call, the client runtime provides 
information about the client to the server runtime. This information, known 
as client binding information, includes the following information: 

• The address where the call originated 

• The RPC protocol used by the client for the call 

• The object UUID that a client requests 

• The client authentication information (if present) 

The server runtime maintains the client binding information and makes it 
available to the server application by a client binding handle. 

Figure 12-5 illustrates the relationships between what a client supplies 
when establishing a binding and the corresponding client binding 
information. 

OSF DeE Application Development Guide 



Effects of Remoteness 

Figure 12-5. Client Binding Information Resulting from a Remote Procedure Call 

Client's System Server's System 

Application 
Code 

Runtime 

Legend: 

Client 

- - -.. = Contributes to client binding information . 
............ ~ = Refers to client binding information. 

The callouts in the figure refer to the following: 

Server 

Client 
Binding Handle 

1. The requested object UUID, which may be the nil UUID 

2. Client authentication information, which is optional 

3. The address from which the client is making the remote procedure 
call, which the communications protocols supply to the server 

A server application can use the client binding handle to ask the RPC 
runtime about the object UUID requested by a client or about the client's 
authentication information. 

OSF DCE Application Development Guide 12-15 



Using Remote Procedure Call 

12.5 Endpoints 

An endpoint is the address of a specific server instance on a host system. 
The following kinds of endpoints exist: well-known endpoints and dynamic 
endpoints. 

12.5.1 Well-Known Endpoints 

12-16 

A well-known endpoint is a preassigned stable address that a server can use 
every time it runs. Well-known endpoints typically are assigned by a central 
authority responsible for a transport protocol; for example, the ARPANET 
Network Information Center assigns endpoint values for the IP family of 
protocols. If you use well-known endpoints for a server, you should register 
them with the appropriate authority. 

Well-known endpoints can be declared for an interface (in the interface 
declaration) or for a server instance, as follows: 

• Any interface definition can store one or more endpoints, along with the 
RPC protocol sequence corresponding to each endpoint. 

When compiling an interface, the IDL compiler stores each combination 
of endpoint and protocol sequence in the interface specification. If a 
call is made using binding information that lacks an endpoint, the RPC 
runtime automatically looks in the interface specification for a well
known endpoint specified for the protocol sequence obtained from the 
binding information. If the interface specification contains an 
appropriate endpoint, the runtime adds it to the binding information . 

• Alternatively, server-specific, well-known endpoints can be defined in 
server application code. When asking the runtime to use a given 
protocol sequence, the server supplies the corresponding endpoints to 
the RPC runtime. On a given system, each endpoint can be used by only 
one server at a time. If server application code contains a hardcoded 
endpoint or the server's installers always specify the same well-known 
endpoint, only one instance of the server can run per system. 

When a server exports its binding information to a server entry, the export 
operation includes any well-known endpoints within the server binding 
information stored in the server entry. 

OSF DeE Application Development Guide 



Effects of Remoteness 

12.5.2 Dynamic Endpoints 

A dynamic endpoint is an endpoint that is requested and assigned at 
runtime. For some transport protocols, the number of endpoints is limited; 
for example, TCP/IP and UDP/IP use a 16-bit number for endpoints, which 
allows only 65,536 endpoints. When the supply of endpoints for a transport 
protocol is limited, the protocol ensures an adequate supply of endpoints by 
limiting the portion that can be reserved as well-known endpoints. A 
transport, on request, dynamically makes its remaining endpoints available 
on a first-come, first-served basis to specific processes such as RPC server 
instances. 

When a server requests dynamic endpoints, the server's RPC runtime asks 
the operating system for a unique dynamic endpoint for each protocol 
sequence the server is using. For a given protocol sequence, the local 
implementation of the corresponding transport protocol provides the 
requested endpoints. When an RPC server with dynamic endpoints stops 
running, its dynamic endpoints are released. 

Because of the transient nature of dynamic endpoints, NSI does not export 
them to a namespace; however, NSI does export the rest of the server's 
binding information. References to expired endpoints would remain 
indefinitely in server entries, causing clients to import and try, 
unsuccessfully, to establish bindings to nonexistent endpoints. Also, 
updating transient data in namespace entries impairs the performance of a 
directory service. Therefore, the export operation removes dynamic 
endpoints before adding binding information to a server entry; the exported 
server address contains only network addressing information. The import 
operation returns a partially bound binding handle. The client makes its 
first remote procedure call with the partially bound handle, and the endpoint 
map service on the server's system attempts to resolve the binding handle 
with the endpoint of a compatible server. To make dynamic endpoints 
available to clients using partially bound binding handles, a server must 
register its dynamic endpoints in the local endpoint map. 

Note: Register all endpoints to enable administrators to view all the 
endpoints of RPC servers by showing the endpoint map 
elements. To do this, use the rpccp show mapping command 
of the RPC control program. 

OSF DeE Application Development Guide 12-17 



Using Remote Procedure Call 

By using object UUIDs, a server can ensure that a client that imports a 
partially bound handle obtains one of a particular server's endpoints. This 
requires that the server do the following: 

1. Specify a list of one or more object UUIDs that are unique to the 
server. 

2. Export the list of object UUIDs. 

3. Supply the list of object UUIDs to the endpoint map service when 
registering endpoints. 

4. If the server provides different managers that implement an interface 
for different types of objects, the server must set the type of each 
object (see Section 13.4.1 on assigning types to objects.) 

To request binding information for a particular server, a client specifies one 
of the server's object UUIDs, which is then associated with the server 
binding information the client uses for making a remote procedure call. 

Note: If a client requests the nil object UUID when importing from 
a server entry containing object UUIDs, the import (or 
lookup) operation selects one of those object UUIDs and 
associates it with the imported server binding information. 
This object UUID guarantees that the call goes to the server 
that exported the binding information and object UUID to the 
server entry. 

12.6 Context Handles 

12-18 

Server application code can store information it needs for a particular 
client, such as the state of RPC the client is using, as part of a client 
context. During a series of remote procedure calls, the client may need to 
refer to the client context maintained by a specific server instance. To 
provide a client with a means of referring to its client context, the client and 
server pass back and forth an RPC-specific parameter called a "context 
handle." A context handle is a reference to the server instance and the 
client context of a particular client. A context handle ensures that 
subsequent remote procedure calls from the client can reach the server 
instance that is maintaining context for the client. 

OSF DeE Application Development Guide 



Effects of Remoteness 

On completing the first procedure in a series, the server passes a context 
handle to the client. The context handle identifies the client context that the 
server uses for subsequent operations. The client stores the handle and can 
return it unchanged in subsequent calls to the same server. Using the 
handle, the server finds the context and provides it to the called remote 
procedure. 

The server maintains the client context for a client until one of the 
following occurs: 

• The client calls an operation that terminates use of the context. 

• The server crashes. 

• Communications are lost and the server's runtime invokes a context 
rundown procedure. 

12.7 Execution Semantics 

Execution semantics identify the ability of a procedure to execute more 
than once during a given remote procedure call. The communications 
environment that underlies remote procedure calls affects their reliability. 
A communications link can break for a variety of reasons such as a server 
termination, a remote system crash, a network failure, and so forth; all 
invocations of remote procedures risk disruption due to communications 
failures. However, some procedures are more sensitive to such failures, and 
their impact depends partly on how reinvoking an operation affects its 
results. 

To maximize valid outcomes for its operations, the operation declarations 
of an RPC interface definition indicate the effect of multiple invocations on 
the outcome of the operations. 

Table 12-2 summarizes the execution semantics for DCE RPC calls. 

OSF DeE Application Development Guide 12-19 



Using Remote Procedure Call 

Table 12-2. Execution Semantics for DCE RPC Calls 

12-20 

Semantics Meaning 

at-most-once The operation must execute either once, partially, or 
not at all; for example, adding or deleting an 
appointment from a calendar can use at-most-once 
semantics. This is the default execution semantics for 
remote procedure calls. 

idempotent The operation can execute more than once; 
executing more than once using the same input 
arguments produces identical outcomes without 
undesirable side effects; for example, an operation 
that reads a block of an immutable file is idempotent. 
DCE RPC supports maybe semantics and broadcast 
semantics as special forms of idempotent 
operations. 

Semantics 

maybe 

broadcast 

Meaning 

The caller neither requires nor receives 
any response or fault indication for an 
operation, even though there is no 
guarantee that the operation completed. 
An operation with maybe semantics is 
implicitly idempotent and must lack 
output parameters. 

The operation is always broadcast to all 
host systems on the local network, 
rather than delivered to a specific 
system. An operation with broadcast 
semantics is implicitly idempotent; 
broadcast semantics are supported 
only by connection less protocols. 

With the RPC communications protocols, a maybe or broadcast call lacks 
guarantees; an idempotent call guarantees that the data for a remote 
procedure call is received and processed in order zero or more times; and an 
at-most-once call guarantees that the call data is received and processed in 
order zero or one time. 

OSF DCE Application Development Guide 



Effects of Remoteness 

12.8 Communications Failures 

If a server detects a communications failure during a remote procedure call, 
the server runtime attempts to terminate the now orphaned call by sending a 
cancel to the called procedure. A cancel is a mechanism by which a client 
thread of execution notifies a server thread of execution (the canceled 
thread) to terminate as soon as possible. A cancel sent by the RPC runtime 
after a communications failure initiates orderly termination for a remote 
procedure call. (For a brief discussion of how cancels work with remote 
procedure calls, see Chapter 14; for detailed information, see Part 2 of this 
guide.) 

Applications that use context handles to establish a client context require a 
context rundown procedure to enable the server to clean up client context 
when it is no longer needed. A type declaration for the context rundown 
procedure is declared in the interface definition; this ensures that the stub 
knows about the procedure in the server application code. If a 
communications link with a client is lost while a server is maintaining 
context for the client, the RPC runtime will inform the server to invoke the 
context rundown procedure. 

12.9 Scaling 

Unlike local applications, RPC applications require network resources, 
which are possible bottlenecks to scaling an RPC application. RPC clients 
and servers require network resources that are not required by local 
programs. The main network resources to consider are network bandwidth, 
endpoints, network descriptors (the identifiers of potential network 
channels such as UNIX sockets), kernel buffers, and for a connection
oriented transport, the connections. Also, RPC applications place extra 
demands on system resources such as memory buffers, various quotas, and 
the CPU. 

The number of remote procedure calls that a server can support depends on 
various factors, such as the following: 

• The resources of the server and the network 

• The requirements of each call 

OSF DeE Application Development Guide 12-21 



Using Remote Procedure Call 

12-22 

• The number of calls that can be concurrently offered at some level of 
service 

• The performance requirements 

An accurate analysis of the requirements of a given server involves detailed 
work load and resource characterization and modeling techniques. 
Although measurement of live configurations under load will offer the best 
information, general guidelines apply. You should consider the connection, 
buffering, bandwidth, and CPU resources as the most likely RPC 
bottlenecks to scaling. Use these application requirements to scale 
resources. 

Many system implementations limit the number of network connections per 
process. This limit provides an upper bound on the number of clients that 
can be served concurrently using the connection-oriented protocol. Some 
UNIX derived systems set this limit at 64. However, except for applications 
that use context handles,' the connection-oriented RPC runtime allows 
pooling of connections. Pooling permits simultaneously supporting more 
clients than the maximum number of connections, provided they do not al! 
make calls at the same instant and occasionally can wait briefly. 

OSF DeE Application Development Guide 



Chapter 13 

Basic DCE RPC Runtime Operations 

This chapter introduces a number of basic DCE RPC directory service, 
communications, and authentication operations and discusses major usage 
issues important for developing DCE RPC applications. 

Note: DCE RPC Version 1.0 supports authenticated RPC for the 
connectionless (datagram) protocol only. 

This chapter discusses the following topics: 

• Overview of basic operations 

• Basic tasks of an unauthenticated remote procedure call 

• Basic runtime routines 

• Server initialization tasks 

• Methods for managing bindings 

• Obtaining server binding handles 

• Using authenticated RPC 

OSF DeE Application Development Guide 13-1 



Using Remote Procedure Call 

13.1 Overview of Basic Operations 

13-2 

This section summarizes the major concerns of RPC communications, NSI, 
and authenticated RPC, as follows: 

• Basic operations of RPC communications protocols 

The DCE RPC runtime provides the following communications 
operations for RPC applications: 

- Managing communications for RPC applications 

As part of server initialization, a server sets up its communications 
capabilities by a series of calls to the RPC runtime. These runtime 
calls register the server's RPC interfaces, tell the RPC runtime what 
combination of communications protocols to use for the server, and 
register the endpoints of the server for each of its interfaces. After 
completing these and any other initialization tasks, the server tells 
the runtime to begin listening for incoming calls. 

- Managing binding information 

A variety of communications operations allow servers to access and 
manipulate binding information. In addition, a set of 
communications operations enables applications to manipulate 
string representations of binding information (string bindings). 

• Basic operations of the RPC Name Service Interface (NSI) 

The NSI routines perform operations on a namespace for RPC 
applications. The fundamental operations include the following: 

- Creating and deleting entries in namespaces 

- Exporting 

A server uses the NSI export operation to place binding information 
associated with its RPC interfaces and objects into the namespace 
used by the RPC application. 

- Importing 

Clients can search for exported binding information associated with 
an interface and object using the NSI import operation or lookup 
operation. These two operations are collectively referred to as the 
NSI search operations. 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

- Unexporting 

The unexport operation enables a server to remove some or all of its 
binding information from a server entry. 

- Managing information in a namespace 

Applications use the NSI interface to place information about server 
entries into a namespace and to inquire about and manage that 
information. 

For information about the Cell Directory Service, see the aSF DeE 
Administration Guide. 

• Basic operations of authenticated RPC 

The authenticated RPC routines provide a mechanism for establishing 
secure communications between clients and servers. 

To engage in authenticated RPC, a client and server must agree on the 
authentication service to be used. The server's responsibility is to 
register its principal name and the authentication service to be supported 
with the RPC runtime. The client's responsibility is to establish the 
authentication service, a given protection level, and an authorization 
service for the server binding handle. The protection level determines 
the degree of protection applied to individual messages between the 
client and server. The authorization service determines the form in 
which the client's credentials will be presented to the server (for access 
checking). 

Once authenticated RPC has been established between a client and 
server, the client issues remote procedure calls in the usual fashion, with 
all authentication and protection being handled by the DCE Security 
Service component and the RPC runtime. 

OSF DeE Application Development Guide 13-3 



Using Remote Procedure Call 

13.2 Basic Tasks of an Unauthenticated Remote 
Procedure Call 

13-4 

Figure 13-1 summarizes the basic tasks of an unauthenticated remote 
procedure call. Use the legend to the figure to learn what portion of an RPC 
application is concerned with each task. 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

Figure 13-1. Basic Tasks of a Remote Procedure Call 

Client Tasks Server Tasks 
Select the communications protocols, and register the 
interfaces and server addresses. 

Advertise the server's service(s) and resources by exporting binding 
information for RPC interfaces and objects to the name service database. 

Listen for a call. 

Identify the server that offers the called remote procedure. 

Call the remote procedure. 

Establish binding with the server. 

Marshall the input arguments. 

Transmit the input arguments 
to server runtime. 

wait 

wait 

Receive and dispatch the call to the correct stub. 

Unmarshall the input arguments. 

Create client context (if needed for multiple calls). 

Invoke the called procedure. 

Execute the remote procedure. 

Marshall the results (output arguments and/or return value). 

Transmit the results (or any exceptions) to client runtime. 

Receive the results (or any exceptions). o 
o Unmarshall the results. 

Pass the results (or any exceptions) to the 
calling code and return control to it. D 

= Application code performs the function. 

= Application code calls RPC runtime, 
which performs the function. 

= Stub automatically performs the function. 

Handle the exceptions. <> = RPC runtime automatically performs the function. 

OSF DCE Application Development Guide 13-5 



Using Remote Procedure Call 

13.3 Basic Runtime Routines 

Table 13-1 relates several of the RPC runtime operations to specific routines 
or classes of routines. 

Table 13-1. Runtime Routines Associated with Basic Runtime Operations 

Description of Operation Usage Routine Name{s) 
Communications Routines 

Setting the type of an RPC Server rpc _ object_ set_ type{ ) 
object with the RPC runtime 

Registering RPC interfaces Server rpc_server_register_if{ ) 

Selecting RPC protocol Server rpc _network _ i nq_protseqs{) and 
sequences rpc_server_use_*protseq*_ ... { ) 

Obtaining server binding Server rpc_server_inq_bindings{ ) 
handles 

Registering endpoints Server rpc_ep_register{) and 
rpc_ep_register_no_replace{ ) 

Unregistering endpoints Server rpc_ep_unregister{ ) 

Listening for calls Server rpc_server_listen{ ) 
Manipulating string Client rpc_binding_from_string_binding{ ) 
representations of binding 
information (string bindings) 

Client, 
Server rpc_binding_to_string_binding{ ), 

rpc_string_binding_compose{ ), 
and rpc_string_binding_parse{) 

Changing the RPC object in Client rpc_binding_set_object{ ) 
server binding information 

Converting a client binding Server rpc_binding_server_from_client{ ) 
handle to a server binding 
handle 

13-6 OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

Description of Operations Usage Routine Name(s) 

Name Service Interface Routines 

Exporting binding information to Server rpc_ns_binding_export( ) 
a namespace 

Searching a namespace for Client rpc_ns_binding_import_ ... ( ), 
binding information rpc_ns_binding_lookup_ ... ( ), 

and rpc_ns_binding_select() 

Authentication Routines 
Authentication and authorization Server, 

Client rpc_*auth ... ( ) 

13.4 Server Initialization Tasks 

Before an RPC server can receive any remote procedure calls, the server 
initializes itself by calling the RPC runtime routines. The server 
initialization code, written by the application developer, varies among 
servers. However, every server must set up its communications capabilities, 
which minimally involves all or most of the following tasks: 

• Assigning types to objects 

• Registering at least one interface 

• Specifying which protocol sequences the server will use 

• Obtaining a list of references to a server's binding information (a list of 
binding handles) 

• Registering endpoints 

Note: Before stopping, a server should unregister these 
endpoints. 

• Exporting binding information to a server entry or entries in the 
namespace 

• Listening for remote procedure calls 

Figure 13-2 illustrates the calls a server makes to accomplish these basic 
initialization tasks. 

OSF DeE Application Development Guide 13-7 



Using Remote Procedure Call 

Figure 13-2. Typical Initialization Calls of an RPC Server 

Server 

/* Initialization tasks */ 

rpc_serveUisten 0 

Prepared to receive 
remote procedure calls 

/* Shutdown tasks */ 

13.4.1 Assigning Types to Objects 

13-8 

A "type" is a mechanism for associating a set of RPC objects and the 
manager whose remote procedures implement an RPC interface for those 
objects. Types allow an application to cluster objects, such as computing 
resources, according to any relevant criteria. For example, a single 
accounting interface can be implemented to operate on accounting 
databases that contain equivalent information but that are formatted 
differently; each database format represents a distinct type. 

By default, objects have the nil type. Only a server that implements 
different managers for different objects or sets of objects needs to type 
classify its RPC objects. To type classify an object, a server associates the 
object UUID of the object with a single type5.25ID by calling the 
rpc_object_set_type() procedure separately for each object. To create a 

OSF DCE Application Development Guide 



Basic DCE RPC Runtime Operations 

type UUID, a server calls the uuid _ create() routine. A server uses a single 
type UUID for every object of an identical type. 

To simultaneously offer alternative implementations of an RPC interface for 
different types of objects, a server uses alternative managers. Servers that 
implement each of their interfaces with only one manager can usually avoid 
the tasks associated with assigning object types. However, when a server 
offers multiple managers, each manager must be dedicated to operating on a 
separate type of object. In this case, a server must classify some or all of its 
objects into types; for example, a calendar application that specifies one 
non-nil type UUID for departmental calendars and another non-nil type 
UUID for personal calendars. 

Figure 13-3 illustrates how objects correspond to types. The server 
associates each object with a particular type. When the server receives an 
incoming call that specifies an object UUID, the server dispatches the call 
to the manager for the type to which the object belongs. 

OSF DeE Application Development Guide 13-9 



Using Remote Procedure Call 

Figure 13-3. How Objects Correspond to Types 

First Object Type 

Type UUID: 

408689D4-F86C-11C9-809A-0800280F4528 

Object A 

Object UUID: OF21 0354-FB6B-11 C9-81 OF-08002BOF4528 

Object B 

Object UUID: 24038C9G-FB6C-11 C9-9977-08002BOF4528 

Second Object Type 

Type UUID: 

E5E46D28-F86A-11C9-881D-0800280F4528 

Object C 

Object UUID: 30DBEEAD-FB6C-11 C9-8EEA-08002BOF4528 

Object D 

Object UUID: F84F27 AD-FB6A-11 C9-B23E-08002BOF4528 

For information on how a type is used to select a manager for an incoming 
call, see Chapter 14 on advanced DCE RPC topics. 

13.4.2 Registering Interfaces 

13-10 

To register an interface, a server calls the rpc _server _register Jf() routine 
to tell the RPC runtime about a specific RPC interface. Registering an 
interface informs the runtime that the server is offering that interface and 
makes it available to clients. A server can register any number of interfaces 
with the RPC runtime by calling the rpc _server_register Jf() routine once 
for each set of procedures, or manager, that implements an interface. 

To offer more than one manager for an interface, a server must register each 
manager separately. 

OSF DCE Application Development Guide 



Basic DCE RPC Runtime Operations 

When registering an interface, the server provides the following 
infonnation: 

• Interface specification 

This is a reference to infonnation about an RPC interface as offered by 
its server stub. The DCE IDL compiler generates an interface 
specification as part of the stub code. For a specific version of an 
interface, all managers use the same interface specification. 
Infonnation in an interface specification that concerns application 
developers includes the following: 

- The interface identifier (UUID and major and minor version 
numbers) 

- The supported transfer syntaxes 

- A list of any well-known endpoints (and their associated protocol 
sequences) specified in the interface definition (.idl) file 

- The interface's default manager endpoint vector (manager EPV), if 
present 

A manager EPV is a list of the addresses (the entry points of the 
remote procedures provided by the manager). A manager EPV must 
contain exactly one entry point for each procedure defined in the 
interface definition. A default manager EPV, constructed using the 
operation names of the interface definition, is typically generated for 
stubs by the DCE IDL compiler (a compiler option can suppress this 
feature). 

• The manager EPV and type for the interface 

A server can register a given interface more than once by specifying a 
different manager EPV and type each time. The server can use the 
default manager EPV only once, and only for a manager that uses the 
procedure names declared in the interface definition. For any additional 
manager of the RPC interface, the server must create and register a 
unique manager EPV. Also, each manager must be associated with a 
distinct type of object. To associate a type with a manager EPV, a 
server passes the type UUID of the associated type of object to the RPC 
runtime. 

The exact operations perfonned by managers can vary with the type of 
object on which each manager operates. For example, a queue-management 

OSF DeE Application Development Guide 13-11 



Using Remote Procedure Call 

interface may be implemented to manage print queues as objects in one 
case and to manage batch queues as objects in another. 

Figure 13-4 illustrates the use of type UUIDs to identify the types of two 
managers. These types correspond to the two object types illustrated in 
Figure 13-3. 

Figure 13-4. Manager Types 

13-12 

Manager A 
(Operates on objects of the first type) 

Type UUID: 

4086B9D4-FB6C-11C9-B09A-08002BOF4528 

Procedure get_sum 

Procedure get_sums 

Manager B 
(Operates on objects of the second type) 

Type UUID: 

E5E46D28-FB6A-11C9-881D-08002BOF4528 

Procedure geCsum 

Procedure geCsums 

For a discussion of how a server uses object and manager types when 
routing incoming calls, see Section 14.4.4, which tells you how to select the 
appropriate manager. 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

13.4.3 Selecting RPC Protocol Sequences 

For an overview of protocol sequences, see the following subsections on 
binding infonnation. 

13.4.3.1 Inquiring About Supported Protocol Sequences 

A server can inquire about the protocol sequences that the local RPC 
runtime supports. The server can ask the RPC runtime for a list of all 
protocol sequences supported by both the RPC runtime and the operating 
system. After requesting a list of protocol sequences, a server is responsible 
for releasing the memory the runtime uses to store the requested 
infonnation. The server can also inquire whether a given protocol sequence 
is available for receiving remote procedure calls. 

13.4.3.2 Selecting Protocol Sequences 

To receive remote procedure calls, a server tells the the RPC runtime to use 
at least one protocol sequence. For each protocol combination, the RPC 
runtime creates one or more binding handles. The server uses a list of these 
binding handles to register dynamic endpoints and to export its binding 
infonnation. 

As an option, an interface can contairi one or more well-known endpoints, 
each of which is accompanied by a protocol sequence. A server can use any 
protocol sequence declared in an interface endpoint declaration, or the 
server can ignore the endpoint declarations, as long as it registers at least 
one endpoint. 

13.4.4 Obtaining a List of Server Binding Handles 

After a server passes the protocol sequences over which it will listen for 
remote procedure calls to the RPC runtime, the RPC runtime constructs 
server binding handles. Each binding handle refers to a complement of 
binding infonnation that defines one potential binding; that is, a specific 

OSF DeE Application Development Guide 13-13 



Using Remote Procedure Call 

RPC protocol sequence, RPC protocol major version, network address, 
endpoint, and transfer syntax that an RPC client can use to establish a 
binding with an RPC server. 

Before registering endpoints or exporting binding information, a server 
must obtain a list of its binding handles from the RPC runtime. The server 
passes this list back to the runtime as an argument when registering 
endpoints and exporting binding information. 

When a server requests a list of binding handles, the RPC runtime allocates 
memory for the list, and the application is responsible for freeing that 
memory. 

13.4.5 Registering Endpoints 

13-14 

Servers can use well-known or dynamic endpoints with any protocol 
sequence. 

When a server asks the runtime to use a dynamic endpoint with a protocol 
sequence, the runtime asks the operating system to generate the endpoint. 
To use the dynamic endpoints, a server must register the server's binding 
information, including the endpoints. For each combination of RPC 
interface identifier, object UUID, and binding information that the server 
offers, the endpoint map service creates an element in the local endpoint 
map. 

To register an endpoint, a server places the following information into the 
local endpoint map: 

• The RPC interface identifier, which contains the interface UUID and 
major and minor version numbers 

• The list of binding handles for the interface 

• The list of the server's object UUIDs (if any) 

When a server asks the runtime to use a well-known endpoint with a 
protocol sequence, the runtime either uses an interface specification to look 
up the endpoint or receives the endpoint in a variable from the server. A 
server does not necessarily need to register well-known endpoints; however, 
by registering well-known endpoints, the server ensures that clients can 
always obtain them. Registration also makes the endpoints accessible to 
administrators, who can use the RPC control program to show the map 
elements of an endpoint map by using the rpccp show mapping command. 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

Servers, clients, or management modules can remove map elements from a 
local endpoint map by using the rpc _ ep _ unregister() routine. Servers 
should unregister endpoints after they stop listening. The RPC control 
program enables its users to remove map elements from an endpoint map by 
using the rpccp remove mapping command. 

13.4.6 Making Binding Information Accessible to Clients 

A server needs to make its binding information accessible to clients. 
Usually, a server uses the NSI export operation to place its binding 
information into a server entry. However, it is also possible for servers to 
make string bindings accessible to clients. 

13.4.6.1 Using String Bindings to Provide Binding Information 

While implementing and debugging a server program you may temporarily 
want to communicate binding information to clients using string bindings. 
This allows a server to establish a client/server relationship without 
registering endpoints in the local endpoint map or exporting binding 
information to a namespace. 

After asking for a list of binding handles by calling the 
rpc _server _ in<L bindings( ) routine, the server can 0 btain binding 
information from the server runtime. The server can convert each binding 
handle in the list into a string binding by calling 
rpc _ binding_to _ string_ binding( ). The resulting string binding is al wa ys 
fully bound. The server then makes some or all of its string bindings 
available to clients somehow; for example, by placing the string bindings in 
a file to be read by clients or users or both. 

OSF DeE Application Development Guide 13-15 



Using Remote Procedure Call 

13-16 

13.4.6.2 Exporting Binding Information 

Servers can export binding infonnation (and interface identifiers) or objects 
or both by calling the rpc _ ns _ hinding_ export() routine. To export binding 
infonnation associated with a given RPC interface, a server uses an 
interface handle. The interface handle is created by the IDL compiler as a 
reference to infonnation about the interface that the compiler stores in an 
interface specification. To refer to binding infonnation, the application code 
obtains a list of server binding handles from the RPC runtime and passes the 
list to the export operation. The list contains binding handles for all the 
protocol sequence and endpoint combinations that the server has requested; 
it does this by calling the use-protocol-sequence operations. However, the 
server can remove any of those binding handles from the list before 
exporting it. This enables a server to export the binding infonnation 
associated with a subset of its binding handles. 

To export object UUIDs, a server application must provide a list of object 
UUIDs for the RPC objects it offers. The server can generate these object 
UUIDs itself or obtain them from some application-specific source such as 
an object-UUID database. All object UUIDs in a given server entry are 
associated with every interface UUID and server address in the entry. 

Figure 13-5 illustrates the use of server binding handles to refer to server 
binding infonnation to be exported. 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

Figure 13-5. Exporting Server Binding Information 

Application 
Code 

Runtime 

Legend: 

Server 

Server Entry 

- -.... = Refers to binding information. 

The callouts in the figure refer to the following operations: 

1. The server application code calls the export operation, having 
previously inquired for a list of binding handles. Along with the 
name of a server entry, the application passes the export operation a 
list of server binding handles and an interface handle, a list of object 
UUIDs, or both. 

2. The export operation uses the binding handles to identify the binding 
information to export. 

3. The export operation places binding information, the associated 
interface identifier, and the associated list of object UUIDs into the 
designated server entry. 

A server entry must belong exclusively to a server running on a given host. 
If there are identical, interchangeable instances of a server on the host, they 

OSF DeE Application Development Guide 13-17 



Using Remote Procedure Call 

can share a single set of server entries. However, if clients need to 
distinguish between coexisting instances of a server (for example, when 
each offers a different RPC object), each instance requires its own server 
entry. 

Note: CDS data is subject to access control. To access CDS entries, 
you need Access Control List (ACL) permissions. Depending 
on the NSI operation, you need ACL permissions to the parent 
directory, the CDS object entry, or both. If you need ACL 
permissions, see your CDS administrator. 

The ACL permissions are as follows: 

• To create an entry, you need insert permission to the parent directory. 

• To read an entry, you need read permission to the CDS object entry. 

• To write to an entry, you need write permission to the CDS object entry. 

• To delete an entry, you need delete permission either to the CDS object 
entry or to the parent directory. 

• To test an entry, you need either test permission or read permission to 
the CDS object entry. 

Note that write permission does not imply read permission. 

13.4.7 Listening for Calls 

13-18 

When a server is ready to accept remote procedure calls, it initiates 
listening, specifying the maximum number of calls it can execute 
concurrently; it does this by calling the rpc _server _listen() routine. If a 
server allows concurrent calls, its remote procedures are responsible for 
concurrency control. If executing a set of remote procedures concurrently 
requires concurrency control and a server lacks this control, the server must 
allow only one call at a time. 

The RPC runtime continues listening for new remote procedure calls to the 
server's registered interfaces until one of the following events occurs: 

• Any of the server's procedures makes a local management call to stop a 
server from listening for future remote procedure calls. 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

• For applications whose servers enable clients to stop servers from 
listening, a client makes a remote management call to stop a server 
from listening for future remote procedure calls. 

On receipt of a stop listening request, the RPC runtime stops accepting new 
remote procedure calls for all registered interfaces. However, currently 
executing calls are allowed to complete. After all executing calls 
complete, the listen operation stops listening and returns control to the 
server. Servers should unregister endpoints after they stop listening. 

13.5 Methods for Managing Bindings 

The client manages the bindings for its remote procedure calls. (For a 
discussion of bindings, see Chapter 12, which describes the effects of 
remoteness.) DCE RPC provides various methods of managing bindings for 
remote procedure calls. These methods include the automatic, implicit, and 
explicit methods. The automatic method requires the server to store binding 
information in server entries in a namespace; the implicit and explicit 
methods work with any source of binding information. These methods are 
described in the following text: 

• Automatic method 

This is the simplest method of managing the binding for remote 
procedure calls. With the automatic method, the server exports its 
binding information to a namespace, and the client stub automatically 
manages a binding for the application code. 

The automatic method completely hides binding management from 
client application code. The stub calls the import operation and obtains 
a binding handle that refers to the imported binding information. The 
stub passes this binding handle to the runtime with the remote 
procedure call, and the runtime uses the binding handle to retrieve the 
associated binding information. If the client makes a series of remote 
procedure calls, the stub passes the same binding handle with each call. 

With the automatic method, a disrupted call can sometimes be 
automatically rebound. The automatic rebinding requires either that the 
remote procedure never begins to execute or that the operation is 

OSF DeE Application Development Guide 13-19 



Using Remote Procedure Call 

13-20 

idempotent. If the call meets either of these requirements, the RPC 
runtime automatically tries to rebind the client to another server (if one 
is available). 

Note: Using a context handle prevents automatic rebinding. 

When a call made using the automatic method experiences an error that 
prevents automatic rebinding, the caller is informed that the call failed, 
and the caller can choose to reissue the call. If the client reissues a 
failed call, the automatic method selects a new server to try. 

To make authenticated calls with the automatic binding method, the 
client calls the rpc_ss_register_auth_infoO routine before making the 
remote procedure call. This routine places the client authentication 
information in the interface specification for the client runtime to 
access. 

Note: The rpc _ss _register _ authJnfoO routine is unavailable 
in DCE RPC Version 1.0. 

• Implicit method 

This is a relatively simple method of managing a binding. With the 
implicit method, prior to making any remote procedure calls, the client 
application code calls runtime routines to initialize a server binding 
handle. The runtime obtains server binding information from a 
namespace or a string binding and makes the information available to 
the client application by a server binding handle. The client application 
assigns the server binding handle to a global variable in the client 
application. When calling a remote procedure using the implicit 
method, the client stub passes this global binding handle to the runtime. 

Note: Multithreaded clients must be careful not to allow one 
thread to change the value of the shared global binding 
handle while another thread is using it. 

• Explicit method 

This is a more complex and more flexible method of managing a 
binding. As with the implicit method, the explicit method requires that 
the client application code call runtime routines to initialize a binding 
handle. In the explicit method, however, this binding handle is supplied 
by the application code as a parameter to the remote procedure call. By 
allowing a client to manage bindings for individual calls, the explicit 
method enables clients to meet specialized binding requirements. 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

Figure 13-6 shows the distribution of responsibility for binding 
management in each of the three methods. For each method, the top portion 
of the box represents the client application code written by the developer. 
The bottom portion of each box represents the client stub code generated 
from an IDL interface definition. A binding handle is visible to the shaded 
portions of the code. 

Figure 13-6. Methods of Binding Management 

Client 
Application 
Code 

Client 
Stub 

Automatic 
Method 

Binding information 
obtained and 

binding handle set. 

Legend: 

Implicit 
Method 

Obtain binding 
information and set 

global binding handle. 

Binding handle 
defined as 

global variable. 

D = Code responsible for managing a binding handle. 

Explicit 
Method 

Obtain binding 
information and set 

binding handle. 

Pass binding 
handle to stub as 
first parameter of 

remote procedure call. 

The automatic and implicit methods are interface wide and therefore 
mutually exclusive; that is, for a given interface, a client can use only one 
of these interface-wide methods. A client that uses either the automatic or 
implicit method for an interface can also use the explicit method for some 
or all of the remote procedure calls to that interface. The explicit method 
takes precedence over either the automatic or implicit methods of 
managing bindings. 

The methodes) of binding management for an interface is specified using 
the interface definition, the Attribute Configuration File (ACF), or both. In 
the interface definition, the explicit method can be specified for the whole 
interface, or for an operation by declaring a binding handle (using the IDL 
type handle _ t) as the first parameter of the operation declaration. 

By default, an operation uses the automatic method of binding, unless the 
client passes either a context handle as one of the parameters or a binding 
handle as the first parameter. However, at compile time, declarations in an 

OSF DeE Application Development Guide 13-21 



Using Remote Procedure Call 

13-22 

ACF can override this default. The Attribute Configuration Language 
provides the automatic_handle, implicit_handle, and explicit_handle 
attributes. In an ACF you can declare anyone of these attributes as an 
attribute of the whole interface (an ACF interface attribute). When you 
specify either the automatic method or the implicit method as an ACF 
interface attribute, you can also specify the explicit method for any 
individual operation by using explicit_handle as an attribute of the 
particular operation (an ACF operation attribute). 

With the automatic method, binding management belongs completely to 
the client-stub code generated by the DCE IDL compiler. With the explicit 
method, the application developer is completely responsible for binding 
management. The implicit method provides the application developer with 
some control over binding management without having to pass a binding 
handle as a call argument. 

A server binding handle that the runtime provides directly to an application 
is a primitive binding handle. To declare a primitive binding handle, 
application code uses the predefined RPC binding handle data type 
rpc_hinding_handle_t, and an interface definition uses the IDL data type 
handle_t. Primitive binding handles offer a simple means of referring to 
binding information, which works in most cases. The automatic method of 
binding management always uses primitive binding handles. 

Applications that use the implicit or explicit methods of binding 
management can choose to store primitive binding handles in an 
application-specific data structure known as a customized binding handle. 
Customized binding handles enable application developers to manage 
binding information to meet the special needs of a specific application. For 
example, a customized binding handle can be the handle of a file whose 
records contain the information required to construct a string binding. 

U sing customized binding handles requires the application developer to 
perform several special tasks. The RPC interface definition must include a 
declaration of the customized binding handle as a data structure with a 
handle data type; this is done by using the handle attribute. The client 
application code must contain specialized procedures that the client stub 
calls to obtain a primitive binding handle from the customized handle and 
to release any resources, such as memory, used for the customized handle. 

When a customized binding handle is used with the explicit method, 
responsibility for setting the binding handle shifts to the client stub. The 
client code provides procedures for obtaining the primitive binding handle 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

from the customized handle and for freeing the primitive binding handle 
after the call completes. However, it is the stub that calls these procedures 
to set and free the primitive binding handle. 

13.6 Obtaining Server Binding Handles 

A client can obtain server binding information in string format from an 
application-specific source such as a file. Alternatively, a client runtime 
can obtain server binding information from a namespace. Runtime routines 
enable client applications to obtain server binding handles that refer to 
server binding information obtained from either source. 

13.6.1 Using String Bindings to Obtain Binding Information 

To use a string binding, a client starts with either an existing string binding 
or with the components of the binding information. When starting with the 
components, the client calls the RPC binding compose operation to get the 
string representation of binding information. 

Do not hardcode string bindings into application code. Rather, specify 
them at runtime using a command argument, environment variable, file, or 
other means. The simplest way to specify a string binding is for a user to 
supply a string binding manually to a client. However, this manual 
approach is awkward for users who must know how to obtain and 
manipulate the string bindings. Also, if binding information changes, the 
users are responsible for updating any string bindings used by their clients. 
Reducing manual intervention in the use of string bindings requires that an 
application provide its own mechanisms for storing, maintaining, and 
accessing binding information. In contrast, a directory service such as CDS 
provides these mechanisms automatically to applications that store binding 
information in a namespace. 

Regardless of how a client obtains a string binding, before establishing a 
binding, the client must ask the RPC runtime for a binding handle that 
refers to the server binding information depicted in the string binding. The 
client converts the string binding into a server binding handle by calling 
the rpc _ binding_from _ string_ binding( ) routine. 

OSF DeE Application Development Guide 13-23 



Using Remote Procedure Call 

Figure 13-7 lists the calls for composing a string binding and for using it to 
obtain a server binding handle. 

Figure 13-7. Basic String Binding Calls of an RPC Client 

Client 

~ 
rpc_string_binding_compose () 

rpc_blnding_from_string_blnding 0 

rpc_strlng_free () 

13.6.2 Searching a N amespace 

13-24 

To obtain binding information from a namespace, a client can do one of the 
following: 

• The client must use the automatic method of binding management to 
make the client stub transparently manage binding information. 

In this case, the application code lacks any calls to the NSI interface. 
However, the automatic method does require the client to identify the 
directory service entry at which to begin the search for binding 
information. The client must specify the starting entry name as the 
value of the NSI-defined RPC DEFAULT ENTRY environment - -
variable. 

• The client must call the import routines 
rpc _ ns _binding_import _ begin(), rpc _ns _binding_import _ next(), 
and rpc_ns_binding_import_doneO to obtain a binding handle for a 
compatible server. 

• The client must call the lookup routines 
rpc _ ns _binding_lookup _ begin(), rpc _ ns _binding_lookup _ next(), 
and rpc _ ns _ bindingJookup _ donee ) to obtain a list of binding handles 

OSF DCE Application Development Guide 



Basic DCE RPC Runtime Operations 

for a compatible server. Select a binding handle from the list by calling 
either of the following: 

The NSI select routine rpc _ os _ biodiog_ select(), which selects a 
binding handle at random 

A user-defined select routine, which implements an application
specific selection algorithm 

Figure 13-8 lists the NSI calls (where present) associated with these 
alternatives. 

Figure 13-8. Calls for NSI Search Operations by RPC Clients 

Stub automatically 
imports binding 
handle for a 
compatible server 
from the name 
service database. 

Application code 
lacks NSI calls 
(automatic method). 

Import-next operation 
returns binding handle for 
a compatible server. 

Client 3 

Lookup-next operation 
returns list of binding handles 
for a compatible server. 

or 

AppLCode_SelecCRoutine 0 

Application code selects 
a binding handle from list. 

An NSI import or lookup operation searches server entries for a compatible 
server. On finding such a server entry, the search operation copies the 
server binding information associated with the requested interface and an 
object UUID. The search operation then creates a randomly ordered list of 
server binding handles to refer to the potential bindings represented by the 
binding information. 

Figure 13-9 illustrates the use of a server binding handle to refer to server 
binding information selected by an import operation. 

OSF DCE Application Development Guide 13-25 



Using Remote Procedure Call 

Figure 13-9. Importing Server Binding Information 

Application 
Code 

Runtime 

Legend: 

Client 

- - ~ = Refers to binding information. Server Entry 

The callouts in the figure refer to the following operations: 

1. The import operation looks up binding information of a server that is 
compatible with the client. 

The import operation finds a server entry based on the specified 
interface identifier, and then looks at the list of object UUIDs. If the 
importing client specifies a non-nil object UUID, the import 
operation looks for and returns that object UUID. If the client 
specifies the nil object UUID and the server entry contains any 
object UUIDs, the import operation selects and returns one UUID at 
random. If the entry lacks any object UUIDs, the import operation 
returns the nil UUID. 

2. The import operation fetches the compatible binding information and 
creates a binding handle for each potential binding represented in the 
binding information. 

3. The import operation then selects a binding handle at random and 
passes it to the client application. 

13-26 OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

13.7 Using Authenticated RPC 

DCE RPC supports authenticated communications between clients and 
servers. Authenticated RPC works with the authentication and 
authorization services provided by the DCE Security Service. 

On the application level, a server makes itself available for authenticated 
communications by registering its principal name and the authentication 
service that it supports with the RPC runtime. The server principal name is 
the name used to identify the server as a principal to the Registry Service 
provided by DCE Security Service. In practice, this name is usually the 
same as the name that the server uses to register itself with the DCE 
Directory Service. 

A client must establish the authentication service, protection level, and 
authorization service that it wishes to use in its communications with a 
server. The client identifies the intended server by means of the principal 
name that the server has registered with the RPC runtime. Once the 
required authentication, protection, and authorization parameters have 
been established for the server binding handle, the client issues remote 
procedure calls to the server as it normally does. 

The DCE Security Service, in conjunction with the RPC runtime, assumes 
responsibility for the following: 

• Authenticating the client and server in accordance with the requested 
authentication service 

• Applying the requested level of protection to communications between 
the client and server 

• Providing client authorization data to the server in a form determined 
by the requested authorization service 

Note: For a detailed discussion of authenticated RPC within the 
context of DCE Security, refer to Part 6 of this guide. 

OSF DeE Application Development Guide 13-27 



Using Remote Procedure Call 

13.7.1 Authentication 

13-28 

When a client establishes authenticated RPC, it must indicate the 
authentication service that it wants to use. The possible values are the 
following: 

• rpc_c_authn_none: No authentication 

• rpc _ c _ authn _ dce _secret: DCE shared-secret key authentication 

• rpc_c_authn_dce_public: DCE public key authentication 

• rpc _ c _ authn _default: DCE default authentication service 

The value rpc _ c _ authn _none is used to tum off authentication already 
established for a binding handle. The default authentication is DCE 
shared-secret authentication, which is described in detail in Part 6 of this 
guide. 

Before a client and server can engage in authenticated RPC, they must 
"agree" on which authentication service to use. Specifically, the server 
must register the "agreed on" authentication service with the RPC 
runtime, along with the server's principal name. For its part, the client 
must select the same service for the server's binding handle. The client 
indicates the appropriate server by supplying the server's principal name. 
If the client does not know the server's name, it can use the 
rpc_mgmtJnCLserver_princ_nameO routine to determine the name. 
The actual RPC routines used by both the client and the server to establish 
authenticated RPC are described under Section 13.7.3. 

13.7.1.1 Cross-Cell Authentication 

A client can engage in authenticated RPC with a target server that is in the 
client's cell or in a foreign cell. In the case of cross-cell authentication, 
DCE Security performs the necessary additional steps on behalf of the 
client. 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

To establish authenticated RPC with a foreign server, a client must supply 
the fully qualified principal name of the server. A fully qualified name 
includes the name of the cell as well as the name of the principal and takes 
the form 

1 .. .Icell_ name/principal_name 

13.7.1.2 Protection Levels 

When a client establishes authenticated RPC, it can specify the level of 
protection to be applied to its communications with the server. The 
protection level determines how much of client/server messages are 
encrypted. As a rule, the more restrictive the protection level, the greater 
the impact on performance. Different levels are provided so that 
applications can control the protection versus performance tradeoffs. 

Note that the protection level is entirely a client responsibility. When a 
server registers its supported authentication service with the RPC runtime, 
it does not specify any protection information for that service. However, 
the server can include the protection level used for a particular operation 
when deciding if the caller is authorized to perform the operation. 

Authenticated RPC supports the following protection levels: 

• rpc_c_protectJevel_default: Uses the default protection level for the 
specified authentication service. 

• rpc_c_protectJevel_Done: There is no protection level. 

• rpc_c_protectJevel_connect: Performs protection only when the 
client establishes a relationship with the server. This level performs an 
encrypted handshake when the client first communicates with the 
server. Encryption or decryption is not performed on the data sent 
between the client and server. The fact that the handshake succeeds 
indicates that the client is active on the network. 

• rpc_c_protect_level_call: Performs protection only at the beginning 
of each remote procedure call when the server receives the request. 
This level attaches a verifier to each client call and server response. 

This level does not apply to remote procedure calls made over a 
connection-based protocol sequence; that is, ncacn Jp _ tcp. If this 

OSF DeE Application Development Guide 13-29 



Using Remote Procedure Call 

level is specified and the binding handle uses a connection-based 
protocol sequence, the routine uses the rpc_c_protect_level_pkt level 
instead. 

• rpc_c_protect_level_pkt: Ensures that all data received is from the 
expected client. This level attaches a verifier to each message. 

• rpc_c_protect_level_pkt_integrity: Ensures and verifies that none of 
the data transferred between client and server has been modified. This 
level computes a cryptographic checksum of each message to verify 
that none of the data transferred between the client and server has been 
modified in transit. 

This is the highest protection level that is guaranteed to be present in 
the RPC runtime. 

• rpc_c_protect_level_pkt_privacy: Performs protection as specified by 
all of the previous levels and also encrypts each remote procedure call 
argument value. This level encrypts all user data in each call. 

This is the highest protection level, but it may not be available in the 
RPC runtime. 

If a client wants to use the default protection level but does not know what 
this level is, it can use the rpc_mgmt_inCLdflt_protectJeveIO routine to 
determine what the default level is. 

13.7.2 Authorization 

13-30 

Authorization is the process of checking a client's permissions to an object 
that is controlled by the server. Access checking is entirely a server 
responsibility and involves matching the client's privilege attributes 
against the permissions associated with the object. A client's privilege 
attributes consist of the principal ID and group memberships contained in 
the client's network login context. 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

Authenticated RPC supports the following options for making client 
authorization information available to servers for access checking: 

• rpc_c_authz_"one: No authorization information is provided to the 
server, usually because the server does not perform access checking. 

• rpc _ c _ authz _name: Only the client principal name is provided to the 
server. The server can then perform authorization based on the 
provided name. This form of authorization is sometimes referred to as 
"name-based" authorization. 

• rpc_c_authz_dce: The client's DCE Privilege Attribute Certificate 
(PAC) is provided to the server with each remote procedure call made 
using the binding parameter. The server performs authorization using 
the client PAC. Generally, access is checked against DCE ACLs. 

When a client establishes authenticated RPC, it must indicate which 
authorization option it wants to use. 

It is the server's responsibility to implement the type of authorization 
appropriate for the objects that it controls. When the server calls 
rpc _ bindingJn£L auth _ client() to return information about an 
authenticated client, it gets back either the client's principal name or a 
pointer to the data structure that contains the client's PAC. The value that 
is returned depends on which type of authorization the client specified on 
its call to establish authenticated RPC with that server. 

Each server is responsible for implementing its own access checking by 
means of ACL managers. When a server receives a client request for an 
object, the server invokes the ACL manager appropriate for that type of 
object and passes the manager the client's authorization data. The manager 
compares the client authorization data to the permissions associated with 
the object and either refuses or permits the requested operation. In the 
case of certified (PAC-based) authorization, servers must implement 
access checking using the ACL facility provided by the DCE Security 
Service. ACL managers are described in more detail in Part 6 of this 
guide. 

OSF DeE Application Development Guide 13-31 



Using Remote Procedure Call 

13.7.2.1 Name-Based Authorization 

Name-based authorization (rpc_c_authz_name) provides a server with the 
client's principal name. The server call to 
rpc _ bindingJnCL auth _ client() retrieves the name from the binding 
handle associated with the client and returns it as a character string. 

It is not recommended that names be used for authorization. To perform 
access checking using client principal names, the names must be stored in 
the access lists associated with the protected objects. Each time a name is 
changed the change has to be propagated through all the access lists in 
which the name is defined. 

13.7.2.2 DeE Authorization 

DCE authorization (rpc_c_authz_dce) provides a server with the client's 
PAC. 

P ACs offer a trusted mechanism for conveying client authorization data to 
authenticated servers. The DCE Security Service generates a client PAC 
in a tamper-proof manner. When a server receives a client PAC, it knows 
that the PAC has been certified by DCE Security. 

PACs are designed to be used with the DCE ACL facility. The ACL 
facility provides an editor and a set of API routines that support the 
implementation of access control lists and the managers to control them. 

For a detailed description of PACs and their use with DCE ACL facility, 
refer to Part 6 of this guide. 

13.7.3 Authenticated RPC Routines 

13-32 

Authenticated RPC is implemented as a set of related RPC routines. Some 
of the routines are for use by clients, some are for use by servers and their 
managers, and some are for use by both clients and servers. The 
authenticated RPC routines are as follows: 

• rpc_binding_set_auth_infoO: A client calls this routine to establish 
an authentication service, protection level, and authorization service 

OSF DeE Application Development Guide 



Basic DCE RPC Runtime Operations 

for a server binding handle. The client identifies the server by 
supplying the server's principal name. The RPC runtime, in 
conjunction with the DCE Security Service, applies the authentication 
service and protection level to all subsequent remote procedure calls 
made using the binding handle. 

• rpc_ss_register _auth _infoO: A client calls this routine to register an 
authentication service, protection level, and authorization service for 
an interface specification. After a client calls this routine, the RPC 
runtime automatically applies the authentication and authorization 
information to all remote procedure calls that the client makes using 
implicit binding handles. An example is when the client uses an 
implicit handle with the IDL auto_handle attribute or a customized 
handle with the handle attribute. 

• rpc _ bindingJn<L auth JnfoO: A client calls this routine to return the 
authentication service, protection level, and authorization service that 
are in effect for a specified server binding handle. This routine also 
returns the principal name of the server associated with the binding 
handle. 

• rpc_mgmt_in<Ldflt_protect_leveIO: A client or a server calls this 
routine to learn the default protection level that is in force for a given 
authentication service. 

o rpc_mgmt_in<Lserver_princ_nameO: A client, a server, or a server 
manager can call this routine to return the principal name that a server 
has registered with the RPC runtime via the 
rpc _ server _register _ auth JnfoO routine. A client can identify the 
desired server by supplying a server binding handle and the 
authentication service associated with the registered principal name. 

• rpc _server _ register _ auth _ info( ): A server calls this routine to 
register an authentication service that it wants to support and the server 
principal name to be associated with the registered service. The server 
can also supply the address of a key retrieval routine to be called by the 
DCE Security Service as part of the client authentication process. The 
routine is a user-supplied function whose purpose is to provide the 
server's key to the DCE Security runtime. 

Note that the server registers only an authentication service. It does 
not establish a protection level or an authorization service. These are 
the responsibilities of the client. 

OSF DeE Application Development Guide 13-33 



Using Remote Procedure Call 

13-34 

• rpc _ bindingJnq_ auth _ c1ient(): A server calls this routine to return 
the authentication service, protection level, and authorization service 
that is associated with the binding handle of an authenticated client. 
This call also returns the server principal name specified by the client 
on its call to rpc _binding_set _ auth Jnfo() . 

• rpc_mgmt_set_authorization_fn(): A server calls this routine to 
establish a user-supplied authorization function to validate remote 
client calls to the server's management routines. For example, the user 
function can call rpc _ bindingJn~ auth _ client( ) to return 
authentication and authorization information about the calling client. 
The RPC runtime calls the user-supplied function whenever it receives 
a client request to execute one of the following server management 
routines: 

- rpc_mgmtJnq_ifJdsO 

- rpc _ mgmt Jnq_ server yrinc _ name( ) 

- rpc_mgmt_in~stats() 

- rpc_mgmt_is_server_listening() 

- rpc _ mgmt_ stop _server _Iistening() 

OSF DeE Application Development Guide 



Chapter 14 

Advanced DCE RPC Topics 

This chapter discusses aspects of the internal behavior of remote procedure 
calls that are significant for advanced RPC programmers, including the 
following topics: 

• Advanced Name Service Interface (NSI) topics 

• Threads of execution in RPC applications 

• Nested remote procedure calls 

• Routing remote procedure calls at the server's system 

14.1 Advanced Name Service Interface Topics 

The following subsections discuss the structure of NSI directory service 
entries and the mechanics of NSI searches. More information about these 
entries appears at the beginning of Chapter 15. 

OSF DeE Application Development Guide 14-1 



Using Remote Procedure Call 

14.1.1 Structure of NSI Name Service Entries: NSI Attributes 

14-2 

Usually, the distinct server entries, groups, and profiles concepts are 
adequate for using NSI. However, the way NSI stores RPC information 
allows you to combine server entries, groups, and profiles into a single 
directory service entry. To store information about RPC applications in a 
directory service entry, the RPC directory service interface defines several 
RPC-specific directory service attributes, or NSI attributes. NSI attributes 
contain information about RPC applications in a directory service entry. 
The NSI attributes are as follows: 

• NSI binding attribute 

The binding attribute stores binding information and interface identifiers 
(interface UUID and version numbers) exported to the server entry. This 
attribute identifies a directory service entry as a server entry. 

• NSI object attribute 

The object attribute stores a list of one or more object UUIDs. 
Whenever a server exports any object UUIDs to a server entry, the 
server entry contains an object attribute as well as a binding attribute. 
When a client imports from that entry, the import operation returns an 
object UUID from the list stored in the object attribute. 

• NSI group attribute 

The group attribute stores the entry names of the members of a single 
group. This attribute identifies a directory service entry as an RPC 
group. 

• NSI profile attribute 

The profile attribute stores a set of profile elements. This attribute 
identifies a directory service entry as an RPC profile. 

Figure 14-1 represents the correspondence between NSI attributes and the 
different directory service entries: server entries, groups, and profiles. 

OSF DeE Application Development Guide 



Advanced DCE RPC Topics 

Figure 14-1. NSI Attributes 

NSI Attributes 

Server Entry ~ Binding Attribute 

" " 
Object Attribute 

" )I' 
Group ~ Group Attribute 

Profile ~ Profile Attribute 

Legend: 

~ = Basic attribute that defines an NSI name service entry. 

- - ~ = Optional attribute. 

Any directory service entry can contain any combination of the four NSI 
attributes. However, to facilitate administrating directory service entries, 
avoid creating binding, group, and profile attributes in the same entry. 
Instead, use distinct directory service entries for server entries, groups, and 
profiles. The object attribute, in contrast, is designed as an adjunct to 
another NSI attribute, especially the binding attribute. 

When implementing the resource model or when used to distinguish server 
instances, a server entry contains an object attribute as well as a binding 
attribute. On finding a server entry whose binding attribute contains 
compatible binding information, an NSI search operation also looks in the 
entry for an object attribute. For groups whose membership is selected 
according to a shared object or set of objects, it may be useful to export 
those objects to the group. In this case, the directory service entry of the 
group contains both group and object attributes. For reading the object 
UUIDs in the NSI object attribute in any directory service entry, NSI 
provides a set of object inquiry operations, called using the 
rpc _ ns _entry_object JnCL {begin,next,done } ( ) routines. 

U sing separate entries facilitates administration of the namespace; for 
example, by enabling entry names to specifically describe their contents. 
Keeping server entries, profiles, and groups separate allows clear references 
to each of them. 

OSF DeE Application Development Guide 14-3 



Using Remote Procedure Call 

Note: In addition to any NSI attributes, a directory service entry 
contains other kinds of directory service attributes. Every 
entry in a namespace contains standard attributes created by 
the directory service. NSI operations rely on some standard 
attributes to identify and use an entry. Any directory service 
entry can also contain additional attributes specified by non
RPC applications; these are ignored by NSI operations. 

14.1.2 Searching the Namespace for Binding Information 

14-4 

Searching the namespace for binding information requires that a client 
specify a starting point for the search. A client can start with a specific 
server entry. However, this is a limiting approach because the client is 
restricted to using one server. To avoid this, a client can start searching with 
a group or a profile instead of with a server entry. Searches that start with a 
profile or a group should encounter the server entry of a compatible server. 
If such an entry is not encountered, a search operation returns the 
rpc_s_no_more_hindings status code to the client. When calling the 
rpc _ ns _ binding_import_ next() or rpc _ ns _binding_lookup _ next() 
routine, a client must track whether the routine returns this status code. 

14.1.2.1 The import_next and lookup_next Search Algorithm 

The NSI search operations (import_next and lookup_next) traverse one or 
more entries in the namespace when searching for compatible binding 
information. In each directory service entry, these operations ignore non
RPC attributes and process the NSI attributes in the following order: 

1. Binding attribute (and object attribute, if present) 

2. Group attribute 

3. Profile attribute 

If an NSI search path includes a group attribute, the search path can 
encompass every entry named as a group member. If a search path includes 
a profile attribute, the search path can encompass every entry named as the 
member of a profile element that contains the target interface identifier. A 
search finishes only when it finds a server entry containing compatible 
binding information and the non-nil object UUID, if requested. Search 

OSF DeE Application Development Guide 



Advanced DCE RPC Topics 

operations take the following steps when traversing a directory service 
entry: 

Step 1: Binding attribute 

In each entry, the search operation starts by searching for a 
compatible interface identifier in the binding attribute, if present. 

The absence of a binding attribute or of any compatible interface 
identifier causes the search operation to go directly to step 2. 

The presence of any compatible interface identifier indicates that 
compatible potential bindings may exist in the binding attribute. 
At this point, object UUIDs may impact the search, as follows: 

• If the client specified the nil object UUID, object UUIDs do 
not affect the success or failure of the search. The search 
returns compatible binding information for one or more 
potential bindings . 

• If the client specified a non-nil object UUID, the search reads 
the object attribute, if present, to look for the requested object 
UUID. This search for an object UUID has one of the 
following outcomes: 

- On finding the specified object UUID, the search returns 
the object UUID along with compatible binding 
information for one or more potential bindings. 

- If a requested object UUID is absent, the search continues 
to step 2. 

Note: If a search involves a series of import_next or 
lookup_next operations, a subsequent next 
operation resumes the search at the point in the 
search path where the preceding operation left off. 

Step 2: Group attribute 

If the binding attribute does not lead to compatible binding 
information or if a series of import_next or lookup_next 
operations exhausts the compatible binding information, the 
search continues by reading the group attribute, if present; if the 
directory service entry lacks a group attribute, the search goes 
directly to step 3. 

OSF DeE Application Development Guide 14-5 



Using Remote Procedure Call 

14-6 

The search operation selects a member of the group at random, 
goes to the entry of that member, and resumes the search at step 1. 
Unless a group member leads the search to compatible binding 
information, the search looks at all the members of the group, one 
by one in random order, until none remain. 

Step 3: Profile attribute 

If the binding and group attributes do not lead to compatible 
binding information, the search continues by reading the profile 
attribute, if present; if the directory service entry lacks a profile 
attribute, the search fails. 

The search operation identifies all the profile elements containing 
the requested interface identifier and searches them in the order of 
their priority, beginning with the 0 (zero) priority elements. 
Profile elements of a given priority are searched in random order. 
For the selected profile element, the search reads the member 
name and goes to the corresponding directory service entry. 
There, the search resumes at step 1. Unless a profile element leads 
the search to compatible binding information, the search 
eventually looks at all the profile elements with the requested 
interface identifier, one by one, until none remain. 

If the starting entry does not contain NSI attributes, or if none of the steps 
satisfies the search, the search operation returns an 
rpc _ s _no_more _bindings status code to the client. 

Note: The inquire next (in~next) operations for objects, groups, or 
profiles look at only the entry specified in its corresponding 
inquire begin (in~begin) operation. The search ignores 
nested groups or nested profiles. 

Figure 14-2 illustrates the three steps of the import_next and lookup_next 
search operations. 

OSF DeE Application Development Guide 



Advanced DeE RPC Topics 

Figure 14-2. The import_next and lookup_next Search Algorithm Within a Single 
Entry 

Search 
STARTS 

Step 1. 

For each 
potential 
binding, do 
the following: 

For each group 
member, do the 
following: 

For each profile element of a 
>--------i~1 compatible interface ID, do the 

following: 

14.1.2.2 Examples of Searching for Server Entries 

RETURNS 
compatible 

binding 
information 

This subsection provides several examples of how the NSI import_next 
and lookup _next operations search for binding information associated with 
a given RPC interface and object in a namespace. 

Conventions: The examples in this guide use the following conventions: 

• To simplify the following examples, each member name is represented 
by a leaf name preceded by the symbol that represents the local cell 
(I.:). 

OSF DeE Application Development Guide 14-7 



Using Remote Procedure Call 

14-8 

For example, the full global name of the group for the 
Bulletin board interface is as follows: - -

I .. .IC= US/O=uw/OU=MadCity/LandS/bb _grp 

The abridged name is /.:/LandS/bb _grp. 

Note: For a summary of global name syntax, see Section 15.1.5 
on naming directory service entries. 

• Except for the nil interface UUID of the default profile, the examples 
avoid string representations of actual UUIDs. Instead, the examples 
represent a UUID as a value consisting of the name of the interface and 
the string if-uuid or of the name of the object and the string object-uuid; 
for example: 

calendar-if-Ullid, 1. 0 

laser-printer-object-lillid 

• Profile elements in the examples are organized as follows (annotations 
are not displayed): 

inteiface-identifier member-name priority 

For example, 

2FAC8900-31F8-11CA-B331-08002B13D56D,1.0 /.:/LandS/C_host_7 0 

which, in the following examples, is represented as: 

calendar-if-lluid, 1 . 0 

Note: The priority is a value of 0 to 7, with 0 having the highest 
search priority and 7 having the lowest priority. 

The first two examples begin with the personal profile of a user, Molly 
O'Brian, whose usemame is molly _ 0 and whose profile has the leaf name 
of molly _0 _profile. To use this profile, Molly must specify its entry name 
to the client. Usually, a client either uses the predefined RPC environment 
variable RPC_DEFAULT_ENTRY or prompts for an entry name. For a 
client to use RPC_DEFAULT_ENTRY, the client or user must have 
already set the variable to a directory service entry. 

OSF DeE Application Development Guide 



Advanced DCE RPC Topics 

The following example illustrates six profile elements from the individual 
user profile used in the first two examples. The six elements include five 
nondefault elements for some frequently used interfaces and a default 
profile element. Each profile element is displayed on three lines, but in an 
actual profile all the fields occupy a single record. The fields are the 
interface identifier (interface UUID and version numbers), member name, 
priority, and annotation. 

!.:!LandS!anthro!molly_o-profile contents: 

EC1EEB60-5943-11C9-AJ09-08002B102989,l.0 
! ... !C=US!O=uw!OU=MadCity!LandS!Cal_host_7 
o Calendar_interface_Vl.O 

EC1EEB60-5943-11C9-AJ09-08002B102989,2.0 
! ... !C=US!O=uw!OU=MadCity!LandS!Cal_host_4 
1 Calendar_interface_V2.0 

62251DDD-51ED-llCA-852C-08002B1BB4F6,2.0 
! ... !C=US!O=uw!OU=MadCity!bb~rp 
o Bulletin_board_interface_V2.0 

62251DDD-51ED-llCA-852C-08002B1BB4F6,2.1 
! ... !C=US!O=uw!OU=MadCity!bb~rp 
1 Bulletin_board_interface_V2.1 

9E18D295-51EC-llCA-9CCO-08002B1BB4F5,l.0 
! ... !C=US!O=uw!OU=MadCity!LandS!anthro!Zork_host_2 
o Zork_interface_Vl.O 

00000000-0000-0000-0000-000000000000,0.0 
! ... !C=US!O=uw!OU=MadCity!cell-profile 
o Default-profile_element 

Example 1: Importing for an Interface with Multiple Versions 

Target Interface: Calendar V2.0 

1. The search for binding information associated with Calendar V2.0 
starts with the entry molly _0 _profile: 

! ... !C=US!O=uw!OU=MadCity!LandS!anthro!molly_o-profile contents: 

OSF DeE Application Development Guide 14-9 



Using Remote Procedure Call 

14-10 

calendar-if-uuid, 1. 0 
calendar-if-uuid,2 . 0 

/.:/LandS/C_host_7 0 
/.:/LandS/C_host_4 1 

bulletin_board-if-uuid,2.0 
bulletin_board-if-uuid,2.1 

/.:/LandS/bb~rp 2 
/.:/LandS/bb~rp 3 

Zork-if-uuid, 1. 0 / . : /Eng /Zork_host_2 0 
00000000-0000-0000-0000-000000000000,0.0 /.:/cell-profile 0 

The search operation examines only the two profile elements that 
refer to the Calendar interface: 

a. The operation rejects the first profile element for the interface 
because it refers to the wrong version numbers. 

b. In the next profile element, the operation finds the correct 
version numbers (2.0). The search proceeds to the associated 
server entry, 1.:/LandS/Cal_host_ 4. 

2. The search ends with the indicated server entry, where the binding 
information requested by the client resides: 

/.:/LandS/Cal_host_4 contents: 
calendar-if-uuid, 2 .0 

binding-information 

Example 2: Using a Default Profile for Importing an Interface 

Target Interface: Statistics Vl.O 

1. The search for binding information associated with Statistics V1.0 
starts with the entry molly _0 _profile. However, the profile lacks any 
elements for the interface. Therefore, the search reaches the default 
profile element, which provides the entry name for the default profile, 
1.:/cell_profile: 

/.:/LandS/anthro/molly_o-profi1e contents: 

calendar-if-uuid, 1.0 
calendar-if-uuid,2.0 

/.:/LandS/C_host_7 0 
/.:/LandS/C_host_4 1 

bulletin_board-if-uuid,2.0 /.:/LandS/bb~rp 2 

OSF DeE Application Development Guide 



Advanced DCE RPC Topics 

bulletin _board-if-uuid,2.1 / . : /LandS/bb--9"rp 3 

Zork-if-uuid, 1. 0 / . : /Eng/Zork_host_2 0 
00000000-0000-0000-0000-000000000000,0.0 /.:/cell-profile 0 

2. The search continues to the indicated default profile, 1.:/cell yrofile, 
which contains a profile element for the requested Statistics V1.0 
interface: 

/.:/LandS/ce11-profile contents: 

Statistics-if-uuid, 1. 0 

3. The search ends at the indicated server entry, 
1.:/LandS/Stats_host_6, where a server address for the requested 
interface resides: 

/.:/LandS/Stats_host_6 contents: 

Statistics-if-uuid, 1.0 

binding-information 

Example 3: Importing an Interface and an Object 

Target Interface: Print Server V2.1 

Target Object: Laser Printer Print Queue 

1. The search starts with the entry 1.:/Bldg/Print _ queue j~rp, which 
contains the entry names of several server entries that advertise the 
Print_server interface and the object UUID of a given 
Laser_printer print queue. The search begins by randomly selecting 
a member name. In 'this instance, the search selects 
1.:/Bldg/Print_server_host_3: 

/.:/Bldg/Print_queue--9"rp contents: 

OSF DeE Application Development Guide 14-11 



Using Remote Procedure Call 

14-12 

/.:/Bldg/Print_server_host_3 
/.:/Bldg/Print_server_host_7 
/.:/Bldg/Print_server_host_9 

2. The search continues with the 1.:/Bldg/Print_server _host_3 entry. 
There, it finds the requested Version 2.1 of the Print_server 
interface. However, the search continues because the entry lacks the 
object UUID of the requested Laser_printer queue: 

print _server-if-uuid I 2 .1 

binding-information 

line yrinter _queue-object-uuid 

3. The search goes back to the previous entry, 
1.:/Bldg/Print_queue_grp, to select another entry name, in this 
instance, 1.:/Bldg/Print_server _host_9: 

/.:/Bldg/Print_queue~rp contents: 

/.:/Bldg/Print_server_host_3 
/.:/Bldg/Print_server_host_7 
/.:/Bldg/Print_server_host_9 

4. The search selects the 1.:/Bldg/Print_server_host_9 entry. This 
entry contains both a server address for the requested Version 2.1 of 
the interface and the requested object UUID of the Laser _printer 
queue: 

print _server-if-uuid, 2.1 

binding-information 

laser yrinter _queue-object-uuid 

The search returns binding information from this entry to the client. 

OSF DeE Application Development Guide 



Advanced DCE RPC Topics 

14.1.2.3 Expiration Age of a Local Copy of Directory Service 
Data 

To prevent accessing a namespace unnecessarily, previously requested 
directory service data is sometimes stored on the system where the request 
originated. A local copy of directory service data is not automatically 
updated at each request. Automatic updating of the local copy occurs only 
when it exceeds its expiration age. The expiration age is the amount of 
time that a local copy of directory service data from an NSI attribute can 
remain unchanged before a request from an RPC application for the 
attribute requires updating of the local copy. When an RPC application 
begins running, the RPC runtime randomly specifies a value between 8 and 
12 hours as the default expiration age for that instance of the application. 
Most applications use only this default expiration age, which is global to 
the application. 

An expiration age is used by an NSI next operation, which reads data from 
directory service attributes. For a given search or inquire operation, you 
can override the default expiration age by calling the 
rpc_ns_mgmt_handle_set_exp_ageO routine after the operation's begin 
routine. Note that specifying a low default age will result in increased 
network updates among the name servers in your cell. This will adversely 
affect the performance of all network traffic. Therefore, use the default 
whenever possible. If you must override the default age, specify a number 
that is high enough to avoid frequent updates of local data. 

An NSI next operation usually starts by looking for a local copy of the 
attribute data being requested by an application. In the absence of a local 
copy, the NSI next operation creates one with fresh attribute data from the 
namespace. If a local copy already exists, the operation compares its 
actual age to the expiration age used 'by the application. If the actual age 
exceeds the expiration age, the operation automatically tries to update the 
local copy with fresh attribute data. If updating is impossible, the old local 
data remains in place and the NSI next operation fails, returning the 
rpc_s_name_service_unavailable status code. 

OSF DeE Application Development Guide 14-13 



Using Remote Procedure Call 

14.2 Threads of Execution in RPC Applications 

Each remote procedure call Occurs in an execution context called a 
"thread." A thread is a single sequential flow of control with one point of 
execution on a single processor at any instant. A thread created and 
managed by application code is an "application thread." 

Traditional processing occurs exclusively within local application threads. 
Local application threads execute within the confines of one address space 
on a local system and pass control exclusively among local code segments, 
as illustrated by Figure 14-3. 

Figure 14-3. Local Application Thread During a Procedure Call 

14-14 

Traditional Application 
I 

~_....;_.i __ 

Calling 1 "I Called 
Code 1 / Procedure 

~---t--"'" 
Local Application Thread 

y 

Single Address Space 

RPC applications also use application threads to issue both remote 
procedure calls and runtime calls, as follows: 

• An RPC client contains one or more client application threads; that is, a 
thread that executes client application code that makes one or more 
remote procedure calls. 

• A DCE RPC Version 1.0 server contains one server application thread; 
that is, a thread that executes the server application code that listens for 
incoming calls. 

In addition, for executing called remote procedures, an RPC server uses 
one or more call threads that the RPC runtime provides. As part of 
initiating listening, the server application thread specifies the maximum 
number of concurrent calls it will execute. Single-threaded applications 
have a maximum of one call thread. The maximum number of call threads 
in multithreaded applications depends on the design of the application. The 
RPC runtime creates the same number of call threads in the server process. 

OSF DCE Application Development Guide 



Advanced DCE RPC Topics 

The number of call threads is significant to application code. When using 
only one call execution thread, application code does not have to protect 
itself against concurrent resource use. When using more than one call 
thread, application code must protect itself against concurrent resource use. 

Figure 14-4 shows a multithreaded server with a maximum of four 
concurrently executing calls. Of the four call threads for the server, only 
one is currently in use; the other three threads are available for executing 
calls. 

Figure 14-4. Server Application Thread and Multiple Call Threads 

Server ,. - ... 
Application I '\ 
Thread -~ J 
(listening \ jI 
for calls) '",_, 

Available 
Call Threads 

Maximum concurrent calls = 4. 

Server 

Remote Procedures 

Remote procedure 
executing in 
call thread 

14.2.1 Remote Procedure Call Threads 

Single Address Space 

In distributed processing, a call extends to and from client and server 
address spaces. Therefore, when a client application thread calls a remote 
procedure, it becomes part of a logical thread of execution known as an 
RPC thread. An RPC thread is a logical construct that encompasses the 
various phases of a remote procedure call as it extends across actual 
threads of execution and the network. After making a remote procedure 
call, the calling client application thread becomes part of the RPC thread. 
Usually, the RPC thread maintains execution control until the call returns. 

The RPC thread of a successful remote procedure call moves through the 
execution phases illustrated in Figure 14-5. 

OSF DCE Application Development Guide 14-15 



Using Remote Procedure Call 

Figure 14-5. Execution Phases of an RPC Thread 

14-16 

Remote Procedure Call 
Client 

Calling 
Code 

Client 
Application 
Thread 

Server 

The execution phases of an RPC thread in the preceding figure include the 
following operations: 

1. The RPC thread begins in the client process, as a client application 
thread makes a remote procedure call to its stub; at this point, the 
client thread becomes part of the RPC thread. 

2. The RPC thread extends across the network to the server address 
space. 

3. The RPC thread extends into a call thread, where the remote 
procedure executes. 

While a called remote procedure is executing, the call thread 
becomes part of the RPC thread. When the call finishes executing, 
the call thread ceases being part of the RPC thread. 

4. The RPC thread then retracts across the network to the client. 

5. When the RPC thread arrives at the calling client application thread, 
the remote procedure call returns any call results and the client 
application thread ceases to be part of the RPC thread. 

Figure 14-6 shows a server executing remote procedures in its two call 
threads, while the server application thread listens. 

OSF DCE Application Development Guide 



Advanced DCE RPC Topics 

Figure 14-6. Concurrent Call Threads Executing in Shared Address Space 

Concurrent Remote Procedure Calls 
Client 

Calling 
Code 

Client 
Application 
Thread 

~-

~-

Client 

---:" 
RPC Thread: 

,~',-..,;/" ... :"'" 

Server 

Server Application 
Thread 

Client 
Application 
Thread 

Call 

Calling 
Code 

~-

~-

Maximum concurrent calls = 2. 

Single 
Address 
Space 

Note: Although a remote procedure can be viewed logically as 
executing within the exclusive control of an RPC thread, 
some parallel activity does occur in both the client and 
server. 

An RPC server can concurrently execute as many remote procedure calls 
as it has call threads. When a server is using all of its call threads, the 
server application thread continues listening for incoming remote 
procedure calls. While waiting for a call thread to become available, DCE 
RPC server runtimes can queue incoming calls. Queuing incoming calls 
avoids remote procedure calls failing during short-term congestion. The 
queue capacity for incoming calls is implementation dependent; most 
implementations offer a small queue capacity. The queuing of incoming 

OSF DCE Application Development Guide 14-17 



Using Remote Procedure Call 

calls is discussed in Section 14.4.3, which describes the routing of 
incoming calls. 

14.2.2 Cancels 

14-18 

DCE RPC uses and supports the synchronous cancel capability provided by 
POSIX threads (pthreads). A cancel is a mechanism by which a thread 
informs another thread (the canceled thread) to terminate as soon as 
possible. Cancels operate on the RPC thread exactly as they would on a 
local thread, except for an application-specified, cancel-time-out period. A 
cancel-time-out period is an optional value that limits the amount of time 
the canceled RPC thread has before it releases control. 

During a remote procedure call, if its thread is canceled and the cancel
time-out period expires before the call returns, the calling thread regains 
control and the call is orphaned at the server. An orphaned call may 
continue to execute in the call thread. However, the call thread is no 
longer part of the RPC thread, and the orphaned call is unable to return 
results to the client. 

A client application thread can cancel any other client application thread 
in the same process (it is possible, but unlikely, for a thread to cancel 
itself.) While executing as part of an RPC thread, a call thread can be 
canceled only by a client application thread. 

A cancel goes through several phases. Figure 14-7 indicates the point in 
the RPC thread where each of these phases occurs. 

OSF DeE Application Development Guide 



Figure 14-7. Phases of a Cancel in an RPC Thread 

Calling 
Code 

Client 

Client 
Application 
Thread 

Advanced DCE RPC Topics 

Server 

The phases of a cancel in the preceding figure include the following: 

1. A cancel that becomes pending at. the client application' thread at the 
start of or during a remote procedure call becomes pending for the 
entire RPC thread. Thus, while still part of the RPC thread, the call 
thread also has this cancel pending. 

2. If the call thread of an RPC thread makes a cancelable call when 
cancels are not deferred and a cancel is pending, the cancel 
exception is raised. 

3. The RPC thread returns to the canceled client application thread with 
one of the following outcomes: 

a. If a cancel exception has not been taken, the RPC thread 
returns normal call results (output arguments, return value, or 
both) with a pending cancel. 

b. If the remote procedure is using an exception handler, a cancel 
exception can be handled. The procedure resumes; and the 
RPC thread returns normal call results without pending any 
cancel. (For information on the use of exception handlers, see 
Part 2 of this guide.) 

c. If the remote procedure failed to haridle a raised cancel 
exception, the RPC thread returns with the cancel exception 
still raised. This is returned as a fault. 

OSF DCE Application Development Guide 14-19 



Using Remote Procedure Call 

d. If the cancel-time-out period expires, the RPC thread returns 
either a cancel-time-out exception or status code, depending 
on how the application sets up its error handling. This is true 
for all cases where any abnormal termination is returned. 

14.2.3 Multithreaded RPC Applications 

14-20 

DCE RPC provides an environment for RPC applications that create 
multiple application threads (multithreaded applications). The application 
threads of a multithreaded application share a common address space and 
much of the common environment. If a multithreaded application must be 
thread-safe (guarantee that mUltiple threads can execute simultaneously 
and correctly), the application is responsible for its own concurrency 
control. Concurrency control involves programming techniques such as 
controlling access to code that can share a data structure or other resource 
to prevent conflicting overlapping access by separate threads. 

A multithreaded RPC application can have diverse activities going on 
simultaneously. A multithreaded client can make concurrent remote 
procedure calls and a multithreaded server can handle concurrent remote 
procedure calls. Using multiple threads allows an RPC client or server to 
support local application threads that continue processing independently of 
remote procedure calls. Also, multithreading enables the server application 
thread and the client application threads of an RPC application to share a 
single address space as a joint client/server instance. A multithreaded RPC 
application can also create local application threads that are uninvolved in 
the RPC activity of the application. 

Figure 14-8 shows an address space where application threads are 
executing concurrently. 

OSF DeE Application Development Guide 



Advanced DeE RPe Topics 

Figure 14-8. A Multithreaded RPC Application Acting as Both Server and Client 

Concurrent Remote Procedure Calls 

Multithreaded RPe Application 

Server Application 
Thread (listening) 

"'~ -, 
I \ 

\.._/ 
Call Thread (available) 

"'~-, 
I \ 

\.._/ 

Calling 
Code 

Local Application Thread 
(engaged in non-RPC activity) 

""~-, 
I \ 
\ 1 '-; 

y 

Single Address Space 

Remote Server 

Remote Server 

The application threads III the preceding figure are performing the 
following activities: 

1. The server application thread is listening for calls. 

2. A call thread is available to execute an incoming remote procedure 
call. 

OSF DCE Application Development Guide 14-21 



Using Remote Procedure Call 

3. One client application thread has separated from an RPC thread and 
another is currently part of an RPC thread. 

4. A local application thread is engaging in non-RPC activity. 

14.3 Nested Remote Procedure Calls 

A called remote procedure can call another remote procedure. The call to 
the second remote procedure is nested within the first call; that is, the 
second call is a nested remote procedure call. A nested call involves the 
following general phases (see Figure 14-9): 

1. A client makes an initial remote procedure call to the first remote 
procedure. 

2. The first remote procedure mak~s a nested call to the second remote 
procedure. 

3. The second remote procedure executes the nested call and returns it 
to the first remote procedure. 

4. The first remote procedure then resumes executing the initial call. 

Figure 14-9. Phases of a Nested RPC Call 

14-22 

Client 

Client 
Application 

Thread 

Calling 
Code 

First Server 

First 
Remote 

Procedure 

Second Server 

Second 
Remote 

Procedure 

Call Thread 

A specialized form of a nested remote procedure call involves a called 
remote procedure that is making a remote procedure call to the address 
space of the calling client application thread. Calling the client's address 
space requires that a server application thread be listening in that address 

OSF DCE Application Development Guide 



Advanced DeE RPe Topics 

space. Also, the second remote procedure needs a server binding handle for 
the address space of the calling client. 

The remote procedure can ask the local RPC runtime to convert the client 
binding handle, provided by the server runtime, into a server binding 
handle. This is done by calling the rpc_binding_server_from_clientO 
routine. This routine returns a partially bound binding handle (the server 
binding information lacks an endpoint). For a nested remote procedure call 
to find the address space of the calling client, the application must ensure 
that the partially bound binding handle is filled in with the endpoint of that 
address space. The reference page for the 
rpc_binding_server_from_clientO routine in the aSF DeE Application 
Development Reference discusses alternatives for ensuring that the 
endpoint is obtainable for a nested remote procedure call. 

U sing the server binding handle, a remote procedure can attempt a nested 
remote procedure call. The nested call involves the general phases 
illustrated by Figure 14-10. 

OSF DeE Application Development Guide 14-23 



Using Remote Procedure Call 

Figure 14-10. Phases of a Nested RPC Call to Client Address Space 

Multithreaded RPC Application 

Server Application 
Thread (listening) 

'\...,..-, 
I \ 
\ , 
'-' 
Client Application 

Thread 
.------1--( 1 

y 

Single Address Space 

Remote Server 

j RPC Thread; -- .... \ Call Thread 
I- (acting as 
I a client) 
I 
I 
I First 
I Remote 
I Procedure 
) 

/ 

The application threads in the preceding figure are performing the 
following activities: 

1. A client application thread from a multithreaded RPC application 
makes an initial remote procedure call to the first remote procedure. 

2. After converting the client binding handle into a server binding 
handle and obtaining the endpoint for the address space of the calling 
client application thread, the first remote procedure makes a nested 
call to the second remote procedure at that address space. 

3. The second remote procedure executes the nested call and returns it 
to the first remote procedure. 

4. The first remote procedure then resumes executing the initial call. 

14-24 OSF DCE Application Development Guide 



Advanced DCE RPC Topics 

14.4 Routing Remote Procedure Calls 

The following subsections discuss routing incoming remote procedure calls 
between their arrival at a server's system and the server's invocation of the 
requested remote procedure. The following routing steps are discussed: 

1. If a client has a partially bound server binding handle, before sending 
a call request to a server, the client runtime must get the endpoint of 
a compatible server from the endpoint map service of the server's 
system. This endpoint becomes the server address for a call request. 

2. When the request arrives at the endpoint, the server's system places 
it in a request buffer belonging to the corresponding server. 

3. As one of its scheduled tasks, the server gets the incoming calls from 
the request buffer. The server either accepts or rejects an incoming 
call, depending on available resources. If no call thread is available, 
an accepted call is queued to wait its tum for an available call 
thread. 

4. The server then allocates an available call thread to the call. 

5. The server identifies the appropriate manager for the called remote 
procedure and invokes the procedure in that manager to' execute the 
call. 

6. When the call thread finishes executing a call, the server returns the 
call's output arguments and control to the client. 

Figure 14-11 illustrates these steps. 

OSF DeE Application Development Guide 14-25 



Using Remote Procedure Call 

Figure 14-11. Steps in Routing Remote Procedure Calls 

14-26 

RPC Daemon r------------------------------· 
1 Step 1. Endpoint Map 1 
1 1 
1 Interface 10 ObJect UUIO Protocol Sequence Endpoint : 

1025 

2001 

1 
1 
1 
1 
1 
1 
1 L _____________________________ ~ 

Returned 
Call 

Step 6. 

Server Process 

Step 5. -., 
I 
I 
I 
I 

Endpoint Request Buffer Thread I 
~ '/ I 

'U·.·· ~ I Step 4.1 •........ * __ ...J .. I 
\, / 

r---'-
I 1025: Q 
L- _ --L _ -'-___ -I 

Step 2. Call Queue 

Endpoint Request Butter 
r---'-

2001 : 
1 L- _ --L _ -'-___ --I Step 3. 

Legend: 

® = Remote Procedure Call. 

The concepts in the following subsections are for the advanced RPC 
developer. Section 14.4.1 discusses how clients obtain endpoints when 
using partially bound binding handles. Sections 14.4.2 and 14.4.3 discuss 
how a system buffers call requests and how a server queues incoming calls; 

OSF DCE Application Development Guide 



Advanced DCE RPC Topics 

this information is relevant mainly to advanced RPC developers. Section 
14.4.4 discusses how a server selects the manager to execute a call; it is 
relevant for developing an application that implements an interface for 
different types of RPC objects. 

14.4.1 Obtaining an Endpoint 

The RPC daemon provides the endpoint map service that maintains the 
local endpoint map. The endpoint map is composed of elements. Each map 
element contains fully bound server binding information for a potential 
binding and an associated interface identifier and object UUID, which may 
be nil. Optionally, a map element can also contain an annotation such as 
the interface name. 

Servers use the local endpoint map service to register their binding 
information. Each interface for which a server must register binding 
information requires a separate call to an rpc _ ep _register ... () routine, 
which calls the endpoint map service. The endpoint map service uses a new 
map element for every combination of binding information specified by the 
server. Figure 14-12 shows the correspondence between server binding 
information specified by a server and a graphic representation of the 
resulting endpoint map elements. 

OSF DeE Application Development Guide 14-27 



Using Remote Procedure Call 

Figure 14-12. Mapping Information and Corresponding Endpoint Map Elements 

14-28 

Server's Inputs to Endpoint Register Operation 

interface_handle Interface 10: 

2FACB900-31 FB-ll CA-B331-0B002B 13D66D, 1.0 

Server Addresses: 
ncacn_ip_tcp: 16.20.15.25[10261 
ncad~lp_udp: 16.20.15.25[2001] 

Object UUIOs: 

47F40Dl 0-E2EO-IIC9-BB29-0B002BOF452B 
30DBEEAO-FB6C-ll C9-BEEA-OB002BOF452B 
1697753B-E267-11C9-BDCO-OB002BOF462B 

• Binding handles also enable the endpoint map service to learn the server's RPe protocol version 
and transfer syntaxes; this information is identical for every map element, however, and is ignored 
here to simplify the following representation of endpoint map elements. For the same reason, the 
network address of the server's host system is omitted from this representation of map elements. 

Corresponding Representation of Endpoint Map Elements 

Interface 10 Object UUIO 

2FACB900-31FB-IICA-B331-0B002B13D56D, 1.0 
47F40Dl 0-E2EO-IIC9-BB29-0B002BOF462B 

2FACB900-31FB-IICA-B331-0B002B13D56D, 1.0 
47F40Dl 0-E2EO-IIC9-BB29-0B002BOF452B 

2FACB900-31FB-llCA-B331-0B002B13D56D, 1.0 
1697763B-E257-11C9-BDCO-OB002BOF452B 

2FACB900-31FB-llCA-B331-0B002BI3D56D, 1.0 
1697763B-E267-11 C9-BDCO--OB002BOF452B 

2FACB900-31FB-IICA-B331-0B002BI3D66D, 1.0 
30DBEEAO-FB6C-ll C9-BEEA-OB002BOF452B 

2FACB900-31FB-IICA-B331-0B002BI3D56D, 1.0 
30DBEEAO-FB6C-l1 C9-BEEA-OB002BOF4528 

Protocol Sequence 

ncacn_lp_tcp 

ncad~lp_udp 

ncacn_ip_tcp 

nca~ip_udp 

ncacn_ip_tcp 

nca~lp_udp 

Endpoint 

1025 

2001 

1026 

2001 

1025 

2001 

A remote procedure call made with server binding infonnation that lacks 
an endpoint uses an endpoint from the endpoint map service. This 
endpoint must come from binding infonnation of a compatible server. The 
map element of a compatible server contains the following: 

• A compatible interface identifier 

The requested interface UUID and compatible version numbers are 
necessary. For the version to be compatible, the major version number 

OSF DCE Application Development Guide 



Advanced DCE RPC Topics 

requested by the client and registered by the server must be identical 
and the requested minor version number must be less than or equal to 
the registered minor version number . 

• The requested object UUID, if registered for the interface 

• A server binding handle that refers to compatible binding information 
that contains the following: 

- A protocol sequence from the client's server binding information 

- The same RPC protocol major version number that the client 
runtime supports 

- At least one transfer syntax that matches one used by the client's 
system 

To identify the endpoint of a compatible server, the endpoint service uses 
the following rules: 

1. If the client requests a non-nil object UUID, the endpoint map 
service begins by looking for a map element that contains both the 
requested interface UUID and object UUID. 

a. On finding an element containing both of the UUIDs, the 
endpoint map service selects the endpoint from that element 
for the server binding information used by the client. 

b. If no element contains both UUIDs, the endpoint map service 
discards the object UUID and starts over (see rule 2). 

2. If the client requests the nil object UUID (or if the requested non-nil 
object UUID is not registered), the endpoint map service looks for an 
element containing the requested interface UUID and the nil object 
UUID. 

a. On finding that element, the endpoint map service selects the 
endpoint from the element for the client's server binding 
information. 

b. If no such element exists, the lookup fails. 

The RPC protocol service inserts the endpoint of the compatible server into 
the client's server binding information. 

Figure 14-13 illustrates the decisions the endpoint map service makes 
when looking up an endpoint for a client. 

OSF DeE Application Development Guide 14-29 



Using Remote Procedure Call 

Figure 14-13. Decisions for Looking Up an Endpoint 

14-30 

No 

No 

Endpoint 
lookup 
fails 

Yes 

No 

Yes 

No 

Yes 

Yes 

Insert endpoint 
into 

server binding 
information 

You can design a server to allow the coexistence on a host system of 
mUltiple interchangeable instances of a server. Interchangeable server 
instances are identical, except for their endpoints; that is, they offer the 
same RPC interfaces and objects over the same network (host) address and 
protocol sequence pairs. For clients, identical server instances are fully 
interchangeable. 

Usually, for each such combination of mapping information, the endpoint 
map service stores only one endpoint at a time. When a server registers a 
new endpoint for mapping information that is already registered, the 
endpoint map service replaces the old map element with the new one. 

OSF DeE Application Development Guide 



Advanced DCE RPC Topics 

For interchangeable server instances to register their endpoints in the local 
endpoint map, they must instruct the endpoint map service not to replace 
any existing elements for the same interface identifier and object UUID. 
Each server instance can create new map elements for itself by calling the 
rpc _ ep _register_no _ replace() routine. 

When a client uses a partially bound binding handle, load sharing among 
interchangeable server instances depends on the RPC protocol the client is 
using . 

• Connectionless (datagram) protocol 

The map service selects the first map element with compatible server 
binding information. If necessary, a client can achieve a random 
selection among all the map elements with compatible binding 
information. However, this requires that before making a remote 
procedure call, the client needs to resolve the binding by calling the 
rpc _ ep _resolve _ binding() routine. 

• Connection-oriented protocol 

The client RPC runtime uses the rpc _ ep _resolve _ binding() routine, 
and the endpoint map service selects randomly among all the map 
elements of compatible servers. 

For an alternative selection criteria, a client can call the 
rpc_mgmt_ep_eltJnCL{begin,next,done}() routines and use an 
application-specific routine to select from among the binding handles 
returned to the client. 

When a server stops running, its map elements become outdated. Although 
the endpoint map service routinely removes any map element containing 
an outdated endpoint, a lag time exists when stale entries remain. If a 
remote procedure call uses an endpoint from an outdated map element, the 
call fails to find a server. To avoid clients getting stale data from the 
endpoint map, before a server stops, it should remove its own map 
elements. 

A server also has the option of removing any of its own elements from the 
local endpoint map and continuing to run. In this case, an unregistered 
endpoint remains accessible to clients that know it. 

OSF DeE Application Development Guide 14-31 



Using Remote Procedure Call 

14.4.2 Buffering Call Requests 

14-32 

Call requests for RPC servers come into the RPC runtime over the network. 
For each endpoint that a server registers (for a given protocol sequence), 
the runtime sets up a separate request buffer. A request buffer is a first-in, 
first-out queue where an RPC system temporarily stores call requests that 
arrive at an endpoint of an RPC server. The request buffers allow the 
runtime to continue to accept requests during heavy activity. However, a 
request buffer may fill up temporarily, causing the system to reject 
incoming requests until the server fetches the next request from the buffer. 
In this case, the calling client can try again, with the same server or a 
different server. The client does not know why the call is rejected, nor does 
the client know when a server is available again. 

Each server process regularly dequeues requests, one by one, from all of its 
request buffers. At this point, the server process recognizes them as 
incoming calls. The interval for removing requests from the buffers 
depends on the activities of the system and of the server process. 

How the runtime handles a given request depends partly on the 
communications protocol over which it arrives, as follows: 

• A call over a connectionless transport is routed by the server's system 
to the call request buffer for the endpoint specified in the call . 

• A call over a connection-oriented transport may be routed by the 
server's system to a request buffer or the call may go directly to the 
server process. 

Whether a remote procedure call goes to the request buffer depends on 
whether the client sends the call over an established connection. If a 
client makes a remote procedure call without an established 
connection, the server's system treats the call request as a connection 
request and places the call request into a request buffer. If an 
established connection is available, the client uses it for the remote 
procedure call; the system handles the call as an incoming call and 
sends it directly to the server process that owns the connection. 

Whether a server gets an incoming call from a request buffer or over an 
existing connection, the server process manages the call identically. A 
server process applies a clear set of call-routing criteria to decide whether 
to dispatch a call immediately, queue it, or reject it (if the server is 
extremely busy). These call-routing criteria are discussed in Section 14.4.3 
on routing incoming calls. 

OSF DeE Application Development Guide 



Advanced DCE RPC Topics 

When telling the RPC runtime to use a protocol sequence, a server 
specifies the number of calls it can buffer for the specified communications 
protocol (at a given endpoint). Usually, it is best for a server to specify a 
default buffer size, represented by a literal whose underlying value depends 
on the communications protocol. The default equals the capacity of a 
single socket used for the protocol by the server's system. 

The default usually is adequate to allow the RPC runtime to accept all the 
incoming call requests. For a well-known endpoint, the size of a request 
buffer cannot exceed the capacity of a single socket descriptor (the default 
size); specifying a higher number causes a runtime error. For well-known 
endpoints, specify the default for the maximum number of call requests. 

For example, consider the request buffer at full capacity as represented in 
Figure 14-14. This buffer has the capacity to store five requests. In this 
example, the buffer is full, and the runtime rejects incoming requests, as is 
happening to the sixth request. 

Figure 14-14. A Request Buffer at Full Capacity 

Rejected 
Request 

o 
(Connection 
refused; 
datagram 
timed out) 

System 

Request Buffer 

Call request maximum = 5. 

14.4.3 Queuing Incoming Calls 

Each server process uses a first-in, first-out call queue. When the server is 
already executing its maximum number of concurrent calls, it uses the 
queue to hold incoming calls. The capacity of queues for incoming calls is 
implementation dependent; most implementations offer a small queue 
capacity, which may be a multiple of the maximum number of concurrently 
executing calls. 

OSF DCE Application Development Guide 14-33 



Using Remote Procedure Call 

14-34 

A call is rejected if the call queue is full. The appearance of the rejected 
call depends on the RPC protocol the call is using, as follows: 

• Connectionless (datagram) protocol 

The server does not notify the client about this failure. The call fails as 
if the server does not exist, returning an rpc_s_comm_failure 
communications status code (rpc_x_comm_failure exception) . 

• Connection-oriented protocol 

The server rejects the call with an rpc _ s _server _too_busy 
communications status code (rpc_x_server_too_busy exception). 

The server process routes each incoming call as it arrives. Call routing is 
illustrated by the server in Figure 14-15. This server has the capacity to 
execute only one call concurrently. Its call queue has a capacity of eight 
calls. This figure consists of four stages (A through D) of call routing by a 
server process. On receiving any incoming call, the server begins by 
looking at the call queue. 

OSF DeE Application Development Guide 



Advanced DCE RPC Topics 

Figure 14-15. Stages of Call Routing by a Server Process 

Stage A. Server Process 

Call Thread 

Incoming 
Call 

1 t-----------l~ 

Stage C. Server Process 

Call Thread 
(Concurrent calls 
maximum = 1.) Call Queue 

(Capacity = 8.) 

® 
® 
o 
® 
® 
CD 

Stage B. Server Process 

Call Thread 
(Concurrent calls 
maximum = 1.) 

,. ... , .----

(0 ,,:,_, 

Incoming 
Call 

Call Queue 

Stage D. Server Process 

The activities of the four stages in the preceding figure are described as 
follows: 

1. In stage A, call 1 arrives at a server that lacks any other calls. When 
the call arrives, the queue is empty and a call thread is available. The 
server accepts the call and immediately passes it to a call thread. The 
requested remote procedure executes the call in that thread, which 
becomes temporarily unava,ilable. 

OSF DCE Application Development Guide 14-35 



Using Remote Procedure Call 

2. In stage B, call 5 arrives. The call queue is partially full, so the 
server accepts the call and adds it to the end of the queue. 

3. In stage C, call 11 arrives. The queue is full, so the server rejects this 
call, as it rejected the previous call, 10. (The caller can try again 
with the same or a different server.) 

4. In stage D, the called procedure has completed call 1, making the 
call thread available. The server has removed call 2 from the queue 
and is passing it to the call thread for execution. Thus, the queue is 
partially empty as call 12 arrives, so the server accepts the call and 
adds it to the queue. 

14.4.4 Selecting a Manager 

Unless an RPC interface is implemented for more than one specific type of 
object, selecting a manager for an incoming call is a simple process. When 
registering an interface with a single manager, the server specifies the nil 
type UUID for the manager type. 1 In the absence of any other manager, all 
calls, regardless of whether they request an object, go to the nil type 
manager. 

The situation is more complex when a server registers multiple managers 
for an interface. The server runtime must select from among the managers 
for each incoming call to the interface. The DCE RPC dispatching 
mechanism requires a server to set a non-nil type UUID for a set of objects 
and for any interface that will access the objects in order to register a 
manager with the same type UUID. 

To dispatch an incoming call to a manager, a server does the following: 

1. If the call contains the nil object UUID, the server looks for a 
manager registered with the nil type UUID (the nil type manager). 

a. If the nil type manager exists for the requested interface, the 
server dispatches the call to that manager. 

1 The API uses NULL to specify a synonym to the address of the nil UUID, which contains only zeros. 

14-36 OSF DeE Application Development Guide 



Advanced DCE RPC Topics 

b. Otherwise, the server rejects the call. 

2. If the call contains a non-nil object UUID, the server looks to se~ 
whether it has set a type for the object (by assigning a non-nil type 
UUID). 

If the object lacks a type, the server looks for the nil type manager. 

a. If the nil type manager exists for the requested interface, the 
server dispatches the call to that manager. 

b. Otherwise, the server rejects the call. 

3. If the object has a type, the call requires a remote procedure of a 
manager whose type matches the object's type. In its absence, the 
RPC runtime rejects the call. 

Figure 14-16 illustrates the decisions a server makes to select a manager to 
which to dispatch an incoming call. 

OSF DeE Application Development Guide 14-37 



Using Remote Procedure Call 

Figure 14-16. Decisions for Selecting a Manager 

Reject Call 

Legend: 

CJ = The default decision path. 

Yes 

Yes 

Dispatch call 
to 

appropriate 
non-nil type 

manager 

14-38 OSF DeE Application Development Guide 



Chapter 15 

N arne Service Interface Usage 

This chapter discusses how the DCE RPC Name Service Interface (NSI) 
configures directory service entries and how RPC applications can use those 
entries. The chapter considers the following topics: 

• Directory service entries defined by NSI 

Describes the kinds of directory service entries NSI defines 

• Strategies for using directory service entries 

Outlines strategies for using each kind of entry 

• Models for defining RPC servers 

Introduces NSI usage models intended to guide application developers 
in assessing how to best use NSI for a given application 

For information on the structure of NSI directory service entries and the 
mechanics of NSI searches, see Chapter 14, which describes advanced DCE 
RPC topics. 

OSF DeE Application Development Guide 15-1 



Using Remote Procedure Call 

15.1 NSI Directory Service Entries 

To store information about RPC servers, interfaces, and objects, NSI defines 
the following directory service entries in the namespace: server entries, 
groups, and profiles. 

• A server entry is a directory service entry that stores binding information 
and object UUIDs for an RPC server. 

• A group is a directory service entry that corresponds to one or more RPC 
servers that offer one or more RPC interfaces, type of RPC object, or 
both in common. 

• A profile is a directory service entry that defines search paths in a 
namespace for a server that offers a particular RPC interface and object. 

Note: When NSI is used with the Cell Directory Service (CDS), the 
directory service entries are CDS objects. 

The use of server entries, groups, and profiles determines how clients view 
servers. A server describes itself to its clients by exporting binding 
information associated with interfaces and objects to one or more server 
entries. A group corresponds to servers that offer a given interface, service, 
or object. Profiles enable clients to access alternative directory service 
entries when searching for an interface or object. Used together, groups and 
profiles offer sophisticated ways for RPC applications to maintain and use 
directory service data. 

15.1.1 Structure of Entry Names 

15-2 

Each entry in a namespace is identified by a unique global name comprising 
a cell name and a cell-relative name. 

A cell is a group of users, systems, and resources that share common DCE 
services. A cell configuration includes at least one Cell Directory Server, 
one Security Server, and one Distributed Time Server. A cell's size can 
range from one system to thousands of systems. A host is assigned to its cell 
by a DCE configuration file. For information on cells, see the aSF DeE 
Administration Guide. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

The following is an example of a global name: 

/ .. .IC= US/O=uw/OU=MadCity/LandS/anthro/Stats _host _2 

The parts of a global name are as follows: 

• Cell name (using X.SOO name syntax): 

/ .. .IC= US/O=uw/OU =MadCity 

The symbol I ... begins a cell name. The letters before the = (equal signs) 
are abbreviations for Country (C), Organization (0), and Organization 
Unit (OU). For entries in the local cell, the cell name can be represented 
by a I.: prefix, in place of the actual cell name; for example: 

/.:/LandS/anthro/Stats _host _2 

The I (slash) to the right of the cell name represents the root of the cell 
directory (the cell root). 

For NSI operations on entries in the local cell you can omit the cell 
name . 

• Cell-relative name (using DCE name syntax): 

Each directory service entry requires a cell-relative name, which 
contains a directory pathname and a leaf name. 

- A directory pathname follows the cell name and indicates the 
hierarchical relationship of the entry to the cell root. 

The directory pathname contains the names of any subdirectories in 
the path; each subdirectory name begins with a I (slash), as follows: 

/sub-dir-a-name/sub-dir-b-name/sub-dir-c-name 

Directory pathnames are created by directory service administrators. 
If an appropriate directory ~pathname does not exist, ask your 
directory service administrator to. extend an existing pathname or 
create a new pathname. In a directory pathname, the nafl?e of a 
subdirectory should reflect"its relationship to its parent directory (the 
directory that contains the subdirectory). 

OSF DeE Application Development Guide 15-3 



Using Remote Procedure Call 

- A leaf name identifies the specific entry. 

The leaf name constitutes the right-hand part of a global name, 
beginning with the rightmost I (sl~sh). 

For example, 1.:/LandS/anthro/Cal_ host _ 4, where 1.:1 represents the 
cell name, ILandS/anthro is the directory pathname, and ICal_host_ 4 is 
the leaf name. If the directory service entry is located at the cell root, 
the leaf name directly follows the cell name; for example, 
1.:/cell yrofile. 

Note: When NSI is used with CDS, the cell-relative name is a CDS 
name. 

Figure 15-1 shows the parts of a global name. 

Figure 15-1. Parts of a Global Name 

Cell Name Cell-Relative Name 
(~ ________ ~A~ ________ ~\(~ ________ ~A~ ________ ~\ 

I .. ./C=Countr-codeIO=Org_codeIOU=LocationISubdicaiSubdir_blSubdir_clName_service_entry 
\ y )'----y--/ 
Directory Pathname Leaf Name 

15.1.2 Server Entries 

15-4 

NSI enables any RPC server with the necessary directory service 
permissions to create and maintain its own server entries in a namespace. A 
server can use as many server entries as it needs to advertise combinations 
of its RPC interfaces and objects. 

Each server entry must correspond to a single server ( or a group of 
interchangeable server instances) on a given system. Interchangeable server 
instances are instances of the same server running on the same system that 
offer the same RPC objects (if any). Only interchangeable server instances 
can share a server entry. 

Each server entry must contain binding information. Every combination of 
protocol sequence and network addressing information represents a 
potential binding. The network addressing information can contain a 
network address, but lacks an endpoint, making the address partially bound. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

A server entry can also contain a list of object UUIDs exported by the 
server. Each of the object UUIDs corresponds to an object offered by the 
server. In a given server entry, each interface identifier is associated with 
every object UUID, but with only the binding inforination exported with the 
interface. 

Figure 15-2 represents a server entry. This server entry was created by two 
calls to the rpc _ ns _ hinding_ export( ) routine. The first call created the first 
column of the top half of the figure. The routine's binding_vee parameter 
had three elements, each of which is paired with the routine's if handle 
parameter. The vertical ellipsis points under the last box indicate that more 
elements in the routine's binding_vee parameter would have resulted in 
more interface UUID/binding information pairs in the first column. 

Similarly, the second call to the rpc_ns_hinding_exportO routine created 
the second column of the top half of the figure. The routine's binding_vee 
parameter had two elements, each of which is paired with the routine's 
if_ handle parameter. For example, the first element could have contained 
binding information with the ncacn _ip _ tcp protocol sequence, and the 
second element could have contained binding information with the 
ncadg_ip _ udp protocol sequence. As in the first column, more elements in 
the routine's binding_vee parameter would have resulted in more interface 
UUID/binding information pairs. 

Third and subsequent calls to the rpc _ ns _ hinding_ export() routine would 
create more columns; the two pairs of horizontal ellipsis points indicate this 
expansion. 

Finally, note that the rpc _ ns _ hinding_ export() routine optionally takes a 
vector of object UUIDs. The four object UUIDs in the bottom half of the 
figure came from the two calls to the routine, or from another call to the 
routine with rio interface UUID/version and with no binding information, 
but with object UUIDs. The object UUIDs are associated with no particular 
binding. Instead, they are associated with all the bindings. Third and 
subsequent calls to the routine could create more object UUIDs; the vertical 
ellipsis points indicate this expansion. 

Note: To distinguish among RPC objects when using the CDS ACL 
editor, export the RPC objects to separate directory service 
entries. 

OSF DeE Application Development Guide 15-5 



Using Remote Procedure Call 

Figure 15-2. Possible Information in a Server Entry 

Bindings 

Objects 

One Server Entry 

Interface UUIOlversion pair 1 
with binding information 1 

Interface UUIOlversion pair 1 
with binding information 2 

Interface UUIO/version pair 1 
with binding information 3 

Interface UUIO/version pair 2 
with binding information 1 

Interface UUIOlversion pair 2 
with binding information 3 

Object UUID 1 

Object UUID 2 

Object UUID 3 

Object UUID 4 

15.1.3 Groups 

15-6 

Administrators or users of RPC applications can organize searches of a 
namespace for binding infonnation by having clients use an RPC group as 
the starting point for NSI search operations. A group provides NSI search 
operations (import_next or lookup_next operations) with access to the 
server entries of different servers that offer a common RPC interface or 
object. A group contains names of one or more server entries, other groups, 
or both. Since a group can contain group names, groups can be nested. Each 
server entry or group named in a group is a member of the group. A group's 
members must offer one or more RPC interfaces, the type of RPC object, or 
both in common. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

Figure 15-3 shows an example of the kinds of members a group can contain 
and how those members correspond to database entries. 

Figure 15-3. Possible Mappings of a Group 

Group A 

Member Name 

Member Name 

Member Name 

Legend: 

Iili1 = Member of Group A. 

Server Entry 1 : 

M~~b~r'Narr;~' 
Member Name 

Server Entry 5: 

Binding Information 

Interface Identifiers 

Object UUIDs 

Server Entry 3: 

Binding Information 

Interface Identifiers 

Object UUIDs 

Server Entry 4: 

Binding Information 

Interface Identifiers 

Object UUIDs 

The members of Group A are Server Entry 1, Server Entry 2, and Group B. 
The members of the nested group, Group B, are Server Entry 3 and Server 
Entry 4. An additional server entry that advertises the common interface or 
object, Server Entry 5, is omitted from either group. 

OSF DeE Application Development Guide 15-7 



Using Remote Procedure Call 

15.1.4 Profiles 

15-8 

Administrators or users of RPC applications can organize searches of a 
namespace for binding information by having clients use an RPC profile as 
the starting point for NSI search operations. A profile is an entry in a 
namespace that contains a collection of profile elements. A profile element 
is a database record that corresponds to a single RPC interface and that 
refers to a server entry, group, or profile. Each profile element contains the 
following information: 

• Interface identifier 

This field is the key to the profile. The interface identi fier consists of 
the interface UUID and the interface version numbers. 

• Member name 

The entry name of one of the following kinds of directory service 
entries: 

- A server entry for a server offering the requested RPC interface 

- A group corresponding to the requested RPC interface 

- A profile 

• Priority value 

The priority value (0 is the highest priority; 7 is the lowest priority) is 
designated by the creator of a profile element to help determine the 
order for using the element NSI search operations to select among like
priority elements at random. 

• Annotation string 

The annotation string enables you to identify the purpose of the profile 
element. The annotation can be any textual information; for example, an 
interface name associated with the interface identifier or a description 
of a service or resource associated with a group. 

Unlike the interface identifier field, the annotation string is not a search 
key. 

Optionally, a profile can contain one default profile element. A default 
profile element is the element that an NSI search operation uses when a 
search using the other elements of a profile finds no compatible binding 
information; for example, when the current profile lacks any element 
corresponding to the requested interface. A default profile element contains 

OSF DeE Application Development Guide 



Name Service Interface Usage 

the nil interface identifier, a priority of 0, the entry name of a default 
profile, and an optional annotation. 

A default profile is a backup profile, referred to by a default profile element 
in another profile. A profile designated as a default profile should be a 
comprehensive profile maintained by an administrator for a major set of 
users, such as the members of an organization or the owners of computer 
accounts on a local area network. 

A default profile must not create circular dependencies between profiles; 
for example, when a public profile refers to an application's profile, the 
application's profile must not specify that public profile as a default profile. 

Figure 15-4 shows an example of the kinds of elements a profile can contain 
and how those elements correspond to database entries. 

OSF DeE Application Development Guide 15-9 



Using Remote Procedure Call 

Figure 15-4. Possible Mappings of a Profile 

15-10 

Profile A: 

Profile Element: 

Interface UUID 
Interface Version 
Member Name 

Priority 
Annotation 

Profile Element: 

Interface UUID 
Interface Version 
Member Name 

Priority 
Annotation 

Profile Element: 

Interface UUID 
Interface Version 
MemberName4-~--~ 

Priority 
Annotation 

Default Profile 
Element: 

Interface UUID 
Interface Version 
Member Name ... · --+ __ ...J 

Priority 
Annotation 

Legend: 

Sindinglnformaiion . 

Interface Identifiers ! 
.... ' <??)~.~~, ~~Io,s ..... . 

Server Entry: 

siridinginiormaiion 

Interface Identifiers 

Object U~.IP~ 

Default Profile: 

F'rofileElemenE'i 

Interface UUID 
Interface Version 
Member Name 

Priority 
Annotation 

Profile ,ElemenC; 

Interface UUID 
Interface Version 
Member Name 

Priority 
Annotation 

Profile 'Element:': 

Interface UUID 
Interface Version 
Member Name 

Priority 
Annotation 

Server Entry: 

Binding Information 

Interface Identifiers 

Object UUIDs 

Server Entry: 

Binding Information 

Interface Identifiers 

Object UUIDs 

Server Entry: 

Binding Information 

Interface Identifiers 

Object UUIDs 

Server Entry: 

Binding Information 

Interface Identifiers 

Object UUIDs 

Server Entry: 

Binding Information 

Interface Identifiers 

Object UUIDs 

o = Member in element of Profile A • 

NSI search operations use a profile to construct an NSI search path. When 
an NSI search operation reads a profile, the operation dynamically 
constructs its NSI search path from the set of elements that correspond to a 
common RPC interface. 

A profile element is used only once per NSI search path. The construction 
of NSI search paths depends partly on the priority rankings of the elements. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

A search operation uses higher priority elements before lower pnonty 
elements. Elements of equal priority are used in random order, permitting 
some variation in the NSI search paths between searches for a given 
interface. If nondefault profile elements do not satisfy a search, the search 
path extends to the default profile element, if any. For samples of NSI 
search paths generated from profile elements, see Chapter 14, which 
describes advanced DCE RPC topics. 

Profiles meet the needs of particular individuals, systems, LANs, sites, 
organizations, and so forth, with minimal configuration management. The 
administrator of a profile can set up NSI search paths that reflect the 
preferences of the profile's user or users. The profile administrator can set 
up profile elements that refer (directly or indirectly) to only a subset of the 
server entries that offer a given RPC interface. Also, the administrator can 
assign different search priorities to the elements for an interface. 

15.1.5 Guidelines for Constructing Names of Directory Service 
Entries 

A global name includes both a cell name and a cell-relative name 
composed of a directory pathname and a leaf name. The cell name is 
assigned to a cell root at its creation. When you specify only a cell-relative 
name to an NSI operation, NSI automatically expands the name into a 
global name by inserting the local cell name. When returning the name of a 
directory service entry, a group member, or a member in a profile element, 
NSI operations return global names. 

The directory pathname and leaf name uniquely identify a directory service 
entry. The leaf name should somehow describe the entry; for example, by 
identifying its owner or its contents. The remainder of this section contains 
guidelines for choosing leaf names. 

Note: Directory pathnames and leaf names are case sensitive. 

Use the following guidelines for constructing names: 

• Naming a server entry 

For a server entry that advertises an RPC interface or service offered by 
a server, the leaf name must distinguish the entry from the equivalent 
entries of other servers. When a single server instance runs on a host, 
you can ensure a unique name by combining the name of the service, 

OSF DeE Application Development Guide 15-11 



Using Remote Procedure Call 

15-12 

interface (from the interface definition), or the system name for the 
server's host system. 

For example, consider two servers, one offering a calendar service on 
host JULES, and one on host VERNE. 

The server on JULES uses the following leaf name: 

calendar_JULES 

The server on VERNE uses the following leaf name: 

calendar VERNE 

For servers that perform tasks on or for a specific system, an alternative 
approach is to create server entries in a system-speci fic host directory 
within the namespace. Each host directory takes the name of the host to 
which it corresponds. Because the directory name identifies the system, 
the leaf name of the server entry name does not need to include the host 
name, for example: 

1.:/LandS/host _I/Process _control 

To construct names for the server entries used by distinctive server 
instances on a single host, you can construct unique server entry names 
by combining the following information: the name of the server's 
service, interface, or object; the system name of the server's host 
system; and a reusable instance identifier such as an integer. 

For example, the following leaf names distinguish two instances of a 
calendar service on the JULES system: 

calendar_JULES _ 01 

calendar_JULES _ 02 

Avoid automatically generating entry names for the server entries of 
server instances; for example, by using unique data such as a timestamp 
(calendar_verne_lSOCT91_21:2S:32) or a process identifier 
(calendar.Jules_208004D6). When a server incorporates such unique 
data into its server entry names, each server instance creates a separate 
server entry, causing many server entries. When a server instance stops 
running, it leaves an obsolete server entry that is not reused. The 

OSF DCE Application Development Guide 



Name Service Interface Usage 

creation of a new entry whenever a server instance starts may impair 
performance. 

A server can use multiple server entries to advertise different 
combinations of interfaces and objects. For example, a server can create 
a separate server entry for a specific object, and the associated 
interfaces. The name of such a server entry should correspond to a 
well-known name for the object. For example, consider a server that 
offers a horticulture bulletin board known to users as horticulture _ bb. 
The server exports the horticulture _ bb object, binding information, 
and the associated bulletin-board interface to a server entry whose leaf 
name identifies the object, as follows: 

horticulture bb 

Note: An RPC server that uses RPC authentication can choose 
identical names for its principal name and its server entry. 
Use of identical names permits a client that calls the 
rpc_binding_set_auth_infoO routine to automatically 
determine a server's principal name. (The client will 
assume the principal name to be the same as the server's 
entry name.) If a server uses different principal and 
server entry names, users must explicitly supply the 
principal name. For an explanation of principal names, 
see Part 6 of this guide. 

• Naming a group 

The leaf name of a group should indicate the interface, service, or 
object that determines membership in the group. For example, for a 
group whose members are selected because they advertise an interface 
named Statistics, the following is an effective leaf name: 

Statistics 

OSF DeE Application Development Guide 15-13 



Using Remote Procedure Call 

15-14 

For a group whose members advertise laser printer print queues as 
objects, the following is an effective leaf name: 

laser-printer 

• Naming a profile 

The leaf name of a profile should indicate the profile users; for 
example, for a profile that serves the members of an accounting 
department, the following is an effective leaf name: 

accounting_profile 

The following text describes the NSI begin, next, and done operations. 
NSI accesses a variety of search and inquire operations that read NSI 
attributes in directory service entries. An NSI attribute is an RPC-defined 
attribute of a directory service entry used by the DCE RPC directory 
service interface. An NSI attribute stores one of the following: binding 
information, object UUIDs, a group, or a profile. Reading information from 
any attribute involves an equivalent set of search or inquire operations; that 
is, an integral set of begin, next, and done operations. An RPC application 
uses these operations as follows: 

1. The application creates a directory service handle (a reference to the 
context of the ensuing series of next operations) by calling an NSI 
begin operation. 

2. The application calls the NSI next operation corresponding to the 
begin operation one or more times. Each next operation returns 
another value or list of values from the target RPC directory service 
attribute. For example, an import_next operation returns binding 
information from a binding attribute and an object from an object 
attribute. 

Each call to an NSI next operation requires the directory service 
handle created in the associated NSI begin operation. The directory 
service handle maintains state information for reading values from 
directory service attributes; this is analogous to the function of a file 
pointer in the C language. 

3. The application deletes the directory service handle by calling the 
corresponding NSI done operation. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

Note: Search and inquire operations are also accessible 
interactively from within the RPC control program. 

Table 15-1 lists the NSI next operations used by RPC applications. 

Table 15-1. NSI next Operations 

Search Operation Attributes Traversed 

Searches for binding and object attributes of a 
compatible server; reads any NSI attribute in a 
search path. Returns a binding handle that 
refers to a potential binding for a compatible 
server, and also to a single object UUID. 
Searches for binding and object attributes of a 
compatible server; reads any NSI attribute in a 
search path. Returns a list of binding handles, 
each of which refers to a potential binding for a 
compatible server, and also to a single object 
UUID. The same object UUID is associated 
with each potential binding. 

Note that after calling the lookup_next 
operation, the client must select one binding 
handle from the list. To select a binding handle 
at random, the client can call the NSI binding 
select routine rpc_ns_bindin9_select(). For 
an alternative selection algorithm, the client 
can define and call its own application-specific 
select algorithm. 

Inquire Operation Attributes Traversed 

rpc_ns_9roup_mbr_inq_nextO Reads a group attribute and returns a member 
name. 

rpc_ns_profile_elt_inq_next() Reads a profile attribute and returns the fields 
of a profile element. 

OSF DeE Application Development Guide 15-15 



Using Remote Procedure Call 

15.1.6 Selecting the Starting Entry 

When searching a namespace for an RPC interface and object, a client 
supplies the name of the directory service entry where the search begins. 
The entry can be a server entry, group, or profile. Generally, an NSI search 
starts with a group or profile. The group or profile defines a search path that 
ends at a server entry containing the requested interface identifier, object 
UUID, and compatible binding information. 

A user may know in advance what server instance to use. In this case, 
starting with a server entry for the server instance is appropriate. 

15.1.7 Environment Variables 

DCE RPC provides predefined environment variables that a client can use 
for NSI operations. An environment variable is a variable that stores 
information, such as a name, about a particular environment. The NSI 
interface provides two environment variables, RPC_DEFAULT_ENTRY 
and RPC_DEFAULT_ENTRY_SYNTAX, which are described in the 
aSF DeE Application Development Reference. Used together, these 
environment variables identify an entry name and indicate its syntax. 

When a client searches for binding information, the search starts with a 
specific entry name. Optionally, a client can specify this entry name as the 
value of the RPC_DEFAULT_ENTRY variable. A client can also specify 
the name syntax of the starting entry as the value of the 
RPC_DEFAULT_ENTRY_SYNTAX variable; the default name syntax is 
dee. 

Note: The dee name syntax is the only syntax currently supported 
by the DCE Cell Directory Service. However, NSI is 
independent of any specific directory service. Therefore, NSI 
may support one or more alternative directory services that 
use different name syntaxes. 

15-16 OSF DeE Application Development Guide 



Name Service Interface Usage 

15.2 Strategies for Using Directory Service ·Entries 

When developing an RPC application, decide how an application will use 
the namespace and design your application accordingly. The following 
subsections discuss issues associated with how servers use different types 
of directory service entries. 

15.2.1 Using Server Entries 

An application requires separate server entries for servers on different 
hosts. For example, if a server offering the calendar service runs on two 
hosts, JULES and VERNE, one server entry is necessary for the server on 
JULES and another is necessary for the server on VERNE. 

Each server entry requires a unique cell-relative entry name. (See Section 
15.1.5 for the guidelines for constructing names of directory service 
entries). If a server adheres to a simple and consistent arrangement of 
server entries, you may be able to use server initialization code to 
automatically generate a name for each server entry, and also to ensure 
that the entry exists. However, some servers will need to obtain the entry 
name of a server entry from an external source such as a command-line 
argument or a local database belonging to the application. 

Note: Applications that obtain entry names and UUIDs as 
command-line arguments should accept user-defined values 
that represent them as an alternative to accepting the actual 
names. 

Some applications, such as a process-control application, require only one 
server instance per system. Many applications, however, can accommodate 
multiple server instances on a system. When mUltiple instances of a server 
run simultaneously on a single system, all instances on a host can use a 
single server entry, every instance can use separate server entries, or the 
instances can be classified into subsets with a separate server entry. A 
client importing from a shared server entry cannot distinguish among the 
server instances that export to the entry. Therefore, the recommended 
strategy for a server on a given system depends on which server instances 

OSF DeE Application Development Guide 15-17 



Using Remote Procedure Call 

are viewed by clients as interchangeable entities and which are viewed as 
unique entities, as follows: 

• Interchangeable server instances 

When clients consider all the server instances on a host as equivalent 
alternatives, all of the instances can (and should) share a server entry. 
For example, multiple instances of the calendar service running on host 
JULES can all export to the calendar_JULES entry . 

• Unique server instances 

A unique server instance possesses a significant difference from other 
instances of the same host. Unique server instances require separate 
server entries. Each server instance must export unique information to 
its own server entry; this unique information can be either a server
specific, well-known endpoint or an object UUID belonging 
exclusively to the one server instance. 

Before exporting, each server instance must acquire the entry name of 
its server entry from an external source. When a unique server instance 
stops running, its server entry becomes available. An available server 
entry should be reused for a new instance of that server by providing 
the existing entry's name for a new server instance to use with the 
export operation. If any existing server entries are unavailable, a new 
server instance requires a new server entry name. 

For a discussion of when a server instance should remove the binding 
information from its server entry, see the 
rpc_ns_hinding_unexport(3rpc) reference page in the OSF DeE 
Application Development Reference. 

15.2.2 Using Groups 

15-18 

When a server is first installed on a system, the server or the installer 
creates one or more server entries for the server. Also, when installing the 
first instance of the server within a cell, the installer usually creates one or 
more groups for the application. For any application, the local system and 
directory service administrators can create site-speci fic groups whose 
members are server entries, groups, or both. Typically, a server adds a 
server entry to at least one group. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

Design decisions for defining groups may reflect a number of possible 
factors. Typical factors that help define effective groups include the 
proximity of services or resources to clients, the types of any resources 
offered by servers, the uses of UUIDs, and the types of users that require a 
specific server. 

For example, for a print server, proximity to the clients and the type of 
supported file formats are both relevant. These factors may affect print 
servers as follows: 

• Proximity 

If the proximity of a server is important to clients, assign servers to 
groups according to their locations. For example, print servers that are 
located together can use their own group (for example, print servers in 
building 1 use the group bldg_l_print_servers). Each server instance 
can add its own entry to the group, or a system administrator can add 
server entries using the RPC control program. 

To select randomly among servers in a given location, a client imports 
using the name of a group that corresponds to those servers (or of a 
profile that refers to that group). 

Note: If proximity is the key factor in selecting among servers, 
name each server entry for the server's location; for 
example, bldg_I_pole _27 _print_server. 

• Object types 

When accessing specific classes of resources is important to clients, 
you can group server instances based on the type of object they offer. 

For servers that advertise resources in server entries, groups often use 
subsets for server entries according to the resources they advertise. For 
example, print servers can be grouped according to supported file 
formats. In this case, an administrator creates a group entry for each 
file format; for example, post_printers, sixeljlrinters, and 
ascii_printers. Each print server entry is a member of one or more 
groups. 

Users that specify a group for a file format must find the printer that 
processes the print command. To help the user find the printer, the 
client can obtain the name of the server entry that supplied the server 
binding information by calling rpc _ ns _ bindingJn<L entry _ name(), 
and then display the name for the user. If the server entry name 

OSF DeE Application Development Guide 15-19 



Using Remote Procedure Call 

indicates the location of the print server (for example, 
floor _3_room_ 4SA_print_server), the user can then find the printer. 

An application can set up groups according to different factors for 
different purposes. For example, the print server application can set up 
groups of neighboring print servers and a group of print servers for each of 
the file formats. The same server is a member of at least one group of each 
kind. Clients requires users to specify the name of a directory service entry 
as a command-line argument of remote print commands. The user specifies 
the name of the appropriate group. 

Note: If a user wants a specific print server and knows the name of 
its server entry, the user can specify that name to the client 
instead of a group. 

15.2.3 Using Profiles 

15-20 

Profiles are tools for managing NSI searches (performed by import_next 
or lookup_next operations). Often profiles are set up as public profiles for 
the users of a particular environment, such as a directory service cell, a 
system, a specific application, or an organization. For example, the 
administrator of the local directory service cell should set up a cell profile 
for all RPC applications using the cell, and the administrator of each 
system in the distributed computing environment should set up a system 
profile for local servers. 

For each application, a directory service administrator or the owner of an 
application should add profile elements to the public profiles that serve the 
general user population; for example, a cell profile, a system profile, or a 
profile of an organization. Each profile element associates a profile 
member (represented in the member field of an element as the global name 
of a directory service entry) with an interface identifier, access priority, 
and optional annotation. A candidate for membership in a cell profile is a 
group or another profile; for example, a group that refers, directly or 
indirectly, to the servers of an application installed in the local cell or an 
application-specific profile. 

An application may benefit from an application-specific profile. For 
example, an administrator at a specific location, such as a company's 
regional headquarters, can assign priorities to profile elements based on 
the proximity of servers to the headquarters, as illustrated by Figure 15-5. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

Figure 15-5. Priorities Assigned on Proximity of Members 

An individual user can have a personalized user profile that contains 
elements for interfaces the user uses regularly and a default element that 
specifies a public profile, such as the cell profile, as the default profile. 
NSI searches use the default profile when a client needs an RPC interface 
that lacks an element in the user profile. 

15.3 Models for Defining RPC Servers 

The NSI operations accommodate two distinct models for defining 
servers: the service model and the resource model. These models express 
different views of how clients use servers and how servers can present 
themselves in the directory service database. The models are not 
mutually exclusive, and an application may need to implement both 
models to meet diverse goals. By evaluating these models before 
designing an RPC application, you can make informed decisions about 
whether and how to use object UUIDs, how many server entries to use per 
server, how to distinguish among instances of a server on a system, 

OSF DeE Application Development Guide 15-21 



Using Remote Procedure Call 

whether and how to use groups or profiles or both, and so forth. The two 
models are as follows: 

• Service model 

This model views a server exclusively as a distributed service 
composed of one or more application-defined interfaces that meet a 
common goal independently of specific resources. 

• Resource model 

This model views servers and clients as manipulating resources. A 
server and its clients use object UUIDs to identify specific resources. 

With the resource model, any resource an application's servers and 
clients manipulate using an object UUID is considered an RPC 
resource. Typically, an RPC resource is a physical resource such as a 
database. However, an RPC resource may be abstract; for example, a 
print format such as ASCII. Note that an application that uses the 
resource model for one context may use the service model for another. 

15.3.1 Service Model 

15-22 

The service model is used by applications whose servers offer an identical 
service and whose clients do not request an RPC resource when importing 
an interface. Often, with the service model, all the server instances of an 
application are equivalent and are viewed as interchangeable. However, 
the service model can accommodate applications that view each server 
instance as unique. The implications of whether server instances are 
viewed as interchangeable or unique are significant, so the following 
subsections address these alternatives separately. 

15.3.1.1 Interchangeable Server Instances 

With the service model, servers offer an identical service that operates the 
same way on all host systems. For example, an application that uses the 
service model is a collection of equivalent print servers that support an 
identical set of file formats, and that are installed on printers in a single 
location. The print servers in any location can be segregated from printer 
servers elsewhere by using a location-specific group. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

Figure 15-6 shows interchangeable print servers offering an identical print 
service on different hosts. To access this service, clients request the Print 
Vl.O interface and specify the nil object UUID. In this illustration, the 
starting entry for the NSI search is a group corresponding to local print 
servers. Note that a client may be able to reach this print server group by 
starting from a profile or another group. 

Note: To simplify the illustrations of the usage models, the 
contents of server entries are represented without listing any 
binding information. 

OSF DeE Application Development Guide 15-23 



Using Remote Procedure Call 

Figure 15-6. Service Model: Interchangeable Instances on Two Hosts 

15-24 

Print Server 1 Print Server 2 

Print V1.0 interface Print V1.0 interface 

Error_reports V2.0 interface Error_reports V2.0 interface 

Exporting Exporting 

Name Service Database 

1.:/Bldg/Print_server_1 1.:/Bldg/Print_server_2 

Interface ID for Print V1.0 Interface ID for Print V1.0 

1.:/Bldg/Printer_server_group 

- f- 1 .. .lC=US/O= TheUlCO=MadCity/Bldg/Print_server_1 

1 •• .lC=US/O= TheUlCO=MadCity/Bldg/Print_server _2 -

Search Requirements 

Target Interface: Printer V1.0 

Target Object: None 

Starting Entry: 1.:/Bldg/Print_server-lJroup 

Maximum Number of Traversed Entries: 2 

f--

Note: The number of entries traversed by a search operation is 
unrelated to the number of binding handles it returns. 

Figure 15-7 shows interchangeable service instances offering an identical 
statistics service on a single host. To access this service, clients request 
the Statistics V1.0 interface and specify the nil object UUID. The starting 
entry for the NSI search is a group corresponding to local servers that 
offer the service (or a profile that refers to that group). 

OSF DeE Application Development Guide 



Name Service Interface Usage 

Figure 15-7. Service Model: Interchangeable Instances on One Host 

MAY A System MAYA System 
Statistics-Service Server Instance 1 Statistics-Service Server Instance 2 

Statistics V1.0 interface Statistics V1.0 interface 

Report_writer V2.0 interface Report_writer V2.0 interface 

Exporting Exporting 

Name Service Database 

t 
I. :/L&S/Statistics_service _AZTEC 1.:/L&S/Statistics_service_MA VA 

Interface 10 for Statistics V1.0 InterfAce ID for Statistics V1.0 

1.:/L&S/Statistics_service.-9rp 

'---- I- 1 ... /C=US/O=TheUlOU=MadCity/LandS/Statistics_service_AZTEC 

I .. .IC=US/O= TheUlOU=MadCity/LandS/Statistics_service_MA VA -

Search Requirements 

Target Interface: Statistics V1.0 

Target Object: None 

Starting Entry: 1.:/L&S/Statistics_service.-9rp 

Maximum Number of Traversed Entries: 2 

'-

Note that if an application with interchangeable server instances uses the 
connectionless RPC protocol, the default behavior of the endpoint map 
service is to always return the endpoint from the first map element for that 
set of server instances. To avoid having all clients using only one of the 
instances, before making a remote procedure call to the server, each client 
must inquire for an endpoint. For a random selection, a client calls the 
rpc_ep_resolve_hindingO routine. Alternatively, a client can call the 
rpc_mgmt_ep_eltJnCL ... O routines to obtain all the map elements for 
compatible server instances, and then use an application-specific selection 
algorithm to select one of the returned elements. 

OSF DeE Application Development Guide 15-25 



Using Remote Procedure Call 

15-26 

15.3.1.2 Distinct Service Instances on a Single Host 

With the service model, when multiple server instances on a given host 
are somehow unique, each instance must export to a separate server entry. 
The exported binding information must contain one or more instance
specific, well-known endpoints or an instance UUID. Well-known 
endpoints and instance UUIDs are used under the following 
circumstances: 

• Well-known endpoints 

An instance-specific, well-known endpoint must be provided to a 
server instance as part of its installation; for example, as a command
line argument. Before calling the export operation, the server instance 
tells the RPC runtime to use each of its well-known endpoints; it does 
this by calling rpc _server _ use _protse~ ep(). The runtime includes 
these endpoints in the instance's binding information, which the 
runtime makes available to the instance via a list of server binding 
handles. The server instance uses this list of binding handles to export 
its binding information, including the well-known endpoints. The 
server also uses this list of binding handles to export its well-known 
endpoint with the local endpoint map; it does this by calling 
rpc_ep_registerO or rpc_ep_register_no_replaceO. Remote calls 
made using an imported well-known endpoint from a server entry are 
guaranteed by the RPC runtime to go only to the server instance that 
exported the endpoint to that entry. 

Note: Only one server instance per system can use a well
known endpoint obtained from a given interface 
specification. 

• Instance UUID 

Create an instance UUID only for a new server entry. Generating a 
new instance UUID each time a server instance exports to a server 
entry will result in many instance UUIDs that are difficult to manage 
and may affect performance as new instance UUIDs are constantly 
added to server entries. If a new server instance inherits a currently 
unused server entry left behind by an earlier instance, before 
exporting, the new server instance should inquire for an instance 
UUID in the server entry; this is done by calling the 
rpc _ ns _entry_object Jn~ {begin,next,done } 0 routines. If the 
inherited entry contains an instance UUID, the server uses it for an 
instance UUID, rather than creating and exporting a new instance 

OSF DeE Application Development Guide 



Name Service Interface Usage 

UUID. If an inherited entry lacks an instance UUID, however, the 
server must create a UUID and export it to the server entry. Note that 
every server instance must register its instance UUID along with its 
endpoints in the local endpoint map. 

Note: Using an instance UUID precludes any other use of 
object UUIDs for the application. 

Figure 15-8 shows distinct instances of a statistics-service server on the 
same host. Each server instance uses an instance UUID to identify itself 
to clients. The instance UUID is the only object UUID a server instance 
exports to its server entry. Starting at the statistics-service group, clients 
import the statistics interface. 

After finding a server entry with compatible binding information for the 
statistics interface, the import operation returns an instance UUID along 
with binding information. Every remote procedure call made with that 
binding information goes to the server instance that exported the instance 
UUID. 

OSF DeE Application Development Guide 15-27 



Using Remote Procedure Call 

Figure 15-8. Service Model: Distinct Instances on One Host 

15-28 

MAYA System 
Statistics-Service Server Instance 1 

MAYA System 
Statistics-Service Server Instance 2 

Statistics V1.0 interface Statistics V1.0 interface 

Report_writer V2.0 interface Report_writer V2.0 interface 

Exporting Exporting 

Name Service Database 

1.:/L&S/Statistlcs_service_MA YA_01 1.:/L&S/Statistics_service_MA YA_02 

Interface 10 for Statistics V1.0 Interface 10 for Statistics V1.0 

Instance UUIO for instance 1 Instance UUIO for instance 2 

1.:/L&S/Statistics_servlce_grp 

- I- I •. .IC=US/O= TheUlOU=MadCity/LandS/Statistics_servlce_MAYA_01 

I .. .IC=US/O= TheUlOU=MadCity/LandS/Statistlcs_servlce_MA Y A_02 -

Search Requirements 

Target Interface: Statistics V1.0 

Target Object: None 

Starting Entry: 1.:/L&S/Statistics_servlce_grp 

Maximum Number of Traversed Entries: 2 

-

OSF DeE Application Development Guide 



Name Service Interface Usage 

15.3.2 Resource Model 

Applications in which a client requests a server to operate on a particular 
RPC resource use the resource model. Each server accesses one or more 
resources, such as print servers or databases. Applications use object 
UUIDs to refer to resources as follows: 

1. Servers offer resources by assigning an object UUID to each 
specific resource. 

2. Clients obtain those object UUIDs and use them to learn about a 
server that offers a given resource. 

3. When making a remote procedure call, a client requests a resource 
by passing its UUID as part of the server binding information. 

Each RPC resource or type of resource requires its own object UUID. A 
calendar server, for example, may require a distinct UUID to identify 
each calendar. 

RPC interfaces can be defined to operate with different types of resources 
and can be implemented separately for each type; for example, a print 
server application that supports PostScript, sixel, and ASCII file formats. 
When using different implementations of an interface (different 
managers), servers must associate the object UUID of a resource, such as 
an ASCII file format and its manager, by assigning them a single type 
UUID. To request the resource, a client specifies its object UUID in the 
server binding information. When a print server receives the remote 
procedure call, it looks up the corresponding type UUID and selects the 
associated manager. 

Some RPC resources belong exclusively to a single server instance; for 
example, print queues. Some resources can be shared among server 
instances; for example, a file format or an airline reservation database. 
For server instances on the same system, sharing a resource means that its 
object UUID cannot distinguish between the two instances. For a print 
server, this is unlikely to be a problem, assuming that each printer runs 
only one instance of the print server. In contrast, an application with a 
widely accessed database, such as an airline reservation application, may 
need to ensure that clients can distinguish server instances from each 
other. An application can distinguish itself by supplying its clients with 
instance-specific information; for example, a well-known endpoint or an 
instance UUID. 

OSF DeE Application Development Guide 15-29 



Using Remote Procedure Call 

15-30 

Note: Multiple server instances that access the same set of 
resources can introduce concurrency control problems, such 
as two instances accessing a tape drive at the same time. 
Also, where the system provides concurrency control, 
servers may compete and have to wait for resources such as 
databases. Dealing with delayed access to shared resources 
may require an application-specific mechanism, such as 
queuing access requests. 

15.3.2.1 Guidelines for Defining and Using RPC Resources 

When developing an RPC application, you need to decide whether to use 
object UUIDs to identify RPC resources and, if so, what sorts of 
resources receive UUIDs that servers export to the namespace. When 
making these decisions, consider the following questions: 

• Will users need to select a server entry from the namespace based on 
what object UUIDs the entry contains (and what the client needs)? 

If yes, then a client must specify an object UUID to the import 
operation. 

• Does the type of resource you are using last for a long time (months 
or years), so you can advertise object UUIDs efficiently in the 
namespace? 

The information kept in a namespace should be static or rarely 
change. For example, print queues are appropriate RPC resources. In 
contrast, quickly changing information, such as the jobs queued for 
the printer, owners of the jobs, or the time the job was added to the 
queue, should not be viewed as RPC resources. Such short-lived data 
may be viewed as local objects, which are stored and managed at a 
specific server. Programming with local objects is in the area of 
regular object-oriented programming and is independent of an 
application's use of RPC resources. 

• Is the number of objects belonging to the type of resource bounded in 
order to avoid placing high demands on the directory service? 

• Will the server implement an interface for different types of a 
resource, such as different forms of calendar databases or different 
types of queues? 

OSF DeE Application Development Guide 



Name Service Interface Usage 

If yes, then the server must classify objects into types. For each type, 
the server generates a non-nil UUID for the type UUID, sets the type 
UUID for every object of the type, and specifies that type as the 
manager type when registering the interface. When making a remote 
procedure call to the interface, a client must supply an object UUID 
to specify an RPC resource. 

• Is control over specific resources an important factor for 
distinguishing among server instances on a host? 

If yes, then each server must generate an object UUID for each of its 
resources. 

For some applications, such as those accessing a database that many 
people use, shared access to one or more objects may be essential. 
However, not all objects accommodate such shared access. 

15.3.2.2 Using Objects and Groups Together 

Servers can associate object UUIDs with a group. Each server exports 
one or more object UUIDs (without exporting any binding information) to 
the directory service entry of the group. This involves specifying the 
NULL interface identi fier to the export operation along with the list of 
object UUIDs. The object UUIDs reside in the directory service entry of 
the group. If a server stops offering an advertised object, a server must 
unexport its object UUID from the group entry in order to keep its object 
list up to date. 

Clients use objects in a group entry as follows: 

1. The client inquires for an object UUID from the group entry by 
calling the rpc _ns _entry _ object_inlL {begin,next,done} () 
routines. This routine selects one object UUID at random and 
returns it to the client. 

2. The client imports binding information for the returned object 
UUID (and the interface of the called remote procedure), 
specifying the group for the start of the search. 

3. The import operation returns a binding handle that refers to the 
requested object UUID and binding information for a server that 
offers the corresponding object. 

OSF DeE Application Development Guide 15-31 



Using Remote Procedure Call 

15-32 

4. The client issues the remote procedure call using that binding 
handle. 

5. The server looks up the type of the requested object. 

6. The server assigns the remote procedure call to the manager that 
implements the called remote procedure for that type of object. 

15.3.2.3 System-Specific Applications 

For some applications, the clients need to import an RPC resource that 
belongs to a specific system, and the clients can specify a server entry 
name to learn about a server on that system. For example, a process 
server that allows clients to monitor and control processes on a remote 
machine is useful only to that machine. Figure 15-9 illustrates this type 
of system-specific interpretation of the resource model. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

Figure 15-9. Resource Model: A System-Specific Application 

AZTEC System 
Process-Control Server 

Process_control V1.2 interface 

Exporting 

MAYA System 
Process-Control Server 

Process_control V1.2 interface 

Exporting 

Name Service Database 

I. :/hostsl AZTEC/Process_ control 

Interface 10 for Process_control V1.2 

Object UUIO for AZTEC's 
process-status file 

Search Requirements 

Target Interface: Process_control V1.2 

Target Object: Process-status file of MAYA system 

Starting Entry: 1.:/hosts/MAY AlProcess_control 

Maximum Number of Traversed Entries: 1 

I. :/hosts/MA Y AlProcess_control 

Interface 10 for Process_control V1.2 

Object UUIO for MAYA's 
process-status file 

Because clients usually find a system-specific server by specifying its 
server entry to the import operation, groups are usually not part of the 
NSI search path for system-specific applications. However, groups are a 
management tool for such applications. A group containing the names of 
the server entries of all the current servers can act as an accounting 
database. Also, a group for the servers on each set of related systems, 
such as the members of a local area network or an administrative 
grouping, permits a client to sequentially use the application on every 
system in the set. An application with system-specific servers should not 
use profiles. 

OSF DeE Application Development Guide 15-33 



Using Remote Procedure Call 

15-34 

15.3.2.4 Exporting Multiple Object UUIDs to a Single Server 
Entry 

Often a single server offers more than one resource, or it offers several 
types of resources. In cases where a server instance has a large number of 
object UUIDs, the application should usually place multiple object 
UUIDs into a single server entry. Typically, an application places all its 
object UUIDs into one server entry; however, it may need to segregate 
them into several server entries according to factors such as object type, 
location, or who uses the different types of objects. Note that when you 
are sub setting resources, try to assign each resource to a single set so that 
its object UUID is exported to only one server entry. Figure 15-10 
illustrates a single server entry implementation for each server for the 
resource model. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

Figure 15-10. Resource Model: A Single Server Entry for Each Server 

AZTEC System 
Calendar Server 

Calendar V1.1 interface 

Exporting 

MAYA System 
Calendar Server 

Calendar V1.1 interface 

Exporting 

Name Service Database 

1.:/LandS/anthro/calendars_AZTEC I. :/LandS/anthro/calendars _ MAYA 

Interface ID for Calendar V1.1 Interface ID for Calendar V1.1 

Object UUIDs for: John's calendar Object UUIDs for: Jane's calendar 
Dick's calendar Margy's calendar 
Pete's calendar Molly's calendar 

I. :/LandS/anthro/personal_ calendarsJjrp 

'--- I- 1 .• .IC=US/O=TheUlOU=MadCity/LandS/anthro/calendars_AZTEC 

I .. .IC=US/O= TheUlOU=MadCity/LandS/anthro/calendars_MAYA _ 

Search Requirements 

Target Interface: Calendar V1.1 

Target Object: A specific personal calendar 

Starting Entry: 1.:/LandS/anthro/personaLcalendarsJjrp 

Maximum Number of Traversed Entries: 3 

I--

15.3.2.5 Exporting Every Object UUID to a Separate Server 
Entry 

For some applications, exporting each object UUID to a separate server 
entry is a practical strategy. To avoid excessive demands on directory 
service resources, however, this strategy requires that the set of objects 
remain small. Applications with many RPC resources should usually 

OSF DeE Application Development Guide 15-35 



Using Remote Procedure Call 

15-36 

have each server create a single server entry for itself and export the 
object UUIDs of the resources it offers to that server entry. For example, 
an application that accesses a different personal calendar for every 
member of an organization needs to avoid using a separate server entry 
for each calendar. 

For some applications, however, you can use a separate server entry for 
each object UUID; for example, a print server application that supports a 
small number of file formats. Each server can create a separate server 
entry for each supported file format and export its object UUID to that 
server entry. The server entries for a file format are members of a distinct 
group. 

To import binding information for a server that supports a required file 
format, a client specifies the nil UUID as the object UUID and the group 
for that format as the starting entry. The import operation selects a group 
member at random and goes to the corresponding server entry. Along 
with binding information, the operation returns the server's object UUID 
for the requested file format from the server entry. When the client issues 
a remote procedure call to the server, the imported object UUID correctly 
identifies the file format the client needs. Figure 15-11 illustrates this use 
of object UUIDs. 

OSF DeE Application Development Guide 



Name Service Interface Usage 

Figure 15-11. Resource Model: A Separate Server Entry for Each Object 

Print Server 1 Print Server 2 

Print V1.0 interface Print V1.0 interface 

Exporting 

Name Service Database 

I. :/Bldg/PrintServer _1_FFI ASCII 

Interface 10 for Print V1.0 

Object UUIO for ASCII format 

I. :/Bldg/PrintServer _1_FF/Post 

Interface 10 for Print V1.0 

Object UUIO for PostScript format 

I. :/Bldg/PrintServer _1_FFI ASCII 

I. :/Bldg/PrintServer_2_FFI ASCII _+--_----J 

Search Requirements 

Target Interface: Print V1.0 

Target Object: ASCII file format (client specifies nil object UUIO) 

Starting Entry: 1.:/Bldg/ASCII_FF ~roup 

Maximum Number of Traversed Entries: 2 

1.:/Bldg/PrintServer_2_FF/ASCII 

Interface 10 for Print V1.0 

Object UUIO for ASCII format 

1.:/Bldg/PrintServer_2_FF/Post 

Interface 10 for Print V1.0 

Object UUIO for PostScript format 

1.:/Bldg/PrintServer_2_FF/sixel 

Interface 10 for Print V1.0 

Object UUIO for Sixel formal 

Applications that use a separate entry for each object UUID need to Use 
groups cautiously. Keeping groups small when clients are requesting a 
specific object is essential because an NSI search looks up the group 
members in random order. Therefore, the members of a group form a 
localized flat NSI search path rather than the hierarchical path. Flat 

OSF DeE Application Development Guide 15-37 



Using Remote Procedure Call 

15-38 

search paths are inefficient because the average search will look at half 
the members. Small groups are not a problem. For example, if a. group 
contains only 4 members, each of whom refers to a ·server entry that 
advertises a distinct set of RPC resources, the average number of server 
entries accessed in each search is 2 entries and the maximum is only 4. 
The larger the group, however, the more inefficient the resulting search 
path. For example, for a group containing 12 members, each of whom 
refers to a server entry that advertises a distinct set of object UUIDs, the 
average search accesses 6 entries and some searches access all 12 server 
entries. 

OSF DeE Application Development Guide 



Chapter 16 

Guidelines for Error Handling 

During a remote procedure call, server and communications errors may 
occur. These errors can be handled using any or all of the following 
methods: 

• Writing exception handler code to recover from the error or to exit the 
application 

• Using the fault_status attribute in the ACF to report an RPC server 
failure 

• Using the comm_status attribute in the ACF to report a communications 
failure 

Use of exceptions, where the procedure exits the program due to an error, 
tends to improve code quality. It does this by making errors obvious because 
the program exits at that point, and by lessening the amount of code needed 
to detect error conditions and handle them. When you use the fault_status 
attribute, an exception that occurs on the server is not reported to the client 
as an exception. The variable to which the comm _status attribute is 
attached contains error codes that report errors that would not have occurred 
if the application were not distributed over a communications network. The 
comm _status attribute provides a method of handling RPC errors without 
using an exception handler. 

OSF DeE Application Development Guide 16-1 



Using Remote Procedure Call 

16.1 Exceptions 

16-2 

Exceptions report errors, either RPC errors or errors in application code, 
when comm_status or fault_status or both are not present in the ACF. 
Exceptions have the following characteristics: 

• You do not have to adjust procedure declarations between local and 
distributed code. 

• You can distribute existing interfaces without changing code. 

• You do not have to check for failures. This results in more robust code 
because errors are reported even if they are not checked. 

• Your code is more efficient when there is no recovery coded for failures. 

• You can use a siinpler coding style. 

• Exceptions work well for coarse-grained exception handling. 

• If your appiication does not contain any exception handlers and the 
application thread gets an error, the application thread is terminated and 
a system-dependent error message from the threads package is printed. 

Note: RPC exceptions are equivalent to RPC status codes. To 
identify the status code that corresponds to a given exception, 
replace the _x_string of the exception with the string _ s _. For 
example, the exception rpc_x_comm_failure is equivalent to 
the status code rpc_s_comm_failure. The RPC exceptions 
are defined in the dce/rpcexc.h header file. 

The rpc_status_codes(7rpc) reference page documents the 
RPC status codes in alphabetical order. The documentation for 
each status code includes the message text, the explanation, 
and the suggested user action. This reference page is in the 
OSF DeE Application Development Reference. 

For more information about using exceptions to handle errors, see Part 2 of 
this guide. 

OSF DeE Application Development Guide 



Guidelines for Error Handling 

16.2 The fault status Attribute 

The fault_status attribute requests that errors occurring on the server due to 
incorrectly specified parameter values, resource constraints, or coding errors 
be reported by an additional status parameter instead of by an exception. 
The fault_status attribute has the following characteristics: 

• Occurs where you do not want transparent local/remote behavior 

• Occurs where you expect that you may be passing incorrect data to the 
server or the server is not coded robustly, or both 

• Works well for fine-grained error handling 

• Requires that you adjust procedure declarations between local and 
distributed code 

• Controls the reporting only of errors that come from the server and that 
are reported via a fault packet 

For more information on the fault_status attribute, see Chapter 18. 

16.3 The comm status Attribute 

The comm _status attribute requests that RPC communications failures be 
reported via an additional status parameter instead of by an exception. The 
comm _status attribute has the following characteristics: 

• Occurs where you expect communications to fail routinely; for instance, 
no server is available, the server has no resources, and so on 

• Works well for fine-grained error handling; for example, trying a 
procedure many times until it succeeds 

• Requires that you adjust procedure declarations between local and 
distributed code to add the new status parameter 

• Controls the reporting of errors only from RPC runtime error status 
codes 

For more information on the comm_status attribute, see Chapter 18. 

OSF DeE Application Development Guide 16-3 



Using Remote Procedure Call 

16.4 Determining Which Method to Use for Handling 
Exceptions 

16-4 

Some conditions are better for using the comm _status or fault_status 
attribute on an operation, rather than the default approach of handling 
exceptions. 

The comm_status attribute is useful only if the call to the operation has a 
specific recovery action to perform for one or more communications 
failures; for example, rpc_s_comm_failure or rpc_s_no_more_hindings. 
The comm_status attribute is recommended only when the application 
knows that it is calling a remote operation. 

If you expect communications to fail often because the server does not have 
enough resources to execute the call, you can use this attribute to allow the 
call to be retried several times. 

If you are using an implict or explicit binding, you can use the 
comm _status attribute if you want to try another server because the 
operation cannot be performed on the one you are currently using. 

You can also use an exception handler for each of the two previous 
instances. In general, the advantange of using comm _status if the recovery 
is local to the routine is that the overhead is less. The disadvantage of 
comm_status is that the operation is different between the local and 
distributed case. Also, if all of the recovery cannot be done locally (where 
the call is made), there must be a way to pass the status to outer layers of 
code to process it. 

The fault_status attribute is useful only if the call to the operation has a 
specific recovery action to perform for one or more server faults; for 
example, rpc _ s Jnvalid _tag, rpc _s _fault_pipe _ comm _error, 
rpc_s_fault_int_overflow, or rpc_s_fault_remote_no_memory. Use 
fault_status only when the application calls a remote operation and wants 
different behavior than if it calls the same operation locally. 

If you are requesting an operation on a large data set you can use this 
attribute to trap rpc_s_fault_remote_no_memory and retry the operation 
to a different server, or you may break your data set into two smaller 
sections. 

You can also handle the previous case with exception handlers. The 
advantange of using fault_status if the recovery is local is that the overhead 

OSF DeE Application Development Guide 



Guidelines for Error Handling 

is less. The disadvantage of fault_status is that the operation is different 
between the local and distributed case. Also, if all of the recovery cannot 
be done locally, there must be a way to pass the status to outer layers of 
code to process it. 

16.5 Examples of Error Handling 

The following subsections present two examples of error handling. The first 
example assumes that the comm_status attribute is in use in the ACE The 
second example assumes that the comm _status attribute is not in use. 

16.5.1 The Matrix Math Server Example 

Assume that you have an existing local interface that provides matrix math 
operations. Since it is local, errors such as floating-point overflow or divide 
by zero are returned to the caller of a matrix operation as exceptions. It is 
likely that these exceptions are caused by providing data to the operation in 
an improper form. 

In this case, the exceptions are part of the interface, so fault_status changes 
the way the application calls the matrix interface and probably is 
undesirable. Depending on the environment, finding a server may not be 
difficult (if the network is relatively stable and has enough resources), and 
adding comm _status serves only to introduce differences between the local 
and distributed applications. 

If a decision as to what action to take is based upon a communications 
failure, then you may try to add the conditional code comm _status requires. 
Otherwise, using auto_handle allows an attempt on each available server. 
If no server is available, the application terminates because it cannot 
proceed. You can add an exception handler to the main program to report 
the error in a user-friendly manner. 

OSF DeE Application Development Guide 16-5 



Using Remote Procedure Call 

16.5.2 The Stock Quote Application Example 

16-6 

Assume that you have a windows application that reads from stock quote 
servers and displays graphs of the data. Since you do not expect to get 
server failures because it is a commercial-quality server, you are not 
interested in writing code to handle values returned from fault_status. If 
high availability and robustness is important, you may have a list of 
recovery plans to make sure a stock analyst can get the necessary 
information as quickly as possible. For example: 

retry_count = 10; 
repeat 

query_stock_quote(h, ... ,&st); 
switch (st) /* st parameter can be used because */ 
{ /* [comm_status] is in the ACF */ 

case rpc_s_ok: 
break; 

case rpc_s_comm_failure: 
retry_count -= 1; 
break; 

case rpc_s_network_unreachable: 
h = some_other_handle; 
break; 

case 

default: 
retry_count 1; 

OSF DeE Application Development Guide 



Guidelines for Error Handling 

If this is not a critical application, you may only report that the server is 
currently unavailable. Depending upon the design of the application, there 
may be several places to put the exception handler to report the failure but 
continue processing. For example: 

TRY 

update_a_quote( ... ); 
CATCH_ALL 

display~message("Stock quote not currently available"); 
ENDTRY 

This example assumes that update _a _ quote() eventually calls the remote 
operation query_stock _ quote() and that this call may raise an exception 
that is detected and reported here. 

The advantage of using exceptions in this case is that all of the work done in 
update _ a _ quote() has the same error recovery and it does not need to be 
repeated at every call to a remote operation. Another advantage is that if 
one of the remote operations does have a recovery for one exception, it can 
handle that one exception and allow the rest to propagate to the more 
general handler in an outer layer of the code. 

OSF DeE Application Development Guide 16-7 





Part 3B 
Language Syntax and Usage 

Part 3B contains reference infonnation for the Interface Definition 
Language and the Attribute Configuration Language. 





Chapter 17 

Interface Definition Language 

This chapter describes how to construct an Interface Definition Language 
(IDL) file. First, it describes the IDL syntax notation conventions and 
lexical elements. It then describes the interface definition structure and the 
individual language elements supported by the IDL compiler. 

17.1 The Interface Definition Language File 

The Interface Definition Language (lDL) file defines all aspects of an 
interface that affect data passed over the network between a caller (client) 
and a callee (server). An interface definition file has the suffix .idl. In order 
for a caller and callee to interoperate, they both need to incorporate the 
same interface definition. 

OSF DeE Application Development Guide 17-1 



Language Syntax and Usage 

17.2 Syntax Notation Conventions 

In addition to the documentation conventions described in the Preface of 
this guide, the IDL syntax uses the special notation described in the 
following subsections. 

17.2.1 Typography 

IDL documentation uses the following typefaces: 

Bold Bold typeface indicates a literal item. Keywords and 
literal punctuation are represented in bold typeface. 
Identifiers used in a particular example are represented 
in bold typeface when mentioned in the text. 

Italic 

Constant width 

Italic typeface indicates a symbolic item for which you 
need to substitute a particular value. In IDL syntax 
descriptions, all identifiers that are not keywords are 
represented in italic typeface. 

Constant width typeface is used for source code 
examples (in IDL or in C) that are displayed separately 
from regular text. 

17.2.2 Special Symbols 

17-2 

IDL documentation uses the following symbolic notations: 

[item] 

[item] 

item ... 

Italic brackets surrounding an item indicate that the 
item is optional. 

Brackets shown in regular typeface are a required part 
of the syntax. 

Ellipsis points following an item indicate that the item 
may occur one or more times. 

OSF DeE Application Development Guide 



item, ... 

item I item 

Interface Definition Language 

If an item is followed by a literal punctuation character 
and then by ellipsis points, the item may occur either 
once without the punctuation character, or more than 
once with the punctuation character separating each 
instance. 

If ellipsis points are shown on a line by themselves, the 
item or set of items in the preceding line may occur any 
number of additional times. 

If several items are shown separated by vertical bars, 
exactly one of those items must occur. 

17.3 IDL Lexical Elements 

The following subsections describe these IDL lexical elements: 

• Identifiers 

• Keywords 

• Punctuation characters 

• White space 

• Case sensitivity 

17.3.1 Identifiers 

The character set for IDL identifiers comprises the alphabetic characters A 
to Z and a to z, the digits 0 to 9, and the _ (underscore) character. An 
identifier must start with an alphabetic character. 

No IDL identifier can exceed 31 characters. In some cases an identifier has a 
shorter maximum length because the IDL compiler uses the identifier as a 
base from which to construct other identifiers; we identify such cases as 
they occur. 

OSF DeE Application Development Guide 17-3 



Language Syntax and Usage 

17.3.2 Keywords 

IDL reserves some identifiers as keywords. In the text of this chapter, 
keywords are represented in bold typeface, and identifiers chosen by 
application developers are represented in italic typeface. 

17.3.3 Punctuation Characters 

IDL uses the following graphic characters: 

* / I = \ 

The { (left brace) and} (right brace) characters are national replacement set 
characters that may not be available on all keyboards. Wherever IDL 
specifies a left brace, the ??< trigraph may be substituted. Wherever IDL 
specifies a right brace, the ??> trigraph may be substituted. 

Use of these trigraph sequences adds the following punctuation characters to 
the set in the preceding list: 

< > ? 

17.3.4 White Space 

17-4 

White space is used to delimit other constructs. IDL defines the following 
white space constructs: 

• A space 

• A carriage return 

• A horizontal tab 

• A form feed at the beginning of a line 

• Acomment 

• A sequence of one or more of the preceding white space constructs 

OSF DeE Application Development Guide 



Interface Definition Language 

A keyword, identifier, or number not preceded by a punctuation character 
must be preceded by white space. A keyword, identifier, or number not 
followed by a punctuation character must be followed by white space. 
Unless we note otherwise, any punctuation character may be preceded 
and/or followed by white space. 

When enclosed in " " (double quotes) or ' , (single quotes), white space 
constructs are treated literally. Otherwise, they serve only to separate other 
lexical elements and are ignored. 

The character sequence /* (slash and asterisk) begins a comment, and the 
character sequence */ (asterisk and slash) ends a comment. For example: 

/* all natural */ 

import "potato.idl"; /* no preservatives */ 

Comments do not nest. 

17.3.5 Case Sensitivity 

The IDL compiler does not force the case of identifiers in the generated 
code. 

The only case sensitivity issue that you have to be aware of is the 
implications involved in calling generated stubs from languages other than 
C. 

17.4 IDL Versus C 

IDL resembles a subset of ANSI C. The major difference between IDL and 
C is that there are no executable statements in IDL. 

OSF DeE Application Development Guide 17-5 



Language Syntax and Usage 

17.4.1 Declarations 

An interface definition specifies how operations are called, not how they are 
implemented. IDL is therefore a purely declarative language. 

17.4.2 Data Types 

To support applications written in languages other than C, IDL defines some 
data types that do not exist in C and extends some data types that do exist in 
C. For example, IDL defines a Boolean data type. 

Some C data types are supported by IDL only with modifications or 
restrictions. For example, unions must be discriminated, and all arrays must 
be accompanied by bounds information. 

17.4.3 Attributes 

17-6 

The stub modules that are generated from an interface definition require 
more information about the interface than can be expressed in C. For 
example, stubs must know whether an operation parameter is an input or an 
output. 

The additional information required to define a network interface is 
specified via IDL attributes. IDL attributes can apply to types, to structure 
members, to operations, to operation parameters, or to the interface as a 
whole. Some attributes are legal in only one of the preceding contexts; 
others are legal in more than one context. An attribute is always represented 
in [ ] (brackets) before the item to which it applies. For example, in an 
operation declaration, inputs of the operation are preceded by the in 
attribute and outputs are preceded by the out attribute: 

void arith_add ( 
[in] long a, 
[in] long b, 
[out] long *c, 
) ; 

OSF DeE Application Development Guide 



Interface Definition Language 

17.5 Interface Definition Structure 

An interface definition has the following structure: 

[inteiface _attribute, ... J interface intelface _name 
{ 

declarations 
} 

The portion of an interface definition that precedes the { (left brace) is the 
interface header. The remainder of the definition is the interface body. 
Interface header syntax and interface body syntax are described separately 
in the following two subsections. 

17.5.1 Interface Definition Header 

The interface header comprises a list of interface attributes enclosed in [ ] 
(brackets), the keyword interface, and the interface name: 

[in teiface _attribute, ... J interface interface_name 

Interface names, together with major and minor version numbers, are used 
by the IDL compiler to construct identifiers for interface specifiers, entry 
point vectors, and entry point vector types. If the major and minor version 
numbers are single digits, the interface name can be up to 17 characters 
long. 

17.5.2 Interface Definition Body 

The declarations in an interface definition body are one or more of the 
following: 

import_declaration 
constant declaration 
type _declaration 
operation_declaration 

OSF DeE Application Development Guide 17-7 



Language Syntax and Usage 

A ; (semicolon) tenninates each declaration, and { } (braces) enclose the 
entire body. 

Import declarations must precede other declarations in the interface body. 
Import declarations specify the names of other IDL interfaces that define 
types and constants used by the importing interface. 

Constant, type, and operation declarations specify the constants, types, and 
operations that the interface exports. These declarations can be coded in any 
order, provided any constant or type is defined before it is used. 

17.6 Overview of IDL Attributes 

Table 17-1 lists the attributes allowed in interface definition files and 
specifies the declarations in which they can occur. 

Table 17-1. I DL Attributes 

Attribute Where Used 
uuid Interface definition headers 
version 
endpoint 
pointer_default 
local 
broadcast Operations 
maybe 
idempotent 
in Parameters 
out 
ignore Structures 

17-8 OSF DeE Application Development Guide 



Interface Definition Language 

Attribute Where Used 
max_is Arrays 
size_is 
first_is 
last_is 
length_is 
string Arrays 

ptr Pointers 
ref 
handle Customized handles 

context_handle Context handles 

transmit_as Type declarations 

v1_array Migration 
v1_enum 
v1_string 
v1_struct 

17.7 Interface Definition Header Attributes 

The following subsections describe in detail the usage and semantics of the 
IDL attributes that can be used in interface definition headers. The 
attributes provided for interface definition headers are as follows: 

• uuid 

• version 

• endpoint 

• pointer_default 

• local 

OSF DeE Application Development Guide 17-9 



Language Syntax and Usage 

17.7.1 The uuid Attribute 

The uuid attribute specifies the Universal Unique Identifier (UUID) that is 
assigned to an interface. The uuid attribute takes the form: 

uuid (uuid _string) 

A uuid _string is the string representation of a UUID. This string is typically 
generated as part of a skeletal interface definition by the utility uuidgen. A 
uuid _string contains one group of 8 hexadecimal digits, three groups of 4 
hexadecimal digits, and one group of 12 hexadecimal digits, with hyphens 
separating the groups, as in the following example: 

01234567-89ab-cdef-0123-456789abcdef 

A new UUID should be generated for any new interface. If several versions 
of one interface exist, all versions should have the same interface UUID but 
different version numbers. A client and a server cannot communicate unless 
the interface imported by the client and the interface exported by the server 
have the same UUID. The client and server stubs in an application must be 
generated from the same interface definition or from interface definitions 
with identical uuid attributes. 

Any remote interface must have the uuid attribute. An interface must have 
either the uuid attribute or the local attribute, but cannot have both. 

The following example illustrates use of the uuid attribute: 

uuid(4ca7b4dc-dOOO-OdOO-0218-cb0123ed9876) 

17.7.2 The version Attribute 

17-10 

The version attribute specifies a particular version of a remote interface. 
The version attribute takes the form: 

version (major [. minor ]) 

A version number can be either a pair of integers (the major and minor 
version numbers) or a single integer (the major version number). If both 

OSF DeE Application Development Guide 



Interface Definition Language 

major and minor version numbers are supplied, the integers should be 
separated by a period without white space. If no minor version number is 
supplied, 0 (zero) is assumed. 

The following examples illustrate use of the version attribute: 

version (1.1) / * maj or and minor version numbers * / 

version (3) /* major version number only */ 

The version attribute can be omitted altogether, in which case the interface 
is assigned 0.0 as the default version number. 

A client and a server can communicate only if the following requirements 
are met: 

• The interface imported by the client and the interface exported by the 
server have the same major version number. 

• The interface imported by the client has a minor version number less 
than or equal to that of the interface exported by the server. 

You must increase either the minor version number or the major version 
number when you make any compatible change to an interface definition. 
You cannot decrease the minor version number unless you simultaneously 
increase the major version number. 

You must increase the major version number when you make any 
incompatible change to an interface definition. (See the definition of 
compatible changes that follows.) You cannot decrease the major version 
number. 

The following are considered compatible changes to an interface definition: 

• Adding operations to the interface, if and only if the new operations are 
declared after all existing operation declarations in the interface 
definition. 

• Adding type and constant declarations, if the new types and constants 
are used only by operations added at the same time or later. Existing 
operation declarations cannot have their signatures modified. 

The major and minor integers in the version attribute can range from 0 to 
65,535, inclusive. However, these typically are small integers and are 
increased in increments of one. 

OSF DeE Application Development Guide 17-11 



Language Syntax and Usage 

17.7.3 The endpoint Attribute 

17-12 

The endpoint attribute specifies the well-known endpoint or endpoints on 
which servers that export the interface will listen. The endpoint attribute 
takes the fonn: 

endpoint (endpoint_spec, ... ) 

Each endpoint_spec is a string in the following fonn: 

" family: [endpoint] " 

The family identifies a protocol family. The following are accepted values 
forfamily: 

• ncacn_ip_tcp: NCA Connection over Internet Protocol: Transmission 
Control Protocol (TCPjIP) 

• ncadgJp_udp: NCA Datagram over Internet Protocol: User Datagram 
Protocol (UDP/lP) 

The endpoint identifies a well-known endpoint for the specified family. The 
values accepted for endpoint depend on the family but typically are integers 
within a limited range. IDL does not define valid endpoint values. 

Well-known endpoint values are typically assigned by the central authority 
that "owns" a protocol. For example, the Internet Assigned Numbers 
Authority assigns well-known endpoint values for the IP protocol family. 

At compile time, the IDL compiler checks each endpoint _spec only for 
gross syntax. At runtime, stubs pass the family and endpoint strings to the 
RPC runtime, which validates and interprets them. 

Most applications should not use well-known endpoints and should instead 
use dynamically assigned opaque endpoints. Most interfaces designed for 
use by applications should therefore not have the endpoint attribute. 

The following example illustrates use of the endpoint attribute: 

endpoint ("ncacn_ip_tcp: [1025] ", "ncadg_ip_udp: [6677] ") 

OSF DeE Application Development Guide 



Interface Definition Language 

17.7.4 The pointer_default Attribute 

IDL supports two kinds of pointer semantics. The pointer_default attribute 
specifies the default semantics for pointers that are declared in the interface 
definition. The pointer_default attribute takes the form: 

pointer_default (pointer_attribute) 

Possible values for pointer _attribute are ref and ptr. 

The default semantics established by the pointer _default attribute apply to 
the following usages of pointers: 

• A pointer that occurs in the declaration of a member of a structure or a 
union 

• A pointer that is at other than the top level of an operation parameter 
declared with more than one pointer operator 

Note that the pointer _default attribute does not apply to a pointer that is 
the return value of an operation because this is always a full pointer. 

The default semantics can be overridden by pointer attributes in the 
declaration of a particular pointer. If an interface definition does not specify 
pointer_default and contains a declaration that requires default pointer 
semant~cs, the IDL compiler will issue an error. 

For additional information on pointer semantics, refer to Section 17.14.7.1. 

17.7.5 The local Attribute 

The ~ocal attribute indicates that an interface definition does not declare any 
remote operations and that the IDL compiler shoqld therefore generate only 
header files, not stub files. The local attribute takes the form: 

local 

An interface contammg operation definitions must have either the local 
attribute or the uuid attribute. No interface can have both. 

OSF DeE Application Development Guide 17-13 



Language Syntax and Usage 

17.7.6 Rules for Using Interface Definition Header Attributes 

An interface cannot have both the local attribute and the uuid attribute. In 
an interface definition that contains any operation declarations, either local 
or uuid must be specified. In an interface definition that contains no 
operation declarations, both local and uuid can be omitted. 

The local, uuid, and version attributes cannot be coded more than once. If 
the endpoint or the pointer_default attribute is coded more than once, the 
IDL compiler issues a warning, and where conflicts exist, the IDL compiler 
accepts the last value specified. 

17.7.7 Examples of Interface Definition Header Attributes 

The following example uses the uuid and version attributes: 

[uuid(df961f80-2d24-11c9-be74-08002bOecef1), version(l.l)] 
interface my_inter face_name 

The following example uses the uuid, endpoint, and version attributes: 

[uuid(Obb1a080-2d25-11c9-8d6e-08002bOecef1), 
endpoint ("ncacn_ip_tcp: [1025] II I "ncacn_ip_tcp: [6677] ") I 

version(3.2)] 
interface my_interface_name 

17.8 Import Declarations 

17-14 

The IDL import_declaration specifies interface definition files that declare 
types and constants used by the importing interface. It takes the following 
form: 

importjile, ... ; 

The file is the pathname, enclosed in " " (double quotes), of the interface 
definition you are importing. This pathname can be relative; the -I option of 

OSF DeE Application Development Guide 



Interface Definition Language 

the IDL compiler allows you to specify a parent directory from which to 
resolve import pathnames. 

The effect of an import declaration is as if all constant, type, and import 
declarations from the imported file occurred in the importing file at the point 
where the import declaration occurs. Operation declarations are not 
imported. 

For example, suppose that the interface definition aioli.idl contains a 
declaration to import the definitions for the garlic and oil interfaces: 

import "garlic.idl" , "oil.idl"i 

The IDL compiler will generate a C header file named aioli.h that contains 
the following #include directives: 

#include "garlic.h" 
#include "oil.h" 

The stub files that the compiler generates will not contain code for any 
garlic and oil operations. 

Importing an interface many times has the same effect as importing it once. 

17.9 Constant Declarations 

The IDL constant _declaration can take the following forms: 

const integer_type _spec identifier = integer I value I integer _const _expression; 
const boolean identifier = TRUE I FALSE I value; 
const char identifier = character I value; 
const char* identifier = string I value; 
const void* identifier = NULL I value; 

The integer _type _spec is the data type of the integer constant you are 
declaring. The identifier is the name of the constant. The integer, 
integer _const_expression, character, string, or value specifies the value to 
be assigned to the constant. A value can be any previously defined constant. 

OSF DeE Application Development Guide 17-15 



Language Syntax and Usage 

IDL provides only integer, Boolean, character, string, and null pointer 
constants. 

Following are examples of constant declarations: 

const short TEN = 10; 
const boolean FAUX = FALSE; 
const char* DSCH = "IXnitri Shostakovich"; 

17.9.1 Integer Constants 

An integer _type _spec is a type _specifier for an integer, except that the 
int _size for an integer constant cannot be hyper. 

An integer is the decimal representation of an integer. IDL also supports the 
C notation for hexadecimal, octal, and long integer constants. 

You can specify any previously defined integer constant as the value of an 
integer constant. 

You can specify any arithmetic expression as the integer _const_expression 
that evaluates to an integer constant. 

17.9.2 Boolean Constants 

17-16 

A Boolean constant can take one of two values: TRUE or FALSE. 

You can specify any previously defined Boolean constant as the value of a 
Boolean constant. 

OSF DeE Application Development Guide 



Interface Definition Language 

17.9.3 Character Constants 

A character is an ASCII character enclosed in ' , (single quotes). A white 
space character is interpreted literally. The \ (backslash) character 
introduces an escape sequence, as defined in the ANSI C standard. The ' 
(single quote) character can be coded as the character only if it is escaped 
by a backslash. 

You can specify any previously defined character constant as the value of a 
character constant. 

17.9.4 String Constants 

A string is a sequence of ASCII characters enclosed in " " (double quotes). 
White space characters are interpreted literally. The \ (backslash) character 
introduces an escape sequence, as defined in the ANSI C standard. The " 
(double quote) character can be coded in a string only if it is escaped by a 
backslash. 

You can specify any previously defined string constant as the value of a 
string constant. 

17.9.5 NULL Constants 

A void* constant can take only one literal value: NULL. 

You can specify any previously defined void* constant as the value of a 
void * constant. 

OSF DeE Application Development Guide 17-17 



Language Syntax and Usage 

17.10 Type Declarations 

The IDL type _declaration enables you to associate a name with a data type 
and to specify attributes of the data type. It takes the following form: 

typedef {[type_attribute, ... J] type _specifier type_declarator, ... ; 

A type _attribute specifies characteristics of the type being declared. 

The type specifier can specify a base type, a constructed type, a predefined 
type, or a named type. 

Each type_declarator is a name for the type being defined. Note, though, 
that a type_declarator can also be preceded by an * (asterisk), followed by 
[ ] (brackets), and can have ( ) (parentheses) for proper grouping. 

17.10.1 Type Attributes 

17-18 

A type _attribute can be any of the following: 

• handle: The type being declared is a user-defined, customized-handle 
type. 

• context handle: The type being declared is a context-handle type. 

• transmit_as: The type being declared is a "presented type." When it 
is passed in remote procedure calls, it is converted to a specified 
"transmitted type." 

• ref: The type being declared is a reference pointer. 

• ptr: The type being declared is a full pointer. 

• string: The array type being declared is a string type. 

• vl_ struct: This attribute specifies an alternate data alignment for the 
network representation of a structure type. 

• vI_array: This attribute specifies alternate network representation for 
arrays. 

• vI_string: This attribute specifies alternate network representation for 
strings. 

OSF DeE Application Development Guide 



Interface Definition Language 

• vl_ enum: This attribute specifies alternate network representation for 
enumerations. ' 

17.10.2 Base Type Specifiers 

IDL base types include integers, floating-point numbers, characters, a 
boolean type, a byte type, a void type, and a primitive handle type. 

Table 17-2 lists the IDL base data type specifiers. Where applicable, the 
table shows the size of the corresponding transmittable type and the type 
macro emitted by the IDL compiler for resulting declarations. 

Table 17-2. Base Data Type Specifiers 

Specifier Type Macro 
(sign) (size) (type) Size Emitted by idl 

small int 8 bits idLsmall_int 

short int 16 bits idLshort_int 

long int 32 bits idLlong_int 

hyper int 64 bits idLhyper_int 

unsigned small int 8 bits idLusmalLint 
unsigned short int 16 bits idLushort_int 

unsigned long int 32 bits idLulong_int 

unsigned hyper int 64 bits idl_uhyper_int 

float 32 bits idLshort_float 
double 64 bits idLlong_float 

char 8 bits idl_char 

boolean 8 bits idLboolean 

byte 8 bits idLbyte 
void - idLvoid_p_t 

handle_t - -

The base types are described individually later in this chapter. 

Note that you can use the idl_ macros in the code you write for an 
application to ensure that your type declarations are consistent with those in 
the stubs, even when the application is ported to another platform. The idl 

OSF DeE Application Development Guide 17-19 



Language Syntax and Usage 

macros are especially useful when passing constant values to RPC calls. 
For maximum portability, all constants passed to RPC calls declared in your 
network interfaces should be cast to the appropriate type because the size of 
integer constants (like the size of the int data type) is ambiguous in the C 
language. 

The idl_ macros are defined in dce/idlbase.h, which is included by header 
files that the IDL compiler generates. 

17.10.3 Constructed Type Specifiers 

IDL constructed types include structures, unions, enumerations, pipes, 
arrays, and pointers. (In IDL, as in C, arrays and pointers are specified via 
declarator constructs rather than type specifiers.) Following are the 
keywords used to declare constructed type specifiers: 

struct 
union 
enum 
pipe 

Constructed types are described in detail later in this chapter. 

17.10.4 Predefined Type Specifiers 

17-20 

While IDL per se does not have any predefined types, DCE RPC IDL 
implicitly imports nbase.idl, which does predefine some types. Specifically, 
nbase.idl predefines an error status type, several international character data 
types, and many other types. Following are the keywords used to declare 
these "predefined" type specifiers: 

error status t - -
ISO LATIN 1 - -
ISO MULTI LINGUAL - -
ISO ues 

OSF DeE Application Development Guide 



Interface Definition Language 

The error status type and international characters are described in detail 
later in this chapter. 

17.10.5 Type Declarator 

An IDL type _declarator can be either a simple declarator or a complex 
declarator. 

A simple declarator is just an identifier. 

A complex declarator is an identifier that specifies an array, a function 
pointer, or a pointer. 

17.11 Operation Declarations 

The IDL operation_declaration can take the following forms: 

[[operation_attribute, ... J] type _specifier operation_identifier 
(parameter declaration, ... ); 
[[operation_attribute, ... J] type _specifier operation_identifier 
([void]); 

Use the first form for an operation that has one or more parameters; use the 
second form for an operation that has no parameters. 

An operation_attribute can take the following forms: 

• idempotent: The operation is idempotent. 

• broadcast: The operation is always to be broadcast. 

• maybe: The caller of the operation does not require and will not receive 
any response. 

• ptr: The operation returns a full pointer. This attribute must be 
supplied if the operation returns a pointer result and reference pointers 
are the default for the interface. 

OSF DeE Application Development Guide 17-21 



Language Syntax and Usage 

• context_handle: The operation returns a context handle . 

• string: The operation returns a string. 

The type _specifier in an operation declaration specifies the data type that 
the operation returns, if any. This type must be either a scalar type or a 
previously defined type. If the operation does not return a result, its 
type _specifier must be void. 

For information on the semantics of pointers as operation return values, 
refer to the discussion of pointers in section 17.4.7. 

The operation _identifier in an operation declaration is an identifier that 
names the operation. 

Each parameter_declaration in an operation declaration declares a 
parameter of the operation. A parameter_declaration takes the following 
form: 

[parameter_attribute, ... ] type _specifier parameter_declarator 

Parameter declarations and the parameter attributes are described separately 
in the following sections. 

17.11.1 Operation Attributes 

Operation attributes determine the semantics to be applied by the RPC 
client and server protocol when an operation is called. 

17.11.2 Operation Attributes: idempotent, broadcast, and maybe 

17-22 

The idempotent attribute specifies that an operation is idempotent; that is, it 
can safely be executed more than once. 

The broadcast attribute specifies that an operation is to be broadcast to all 
hosts on the local network each time the operation is called. The client 
receives output arguments from the first reply to return successfully, and all 
subsequent replies are discarded. 

OSF DeE Application Development Guide 



Interface Definition Language 

An operation with the broadcast attribute is implicitly idempotent. 

The maybe attribute specifies that the caller of an operation does not expect 
any response. An operation with the maybe attribute cannot have any output 
parameters and cannot return anything. Delivery of the call is not 
guaranteed. 

An operation with the maybe attribute is implicitly idempotent. 

17.12 Parameter Declarations 

A parameter_declaration is used in an operation declaration to declare a 
parameter of the operation. A parameter_declaration takes the form: 

[parameter_attribute, ... ] type_specifier parameter_declarator 

If an interface does not use implicit handles or use interface-based binding, 
the first parameter must be an explicit handle that gives the object UUID 
and location. The handle parameter can be of a primitive handle type, 
handle_t, or a nonprimitive user-defined handle type. 

A parameter_attribute can be any of the following: 

• array _attribute: One of several attributes that specifies the 
characteristics of arrays. 

• in: The parameter is an input attribute. 

• out: The parameter is an output attribute. 

• ref: The parameter is a reference pointer: it cannot be NULL and 
cannot be an alias. 

• ptr: The parameter is a full pointer; it can be NULL and can be an 
alias. 

• string: The parameter is a string. 

• context_handle: The parameter is a context handle. 

• vI_array: This attribute specifies an alternate wire representation for 
arrays. 

OSF DeE Application Development Guide 17-23 



Language Syntax and Usage 

17-24 

• vI_string: This attribute specifies an alternate wire representation for 
strings. 

• vI struct: This attribute specifies an alternate wire representation for 
structure types. 

• vI enum: This attribute specifies an alternate wire representation for 
enumerations. 

The directional attributes in and out specify the directions in which a 
parameter is to be passed. The in attribute specifies that the parameter is 
passed from the caller to the callee. The out attribute specifies that the 
parameter is passed from the callee to the caller. 

An output parameter must be passed by reference and therefore must be 
declared with an explicit *. (Note that an array is implicitly passed by 
reference and so an output array does not require an an explicit *.) At least 
one directional attribute must be specified for each parameter of an 
operation. 

An explicit handle parameter must have at least the in attribute. 

The ref and ptr attributes are described later in Section 17.14.7. The string 
attribute is described in Section 17.14.6. The context handle attribute is 
described in Section 17.14.9. The vI_array and vI_string attributes are 
described in Section 17.16. 

The type _specifier in a parameter declaration specifies the data type of the 
parameter. 

The declarator in a parameter declaration can be any simple or complex 
declarator. ' 

A parameter with the out attribute must be either an array or an explicitly 
declared pointer. An explicitly declared pointer is declared by a 
pointer_declarator, rather than by a simple _declarator with a named pointer 
type as its type specifier. 

For information on the semantics of pointers as operation parameters, refer 
to the discussion of pointers in Section 17.14.7. 

OSF DeE Application Development Guide 



Interface Definition Language 

17.13 Basic Data Types 

The following subsections describe the basic data types provided by IDL 
and the treatment of international characters within IDL. The basic data 
types are as follows: 

• Integer types 

• Floating-point types 

• The char type 

• The boolean type 

• The byte type 

• The void type 

• The handle _ t type 

• The error _status _ t type 

Section 17.14 describes the constructed data types that are built on the basic 
data types. 

17.13.1 Integer Types 

IDL provides four sizes of signed and unsigned integer data types, specified 
as follows: 

int _size lint] 
unsigned int _size lint] 
int _size unsigned lint] 

The int _size can take the following values: 

hyper 
long 
short 
small 

OSF DeE Application Development Guide 17-25 



Language Syntax and Usage 

The hyper types are represented in 64 bits. A long is 32 bits. A short is 16 
bits. A small is 8 bits. 

The keyword int is optional and has no effect. The keyword unsigned 
denotes an unsigned integer type; it can occur either before or after the size 
keyword. 

17.13.2 Floating-Point Types 

IDL provides two sizes of floating-point data types, specified as follows: 

float 
double 

A float is represented in 32 bits. A double is represented in 64 bits. 

17.13.3 The char Type 

The IDL character type is specified as follows: 

[unsigned] char 

A char is unsigned and is represented in 8 bits. 

The keyword unsigned is optional and has no effect. IDL does not support a 
signed character type. IDL provides the small data type for representing 
signed 8-bit integers. 

17.13.4 The boolean Type 

The IDL boolean type is specified as follows: 

boolean 

17-26 OSF DeE Application Development Guide 



Interface Definition Language 

A boolean is represented in 8 bits. A boolean is a logical quantity that 
assumes one of two values: TRUE or FALSE. Zero is FALSE and any 
nonzero value is TRUE. 

17.13.5 The byte Type 

The IDL byte type is specified as follows: 

byte 

A byte is represented in 8 bits. The data representation format of byte data 
is guaranteed not to change when the data is transmitted by the RPC 
mechanism. 

The IDL integer, character, and floating-point types (and hence any types 
constructed from these) are all subject to format conversion when they are 
transmitted between hosts that use different data representation formats. 
You can protect data of any type from format conversion by transmitting 
that type as an array of byte. 

17.13.6 The void Type 

The IDL void type is specified as follows: 

void 

The void type may be used to do the following: 

• Specify the type of an operation that does not return a value 

• Specify the type of a context handle parameter, which must be void* 

• Specify the type of a NULL pointer constant, which must be void* 

OSF DeE Application Development Guide 17-27 



Language Syntax and Usage 

17.13.7 The handle t Type 

The IDL primitive handle type is specified as follows: 

handle t 

A handle _tis a primitive handle type that is opaque to application programs 
but meaningful to the RPC runtime library. Section 17.14.8 discusses 
primitive and nonprimitive handle types. 

17.13.8 The error _status _ t Type 

17-28 

IDL provides the following predefined data type to hold RPC 
communications status information: 

error status t - -

The values that can be contained in the error _status _ t data type are 
compatib'e with the unsigned long and unsigned32 IDL data types. These 
data types are used for status values in the DCE. The error _status _ t data 
type contains an additional semantic to indicate that this particular 
unsigned long contains a DCE format error status value. This additional 
semantic enables the IDL compiler to perform any necessary translation 
when moving the status value between systems with differing hardware 
architectures and software operating systems. If you are using status codes 
that are not in the DCE error status format or if you do not require such 
conversion, use an unsigned long instead of error _status _ t. 

OSF DeE Application Development Guide 



Interface Definition Language 

17.13.9 International Characters 

The implicitly imported nbase.idl provides predefined data types to support 
present and emerging international standards for the representation of 
characters and strings: 

ISO LATIN 1 - -
ISO MULTI LINGUAL - -
ISO ues 

Data of type char is subject to ASCII-EBCDIC conversion when 
transmitted by the RPC mechanism. The predefined international character 
types are constructed from the base type byte and are thereby protected 
from data representation format conversion. 

The ISO _LATIN _1 type is represented in 8 bits and is predefined as 
follows: 

The ISO_MULTI_LINGUAL type is represented in 16 bits and is 
predefined as follows: 

typedef struct { 
byte row, column; 
} ISO_MULTI_LINGUAL; 

The ISO _ ues type is represented in 32 bits and is predefined as follows: 

typedef struct { 
byte group, plane, row, column; 
} Iso_ues; 

OSF DeE Application Development Guide 17-29 



Language Syntax and Usage 

17.14 Constructed Data Types 

The following subsections describe the constructed data types that are 
provided by IDL. The constructed types are built on the basic data types, 
which are described in Section 17.13. The constructed data types are as 
follows: 

• Structures 

• Unions 

• Enumerations 

• Pipes 

• Arrays 

• Strings 

In IDL, as in C, arrays and pointers are specified via declarator constructs. 
The other constructed types are specified via type specifiers. 

17.14.1 Structures 

17-30 

The type _specifier for a structure type can take the following forms: 

struct [tag] 
{ 

struct _member; 

} 

struct tag 

A tag, if supplied in a specifier of the first form, becomes a shorthand form 
for the set of member declarations that follows it. Such a tag can 
subsequently be used in a specifier of the second form. 

A struct _member takes the following form: 

[[struct _member_attribute, ... J] type _specifier declarator, ... ; 

OSF DeE Application Development Guide 



Interface Definition Language 

A struct _member _attribute can be any of the following: 

• array_attribute: One of several attributes that specify characteristics of 
arrays. 

• ignore: An attribute indicating that the pointer member being declared 
is not to be transmitted in remote procedure calls. 

• ref: An attribute indicating that the pointer member being declared is a 
reference pointer: it cannot be NULL and cannot be an alias. 

• ptr: An attribute indicating that the pointer member being declared is a 
full pointer: it can be NULL and can be an alias. 

• string: An attribute indicating that the array member being declared is a 
string. 

• v I_array: An attribute specifying an alternate wire representation for 
arrays. 

• vI_string: An attribute specifying an alternate wire representation for 
strings. 

• vI struct: An attribute specifying an alternate wire representation for 
structure types. 

• vI enum: An attribute specifying an alternate wire representation for 
enumerations. 

A structure can contain a conformant array only as its last member. Such a 
structure can be contained by another structure only as its last member. This 
requirement iterates through any other embedding structures. A structure 
that contains a conformant array (a conform ant structure) cannot be returned 
by an operation as its value and cannot be simply an out parameter. 

A structure cannot contain a pipe. 

Note that the ignore attribute can be applied only to a pointer that is a 
member of a structure. This attribute specifies that the pointer is not to be 
transmitted in remote procedure calls. 

OSF DeE Application Development Guide 17-31 



Language Syntax and Usage 

17.14.2 Unions 

17-32 

An IDL union must be discriminated. The type _specifier for an IDL union 
can take the following forms: 

union [tag] switch (disc_type_spec discriminator) [union_name] 
{ 

case 

[default_case] 
} 

union tag 

A tag, if supplied in a specifier of the first form, becomes a shorthand form 
for the switch construct, union name, and set of cases that follow it. Such a 
tag can subsequently be used in a specifier of the second form. 

The disc _type _spec indicates the type of the discriminator, which can be an 
integer, a character, a Boolean, or an enumeration. 

The union_name specifies a name to be used in C code generated by the IDL 
compiler. When the IDL compiler generates C code to represent an IDL 
union, it embeds the union and its discriminator in a C structure. The name 
of the IDL union becomes the name of the C structure. If you supply a 
union_name in your type declaration, the compiler assigns this name to the 
embedded C union; otherwise, the compiler assigns the generic name 
tagged_union. 

A case contains one or more labels and may contain a member declaration: 

case constant: 

[union_member]; 

Each label in a case specifies a constant. The constant can take any of the 
forms accepted in an integer, character, or Boolean constant declaration, 
each of which is described earlier in this chapter. 

OSF DeE Application Development Guide 



Interface Definition Language 

A default case can be coded anywhere in the list of cases: 

default: 
[union_member]; 

A union_member takes the following fonn: 

[[union_member _attribute, ... J] type _specifier declarator; 

A union _member _attribute can be any of the following: 

• ptr: An attribute indicating that the pointer member being declared is a 
full pointer: it can be NULL and can be an alias. 

• string: An attribute indicating that the character array member being 
declared is a string. 

• vI_array: An attribute specifying alternate semantics for arrays. 

• vI_string: An attribute specifying alternate semantics for strings. 

In any union, the type of the discriminator and the type of all constants in all 
case labels must resolve to the same type. At the time the union is used, the 
value of the discriminator selects a member, as follows: 

• If the value of the discriminator matches the constant in any label, the 
member associated with the label is selected. 

• If there is no label whose constant matches the value of the 
discriminator and there is a default case, the default member is selected. 

• If there is no label whose constant matches the value of the 
discriminator and there is no default case, no member is selected and the 
exception rpc _x_invalid_tag is raised. 

Note that IDL prohibits duplicate constant label values. 

A union_member can contain only one declarator. If no union_member is 
supplied, the member is NULL, and if that member is selected when the 
union is used, no data is passed. Note, however, that the tag is always 
passed. 

A union cannot contain a pipe, a confonnant array, a varying array, or any 
structure that contains a confonnant or varying array. A union also cannot 
contain a ref pointer or any structure that contains a ref pointer. 

OSF DeE Application Development Guide 17-33 



Language Syntax and Usage 

17.14.3 Enumerations 

An IDL enumeration provides names for integers. It is specified as follows: 

enum {identifier, ... } 

Each identifier in an enumeration is assigned an integer value. The first 
identifier is assigned 0 (zero), the second is assigned 1, and so on. 

An enumeration can have up to 32,767 identifiers. 

17.14.4 Pipes 

17-34 

IDL supports pipes as a mechanism for transferring large quantities of typed 
data. An IDL pipe is an open-ended sequence of elements of one type. It is 
specified as follows: 

pipe type_specifier 

The type _specifier specifies the type for the elements of the pipe. This type 
cannot be a pointer type and cannot be a type that contains a pointer. 

A pipe type can be used to declare only the type of an operation parameter. 
IDL recognizes three kinds of pipes, based on the three operation 
parameters: 

• An in pipe is for transferring data from a client to a server. It allows the 
callee (server) to "pull" an open-ended stream of typed data from the 
caller (client). 

• An out pipe is for transferring data from a server to a client. It allows the 
callee (server) to "push" the stream of data to the caller (client). 

• An in,out pipe provides for two-way data transfer between a client and 
server by combining the behavior of in and out pipes. 

A pipe can be defined only through a typedef declararation. Anonymous 
pipe types are not supported. 

At the user code to stub call interface (for both the caller and callee), a pipe 
appears as a simple callback mechanism. To the user code, the processing 
of a pipe parameter appears to be synchronous. The IDL implementation of 

OSF DeE Application Development Guide 



Interface Definition Language 

pipes in the RPC stub and runtime allows the apparent callbacks to occur 
without requiring actual remote callbacks. As a result, pipes provide an 
efficient transfer mechanism for large amounts of data. 

17.14.4.1 IDL Pipes Example 

To illustrate the IDL implementation of pipes, consider the following IDL 
fragment: 

typedef 
pipe base_t pipe_ti 

When the code containing this fragment is compiled, the IDL compiler will 
generate the following declarations in the derived header file: 

typedef 
struct pipe_t 

/* 
** pointer to routine callback to pull 
** the next chunk from the pipe 
*/ 
void (*pull) ( 

char *state, /* in: pipe's state pointer */ 
element_t *buf, /* in: buffer in which to place a chunk */ 
idl_ulong_int esize, /* in: buffer size (# of elements) */ 
idl_ulong_int *ecount /* out: size of chunk (# of elements) */ 

) i 

/* 

** pointer to routine callback to push 
** the next chunk into the pipe 
*/ 
void (*push) ( 

char *state, /* in: pipe's state pointer */ 
element_t *buf, /* in: buffer from which to copy chunk */ 
idl_ulong_int *ecount /* in: size of chunk (# of elements) */ 

) i 

/* 
** pointer to allocate callback to get buffer -
** used only on caller side 

OSF DeE Application Development Guide 17-35 



Language Syntax and Usage 

17-36 

*/ 
void (*alloc) ( 

) i 

/* 

char *state, /* in: pipe's state pointer */ 
idl_ulong_int bsize, /* in: requested size (# of *bytes*) */ 
element_t **buf, /* out: pointer to allocated buffer */ 
idl_ulong_int *bcount /* out: size of buffer (# of *bytes*) */ 

** pointer to arbitrary storage for use by 
** push, pull, and alloc 
*/ 
char *statei 
pipe_ti 

The pipe _ t.aHoe routine allocates memory from which pipe data can be 
marshalled or into which pipe data can be marshalled. The bsize parameter 
on this routine indicates the preferred size of the buffer, in bytes. The 
bcount and but parameters describe the actual memory that is allocated. If 
pipe _ t.aHoe allocates less memory than requested, the RPC runtime uses 
the smaller memory and makes more callbacks to the user. If the routine 
allocates more memory than requested, the excess memory is not used. 

The pipe _ t.state structure member is provided as a way to help coordinate 
the activities of the pull, push, and allocate routines. It is available to the 
implementor of the client and to the implementor of the server manager. It 
is described in more detail in the subsections that follow. 

17.14.4.2 Processing of Pipes 

U sing the IDL pipes example described in the previous subsection, this 
subsection describes the client and server responsibilities for processing 
pipes. The client and server responsibilities are described separately for in 
pipes, out pipes, and in,out pipes. 

OSF DeE Application Development Guide 



Interface Definition Language 

The in Pipes: Client Side 

For an in pipe, the client (caller) must do the following: 

1. Allocate the pipe _ t structure. 

2. Initialize the pipe_t.pull, pipe_t.alloc, and pipe_t.state fields. 

3. Include code where appropriate for checking the pipe_t.state field. 

4. Pass the structure as the pipe parameter. The structure can be passed 
either by value or by reference, as indicated by the signature of the 
operation that contains the pipe parameter. 

To summarize, the client application code must supply pull and alloc 
routines. These routines must work together to produce a sequence of 
pointers to chunks, of which only the last is empty. The client stub does not 
modify the pipe state information. 

To transmit a large amount of data that is already in the proper form in 
memory (that is, the data is already an array of base_t), the client 
application code can have the alloc routine allocate a buffer that already has 
the information in it. In this case, the pull routine becomes a null routine. 

The in Pipes: Server Side 

The manager reads from the pipe by making calls of the form: 

#define DESIRED_NOM_ELEMENTS ... 
long count; 
base_t buf [DESIRED_NOM_ELEMENTS]; 

do { 

(* (pipe->pull» 
pipe->state, 

) ; 

buf, 
DESIRED_NUM_ELEMENTS, 
&count 

while (count> 0); 

OSF DeE Application Development Guide 17-37 



Language Syntax and Usage 

17-38 

Using the buffer supplied by the manager, the pipe->pull routine 
unmarshals an amount of data that is nonzero, but not more than the buffer 
can hold. There is no guarantee that the buffer will be filled. The actual 
amount of data in the buffer is indicated by the count parameter to the 
pipe->pull routine. 

The pipe->pull routine signals the end of data in the pipe by returning a 
chunk whose length is 0 (zero). Any attempt to pull data from the pipe after 
the zero-length chunk has been encountered will cause an exception to be 
raised. The in pipes must be processed in the order in which they occur in 
the operation signature. Attempting to pull data from an in pipe before 
End-of-Data on any preceding in pipe has been encountered will result in an 
exception being raised. If the manager code attempts to write to an out pipe 
or return control to the server stub before End-of-Data has been encountered 
on the last in pipe, an exception will be raised. Note that there is no 
guarantee that chunks seen by the manager will match the chunks supplied 
by the client's pull routine. 

The out Pipes: Client Side 

For an out pipe, the client (caller) must do the following: 

1. Allocate the pipe_t structure. 

2. Initialize the pipe _ t.push and pipe _ t.state fields. 

3. Pass the structure as the pipe parameter, either by value or by 
reference. 

The client stub unmarshals chunks of the pipe into a buffer and calls back to 
the application, passing a reference to the buffer. To allow the application 
code to manage its memory usage, and possibly avoid unnecessary copying, 
the client stub first calls back to the application's pipe->alloc routine to get 
a buffer. In some cases, this may result in the pipe->push routine's not 
having any work to do. 

The client stub may go through more than one (pipe->alloc, pipe->push) 
cycle in order to unmarshal data that the server marshalled as a single 
chunk. Note that there is no guarantee that chunks seen by the client stub 
will match the chunks supplied by the server's push routine. 

OSF DeE Application Development Guide 



Interface Definition Language 

The out Pipes: Server Side 

The stub enforces well-behaved pipe filling by the manager by raIsmg 
exceptions as necessary. The out pipes must be completely filled, in order, 
after all in pipes have been drained completely. 

The manager calls the stub-supplied push routine with code similar to the 
following: 

#define DESIRED_NOM_ELEMENTS 
long count; 
base_t buf [DESIRED_NOM_ELEMENTS]; 

while (more-pipe_data) 

(* (pipe->push) ) 
pipe->state, 
&buf, 
count 

) ; 

} ; 

(* (pipe->push) ) 
pipe->state, 
&buf, 
a 

) ; 

The in,out Pipes: Client Side 

For an in,out pipe, the client application code provides the pipe _ t structure. 
Both the pull routine (for the in direction) and the push routine (for the out 
direction) must be initialized, as well as the alloc routine and the state. 

During the last pull call (when it will return a zero count to indicate that the 
pipe is drained), the application's pull routine must reinitialize the pipe 
state so that the pipe can be used by the push routine correctly. 

OSF DeE Application Development Guide 17-39 



Language Syntax and Usage 

17-40 

The in,out Pipes: Server Side 

For an in,out pipe, the server provides the pipe _ t structure. 

17.14.4.3 Rules for Using Pipes 

Observe the following rules when defining pipes in IDL: 

• Pipe types can only be parameters. In other words, a pipe type cannot be 
the base type of an array or a pipe, or a member of a structure or union. 

• A pipe cannot be a function result. 

• The base type of a pipe cannot be a pointer or contain a pointer. 

• The base type of a pipe cannot be a context_handle or handle _ t type. 

• A pipe type cannot be used in the definition of another type. For 
example, the following code fragment is illegal: 

typedef 
pipe char pipe_ti 

typedef 
pipe_t * pipe-p_ti 

• A pipe type cannot have the transmit_as attribute. 

• The base type of a pipe cannot have the transmit_as attribute. 

• A pipe parameter can be passed by value or by reference. A pipe that is 
passed by reference (that is, has an * (asterisk» cannot have the ptr or 
unique parameter attributes. 

• Pipes that pass data from the client to the server must be processed in 
the order in which they occur in an operation's signature. All such pipes 
must be processed before data is sent from the server to the client. 

• Pipes that pass data from the server to the client must be processed in 
the order in which they occur in an operation's signature. No such pipes 
must be processed until all data has been sent from the client to the 
server. 

OSF DeE Application Development Guide 



Interface Definition Language 

• An operation that has one or more pipe parameters cannot have the 
idempotent attribute. 

• Manager routines must reraise RPC pipe and communications 
exceptions so that client stub code and server stub code continue to 
execute properly. 

For example, consider an interface that has an out pipe along with other 
out parameters. Suppose that the following sequence of events occurs: 

- The manager routine closes the pipe by writing an empty chunk 
whose length is 0 (zero). 

- The manager routine attempts to write another chunk of data to the 
pipe. 

- The generated push routine raises the exception 
rpc _x_fault_pipe _closed. 

- The manager routine catches the exception and does not reraise it. 

- The manager routine exits normally. 

- The server stub attempts to marshall the out parameters. 

After this sequence, neither the server stub nor the client stub can 
continue to execute properly. 

To avoid this situation, you must reraise the exception. 

• A pipe cannot be used in an operation that has the broadcast attribute. 

• The base type of a pipe cannot be a conformant structure. 

17.14.5 Arrays 

IDL supports the following types of arrays: 

• Fixed: The size of the array is defined in the IDL and all of the data in 
the array is transferred during the call. 

• Conform ant: The size of the array is determined at runtime by the value 
of the field or parameter referenced by a max Js or size Js attribute. All 
of the data in the array is transferred during the call. 

OSF DeE Application Development Guide 17-41 



Language Syntax and Usage 

17-42 

• Varying: The size of the array is defined in the IDL but the part of its 
contents transferred during the call is detennined by the values of fields 
or parameters named in one or more data limit attributes. The data limit 
attributes are firstJs, length_is, and last_is. 

An array can also be both confonnant and varying (or, as it is sometimes 
tenned "open' '). In this case, the size of the array is detennined at runtime 
by the value of the field or parameter referenced by the max Js or size_is 
attribute. The part of its contents transferred during the call is detennined by 
the values of fields or parameters named in one or more of the data limit 
attributes. 

Note: IDL supports confonnance and variance only on the first 
major dimension of an arrray. It also supports only 0 (zero) as 
the lower array bound. 

An IDL array is declared via an array _declarator construct whose syntax is 
as follows: 

array _identifier array_bounds _declarator ... 

An array _bounds_declarator must be speci fied for each dimension of an 
array. 

17.14.5.1 Array Bounds 

The array_bounds _declarator for the first dimension of an array can take 
any of the following fonns: 

[lower •• upper] 

[size] 

[lower .• *] 

[*] 

The lower bound is lower. The upper bound is upper. 

The lower bound is 0 (zero). The upper bound is size 
- 1. 

The lower bound is lower. The upper bound is 
unspecified. An instance of this array type must have 
either the max Js attribute or the size Js attribute, but 
not both. 

The lower bound is 0 (zero). The upper bound is 
unspecified. An instance of this array type must have 
either the maxJs attribute or the size_is attribute, but 
not both. 

OSF DeE Application Development Guide 



Interface Definition Language 

[ ] Same as the preceding explanation. 

In IDL, the only legal value for lower is 0 (zero). 

If an array is multidimensional, all dimensions other than the first must have 
fixed bounds. The array_bounds _declarator for each of these dimensions 
can therefore take only the following forms: 

[lower .. upper] 

[size] 

The lower bound is lower. The upper bound is upper. 

The lower bound is 0 (zero). The upper bound is size 
-1. 

In all forms of array _bounds_declarator the lower and upper must resolve 
to integer constants. 

17.14.5.2 Array Attributes 

Array attributes specify the size of an array or the part of an array that is to 
be transferred during a call. An array attribute specifies a variable that is 
either a field in the same structure as the array or a parameter in the same 
operation as the array. 

An array _attribute can take the following forms: 

max_is ([*] variable) 
size_is ([*] variable) 
last Js ([* ] variable) 
first Js ([*] variable) 
length Js ([*] variable) 

A variable specifies a variable whose value at runtime will determine the 
bound or element count for the associated dimension. A pointer variable is 
indicated by preceding the variable name with an * (asterisk). 

If the array is a member of a structure, any referenced variables must be 
members of the same structure. If the array is a parameter of an operation, 
any referenced variables must be parameters of the same operation. 

Only the ... Js(variable) form is allowed when the array is a field of a 
structure. In this case, the ... _is(*variable) form is not allowed. 

OSF DeE Application Development Guide 17-43 



Language Syntax and Usage 

17-44 

Note that an array with an array attribute (that is, a conformant or varying 
array) is not allowed to have the transmit_as attribute. 

The max is Attribute 

The max is attribute allows the maximum possible upper bound for the 
major dimension of an array to be determined at runtime. When an array 
with the max Js attribute is used at runtime, the value in the identified 
variable specifies the maximum array index in the dimension. 

If the major dimension of an array has an unspecified upper bound, the array 
must have either the max_is attribute or the size_is attribute, but not both. 
A variable must be identified for this dimension. 

The max Js attribute is for use with conformant arrays. Following are some 
examples of the max Js attribute: 

/* 
** Assume the following value for the referenced variable: 
** long a = 10; 
*/ 

[max_is(a)] long f1[]; 
[max_is(a)] long f2[] [4]; 

The size is Attribute 

/* f1[0 .. 10] */ 
/ * f2 [0 .. 10] [0 .. 3] * / 

The size Js attribute allows the maximum possible element count for the 
major dimension of an array to be determined at runtime. When an array 
with the size Js attribute is used at runtime, the value in the identified 
variable specifies the number of elements in the dimension. 

If the major dimension of an array has unspecified upper bounds, the array 
must have either the max_is attribute or the size_is attribute, but not both. 
A variable must be identified for this dimension. 

The size of a dimension is defined as the upper bound, minus the lower 
bound, + 1. 

OSF DeE Application Development Guide 



/* 

Interface Definition Language 

The size Js attribute is for use with conformant arrays. Following is an 
example of the size_is attribute: 

/* 
** Assume the following value for the referenced variable: 
** long x2 = 12; 
*/ 

[size_is(x2)] long gl[] [6]; /* gl[O .. 11] [0 .. 6] */ 

The last is Attribute 

The last is attribute allows the amount of data in the first dimension of an 
array that is to be transmitted to be determined at runtime. When an array 
with the last_is attribute is used, the value in the identified variable 
specifies the upper data limit. 

An array can have either the last Js attribute or the length Js attribute, but 
not both. 

When an array with the last_is attribute is used in a remote procedure call, 
the elements actually passed in the call can be a subset of the maximum 
possible. 

The last_is attribute is for use with varying arrays. Following is an example 
of the last is attribute: 

** Assume the following value for the referenced variable: 
** long a = 1; 
*/ 

[last_is (a) long x1[10] [20]; 
/* What is transmitted */ 

/ * xl [0 .. 1] [0 .. 19] * / 

The first is Attribute 

The first is attribute allows the amount of data in the first dimension of an 
array that is to be transmitted to be determined at runtime. When an array 
with the first_is attribute is used, the value in the identified variable 
specifies the lower data limit. 

OSF DeE Application Development Guide 17-45 



Language Syntax and Usage 

/* 

/* 

When an array with the first Js attribute is used in a remote procedure call, 
the elements actually passed in the call can be a subset of the maximum 
possible. 

The first is attribute is for use with varying arrays. Following is an 
example of the firstJs attribute: 

** Assume the following value for the referenced variable: 
** long q = 3; 
*/ 

[first_is(q)] long x1[0 .. 10]; 
/* What is transmitted */ 
/* x1[3 .. 10] */ 

The length Js Attribute 

The length Js attribute allows the amount of data in the first dimension of 
an array that is to be transmitted to be determined at runtime. When an 
array with the length Js attribute is used, the value in the identified variable 
specifies the actual number of elements for the dimension. 

An array can have either the last_is attribute or the length_is attribute, but 
not both. 

When an array with the length Js attribute is used in a remote procedure 
call, the elements actually passed in the call can be a subset of the 
maximum possible. 

The length Js attribute is for use with varying arrays. Following is an 
example of the length Js attribute: 

** Assume the following values for the referenced variables: 
** long a = 12; 
** long b = 25; 
*/ 

[length_is(a),rnax_is(b)] long t1[] [20]; 
/* What is transmitted * / 
/* t1[0 .. 11] [0 .. 19] */ 

17-46 OSF DeE Application Development Guide 



Interface Definition Language 

17.14.5.3 Rules for Using Arrays 

Observe the following rules when defining arrays in IDL: 

• A structure can contain only one confonnant array, which must be the 
last member in the structure. 

• Confonnant arrays are not valid in unions. 

• A structure containing a conformant array can be passed only by 
reference. 

• Arrays that have the transmit as attribute cannot be conformant or 
varying arrays. 

• The structure member or parameter referenced in an array attribute 
cannot be defined to have either the represent_as or transmit_as 
attribute. 

• Array bounds must be integers. Array attributes can reference only 
structure members or parameters of integer type. 

• A parameter that is referenced by an array attribute on a conformant 
array must have the in attribute. 

• Array elements cannot be context handles or pipes. 

17.14.6 Strings 

IDL implements strings as one-dimensional arrays to which the string 
attribute is assigned. The element type of the array must resolve to one of 
the following: 

• Type char 

• Type byte 

• A structure all of whose members are of type byte or of a named type 
that resolves to byte 

• A named type that resolves to one of the previous three types 

An array with the string attribute represents a string of characters. The 
string attribute does not specify the fonnat of the string or the mechanism 
for determining its length. Implementations of IDL provide string fonnats 

OSF DeE Application Development Guide 17-47 



Language Syntax and Usage 

and mechanisms for determining string lengths that are compatible with the 
programming languages in which applications are written. For DCE RPC 
IDL, the number of characters in a string array includes the NULL 
terminator, and the entire terminated string is passed between stubs. 

The array _bounds _declarator for a string array determines the maximum 
number of characters in the array. Note that when you declare a string, you 
must allocate space for one more than the maximum number of characters 
the string is to hold. For instance, if a string is to store 80 characters, the 
string must be declared with a size of 81: 

/* A string type that holds 80 characters */ 
typedef 

[string] char string_t [81]; 

If an array has the string attribute or if the type of an array has the string 
attribute, the array cannot have the first Js, the last_is, or the length Js 
attribute. 

The string and vI_string attributes are mutually exclusive. If a parameter 
or structure member has the stririg attribute, the type of the parameter or 
member cannot have the vI string attribute and cannot be defined in terms 
of another type with the vI_string attribute. Likewise, no instance of a 
string type can have the vI_string attribute. 

17.14.7 Pointers 

17-48 

Use the following syntax to declare an IDL pointer: 

* [* J .. .pointer _identifier 

The * (asterisk) is the pointer operator, and multiple asterisks indicate 
multiple levels of indirection. 

OSF DeE Application Development Guide 



Interface Definition Language 

17.14.7.1 Pointer Attributes 

Pointers are used for several purposes, including implementing a parameter 
passing mechanism that allows a data value to be returned, and building 
complex data structures. IDL offers two classes of pointers: reference 
pointers and full pointers. The attributes that indicate these pointers are as 
follows: 

• ref: Indicates reference pointers. This is the default for top-level 
pointers used in parameters. 

• ptr: Indicates full pointers. 

Pointer attributes are used in parameters, structure and union members, and 
in type definitions. In some instances, IDL infers the applicable pointer 
class from its usage. However, most pointer declarations require that you 
specify a pointer class by using one of the following methods: 

• Use the ref or ptr attribute in the pointer declaration. 

• Use the pointer _default attribute in the IDL interface heading. The 
default pointer class is determined by the pointer_default attribute. 

Pointer attributes are applied only to the top-level pointer within the 
declaration. If multiple pointers are declared in a single declaration, the 
pointer_default established applies to all but the top-level pointer. (See 
Section 17.14.7.2, which describes pointer attributes in parameters.) 

Examples of pointers are shown at the end of this section. 

Reference Pointers 

A reference pointer is the less complex form of pointer. The most common 
use for this class of pointer is as a passing mechanism; for example, passing 
an integer by reference. Reference pointers have significantly better 
performance than full pointers, but are restrictive; you cannot create a 
linked list using a reference pointer because a reference pointer cannot have 
a NULL value, and the list cannot be terminated. 

A reference pointer has the following characteristics: 

• It always points to valid storage; it can never have a NULL value. 

• Its value does not change during a call; it always points to the same 
storage on return from the call as it did when the call was made. 

OSF DeE Application Development Guide 17-49 



Language Syntax and Usage 

17-50 

• It does not support aliasing; it cannot point to a storage area that is 
pointed to by any other pointer used in a parameter of the same 
operation. 

When a manager routine is entered, all the reference pointers in its 
parameters will point to valid storage, except those reference pointers that 
point neither to targets whose size can be determined at compile time nor to 
values that have been received from the client. 

In the following example, the size of the targets of the reference pointers 
can be calculated at compilation time: 

typedef [ref] long *rpl; 

void opl( [in] long f, 
[in] long 1, 
[in,first_is(f),last_is(l)] rpl rpla[lO] ); 

For this example, when the manager is entered, all the pointers in rpla will 
point to usable storage, although only *rpla [f] through *rpla [1] will be 
the values received from the client. 

Conversely, the size of the targets of the reference pointers cannot be 
calculated at compile time in the following example: 

typedef [ref,string] char *rps; 

void opl( [in] long f, 
[in] long 1, 
[in,first_is(f),last_is(l)] rps rpsa[lO] ); 

In this case, only rpsa [ f] through rpsa [1], which point to values 
received from the client, will point to usable storage. 

Full Pointers 

A full pointer is the more complex form of pointer. It supports all 
capabilities associated with pointers. For example, by using a full pointer 
you can build complex data structures such as linked lists, trees, queues, or 
arbitrary graphs. 

OSF DeE Application Development Guide 



Interface Definition Language 

A full pointer has the following characteristics: 

• Its value can change during a call; it can change from a NULL to non
NULL value, non-NULL to NULL, or from one non-NULL value to 
another non-NULL value. 

• It supports aliasing; it can point to a storage area that is also pointed to 
by any other full pointer used in a parameter of the same operation. 
However, all such pointers must point to the beginning of the structure. 
There is no support for pointers to substructures or to overlapping 
storage areas. For example, if the interface definition code contains the 
following: 

[uuid(OE256080-587C-llCA-878C-08002Bll1685), version(l.O)] 
interface overlap 

typedef struct { 
long bill; 
long charlie; 

} faa; 
typedef struct { 

long fred; 
faa ken; 

} bar; 

void op ( [in] faa *f, [in] bar *b ); 

and the client application code includes: 

bar bb; 

op ( &bb.ken, &bb ); 

then the server stub treats these two separate parameters as distinct, and 
the manager application code does not see them as overlapping storage. 

• It allows dynamically allocated data to be returned from a call. 

OSF DeE Application Development Guide 17-51 



Language Syntax and Usage 

17-52 

17.14.7.2 Pointer Attributes in Parameters 

A pointer attribute can be applied to a parameter only if the parameter 
contains an explicit pointer declaration (*). 

By default, a single pointer (*) operator in a parameter list of an operation 
declaration is treated as a reference pointer. To override this, specify a 
pointer attribute for the parameter. When there is more than one pointer 
operator, or multiple levels of indirection in the parameter list, the pointer 
on the right is the top-level pointer; all pointers to the left are of a lower 
level. This top-level pointer is treated as a reference pointer by default; the 
other lower-level pointers have the semantics specified by the 
pointer_default attribute in the interface. Any pointer attribute you specify 
for the parameter applies to the top-level pointer only. Note that unless you 
specify a pointer attribute, the top-level explicit pointer declaration in a 
parameter defaults to a reference pointer even if the pointer _ default(ptr) 
interface attribute is specified. 

U sing a reference pointer improves performance but is more restrictive. For 
example, the pointer declared in the following operation, for the parameter 
int_ value, is a reference pointer. An application call to this operation can 
never specify NULL as the value of int_ value. 

void op ([in] long *int_value); 

To pass a NULL value, use a full pointer. The following two methods make 
int _value into a full pointer: 

• Applying the ptr attribute to the declaration of the parameter, 
int value 

void op ([in, ptr] long *int_value); 

• Using the pointer _default (ptr) attribute in an interface header 

[uuid(135E7FOO-1682-11CA-BF61-08002Bll1685, 
pointer_default (ptr), 
version(1.0)] interface full-pointer 

{ 

typedef long *long-ptr; 
void op ([in] long-ptr int_value); 
} 

OSF DeE Application Development Guide 



Interface Definition Language 

17.14.7.3 Pointer Attributes in Function Results 

Function results that are pointers are always treated as full pointers. The 
ptr attribute is allowed on function results but it is not mandatory. The ref 
pointer attribute is never allowed on function results. 

A function result that is a pointer always indicates new storage. A poiriter 
parameter can reference storage that was allocated before the function was 
called, but a function result cannot. 

17.14.7.4 Pointers in Structure Fields and Union Case 

If a pointer is declared in a member of a structure or union, its default is 
determined by the pointer _default attribute you specify for the interface. 
To override this, specify a pointer attribute for the member. 

17.14.7.5 Rules for Using Pointers 

Use the following rules when developing code in IDL: 

• Do not use the full pointer attribute on the following: 

- The parameter in the first parameter position, when that parameter is 
of type handle _tor is of a type with the handle attribute. 

- Context handle parameters. 

- A parameter that has the output attrIbute (out) only. 

• The base type of a pipe must not be a pointer or a structure containing a 
pointer. 

• A member of a union or a structure contained in a union cannot contain 
a reference pointer. 

• A reference pointer must point to valid storage at the time the call is 
made. 

OSF DeE Application Development Guide 17-53 



Language Syntax and Usage 

17-54 

• A parameter containing a varying array of reference pointers must have 
all array elements initialized to point to valid storage even if only a 
portion of the array is input, since the manager code (the application 
code supporting an interface on a server) may use the remaining array 
elements. (Recall that a varying array is one to which any of the array 
attributes first_is, last_is, length Js is applied). 

17.14.7.6 Memory Management for Pointed-to Nodes 

A full pointer can change its value across a call. Therefore, stubs must be 
able to manage memory for the pointed-to nodes. Managing memory 
involves allocating and freeing memory for user data structures. 

Allocating and Freeing Memory 

Manager code within RPC servers usually uses the rpc_ss_allocateO 
routine to allocate storage. Storage that is allocated by rpc_ss_allocateO is 
released by the server stub after any output parameters have been 
marshalled by the stubs. Storage allocated by other allocators is not 
released automatically but must be freed by the manager code. When the 
manager code makes a remote call, the default memory management 
routines are rpc_ss_allocateO and rpc_ss_freeO. 

The syntax of the rpc _ss _ allocatee ) routine is as follows: 

The size parameter specifies the size of the memory allocated. 

Note: In ANSI standard C environments, idl_void_p_t is defined as 
void * and in other environments is defined as char *. 

Use rpc_ss_freeO to release storage allocated by rpc_ss_allocateO. You 
can also use the rpc_ss_freeO routine to release storage pointed to by a full 
pointer in an input parameter. 

OSF DeE Application Development Guide 



Interface Definition Language 

The syntax of the routine is as follows: 

The node_to Jree parameter specifies the location of the memory to be 
freed. 

Enabling and Disabling Memory Allocation 

It may be necessary to call manager routines from different environments; 
for example, when the application is both a client and a server of the same 
interface. In this case, the same routine may be called both from server 
manager code and from client code. The rpc _ss _ allocate() routine, when 
used by the manager code to allocate memory, must be initialized before its 
first use. The stub performs the initialization automatically. Code, other 
than stub code, that calls a routine, which in tum calls rpc _ss _ allocate(), 
first calls the rpc _ ss _enable _ allocate( ) routine. 

The syntax of the routine is as follows: 

The environment set up by the rpc_ss_enable_allocateO routine is 
released by calling the rpc _ ss _disable _ allocate() routine. This routine 
releases all memory allocated by calls to rpc _ ss _ allocate() since the call to 
rpc _ ss _enable _allocate() was made. It also releases memory that was used 
by the memory management mechanism for internal bookkeeping. 

The syntax of the routine is as follows: 

17.14.7.7 Advanced Memory Management Support 

Memory management may also involve setting and swapping the 
mechanisms used for allocating and freeing memory. The default memory 
management routines are malloc() and free( ), except when the remote call 
occurs within manager code, in which case the default memory 
management routines are rpc_ss_allocate() and rpc_ss_freeO. 

OSF DeE Application Development Guide 17-55 



Language Syntax and Usage 

17-"-56 

Setting the Client Memory Mechanism 

Use the rpc_ss_set_c1ient_alloc_freeO routine to establish the routines 
used in allocating and freeing memory. 

The syntax of the routine is as follows: 

void rpc_ss_set_client_alloc_free ( 
idl_ void _p _ t (*p _allocate) ( 

idl_size_t size), 
void (*p Jree) ( 

idl_ void y_ t ptr) 
); 

The p _allocate parameter points to a routine that has the same procedure 
declaration as the malloc() routine, and was used by the client stub when 
performing memory allocation. The p Jree parameter points to a routine 
that has the same procedure declaration as the free() routine, and was used 
by the client stub to free memory. 

Swapping Client Memory Mechanisms 

This routine exchanges the current client allocation and freeing mechanism 
for one supplied in the call. The primary purpose of this routine is to 
simplify the writing of modular routine libraries in which RPC calls are 
made. To preserve modularity, any dynamically allocated memory returned 
by a modular routine library must be allocated with a specific memory 
allocator. When dynamically allocated memory is returned by an RPC call 
that is then returned to the user of the routine library, use 
rpc_ss_swap_c1ient_alloc_freeO to make sure the desired memory 
allocator is used. Prior to returning, the modular routine library calls 
rpc_ss_set_client_alloc_freeO to restore the previous memory 
management mechanism. 

OSF DeE Application Development Guide 



The syntax of the routine is as follows: 

void rpc_ss_swap_client_alloc_free ( 
idl_void_p_t (*p_allocate) ( 

idl_size_t size), 
void (*p Jree) ( 

idl_ void _p _ t ptr), 
idl_ void_p_t (**p y _old_allocate) ( 

idl_size_t size), 
void (**py_oldJree) ( 

idl_ void _p _ t ptr) 
); 

Interface Definition Language 

The p _allocate parameter points to a routine that has the same procedure 
declaration as the malloc() routine, and was used by the client stub when 
performing memory allocation. The p Jree parameter points to a routine 
that has the same procedure declaration as the free() routine, and was used 
by the client stub to free memory. The p y _old_allocate parameter points 
to a pointer to a routine that has the same procedure declaration as the 
malloc() routine, and was used for memory allocation in the client stub. 
The p y _old Jree parameter points to a pointer to a routine that has the 
same procedure declaration as the free() routine, and was used for memory 
release in the client. 

17.14.7.8 Use of Thread Handles in Memory Management 

There are two situations where control of memory management requires the 
use of thread handles. The more common situation is when the manager 
thread spawns additional threads. The less common situation is when a 
program transitions from being a client to being a server, then reverts to 
being a client. 

Spawning Threads 

When a remote procedure call invokes the manager code, the manager code 
may wish to spawn additional threads to complete the task for which it was 
called. To spawn additional threads that are able to perform memory 
management, the manager code must first call the 
rpc_ss_get_thread_handleO routine to get its thread handle and then pass 

OSF DeE Application Development Guide 17-57 



Language Syntax and Usage 

17-58 

that thread handle to each spawned thread. Each spawned thread that uses 
the rpc_ss_allocateO and rpc_ss_freeO routines for memory management 
first calls the rpc_ss_set_thread_handleO routine by using the handle 
obtained by the original manager thread. 

These routine calls allow the manager and its spawned threads to share a 
common memory management environment. This common environment 
enables memory allocated by the spawned threads to be used in returned 
parameters, and causes all allocations in the common memory management 
environment to be released when the manager thread returns to the server 
stub. 

The main manager thread must not return control to the server stub before 
all the threads it spawned complete execution; otherwise, unpredictable 
results may occur. 

Transitioning from Client to Server to Client 

Immediately before the program changes from a client to a server, it must 
obtain a handle on its environment as a client by calling 
rpc_ss_get_thread_handleO. When it reverts from a server to a client, it 
must reestablish the client environment by calling the 
rpc_ss_set_thread_handleO routine, supplying the previously obtained 
handle as a parameter. 

Syntax for Thread Routines 

The syntax for the rpc_ss_get_thread_handleO routine is as follows: 

rpc _ ss _thread_handle _ t rpc _ ss _get_thread _ handle( void); 

The syntax for the rpc _ ss _set_thread _ handle( ) routine is as follows: 

void rpc_ss_set_thread_handle ( 
rpc _ ss _thread_handle _tid 
); 

The rpc_ss_thread_handle_tO value identifies the thread to the RPC stub 
support library. The id parameter indicates the thread handle passed to the 
spawned thread by its creator, or the thread handle returned by the previous 
call to rpc_ss_get_thread_handleO. 

OSF DeE Application Development Guide 



Interface Definition Language 

17.14.7.9 Rules for Using the Memory Management Routines 

You can use the rpc_ss_allocate() routine in the following environments: 

• The manager code for an operation that has a full pointer in its argument 
list 

• The manager code for an operation to which the enable_allocate ACF 
attribute is applied 

• Code that is not called from a server stub but that has called the 
rpc _ss _enable _ allocate() routine 

• A thread, spawned by code of any of the previous three types, that has 
made a call to the rpc_ss_set_thread_handle() routine using a thread 
handle obtained by this code 

17.14.7.10 Examples Using Pointers 

The examples in this subsection contain the following files, listed here with 
the function of each file: 

Example Function 
STRING_ TREE.lDL Defines data types and interfaces 
CLlENT.C The user of the interface 
MANAGER.C The server code that implements the procedure 
SERVER.C Declares the server; enables the client code to 

find the interface it needs 
STRING_ TREE.OUTPUT Shows the output 

The STRING _ TREE.IDL Example 

[uuid(0144D600-2D28-11C9-A812-08002BOECEF1), version(O)] 

interface string_tree 

/* 

* Maximum length of a string in the tree 

*/ 

canst long int st_c_name_len = 32; 

OSF DeE Application Development Guide 17-59 



Language Syntax and Usage 

17-60 

/* 

* Definition of a node in the tree. 

*/ 

typedef struct node 

[string] char name[O .. st_c_name_len]; 

[ptr] struct node *left; 

[ptr] struct node *right; 

st_node_t; 

/* 

* Operation that prunes the left subtree of the specified 

* tree and returns it as the value. 

*/ 

st_node_t *st-prune_left ( 

[in, out] st_node_t *tree /* root of tree by ref */ 

) ; 

The CLIENT.C Example 

#include <stdio.h> 

#include "string_tree.h" 

#include <stdlib.h> 

/* 

** Routine to print a depiction of the tree 

*/ 

void st-print_tree (tree, indent) 

st_node_t *tree; 

int indent; 

int i; 

if (tree == NULL) return; 

for (i = 0; i < indent; i++) printf{" "); 

printf ("%s\n", tree->name); 

st-print_tree{tree->left, indent + 1); 

st-print_tree{tree->right, indent + 1); 

OSF DeE Application Development Guide 



Interface Definition Language 

/* 

** Create a tree with a few nodes 

*/ 

st_node_t *st_make_tree() 

st_node_t *root = (st_node_t *)malloc(sizeof(st_node_t)); 

strcpy(root->name,"Root Node"); 

/* left subtree node */ 

root->left = (st_node_t *)malloc(sizeof(st_node_t)); 

strcpy(root->left->name, "Left subtree"); 

/* left subtree children */ 

root->left->right = NULL; 

root->left->left = (st_node_t *)malloc(sizeof(st_node_t)); 

strcpy(root->left->left->name, "Child of left subtree"); 

root->left->left->left = NULL; 

root->left->left->right = NULL; 

/* right subtree node */ 

root->right = (st_node_t *)malloc(sizeof(st_node_t)); 

strcpy(root->right->name, "Right subtree"); 

root->right->left = NULL; 

root->right->right = NULL; 

return root; 

main( ) 

st_node_t *tree; 

st_node_t * subtree; 

/* setup and print original tree */ 

tree = st_make_tree(); 

printf ("Original Tree: \n") ; 

st-print_tree(tree, 1); 

OSF DeE Application Development Guide 17-61 



Language Syntax and Usage 

/* call the prune routine */ 

subtree = st-prune_Ieft (tree); 

/* print the resulting trees */ 

print f ( "\nPruned Tree: \n II ) ; 

st-print_tree(tree, 1); 

print f ( "\nPruned subtree: \n" ) ; 

st-print_tree(subtree, 1); 

The MANAGER.C Example 

#include <stdio.h> 

#include "string_tree.h" 

/* 

** Prune the left subtree of the specified tree and return 

** it as the function value. 

*/ 

st_node_t *st-prune_Ieft (tree) 

/* [in,out] */ st_node_t *tree; 

st_node_t *left_sub_tree = tree->left; 

tree->left = (st_node_t *)NULL; 

return left_sub_tree; 

The SERVER.C Example 

#include <stdio.h> 

#include "string_tree.h" /* header created by idl compiler */ 

#define check_error(s, rnsg) if(s != rpc_s_ok) \ 

{fprintf (stderr, "%s", rnsg); exit (1) ;} 

main () 

unsigned32 status; /* error status (nbase.h) */ 

17-62 OSF DeE Application Development Guide 



Interface Definition Language 

rpc_binding_vector-p_t binding_vector; /* set of binding handles (rpc.h) */ 

rpc_server_register_if( /* register interface with RPC runtime */ 

string_tree_vO_O_s_ifspec, 

NULL, 

/* interface specification (string_tree.h) */ 

NULL, 

&status /* error status */ 

) ; 

check_error (status, "Can't register interface\n"); 

rpc_server_use_all-protseqs( /* establish protocol sequences */ 

rpc_c-protse~max_calls_default, /* concurrent calls server takes (rpc.h) */ 

&status 

) ; 

check_error (status, "Can't establish protocol sequences\n"); 

rpc_server_in~bindings( 

&binding_vector, 

&status 

/* get set of this server's binding handles */ 

) ; 

check_error (status, "Can't get binding handles\n"); 

rpc_ep_register( /* register addresses in endpoint map database */ 

string_tree_vO_O_s_ifspec, /* interface specification (string_tree. h) */ 

binding_vector, /* the set of binding handles */ 

NULL, 

&status 

) ; 

check_error (status, "Can't add address to the endpoint database\n"); 

rpc_ns_binding_export( 

rpc_c_ns_syntax_dce, 

/* 

/* 

/* 

establish namespace entry */ 

syntax of the entry name (rpc.h) 

entry name in directory service 

*/ 

*/ n string_tree II , 

&string_tree_vO_O_s_ifspec, 

binding_vector, 

/* interface specification (string_tree. h) */ 

/* the set of binding handles */ 

NULL, 

&status 

) ; 

check_error (status, "Can't export to directory service\n"); 

OSF DeE Application Development Guide 17-63 



Language Syntax and Usage 

rpc_binding_vector_free( 

&binding_vector, 

status 

) ; 

/* free set of binding handles */ 

check_error (status, "Can't free binding handles and vector\n"); 

rpc_server_Iisten( /* listen for remote calls */ 

); 

rpc_c_Iisten_rnax_calls_default, /* concurrent calls server executes (rpc.h) */ 

&status 

check_error (status, "rpC listen failed\n"); 

The STRING_TREE. OUTPUT Example 

Original Tree: 

Root Node 

Left subtree 

Child of left subtree 

Right subtree 

Pruned Tree: 

Root Node 

Right subtree 

Pruned subtree: 

Left subtree 

Child of left subtree 

17.14.8 Customized Handles 

17-64 

The handle attribute specifies that the type being declared is a user-defined, 
nonprimitive handle type, and is to be used in place of the predefined 
primitive handle type handle_t. The term "customized handle" is used to 
denote a nonprimitive handle. 

The following example declares a customized handle type filehandle _ t, a 
structure containing the textual representations of a host and a pathname: 

typedef [handle] struct { 

OSF DeE Application Development Guide 



char host[256]; 
char path[1024]; 
} filehandle_t; 

Interface Definition Language 

To build an application that uses customized handles, you must write 
custom binding and unbinding routines, and you must link those routines 
with your application client code. At runtime, each time the client calls an 
operation that uses a customized handle, the client stub calls the custom 
binding routine before it sends the remote procedure call request, and the 
client stub calls the custom unbinding routine after it receives a response. 

The following paragraphs specify C prototypes for customized binding and 
unbinding routines; in these prototypes, CUSTOM is the name of the 
customized handle type. ' 

The custom binding routine CUSTOM_bind generates a primitive binding 
handle from a customized handle and returns the primitive binding handle: 

handle_t CUSTOM_bind (CUSTOM c-handle) 

The custom unbinding routine CUSTOM_unbind takes two inputs, a 
customized handle and the primitive binding handle that was generated 
from it, and has no outputs: 

void CUSTOM_unbind ( 
CUSTOM c-handle, 
handle_t rpc-handle) 

A custom unbinding routine typically frees the primitive binding handle and 
any unneeded resources associated with the customized handle, but it is not 
required to do anything. 

Because the handle attribute can occur only in a type declaration, a 
customized handle must have a named type. Because customized handle 
type names are used to construct custom binding and unbinding routine 
names, these names cannot exceed 24 characters. 

A customized handle can be coded either in a parameter list as an explicit 
handle or in an interface header as an implicit handle. 

OSF DeE Application Development Guide 17-65 



Language Syntax and Usage 

17.14.9 Context Handles 

17-66 

Manager code often maintains state information for a client. A handle to 
this state information is passed to the client in an output parameter or as an 
operation result. The client passes the unchanged handle-to-the-state 
information as an input or input/output parameter of a subsequent manager 
operation that the client calls to manipulate that data structure. This 
handle-to-the-state information is called a "context handle." A context 
handle is implemented as an untyped pointer. 

The manager causes the untyped pointer to point to the state information it 
will need the next time the client asks the manager to manipulate the 
context. For the client, the context handle is an opaque pointer 
(idl_void_p_t). The client receives or supplies the context handle by means 
of the parameter list, but does not perform any transformations on it. 

The RPC runtime maintains the context handle, providing an association 
between the client and the address space running the manager and the state 
information within that address space. 

If a manager supports multiple interfaces, and a client obtains a context 
handle by performing an operation from one of these interfaces, the client 
can then supply the context handle to an operation from another of these 
interfaces. 

No client except the one that obtained a context handle may use that 
context handle. 

17.14.9.1 The context_handle Attribute 

Specify a context handle by either of the following methods: 

• Use the context_handle attribute on a parameter of type void *. 
• Use the context_handle attribute on a type that is defined as void *. 

For example, in the IDL file, you can define a context handle within a type 
declaration as follows: 

typedef [context_handle] void * my_context; 

OSF DeE Application Development Guide 



Interface Definition Language 

or within a parameter declaration as follows: 

[in, context_handle] void * my_context; 

The first operation on a context creates a context handle that the server 
procedure passes to the client. The client then passes the unmodified handle 
back to the server in a subsequent remote call. The called procedure 
interprets the context handle. For example, to specify a procedure that a 
client can use to obtain a context handle, you may define the following: 

typedef [context_handle] void * my_context; 
void opl( 

[in]handle_t h, 
[out] my_context * this_object); 

To specify a procedure that a client may call to make use of a previously 
obtained context handle, you can define the following: 

void op2([in] my_context this_object); 

To close a context, and to clean the context on the client side, you can 
define the following: 

[in, out, context_handle] void * my_context; 

The resources associated with a context handle are reclaimed when, and 
only when, the manager changes the value of the in,out context handle 
parameter from non-NULL to NULL. 

17.14.9.2 The Context Rundown Procedure 

Some uses of context handles may require you to write a context rundown 
procedure in the application code for the server. If communications between 
the client and server are broken while the server is maintaining context for 
the client, RPC invokes the context rundown procedure on the server to 
recover the resources represented by the context handle. If you declare a 
context handle as a named type, you must supply a rundown procedure for 
that type. 

OSF DeE Application Development Guide 17-67 



Language Syntax and Usage 

17-68 

When a context requires a context rundown procedure, you must define a 
named type that has the context_handle attribute. For each different 
context handle type, you must provide a context rundown procedure as part 
of the manager code. 

The format for the rundown procedure name is as follows: 

context_type _name _rundown 

A rundown procedure takes one parameter, the handle of the context to be 
run down, and delivers no result. For example, if you declare the following: 

typedef [context_handle] void * my_context; 

then the rundown procedure is as follows: 

17.14.9.3 Creating New Context 

When a client makes its first request to the manager to manipulate context, 
the manager creates context information and returns this information to the 
client through a parameter of the type context_handle. This parameter must 
be an output parameter or an input/output parameter whose value is NULL 
when the call is made. A context handle can also be a function result. 

17.14.9.4 Reclaiming Client Memory Resources for the Context 
Handle 

In the event that a communications error causes the context handle to be 
unusable, the resources that maintain the context handle must be reclaimed. 
Use the rpc _ ss _destroy _client _ context() routine in the client application 
to reclaim the client side resources and to set the context handle value to 
NULL. 

OSF DeE Application Development Guide 



Interface Definition Language 

The syntax of the routine is as follows: 

void rpc _ ss _destroy_client _ contexte 
void *p _ unusable _context_handle); 

17.14.9.5 Relationship of Context Handles and Binding 

For the client, the context handle specifies the state within a server, and also 
contains binding information. If an operation has an input context handle or 
input/output context handle that is not NULL, it is not necessary to supply 
any other binding information. A context handle that has only the in 
attribute cannot be NULL. If an operation has in,out context handle 
parameters but no in context handle parameters, at least one of the in,out 
context handle parameters cannot be NULL. However, if the only context 
handle parameters in an operation are output, they carry no binding 
information. In this case, you must use another method to bind the client to 
a server. 

If you specify multiple context handles in an operation, all active context 
handles must map to the same remote address space on the same server or 
the call fails. (A context handle is active while it represents context 
information that the server maintains for the client. It is inactive if no 
context has yet been created, or if the context is no longer in use.) 

17.14.9.6 Rules for Using Context Handles 

The following rules apply to using context handles: 

• A context handle can be a parameter or a function result. You cannot use 
context handles as an array element, as a structure or union member, or 
as the base type of a pipe. 

• A context handle cannot have the transmit_as or ptr attributes. 

• An input-only context handle cannot be NULL. 

• A context handle cannot be pointed to, except by a top-level reference 
pointer. 

OSF DeE Application Development Guide 17-69 



Language Syntax and Usage 

17-70 

17.14.9.7 Examples Using Context Handles 

/* 

The following examples show a sample IDL file that uses context handles 
and a sample context rundown procedure file. 

Example of an IDL File That Uses a Context Handle 

* Filename: context_handle.idl 
*/ 

[uuid(F38F5080-2D27-11C9-A96D-08002BOECEF1), 
pointer_default (ref) , version (1.0)] 

interface files 

/* File context handle type */ 
typedef [context_handle] void * file_handle_t; 
/* File specification type */ 
typedef [string] char * filespec_t; 
/* File read buffer type */ 
typedef [string] char buf_t[*]; 

/* 
* The file_open call requires that the client has located a 
* file server interface files and that an RPC handle that is 
* bound to that server be passed as the binding parameter h. 

* 
* Operation to OPEN a file; returns context handle for that file. 
*/ 

file_handle_t file_open 
( 

/* RPC handle bound to file server */ 
[in] handle_t h, 

/* File specification of file to open */ 
[in] filespec_t fs 

) ; 

/* 
* The file_read call is able to use the context handle obtained 
* from the file_open as the binding parameter, thus an RPC 
* handle is not necessary. 

* 

OSF DeE Application Development Guide 



Interface Definition Language 

* Operation to read from an opened file; returns true if not 
* end-of-file 
*/ 

boolean file_read 

/* Context handle of opened file */ 
[in] file_handle_t fh, 

/* Maximum number of characters to read */ 
[in] long buf_size, 

/* Actual number of characters of data read */ 
[out] long *data_size, 

/* Buffer for characters read */ 
[out, size_is (buf_size), length_is(*data_size)] buf_t buffer 

) ; 

/* Operation to close an opened file */ 
void file_close 

/* Valid file context handle goes [in]. On successful close, 
* null is returned. 
*/ 

[in, out] file_handle_t *fh 
) ; 

} 

Example of a Context Rundown Procedure 

/* 
* fh_rundown.c: A context rundown procedure. 
*/ 

#include <stdio.h> 
#include "context_handle.h" 

void file_handle_t_rundown 
( 

file_handle_t file_handle 

{ 

/* 

/* IDL-generated header file */ 

/* Active context handle 
* (open file handle) */ 

OSF DeE Application Development Guide 17-71 



Language Syntax and Usage 

* This procedure is called by the RPC runtime on the SERVER 
* side when communication is broken between the client and 
* server~ This gives the server the opportunity to reclaim 
* resources identified by the passed context handle. In 
* this case, the passed context handle identifies a file, 
* and simply closing the file cleans up the state maintained 
* by the context handle, that is "runs down" the context handle. 
* Note that the file_close manager operation is not used here; 
* perhaps it could be, but it is more efficient to use the 
* underlying fll~ system call to do the close. 

* 
* File handle is void*, it must be cast to FILE* 
*/ 

fclose((FILE *)file_handle); 

17.15 Associating a Data Type with a Transmitted 
Type 

17-72 

The transmit_as attribute associates a "transmitted type" that stubs pass 
over the network with a "presented type" that clients and servers 
manipulate. The specified transmitted type must be a named type defined 
previously in another type declaration. 

There are two primary uses for this attribute: 

• To pass complex data types for which the IDL compiler cannot generate 
marshalling and unmarshalling code . 

• To pass data more efficiently. An application can provide routines to 
convert a data type between a sparse representation (presented to the 
client and server programs) and a compact one (transmitted over the 
network). 

To build an app~ication that uses presented and transmitted types, you must 
write routines to perform conversions between the types and to manage 
storage for the types, and you must link those routines with your application 
code. At runtime, the client and server stubs call these routines before 
sending and after receiving data of these types. 

OSF DeE Application Development Guide 



Interface Definition Language 

The following paragraphs specify C prototypes for generic binding and 
unbinding routines; in these prototypes, PRES is the name of the presented 
type and TRANS is the name of the transmitted type. 

The PRES_to _ xmit() routine allocates storage for the transmitted type and 
converts from the presented type to the transmitted type: 

void PRES_to_xmit (PRES *presented, TRANS **transmitted) 

The PRES_from_xmitO routine converts from the transmitted type to the 
presented type and allocates any storage referenced by pointers in the 
presented type: 

void PRES_from_xmit (TRANS *transmitted, PRES *presented) 

The PRES_freeJnstO routine frees any storage referenced by pointers in 
the presented type by PRES_from_xmitO: 

void PRES_free_inst (PRES *presented) 

Suppose that the transmit_as attribute appears either on the type of a 
parameter or on a component of a parameter and that the parameter has the 
out or in,out attribute. Then, the PRES_free_instO routine will be called 
automatically for the data item that has the transmit_as attribute. 

Suppose that the transmit_as attribute appears on the type of a parameter 
and that the parameter has only the in attribute. Then, the 
PRES_free JnstO routine will be called automatically. 

Finally, suppose that the transmit_as attribute appears on a component of a 
parameter and that the parameter has only the in attribute. Then, the 
PRES_freeJnstO routine will not be called automatically for the 
component; the manager application code must release any resources that 
the component uses, possibly by explicitly calling the PRES_freeJnstO 
routine. 

The PRES_free _ xmit( ) routine frees any storage that has been allocated for 
the transmitted type by PRES_to_xmitO: 

void PRES_free_xmit (TRANS *transmitted) 

OSF DeE Application Development Guide 17-73 



Language Syntax and Usage 

17-74 

The following types cannot have the transmit_as attribute: 

• A pipe type 

• A pipe element type 

• A type with the context_handle attribute 

• A type of which any instance has the context_handle attribute 

• A conform ant array type 

• A varying array type 

• A structure type containing a conform ant array 

• An array type of which any instance is varying 

A transmitted type specified by the transmit_as attribute must be either a 
base type, a predefined type, or a named type defined via typedef. A 
transmitted type cannot be a conformant array type or a conformant 
structure type if any instance of that type is an in parameter or an in, out 
parameter. 

The following is an example of transmit as. Assuming the following 
declarations: 

typedef 
struct tree_node_t { 

data_t data; 
struct tree_node_t * left; 
struct tree_node_t * right; 

tree_node_t; 

typedef 
[transrnit_as(tree_xmit_t)] tree_node_t *tree_t; 

the application code must include routines that match the prototypes: 

void tree_t_to_xrnit ( tree_t *, (tree_xmit_t **) ); 
void tree_t_froffi_xmit ( (tree_xmit_t *), (tree_t *) ); 
void tree_t_free_inst ( tree_t *); 
void tree_t_frce_xmit ( (tree_xmit_t *) ); 

OSF DeE Application Development Guide 



Interface Definition Language 

17.16 Migration Attributes 

IDL provides four migration attributes that are compatible for use with 
existing interfaces written in NCS Version 1 of the Network Interface 
Definition Language (NIDL). The migration attributes are not intended for 
use in developing new applications. 

Note: NCS Version 1 compatibility is provided only for transitional 
purposes and will be available for only a limited number of 
DCE update releases. For new applications, use DCE RPC. 

17.16.1 The vI_array Attribute 

You can specify the vI_array attribute on either of the following: 

• A type definition 

• A parameter or field definition 

A vI_array can only have the varying or conformant varying property on 
its first dimension. The highest data limit that can be specified on this 
dimension is 65,535. The following table shows the array types and the 
array attributes that can be used with the vI_array attribute. Unlike a 
standard array, the vI_array attribute cannot be applied to a conformant
only array. 

To describe array as: Use v1_array with: 
Varying last_is 

length_is 

Conformant varying max_is with last_is 
size_is with length_is 

NCS Version 1 does not support conformant-only arrays. 

Examples Using the vI_array Attribute 

A varying array: 

[vl_array, last_is (last)] char input_buff [80]; 

OSF DeE Application Development Guide 17-75 



Language Syntax and Usage 

Two examples of a conform ant varying array: 

[vI_array, max_is (biggest), last_is (end)] char data_return[]; 
[vI_array, length_is (longest), size_is (all)] char data_return[]; 

17.16.2 The vI enum Attribute 

You can use the vI_enum attribute only on an enumeration. The vI enum 
attribute specifies that the network representation of the enumeration is an 
unsigned long integer rather than an unsigned short integer. This is 
necessary to operate with an interface written in the NCS Version 1 NIDL C 
language syntax using the long enum data type. 

17.16.3 The vI string Attribute 

The vI_string attribute applies only to a Version 1.0 array (vI_array) of 
elements whose type resolves to the char type. When you use the 
vI_string attribute on a multidimensional array, it applies to the last 
dimension of the array. 

An array that has the vI_string attribute must contain a string of characters 
terminated by a 0 (zero) byte. The bounds for an array containing the 
vI_string attribute specify the maximum number of characters in the array, 
including the NULL terminator. 

The string and vI_string attributes cannot be used together. 

17.16.4 The vI struct Attribute 

17-76 

The vI_struct attribute applies only to a structure. It specifies an alternate 
data alignment for the network representation of the structure. 

OSF DeE Application Development Guide 



Chapter 18 

Attribute Configuration Language 

The Attribute Configuration Language is used for writing an Attribute 
Configuration File (ACF). Use the attributes in the ACF to modify the 
interaction between the application code and stubs without changing the 
IDL file. 

18.1 Syntax Notation Conventions 

The syntax of the Attribute Configuration Language is similar to the syntax 
of the Interface Definition Language (IDL). For syntax information, see the 
syntax notation conventions for the IDL in Chapter 17. 

Use of Brackets 

The use of [ ] (brackets) can be either a required part of the syntax or can 
denote that a string is optional to the syntax. To differentiate this, brackets 
that are required are shown as [ ] (regular type brackets). Brackets that 
contain optional strings are shown as [ 1 (italicized brackets). 

OSF DeE Application Development Guide 18-1 



Language Syntax and Usage 

Use of the Vertical Bar 

A I (vertical bar) denotes a logical OR. 

18.2 Attribute Configuration File 

The ACF changes the way the IDL compiler interprets the interface 
definition, written in the IDL. The IDL file defines a means of interaction 
between a client and a server. For new server implementations to be 
compatible across the network with existing servers, the interaction between 
the client and server must not be modified. If the interaction between an 
application and a specific stub needs to change, you must provide an ACF 
when you build this stub. 

The ACF affects only the interaction between the generated stub code and 
the local application code; it has no effect on the interaction between local 
and remote stubs. Therefore, client and server writers are likely to have 
different attribute configuration files that they can modify as desired. 

18.2.1 Naming the ACF 

To name the ACF, replace the extension of the IDL file (.idl) with the 
extension of the ACF (.act). For example: 

The ACF associated with my _idl Jtlename .idl is my _idl Jtlename .acf. 

18.2.2 Compiling the ACF 

18-2 

When you issue the idl command, naming the IDL file to compile, the 
compiler searches for a corresponding ACF and compiles it along with the 
IDL file. The compiler also searches for any ACF (there can be more than 
one) associated with any imported IDL files. The stubs that the compiler 
creates contain the appropriate modifications. 

OSF DeE Application Development Guide 



Attribute Configuration Language 

18.2.3 ACF Features 

The following list contains the ACF attributes and the features associated 
with the attributes: 

• include statement: Includes header files in the generated code 

• auto_handle, explicit_handle, implicit_handle: Controls binding 

• comm _status , fault_status: Indicates parameters to hold status 
conditions occurring in the call 

• code, nocode: Controls which operations of the IDL file are compiled 

• in_line, out_of_line: Controls the marshalling of data 

• represent_as: Controls conversion between local and network data 
types 

• enable_allocate: Forces the initialization of the memory management 
routines 

• heap: Specifies objects to be allocated from heap memory 

18.3 Structure 

The structure of the attribute configuration file is as follows: 

interface _header 
{ 

inteiface _body 
} 

Follow these structural rules when writing an attribute configuration file: 

• The basename of the ACF must be the same as the basename of the IDL 
file although the extensions are different. 

• The interface name in the ACF must be the same as the interface name 
in the corresponding IDL file. 

OSF DeE Application Development Guide 18-3 



Language Syntax and Usage 

• With a few exceptions, any type, parameter, or operation naines in the 
ACF must be declared in the IDL file, or defined in files included by use 
of the include statement, as the same class of name. 

• Except for additional status parameters, any parameter name that occurs 
within an operation in the ACF must also occur within that operation in 
the IDL file. 

The structure of the ACF in extended Backus-Naur Form (BNF) notation is 
listed in the Supplemental Information part, Language Grammar Synopsis. 

18.3.1 ACF Interface Header 

18-4 

The ACF interface header has the following structure: 

[[acf_ attribute _list]] interface idl_inteiface _name 

The acf_ attribute _list is optional. The interface header attributes can 
include one or more of the following attributes, entered within brackets. If 
you use more than one attribute, separate them with commas and include the 
list within a single pair of brackets. (Note that some of these attributes can 
be used in the ACF body also. See Section 18.3.2 for more information.) 

• code 

• nocode 

• in line 

• out of line 

• implicit_ handle(handle _type handle_name) 

• auto handle 

• explicit_handle 

The following example shows how to use more than one attribute in the 
ACF interface header: 

[nocode, auto_handle] interface phone_direct 
{ 

} 

OSF DeE Application Development Guide 



Attribute Configuration Language 

18.3.2 ACF Interface Body 

The ACF interface body can contain the elements in the following list. Note 
that some of the attributes listed here can also be used in the ACF header, as 
described in Section 18.3.1. If you use more than one attribute, separate 
them with commas and include the list within a single pair of brackets. 

• An include statement: 

include "filename" [,"filename"} ... ; 

Note: Omit the extension of the filename in an include 
statement; the compiler appends the correct extension for 
the language you are using. For the C language, the 
compiler appends the .h extension. 

• A declared type: 

typedef [[represent_as (local_type_name] I [in_line] I 
[out_of_line] I [heap]] type_name; 

• An operation: 

[[explicit_handle] I [comm_status] I [fault_status] I 
[code] I [no code] I [enable_allocate]] operation_name ({parameter_list]); 

A parameter _list is a list of zero or more parameter names as they 
appear in the corresponding operation definition of the IDL file. You do 
not need to use all the parameter names that occur in the IDL operation 
definition; use only those to which you attach an ACF attribute. If you 
use more than one parameter name, the names must be separated by 
commas. 

• A parameter within an operation: 

[[comm_status] I [fault_status] I [heap]] parameter_name 

OSF DeE Application Development Guide 18-5 



Language Syntax and Usage 

18.3.3 The include Statement 

This statement specifies any additional header files you want included in the 
generated stub code. You can specify more than one header file. Do not 
specify the directory name or file extension when you use the include 
statement. The compiler appends the correct extension for the language you 
are using. For C, the compiler appends the .h extension. If you want to 
specify the directory name(s), use the -cc_opt or -I IDL compiler command 
arguments. 

Use the include statement whenever you use the represent_as or 
implicit_handle attributes and the specified type is not defined or imported 
in the IDL file. 

The include statement has the following syntax. (An example is shown 
with the represent_as example in Section 18.3.10 later in this chapter.) 

include "filename"; 

18.3.4 The auto handle Attribute 

18-6 

This attribute causes the client stub and RPC runtime to manage the binding 
to the server by using a directory service. Any operation in the interface 
that has no parameter containing binding information is bound 
automatically to a server so the client does not have to specify a binding to 
a server. 

When an operation is automatically bound, the client does not have to 
specify the server on which an operation executes. If you make a call on an 
operation without explicit binding information in an interface for which you 
have specified auto_handle, and no client/server binding currently exists, 
the RPC runtime system selects an available server and establishes a 
binding. This binding is used for this call and subsequent calls to all 
operations in the interface that do not include explicit binding information, 
while the server is still available. 

Server termination, network failure, or other problems can cause a break in 
binding. If this occurs during the execution of an automatically bound 
operation, RPC issues the call to another server, provided one is available, 
and the operation is idempotent or the RPC runtime system determines that 

OSF DeE Application Development Guide 



Attribute Configuration Language 

the call did not start to execute on the server. Similarly, if a 
communications or server failure occurs between calls, RPC binds to 
another server for the next call, if a server is available. 

If the RPC runtime system is unable to find a server to execute the 
operation, it reports this by returning a comm _status value of 
rpc_s_no_more_entries, or by raIsmg the exception 
rpc_x_no_more_entries if the operation does not use comm_status error 
reporting. Note that if a binding breaks, the RPC runtime starts its search at 
the directory service entry following the one where the binding broke. This 
means that even if a server earlier in the list becomes available, it is not 
treated as a candidate for binding. After the RPC runtime tries each server 
in the list, it reinitializes the list of server candididates and tries again. If the 
second attempt is unsuccessful, the RPC runtime reports the status 
condition, rpc_s_no_more_entries. The next call on an operation in the 
interface starts from the top of the list when looking for a server to bind to. 

The auto_handle attribute can occur only once in the ACF file. 

If an interface uses the auto_handle attribute, the presence of a binding 
handle or context handle parameter in an operation overrides auto_handle 
for that operation. 

The auto_handle attribute declaration has the following syntax. (See the 
example at the end of this section.) 

For an interface: 

[auto_handle] interface intelface _name 

You cannot use auto_handle if you use implicit_handle or if you use 
explicity _handle in the interface header. 

Example Using the auto_handle Attribute 

ACF 

[auto_handle] interface math_l 
{ 

} 

OSF DeE Application Development Guide 18-7 



Language Syntax and Usage 

IDL File 

[uuid(B3C86900-2D27-11C9-AB09-08002BOECEF1)] 
interface math_l 

/* This operation has no handle parameter, 
* therefore, uses automatic binding. 
*/ 

long add([in] long a, 
[in] long b) ; 

/* 
* This operation has an explicit handle parameter, h, 
* that overrides the [auto_handle] ACF attribute. 
* Explicit handles also override [implicit_handle]. 
*/ 

long subtract ([in] handle_t h, 
[in] long a, 
[in] long b) ; 

18.3.5 The explicit_handle Attribute 

18-8 

This attribute allows the application program to manage the binding to the 
server. The explicit_handle attribute indicates that a binding handle is 
passed to the runtime as an operation parameter. 

The explicit_handle attribute has the following syntax. (See the example at 
the end of this section.) 

For an interface: 

[explicit_handle] interface inteiface _name 

For an operation: 

[ explicit_handle] operation_name ([parameter _list]); 

OSF DeE Application Development Guide 



Attribute ConfIguration Language 

When used as an ACF interface attribute, the explicit_handle attribute 
applies to all operations in the IDL file. When used as an ACF operation 
attribute, this attribute applies to only the operation you specify. 

If you use the explicit_handle attribute as an ACF interface attribute, you 
must not use the auto_handle or implicit_handle attributes. 

U sing the explicit_handle attribute on an interface or operation has no 
effect on operations in IDL that have explicit binding information in their 
parameter lists. 

Example Using the explicit_handle Attribute 

ACF 

[explicit_handle] interface math_2 
{ 

/* This causes the operation, as called b¥ the client, to have the 
* parameter handle_t IDL_handle, at the start of the parameter 
* list, before the parameters specified here in the IDL file. 
*/ 

IDL File 

[uuid(41CE5B80-0BA7-11CA-87BA-08002Bll1685)] 
interface math_2 

long add([in] long a, 
[in] long b) ; 

OSF DeE Application Development Guide 18-9 



Language Syntax and Usage 

18.3.6 The implicit_handle Attribute 

18-10 

This attribute allows the application program to manage the binding to the 
server. You specify the data type and name of the handle variable as part of 
the implicit_handle attribute. The implicit_handle attribute informs the 
compiler of the name and type of the global variable through which the 
binding handle is implicitly passed to the client stub. A variable of this type 
and name is defined in the client stub code and the application initializes 
the variable before making a call to this interface. 

The implicit_handle attribute declaration has the following syntax. (See 
the example at the end of this section.) 

For an interface: 

[implicit_handle (handle_type handle_name)] interface inteiface_name 

If an interface uses the implicit_handle attribute, the presence of a binding 
handle or in or in,out context handle parameter in an operation overrides 
the implicit handle for that operation. 

The implicit_handle attribute can occur only once in the ACF. 

You cannot use the implicit_handle attribute if you are using the 
auto _handle attribute or the explicit _handle attribute as an interface 
attribute. 

If the type in the implicit_handle clause is not handle_t, then it is treated 
as if it has the handle attribute. For more information, refer to the 
description of the handle attribute in Chapter 17 of this guide. 

The ACF in the following example modifies the math _ 3 interface to use an 
implicit handle. 

Example Using the implicit_handle Attribute 

ACF 

[implicit_handle(user_handle_t global_handle)] interface math_3 
{ 

/* 
* Since user_handle_t is not a type defined in the IDL, you 
* must specify an include file that contains the definition 
*/ 

OSF DeE Application Development Guide 



Attribute Configuration Language 

include "user_handle_t_def"i 
} 

IDL File 

[uuid(A01D0280-2D27-11C9-9FD3-08002BOECEF1)] 
interface math_3 

long add([in] long a, 
[in] long b) i 

18.3.7 The comm status and fault status Attributes 

The comm_status and fault_status attributes cause the status code of any 
communications failure or server runtime failure that occurs in a remote 
procedure call to be stored in a parameter or returned as an operation result, 
instead of being raised to the client user code as an exception. 

The comm_status attribute causes communications failures to be reported 
through a specified parameter. The fault_status attribute causes server 
failures to be reported through a specified parameter. Applying both 
attributes causes all remote and communications failures to be reported 
through status. Any local exception caused by an error during marshalling, 
correctness checking performed by the client stubs, or an error in 
application routines continues to be returned as an exception. 

The comm_status and fault_status attributes have the following syntax. 
(See the examples at the end of this section.) 

For an operation: 

[comm _status I fault_status] operation_name ({parameter_list]); 

For a parameter: 

operation_name ([comm_status I fault_status] parameter_name); 

OSF DeE Application Development Guide 18-11 



Language Syntax and Usage 

18-12 

Note: You can apply one of each attribute to the same operation 
and/or parameter at the same time. Separate the attributes 
with a comma. (See the example at the end of this section.) 

If the status attribute occurs on the operation, the returned value result must 
be defined as type error _status _tin the IDL file. If an error occurs during 
execution of the operation, the error code is returned as the operation result. 
If the operation completes successfully, the value returned to the client is 
the value returned by the manager code. 

Note: The error_status_t type is equivalent to unsigned32, which 
is the data type used by the RPC runtime for an error status. 
The status code error _status_ok is equivalent to rpc _ s _ok, 
which is the RPC runtime success status code. 

If the status attribute occurs on a parameter, the parameter name does not 
have to be defined in the IDL file, although it can be. Note the following: 

• If the parameter name is one used in the IDL file, then that parameter 
must be an output parameter of type error_status_t. If the operation 
completes successfully, the value of this parameter is the value returned 
by the manager code. 

• If the parameter name is different from any name defined within the 
operation definition in the IDL file, then the IDL compiler creates an 
extra output parameter of type error _status_t in your application code 
after the last parameter defined in the IDL file. In a successfully 
completed remote call, the extra parameter has the value 
error status ok. - -

In either case, if an error occurs during the remote call, the error code is 
returned to the parameter that has the status attribute. (See the aSF DeE 
Application Development Reference for a list of status codes.) 

If you define both additional comm_status and additional fault_status 
parameters, they are automatically added at the end of the procedure 
declaration in the order of specification in the ACF. 

In the following example, there are three possible uses of the status 
attributes: as the operation result of add, as a parameter of subtract as 
defined in the IDL file, and as an additional parameter of multiply. 

OSF DeE Application Development Guide 



Attribute Configuration Language 

Example Using the comm_status and fault_status Attributes 

ACF 

[auto_handle] interface math_4 
{ 

[cornm_status,fault_status] add(); 

subtract ([cornm_status,fault_status] s); 

/* 
* 'sts' is not a parameter in the interface definition of 
* operation 'multiply'. This specifies that the application 
* wants a trailing parameter 'sts' that is of type 
* error_status_t, after the parameters a and b. 
*/ 

mUltiply ([cornm_status] c_sts, [fault_status] f_sts); 
} 

IDL File 

[uuid(91365000-2D28-11C9-AD5A-08002BOECEF1)] 
interface math_4 

error_status_t add ([in] double a, 
[in] double b, 
[out] double *c); 

double subtract ([in] double a, 
[in] double b, 
[out] error_status_t *s); 

double multiply ([in] double a, 
[in] double b); 

OSF DeE Application Development Guide 18-13 



Language Syntax and Usage 

18.3.8 The code and nocode Attributes 

18-14 

The code and nocode attributes allow you to control which operations in 
the IDL file have client stub code generated for them by the compiler. 
These attributes affect only the generation of a client stub; they have no 
effect when generating the server stub. 

The code and nocode attributes have the following syntax. (See the 
example at the end of this section.) 

For an interface: 

[code I nocode] interface inteiface _name 

For an operation: 

[code I nocode ] operation_name ((parameter_list)); 

When you specify nocode as an attribute on an ACF interface, stub code is 
not generated for the operations in the corresponding IDL interface unless 
you also specify code for the particular operation(s) for which you want 
stub code generated. Similarly, when you specify code (the default) as an 
attribute on an ACF interface, stub code is generated for the operations in 
the corresponding IDL interface unless you also specify nocode for the 
particular operations for which you do not want stub code generated. 

Do not use nocode on any of the operations if the compiler is generating 
only server stub code because it has no effect. Server stubs must always 
contain generated code for all operations. 

In the following example, the IDL compiler generates client stub code for 
the operations open, read, and close, but not for the operation write. An 
alternative method for specifying the same behavior is to use [nocode] 
write( ) in the ACF. 

Example Using the code and no_code Attributes 

ACF 

[nocode, auto_handle] interface open_read_close 
{ 

[code] open ( ) ; 

OSF DeE Application Development Guide 



Attribute Configuration Language 

[code] read ( ) ; 
[code] close ( ) ; 
} 

IDL File 

[uuid(2166D580-0C69-11CA-811D-08002Bll1685)] 
interface open_read_close 
{ 

void open ( ... ); 
void read ( ... ); 
void write ( ... ); 
void close ( ... ); 
} 

18.3.9 The in line and out of line Attributes 

The in_line and out of line attributes control whether marshalling and 
unmarshalling are performed by inline code or by out-of-line code through 
a- subroutine call. By default, in_line code controls marshalling and 
unmarshalling. You can apply either attribute to an interface or a type. 
Both attributes apply only to nonscalar types; they do not affect the 
marshalling of scalars. The out_of_line attribute reduces stub size at the 
expense of reducing execution speed. Note that the procedures necessary 
for marshalling out_of _line types are generated into an auxiliary module. It 
is necessary to build the client and/or server auxiliary file into your 
application, along with the client and/or server stub module. 

The in_line and out_of Jine attributes have the following syntax. (See the 
examples at the end of this section.) 

For an interface: 

For a type: 

typedef [in_line I out_of_line] type_name; 

OSF DeE Application Development Guide 18-15 



Language Syntax and Usage 

18-16 

In the following example, the compiler generates inline marshalling code 
for data type my _t, but out-of-line marshalling code (subroutines) for any 
other nonscalar types defined in the IDL file. 

Example Using the in_line Attribute 

ACF 

[out_of_line] interface move_fields 
{ 

typedef [in_line] my_t; 
} 

IDL File 

[uuid (2F74E680-2D26-11C9-880E-08002BOECEF1)] 
interface move_fields 

typedef struct 
{ 

long my_val; 
float my_float; 
double my_double; 
} my_t; 

In the following example, code space is minimized by having dir _ t 
marshalled through a procedure call rather than duplicating the marshalling 
code in the stub routines for add, lookup, and delete. 

Example Using the out_of_line Attribute 

ACF 

[auto_handle] interface phonedir 
{ 

/* 
* The interface uses dir_t in several places. Save code 
* space that is generated for the stub by making it 
* [out_of_line]. 

OSF DeE Application Development Guide 



Attribute Configuration Language 

*/ 
typedef [out_of_line] dir_t; 
} 

IDL File 

[uuid(06A12100-2D26-11C9-AA24-08002BOECEFl)] 
interface phonedir 
{ 

typedef struct 
{ 

short int 
long int 
char 
char 
char 
} dir_t; 

area_code; 
phone_nurn; 
last_name[20]i 
first_name [15] i 

city[20] i 

void add ([in] dir_t *info); 
void lookup ([in] char city[20] , 

[in] char last_name [20] , 
[in] char first_name [15] , 
[out] dir_t *info)i 

void delete ([in] dir_t *info); 
} 

18.3.10 The represent_as Attribute 

This attribute associates a local data type that your application code uses 
with a data type defined in the IDL file. Use of the represent_as attribute 
means that during marshalling and unmarshalling, conversions occur 
between the data type used by the application code, and the data type 
specified in the IDL. 

The represent_as attribute has the following syntax. (See the example at 
the end of this section.) 

OSF DeE Application Development Guide 18-17 



Language Syntax and Usage 

18-18 

The local_type _name is the local data type that the application code uses. 
You can define it in the IDL file or in an application header file. If you do 
not define it in the IDL file, use the include statement in the ACF to make 
its definition available to the stubs. 

The net_type _ name is the data type that is defined in the IDL file. 

If you use the represent_as attribute, you must write routines that perform 
the conversions between the local and network types, and routines that 
release the memory storage used to hold the converted data. The conversion 
routines are part of your application code. 

The suffix for the routine names, the function of each, and where they are 
used (client or server) appear in the following list: 

• _from Jocal(): Allocates storage instance of the network type and 
converts from the local type to the network type (used for client and 
server). 

• _to Jocal(): Converts from the network type to the local type (used for 
client and server). 

• _freeJnstO: Frees storage instance used for the network type (used by 
client and server). 

• _free_locaIO: Frees storage used by the server for the local type (used 
in server). This routine frees any object pointed to by its argument, but 
does not attempt to free the argument itself. 

Suppose that the represent_as attribute is applied to either the type of a 
parameter or to a component of a parameter and that the parameter has the 
out or in,out attribute. Then, the _free_locaIO routine will be called 
automatically for the data item that has the type to which the represent_as 
attribute was applied. 

Suppose that the represent_as attribute is applied to the type of a 
parameter and that the parameter has only the in attribute. Then, the 
_freeJocalO routine will be called automatically. 

Finally, suppose that the represent_as attribute is applied to the type of a 
component of a parameter and that the parameter has only the in attribute. 
Then, the _free _Iocal() routine will not be called automatically for the 
component; the manager application code must release any resources that 
the component uses, possibly by explicitly calling the _free _Iocal() 
routine. 

OSF DeE Application Development Guide 



Attribute Configuration Language 

Append the suffix of the routine name to the net_type _name. The syntax for 
these routines is as follows: 

void net_type _name _from_local ( 
(local_type _ name *), 
(net_type_name **)) 

void net_type _name_to _local 
(net_type _name *), 
(local_ type _name *)) 

Example Using the represent_as Attribute 

ACF 

[auto_handle] interface phonedir 
{ 

/* 
* You must specify an included file that contains the 
* definition of illY_dir_t. 
*/ 

include "user_types"; 

/* 

* The application code wants to pass data type illY_dir_t 
* rather than dir_t. The [represent_as] clause allows 
* this, and you must supply routines to convert dir_t 
* to/from illY_dir_t. 
*/ 

typedef [represent_as(illY_dir_t)] dir_t; 
} 

OSF DeE Application Development Guide 18-19 



Language Syntax and Usage 

IDL File 

[uuid(06A12100-2D26-11C9-AA24-08002BOECEF1)] 
interface phonedir 
{ 

typedef struct 
{ 

short int 
long int 
char 
char 
char 
} dir_t; 

phone_num; 
last_narne[20]; 
first_narne[lS]; 
city[20]; 

void add ([in] dir_t *info); 
void lookup ([in] char city[20] , 

[in] char last_narne[20] , 
[in] char first_narne[15] , 
[out] dir_t *info); 

void delete ([in] dir_t *info); 
} 

18.3.11 The enable allocate Attribute 

18-20 

The enable_allocate attribute on an operation causes the server stub to 
initialize the rpc_ss_allocateO routine. The rpc_ss_allocateO routine 
requires initialization of its environment before it can be called. The server 
stub clUtomatically initializes (enables) rpc_ss_allocateO if the operation 
uses either full pointers, or a type with the represent_as attribute. If the 
operation does not meet either of these conditions, but the manager 
application code needs to make use of the rpc _ ss _ allocatee ) and 
rpc_ss_freeO routines, then use the enable_allocate attribute to force the 
stub code to enable. 

The enable_allocate attribute has the following syntax. 

For an operation: 

[enable_allocate] operation_name ({parameter _!ist]); 

OSF DeE Application Development Guide 



Attribute Configuration Language 

Example Using the enable_allocate Attribute 

ACF 

[auto_handle] interface phonedir 
{ 

[enable_allocate] lookup (); 
} 

IDL File 

[uuid(06A12100-2D26-11C9-AA24-08002BOECEF1)] 
interface phonedir 
{ 

typedef struct 
{ 

short int 
long int 
char 
char 
char 
} dir_t; 

area_code; 
phone_nurn; 
last_name [20] ; 
first_name [15] ; 
city[20]; 

void add ([ in] dir_t * info) ; 
void lookup ([ in] char city [20] , 

[in] char last_name[20], 
[in] char first_name[15], 
[out] dir_t *info); 

void delete ([in] dir_t *info); 

18.3.12 The heap Attribute 

This attribute specifies that the server stub's copy of a parameter or of all 
parameters of a specified type is allocated in heap memory, rather than on 
the stack. 

The heap attribute has the following syntax. (See the example at the end of 
this section.) 

OSF DeE Application Development Guide 18-21 



Language Syntax and Usage 

18-22 

For a type: 

typedef [heap] type _name; 

For a parameter: 

operation_name ([heap] parameter_name); 

Any identifier occurring as a parameter name within an operation 
declaration in the ACF must also be a parameter name within the 
corresponding operation declaration in the IDL. 

Example Using the heap Attribute 

ACF 

[auto_handle] interface galaxies 
{ 

typedef [heap] big_arraYi 
} 

IDL File 

[uuid(E61DE280-0DOB-llCA-6145-08002Bll1685)] 
interface galaxies 
{ 

typedef long big_array[1000]i 
} 

OSF DeE Application Development Guide 



Attribute Configuration Language 

18.4 Summary of Attributes 

Table 18-1 lists the attributes available for use in the Attribute 
Configuration File and where in the file the attribute can be used. 

Table 18-1. Summary of the ACF Attributes 

Attribute Where Used 
auto_handle Interface header 
code Interface header, operation 
comm_status Operation, parameter 
enable_allocate Operation 
explicit_handle Interface header, operation 
fault_status Operation, parameter 
heap Type, parameter 
implicit_handle Interface header 
in_line Interface header, type 
nocode Interface header, operation 
out_of_line Interface header, type 
represent_as Type 

OSF DCE Application Development Guide 18-23 





Part 3C 

Supplemental Information 

Part 3C contains the following: 

• Summary lists of the RPC stub-support and runtime routines 

• The language grammar synopses of the Interface Definition Language 
and the Attribute Configuration Language 

• A discussion of the issues involved in using NCS Version I applications 
in a DCE RPC environment 





Chapter 19 

Summary of Runtime Routines 

This chapter presents summaries of the DCE RPC runtime routines. 

19.1 Summary of RPC Stub-Support Routines 

The RPC stub-support routines are shown in the following list. 

• rpc_ss_allocateO: Allocates memory within the RPC stub memory 
management scheme (usually server, possibly client). 

• rpc_ss_client_freeO: Frees memory returned from a client stub 
(usually server, possibly client). 

• rpc_ss_destroy_client_contextO: Reclaims the client memory 
resources for the context handle, and sets the context handle to NULL 
(client). 

• rpc_ss_disable_allocateO: Releases resources and allocated memory 
(client). 

• rpc _ss _enable _ allocate(): Enables the allocation of memory by the 
rpc_ss_allocate() routine when not in manager code (client). 

OSF DeE Application Development Guide 19-1 



Supplemental Information 

• rpc_ss_freeO: Frees memory allocated by the rpc_ss_allocateO 
routine (usually server, possibly client). 

• rpc ss thread handle(): Gets a thread handle for the manager code 
bef~e -it spaw~s additional threads, or for the client code when it 
becomes a server (usually server, possibly client). 

• rpc_ss_register_auth_infoO: Registers authentication and 
authorization information for an interface (client). 

• rpc_ss_set_client_alloc_freeO: Sets the memory allocation and 
freeing mechanism used by the client stubs, thereby overriding the 
default routines the client stub uses to manage memory for pointed-to 
nodes (client). 

• rpc_ss_set_thread_handleO: Sets the thread handle for either a newly 
created spawned thread or for a server that was formerly a client and is 
ready to be a client again (usually server, possibly client). 

• rpc_ss_swap_c1ient_alloc_freeO: Exchanges the current memory 
allocation and freeing mechanism used by the client stubs with one 
supplied by the client (client). 

19.2 Summary of RPC Runtime Routines 

19-2 

The RPC nons tub support routines are shown in the following list. 

• dce_error_in<LtextO: Returns the message text for a DCE component 
status code (client, server, or management). 

• rpc_binding_copyO: Returns a copy of a binding handle (client or 
server). 

• rpc_binding_freeO: Releases binding handle resources (client or 
server). 

• rpc _binding_from _ string_ binding( ): Returns a binding handle from a 
string representation 6f a binding handle (client or management). 

• rpc_binding_hl<Lauth_c1ientO: Returns authentication and 
authorization inforniation from the binding handle for an authenticated 
client (server). ' -, , 

OSF DeE Application Development Guide 



Summary of Runtime Routines 

• rpc_hinding_inCLauthJnfoO: Returns authentication and 
authorization information from a server binding handle (client). 

• rpc_hinding_inCLohjectO: Returns the object UUID from a binding 
handle (client or server). 

• rpc_hinding_resetO: Resets a server binding handle so the host 
remains specified, but the server instance on that host is unspecified 
(client or management). 

• rpc _ hinding_ server_from _ client(): Converts a client binding handle 
to a server binding handle (server). 

• rpc_hinding_set_authJnfoO: Sets authentication and authorization 
information into a server binding handle (client). 

• rpc_hinding_set_ohjectO: Sets the object UUID value into a server 
binding handle (client). 

• rpc _ hinding_ to _ string_ hinding( ): Returns a string representation of a 
binding handle (client, server, or management). 

• rpc_hinding_vector_freeO: Frees the memory used to store a vector 
and binding handles (client or server). 

• rpc_ep_registerO: Adds to, or replaces, server address information in 
the local endpoint map (server). 

• rpc_ep_register_no_replaceO: Adds to server address information in 
the local endpoint map (server). 

• rpc _ ep _resolve _ hinding(): Resolves a partially bound server binding 
handle into a fully bound server binding handle (client or management). 

• rpc _ ep _unregister(): Removes server address information from the 
local endpoint map (server). 

• rpc Jf Jd _vector _free(): Frees a vector and the interface identifier 
structures it contains (client, server, or management). 

• rpc_if_inCLidO: Returns the interface identifier for an interface 
specification (client or server). 

• rpc_mgmt_ep_elt_inCLheginO: Creates an inquiry context for 
viewing the elements in a local or remote endpoint map (management). 

• rpc_mgmt_ep_eltJnCLdoneO: Deletes the inquiry context for 
viewing the elements in a local or remote endpoint map (management). 

OSF DeE Application Development Guide 19-3 



Supplemental Information 

19-4 

• rpc_mgmt_ep_elt_in~nextO: Returns one element at a time from a 
local or remote endpoint map (management). 

• rpc_mgmt_ep_unregisterO: Removes server address information from 
a local or remote endpoint map (management). 

• rpc_mgmt_in~com_timeoutO: Returns the communications time-out 
value in a binding handle (client). 

• rpc_mgmt_in~dflt_protect_IeveIO: Returns the default protection 
level for an authentication service (client or server). 

• rpc_mgmt_inqJf_idsO: Returns a vector of interface identifiers of the 
interfaces a server offers (client, server, or management). 

• rpc_mgmt_in~server_princ_nameO: Returns a server's principal 
name (client, server, or management). 

• rpc_mgmt_in~statsO: Returns RPC runtime statistics (client, server, 
or management). 

• rpc _ mgm t _ is_server _ IisteningO: Tells whether a server is Ii stening 
for remote procedure calls (client, server, or management). 

• rpc_mgmt_set_authorization_fnO: Establishes an authorization 
function for processing remote calls to a server's management routines 
(server). 

• rpc_mgmt_set_canceI_timeoutO: Sets the lower bound on the time to 
wait before timing out after forwarding a cancel (client). 

• rpc _ mgmt _set_com _ timeout( ): Sets the communications time-out 
value in a binding handle (client). 

• rpc_mgmt_set_server_stack_sizeO: Specifies the stack size for each 
server thread (server). 

• rpc_mgmt_stats_vector_freeO: Frees a statistics vector (client, server, 
·or management). 

• rpc_mgmt_stop_server_Iistening(): Tells a server to stop listening for 
remote procedure calls (client, server, or management). 

• rpc _ network Jn~protseqs(): Returns all protocol sequences 
supported by both the RPC runtime and the operating system (client or 
server). 

OSF DeE Application Development Guide 



Summary of Runtime Routines 

• rpc_network_is_protseCLvalidO: Tells whether the specified protocol 
sequence is supported by both the RPC runtime and the operating system 
(client or server). 

• rpc_ns_hinding_exportO: Establishes a directory service entry with 
binding handles or object UUIDs for a server (server). 

• rpc_ns_hindingJrnport_beginO: Creates an import context for an 
interface and an object in the namespace (client). 

• rpc_ns_hindingJrnport_doneO: Deletes the import context for 
searching the namespace (client). 

• rpc_ns_bindingJrnport_nextO: Returns a binding handle of a 
compatible server (if found) from the namespace (client). 

• rpc _ns _ bindingJnCL entry _ narne(}: Returns the name of an entry in 
the namespace from which the server binding handle came (client). 

• rpc_ns_hinding_lookup_beginO: Creates a lookup context for an 
interface and an object in the namespace (client). 

• rpc _ ns _ bindingJookup _ donee }: Deletes the lookup context for 
searching the namespace (client). 

• rpc _ ns _binding_lookup _ next(}: Returns a list of binding handles of 
one or more compatible servers (if found) from the namespace (client). 

• rpc_ns_hinding_selectO: Returns a binding handle from a list of 
compatible server binding handles (client). 

• rpc _ ns _ binding_ unexport(}: Removes the binding handles for an 
interface, or object UUIDs, from an entry in the namespace (server). 

• rpc_ns_entry_expand_narneO: Expands the name of a directory 
service entry (client, server, or management). 

• rpc_ns_entry_objectJnCLbegin(): Creates an inquiry context for 
viewing the objects of an entry in the namespace (client, server, or 
management). 

• rpc_ns_entry_object_inCLdoneO: Deletes the inquiry context for 
viewing the objects of an entry in the namespace (client, server, or 
management). 

• rpc_ns_entry_object_inCLnext(): Returns one object at a time from an 
entry in the namespace (client, server, or management). 

OSF DeE Application Development Guide 19-5 



Supplemental Information 

19-6 

• rpc_ns_group_deleteO: Deletes a group attribute (client, server, or 
management). 

• rpc _ ns _group _ mbr _ add(): Adds an entry name to a group; if 
necessary, creates the entry (client, server, or management). 

• rpc _ ns _group _ mbr _ inCL begin( ): Creates an inquiry context for 
viewing group members (client, server, or management). 

• rpc _ ns _group _ mbr JnCL donee ): Deletes the inquiry context for a 
group (client, server, or management). 

• rpc _ ns _group _ mbr _inCL next(): Returns one member name at a time 
from a group (client, server, or management). 

• rpc_ns_group_mbr_removeO: Removes an entry name from a group 
(client, server, or management). 

• rpc _ ns _ mgmt _ binding_ unexport( ): Removes multiple binding 
handles, or object UUIDs, from an entry III the namespace 
(management) . 

• rpc_ns_mgmt_entry_createO: Creates an entry in the namespace 
(management) . 

• rpc_ns_mgmt_entry_deleteO: Deletes an entry from the namespace 
(management). 

• rpc_ns_mgmt_entryJnCLifJdsO: Returns the list of interfaces 
exported to an entry in the namespace (client, server, or management). 

• rpc_ns_mgmt_handle_set_exp_ageO: Sets a handle's expiration age 
for local copies of directory service data (client, server, or management). 

• rpc _ ns _ mgmt JnCL exp _ ageO: Returns the application's global 
expiration age for local copies of directory service data (client, server, or 
management). 

• rpc_ns_mgmt_set_exp_ageO: Modifies the application's global 
expiration age for local copies of directory service data (client, server, or 
management). 

• rpc_ns_profile_deleteO: Deletes a profile attribute (client, server, or 
management). 

• rpc_ns_profile_elt_addO: Adds an element to a profile. If necessary, 
creates the entry (client, server, or management). 

OSF DeE Application Development Guide 



Summary of Runtime Routines 

• rpc_ns_profile_elt_in~beginO: Creates an inquiry context for 
viewing the elements in a profile (client, server, or management). 

• rpc_ns_profile_eItJn~doneO: Deletes the inquiry context for a 
profile (client, server, or management). 

• rpc_ns_profile_elt_in~nextO: Returns one element at a time from a 
profile (client, server, or management). 

• rpc_ns_profile_elt_removeO: Removes an element from a profile 
(client, server, or management). 

• rpc_ns_set_authn(): Turns authentication on and off for RPC directory 
service routines. 

• rpc_objectJn~typeO: Returns the type of an object (server). 

• rpc_object_setJn~fnO: Registers an object inquiry function (server). 

• rpc_object_set_typeO: Assigns the type of an object (server). 

• rpc_protse~vector_freeO: Frees the memory used by a vector and its 
protocol sequences (client or server). 

• rpc _server _ in~ bindings( ): Returns binding handles for 
communications with a server (server). 

• rpc _server Jn~if(): Returns the manager entry point vector registered 
for an interface (server). 

• rpc _server _Iisten( ): Tells the RPC runtime to listen for remote 
procedure calls (server). 

• rpc _server_register _ auth Jnfo(): Registers authentication 
information with the RPC runtime (server). 

• rpc _ server _register _ if 0 : Registers an interface with the RPC runtime 
(server). 

• rpc_server_unregisterJfO: Unregisters an interface from the RPC 
runtime (server). 

• rpc_server _use_all_protseqsO: Tells the RPC runtime to use all 
supported protocol sequences for receiving remote procedure calls 
(server). . 

• rpc_server _use_all_protseqsJfO: Tells the RPC runtime to use all the 
protocol sequences and endpoints specified in the interface specification 
for receiving remote procedure calls (server). 

OSF DeE Application Development Guide 19-7 



Supplemental Information 

19-8 

• rpc_server _useyrotseqO: Tells the RPC runtime to use the specified 
protocol sequence for receiving remote procedure calls (server). 

• rpc_server_use_protseCLepO: Tells the RPC runtime to use the 
specified protocol sequence combined with the specified endpoint for 
receiving remote procedure calls (server). 

• rpc _server_use _protseCLif( ): Tells the RPC runtime to use the 
specified protocol sequence combined with the endpoints in the interface 
specification for receiving remote procedure calls (server). 

• rpc _ string_ hinding_ com pose( ): Combines the components of a string 
binding into a string binding (client or server). 

• rpc_string_hinding_parseO: Returns, as separate strings, the 
components of a string binding (client or server). 

• rpc_string_freeO: Frees a character string allocated by the runtime 
(client, server, or management). 

• uuid_compareO: Compares two UUIDs and determines their order 
(client, server, or management). 

• uuid_createO: Creates a new UUID (client, server, or management). 

• uuid _create _ nil(): Creates a nil UUID (client, server, or management). 

• uuid_equalO: Determines if two UUIDs are equal (client, server, or 
management). 

• uuid_from_stringO: Converts a string UUID to its binary ~ 
representation (client, server, or management). 

• uuid_hashO: Creates a hash value for a UUID (client, server, or 
management). 

• uuidJs_nilO: Determines if a UUID is nil (client, server, or 
management). 

• uuid_to_stringO: Converts a UUID from a binary representation to a 
string representation (client, server, or management). 

OSF DeE Application Development Guide 



Chapter 20 

Language Grammar Synopsis 

This chapter summarizes the syntax for both IDL and ACF. In each case, the 
syntax is presented in extended Backus-Naur Format (BNF) notation. 

20.1 Interface Definition Language 

This section lists the syntax for the Interface Definition Language (IDL). 

<interface> ::= <interface_header> "{" <interface_body> "}" 

<interface_header> ::= 

"[" <interface_attributes> "]" "interface" <identifier> 

<interface_attributes> 

<interface_attribute> [ "," <interface_attribute> ] 

<interface_attribute> :: = "uuid" "(" <uuid_rep> ")" 

"version" "(" <major> [ "." <minor> ] ")" 

"endpoint" "(" <endpoint_spec> [ "," <endpoint_spec> ] ... ")" 

"pointer_default" "(" <pointer_attribute> ")" 

OSF DeE Application Development Guide 20-1 



Supplemental Information 

20-2 

I "local" 

<major> <integer> 

<minor> <integer> 

<endpoint_spec> ::= 

""" <family_string> ":" "[" <endpoint_string> "]" """ 

<family_string> ::= <identifier> 

<endpoint_string> <identifier> 

[ <import> ] ... [ <export> ] ... 

<export> :: = <const_declaration> ";" 

<type_declaration> ";" 

<op_declaration> ";" 

<import> ::= import <import_files> ";" 

<filename> 

<filename> [ II " , <filename>] ... 

""" <character> ... """ 

<const_declaration> ::= 

"const" <const_type_spec> <identifier> 

<integer_type> I "char" I "char" "*" I "boolean" I "void" "*" 

<const_exp> :: = 
<integer_const_exp> I <character_const> I <string_const> 

I <identifier> I "TRUE" I "FALSE" I "NULL" 

<conditional_exp> 

<conditional_exp> ::= <logical_or_exp> 

I <logical_or_exp> "?" <integer_const_exp> ":" <conditional_exp> 

OSF DeE Application Development Guide 



<logical_and_exp> ::= <inclusive_or_exp> 

I <logical_and_exp> "&&" <inclusive_or_exp> 

<inclusive_or_exp> ::= <exclusive_or_exp> 

I <inclusive_or_exp> "1" <exclusive_or_exp> 

<exclusive_or_exp> ::= <and_exp> 

I <and_exp> """ <and_exp> 

<and_exp> :: = <equality _exp> 

I <and_exp> "&" <equality_exp> 

<equality_exp> ::= <relational_exp> 

<equality_exp> "--" <relational_exp> 

I <equality_exp> "!=" <relational_exp> 

<relational_exp> ::= <shift_exp> 

<relational_exp> "<" <shift_exp> 

<relational_exp> ">" <shift_exp> 

<relational_exp> "<=" <shift_exp> 

<relational_exp> ">=" <shift_exp> 

<shift_exp> ::= <additive_exp> 

<shift_exp> "«" <additive_exp> 

I <shift_exp> "»" <additive_exp> 

<additive_exp> ::= <multiplicative_exp> 

<additive_exp> "+" <multiplicative_exp> 

I <additive_exp> "-" <multiplicative_exp> 

<multiplicative_exp> 

<multiplicative_exp> 

<multiplicative_exp> 

"*" 

11/" 

"%" 

<unary_exp> 

<unary _exp> 

<unary _exp> 

<unary_exp> :: = <primary_exp> 

"+" <primary _exp> 

"-" <primary _exp> 

":::" <primary _exp> 

OSF DeE Application Development Guide 

Language Grammar Synopsis 

20-3 



Supplemental Information 

20-4 

<integer_literal> 

I <identifier> 

<character_const> "'" <character> "'" 

" "" [ <character> ] ... """ 

<type_declaration> ::= 

"typedef" [ <type_attributes> ] <type_spec> <declarators> 

<type_spec> ::= <simple_type_spec> 

I <constructed_type_spec> 

<simple_type_spec> ::= <base_type_spec> 

<predefined_type_spec> 

I <identifier> 

<declarators> :: = <declarator> [ "," <declarator> ] ... 

<declarator> ::= <simple_declarator> 

I <complex_declarator> 

<simple_declarator> ::= <identifier> 

<complex_declarator> ::= <array_declarator> 

< function-ptr_declarator> 

I <ptr_declarator> 

<tagged_declarator> ::= <tagged_struct_declarator> 

I <tagged_union_declarator> 

<base_type_spec> ::= <integer_type> 

<floating_type> 

<char_type> 

<boolean_type> 

<byte_type> 

<void_type> 

<handle_type> 

OSF DeE Application Development Guide 



Language Grammar Synopsis 

<floating_type> ::= "float" I "double" 

"int" ] 

<unsigned_int> ::= <int_size> "unsigned" [ "int" ] 

"unsigned" <int_size> [ "int" ] 

"hyper" I "long" I "short" I "small" 

"unsigned" ] "char" 

"boolean" 

"byte" 

<void_type> ::= "void" 

<constructed_type_spec> 

<union_type> 

<tagged_declarator> 

<enumeration_type> 

<pipe_type> 

<tagged_struct_declarator> 

I <tagged_struct> 

"struct" <tag> 

<struct_type> ::= "struct" "{" <member_list> "}" 

<tagged_struct> ::= "struct" <tag> "{" <member_list> "}" 

<tag> ::= <identifier> 

<member> [ <member> ] ... 

<member> <field_declarator> 

<field_declarator> 

OSF DeE Application Development Guide 20-5 



Supplemental Information 

20-6 

<type_spec> <declarators> 

<field_attribute_list> ::= "[n <field_attribute> 

<field_attribute>] ... "]" 

<tagged_union_declarator> 

I <tagged_union> 

nunion" <tag> 

II II , 

<union_type> ::= "union" <union_switch> "{" <union_body> "}" 

I "union" "{" <union_body_n_e> "}" 

<union_switch> ::= "switch" "(" <switch_type_spec> <identifier> n)" 

<union_name> 

<switch_type_spec> 

<char_type> 

<boolean_type> 

<enumeration_type> 

<tagged_union> ::= "union" <tag> <union_switch> "{ <union_body> n}" 

I "union" <tag> "{ <union_body_n_e> "}" 

<identifier> 

<union_body_ne> ::= <union_case n e> 

<default_case_n_e> 

<union_case n e> ] ... 

<union_case label> <union_case label> ] ... 

<union_case label> "case" <const_exp> ":" 

<union_case label n e> " [" "case" "(" <const_exp> [ 

<const_exp>] ... ")" "]" 

"default" 

" [" "default" "]" <union_arm> 

II II , 

OSF DeE Application Development Guide 



Language Grammar Synopsis 

<field_declarator> 

n(" <attr_var> ")" 

<enumeration_type> ::= 

"enum" "{" <identifier> II n , <identifier> ] ... "} II 

"pipe" <type_spec> <pipe_declarators> 

<array_declarator> 

<array_bounds_list> ::= <array_bounds_declarator> 

[ <array_bounds_declarator> ] ... 

<array _bounds_declarator> :: = II [ " [ <array_bound> ] "]" 

I "[" <array_bounds-pair> "]" 

<array_bound> :: = "* II 

<integer_literal> 

<identifier> 

<type_attribute> 

"handle" 

"align" "(" <int_size> ")" 

<usage_attribute> 

<union_type_switch_attr> 

<ptr_attr> 

<usage_attribute> 

II vi_string" 

"context_handle" 

<field_attribute> 

"string" 

OSF DeE Application Development Guide 20-7 



Supplemental Information 

20-8 

"last_is" "(" <attr_var_list> ")" 

"length_is" "(" <attr_var_list> ")" 

"max_is" "(" <attr_var_list> ")" 

"size_is" "(" <attr_var_list> ")" 

"vl_array" 

<usage_attribute> 

<union_instance_switch_attr> 

"ignore" 

<attr_var> ::= [ ["*"]<identifier> ] 

"*"<identifier> 

<ptr_attr> ::= "ref" 

"unique" 

I "full" 

<op_declarator> ::= [ <operation_attributes> ] 

<sirnple_type_spec> <identifier> <parameter_declarators> 

<operation_attributes> ::= "[" <operation_attribute> 

<operation_attribute> ] ... "]" 

<operation_attribute> 

"broadcast" 

"maybe" 

<usage_attribute> 

<ptr_attr> 

" idempotent" 

<param_declarators> :: = "(" "void" ")" 

I "(" [ <param_declarator> [ "," <param_declarator> ] ... ] ")" 

<param_attributes> <type_spec> <declarator> 

<param_attributes> ::= 

"[" <param_attribute> [ "," <param_attribute> ] ... "]" 

<param_attribute> ::= <directional_attribute> 

OSF DeE Application Development Guide 



Language Grammar Synopsis 

I <field_attribute> 

<directional_attribute> ::= "in" [ "(" "shape" ") n ] 

I "out " [ "(" " shape" ")" 

<function-ptr_declarator> ::= <simple_type_spec> 

"(" "*"<identifier> ")" <param_declarators> 

<predefined_type_spec> ::= "error_status_t" 

I <international_character_type> 

<international_character_type> 

ISO_MULTI_LINGUAL 

ISO_UeS 

<pipe_declarators> ::= <pipe_declarator> [ 

<pipe_declarator> ::= <simple_declarator> 

I <ptr_declarator> 

II II , <pipe_declarator> ] ... 

20.2 Attribute Configuration Language 

The syntax description in this section uses an extended Backus-Naur FOTIn 

(BNF) to represent ACF grammar. The following lists the symbols used in 
this section and their meanings: 

<acf_interface> ::= 

<acf_interface_header> "{" <acf_interface_body> "}" 

<acf_interface_header> ::= 

<acf_interface_attr_list> ] "interface" <idl_interface_name> 

If II , 

OSF DeE Application Development Guide 20-9 



Supplemental Information 

20-10 

<acf_interface_attr> ::= <acf_code_attr> 

<acf_nocode_attr> 

<acf_in_line_attr> 

<acf_out_of_line_attr> 

<acf_auto_handle_attr> 

<acf_explicit_handle_attr> 

<acf_implicit_handle_attr> 

"explicit_handle" 

"implicit_handle" .. {" 

<Identifier> 

<acf_body_element> ::= <acf_include> ";" 
<acf_type_declaration> ";" 

<acf_operation> ";" 

<acf include_list> 

<filename> 

<acf_type_attr> ::= <acf_represent_attr> 

<acf_in_line_attr> 

<acf_out_of_line_attr> 

<acf_heap_attr> 

OSF DeE Application Development Guide 



Language Grammar Synopsis 

<acf_operation> :: = [ <acf_op_attr_list> ] <Identifier> "(" 

[ <acCparameters> ] " ) " 

<acf_op_attr> ::= <acf_explicit_handle_attr> 

<acf_cornm_status_attr> 

<acf_fault_status_attr> 

<acf_code_attr> 

<acf_nocode_attr> 

<acf_enable_allocate_attr> 

<acf-parameters> <acf-parameter> [ "," <acf-parameter> ] ... 

<acf-parameter> ::= [ <acf-param_attr_list> ] <Identifier> 

.. " I 

<acf-param_attr> ::= <acf_cornm_status_attr> 

<acf_fault_status_attr> 

<acf_heap_attr> 

"code" 

"nocode" 

"fault_status" 

OSF DeE Application Development Guide 20-11 



Supplemental Information 

"enable_allocate" 

20-12 OSF DeE Application Development Guide 



Chapter 21 

Using NCS in a DCE RPC 
Environment 

Two alternatives exist for using NCS Version 1 applications (which include 
DECrpc Version 1.0 applications) in a DCE RPC Version 1.0 environment. 

• Use the compatibility features of DCE RPC. 

• Migrate your existing application to a DCE RPC application. 

Note: NCS Version 1 compatibility is provided only for transitional 
purposes and is available for only a limited number of DCE 
update releases. For new applications, you must use DCE 
RPC. 

21.1 Using Compatibility Features 

For DCE RPC, compatibility is the ability of NCS Version 1 applications to 
operate in a DCE RPC environment. If you do not need to enhance an 
existing application, compatibility is the better short-term alternative. 
However, in a future version of DCE RPC the compatibility features will 
disappear; therefore, if you have a stable NCS application that you want to 
continue using, you will have to migrate it to DCE RPC. 

OSF DeE Application Development Guide 21-1 



Supplemental Information 

21-2 

Compatibility encompasses the following kinds of configurations: 

• An NCS Version 1 application can run on a DCE RPC system. 

NCS Version 1 servers and clients can run in the DCE RPC runtime 
environment. The DCE RPC runtime contains a compatibility library 
that enables NCS Version 1 applications to use the DCE RPC runtime. 
Porting an NCS Version 1 application to the DCE RPC environment 
involves only linking the NCS object code to the DCE RPC runtime 
library. DCE RPC provides the NCS Local and Global Location Brokers 
for NCS Version 1 applications that use the DCE RPC runtime. 

Alternatively, NCS Version 1 and DCE RPC software (the RPC runtimes 
and so on) can coexist on the same system and run independently. 

• An NCS client can call a DCE RPC server, or vice versa. 

The data types, operations, and so on, of an NIDL (Network Interface 
Definition Language) interface can be reproduced in an IDL interface, 
making the IDL and NIDL interfaces compatible. NCS Version 1 and 
DCE RPC Version 1.0 applications that use compatible NIDL and IDL 
interfaces can interoperate. 

To create a compatible IDL interface for an NIDL interface, run the 
NIDL-to-IDL translator on an NIDL interface definition, which 
produces a compatible IDL interface definition file. Compile the new 
IDL file with the DCE IDL compiler, which creates an IDL-based stub 
that is compatible with NIDL-based stubs for the interface. 

Note: For information on the NIDL-to-IDL translator, see 
Section 21.2. 

• An NCS Version 1 application running on an NCS system can 
interoperate with an application using a compatible interface on a DCE 
RPC system. 

For the subset of DCE RPC features that correspond to NCS Version 1 
features, DCE RPC Version 1.0 provides wire interoperability. Wire 
interoperability ensures that NIDL data types are correctly transmitted 
between NCS and DCE RPC systems. An NCS Version 1 client running 
on an NCS system should be able to interoperate with a compatible NCS 
Version 1 or DCE RPC Version 1.0 server running on a DCE RPC 
system. Conversely, an NCS Version 1 or DCE RPC Version 1.0 client 
running on a DCE RPC system should be able to interoperate with a 
compatible NCS server running on an NCS system. 

OSF DeE Application Development Guide 



Using NCS in a DCE RPe Environment 

DCE RPC and Version 1.5.1 NCS use different fonnats and string 
representations for UUIDs. As a compatibility feature, the DCE RPC 
uuid _ to _ string() routine converts a UUID into the corresponding string 
representation. For example, if you specify an NCS Version 1.5.1 UUID to 
the DCE RPC uuid_to_stringO routine, it returns an NCS Version 1.5.1 
string representation of the UUID. In addition, the DCE 
uuid _from _string() routine converts a string representation into the 
corresponding fonn of UUID. 

21.2 Migrating an Application to DCE RPC 
I 

For DCE RPC, migration is upgrading an NCS Version 1. application to a 
DCE RPC Version 1.0 application. To enhance an application; for example, 
to use IDL data types or to use a global directory service, migrating an 
application is worthwhile. Even if enhancements are independent of any 
extensions to NCS Version 1, migration is preferable to further development 
effort using NCS. 

DCE RPC migration is divided into two steps: 

1. Translating the NIDL Interface definition into an IDL interface 
definition 

2. Updating the NCS Version 1 runtime calls into DCE RPC runtime 
calls 

The following subsections discuss these two steps. 

21.2.1 Translating an Interface Definition from NIDL to IDL 

DCE RPC provides a translator to convert interface definitions written in 
the Network Interface Definition Language (NIDL) syntax to the DCE 
Interface Definition Language (IDL) syntax. Invoke this translator with the 
nidi to idl command. The translator creates an IDL interface definition file 
and an Attribute Configuration File (ACF), if needed. Compiling the output 
files from the translator with the DCE IDL compiler generates files that are 
compatible with the DCE RPC runtime library. 

OSF DeE Application Development Guide 21-3 



Supplemental Information 

Before you run the translator, you must have an input interface definition 
file that was compiled successfully by the NIDL compiler. Most NIDL data 
types translate directly into IDL data types. However, IDL defines 
enhanced forms of some data types, such as arrays and structures. For these 
data types, the translator generates IDL migration attributes (the vl_ * 
attributes) that tell the DCE IDL compiler to use the NIDL forms of the data 
types, rather than the corresponding IDL forms. 

The translator cannot handle some NIDL features because no direct 
translation exists. If a feature cannot be translated, the translator issues a 
warning and you must manually correct the DCE IDL output file. You will 
also have to make corresponding changes in the application code that uses 
the feature. 

When your code translates without error, the automated translation is 
complete, and you can then use the DCE IDL compiler to compile the 
translated output. 

For additional information on the NCS migration attributes, see Chapter 17 
of this guide. 

For information about the nidi_to Jdl command, filenames, and messages, 
see the OSF DeE Application Development Reference. 

21.2.2 Updating Runtime Calls 

21-4 

The DCE RPC environment is more extensive than the NCS environment, 
and unlike NCS, DCE RPC runtime calls are designed for system and 
transport independence. Therefore, migrating an application into the DCE 
RPC environment requires that you understand the DCE RPC runtime 
operations. You must migrate runtime calls manually. 

The correspondence between NCS and DCE RPC runtime routines varies 
from close correspondence to no correspondence. Many DCE RPC runtime 
routines lack any corresponding NCS routines; for example, the DCE RPC 
rpc_ns ... O routines and the rpc_string_ .•. O routines. Even where direct 
correspondence to NCS Version 1 routines exists, as for most of the NCS 
uuid _ $ ... () routines, the NCS routine names have been modified to conform 
to the standard DCE routine syntax, which disallows the $ (dollar sign). 
Many functional sets of NCS routines have been replaced by a different set 
of DCE RPC routines that perform equivalent functions but only partially 
correspond. For example, some NCS communications routines, such as the 

OSF DeE Application Development Guide 



Using NCS in a DCE RPC Environment 

NCS rpc _ $inCL ... {) routines, have counterparts among the DCE RPC 
communications routines; others, such as the NCS socket_$ ..• O routines, 
lack any DCE counterparts. DCE Threads routines have completely 
replaced the NCS pfm _ $ ... {) routines. 

OSF DeE Application Development Guide 21-5 





Part 4 

DeE Directory Service 





Chapter 22 

DCE Directory Service Overview 

This chapter provides an overview of the DCE Directory Service for 
application programmers. The chapter begins with a description of Part 4 of 
this guide. It then introduces DCE Directory Service concepts, following 
which the structure of DCE names and the DCE namespace are described. 
The chapter then provides an overview of the programming interfaces used 
to access the DCE Directory Service. 

22.1 Introduction to Part 4 

Part 4 of this guide describes how application developers can access the 
DCE Directory Service. From the application programmer's perspective, 
the Directory Service has three main parts: the DCE Cell Directory Service 
(CDS), the DCE Global Directory Service (GDS), and the X/Open Directory 
Service (XDS) and X/Open OSI-Abstract-Data Manipulation (XOM) 
programming interfaces. This is reflected in the organization of Part 4: 

• Part 4A. CDS Application Programming 

• Part 4B. GDS Application Programming 

OSF DeE Application Development Guide 22-1 



DeE Directory Service 

• Part 4C. XDS/XOM Supplementary Information 

Parts 4A and 4B contain conceptual material on CDS and ODS with 
descriptions of programming tasks, including the use of programming 
interfaces. The final chapter in each of these parts (Chapter 24 of Part 4A 
and Chapter 28 of Part 4B) contains annotated source code for sample 
applications. 

Part 4C consists mostly of tables of values for the data structures used by the 
XDS and XOM application interfaces, which are the interfaces used to 
directly access the DCE Directory Service. These chapters supplement the 
reference pages for the XDS and XOM function calls, which are located in 
the aSF DeE Application Development Reference. 

22.1.1 Part 4 Document Usage 

22-2 

Before reading this guide, you should read the Introduction to aSF DeE. It 
contains overviews, along with illustrations, of all the DCE components and 
of DCE as a whole. Many concepts and details are explained in the 
Introduction to aSF DeE that are necessary to a full understanding of what 
is described here. Next, read this chapter in its entirety. 

Determine whether you will be programming primarily in the CDS 
namespace or the ODS namespace and read Part 4A or Part 4B accordingly. 
At this point, you are ready to begin programming and should proceed to 
Part 4C. The main purpose of Part 4C is to provide a convenient location to 
look up the details of object values and structures needed when writing 
code. 

If you do not find the information you need either in this guide or in the aSF 
DeE Application Development Reference, see the aSF DeE Administration 
Guide and the aSF DeE Administration Reference. For example, 
information about the DCE Cell Directory Service as a separate component 
is found in the administration documentation. Although the DCE Security 
Service is documented in the application development books, some 
information of interest to programmers (such as adding new principals to the 
registry database) is also found in the administration books. 

OSF DeE Application Development Guide 



DeE Directory Service Overview 

22.1.2 Directory Service Tools 

Both CDS and GDS have commands that allow system administrators to 
inspect and alter the contents of the directory. This can be useful when 
developing applications that access the DCE namespace. 

For information on the CDS Control Program (cdscp), see the aSF DeE 
Administration Guide. For information on the CDS Browser (cdsbrowser), 
which is a Motif-based utility that allows you to inspect the CDS 
namespace, see the aSF DeE User's Guide and Reference. 

For information on the GDS system administration commands, gdssysadm, 
gdsdirinfo, gdsditadm, and gdscacheadm, see the aSF DeE 
Administration Guide. 

22.2 Using the DeE Directory Service 

The DCE Directory Service can be used in many ways. It is used by the 
DCE services themselves to support the DCE environment. For example, 
cells are registered in the global part of the Directory Service, enabling 
users from different cells to share information and resources. 

The DCE Directory Service is also useful to DCE applications. The client 
and server sides of an application can use the Directory Service to find each 
other's locations. The Directory Service can also be used to store 
information that needs to be made available in a globally accessible, well
known place. 

For example, one DCE application could be a print service consisting of a 
client side application that makes requests for jobs to be printed, and a 
server side that prints jobs on an available printer. The Directory Service 
could be used as a central place where the print clients could look up the 
location of a print server. Furthermore, the Directory Service could be used 
to store information about printers; for example, what type of jobs a printer 
can accept, whether the printer is currently up or down, and whether it is 
currently lightly or heavily loaded. 

In some ways, a Directory Service can be used in the same way as a file 
system has traditionally been used; that is, for containing globally 
accessible information in a well-known place. An example is the use of 

OSF DeE Application Development Guide 22-3 



DeE Directory Service 

configuration information stored in files in a UNIX fete directory. However, 
the Directory Service differs in important ways. It can be replicated so that 
information is available even if one server goes down. Replicas can be kept 
automatically up-to-date, so that, unlike multiple copies of a file on different 
machines, the information in the replicas of the Directory Service can be 
kept current without manual intervention. 

The Directory Service can also provide security for data that is kept in a 
globally accessible place. It supports Access Control Lists (ACLs) that 
provide fine-grained control over who is able to read, modify, create, and 
perform other operations on its data. 

As you learn about the DCE Directory Service and how to access it, think 
about the ways in which your application can best take advantage of the 
services it provides. 

22.3 DCE Directory Service Concepts 

22-4 

This section provides a description of DCE Directory Service concepts that 
are important to application developers. Concepts that are specific to ODS 
are covered in more detail in Chapter 29. The following concepts are 
intended to convey general definitions that are applicable to the DCE 
Directory Service as a whole rather than specific to a particular Directory 
Service component. For more detailed definitions, see the Glossary in the 
Introduction to OSF DeE. 

• DCE N amespace 

The DCE namespace is the collection of names in a DCE environment. 
It can be made up of several domains, in which different types of servers 
own the names in different parts of the namespace (see Section 22.5). 
Typically, there are two high-level, or global, domains to a DCE 
namespace: the ODS namespace and the Domain Name Service (DNS) 
namespace. At the next level is the CDS namespace, with names 
contained in the cell's CDS Server. A DCE environment always 
contains a cell namespace, which is implemented by CDS. Parts of the 
DCE namespace may not be contained in any of the Directory Services; 
for example, the DFS namespace, also called the filespace, contains the 
names of files and directories in DFS, and the Security namespace 
contains principals and groups contained in the Security Server. 

OSF DeE Application Development Guide 



DeE Directory Service Overview 

The term "DCE namespace" is used when referring to names, but not 
the information associated with them. For example, it would include the 
name of a printer in the Directory Service, but not its associated location 
attribute, and it would include the name of a DFS file, but not its 
contents. 

• Cell N amespace 

All of the names found in a single DCE cell comprise the cell's 
namespace. This includes names managed by the cell's CDS Server and 
Security Server, names in the cell's DFS if it has one, and any other 
names that reside within a particular cell. 

• Hierarchy 

The DCE namespace is organized into a hierarchy; that is, each name 
except the global root has a parent node and may itself have child nodes 
or leaves. The leaves are called objects or entries, and in the CDS and 
DFS namespace, the nodes are called directories. 

• Directory 

The word "directory" has two meanings, which can be differentiated by 
their context. The first is the node of a hierarchy as mentioned in the 
previous definition. The second is a collection of objects managed by a 
directory service. 

• Directory Service 

A directory service is software that manages names and their associated 
attributes. A directory service can store information, be queried about 
information, and be requested to change information. DCE contains two 
different directory services: CDS and GDS. It also interacts with a third 
directory service, DNS, which is not part of DCE. 

• Junction 

A junction is a point in the DCE namespace where two domains meet. 
For example, the point where the DFS entries are "mounted" into a 
CDS namespace is a junction. DCE also has junctions between the 
global directory services and CDS, and between CDS and the Security 
Service. 

• Object 

The word "object" can have two meanings, depending on the context. 
Sometimes it means an entry in a directory service. Sometimes it means 

OSF DeE Application Development Guide 22-5 



DeE Directory Service 

22-6 

a real object that an entry in a directory service describes, such as a 
printer. In the context of XDSIXOM, the requested data is returned to 
the application in one or more interface objects, which are data 
structures that the application can manipulate . 

• Entry 

An entry is a unit of information in a directory service. It consists of a 
name· and associated attributes. For example, an entry could consist of 
the name of a printer, its capabilities, and its network address. 

- Class 

In ODS, each entry has a class associated with it. The class 
determines what type of entry it is and what attributes may be 
associated with it. 

- Link 

A link is one type of object class. This type of object is a pointer to 
another object; it is similar to a soft link in a UNIX file system. A 
CDS link is similar to a ODS alias . 

• Attribute 

If an object is like a complex data structure, then its attributes are 
analogous to the separate member fields within that structure. Some of 
an object's attributes may be of significance only to the directory service 
that manages it. With attributes such as these, a directory service 
implements objects that contain various kinds of data about the directory 
itself, thus enabling the service to organize the entries into a meaningful 
structure. For example, directory objects can contain attributes whose 
values are other eJirectory objects (called child directories or 
subdirectories) in the directory. Or link objects can contain attributes 
whose values are the names and internal identifiers of other directory 
entries, making a link object's entry name an alias of the other object to 
which its attributes ind~rectly refer. 

- Type 

Every attribute is characterized as being of a certain type. The 
3,ttri~ute is used to hold a certain kind of data, such as a zip code or 
the !lame of a cat. Entries can also be classified by type; for entries, 
the term used is "class." 

OSF DeE Application Development Guide 



DeE Directory Service Overview 

- Value 

An attribute can have one or more values. 

• Object Identifier 

Directory attributes are uniquely identified by Object Identifiers (aIDs), 
which are administered by the International Organization for Standa!ds 
(ISO). In GDS, aIDs are also used to identify object classes. When it 
creates new attribute types, an application is responsible for tagging 
them with new, properly allocated aIDs (see your Directory Service 
administrator for OlD assignments). In CDS, attribute types are 
identified by strings, which can be representations of aIDs. 

• Name 

A DCE name corresponds to an entry in some service participating in 
the DCE namespace, usually a directory service (see Section 22.4). 

- Global Name 

A global name is a name that contains a path through one of the 
global namespaces (GDS or DNS). 

- Local Name 

A local name is a name that uses the cell prefix I.: to indicate the cell 
name and therefore does not have a specific path through a global 
namespace. The entry for a local name is always contained in the 
local cell. 

• Access Control List 

Access to DCE namespace entries is determined by lists of entities that 
are attached through the DCE Security Service to both the entries and 
the objects when they are created. The lists, called Access Control Lists 
(ACLs), specify the privileges that an entity or group of entities has for 
the entry the ACL is associated with. The DCE Security Service 
provides servers with authenticated identification of every entity that 
contacts them; it is then the server's responsibility to check the ACL 
attached to the object that the potential client wants to access, and 
perform or refuse to perform the requested operation on the basis of what 
it finds there. The ACLs are checked using Security Service library 
routines. 

OSF DeE Application Development Guide 22-7 



DeE Directory Service 

Objects in the GDS namespace have ACLs associated with them, but 
they are not DCE Security Service ACLs. 

• Replication 

The DCE Directory Service can keep replicas (copies) of its data on 
different servers. This means that if one server is unavailable, clients 
can still obtain information from another server. 

• Caching 

Both the CDS and GDS components of the DCE Directory Service 
support caching of data on the client machine. When a client requests a 
piece of data from the Directory Service for the first time, the 
information must be obtained over the network from a server. However, 
the data can then be cached (stored) on the local machine, and 
subsequent requests for the same data can be satisfied more quickly by 
looking in the local cache instead of sending a request over the network. 
Programmers need to be aware of caching because in some cases you 
will want to bypass the cache to ensure that the data you obtain is as up
to-date as possible. 

22.4 Structure of DeE Names 

22-8 

The following subsections describe the structure of the names found in a 
DCE environment. DCE names can consist of several different parts, which 
reflect the federated nature of the DCE namespace (see Section 22.5). A 
DCE name has some combination of the following elements. They must 
occur in this order, but most elements are optional. 

• Prefix 

• GDS cell name or DNS cell name 

• GDS name or CDS name 

• Junction 

• Application name 

A DCE name can be represented by a string that is a readable description of 
a specific entry in the DCE namespace. The name is a string consisting of a 
series of elements separated by / (slashes). The elements are read from left 

OSF DeE Application Development Guide 



DeE Directory Service Overview 

to right. Each consecutive element adds further specificity to the entry being 
described, until finally one arrives at the rightmost element, which is the 
simple name of the entry itself. Thus, in appearance DCE names are similar 
to UNIX filenames. 

In the discussion that follows, a DCE name element is the single piece of a 
name string enclosed between a consecutive pair of slashes. For example, in 
the following string: 

/ .. .IC=US/O=OSF/OU=DCE/hosts/abc/self 

the substring 

O=OSF 

is an element, and so is 

abc 

and the entire name contains (counting the ... element) a total of seven 
elements. 

In GDS, an element is called a Relative Distinguished Name (RDN) and the 
entire name is called a Distinguished Name (DN). In the preceding 
example, the attribute type 0 stands for the Organization type OlD, which is 
2.5.4.10. 

22.4.1 DeE Name Prefixes 

The leftmost element of any valid DCE name is a root prefix. The 
appearance and meaning of each is as follows: 

I... This is the global root. It signifies that the immediately following 
elements form the name of a global namespace entry. Usually, the 
entry's contents consist of binding information for a DeE cell (more 
specifically, for some CDS server in the cell), and the name of the 
global entry is the name of the cell. 

OSF DeE Application Development Guide 22-9 



DeE Directory Service 

I.: This is the cell root. It is an alias for the slobal prefix plus the name 
of the local cell; that is, the cell in which the prefix is being used. It 
signifies that all of the following elements taken together form the 
name of a cell namespace entry. 

/: This is the filespace root. It is an alias for the global prefix, the name 
of the local cell, and the DFS junction. 

DeE also supports a junction into the Security Service namespace, but there 
is no alias for this junction. 

A prefix by itself is a valid DeE name. For example, you can list the 
contents of the I.: directory to see the top-level entries in the CDS 
namespace, and you can use a file system command to list the contents of 
the /: directory to see the top-level entries in the filespace. 

22.4.2 Names of Cells 

22-10 

After the global root prefix, the next section of a DCE name contains the 
name of the cell in which the object's name resides. The name of a cell can 
be expressed as either a ODS name or a DNS name, depending on which 
global directory service (ODS or DNS) the cell is registered in. The 
following subsections provide examples. 

22.4.2.1 GDS Cell Names 

ODS elements always consist of a substring in which an abbreviation or 
acronym in capital letters is followed by an = (equal sign), which is 
followed by a string value. As you will learn in more detail in Chapter 23, 
these substrings represent pairs of attribute types and atttribute values. 

For example, in the global DeE name 

1 .. .lC=DE/O=SNIIOU=DCE/subsys/druecker/docs 

OSF DeE Application Development Guide 



DeE Directory Service Overview 

the attribute=value form of the leftmost elements after the I ... indicates that 
the global part of the name is a GDS namespace entry, and that it ends after 
the OU=DCE element; therefore, the rest of the name is in the 
I .. .IC=DE/O=SNI/OU=DCE cell. 

22.4.2.2 DNS Cell Names 

If DNS is used as the global directory, a global name has a form like the 
following: 

1 •• .1 cs.univ .edu/subsys/p rin tersl docs 

where the single element 

cs.univ.edu 

is the cell name; that is, the cell's name in the DNS namespace. The DNS 
name consists of up to four domain names (depending on the name assigned 
to the cell), separated by dots. 

22.4.2.3 Discovering Your Local Cell's Name 

A DeE cell consists of the machines that are configured into it; each DeE 
machine belongs to one DeE cell. Your local cell is therefore the cell to 
which the machine you are using belongs. Depending on the DeE name you 
are using, you can access your own cell or other (foreign) cells. If the name 
you are accessing is global, then its cell is explicitly named. If the name 
begins with the local cell prefix, then you are accessing a name within your 
local cell. You can find out what cell you are in by calling the 
dee _ ef _get _ eell_ name() function. 

Using the global directory services, applications can access resources and 
services in foreign cells; however, applications most frequently use 
resources from their local cell. If this is not the case, the cell boundaries 
may not have been well chosen. 

OSF DeE Application Development Guide 22-11 



DeE Directory Service 

22.4.3 CDS Names 

After the cell name or cell root prefix, the next part of a DCE name is often 
a CDS name. For example, in the name 

1 •• .IC=DE/O=SNIIOU=DCE/subsys/druecker/docs 

the CDS part is 

Isubsys/druecker/docs 

Or in the name 

1 .. .Ics.univ.edu/subsys/printers/docs 

the CDS part is 

Isubsys/printers/docs 

The following strings show equivalent names using the cell root prefix, 
assuming that the name is used from within the / •. .IC=DE/O=SNI/OU=DCE 
and / .. .Ics.univ.edu cells, respectively: 

1.:/subsys/druecker/docs 
1.:/subsys/printers/docs 

22.4.4 GDS Names 

22-12 

Some names fall entirely in the GDS namespace. These names are "pure" 
X.500 (and therefore GDS) names, since each element consists of a type and 
an attribute. The entries for these names are contained in a GDS server. 
The following is an example of a pure GDS name: 

I .. .IC= US/L=Cambridge/CN =Kilroy 

OSF DeE Application Development Guide 



DeE Directory Service Overview 

22.4.5 Junctions in DeE Names 

Some junctions are implied in a DeE name; others can be seen. There is an 
implied junction between the global prefix and either GDS or DNS. It 
occurs after the global prefix. The junction between either of the global 
namespaces and the local cell namespace is also implied. It occurs after the 
cell name. The junction between the local cell namespace and either the 
DFS namespace or the security namespace is shown by the symbol Ifs or 
Isec, respectively. The following are examples of visible junctions in DeE 
names: 

1.:/fs/usrlsnowpaws 
1 .. .Idce.osf.org/sec/principaI/ziggy 

22.4.6 Application Names 

The part of a DeE name that occurs after a junction into a DeE application 
is the application name. DFS and Security names are the currently 
supported examples; in the future, application programmers may also be 
able to create junctions in the namespace. 

DFS names occur after the DFS junction. They are typeless and resemble 
UNIX file system names. After the global and eDS parts of a DFS name 
have been resolved by the appropriate directory services, the rest of the DFS 
name is handled within the Distributed File Service. In the equivalent 
examples that follow, lusrlsnowpaws is the DFS part of the DeE name: 

1 .. .Idce.osf.org/fs/usrlsnowpaws 
I.:/fs/usrlsnowpaws 
/ :/usrlsnowpaws 

OSF DeE Application Development Guide 22-13 



DeE Directory Service 

Security names are similar to DFS names; first the parts of the name within 
the DeE Directory Service are resolved, then the rest of the name is handled 
by the Security Service. The entry is contained in the Security registry 
database. In the following example: 

/.:/sec/principaI/ziggy 

the Security part of the DeE name is /principaI/ziggy. 

22.5 The Federated DeE Namespace 

The DeE namespace is a single hierarchy of names, but the names can be 
contained in many different services. Because several services cooperate to 
make the DeE namespace, it is a federated namespace. 

Figure 22-1 shows a typical DeE namespace and the different services in 
which names reside. 

Figure 22-1. A Federated DCE Namespace 

22-14 

The following sections describe the different domains of the DeE 
namespace. 

OSF DCE Application Development Guide 



DeE Directory Service Overview 

22.5.1 The GDS Namespace 

This section provides a brief overview of the main characteristics of the 
GDS namespace regarded apart from the XDS interface used to access it. 
More detailed information about GDS and XDS can be found in Part 4B and 
Part 4C, respectively. 

In a GDS name such as 

/ .. .!C=US/O=OSF/OU=DCE 

the C=US and O=OSF elements do not refer to directory entries that are 
fundamentally different from the one represented by OU=DCE, unlike in 
CDS or the UNIX file system. 

Thus, in the name string 

/C=US/O=OSF/OU=DCE 

the element C= US refers to a one-Ievel-down Country entry whose value is 
US, then to a two-Ievels-down Organization entry whose value is OSF, and 
then to a three-Ievels-down Organization Unit entry whose value is DCE. 
Concatenating these elements results in a valid path of entries from the 
directory root to the DCE entry. The entry itself is the namespace sign to a 
GDS directory object that contains binding information for the 
/ .. .!C=US/O=OSF/OU=DCE cell. 

22.5.1.1 An Example GDS Namespace 

Figure 22-2 shows what a part of the DCE global namespace could look 
like. Levels in the tree of entries are numbered; the global root is at Level O. 
The GDS structure rules as defined for DCE allow only country name 
entries at the next level under the root; organization name and locality name 
entries can exist at the level below a country name. An organizational unit 
name can be a child of an organizational name entry, and a common name 
can be a child of a locality name. The details of the GDS rules for the valid 
types and locations of entries in the directory tree can be found in the OSF 
DeE Administration Guide. 

OSF DeE Application Development Guide 22-15 



DeE Directory Service 

The object entry /C=US/O=OSF/OU=DCE belongs to the Organizational 
Unit class. One of the object's values is the CDS server binding infonnation 
that is used to reach the cell from other DCE cells. The entire name is an 
attribute of the object that it refers to, as is the CDS server binding 
infonnation that it contains. 

Figure 22-2. GDS Namespace Entries and Directory Objects 

22-16 

I ... I 

"" c=us 

~~ l\ O=IBM A L=cam~ 

OU=Apolio OU=West OU=Motif OU=DCE CN=Kilroy 

22.5.1.2 The GDS Schema 

~Level1 

~Level2 

~Level3 

~Level4 

The schema defines the shape and fonnat of entries in the GDS directory. It 
contains four types of rules, which describe the following: 

• The legal hierarchy of entries. What entries may be subordinate of other 
entries. These rules are what prevents, for example, countries from 
being subordinate to states. 

• The allowable object classes, the mandatory and optional attributes of 
entries, and which attributes are the naming attributes. 

• The allowable attribute types, associating a unique OlD and an attribute 
syntax with each attribute type. 

• The syntaxes of attributes that describe what attribute values look like, 
such as strings, numbers, or aIDs. 

By installing the proper schema, an entry of any particular object class can 
have the two attributes needed to identify a cell. See the aSF DeE 
Administration Guide for a full description of how to set up a cell entry 
using either GDS or DNS. 

OSF DeE Application Development Guide 



DeE Directory Service Overview 

22.5.2 The CDS Namespace 

The CDS namespace is the part of the DCE namespace that resides in the 
local cell's CDS. DCE itself is made up of components that, like the 
applications that use them, are distributed client/server applications. These 
components rely on the Cell Directory Service to make themselves 
available as services to DCE applications. This requires that the structure of 
the cell namespace be stable, known, and have parts that are not alterable by 
casual users or applications. 

22.5.2.1 The CDS "Schema" 

The cell namespace's hierarchy model is different from the GDS model, and 
the CDS rules do not enforce any particular model; CDS allows entries 
containing any kind of data to be created anywhere in the namespace. Thus, 
CDS offers a free-form namespace in which entries and directories can be 
organized as desired, and in which any entry or directory can contain any 
attributes. The CDS administrator can create additional directories, and 
applications can add name entries as needed; applications cannot create 
CDS directory entries. Because of this, and because the cell namespace is 
so important to the operation of the cell, application developers and system 
administrators have more responsibility in planning and regulating their use 
of it. 

The cell namespace has a structure similar to that of a UNIX file system. 
The CDS namespace is a tree of entries that grows from the root downward. 
The name entries are organized under directory entries, which can 
themselves be subentries of other directories. The cell root (represented by 
the prefix /.:) can be thought of as the location you get when you dereference 
the cell's global name. New directories and new entries within the 
directories can be added anywhere in the tree, subject to the restrictions 
mentioned previously. 

OSF DeE Application Development Guide 22-17 



DeE Directory Service 

22.5.2.2 CDS Entries and CDS Attributes 

There are three different kinds of CDS entries that are of significance to 
application programmers: 

• Object 

• Soft link 

• Directory 

The object entries are the most primitive form. These are where data is 
stored. Directory entries contain other entries (that is, can have children) 
just like UNIX file system directories. Soft link entries are essentially alias 
names for other directory or object entries. Only object entries can be 
created by applications; soft links and directories have to be created and 
manipulated with the cdscp command. 

Thus, any CDS entry is defined as a directory, a soft link, or an object entry 
by the presence of a certain combination of attributes belonging to that kind 
of entry. You can use the cdscp command to get a display of all the 
attributes of any CDS entry. 

The term "attribute" as applied to namespace entry objects has roughly the 
same meaning in CDS and GDS. The main difference is that CDS does not 
restrict or control the combinations of attributes attached to entries written 
in its namespace. 

22.5.3 Other Namespaces 

22-18 

For information about names contained in the DFS namespace (the 
filespace) and the Security namespace, refer to the chapters on those 
components in this guide. 

OSF DeE Application Development Guide 



DeE Directory Service Overview 

22.6 Programming Interfaces to the DeE Directory 
Service 

The following two subsections describe two programming interfaces for 
accessing the DCE Directory Service. 

22.6.1 The X/Open Directory Service Interface 

The main programming interface to all services within the DeE Directory 
Service is XDSIXOM, as defined by X/Open. The calls correspond to the 
X.SOO service requests, including Read, List (enumerate children), Search, 
Add Entry, Modify Entry, Modify RDN, and Remove Entry. XDS uses 
XOM to define and manipulate data structures (called objects) used as the 
parameters to these calls, and used to describe the directory entries 
manipulated by the calls. XOM is extremely flexible, but also somewhat 
complex. The interfaces are used in different ways, depending on which 
underlying directory service is being addressed. For example, CDS entries 
are typeless, but GDS entries are typed. This difference is reflected in the 
use of the interface. 

22.6.2 The RPC Name Service Interface 

The DCE Remote Procedure Call facility supports an interface to the 
Directory Service that is specific to RPC and is layered on top of DCE 
Directory Service interfaces; it is called the Name Service Independent 
(NSI) interface. NSI can manipulate three object classes: entries, groups, 
and profiles, which were created to store RPC binding information. NSI 
data is stored in CDS. Programming using this interface is discussed in Part 
1 and Part 3 of this guide. 

OSF DeE Application Development Guide 22-19 



DeE Directory Service 

22.6.3 Namespace Junction Interfaces 

22-20 

For infonnation about programming interfaces to names that occur in 
namespace junctions, see the documentation for that component. For 
example, for infonnation about using DFS names, see Part 7 of this guide. 

OSF DeE Application Development Guide 



Part 4A 

CDS Application Programming 

Part 4A describes DCE Directory Service application programming in the 
CDS namespace. Chapter 23 describes the contents of the CDS namespace, 
where applications should put their data, and what the valid CDS characters 
and names are. Chapter 24 describes how to use the XDS programming 
interface to access data in the CDS namespace. 





Chapter 23 

Programming in the CDS N amespace 

This chapter provides information about writing applications that use the 
XDS/XOM interface to access the portion of the DCE namespace contained 
in the Cell Directory Service. 

The XDS/XOM interface provides generalized access to CDS. However, if 
you only need to use CDS to store information related to RPC (for example, 
storing the location of a server so that clients can find it), you should use the 
Name Service Independent (NSI) interface of DCE RPC. NSI implements 
RPC-specific use of the namespace. For information on using RPC NSI, see 
Chapter 2 and Part 3 of this guide. 

For information on the details of accessing the CDS namespace through the 
XDS/XOM interface, see Chapter 24 and Part 4C. For infonnation about 
using XDS/XOM to access the GDS portion of the DCE namespace, see Part 
4B. 

OSF DeE Application Development Guide 23-1 



CDS Application Programming 

23.1 Initial Cell Namespace Organization 

23-2 

The following subsections describe the organization of a cell's namespace 
after it has initially been configured. (For more information on configuring 
a cell, see the aSF DCE Administration Guide.) 

Every DCE cell is set up at configuration with the basic namespace structure 
necessary for the other DCE components to be able to find each other and to 
be accessible to applications. The vital parts of the namespace are protected 
from being accessed by unauthorized entities by Access Control Lists 
(ACLs) that are attached to the entries and directories. 

Figure 23-1 shows what the cell namespace looks like after a cell has been 
configured and before any additional directories or entries have been added 
to it by system administrators or applications. In the figure, ovals represent 
directories, rectangles represent simple entries, circles represent soft links, 
and triangles represent namespace junctions. 

All of the simple entries shown in the figure are created for use with RPC 
NSI routines; that is, they all contain server-binding information and exist to 
enable clients to find servers. These are referred to as "RPC entries." 

Note that only the name entries (those in boxes) and junction entries (those 
in triangles) are RPC entries. The directories (entries indicated by ovals) are 
normal CDS directories. 

Some of the namespace entries in the figure are intended to be used (if 
desired) directly by applications; namely, /.:/cell-profile, /.:/lan-profile, 
and, through the I: soft link alias, /.:/fs. The self and profile name entries 
under hosts also fall into this category. Others, such as those under 
/.:/subsys/dce, are for the internal use of the DCE components themselves. 

Each of the entries is explained in detail in the following subsections. See 
the aSF DCE Administration Guide for detailed information on the contents 
of the initial DCE cell namespace. 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

Figure 23-1. The Cell Namespace After Configuration 

Soft Link to DFS 0) 

Legend: 

•••••• ~ = Soft Link. 

- - - - - = Additional Entries. 

OSF DCE Application Development Guide 23-3 



CDS Application Programming 

23.1.1 The Cell Profile 

The 1.:/cell-profile entry is an RPC profile entry that contains the default list 
of namespace entries to be searched by clients trying to bind to certain basic 
services. An RPC profile is a class of namespace entry used by the RPC NSI 
routines. When a client imports bindings from such an entry, it imports, 
through the profile, from an ordered list of RPC entries containing 
appropriate bindings. The list of entries is keyed by their interface UUIDs so 
that only bindings to servers offering the interface sought by the client are 
returned. The entries listed in the profile exist independently in the 
namespace, and can be separately accessed in the normal way. The profile 
is simply a way of organizing clients' searches. (For further information, 
see Part 3 of this guide.) 

The main purpose of cell-profile is to have a "path of last resort" for 
prospective clients. All other profile entries in the cell namespace are 
required to have the cell-profile entry in their entry lists so that if a client 
exhausts a particular profile's list of entries, it tries the entries in cell
profile. 

23.1.2 The LAN Profile 

The 1.:/lan-profile entry is a LAN-oriented default list of services' 
namespace entries that is used when servers' relative positions in the 
network topography are of importance to their prospective clients. 

23.1.3 The CDS Clearinghouse 

23-4 

The 1.:lcdshostname _ ch entry is the namespace entry for cdshostname's 
clearinghouse, where cdshostname is the name of the host machine on 
which a CDS server is installed. 

A "clearinghouse" is the database managed by a CDS server; it is where 
CDS directory replicas are physically stored. For more information about 
clearinghouses, see the aSF DeE Administration Guide. All clearinghouse 
namespace entries reside at the cell root, and there must be at least one in a 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

DCE cell. The first clearinghouse's name must be in the fonn shown in 
Figure 23-1, but additional clearinghouses can be named as desired. 

23.1.4 The Hosts Directory 

The 1.:/hosts entry is a directory contammg entries for all of the host 
machines in the cell. Each host has a separate directory under hosts; its 
directory has the same name as the host. Four entries are created in each 
host's directory: 

• self 

This entry contains bindings to the host's RPC daemon (rpcd, also 
called the endpoint mapper), which is responsible for dynamically 
resolving the partial bindings that it receives in incoming RPCs from 
clients attempting to reach servers resident on this host. 

• profile 

This entry is the default profile entry for the host. This profile contains in 
its list of entries at least the 1.:/cell-profile entry described in Section 
23.1.1. 

• cds-clerk 

This entry contains bindings to the host's resident CDS clerk. 

• cds-server 

This entry contains bindings to a CDS server. 

23.1.5 The Subsystems Directory 

The 1.:/subsys entry is the directory for subsystems. Subdirectories below 
subsys are used to hold entries that contain location-independent 
information about services, particularly RPC binding information for 
servers. 

The dce directory is created below 1.:/subsys at configuration. This 
directory contains directories for the DCE Security Service and Distributed 
File Service components. The functional difference between these two 

OSF DeE Application Development Guide 23-5 



CDS Application Programming 

directories and the fs and sec junctions described in Section 23.1.7 is that 
the latter two entries are the access points for the components' special 
databases, whereas the directories under subsys/dce contain the services' 
binding information. 

Subsystems that are added to DCE should place their system names in 
directories created beneath the 1.:/subsys directory. 

23.1.6 The /: DFS Alias 

The entry I: is created and set up as a soft link to the 1.:/fs entry, which is the 
DFS database junction. The name I: is equivalent to 1.:/fs. Note, however, 
that the name I: is well known, whereas the name 1.:/fs is not, so using I: 
makes an application more portable. A CDS soft link entry is an alias to 
some other CDS entry. A soft link is created through the cdscp command. 
The procedure is described in the aSF DeE Administration Guide. 

23.1.7 The DFS and Security Service Junctions 

23-6 

The 1.:/fs entry is the Distributed File Service junction entry. This is the 
entry for a server that manages the DFS file location database. 

The 1.:/sec entry is the DCE Security Service junction entry. This is the 
entry for a server that manages the Security Service database (also called 
the registry database). 

The 1.:/fs and 1.:/sec root entries in Figure 23-1 are junctions maintained by 
DCE components. The 1.:/sec junction is the DCE Security Service's 
namespace of principal identities and related information. The Distributed 
File Service's file set location servers are reached through the 1.:/fs entry, 
making 1.:/fs effectively the entry point into the cell's distributed file 
system. 

Note that 1.:/sec and 1.:/fs are both actually RPC group entries (for 
definitions of the RPC entry types, see Chapter 2 of the present book); the 
junctions are implemented by the servers whose entries are members of the 
group entries. (See the aSF DeE Administration Guide for further details 
on the Security Service and DFS junctions.) 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

23.2 Recommended Use of the CDS Namespace 

CDS data is maintained in a loosely consistent manner. This means that 
when the write able copy of a replicated name is updated, the read-only 
copies may not be updated for some period of time, and applications reading 
from those nonsynchronized copies can receive stale data. This is in 
contrast to distributed databases, which use mUltiphase commit protocols 
that prevent readers from accessing potentially stale or inconsistent data 
while the writes are being propagated to all copies of the data. It is possible 
to specifically request data from the master copy, which is guaranteed to be 
up-to-date, but replication advantages are then lost. This should only be 
done when it is important to obtain current data. 

23.2.1 Storing Data in CDS Entries 

Some CDS entries may contain information that is immediately useful or 
meaningful to applications. Other entries may contain RPC information that 
enables application clients to reach application servers; that is, binding 
handles for servers, which are stored and retrieved using the RPC NSI 
routines. In either case, the entry's name should be a meaningful 
identification label for the information that the entry contains. This is 
because the namespace entry names are the main clue that users and 
applications have to the available set of resources in the DCE cell. Using the 
CDS namespace to store and retrieve binding information for distributed 
applications is the function of DCE RPC NSI. (See Part 3 of this guide for 
information on that aspect of namespace usage.) 

In general, applications can store data into CDS object entry attributes in 
any XDS-expressible form they wish. Tables 24-2 and 24-3 show XDS-to
CDS data type translations. If you add new attributes to the 
/opt/dcelocal/etc/cds _attributes file, together with a meaningful CDS 
syntax (that is, a data type identifier) and name, then the attribute is 
displayed by cdscp show commands when executed on objects containing 
instances of that attribute. 

OSF DeE Application Development Guide 23-7 



CDS Application Programming 

23-8 

There are three main questions to consider when using CDS to store data 
through application calls to XDS: 

1. Where in the CDS names pace should the new entries be placed? 

You are free to create new directories as long as you do not disturb the 
namespace's configured structure. Keep in mind that CDS directories 
must be created with the cdscp command; they cannot be created by 
applications. 

Only two root-level directories are created at configuration: hosts and 
subsys. Applications should not add entries under the hosts tree; the 
host's default profile should instead be set up by a system 
administrator. The subsys directory is intended to be populated by 
directories (for example, /.:/subsys/dce) in which the servers and other 
components of independent vendors' distributed products are 
accessed. Thus, the typical cell should usually have a series of root
level CDS directories that represent a reasonable division of 
categories. 

One obvious division could be between entries intended for RPC use 
(that is, namespace entries that contain bindings for distributed 
applications), and entries that contain data of other kinds. On the 
other hand, it may be very useful to add supplementary data attributes 
to RPC entries in which various housekeeping or administrative data 
can be held. In this way, for example, performance data for printers 
can be associated with the print servers' name entries. You can either 
add new attributes to the server entries themselves, where, for 
example, 

/.:/applications/printers/prl 

is the name of a server entry that receives the new attributes. Or you 
can change the subtree structure so that new entries are added to hold 
the data, the server bindings are still held in separate wholly RPC 
entries, and each group of entries is located under a directory named 
for the printer: 

/.:/applications/printers/prl - directory 
/.:/applications/printers/prl/server - server bindings 
/.:/applications/printers/prllstats - extra data 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

In general, the same principals of logic and order that apply to the 
organization of a file system apply to the organization of a 
namespace. For example, server entries should not be created directly 
at the namespace root because this is the place for default profiles, 
clearinghouse entries, and directories. 

Figure 23-2 illustrates some of the preceding suggestions, added to the 
initial configuration namespace structure shown in Figure 23-1. 

OSF DeE Application Development Guide 23-9 



CDS Application Programming 

Figure 23-2. A Possible Namespace Structure 

23-10 

Soft Link to DFS 0 Cell Root 

Legend: 

•••••• ~ = Soft Link. 

In Figure 23-2, the vendor of the "xyz" subsystem has set up an xyz 
directory under 1.:/subsys in which the system's servers are exported. 
This cell also has an 1.:/applications directory in which the printers 
directory contains separate directories for each installed printer 
available on the system; the directory for prl is illustrated in the 
figure. In the prl directory, server is an RPC entry containing 
exported binding handles, and stats is an entry created and maintained 
through the XDS interface. 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

2. How should the entries be constructed? 

Because CDS allows you to add as many attributes as you wish to an 
object entry, it is up to you to impose some restraint in doing this. In 
view of the XDS overhead involved in reading and writing single 
CDS attributes, it makes sense to combine mUltiple related attributes 
under single entries (that is, in the same directory object) where they 
can be read and written in single calls to ds_readO or 
ds_modify_entryO. This way, for example, you only have to create 
one interface input object (to pass to ds_readO) to read all the 
attributes, which you can do with one call to ds_read(). You can then 
separate out the returned sub objects that you are interested in and 
ignore the rest. Chapter 24 contains detailed discussions of XDS 
programming techniques. 

In any case, you should define object types for use in applications so 
that namespace access operations can be standardized and kept 
efficient. A CDS object type consists of a specific set of attributes that 
belong to an object of that type, with no other attributes allowed. Note 
again that CDS, unlike GDS, does not force you to do things this way. 
You could theoretically have hundreds of CDS object entries, each of 
which would contain a different combination of attributes. 

3. Should a directory or an entry be created? 

When you consider adding information to the namespace, you can 
choose between creating a new directory, possibly with entries in it, 
or creating simply one or more entries. When making your decision, 
take into consideration the following: 

a. Directories cannot be created using XDS; they must be created 
using administrative commands. Directories are more 
expensive; they take up more space and take more time to 
access. However, they can contain entries and can therefore be 
used to organize information in the namespace. 

b. Entries can be created using XDS and they are cheaper to create 
and use than directories. However, they must be created in 
existing directories, and cannot themselves contain other 
entries. 

OSF DeE Application Development Guide 23-11 



CDS Application Programming 

23.2.2 Access Control for CDS Entries 

23-12 

Each object in the CDS namespace is automatically equipped with a 
mechanism by which access to it can be regulated by the object's owner or 
by another authority. For each object, the mechanism is implemented by a 
separate list of the entities that can access the object in some way; for 
example, to read it, write to it, delete it, and so on. Associated with each 
entity in this list is a string that specifies which operations are allowed for 
that entity on the object. The object's list is automatically checked by CDS 
whenever any kind of access is attempted on that object by any entity. If the 
entity can be found in the object's list, and if the kind of access the entity 
intends is found among its permissions, then the operation is allowed to 
proceed by CDS; otherwise, it is not allowed. 

DCE permission lists are called Access Control Lists (ACLs). ACLs are one 
of the features of the DCE Security Service used by the Cell Directory 
Service. ACLs are used to test the entities' (that is, the principals') 
authorization to do things to the objects they propose to do them to. The 
authorization mechanism for all CDS objects is handled by CDS itself. All 
that users of the CDS namespace have to do is make sure that ACLs on the 
CDS objects that they create are set up with the appropriate permissions. 

23.2.2.1 Creation of ACLs 

Whenever you create a new entry in the CDS namespace, an ACL is created 
for it implicitly, and its initial list of entries and their permission sets are 
determined by the ACL templates associated with the CDS directory in 
which you create the entry. 

Each CDS; directory has the following two ACL templates associated with 
it: 

• Initial Container 

This template is used to generate the initial ACL for any directories 
created within the directory. 

• Initial Object 

This template is used to generate ACLs for entries created within the 
directory. 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

Every CDS directory also has its own ACL, just like any other CDS object. 
This ACL is generated from the parent directory's Initial Container template 
when the child directory is created. The Initial Container template also 
serves as a template for the child directories' own Initial Container 
templates. 

23.2.2.2 Manipulating ACLs 

There are two ways to manipUlate ACLs: either through the acl_ edit 
command, which is documented in the OSF DCE User's Guide and 
Reference, or through the DCE ACL application interface, which consists of 
routines documented in the OSF DCE Application Development Reference. 
(These routines have names in the form of sec_acl_ ... O.) 

23.2.2.3 Initializing ACLs 

After creating a CDS directory using the cdscp command, your first step is 
usually to run the acl_edit command to set up the new directory's ACLs the 
way you want them. (The new directory will have inherited its ACLs and its 
templates from the directory in which it was created, as explained in Section 
23.2.2.1.) You may want to modify not only the directory's own ACLs, but 
also its two templates. To edit the latter, you can specify the -ic option (for 
the Initial Container template) or the -io option (for the Initial Object 
template); otherwise, you will edit the object ACL. 

You can modify a directory's ACL templates from an application, assuming 
that you have control permission for the object, with the same combination 
of sec _ acl Jookup() and sec _ acl_repJace() calls as for the object ACL. An 
option to these routines lets you specify which of the three possible ACLs 
on a directory object you want the call applied to. The ACLs themselves are 
in identical format. 

The -e (entry) option to acl_ edit can be used to make sure that you get the 
ACL for the specified namespace entry object, and not the ACL (if any) for 
the object that is referenced by the entry. This distinction has to be made 
clear to acl_edit because it finds the object (and hence the ACL) in question 
by looking it up in the namespace and binding to its ACL manager. 
Essentially, the -e option tells acl_ edit whether it should bind to the CDS 

OSF DeE Application Development Guide 23-13 



CDS Application Programming 

ACL manager (if the entry ACL is wanted), or to the manager responsible 
for the referenced object's ACL. This latter manager would be a part of the 
server application whose binding information the entry contained. 

An example of such an ambiguous name would be a CDS clearinghouse 
entry, such as the cdshostname_ch entry discussed previously. With the -e 
option 

acl edit -e 1.:lcdshostname ch - -

you would edit the ACL on the namespace entry; without the -e option you 
would edit the ACL on the clearinghouse itself, which you presumably do 
not want to do. 

Similarly, there is a bind _to _entry parameter by which the caller of 
sec_acl_hind() can indicate whether the entry object's ACL or the ACL to 
which the entry refers is desired. For further details on the pitfalls of binding 
ambiguity, see Chapter 2 of this guide. 

23.2.2.4 Namespace ACLs at Cell Configuration 

23-14 

The ACLs attached to the CDS namespace at configuration are described in 
OSF DeE Administration Guide. The following ACL permissions are 
defined for CDS objects. The single letter in parentheses for each item 
represents the DCE notation for that permission. These single letters are 
identical to the untokenized forms returned by sec_acl_get_printstring(). 

• read (r) 

This permission allows a principal to look up an object entry and view 
its attribute values. 

• write (w) 

This permission allows a principal to change an object's modifiable 
attributes, except for its ACLs. 

• insert (i) 

This permission allows a principal to create new entries in a CDS 
directory. It is used with directory entries only. 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

• delete (d) 

This permission allows a principal to delete a name entry from the 
namespace. 

• test (t) 

This permission allows a principal to test whether an attribute of an 
object has a particular value, but does not permit it actually to see any of 
the attribute values (in other words, read permission for the object is not 
granted). The test permission allows an application to verify a particular 
CDS attribute's value without reading it. 

• control (c) 

This permission allows a principal to modify the entries in the object's 
ACL. The control permission is automatically granted to the creator of a 
CDS object. 

• administer (a) 

This permission allows a principal to issue cdscp commands that control 
the replication of directories. It is used with directory entries only. 

Detailed instructions on the mechanics of setting up ACLs on CDS objects 
can be found in the aSF DCE Administration Guide. 

For CDS directories, read and test permissions are sufficient to allow 
ordinary principals to access the directory and to read and test entries 
therein. Principals who you want to be able to add entries in a CDS 
directory should have insert permission for that directory. Entries created by 
the RPC NSI routines (for example, when a server exports bindings for the 
first time) are automatically set up with the correct permissions. However, if 
you are creating new CDS directories for RPC use, you should be sure to 
grant prospective user principals insert permission to the directory so that 
servers can create entries when they export their bindings. A general list of 
the permissions required for the various RPC NSI operations can be found in 
the intro(3rpc) reference page in the aSF DCE Application Development 
Reference, and the reference pages for the RPC NSI routines (all of whose 
names are in the form rpc_ns_ ... ()) in the same manual. 

Note that CDS names do not behave the same way as file system names. A 
principal does not have to have access to an entire entry name path in order 

OSF DeE Application Development Guide 23-15 



CDS Application PrograrDming 

to have access to an entry at the end of that path. For example, a principal 
can be granted rea~ access to tp.e following entry: 

/.:/applications/utilities/pr2 

and yet not have read access to the utilities directory itself. 

23.3 Valid C4ar~cters and Naming Rules for CDS 

23-16 

The following subsections discuss the valid character sets for DCE 
Directory Seryice names as used by CDS interfaces. They also explain 
some characters that have special meaning and describe some restrictions 
and rules regarding case matching, syntax, and size limits. 

The use of p.ames in DCE often involves more than one directory service. 
For example, CDS interacts with either GDS or DNS to find names outside 
the local cell. '. 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

Figure 23-3 details the valid characters in CDS names, and the valid 
characters in GDS and DNS names as used by CDS interfaces. 

Figure 23-3. Valid Characters in CDS, GDS, and DNS Names 

Legend: 

D Valid in CDS, GDS, and DNS names. 

D Valid only in CDS and GDS names . 

• Valid only in CDS names. 

OSF DCE Application Development Guide 23-17 



CDS Application Programming 

Note: Because CDS, GDS, and DNS all have their own valid 
character sets and syntax rules, the best way to avoid 
problems is to keep names short and simple, consisting of a 
minimal set of characters common to all three services. The 
recommended set is the letters A to Z, a to z, and the digits 0 
to 9. In addition to making directory service interoperations 
easier, use of this subset decreases the probability that users in 
a heterogeneous hardware and software environment will 
encounter problems creating and using names. 

Although spaces are valid in both CDS and GDS names, a CDS simple 
name containing a space must be enclosed in " " (double quotes) when you 
enter it through the CDS control program. Additional interface-specific 
rules are documented in the modules where they apply. 

23.3.1 Metacharacters 

23-18 

Certain characters have special meaning to the directory services; these are 
known as metacharacters. Table 23-1 lists and explains the CDS, GDS, and 
DNS metacharacters. 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

Table 23-1. Metacharacters and Their Meaning 

Directory 
Service Character Meaning 

CDS / Separates elements of a name (simple names). 
* When used in the rightmost simple name of a name 

entered in a cdscp show or list command, acts as a 
wildcard, matching zero or more characters. 

? When used in the rightmost simple name of a name 
entered in a cdscp show or list command, acts as a 
wildcard, matching exactly one character. 

\ Used where necessary in front of a / (slash), a \ 
(backslash), an * (asterisk), or a ? (question mark) to 
escape the character (indicates that the following 
character is not a metacharacter). 

GDS / Separates Relative Distinguished Names (RDNs). 
, Separates multiple attribute type/value pairs (attribute 

value assertions) within an RON. 

= Separates an attribute type and value in an attribute 
value assertion. 

\ Used in front of a / (slash), a , (comma), or an = 

(equal sign) to escape the character (indicates that 
the following character is not a metacharacter). 

DNS Separates elements of a name. 

OSF DeE Application Development Guide 23-19 



CDS Application Programming 

Some metacharacters are not permitted as normal characters within a name. 
For example, a \ (backslash) cannot be used as anything but an escape 
character in GDS. You can use other metacharacters as normal characters in 
a name, provided that you escape them with the backslash metacharacter. 

23.3.2 Additional Rules 

23-20 

Table 23-2 summarizes major points to remember about CDS, GDS, and 
DNS character sets, metacharacters, restrictions, case-matching rules, 
internal storage of data, and ordering of elements in a name. For additional 
details, see the documentation for each technology. 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

Table 23-2. Summary of CDS, GDS, and DNS Characteristics 

Characteristic 

Character Set 

Metacharacters 

Restrictions 

Case-Matching 
Rules 

Internal 
Representation 

Ordering of Name 
Elements 

CDS 

a to z, A to Z, 0 to 9 plus space 
and special characters shown 
in Figure 23-3 

1 * ? \ 

Simple names cannot begin or 
end with a 1 (slash). 

The first simple name following 
the global cell name (or I.: 
prefix) cannot contain an = 
(equal sign). 

When entering a name as part 
of a cdscp show or list 
command, you must use a \ 
(backslash) to escape any * 
(asterisk) or ? (question mark) 
character in the rightmost 
simple name. Otherwise, the 
character is interpreted as a 
wildcard. 

Case exact 

Case exact 

Big endian (left to right from 
root to lower-level names). 

GDS 

a to z, A to Z, 0 to 9 plus. : , ' + - = 
} ? 1 and space 

I, = \ 

Relative distinguished names 
cannot begin or end with a 1 
(slash). 

Attribute types must begin with an 
alphabetic character, can contain 
only alphanumerics, and cannot 
contain spaces. An alternate 
method of specifying attribute types 
is by object identifier, a sequence 
of digits separated by . (dots). 

You must use a \ (backslash) to 
escape a 1 (slash), a , (comma), 
and an = (equal sign) when using 
them as anything other than 
metacharacters. 

Multiple consecutive unescaped 
occurrences of 1 (slashes), , 
(commas), = (equal signs) and \ 
(back-slashes) are not allowed. 

Each attribute value assertion 
contains exactly one unescaped = 
(equal sign). ' 

Attribute types are matched case 
insensitive. The case-matching 
rule for an attribute value can be 
case exact or case insensitive, 
depending on the rule defined for 
its type at the DSA. 

Depends on the case-matching rule 
defined at DSA. If the rule says 
case insensitive, alphabetic 
characters are converted to all 
lowercase characters. Spaces are 
removed regardless of the case
matching rule. 

Big end ian (left to right from root to 
lower-level names). 

OSF DCE Application Development Guide 

DNS 

a to z, A to Z, 0 to 9 plus. -

The first character must be 
alphabetic. 

The first and last characters 
cannot be a . (dot) or a -
(dash). 

Cell names in DNS must 
contain at least one. (dot); 
they must be more than one 
level deep. 

Case insensitive 

Alphabetic characters are 
converted to all lowercase 
characters. 

Little endian (right to left from 
root to lower-level names). 

23-21 



CDS Application Programming 

23.3.3 Maximum Name Sizes 

Table 23-3 lists the maximum sizes for Directory Service names. Note that 
the limits are implementation specific, not architectural. 

Table 23-3. Maximum Sizes of Directory Service Names 

23-22 

Maximum Size 
Name Type (characters) 

CDS simple name (character 254 
string between two slashes) 

CDS full name (including 1023 
global or local prefix, cell 
name, and slashes 
separating simple names) 

GDS relative distinguished 64 
name 

GDS distinguished name 1024 

DNS relative name 64 
(character string between 
two dots) 

DNS fully qualified name 255 
(sum of all relative names) 

23.3.3.1 Valid Characters for GDS Attributes 

This section describes the valid character sets for the GDS attributes. 

The values of the country attributes are restricted to the ISO 3166 Alpha-2 
code representation of country names. (For more information, see the aSF 
DeE Administration Guide.) 

The character set for all other naming attributes is the T61 graphical 
character set. It is described in the next section. 

OSF DeE Application Development Guide 



Programming in the CDS Namespace 

23.3.3.2 T61 Syntax 

Table 23-4 shows the T61 graphical character set. 

Note: The 1) entry in the table indicates that it is not recommended 
that you use the codes in Column 2, Row 3 and Column 2, 
Row 4. Instead, use the appropriate code in Column A. 

Table 23-4. T61 Syntax 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 SP 0 @ p p 0 n K 

1 I 1 A Q a q i ± ... }E re 

2 " 2 B R b r ¢ 2 , 
D d 

3 1) 3 C S £ 3 A a 
~ c s -

4 1) 4 D T d t $ x - H h 

5 % 5 E U e u ¥ Jl - 1 

6 & 6 F V f v # , .- II ij 

7 
, 

7 G W g w § - L- 1-

8 ( 8 H X h x a + 
.. t. 1 

9 ) 9 I Y i Y 0 ~ 

A * : I Z j z 0 <E re 

B + ; K [ k « » Q B 
~ 

C , < L 1 I ~ - I> 1> 

D - = M ] m ~ " T * 
E > N n % 

~ 11 11 

F I ? 0 0 l, " 'n -

OSF DeE Application Development Guide 23-23 



CDS Application Programming 

The administration interface supports only characters smaller than Ox7e for 
names. The X/Open Directory Service (XDS) Application Programming 
Interface (API) supports the full T61 range as indicated in the preceding 
table. 

Some T61 alphabetical characters have a 2-byte representation. For 
example, a lowercase letter ' 'a" with an acute accent is represented by 
Oxc2 (the code for an acute accent) followed by Ox61 (the code for a 
lowercase "a"). 

Only certain combinations of diacritical characters and basic letters are 
valid. They are shown in Table 23-5. 

Table 23-5. Combinations of Diacritical Characters and Basic Letters 

23-24 

Name Repr. Code Valid Basic Letters Following 

grave accent 
, 

Oxcl a, A, e, E, i, I, 0, 0, U, U 

acute accent 
, 

Oxc2 a,A,c,C,e,E,g,i,I,I,L,n,N ,0,O,r,R, 
s,S,u,U,y,Y,z;Z 

circumflex ... Oxc3 a,A,c,C,e,E,g,G,h,H,i,lj),o,O,s,S, 
accent u,U,w,W,y,Y 

tilde - Oxc4 a,A,i,I,n,N,o,O,u,U 

macron - OxcS a,A,e,E,i,I,o,O,u,U 

breve .. Oxc6 a,A,g,G, u, U 

dot above Oxc7 c,C,e,E,g,G,I,z;Z 

umlaut .. OxcS a,A,e,E,i,I,o,O,u,U ,y,Y 

ring · Oxca a,A,u,U 

cedilla · Oxcb c,C,G,k,K,l,L,n,N,r,R,s,S,t,T 

double accent " Oxcd 0,0, u, U 

ogonek · Oxce a, A, e, E, i, I, u, U 

caron v Oxcf c,C,d,D,e,E,I,L,n,N,r,R,s,S,t,T ,z~ 

The nonspacing underline (code Oxcc) must be followed by a Latin 
alphabetical character; that is, a basic letter (a to z or A to Z), or a valid 
diacritical combination. 

OSF DCE Application Development Guide 



Programming in the CDS Namespace 

23.4 Use of Object Identifiers 

Object Identifiers (aIDs) are not seen by applications that restrict 
themselves to using only the RPC NSI routines (rpc_"s_ ... ()), but these 
identifiers are important for applications that use the XDS interface to read 
entries directly or to create new attributes for use with namespace entries. 

RPC makes use of only four different entry attributes in various 
application-specified or administrator-specified combinations. CDS, 
however, contains definitions for many more than these, which can be added 
by applications to RPC entries through the XDS interface. Attributes that 
already exist are already properly identified so applications that use these 
attributes do not have to concern themselves with the aIDs, except to the 
extent of making sure that they handle them properly. 

Unlike UUIDs, aIDs are not generated by command or function call. They 
originate from the International Organization for Standards (ISO), which 
allocates them in hierarchically organized blocks to recipients. Each 
recipient, typically some organization, is then responsible for ensuring that 
the aIDs it receives are used uniquely. 

For example, the OlD block 

1.3.22 

was allocated to OSF by ISO. OSF can now generate, for example, the OlD 

1.3.22.1.1.4 

and allocate it to identify some DCE directory object. (The OlD 
1.3.22.1.1.4 identifies the RPC profile entry object attribute.) OSF is 
responsible for making sure that 1.3.22.1.1.4 is not used to identify any 
other attribute. Thus, as long as all aIDs are generated only from within 
each owner's properly obtained block, and as long as each block owner 
makes sure that the aIDs generated within its block are properly used, each 
OlD will always be a universally valid identifier for its associated value. 

aIDs are encoded and internally represented as strings of hexadecimal 
digits, and comparisons of aIDs have to be performed as hexadecimal 
string comparisons (not as comparisons on NULL-terminated strings since 
aIDs can have NULL bytes as part of their value). 

OSF DeE Application Development Guide 23-25 



CDS Application Programming 

23-26 

When applications have occasion to handle OIDs, they do so directly 
because the numbers do not change and should not be reused. However, for 
users' convenience, CDS also maintains a file (called cds attributes, found 
in /opt/dcelocal/etc) that lists string equivalents for all the OIDs in use in a 
cell in entries like the following one: 

1.3.22.1.1.4 RPC Profile byte 

This allows users to see RPC _Profile in output, rather than the meaningless 
string 1.3.22.1.1.4. Further details about the cds_attributes file and OIDs 
can be found in the aSF DeE Administration Guide. 

In summary, the procedure you should follow to create new attributes on 
CDS entries consists of three steps: 

1. Request and receive from your locally designated authority the OIDs 
for the attributes you intend to create. 

2. Update the cds_attributes file with the new attributes' OIDs and 
labels if you want your application to be able to use string name 
representations for OIDs in output. 

3. Using XDS, write the routines to create, add, and access the 
attributes. 

Your cell administrator should be able to provide you with a name and an 
OlD. The name is a guaranteed-unique series of values for a global 
directory entry name. If the directory is GDS, the name is a series of 
type/value pairs, such as: 

C=US O=OSF 

The cell administrator can also obtain an OlD block. From this OlD space, 
the administrator can assign you the OIDs you need for your application. 

Note that there is no need for new OIDs in connection with cell names. The 
OIDs for Country Name and Organization Name are part of the X.SOO 
standard implemented in GDS; only the values associated with the OIDs 
(the values of the objects) change from entry name to entry name. Instead, 
being able to generate new OIDs gives you the ability to invent and add 
new details to the directory itself. For example, you can create new kinds of 
CDS entry attributes by generating new OIDs to identify them. The same 
thing can be done to GDS, although the procedure is more complicated 
because it involves altering the directory schema. 

OSF DeE Application Development Guide 



Chapter 24 

XDS and the DCE Cell N amespace 

This chapter describes the use of the XDS programming interface when 
accessing the CDS namespace. The first section provides an introduction to 
using XDS in the CDS namespace. Section 24.2 describes XDS objects and 
how they are used to access CDS data. Section 24.3 provides a step-by-step 
procedure for writing an XDS program to access CDS. Section 24.4 
provides examples of using the XOM interface to manipulate objects. 
Section 24.5 provides details of the structure of XDSjCDS objects. Finally, 
Section 24.6 provides translation tables between XDS and CDS for 
attributes and data types. 

24.1 Introduction to Accessing CDS with XDS 

Outside of the DCE cells and their separate namespaces is the global 
namespace in which the cell names themselves are entered, and where all 
intercell references are resolved. Two directory services participate in the 
global namespace. The first is the X.SOO-compliant Global Directory 
Service (GDS) supplied with DeE. The second is the Domain Name 
Service (DNS), which DeE interacts with, but is not a part of DeE. 

OSF DeE Application Development Guide 24-1 



CDS Application Programming 

The global and cell directory services are accessed implicitly by RPC 
applications using the NSI interface. GDS and CDS can also be accessed 
explicitly using the X/Open Directory Service (XDS) interface. With XDS, 
application programmers can gain access to GDS, a powerful general
purpose distributed database service, which can be used for many other 
things besides intercell binding. XDS can also be used to access the cell 
namespace directly, as this chapter describes. 

An XDS application looks very different from the RPC-based DCE 
applications. This is partly because there is no dependency in XDS on the 
DCE RPC interface, although you can use both interfaces in the same 
application. Also, XDS is a generalized directory interface, oriented more 
toward performing large database operations than toward fine-tuning the 
contents of RPC entries. Nevertheless, XDS can be used as a general access 
mechanism on the CDS namespace. 

24.1.1 Using the Reference Material in this Chapter 

24-2 

Complete descriptions of all the XDS and XOM functions used in CDS 
operations can be found in the the aSF DeE Application Development 
Reference, which you should have beside you as you read through the 
examples in this chapter. Definitive descriptions of all XDS and XOM class 
types can be found in Part 4C of this guide. In particular, refer to those 
chapters for information about XDS error objects, which are not discussed in 
this chapter. 

Complete descriptions for all objects required as input parameters by XDS 
functions when accessing a CDS namespace can be found in Section 24.5. 
Abbreviated definitions for these same objects can be found with all the 
others in Part 4C. XOM functions are general-purpose utility routines that 
operate on objects of any class, and take the rest of their input in 
conventional form. 

Slightly less detailed descriptions of the output objects you can expect to 
receive when accessing CDS through XDS are also given in Section 24.5. 
You do not have to construct objects of these classes yourself; you just have 
to know their general structure so that you can disassemble them using 
XOM routines. 

No information is given in this chapter about the DS _status error objects 
that are returned by unsuccessful XDS functions; a description of all the 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

subclasses of DS _status requires a chapter in itself. Code for a rudimentary 
general-purpose DS_status-handling routine can be found in the teldir.c 
XDS sample program in Chapter 28 of this guide. 

24.1.2 What You Cannot Do with XDS 

XDS allows you to perform general operations on CDS entry attributes, 
something which you cannot do through the DCE RPC NSI interface. 
However, there are certain things you cannot do to cell directory entries 
even through XDS: 

• You cannot create or modify directory entries; the ds_modify_rdnO 
function does not work in a CDS namespace. These operations must be 
performed through the CDS cdscp command. For more information, see 
the OSF DeE Administration Reference. 

• You cannot perform XDS searches on the cell namespace; the XDS 
function ds_searchO does not work. This is mainly because the CDS 
has no concept of a hierarchy of entry attributes, such as the X.500 
schema. The ds _ compare() function, however, does work. 

24.1.3 What Must Be Set Up 

If you are planning to use XDS to access the cell namespace in a one-cell 
environment (that is, your cell does not need to communicate with other 
DCE cells), you do not need to set up a cell entry in GDS for your cell 
because the XDS functions simply call the appropriate statically linked 
CDS routines to access the cell namespace. In these circumstances, XDS 
always tries to access the local cell when given an untyped (non-X.500) 
name. 

For XDS to be able to access any nonlocal cell namespace, that cell must be 
registered (that is, have an entry) in the global namespace. 

For information on setting up your cell name, see the OSF DeE 
Administration Guide. 

OSF DeE Application Development Guide 24-3 



CDS Application Programming 

24.2 XDS Objects 

24-4 

The XDS interface differs from the other DCE component interfaces in that 
it is "object oriented." The following subsections explain two things: first, 
what object-oriented programming means in terms of using XDS; and 
second, how to use XDS to access the Cell Directory Service. 

Imagine a generalized data structure that always has the same data type, and 
yet can contain any kind of data, and any amount of it. Functions could pass 
these structures back and forth in the same way all the time, and yet they 
could use the same structures for any kind of data they wanted to store or 
transfer. Such a data structure, if it existed, would be a true object. 
Programming language constructs allow interfaces to pretend that they use 
objects, although the realities of implementation are not usually so simple. 

XDS is such an interface. For the most part, XDS functions neither accept 
nor return values in any form but as objects. The objects themselves are 
indeed always the same data type; namely, pointers to arrays of object 
descriptor (C struct) elements. Contained within these OM_descriptor 
element structures are unions that can actually accommodate all the 
different kinds of values an object can be called on to hold. In order to allow 
the interface to make sense of the unions, each OM_descriptor also 
contains a syntax field, which indicates the data type of that descriptor's 
union. There is also a record of what the descriptor's value actually is; for 
example, whether it is a name, a number, an address, a list, and so on. This 
information is held in the descriptor's type field. 

These OM_descriptor elements, which are referred to as "object 
descriptors" or "descriptors," are the basic building blocks of all XDS 
objects; every actual XDS object reduces to arrays of them. Each descriptor 
contains three items: 

• A type field, which identifies the descriptor's value 

• A syntax field, which indicates the data type of the value field 

• The value field, which is a union 

Figure 24-1 illustrates one such object descriptor. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

Figure 24-1. One Object Descriptor 

type: OM_CLASS 
syntax: 010 string 
value: DS_C_DS_DN 

Note that, from an abstract point of view, syntax is just an implementation 
detail. The scheme really consists only of a type/value pair. The type gives 
an identity to the object (something like CDS entry attribute, CDS entry 
name, or DUA access point), and the value is some data associated with that 
identity, just as a variable has a name that gives meaning to the value it 
holds, and the value itself. 

In order to make the representation of objects as logical and as flexible as 
possible, these two logical components of every object, type and value, are 
themselves each represented by separate object descriptors. Thus, the first 
element of every complete object descriptor array is a descriptor whose type 
field identifies its value field as containing the name of the kind (or class) of 
this object, and the syntax field indicates how that name value should be 
read. Next is usually one (or more, if the object is multivalued) object 
descriptor whose type field identifies its value field as containing some 
value appropriate for this class of object. Finally, every complete object 
descriptor array ends with a descriptor element that is identified by its fields 
as being a NULL-terminating element. 

Thus, a minimum-size descriptor array consists of just two elements: the 
first contains its class identity, and the second is a NULL (it is legitimate for 
objects not to have values). When an object does have a value, it is held in 
the value field of a descriptor whose type field communicates the value's 
meaning. 

OSF DeE Application Development Guide 24-5 



CDS Application Programming 

Figure 24-2 illustrates the arrangement of a complete object descriptor 
array. 

Figure 24-2. A Complete Object Represented 

type: OM_CLASS 
syntax: OlD string 
value: DS_C_DS_DN 

type: DS_RDNS c::J 
syntax: OM_S_OBJECT NULL 
value: rdn1 

24.2.1 Object Attributes 

24-6 

The generic term for any object value is attribute. In this sense, an object is 
nothing but a collection of attributes, and every object descriptor describes 
one attribute. The first attribute's value identifies the object's class, and this 
determines all the other attributes the object is supposed to have. One or 
more other attributes follow, which contain the object's working values. 
The NULL object descriptor at the end is an implementation detail, and is 
not a part of the object. 

Note that, depending on the attribute it represents, a descriptor's value field 
can contain a pointer to another array of object descriptors. In other words, 
an object's value can be another object. 

OSF DCE Application Development Guide 



XDS and the DCE Cell Namespace 

Figure 24-3 shows a three-layer compound object: the top-level superobject, 
do_object, contains the subobject rdol, which in tum contains the 
subobject aval. 

Figure 24-3. A Three-Layer Compound Object 

dn object -

type: OM_CLASS type: DS_RDNS 
syntax: 010 string syntax: OM_S_OBJECT 
value: DS_C_DS_DN value: rdn1 

rdn1 / 
type: OM_CLASS type: DS_A VAS 
syntax: OlD string syntax: OM_S_OBJECT 
value: DS_C_DS_RDN value: ava1 

ava1 / 
type: DS_ATTRIBUTE_ 

type: OM_CLASS TYPE 
syntax: 010 string syntax: 010 string 
value: DS_C_AVA value: DSX_TYPELESS_ 

RON 

type: DS_ATTRIBUTE_ 
VALUES 

syntax: OM_S_TELETEX_ 
STRING 

value: "versailles" 

24.2.2 Interface Objects and Directory Objects 

GDS is comprised of objects; these are directory objects, and reflect the 
X.SOO design. The XDS interface also works with objects. However, there 
is a big difference between directory and XDS objects. Programmers do not 
work directly with the directory objects; they are composed of attributes 
that make up the directory service's implementation of entries. 

Programmers work with XDS objects. XDS objects have explicit data 
representations that can be directly manipulated with programming 
language operators. Some of these techniques are described in this chapter; 
others can be found in Chapter 28. 

XDS and GDS terminology sometimes suggests that XDS objects are 
somehow direct representations of the directory objects to which they 
communicate information. This is not the case, however. You never directly 
see or manipulate the directory objects; the XDS interface objects are used 

OSF DCE Application Development Guide 24-7 



CDS Application Programming 

24-8 

only to pass parameters to the XDS calls, which in tum request GDS (or 
CDS) to perform operations on the directory objects. The XDS objects are 
therefore somewhat arbitrary structures defined by the interface. 

Figure 24-4 illustrates the relationship between XDS (also called interface) 
objects and directory objects. The figure shows an application passing 
several properly initialized XDS objects to some XDS function; it then 
takes some action, which affects the attribute contents of certain directory 
objects. The application never works with the directory objects; it works 
with the XDS interface objects. 

A side effect of the existence of a separate XDS interface and GDS or CDS 
directory objects is the existence of attributes for both kinds of objects as 
well. Because the purpose of XDS objects is to feed data into and extract 
data from directory objects, programmers work with XDS objects whose 
attributes have directory object attributes as their values. You should keep 
in mind the distinction between directory objects and interface objects. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

Figure 24-4. Directory Objects and XDS Interface Objects 

GDS Directory Objects 
I"--------------r-. 

" I " , I , 

ON Attribute 

Attribute 

----------
Attribute 

Attribute 

~----------
Postal Code 

Attribute I 
I 

---------- : 
Attribute I 

~--------- : 
Attribute I 

I 

I : 
~------I---------~ 
", : I ' 

", : I ' 
, I , 

" I " --L ______________ ~ 
XDS Object 

Object Class Attribute 
= Attribute 

Entry Modification 

/

ds_mOdifLentry(!-> - - - ~t~;u~e -T~;e- - - Attribute 

DS_A_POSTAL_CODE 
-------------

Attribute 
XDS Function Attribute Value 

"77 Sunset Strip" 

---------------

24.2.3 Directory Objects and Namespace Entries 

The GDS namespace is a hierarchical collection of entries. The name of 
each of these entries is an attribute of a directory object. The object is 
accessed through XDS by stating its name attribute. 

Figure 24-5 shows the relationship of entry names in the GDS namespace to 
the GDS directory objects to which they refer. 

OSF DeE Application Development Guide 24-9 



CDS Application Programming 

Figure 24-5. Directory Objects and Namespace Entries 

Object Entries 
r-----------------------, 

GDS Namespace 

I ••• /C=US/O=OSF/OU=DCE 

1/ .. .IC=US/L=cambrldge/CN=KllrOy : 

I I 
I I 
I I 
----------------------

GDS Directory Objects 
~~-------------~, , , , , 

DN Attribute -
----------- 4-

, , , 

Attribute -------------- -Attribute 

-----------
Attribute 

---------
Attribute 

-----------
Attribute 

---------
Attribute 

I 
~-----f---------l,. , , : I , , , , I I , , I 

, , 
--'-l 

, I , 

" I " 
~--------------~ 

24.2.4 Values That an Object Can Contain 

24-10 

There are many different classes of objects defined for the XDS interface; 
still more are defined by the X.SOO standard for general directory use. But 
only a small number of classes are needed for XDS/CDS operations, and 
only those classes are discussed in this chapter. Information about other 
classes can be found in Part 4B of this guide. 

The class that an object belongs to determines what sort of information the 
object can contain. Each object class consists of a list of attributes that 
objects must have. For example, you would expect an object in the directory 
entry name class to be required to have an attribute to hold the entry name 
string. However, it is not sufficient to simply place a string like:· 

/ .• .IC= US/O=OSF/OU =DCE/hosts/tamburlaine/self 

into an object descriptor. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

A full directory entry name such as the preceding one is called in XDS a 
Distinguished Name (DN) , meaning that the entry name is fully qualified 
(distinct) from root to entry name. To properly represent the entry name in 
an object, you must look up the definition of the XDS distinguished name 
object class and build an object that has the set of attributes that the 
definition prescribes. 

24.2.5 Building a Name Object 

Complete definitions for all the object classes required as input for XDS 
functions can be found in Section 24.5. Among them is the class for 
distinguished name objects, called DS _ C _ DS _ DN. There you will learn 
that this class of object has two attributes: its class attribute, which 
identifies it as a DS _ C _DS _ DN object, and a second attribute, which occurs 
multiple times in the object. Each instance of this attribute contains as its 
value one piece of the full name; for example, the directory name hosts. 

The DS _ C _ DS _ DN attribute that holds the entry name piece, or Relative 
Distinguished Name, is defined by the class rules to hold, not a string, but 
another object of the Relative Distinguished Name class (DS _ C _ DS _ RDN). 

Thus, a static declaration of the descriptor array representing the 
DS _ C _ DS _ DN object would look like the following: 

static OM_descriptor 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

"""""",..."""" 
Macro to put an "OlD string" in a descrip

tor's type field and fill its other 
fields with appropriate values. 

A~~~~~~ ~~~~~~~~~~~ A~~~~~~~~~~ 

type syntax value 

(the "value" union is in fact here a 
structure; the 0 fills a pad field in 

OSF DeE Application Development Guide 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

24-11 



CDS Application Programming 

24-12 

/* 

/* 

/* 

/* 

} ; 

that structure.) 

{DS_RDNS, OM_S_OBJECT, {O, Organization_RDN}}, 
{DS_RDNS, OM_S_OBJECT, {O, Org_Uni t_RDN} } , 
{DS_RDNS, OM_S_OBJECT, {O, Hosts_Dir_RDN} } , 
{DS_RDNS, OM_S_OBJECT, {O, Tamburlaine_Dir_RDN}}, 
{DS_RDNS, OM_S_OBJECT, {O, Self_Entry _RDN} } , 

Macro to fill a descriptor with proper 
NULL values. 

*/ 

*/ 

*/ 

*/ 

The use of the OM OlD DESC and OM NULL DESCRIPTOR macros - - --
slightly obscures the layout of this declaration. However, each line contains 
code to initialize exactly one OM_descriptor object; the array consists of 
eight objects. 

The names (such as Country _ RDN) in the descriptors' value fields refer to 
the other descriptor arrays, which separately represent the relative name 
objects. (The order of the C declaration in the source file is opposite to the 
order described here.) Since DS _ C _ DS _ RDN objects are now called for, the 
next step is to look at what attributes that class requires. 

The definition for DS C DS RDN can be found in Section 24.5.2.6. This - - -
class object is defined, like DS_C_DS_DN, to have only one attribute (with 
the exception of the OM_Object attribute, which is mandatory for all 
objects). The one attribute, DS _A VAS , holds the value of one relative 
name. The syntax of this value is OM_S_OBJECT, meaning that 
DS _A VAS 's value is a pointer to yet another object descriptor array: 

static OM_descriptor 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

} ; 

Note that there should also be five other similar declarations, one for each of 
the other DS _ C _ DS _ RDN objects held in the DS _ C _ DS _ DN. 

The declarations have the same meanings as they did in the previous 
example. Country_Value is the name of the descriptor array that represents 
the object of class DS _ C _AVA, which we are now about to look up. 

The rules for the DS _ C _AVA class can be found in this chapter just after 
DS _ C _ DS _ RDN. They tell us that DS _ C _AVA objects have two attributes 
aside from the omnipresent OM_Object; namely: 

• DS ATTRIBUTE VALUES 

This attribute holds the object's value. 

• DS ATTRIBUTE TYPE - -
This attribute gives the meaning of the object's value. 

In this instance, the meaning of the string US is that it is a country name. 
There is a particular directory service attribute value for this; it is identified 
by an OlD that is associated with the label DS_A_COUNTRY_NAME (the 
aIDs held in objects are represented in string form). Accordingly, we make 
that OlD the value of DS _ATTRIBUTE_TYPE, and we make the name 
string itself the value of DS_ATTRIBUTE_ VALUES: 

static OM_descriptor CountIY_Value[] 

/* 

/* 

/* 

/\.""""""",,1\,,"""" */ 

Macro to properly */ 

fill the "value" union with the NULL-terminated string. */ 

OSF DeE Application Development Guide 24-13 



CDS Application Programming 

} ; 

There are also five other DS _ C _AVA declarations, one for each of the five 
other separate name piece objects referred to in the DS C DS_RDN 
superobjects. 

24.2.6 A Complete Object 

24-14 

The previous sections described how an object is created: you look up the 
rules for the object class you require, and then add the attributes called for 
in the definition. Whenever some attribute is defined to have an object as its 
value, you have to look up the class rules for the new object and declare a 
further descriptor array for it. In this way you continue working down 
through layers of subobjects until you reach an object class that contains no 
subobjects as values; at that point, you are finished. 

Normally, you do not statically declare objects in real applications. The 
steps outlined in the preceding text are given as a method for determining 
what an object looks like. Once you have done that, you can then write 
routines to create the objects dynamically. An example of how to do this can 
be found in the teldir.c example application in Chapter 28 of this guide. 

The process of object building is somewhat easier than it sounds. There are 
only five different object classes needed for input to XDS functions when 
accessing CDS, and only one of those, the DS _ C _DS _ DN class, has more 
than one level of subobjects. The rules for all five of these classes can be 
found in Part 4B of this guide. In order to use the GDS references, you 
should know a few things about class hierarchy. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

24.2.7 Class Hierarchy 

Object classes are hierarchically organized so that some classes may be 
located above some classes in the hierarchy and below others in the 
hierarchy. In any such system of subordinate classes, each next lower class 
inherits all the attributes prescribed for the class immediately above it, plus 
whatever attributes are defined peculiarly for it alone. If the hierarchy 
continues further down, cumulative collection of attributes continues to 
accumulate. If there were a class for every letter of the alphabet, starting at 
the highest level with A and continuing down to the lowest level with Z, and 
if each succeeding letter was a subclass of its predecessor, the Z class would 
possess all the attributes of all the other letters, as well as its own, while the 
A class would possess only the A class attributes. 

XDS/XOM classes are seldom nested more than two or at most three layers. 
All inherited attributes are explicitly listed in the object descriptions that 
follow, so you do not have to worry about class hierarchies here. However, 
the complete descriptions of XDS/XOM objects in Part 4C of this guide rely 
on statements of class inheritance to fill out their attribute lists for the 
different classes. Refer to Part 4C for information about the classes of 
objects that can be returned by XDS calls in order to be able to handle those 
returned objects. 

24.2.8 Class Hierarchy and Object Structure 

Note that class hierarchy is different from object structure. Object structure 
is the layering of object arrays that was previously described in the 
DS _ C _ DS _ DN declaration in Section 24.2.5. It occurs when one object 
contains another object as the value of one or more of its attributes. 

This is what is meant by recursive objects: one object can point to another 
object as one of its attribute values. The layering of subobjects below 
superobjects in this way is described repeatedly in Section 24.5. 

The only practical significance of class hierarchy is in determining all the 
attributes a certain object class must have. Once you have done this, you 
may find that a certain attribute requires as its value some other object. The 
result is a compound object, but this is completely determined by the 
attributes for the particular class you are looking at. 

OSF DeE Application Development Guide 24-15 



CDS Application Programming 

24.2.9 Public and Private Objects and XOM 

24-16 

In Section 24.2.5, you saw how a multilevel XDS object can be statically 
declared in C code. Now imagine that you have written an application that 
contains such a static DS _ C _ DS _ DN object declaration. From the point of 
view of your application, that object is nothing but a series of arrays, and 
you can manipulate them with all the normal programming operators, just as 
you can any other data type. Nevertheless, the object is syntactically 
perfectly acceptable to any XDS (or XOM) function that is prepared to 
receive a DS _ C _ DS _ DN object. 

Objects are also created by the XDS functions themselves; this is the way 
they usually return information to callers. However, there is a difference 
between objects generated by the XDS interface and objects that are 
explicitly declared by the application: you cannot access the former, 
private, objects in the direct way that you can the latter, public, objects. 

These two kinds of objects are the same as far as their classes and attributes 
are concerned. The only difference between them is in the way they are 
accessed. The public objects that an application explicitly creates or 
declares in its own memory area are just as accessible as any of the other 
data storage it uses. However, private objects are created and held in the 
XDS interface's own system memory. Applications get handles to private 
objects, and in order to access the private objects' contents, they have to 
pass the handles to Object Management functions. The Object Management 
(XOM) functions make up a sort of all-purpose companion interface to 
XDS. Whereas XDS functions typically require some specific class object as 
input, the XOM functions accept objects of any class and perform useful 
operations on them. 

If a private object needs to be manipulated, one of the XOM functions, 
om _get(), can be called to make a public copy of the private object. Then, 
calling the XOM om _ create() function allows applications to generate 
private objects manipulable by om _get(). The main significance of private 
as opposed to public objects is that they do not have to be explicitly 
operated on; instead, you can access them cleanly through the XOM 
interface and let it do most of the work. You still have to know something 
about the objects' logical representation, however, to use XOM. 

Except for a few more details, which will be mentioned as needed, this is 
practically all there is to XDS object representation. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

24.2.10 XOM Objects and XDS Library Functions 

To call an XDS library function, do the following: 

1. Decide what input parameters you must supply to the function. 

2. Bundle up these parameters in objects (that is, arrays of object 
descriptors) in an XDS format. 

Almost all data returned to you by an XDS function is enclosed in objects, 
which you must parse to recover the information that you want. This task is 
made almost automatic by a library function supplied with the companion 
X/Open OSI-Abstract-Data Manipulation (XOM) interface. 

With XDS, the programmer has to perform a lot of call parameter 
management, but in other respects the interface is easy to use. The XDS 
functions' dependence on objects makes them easy to call, once you have 
the objects themselves correctly set up. 

24.3 Accessing CDS Using the XDS Step-by-Step 
Procedure 

You now know all that you need to know to work with a cell namespace 
through XDS. The following subsections provide a walk-through of the 
steps of some typical XDS/CDS operations. They describe what is involved 
in using XDS to access existing CDS attributes. They then describe how 
you can create and access new CDS entry attributes. 

24.3.1 Reading and Writing Existing CDS Entry Attributes Using 
XDS 

Suppose that you want to use XDS to read some information from the 
following CDS entry: 

/ .. .IC=US/O=OSF/OU=DCE/hosts/tamburlaine/self 

OSF DeE Application Development Guide 24-17 



CDS Application Programming 

24-18 

As explained in the OSF DeE Administration Guide, the 
1.:/hostslhostnamelself entry, which is created at the time of cell 
configuration, contains binding information for the machine hostname. 
Since this is a simple RPC NSI entry, there is not very much in the entry that 
is interesting to read, but this entry is used as an example anyway as a 
simple demonstration. 

Following are the header inclusions and general data declarations. 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <xom.h> 
#include <xds.h> 
#include <xdsbdcp.h> 
#include <xdscds.h> 

Note that the xom.h and xds.h header files must be included in the order 
shown in the preceding example. Also note that the xdscds.h header file is 
brought in for the sake of DSX_TYPELESS_RDN. This file is where the 
CDS-significant OIDs are defined. The xdsbdcp.h file contains information 
necessary to the Basic Directory Contents Package, which is the basic 
version of the XDS interface you can use in this program. 

The XDS/XOM interface defines numerous object identifier string 
constants, which are used to identify the many object classes, parts, and 
pieces (among other things) that it needs to know about. In order to make 
sure that these OlD constants do not collide with any other constants, the 
interface refers to them with the string OMP _0_ prefixed to the user-visible 
form; for example, DS_C_DS_DN becomes OMP_O_DS_C_DS_DN 
internally. In order to make application instances consistent with the 
internal form, use OM_EXPORT to import all XDS-defined or XOM
defined OlD constants used in your application. 

OM_EXPORT ( DS_A_COUNTRY_NAME ) 
OM_EXPORT ( DS_A_OBJECT_CLASS ) 
OM_EXPORT ( DS_A_ORG_UNIT_NAME ) 
OM_EXPORT ( DS_A_ORG_NAME 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

OM_EXPORT ( DS_C_ATTRIBUTE ) 

OM_EXPORT ( DS_C_ATTRIBUTE_LIST 

OM_EXPORT ( DS_C_AVA ) 

OM_EXPORT ( DS_C_DS_DN ) 

OM_EXPORT ( DS_C_DS_RDN ) 

OM_EXPORT ( DS_C_ENTRY_INFO_SELECTION 

OM_EXPORT ( DSX_TYPELESS_RDN ) 

/* ... Special OlD for an untyped (i.e., non-X.SOO) "Relative */ 

/ * Distinguished Name". Defined in xdscds. h header. * / 

A further important effect of OM_EXPORT is that it builds an OM_string 
structure to hold the exported Object Identifier hexadecimal string. As 
explained in the previous chapter, aIDs are not numeric values, but strings. 
Comparisons and similar operations on aIDs must access them as strings. 
Once an OlD has been exported, you can access it using its declared name. 
For example, the hexadecimal string representation of DS _ C _ATTRIBUTE 
is contained in DS _ C _ ATTRIBUTE.elements, and the length of this string 
is contained in DS _ C _ ATTRIBUTE.length. 

24.3.1.1 Significance of Typed and Untyped Entry Names 

Next are the static declarations for the lowest layer of objects that make up 
the global name (Distinguished Name) of the CDS directory entry you want 
to read. These lowest-level objects contain the string values for each part of 
the name. Remember that the first three parts of the name (excluding the 
global prefix 1 •• '/, which is not represented): 

IC= US/O=OSF/OU=DCEI 

constitute the cell name. In this example, assume that GDS is being used as 
the cell's global directory service, so the cell name is represented in X.SOO 
format, and each part of it is typed in the object representation; for example, 
DS A COUNTRY NAME is the DS ATTRIBUTE TYPE in the - - - --
Country _ String_ Object. If you were using DNS, and the cell name were 
something like: 

osf.org.dce 

OSF DeE Application Development Guide 24-19 



CDS Application Programming 

24-20 

then the entire string osf.org.dce would be held in a single object whose 
DS ATTRIBUTE_TYPE would be DSX_TYPELESS_RDN. 

DSX_TYPELESS_RDN is a special type that marks a name piece as not 
residing in an X.SOO namespace. If the object resides under a typed X.SOO 
name, as is the case in the declared object structures, then it serves as a 
delimiter for the end of the cell name GDS looks up, and the beginning of 
the name that is passed to a CDS server in that cell, assuming that the cell 
has access to GDS; if not, such a name cannot be resolved. If the untyped 
portion of the name is at the beginning, as would be the case with the name: 

/ .. .Iosf.org.dce/hosts/zenocrate/self 

then the name is passed immediately by XDS via the local CDS (and the 
GDA) to DNS for resolution of the cell name. Thus, the typing of entry 
names determines which directory service a global directory entry name is 
sent to for resolution. 

24.3.1.2 Static Declarations 

The following are the static declarations you need: 

/*****************************************************************/ 

/* Here are the objects that contain the string values for each */ 
/* part of the CDS entry's global name... */ 

static OM_descriptor Country_String_Object[] = { 
OM_OID_DESC(OM_CLASS, DS_C_AVA), 
OM_OID_DESC (DS_ATrRIBUTE_TYPE, DS_A_COUNTRY_NAME), 
{DS_A'ITRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "US")}, 
OM_NULL_DESCRIPTOR 

} ; 

static OM_descriptor Organization_String_Object[] 
OM_OID_DESC(OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATrRIBUTE_TYPE, DS_A_ORG_NAME), 
{DS_A'ITRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "OSF" ) } , 

OM_NULL_DESCRIPTOR 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

} ; 

static OM_descriptor Org_Unit_String_Object[] = { 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME), 
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "OCE")}, 
OM_NULL_DESCRIPTOR 

} ; 

static OM_descriptor Hosts_Dir_String_Object[] = 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN), 
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "hosts") }, 
OM_NULL_DESCRIPTOR 

} ; 

static OM_descriptor Tamburlaine_Dir_String_Object[] 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN), 
{DS_ATTRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "tamburlaine" ) } , 
OM_NULL_DESCRIPTOR 

} ; 

static OM_descriptor Self_Entry_String_Object[] 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN), 
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "self n ) } , 

OM_NULL_DESCRIPTOR 
} ; 

The string objects are contained by a next-higher level of objects that 
identify the strings as being pieces (RDNs) of a fully qualified directory 
entry name (DN). Thus, the Country _ RDN object contains 
Country _ String_Object as the value of its DS _A VAS attribute; 
Organization_RDN contains Organization_String_Object, and so on. 

OSF DeE Application Development Guide 24-21 



CDS Application Programming 

24-22 

/*******************~*********************************************/ 

/* Here are the "Relative Distinguished Name" objects. 

static OM_descriptor Country_RDN[] = { 
OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {a, Country_String_Object}}, 
OM_NULL_DESCRIPTOR 

} ; 

static OM_descriptor Organization_RDN[] = { 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {a, Organization_String_Object}}, 
OM_NULL_~ESCRIP.TOR 

} ; 

static OM_descriptor Org_Unit_RDN[] = { 
OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {a, Org_Unit_String_Object}}, 
OM_NULL_DESCRIPTOR 

} ; 

static O~descriptor Hosts_Dir_RDN[] = { 
OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {a, Hosts_Dir_String_Object}}, 
OM_NULL_DESCRIPTOR 

} ; 

static OM_descriptor Tamburlaine_Dir_RDN[] = { 
OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {a, Tamburlaine_Dir_String_Object}}, 
OM_NULL_DESCRIPTOR 

} ; 

static OM_descriptor Self_Entry_RDN[] = { 
OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {a, Self_Entry_String_Object}}, 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

OM_NOLL_DESCRIPTOR 
} ; 

At the highest level, all the subobjects are gathered together in the DN 
object named Full_Entry_Name_Object. 

/*****************************************************************/ 

static OM_descriptor Full_Entry_Name_Object[] = { 
OM_OID_DESC(OM_CLASS, DS_C_DS_DN), 
{DS_RDNS, OM_S_OBJECT, {O, Country_RDN}}, 
{DS_RDNS, OM_S_OBJECT, {O, Organization_RDN}}, 
{DS_RDNS, OM_S_OBJECT, {O, Org_Uni t_RDN} } , 
{DS_RDNS, OM_S_OBJECT, {O, Hosts_Dir_RDN}}, 
{DS_RDNS, OM_S_OBJECT, {O, Tamburlaine_Dir_RDN}}, 
{DS_RDNS, OM_S_OBJECT, {O, Self_Entry_RDN}}, 
OM_NOLL_DESCRIPTOR 

} ; 

24.3.1.3 Other Necessary Objects for ds_read() 

The ds _ read( ) procedure takes requests in the form of a 
DS _ C _ENTRY_INFO _SELECTION class object. However, if you refer to 
the recipe for this object class in Section 24.5, you will find that it is much 
simpler than the name object; it contains no subobjects, and its declaration 
is straightforward. 

The value of the DS ALL ATTRIBUTES attribute specifies that all 
attributes be read from the CDS entry, w:tJ.ich is specified in the 
Full_Entry _Name_Object variable. 

Note that the term "attribute" is used slightly differently in CDS and XDS 
contexts. In XDS, attributes describe the values that can be held by various 
object classes; they can be thought of as "object ,fields." In CDS, attributes 
describe the values that can be associated with a directory entry. The 
following code fragment shows the definition of a 
DS_C_ENTRY_INFO_SELECTION object. 

OSF DeE Application Development Guide 24-23 



CDS Application Programming 

static OM_descriptor 

} ; 

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION), 
{DS_ALL_A'ITRIBUTES, OM_S_BOOLEAN, OM_TRUE}, 
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_ VALUES} , 
OM_NOLL_DESCRIPTOR 

24.3.1.4 Miscellaneous Declarations 

The following are declarations for miscellaneous variables: 

OM_workspace xdsWorkspace; 
/* ... will contain handle to our "workspace" */ 

DS_feature featureList[] = { 

} ; 

OM_STRING (OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE }, 
{ 0 } 

/* ... list of service "packages" we will want from XDS */ 

session; 
/* ... will contain handle to a bound-to directory session */ 

DS_status dsStatus; 
/* ... status return from XDS calls */ 

OM_return_code omStatus; 
/* ... status return from XOM calls */ 

OM_sint durrrrny; 
/* ... for unsupported ds_read() argument */ 

readResultObject; 
/* ... to receive entry information read from CDS by "ds_read()" */ 

24-24 OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

OM_type I_want_entry _obj ect [] = {DS_ENTRY, OM_NO_MORE_TYPES}; 

OM_type I_want_attribute_list [] = {DS_ATI'RIBDTES, OM_NO_MORE_TYPES}; 

OM_type I_want_attribute_value[] = {DS_A'ITRIBDTE_VALUES, OM_NO_MORE_TYPES}; 

/* ... arrays to pass to "oID-9"et()" to extract subobjects */ 

/* from the result object returned by "ds_read()" */ 

OM_value-position number_of_descriptors; 

/* ... to hold number of attribute descriptors returned */ 

/* by "OID-9"et () * / 

OM-public_object entry; 

/* ... to hold public object returned by "OID-9"et () " */ 

24.3.1.5 The Main Program 

This section describes the main program. Three calls usually precede any 
use ofXDS. 

First, ds Jnitialize() is called to set up a workspace. A workspace is a 
memory area in which XDS can generate objects that will be used to pass 
infonnation to the application. If the call is successful, it returns a handle 
that must be saved for the ds _shutdown() call. If the call is unsuccessful, it 
returns NULL, but this example does not check for errors. 

xdsWorkspace = ds_initialize(); 

If GDS is being used as the global directory service, the service packages 
are specified next. Packages consist of groups of objects, together with the 
associated supporting interface functionality, designed to be used for some 
specific end. For example, to access the (X.500) Global Directory, specify 
DSX _ GDS _ PKG. This example uses the basic XDS service so 
DS_BASIC_DIR_CONTENTS PKG is specified. The JeatureList 
parameter to ds_versionO is an array, not an object, since packages are not 
being handled yet: 

dsStatus = ds_version(featureList, xdsWorkspace); 

OSF DeE Application Development Guide 24-25 



CDS Application Programming 

Note that if you are not using GDS as your global directory service (in other 
words, if you are using XDS by itself), then you should not call 
ds _ version(). 

From this point on, status is returned by XDS functions via a DS _status 
variable. DS _status is a handle to a private object, whose value is 
DS_SUCCESS (that is, NULL) if the call was successful. If something 
went wrong, the information in the (possibly complex) private error object 
has to be analyzed through calls to offi_getO, which is one of the general
purpose object management functions that belongs to XDS's companion 
interface XOM. Usage of offi_getO is demonstrated later on in this 
program, but return status is not checked in this example. 

The third necessary call is to ds _ bind(). This call brings up the directory 
service, which binds to a Directory System Agent (DSA), the GDS server, 
through a Directory User Agent (DUA), the GDS client. The 
DS_DEFAULT_SESSION parameter calls for a default session. The 
alternative is to build and fill out your own DS _ C _SESSION object, 
specifying such things as DSA addresses, and pass that. The default is used 
in this example: 

dsStatus = ds_bind(DS_DEFAULT_SESSION, xdsWorkspace, &session)i 

24.3.1.6 Reading a CDS Attribute 

At this point, you can read a set of object attributes from the cell namespace 
entry. Call ds _read() with the two objects that specify the entry to be read 
and the specific entry attribute you want: 

dsStatus = ds_read(session, DS_DEFAULT_CONTEXT, Full_Entry_Name_Object, 
Entry_Info_Select_Object, &readResultObject, &dummy)i 

24-26 

The DS_DEFAULT_CONTEXT parameter could be substituted with a 
DS _ C _CONTEXT object, which would typically be reused during a series 
of related XDS calls. This object specifies and records how GDS should 
perform the operation, how much progress has been made in resolving a 
name, and so on. 

If the call succeeds, the private object readResultObject contains a series 
of DS _ C _ATTRIBUTE subobjects, one for each attribute read from the cell 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

name entry. A complete recipe for the DS_C_READ_RESULT object can 
be found in Chapter 30, but the following is a skeletal outline of the object's 
structure: 

DS_C_READ_RESULT 
DS_ENTRY: object (DS_C_ENTRY_INFO) 
DS_ALIAS_DEREFERENCED: OM_S_BOOLEAN 
DS_PERFORMER: object (DS_C_NAME) 

DS_C_ENTRY_INFO 
DS_FROM_ENTRY: OM_S_BOOLEAN 
DS_OBJECT_NAME: object (DS_C_NAME) 
DS_ATTRIBUTES: one or more object(DS_C_ATTRIBUTE) 

DS_C_NAME == DS_C_DS_DN 
DS_RDNS: object (DS_C_DS_RDN) 

DS_C_DS_RDN 
DS_AVAS: object (DS_C_AVA) 

DS_C_AVA 
DS_ATTRIBUTE_TYPE: OlD string 
DS_ATTRIBUTE_ VALUES: anything 

DS_C_ATTRIBUTE -one for each attribute read 
DS_ATTRIBUTE_TYPE: OlD string 

DS_ATTRIBUTE_ VALUES: anything 

DS_C_ATTRIBUTE 
DS_ATTRIBUTE_TYPE: OlD string 
DS_ATTRIBUTE_ VALUES: anything 

Figure 24-6 illustrates the general object structure of a 
DS_C_READ_RESULT, showing only the object-valued attributes, and 
only one DS _ C _ATTRIBUTE subobject. 

OSF DeE Application Development Guide 24-27 



CDS Application Programming 

Figure 24-6. The DS_C_READ_RESULT Object Structure 

24-28 

24.3.1.7 Handling the Result Object 

The next goal is to extract the instances of the OS C ATTRIBUTE 
subsubc1ass, one for each attribute read, from the returned object. The first 
step is to make a public copy of readResultObject, which is a private 
object, and therefore does not allow access to the object descriptors 
themselves. Using the XOM om_getO function, you can make a public 
copy of readResultObject, and at the same time specify that only the 
relevant parts of it be preserved in the copy. Then with a couple of calls to 
om _get(), you can reduce the object to manageable size, leaving a 
superobject whose immediate subobjects are fairly easily accessed. 

The om_getO function takes as its third input parameter an OM_type_list, 
which is an array of OM_type. Possible parameters are OS_ENTRY, 
OS_ATTRIBUTES, OS_ATTRIBUTE_VALUES, and anything that can 

OSF DCE Application Development Guide 



XDS and the DCE Cell Namespace 

legitimately appear in an object descriptor's type field. The types specified 
in this parameter are interpreted according to the options specified in the 
preceding parameter. For example, the relevent attribute from the read 
result is DS _ENTRY. It contains the DS _ C _ENTRY_INFO object, which 
in tum contains the DS C ATTRIBUTE objects. The 
DS _ C _ATTRIBUTE objects contain the data read from the cell directory 
name entry. Therefore, you should specify the 
OM_EXCLUDE_ALL_BUT_THESE_TYPES option, which has the 
effect of excluding everything but the contents of the object's DS_ENTRY 
type attribute. 

The OM_EXCLUDE_SUBOBJECTS option is also ORed into the 
parameter. Why would you not preserve the subobjects of 
DS _ C _ENTRY_INFO? Because om _get() works only on private, not on 
public, objects. If you were to use om _get( ) on the entire object 
substructure, you would not be able to continue getting the subobjects, and 
instead you would have to follow the object pointers down to the 
DS _ C _ATTRIBUTEs. However, when om _get() excludes subobjects from 
a copy, it does not really leave them out; it merely leaves the subobjects 
private, with a handle to the private objects where pointers would have 
been. This allows you to continue to call om _get() as long as there are 
more subobjects. 

The following is the first call: 

/* The DS_C_READ_RESULT object that ds_read() returns has */ 
/ * one subobj ect, DS_C_ENTRY_INFO; it in turn has two sub- * / 
/* objects, i.e. a DS_C_NAME which holds the object's di- */ 
/* stinguished name (which we don't care about here), and */ 
/* a DS_C_ATTRIBUTE which contains the attribute info we */ 
/* read; that one we want. So we climb down to it... */ 

/* This OID--9"et () will "return" the entry-info object... * / 

omStatus = oID--9"et(readResultObject, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES + 

OM_EXCLUDE_SUBOBJECTS, 
I_want_entry_object, 
OM_FALSE, 
OM_ALL_ VALUES, 
OM_ALL_ VALUES, 
&entry, 
&number_of_descriptors); 

OSF DeE Application Development Guide 24-29 



CDS Application Programming 

24-30 

The number_of _descriptors parameter contains the number of attribute 
descriptors returned in the public copy, not in any excluded sUbobjects. 

If an XOM function is successful, it returns an OM_SUCCESS code. 
Unsuccessful calls to XOM functions do not return error objects, but rather 
return simple error codes. The interface assumes that if the XOM function 
does not accept your object, then you will not be able to get much 
information from any further objects. The return status is not checked in 
this example. 

The return parameter entry should now contain a pointer to the 
DS _ C _ENTRY.;... INFO object with the following immediate structure. (The 
number of instances of DS _ATTRIBUTES depends on the number of 
attributes read from the entry.) 

DS_C_ENTRY_INFO 
DS_FROM_ENTRY: OM_S_BOOLEAN 
DS_OBJECT_NAME: object (DS_C_NAME) 
DS_ATTRIBUTES: object (DS_C_ATTRIBUTE) 

DS C ATTRIBUTE 
DS_ATTRIBUTE_TYPE: OlD string 
DS _ATTRIBUTE_VALUES: anything 

DS_ATTRIBUTES: object (DS_C_ATTRIBUTE) 
object (DS_C_ATTRIBUTE) 

DS C ATTRIBUTE 
DS_ATTRIBUTE_TYPE: OlD string 
DS _ATTRIBUTE_VALUES: anything 

The italics indicate private subobjects. Figure 24-7 shows the 
DS _ C _ENTRY_INFO object. Only one instance of a 
DS _ C _ATTRIBUTE subobject is shown in the figure; usually there are 
several such subobjects, all at the same level, each containing information 
about one of the attributes read from the entry. These subobjects are 
represented in DS _ C _ENTRY_INFO as a series of descriptors of type 
DS _ATTRIBUTES, each of which has as its value a separate 
DS _ C _ATTRIBUTE subobject. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

Figure 24-7. The OS_ENTRY _INFO Object Structure 

DS C ENTRY 
INFO - -

~ ----
~~--------~-~---------I 

I I 

DS_C_DS_DN : DS_C_ATTRIBUTE : 

I I 
L.. _________ J 

Now extract the separate attribute values of the entry that was read. These 
were returned as separate object values of DS _ATTRIBUTES; each one has 
an object class of DS _ C _ATTRIBUTE. To return anyone of these 
subobjects, a second call to om _get( ) is necessary, as follows. 

/* The second om~et() returns one selected sub-object */ 

/* from the DS_C_ENTRY_INFO subobject we just got. The */ 

/* contents of "entry" as we enter this call is the pri */ 

/* vate subobject which is the value of DS_ATTRIBUTES. If */ 

/* we were to make the following call with the 
/* OM_EXCLUDE_SUBOBJECTS and without the 
/ * OM_EXCLUDE_ALL_BUT_THESE_ VALUES flags I we would get 

OSF DeE Application Development Guide 

*/ 

*/ 

*/ 

24-31 



CDS Application Programming 

24-32 

/* back an object consisting of six private subobjects, */ 

/* one for each of the attributes returned. Note the val- */ 

/* ues for initial and limiting position: "2" specifies */ 

/* that we want only the third DS_C_ATTRIBUTE subobject */ 

/* to be gotten (the subobjects are numbered from 0, not */ 

/* from one), and the "3" specifies that we want no more */ 

/* than that-- in other words, the limiting value must al- */ 

/* ways be one more than the initial value if the latter */ 

/* is to have any effect. OM_EXCLUDE_ALL_BUT_THESE_VALUES * / 

/* is likewise required for the initial and limiting val- */ 

/* ues to have any effect... */ 

ornStatus = om~et(entry->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 
+ OM_EXCLUDE_SUBOBJECTS 
+ OM_EXCLUDE_ALL_BUT_THESE_VALUES, 
I_want_attribute_list, 
OM_FALSE, 
((OM_value-position) 2}, 
((OM_value-position) 3}, 
&entry, 
&number_of_descriptors}i 

Note the value that is passed as the first parameter. Since om _get() does 
not work on public objects, pass it the handle of the private subobject 
explicitly. To do this you have to know the arrangement of the descriptor's 
value union, which is defined in xom.h. 

24.3.1.8 Representation of Object Values 

The following is the layout of the object field in a descriptor's value union: 

typedef struct { 
OM_uint32 
OM_object 

OM-padded_objecti 

padding; 
object; 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

The following is the layout of the value union itself: 

OM_string 
OM_boolean 

string; 
boolean; 

OM_enumeration enumeration; 
OM_integer integer; 
OM-padded_object object; 

} OM_value; 

The following is the layout of the descriptor itself: 

typedef struct OM_descriptor_struct { 
OM_type type; 
OM_syntax 
union OM_value_union 

OM_descriptor; 

syntax; 
value; 

Thus, if entry is a pointer to the DS _ C _ENTRY_INFO object, then 
entry->value.object.object is the private handle to the 
DS _ C _ATTRIBUTE object that you want next. 

24.3.1.9 Extracting an Attribute Value 

The last call yielded one separate DS _ C _ATTRIBUTE subsubobject from 
the original returned result object: 

DS_C_A'ITRIBUTE 
DS_ATTRIBUTE_TYPE: OlD string 
DS_ATTRIBUTE_ VALUES: anything 

Figure 24-8 illustrates what is left. 

OSF DeE Application Development Guide 24-33 



CDS Application Programming 

Figure 24-8. The DS_C_ATTRIBUTE Object Structure 

24-34 

r---------. 
I I 

: DS_C_ATTRIBUTE : 

I I L..... _________ J 

A final call to om _get( ) returns the single object descriptor that contains the 
actual value of the single attribute you selected from the returned object: 

omStatus = om-get{entry->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES, 

I_want_attribute_value, 
OM_FALSE, 

OM_ALL_ VALUES, 

OM_ALL_VALUES, 

&entry, 
&number_of_descriptors); 

At this point, the value of entry is the base address of an object descriptor 
whose entry->type is DS_ATTRIBUTE_ VALUES. Depending on the 
value found in entry->syntax, the value of the attribute can be read from 
entry->value.string, entry->value.integer, entry->value.boolean, or 
entry->value.enumeration. For example, suppose the value of 
entry->syntax is OM_S_OCTET_STRING. The attribute value, 
represented as an octet string (not terminated by a NULL), is found in 
entry->value.string.elements; its length is found in 
entry->value.string.length. 

You can check any attribute value against the value you get from the cdscp 
command by entering: 

cdscp show object 1.:/hosts/tamburlaine/self 

For further information on cdscp, see the aSF DeE Administration 
Reference. 

OSF DCE Application Development Guide 



XDS and the DCE Cell Namespace 

Note that you can always call om_getO to get theentire returned object 
from an XDS call. This yields a full structure of object descriptors that you 
can manipulate like any other data structure. To do this with the ds_readO 
return object would have required the following call: 

/* make a public copy of ENTIRE object... */ 

ornStatus = orn~et(readResultObject, 
OM_NO_EXCLUSIONS, 
((OM_type_list) 0), 

OM_FALSE, 
((OM_value-position) 0), 
((OM_value-position) 0), 
&entry, 
&number_of_descriptors); 

At the end of every XDS session you have to unbind from the GDS, and then 
deallocate the XDS and XOM structures and other storage. You must also 
explicitly deallocate any service-generated objects, whether public or 
private, with calls to om deJete(), as follows: 

/* delete service-generated public or private objects ... */ 

omStatus om_delete(readResultObject); 
omStatus om_delete(entry); 

/* unbind from the GDS ... */ 
dsStatus = ds_unbind(session); 

/* close down the workspace ... */ 

dsStatus = ds_shutdown(xdsWorkspace); 

exit () ; 

OSF DeE Application Development Guide 24-35 



CDS Application Programming 

24.3.2 Creating New CDS Entry Attributes 

24-36 

The following subsections provide the procedure and some code examples 
for creating new CDS entry attributes. 

24.3.2.1 Procedure for Creating New Attributes 

To create new attributes of your own on cell namespace entries, you must do 
the following: 

1. Allocate a new ISO Object Identifier (OlD) for the new attribute. For 
information on how to do this, see Chapter 2 of this guide, and the 
OSF DCE Administration Guide. 

2. Enter the new attribute's name and OlD in the 
/.:/opt/dcelocal/etc/cds _attributes file. This text file contains OID
to-readable string mappings that are used, for example, by the CDS 
administration command cdscp when it displays CDS entry attributes. 
Each entry also gives a syntax for reading the information in the entry 
itself. This should be congruent with the format of the data you intend 
to write in the attribute. For more information about the 
cds_attributes file, see the OSF DCE Administration Guide. 

3. In the xdscds.h header file, define an appropriate OlD string constant 
to represent the new attribute. 

For example, the following shows the xdscds.h definition for the CDS 
CDS Class attribute: 

"\x2B\x16\xOl\x03\xOF" 

Note the XDS internal form of the name. This is what 
DSX _ A_CDS _ Class looks like when it has been exported using 
OM_EXPORT in an application, as all aIDs must be. Thus, if you 
wanted to create a CDS attribute called CDS_Brave _New _ Attrib, 
you would obtain an OlD from your administrator and add the 
following line to xdscds.h: 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

4. In an application, call the XDS ds _modify _ entry() routine to add the 
attribute to the cell namespace entry of your choice. 

24.3.2.2 Coding Examples 

In the following code fragments a set of declarations similar to those in the 
previous examples is assumed. 

The ds _modify _ entry() function, which is called to add new attributes to 
an entry or to write new values into existing attributes, requires a 
DS _ C _ENTRY_MOD _LIST input object whose contents specify the 
attributes and values to be written to the entry. The name, as always, is 
specified in a DS _ C _ DS _ DN object. 

OSF DeE Application Development Guide 24-37 



CDS Application Programming 

The following is a static declaration of such a list, which consists of two 
attributes: 

static OM_descriptor Entry_Modification_Object_l[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_ENTRY_MOD), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Brave_New_Attrib}, 
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, 

OM_STRING("O brave new attribute"}}, 
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE}, 
OM_NULLyESCRIPTOR 

static OM_descriptor Entry_Modification_Object_2[] 

} ; 

OM..;...OID_DESC (OM_CLASS, DS_C_ENTRY_MOD), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class}, 
{DS_ATTRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "Miscellaneous" ) } , 
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE}, 
OM_NULL_DESCRIPTOR 

static OM_descriptor Entry_Modification_List_Object[] = { 

} ; 

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST}, 
{DS_CHANGES, OM_S_OBJECT, {O, Entry_Modification_Object_l}}, 
{DS_CHANGES, OM_S_OBJECT, {O, Entry_Modification_Object_2}}, 
OM_NULL_DESCRIPTOR 

A full description of this object can be found in Section 24.5. There could 
be any number of additional attribute changes in the list; this would mean 
additional DS _ C _ENTRY_MOD objects declared, and an additional 
DS _CHANGES descriptor declared and initialized in the 
DS _ C _ENTRY_MOD _LIST object. 

With the DS _ C _ENTRY_MOD _LIST class object having been declared as 
shown previously, the following code fragment illustrates how to call XDS 
to write a new attribute value (actually two new values since two attributes 
are contained in the list object). Note that any of the attributes may be new, 
although the entry itself must already exist. 

24-38 OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

dsStatus = ds_modify_entry(session, /* Directory session from "ds_bind()" */ 
DS_DEFAULT_CONTEXT, /* Usual directory context */ 

Full_Entry_Name_Object, /* Entry name object */ 

Entry_Modification_List_Object, /* Entry Modifi- */ 

/* cation object */ 

&durmny) ; /* Unsupported argument */ 

If the entire entry is new, you must call ds_add_entryO. This function 
requires an input object of class DS _ C _ATTRIBUTE_LIST, whose 
contents specify the attributes (and values) to be attached to the new entry. 
Following is the static declaration for an attribute list that contains three 
attributes: 

static OM_descriptor Class_Attribute_Object[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_A'ITRIBUTE), 
OM_OID_DESC(DS_A'ITRIBUTE_TYPE, DSX_A_CDS_Class), 
{DS_A'ITRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "Printer")}, 
OM_NULL_DESCRIPTOR 

static OM_descriptor ClassVersion_Attribute_Object[] = { 

} ; 

OM_OID_DESC(OM_CLASS, DS_C_A'ITRIBUTE), 
OM_OID_DESC(DS_A'ITRIBUTE_TYPE, DSX_A_CDS_ClassVersion), 
{DS_A'ITRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "1. 0" ) } , 
OM_NULL_DESCRIPTOR 

static OM_descriptor My_Own_Attribute_Object[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_A'ITRIBUTE), 
OM_OID_DESC(DS_A'ITRIBUTE_TYPE, DSX_A_CDS_My_OwnAttribute), 
{DS_A'ITRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "zorro") } , 
OM_NULL_DESCRIPTOR 

OSF DeE Application Development Guide 24-39 



CDS Application Programming 

static OM_descriptor Attribute_List_Object[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_A'ITRIBDTE_LIST), 
{DS_A'ITRIBDTES, OM_S_OBJECT, {O, Class_Attribute_Object}}, 
{DS_A'ITRIBDTES, OM_S_OBJECT, {O, ClassVersion_Attribute_Object}}, 
{DS_A'ITRIBDTES, OM_S_OBJECT, {O, My_Own_Attribute_Object}}, 
OM_NULL_DESCRIPTOR 

The ds_add_entryO function also requires a DS_ C_DS_DN class object 
containing the new entry's full name, for example: 

/ .. .Iosf.org.dce/subsys/doc/my _book 

where every member of the name exists except for the last one, my_book. 
Assuming that Full_Entry_Name_Object is a DS_C_DS_DN object, the 
following code shows what the call would look like: 

dsStatus = ds_add_entry (session, / * Directory session from "ds_bind ()" * / 
DS_DEFAULT_CONTEXT, /* Usual directory context */ 

Full_Entry_Name_Object, /* Name of new entry */ 

Attribute_List_Object, /* Attributes to be attached */ 

/* to new entry, with values 
&dUIIlITW) ; /* Unsupported argument 

*/ 

*/ 

24.4 Object-Handling Techniques 

24-40 

The following subsections describe the use of XOM and discuss dynamic 
object creation. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

24.4.1 Using XOM to Access CDS 

The following code fragments demonstrate an alternative way to set up the 
entry modification object for a ds _modify _ entry() call, mainly for the sake 
of showing how the om _put() and om _ write( ) functions are used. 

The following technique is used to initialize the modification object: 

1. The om _ create() function is called to generate a private object of a 
specified class. 

2. The om _put() function is called to copy statically declared attributes 
into a declared private object. 

3. The om _ writeO function is called to write the value string, which is 
to be assigned to the attribute, into the private object. 

4. The om _get( ) function is called to make the private object public. 

5. The object is now public, and its address is inserted into the 
DS_C_ENTRY_MOD_LISTobject's DS_CHANGES attribute. 

The following new declarations are necessary: 

OM-private_object newAttributeMod-priv; 
/* ... handle to a private object to "om-put()" to */ 

OM-public_object newAttributeMod-pub; 
/* ... to hold public object from "om---9"et()" */ 

OM_type types_to_include [] = {DS_A'ITRIBUTE_TYPE, DS_A'ITRIBUTE_ VALUES, 
DS_MOD_TYPE, OM_NO_MORE_TYPES}; 

/* ... i.e., all attribute values of the Entry Modification */ 
/* object. For "om-put ()" and "om---9"et () " * / 

char *my_string = "0 brave new attribute"; 
/* ... value I want to write into attribute */ 

OM_value-position number_of_descriptors; 
/* ... to hold value returned by "om---9"et () " */ 

OSF DeE Application Development Guide 24-41 



CDS Application Programming 

First, use XOM to generate a private object of the desired class: 

omStatus om_create (DS_C_ENTRY_MOD, /* Class of object */ 

OM_TRUE, /* Initialize attributes per defaults */ 

xdsWorkspace, /* OUr workspace handle */ 

&newAttributeMod-priv); /* Created object handle */ 

Next, copy the public object's attributes into the private object: 

omStatus om-put(newAttributeMod-priv, /* Private object to copy */ 

/* attributes into */ 

OM_REPLACE_ALL, /* Which attributes to replace in */ 

/* destination object */ 

Entry_Modification_Object, /* Source object to copy */ 

/* attributes from */ 

types_to_include, /* List of attribute types we want */ 

/* copied * / 
0, 0); /* Start-stop index for multivalued attri- */ 

/* butes; ignored with OM_REPLACE_ALL */ 

Since om_putO ignores the class of the source object (the object from 
which attributes are being copied), it is not necessary to declare class 
descriptors for the source objects. In other words, the static declarations 
could have omitted the OM_CLASS initializations if this technique were 
being used, for example: 

static OM_descriptor Entry_Modification_Object_2[] 
/* OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD), */ 

/* 

} ; 

Not needed for "om-put ( ) " ... */ 

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class), 
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "Miscellaneous") }, 
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATrRIBUTE}, 
OM_NOLL_DESCRIPTOR 

24-42 OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

The OM_CLASS was already properly initialized by om _ create( ). 

Next, write the attribute value string into the private object: 

omStatus om_write(newAttributeMod-priv,/* Private object to write to */ 
DS_ATTRIBUTE_VALUES, /* Attribute type whose value */ 

omStatus 

/* we're writing */ 

0, /* Descriptor index if attribute is multivalued */ 
OM_S_PRINTABLE_STRING, /* Syntax of value */ 
0, /* Offset in source string to write from */ 
my_string}; /* Source string to write from */ 

Now make the whole thing public again: 

om~et(newAttributeMod-priv, /* 
0, /* 
types_to_include, /* 
0, /* 

Private object to get 
Get everything 
All attribute types 
Unsupported argument 

*/ 

*/ 

*/ 

*/ 

0, 0, /* Start-stop descriptor index for multi-val- */ 
/* ued attributes; ignored in this case */ 

&new At tributeMod-pub, /* Pointer to returned copy * / 
&number_of_descriptors}; /* Number of attribute */ 

/* descriptors returned */ 

Finally, insert the address of the subobject into its superobject: 

Entry_Modification_List_Object[l].value.object.object newAttributeMod-pub; 

OSF DeE Application Development Guide 24-43 



CDS Application Programming 

24.4.2 Dynamic Creation of Objects 

Objects can be completely dynamically allocated and initialized; however, 
you have to implement the routines to do this yourself. The examples in this 
section are code fragments; for complete examples, see Chapter 28. 

Initialization of object structures can be automated by declaring macros or 
functions to do this. For example, the following macro initializes one object 
descriptor with a full set of appropriate values: 

/* Put a C-style (NULL-terminated) string into an object, and */ 

/* set all the other descriptor fields to requested values ... */ 

#define FILL_OMD_STRING( desc, index, typ, syntx, val ) \ 
desc[index].type = typ; \ 
desc[index].syntax = syntx; \ 
desc[index] .value. string. length = (OM_element-position)strlen(val); \ 
desc[index].value.string.elements = val; 

When generating objects, use malloc() to allocate space for the number of 
objects desired, and then use macros (or functions) such as the preceding 
one to initialize the descriptors. The following code fragment shows how 
this can be done for the top-level object of aDS _ C _ DS _ DN, such as the one 
described near the beginning of this chapter. Recall that the DS _ C _ DS _DN 
has a separate DS _ RDNS descriptor for each name piece in the full name. 

/* Calculate number of "DS_RDNS" attributes there should be ... */ 

numberOfPieces = number _01_ name yieces; 

/* Allocate space for that many descriptors, plus one for the */ 

/* object class at the front, and a NULL descriptor at the */ 

/* back... */ 
Name_Object = (OM_object)malloc((numberOfPieces + 2) * sizeof(OM_descriptor)); 
if (Name_Object == NULL) /* "malloc ()" failed * / 
return OM_MEMORY_INSUFFICIENT; 

/* Initialize it as a DS_C_DS_DN object b¥ placing that class */ 

/* identifier in the first position ... */ 

24-44 OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

FILL_OMD_XOM_STRING (Name_Object , 0, OM_CLASS, 
OM_S_OBJECT_IDENTIFIER_STRING, DS_C_DS_DN) 

Note that all of these steps would have to be repeated for each of the 
DS _ C _ DS _ RDN objects required as attribute values of the DS _ C _ DS _ DN. 
Then a tier of DS _ C _ A V A objects would have to be created in the same 
way, since each of the DS_C_DS_RDNs requires one of them as its 
attribute value. 

You could now use om _ create{) and om jlut{) to generate a private copy 
of this object, if so desired. 

The application is responsible for managing the memory it allocates for 
such dynamic object creation. 

24.5 XDS/CDS Object Recipes 

The following subsections contain shorthand for object classes. For 
example, if you look at the reference pages for the ds _ ... {) functions, you 
will see that an object of class DS _ C _NAME is required to hold entry 
names you want to pass to the call, not DS _ C _ DS _ DN as is stated in this 
chapter. However, DS _ C _NAME is in fact an abstract class with only one 
subclass, DS_C_DS_DN, so in this chapter, DS_C_DS_DN is used. 

24.5.1 Input XDS/CDS Object Recipes 

In general, the objects you work with in an XDSjCDS application fall into 
two categories: 

• Objects you have to supply as input parameters to XDS functions 

• Objects returned to you as output by XDS functions 

This section describes only the first category, since you have to construct 
these input objects yourself. 

Table 24-1 shows XDS functions and the objects given to them as input 
parameters. 

OSF DeE Application Development Guide 24-45 



CDS Application Programming 

Only items significant to CDS are listed in the table. DS _ C _SESSION and 
DS_C_CONTEXT are ignored. DS_C_SESSION is returned by 
ds_hind(), which usually receives the DS_DEFAULT_SESSION constant 
as input. DS _ C _CONTEXT is usually substituted by the 
DS DEFAULT CONTEXT constant. - -
Note: DS _ C _NAME is an abstract class that has the single subclass 

DS_C_DS_DN. Therefore, DS_C_NAME is practically the 
same thing as DS_C_DS_DN. 

Table 24-1. Directory Service Functions with their Required Input Objects 

Function Input Object 

ds_add_entry( ) DS_C_NAME 
DS_C_ATTRIBUTE_LlST 

ds_bind() None 
ds_compare( ) DS_C_NAME 

DS_C_AVA 
ds_initialize( ) None 
ds_list( ) DS_C_NAME 
ds_modify_entry( ) DS_C_NAME 

DS_C_ENTRY _MOD_LIST 
ds_read() DS_C_NAME 

OS _ C _ENTRY_INFO _SELECTION 
ds_remove_entry( ) DS_C_NAME 
ds_shutdown( ) None 
ds_unbind( ) None 
ds_version( ) None 

24.5.2 Input Object Classes for XDS/CDS Operations 

24-46 

The following subsections contain information about all the object types 
required as input to any of the XDS functions that can be used to access the 
CDS. In order to use these functions successfully, you must be able to 
construct and modify the objects that the functions expect as their input 
parameters. XDS functions require most of their input parameters to be 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

wrapped in a nested series of data structures that represent objects, and 
these functions deliver their output returns to callers in the same object 
form. 

Objects that are returned to you by the interface are not difficult to 
manipulate because the om _get() function allows you to go through them 
and retrieve only the value parts you are interested in, and discard the parts 
of data structures you are not interested in. Some examples of how to do 
this are given in Section 26.7.2.2. However, any objects you are required to 
supply as input to an XDS or XOM function are another matter: you must 
build and initialize these object structures yourself. 

The basics of object building have already been explained earlier in this 
chapter. Each object described in the following subsections is accompanied 
by a static declaration in C of a very simple instance of that object class. 
The objects in an application are usually built dynamically (this technique 
was demonstrated earlier in this chapter). The static declarations that 
follow give a simple example of what the objects look like. 

An object's properties, such as what sort of values it can hold, how many of 
them it can hold, and so on, are determined by the class the object belongs 
to. Each class consists of one or more attributes that an object can have. 
The attributes hold whatever values the object contains. Thus, the objects 
are data structures that all look the same (and can be handled in the same 
way) from the outside, but whose specific data fields are determined by the 
class each object belongs to. At the abstract level, objects consist of 
attributes, just as structures consist fields. 

24.5.2.1 XDS/CDS Object Types 

Following is a list of all the object types that are described in the following 
subsections. Most of these objects are object structures; that is, compounds 
consisting of superobjects that contain subobjects as some of their values. 
These latter may in tum contain other objects, and so on. Subobjects are 
indicated by indentation. A DS _ C _ DS _ DN object contains at least one 
DS _ C _ DS _ RDN object, and each of the latter contains one DS _ C _AVA 
object. Note that subobjects can, and often do, exist by themselves, 
depending on what object class is called for by a given function. 

OSF DeE Application Development Guide 24-47 



CDS Application Programming 

24-48 

This list contains all the possible kinds of objects that can be required as 
input for any XDS/CDS operation: 

• OS C ATTRIBUTE LIST - - -
- OS C ATTRIBUTE 

• OS C OS ON - - -
- OS C OS RON - - -

- OS CAVA 

• OS C ENTRY MOO LIST - - - -
- OS C ENTRY MOO - - -

• OS C ENTRY INFO SELECTION - - - -
In each section, information is provided for the described object's attributes. 
All of its attributes are listed. 

The illustrations in the following sections can be compared to the same 
object classes' tabular definitions in Chapter 30. 

A OS _ C _ATTRIBUTE_LIST class object is required as input to 
ds _add _ entry(). The object contains a list of the directory attributes you 
want associated with the entry that is to be added. 

Its general structure is as follows: 

• Attribute List class type attribute 

• Zero or more Attribute objects: 

- Attribute class type attribute 

- Attribute Type attribute 

- Zero or more Attribute Value(s) 

Thus, a OS _ C _ATTRIBUTE_LIST object containing one attribute consists 
of two object descriptor arrays because each additional attribute in the list 
requires an additional descriptor array to represent it. The subobject arrays' 
names (that is, addresses) are the contents of the value fields in the 
OS_ATTRIBUTES object descriptors. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

Figure 24-9 shows the attributes of the DS _ C _ATTRIBUTE_LIST object. 

Figure 24-9. The DS_C_ATTRIBUTE_LlST Object 

DS C ATIRIBUTE LIST Object - - r ~y;e: ;S -A:;;'~~~; 1 r-type = OM_CLASS type = DS_ATIRIBUTES 
syntax = OM_S_OBJECT_ syntax = OM_S_OBJECT I - I I 

IDENTIFIER_STRING - [DS_C_ATIRIBUTE] W LJ 
value = DS C val/ 1 I I I 

ATTRIBUTE_LIST I I I L __________ .J L_ 

100'Y./ o or More 

DS_C_ATIRIBUTE Object 

type = OM_CLASS type = DS_ATIRIBUTE_ type = DS_ATIRIBUTE_ 
syntax = OM_S_OBJECT_ TYPE VALUES 

IDENTIFIER_STRING I-- syntax = OM_S_OBJECT_ r- syntax = any f---
value = DS C IDENTIFIER_STRING value = any 

ATTRIBUTE value = ... 

1 Only 1 Only 1 or More 

r -t;e-: ~; ;~;.;; 1 r-
I VALUES - I I 

LJ LJ 
I I I 
I I I L __________ .J L_ 

• OM CLASS 
The value of this attribute is an OlD string that identifies the object's 
class; its value is always DS _ C _ATTRIBUTE_LIST. 

• DS ATTRIBUTES 
This is an attribute whose value is another object of class 
DS_C_ATTRIBUTE (see Section 24.5.2.3). The attribute is defined by 
a separate array of object descriptors whose base address is the value of 
the DS _ATTRIBUTES attribute. Note that there can be any number of 
instances of this attribute, and therefore any number of subobjects. 

OSF DCE Application Development Guide 24-49 



CDS Application Programming 

24.5.2.3 The DS_C_ATTRIBUTE Object 

24-50 

An object of this class can be an attribute of a DS _ C _ATTRIBUTE_LIST 
object (see Section 24.5.2.2). 

• OM CLASS 
The value of this attribute is an OlD string that identifies the object's 
class; its value is always DS _ C _ATTRIBUTE. 

• DS ATTRIBUTE TYPE - -
The value of this attribute, which is an OlD string, identifies the 
directory attribute whose value is contained in this object. 

• DS ATTRIBUTE VALUES 
These are the actual values for the directory attribute represented by this 
DS _ C _ATTRIBUTE object. Both the value syntax and the number of 
values depend on what directory attribute this is; that is, they depend on 
the value of DS ATTRIBUTE VALUE. - -

24.5.2.4 Example Definition of a DS_C_ATTRIBUTE_LIST 
Object 

The following code fragment is a definition 
DS _ C _ATTRIBUTE_LIST object. 

static OM_descriptor Single_Attribute_Object[] 

of a 

OM_OID_DESC (OM_CLASS, DS_C_A'ITRIBUTE), 
OM_OID_DESC(DS_A'ITRIBUTE_TYPE, DSX_A_CDS_Class), 
{DS_A'ITRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "Printer")}, 
OM_NULL_DESCRIPrOR 

} ; 

static OM_descriptor Attribute_List_Object[] = { 
OM_OID_DESC(OM_CLASS, DS_C_A'ITRIBUTE_LIST), 
{DS_A'ITRIBUTES, OM_S_OBJECT, {a, Single_Attribute_Object}}, 
OM_NULL_DESCRIPrOR 

} ; 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

DS _ C _ DS _ DN class objects are used to hold the full names of directory 
entries (Distinguished Names). You need an object of this class to pass 
directory entry names to the following XDS functions: 

• ds _add _ entry( ) 

• ds _ comparee ) 

• ds_list() 

• ds _modify _ entry( ) 

• ds_read() 

• ds_remove_entry() 

Figure 24-10 shows the attributes of a DS_ C_DS_DN object. 

Figure 24-10. DS_C_DS_DN Object Attributes 

DS C DS DN Object - - -
type = OM_CLASS type = DS_RDNS 
syntax = OM_S_OBJECT_ syntax = OM_S_OBJECT 

IDENTIFIER_STRING t-- [DS_C_DS_RDN] 
value = DS_C_DS_DN val:;Yl 

1 Only / 1 or More 

_C_DS_RDN Object DS 

type = OM_CLASS type = DS_AVAS 
syntax = OM_S_OBJECT_ syntax = OM_S_OBJECT 

IDENTIFIER_STRING - [DS_C_AVA] 
value = DS_C_DS_RDN val:;Yl 

1 Only / 1 or More 

_C_AVA Object DS 

type = OM_CLASS type = DS_ATTRIBUTE_ 
syntax = OM_S_OBJECT_ TYPE 

IDENTIFIER_STRING t-- syntax = OM_S_OBJECT_ 
value = DS_C_AVA IDENTIFIER_STRING 

value = ... 

1 Only 1 Only 

OSF DCE Application Development Guide 

r ~y;e : ;S -R~N~ - - -1 
1- 1 

r-
1 

~ LI 
1 

1 1 L __________ .J 

r ~y;e:;s ~;A~ - - -1 
1 - 1 

1 
1 
L_ 

r-
1 

W LI 
1 1 
1 1 L __________ .J 

type = DS_ATTRIBUTE_ 
VALUES 

t-- syntax = any 

value = ... 

1 Only 

1 
1 
L_ 

24-51 



CDS Application Programming 

24-52 

• OM CLASS 
The value of this attribute is an OlD string that identifies the object's 
class; its value is DS _ C _ DS _ DN . 

• DS RDNS 
This is an attribute whose value is another object of class 
DS_C_DS_RDN (see Section 24.5.2.6). The DS_C_DS_RDN object is 
defined by a separate array of object descriptors whose base address is 
the value of the DS RDNS attribute. 

There are as many DS_RDNS attributes in a DS_C_DS_DN object as 
there are separate name components in the full directory entry name. 
For example, to represent the following CDS entry name: 

I •• .IC= US/O=OSF/OU =DCE/hosts/brazil/self 

a total of six instances of the DS _ RDNS attribute are required in the 
DS_C_DS_DN object. The 1 •• .1 (global root prefix) is not represented. 
This means that another six object descriptor arrays are required to hold 
the Relative Distinguished Name objects, as well as six object 
descriptors in the present object, one to hold (as the value of a 
DS_RDNS attribute) a pointer to each array. 

Note that the order of these DS_RDNS attributes is significant; that is, 
the first DS _ RDNS should contain as its value a pointer to the array 
representing the C=US part of the name; the next DS_RDNS should 
contain as its value a pointer to the array representing the O=OSF part, 
and so on. The root part of the name i~ not represented at all. 

DS _ C _DS _ RDN class objects are required as values for the DS _ RDNS 
attributes of DS _ C _ DS _DN objects. (For an illustration of its structure, see 
Figure 24-10.) RDN refers to the X.500 term Relative Distinguished Name 
that is used to signify a part of a full entry name. Separate objects of this 
class are not usually required as input to XDS functions. 

The standard permits multiple AVAs in an RDN, but the DCE Directory and 
XDS API restrict an RDN to one AVA. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

• OM CLASS 
The value of this attribute is an OlD string that identifies the object's 
class; its value is always DS _ C _ DS _ RDN. 

• DS AVAS 
This is an attribute whose value is yet another object of class 
DS _ C _AVA (see Section 24.5.2.7). The DS _ C _AVA object is defined 
by a separate array of object descriptors whose base address is the value 
of the DS A V AS attribute. 

Note that there can only be one instance of this attribute in the 
DS _ C _ RDN object. The object descriptor array describing this object 
always consists of three object descriptor structures: the first describes 
the object's class, the second describes the DS _A VAS attribute, and the 
third descriptor is the terminating NULL. 

24.5.2.7 The DS_C_AVA Object 

The DS _ C _A V A class object is used to hold an actual value. The value is 
usually in the form of one of the many different XOM string types. (For an 
illustration of its structure, see Figure 24-10.) 

In calls to ds _ compare(), an object of this type is required to hold the type 
and value of the attribute that you want compared with those in the entry 
you specify. It holds the type and value in a separate DS_C_DS_DN object. 

DS _ C _A V A is also included here because it is a required subsubobject of 
DS _ C _ DS _ DN itself. DS _ C _AVA is the subobject in which the name 
part's actual literal value is held. 

• OM CLASS 
The value of this attribute is an OlD string that identifies the object's 
class; its value is always DS _ C _AVA. 

• DS ATTRIBUTE TYPE - -
The value of this attribute, which is an OlD string, identifies the 
directory attribute whose value is contained in this object. 

• DS ATTRIBUTE VALUES - -
This is the literal value of what is represented by this DS _ C _AVA 
object. 

OSF DeE Application Development Guide 24-53 



CDS Application Programming 

24-54 

If the DS_C_AVA object is a subobject of DS_C_DS_RDN (and 
therefore also of DS _ C _ DS _ DN), then the value is a string representing 
the part of the directory entry name represented by this object. For 
example, if the DS_C_DS_RDN object contains the O=OSF part of an 
entry name, then the string OSF IS the value of the 
DS_ATTRIBUTE_ VALUES attribute, and 
DS A COUNTRY NAME is the value of the - - -
DS ATTRIBUTE TYPE attribute. - -
On the other hand, if DS _ C _AVA contains an entry attribute type and 
value to be passed to ds _ compare(), then DS _ATTRIBUTE_TYPE 
identifies the type of the attribute, and DS_ATTRIBUTE_ VALUES 
contains a value, which is appropriate for the attribute type, to be 
compared with the entry value. 

For example, suppose you wanted to compare a certain value with a 
CDS entry's CDS_Class attribute's value. The identifiers for all the 
valid CDS entry attributes are found III the 
/.:/opt/dcelocal/etc/cds _attributes file. The value of 
DS _ATTRIBUTE_TYPE would be CDS_Class, which is the label of 
an object identifier string, and DS _ATTRIBUTE_VALUES would 
contain some desired value, in the correct syntax for CDS _Class. The 
syntax also is found in the cds_attributes file; for CDS_Class it is byte; 
that is, a character string. 

24.5.2.8 Example Definition of a DS_C_DS_DN Object 

The following code fragment shows an example definition for a 
DS _ C _ DS _ DN object. 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

static OM_descriptor Entry_String_Object[] = { 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC (DS_A'ITRIBUTE_TYPE, DSX_TYPELESS_RDN), 
{DS_A'ITRIBUTE_VALUES, OM_S_PRINI'ABLE_STRING, OM_STRING ( "brazil")}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor Entry_Part_Object[] = { 
OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, Entry_String_Object}}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor Entry_Name_Object[] = { 
OM_OID_DESC(OM_CLASS, DS_C_DS_DN), 
{DS_RDNS, OM_S_OBJECT, {O, Entry_Part_Object}}, 
OM_NOLL_DESCRIPTOR 

} ; 

OSF DeE Application Development Guide 24-55 



CDS Application Programming 

24-56 

DS _ C _ENTRY_MOD _LIST class objects, which contain a list of changes 
to be made to some directory entry, must be passed to ds_modify_entryO. 
DS _ C _ENTRY_MOD _LIST objects have the attributes shown in Figure 
24-11. 

DS C ENTRY MOD LIST Object - - - - r -;y;e : ~ -C~A~~; -1 r-
type = OM_CLASS type = DS_CHANGES 
syntax = OM_S_OBJECT_ syntax = OM_S_OBJECT I - I I 

IDENTIFIER_STRING - [DS_C_ENTRY_ -' LJ 
value = DS_C_ENTRY_ MOD] I I I 

MOD_LIST value =y I I I I L __________ .J 
L_ 

1 Only 1 or More 

DS C_ENTRY MOD Object 

type = OM_CLASS type = DS_ATTRIBUTE_ type = DS_ATTRIBUTE_ 
syntax = OM_S_OBJECT_ TYPE VALUES 

IDENTIFIER_STRING - syntax = OM_S_OBJECT_ r- syntax = any -
value = DS C ENTRY IDENTIFIER_STRING value = ", 

MOD- - value = <attribute 010> 

1 Only 1 Only o or More 

~; :-D-; ~;;B~T-; - -1 r-
type = DS_MODIFICATION_ 

TYPE I VALUES - I I 

'- syntax = OM_S_ ~ H ENUMERATION 
value = DS_ADD_ATTRIBUTE I I I L __________ .J 

L_ 
1 Only 

• OM CLASS 
The value of this attribute is an OlD string that identifies the object's 
class; its value is always DS _ C _ENTRY_MOD _LIST . 

• DS CHANGES 
This is an attribute whose value is another object of class 
DS_C_ENTRY_MOD (see Section 24.5.2.10). The 
DS_C_ENTRY_MOD object is defined by a separate array of object 
descriptors whose base address is the value of the DS _CHANGES 
attribute. 

Note that there can be one or more instances of this attribute in the 
object, ... which is why it is called _LIST. Each attribute contains one 
separate entry modification. To learn how the modification itself is 
specified, see Section 24.5.2.10. The order of multiple instances of this 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

attribute is significant because if more than one modification is 
specified, the modifications are performed by ds _modify _ entry() in the 
order in which the DS _CHANGES attributes appear in the 
DS _ C _ENTRY_MOD _LIST object. 

The DS _ C _ENTRY_MOD class object holds the information associated 
with a directory entry modification. (For an illustration of its structure, see 
Figure 24-11.) Each DS_C_ENTRY_MOD object describes one 
modification. To create a list of modifications suitable to be passed to a 
ds _modify _ entry( ) call, describe each modification in a separate 
DS _ C _ENTRY_MOD object, and then insert these objects as multiple 
instances of the DS CHANGES attribute in a 
DS_C_ENTRY_MOD_LIST object (see Section 24.5.2.9). 

• OM CLASS 
The value of this attribute is an OlD string that identifies the object's 
class; its value is always DS _ C _ENTRY_MOD. 

• DS ATTRIBUTE TYPE - -
The value of this attribute, which is an OlD string, identifies the 
directory attribute whose modification is described in this object. 

• DS ATTRIBUTE VALUES - -
These are the values required for the entry modification; their type and 
number depend on both the entry type and the modification requested. 

• DS MOD TYPE - -
The value of this attribute identifies the kind of modification requested. 
It can be one of the following: 

- DS ADD ATTRIBUTE - -
The attribute specified by DS _ATTRIBUTE_TYPE is not currently 
in the entry. It should be added, along with the value(s) specified by 
DS_ATTRIBUTE_ VALUES, to the entry. The entry itself is 
specified in a separate DS _ C _ DS _ DN object, which is also passed to 
ds _modify _ entry(). 

- DS ADD VALUES - -
The specified attribute is currently in the entry. The value(s) 
specified by DS_ATTRIBUTE_ VALUES should be added to it. 

OSF DeE Application Development Guide 24-57 



CDS Application Programming 

24-58 

- DS REMOVE ATTRIBUTE - -
The specified attribute is currently in the entry and should be deleted 
from the entry. Any values specified by 
DS _ATTRIBUTE_VALUES are ignored. 

- DS REMOVE VALUES - -
The specified attribute is currently in the entry. One or more values, 
specified by DS _ATTRIBUTE_VALUES, should be removed from 
it. 

24.5.2.11 Example Definition of a DS_C_ENTRY _MOD_LIST 
. Object 

The following code fragment is an example definition of a 
DS_C_ENTRY_MOD_LISTobject. 

static OM_descriptor Entry_Mod_Object[] 
OM_OID_DESC (OM_CLASS, DS_C_ENTRY_MOD), 
OM_OID_DESC{DS_ATTRIBUTE_TYPE, DSX_UUID), 
{DS_ATTRIBUTE_ VALUES, OM_S_OCTET_STRING, my _uuid} , 
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor Entry_Mod_List_Object[] = { 
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST), 
{DS_CHANGES, OM_S_OBJECT, {O, Entry_Mod_Object}}, 
OM_NOLL_DESCRIPTOR 

} ; 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

When you call ds_readO to read one or more attributes from a CDS entry, 
you specify in the DS_C_ENTRY_INFO_SELECTION object the entry 
attributes you want to read. 

The DS C ENTRY INFO SELECTION obrt contains the attributes - - - -
shown in Figure 24-12. 

type = OM_CLASS type =: DS_ALL_ type = DS_ATTRIBUTES_ 
syntax = OM_S,=OBJECT_ ATTRIBUTES SELECTED 

IDENTIFIER STRING syntax = OM_S_ - syntax = OM_S_OBJECT_ 
value = DS C ENTRY 

f--
BOOLEAN IDENTIFIER STRING 

f-

INFO'=-SELEcnON value = OM TRUE or value = <attribute 010> . 
OM:=FALSE 

1 Only 1 Only Oor More 

r;y; : ~ ~:;;.;;.~; -l r-type = DS_INFO_TYPE 
syntax = OM_5_ I SELECTED - I I 

ENUMERATION I I I 
'---

value=DS TYPES r- r--1 
AND_VALUES I I I 

I I I L __________ -' 
L_ 

1 Only 

Note that this object class has no subobjects . 

• OM CLASS 
The value of this attribute is an OlD string that identifies the object's 
class; its value is always DS_C_ENTRY_INFO_SELECTION. 

• DS_ALL_ATTRIBUTES 
This attribute is a simple Boolean option whose value indicates whether 
all the entry's attributes are to be read, or only some of them. Its possible 
values are as follows: 

- OM_TRUE, meaning that all attributes in the directory entry should 
be read. Any values specified by the 
DS _ATTRIBUTES_SELECTED attribute are ignored. 

- OM_FALSE, meaning that only some of the entry attributes should 
be read; namely, those specified by the 
DS ATTRIBUTES SELECTED attribute. - -

OSF DeE Application Development Guide 24-59 



CDS Application Programming 

24-60 

• DS ATTRIBUTES SELECTED - -
The value of this attribute, which is an OlD string, identifies the entry 
attribute to be read. Note that this attribute's value has meaning only if 
the value of DS_ALL_ATTRIBUTES is OM_FALSE; if it is 
OM_TRUE, the value of DS_ATTRIBUTES_SELECTED is ignored. 

Note also that there are multiple instances of this attribute if more than 
one attribute, but not all of them, is to be selected for reading. Each 
separate instance of DS _ATTRIBUTES_SELECTED has as its value 
an OlD string that identifies one directory entry attribute to be read. If 
DS _ATTRIBUTES_SELECTED is present but does not have a value, 
ds _read() reads the entry but does not return any attribute data; this 
technique can be used to verify the existence of a directory entry. 

• DS INFO TYPE - -
The value of this attribute specifies what information is to be read from 
each attribute specified by DS_ATTRIBUTES_SELECTED. The two 
possible values are as follows:" 

- DS_TYPES_ONLY, meaning that only the attribute types of the 
selected attributes should be read. 

- DS _TYPES_AND _ VALUES, meaning that both the attribute types 
and the attribute values of the selected attributes should be read. 

24.5.2.13 Example Definition of a 
DS_C_ENTRY_INFO_SELECTION Object 

The following code fragment provides an example definition of a 
DS _ C _ENTRY_INFO _SELECTION object. 

static OM_descriptor Entry_Info_Select_Object[] = { 
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION), 
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_CDS_Class), 
{DS_ALL_ATI'RIBUTES, OM_S_BOOLEAN, OM_FALSE}, 
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES}, 
OM_NULL_DESCRIPrOR 

} i 

OSF DeE Application Development Guide 



XDS and the DCE Cell Namespace 

24.6 Attribute and Data Type Translation 

This section provides translations between CDS and XDS for attributes and 
data types. Table 24-2 provides the OM syntax for CDS attributes. Table 
24-3 provides the OM syntax for CDS data types. 

Table 24-2. CDS Attributes to OM Syntax Translation 

CDS Attribute OM Syntax 

CDS_CTS OM_S_OCTET_STRING 
CDS_UTS OM_S_OCTET_STRING 
CDS_Class OM_S_OCTET_STRING 
CDS _ ClassVersion OM_S_INTEGER 
CDS_ObjectUID OM_S_OCTET_STRING 
CDS_AIIUpTo OM_S_OCTET_STRING 
CDS_Convergence OM_S_INTEGER 
CDS_lnCHName OM_S_INTEGER 
CDS _DirectoryVersion OM_S_INTEGER 
CDS_ UpgradeTo OM_S_INTEGER 
CDS_LinkTimeout OM_S_INTEGER 
CDS_Towers OM_S_OCTET_STRING 

OSF DCE Application Development Guide 24-61 



CDS Application Programming 

Table 24-3. OM Syntax to CDS Data Types Translation 

OM Syntax CDS Data Type 

OM_S_ TELETEX_STRING dns_char 
OM_S_OBJECT_IDENTIFIER_STRING dns_byte 
OM_S_OCTET_STRING dns_byte 
OM_S_PRINTABLE_STRING dns_char 
OM_S_NUMERIC_STRING dns_char 
OM_S_BOOLEAN dns_long 
OM_S_INTEGER dns_long 
OM_S_UTC_TIME_STRING dns_char 
OM_S_ENCODING dns_byte 

24-62 OSF DeE Application Development Guide 



Part 4B 

GDS Application Programming 

Part 4B provides an overview of programming GDS using XDS. Chapter 25 
discusses GDS concepts and provides an overview of GDS programming. 
Chapter 26 describes XOM programming and Chapter 27 describes XDS 
programming. Chapter 28 provides programming examples. 





Chapter 25 

GDS API: Concepts and Overview 

The Global Directory Service (GDS) is a distributed, replicated directory 
service. It is distributed because information is stored in different places in 
the network. Requests for information may be routed by the Global 
Directory Service to directory servers throughout the network. It is 
replicated because information can be stored in more than one location for 
easier and more efficient access by its users. 

The Global Directory Service is based on the CCITT X.500jlSO 9594 
(1988) international standard. The aim of this standard, also referred to as 
the OSI Directory standard, is to provide a global directory that supports 
network users and applications with information required for 
communications. The Directory plays a significant role in allowing the 
interconnection of information processing systems from different 
manufacturers, under different managements, of different levels of 
complexity, and of different ages. 

GDS is the DCE implementation of the OSI Directory standard. Together 
with the Cell Directory Service (CDS) it provides its users with a 
centralized place to store information required for communications, which 
can be retrieved from anywhere in a distributed system. GDS maintains 
information describing objects such as people, organizations, applications, 
distribution lists, network hardware, and other distributed services dispersed 
over a large geographical area. 

OSF DeE Application Development Guide 25-1 



GDS Application Programming 

The Cell Directory Service stores names and attributes of resources located 
in a DCE cell. A DeE cell consists of various combinations of DeE 
machines connected by a network. Each DCE cell contains its own Cell 
Directory Server, which provides access to local resource information. The 
Cell Directory Service is optimized for local information access by its users. 
For a more detailed description of cells and their resource services, see the 
Introduction to OSF DeE. 

The Global Directory Service serves as a general-purpose information 
repository. It provides information about resources outside a DCE cell. It 
ties together the various cells by helping to find remote cells. A detailed 
discussion of the DeE namespace, its various servers and their interaction is 
provided in Chapter 22. 

25.1 Directory Service Interfaces 

25-2 

X/Open Directory Service (XDS) and X/Open OSI-Abstract-Data 
Manipulation (XOM) are application programming interfaces. XOM and 
XDS application interfaces are based on X/Open standards specifications. 
Together these interfaces provide the application programmer with a library 
of functions with which to develop applications that access the Directory 
Service. 

The XOM Application Programming Interface (XOM API) is an interface 
for creating, deleting, and accessing information objects. The XOM API 
defines an object-oriented information model. Objects belong to classes and 
have attributes associated with them. The XOM API also defines basic data 
types, such as Boolean, string, object, and so on. The representation of these 
objects are transparent to the programmer. Objects can only be manipulated 
through the XOM interface, not directly. 

DCE programmers use the XDS API to make Directory Service calls. In 
DCE, XDS API directs the calls it receives to either the Global Directory 
Service or the Cell Directory Service by examing the names of the 
information objects to be looked up as shown in Figure 25-1. It uses the 
XOM interface for defining and handling information objects. These 
objects are passed as parameters and return values to the XDS routines. The 
XDS API contains functions for managing connections with a Directory 
Server: reading, comparing, adding, removing, modifying, listing, and 
searching for directory entries. The Global Directory Service Package 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

provides additional infonnation objects that provide for security and cache 
management when using ODS. 

Figure 25-1. XDS: Interface to GDS and CDS 

25.2 The X.500 Directory Information Model 

This section describes the directory infonnation model of X.500, which 
ODS is based on. A directory is a collection of infonnation about some part 
of the world. The most familiar type of directory is the list of names and 
numbers that make up a city telephone directory. A name is provided with 
some infonnation about the named object, such as an address and telephone 
number. The ISO and CCITT standards define a directory information 
model that defines the abstract structure of directory infonnation, services, 
and protocols for a computer network environment, such as DCE. 

25.2.1 Directory Objects 

The Directory contains infonnation about objects. The standard defines an 
object very broadly as "anything in some 'world,' generally the world of 
telecommunications and infonnation processing or some part thereof, which 
is identifiable (can be named)." Some examples of objects include people, 
corporations, and application processes. 

OSF DCE Application Development Guide 25-3 



GDS Application Programming 

Each object known to the Directory is represented by an entry. The set of 
all entries is called the Directory Information Base (DIB), which is a 
hierarchical tree. Each entry consists of a set of attributes representing 
specific information about the object. Each attribute, in tum, has a type and 
one or more values of that type. Attributes with more than one value are 
referred to as multivalued or recurring attributes. 

Figure 25-2 shows the structure of the DIB. 

Figure 25-2. The Structure of the DIB 

25-4 

Attribute 

Type Value(s) 

The attributes that constitute a single entry may be of various types. For 
example, an entry for a person may contain that person's name, address, and 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

phone number. If the person has a second telephone number, the attribute of 
type telephone number may have two values, one for each telephone 
number. 

Object entries are composed of mandatory and optional attributes. 
Mandatory and optional attributes are discussed in Section 2504.3. 

25.2.2 Attribute Types 

All attributes in a particular entry must be of different attribute types. Each 
attribute type is assigned a unique object identifier value. The Directory 
standard assigns object identifiers for several commonly used attribute 
types, including surname, country name,_ telephone number, and 
presentation address. Other international standards may define additional 
attribute types. For example, the Xo4OO Message Handling standard defines 
mail specific attributes like aIR address. It is expected that various national 
and private organizations will also define attribute types of their own. The 
CDS attributes (defined in the xdscds.h header file) and the Global 
Directory Service Package attributes (defined in the xdsgds.h header file) 
are examples of additional attribute definitions. 

25.2.3 Object Identifiers 

Objects in a network environment, such as DCE, require unique names to 
distinguish them from one another. To provide these names, object 
identifiers are allocated by an administrative organization, such as a 
standards body. An object identifier is a hierarchical sequence of numbers 
uniquely identifying an object. Associated with each object identifier is a 
character string to make it easier to document. 

The possible values of object identifiers are defined in a tree. Part of this 
tree is shown in Figure 25-3. It begins with three numbered branches 
coming from the root: branch 0, assigned to CCITT, branch 1, assigned to 
ISO, and branch 2, a joint ISO-CCITT branch. Below each of these 
branches are other numbered branches assigned to various standards such as 
the Directory Service (ds(S» and Electronic Mail Service (mhs-motis(6» 
with each ending in a named object. Thus, the name of any of these objects 
is a series of integers describing a path down this tree to the leaf node. 

OSF DeE Application Development Guide 25-5 



GDS Application Programming 

Figure 25-3. Object Identifiers 

25-6 

root 

ccltt(O) Iso(1) jolnt-lso-ccltt(2) 

/~ 
ds(S) mhs-motls(6) 

/~ ~ 
attrlbuteType(4) obJectClass(6) arch(S) 

~ 
oc(1) at(2) 

The object identifier associated with the XDS Directory Service Package is 
defined as follows: 

{iso(1) identifled-organization(3) icd-ecma(12) member-company(2) dec(lOll) 
xopen(28) dsp(O)}. 

All object classes and object attributes in the Directory Service Package 
have these numbered branches associated with them. The classes and 
attributes, In tum, have their own unique numbers. These object identifiers 
are defined in header files included as part of the. XDS and XOM API 
software. For example, the attribute type Common Name is identified by 
the object identifier 2.5.4.3. 

Table 25-1 contains a sample list of object identifiers for selected attributes. 
The complete list is provided in Chapter 32. 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

Table 25-1. Object Identifiers for Selected Attribute Types 

Attribute Type Object Identifier 
Aliased Object Name 2.5.4.1 
Business Category 2.5.4.15 
Common Name 2.5.4.3 
Country Name 2.5.4.6 
Description 2.5.4.13 

Note: The object identifiers in Table 25-1 stem from the root {joint
iso-ccitt(2) ds(S) attributeType(4)}. 

25.2.4 Object Entries 

Entries are grouped into generic object classes based on the type of object 
they represent. Examples of object classes are Country, Organizational 
Person, and Application Entity. All entries contain a special attribute, the 
object class attribute, indicating to which object class (or classes) they 
belong. 

Entries that model a certain object and contain information about the object 
in terms of attributes are called object entries. The Directory contains a 
second type of entry, which is a pointer to an object entry called an alias 
entry. Alias entries are discussed in Section 25.3.4. 

In summary (as shown previously in Figure 25-2), the DIB is made up of 
entries, each of which contains information about objects. Entries consist of 
attributes; each attribute has a type and one or more values. 

Section 25.3 describes how objects are organized in the DIB using the 
Directory Information Tree (DIT). Figure 25-4 shows an example of an 
entry describing Organizational Person. 

OSF DeE Application Development Guide 25-7 



GDS Application Programming 

Figure 25-4. A Directory Entry Describing Organizational Person 

Object Class 

25-8 

Surname Schmidt 

~----------------
I 
I 

I I Title I Sales Manager I I 

I I 
I L ____________________ J 

r------------------ ...., 
I 
I 

I New York Sales I : 
I I 
I I L ____________________ j 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

25.3 X.500 Naming Concepts 

Large amounts of information need to be organized in some way to make 
efficient retrieval possible and ensure that names are unique. Information in 
the DIB is organized into a hierarchical structure known as the Directory 
Information Tree (DIT). The structure and naming of the nodes in the DIT 
are specified by registration authorities for a standardized set of X.500 
names and by implementors of the directory service (such as aSF) for 
implementation-specific names. The DIT hierarchy is described by a 
schema. Schemas are described in more detail in Section 25.4. 

Although the X.500 standard does not mandate a specific schema, it does 
make general recommendations. For example, countries and organizations 
should be named close to the root of the DIT; people, applications, and 
devices should be named further down in the hierarchy. ODS supplies a 
default schema that complies with these recommendations. 

25.3.1 Distinguished Names 

A hierarchical path exists from the root of the DIT to any entry in the DIB. 
To access information stored in an entry, a name that uniquely describes 
that entry must be given. An RDN distinguishes an entry from other entries 
with the same superior node in the DIT. A sequence of RDN s, starting from 
the root of the tree, can identify a unique path down the tree, and thus a 
unique entry. This sequence of RDNs, each of which indentifies a particular 
entry, is the distinguished name of that entry. Each entry in the DIB can be 
referenced by giving its distinguished name. 

Figure 25-5 shows an example of a distinguished name. The shaded boxes 
in the DIT represent the entries that are named in the column labeled RDN 
(Relative Distinguished Name). The schema dictates that countries are 
named directly below the root, followed by organizations, organization 
units, and people. 

OSF DeE Application Development Guide 25-9 



GDS Application Programming 

Figure 25-5. A Distinguished Name in a Directory Information Tree 

OIT RON 

Root 

C=US 

a =Acme Enterprises 

au =New York Sales 

CN =Alfred Schmidt 

Distinguished Name 

{} 

{C=US} 

{C=US 
a =Acme Enterprises} 

{C=US 
a=Acme Enterprises 
aU=New York Sales} 

{C=US 
a =Acme Enterprises 
au =New York Sales 
CN =Alfred Schmidt} 

Every entry in the DIB has a distinguished name, not just the leaf nodes. 
For example, the entry for the Organization, Acme Enterprises (shown in 
Figure 25-5) is represented by the shaded box in the Organizations subtree. 
Its distinguished name is the concatenation of the distinguished name of the 
entry above with its relative distinguished name. The entry for People, 
Alfred Schmidt, is represented by the shaded box in the People subtree. 

25.3.2 Relative Distinguished Names and Attribute Value Assertions 

25-10 

Each entry has a unique Relative Distinguished Name (RDN), which 
distinguishes it from all other entries with a particular immediate superior 
in the DIT. 

An RDN consists of one or more assertions of the type and value of an 
attribute. A pair consisting of an attribute type and a value of that type is 
known as an Attribute Value Assertion (AVA). All attribute types in an 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

RDN must be different. The attribute value of an attribute in an RDN's 
AVA is called the distinguished value of that attribute, as opposed to the 
other possible values of that attribute. 

The assertion is TRUE if the entry contains an attribute of the specified 
type, and if one of that attribute's values matches the AVA's distinguished 
attribute value. An entry commonly has an RDN that consists of a single 
AVA. In some cases, however, more than one AVA may be required to 
distinguish an entry. (Multiple AVAs are discussed in Section 25.3.3.) 

The entry shown in Figure 25-4 contains the RDN: Common Name = 
Alfred Schmidt. The attribute consists of three values: Alfred Schmidt, A. 
Z. Schmidt, and Al Schmidt. The AVA Common Name = Alfred Schmidt 
contains the value Alfred Schmidt, which has been designated as the 
distinguished value in the AVA. 

25.3.3 Multiple AVAs 

Frequently, as shown in the previous section, an entry contains a single 
distinguished value and the RDN therefore comprises a single AVA. 
However, under certain circumstances additional values (and hence 
multiple A VAs) may be used. 

Figure 25-4 shows the contents of an entry describing Organizational 
Person. The RDN of an Organizational Person entry is usually composed of 
a single AVA, such as the Common Name attribute type with a 
distinguished value (in Figure 25-5, the AVA CN = Alfred Schmidt). 
Depending on the schema, the RDN of an Organizational Person entry may 
contain more than one AVA. For example, the RDN in Figure 25-5 could 
contain the AVAs CN = Alfred Schmidt, OU = New York Sales with 
Alfred Schmidt and New York Sales as distinguished values. 

In summary: 

• A DIT consists of a collection of distinguished names. 

• Distinguished names result from a concatenation of the RDNs. 

• RDNs consist of an unordered collection of attribute type and value 
pairs (A V As). 

OSF DeE Application Development Guide 25-11 



GDS Application Programming 

25.3.4 Aliases 

25-12 

An alternative name or alias is supported in the DIT by the use of special 
pointer entries called alias entries. Alias entries do not contain any other 
attributes beyond their distinguished attributes, the object class attribute, 
and the aliased object name attribute; that is, the distinguished name of the 
aliased object entry. Furthermore, an alias entry has no subordinate entries, 
making it, by definition, a leaf entry of the DIT as shown in Figure 25-6. 
Alias entries point to object entries and provide the basis for alternative 
names for the corresponding objects. 

Aliases are used to do such things as provide more user-friendly names, 
direct the search for a particular entry, reduce the scope of a search, provide 
for common alternate abbreviations and spellings, or provide continuity 
after a name change. 

Figure 25-6 demonstrates how an alias name provides continuity after a 
name change. The ABC company's branch office located originally in 
Osaka has moved to Tokyo. To make the transition easier for Directory 
Service users and to guarantee that a search based on the old information 
finds its target, an alias for O=ABC has been added to the directory beneath 
L=Osaka. This alias entry points to the object entry O=ABC. A search for 
ABC under L=Osaka in the DIT finds the entry: 
IC=Japan/L=Tokyo/O=ABC. 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

Figure 25-6. An Alias in the Directory Information Tree 

O=ABC 

OU=Osaka Branch 

Another use of alias entries is as an alternative to filtering; that is, using 
assertions about particular attributes to search through the DIT. Although 
this approach does not require any special information to be set up in the 
DIT, it may be expensive to search where there is a large popUlation of 
entries and attributes. An alternative approach is to set up special subtrees 
whose naming structures are designed for "Yellow Pages" type searching. 
Figure 25-7 shows an example of such a subtree populated by alias entries 
only. In reality, the entries within these subtrees may be a mixture of object 
and alias entries, so long as there exists only one object entry for each 
object stored in the directory. 

OSF DeE Application Development Guide 25-13 



GDS Application Programming 

Figure 25-7. A Subtree Populated by Aliases 

An object with an entry in the DIT may have zero or more aliases. Several 
alias entries may point to the same object entry. An alias entry may point to 
an object that is not a leaf entry. Only object entries may have aliases. 
Thus, aliases of aliases are not pennitted. 

25.3.5 Name Verification 

25-14 

A Directory user identifies an entry by supplying an ordered set of RDNs 
(each of which consists of an unordered set of AVAs) that fonn a purported 
name. The purported name is mapped onto the desired entry by the process 
of name verification, which perfonns a distributed tree walk through the 
DIT. When a purported name is a valid name, a distinguished name exists 
with the same number ofRDNs and matching AVAs within the RDNs. 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

25.4 Schemas 

The structure of directory information is governed by a set of rules called a 
schema. Schemas specify rules for the following: 

• The structure of the DIT 

• The contents of entries in terms of attributes 

• The syntax of attribute values and rules for comparing and matching 
them 

25.4.1 The GDS Standard Schema 

When the DCE software package is shipped to a customer, it includes a 
default or "standard" schema for GDS. This is the GDS proprietary 
interpretation of the X.SOO schema. 

Each attribute in the schema is assigned a unique object identifier and the 
syntax of its value. In addition, the schema specifies the mechanism by 
which attributes of this type are compared with one another. Each entry in 
the DIT belongs to an object class governed by the schema. Object class 
definitions may be used to derive subclasses, supporting the inheritance and 
refinement of the attribute types defined for the super-class. 

Included with the GDS standard schema are the following tables that define 
the structure of the Directory. 

• Structure Rule Table (SRT) 

• Object Class Table (OCT) 

• Attribute Table (AT) 

OSF DeE Application Development Guide 25-15 



GDS Application Programming 

25.4.2 The Structure Rule Table 

The Structure Rule Table (SRT) specifies the relationship of object classes 
in the structure of the Directory. The SRT supplied with the GDS standard 
schema contains the entries shown in Table 25-2. 

Table 25-2. Structure Rule Table Entries 

25-16 

Acronym of 
Rule Superior Acronym of Structural 
Number Rule Number Naming Attribute Object Class 

1 0 CN SCH 
2 0 C C 
3 2 0 ORG 
4 3 OU OU 
5 4 CN ORP 
6 4 CN,OU ORP 
7 4 CN ORR 
8 4 CN MDL 
9 4 CN APP 

10 9 CN APE 
11 9 CN DSA 
12 9 CN MMS 
13 9 CN MTA 
14 9 CN MUA 
15 2 L LOC 
16 15 CN REP 
17 15 CN, STA REP 

The SRT determines how the object classes are laid out in the DIT by 
assigning rule numbers to each object class. An object class's Superior Rule 
Number specifies the object class directly above it in the DIT. 

For example, the object class Organization (abbreviated with the acronym 
ORG in the SRT) has a Superior Rule Number of 2, indicating that it is 
located in the DIT beneath the object class Country (C), which has a Rule 
Number of 2. Organization Unit (OU) is located beneath Organization 
because it has a Superior Rule Number of 3 and so forth. 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

The SRT only contains structured object classes; that is, classes that form 
branches in the DIT. Other object classes, such as abstract and alias classes, 
are not included. 

The SRT specifies the attribute(s) used to name entries belonging to each 
object class. These attributes, called naming attributes, are used to define 
the RDN and therefore the distinguished name of directory entries. 

Figure 25-8 shows the structure of the DIT as defined by the SRT of the 
GDS standard schema. 

OSF DeE Application Development Guide 25-17 



GDS Application Programming 

Figure 25-8. SRT DIT Structure for the GDS Standard Schema 

25-18 OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

25.4.3 The Object Class Table 

The object classes that make up the GDS standard schema are defined in the 
OCT. Table 25-3 contains a partial listing of the OCT (refer to the aSF 
DeE Administration Guide for a complete listing of the OCT for the GDS 
standard schema). Each column in Table 25-3 contains information about 
an object class entry in the schema. 

Table 25-3. Object Class Table Entries 

Acronym 

TOP 

ALI 

C 

lOC 

ORG 

Object Class Super- File Mandatory Optional 

Name Kind class 010 No. Attributes Attributes 

Top Abstract None 85.6.0 -1 OCl None 

Alias Alias TOP 85.6.1 -1 AON None 

Country Structural GTP 85.6.2 1 C DSC SG 
CDC CDR 

locality Structural GTP 85.6.3 4 None DSC l 
SPN STA 
SEA SG 
CDC CDR 

Organization Structural GTP 85.6.4 1 0 DSC l 
SPN STA 
PD~ PA 
PC POB 
FTN liN 
TN TTl 
TXN X1A 
PDM DI 
RA SEA 
UP BC 
SG CDC 
CDR 

Note: All these object identifiers stem from the root {joint-iso
ccitt(2) ds(5) objectClass(6)}. 

OSF DCE Application Development Guide 25-19 



GDS Application Programming 

25-20 

Column 4, Superclass acronyms, provides the class from which an object 
class inherits its attributes. Using the information in Column 4, it is possible 
to derive a graphical representation of the inheritance properties of object 
classes in the DIT as shown in Figure 25-9. 

The object class Top is the root of the tree, with Alias and GDS-Top as the 
main branches. Top contains the attribute type object class, which is 
inherited by all the other object classes. 

Do not confuse the information in the OCT with that presented in the SRT. 
There is no direct relationship between the relative location of branches and 
leaves in the DIT structure and the inheritance properties of classes with 
their superclasses and subclasses. For example, when a Directory Service 
request is made by a directory user, such as a read operation, the SRT is 
used by the Directory Service to indicate its position in the DIT. The 
Directory Service uses the information defined in the SRT for tree traversal 
so that the requested object can be located in the Directory. Figure 25-8 
shows the object class Organization located beneath Country in the DIT. 

On the other hand, the OCT defines, among other things, the attributes of an 
object class along with its inherited attributes from its superclass. The 
superclass, in tum, inherits the attributes from its superclass, and so on until 
the root, Top, is reached (from which all classes derive their attributes). 
Figure 25-9 shows the object class Organization as a subclass of GDS-Top. 
As such, it inherits its attributes from GDS-Top, which in tum inherits from 
its superclass, Top. 

The OCT also contains the unique object identifier of each class in the DIT. 
These numbers are defined by various standards authorities and in the X.500 
standards documents mentioned previously. The AT also contains the 
predefined object identifiers for each attribute in the Directory. These 
object identifiers are defined in the header files that are included as part of 
the GDS API. Table 25-4 shows some examples of object identifiers for 
directory classes as defined in the X.500 standard. 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

Figure 25-9. A Partial Representation of the Object Class Table 

Country-Name (M) 
CDS-Cell 
CDS-Replica 
Description 
Search-Guide 

Description 
CDS-Cell 
CDS-Replica 
Locality-Name 
Search-Guide 
See -Also 
State -or-Pray-Name 
Street-Address 

OSF DCE Application Development Guide 

Master Knowlege 
Access-Control-List 

Organization-Name (M) 
Business-Category 
CDS-Cell 
CDS-Replica 
Description 
Dest-Indicator 
Facsimile-Phone-Nbr 
Internat-ISDN-Nbr 
Locality-Name 
Phys-Deliv-Off-Name 
Postal-Address 
Postal-Code 
Post -Office-Box 
Preferred-Delivery-Method 
Registered-Address 
Search-Guide 
See-Also 
State-or-Prov-Name 
Street-Address 
Phone-Nbr 
Telex-Nbr 
TTX-Term-Ident 
User-Password 
X121-Address 

25-21 



GDS Application Programming 

Table 25-4. Object Identifiers for Selected Directory Classes 

25-22 

Object Class Type Object Identifier 

Alias 85.6.1 
Application Entity 85.6.12 
Application Process 85.6.11 
Country 85.6.2 
Device 85.6.14 
DSA 85.6.13 
Group of Names 85.6.9 
Locality 85.6.3 
Organization 85.6.4 
Organizational Person 85.6.7 
Organizational Role 85.6.8 
Organizational Unit 85.6.5 
Person 85.6.6 
Residential Person 85.6.10 
Top 85.6.0 

Note: All these object identifiers stem from the root ijoint-iso-
ccitt(2) ds(S) objectClass(6)}. 

Another important feature of the OCT is the distinction made between 
mandatory and optional attributes for each object class. This distinction is 
based on recommendations from X.SOO standards documents. These 
documents (Recommendations X.S20 and X.S21) define selected object 
classes and associated attribute types using ASN.1 notation. Most object 
classes have one or more mandatory attributes associated with them for use 
by implementors who want to comply with the X.SOO standards 
recommendations. In addition, optional attributes are defined. 

For example, the following example provides a flavor of ASN.1 notation; it 
shows how the object class country is described in Recommendation X.S20 
(The Directory: Selected Object Classes). 

country OBJECT-CLASS 

SUBCLASS of top 

MUST CONTAIN { 

countryName} 

MAY CONTAIN { 

OSF DCE Application Development Guide 



GDS API: Concepts and Overview 

description, 
searchGuide} 

::= {objectClass 2} 

This ASN.1 definition defines country as a subclass of superclass top. The 
class, country, must contain the mandatory attribute countryName (or 
country-name as defined in the GDS standard schema) and may contain 
the optional attributes description and search Guide . In addition, the DCE 
implementation adds two more attributes, CDS-Cell and CDS-Replica, to 
incorporate other aspects of the DCE environment that are implementation 
specific. 

Country is assigned the object identifier 2.5.6.2. This number distingushes 
it from the other object classes defined by the standard. The Top superclass 
is designated as 2.5.6.0. The first three numbers, 2.5.6, identify the object 
class as a member of a discrete set of object classes defined by X.500. The 
last number in the object identifier distinguishes objects within that discrete 
set. Alias, a subclass of Top, is assigned the number 2.5.6.1. Country is 
assigned the number 2.5.6.2, and so on. GDS-Top has no object identifier 
because it is implementation specific and thus not identified by the 
standard. 

25.4.4 The Attribute Table 

The attributes that make up the entries in the GDS standard schema are 
defined in the Attribute Table (AT). (Refer to the aSF DeE Administration 
Guide for a complete listing of the AT.) The object identifiers are in the 
range from 85.4.0 through 85.4.35 as defined by the X.500 standard, 
86.5.2.0 through 86.5.2.10 as defined by the X.400 standard, and there are 
additional object identifiers for GDS specific attributes. 

Table 25-5 shows a partial listing of the attribute table for the GDS standard 
schema. 

Note: The access class for every attribute listed in Table 25-5 is 0 
(zero). 

OSF DeE Application Development Guide 25-23 



GDS Application Programming 

Table 25-5. Attribute Table Entries 

Attr. 
Acr. 

OCl 
AON 

KNI 

CN 

SN 
SER 
C 
l 
SPN 

25-24 

Obj. Name of Lower Upper Max. No. Phon. Index 
ID Attribute Bound Bound of Val. Syntax Flag Level 

85.4.0 Object-Class 1 28 0 2 0 0 
85.4.1 Aliased- 1 1024 1 1 0 0 

Object-Name 
85.4.2 Knowledge- 1 1024 0 4 0 0 

Information 
85.4.3 Common- 1 64 2 4 1 1 

Name 
85.4.4 Surname 1 64 2 4 1 0 
85.4.5 Serial-Number 1 64 2 5 0 0 
85.4.6 Country-Name 2 2 1 1010 1 1 
85.4.7 locality-Name 1 128 2 4 1 1 
85.4.8 State-or- 1 128 2 4 1 0 

Province-
Name 

The columns with the headings Lower Bound and Upper Bound specify the 
range of the number of bytes (or octets) that the value of an attribute can 
contain. The schema puts constraints on the number of values that an 
attribute can contain in the Maximum Number of Values column. 

The Syntax column describes how the data is represented and relates to 
ASN.l syntax definitions for attributes. For example, a sample of ASN.l 
notation for the Common-Name attribute follows: 

commonName ATI'RIBUTE 
WITH ATI'RIBUTE-SYNTAX 

caseignoreStringSyntax 
(SIZE(l .. ub-common-name)) 

::= (attributeType 3) 

The common Name attribute is defined as case insensitive. The size of the 
string is from 1 to the upper bound defined by the schema for the 
commonName attribute in the Upper Bound column (in this case, 64 bytes 
or octets). 

Note also that the commonName attribute is assigned the number 3 by the 
standard. This corresponds to the 3 in the object identifier 85.4.3. 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

The other columns in the AT refer to the phonetic matching flag, security 
access classes, and index level. 

As mentioned previously for object classes, object identifier values 
specified in the AT are defined as constants in the GDS header files. 

25.4.5 Defining Subclasses 

The ability to define subclasses is a powerful feature of the directory. 
Structure rules govern which object classes may be children of which 
others in the DIT and therefore determine possible name forms. 

The directory standard defines a number of standard attribute types and 
object classes. For example, the attribute types Common Name and 
Description, and the object classes Country and Organizational Person are 
defined. Implementations of the directory standard, such as DCE, define 
their own schemas following rules stated in the standard with additional 
attribute types and object classes. 

Figure 25-10 shows the relationship between schemas and the directory 
information model. 

Figure 25-10. The Relationship Between Schemas and the DIT 

Definitions DIT Elements 

rules for 

rules for 

rules for 

rules for 

OSF DeE Application Development Guide 25-25 



GDS Application Programming 

25.5 Abstract Syntax Notation 1 

25-26 

The need for Abstract Syntax Notation 1 (ASN.l) arises because different 
computer systems represent information in different ways. For example, 
one computer may use EBCDIC character representation while another 
may use ASCII. To transfer a file of characters from one system to another, 
common representation must be used during the transfer. This transfer may 
be one representation or the other or some mutually agreed upon 
representation negotiated by the two systems. Similarly, floating-point 
values, integers, and other types of data may be stored internally in 
different ways. To exchange information, a common format must be agreed 
to before information can be exchanged. 

The translation of EBCDIC to ASCII characters may seem like a trivial 
problem, but that leaves the larger issue of mapping between the many 
diverse representations that may exist within a network environment. To 
address this need, the ISO standards committee defined Abstract Syntax 
Notation 1 (ASN.l) and Basic Encoding Rules (BER). 

ASN.l is based on the idea that the aspects of transferred information that 
are preserved are type, length, and value. Data types are collections of 
values distinguished for some reason, such as characters, integers, and 
floating-point values. Records and structure types become more complex 
when they combine several types into a single structure. 

ASN.l provides a way to group types into abstract syntaxes. An abstract 
syntax is a named group of types. The standard defines abstract syntax as 
the notation rules that are independent of the encoding technique used to 
represent them. Abstract syntax does not specify how to represent values of 
types, but merely defines the types that make up the group of types. 

Abstract syntaxes are not enough to define how values of the data types in a 
specific abstract syntax are to be represented during communications. For 
this reason, ISO further defines a transfer syntax for each abstract syntax. 
A transfer syntax is a set of rules for encoding values of some specified 
group of types. 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

25.5.1 ASN.l Types 

ASN.1 is similar to a high-level programming language. Unlike other 
high-level languages, ASN.1 has no executable statements. It includes only 
language constructs required to define types and values. 

ASN.1 defines a number of built-in types. Users of ASN.1 can then define 
their own types based on the built-in types provided by the language. The 
ASN.1 standard defines four categories of types that are commonly used ip 
defining application interfaces such as XOM and XDS: 

• ASN.1 Simple Types 

• ASN.1 Useful Types 

• ASN.1 Character String Types 

• ASN.1 Type Constructors 

ASN.1 simple types are Bit String, Boolean, Integer, Null, Object Identifier, 
Octet String, and Real. Table 25-6 shows the relationship of OM syntaxes 
(syntaxes defined in XOM API) to ASN.1 simple types. (Refer to Chapter 
35 for the complete set of tables for the four categories of ASN.1 types.) 
As shown in the table, for every ASN.1 type except Real, there is an OM 
syntax that is functionally equivalent to it. The simple types are listed in 
the first column of the table; the corresponding syntaxes are listed in the 
second column. 

Table 25-6. Syntax for the Simple ASN.1 Types 

ASN.1 Type OM Syntax 

Bit String String(OM_S_BIT _STRING) 
Boolean OM_S_BOOLEAN 
Integer OM_S_INTEGER 
Null OM_S_NULL 
Object Identifier String(OM...:.S_08JECT_IDENTIFIER_STRING) 
Octet String String(OM_S_OCTET_STRING) 
Real None1 

1 A future edition of XOM may define a syntax corresponding 
to this type. 

OSF DeE Application Development Guide 25-27 



GDS Application Programming 

An example will illustrate how OM syntaxes are used to define the syntax 
of values for various attributes. One of the simplest of the ASN.l types is 
Boolean. There are only two possible values for a Boolean type: TRUE and 
FALSE. The DS FROM ENTRY OM attribute of the - -
DS _ C _ENTRY_INFO object class has a value syntax of 
OM_S_BOOLEAN. OM_S_BOOLEAN is the C language representation 
for the OM syntax that corresponds to the ASN.l Boolean type. The value 
of the DS FROM ENTRY OM attribute indicates whether information - -
from the directory was extracted from the specified object's entry (TRUE), 
or from a copy of the entry (FALSE). The actual C language definition for 
OM S BOOLEAN is made in the XOM API header file xom.h. 

25.5.2 Basic Encoding Rules 

It is possible to define a single transfer syntax that is powerful enough to 
encode values drawn from a number of abstract syntaxes. ISO defines a set 
of rules for encoding values of many different types for ASN.l. This set of 
encoding rules is called Basic Encoding Rules (BER). It is so powerful that 
values from any abstract syntax described using ASN.l can be encoded 
using the transfer syntax defined by BER. 

Although other transfer syntaxes could be used for representing values from 
ASN.l, BER is used most often. 

25.6 GDS as a Distributed Service 

25-28 

When present in a DCE cell, ODS can serve two basic functions. First, it 
can provide a high-level, worldwide directory service by tying together 
independent DCE cells. Second, it can be used as an additional directory 
service to CDS for storing object names and attributes in a central place. 

The ODS database contains information that can be distibuted over several 
ODS servers. In addition, copies of information can be stored in multiple 
ODS servers, and the information can also be cached locally. The unit of 
replication in ODS is the directory entry; whole subtrees may be also 
replicated. 

OSF DeE Application Development Guide 



GDS API: Concepts and OveNiew 

The information belonging to the DIB is shared between several Directory 
Service Agents (DSAs). A DSA is a process that runs on a GDS server 
machine and manages the GDS database. DSAs cooperate to perform 
directory service operations with each DSA knowing a fraction of the total 
directory information, as shown in Figure 25-11. DSAs are a combination 
of local database functions and a remote interface to the clients of users and 
other DSAs. DSAs may cooperate to execute operations. This cooperation 
often involves the navigation of operations through the network. 

Figure 25-11. The Relationship Between the DSA and the DUA 

The Directory Environment 

Users access the directory via Directory User Agents (DUAs). DUAs make 
requests of DSAs on behalf of users requesting directory service operations. 
The manner in which DUAs communicate with DSAs is defined by the 
X.500 standard. For communications between DUAs and DSAs, the 
Directory Access Protocol (DAP) is defined. For communications between 
DSAs in a distributed directory, the standard defines the Directory System 
Protocol (DSP). 

OSF DeE Application Development Guide 25-29 



GDS Application Programming 

25.6.1 The Directory Access Protocol 

The directory standard defines directory functions in the Directory Access 
Protocol (DAP). The directory functions can be divided into three general 
categories: read, search, and modify. 

Read operations involve the retrieval of information from specific named 
entries. This allows a general name-to-attributes mapping analogous to the 
"White Pages" phone directory. 

Search operations involve the general browsing and relational searching of 
information. Search operations support human interaction with the 
Directory Service and is analogous to that of the "Yellow Pages" 
telephone directory. 

Modify operations involve the modification of information in the directory. 

25.6.2 The Directory System Protocol 

The DSA may interact with other DSAs to provide services using the 
Directory System Protocol (DSP). DSP is a protocol defined by the 
directory standard to allow DSAs to communicate with one another. DSP 
provides two methods of distributed request resolution: referral and 
chaining. 

25.6.3 Referral 

25-30 

In some cases, a DSA may not be able to provide service to a DUA because 
the required information is held elsewhere in the network. A DSA may 
simply choose to inform the DUA or the calling DSA where the 
information can be found. This is called referral and may occur because of 
the user's preference or the DSA's circumstances. 

Referrals are possible because the distinguished name provided by the 
DUA identifies where in the DIT the requested entry is located. DSAs use 
their knowledge of the DIT to inform the DUA of the DSA that holds the 
requested information. 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

Figure 25-12 shows an example of a referral. DSA1 passes a referral to 
DSA2 back to the DUA. The DUA then makes a request to DSA2. 

Figure 25-12. An Example of a Referral 

25.6.4 Chaining 

If a request received from a DUA cannot be fulfilled by the receiving DSA, 
that DSA may send a referral back to the initiating DUA over DAP. 
Alternatively, the DSA may chain the request over DSP, asking another 
DSA to perform the requested function. That DSA may perform the 
function or may send back a referral of its own. In either case, the first 
DSA eventually responds to the originating DUA with either the results of 
the completed operation or a referral. 

OSF DeE Application Development Guide 25-31 



GDS Application Programming 

Chaining can go deeper than one level. To prevent lengthy searches, a user 
can request no chaining or specify a limit on the total elapsed time for an 
operation. 

Figure 25-13 shows an example of chaining. The DUA makes a request of 
DSAl. DSA1 is unable to service the request and passes it to DSA2. 
DSA2 services the request, passes the result back to DSA1, and DSA1 
passes the result back to the DUA. 

Figure 25-13. An Example of Chaining 

Step 1 

Read Request 

Step 2 

Result 

25-32 OSF DCE Application Development Guide 



GDS API: Concepts and Overview 

25.6.5 The Directory User Agent Cache 

The Directory User Agent Cache is a process that keeps a cache of 
information obtained from DSAs. One DUA Cache runs on each client 
machine and is used by all the users on that machine. The DUA Cache 
contains copies of recently accessed object entries and information about 
DSAs. The user specifies which information should be cached. It is also 
possible to bypass the DUA Cache to obtain information directly from a 
DSA. This is desirable, for example, when the user wants to make sure the 
information obtained is up-to-date. 

The Shadow Update and Cache Update are processes that update replicated 
information in DSAs and DUA Caches. These processes run as needed and 
then terminate. The Shadow Update process runs on the ODS server 
machine; the Cache Update process runs on GDS client machines. 

When an application program makes a Directory Service call using XDS 
API, the call is handed to the DUA library. The DUA first looks in the 
DUA Cache (if requested by the user) to see if the requested information is 
already available on the local machine. If it is not, the DUA queries a 
DSA. The DSA may have the requested information, and if it does, it 
returns the results to the DUA. If it does not, the query can proceed either 
by using chaining or a referral. In either case, different DSAs are queried 
until the information is found. It is cached (if requested by the user) in the 
DUA Cache and the results are returned to the application program. 

Figure 25-14 shows the interaction between an application program, via the 
XDS interface, and the GDS client and server. The GDS client and server 
use Directory Access Protocol (DAP) to communicate. The GDS Servers 
use the Directory Service Protocol (DSP) to communicate with one another. 
DAP and DSP perform functions similar to the functions that DCE RPC 
protocols perform in other DCE services. 

OSF DeE Application Development Guide 25-33 



GDS Application Programming 

Figure 25-14. GDS Components 

25-34 

GDS Client GDS Server 

A special object OM class, DSX_C_GDS_CONTEXT, is provided in the 
GOS Package to allow an application program to manage the placement of 
entries in the local OVA Cache as a result of a directory request. 

DSX _ C _ GDS _CONTEXT inherits the OM attributes of its superclasses 
OM _ C _OBJECT and DS _ C _CONTEXT. To enable caching entries, the 
DS DONT USE COPY OM attribute of DS C CONTEXT must be set - - - - -
to a value of OM_FALSE, indicating that a directory request can access 
copies of directory entries maintained in other OSAs or copies cached 
locally. 

DSX _ C _ GDS _CONTEXT has the following private extension OM 
attributes in addition to the OM attributes inherited from 
DS C CONTEXT: 

• DSX DUAFIRST 

• DSX DONT STORE - -
• DSX NORMAL CLASS - -
• DSX PRIV CLASS - -
• DSX RESIDENT CLASS - -

OSF DCE Application Development Guide 



GDS API: Concepts and Overview 

• DSX USEDSA 

• DSX DUA CACHE - -
DSX _ DUAFIRST determines where a query operation, such as a search or 
list, looks first for an entry. The default value is OM_FALSE, indicating 
that the DSA is searched first. If the entry is not found, then the DUA 
Cache is searched. 

DSX _DONT _STORE determines if information read from the DSAs by a 
query function also needs to be stored in the DUA Cache. If this OM 
attribute is set to OM_TRUE, nothing is stored in the cache. If this OM 
attribute is set to OM FALSE, object entries returned from a list or 
compare operation are stored as distinguished names in the cache without 
associated attribute infoimation. Object entries returned from a read or 
search operation are stored with all public attributes, except the ACL 
attribute. 

The three different memory classes that the user can specify for a cached 
entry are DSX _NORMAL_CLASS, DSX _ PRIV _CLASS, and 
DSX RESIDENT CLASS. - -
DSX_NORMAL_CLASS assigns the entry to the class of normal objects. 
If the number of entries in this class exceeds a maximum value, the entry 
that is not accessed for the longest period of time is removed from the DUA 
Cache. 

DSX _ PRIV _ CLASS assigns the entry to the class of privileged objects. 
Entries can be removed from the class in the same way as normal objects. 
However, by setting this area of memory aside to be used sparingly, the 
user can protect entries from deletion. 

DSX _RESIDENT_CLASS assigns the entry to the class of resident 
objects. An entry in this class is never removed automatically. It must be 
explicitly removed using an XDS ds_remove_entryO applied directly to 
the cache; that is, DSX_DUA_CACHE and DSX_USEDSA are set to 
OM_TRUE and OM_FALSE, respectively. 

OSF DeE Application Development Guide 25-35 



GDS Application Programming 

Tables 25-7 through 25-9 show the possible conditions that result when 
DSX DUA CACHE and DSX USEDSA are set to OM TRUE. - - - -

Table 25-7. Cache Attributes: Read Cache First 

OM Attribute Type OM_TRUE OM_FALSE 

DSX_DUA_CACHE X 
DSX_USEDSA X 
DS_DONT_USE_COPY X 
DSX_DUAFIRST X 

In the situation presented in Table 25-7, the cache is read first, then the 
other DSAs. The requested operation is permitted to use copies of entries. 

Table 25-8. Cache Attributes: Read DSA First 

OM Attribute Type OM_TRUE OM_FALSE 

DSX_DUA_CACHE X 
DSX_USEDSA X 
DS_DONT_USE_COPY X 
DSX_DUAFIRST X 

In the situation presented in Table 25-8, the DSA is read first, then the 
cache. The requested operation is permitted to use copies of entries. 

Table 25-9. Cache Attributes: Read DSA Only 

25-36 

OM Attribute Type OM_TRUE OM_FALSE 

DSX_DUA_CACHE X 
DSX_USEDSA X 
DS_DONT_USE_COPY X 
DSX_DUAFIRST N/A N/A 

In the situation presented in Table 25-9, only the DSA is read. The 
requested operation is not permitted to use copies of entries. 

OSF DCE Application Development Guide 



GDS API: Concepts and Overview 

Tables 25-10 through 25-12 show the possible situations when 
DSX DUA CACHE and DSX USEDSA are not both set to OM TRUE. - - - -

Table 25-10. Cache Attributes: DSX_USEDSA is OM_FALSE 

OM Attribute Type OM_TRUE OM_FALSE 

DSX_DUA_CACHE X 
DSX_USEDSA X 

In the situation presented III Table 25-10, the DUA Cache is used 
exclusively. 

Table 25-11. Cache Attributes: DSX_DUA_CACHE is OM_FALSE 

OM Attribute Type OM_TRUE OM_FALSE 

DSX_DUA_CACHE X 
DSX_USEDSA X 

In the situation presented in Table 25-11, the DSA is used excusively. 

Table 25-12. Cache Attributes: Error 

OM Attribute Type OM_TRUE OM_FALSE 

DSX_DUA_CACHE X 
DSX_USEDSA X 

In the situation presented in Table 25-12, neither the DSA or the DUA 
Cache is used, and an error is returned. 

25.6.6 GDS Configurations 

A GDS machine can be configured in two ways: 

• Client Only 

A node can contain only the client side of GDS. This node can access 
remote DSAs and cache information in the DUA Cache. 

OSF DCE Application Development Guide 25-37 



GDS Application Programming 

• Client/Server 

A machine can be configured with both the GDS client and server. This 
is the typical configuration for a machine acting as a GDS server. This 
configuration can be useful even if a node acts mainly as a client 
because the DSA can be used as a larger, more permanent cache of 
information contained in remote DSAs. 

Note: When a client and server reside on the same machine, access 
to the directory is optimized. Communications between the 
DUA and the DSA are by means of Interprocess 
Communications (IPC) via shared memory. 

25.6.7 GDS Security 

25-38 

To establish a session with a GDS server, an application program must 
perform a bind operation to a GDS server. This is accomplished by using 
the XDS ds _ bind() function. A bind operation can be performed by the 
application program with or without user credentials. A bind with 
credentials is referred to as an authenticated bind and allows an application 
program to require a user to specify a distinguished name password as user 
credentials. A bind without user credentials only permits access to public 
information in the directory. 

A special OM object class, DSX_C_GDS_SESSION, is provided in the 
GDS Package to accommodate user credentials. In addition to the OM 
attributes inherited from its superclass DS_ C_SESSION, this OM class 
consists of the following OM attributes: 

• DSX PASSWORD 

This attribute contains the password for the user credentials. 

• DSX DIR ID 

This attribute contains the identifier for distinguishing between several 
configurations of the Directory Service within a GDS installation. 
DSX _ DIR _ ID plays no role in user credentials. 

OSF DeE Application Development Guide 



GDS API: Concepts and Overview 

The GDS Package also provides the following special OM classes to 
support access rights to specific OM attributes by Directory Service users: 

• DSX C GDS ACL - - -
This attribute describes up to five categories of rights for one or more 
directory users. 

• DSX C GDS ACL ITEM - - - -
This attribute specifies the user, or subtree of users, to whom an access 
right applies. 

The five categories of rights correspond to the access rights defined for the 
Directory Service as described in the OSF DeE Administration Guide. The 
categories are as follows: 

• Modify Public 

• Read Standard 

• Modify Standard 

• Read Sensitive 

• Modify Sensitive 

Refer to Chapter 27 for more information on binding with credentials and 
setting access rights for users. The sample programs in Chapter 28 provide 
examples of how security features are used in application programs. 

OSF DeE Application Development Guide 25-39 





Chapter 26 

XOM Programming 

XOM API defines a general-purpose interface for use in conjunction with 
other application-specific APIs for OSI services, such as XDS API to 
Directory Services or X.400 Application API to electronic mail service. It 
presents the application programmer with a uniform information 
architecture based on the concept of groups, classes, and similar information 
objects. 

This chapter describes some of the basic concepts required to understand 
and use the XOM API effectively. 

The following names: 

• acl.c (acl.h) 

• example.c (example.h) 

• teldir.c 

refer to the complete XDS example programs, which can be found III 

Chapter 28. 

OSF DeE Application Development Guide 26-1 



GDS Application Programming 

26.1 OM Objects 

The purpose of XOM API is to provide an interface to manage complex 
information objects. These information objects belong to classes and have 
attributes associated with them. There are two distinct kinds of classes and 
attributes that are used throughout Part 4 of this guide: directory classes 
and attributes and OM classes and attributes. 

The directory classes and attributes defined for XDS API correspond to 
entries that make up the objects in the directory. These classes and 
attributes are defined in the X.SOO directory standard and by additional GDS 
extensions created for DeE. Other APIs, such as the X.400 Application 
Interface, which is the application interface for the industry standard X.400 
electronic mail service, define their own set of objects in terms of classes 
and attributes. OM classes and OM attributes are used to model the objects 
in the directory. 

XOM API provides a common information architecture so that the 
information objects defined for any API that conforms to this architectural 
model can be shared. Different application service interfaces can 
communicate using this common way of defining objects by means of 
workspaces. A workspace is simply a common work area where objects 
defined by a service can be accessed and manipulated. In tum, XOM API 
provides a set of standard functions that perform common operations on 
these objects in a workspace. Two different APIs can share information by 
copying data from one workspace to another. 

26.1.1 OM Object Attributes 

26-2 

OM objects are composed of OM attributes. OM objects may contain zero 
or more OM attributes. Every OM attribute has zero or more values. An 
attribute comprises an integer that indicates the attribute's value. Each 
value is accompanied by an integer that indicates that value's syntax. 

An OM attribute type is a category into which all the values of an OM 
attribute are placed on the basis of its purpose. Some OM attributes may 
either have zero, one, or multiple values. The OM attribute type is used as 
the name of the OM attribute. 

OSF DeE Application Development Guide 



XOM Programming 

A syntax is a category into which a value is placed on the basis of its fonn. 
OM _ S _PRINTABLE_STRING is an example of a syntax. 

An OM attribute value is an infonnation item that can be viewed as a 
characteristic or property of the OM object of which it is a part. 

OM attribute types and syntaxes have integer values and symbolic 
equivalents assigned to them for ease of use by naming authorities in the 
various API specifications. The integers that are assigned to the OM 
attribute type and syntax are fixed, but the attribute values may change. 
These OM attribute types and syntaxes are defined in the DCE 
implementation of XDS and XOM APIs in header files that are included 
with the software along with additional OM attributes specific to the GDS 
implementation. 

Figure 26-1 shows the internal structure of an OM object. 

Figure 26-1. The Internal Structure of an OM Object 

Attribute 

Type 
Integer 

Attribute 

Type 
Integer 

Syntax 
Integer 

Value 

Syntax 
Integer 

Value 

OM Object 

Syntax 
Integer 

Value 

Syntax 
Integer 

Value 

For example, the tables in Figure 26-2 show the OM attributes, syntax, and 
values for the OM class DS _ C _ENTRY_INFO_SELECTION, and how the 
integer values are mapped to corresponding names in the xom.h and xds.h 
header files. The chapters in Part 4C of this guide contain tables for every 
OM class supported by the Directory Service. Refer to Chapter 30 for a 
complete description of DS _ C _ENTRY_INFO _SELECTION and the 
accompanying table. 

OSF DeE Application Development Guide 26-3 



GDS Application Programming 

26-4 

DS_C_ENTRY_INFO_SELECTION is a subclass of OM_C_OBJECT. 
This information is supplied in the description of this OM class in Chapter 
35. As such, DS_C_ENTRY_INFO_SELECTION inherits the OM 
attributes of OM _ C _OBJECT. The only OM attribute of 
OM_C_OBJECTis OM_CLASS. OM_CLASS identifies the object's OM 
class, which in this case is DS_C_ENTRY_INFO_SELECTION. 
DS C ENTRY INFO SELECTION identifies information to be - -
extracted from a directory entry and has the following OM attributes, in 
addition to those inherited from OM _ C _ OBJECT: 

• DS ALL ATTRIBUTES - -
• DS ATTRIBUTES SELECTED - -

• DS INFO TYPE - -
As part of an XDS function call, DS_ALL_ATTRIBUTES specifies to the 
Directory Service whether all the attributes of a directory entry are relevant 
to the application program. It can take the values OM_TRUE or 
OM_FALSE. These values are defined to be of syntax OM_S_BOOLEAN. 
The value OM_TRUE indicates that information is requested on all 
attributes in the directory entry. The value OM_FALSE indicates that 
information is only requested on those attributes that are listed in the OM 
attribute DS ATTRIBUTES SELECTED. - -
DS _ATTRIBUTES_SELECTED lists the types of attributes in the entry 
from which information is to be extracted. The syntax of the value is 
specified as OM_S_OBJECT_IDENTIFIER_STRING. 

OM _ S _OBJECT_IDENTIFIER_STRING contains an octet string of 
integers that are BER encoded object identifiers of the types of OM 
attributes in the OM attribute list. The value of 
DS_ATTRIBUTES_SELECTED is only significant if the value of 
DS_ALL_ATTRIBUTES is OM_FALSE, as described previously. 

DS INFO TYPE identifies what information is to be extracted from each - -
OM attribute identified. The syntax of the value is specified as 
Enum(DS_INFORMATION_TYPE). DS_INFORMATION_TYPE is an 
enumerated type that has two possible values: DS_TYPES_ONLY and 
DS_TYPES_AND_ VALUES. DS_TYPES_ONLY indicates that only the 
attribute types in the entry are returned by the Directory Service operation. 
DS_TYPES_AND_ VALUES indicates that both the types and the values of 
the attributes in the directory entry are returned. 

OSF DeE Application Development Guide 



XOM Programming 

Figure 26-2. Mapping the Class Definition of DS_C_ENTRY _INFO_SELECTION 

OM Attributes of an OM C OBJECT - -

Value Value Value 
Attribute Value Syntax Length Number Initially 

OM_CLASS String - 1 -
(OM_S_OBJECT_IDENTIFIER_STRING) 

OM Attributes of a DS C ENTRY INFO SELECTION - - -

Attribute Value Syntax 

DS ALL OM_S_BOOLEAN 
ATTRIBUTES 

DS ATTRIBUTES String 
SELECTED - (OM_S_OBJECT_IDENTIFIER_STRING) 

}; 

DS_INFO_TYPE Enum(DS_lnformation_ Type) 

DS_TYPES_ONLY = 0, 
DS_TYPES_AND_VALUES = 1 

#define DS_ALL_ATTRIBUTES ((OM_type)707) 

#define DS_ATTRIBUTES_SELECTED ((OM_type)710) 

OSF DCE Application Development Guide 

Value Value Value 
Length Number Initially 

- 1 OM_TRUE 

Oar - -
more 

- 1 
OS_TYPES 
AND_VALUES 

Sample code from 
the xom.h header file 

Sample code from 
the xds.h header file 

26-5 



GDS Application Programming 

A typical Directory Service operation, such as a read operation (ds_read(), 
requires the entry _information _selection parameter to specify to the 
Directory Service the information to be extracted from the directory entry. 
This entry _information _selection parameter is built by the application 
program as a public object (Section 26.1.4 describes how to create a public 
object), and is included as a parameter to the ds_read() function call, as 
shown in the following code fragment from example.c: 

/* 

* Public Object ("Descriptor List") for 
* Entry-Information-Selection 
* parameter to ds_read() . 
*/ 
OM_descriptor selection[] = { 

OM_OID_DESC(OM_CLASS,DS_C_ENTRY_INFO_SELECTION), 
{ DS_ALL_A'ITRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } , 
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR), 
{ DS_INFO_TYPE,OM_S_ENUMERATION, 
{ DS_TYPES_AND_ VALUES, NULL } }, 
OM_NULL_DESCRIPTOR 
} ; 

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT, 
name, selection, &result, &invoke_id)); 

26.1.2 Object Identifiers 

26-6 

OM classes are uniquely identifiable by means of ASN.1 object identifiers. 
OM classes have mandatory and optional OM attributes. Each OM attribute 
has a type, value, and syntax. OM objects are instances of OM classes that 
are uniquely identifiable by means of ASN.1 object identifiers. The syntax 
of values defined for these OM object classes and OM attributes are 
representations at a higher level of abstraction so that implementors can 
provide the necessary high-level language binding for their own 
implementations of the various application interfaces, such as XDS API. 

OSF DeE Application Development Guide 



XOM Programming 

The DCE implementation uses the C language to define the internal 
representation of OM classes and OM attributes. These definitions are 
supplied in the header files that are included as part of the XDS and XOM 
API. 

OM classes are defined as symbolic constants that correspond to ASN.l 
object identifiers. An ASN.l object identifier is a sequence of integers that 
uniquely identifies a specific class. OM attribute type and syntax are 
defined as integer constants. These standardized definitions provide 
application programs with a uniform and stable naming environment in 
which to perform directory operations. Registration authorities are 
responsible for allocating the unique object identifiers. 

The following code fragment from the xdsbdcp.h (the Basic Directory 
Contents Package) header file contains the symbolic constant 
OMP 0 DS A COUNTRY NAME: - - - - -

#ifndef dSP_attributeType /* joint-iso-ccitt(2) ds(5) attributeType(4) */ 
#define dsP_attributeType (X) (" \x55\xo4" #X) 
#endif 

dsp_attributeType(\x06) 

It resolves to 2.5.4.6, which is the object identifier value for the Country 
N arne attribute type as defined in the directory standard. The symbolic 
constant for the directory object class Country resolves to 2.5.6.2, the 
corresponding object identifier in the directory standard. OM classes are 
defined in the header files in the same manner. 

26.1.3 C Naming Conventions 

In the DCE implementation of XDS and XOM APIs, all object identifiers 
start with the letters ds, DS, MH, or OMP. Note that the interface reserves 
all identifiers starting with the letters dsP and ornP for internal use by 
implementations of the interface. It also reserves all identifiers starting with 
the letters dsX, DSX, ornX, and OMX for vendor specific extensions of the 
interface. Applications programmers should not use any identifier starting 
with these letters. 

OSF DeE Application Development Guide 26-7 



GDS Application Programming 

26-8 

The C identifiers for interface elements are formed using the following 
conventions: 

• XDS API function names are specified entirely in lowercase letters, and 
are prefixed by ds_ (for example, ds_read( )). 

• XOM API function names are specified entirely in lowercase letters, and 
are prefixed by om _ (for example, om _get(». 

• C function parameters are derived from the parameter and result names 
and are specified entirely in lowercase letters. In addition, the names of 
results have _return added as a suffix (for example, 
operation _status_return). 

• OM class names are specified entirely in uppercase letters, and are 
prefixed by DS _ C _ and MH _ C _ (for example, DS _ C _AVA). 

• OM attribute names are specified entirely in uppercase letters, and are 
prefixed by DS_ and MH_ (for example, DS_RDNS). 

• OM syntax names are specified entirely in uppercase letters, and are 
prefixed by OM_S_ (for example, OM_S_PRINTABLE_STRING). 

• Directory class names are specified entirely in uppercase letters, and are 
prefixed by DS _ 0 (for example, DS _ 0 _ ORG _PERSON). 

• Directory attribute names are specified entirely in uppercase letters, and 
a~e prefixed by DS_A (for example, DS_A_COUNTRY_NAME). 

• Errors are treated as a special case. Constants that are the possible 
values of the OM attribute DS PROBLEM of a subclass of the OM 
class DS_C_ERROR are specified entirely in uppercase letters, and are 
prefixed by DS _ E _ (for example, DS _ E _BAD _ CLASS). 

• The constants in the Value Length and Value Number columns of the 
OM class definition tables are also assigned identifiers. Where the upper 
limit in one of these columns is not 1, it is given a name that consists of 
the OM attribute name, prefixed by DS _ VL _ for value length, or 
DS VN for value number. 

• The sequence of octets for each object identifier is also assigned an 
identifier for internal use by certain OM macros. These identifiers are all 
uppercase letters and are prefixed by OMP _ 0 _. 

OSF DeE Application Development Guide 



XOM Programming 

Tables 26-1 and 26-2 summarize the XDS and XOM naming conventions. 

Table 26-1. C Naming Conventions for XDS 

Item Prefix 

Reserved for implementors dsP 
Reserved for interface extensions dsX 
Reserved for interface extensions OSX 
XDS functions ds_ 
Error problem values OS_E_ 
OM class names OS_C_, MH_C_ 
OM attribute names OS_, MH_ 
OM value length limits OS_VL_ 
OM value number limits OS_VN -
Other constants OS_, MH_ 
Attribute type OS_A_ 
Object class OS_O_ 

Table 26-2. C Naming Conventions for XOM 

Element Type Prefix 

Data type OM -
Data value OM -
Data value (class) OM_C_ 
Data value (syntax) OM_S_ 
Data value component (structure member) None 
Function om -
Function parameter None 
Function result None 
Macro OM -
Reserved for use by implementors OMP 
Reserved for use by implementors omP 
Reserved for proprietary extension omX 
Reserved for proprietary extension OMX 

OSF DCE Application Development Guide 26-9 



GDS Application Programming 

26.1.4 Public Objects 

26-10 

The ultimate aim of an application program is access to the directory to 
perform some operation on the contents of the directory. A user may 
request the telephone number or electronic mail address of a fellow 
employee. In order to access this information, the application performs a 
read operation on the directory so that information is extracted about a 
target object in the directory and manipulated locally within the application. 

XDS functions that perform directory operations, such as ds_read(), require 
public and private objects as input parameters. Typically, a public object is 
generated by an application program and contains the information required 
to access a target directory object. This information includes the A VAs and 
RDN s that make up a distinguished name of an entry in the directory. 
However, an application program may also generate a private object. 
Private objects are described in Section 26.1.5. 

A public object is created using OM classes and OM attributes. These OM 
classes and OM attributes model the target object entry in the directory and 
provide other information required by the Directory Service to access the 
directory. 

26.1.4.1 Descriptor Lists 

A public object is represented by a sequence of OM_descriptor data 
structures that is built by the application program. A descriptor contains the 
type, syntax, and value for an OM attribute in a public object. 

The data structure OM_descriptor is defined in the xom.h header file as 
follows: 

typedef struct OM_descriptor_struct { 
OM_type type; 
OM_syntax 
union OM_value_union 

} OM_descriptor; 

syntax; 
value; 

Figure 26-3 shows the representation of a public object in a descriptor list. 
The first descriptor in the list indicates the object's OM class; the last 
descriptor is a NULL descriptor that signals the end of the list of OM 

OSF DeE Application Development Guide 



XOM Programming 

attributes. In between the first and the last descriptor are the descriptors for 
the OM attributes of the object. 

Figure 26-3. A Representation of a Public Object Using a Descriptor List 

Object 

First Descriptor Class of Object 

Second Descriptor I First OM Attribute of Object 

Last OM Attribute of Object 

Last Descriptor NULL Descriptor 
(end marker of descriptor list) 

For example, the following represents the public object country in 
example.c: 

static OM_descriptor country[] = { 
OM_OID_DESC(OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_A'ITRIBLITE_TYPE, DS_A_COUNTRY_NAME), 
{ DS_A'ITRIBLITE_ VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "US") }, 
OM_NOLL_DESCRIPTOR 
} ; 

The descriptor list is an array of data type OM_descriptor that defines the 
OM class, OM attribute types, syntax, and values that make up a public 
object. 

The first descriptor gives the OM class of the object. The OM class of the 
object is defined by the OM attribute type, OM_CLASS. The 
OM_OlD _ DESC macro initializes the syntax and value of an object 
identifier, in this case to OM class DS _ C _AVA, with syntax of 
OM_S_OBJECT_IDENTIFIER_STRING. 

OM_S_OBJECT_IDENTIFIER_STRING is an OM syntax type that is 
assigned by definition in the macro to any OM attribute type and value 
parameters input to it. 

The second descriptor defines the first OM attribute type, 
DS _ATTRIBUTE_TYPE, which has as its value 

OSF DeE Application Development Guide 26-11 



GDS Application Programming 

26-12 

DS A COUNTRY NAME and - - - syntax 
OM_S_OBJECT_IDENTIFIER_STRING. 

The third descriptor specifies the AVA of an object entry in the directory. 
The OM OlD DESC macro is not used here because OM OlD DESC is - - - -
only used to initialize values having 
OM _ S _ OBJECT_IDENTIFIER_STRING syntax. The OM attribute type 
is DS_ATTRIBUTE_ VALUES, the syntax is 
OM_S_PRINTABLE_STRING, and the value is US. The OM_STRING 
macro creates a data value for a string data type (data type OM_string), in 
this case OM_S_PRINTABLE_STRING. A string is specified in terms of 
its length or whether or not it terminates with a NULL. (The OM_STRING 
macro is described in Section 26.8.4.2.) 

The last descriptor is a NULL descriptor that marks the end of the public 
object definition. It is defined in the xom.h header file as follows: 

#define OM_NOLL_DESCRIPTOR 

{ OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES, 

{ { 0, OM_ELEMENTS_UNSPECIFIED } } } 

OM_NULL_DESCRIPTOR is OM attribute type NO_MaRE_TYPES, 
syntax OM_S_NO_MORE_SYNTAXES, and value 
OM ELEMENTS UNSPECIFIED. - -
Figure 26-4 shows the composition of a descriptor list representing a public 
object. 

OSF DeE Application Development Guige 



Figure 26-4. A Descriptor List for the Public Object: country 

static OM_descriptor 

OM_NULL_DESCRIPTOR 
}; 

XOM Programming 

26.1.4.2 Building the Distinguished Name as a Public Object 

Recall that RDNs are built from AVAs and a distinguished name is built 
from a series of RDNs. In a typical application program, several AVAs are 
defined in descriptor lists as public objects. These public objects are 
incorporated into descriptor lists that represent corresponding RDNs. 
Finally, the RDNs are incorporated into one descriptor list that represents 
the distinguished name of an object in the directory, as shown in Figure 
26-5. This descriptor list is included as one of the input parameters to a 
Directory Service function. 

The following code fragment from exampie.c shows how a distinguished 
name is built as a public object. The public object is the name parameter for 
a subsequent read operation call to the directory. The representation of a 
distinguished name in the DIT is shown in Figure 26-5. 

OSF DeE Application Development Guide 26-13 



GDS Application Programming 

Figure 26-5. The Distinguished Name of "Peter Piper" in the DIT 

/* 

RDNs 

o Country Name = "US" 

I o Organization Name = "Acme Pepper Co" 

I o Organizational Unit = "Research" 

I o Common Name = "Peter Piper" 

Distinguished Name = {C=US, O=Acme Pepper Co, OU=Research, CN=Peter Piper} 

The first section of code defines the four A V As. These A V As make the 
assertion to the Directory Service that the attribute values in the 
distinguished name of Peter Piper are valid and can therefore be read from 
the directory. The country name is US, the organization name is Acme 
Pepper Co, the organizational unit name is Research, and the common 
name is Peter Piper. 

* Public Object ("Descriptor List") for Name parameter to 
* ds_read() . 
* Build the Distinguished-Name of Peter Piper 
*/ 

static OM_descriptor country[] = { 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATI'RIBUTE_TYPE, DS_A_COUNTRY_NAME), 
{ DS_ATI'RIBUTE_ VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "US") }, 
OM_NULL_DESCRIPTOR 
} ; 

26-14 OSF DeE Application Development Guide 



XOM Programming 

static OM_descriptor organization[] = { 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 

OM_OID_DESC (DS_ATrRIBUTE_TYPE, DS_A_ORG_NAME), 

{ DS_ATrRIBUTE_ VALUES, OM_S_TELETEX_STRING, OM_STRING ( II Acme Pepper Co II ) }, 

OM_NULL_DESCRIPrOR 

} ; 

static OM_descriptor organizational_unit[] = { 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 

OM_OID_DESC (DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME), 

{ DS_ATrRIBUTE_ VALUES, OM_S_TELETEX_STRING, OM_STRING ( II Research ") }, 

OM_NULL_DESCRIPrOR 

} ; 

static OM_descriptor cornmon_name[] = { 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 

OM_OID_DESC (DS_ATrRIBUTE_TYPE, DS_A_COMMON_NAME), 

{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING, OM_STRING{"Peter Piper") }, 

OM_NULL_DESCRIPrOR 

} ; 

The next section of code is nested one level above the previously defined 
AVAs. Each RDN has a descriptor with OM attribute type DS_AVAS 
(indicating that it is OM attribute type AVA), a syntax of OM_S_OBJECT, 
and a value of the name of the descriptor array defined in the previous 
section of code for an AVA. The rdnl descriptor contains the descriptor list 
for the AVA country, the rdn2 descriptor contains the descriptor list for the 
AVA organization, and so on. 

OM _ S _ OBJECT is a syntax that indicates that its value is a subobject. For 
example, the value for DS _A VAS is the previously defined object country. 
In this manner a hierarchy of linked objects and subobjects may be 
constructed. 

static OM_descriptor rdnl[] = { 
OM_OID_DESC{OM_CLASS, DS_C_DS_RDN), 

{ DS_AVAS, OM_S_OBJECT, { 0, country} }, 

OM_NULL_DESCRIPrOR 

} ; 

static OM_descriptor rdn2[] = { 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 

{ DS_AVAS, OM_S_OBJECT, { 0, organization } }, 

OM_NULL_DESCRIPrOR 

} ; 

OSF DeE Application Development Guide 26-15 



GDS Application Programming 

26-16 

static OM_descriptor rdn3[] = { 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{ DS_AVAS, OM_S_OBJECT, { 0, organizational_unit} }, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor rdn4[] = { 
OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{ DS_AVAS, OM_S_OBJECT, { 0, common_name} }, 
OM_NOLL_DESCRIPTOR 
} ; 

The next section of code contains the RDNs that make up the distinguished 
name, which is stored in the array of descriptors called name. It is made up 
of the OM class DS_C_DS_DN (representing a distinguished name) and 
fourRDNs of OM attribute type DS_RDNS and syntax OM_S_OBJECT. 

OM_descriptor name[] = { 
OM_OID_DESC(OM_CLASS, DS_C_DS_DN), 
{ DS_RDNS, OM_S_OBJECT, { 0, rdnl } }, 
{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } }, 
{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } }, 
{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } }, 
OM_NOLL_DESCRIPTOR 
} ; 

In summary, the distinguished name for Peter Piper is stored in the array of 
descriptors called name, which is composed of three nested levels of arrays 
of descriptors (see Figure 26-6). The definitions for the AVAs are at the 
innermost level, the definitions for RDNs are at the next level up, and the 
distinguished name is at the top level. 

OSF DeE Application Development Guide 



XOM Programming 

Figure 26-6. Building a Distinguished Name 

AVAs 
static OM_descriptor country [ ] ={ static 

I Descriptor List I ~ 

}; 

static OM_descriptor organization [] ={ 

I Descriptor List I ~ 

}; 

static OM_descriptor or ganizational_unit [] = { 

I Descripto r List I ~ 

}; 

static OM_descriptor ammon_name [ ] ={ 

r List I ~ I Descripto 
}; 

Distinguished Name 

1------

1 

1 
1 

-
OM_descriptor name[] 

}; I Descriptor List I 

}; 

static 

}; 

static 

}; 

static 

}; 

= { 

RDNs 

OM_descriptor rdnl [] 

I Descriptor List I 
OM_descriptor rdn2 [] 

I Descriptor List I 
OM_descriptor rdn3 [ ] 

I Descriptor List I 
OM_descriptor rdn4 [] 

I Descriptor List I 

1 CHECK_DS_CALL (ds _read (session, DS_DEFAULT_CONTEXT, 
1 name, selection, &result, &invoke_id)); 

1 A 
1 1 
1- ______________ ...! 

OSF DeE Application Development Guide 

= { 

= { 

,-
= { 

= { 

./ 

26-17 



GDS Application Programming 

Figure 26-7 shows a more general view of the structure distinguished name. 

Figure 26-7. A Simplified View of the Structure of a Distinguished Name 

26-18 

Abstract Class 

Concrete Subclass 

Concrete Class 

Concrete Class 

Note: Abstract classes are shown in italics. 

The name descriptor defines a public object that is provided as the name 
parameter required by the XDS API read function call, ds_readO, as 
follows (XDS API function calls are described in detail in Chapter 27): 

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT, 
name, selection, &result, &invoke_id}}; 

The result of the ds _read() function call is in a private implementation
specific format; it is stored in a workspace and pointed to by result. The 
application program must use XOM function calls (described in Section 
26.7) to interpret the data and extract the information. This extraction 
process involves uncovering the nested data structures in a series of XOM 
function calls. 

26.1.4.3 Client-Generated and Service-Generated Public Objects 

There are two types of public objects: service-generated objects and client
generated objects. The distinguished name object described in the previous 
section is a client-generated public object because an application program 
(the client) created the data structure. As the creator of the public object, it 
is the responsibility of the application program to manage the memory 
resources allocated for it. 

Service-generated public objects are created by the XOM service. Service
generated public objects may be generated as a result of an XOM request. 

OSF DeE Application Development Guide 



XOM Programming 

An XOM API function, such as om _get(), converts a private object into a 
service-generated public object. This is necessary because XDS may return 
a pointer to data in private format that can only be interpreted by XOM 
functions such as om _get( ). 

For example, Figure 26-8 shows how the read request described in the 
previous example returns a pointer to an encoded data structure stored in 
result. This encoded data structure, referred to as a private object 
(described in the next section) is one of the input parameters to om_getO. 
The om _get() function provides a pointer to a public object (in this case, 
entry) as an output parameter. The public object is a data structure that has 
been interpreted by om _get() and is accessible by the application program 
(the client). The information requested by the application in the read 
request is contained in the output parameter entry. 

Figure 26-8. Client-Generated and Service-Generated Objects 

~ . tr------, 
CHECK_DS_CALL(ds_read (seSSlon, DS_DEFAULT_CONTEXT, 

name, selection, &result, &invoke)); 

Client-Generated 
Public Objects 

Service-Generated 
Private Object 

I context 

I namer- I session ~I-+------I 

I result I 
I selection I-

I entry 

Workspace 

Application Program Space 

CHECK_OM_CALL (om_get (result, 

OM_EXCLUDE_ALL_BUT_THESE_TYPES 

Service-Generated 
Public Object 

entry_list, OM_FALSE, 0, 0, &entry 
&total_num) ) ; 

OSF DCE Application Development Guide 26-19 



GDS Application Programming 

The application program is responsible for managing the storage (memory) 
for the service-generated public object. This is an important point because 
it requires that the application issue a series of om _ delete() calls to delete 
the service-generated public object from memory. Because the data 
structures involved with Directory Service requests can be very large (often 
involving large subtrees of the DIT), it is imperative that the application 
programmer build into any application program the efficient management of 
memory resources. 

The following code fragment from example.h demonstrates how storage for 
public and private objects is released using a series of om _ delete() function 
calls after they are no longer needed by the application program. The data 
(a list of phone numbers associated with the name Peter Piper required by 
the application program) has already been extracted using a series of 
om _get( ) function calls: 

/* We can now safely release all the private objects 
and the public objects we no longer need * 

*/ 
CHECK_OM_CALL{om_delete{session}}; 
CHECK_OM_CALL{om_delete{result}}; 
CHECK_OM_CALL{om_delete{entry}}; 
CHECK_OM_CALL{om_delete{attributes}}; 
CHECK_DS_CALL{ds_shutdown{workspace}}; 

26.1.5 Private Objects 

26-20 

Private objects are created dynamically by the service interface. In Figure 
26-8 the ds_readO function returns a pointer to the data structure result in 
the workspace. This service-generated data structure is a private object in a 
private implementation-specific format, which requires a call to om _get() 
to interpret the data. A private object is one of the required input 
parameters to XOM API functions (such as om_getO), as shown in Figure 
26-8. Private objects are always service generated. 

OSF DeE Application Development Guide 



XOM Programming 

Table 26-3 compares private and public objects. 

Table 26-3. Comparison of Private and Public Objects 

Private 

Representation is 
implementation specific 

Not directly accessible by the 
client 

Manipulated by the client 
using OM functions 

Created in storage provided 
by the service 

Cannot be modified by the 
client directly, except through 
the service interface 

Storage is allocated and 
released by the service 

Public 

Representation is defined in 
the AP I specification 

Directly accessible by the 
client 

Manipulated by the client 
using 
constructs 

programming 

Is a service-generated object 
if created by the service 

Is a client-generated object if 
created by the client in 
storage provided by the client 

If a client-generated object, 
can be modified directly by 
the client 

If a service-generated object, 
cannot be modified directly 
by the client, except through 
the service interface 

If a service-generated object, 
storage is allocated and 
released by the service 

If a client-generated object, 
storage is allocated and 
released by the client 

Private objects may also be used as input to XOM and XDS API functions to 
improve program efficiency. For example, the output of a ds_searchO 
request may be used as input to a ds _read(). The search request returns the 
name of each entry in the search. If the application program requires the 

OSF DeE Application Development Guide 26-21 



GDS Application Programming 

address and telephone number of each name, a ds _read() operation can be 
performed on each name as a private object. 

26.1.6 Object Classes 

26-22 

Objects are categorized into OM classes based on their purpose and internal 
structure. An object is an instance of its OM class. An OM class is 
characterized by OM attribute types that may appear in its instances. An 
OM class is uniquely identified by an ASN.l object identifier. 

Later in this section, it will be shown how OM classes are organized into 
groups of OM classes, called packages, that support some aspect of the 
Directory Service. 

26.1.6.1 OM Class Hierarchy and Inheritance Properties 

OM classes are related to each other in a tree hierarchy whose root is a 
special OM class called OM _ C _OBJECT. Each of the other OM classes is 
the immediate subclass of precisely one other OM class. This tree structure 
is known as the OM class hierarchy. It is important because of the property 
of inheritance. The OM class hierarchy is defined by the XDSIXOM. DCE 
implements this hierarchy for GDS and adds its own set of OM classes 
defined in the GDS Package. 

The OM attribute types that may exist in an instance of an OM class but not 
in an instance of the OM class above in the tree hierarchy are said to be 
specific to that OM class. OM Attributes that may appear in an object are 
those specific to its OM class as well as those inherited from OM classes 
above it in the tree. OM Classes above an instance of an OM class in the 
tree are superclasses of that OM class. OM Classes below an instance of an 
OM class are subclasses of that OM class. 

For example, as shown in Figure 26-9, 
DS C ENTRY INFO SELECTION inherits its OM attributes from its 
superclass OM C OBJECT. The OM attributes 
DS_ALL_ATTRIBUTES, DS_ATTRIBUTES_SELECTED, and 

OSF DeE Application Development Guide 



XOM Programming 

DS _INFO _TYPE are attributes that are specific to the OM class 
DS_C_ENTRY_INFO_SELECTION, which has no subclasses. 

OM _C_OBJECT 

OM_CLASS 

! 
DS _C_ENTRY _INFO_SELECTION 

DS _ALL_ATTRIBUTES 

DS _ATTRIBUTES_SELECTED 

DS _INFO_TYPE 

Note: Abstract classes are shown in italics. 

Another important point about OM class inheritance is that an instance of an 
OM class also is considered to be an instance of each of its superclasses and 
may appear wherever the interface requires an instance of any of those 
superclasses. For example, DS _ C _ DS _ DN is a subclass of DS _ C _NAME. 
Everywhere in an application program where DS _ C _NAME is expected at 
the interface (as a parameter to ds_read(), for example), it is permitted to 
supply DS_C_DS_DN. 

26.1.6.2 Abstract and Concrete Classes 

OM classes are defined as abstract or concrete. 

An abstract OM class is an OM class in which instances are not permitted. 
An abstract OM class may be defined so that subclasses can share a common 
set of OM attributes between them. 

In contrast to abstract OM classes, instances of OM concrete classes are 
permitted. However, the definition of each OM concrete class may include 
the restriction that a client not be allowed to create instances of that OM 
class. For example, consider two alternative means of defining the OM 
classes used in XDS: DS C LIST INFO and DS C READ RESULT. - - - - - -
DS C LIST INFO and DS C READ RESULT are subclasses of the - -
abstract OM class DS C COMMON RESULT. 

OSF DeE Application Development Guide 26-23 



GDS Application Programming 

Figure 26-10 shows the relationship of DS C LIST INFO and 
DS C READ RESULTS when the abstract OM class - - -
DS C COMMON RESULT is defined and when it is not defined. It 
demonstrates that the presence of an abstract OM class enables the 
programmer to develop applications that process information more 
efficiently. 

Figure 26-10. A Comparison of Two Classes With and Without an 
Abstract OM Class 

26-24 

OM _C_OBJECT 

OM_CLASS 

* OS _C_COMMON_RESUL T 

DS _ALlASED_DEREFERENCED 

DS _PERFORMER 

/' ~ 
DS _C_LlST_INFO DS _C_READ_RESULT 

DS _OBJECT_NAME DS_ENTRY 

DS _PARTIAL_OUTCOME_QUAL 

DS _SUBORDINATES 

DS C LIST INFO and DS C READ RESULT with the 
OS=C=COMMON_RESUL Tabstract Class defined. 

OM _C_OBJECT 

OM_CLASS 

/ ~ 
DS _C_LlST_INFO DS _C_READ_RESULT 

DS _OBJECT_NAME DS - ENTRY 

DS _PARTIAL_OUTCOME_ QUAL DS _ALlASED_DEREFERENCED 

DS _SUBORDINATES DS _PERFORMER 

DS _ALlASED_DEREFERENCED 

DS _PERFORMER 

DS C LIST INFO and DS C READ RESULT without the 
OS=C=COMMON_RESULTabstract Class defined. 

Note: Abstract classes are shown in italics. 

OSF DCE Application Development Guide 



XOM Programming 

The following list contains the hierarchy of concrete and abstract OM 
classes in the Directory Service Package. Abstract OM classes are shown in 
italics. The indentation shows the class hierarchy; for example, the abstract 
class OM C OBJECT is a superclass of the abstract class 
DS_C_COMMON_RESULTS, which in tum is a superclass of the concrete 
class DS C COMPARE RESULT. 

OM C OBJECT 

• DS C ACCESS POINT 

• DS C ADDRESS 

- DS C PRESENTATION ADDRESS - - -

• DS C ATTRIBUTE 

- DS CAVA 

- DS C ENTRY MOD 

- DS C FILTER ITEM 

• DS C ATTRIBUTE ERROR 

• DS C ATTRIBUTE LIST 

- DS C ENTRY INFO 

• DS C COMMON RESULTS 

- DS C COMPARE RESULT 

- DS C LIST INFO 

- DS C READ RESULT - - -
- DS C SEARCH INFO - - -

• DS C CONTEXT 

• DS C CONTINUATION REF 

- DS C REFERRAL 

• DS C ENTRY INFO SELECTION - -
• DS C ENTRY MOD LIST - -

• DS C ERROR 

- DS C ABANDON FAILED 

OSF DeE Application Development Guide 26-25 



GDS Application Programming 

26-26 

- DS C ATTRIBUTE PROBLEM - - -
- DS C COMMUNICATIONS ERROR - - -
- DS C LIBRARY ERROR - - -
- DS C NAME ERROR - - -
- DS C SECURITY ERROR - - -
- DS C SERVICE ERROR 

- DS C SYSTEM ERROR 

- DS C UPDATE ERROR - - -

• DS C EXT 

• DS C FILTER 

• DS C LIST INFO ITEM - - - -
• DS C LIST RESULT - - -
• DS C NAME 

- DS C DS DN - - -
• DS C OPERATION PROGRESS - - -
• DS_C_PARTIAL_OUTCOME_QUAL 

• DS C RELATIVE NAME 

- DS C DS RDN - - -
• DS C SEARCH RESULT - - -
• DS C SESSION 

In summary, an OM class is defined with the following elements: 

• OM class name (indicated by an object identifier) 

• Identity of its immediate superclass 

• Definitions of the OM attribute types specific to the OM class 

• Indication whether the OM class is abstract or concrete 

• Constraints on the OM attributes 

A complete description of OM classes, OM attributes, syntaxes, and values 
that are defined for XDS and XOM APIs are described in Part 4C. Tables 

OSF DeE Application Development Guide 



XOM Programming 

and textual descriptions, such as the one shown in Figure 26-11 for the 
concrete OM class DS _ C _ATTRIBUTE, are provided for each OM class in 
these chapters in Part 4 B. 

Figure 26-11. A Complete Description of Concrete OM Class DS_C_ATTRIBUTE 

Description of the class, including an 
indication whether it is an abstract class 

30.5 ATTRIBUTE 

An instance of OM class OS_C_ATTRIBUTE is an attribute of an object, and 
thus a component of its directory entry. 

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in 
a dd· . h OM ·b rd· T bl 30 2 Itlon to t e attn utes Iste In a e 

Table showing values 

Tab / 
of syntax, length, 

Ie 30-2. number of values, 
and initial value 

OM_Attributes of a DS_C_ATTRIBUTE 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_ATTRIBUTE_ String(OM_S_OBJECT_ - 1 -
TYPE IDENTIFIER_STRING) 

OS_ATTRIBUTE_ Any - Oor -
VALUES more 

Description of attributes and 
listing of attribute values 

The attribute type that indicates the class of information given by this attribute. 

• OS_ATTRIBUTE_VALUES 

The attribute values. The OM value syntax and the number of values allowed for this 
OM attribute are determined by the value of the OS_ATTRIBUTE_TYPE OM 
attribute in accordance with the rules given in Section 29.6.1 in Chapter 29 of this guide. 

If the values of this OM attribute have the syntax String(*), the strings can be 
long and segmented. For this reason, om_readO and om_writeO need to be 
used to access all String(*) values. 

Note: A directory attribute must always have at least one value, although it is 
acceptable for instances of this OM class not to have any values. 

OSF DCE Application Development Guide 26-27 



GDS Application Programming 

26-28 

The table shown in Figure 26-11 provides information under the following 
headings: 

• OM Attribute 

The name of each of the OM attributes 

• Value Syntax 

The syntaxes of each of the OM attribute's values 

• Value Length 

Any constraints on the number of bits, octets, or characters in each value 
that is a string 

• Value Number 

Any constraints on the number of values 

• Value Initially 

Any value with which the OM attribute can be initialized 

An OM class can be constrained to contain only one member of a set of OM 
attributes. In tum, OM attributes can be restricted to having no more than a 
fixed number of values, either 0 (zero) or 1 as an optional value, or exactly 
one mandatory value. 

An OM attribute's value may be also constrained to a single syntax. That 
syntax can be further restricted to a subset of defined values. 

An object passed as a parameter to an XOM and XDS function call needs to 
meet a minimum set of conditions: 

• The type of each OM attribute must be specific to the object's OM class 
or one of its superclasses. 

• The number of values of each OM attribute must be within OM class 
limits. 

• The syntax of each value must be among those the OM class permits. 

• The number of bits, octets, or characters in each string value must be 
within OM class limits. 

OSF DeE Application Development Guide 



XOM Programming 

26.2 Packages 

A package is a collection of OM classes that are grouped together, usually 
by function. The packages themselves are features that are negotiated with 
the Directory Service using the XDS function ds_ versionO. Consider what 
OM classes will be required for your application programs and determine 
the packages that contain these OM classes. 

A package is uniquely identified by an ASN.l object identifier. DCE XDS 
API supports four packages of which one is mandatory and three are 
optional: 

• The Directory Service Package (mandatory) 

• The Basic Directory Contents Package (optional) 

• The Global Directory Service Package (optional) 

• The MRS Directory User Package (optional) 

26.2.1 The Directory Service Package 

The Directory Service Package is the default package and as such does not 
require negotiation. The optional packages have to be negotiated with the 
Directory Service using the ds _ version() function. 

The object identifiers for specific packages are defined in header files that 
are part of the XDS API and XOM API. An object identifier consists of a 
string of integers. The header files include #define preprocessor statements 
that assign names to these constants in order to make them more readable. 
These assignments alleviate the application programmer from the burden of 
maintaining these strings of integers. For example, the object identifiers for 
the Directory Service Package are defined in xds.h. The xds.h header file 
contains OM class and OM attribute names, OM object constants, and 
defines prototypes for XDS API functions, as shown in the following code 
fragment from xds.h: 

/* DS package object identifier */ 
/* {iso(l) identifier-organization (3) icd-ecma(12) 
* member-company (2) 

OSF DeE Application Development Guide 26-29 



GDS Application Programming 

* dec (1011) xopen(28) dsp(O) } */ 

A ds _ version() function call must be included within an application 
program to negotiate the optional features (packages) with the Directory 
Service. The first step is to build an array of object identifiers for the 
optional packages to be negotiated (the Basic Directory Contents Package 
and the Global Directory Service Package), as shown in the following code 
fragment from the acl.h header file: 

DS_feature features[] = { 
{ OM_STRING (aMP _O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE }, 
{ OM_STRING (aMP _O_DSX_GDS_PKG), OM_TRUE }, 
{ 0 } 

} ; 

The OM_STRING macro is provided for creating a data value of data type 
OM_string for octet strings and characters. XOM API macros are 
described in Section 26.8.2. 

The array of object identifiers is stored in features, and passed as an input 
parameter to ds _ version(), as shown in the following code fragment from 
acl.c: 

/* Negotiate the use of the BDCP and GDSP packages. */ 

if (ds_version(features) != DS_SUCCESS) 
printf (lIds_version() error\n"); 

26.2.2 The Basic Directory Contents Package 

26-30 

The Basic Directory Contents Package contains the object identifier 
definition of directory classes and attribute types as defined by the X.SOO 
standard. These definitions allow the creation of and maintainence of 
directory entries for a number of common objects so that the representation 
of all such objects is the same throughout the directory. Also included are 
the definitions of the OM classes and OM attributes required to support the 
directory attribute types. 

OSF DeE Application Development Guide 



XOM Programming 

The object identifier associated with the Basic Directory Contents Package 
is shown in the following code fragment from the xdsbdcp.h header file: 

/* BDCP package object identifier */ 
/* { iso(l) identifier-organization(3) icd-ecma(12) 
* member-company (2) 
* dec (1011) xopen(28) bdcp(l) } */ 

26.2.3 The Global Directory Service Package 

The Global Directory Service Package contains the definition of a DCE 
extension to the XDS API. It contains the definitions of OM classes, OM 
attributes, and syntaxes to support extended functionality specific to DCE. 
Chapter 34 describes the GDSP package in detail. 

The following code fragment from the xdsgds.h header file shows the object 
identifier for the GDSP package: 

/* GDSP package object identifier */ 

/* { iso(l) identifier-organization(3) icd-ecma(12) member-company (2) 
/* siemens-units (1107) sni(l) directory (3) xds-api(lOO) gdsp(l) } */ 

#define OMP_O_DSX_GDS_PKG "\x2B\xOC\x02\x88\x53\xOl\x03\x64\xOl" 

Part 4C of this guide describes in detail the attributes and data types that 
make up the OM and directory classes defined in the XDS API packages. 
Chapter 28 examines in detail how these packages are used in developing 
the sample application programs. 

OSF DeE Application Development Guide 26-31 



GDS Application Programming 

26.2.4 Package Closure 

An OM class may be defined to have an attribute whose OM class is defined 
in some other package. This avoids duplication of OM classes. This gives 
rise to the concept of a package closure. A package closure is the set of all 
OM classes that need to be supported so that all possible instances of all 
OM classes can be defined in the package. 

26.3 Workspaces 

26-32 

Two application-specific APIs or two different implementations of the same 
service require work areas, called workspaces, to maintain private and 
public (service-generated) objects. The workspace is required because two 
implementations of the same service (or different services) can represent 
private objects differently. Each one has its own workspace. Using the 
functions provided by XOM API, such as om _get() and om _ copy(), objects 
can by copied and moved from one workspace to another. 

Recall that private objects are returned by a service to a workspace in 
private implementation-specific format. U sing the OM function calls 
described in Section 26.7, the data can be extracted from the private object 
for further program processing. 

Before a request to the directory can be made by an application program, a 
workspace must be created using the appropriate XDS function. An 
application creates a workspace by performing the XDS API call 
dsJnitializeO. Once the workspace is obtained, subsequent XDS API 
calls, such as ds _read(), return a pointer to a private object in the 
workspace. When program processing is completed, the workspace is 
destroyed using the ds _shutdown() XDS API function. Implicit in 
ds_shutdownO is a call to the XOM API function om_deleteO to delete 
each private object the workspace contains. 

The programs in Chapter 28 demonstrate how to initialize and shut down a 
workspace. The XDS functions ds_initializeO and ds_shutdownO are 
described in detail in Sections 27.1.1 and 27.1.3, respectively. 

The closures of one or more packages are associated with a workspace. A 
package can be associated with any number of workspaces. An application 
program must obtain a workspace that supports an OM class before it is able 

OSF DeE Application Development Guide 



XOM Programming 

to create any instances of that OM class. For example, some of these 
operations in an application may require involvement with ODS security, 
ACLs, or the DUA cache. Therefore, in addition to the basic packages 
provided by the Directory Service APIs, the workspace would have to 
support the ODSP package. The following code fragment demonstrates how 
an application initializes a workspace and negotiates the packages to be 
associated with that workspace: 

/* Build up an array of object identifiers for the optional */ 
/* packages to be negotiated. */ 

DS_feature features[] = { 

{ OM_STRING (OMP _O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE }, 
{ OM_STRING (OMP _O_DSX_GDS_PKG), OM_TRUE }, 
{ 0 } 

} ; 

CHECK_DS_CALL((OM_object) ! (workspace = ds_initialize())); 

CHECK_DS_CALL (ds_version (bdcp-package, workspace)); 

26.4 Storage Management 

An object occupies storage. The storage occupied by a public object is 
allocated by the client, and is, therefore, directly accessible by the client 
and can be released by the client. The storage occupied by a private object 
is not accessible by the client and must be managed indirectly using XOM 
function calls. 

Objects are accessed by an application program via object handles. Object 
handles are used as input parameters to interface functions by the client and 
returned as output parameters by the service. The object handle for a public 
object is simply a pointer to the data structure (an array of descriptors) 
containing the object OM attributes. The object handle for a private object 
is a pointer to a data structure that is in private implentation-specific format 
and therefore inaccessible directly by client. 

The client creates a client-generated public object using normal 
programming language constructs; for example, static initialization. The 

OSF DeE Application Development Guide 26-33 



GOS Application Programming 

26-34 

client is responsible for managing any storage involved. The service creates 
service-generated public objects and allocates the necessary storage. As 
previously mentioned, the client must destroy service-generated public 
objects and release the storage by applying the XOM function om_deleteO 
to it, as shown in the following code fragment: 

/* We can now safely release all the private objects 
and the public objects we no longer need * 

*/ 
CHECK_OM_CALL(om_delete(session)); 
CHECK_OM_CALL(om_delete(result)); 
CHECK_OM_CALL(om_delete(entry)); 
CHECK_OM_CALL(om_delete(attributes)); 
CHECK_DS_CALL(ds_shutdown(workspace)); 

The service also creates private objects for which it allocates storage that 
must be managed by the application. 

One of the input parameters to the ds_readO function call is name. The 
name parameter is a public object created by the application from a series 
of nested data structures (RDNs and AVAs) to represent the distinguished 
name containing Peter Piper. When the application no longer needs the 
public object, it issues the XDS function call ds_shutdownO to release the 
memory resources associated with the public object. The ds_readO call 
returns the pointer to a private object, result, deposited in the workspace by 
the service. 

The program goes on to use the XOM function om _get() with the input 
parameter result as a pointer to extract attribute values from the returned 
private object. The om _get() call returns the pointer entry as a service
generated public object to the program so that the attribute values specified 
in the call can be accessed by it. Once the value is extracted, the 
application program can continue processing; for example, printing a 
message to a user with some extracted value like a phone number or postal 
address. The service-generated public object becomes the responsibility of 
the application program. The program goes on to release the resources 
allocated by the service by issuing a series of calls to om_deleteO, as 
shown in the following code fragment from example.h: 

/* 
* extract the telephone nurnber(s) of II name II from the result 

* 

OSF DeE Application Development Guide 



XOM Programming 

* There are 4 stages: 
* (1) get the Entry-Information froID the Read-Result. 
* (2) get the Attributes froID the Entry-Information. 
* (3) get the list of phone numbers. 
* (4) scan the list and print each number. 
*/ 

CHECK_OM_CALL( OID--9"et (result, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
entry_list, OM_FALSE, 0, 0, &entry, 
&total_num) ) ; 

CHECK_OM_CALL( oID--9"et(entry->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
attributes_list, OM_FALSE, 0, 0, &attributes, 
&total_num) ) ; 

CHECK_OM_CALL( oID--9"et(attributes->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
telephone_list, OM_FALSE, 0, 0, &telephones, 
&total_num) ) ; 

/* We can now safely release all the private objects 
and the public objects we no longer need * 

*/ 
CHECK_OM_CALL(oID_delete(session»; 
CHECK_OM_CALL(oID_delete(result»; 
CHECK_OM_CALL(oID_delete(entry»; 
CHECK_OM_CALL(oID_delete(attributes»; 

If the client possesses a valid handle (or pointer) for an object, it has access 
to a private object. If the client does not possess an object handle or the 
handle is not a valid one, a private object is inaccessible to the client and an 
error is returned to the calling function. In the preceding code fragment, the 
handles for the objects stored in entry, attributes, and telephones are the 
pointers &entry, &attributes, and &telephones, respectively. 

OSF DeE Application Development Guide 26-35 



GDS Application Programming 

26.5 OM Syntaxes for Attribute Values 

An OM attribute is made up of an integer uniquely defined within a package 
that indicates the OM attribute's type, an integer giving that value's syntax, 
and an information item called a value. The syntaxes defined by the XOM 
API standard are closely aligned with ASN.l types and type constructors. 

Some syntaxes are described in the standard in terms of syntax templates. 

A syntax template defines a group of related syntaxes. The syntax templates 
that are defined are as follows: 

• Enum(*) 

• Object(*) 

• String(*) 

26.5.1 Enumerated Types 

26-36 

An OM attribute with syntax template Enum(*) is an enumerated type 
(OM_S_ENUMERATION) and has a set of values associated with that OM 
attribute. For example, one of the OM attributes of the OM class 
DS C ENTRY INFO SELECTION is DS INFO TYPE. - - - - -
DS INFO TYPE is listed in the OM attribute table for - -
DS _ C _ENTRY_INFO_SELECTION in Chapter 30 as having a value 
syntax of Enum(DS _ INFORMATION_TYPE), as shown in Table 26-4. 
DS _ INFO _TYPE takes one of the following values: 

• DS TYPES ONLY - -
• DS TYPES AND VALUES - - -

OSF DeE Application Development Guide 



XOM Programming 

Table 26-4. Description of an OM Attribute Using Syntax Enum(*) 

OM Attributes of a DS_C_ENTRY_INFO_SELECTION 

Value Value Value 

OM Attribute Value Syntax Length Number Initia"y 

DS_ALL_ OM_S_ - 1 OM_TRUE 

ATTRIBUTES BOOLEAN 

DS_ATTRIBUTES_ String(OM_S_ - o or more -

SELECTED OBJECT_IDENTIFIER_ 

STRING) 

DS_INFO_TYPE Enum(DS_ - 1 DS_TYPES_ 

INFORMATION_ AND VALUES 

TYPE) 

The C language representation of the syntax of the OM attribute type 
DS INFO TYPE is OM S ENUMERATION as defined in the xom.h - - - -
header file. The value of the OM attribute is either DS TYPES ONLY or - -
DS _ TYPES _AND_VALUES, as shown in the following code fragment 
from example.h: 

/* 
* Public Object ("Descriptor List") for 
* Entry-Inforrnation-Selection 
* parameter to ds_read() . 
*/ 
OM_descriptor selection[] = { 

OM_OID_DESC (OM_CLASS, DS_C_ENTRY_INFO_SELECTION), 
{ DS_ALL_ATTRIBillES, OM_S_BOOLEAN, { OM_FALSE, NULL } }, 
OM_OID_DESC(DS_ATTRIBillES_SELECTED, DS_A_PHONE_NBR), 
{ DS_INFO_TYPE,OM_S_ENUMERATION, 
{ DS_TYPES_AND_VALUES,NULL } }, 
OM_NULL_DESCRIPTOR 
} ; 

OSF DeE Application Development Guide 26-37 



GDS Application Programming 

26.5.2 Object Types 

An OM attribute with syntax template Object(*) has OM_S_OUJECT as 
syntax and a subobject as a value. For example, one of the OM attributes of 
the OM class DS C DS DN is DS RDNS. DS RDNS is listed in the OM - - - - -
attribute table for DS_DS_DN as having a value syntax of 
Object(DS_C_DS_RDN), as shown in Table 26-5. 

Table 26-5. Description of an OM Attribute Using Syntax Object(*) 

OM Attributes of a DS_C_DS_DN 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_RDNS Object(DS_C_DS_RDN) - o or -
more 

The C language representation of the syntax of the OM attribute type 
DS_RDNS is OM_S_OBJECT, as shown in following code fragment from 
example.h: 

OM_descriptor name [] = { 
OM_OID_DESC(OM_CLASS, DS_C_DS_DN) , 
{ DS_RDNS, OM_S_OBJECT, { 0, rdnl } }, 

{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } }, 

{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } }, 

{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } }, 

OM_NOLL_DESCRIPTOR 
} ; 

26.5.3 Strings 

26-38 

An OM attribute with syntax template String(*) specifies the string syntax 
of its value. A string is categorized as either a bit string, an octet string, or a 
character string. The bits of a bit string, the octets of an octet string, or the 
octets of a character string constitute the elements of the string. (Refer to 
Chapter 35 for a list of the syntaxes that form the string group.) 

OSF DeE Application Development Guide 



XOM Programming 

The value length of a string is the number of elements in the string. Any 
constraints on the value length of a string are specified in the appropriate 
OM class definitions. 

The elements of the string are numbered. The position of the first element is 
o (zero). The positions of successive elements are successive postive 
integers. 

For example, one of the OM attributes of the OM class 
DS C ENTRY INFO SELECTION is - - - -
DS ATTRIBUTES SELECTED. DS ATTRIBUTES SELECTED is - - - -
listed in the OM attribute table for DS C ENTRY INFO SELECTION - - - -
as having a value syntax 
String(OM_S_OBJECT_IDENTIFIER_STRING), 
Table 26-4. 

as shown 
of 
in 

26.5.4 Other Syntaxes 

The other syntaxes are defined as follows: 

• OM S BOOLEAN 

A value of this syntax is a Boolean; that is, the value can be OM_TRUE 
or OM FALSE. 

• OM S INTEGER 

A value of this syntax is a positive or negative integer. 

• OM S NULL 

The one value of this syntax is a valueless placeholder. 

OSF DeE Application Development Guide 26-39 



GDS Application Programming 

26.6 Service Interface Data Types 

The local variables within an application program that contain the 
parameters and results of XDS and XOM API function calls are declared 
using a standard set of data types. These data types are defined by typedef 
statements in the xom.h header files. Some of the more commonly used 
data types are described in the following subsections. A complete 
description of service interface data types is provided in Chapter 36 and in 
the aSF DeE Application Development Reference. 

26.6.1 The OM_descriptor Data Type 

26-40 

The OM_descriptor data type is used to describe an OM attribute type and 
value. A data value of this type is a descriptor, which embodies an OM 
attribute value. An array of descriptors can represent all the values of an 
object. 

OM_descriptor is defined in the xom.h header file as follows: 

/* Descriptor */ 

typedef struct OM_descriptor_struct { 
OM_type type; 
OM_syntax 
union OM_value_union 

OM_descriptor; 

syntax; 
value; 

OM_descriptor is made up of a series of nested data structures, as shown in 
Figure 26-12. 

OSF DeE Application Development Guide 



XOM Programming 

Figure 26-12. Data Type OM_descriptor_struct 

typedef struct OM_descriptor_struct { 
OM_type type; ~ typedef OM_uint16 
OM_syntax syntax; ~ typedef OM_uint16 
union OM_value_union value; 

OM_descriptor; 

typedef union OM value_union 
r------ OM_string string; 

typedef 
typedef 
typedef 

unsigned 
long unsigned 
long int 

OM_uint16; 
OM_uint32; 
OM_sint32; 

OM_boolean 
OM_enumeration 
OM_integer 
OM-padded_object 

boolean; ~ typedef OM_uint32 OM_boolean; 
enumeration; ~ typedef OM_sint32 OM_enumeration; 
integer; ~ typedef OM_sint32 OM_integer 
object; 

OM_value; 

L..-__ ~ typedef struct { 
OM_string_length length; ----------------~ 
void 

L...------i~ typedef struct { 
OM_uint32 
OM_object 

OM-padded_object; 

*elements; 

padding; 
object; 

typedef struct OM_descriptor_struct *OM_object; 

OSF DeE Application Development Guide 26-41 



GDS Application Programming 

Figure 26-12 shows that type and syntax are integer constants for an OM 
attribute type and syntax, as shown in the following code fragment from 
example.c: 

static OM_descriptor country[] = { 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATrRIBUTE_TYPE, DS_A_COUNTRY_NAME), 
{ DS_ATrRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "US" ) }, 
OM_NULL_DESCRIPTOR 
} ; 

The code fragment initializes four descriptors, as shown in Figure 26-13. 
The type and syntax evaluate to integers for all four descriptors. 

Figure 26-13. Initializing Descriptors 

26-42 

static OM_descriptor country[] 
,...-------- OM_OID_DESC(OM_CLASS, DS_C_AVA), 

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME), j r 7MJIDLi:'~D-:S;:;'~I:;;;r: _VALUES" OM...S_PRINTABLE _STRING" OM...STRING I "US" } } , 

Type Syntax Value 

OM_S_OBJECT_IDENTIFIER_STRING = 6 9, DS_C_AVA = 
\X2B\XOC\X02\x87\x73\Xl C\xOO\x85\X44 

0, OM_ELEMENTS_UNSPECIFIED = 0 

The value component is a little more complex. Figure 26-12 shows that 
value is a union of OM value union. OM value union has five members: - - --
string, boolean, enumeration, integer, and object. The members boolean, 
enumeration, and integer have integer values. The string member 
contains a string of type OM_string, which is a structure composed of a 
length and a pointer to a string of characters. The object member is a 
structure of type OM_padded _object that points to another object nested 
below it. Many OM attributes have other objects as values. These 
subobjects, in tum, may have other subobjects and so on. 

OSF DeE Application Development Guide 



XOM Programming 

For example, as shown in Figure 26-14, the OM class DS_READ_RESULT 
has one OM attribute: DS_ENTRY. The syntax of DS_ENTRY is 
OM_S_OBJECT with a value of DS_C_ENTRY_INFO, indicating that it 
points to the subobject DS_C_ENTRY_INFO. DS_C_ENTRY_INFO has 
the OM attribute DS _ OBJECT_NAME with the syntax OM _ S _ OBJECT, 
indicating that it points to the subobject DS _ C _NAME. 

Figure 26-14. An Object and a Subordinate Object 

OM Class Attribute Syntax and Value 

OS_REAO_RESULT OS_ENTRY Object (OS_C_ENTRY_INFO) 

I 

t 
OS_C_ENTRY _INFO OS_FROM_ENTRY OM_S_BOOLEAN 

OS_OBJECT_NAME Object (OS_C_NAME) 

The following code fragment from example.h shows how the data types are 
used to declare the variables that contain the output parameters from the 
XDS API function calls. 

int main (void) 
{ 

DS_status error; /* return value from DS functions */ 
OM_return_code return_code;/* return value from OM functions */ 
OM_workspace workspace; /* workspace for objects */ 
OM-private_object session; /* session for directory operations */ 
OM-private_object result; /* result of read operation */ 
OM_sint invoke_id; /* Invoke-ID of the read operation */ 

The code fragment shows: 

• The ds Jnitialize() call returns a variable of type OM_workspace that 
contains a handle or pointer to a workspace. 

• The ds _ bind( ) call 
OM _private_object. 
information required 
ds_shutdownO. 

returns a pointer to a variable of type 
The private object contains the session 
by all subsequent XDS API calls, except 

• The ds _read() call returns a pointer to the result of a directory read 
request in a variable of type OM_private _object. 

OSF DeE Application Development Guide 26-43 



GDS Application Programming 

• The error handing macros CHECK DS CALL and 
CHECK_OM_CALL~ defined in the example.h header file~ use the 
data types DS _status and OM_return _ code~ respectively~ as return 
values from XDS and XOM API function calls. 

26.6.2 Data Types for XOM API Calls 

/* 

The following code fragment from example.h shows how the data types are 
used to declare the variables that contain the input and output parameters for 
the XOM API function calls. 

* variables to extract the telephone number(s) 
*/ 
OM_type entry_list[] DS_ENTRY, 0 }; 
OM_type 
OM_type 
OM-public_object 
OM-public_object 
OM-public_object 
OM_descriptor 

attributes_list[] 
telephone_list[] 
entry; 
attributes; 
telephones; 

DS_ATrRIBUTES, 0 }; 
DS_ATrRIBUTE_VALUES, 0 }; 

*telephone; /* current phone number */ 
OM_value-position total_nurn; /* number of Attribute Descriptors */ 

26-44 

The code fragment shows: 

• The series of om _get() calls requires a list of OM attribute types that 
identifies the types of OM attributes to be included in the operation. The 
variables entry _list~ attribute_list~ and telephone_list are declared as 
type OM_type. 

• The series of om _get() calls return pointers to variables of type 
OM_public _object. The om _get() call generates public objects that 
are accessible to the application program. 

• Where the variable total_num is type OM_value_position and is used 
to hold the number of OM descriptors returned by om _get(). 

Chapter 35 contains detailed descriptions of all the data types defined by 
XOMAPI. 

OSF DeE Application Development Guide 



XOM Programming 

26.7 OM Function Calls 

XOM API supports general-purpose OM functions defined by the X/Open 
standards body that allow an application program to manipulate objects in a 
workspace. Section 26.7.1 lists the OM function calls and gives a brief 
description of each. Section 26.7.2 illustrates the use of OM function calls 
using the om _get() call as an example. 

26.7.1 Summary of OM Function Calls 

The following list of XOM API function calls contains a brief description of 
each function. Refer to the aSF DeE Application Development Reference 
for a detailed description of the input and output parameters, return codes, 
and usage of each function. 

• om_copy() 

Creates an independent copy of an existing private object and all of its 
subobjects in a specified workspace 

• om_copy_value() 

Replaces an existing OM attribute value or inserts a new value into a 
target private object with a copy of an existing OM attribute value found 
in a source private object 

• om _ create( ) 

Creates a private object that is an instance of the specified OM class 

• om _ delete( ) 

Deletes a private or service-generated public object 

• om_get() 

Creates a new public object that is an exact but independent copy of an 
existing private object; certain exclusions and/or syntax conversion may 
be requested for the copy 

• om Jnstance( ) 

Tests to determine if an object is an instance of a specified OM class 
(includes the case when the object is a subclass of that OM class) 

OSF DeE Application Development Guide 26-45 



GDS Application Programming 

• om_put() 

Places or replaces copies of the attribute values of the source private or 
public object into the target private object 

• om_read() 

Reads a segment of a string attribute from a private object 

• om_removeO 

Removes and discards values of an attribute of a private object 

• om _ write( ) 

Writes a segment of a string attribute to a private object 

• om _ encode( ) 

Not supported by DCE XOM API 

• om _ decode( ) 

Not supported by DCE XOM API 

26.7.2 Using the OM Function Calls 

26-46 

Most application programs require the use of a series of om _get() function 
calls to create service-generated public objects from which the program can 
extract requested information. For this reason, this section uses the 
operation of om _get() as an example to describe how XOM API functions 
operate in geqeral. 

The following code fragment from example.h shows how a series of 
om _get() . function calls extract a list of telephone numbers from a 
workspace. Tpe ds _read() function call deposits the private object stored 
in result in the wor~space and provides access to it by the pointer &result. 

/* 
* extract the telephone number(s) of "name" from the result 

* 
* There are 4 stages: 
* (1) get the Entry-Information from the Read-Result. 
* (2) get the Attributes from the Entry-Information. 
* (3) get the list of phone numbers. 

OSF DeE Application Development Guide 



XOM Programming 

* (4) scan the list and print each number. 
*/ 

CHECK_OM_CALL ( OID-9"et (resul t, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
entry_list, OM_FALSE, 0, 0, &entry, 
&total_num) ) ; 

CHECK_OM_CALL( oID-9"et(entry->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
attributes_list, OM_FALSE, 0, 0, &attributes, 
&total_num) ) ; 

CHECK_OM_CALL( oID-9"et(attributes->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
telephone_list, OM_FALSE, 0, 0, &telephones, 
&total_num) ) ; 

/* We can now safely release all the private objects 
and the public objects we no longer need * 

*/ 
CHECK_OM_CALL(oID_delete(session)); 
CHECK_OM_CALL(oID_delete(result)); 
CHECK_OM_CALL(oID_delete(entry)); 
CHECK_OM_CALL(oID_delete(attributes)); 
CHECK_DS_CALL(ds_shutdown(workspace)); 

for (telephone = telephones; 

{ 

telephone->type != DS_ATTRIBUTE_VALUES; 
telephone++) 

if (telephone->type != DS_ATTRIBUTE_VALUES 
I I (telephone->syntax & OM_S_SYNTAX) != 

OM_S_PRINTABLE_STRING) 
{ 

(void) fprintf(stderr, "malformed telephone number\n"); 
exit(EXIT_FAILURE); 

OSF DeE Application Development Guide 26-47 



GDS Application Programming 

26-48 

(void) printf ("Telephone number: %s\n", 
telephone->value.string.elements); 

The om _get() call makes a copy of all or a selected set of parts of a private 
object. The copy is a service-generated public object that is accessible to 
the application program. The application program extracts the list of 
telephone numbers from this copy. 

26.7.2.1 Required Input Parameters 

The om _get() function requires the following input parameters: 

• A private object 

• A set of exclusions 

• A set of OM attributes to be included in the copy 

• A flag to indicate whether local string processing is required 

• The position of the first value to be copied (the base value) 

• The position within each OM attribute that is one beyond the last 
attribute to be included in the copy (indicating the scope of the copy) 

The om _get() call returns the following output parameters: 

• The public object that is a copy of the private object 

• The number of OM attribute descriptors returned in the public object 

In the code fragment from example.h, the private object result is input to 
om_get(). 

The next parameter, the exclusions parameter, reduces the copy to a 
prescribed portion of the original. The exclusions apply to the OM 
attributes of the object, but not to those of subobjects. The possibilities for 
determining the combinations of types, values, subobjects, and descriptors 
to be excluded depend on the creativity of the programmer. For a detailed 
description of all the exclusion possibilities, refer to the asp DeE 
Application Development Reference. The values chosen for the om _get() 

OSF DeE Application Development Guide 



XOM Programming 

calls in example.h are simplified for clarity. These exclusion values are as 
follows: 

• OM EXCLUDE ALL BUT THESE TYPES - - - - -
• OM_EXCLUDE_SUBOBJECTS 

Each value indicates an exclusion, as defined by om _get(), and is chosen 
from the set of exclusions; alternatively, the single value 
OM_NO _EXCLUSIONS may be chosen, which selects the entire object. 
Each value, except OM_NO _EXCLUSIONS, is represented by a distinct 
bit, the presence of the value being represented as 1, and its absence as 0 
(zero). Multiple exlusions are requested by adding or ORing the values that 
indicate the individual exclusions. 

OM EXCLUDE ALL THESE TYPES indicates that the OM attributes - - - -
included are only the ones defined in the list of included types supplied in 
the next parameter, entry_list. OM_EXCLUDE_SUBOBJECTS indicates 
that for each value whose syntax is OM _ S _ OBJECT, a descriptor 
containing an object handle for the original private subobject is returned, 
rather than a public copy of it. This handle makes that subobject accessible 
for use in subsequent function calls. This exclusion provides a means to 
examine an object one level at a time. The object the handle points to is 
used in the next om _get() call to get the next level. 

The entry_list parameter is declared in example.h as data type OM_type 
and initialized as a two-cell array with values DS _ENTRY and a NULL 
terminator. DS _ENTRY specifies the single OM attribute type included for 
that om _get() call. This call only limits processing to the one directory 
entry; only one entry was defined previously in the program, the 
distinguished name of Peter Piper. The 0 (zero) marks the end of the OM 
attribute list. 

The next parameter, OM_FALSE, is just a place holder for a parameter that 
is not supported by XOM local strings. The next two parameters set the 
initial and limiting value to 0 (zero), meaning that no specific values are to 
be excluded. 

The final two parameters are output parameters: entry, a pointer to a 
service-generated public object deposited by om _get() in the workspace, 
and total_num, an integer. Both entry and total_num are available for 
examination by the application program. 

OSF DeE Application Development Guide 26-49 



GDS Application Programming 

26.7.2.2 Extracting the Data from the Read Result 

The entry parameter contains the result of processing by om _get() of the 
read parameter generated by the ds _read() operation. A successful call to 
ds_read() returns an instance of OM class DS_C_READ_RESULT in the 
private object result. DS _ C _READ_RESULT contains the information 
extracted from the directory entry of the target object. Figure 26-15 shows 
the relationship of some of the superclasses, subclasses, and the OM 
attribute of DS _ C _READ _RESULT. Consider Figure 26-15 as a partial 
map of the contents of result. 

Figure 26-15. The Read Result 

26-50 

ds_read( ... &result ... ) 

omJlet(result ... ) 

os C ENTRY INFO 
- OS FROM ENTRY 

OS=OBJECT_NAME 

Other Objects 

OS_C_ATTRIBUTE 
OS ATTRIBUTE TYPE 
OS=ATTRIBUTE=VALUES 

os C ATTRIBUTE 
OS ATTRIBUTE TYPE 
OS=ATTRIBUTE= VALUES 

The om _get() function call creates a public object to make the information 
contained in result available to the application program. The entry 
parameter is defined as data type OM_public_object. As such, it is 
composed of several nested layers of sub objects that contain entry 
information, OM attributes, and OM attribute values, as shown in Figure 
26-16. The series of om _get() calls removes these layers of objects to 
extract a list of telephone numbers. 

OSF DeE Application Development Guide 



Figure 26-16. Extracting Information Using om_get() 

Read-Result Handle 

L...-_re.,.~u_lt--lHL.. ____ ---IH private object 

I 

om_get: 

I 
I 
I 

om_get: 
I 
I 

t 
I telephones ~ 

OS_ATTRIBUTES 

OM_S_OBJECT 

OS_ATTRIBUTE_ 
VALUES 

OM_S_PRINTABLE_ 
STRING 

Entry-Information Handle 

Attribute Handle 

~ "+49 89 636 12345" 

XOM Programming 

Figure 26-16 also shows that the process of exposing the subobjects 
continues while the syntax of the subobjects is OM _ S _ OBJECT. In effect, 
example.h is reversing the process of building up a series of public objects 
as input to ds_readO, namely, the distinguished name of Peter Piper and 
the descriptor list for entry _information_selection. The following code 
fragment from example.c shows how the syntax of the variable telephones 
is tested for valid syntax, in this case, OM_S_PRINTABLE_STRING: 

for (telephone = telephones; 

{ 

telephone->type != DS_ATTRIBUTE_VALUES; 
telephone++) 

if (telephone->type != DS_A'ITRIBUTE_VALUES II 
(telephone->syntax & OM_S_SYNTAX) != 

OM_S_PRINTABLE_STRING} 
{ 

OSF DeE Application Development Guide 26-51 



GDS Application Programming 

(void) fprintf(stderr, "malformed telephone number\n"); 
exit(EXIT_FAILURE); 

(void) printf ("Telephone number: %s\n" , 
telephone->value.string.elements); 

The preceding example determines whether telephones is in a format that 
can be used by the application program as string data that can be printed out, 
and that the syntax is correct for a list of telephone numbers. Note that the 
progam. uses the constant OM_S_SYNTAX to mask off the top 5 bits. 
These bits are special bits that are used by XOM API. (Refer to Chapter 36 
for more information on these special bits.) 

26.7.2.3 Return Codes 

XOM API function calls return a value of type OM_return_code, which 
indicates whether the function succeeded. If the function is successful, the 
value of OM_return is set to OM_SUCCESS. If the function fails, it 
returns one of the values listed in Chapter 36. The constants for 
OM return code are defined in the xom.h header file. - -

26.8 XOM API Header Files 

26-52 

The XOM API includes the header file xom.h. This header file is composed 
of declarations defining the C workspace interface. It supplies type 
definitions, symbolic constant definitions, and macro definitions. 

OSF DeE Application Development Guide 



XOM Programming 

26.8.1 XOM Type Definitions and Symbolic Constant Definitions 

The xom.h header file includes typedef statements that define the data types 
of all OM objects used in the interface. It also provides definitions of 
symbolic constants used by the interface. 

Refer to the aSF DeE Application Development Reference for a listing of 
the xom.h header file. 

26.8.2 XOM API Macros 

XOM API provides several macros that are useful in defining public objects 
in your application programs. These macros are defined in the xom.h 
header file: 

• OM IMPORT 

Makes object identifier symbolic constants available within a C source 
module 

• OM EXPORT 

Allocates memory and initializes object identifier symbolic constants 
within a C source module 

• OM OlD DESC - -
Initializes the type, syntax, and value of an OM attribute that holds an 
object identifier 

• OM NULL DESCRIPTOR - -
Marks the end of a client-generated public object 

• OMP LENGTH 

Calculates the length of an object identifier 

• OM STRING 

Creates a data value of a string data type 

OSF DeE Application Development Guide 26-53 



GDS Application Programming 

26-54 

26.8.2.1 The OM_EXPORT and OM_IMPORT Macros 

Most application programs find it convenient to export all the names they 
use from the same C source module. OM_EXPORT allocates memory for 
the constants that represent an object OM class or an object identifier, as 
shown in the following code fragment from example.c: 

/* Define necessary Object Identifier constants 
*/ 

OM_EXPORT (DS_A_COMMON_NAME) 
OM_EXPORT (DS_A_COUNTRY_NAME) 
OM_EXPORT (DS_A_ORG_NAME) 
OM_EXPORT (DS_A_ORG_UNIT_NAME) 
OM_EXPORT (DS_A_PHONE_NBR) 
OM_EXPORT (DS_C_AVA) 
OM_EXPORT (DS_C_DS_DN) 
OM_EXPORT (DS_C_DS_RDN) 
OM_EXPORT (DS_C_ENTRY_INFO_SELECTION) 

In this code fragment, object identifier constants that represent OM classes 
that are defined in the xds.h and xdsbdcp.h header files are exported to the 
main program module. The object identifier constants are defined in xds.h 
with the OMP _ 0 prefix followed by the variable name for the object 
identifier. The constant itself provides the hexadecimal value of the object 
identifier string. 

The OM_EXPORT macro takes the OM class name as input and creates 
two new data structures: a character string and a structure of type 
OM_string. The structure of type OM_string contains a length and a 
pointer to a string that maybe used later in an application program by the 
OM_OlD _ DESC macro to initialize the value of an object identifier. 

OM_IMPORT marks the identifiers as external for the compiler. It is used 
if OM EXPORT is called in a different file from where its values are 
referenced. OM_IMPORT is not used in example.c because 
OM EXPORT is called in the file where the object identifiers are 
referenced. 

OSF DeE Application Development Guide 



XOM Programming 

26.8.2.2 The OM_OID_DESC Macro 

The OM_OlD _ DESC macro initializes the type, syntax, and value of an 
OM attribute that holds an object identifier; in other words, it initializes 
OM_descriptor. It takes as input an OM attribute type and the name of an 
object identifier. The object identifier should have already been exported to 
the program module, as shown in the previous section. 

The output of the macro is an OM_descriptor composed of a type, syntax, 
and value. The type is the name of the OM class. The syntax is 
OM_S_OBJECT_IDENTIFIER. The value is a two-member structure 
with the length of the object identifier and a pointer to the actual object 
identifier string. It is defined as a pointer to void so that it can be used as a 
generic pointer; it can point to any data type. 

OM_OlD _ DESC calls OMP _LENGTH to calculate the length of the 
object identifier string. 

The following code fragment from xom.h shows the OM_OID_DESC and 
OMP LENGTH macros: 

/* Private macro to calculate length 
* of an object identifier 
*/ 

#define OMP_LENGTH(oid_string) (sizeof(OMP_O_##oid_string)-l) 

/* Macro to initialize the syntax and value 
* of an object identifier 
*/ 

#define OM_OID_DESC(type, oid_name) 
{ (type), OM_S_OBJECT_IDENTIFIER_STRING, 

{ OMP_LENGTH(oid_name) , OMP_D_##oid_name } } 

OSF DeE Application Development Guide 26-55 



GDS Application Programming 

26-56 

26.8.2.3 The OM_NULL_DESCRIPTOR Macro 

The OM NULL DESCRIPTOR macro marks the end of a c1ient-- -
generated public object by setting the type, syntax, and value to 
OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES, and a value 
of zero length and a NULL string, respectively. 

26.8.2.4 The OM_STRING Macro 

The OM_STRING macro creates a string data value. Data strings are of 
type OM_string, as shown from this code fragment from the xom.h header 
file: 

/* String */ 

typedef struct 
OM_string_length 
void 

} OM_string; 

length; 
*elernents; 

#define OM_STRING(string) \ 
{ (OM_string_length) (sizeof(string)-l), string} 

A string is specified in terms of its length or whether or not it terminates 
with a NULL. OM_stringJength is the number of octets by which the 
string is represented, or it is the OM_LENGTH _UNSPECIFIED value if 
the string terminates with a NULL. 

The bits of a bit string are represented as a sequence of octets. The first 
octet stores the number of unused bits in the last octet. The bits in the bit 
string, beginning with the first bit and proceeding to the trailing bit, are 
placed in bits 7 to 0 of the second octet. These are followed by bits 7 to 0 of 
the third octet, then by bits 7 to 0 of each octet in tum, followed by as many 
bits as are required of the final octet commencing with bit 7. 

OSF DeE Application Development Guide 



Chapter 27 

XDS Programming 

XDS API defines an application programming interface to directory services 
in the X/Open Common Applications Environment as defined in the X/Open 
Portability Guide. This interface is based on the 1988 CCITT X.500 Series 
of Recommendations and the ISO 9594 Standard. This joint standard is 
referred to from this point on simply as X.500. 

This chapter describes the purpose and function of XDS API functions in a 
general way. Refer to the OSF DeE Application Development Reference 
for complete and detailed reference information on specific function calls. 

The sections that follow describe the following types of XDS functions: 

• XDS Interface Management Functions 

Interacting with the XDS interface 

• Directory Connection Management Functions 

Initiating, managing, and terminating connections with the directory 

• Directory Operation Functions 

Performing operations on a directory 

OSF DeE Application Development Guide 27-1 



GDS Application Programming 

Note: The ds_abandonO and ds_receive_resultO functions are not 
supported because DCE XDS API does not support 
asynchronous operations. A ds _ abandon() call returns a 
DS_C_ABANDON_FAILED (DS_E_TOO_LATE) error. A 
ds_receive_resultO call returns with DS_status set to 
DS_SUCCESS, and the completionJiag_return parameter set 
to DS NO OUTSTANDING OPERATION. - - -

The following names: 

• acl.c (acl.h) 

• example.c (example.h) 

• teldir.c 

refer to the complete XDS example programs, which can be found in 
Chapter 28. 

27.1 XDS Interface Management Functions 

XDS API defines a set of functions that only interact with the XDS interface 
and have no counterpart in the directory standard definition: 

• dsJnitializeO 

• ds _ version( ) 

• ds_shutdownO 

These interface functions perform operations that involve the initialization, 
management, and termination of sessions with the XDS interface service. 

27.1.1 The ds _ initialize( ) Function Call 

27-2 

Every application program must first call ds _initialize() to establish a 
workspace where objects returned by the Directory Service are deposited. 
The ds Jnitialize() function must be called before any other directory 
interface functions are called. 

OSF DeE Application Development Guide 



XDS Programming 

The ds Jnitialize() call returns a handle (or pointer) to a workspace. The 
application program performs operations on OM objects in this workspace. 
OM objects created in this workspace can be used as input parameters to the 
other directory interface functions. In addition, objects returned by the 
Directory Service are deposited in the workspace. 

Within the following code fragment from example.c, a workspace is 
initialized (the declaration of the variable workspace and the call to 
dsJnitializeO are found in different sections of the program): 

int main (void) 
{ 

DS_status error; /* return value from DS functions */ 
OM return_code return_code;/* return value from OM functions */ 
OM_workspace workspace; /* workspace for objects */ 
OM-private_object session; /* session for directory operations */ 
OM-private_object result; /* result of read operation */ 

invoke_id; /* Invoke-ID of the read operation */ 
OM_value-position total_num; /* Number of Attribute Descriptors */ 

/* 

* Perform the Directory operations: 
* (1) Initialize the Directory Service and get an OM workspace. 
* (2) bind a default directory session. 
* (3) read the telephone number of "name". 
* (4) terminate the directory session. 
*/ 

OM_workspace is a type definition in the xom.h header file defined as a 
pointer to void. A void pointer is a generic pointer that may point to any 
data type. The variable workspace is declared as data type 
OM_workspace. The return value is assigned to the variable workspace 
and the CHECK DS CALL macro determines if the call is successfu1. 
CHECK_ DS _ CALL is an error handling macro that is defined in 
example.h. 

The ds initialize() call returns a handle to a workspace in which OM 
objects -can be created and manipulated. Only objects created in this 
workspace can be used as parameters to other directory interface functions. 
The ds _initialize( ) call returns NULL if it fails. 

OSF DeE Application Development Guide 27-3 



GDS Application Programming 

27.1.2 The ds_ version() Function Call 

27-4 

The ds _ version() call negotiates features of the directory interface. These 
features are collected into packages that define the scope of the service. 
Packages define such things as object identifiers for directory and OM 
classes and OM attributes, enumerated types, structures, and OM object 
constants. 

XDS API defines the following packages in separate header files as part of 
the XDS API software product: 

• Directory Service Package 

The Directory Service Package contains the OM classes and OM 
attributes used to interact with the Directory Service. This package is 
contained in the xds.h header file. 

• Basic Directory Contents Package 

The Basic Directory Contents Package contains OM classes and OM 
attributes that represent values of selected attributes and selected 
objects defined in the X.SOO standard. This package is contained in the 
xdsbdcp.h header file. 

• Global Directory Service Package 

The Global Directory Service Package contains the OM classes and OM 
attributes that are required for GDS. This package is contained in the 
xdsgds.h header file. 

• MHS Directory User Package 

The MHS (Message Handling Systems) Directory User Package 
contains the OM classes and OM attributes that are required for 
Electronic Mail API. This package is contained in the xdsmdup.h 
header file. 

The application program, the client, uses ds _ version() to negotiate the 
scope of the services the Directory Service will provide to the client. A 
ds _ version() function call includes a list of features (or packages) that the 
client wants to include as part of the interface. The features are object 
identifiers that represent packages supported by DCE XDS API. The 
service returns a list of Boolean values to indicate whether or not the 
package was successfully negotiated. 

OSF DeE Application Development Guide 



XDS Programming 

These features are assigned to the workspace that an application program 
initialized (as described in Section 27.1.1). In addition, an application 
program must include the header files for the appropriate packages as part 
of the source code. 

It is not necessary to negotiate the Directory Service Package. It it a 
mandatory requirement for XDS API and as such it is included by default. 
The other packages listed previously are optional and require negotiation 
using ds _ version( ). 

The following code fragment from acl.h shows how an application builds up 
an array of object identifiers for the optional packages to be negotiated: the 
Basic Directory Contents Package and the GDS Package. 

static DS_feature features[] = { 
{ OM_STRING (aMP _O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE }, 
{ OM_STRING (aMP _O_DSX_GDS_PKG), OM_TRUE }, 
{OJ 

} ; 

The OM_STRING macro is provided for creating a data value of data type 
OM_string for octets strings and characters. The array of object identifiers 
is stored in features, the input parameter to ds_versionO, as shown in the 
following code fragment from acl.c: 

/* Negotiate the use of the BDCP and GDS packages. */ 

if (ds_version(features,workspace) != DS_SUCCESS) 
printf("ds_version() error\n") ; 

27.1.3 The ds _ shutdown( ) Function Call 

The ds _ shutdown( ) call deletes the workspace established by 
ds_initializeO and enables the Directory Service to release resources. No 
other directory functions that reference that workspace may be called after 
this function. 

The following code fragment from acl.c demonstrates how the application 
closes the directory workspace by performing a ds _shutdown(). 

OSF DeE Application Development Guide 27-5 



GDS Application Programming 

/* Close the directory workspace. 

if (ds_shutdown (workspace) != DS_SUCCESS) 
printf ("ds_shutdown() error \n") ; 

*/ 

27.2 Directory Connection Management Functions 

The following subsections describe the XDS functions that initiate, manage, 
and terminate connections with the Directory Service. 

27.2.1 A Directory Session 

A directory session identifies the DSA to which a directory operation is 
sent. It also defines the characteristics of a session, such as the 
distinguished name of the requestor. 

An application program can request a session with specific OM attributes 
tailored for the program's requirements. The application passes an instance 
of OM class DC _ C _SESSION with the appropriate OM attributes, or it 
uses the default parameters by passing the constant 
DS_DEFAULT_SESSION as a parameter to the ds_bindO function call. 

27.2.2 The ds _ bind( ) Function Call 

27-6 

The ds _ bind() call establishes a session with the directory. The ds _ bind( ) 
call corresponds to the DirectoryBind function in the Abstract Service 
defined in the X.SOO standard. 

When a ds_bindO call completes successfully, the directory returns a 
pointer to an OM private object of OM class DC_C_SESSION. This 
parameter is then passed as the first parameter to most interface function 
calls until a ds _ unbind() is called to terminate the directory session. 

XDS API supports mUltiple concurrent sessions so that an application can 
interact with the Directory Service using several identities, and interact 

OSF DeE Application Development Guide 



/* 

XDS Programming 

directly and concurrently with different parts of the Directory Service. 

The following code fragment from example.c shows how an application 
binds to the GDS server (without credentials) using the default session: 

If a user wants to specify a password as part of the user credentials and/or 
wants to specify the directory identifier, an instance of OM class 
DSX _ C _ GDS _SESSION from the GDS Package is required. 
DSX_C_GDS_SESSION identifies a particular link from an application to 
a DSA. Since DSX C GDS SESSION is a subclass of the standard OM - - -
class for a session, DS _ C _SESSION, it may be passed as a parameter to an 
XDS API function, such as ds _ bind(), wherever a standard session is 
expected. 

The following code fragment from acl.c shows how an application performs 
an authenticated bind to the GDS: 

* Create a default session object. 
*/ 

if ((rc = oID_create(DSX_C_GDS_SESSION,OM_TRUE,workspace,&session)) 
!= OM_SUCCESS) 

printf ("oID_create () error %d\n", rc); 

/* 
* Alter the default session object to include the following 
* credentials: 
* requestor: /C=de/O=sni/OU=ap/CN=norbert 
* password: "secret" 
*/ 

if ((rc = oID-put(session, OM_REPLACE_ALL, credentials, ° ,0, 0)) 
!= OM_SUCCESS) 

printf ("OID-put () error %d\n", rc); 

/* 
* Bind with credentials to the default GDS server. 
* The returned session object is stored in the private object 
* variable bound_session and is used for all further XDS 

OSF DeE Application Development Guide 27-7 



GOS Application Programming 

* function calls. 
*/ 

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS) 
printf("ds_bind() error\n"); 

The program creates a default session object using the XOM API function 
om _ create() and alters the default session object using om _put(). The 
bind credentials are initialized in the following code fragment from the 
example.h header file included in the main program module: 

/* The following descriptor list specifies 
* the bind credentials 
*/ 

static OM_descriptor credentials[] = { 

{DS_REQUESTOR, OM_S_OBJECT, {O, dn_norbert} }, 
{DSX_PASSWORD, OM_S_OCTET_STRING, OM_STRING ( II secret II ) } , 

OM_NULL_DESCRIPTOR 
} ; 

The credentials parameter is provided as an input parameter to the 
om _put( ) function call to modify the existing session object in the 
Directory Service. A private object is returned to the workspace by 
om _put( ) that is used for all subsequent directory calls. 

27.2.3 The ds _ unbind( ) Function Call 

27-8 

The ds _ unbind() call terminates a directory session and makes the session 
parameter unavailable for use with other interface functions. However, the 
unbound session can be modified by OM functions and used again as a 
parameter to ds_bindO. When the session parameter is no longer needed, it 
should be deleted using OM functions such as om _ delete( ). 

The following code fragment from example.c shows how the application 
closes the connection to the GDS server using ds _ unbind(): 

/* Close the connection to the GDS server. */ 

if (ds_unbind(bound_session) != DS_SUCCESS) 
printf ("ds_unbind() error\n") ;--

OSF DeE Application Development Guide 



XDS Programming 

The ds _ unbind() call corresponds to the DirectoryUnbind function in the 
Abstract Service defined in the X.500 standard. 

27.2.4 Automatic Connection Management 

The XDS implementation does not support automatic connection 
managment. A DSA connection is established when ds _ bind() is called 
and released when ds _ unbind() is called. 

27.3 XDS Interface Class Definitions 

The XDS Interface Class Definitions are described in detail in Chapter 30. 
The OM attribute types, syntax, and values and inheritance properties are 
described for each OM class. 

A good way to begin to understand how the OM class hierarchy is structured 
and the relationship between OM classes and OM attributes to the service 
provided by the Directory Service Package is to look up one of the OM 
classes listed in Chapter 30. 

27.3.1 Example: The DS_C_FILTER Class 

For example, DS _ C _FILTER inherits the OM attributes from its superclass 
OM_C_OBJECT, as do all OM classes. OM_C_OBJECT, as defined in 
Chapter 26, has one OM attribute, OM_CLASS, which has the value of an 
object identifier string that identifies the numeric representation of the 
object's OM class. DS _ C _FILTER, on the other hand, has several OM 
attributes. 

The purpose of DS_C_FILTER is to select or reject an object on the basis 
of information in its directory entry. It has the following OM attributes: 

• DS FILTER ITEMS - -
• DS FILTERS 

OSF DeE Application Development Guide 27-9 



GDS Application Programming 

• DS FILTER TYPE - -
Two of these OM attributes, DS_FILTER_ITEMS and DS_FILTERS, 
have values that are OM object classes themselves. The value of the OM 
attribute DS_FILTER_ITEMS is DS_C_FILTER_ITEM, which is an OM 
class. DS _ C _FILTER_ITEM is a component of a filter and defines the 
nature of the filter. The value of the OM attribute DS FILTERS is 
DS_C_FILTER, an OM class. Thus, DS_FILTERS defines a collection of 
filters. The OM attribute DS FILTER TYPE has a value that is an - -
enumerated type, which takes one of the values DS _AND, DS _OR, or 
DS NOT. 

Refer to Figure 27-3 to see the relationship of DS C FILTER to its 
superclass OM _ C _OBJECT and its attributes. 

27.3.2 The DS C CONTEXT Parameter 

27-10 

The OM class DS C CONTEXT is the second parameter to every 
Directory Service request. DS _ C _CONTEXT defines the characteristics of 
the Directory Service interaction that are specific to a particular Directory 
Service operation. These characteristics are divided into three categories of 
OM attributes: common parameters, service controls, and local controls. 

Common parameters affect the processing of each Directory Service 
operation. 

Service controls indicate how the Directory Service should handle requests. 
Included in this category are decisions about whether or not chaining is 
permitted, the priority of requests, the scope of referral (to DSAs within a 
country or within a DMD), and the maximum number of objects about 
which a function should return information. 

Local controls include asynchronous support and automatic continuation; 
XDS does not currently support asynchronous operations. 

OSF DeE Application Development Guide 



XDS Programming 

27.4 Directory Class Definitions 

The X.SOO standards define a number of attribute types and classes. These 
definitions allow the creation and maintenance of directory entries for a 
number of common objects so that the representation of all such objects is 
the same throughout the directory. The Basic Directory Contents Package 
contains OM classes and OM attributes that model the X.SOO attribute types 
and classes. 

The X.SOO object classes and attributes are defined in the following 
documents published by CCITT. These are the objects and the associated 
attributes that will be the targets of Directory Service operations in your 
application programs: 

• The Directory: Selected Attributes Types (Recommendation X.520) 

• The Directory: Selected Object Classes (Recommendation X.521) 

Table 27-1 describes the OM classes, OM attributes, and their object 
identifiers that model the X.SOO objects and attributes. (See Chapter 32 for 
more tables with the same type of information.) 

OSF DeE Application Development Guide 27-11 



GDS Application Programming 

Table 27-1. Representation of Values for Selected Attribute Types 

27-12 

Value Multi- Matching 
Attribute Type OM Value Syntax Length valued Rules 

DS_A_ALlASED - Object(DS_C_NAME) None No E 
OBJECT_NAME 

DS_A_BUSINESS_ String(OM_S_ 
CATEGORY TELETEX_STRING) 1-128 Yes E,S 

DS_A_COMMON_NAME String(OM_S_ 
TELETEX_STRING) 1-64 Yes E,S 

DS_A_COUNTRY_NAME String(OM_S_ 
PRINTABLE_STRING) 1 2 No E 

DS_A_DESCRIPTION String(OM_S_ 
TELETEX_STRING) 1-1024 Yes E,S 

1 As permitted by ISO 3166. 

The tables in Chapter 32 contain similar categories of information as do 
similar tables for the attributes defined in the Directory Service Package. 
These information categories include the following: 

• OM Value Syntax 

• Value Length 

• Multivalued 

• Matching Rules 

The OM Value Syntax column describes the structure of the values of an 
OM attribute. The Value Length column gives the range of lengths 
permitted for the string types. The Multivalued column indicates whether 
the attribute can have multiple values. 

The CCITT standards define matching rules that are used for determining 
whether two values are equal, for ordering two values, or for identifying one 
value as a substring of another in Directory Service operations. These are 
indicated in the Matching Rules column. 

The GDS administrator maintains the Directory Service and determines the 
structure of the DIT as defined by the GDS schema. The GDS standard (or 

OSF DeE Application Development Guide 



XDS Programming 

default) schema is based on the recommendations in the CCITT documents 
mentioned previously. 

Recall that the Structure Rule Table (SRT) of the GDS schema defines the 
structure of the DIT, the Object Class Table (OCT) defines class inheritance 
properties, and the Attribute Table (AT) defines the mandatory and optional 
attributes for each class. You will find it useful to familiarize yourself with 
the existing schema when developing an application program that will 
access the directory. This is because the public objects that your programs 
will create (using OM classes and OM attributes) are modeled after objects 
and attributes in the directory. 

27.5 The Global Directory Service Package 

The GDS software provides functional extensions to the standard in the 
following areas: 

• Authentication 

• Access Control 

• DUA Cache 

27.S.1 Authentication 

An instance of OM class DSX _ C _ GDS _SESSION identifies a particular 
link from an application program to a DSA. This additional OM class is 
necessary if the user either wants to specify a password as part of user 
credentials, or wants to specify both a password and the directory identifier. 

OSF DeE Application Development Guide 27-13 



GDS Application Programming 

27.5.2 Access Control 

27-14 

In addition to authentication (by means of name and password), access 
protection is required for each object at the attribute level. A telephone 
number, for example, is an attribute that in general everybody is allowed to 
read. However, an attribute value such as a user-password normally has 
restricted access. In addition, even for attributes that everyone is allowed to 
read, it may only be acceptable for a small number of people to have 
authorization to change the values. 

Because there can be a multitude of different attributes in the DIT, it is too 
expensive to define a protection mechanism for each individual attribute 
type. The directory attribute DSX_A_ACL is present for each entry in the 
DIT. Its syntax is Object(DSX _ C _ GDS _ ACL), referencing the GDSP class 
DSX C GDS ACL. These OM classes and attributes have been added to - - -
the Directory Service to specify the category of access to the individual 
attributes that are granted to users. There are three categories of access: 
Public, Standard, and Sensitive. 

DSX _ C _ GDS _ ACL has five OM attributes that define the read and modify 
access rights for each of these categories (read access is granted to all users; 
modify access implicitly grants read access): 

• DSX MODIFY PUBLIC - -
Specifies the user, or group of users, that can modify attributes classified 
as public attributes 

• DSX READ STANDARD - -
Specifies the user, or group of users, that can read attributes classified as 
standard attributes 

• DSX MODIFY STANDARD - -
Specifies the user, or group of users, that can modify attributes classified 
as standard attributes 

• DSX READ SENSITIVE - -
Specifies the user, or group of users, that can read attributes classified as 
sensitive attributes 

• DSX MODIFY SENSITIVE - -
Specifies the user, or group of users, that can modify attributes classified 
as sensitive attributes ' 

OSF DeE Application Development Guide 



XDS Programming 

The ACL of the default schema has no access rights when GDS is 
configured. Every user, including the anonymous user, has read and modify 
access to all attributes in the schema. 

A master entry can be created only by the user who has write access to the 
naming attribute of the parent node. Thus, the user can create all attributes 
of the entry. Using the ACL class, the user can establish which objects can 
be accessed. If the user does not enter an ACL attribute when creating an 
entry, GDS automatically uses the ACL attribute of the parent node for the 
new entry. 

A master entry can only be deleted by users who have write access to the 
naming attribute of the entry to be deleted. 

A shadow entry created by means of shadow handling (refer to the aSF 
DeE Administration Guide) has the same ACL attribute as the 
corresponding master entry. This entry can therefore only be modified and 
deleted by the user who can also modify and delete the master entry. 

27.5.3 DUA Cache 

To further optimIze access times, frequently requested information is 
automatically loaded to a section of memory in the client computer, the 
DUA cache, and may be overwritten again if it is not used within a certain 
interval of time. The cache may be periodically updated. The GDS 
administration program specifies the period. It can also specify that certain 
data is never written to the cache, or that certain data that is transferred 
must under no circumstances be deleted, unless it is deleted by the user. 
Because the DUA cache is not subject to any access control, ODS ensures 
that only the information that everybody is allowed to read is stored. 

The GDS Package includes the OM class DSX_ C _ GDS _CONTEXT to 
support additional service controls for caching. DSX _ C _ GDS _CONTEXT 
is a subclass of DS _ C _CONTEXT. As such, it inherits all the standard 
X.500 attributes associated with DS _ C _CONTEXT, in addition to its own 
OM attributes related to caching. Refer to Chapter 25 for more information 
on how to manage the DUA cache using XDS. 

OSF DeE Application Development Guide 27-15 



GDS Application Programming 

27.6 Directory Operation Functions 

The X.SOO standard defines the operations provided by the directory in a 
document called the Abstract Service Definition. DeE implements this 
standard with XDS API functions calls. The XDS API functions allow an 
application program to interact with the Directory Service. The standard 
divides these interactions into three general categories: read, search, and 
modify. 

The XDS API functions correspond to the Abstract Service functions 
defined in the X.SOO standard, as shown III 

Table 27-2. 

Table 27-2. Mapping of XDS API Functions to the Abstract Services 

XDS Function Call Abstract Service Equivalent 

ds_read{} Read 
ds_compare{ } Compare 
ds_list{ } List 
ds_search{ } Search 
ds_add_entry{ } AddEntry 
ds_remove_entry{ } RemoveEntry 
ds_modify_entry{ } ModifyEntry 
ds_modify_rdn{ ) ModifyRDN 

27.7 Directory Read Operations 

27-16 

Read functions retrieve information from specific named entries in the 
directory where names are mapped to attributes. This is analogous to 
looking up some information about a name in the "White Pages" phone 
directory. 

OSF DeE Application Development Guide 



XDS Programming 

XDS API implements the following read functions: 

• ds_read() 

The requester supplies a distinguished name and one or more attribute 
types. The value(s) of requested attributes or just the attribute type(s) is 
returned by the DSA. 

• ds _ comparee ) 

The requester gives a distinguished name and an Attribute Value 
Assertion (AVA). If the AVA is TRUE for the named entry, a value of 
TRUE is returned by the DSA. 

For example, a typical read operation could request the telephone number of 
a particular employee. A read request would submit the distinguished name 
of the employee with an indication to return its telephone number: 
IC=us/O=sni/OU=sales/CN=John Smith. 

27.7.1 Reading an Entry from the Directory 

The following sections describe a typical read operation using the 
ds _read() function call. They include a description of tasks directly related 
to the read operation. They do not include service-related tasks such as 
intializing the interface, allocating an OM workspace, and binding to the 
directory. These tasks are described in Section 27.1. The following 
sections also do not describe the process of extracting information from the 
workspace using XOM functions. Refer to Chapter 26 for a description of 
how to use XOM functions to access the workspace. 

A typical read operation involves the following steps: 

1. Define the necessary object identifier constants for the OM classes 
and OM attributes that will define public objects for input to 
ds_readO using the OM_EXPORT macro. 

2. Declare the variables that will contain the output from the XDS 
functions to be used in the application. 

3. Build public objects (descriptor lists) for the name parameter to 
ds_read(). 

OSF DeE Application Development Guide 27-17 



GDS Application Programming 

4. Create a descriptor list for the selection parameter to ds _read() that 
selects the type and scope of information in your request. 

5. Perform the read operation. 

These steps are demonstrated in the following code fragments from 
example.c (refer to Chapter 28 for a complete program listing). The 
program reads the telephone numbers of a given target entry. 

27.7.2 Step 1: Export Object Identifiers for Required Directory 
Classes and Attributes 

27-18 

Most application programs find it convenient to export all the names they 
use from the same C source module. In the following code fragment from 
example.c the OM_EXPORT macro allocates memory for the constants 
that represent the OM object classes and directory attributes required for the 
read operation: 

/* Define necessary Object Identifier constants 
*/ 

OM_EXPORT {DS_A_COMMON_NAME} 
OM_EXPORT {DS_A_COUNTRY_NAME} 
OM_EXPORT {DS_A_ORG_NAME} 
OM_EXPORT {DS_A_ORG_UNIT_NAME} 
OM_EXPORT {DS_A_PHONE_NBR} 
OM_EXPORT {DS_C_AVA} 
OM_EXPORT {DS_C_DS_DN} 
OM_EXPORT {DS_C_DS_RDN} 
OM_EXPORT {DS_C_ENTRY_INFO_SELECTION} 

The OM_EXPORT macro performs the following steps: 

1. It defines a character array called OMP _ D _ concatenated with the 
class_name input parameter. 

2. It initializes this array to the value of a character string called 
OMP _ 0 _ concatenated with the class_name input parameter. This 
value has already been defined in a header file. 

3. It defines an OM_string data structure as the class name input 
parameter. 

OSF DeE Application Development Guide 



XDS Programming 

4. It initializes the OM_string data structure's first component to the 
length of the array initialized previously in Step 2 and initializes the 
second component to a pointer to the value of the array initialized in 
Step 2. 

27.7.3 Step 2: Declare Local Variables 

The local variables session, result, and invoke id are defined III the 
following code fragment from example.c: 

int main (void) 

DS_status errori /* return value from DS functions */ 
OM_return_code return_codei/* return value from OM functions */ 
OM_workspace workspacei /* workspace for objects */ 
OM-private_object sessioni /* session for directory operations*/ 
OM-private_object resulti /* result of read operation */ 
OM_sint invoke_idi /* Invoke-ID of the read operation */ 
OM_value-position total_nurni /* Number of Attribute Descriptors */ 

These data types are defined in a typedef statement in the xom.h header 
file. The session and result variables are defined as data type 
OM_private_object because they are returned by ds_hindO and 
ds_readO, respectively, to the workspace as private objects. Since 
asynchronous operations are not supported, the invoke _id functionality is 
redundant. The invoke _id parameter must be supplied to the XDS functions 
as described in the OSF DeE Application Development Reference, but its 
return value should be ignored. 

Values in error and return_code are returned by XOM and XDS functions 
to indicate whether a call was successful. The workspace variable is 
defined as OM_workspace and is used when establishing an OM 
workspace. The total_ num variable is defined as OM_value_position to 
indicate the number of attribute descriptors returned in the public object by 
om _get() based on the inclusion and exclusion parameters specified. 

OSF DeE Application Development Guide 27-19 



GDS Application Programming 

27.7.4 Step 3: Build Public Objects 

A ds _read() function call may take a public object as an input parameter. 
A public object is generated by an application program and contains the 
information required to access a target directory object. This information 
includes the AVAs and RDNs that make up a distinguished name of an entry 
in the directory. 

A public object is created using OM classes and OM attributes. These OM 
classes and OM attributes model the target object entry in the directory and 
provide other information required by the Directory Service to access the 
directory. In this case, the target object entry in the directory is the entry for 
Peter Piper. 

Section 26.1.4 desribes how to create the required public objects for the 
ds _read() function call using macros and data structures defined in the 
XDS and XOM API header files. 

The purpose of building the public objects for AVAs and RDNs is to provide 
the public objects that represent a distinguished name. The distinguished 
name public object is stored in the array of descriptors called name and 
provided as an input parameter to the ds _read() function call. 

27.7.5 Step 4: Create an Entry-Information-Selection Parameter 

27-20 

The distinguished name for Peter Piper is an entry in the directory that the 
application is designed to access. The selection parameter of the ds _read( ) 
function call tailors its results to obtain just part of the required entry. 
Information on all attributes, no attributes, or a specific group of attributes 
can be chosen. Attribute types are always returned, but the attribute values 
need not be. 

The value of the parameter is a public object (descriptor list) that is an 
instance of OM class DS_C_ENTRY_INFO_SELECTION, as shown in 
the following code fragment from example.c: 

/* 
* Public Object ("Descriptor List") for 
* Entry-Information-Selection 
* parameter to ds_read() . 

OSF DeE Application Development Guide 



XDS Programming 

*/ 
OM_descriptor selection[] = { 
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION), 
{ DS_ALL_ATrRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NOLL } , 
OM_OID_DESC(DS_ATrRIBUTES_SELECTED, DS_A_PHONE_NBR), 
{ DS_INFO_TYPE,OM_S_ENUMERATION, 
{ DS_TYPES_AND_ VALUES, NOLL } }, 
OM_NOLL_DESCRIPTOR 
} ; 

DS_C_ENTRY_INFO_SELECTION is a subclass of OM_C_OBJECT 
(this information is supplied in the description of this class in Chapter 30), 
As such, DS_C_ENTRY_INFO_SELECTION inherits the OM attributes 
of OM_C_OBJECT. The only OM attribute of OM_C_OBJECT is 
OM_CLASS. OM_CLASS identifies an object's class, which in this case 
is DS C ENTRY INFO SELECTION. 
DS C ENTRY INFO SELECTION identifies information to be - - - -
extracted from a directory entry and has the following OM attributes: 

• OM_C_CLASS (inherited from OM_C_OBJECT) 

• DS ALL ATTRIBUTES - -

• DS ATTRIBUTES SELECTED - -

• DS INFO TYPE - -
As part of a ds_readO or ds_searchO function call, 
DS _ALL_ATTRIBUTES specifies to the Directory Service which 
attributes of a directory entry are relevant to the application program. It can 
take the values OM TRUE or OM FALSE. These values are defined to be - -
of syntax OM_S_BOOLEAN. The value OM_TRUE indicates that 
information is requested on all attributes in the directory entry. The value 
OM_FALSE, used in the preceding sample code fragment, indicates that 
information is only requested on those attributes that are listed in the OM 
attribute DS ATTRIBUTES SELECTED. - -
DS _ATTRIBUTES_SELECTED lists the types of attributes in the entry 
from which information is to be extracted. The syntax of the value is 
specified as OM_S_OBJECT_IDENTIFIER_STRING. 

OM_S_OBJECT_IDENTIFIER_STRING contains an octet string of 
BER-encoded integers, which are decimal representations of object 
identifiers of the types of attributes in the attribute list. In the preceding 
code fragment, the string value is the attribute name DS _A_PHONE _ NBR 

OSF DeE Application Development Guide 27-21 



GDS Application Programming 

because the purpose of the read call is to read a list of telephone numbers 
from the directory. 

DS INFO TYPE identifies what information is to be extracted from each - -
attribute identified. TlIe syntax of the value is specified as 
Enum(DS _Information_TYpe). DS _INFO _TYPE is an enumerated type 
that has' two possible values: DS _TYPES_ONLY and 
DS TYPES AND VALUES. DS TYPES ONLY indicates that only the 
attribute typ~s of the ~elected attributes in- the entry are returned by the 
Directory Service operation. DS _TYPES _AND_VALUES indicates that 
both the attribute types and the attribute values of the selected attributes in 
the entry are returned: The code fragment from example.c shown 
previously '. defines the value of DS _INFO _TYPE as 
DS _TYPES _AND_VALUES because the program wants to get the actual 
telephone numbers. 

27.7.6 Step 5: P~rform the Read Operation 

27-22 

The following code fragment from example.c shows the ds _read() function 
call and th~ XDS calls that precede it: 

/* 
* Perform the Directory operations: 
* (1) Ini~ialize the Directory Service 
* and get'an OM workspace. 
* (2) bind~ default directory session. 
* (3) read the telephone number of "name". 
* (4) terminate the directory session. 
*/ 

CHECK_DS_CALL«OM_object) ! (workspace = ds_initialize())); 

CHECK_DS_CALL(ds_version(bdcp-package, workspace)); 

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, 
&session) ) ; 

CHECK_DS_CALL(ds_read (session, DS_DEFAULT_CONTEXT, 
name, selection, &result, &invoke_id)); 

OSF DeE Application Development Guide 
\ 



XDS Programming 

CHECK _ DS _ CALL is an error-checking macro defined in the example.h 
header file that is included by example.c. The ds_readO call returns a 
return code of type DS _status to indicate whether or not the read opertion 
completed successfully. If the call was successful, ds_readO returns the 
value DS_SUCCESS. If the call fails, it returns an error code. (Refer to 
Chapter 31 for a comprehensive list of error codes.) CHECK _ DS _CALL 
interprets this return value and returns successfully to the program or 
branches to an error-handling routine. 

The session input parameter is a private object generated by ds _ bind() prior 
to the ds _ read( ) call, as shown in the preceding code fragment. 
DS_DEFAULT_CONTEXT describes the characteristics of a Directory 
Service interaction. Most XDS API function calls require these two input 
parameters because they define the operating parameters of a session with a 
GDS server. (Sessions are described in Section 27.2.1; contexts are 
described in Section 27.3.2.) 

The result of a Directory Service request is returned in a private object (in 
this case, result) that is appropriate to the type of operation. The result of 
the operation is returned in a single OM object. The components of the 
result are represented by OM attributes in the operations result object: 

• DS C COMPARE RESULT - - -
Returned by ds _ compare() 

• DS C LIST RESULT - - -
Returned by ds _list( ) 

• DS C READ RESULT - - -
Returned by ds _ read( ) 

• DS C SEARCH RESULT - - -
Returned by ds_search() 

The OM class returned by ds_read() is DS_C_READ_RESULT. The OM 
class returned by the ds_compareO call is DS_C_COMPARE_RESULT, 
and so on. (Refer to the aSF DeE Application Development Reference for 
a description of the OM classes associated with a particular function call; 
refer to Chapter 30 of this guide for for full descriptions of the OM 
attributes, syntaxes, and values associated with these OM classes.) 

The superclasses, subclasses, and OM attributes for 
DS _ C _READ_RESULT are shown in Figure 27-1. 

OSF DeE Application Development Guide 27-23 



GDS Application Programming 

27-24 

I .....--__ ....L.-t __ 
ds_read{ ... &result ... } 

DS_C_READ_RESULT 
OM_CLASS 
OS_AL~SEO_OEREFERENCEO 
[OS_PERFORMER] ----4-------. 

r-OS_ENTRY 

DS_C_ENTRY_INFO 
OM_CLASS 

.-- [OS_A TTRIBUTES, .. .j 
OS_FROM_ENTRY 
OS_OBJECT_NAME 

DS_C_ATTRIBUTE 
OM_CLASS 
OS_A TTRIBUTE_ TYPE 
[OS_ATTRIBUTE_VALUES, ... ] 

Legend: 

T = Points to subobjects. 
BOLD = OM class. 

BOLD and ITALICS = Abstract OM class. 
ITALICS = Inherited OM attribute. 

... DS C NAME 

DS_C_DS_DN 

OM_CLASS 
[OS_RONS, ... ] -

DS_C_DS_RDN 

OM_CLASS 
OS_AVAS, ... , 

DS_C_AVA 

OM_CLASS 
OS_A TTRIBUTE_ TYPE 
OS_A TTRIBUTE_ VALUES 

[] = Optional OM attribute. 
,... = Multivalued OM attribute. 

OSF DeE Application Development Guide 
\ 



XDS Programming 

The result value is returned to the workspace in private implementation~ 
specific format. As such, it cannot be read directly by an application 
program, but requires a series of om _get() function calls to extract the 
requested information from it. The following code fragment from 
example.c shows how a series of om _get() calls extracts the list of 
telephone numbers associated with the distinguished name for Peter Piper. 
Section 26.7.2 of this guide describes this extraction process in detail. 

/* 

* extract the telephone number(s) of "narne" from the result 

* 
* There are 4 stages: 
* (1) get the Entry-Information from the Read-Result. 
* (2) get the Attributes from the Entry-Information. 
* (3) get the list of phone numbers. 
* (4) scan the list and print each number. 
*/ 

CHECK_OM_CALL( om~et() (result, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
entry_list, OM_FALSE, a, a, &entry, 
&total_num)) ; 

CHECK_OM_CALL( om~et() (entry->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
attributes_list, OM_FALSE, a, a, &attributes, 
&total_num) ) ; 

CHECK_OM_CALL ( om~et ( ) (attributes->value. obj ect. obj ect, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
telephone_list, OM_FALSE, a, a, &telephones, 
&total_num) ) ; 

OSF DeE Application Development Guide 27-25 



GDS Application Programming 

27.8 Directory Search Operations 

Search functions can be used to browse through the Directory Infonnation 
Tree (DIT). For example, a search request could supply the distinguished 
name of an entry and request a list of the distinguished names of the 
children of that entry. 

XDS API implements the following search operations: 

• dsJistO 

The requestor supplies a distinguished name. The Directory Service 
returns a list of the immediate subordinates of the named entry. 

• ds _ search( ) 

The requestor supplies a search criterion known as a filter. The user 
names a subtree of the DIT, specifies some target attribute types, and 
fonnulates an expression by combining a number of attributes using 
logical AND, OR, or NOT operators. The Directory Service returns 
infonnation from all of the entries within the specified portion of the 
DIT that matches the filter. Section 27.8.1 includes a description of how 
filters are used in ad.c. 

27.8.1 Searching the Directory 

27-26 

This section describes a typical search operation using the ds _ search( ) 
function call. It only includes the tasks directly related to the search 
operation and does not include tasks related to the XDS interface or other 
directory operations. 

A typical search operation involves the following steps: 

1. Define the necessary object identifier constants for the OM classes 
and OM attributes that will define public objects for input to 
ds_searchO by using the OM_EXPORT macro. 

2. Declare the variables that will contain the output from the XDS 
functions that will be used in the application. 

3. Build public objects (descriptor lists) for the name parameter to 
ds _search(). 

OSF DeE Application Development Guide 
\ 



XDS Programming 

4. Specify the portion of the Directory Information Tree to be searched. 

5. Create a descriptor list for the filter parameter to ds_searchO that 
designates which entries are to be eliminated from the search. 

6. Create a descriptor list for the selection parameter to ds_searchO 
that selects the type and scope of information in your request. 

7. Perform the search operation 

These steps are demonstrated in the following code fragments from acl.b.. 
The program includes a search operation. In order to perform the operation, 
the program assumes the directory contains the subtree shown in 
Figure 27-2. 

OSF DeE Application Development Guide 27-27 



GDS Application Programming 

Figure 27-2. Subtree for the acl.h Sample Program 

27-28 

CN=stefanie 

C=de 
(objectClass=Country, 

O=sni 

ACL= (mod-pub: * 
mod-std:* 
read-std:* 
mod-sen:*)) 

(objectClass=Organization, 
ACL=(mod-pub:/C=de/O=sni/OU=ap/* 
ACL=(read-std:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(mod-std:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(read-sen:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(mod-sen:/C=de/O=sni/OU=ap/CN=stephanie 

OU=ap 
(objectClass=OrganizationalUnit, 

ACL=(mod-pub:/C=de/O=sni/OU=ap/* 
ACL=(read-std:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(mod-std:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(read-sen:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(mod-sen:)C=de/O=sni/OU=ap/CN=stefanie)) 

CN=ingrid 
(objectClass=OrganizationalPerson, (objectClass=OrganizationalPerson, 

ACL=(mod-pub:/C=de/O=sni/OU=ap/* ACL=(mod-pub:/C=de/O=sni/OU=ap/* 
read-std:/C=de/O=sni/OU=ap/* read-std:/C=de/O=sni/OU=ap/* 
mod-std:/C=de/O=sni/OU=ap/CN=stefanie mod-std:/C=de/O=sni/OU=ap/CN=stefanie 
read-sen:/C=de/O=sni/OU=ap/* read-sen:/C=de/O=sni/OU=ap/* 
mod-sen:/C=de/O=sni/OU=ap/CN=stefanie mod-sen:/C=de/O=sni/OU=ap/CN=stefanie 

surname="Schmid" surname="Schmid" 
telephone="+49 89 636 0" telephone="+49 89 636 0" 

userPassword="secret") userPassword="secret") 

1 CN-no,b.,t 
(objectClass=OrganizationalPerson, 

ACL=(mod-pub:/C=de/O=sni/OU=ap/* 
read-std:/C=de/O=sni/OU=ap/* 
mod-std:/C=de/O=sni/OU=ap/CN=stefanie 
read-sen:/C=de/O=sni/OU=ap/* 
mod-sen:/C=de/O=sni/OU=ap/CN=stefanie 

surname=" Schmid" 
telephone="+49 89 636 0" 

userPassword=" secret") 

OSF DeE Application Development Guide 
\ 



XDS Programming 

27.8.2 Step 1: Export Object Identifiers 

Most application programs find it convenient to export all the names they 
use from the same C source module. In the following code fragment from 
acI.c, the OM_EXPORT macro allocates memory for the constants that 
represent the object OM classes and OM attributes required for the search 
operation: 

/* The application must export the object identifiers it */ 
/* requires. */ 

OM_EXPORT (DS_C_AVA) 

OM_EXPORT (DS_C_DS_RDN) 

OM_EXPORT (DS_C_DS_DN) 

OM_EXPORT (DS_C_ENTRY_INFO_SELECTION) 

OM_EXPORT (DS_C_ATI'RIBDTE) 

OM_EXPORT (DS_C_ATI'RIBDTE_LIST) 

OM_EXPORT (DS_C_FILTER) 

OM_EXPORT (DS_C_FILTER_ITEM) 

OM_EXPORT (DSX_C_GDS_SESSION) 

OM_EXPORT (DSX_C_GDS_CONTEXT) 

OM_EXPORT (DSX_C_GDS_ACL) 

OM_EXPORT (DSX_C_GDS_ACL_ITEM) 

OM_EXPORT (DS_A_COUNTRY_NAME) 

OM_EXPORT (DS_A_ORG_NAME) 

OM_EXPORT (DS_A_ORG_UNIT_NAME) 

OM_EXPORT (DS_A_COMMON_NAME) 

OM_EXPORT (DS_A_LOCALITY_NAME) 

OM_EXPORT (DS_A_OBJECT_CLASS) 

OM_EXPORT (DS_A_USER_PASSWORD ) 

OM_EXPORT (DS_A_PHONE_NBR) 

OM_EXPORT (DS_A_SURNAME) 

OM_EXPORT (DS_A_ACL) 

OM_EXPORT (DS_TYPELESS_RDN) 

OM_EXPORT (DS_O_TOP) 

OM_EXPORT (DS_O_COUNTRY) 

OM_EXPORT (DS_O_ORG) 

OSF DeE Application Development Guide 27-29 



GDS Application Programming 

OM_EXPORT (DS_O_ORG_UNIT) 
OM_EXPORT (DS_O_PERSON) 
OM_EXPORT (DS_O_ORG __ PERSON) 

The OM_EXPORT macro takes the OM class name as input and creates 
two new data structures: a character string and structure of type OM_string. 
The structure of type OM_string contains a length and a pointer that are 
used in Step 3 to initialize the value of the object identifier. 

27.8.3 Step 2: Declare Local Variables 

The local variables are defined in the following code fragment from acl.c: 

OM_workspace 
OM-private_object 
OM-private_object 

OM-public_object 
OM-private_object 
OM_sint 

OM-public_object 
OM-public_object 
OM_value-position 
OM_return_code 
register int 
char 

char 

workspace; 
session; 
bound_session; 

context; 
result; 
invoke_id; 

sinfo_list [ ] 
entry_list [ ] 

sinfo; 
entry; 
total_num; 
rc; 
i; 

/* workspace for objects */ 
/* Session object. */ 
/* Holds the Session object which */ 
/* is returned by ds_bind() */ 
/* Context object. */ 
/* Holds the search result object.*/ 
/* Integer for the invoke id */ 
/* returned by ds_search(). */ 
/* (this parameter must be present*/ 
/* even though it is ignored). */ 
{ DS_SEARCH_INFO, 0 }; 
{ DS_ENTRIES, 0 }; 
/* Lists of types to be extracted */ 
/* Search-Info object from result.*/ 
/* Entry object from search info. */ 
/* Number of descriptors returned.*/ 
/* XOM function return code. */ 

user_name [MAX_DN_LEN] ; 
/* Holds requestor's name. 

entry_string [MAX_DN_LEN + 7] = "[ ?r??] "; 
/* Holds entry details. 

*/ 

*/ 

These data types are defined in a typedef statement in the xom.h header 
file. Since asynchronous operations are not supported, the invoke _id 
functionality is redundant. The invoke _id parameter must be supplied to the 

27-30 OSF DeE Application Development Guide 



XDS Programming 

XDS functions as described in the OSF DeE Application Development 
Reference, but its return value should be ignored. 

27.8.4 Step 3: Build Public Objects for the name Parameter to 
ds_search( ) 

The public objects required by the search operation are defined in the acl.h 
header file. The name input parameter in the ds_searchO function call in 
acl.c is the representation of the distinguished name for the root of the DIT. 
The following code fragment from acl.c shows how the descriptor list for 
the distinguished name is initialized: 

static OM_descriptor dn_root[] = { 
OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
OM_NULL_DESCRIPTOR 

} ; 

27.8.5 Step 4: Specify the Portion of the DIT To Be Searched 

The ds_searchO call requires the subset input parameter. The subset 
parameter specifies the portion of the DIT to be searched. It takes the value 
of one of the following symbolic constants, which are defined in the xds.h 
header file: 

• DS _BASE_OBJECT, meaning to search just the given object entry 

• DS _ONE_LEVEL, meaning to search just the immediate subordinates 
of the given object entry 

• DS_ WHOLE_SUBTREE, meaning to search the given object and all 
its subordinates 

The subset parameter in acl.c takes the value DS_ WHOLE_SUBTREE. 

OSF DeE Application Development Guide 27-31 



GDS Application Programming 

27.8.6 Step 5: Create a Filter 

27-32 

The filter input parameter is used to eliminate entries from the search that 
are not wanted. Information is only returned on entries that satisfy the filter. 

DS C FILTER inherits the attributes from its superclass 
OM_C_OBJECT, as do all OM classes. OM_C_OBJECT (as defined 
Chapter 26) has one OM attribute, OM_CLASS, which has the value of an 
object identifier string that identifies the numeric representation of the 
object's OM class. DS_C_FILTER, on the other hand, has several OM 
attributes. 

The purpose of the DS _ C _FILTER is to select or reject an object on the 
basis of information in its directory entry. It has the following OM 
attributes: 

• DS FILTER ITEMS - -
• DS FILTERS 

• DS FILTER TYPE - -
Two of these OM attributes, DS_FILTER_ITEMS and DS_FILTERS, 
have values that are OM object classes themselves. The OM attribute 
DS FILTER ITEMS has the value OM class DS C FILTER ITEM. - - - - -
DS _ C _FILTER_ITEM is a component of a filter and defines the nature of 
the filter. The OM attribute DS FILTERS has the value of OM class 
DS C FILTER and thus defines a collection of filters. The OM attribute 
DS_FILTER_TYPE has a value that is an enumerated type, which takes 
one of the values DS _AND, DS _OR, or DS _NOT. 

Figure 27-3 shows the relationship of DS C FILTER to its superclass 
OM _ C _ OBJECT, and its attibutes. 

OSF DeE Application Development Guide 



XDS Programming 

Figure 27-3. OM Class DS_C_FILTER 

~ 
DS_C_FILTER 

OM_CLASS 
;- [OS_FIL TER_'TEMS, .. .] 

[OS_FIL TERS, ... } 
OSJIL TER_ TYPE 

~ 
DS_C_FILTER_ITEM 

OM_CLASS 
OS_A TTRiBUTEJYPE 
[OS_ATTRIBUTE_ VALUES, ... } 
OSJIL TER_ITEM_ TYPE 
[OSJINAL_SUBSTRING] 
[OS_INITIAL_SUBSTRING] 

Legend: 

T ; Points to subobjects. 
BOLD ; OM class. 

ITALICS; Inherited OM attribute. 
[] ; Optional OM attribute. 

,... ; Multivalued OM attribute. 

The DS _ NO _FILTER constant can be used as the value of this parameter if 
all entries are searched and no entries are eliminated. This corresponds to a 
filter with a DS_FILTER_TYPE value of DS_AND, and no values of the 
DS FILTERS or DS FILTER ITEMS OM attributes. - --
The following code fragment from acl.c shows the descriptor list for a filter: 

/* The following descriptor list specifies a filter */ 

/* for search : */ 

/* (Present: objectClass) */ 

static OM_descriptor filter_item[] = { 
OM_OID_DESC{OM_CLASS, DS_C_FILTER_ITEM), 
{DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, {DS_PRESENT, O} }, 
OM_OID_DESC (DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS), 
OM_NULL_DESCRIPTOR 

}i 

static OM_descriptor filter[] = { 
OM_OID_DESC{OM_CLASS, DS_C_FILTER), 

OSF DCE Application Development Guide 27-33 



GDS Application Programming 

{DS_FILTER_ITEMS, OM_S_OBJECT, {O, filter_item} }, 
{DS_FILTER_TYPE, OM_S_ENUMERATION, {DS_AND, O} }, 
OM_NULL_DESCRIPTOR 

} ; 

27.8.7 Step 6: Create an Entry-Information-Selection Parameter 

The ds_searchO call requires a selection input parameter to specify what 
information from the entry is requested. The selection parameter of the 
ds_searchO call in acl.h requests information on all attributes, as shown in 
the following code fragment: 

static OM_descriptor selection_acl[] = { 

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION), 
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE}, 
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_ACL), 
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_ VALUES} , 
OM_NULL_DESCRIPTOR 

} ; 

As shown in the code fragment, DS _ ALL_ATTRIBUTES has a syntax of 
OM_S_BOOLEAN that is set to OM_FALSE, indicating that only the 
requested attributes of the entry are to be returned. The ACL attribute's 
types and values are selected. DS _INFO_TYPE has a value of 
DS _TYPES _AND_VALUES, indicating that both the attribute types and 
the attribute values in the entry are returned. 

27.8.8 Step 7: Perform the Search Operation 

The following code fragment from acl.c shows the ds _ search() function 
call: 

/* Search the whole subtree below root. 
* The filter selects entries with an object-class attribute. 
* The selection extracts the ACL attribute from each 
* selected entry. 

27-34 OSF DeE Application Development Guide 



XDS Programming 

* The results are returned in the private object "result". 

* 
* NOTE: Since every entry contains an object-class attribute the 
* filter performs no function other than to demonstrate how 
* filters may be used. 

* 
*/ 

if (ds_search(bound_session, context, dn_root, DS_WHOLE_SUBTREE, 
filter, OM_FALSE, selection_acl, &result, &invoke_id) != DS_SUCCESS) 

print f ( "ds_search () error \n" ) i 

The ds_searchO call returns the value DS SUCCESS if the call 
successfully completes. Otherwise, it returns an error code. (Refer to 
Chapter 31 for a comprehensive list of error codes.) 

The result of the search operation is returned to the workspace in a private 
object result. This result is returned as a single OM object. The 
components of the result are represented by OM attributes in the operation's 
result object. 

The OM class returned by ds_searchO is DS_C_SEARCH_RESULT. The 
superclasses, subclasses, and attributes for DS _ C _SEARCH_RESULT are 
shown in Figure 27-4. 

OSF DeE Application Development Guide 27-35 



GOS Application Programming 

ds_search( ... &result ... ) t t Legend: 

t = Points to subobjects. 
DS_C_SEARCH_RESULT BOLD = OM class. 

OM_CLASS BOLD and ITALICS = Abstract OM class. 

r- [DS_SEARCH_INFO) ITALICS = Inherited OM attribute. 

[DS_UNCORRELATED_ 
[) = Optional OM attribute. 

SEARCH_INFO •... ) -I-' 
. ... = Multivalued OM attribut e. 

DS_C_SEARCH_INFO 

OM_CLASS 
OS_ALMSEO_OEREFERENCEO 

r- [OS_PERFORMER] 
[DS_ENTRIES •... ) 

f- [DS_OBJECT_NAME) 

[DS_PARTIAL_OUTCOME QUAL)-~ 

DS C ENTRY INFO pDSCNAME ,I DS_C_PARTIAL_OUTCOME_QUAL 

-OM CLASS (Ret:r to Figure 27-1) OM CLASS 

r- [OS=A TTRiBUTES • ... ] DS.=-UMIT _PROBLEM 

DS FROM ENTRY DS_UNAVAILABLE_CRIT _EXT 

DS=OBJECT_NAME - [DS_UNEXPLORED •... ) -, 

t 
DS_C_CONTINUATION_REF 

DS_C_ATTRIBUTE OM_CLASS 

OM CLASS 
DS_TARGET_OBJECT 

DS.=-A TIRIBUTE_ TYPE 

~ 
DS_ACCESS_POINTS •... 

[DS_ATIRIBUTE_ VALUES •... ) 
r-I- DS_OPERATION_PROGRESS 

[DS_RDNS_RESOLVED) 

DS_ C_ACCESS_POINT 
DS_ALlASED_RDNS 

OM CLASS 
'--- DS-AE TITLE 

~ 
DS=ADDRESS 

DS_C_ADDRESS DS_C_OPERATION_PROGRESS 

DS_ C_PRESENTATION_ADDRESS OM_CLASS 

OM_CLASS DS_NAME_RESOLUTION_PHASE 

DS_N_ADDRESSES •... [DS_NEXT _RDN_ TO_BE_RESOLVED) 

[DS_P _SELECTOR) 
[DS_S_SELECTOR) 
[DS_T_SELECTOR) 

27-36 OSF DeE Application Development Guide 



XDS Programming 

The result object is returned to the workspace in a private implementation
specific format. As such, it cannot be read directly by an application 
program, but requires a series of om _get() function calls to extract the 
requested information. 

27.9 Directory Modify Operations 

Modify functions alter information in the directory. For example, if an 
employee of an Organizational Unit transfers to a new Organizational Unit, 
a typical modify request would modify the au name attribute in the 
person's directory entry to reflect the change. 

XDS API implements the following modify functions: 

• ds _modify _ entry( ) 

The requestor gives a distinguished name and a list of modifications to 
the named entry. The Directory Service carries out the specified 
changes if the user requesting the change has proper access rights. 

• ds _add _ entry( ) 

The requestor gives a distinguished name and values for a new entry. 
The entry is added as a leaf node in the DIT if the user requesting the 
change has proper access rights. 

• ds_remove_entry() 

The requestor gives a distinguished name. The entry with that name is 
removed if the user requesting the change has proper access rights. 

• ds_modify_rdnO 

The requestor gives a distinguished name and a new Relative 
Distinguished Name (RDN) for the entry. The directory changes the 
entry's RDN if the user requesting the change has proper access rights. 

Note that ds_add_entryO, ds_remove_entryO, and ds_modify_rdnO 
only apply to leaf entries. They are not intended to provide a general 
facility for building and manipulating the DIT. 

OSF DeE Application Development Guide 27-37 



GDS Application Programming 

27.9.1 Modifying Directory Entries 

This section describes a modification and subsequent listing of the DIT 
using the ds _add _ entry(), ds Jist(), and ds _remove _ entry() function 
calls. It includes a description of tasks directly related to these operations 
and does not include service-related tasks. It does not include a 
ds _modify _ entry() function call. The modify operation is used in the 
context of the X.SOO Abstract Service Definition. 

A typical operation to add, remove, or list an entry involves following the 
same basic steps that were defined previously for the read and search 
operations: 

1. Define the necessary object identifier constants for the OM classes 
and OM attributes that will define public objects for input to the 
function calls by using the OM_EXPORT macro. 

2. Declare the variables that will contain the output from the XDS 
functions you will use in your application. 

3. Build public objects (descriptor lists) for the name parameters to the 
function calls. 

4. Create descriptor lists for the attributes to be added, removed, or 
listed. 

S. Perform the operations. 

These steps are demonstrated in the following code fragments. The 
program adds two entries to the directory, then a list operation is performed 
on their superior entry, and finally the two entries are removed from the 
directory. The directory tree shown in Figure 27-S is used in the program. 

Figure 27-5. A Sample Directory Tree 

CN="brendan" CN="sinead" 
(Obj ectClass=OrganizationalPerson, Top, Person (ObjectClass=Organizational, Person, Top, Person 
surname="Moloney" surname="Murphy" 
telephoneNumber="+49 89 636 0") userPassword="secret") 

27-38 OSF DeE Application Development Guide 



XDS Programming 

27.9.2 Step 1: Export Object Identifiers for Required Directory 
Classes and Attributes 

In the following code fragment, the OM_EXPORT macro allocates 
memory for the constants that represent the object classes and attributes 
required for the add, list, and remove operations: 

/* The application has to export the object identfiers */ 
/* it requires. */ 

OM_EXPORT (DS_C_AVA) 
OM_EXPORT (DS_C_DS_RDN) 
OM_EXPORT (DS_C_DS_DN) 
OM_EXPORT (DS_C_ENTRY_INFO_SELECTION) 
OM_EXPORT (DS_C_ATTRIBUTE) 
OM_EXPORT (DS_C_ATTRIBUTE_LIST) 

OM_EXPORT (DS_A_COUNTRY_NAME) 
OM_EXPORT (DS_A_ORG_NAME) 
OM_EXPORT (DS_A_COMMON_NAME) 
OM_EXPORT (DS_A_OBJECT_CLASS) 
OM_EXPORT (DS_A_PHONE_NBR) 
OM_EXPORT (DS_A_USER_PASSWORD) 
OM_EXPORT (DS_A_SURNAME) 

OM_EXPORT (DS_O_TOP) 
OM_EXPORT (DS_O_PERSON) 
OM_EXPORT (DS_O_ORG_PERSON) 

27.9.3 Step 2: Declare Local Variables 

The local variables bound_session, result, and invokeJd are defined in the 
following sample code fragment: 

OM-private_object bound_session; /* Holds the Session object */ 

OM-private_object result; 

OSF DeE Application Development Guide 

/* which is returned by 
/* ds_bind () . 
/* Holds the list result 

*/ 
*/ 
*/ 

27-39 



GDS Application Programming 

/* object. */ 

OM_sint invoke_idi /* Integer for the invoke id */ 

/* returned by ds_search() . */ 

/* This parameter must be */ 

/* present even though it is */ 

/* ignored. */ 

These data types are defined in typedef statements in the xom.h header file. 
The bound_session and result variables are defined as data type 
OM_private _object because they are returned by ds _ bind() and, ds Jist() 
operations to the workspace as private objects. Since asynchronous 
operations are not supported, the invoke _id parameter functionality is 
redundant. The invoke _id parameter must be supplied to the XDS functions 
as described in the aSF DeE Application Development Reference, but its 
return value should be ignored. 

27.9.4 Step 3: Build Public Objects 

The public objects required by the ds _add _ entry(), ds _list(}, and 
ds _remove _ entry( ) operations are defined in the following code fragment: 

/* Build up descriptor lists for the following distinguished names: */ 
/* 

/* 
/* 

C=ie/O=sni 
C=ie/O=sni/CN=brendan 
C=ie/O=sni/CN=sinead 

static OM_descriptor ava_ie[] = { 

} i 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_A'ITRIBUTE_TYPE, DS_A_COUNTRY_NAME), 
{DS_A'ITRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( " ie" ) } , 
OM_NULL_DESCRIPTOR 

static OM_descriptor ava_sni[] = { 

} i 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATrRIBUTE_TYPE, DS_A_ORG_NAME), 
{DS_A'ITRIBUTE_ VALUES, OM_S_TELETEX_STRING, OM_STRING ( "sni " ) } , 
OM_NULL_DESCRIPTOR 

static OM_descriptor ava_brendan [] = { 

*/ 
*/ 
*/ 

27-40 OSF DeE Application Development Guide 



OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATIRIBUTE_TYPE, DS_A_COMMON_NAME), 

XDS Programming 

{DS_ATIRIBUTE_ VALUES, OM_S_TELETEX_STRING, OM_STRING ( "brendan" ) } , 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor ava_sinead[] = { 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATIRIBUTE_TYPE, DS_A_COMMON_NAME), 
{DS_ATIRIBUTE_ VALUES, OM_S_TELETEX_STRING, OM_STRING ( "sinead" ) } , 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor rdn_ie[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, ava_ie}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor rdn_sni[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, ava_sni}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor rdn_brendan[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, ava_brendan}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor rdn_sinead[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, ava_sinead}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor dn_sni[] = { 
OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
{DS_RDNS,OM_S_OBJECT,{O,rdn_ie}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_sni}}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor dn_brendan[] = { 

OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
{DS_RDNS,OM_S_OBJECT,{O,rdn_ie}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_sni}}, 

OSF DeE Application Development Guide 27-41 



GDS Application Programming 

} ; 

{DS_RDNS,OM_S_OBJECT,{O,rdn_brendan}}, 
OM_NULL_DESCRIPI'OR 

static OM_descriptor dn_sinead[] = { 
OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
{DS_RDNS,OM_S_OBJECT,{O,rdn_ie}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_sni}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_sinead}}, 
OM_NULL_DESCRIPI'OR 

} ; 

27.9.5 Step 4: Create Descriptor Lists for Attributes 

27-42 

The following code fragments show how the attribute lists are created for 
the attributes to be added to the directory. 

First, initialize the public object object_class to contain the representation 
of the classes in the DIT that are common to both organizational person 
entries, top, person, and organizational person: 

/* Build up an array of object identifiers for the */ 
/* attributes to be added to the directory. */ 

static OM_descriptor object_class[] = { 
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS), 
OM_OID_DESC (DS_ATTRIBUTE_ VALUES, DS_O_TOP), 
OM_OID_DESC (DS_ATTRIBUTE_ VALUES, DS_O_PERSON), 
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON), 
OM_NULL_DESCRIPI'OR 

} ; 

Next, initialize the public objects that represent the attributes to be added: 
surname and telephone for the distinguished name of Brendan, and 
surname2 and password for the distinguished name of Sinead: 

static OM_descriptor telephone[] = { 
OM_OID_DESC (OM_CLASS, DS_C_ATTRIBUTE), 
OM_OID_DESC (DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR), 

OSF DeE Application Development Guide 



XDS Programming 

{DS_ATrRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, 
OM_STRING ( "+49 89 636 a")}, 

OM_NULL_DESCRIPrOR 
} i 

static OM_descriptor surname[] = { 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC{DS_ATrRIBUTE_TYPE, DS_A_SURNAME), 
{DS_ATrRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING { "Moloney")}, 
OM_NULL_DESCRIPrOR 

} i 

static OM_descriptor surname2[] = { 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC{DS_ATrRIBUTE_TYPE, DS_A_SURNAME), 
{DS_ATrRIBUTE_ VALUES, OM_S_TELETEX_STRING, 
OM_STRING ("Murphy") }, 
OM_NULL_DESCRIPrOR 

} i 

static OM_descriptor password[] = { 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC{DS_ATrRIBUTE_TYPE, DS_A_USER_PASSWORD), 
{DS_ATrRIBUTE_ VALUES, OM_S_OCTET_STRING, OM_STRING ( "secret" ) } , 
OM_NULL_DESCRIPrOR 

} i 

Finally, initialize the public objects that represent the list of attributes to be 
added to the directory: aUr _list! for the distinguished name Brendan, and 
aUr _list2 for the distinguished name Sinead: 

static OM_descriptor attr_listl[] = 
OM_OID_DESC{OM_CLASS, DS_C_ATrRIBUTE_LIST), 
{DS_ATTRIBUTES, OM_S_OBJECT, {a, object_class} }, 
{DS_ATTRIBUTES, OM_S-,-OBJECT, {a, surname} }, 
{DS_ATrRIBUTES, OM_S_OBJECT, {a, telephone} }, 
OM_NULL_DESCRIPrOR 

} i 

static OM_descriptor attr_list2[] = { 

OM_OID_DESC{OM_CLASS, DS_C_ATrRIBUTE_LIST), 

OSF DeE Application Development Guide 27-43 



GDS Application Programming 

{DS_ATTRIBUTES, OM_S_OBJECT, {O, object_class} }, 
{DS_ATTRIBUTES, OM_S_OBJECT, {O , surname2} }, 
{DS_ATTRIBUTES, OM_S_OBJECT, {O, password} }, 
OM_NOLL_DESCRIPTOR 

} ; 

The attr _list! variable contains the public objects surname and telephone, 
the C representations of the attributes of the distinguished name 
IC=ie/O=sni/CN=brendan that are added to the directory. The attr _list2 
variable contains the public objects surname2 and password, the C 
representations of the attributes of the distinguished name 
I C=iel O=snil CN =sinead. 

27.9.6 Step 5: Perform the Operations 

27-44 

The following code fragments show the ds _add _ entry(), ds _list(), and the 
ds _remove _ entry() calls. 

First, the two ds _add _ entry( ) function calls add the attribute lists 
contained in attr Jist! and attr Jist2 to the distinguished names 
represented by dn_brendan and dn_sinead, respectively: 

/* Add two entries to the GDS server. 

if (ds_add_entry (bound_session, DS_DEFAULT_CONTEXT, 
dn_brendan, attr_listl, 
&invoke_id) != DS_SUCCESS) 
printf ("ds_add_entry () error\n"); 

if (ds_add_entry (bound_session, DS_DEFAULT_CONTEXT, 
dn_sinead, attr_list2, 
&invoke_id) != DS_SUCCESS) 
printf ("ds_add_entry () error\n"); 

*/ 

Next, list all the subordinates of the object referenced by the distinguished 
name IC=ie/O=sni : 

if (ds_list(bound_session, DS_DEFAULT_CONTEXT, dn_sni, 
&result, &invoke_id) 

OSF DeE Application Development Guide 



XDS Programming 

!= DS_SUCCESS) 
printf (lids_list () error\n"); 

The ds _list() call returns the result in the private object result to the 
workspace. The components of result are represented by OM attributes in 
the OM class DS_C_LIST_RESULT (as shown in Figure 27-6) and can 
only be read by a series of om _get() calls. 

OSF DeE Application Development Guide 27-45 



GDS Application Programming 

I t 1 Legend: ds_lIst( ... &result ... ) 
DS_C_LIST_RESULT 

""l = Points to subobjects. OM CLASS 
....,.... [DS-::"LlST_INFO) BOLD = OM class . 

BOLD and ITALICS = Abstract OM class. 
[DS_UNCORRELATED_ ITALICS = Inherited OM attribute. 
LI~>T_INFO •... ) [) = Optional OM attribute. 

. ... = Multivalued OM attribute. 

DS_C_LlST_INFO 

OM_CLASS 
DS_AL~SED_DEREFERENCED 

r [DS]ERFORMER] 
[DS_SUBORDINATES •... ) 

I- [DS_OBJECT_NAME) 

[DS_PARTIAL_OUTCOME_QUAL)-~ 

DS C LIST INFO ITEM Y DS C NAME I DS PARTIAL OUTCOME QUAL 
OM CLASS - (Refer to Figure 27-1) -OM CLASS -
DS -ALIAS ENTRY DS -LIMIT PROBLEM 
DS:::FROM='ENTRY DS-UNAVAILABLE CRIT EXT 

r DS_RDN [DS-::"UNEXPLORED, ... ) ~ 

t 
DS C CONTINUATION REF 

DS_C_RELATIVE_NAME OM CLASS - . --l:S C DS RDN 
DS -TARGET OBJECT 

OM-CLASS 

~ 
DS:::ACCESS:::POINTS •... 

DS-AVAS •... - DS OPERATION PROGRESS 
[DS-="RDNS_RESOLVED) 

DS C ACCESS POINT 
DS_ALlASED_RDNS 

-OM CLASS-

DS CAVA 
'-r- DS -AE TITLE 

DS_C_OPERATION-PROGRESS 
OM-CLASS 

r r- DS:::ADDRESS 
OM CLASS 

DS-ATTRIBUTE TYPE DS -NAME RESOLUTION PHASE 
DS:::A TTRIBUTE::: VALUES [D~NEXT :::RDN_ TO_BE3~ESOLVED) 

DS_C_ADDRESS 

DS C PRESENTATION ADDRESS 
-OM CLASS -
DS':::-N_ADDRESSES •... 
[DS_P _SELECTOR) 
[DS_S_SELECTOR) 
[DS_ T _SELECTOR) 

27-46 OSF DeE Application Development Guide 



XDS Programming 

Finally, remove the two entries from the directory: 

if (ds_rernove_entry (bound_session, DS_DEFAULT_CONTEXT, 
dn_brendan, &invoke_id) 
!= DS_SUCCESS) 
printf ("ds_rernove_entry () error\n") i 

if (ds_rernove_entry (bound_session, DS_DEFAULT_CONTEXT, 
dn_sinead, &invoke_id) 
!;= DS_SUCCESS) 
printf ("ds_rernove_entry () error\n") i 

OSF DeE Application Development Guide 27-47 





Chapter 28 

Sample Application Programs 

This chapter contains three sample,programs and the header files that are 
included in them (in parentheses): 

• example.c (example.h) 

o acl.c (acl.h) 

• teldir.c 

Most of the concepts that you will need to know to understand and use these 
programs are discussed in previous chapters in Part 4 of this guide. The 
programs are arranged so that the simplest program, example.c, is presented 
first and the most complex program, teldir.c is presented last. The three 
programs demonstrate basic XDS and XOM API principles and concepts in 
operation. The teldir.c program is considerably more complex and uses a 
more sophisticated approach. It allows the user to enter values dynamically; 
for example, a surname and phone number. 

OSF DeE Application Development Guide 28-1 



GDS Application Programming 

28.1 General Programming Guidelines 

Writing an application program using XDS and XOM APIs involves the 
following general steps before you begin coding: 

1. Select the interface functions that you will need for your application 
and determine the parameters for the function calls. 

2. Check for abstract OM classes and superclasses of objects that you 
will manipulate for inherited OM attributes in Part 4C. 

3. Find the correct symbolic constants of the appropriate packages; these 
can be found in the header files included with the GDS API, such as 
xdsbdcp.h. 

4. Determine the error handling required. 

28.2 The example.c Program 

28-2 

The example.c program uses XDS API in synchronous mode to read a 
telephone number or numbers of a distinguished name. The program 
consists of the following general steps: 

1. Define the required object identifier constants. 

2. Declare the variables involved with Directory Service operations 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

(Steps 3, 4, 7, 8, and 9). 

Build the distinguished name of Peter Piper as a public object for the 
input parameter to ds_read(). 

Build a public object for the selection parameter to ds_readO. 

Declare the variables to extract the telephone numbers using 
om_get(). 

Initialize the directory service and get an OM workspace. 

Pull in the required packages. 

Bind to a default directory session. 

Perform the read operation to extract the telephone number of a 
distinguished name from the directory. 

OSF DeE Application Development Guide 



Sample Application Programs 

10. Terminate the Directory Service session. 

11. Extract the telephone number(s) using a series of om_getO calls. 

12. Release the storage occupied by private and public objects that are no 
longer needed. 

13. Print the telephone number string. 

14. Release the storage occupied by public objects containing telephone 
numbers. 

15. Continue processing and exit. 

Note: The steps that follow are highlighted in boldface so that you 
can follow the sequence as you examine the example.c 
program. 

Step 1 uses the OM_EXPORT macro to allocate memory for the object 
identifier constants that represent an OM class or OM attribute. These 
constants are the OM attribute values that are used to build the public 
objects that are required as input to ds_read(). 

Step 2 declares the variables for Directory Service operations and error 
handling. The session and workspace variables are required for binding a 
session to a server and creating a workspace into which ds _read() can 
deposit the results of the read operation on the directory. 

The result variable is a pointer that is returned by ds _read() to the 
workspace. The information stored in result is in implementation-specific 
private format that is not accessible directly by the application program. 
Subsequent om_getO calls extract the telephone number(s) requested by 
the program from result and store the information in the variable 
telephones (declared in Step 5). 

The error and return _code variables are used by the program for error 
handling. The error variable is used for processing the return code from 
XDS API function calls. The return_code variable is used by the error 
handling header file example.h for processing return codes from om _get( ) 
function calls. 

Step 3 builds the public object representing the distinguished name of Peter 
Piper. The program uses statically defined public objects to demonstrate 
the basic principles of building public objects. However, a more 
sophisticated approach is presented in the last sample program in this 
chapter, teldir.c. The teldir.c program dynamically defines a public object 
from a user-supplied name in DCE string format. 

OSF DeE Application Development Guide 28-3 



GDS Application Programming 

28-4 

In this program (example.c), the process starts with the definition of an 
array of descriptor lists as A V As. These A V As are public objects that are 
included in the definition of RDNs. The RDNs, in tum, are included in the 
distinguished name of Peter Piper stored in name. Using the same method 
of static definition, Step 4 defines the 
DS _ C _ENTRY_INFO _SELECTION public object and stores it in the 
variable selection. The name and selection variables are required as input 
parameters to ds _read(). This process is described in detail in Chapter 27. 

Step 5 declares the variables required by om _get() to extract the telephone 
number(s) from result. The entry_list, attributes_list, and telephone_list 
variables are of type OM_type and are initialized to the values of the OM 
attribute types DS_ENTRY, DS_ATTRIBUTES, and 
DS_ATTRIBUTE_ VALUES, respectively. DS_ENTRY contains the 
selected list of entries; DS _ATTRIBUTES contains the selected list of 
attribute types; and DS_ATTRIBUTE_ VALUES contains the actual values 
of the telephone numbers. 

The entry, attributes, and telephones variables are of type 
OM_public_object because they store the output parameters of om_getO. 
The om _get() call makes these objects available to the application program 
as public object data types. The program must remove layers of objects and 
subobjects to get at the actual string data values of the telephone numbers. 

The telephones variable contains the actual string values of the telephone 
number(s). It is a descriptor in the array of descriptors that make up the 
public object that contains the actual string data that the program wants to 
extract from the directory. 

Step 6 initializes the Directory Service and gets an OM workspace in which 
ds_readO deposits the result of the read operation. 

Step 7 pulls in the Basic Directory Contents Package into the program 
because it contains features that are required by the program not included in 
the default package (the Directory Service Package). 

Step 8 binds the session to the default session. An application program can 
bind with a specifically tailored session object using an instance of OM 
class DS _ C _SESSION. In most cases, however, it is sufficient to use the 
constant DS DEFAULT SESSION. DS DEFAULT SESSION uses the - - - -
default values of DS_ C_SESSION and the values of specific OM attributes 
that are set locally in the cache. These OM attributes are 
DS_DSA_ADDRESS (the address of the default DSA) and 
DS_DSA_NAME (the distinguished name of the default DSA). It is the 

OSF DeE Application Development Guide 



Sample Application Programs 

responsibility of local administrators to make sure that these default values 
are set correctly in the cache. 

Step 9 performs the read operation and deposits the result in the workspace 
in result. The result variable is one of the input parameters for the 
om _get( ) function call. The session variable and the 
DS DEFAULT CONTEXT constant are the session and context - -
parameters required to be present in the ds _read( ) function call. 

The name variable holds the public object representing the distinguished 
name of Peter Piper; the selection variable contains the public object the 
indicates which attributes and values are selected by the read operation 
from the entry. The invoke _id parameter is not used by the DeE 
implementation of XDS and is ignored. 

Step 10 terminates the directory session. 

Step 11 uses a series of om_getO calls to extract the telephone number(s). 
The first om _get() extracts the information about the entry from result and 
puts it in entry. The second om _get() extracts the attribute types from 
entry and puts them in attributes. The third om _get() extracts the actual 
values of the telephone numbers from attributes and puts them in 
telephones. The telephones variable contains the string data values of the 
telephone number(s). 

Step 12 releases the storage occupied by the private and public objects that 
are no longer needed. The program has the data values in telephone that it 
needs to continue processing. A ds _ shutdown() is issued that shuts down 
the interface established by ds _ initialize( ). 

Step 13 prints out each telephone number associated with the distinguished 
name Peter Piper in the directory, or returns an error message if the number 
is not in the correct format. It checks for an attribute with type 
DS_ATTRIBUTE_ VALUES and a syntax of 
OM_S_PRINTABLE_STRING, the proper syntax for a telephone number. 
The constant OM_S_SYNTAX is used to mask the five high-order bits in 
the syntax because they are used internally by the XOM service. 

Step 14 releases the storage occupied by telephones because it is no longer 
needed. 

Step 15 continues processing and exits. 

OSF DeE Application Development Guide 28-5 



GDS Application Programming 

28.2.1 The example.c Code 

The following code is a listing of the example.c program: 

/* 
* sample application that uses XDS in synchronous mode 

* 
* This program reads the telephone number{s} of a given target name. 
*/ 

#include <stdio.h> 

#include <dce/xom.h> 
#include <dce/xds.h> 
#include <dce/xdsbdcp.h> 

#include "example.h" 

/* Step 1 

* 

/* possible Error Handling header */ 

* Define necessary Object Identifier constants 
*/ 

OM_EXPORT {DS_A_COMMON_NAME} 
OM_EXPORT {DS_A_COUNTRY_NAME} 
OM_EXPORT {DS_A_ORG_NAME} 
OM_EXPORT {DS_A_ORG_UNIT_NAME} 
OM_EXPORT {DS_A_PHONE_NBR} 
OM_EXPORT {DS_C_AVA} 
OM_EXPORT {DS_C_DS_DN} 
OM_EXPORT {DS_C_DS_RDN} 
OM_EXPORT {DS_C_ENTRY_INFO_SELECTION} 

/* Step 2 * / 

int rnain{void} 
{ 

DS_status 
O~return_code 

OM_workspace 

error; /* return value from DS functions 
return_code; /* return value from OM functions 
workspace; /* workspace for objects 

*/ 
*/ 
*/ 

28-6 OSF DeE Application Development Guide 



Sample Application Programs 

OM-private_object session; /* session for directory operations 
OM-private_object result; /* result of read operation 
OM_sint invoke_id; /* Invoke-ID of the read operation 
OM_value-position total_nurn; /* Number of Attribute Descriptors 

static DS_feature bdcp-package[] = { 
{ OM_STRING (OMP_O_DS_BASIC_DIR_CONTENTS_PKG) , OM_TRUE}, 
{ { (OM_uint32)0, {void *)0 }, OM_FALSE }, 
} ; 

*/ 
*/ 
*/ 
*/ 

/* Step 3 * / 

* 
* Public Object ("Descriptor List") for Name parameter to ds_read{). 
* Build the Distinguished-Name of Peter Piper. 
*/ 

static OM_descriptor country[] = { 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC{DS_A'ITRIBUTE_TYPE, DS_A_COUNTRY_NAME), 
{ DS_A'ITRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, OM_STRING ( "US") }, 
OM_NULL_DESCRIPrOR 
} ; 

static OM_descriptor organization[] = { 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC (DS_A'ITRIBUTE_TYPE, DS_A_ORG_NAME), 
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING, 

OM_STRING ("Acme Pepper Co") }, 
OM_NULL_DESCRIPrOR 
} ; 

static OM_descriptor organizational_unit[] = { 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME), 
{ DS_ATTRIBUTE_ VALUES, OM_S_TELETEX_STRING, OM_STRING ( "Research") }, 
OM_NULL_DESCRIPrOR 
} ; 

static OM_descriptor cornmon_name[] = { 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC (DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME), 
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,OM_STRING{"Peter Piper") }, 
OM_NULL_DESCRIPrOR 

OSF DeE Application Development Guide 28-7 



GDS Application Programming 

} i 

static OM_descriptor rdnl[] = { 
OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{ DS_AVAS, OM_S_OBJECT, { 0, country} }, 
OM_NOLL_DESCRIPTOR 
} i 

static OM_descriptor rdn2[] = { 
OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{ DS_AVAS, OM_S_OBJECT, { 0, organization} }, 
OM_NOLL_DESCRIPTOR 
} i 

static OM_descriptor rdn3[] = { 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{ DS_AVAS, OM_S_OBJECT, { 0, organizational_unit} }, 
OM_NOLL_DESCRIPTOR 
} i 

static OM_descriptor rdn4[] = { 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{ DS_AVAS, OM_S_OBJECT, { 0, cormnon_name } }, 
OM_NOLL_DESCRIPTOR 
} i 

OM_descriptor name[] = { 

OM_OID_DESC(OM_CLASS, DS_C_DS_DN), 
{ DS_RDNS, OM_S_OBJECT, { 0, rdnl } }, 
{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } }, 
{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } }, 
{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } }, 
OM_NOLL_DESCRIPTOR 
} i 

/* Step 4 */ 

/* 

* 
* Public Object ("Descriptor List") for 
* Entry-Information-Selection parameter to ds_read() . 
*/ 

OM_descriptor selection[] = { 

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION), 

28-8 OSF DeE Application Development Guide 



/ 
Sample Application Programs 

{ DS_ALL_ATrRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } }, 
OM_OID_DESC(DS_ATrRIBUTES_SELECTED, DS_A_PHONE_NBR), 
{ DS_INFO_TYPE, OM_S_ENUMERATION, { DS_TYPES_AND_ VALUES, NULL } }, 
OM_NULL_DESCRIPTOR 
} ; 

/* StepS */ 

/* 
* variables to extract the telephone number(s) 
*/ 

{ DS_ENTRY, 0 }; 
{ DS_ATTRIBUTES, 0 }; 

OM_type 
OM_type 
OM_type 

attributes_list[] 
telephone_list [] { DS_ATTRIBUTE_VALUES, 0 }; 

OM-public_object 
OM-public_object 
OM-public_object 
OM_descriptor 

/* 

entry; 
attributes; 
telephones; 
*telephone; /* current phone number */ 

* Perform the Directory Service operations: 
* (1) Initialise the Directory Service and get an OM workspace 
* (2) bind a default directory session. 
* (3) read the telephone number of "name". 
* (4) terminate the directory session. 
*/ 

/* Step 6 */ 

/* Step7 */ 

CHECK_DS_CALL(ds_version(bdcp-package, workspace)); 

/* StepS */ 

/* Step 9 * / 

OSF DeE Application Development Guide 28-9 



GDS Application Programming 

/* 

CHECK_DS_CALL (ds_read (session, DS_DEFAULT_CONTEXT, name, 
selection, &result, &invoke_id)}; 

* NOTE: should check here for Attribute-Error (no-such-attribute) 
* in case the "name" doesn't have a telephone. 
* Then for all other cases call error_handler 
*/ 

/* Step 10 * / 

/* Step 11 * / 

28-10 

/* 
* extract the telephone number(s} of "name" from the result 

* 
* There are 4 stages: 
* (1) get the Entry-Information from the Read-Result. 
* (2) get the Attributes from the Entry-Information. 
* (3) get the list of phone numbers. 
* (4) scan the list and print each number. 
*/ 

CHECK_aM_CALL ( om-get(result, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
entry_list, OM_FALSE, 0, 0, &entry, 
&total_num}} ; 

om-get(entry->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES 

+ OM_EXCLUDE_SUBOBJECTS, 
attributes_list, OM_FALSE, 0, 0, &attributes, 
&total_num} } ; 

om~et(attributes->value.object.object, 

OM_EXCLUDE_ALL_BUT_THESE_TYPES 
+ OM_EXCLUDE_SUBOBJECTS, 

telephone_list, OM_FALSE, 0, 0, &telephones, 
&total_num» ; 

OSF DeE Application Development Guide 



Sample Application Programs 

/* Step 12 */ 

/* We can now safely release all the private objects 
* and the public objects we no longer need 
*/ 

CHECK_OM_CALL(om_delete(session»; 
CHECK_OM_CALL(om_delete(result)}i 
CHECK_OM_CALL(om_delete(entry}}; 
CHECK_OM_CALL(om_delete(attributes)}; 
CHECK_DS_CALL(ds_shutdown(workspace}}; 

/* Step 13 * / 

for (telephone = telephones; 
telephone->type != DS_ATTRIBUTE_VALUES; 
telephone++) 

if (telephone->type != DS_ATTRIBUTE_VALUES 
I I (telephone->syntax & OM_S_SYNTAX) != OM_S_PRINTABLE_STRING} 
{ 

(void) fprintf(stderr, "malformed telephone nwnber\n"); 
exit (EXIT_FAILURE) ; 

} 

/* Step 14 */ 

/* Step 15 * / 

(void) printf ("Telephone nwnber: %s\n", 
telephone->value.string.elements); 

/* more application-specific processing can occur here ... 
*/ 

/* ... and finally exit. */ 
exit(EXIT_SUCCESS); 

OSF DeE Application Development Guide 28-11 



GDS Application Programming 

28.2.2 Error Handling 

/* 

The example.c program includes the header file example.h for error 
handling of XDS and XOM function calls. The example.h program 
contains two error handling functions: CHECK _DS _ CALL for handling 
XDS API errors, and CHECK_OM _ CALL for handling XOM API errors. 
Note that CHECK DS CALL and CHECK OM CALL are created - - - -
specifically for example.c and are not part of the XDS or XOM APIs. They 
are included to demonstrate a possible method for error handling. 

XDS and XOM API functions return a status code. In example.c, error 
contains the status code for XDS API functions. If the call is successful, the 
function returns DS_SUCCESS. Otherwise, one of the error codes 
described in Chapter 31 is returned. 

The return code variable contains the status code for XOM API functions. 
If the call is successful, the function returns OM_SUCCESS. Otherwise, 
one of the error codes described in Chapter 36 is returned. 

The contents of example.h are as follows: 

* define some convenient exit codes 
*/ 

#define EXIT_FAILURE 1 
#define EXIT_SUCCESS 0 

/* 

* declare an error handling function and an error checking macro for DS 
*/ 

#define CHEC~DS_CALL(function_call) 

/* 

28-12 

error = (function_call); 
if (error != DS_SUCCESS) 

handle_ds_error(error); 

OSF DeE Application Development Guide 



Sample Application Programs 

* declare an error handling function and an error checking macro for OM 
*/ 

#define CHECK_OM_CALL(function_call) 

/* 

return_code = (function_call); 
if (return_code != OM_SUCCESS) 

handle_oill_error(return_code); 

* the error handling code 

* 
* NOTE: any errors arising in these functions are ignored. 
*/ 

void handle_ds_error(DS_status error) 
{ 

(void) fprintf(stderr, liDS error has occurred\n"); 

(void) oill_delete«OM_object) error); 

/* At this point, the error has been reported and storage cleaned up, 
* so the handler could return to the main program now for it to take 
* recovery action. But we choose the simple option ... 
*/ 

exit(EXIT_FAILURE); 

void handle_oill_error(OM_return_code return_code) 
{ 

(void) fprintf(stderr, "0M error %d has occurred\n", return_code); 

OSF DeE Application Development Guide 28-13 



GDS Appiication Programming 

/* At this point, the error has been reported and storage cleaned up, 
* so the handler could return to the main program now for it to take 
* recovery action. But we choose the simple option ... 
*/ 

exit(EXIT_FAILURE); 

28.3 The acl.c Program 

28-14 

The acl.c file is a program that displays the access permissions (ACLs) on 
each entry in the directory for a specific user. The permisions are presented 
in a form similar to UNIX file permissions. In addition, each entry is 
flagged as either a master or a shadow copy. 

The distinguished name of the user requesting the access permissions is 
IC=de/O=sni/OU=ap/CN=norbert. The results of the request are 
presented in the following format: 

[ABeD] <entry's distinguished name> 

where: 

A m master copy 

s shadow copy 

B r read access to public attributes 

w write access to public attributes 

- no access to public attributes 

OSF DeE Application Development Guide 



C r read access to standard attributes 

w write access to standard attributes 

- no access to standard attributes 

D r read access to sensitive attributes 

w write access to sensitive attributes 

- no access to sensitive attributes 

Sample Application Programs 

For example, the following result means that the entry IC=de/O=sni is a 
master copy and that the user making the request 
(/C=de/O=sni/OU=ap/CN=norbert) has write access to its public 
attributes, read access to its standard attributes, and no accesss to its 
sensitive attributes: 

[mwr-] /C=de/O=sni 

The program requires that the user perform an authenticated bind to the 
Directory Service. The user's credentials must already exist in the 
directory. For this reason, the tree of six entries shown in Figure 28-1 is 
added to the directory each time the program runs, and is removed again 
afterwards. 

OSF DeE Application Development Guide 28-15 



GDS Application Programming 

Figure 28-1. Entries with User Credentials Added to the Directory Tree 

28-16 

C=de 
(objectClass=Country, 

O=sni 

ACL= (mod-pub: * 
mod-std:* 
read-std:* 
mod-sen:*» 

(objectClass=Organization, 
ACL=(mod-pub:/C=de/O=sni/OU=ap/* 
ACL=(read-std:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(mod-std:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(read-sen:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(mod-sen:/C=de/O=sni/OU=ap/CN=stephanie 

OU=ap 
(objectClass=OrganizationalUnit, 

ACL=(mod-pub:/C=de/O=sni/OU=ap/* 
ACL=(read-std:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(mod-std:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(read-sen:/C=de/O=sni/OU=ap/CN=stefanie 
ACL=(mod-sen:/C=de/O=sni/OU=ap/CN=stefanie) ) 

CN=stefanie CN=ingrid 
(objectClass=OrganizationalPerson, (objectClass=OrganizationalPerson, 

ACL=(mod-pub:/C=de/O=sni/OU=ap/* ACL=(mod-pub:/C=de/O=sni/OU=ap/* 
read-std:/C=de/O=sni/OU=ap/* read-std:/C=de/O=sni/OU=ap/* 
mod-std:/C=de/O=sni/OU=ap/CN=stefanie mod-std:/C=de/O=sni/OU=ap/CN=stefanie 
read-sen:/C=de/O=sni/Ou=ap/* read-sen:/C=de/O=sni/OU=ap/* 
mod-sen:/C=de/O=sni/OU=ap/CN=stefanie mod-sen:/C=de/O=sni/OU=ap/CN=stefanie 

surname=" Schmid" surname=" Schmid" 
telephone="+49 89 636 0" 

userPassword="secret") 
telephone="+49 89 636 0" 

userPassword="secret") 

1 CNono"be"t 
(objectClass=OrganizationalPerson, 

ACL=(mod-pub:/C=de/O=sni/OU=ap/* 
read-std:/C=de/O=sni/OU=ap/* 
mod-std:/C=de/O=sni/OU=ap/CN=stefanie 
read-sen:/C=de/O=sni/OU=ap/* 
mod-sen:/C=de/O=sni/OU=ap/CN=stefanie 

surnarne= 11 Schmid II 
telephone="+49 89 636 0" 

userPassword="secret") 

OSF DCE Application Development Guide 



Sample Application Programs 

The program consists of the following steps: 

1. Export the required object identifiers (see the acl.h description in 
Section 28.3.2). 

2. Build the descriptor lists for objects required by the program (see the 
acl.h description in Section 28.3.2). 

3. Initialize a workspace. 

4. Negotiate the use of the Basic Directory Contents and Global 
Directory Extension Packages. 

5. Add a fixed tree of entries to the directory to permit an authenticated 
bind. 

6. Create a default session object. 

7. Alter the default session object to include the credentials of the 
requestor (/ C=de/ O=sni/ 0 U =ap/ CN =nor bert). 

8. Bind with credentials to the default GDS Server. 

9. Create a default context object and alter it to include shadow entries. 

10. Search the whole subtree below root and extract the ACL attribute 
from each selected entry. 

11. Close the connection to the GDS Server. 

12. Remove the user's credentials from the directory. 

13. Extract the components from the search result. 

14. Examine each entry and print the entry details. 

15. Close the XDS workspace. 

Note: The steps that follow are highlighted in boldface so that you 
can follow the sequence as you examine the acl.c program. 

Step 1 through Step 4, Step 6 through Step 8, Step 12, and Step 15 are 
similar those performed for the previous sample application example.c. 

Step 5 is included so that the appropriate entries will exist in the directory 
when the program attempts to access the access permissions. 

OSF DeE Application Development Guide 28-17 



GDS Application Programming 

The default session object created in Step 9 uses om _ create() to create an 
instance of a default session object and it uses om yut() to put in the 
appropriate user credentials (in this case, the descriptor list containing the 
password secret). The credentials parameter is a descriptor list defined in 
ad.h header file. 

Step 10 used the same method as Step 9 to alter the default context to 
include shadow entries. Using om_createO and om_putO, the OM 
attribute DS DONT USE COPY is set to a value of OM FALSE to - - - -
indicate that copies of entries maintained in other DSAs and copies cached 
locally (that is, shadow copies) can be used. The use_copy parameter is a 
descriptor list defined in ad.h header file. 

Step 11 uses ds_searchO to search the subtree below root to find and 
extract the ACL attributes from the selected entries defined in the 
selection_ad parameter. The selection_ad variable is a descriptor list 
defined in ad.h. The results of the search are returned to the workspace in 
result. 

Step 13 and Step 14 extract the components from result and examine each 
entry using a series of om _get() calls, as described in the previous section 
for example.c. 

28.3.1 The acl.c Code 

The following code is a listing of the ad.c program. 

/*************************************************************** 

* * 
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 * 
* ALL RIGHTS RESERVED * 
* * 
***************************************************************/ 

/* 

* 
* This sample program displays the access permissions (ACL) on each 
* entry in the directory for a specific user. The permissions are 
* presented in a form similiar to the UNIX file permissions. 
* In addition, each entry is flagged as either a master 
* or a shadow copy. 

28-18 OSF DeE Application Development Guide 



Sample Application Programs 

* 
* The distinguished name of the user performing the check is 

* 
* /C=de/O=sni/OU=ap/CN=norbert 

* 
* The results are presented in the following format 

* 
* [ABCD] <entry's distinguished name> 

* 
* A: 'm' master copy 

* 's' shadow copy 

* 
* B: 'r' read access to public attributes 

* 'w' write access to public attributes 

* 
, 

-
, no access to public attributes 

* 
* C: 'r' read access to standard attribut"es 

* 'w' write access to standard attributes 

* 
, - , no access to standard attributes 

* 
* D: 'r' read access to sensitive attributes 

* 'w' write access to sensitive attributes 

* 
, - , no access to sensitive attributes 

* 
* 
* For example, the following result means that the entry '/C=de/O=sni' 
* is a master copy and that the requesting user 
* (/C=de/O=sni/OU=ap/CN=norbert) has write access to its public 
* attributes, read access to its standard 
* attributes and no access to its sensitive attributes. 

* 
* [rnwr-] /C=de/O=sni 

* 
* 
* 
* The program requires that the specific user perform an authenticated 
* bind to the directory. In order to achieve this the user's 
* credentials must already exist in the directory. 
* Therefore the following tree of 6 entries is added to the directory 
* each time the program runs, and removed again afterwards. 

* 

OSF DeE Application Development Guide 28-19 



GDS Application Programming 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

28-20 

o C=de 
I 
I 
I 

(objectClass=Country, 
ACL=(mod-pub: * 

read-std:* 
mod-std: * 
read-sen: * 
mod-sen: *» 

o O=sni 
I (objectClass=Organization, 
I ACL=(mod-pub: /C=de/O=sni/OU=ap/* 
I read-std:/C=de/O=sni/OU=ap/CN=stefanie 
I 
I 
I 
I 

mod-std: /C=de/O=sni/OU=ap/CN=stefanie 
read-sen:/C=de/O=sni/OU=ap/CN=stefanie 
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie» 

o OU=ap 
I 
I 
I 
I 
I 
I 
I 

(objectClass=OrganizationalUnit, 
ACL=(mod-pub: /C=de/O=sni/OU=ap/* 

read-std:/C=de/O=sni/OU=ap/CN=stefanie 
mod-std: /C=de/O=sni/OU=ap/CN=stefanie 
read-sen:/C=de/O=sni/OU=ap/CN=stefanie 
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie» 

+-------+-------+ 
I 
I 
I 
I 
I 
I 
I 

I I 

I 
I 
I 
I 

o CN=ingrid 
(objectClass=OrganizationalPerson, 
ACL=(mod-pub: /C=de/O=sni/OU=ap/* 

read-std:/C=de/O=sni/OU=ap/* 
mod-std: /C=de/O=sni/OU=ap/CN=stefanie 
read-sen:/C=de/O=sni/OU=ap/* 
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie), 

surname=" Schmid" , 
telephone="+49 89 636 0", 
userPassword="secret") 

o CN=norbert 

OSF DeE Application Development Guide 



Sample Application Programs 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*/ 

(objectClass=OrganizationalPerson, 
ACL=(mod-pub: /C=de/O=sni/OU=ap/* 

read-std:/C=de/O=sni/OU=ap/* 
mod-std: /C=de/O=sni/OU=ap/CN=stefanie 
read-sen:/C=de/O=sni/OU=ap/* 
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie), 

surname=" Schmid" , 
telephone="+49 89 636 0", 
userPassword="secret") 

o CN=stefanie 
(objectClass=OrganizationalPerson, 
ACL=(mod-pub: /C=de/O=sni/OU=ap/* 

read-std:/C=de/O=sni/OU=ap/* 
mod-std: /C=de/O=sni/OU=ap/CN=stefanie 
read-sen:/C=de/O=sni/OU=ap/* 
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie), 

surname=" Schmid" , 
telephone="+49 89 636 0", 
userPassword="secret") 

#include <dce/xom.h> 
#include <dce/xds.h> 
#include <dce/xdsbdcp.h> 
#include <dce/xdsgds.h> 
#include <dce/xdscds.h> 
#include "acl.h" /* static initialization of data structures. */ 

void 
main ( 

) 

{ 

int argc, 
char *argv [ ] 

OSF DeE Application Development Guide 28-21 



GDS Application Programming 

OM_workspace 
OM-private_object 
OM-private_object 

OM-private_object 
OM-private_object 
OM_sint 

OM-public_object 
OM-public_object 
OM_value-PQsition 
OM_return_code 

workspace; /* workspace for objects */ 
session; /* Session object. */ 
bound_session; /* Holds the Session object which */ 

context; 
result; 
invoke_id; 

sinfo_list [ ] 
entry_Iist[] 

sinfo; 
entry; 
total_num; 
rc; 

/* is returned by ds_bind() */ 
/* Context object. */ 

/* Holds the search result object.*/ 
/* Integer for the invoke id */ 
/* returned by ds_search() . */ 
/* (this parameter must be present*/ 
/* even though it is ignored) . */ 
{ DS_SEARCH_INFO, 0 }; 
{ DS_ENTRIES, 0 }; 
/* Lists of types to be extracted */ 
/* Search-Info object from result.*/ 
/* Entry object from search info. */ 
/* Number of descriptors returned.*/ 
/* XOM function return code. */ 

register int ii 
char 

char 

user_name [MAX_DN_LEN] ; 
/* Holds requestor's name. 

entry_string[MAX_DN_LEN + 7] = II [?r??] "; 
/* Holds entry details. 

/ * Step 3 (see acl. h program code for Steps 1 and 2) 

* 
* Initialise a directory workspace for use by XOM. 
*/ 

if ((workspace = ds_initialize()) == (OM_workspace) 0) 
printf (lids_initialize () error\n"); 

/* Step 4 

* 
* Negotiate the use of the BDCP and GDS packages. 
*/ 

if (ds_version(features, workspace) != DS_SUCCESS) 
printf (lids_version () error\n"); 

*/ 

*/ 

28-22 OSF DeE Application Development Guide 



Sample Application Programs 

/* Step 5 
* 
* Add a fixed tree of entries to the directory in order to permit 
* an authenticated bind py: /C=de/O=sni/OU=ap/CN=norbert 
*/ 

if (! add_tree(workspace)) 
printf ("add_tree () error\n"); 

/* Step 6 

* 
* Create a default session object. 
*/ 

if ((rc = om_create(DSX_C_GDS_SESSION,OM_TRUE,workspace,&session)) 
!= OM_SUCCESS) 

printf ("om_create () error %d\n", rc); 

/* Step 7 

* 
* Alter the default session object to include the following 
* credentials: requestor: /C=de/O=sni/OU=ap/CN=norbert 

* password: "secret" 
*/ 

if ((rc = om-put(session, OM_REPLACE_ALL, credentials, 0 ,0, 0)) 
!= OM_SUCCESS) 

printf ("om-put () error %d\n", rc); 

/* Step 8 

* 
* Bind with credentials to the default GDS server. 
* The returned session object is stored in the private object 

variable 
* bound_session and is used for all further XDS function calls. 
*/ 

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS) 
printf ("ds_bind() error\n"); 

OSF DeE Application Development Guide 28-23 



GDS Application Programming 

/* Step 9 

* 
* Create a default context object. 
*/ 

if ((rc = om_create(DSX_C_GDS_CONTEXT,OM_TRUE,workspace,&context» 
!= OM_SUCCESS) 

printf ("om_create () error %d\n", rc); 

/* 
* Alter the default context object to include 'shadow' entries. 
*/ 

if ((rc = om-put(context, OM_REPLACE_ALL, use_copy, ° ,0, 0» 
!= OM_SUCCESS) 
printf ("om-put () error %d\n", rc); 

/* Step 10 

* 
* Search the whole subtree below root. 
* The filter selects entries with an object-class attribute. 
* The selection extracts the ACL attribute from each selected entry. 
* The results are returned in the private object 'result'. 

* 
* NOTE: Since every entry contains an object-class attribute the 
* filter performs no function other than to demonstrate how 
* filters may be used. 
*/ 

·if (ds_search(bound_session, context, dn_root, DS_WHOLE_SDBTREE, 
filter, OM_FALSE, selection_acl, &result, &invoke_id) 
!= DS_SUCCESS) 

printf ("ds_search() error\n"); 

/* Step 11 

* 
* Close the connection to the GDS server. 
*/ 

if (ds_unbind(bound_session) != DS_SUCCESS) 
printf ("ds_unbind() error\n"); 

28-24 OSF DeE Application Development Guide 



Sample Application Programs 

/* Step 12 

* 
* Remove the user's credentials from the directory. 
*/ 

if (! remove_tree (workspace, session)) 
printf ("remove_tree () error\n"); 

/* Step 13 

* 
* Extract components from the search result by means of om-get(). 
*/ 

if ((rc = om-get(result, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS, 
sinfo_list, OM_FALSE, 0, 0, &sinfo, &total_nurn)) 

!= OM_SUCCESS) 
printf ("OID-get (Search-Result) error %d\n", rc); 

if ((rc om-get(sinfo->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS, 
entry_list, OM_FALSE, 0, 0, &entry, &total_nurn)) 

/* 

!= OM_SUCCESS) 
printf ("om-get (Search-Info) error %d\n", rc); 

* Convert the requestor's distinguished name to string format. 
*/ 

if (! xds_name_to_string(dn_norbert, user_name)) 
printf ("xds_name_to_string () error\n"); 

printf ("User: %s\nTotal: %d\n", user_name, total_nurn); 

/* Step 14 

* 
* Examine each entry and print the entry details. 
*/ 

for (i = 0; i < total_nurn; i++) 
if (process_entry_info((entry+i)->value.object.object, 

entry_string, user_name)) 
printf ("%s\n", entry_string); 

OSF DeE Application Development Guide 28-25 



GDS Application Programming 

/* 

} 

/* Step 15 

* 
* Close the directory workspace. 
*/ 

if (ds_shutdown(workspace) != DS_SUCCESS) 
printf (lids_shutdown () error\n"); 

* Add the tree of entries described above. 
*/ 

int 
add_tree ( 

OM_workspace workspace 
) 

{ 

OM-private_object 

OM_sint 
int 

session; 

invoke_id; 
error = 0; 

/* Holds the Session object which 
/* is returned b¥ ds_bind() 
/* Integer for the invoke id 

*/ 
*/ 
*/ 

/* Bind (without credentials) to the default GDS server. */ 

if (ds_bind(DS_DEFAULT_SESSION, workspace, &session) != DS_SUCCESS) 
error++; 

/* Add entries to the GDS server. 

ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_de, alist_C, 
&invoke_id) ; 

*/ 

28-26 OSF DeE Application Development Guide 



Sample Application Programs 

error++; 

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_ap, alist_OU, 
&invoke_id) != DS_SUCCESS) 

error++; 

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_stefanie, alist_OP, 
&invoke_id) != DS_SUCCESS) 

error++; 

if (ds_add_entry (session, DS_DEFAULT_CONTEXT, dn_norbert, alist_OP, 
&invoke_id) != DS_SUCCESS) 

error++; 

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_ingrid, alist_OP, 
&invoke_id) != DS_SUCCESS) 

error++; 

/* Close the connection to the GDS server. */ 

/* 

if (ds_unbind(session) != DS_SUCCESS) 
error++; 

return (error?O:l); 

* Remove the tree of entries described above. 
*/ 

int 
rernove_tree( 

OM_workspace workspace, 
OM-private_object session 

OM-private_object bound_session; 

OM_sint invoke_id; 
int error = 0; 

OSF DeE Application Development Guide 

/* Holds Session object which 
/* is returned by ds_bind ( ) 
/* Integer for the invoke id 

*/ 
*/ 
*/ 

28-27 



GDS Application Programming 

/* Bind (with credentials) to the default GDS server. */ 

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS) 
error++; 

/* Remove entries from the GDS server. */ 

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_ingrid, 
&invoke_id) != DS_SUCCESS) 

error++; 

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_stefanie, 
&invoke_id) != DS_SUCCESS) 

error++; 

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_norbert, 
&invoke_id) != DS_SUCCESS) 

error++; 

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_ap, 
&invoke_id) != DS_SUCCESS) 

error++; 

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_sni, 
&invoke_id) != DS_SUCCESS) 

error++; 

ds_remove_entry (bound_session, DS_DEFAULT_CONTEXT, dn_de, 
&invoke_id) ; 

/* Close the connection to the GDS server. 

} 

if (ds_unbind(bound_session) != DS_SUCCESS) 
error++; 

return (error?O:l); 

*/ 

28-28 OSF DeE Application Development Guide 



Sample Application Programs 

1* 
* Convert a distinguished name in XDS format (OM_descriptor lists) to 
* string format. 
*1 

int 
xds_name_to_string( 

OM-public_object name, 
* string 

1* Xds distinguished name. *1 
char 1* String distinguished name. *1 

register OM_object 00= name; 
register OM_object roo; 
register OM_object ava; 
register char *sp = string; 

int error = 0; 

while ((OO->type ! = OM_NO_MORE_TYPES) && (! error)) { 
if ((OO->type == DS_RDNS) && 

((OO->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) 
rdn = dn->value.object.object; 

while ((rdn->type ! = OM_NO_MORE_TYPES) && (! error)) { 
if ((rdn->type == DS_AVAS) && 

((rdn->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) { 
ava = rdn->value.object.object; 

while ((ava->type ! = OM_NO_MORE_TYPES) && 

(! error)) { 
if ((ava->type == DS_ATI'RIBUTE_TYPE) && 

((ava->syntax & OM_S_SYNTAX) == 
OM_S_OBJECT_IDENTIFIER_STRING)) { 

*sp++ = 'I'; 
if (strncmp (ava->value. string. elements, 

DS_A_COUNTRY_NAME.elements, 
ava->value. string. length) 0) 

*sp++ = 'C'; 

else if (strncmp (ava->value. string. elements, 
DS_A_ORG_NAME. elements, 
ava->value. string. length) == 0) 

OSF DeE Application Development Guide 28-29 



GDS Application Programming 

28-30 

} 

*sp++ = '0'; 

else if (strncmp (ava->value. string. elements, 
DS_A_ORG_UNIT_NAME. elements, 
ava->value. string. length) == 0) 

*sp++ = '0', *sp++ = 'U'; 

else if (strncmp(ava->value.string.elements, 
DS_A_COMMON_NAME.elements, 
ava->value.string.length) == 0) 

*sp++ = 'C', *sp++ = 'N'; 

else if (strncmp (ava->value. string. elements, 
DS_A_LOCALITY_NAME. elements, 
ava->value.string.length) == 0) 

*sp++ = 'L'; 

else if (strncmp (ava->value. string. elements, 
DSX_TYPELESS_RDN.elements, 
ava->value. string. length) != 0) { 

error++; 
continue; 

if (*(sp-l) 
*sp++ 

! = '/'); / * no 
I_I. - , 

I_I if typeless*/ 

if (ava->type == DS_A'ITRIBUTE_VALUES) 
switch(ava->syntax & OM_S_SYNTAX) 

case OM_S_PRINTABLE_STRING : 
case OM_S_TELETEX_STRING : 

} 

strncpy(sp, ava->value. string. elements, 
ava->value.string.length); 

sp += ava->value.string.length; 
break; 

default: 
error++; 
continue; 

OSF DeE Application Development Guide 



Sample Application Programs 

ava++; 

rdn++; 

dn++; 
} 

*sp - I '. - , 

return (error?O:l); 

/* 
* Extract information about an entry from the Entry-Info object: 
* whether the entry is a master-copy, its ACL pennissions and 
* its distinguished name. 
* Build up a string based on this information. 
*/ 

int 
process_entry_info( 

OM-private_object entry, 
char * entry_string, 

) 

{ 

char *user_name 

OM_return_code 
OM-public_object 
OM-public_object 
OM-public_object 
OM-public_object 
OM_value-position 
register int 
register int 
register int 
register int 

rc; 
ei_attrs; 
attr; 
acl; 
acl_itern; 
total_attrs; 
i; 
interp; 
error = 0; 
found_acl = 

/* 
/* 
/* 
/* 
/* 
/* 

0; 

Return code from XOM function. 
Components from Entry-Info. 
Directory attribute. 
ACL attribute value. 
ACL i tern component. 
Number of attributes returned. 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

OSF DeE Application Development Guide 28-31 



GDS Application Programming 

/* 

DS_FROM_ENTRY, 
DS_OBJECT_NAME, 
DS_ATI'RIBUTES, 
o }; 

/* Attributes to be extracted. */ 

* Extract three attributes from each Entry-Info object. 
*/ 

if ((rc = orn~et(entry, OM_EXCLUDE_ALL_BUT_THESE_TYPES, 
ei_attr_list, OM_FALSE, 0, 0, &ei_attrs, 

&total_attrs) ) 
!= OM_SUCCESS) 

error++; 
printf ("orn~et (Entry-Info) error %d\n", rc); 

for (i 0; ((i < total_attrs) && (! error)); i++, ei_attrs++) { 

28-32 

/* 
* Determine if current entry is a master-copy or shadow-copy. 
*/ 

if (( ei_attrs->type == DS_FROM_ENTRY) && 
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_BOOLEAN)) 
if (ei_attrs->value.boolean == OM_TRUE) 

entry_string [1] = 'm'; 
else if (ei_attrs->value.boolean == OM_FALSE) 

entry_string [1] 's'; 
else 

entry_string [1] '?'; 

if ((ei_attrs->type == DS_ATrRIBUTES) && 
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) 
attr = ei_attrs->value.object.object; 

while ((attr->type ! = OM_NO_MORE_TYPES) && (! error)) { 

/* 

OSF DeE Application Development Guide 



Sample Application Programs 

* Check that the attribute is an ACL attribute. 
*/ 

if ((attr->type == DS_ATTRIBUTE_TYPE) && 
((attr->syntax & OM_S_SYNTAX) == 

OM_S_OBJECT_IDENTIFIER_STRING)) 
if (strncmp(attr->value.string.elements, 

DSX_A_ACL.elements, 
attr->value.string.length) 0) 

found_acl++; 

/* 
* Examine the ACL. Check each permission for 
* the current user. 
*/ 

if ((found_acl) && 
(attr->type == DS_ATTRIBUTE_VALUES) && 
((attr->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) { 

acl = attr->value.object.object; 

entry_string [2] 'r'; 
entry_string [3] '-'; 
entry_string [4] '-'; 

if ((acl->syntax & OM_S_SYNTAX) == OM_S_OBJECT) 
acl_item = acl->value.object.object; 

switch (acl->type) 

case OM_CLASS: 
break; 

case DSX_MODIFY_PUBLIC: 
if (permitted_access (user_name, acl_item)) 

entry_string [2] = 'w'; 
break; 

case DSX_READ_STANDARD: 

OSF DeE Application Development Guide 28-33 



GDS Application Programming 

attr++; 

/* 

if (permitted_access (user_name, acl_item)) 
entry_string [3] = 'r'; 

break; 

case DSX_MODIFY_STANDARD: 
if (permitted_access (user_name, acl_item)) 

entry_string [3] = 'w'; 

break; 

case DSX_READ_SENSITIVE: 
if (permitted_access (user_name, acl_item)) 

entry_string [4] = 'r'; 
break; 

case DSX_MODIFY_SENSITIVE: 
if (permitted_access (user_name, acl_item)) 

entry_string [4] = 'w'; 

break; 
} 

acl++; 

* Convert the entry's distinguished name to a string format. 
*/ 

if « ei_attrs->type == DS_OBJECT_NAME) && 
«ei_attrs->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) 
if (! xds_name_to_string(ei_attrs->value.object.object, 

&entry_string[7])) { 
error++; 
printf ("xds_name_to_string () error\n"); 

return (error?O:l); 

28-34 OSF DeE Application Development Guide 



Sample Application Programs 

/* 
* Check if a user is permitted access based on the ACL supplied. 

* 
*/ 

int 
permitted_access ( 

char 
OM-public_object 

*user_name, 
acl_itern 

} 

{ 

char acl_name [MAX_DN_LENJ ; 
int interpretation; 
int acl-present = 0; 
int access = 0; 
int acl_name_length; 

switch (acl_itern->type) 
case OM_CLASS: 

break; 

case DSX_INTERPRETATION: 
interpretation = acl_itern->value.boolean; 
break; 

case DSX_USER: 
xds_name_to_string(acl_itern->value.object.object, acl_name}; 

if (interpretation == DSX_SINGLE_OBJECT) { 
if (strcmp(acl_name, user_name) == O} 

access = 1; 

else if (interpretation == DSX_ROOT_OF_SUBTREE) { 
if ((acl_name_length = strlen(acl_name)} O} 

access = 1; 
else if (strncmp(acl_name,user_name, 

acl_name_length) == O} 

OSF DeE Application Development Guide 28-35 



GDS Application Programming 

access 1; 

break; 

return (access); 

28.3.2 The acl.h Header File 

28-36 

The acl.h header file peforms the following: 

1. It exports the object identifiers that acl.c requires. 

2. It builds the descriptor lists for the following distinguished names: 

root 
C=de 
C=de/O=sni 
C=de/O=sni/OU=ap 
C=de/O=sni/OU=ap/CN=stefanie 
C=de/O=sni/OU=ap/CN=norbert 
C=de/O=sni/OU=ap/CN=ingrid 

3. It builds the object identifiers for attributes to be added to the 
directory. 

4. It builds a descriptor list for the attribute types and values that are to 
be selected. 

5. It builds the descriptor list for bind credentials. 

6. It builds the descriptor list for context. 

7. It builds the descriptor list for optional packages that are to be 
negotiated. 

8. It builds the descriptor list for search filters. 

OSF DeE Application Development Guide 



Sample Application Programs 

28.3.3 The acl.h Code 

The following code is a listing of the acl.h file: 

/*************************************************************** 

* 
* 
* 
* 

COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 

ALL RIGHTS RESERVED 

* 
* 
* 
* 

***************************************************************/ 

#ifndef ACL_HEADER 

#define ACL_HEADER 

#define MAX_DN_LEN 100 

/* max length of a distinguished name in string format */ 

/* The application must export the object identfiers it requires. */ 

OM_EXPORT (DS_C_AVA) 

OM_EXPORT (DS_C_DS_RDN) 

OM_EXPORT (DS_C_DS_DN) 

OM_EXPORT (DS_C_ENTRY_INFO_SELECTION) 

OM_EXPORT (DS_C_ATTRIBUTE) 

OM_EXPORT (DS_C_ATTRIBUTE_LIST) 

OM_EXPORT (DS_C_FILTER) 

OM_EXPORT (DS_C_FILTER_ITEM) 

OM_EXPORT (DSX_C_GDS_SESSION) 

OM_EXPORT (DSX_C_GDS_CONTEXT) 

OM_EXPORT (DSX_C_GDS_ACL) 

OM_EXPORT (DSX_C_GDS_ACL_ITEM) 

OM_EXPORT (DS_A_COUNTRY_NAME) 

OM_EXPORT (DS_A_ORG_NAME) 

OM_EXPORT (DS_A_ORG_UNIT_NAME) 

OM_EXPORT (DS_A_COMMON_NAME) 

OM_EXPORT (DS_A_LOCALITY_NAME) 

OM_EXPORT (DS_A_OBJECT_CLASS) 

OM_EXPORT (DS_A_USER_PASSWORD) 

OM_EXPORT (DS_A_PHONE_NBR) 

OSF DeE Application Development Guide 28-37 



GDS Application Programming 

OM_EXPORT (DS_A_SURNAME) 
OM_EXPORT (DSX_A_ACL) 
OM_EXPORT (DSX_TYPELESS_RDN) 

OM_EXPORT (DS_O_'IDP) 
OM_EXPORT (DS_O_COUN'IRY) 
OM_EXPORT (DS_O_ORG) 
OM_EXPORT (DS_O_ORG_UNIT) 
OM_EXPORT (DS_O_PERSON) 
OM_EXPORT (DS_O_ORG_PERSON) 

/* Build up descriptor lists for the following distinguished names: */ 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

root 
/C=de 
/C=de/O=sni 
/C=de/O=sni/OU=ap 
/C=de/O=sni/OU=ap/CN=stefanie 
/C=de/O=sni/OU=ap/CN=norbert 
/C=de/O=sni/OU=ap/CN=ingrid 

static OM_descriptor ava_de[] = 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUN'IRY_NAME}, 
{DS_ATTRIBUTE_ VALUES, qM_S_PRINTABLE_STRING, OM_STRING ( "de" ) } , 
OM_NULL_DESCRIP'IDR 

static OM_descriptor ava_sni[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC (DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME), 
{DS_ATTRIBUTE_ VALUES, OM_S_TELETEX_STRING, OM_STRING ( "sni " ) } , 
OM_NULL_DESCRIP'IDR 

static OM_descriptor ava_ap[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME}, 
{DS_ATTRIBUTE_ VALUES, OM_S_TELETEX_STRING, OM_STRING ( "ap" ) } , 
OM_NULL_DE~CRIP'IDR 

static OM_descriptor ava_stefanie[] 
OM_OID_DESC (OM_CLASS, DS_C_AVA), 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

28-38 OSF DeE Application Development Guide 



Sample Application Programs 

OM_OID_DESC (DS_ATrRIBUTE_TYPE, DS_A_COMMON_NAME), 
{DS_ATrRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING ( "stefanie")}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor ava_norbert[] = { 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATrRIBUTE_TYPE, DS_A_COMMON_NAME), 
{DS_ATrRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING ( "norbert")}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor ava_ingrid[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_AVA), 
OM_OID_DESC(DS_ATrRIBUTE_TYPE, DS_A_COMMON_NAME), 
{DS_ATrRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING (" ingrid") } , 
OM_NOLL_DESCRIPTOR 

static OM_descriptor rdn_de[] = { 

} i 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, ava_de}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor rdn_sni[] = { 

} i 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, ava_sni}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor rdn_ap[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, ava_ap}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor rdn_stefanie[] = { 

} i 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, ava_stefanie}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor rdn_norbert[] = { 

} i 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {O, ava_norbert}}, 
OM_NOLL_DESCRIPTOR 

OSF DeE Application Development Guide 28-39 



GDS Application Programming 

static OM_descriptor rdn_ingrid[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_DS_RDN), 
{DS_AVAS, OM_S_OBJECT, {a, ava_ingrid}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor dn_root[] = { 

OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor dn_de[] = { 

OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
{DS_RDNS,OM_S_OBJECT,{O,rdn_de}}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor dn_sni[] = { 
OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
{DS_RDNS,OM_S_OBJECT,{O,rdn_de}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_sni}}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor dn_ap[] = { 
OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
{DS_RDNS,OM_S_OBJECT,{O,rdn_de}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_sni}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_ap}}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor dn_stefanie[] = { 

OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
{DS_RDNS,OM_S_OBJECT,{O,rdn_de}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_sni}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_ap}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_stefanie}}, 
OM_NOLL_DESCRIPTOR 

} ; 

static OM_descriptor dn_norbert[] = { 

OM_OID_DESC(OM_CLASS,DS_C_DS_DN), 
{DS_RDNS,OM_S_OBJECT,{O,rdn_de}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_sni}}, 
{DS_RDNS,OM_S_OBJECT,{O,rcln_ap}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_norbert}}, 

28-40 OSF DeE Application Development Guide 



Sample Application Programs 

} i 

static OM_descriptor dn_ingrid[] = { 

OM_OID_DESC{OM_CLASS,DS_C_DS_DN}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_de}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_sni}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_ap}}, 
{DS_RDNS,OM_S_OBJECT,{O,rdn_ingrid}}, 
OM_NULL_DESCRIPI'OR 

} i 

/* Build up an array of object identifiers for the attributes to be */ 

/* added to the directory. */ 

static OM_descriptor obj_class_C[] = { 

} i 

OM_OID_DESC{OM_CLASS, DS_C_ATTRIBUTE}, 
OM_OID_DESC{DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS}, 
OM_OID_DESC {DS_ATTRIBUTE_VALUES, DS_O_TOP}, 
OM_OID_DESC {DS_ATTRIBUTE_ VALUES, DS_O_COUNTRY}, 
OM_NULL_DESCRIPI'OR 

static OM_descriptor obj_class_O[] = { 

} i 

OM_OID_DESC{OM_CLASS, DS_C_ATTRIBUTE}, 
OM_OID_DESC {DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS}, 
OM_OID_DESC {DS_ATTRIBUTE_ VALUES, DS_O_TOP}, 
OM_OID_DESC {DS_ATTRIBUTE_VALUES, DS_O_ORG}, 
OM_NULL_DESCRIPI'OR 

static OM_descriptor obj_class_OU[] = { 

} i 

OM_OID_DESC {OM_CLASS, DS_C_ATTRIBUTE}, 
OM_OID_DESC{DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS}, 
OM_OID_DESC {DS_ATTRIBUTE_VALUES, DS_O_TOP}, 
OM_OID_DESC {DS_ATTRIBUTE_VALUES, DS_O_ORG_UNIT}, 
OM_NULL_DESCRIPI'OR 

static OM_descriptor obj_class_OP[] = { 

OM_OID_DESC {OM_CLASS, DS_C_ATTRIBUTE}, 
OM_OID_DESC {DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS}, 
OM_OID_DESC {DS_ATTRIBUTE_VALUES, DS_O_TOP}, 
OM_OID_DESC {DS_ATTRIBUTE_ VALUES, DS_O_PERSON}, 

OSF DeE Application Development Guide 28-41 



GDS Application Programming 

} ; 

OM_OID_DESC (DS_A'ITRIBUTE_ VALUES, DS_O_ORG_PERSON), 
OM_NULL_DESCRIPTOR 

static OM_descriptor att-phone_num[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_A'ITRIBUTE), 
OM_OID_DESC (DS_A'ITRIBUTE_TYPE, DS_A_PHONE_NBR), 
{DS_ATrRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, 

OM_STRING("+49 89 636 Oil)}, 

OM_NULL_DESCRIPTOR 

static OM_descriptor att-password[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_A'ITRIBUTE), 
OM_OID_DESC(DS_ATrRIBUTE_TYPE, DS_A_USER_PASSWORD), 
{DS_ATrRIBUTE_ VALUES, OM_S_OCTET_STRING, OM_STRING ( "secret II ) } , 

OM_NULL_DESCRIPTOR 

static OM_descriptor att_surname[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_ATrRIBUTE), 
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME), 
{DS_A'ITRIBUTE_ VALUES, OM_S_TELETEX_STRING, OM_STRING ( "Schmid" ) } , 
OM_NULL_DESCRIPTOR 

static OM_descriptor acl_item_root[] = { 

} ; 

OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL_ITEM), 
{DSX_INTERPRETATION, OM_S_ENUMERATION, {DSX_ROOT_OF_SUBTREE, O}}, 
{DSX_USER, OM_S_OBJECT, {O, dn_root}}, 
OM_NULL_DESCRIPTOR 

static OM_descriptor acl_item_ap[] = { 

} ; 

OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL_ITEM), 
{DSX_INTERPRETATION, OM_S_ENUMERATION, {DSX_ROOT_OF_SUBTREE, O}}, 
{DSX_USER, OM_S_OBJECT, {O, dn_ap}}, 
OM_NULL_DESCRIPTOR 

static OM_descriptor 

28-42 OSF DeE Application Development Guide 



Sample Application Programs 

} ; 

OM_OID_DESC (OM_CLASS, DSX_C_GDS_ACL_ITEM), 
{DSX_INTERPRETATION, OM_S_ENUMERATION, {DSX_SINGLE_OBJECT, a}}, 
{DSX_USER, OM_S_OBJECT, {a, dn_stefanie}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor acll[] = { 

} ; 

OM_OID_DESC{OM_CLASS, DSX_C_GDS_ACL), 
{DSX_MODIFY_PUBLIC, OM_S_OBJECT, {a, acl_item_root}}, 
{DSX_READ_STANDARD, OM_S_OBJECT, {a, acl_item_stefanie}}, 
{DSX_MODIFY_STANDARD, OM_S_OBJECT, {a, acl_item_stefanie}}, 
{DSX_READ_SENSITIVE, OM_S_OBJECT, {a, acl_item_stefanie}}, 
{DSX_MODIFY_SENSITIVE, OM_S_OBJECT, {a, acl_item_stefanie}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor ac12[] = { 

} ; 

OM_OID_DESC{OM_CLASS, DSX-C_GDS_ACL), 
{DSX_MODIFY_PUBLIC, OM_S_OBJECT, {a, acl_item_ap}}, 
{DSX_READ_STANDARD, OM_S_OBJECT, {a, acl_i tem_ap} } , 
{DSX_MODIFY_STANDARD, OM_S_OBJECT, {a, acl_item_stefanie}}, 
{DSX_READ_SENSITIVE, OM_S_OBJECT, {a, acl_item_ap}}, 
{DSX_MODIFY_SENSITIVE, OM_S_OBJECT, {a, acl_item_stefanie}}, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor att_acll[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_ATI'RIBUTE), 
OM_OID_DESC{DS_ATI'RIBUTE_TYPE, DSX~_ACL), 
{DS_ATI'RIBUTE_VALUES, OM_S_OBJECT, {a, acll} }, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor att_ac12[] = { 

} ; 

OM_OID_DESC (OM_CLASS, DS_C_ATI'RIBUTE), 
OM_OID_DESC{DS_ATTRIBUTE_TYPE, DSX_A_ACL), 
{DS_ATI'RIBUTE_ VALUES, OM_S_OBJECT, {a, ac12} }, 
OM_NOLL_DESCRIPTOR 

static OM_descriptor 

OSF DeE Application Development Guide 28-43 



GDS Application Programming 

} ; 

OM_OID_DESC(OM_CLASS, DS_C_ATrRIBUTE_LIST), 
{DS_ATTRIBUTES, OM_S_OBJECT, {O, obj_class_C} }, 
OM_NULL_DESCRIPrOR 

static OM_descriptor alist_O[] = { 

} ; 

OM_OID_DESC(OM_CLASS, DS_C_ATrRIBUTE_LIST), 
{DS_ATTRIBUTES, OM_S_OBJECT, {O, obj_class_O} }, 
{DS_ATrRIBUTES, OM_S_OBJECT, {O, att_acll} }, 
OM_NULL_DESCRIPrOR 

static OM_descriptor alist_OU[] = { 

} ; 

OM_OID_DESC(OM_CLASS, DS_C_ATrRIBUTE_LIST), 
{DS_ATTRIBUTES, OM_S_OBJECT, {O, obj_class_OU} }, 
OM_NULL_DESCRIPrOR 

static OM_descriptor alist_OP[] = { 

} ; 

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST), 
{DS_ATTRIBUTES, OM_S_OBJECT, {O, obj_class_OP} }, 
{DS_ATTRIBUTES, OM_S_OBJECT, {O, att_ac12} }, 
{DS_ATTRIBUTES, OM_S_OBJECT, {O, att_surnarne} }, 
{DS_ATTRIBUTES, OM_S_OBJECT, {O, attJ)hone_num} }, 
{DS_ATTRIBUTES, OM_S_OBJECT, {O, attJ)assword} }, 
OM_NULL_DESCRIPrOR 

/* The following descriptor list specifies what to return from the*/ 
/* entry. The ACL attribute's types and values are selected. */ 

static OM_descriptor selection_acl[] = { 
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION), 
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE}, 
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_ACL), 
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES}, 
OM_NULL_DESCRIPrOR 

} ; 

/* The following descriptor list specifies the bind credentials */ 

28-44 OSF DeE Application Development Guide 



Sample Application Programs 

static OM_descriptor credentials[] = { 

} ; 

{DS_REQUESTOR, OM_S_OBJECT, {a, dn_norbert} }, 
{DSX_PASSWORD, OM_S_OCTET_STRING, OM_STRING ( "secret" ) } , 
OM_NULL_DESCRIPTOR 

/* The following descriptor list specifies part of the context */ 

static OM_descriptor use_copy[] = { 

{DS_DONT_USE_COPY, OM_S_BOOLEAN, {OM_FALSE, a} }, 

OM_NULL_DESCRIPTOR 
} ; 

/* Build up an array of object identifiers for the optional */ 
/* packages to be negotiated. */ 

DS_feature features[] = { 

} ; 

{ OM_STRING (OMP _O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE }, 
{ OM_STRING (OMP_O_DSX_GDS_PKG), OM_TRUE }, 
{ a } 

/* The following descriptor list specifies a filter for search */ 
/* (Present: objectClass) */ 

static OM_descriptor filter_item[] = { 

} ; 

OM_OID_DESC(OM_CLASS, DS_C_FILTER_ITEM), 
{DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, {DS_PRESENT, a} }, 
OM_OID_DESC (DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS), 
OM_NULL_DESCRIPTOR 

static OM_descriptor filter[] = { 
OM_OID_DESC(OM_CLASS, DS_C_FILTER), 
{DS_FILTER_ITEMS, OM_S_OBJECT, {a, filter_item} }, 
{DS_FILTER_TYPE, OM_S_ENUMERATION, {DS_AND, a} }, 

OM_NULL_DESCRIPTOR 
} ; 

#endif /* ACL_HEADER * / 

OSF DeE Application Development Guide 28-45 



GDS Application Programming 

28.4 The teldir.c Program 

The sample program teldir.c permits a user to add, read, or delete entries in 
a CDS or GDS namespace in any local or remote DCE cell, assuming that 
permissions are granted by the ACLs. The entry consists of a person's 
surname and phone number. Each entry is of class Organizational Person. 

The program uses predefined static XDS public objects that are never 
altered and partially defined static XDS public objects so that values for the 
surname and phone number can be entered dynamically by a user. It also 
uses dynamic XDS public objects that are created and filled only as needed 
using the stringToXdsName function. These techniques are a departure 
from the ones used in the first two sample programs where all objects are 
predefined. 

28.4.1 Predefined Static Public Objects 

/* 

The predefined static object classes and attributes are shown in the 
following code fragment: 

* To hold the attributes we want to attach to the name being added. 
* One attribute is the class of the object (DS_O_ORG_PERSON), the 
* rest of the attributes are the surname (required for all objects 
* of class DS_O_ORG_PERSON) and phone number. In addition, we need 
* an object to hold all this information to pass it into ds_add_entry() . 
*/ 

static OM_descriptor xdsObjectClass[] = { 

/* This object is an attribute--an object class. */ 
OM_OID_DESC ( OM_CLASS, DS_C_A'ITRIBUTE ), 

/* Not only must the class be listed, but also all */ 
/* its superclasses. */ 
OM_OID_DESC ( DS_A'ITRIBUTE_ VALUES, DS_O_TOP ), 
OM_OID_DESC ( DS_A'ITRIBUTE_ VALUES, DS_O_PERSON ), 
OM_OID_DESC ( DS_A'ITRIBUTE_VALUES, DS_O_ORG_PERSON ), 

28-46 OSF DeE Application Development Guide 



Sample Application Programs 

} ; 

/* Null terminator */ 
OM_NULL_DESCRIPTOR 

static OM_descriptor xdsAttributesToAdd[] 

} ; 

/* 

/* This object is an attribute list. */ 
OM_OID_DESC ( OM_CLASS, DS_C_ATTRIBUTE_LIST ), 

/* These are "pointers" to the attributes in the list. */ 
{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsObjectClass } }, 
{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsSurname } }, 
{ DS_A'ITRIBUTES, OM_S_OBJECT, { 0, xdsPhoneNurn } }, 

/* Null terminator */ 
OM_NULL_DESCRIPTOR 

* To hold the list of attributes we want to read. 
*/ 

static OM_descriptor xdsAttributeSelection[] 

/* This is an entry information selection. */ 
OM_OID_DESC ( OM_CLASS, DS_C_ENTRY_INFO_SELECTION ), 

/* No, we don't want all attributes. */ 
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE }, 

/* These are the ones we want to read. */ 
OM_OID_DESC( DS_ATTRIBUTES_SELECTED, DS_A_SURNAME ), 
OM_OID_DESC ( DS_A'ITRIBUTES_SELECTED, DS_A_PHONE_NBR ), 

/* Give us both the types and their values. */ 
{ DS_INFO_TYPE, OM_S_ENUMERATION, { DS_TYPES_AND_ VALUES, NULL } }, 

} ; 

/* Null terminator */ 
OM_NULL_DESCRIPTOR 

OSF DeE Application Development Guide 28-47 



GDS Application Programming 

28.4.2 Partially Defined Static Public Objects 

The program partially defines static XDS objects with placeholders so that 
values for the surname and telephone number entered by the user can be 
added later, as shown in the following code fragment: 

static OM_descriptor xdsSurname[] = { 

} ; 

/* This object is an attribute--a surname. */ 
OM_OID_DESC ( OM_CLASS, DS_C_ATTRIBUTE ), 
OM_OID_DESC ( DS_ATTRIBUTE_TYPE, DS_A_SURNAME ), 

/* No default--so we need a placeholder for the actual surname. */ 

OM_NOLL_DESCRIPTOR, 

/* Null terminator */ 

OM_NOLL_DESCRIPTOR 

static OM_descriptor xdsPhoneNum[] = { 

} ; 

/* This object is an attribute--a telephone number. */ 
OM_OID_DESC ( OM_CLASS, DS_C_ATTRIBUTE ), 
OM_OID_DESC ( DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR ), 

/* By default, phone numbers are unlisted. If the user specifies */ 

/* an actual phone number, it will go into this position. */ 

DS_ATTRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, 
OM_STRING ( "unlisted" ) }, 

/* Null terminator */ 

OM_NOLL_DESCRIPTOR 

The program prompts the user for the surname of the person whose number 
will be changed and uses the FILL _ OMD _STRING macro to fill in values, 
as shown in the following code fragment: 

if operation == 'a' ) { 
/* add operation requires additional input */ 
/* 

28-48 OSF DeE Application Development Guide 



Sample Application Programs 

* Get the person's real name from the user and place it in the 
* XDS object already defined at the 
* top of the program (xdsSurname). 
* We are requiring a name, so we will loop until we get one. 
*/ 

do { 
printf( "What is this person's surname? " )i 

gets ( newSurname ) i 
while ( *newSurname == ' , )i 

FILL_OMD_STRING ( xdsSurname, 2, DS_A'ITRIBUTE_VALUES, 
OM_S_TELETEX_STRING, newSurname ) 

28.4.3 Dynamically Defined Public Objects 

/* 

The program uses the function stringToXdsName to convert the DCE name 
entered by a user into an XDS name object of OM class DS_C_DS_DN, 
which is the representation of a distinguished name. In the other two 
sample programs, arrays of descriptor lists are statically declared to 
represent the AVAs and RDNs that make up the public object that 
represents a distinguished name. The function stringToXdsName parses 
the DCE name and dynamically converts it to a public object. 

For example, the following code fragment shows how space for a 
DS _ C _AVA object is allocated and its entries are filled using the 
FILL OMD XOM STRING and FILL OMD NULL macros: - - - -

* Allocate space for a DS_C_AVA object and fill in its entries: 
* DS_C_AVA class identifier 

* 
* 
* 
*/ 

AVA's type 
AVA's value 
null terminator 

ava = (OM_descriptor *)malloc( sizeof(OM_descriptor) * 4 )i 

if( ava == NULL ) /* malloc() failed */ 
return OM_MEMORY_INSUFFICIENTi 

FILL_OMD_XOM_STRING( ava, 0, OM_CLASS, OM_S_OBJECT_IDENTIFIER_STRING, 
DS_C_AVA ) 

splitNamePiece( start, &type, &value )i 

OSF DeE Application Development Guide 28-49 



GDS Application Programming 

FILL_OMD_XOM_STRING ( ava, 1, DS_ATrRIBUTE_TYPE, 
OM_S_OBJECT_IDENTIFIER_STRING, type ) 

FILL_OMD_STRING ( ava, 2, DS_ATrRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, 
value ) 

FILL_OMD_NULL( ava, 3 ) 

/* 

The program uses the same method to build the RDNs that make up the 
distinguished name. The distinguished name is NULL tenninated using the 
FILL _ OMD _NULL macro and the location of the new public object is 
provided for the calling routine (main) in the pointer xdsNameObj, as 
shown in the following code fragment: 

/* Add the DS_C_RDN object to the DS_C_DS_DN object. */ 
FILL_OMD_STRUCT ( dsOO, index, DS_RDNS, OM_S_OBJECT, roo 

* Null terminate the DS_C_DS_DN, tell the calling routine 
* where to find it, and return. 
*/ 

FILL_OMD_NULL ( dsOO, index 
*xdsNameObj = dsOO; 
return ( OM_SUCCESS ); 

/* end stringToXdsName() */ 

28.4.4 Main Program Procedural Steps 

28-50 

The program consists of the following general steps: 

1. Examine the command-line argument to determine the type of 
operation (read, add, or delete entry) that the user wants to perfonn. 

2. Initialize a workspace. 

3. Pull in the packages with the required XDS features. 

4. Prompt the user for the name entry on which the operation will be 
performed. 

OSF DeE Application Development Guide 



Sample Application Programs 

5. Convert the DCE-formatted user input string to an XDS object name. 

6. Bind (without credentials) to the default server. 

7. Perform the requested operation (read, add, or delete entry). 

8. Perform error handling. 

9. Unbind from the server. 

10. Shut down the workspace, releasing resources back to the system. 

Note: The steps that follow are highlighted in boldface so that you 
can follow the sequence as you examine the example.c 
program. 

Step 1 simply involves determining which of the three options: r (read), a 
(add), or d (delete) the user has entered. Step 2 initializes a workspace, an 
operation required by XDS API for every application program. Step 3 is 
required because additional features not present in the Directory Service 
Package need to be used by the application program. An additional 
package, the Basic Directory Contents Package, is defined in featureList as 
a static XDS object earlier in the program. 

In Step 4, the user is prompted for the DCE-formatted name, which is the 
distinguished name of the person on whose telephone number the operation 
is to be performed. The name must be a fully or partially qualified name 
that begins with either the I ... or I.: prefix. An example of a fully qualified, 
or global, name is 1 .. .IC=de/O=sni/OU=ap/CN=klaus. An example of a 
partially qualified, or cell, name is 1.:/brad/sni/com. Additional 
information is requested in Step 5 if the user requests an add operation. 

Step 5 converts the DCE-formatted name to an XDS object name (public 
object) using the stringToXdsName() function call. This function builds 
an XDS public object that represents the distinguished name entered by the 
user. 

Step 6 binds the session to the default server without credentials; username 
and password are not required. 

In Step 7, the requested operation is performed using XDS API functions 
calls. For an add operation, ds _add _ entry() is performed; for a read 
operation, ds_read() is performed; and for a delete operation, 
ds_remove_entryO is performed. The read operation requires a series of 
XOM API om _get() function calls to extract the surname and phone 
number from the workspace. (For a detailed description of the XDS and 
XOM API function calls, refer to Chapters 26 and 27.) 

OSF DeE Application Development Guide 28-51 



GDS Application Programming 

Step 8 and Step 9 are required for every XDS API application program in 
order to clean up before the program exits. The session is unbound from the 
server, and the public and private objects are released to the system that 
provided the memory allocated for them. 

28.4.5 The teldir.c Code 

The following is a listing of the file teldir.c: 

1* 
* This sample program behaves like a simple telephone directory. 
* It permits a user to add, read or delete entries in a GDS 
* namespace or to a CDS namespace in any local or remote DCE cell 
* (assuming that permissions are granted by the ACLs) . 

* 
* Each entry is of class Organizational-Person and simply contains 
* a person's surname and their phone number. 

* 
* The addition of an entry is followed by a read to verify that the 
* information was entered properly. 

* 
* All valid names should begin with one of the following symbols: 
* I... Fully qualified name (from global root). 
* e.g. 1 ... IC=de/O=sni/OU=ap/CN=klaus 

* 
* I. : 

* 
Partially qualified name (from local cell root). 
e.g. 1.:/brad/sni/com 

* 
* This program demonstrates the following techniques: 
* - Using completely static XDS public objects (predefined at the top 
* of the program and never altered). See xdsObjectClass, 

* xdsAttributesToAdd, and xdsAttributeSelection below. 
* - Using partially static XDS public objects (predefined at the top 

of the program but altered later). See xdsSurname and xdsPhoneNurn * 
below. See also the macros whose names begin with "FILL_OMD_". 

* - Using dynamic XDS public objects (created and filled in only as 
needed). See the function stringToXdsName() below. 

* 

* 
* - Parsing DCE-style names and converting them into XDS objects. 

the function stringToXdsName() below. * 
See 

28-52 OSF DeE Application Development Guide 



Sample Application Programs 

* - Getting the value of an attribute from an object read from the 
namespace using ds_read(). See the function extractValue() below. 

* - Getting the numeric value of an error (type DS_status) returned by 
one of the XDS calls. See the function handleDSError() below. 

* 

* 
*/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

#include <xom.h> 
#include <xds.h> 
#include <xdsbdcp.h> 
#include <xdsgds.h> 
#include <xdscds.h> 

OM_EXPORT ( DS--.ft_COMMON_NAME 
OM_EXPORT ( DS_A_COUNTRY_NAME ) 
OM_EXPORT ( DS_A_LOCALITY_NAME ) 
OM_EXPORT ( DS_A_OBJECT_CLASS ) 
OM_EXPORT ( DS_A_ORG_UNIT_NAME ) 
OM_EXPORT ( DS_A_ORG_NAME ) 
OM_EXPORT ( DS_A_SURNAME ) 
OM_EXPORT ( DS--.ft_PHONE_NBR 
OM_EXPORT ( DS_A_TITLE ) 
OM_EXPORT ( DS_C_ATTRIBUTE 
OM_EXPORT ( DS_C_ATTRIBUTE_LIST 
OM_EXPORT ( DS_C_AVA ) 
OM_EXPORT ( DS_C_DS_DN ) 
OM_EXPORT ( DS_C_DS_RDN ) 
OM_EXPORT ( DS_C_ENTRY_INFO_SELECTION 
OM_EXPORT ( DS_O_ORG_PERSON ) 
OM_EXPORT ( DS_O_PERSON ) 
OM_EXPORT ( DS_O_TOP ) 
OM_EXPORT ( DSX_TYPELESS_RDN /* For "typeless" pieces of a name, as */ 

/* found in cells with bind-style names*/ 
/* and in the CDS namespace. */ 

#define MAX_NAME_LEN 1024 

/* These values can be found in */ 

OSF DeE Application Development Guide 28-53 



GDS Application Programming 

/* the "Directory Class Definitions" chapter. 
/* (One pyte must be added for the null terminator.) 
#define MAX_PHONE_LEN 33 
#define MAX_SDRNAME_LEN 66 

*/ 
*/ 

/********************************************************************* 
* Macros for help filling in static XoS objects. 
*********************************************************************/ 

/* Put NOLL value (equivalent to OM_NOLL_DESCRIPTOR) in object */ 
#define FILL_OMD_NOLL( desc, index ) 

desc[index] .type = OM_NO_MORE_TYPES; 
desc[index] . syntax = OM_S_NO_MORE_SYNTXES; 
desc[index] .value.object.padding = 0; 
desc[index] .value.object.object = OM_ELEMENTS_UNSPECIFIED; 

/* Put C-style (null-terminated) string in object */ 
#define FILL_OMD_STRING( desc, index, typ, syntx, val 

desc[index].type = typ; 
desc[index].syntax = syntx; 
desc[index] .value. string. lerigth - (OM_element-position) 

strlen ( val ); 
desc[index] .value.string.elements val; 

/* Put XOM string in object */ 
#define FILL_OMD_XOM_STRING( desc, index, typ, syntx, val ) 

desc[index] .type = typ; 
desc[index] . syntax = syntx; 
desc[index] .value. string. length val.length; 
desc[index] .value.string.elements = val.elements; 

/* Put other value in object */ 

#define FILL_OMD_STRUCT( desc, index, typ, syntx, val ) 
desc[index] .type = typ; 
desc [index] . syntax = syntx; 
desc[index] .value.object.padding = 0; 
desc[index] .value.object.object = val; 

/********************************************************************* 
* Static XDS objects. 
********************************************************************/ 

28-54 OSF DeE Application Development Guide 



Sample Application Programs 

/* 
* To identify which packages we need for this program. We only need 
* the basic package because we are not doing anything fancy with 
* session parameters, etc. 
*/ 

DS_feature featureList[] = { 

} ; 

/* 

{ OM_STRING (OMP _O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE }, 
{ a } 

* To hold the attributes we want to attach to the name being added. 
* One attribute is the class of the object (DS_O_ORG_PERSON), the 
* rest of the attributes are the surname (required for all objects 
* of class DS_O_ORG_PERSON) and phone number. In addition, we need 
* an object to hold all this information to pass it 
* into ds_add_entry(). 
*/ 

static OM_descriptor xdsObjectClass[] = { 

} ; 

/* This object is an attribute--an object class. */ 
OM_OID_DESC ( OM_CLASS, DS_C_ATTRIBUTE ), 

/* Not only must the class be listed, but also all */ 

/* its superclasses. */ 
OM_OID_DESC ( DS_ATTRIBUTE_ VALUES, DS_O_TOP ), 
OM_OID_DESC ( DS_ATTRIBUTE_ VALUES, DS_O_PERSON ), 
OM_OID_DESC ( DS_ATTRIBUTE_ VALUES, DS_O_ORG_PERSON ), 

/* Null terminator */ 
OM_NULL_DESCRIPTOR 

static OM_descriptor xdsSurname[] = { 

/* This object is an attribute--a surname. */ 
OM_OID_DESC ( OM_CLASS, DS_C_ATTRIBUTE ), 
OM_OID_DESC ( DS_ATTRIBUTE_TYPE, DS_A_SURNAME ), 

/* No default--so we need a placeholder for the actual surname. */ 

OSF DeE Application Development Guide 28-55 



GDS Application Programming 

} ; 

/* Null terminator */ 
OM_NULL_DESCRIPrOR 

static OM_descriptor xdsPhoneNum[] = { 

} ; 

/* This object is an attribute--a telephone number. */ 
OM_OID_DESC ( OM_CLASS, DS_C_A'ITRIBUTE ), 
OM_OID_DESC ( DS_A'ITRIBUTE_TYPE, DS_A_PHONE_NBR ), 

/* By default, phone numbers are unlisted. If the user specifies */ 
/* an actual phone number, it will go into this position. */ 

DS_A'ITRIBUTE_ VALUES, OM_S_PRINTABLE_STRING, 
OM_STRING ( "unlisted" ) }, 

/* Null terminator */ 
OM_NULL_DESCRIPrOR 

static OM_descriptor xdsAttributesToAdd[] = 

} ; 

/* 

/* This object is an attribute list. */ 
OM_OID_DESC ( OM_CLASS, DS_C_A'ITRIBUTE_LIST ), 

/* These are "pointers" to the attributes in the list. */ 
{ DS_A'ITRIBUTES, OM_S_OBJECT, { 0, xdsObjectClass } }, 
{ DS_A'ITRIBUTES, OM_S_OBJECT, { 0, xdsSurnarne } }, 
{ DS_A'ITRIBUTES, OM_S_OBJECT, { 0, xdsPhoneNum } }, 

/* Null terminator */ 
OM_NULL_DESCRIPrOR 

* To hold the list of attributes we want to read. 
*/ 

static OM_descriptor xdsAttributeSelection[] { 

/* This is an entry information selection. */ 

28-56 OSF DeE Application Development Guide 



Sample Application Programs 

/* No, we don't want all attributes. */ 
{ DS_ALL_ATrRIBUTES, OM_S_BOOLEAN, OM_FALSE }, 

/* These are the ones we want to read. */ 
OM_OID_DESC ( DS_ATrRIBUTES_SELECTED, DS_A_SURNAME ), 
OM_OID_DESC ( DS_ATrRIBUTES_SELECTED, DS_A_PHONE_NBR ), 

/* Give us both the types and their values. */ 
{ DS_INFO_TYPE, OM_S_ENUMERATION, { DS_TYPES_AND_ VALUES, NULL } }, 

} ; 

/* Null terminator */ 
OM_NULL_DESCRIPTOR 

/********************************************************************* 

* Use this dummy function if CDS is not available. 
********************************************************************/ 

void 
dce_cf~et_cell_name( 

) 

{ 

char ** 
unsigned long * 

*status = 1; 

cellname, 
status 

/********************************************************************* 
* showUsage ( ) 

* Display "usage" information. 
********************************************************************/ 

void 
showUsage( 

) 

{ 

char * crnd /* In--Name of command being called */ 

OSF DeE Application Development Guide 28-57 



GDS Application Programming 

fprintf( stderr, "\nusage: %s [option] \n \n" , cmd ); 
fprintf( stderr, "option: -a add an entry\n" ) ; 

fprintf( stderr, " -r read an entry\n" ) ; 

fprintf( stderr, " -d delete an entry\n" ) ; 

} 1* end showUsage() *1 

1********************************************************************* 
* numNamePieces() 

* Returns the number of pieces in a string name. 
********************************************************************1 

int 
nurnNamePieces( 

) 

{ 

char * string 1* In--String whose pieces are to be counted*1 

int 
char * 

count; 1* Number of pieces found *1 
currSep; 1* Pointer to separator between pieces *1 

if( string NULL 
return ( 0 ); 

count = 1; 

1* 

1* If nothing there, no pieces *1 

1* Otherwise, there's at least one *1 

* If the first character is a I, it's not really separating 
* two pieces so we want to ignore it here. 
*1 

if( *string == 'I' ) 
currSep string + 1; 

else 
currSep = string; 

1* How many pieces are there? *1 
while ( (currSep strchr( currSep, 'I' )) != NULL ) { 

count++; 
currSep++; 1* Begin at next character *1 

return ( count ); 

28-58 OSF DeE Application Development Guide 



Sample Application Programs 

} /* end numNamePieces(} */ 

/********************************************************************* 
* splitNamePiece(} 
* Divides a piece of a name (string) into its XDS attribute type 
* and value. 
******************************************************************~*/ 

void 
splitNamePiece( 

char * string, /* In--String to be broken doWn */ 
OM_string * type, /* Out--XDS type of this piece of the name */ 
char ** value /* Out--Pointer to beginning of the value */ 

} / * part of string * / 
{ 

char * equalSign; /* Location of the within string */ 

/* 
* If the string contains an equal sign, this is probably a 
* typed name. Check for all the attribute types allowed by 

* the default schema. 
*/ 

if( (equalSign = strchr( string, '-' )} != NULL } { 

*value = equalSign + 1; 

if (( strncmp ( string, "C=", 2 ) 
( strncmp( string, "c=" , 2 ) 
*type = DS_A_COUNTRY_NAME; 

else if( ( strncmp( string, 110=11 , 

( strncmp( string, "0=" , 
* type = DS_A_ORG_NAME; 

else if( ( strncmp( string, "OU=" , 
( strncmp( string, "ou=" , 

* type = DS_A_ORG_UNIT_NAME; 

else if( ( strncmp( string, "I.N"=" , 
( strncmp( string, ''In='' , 

* type = DS_A_LOCALITY_NAME; 

OSF DeE Application Development Guide 

0 ) II 
0 }} 

2 0 } I I 
2 0 }} 

3 0 } II 
3 0 }} 

3 0 } II 
3 0 }} 

28-59 



GDS Application Programming 

/* 

else if(( strncmp( string, "CN=" , 3 
( strncmp( string, "cn=" , 3 

*type = DS_A_COMMON_NAME; 

/* 

o ) I I 
o }} 

* If this did not appear to be a type allowed by the 
* default schema, consider the whole string as the 
* value (whose type is "typeless"). 
*/ 

else 
*type = DSX_TYPELESS_RDN; 
*value = string; 

* If the string does not contain an equal sign, this is a 
* typeless name. 
*/ 

else 
*type = DSX_TYPELESS_RDN; 
*value = string; 

/* end splitNamePiece() */ 

/********************************************************************* 
* extractValue() 

* 
* 

Pulls the value of a particular attribute from a private object 
that was received using ds_read(} . 

* Returns: 

* OM_SUCCESS 

* 
* 
* other 

* 

If successful. 
If no values for the attribute 
were found. 
Any value returned by one of the 
om--9"et () calls. 

*********************************************************************/ 
OM_return_code 
extractValue( 

OM-private_object 

28-60 

object, /* In--Object to extract from */ 

OSF DeE Application Development Guide 



) 

{ 

Sample Application Programs 

OM_string * 
char * 

OM-public_object 
OM-public_object 
OM-public_object 
OM-public_object 
int 
OM_return_code 
OM_value-position 
OM_value-position 
OM_type 

attribute, 
value 

/* In--Attribute to extract */ 
/* Out--Value found */ 

attrList; 
attrType; 
attrValue; 
entry; 
i; 
ornStatus; 
total; 
totalAttributes; 
xdslncludedTypes[] 0, /* Place holder*/ 

o }; /* Null terminator*/ 

/* 
* Get the entry from the object returned by ds_read() . 
*/ 

xdslncludedTypes[O] = DS_ENTRY; 
omStatus = om~et( object, /* Object to extract from */ 

OM_EXCLUOE_ALL_BUT_THESE_TYPES+OM_EXCLUOE_SUBOBJECTS, 
/* Only want what is in 
/* xdslncludedTypes, don't 
/* include subobjects 

xdslncludedTypes, /* What to get */ 
OM_FALSE, /* CUrrently ignored */ 
OM_ALL_VALUES, /* Start with first value 
OM_ALL_VALUES, /* End with last value */ 
&entry, /* Put the entry here * / 
&total ) ; /* Put number of attribute 

/* descriptors here 
if( ornStatus != OM_SUCCESS ) 

} 

fprintf( stderr, "om-.Q"et( entry returned error %d\n", 
omStatus }; 

return ( omStatus ); 

*/ 
*/ 
*/ 

*/ 

*/ 
*/ 

if( total <= 0 ) { 
fprintf( stderr, 

/* Make sure something was returned */ 

"Number of descriptors returned by om-.Q"et ( entry ) 
was %d\n", total ); 

return ( OM_NO_SUCH_OBJECT ); 

OSF DeE Application Development Guide 28-61 



GDS Application Programming 

/* 
* Get the attribute list from the entry. 
*/ 

xdslncludedTypes[O] = DS_ATTRIBUTES; 
ornStatus = om~et( entry->value.object.object, 

OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS, 
xdsInc ludedTypes, OM_FALSE, OM_ALL_VALUES, 
OM_ALL_VALUES, &attrList, &totalAttributes ); 

if( ornStatus != OM_SUCCESS) { 
fprintf( stderr, "om~et( attrList ) returned error %d\n", 

ornStatus ); 
return ( ornStatus ); 

if( total <= 0 ) { 
fprintf( stderr, 

/* Make sure something was returned */ 

/* 

"Number of descriptors returned by om~et( attrList ) 
was %d\n", total ); 

return ( OM_NO_SUCH_OBJECT ); 

* Search the list for the attribute with the proper type. 
*/ 

for ( i = 0; i < totalAttributes; i++ ) { 
xdslncludedTypes[O] = DS_ATTRIBUTE_TYPE; 

28-62 

omStatus = om~et( (attrList+i)->value.object.object, 
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS, 
xdslncludedTypes, OM_FALSE, OM_ALL_VALUES, 
OM_ALL_VALUES, &attrType, &total ); 

if( ornStatus != OM_SUCCESS) { 

} 

fprintf ( stderr, "om~et ( attrType ) [i = %d] returned 
error %d \n", i, ornStatus ); 

return ( ornStatus ); 

if( total <= 0 ) { 
fprintf( stderr, 

/* Make sure something was returned */ 

"Number of descriptors returned by om~et( attrType ) 
[i = %d] was %d\n", i, total ); 

return ( OM_NO_SUCH_OBJECT ); 

OSF DeE Application Development Guide 



Sample Application Programs 

if( strncmp( attrType->value.string.elements, 
attribute->elements, 
attribute->length ) == 0 ) 

break; /* If we found a match, quit looking. */ 

if( i == totalAttributes ) { 
fprintf( stderr, 

/* Verify that we found a match. */ 

"%s: extractValue() could not find requested attribute\n" ); 
return ( OM_Nor_PRESENT ); 

} 

/* 
* Get the attribute value from the corresponding item in the 
* attribute list. 
*/ 

xdsIncludedTypes[O] = DS_ATTRIBDTE_VALUES; 
omStatus = om~et( (attrList+i)->value.object.object, 

OM_EXCLUDE_ALL_BDT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS, 
xdsIncludedTypes, OM_FALSE, OM_ALL_VALUES, 
OM_ALL_VALUES, &attrValue, &total ); 

if( omStatus != OM_SUCCESS) { 
fprintf( stderr, "om~et( attrValue ) returned error %d\n", 

omStatus ); 
return ( omStatus ); 

if( total <= 0 ) { 
fprintf( stderr, 

/ * Make sure something was returned * / 

"Number of descriptors returned by om~et( attrValue ) 

/* 

was %d\n", total ); 
return ( OM_NO_SUCH_OBJECT ); 

* Copy the value into the buffer for return to the caller. 
*/ 

strncpy( value, attrValue->value. string. elements, 
attrValue->value.string.length ); 

value [attrValue->value. string. length] 

/* 

OSF DeE Application Development Guide 

, '. , 

28-63 



GDS Application Programming 

* Free up the resources we don't need any more and return. 
*/ 

om_delete ( attrValue ); 
om_delete ( attrType ); 
om_delete ( attrList ); 
om_delete ( entry ); 
return ( OM_SUCCESS ); 

/* end extractValue() */ 

/********************************************************************** 
* stringToXdsName() 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Converts a string that is a DCE name to an XDS name object (class 
DS_C_DS_DN). Returns one of the following: 

OM_SUCCESS If successful. 
OM_MEMORY_INSUFFICIENT If a malloc fails. 
OM_PERMANENT_ERROR If the name is not in a valid format. 
OM_SYSTEM_ERROR If the local cell's name cannot 

be determined. 

Technically, the space obtained here through malloc() needs 
to be returned to the system when it is no longer needed. 
If this was a more complex application, this function would 
probably malloc all the space it needs at once and require 
calling routines to free the space when finished with it. 

*********************************************************************/ 
OM_return_code 
stringToXdsName( 

) 

{ 

char * origString, 
OM_object * xdsNameObj 

OM_descriptor * ava; 
char * cellName; 
OM_object dsdn; 
char * end; 
int index; 

/* In--String name to be converted */ 
/* Out--Pointer to XDS name object */ 

/* DS_C_AVA object */ 
/* Name of this cell */ 
/* DS_C_DS_DN object */ 
/* End of name piece */ 
/* Index into DS_C_DS_DN object */ 

int numberOfPieces; /* Number of pieces in the name */ 
unsigned long rc; /* Return code for some functions*/ 
OM_descriptor * rdn; /* DS_C_RDN object */ 

28-64 OSF DeE Application Development Guide I 



Sample Application Programs 

char * start; 
char * string; 
OM_string type; 
char * value; 

1* 
1* 
1* 

1* Beginning of piece of name *1 
Copy of origString that we can use*1 
Type of one piece of the name *1 
Piece of the name *1 

1* 
* A DS_C_AVA object only contains pointers to the strings that 
* represent the pieces of the name, not the contents of the 
* strings themselves. So we'll make a copy of the string passed 
* in to guarantee that these pieces survive in case the programmer 
* alters or reuses the original string. 

* 
* In addition, all valid names should begin with one of the 
* following symbols: 
* I... Fully qualified name (from global root). For 

* these, we need to ignore the I ... 

* I. : 

* 
* 

Partially qualified name (from local cell root) . 
For these, we must replace the I.: with the name 
of the local cell name 

* If we see anything else, we'll return with an error. (Notice 
* that I: is a valid DCE name, but refers to the file system's 
* namespace. Filenames cannot be accessed through 
* CDS, GDS, or XDS.) 
*1 

if( strncmp( origString, "1 ... 1", 5 ) == 0 ) { 
string = (char *)malloc( strlen(origString+5) + 1 ); 
if( string == NULL ) 1* malloc() failed *1 

return OM_MEMORY_INSUFFICIENT; 
strcpy( string, origString+5 ); 

else if( strncmp( origString, "1.:1", 4 ) == 0 ) { 
dce_cf-9"et_cell_name ( &cellName, &rc ); 
if( rc != 0 ) 1* Could not get cell name *1 

return OM_SYSTEM_ERROR; 

1* 
* The cell name will have 1 ... 1 on the front, so we will 
* skip over it as we add it to the string (by always 
* starting at its fifth character) . 
*1 

string = (char *)malloc( strlen 

OSF DeE Application Development Guide 28-65 



GDS Application Programming 

else 

1* 

(origString+4) + strlen(cellName+5) + 2 )i 

if( string == NULL ) 1* malloc() failed *1 
return OM_MEMORY_INSUFFICIENTi 

strcpy( string, cellName+5 )i 

strcat( string, "I" )i 

strcat( string, origString+4 )i 

return OM_PERMANENT_ERRORi 
1* Invalid name format *1 

* Count the number of pieces in the name that will have to 
* be dealt with. 
*1 

numberOfPieces = numNamePieces( string )i 

1* 
* Allocate memory for the DS_C_DS_DN object. We will need an 
* OM_descriptor for each name piece, one for the class 
* identifier, and one for the null terminator. 
*1 

dsdn = (OM_object)malloc( 
(numberOfPieces + 2) * sizeof(OM_descriptor) )i 

if( dsdn == NULL ) 1* malloc() failed *1 
return OM_MEMORY_INSUFFICIENTi 

1* 
* Initialize it as a DS_C_DS_DN object by placing that class 
* identifier in the first position. 
*1 

FILL_OMD_XOM_STRING ( dsdn, 0, OM_CLASS, OM_S_OBJECT, DS_C_DS_DN 

1* 
* For each piece of string, do the following: 

* 
* 
* 
* 
* 
*1 

Break off the next piece of the string 
Build a DS_C_AVA object to show the type and value 

of this piece of the name 
Wrap the DS_C_AVA up in a DS_C_RDN object 
Add the DS_C_RDN to the DS_C_DS_DN object 

for ( start=string, index=l index <= numberOfPieces 

28-66 OSF DeE Application Development Guide 



Sample Application Programs 

index++, start=end+l ) { 

1* 
* Find the next delimiter and replace it with a null byte 
* so the piece of the name is effectively separated from 
* the rest of the string. 
*1 

end = strchr( start, 'I' )i 

if ( end ! = NULL ) 
, '. , * end 

else 1* If this is the last piece, there won't be *1 
1* a 'I' at the end, just a null byte. *1 

end strchr( start, ' , )i 

1* 
* Allocate space for a DS_C_AVA object and fill in its entries: 
* DS_C_AVA class identifier 

* 
* 
* 
*1 

AVA's type 
AVA's value 
null terminator 

ava (OM_descriptor *)malloc( sizeof(OM_descriptor) * 4 )i 
if ( ava == NULL ) 1* malloc () failed *1 

return OM_MEMORY_INSUFFICIENTi 
FILL_OMD_XOM_STRING ( ava, 0, OM_CLASS, 

OM_S_OBJECT_IDENTIFIER_STRING, DS_C_AVA 
splitNamePiece( start, &type, &value )i 

FILL_OMD_XOM_STRING ( ava, 1, DS_ATTRIBUTE_TYPE, 
OM_S_OBJECT_IDENTIFIER_STRING, type ) 

FILL_OMD_STRING ( ava, 2, DS_ATTRIBUTE_ VALUES, 
OM_S_PRINTABLE_STRING, value ) 

FILL_OMD_NULL( ava, 3 ) 

1* 
* Allocate space for a DS_C_RDN object and fill in its entries: 
* DS_C_RDN class identifier 
* AVA it contains 
* null terminator 
*1 

rdn (OM_descriptor *)malloc( sizeof(OM_descriptor) * 3 )i 

if ( rdn == NULL ) 1* malloc () failed *1 

OSF DeE Application Development Guide 28-67 



GDS Application Programming 

return OM_MEMORY_INSUFFICIENT; 
FILL_OMD_XOM_STRING ( rdn, 0, OM_CLASS, OM_S_OBJECT, DS_C_DS_RDN 
FILL_OMD_STRUCT( rdn, 1, DS_AVAS, OM_S_OBJECT, ava ) 
FILL_OMD_NULL ( rdn, 2 ) 

/* Add the DS_C_RDN object to the DS_C_DS_DN object. */ 
FILL_OMD_STRUCT ( dsdn, index, DS_RDNS, OM_S_OBJECT, rdn 

/* 
* Null terminate the DS_C_DS_DN, tell the calling routine 
* where to find it, and return. 
*/ 

FILL_OMD_NULL ( dsdn, index 
*xdsNameObj = dsdn; 
return ( OM_SUCCESS ); 

/* end stringToXdsName() */ 

/*********************************************************************** 
* handleDSError() 
* Extracts the error number from a DS_status return code, prints it 
* in an error message, then terminates the program. 
**********************************************************************/ 

void 
handleDSError( 

char ·k header, /* In--Name of function whose return code */ 
/* is being checked */ 

returnCode /* In--Return code to be checked */ 

OM_return_code 
OM-public_object 
OM_value-position 

/* 

includeDSProblem[] 

omStatus; 
problem; 
total; 

* A DS_status return code is an object. It will be one of the 
* subclasses of the class DS_C_ERROR. What we want from it is 

28-68 OSF DeE Application Development Guide 



* the value of the attribute DS_PROBLEM. 
*/ 

Sample Application Programs 

ornStatus = om~et( returnCode, 
OM_EXCLUDE_ALL_BDT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS, 
includeDSProblem, 
OM_FALSE, 
OM_ALL_VALUES, 
OM_ALL_VALUES, 
&problem, 
&total ); 

/* 

* Make sure we successfully extracted the problem number and print 
* the error message before quitting. 
*/ 

if( (ornStatus == OM_SUCCESS) && (total> 0) ) 
printf ( "%s returned error %d\n", header, 

problem->value.enumeration ); 
else 

printf ( "%s failed for unlmown reason \n", header ) i 

exit ( 1 ); 

/********************************************************************* 
* Main program 
*/ 

void 
main ( 

int 
char * 

DS_status 
OM_sint 
char 
char 
char 

argc, 
argv[] 

OM return_code 
char 

dsStatus; 
invokeID; 
newName [MAX_NAME_LEN] ; 
newPhoneNum[MAX_PHONE_LEN]; 
newSurname[MAX_SURNAME_LEN]; 
ornStatus; 
phoneNumRead[MAX_PHONE_LEN]; 

OSF DeE Application Development Guide 28-69 



GDS Application Programming 

rc = 0; 
readResult; 

int 
OM-private_object 
OM-private_object 
char 
OM_object 
OM_workspace 

session; 
surnameRead[MAX_SURNAME_LEN]; 
xdsName; 
xdsWorkspace; 

int operation; 

/* Step 1 

* 
* Examine command-line argument. 
*/ 
operation = getopt( argc, argv, II rad" ); 
if ( (operation == '?') I I (operation EOF)) { 

showUsage( argv[O] ); 
exit ( 1 ); 

/* Step 2 

* 
* Initialize the XDS workspace. 
*/ 

xdsWorkspace = ds_initialize( ); 
if( xdsWorkspace == NULL ) { 

fprintf ( stderr, lids_initialize () failed\n" ); 
exit ( 1 ); 

/* Step 3 

* 
* Pull in the packages that contain the XDS features we need. 
*/ 

dsStatus = ds_version( featureList, xdsWorkspace ); 
if( dsStatus != DS_SUCCESS ) 

handleDSError( "ds_version()", dsStatus ); 

/* Step 4 

* 
* Find out what name the user wants to use in the namespace and 
* convert it to and XDS object. We do this conversion dynamically 
* (not using static structures defined at the top of the program) 

28-70 OSF DeE Application Development Guide 



Sample Application Programs 

* because we don't know how long the name will be. 
*/ 

switch ( operation ) 
case 'r' : 

printf( "What name do you want to read? " ); 
break; 

case 'a' : 
printf ( "What name do you want to add? " ); 
break; 

case 'd' : 
printf( "What name do you want to delete? " ); 
break; 

/* Step 5 * / 

gets ( newName ); 
omStatus = stringToXdsName ( newName, &xdsName ); 
if( omStatus != OM_SUCCESS) { 

fprintf ( stderr, "stringToXdsName () failed with OM error %d\n", 
omStatus ); 

exit ( 1 ); 

if ( operation == 'a' ) { 
/* add operation requires additional input */ 
/* 
* Get the person's real name from the user and place it in 
* the XDS object already defined at the top of the program 
* (xdsSurname). We are requiring a name, so we will loop 
* until we get one. 
*/ 

do { 
printf( "What is this person's surname? " ); 
gets ( newSurname ); 

while ( *newSurname == ' , ); 

FILL_OMD_STRING ( xdsSurname, 2, DS_ATI'RIBUTE_ VALUES, 
OM_S_TELETEX_STRING, newSurname ) 

/* 
* Get the person's phone number from the user and place it 

OSF DeE Application Development Guide 28-71 



GDS Application Programming 

* in the XDS object already defined at the top of the 
* program (xdsPhoneNum). A phone number is not required, 
* so if none is given we will use the default already 
* stored in the structure. 
*/ 

printf ( "What is this person's phone number? " ); 
gets ( newPhoneNum ); 
if( *newphoneNum != ' , ) { 

FILL_OMD_STRING ( xdsPhoneNum, 2, DS_ATrRIBUTE_ VALUES, 
OM_S_PRINTABLE_STRING, newPhoneNum ) 

/* Step 6 

* 
* Open the session with the namespace: 
* bind (without credentials) to the default server. 
*/ 

dsStatus = ds_bind( DS_DEFAULT_SESSION, xdsWorkspace, &session ); 
if( dsStatus != DS_SUCCESS ) 

handleDSError ( "ds_bind () ", dsStatus ); 

/* Step 7 */ 

switch ( operation ) { /* perform the requested operation */ 

/* 
* Add ent:ry to the namespace. The xdsSurname and xdsPhoneNum 
* objects are already contained within an attribute list object 
* (xdsAttributesToAdd). 
*/ 

case 'a' : 

/* 

28-72 

dsStatus = ds_add_ent:ry( session, DS_DEFAULT_CONTEXT, xdsName, 
xdsAttributesToAdd, &invokeID ); 

if( dsStatus != DS_SUCCESS ) 
handleDSError ( "ds_add_ent:ry () ", dsStatus ); 

/* FALL THROUGH */ 

OSF DeE Application Development Guide 



Sample Application Programs 

* Read the entry of the name supplied. 
*/ 

case 'r' : 
dsStatus = ds_read( session, DS_DEFAULT_CONTEXT, xdsName, 

xdsAttributeSelection, &readResult, &invokeID ); 
if( dsStatus != DS_SUCCESS ) 

/* 

handleDSError ( "ds_read () ", dsStatus ); 

/* 
* Get each attribute from the object read and print them. 
*/ 

omStatus = extractValue( readResult, &DS_A_SURNAME, 
surnameRead ); 

if( omStatus != OM_SUCCESS) { 
printf( "** Surname could not be read\n" ); 
strcpy( surnameRead, "(unknown)" ); 
rc = 1; 

omStatus = extractValue( readResult, &DS_A_PHONE_NBR, 
phoneNumRead ); 

if( omStatus != OM_SUCCESS) { 

} 

printf( ,,** Phone number could not be read\n" ); 
strcpy( phoneNumRead, "(unknown)" ); 
rc = 1; 

printf( "The phone number for %s is %s.\n", surnameRead, 
phoneNumRead ); 

break; 

* delete the entry from the namespace. 
*/ 

case 'd' : 
dsStatus = ds_remove_entry( session, DS_DEFAULT_CONTEXT, 

xdsName, &invokeID ); 
if( dsStatus != DS_SUCCESS ) 

handleDSError ( "ds_remove_entry () ", dsStatus ); 
else 

printf( "The entry has been deleted.\n" ); 
break; 

OSF DeE Application Development Guide 28-73 



GDS Application Programming 

/* 

* Clean up and exit. 
*/ 

/* StepS */ 
dsStatus = ds_unbind( session ); 
if( dsStatus != DS_SUCCESS ) 

handleDSError ( "ds_unbind ( ) ", dsStatus ); 

/* Step 9 */ 
dsStatus = ds_shutdown( xdsWorkspace ); 
if( dsStatus != DS_SUCCESS ) 

handleDSError ( "ds_shutdown () ", dsStatus ); 

exit ( rc ); 

/* end main () * / 

28-74 OSF DeE Application Development Guide 



XDS/XOM Supplementary 
Information 

Part 4C 

Part 4C provides reference material for the X/Open Object Management 
(XOM) programming interface. 





Chapter 29 

XDS Interface Description 

The XDS interface comprises a number of functions, together with many 
OM classes of OM objects, which are used as the parameters and results of 
the functions. Both the functions and the OM objects are based closely on 
the Abstract Service that is specified in the standards (see The Directory,' 
Abstract Service Definition, ISO 9594-3, CCITT X.511). 

The interface models the directory interactions as service requests made 
through a number of interface functions, which take a number of input 
parameters. Each valid request causes an operation within the Directory 
Service, which eventually returns a status and any result of the operation. 

All interactions between the user and the Directory Service belong to a 
session, which is represented by an OM object passed as the first parameter 
to most interface functions. 

The other parameters to the functions include a context and various 
service-speci fic parameters. The context includes a number of parameters 
that are common to many functions, and that seldom change from operation 
to operation. 

Each of the components of this model are described in the following 
sections in this chapter along with other features of the interface, such as 
security. 

OSF DeE Application Development Guide 29-1 



XDS/XOM Supplementary Information 

29.1 XDS Conformance to Standards 

29-2 

The XDS interface defines an API that application programs can use to 
access the functionality of the underlying Directory Service. The DCE XDS 
API conforms to the X/Open CAE Specification, API to Directory Services 
(XDS) (November 1991). 

The DCE XDS implementation supports the following features: 

• A synchronous interface. Asynchronous operations are not supported. 

• All synchronous interface functions are supported. The two 
asynchronous-specific functions are handled as follows: 

- ds _ abandon( ) 

This call does not issue a Directory Service abandon operation. It 
returns with a DS_C_ABANDON_FAILED (DS_E_TOO_LATE) 
error. 

- ds_receive_resultO 

This call returns DS_SUCCESS with the completionJ,ag_return 
parameter set to DS_NO_OUTSTANDING_OPERATION. 

• Automatic connection management is not provided. The ds _ bind() and 
ds_unbindO functions always try, respectively, to set up and release 
Directory Service connections immediately. 

• The DS _FILE_DESCRIPTOR attribute of the DS _ C _SESSION object 
is not used. 

• The default values for OM attributes in the DS C CONTEXT and 
DS _ C _SESSION objects are described in Chapter 30. 

DCE XDS supports four packages, of which one is mandatory and three are 
optional. Use of the optional packages is negotiated using ds_ versionO. 
The packages are as follows: 

• The Directory Service Package (as defined in Chapter 30), which also 
includes the errors (as defined in Chapter 31). This package is 
mandatory. 

• The Basic Directory Contents Package (as defined in Chapter 32). This 
package is optional. 

OSF DeE Application Development Guide 



XDS Interface Description 

• The Global Directory Service Package (as defined in Chapter 34). This 
package is optional. 

• The MRS Directory User Package (as defined in Chapter 33). This 
package is optional. 

None of the OM classes defined in these four packages are encodable. Thus, 
DCE XDS application programmers do not require the use of the XOM 
functions om _ encode() and om _ decode(), which are not supported by the 
DCE XOM API. 

29.2 The XDS Functions 

As mentioned already, the standards define Abstract Services that requestors 
use to interact with the directory. Each of these Abstract Services maps to a 
single function call, and the detailed specifications are given in the XDS 
reference pages in the aSF DCE Application Development Reference. The 
services and the function calls to which they map are as follows: 

• DirectoryBind (maps to ds_bind()) 

• DirectoryUnbind (maps to ds_unbindO) 

• Read (maps to ds_readO) 

• Compare (maps to ds _ compare()) 

• Abandon (maps to ds _ abandon( )) 

• List (maps to ds_listO) 

• Search (maps to ds _ search( )) 

• AddEntry (maps to ds _add _ entry( )) 

• RemoveEntry (maps to ds_remove_entryO) 

• ModifyEntry (maps to ds_modify_entryO) 

• ModifyRDN (maps to ds_modify_rdnO) 

There is a function called ds_receive_resultO, which has no counterpart in 
the Abstract Service. It is used with asynchronous operations. (See the XDS 
intro(3xds) reference page in the aSF DCE Application Development 
Reference for information on how the asynchronous functions 

OSF DeE Application Development Guide 29-3 



XDS/XOM Supplementary Information 

ds_abandonO and ds_receive_resuItO are handled by the DeE XDS API.) 

The ds Jnitialize(), ds _shutdown(), and ds _ version() functions are used to 
control the XDS API and do not initiate any directory operations. 

The interface functions are summarized in Table 29-1. 

Table 29-1. The XDS Interface Functions 

Name Description 
ds_abandon( ) Abandons the result of a pending 

asynchronous operation. This function 
is not supported (see intro(3xds) in the 
OSF DCE Application Development 
Reference}. 

ds_add_entry( ) Adds a leaf entry to the DIT. 

ds_bind() Opens a session with a DUA, which in 
turn connects to a DSA. 

ds_compare( ) Compares a purported attribute value 
with the attribute value stored in the DIB 
for a particular entry. 

ds_initialize( ) Initializes the XDS interface. 

ds_list() Enumerates the names of the 
immediate subordinates of a particular 
directory entry. 

ds_modify_entry( ) Atomically performs modification to a 
directory entry. 

ds_modify _rdn() Changes the RDN of a leaf entry. 

ds_read() Queries information on a particular 
directory entry by name. 

ds_receive_result( ) Retrieves the result of an 
asynchronously executed function. This 
function is not supported (see 
intro(3xds) in the OSF DCE Application 
Development Reference}. 

29-4 OSF DeE Application Development Guide 



XDS Interface Description 

Name Description 
ds_remove_entry( ) Removes a leaf entry from the DIT. 

ds_search( ) Finds entries of interest in a portion of 
the directory information tree. 

ds_shutdown( ) Discards a workspace. 

ds_unbind( ) Unbinds from a directory session. 

ds_version( ) Negotiates features of the interface and 
service. 

29.3 The XDS Negotiation Sequence 

The interface has an initialization and shutdown sequence that pennits the 
negotiation of optional features. This involves the ds _initialize(), 
ds_versionO, and ds_shutdownO functions. 

Every application program must first call ds Jnitialize(), which returns a 
workspace. This workspace supports the standard Directory Service 
Package (see Chapter 30). 

The workspace can be extended to support the optional Basic Directory 
Contents Package (see Chapter 32), the Global Directory Service Package 
(see Chapter 34), or the MHS Directory User Package (see Chapter 33). 
These packages are identified by means of OSI Object Identifiers, and these 
Object Identifiers are supplied to ds _ version( ) to incorporate the extensions 
into the workspace. 

After a workspace with the required features is negotiated in this way, the 
application can use the workspace as required. It can create and manipulate 
OM objects using the OM functions, and can start one or more directory 
sessions using ds _ bind(). 

After completing its tasks, tenninating all its directory sessions using 
ds _ unbind(), and releasing all its OM objects using om _ delete(), the 
application needs to ensure that resources associated with the interface are 
freed by calling ds _shutdown(). It is possible to retain access to service
generated public objects after ds _shutdown() is called, or to start another 
cycle by calling ds_initializeO if so required by the application design. 

OSF DeE Application Development Guide 29-5 



XDS/XOM Supplementary Information 

29.4 The session Parameter 

A session identifies the DUA and the suite of DSAs to which a particular 
directory operation is sent. It contains some DirectoryBindArguments, 
such as the distinguished name of the requestor. The session parameter is 
passed as the first parameter to most interface functions. 

A session is described by an OM object of OM class DS _ C _SESSION. It is 
created and appropriate parameter values can be set using the OM functions. 
A directory session then starts with ds _ bind() and later terminates with 
ds_unbindO. A session with default parameters can be started by passing 
the constant DS_DEFAULT_SESSION as the DS_C_SESSION parameter 
to ds_bindO. 

The ds_bindO function must be called before DS_C_SESSION can be used 
as a parameter to any other function in this interface. After ds _ unbind() is 
called, ds _ bind( ) must be called again if another session is to be started. 

The interface supports multiple concurrent sessions so that an application 
implemented as a single process, such as a server in a client/server model, 
can interact with the directory using several identities, and a process can 
interact directly and concurrently with different parts of the directory. 

Details of the OM Class DS_C_SESSION are given in Chapter 30. 

29.5 The context Parameter 

29-6 

The context defines the characteristics of the directory interaction that are 
specific to a particular directory operation; nevertheless, the same 
characteristics are often used for many operations. Since these parameters 
are presumed to be relatively static for a given directory user during a 
particular directory interaction, these parameters are collected into an OM 
object of OM class DS _ C _CONTEXT, which is supplied as the second 
parameter of each Directory Service request. This reduces the number of 
parameters passed to each function. 

OSF DeE Application Development Guide 



XDS Interface Description 

The context includes many administrative details, such as the 
CommonArguments defined in the Abstract Service, which affect the 
processing of each directory operation. These include a number of 
Service Controls, which allow control over some aspects of the service. 
The Service Controls include options such as preferChaining, 
chainingProhibited, localScope, doIitUseCopy, and 
dontDereferenceAliases, together with priority, timeLimit, sizeLimit, 
and scopeOfReferral. Each of these is mapped onto an OM attribute in the 
context (see Chapter 30). 

The effect of passing the context parameter is as if its contents were passed 
as a group of additional parameters for every function call. The value of 
each component of the context is determined when the interface function is 
called, and remains fixed throughout the operation. 

All OM attributes in the class DS _ C _CONTEXT have default values, some 
of which are administered locally. The constant 
DS_DEFAULT_CONTEXT can be passed as the value of the 
DS _ C _ CONTEXT parameter to the interface functions, and has the same 
effect as a context OM object created wit~ default values. The context must 
be a private object, unless it is DS_DEFAULT_CONTEXT. 

(See Chapter 30 for detailed specifications of the OM class 
DS_C_CONTEXT.) 

29.6 The XDS Function Arguments 

The Abstract Service defines specific parameters for each operation. These 
are mapped onto corresponding parameters to each interface function, which 
are also called input parameters. Although each service has different 
parameters, some specific parameters recur in several operations and these 
are briefly introduced here. (For complete details of these parameters, see 
Chapter 30.) 

All parameters that are OM objects can generally be supplied to the 
interface functions as public objects (that is, descriptor lists) or as private 
objects. Private objects must be created in the workspace that is returned by 
ds _initialize(). In some cases, constants can be supplied instead of OM 
objects. 

OSF DeE Application Development Guide 29-7 



XDS/XOM Supplementary Information 

Note: Wherever a function can accept an instance of a particular 
OM class as the value of a parameter, it also accepts an 
instance of any subclass of the OM class. For example, most 
functions have a name parameter, which accepts values of OM 
class DS _ C _NAME. It is always acceptable to supply an 
instance of the subclass DS C DS DN as the value of the 
parameter. 

29.6.1 Attribute and Attribute Value Assertion 

29-8 

Each directory attribute is represented in the interface by an OM object of 
OM class DS _ C _ATTRIBUTE. The type of the directory attribute is 
represented by an OM attribute, DS _ATTRIBUTE_TYPE, within the OM 
object. The values of the directory attribute are expressed as the values of 
the OM attribute DS ATTRIBUTE VALUES. - -
The representation of the attribute value depends on the attribute type and is 
determined as indicated in the following list. The list describes the way in 
which an application program must supply values to the interface; for 
example, in the changes parameter to ds _modify _ entry(). The interface 
follows the same rules when returning attribute values to the application; 
for example, in the ds_readO result. 

• The first possibility is that the attribute type and the representation of 
the corresponding values can be defined in a package; for example, the 
selected attribute types from the standards that are defined in the Basic 
Directory Contents Package in Chapter 32. In this case, attribute values 
are represented as specified. Additional directory attribute types and 
their OM representations are defined by the Global Directory Service 
Package. 

• If the attribute type is not known and the value is an ASN.l simple type 
such as IntegerType, the representation is the corresponding type 
specified in Chapter 35. 

• If the attribute type is not known and the value is an ASN.l structured 
type, the value is represented in the Basic Encoding Rules (BER) with 
OM syntax String(OM_S_ENCODING_STRING). 

OSF DeE Application Development Guide 



XDS Interface Description 

Note: The distinguished encoding specified in the standards (see 
Clause 8.7 of The Directory: Authentication Framework, 
ISO 9594-8, CCITT X.500) must be used if the request is 
to be signed. 

Where attribute values have OM syntax String(*), they can be long 
segmented strings, and the functions om _read() and om _ write() need to 
be used to access them. 

An Attribute Value Assertion (AVA) is an assertion about the value of an 
attribute of an entry, and can be TRUE, FALSE, or undefined. It consists of 
an attribute type and a single value. In general, the AVA is TRUE if one of 
the values of the given attribute in the entry matches the given value. An 
AVA is represented in the interface by an instance of OM class 
DS _ C _AVA, which is a subclass of DS _ C _ATTRIBUTE and can only have 
one value. 

Information used by ds _add _ entry() to construct a new directory entry is 
represented by an OM object of OM class DS _ C _ATTRIBUTE_LIST, 
which contains a single multivalued OM attribute whose values are OM 
objects of OM class DS_C_ATTRIBUTE. 

29.6.2 The Entry-Information-Selection Parameter 

The selection parameter of the ds_read() and ds_search() operations 
tailors its results to obtain just part of the required entry. Information on all 
attributes, no attributes, or a specific group of attributes can be chosen. 
Attribute types are always returned, but the attribute values are not 
necessarily returned. 

The value of the parameter is an instance of OM class 
DS_C_ENTRY_INFO_SELECTION, but one of the constants in the 
following list can be used in simple cases: 

• To verify the existence of an entry for the purported name, use the 
constant DS SELECT NO ATTRIBUTES. - --

• To return just the types of all attributes, use the constant 
DS SELECT ALL TYPES. - --

• To return the types and values of all attributes, use the constant 
DS SELECT ALL TYPES AND VALUES. - - - --

OSF DeE Application Development Guide 29-9 



XDS/XOM Supplementary Information 

To choose a particular set of attributes, create a new instance of the OM 
class DS _ C _ENTRY_INFO_SELECTION and set the appropriate OM 
attribute values using the OM functions. 

29.6.3 The name Parameter 

Most operations take a name parameter to specify the target of the 
operation. The name is represented by an instance of one of the subclasses 
of the OM class DS C NAME. The DCE XDS API defines the subclass 
DS _ C _ DS _ DN to represent distinguished names and other names. 

For directory interrogations, any aliases in the name are dereferenced, 
unless prohibited by the DS _ DONT _DEREFERENCE_ALIASES service 
control. However, for modify operations, this service control is ignored if 
set, and aliases are never dereferenced. 

RDNs are represented by an instance of one of the subclasses of the OM 
class DS C RELATIVE NAME. The DCE XDS API defines the subclass - - -
DS_C_DS_RDN to represent RDNs. 

29.7 XDS Function Call Results 

29-10 

All XDS functions return a DS_status, which is the C function result; most 
return data in an invoke id parameter, which identifies the particular 
invocation, and the interrogation operations each return data in the result 
parameter. The invoke _id and result values are returned using pointers that 
are supplied as parameters of the C function. These three types of function 
results are introduced in the following subsections. 

All OM objects returned by interface functions (results and errors) are 
private objects in the workspace returned by ds_initialize(). 

OSF DeE Application Development Guide 



XDS Interface Description 

29.7.1 The invoke id Parameter 

All interface functions that invoke a Directory Service operation return an 
invoke _id parameter, which is an integer that identifies the particular 
invocation of an operation. Since asynchronous operations are not 
supported, the invoke _id return value is no longer relevant for operations. 
DCE application programmers must still supply this parameter as described 
in the XDS reference pages (see the OSF DeE Application Development 
Reference), but should ignore the value returned. 

29.7.2 The result Parameter 

Directory Service interrogation operations return a result value only if they 
succeed. All errors from these operations, including Directory Access 
Protocol (DAP) errors, are reported in DS_status (see Section 29.7.3), as are 
errors from all other operations. 

The result of an interrogation is returned in a private object whose OM class 
is appropriate to the particular operation. The format of directory operation 
results is driven by the Abstract Service. To simplify processing, the result 
of a single operation is returned in a single OM object, which corresponds 
to the abstract result defined in the standards. The components of the result 
of an operation are represented by OM attributes in the operation's result 
object. All information contained in the Abstract Service result is made 
available to the application program. The result is inspected using the 
functions provided in the Object Management API, om _get( ). 

Only the interrogation operations produce results, and each type of 
interrogation has a specific OM class of OM object for its result. These OM 
classes are as follows (see Chapter 30 for their definitions): 

• DS C COMPARE RESULT - - -
• DS C LIST RESULT - - -
• DS C READ RESULT - - -
• DS C SEARCH RESULT - - -

The results of the different operations share several common components, 
including the CommonResults defined in the standards (see The 
Directory: Abstract Service Definition, ISO 9594-3, CCITT X.511) by 

OSF DeE Application Development Guide 29-11 



XDS/XOM Supplementary Information 

inheriting OM attributes from the superclass DS_C_COMMON_RESULTS. 
An additional common component is the full DN of the target object, after 
all aliases are dereferenced. 

The actual OM class of the result can always be a subclass of that named in 
order to allow flexibility for extensions. Thus, om _instance() always needs 
to be used when testing the OM class. 

Any attribute values in the result are represented as discussed in Section 
29.6.1. 

29.7.3 The DS status Return Value 

Every interface function returns a DS _status value, which is either the 
constant DS _SUCCESS or an error. Errors are represented by private 
objects whose OM class is a subclass of DS _ C _ERROR. Details of all 
errors are given in Chapter 31. 

Other results of functions are not valid unless the status result has the value 
DS SUCCESS. 

29.8 Synchronous Operations 

29-12 

Since asynchronous use of the interface is not supported, the value of the 
DS_ASYNCHRONOUS OM attribute in DS_C_CONTEXT is always 
OM_FALSE, causing all operations to be synchronous. 

In synchronous mode, all functions wait until the operation is complete 
before returning. The thread of control is blocked within the interface after 
calling a function, and it can use the result immediately after the function 
returns. 

Implementations define a limit on the number of asynchronous operations 
that can be outstanding at anyone time on anyone session. The limit is 
given by the implementation-defined constant 
DS _MAX_OUTSTANDING_OPERATIONS. It always has the value 0 
(zero) because asynchronous operations are not supported. 

OSF DeE Application Development Guide 



XDS Interface Description 

All errors occurring during a synchronous request are reported when the 
function returns. (See Chapter 31 for complete details of error handling.) 

The DS FILE DESCRIPTOR OM attribute of DS C SESSION is not - -
used by the DCE XDS API and IS always set to 
DS NO VALID FILE DESCRIPTOR. - - - -

29.9 Security and XDS 

The X/Open XDS specifications do not define a security interface because 
this can put constraints on security features of existing directory 
implementations. 

DCE GDS provides security by means of passwords. This is achieved at the 
XDS API level through a new DSX _ C _ GDS _SESSION session object with 
an OM DSX_PASSWORD attribute. (See Chapter 34 for additional 
information.) The GDS DSA verifies this password for each directory 
operation. 

29.10 Other Features of the XDS Interface 

The following subsections describe these features of the interface: 

• Automatic Connection Management 

• Automatic Continuation and Referral Handling 

29.10.1 Automatic Connection Management 

An implementation can provide automatic management of the association 
or connection between the user and the Directory Service, making and 
releasing connections at its discretion. 

The DCE XDS implementation does not support automatic connection 
management. A DSA connection is established when ds _ bind() is called 
and released when ds _ unbind() is called. 

OSF DeE Application Development Guide 29-13 



XDS/XOM Supplementary Information 

29.10.2 Automatic Continuation and Referral Handling 

29-14 

The interface provides automatic handling of continuation references and 
referrals in order to reduce the burden on application programs. These 
facilities can be inhibited to meet special needs. 

A "continuation reference" describes how the performance of all or part of 
an operation can be continued at a different DSA or DSAs. A single 
continuation reference returned as the entire response to an operation is 
called a "referral" and is classified as an error. One or more continuation 
references can also be returned as part of 
DS_PARTIAL_OUTCOME_QUAL returned from a ds_listO or 
ds_search() operation. 

A DSA returns a referral if it has administrative, operational, or technical 
reasons for preferring not to chain. It can return a referral if 
DS_CHAINING_PROHIB is set in the DS_C_CONTEXT, or instead it 
can report a service error (DS_E_CHAINING_REQUIRED) in this case. 

By default, the implementation uses any continuation references it receives 
to try to contact the other DSA or DSAs, enabling it to make further 
progress in the operation, whenever practical. It only returns the result, or 
an error, to the application after it has made this attempt. Note that 
continuation references can still be returned to the application, if the 
relevant DSA cannot be contacted, for example. 

The default behavior is the simplest for most applications, but if necessary 
the application can cause all continuation references to be returned to it. It 
does this by setting the value of the OM attribute 
DS AUTOMATIC CONTINUATION in the DS C CONTEXT to - - - -
OM FALSE. 

OSF DeE Application Development Guide 



Chapter 30 

XDS Class Definitions 

When referring to classes and attributes in the Directory Service, the 
chapters in Part 4B make a clear distinction between OM classes and 
directory classes, and between OM attributes and directory attributes. In 
both cases, the former is a construct of the closely associated Object 
Management interface, while the latter is a construct of the Directory 
Service to which XDS provides access. The terms "object class" and 
"attribute" indicate the directory constructs, while the phrases "OM class" 
and "OM attribute" indicate the Object Management constructs. 

30.1 Introduction to OM Classes 

This chapter defines, in alphabetical order, the OM classes that constitute 
the Directory Service Package. The errors defined in Chapter 31 also belong 
to this package. The object identifier associated with this package is {iso(l) 
identified-organization(3) icd-ecma(0012) member-company(2) 
dec(lOll) xopen(28) dsp(O)} with the following encoding: 

\x2B\xC\x2\x87\x73\xl C\xO 

This object identifier is represented by the constant DS_SERVICE_PKG. 

OSF DeE Application Development Guide 30-1 



XDS/XOM Supplementary Information 

The Object Management notation is briefly described in the following text. 
See Chapters 35 through 37 for more information on Object Management. 

Each OM class is described in a separate section, which identifies the OM 
attributes specific to that OM class. The OM classes and OM attributes for 
each OM class are listed in alphabetical order. The OM attributes that can 
be found in an instance of an OM class are those OM attributes specific to 
that OM class, as well as those inherited from each of its superclasses. The 
OM class-speci fic OM attributes are defined in a table. The table indicates 
the name of each OM attribute, the syntax of each of its values, any 
restrictions upon the length (in bits, octets (bytes), or characters) of each 
value, any restrictions upon the number of values, and the value, if any, 
om _ create() supplies. 

The constants that represent the OM classes and OM attributes in the C 
binding are defined in the xds.h(4xds) header file (see the OSF DCE 
Application Development Reference). 

30.2 OM Class Hierarchy 

30-2 

This section shows the hierarchical organization of the OM classes defined 
in this chapter, and as a result, shows which OM classes inherit additional 
OM attributes from their superclasses. In the following list, 
subclassification is indicated by indentation, and the names of abstract 
classes are in italics. Thus, for example, the concrete class 
DS C PRESENTATION ADDRESS is an immediate subclass of the - - -
abstract class DS _ C _ADDRESS, which in tum is an immediate subclass of 
the abstract class OM_C_OBJECT. (OM_C_OBJECT is defined in Chapter 
26 of this guide.) 

OM C OBJECT 

• DS C ACCESS POINT - - -
• DS C ADDRESS 

- DS C PRESENTATION ADDRESS 

• DS C ATTRIBUTE 

- DS CAVA 

OSF DeE Application Development Guide 



XDS Class Definitions 

- DS C ENTRY MOD - - -

- DS C FILTER ITEM - - -
• DS C ATTRIBUTE LIST - - -

- DS C ENTRY INFO - - -
• DS C COMMON RESULTS 

- DS C COMPARE RESULT 

- DS C LIST INFO 

- DS C READ RESULT 

- DS C SEARCH INFO - - -

• DS C CONTEXT 

• DS C CONTINUATION REF - - -
• DS C ENTRY INFO SELECTION - - - -

• DS C ENTRY MOD LIST - - - -
• DS_C_ERROR (see Chapter 31) 

• DS C EXT 

o DS C FILTER 

• DS C LIST INFO ITEM - - - -

• DS C LIST RESULT - - -
• DS C NAME 

- DS C DS DN 

• DS C OPERATION PROGRESS - - -
• DS_C_PARTIAL_OUTCOME_QUAL 

• DS C RELATIVE NAME 

- DS C DS RDN 

• DS C SEARCH RESULT - - -
• DS C SESSION 

None of the classes in the preceding list are encodable using om _ encode() 
and om _ decode(). The application is not pennitted to create or modify 

OSF DeE Application Development Guide 30-3 



XDS/XOM Supplementary Information 

instances of some OM classes because these OM classes are only returned 
by the interface and never supplied to it. These OM classes are as follows: 

DS C ACCESS POINT 
DS C COMPARE RESULT - - -
DS C CONTINUATION REF 
All subclasses of DS C ERROR 
DS C LIST INFO - - -
DS C LIST INFO ITEM - - - -
DS C LIST RESULT - - -
DS C OPERATION PROGRESS - - -
DS_C_PARTIAL_OUTCOME_QUAL 
DS C READ RESULT - - -
DS C SEARCH INFO - - -
DS C SEARCH RESULT - - -

30.3 DS C ACCESS POINT 

An instance of OM class DS _ C _ACCESS_POINT identifies a particular 
point at which a DSA can be accessed. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-1. 

Table 30-1. OM Attributes of DS_C_ACCESS_POINT 

30-4 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_ADDRESS Object(DS_C_ - 1 -
ADDRESS) 

DS_AE_TITLE Object(DS_C_ - 1 -
NAME) 

• DS ADDRESS 

This attribute indicates the address of the DSA to be used when 
communicating with it. 

OSF DCE Application Development Guide 



XDS Class Definitions 

• DS AE TITLE 

This attribute indicates the name of the DSA. 

30.4 DS C ADDRESS 

The OM class DS _ C _ADDRESS represents the address of a particular entity 
or service, such as a DSA. 

It is an abstract class that has the OM attributes of its superclass, 
OM _ C _OBJECT, and no other OM attributes. 

An address is an unambiguous name, label, or number that identifies the 
location of the entity or service. All addresses are represented as instances 
of some subclass of this OM class. 

The only subclass defined by the DeE XDS API is 
DS _ C _PRESENTATION_ADDRESS, which is the presentation address of 
an OSI application entity used for OSI communications with this subclass. 

30.5 DS C ATTRIBUTE 

An instance of OM class DS _ C _ATTRIBUTE is an attribute of an object, 
and is thus a component of its directory entry. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-2. 

OSF DeE Application Development Guide 30-5 



XDS/XOM Supplementary Information 

Table 30-2. OM Attributes of DS_C_ATTRIBUTE 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_ATTRIBUTE String(OM_S_ - 1 --
TYPE OBJECT_ 

IOENTIFIER_ 
STRING) 

OS_ATTRIBUTE Any - o or more --
VALUES 

• DS ATTRIBUTE TYPE - -
The attribute type that indicates the class of information given by this 
attribute . 

• DS ATTRIBUTE VALUES - -
The attribute values. The OM value syntax and the number of values 
allowed for this OM attribute are determined by the value of the 
DS ATTRIBUTE TYPE OM attribute in accordance with the rules - -
given in Section 29.6.1. 

If the values of this OM attribute have the syntax String(*), the strings 
can be long and segmented. For this reason, om _read( ) and 
om _ write() need to be used to access all String(*) values. 

Note: A directory attribute must always have at least one value, 
although it is acceptable for instances of this OM class not to 
have any values. 

30.6 DS C ATTRIBUTE LIST 

30-6 

An instance of OM class DS _ C _ATTRIBUTE_LIST is a list of directory 
attributes. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attribute listed in Table 30-3. 

OSF DCE Application Development Guide 



XDS Class Definitions 

Table 30-3. OM Attribute of DS_C_ATTRIBUTE_LlST 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_ATTRIBUTES Object(OS_C_ - o or more -
ATTRIBUTE) 

• DS ATTRIBUTES 

The attributes that constitute a new object's directory entry, or those 
selected from an existing entry. 

30.7 DS CAVA 

An instance of OM class DS _ C _ AVA (Attribute Value Assertion) is a 
proposition concerning the values of a directory entry. 

An instance of this OM class has the OM attributes of its superclasses, 
OM_C_OBJECT and DS_C ATTRIBUTE, and no other OM attributes. An 
additional restriction on this OM class is that there must be exactly one 
value of the OM attribute DS ATTRIBUTE VALUES. The - -
DS _ATTRIBUTE_TYPE remains single valued. The OM value syntax of 
DS ATTRIBUTE VALUES must conform to the rules outlined in Section - -
29.6.1. 

30.8 DS C COMMON RESULTS 

The OM class DS C COMMON_RESULTS comprises results that are 
returned by, and are common to, the directory interrogation operations. 

It is an abstract OM class, which has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-4. 

OSF DCE Application Development Guide 30-7 



XDS/XOM Supplementary Information 

Table 30-4. OM Attributes of DS_C_COMMON_RESULTS 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_A LI AS_ OM_S_ - 1 -
OEREFERENCEO BOOLEAN 

OS_PERFORMER Object{OS_C_ - o or 1 -
NAME) 

• DS ALIAS DEREFERENCED - -
This attribute indicates whether the name of the target object that is 
passed as a function argument includes an alias that is dereferenced to 
determine the DN . 

• DS PERFORMER 

When present, this attribute gives the DN of the performer of a 
particular operation. It can be present when the result is signed, and it 
holds the name of the DSA that signed the result. The DeE Directory 
Service does not support the optional feature of signed results; therefore, 
this OM attribute is never present. 

30.9 DS C COMPARE RESULT 

30-8 

An instance of OM class DS_C_COMPARE_RESULT comprises the 
results of a successful call to ds_compare(). 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_COMMON_RESULTS, In 

addition to the OM attributes listed in Table 30-5. 

OSF DCE Application Development Guide 



XDS Class Definitions 

Table 30-5. OM Attributes of DS_C_COMPARE_RESULT 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_FROM_ENTRV OM_S_ - 1 
BOOLEAN 

OS_MATCHED OM_S_ - 1 -
BOOLEAN 

OS_OBJECT_NAME Object(OS_C_ - o or 1 -
NAME) 

• DS FROM ENTRY - -
This attribute indicates whether the assertion is tested against the 
specified object's entry, rather than a copy of the entry. 

• DS MATCHED 

This attribute indicates whether the assertion specified as an argument 
returns the value OM_TRUE. It takes the value OM_TRUE if the 
values are compared and matched; otherwise, it takes the value 
OM FALSE. 

• DS_OBJECT_NAME 

This attribute contains the distinguished name of the target object of the 
operation. It IS present if 
DS _ALIAS _ DEREFERENCED, inherited 
DS_C_COMMON_RESULTS, is OM_TRUE. 

30.10 DS C CONTEXT 

the OM 
from the 

attribute 
superclass 

An instance of OM class DS C CONTEXT comprises per-operation 
arguments that are accepted by most of the interface functions. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-6. 

OSF DCE Application Development Guide 30-9 



XDS/XOM Supplementary Information 

Table 30-6. OM Attributes of DS_C_CONTEXT 

Value Value Value 
OM Attribute Val ue Syntax Length Number Initially 

Common Arguments 

DS_EXT Object(DS_C_ - o or more NULL 
EXT) 

DS_OPERATION Object(DS_C_ - 1 DS_C_ -
PROGRESS OPERATION OPERATION - -

PROGRESS) NOT_STARTED 

DS_ALlASED OM_S_ - o or 1 0 -
RDNS INTEGER 

Service Controls 

DS_CHAINING - OM_S_ - 1 OM_TRUE 
PROHIB BOOLEAN 

DS_DONT_ OM_S_ - 1 OM_FALSE 
DEREFERENCE BOOLEAN -
ALIASES 

DS_DONT_ OM_S_ - 1 OM_FALSE 
USE_COPY BOOLEAN 

DS_LOCAL_ OM_S_ - 1 OM_FALSE 
SCOPE BOOLEAN 

DS_PREFER_ OM_S_ - 1 OM_FALSE 
CHAINING BOOLEAN 

DS_PRIORITY Enum(DS_ - 1 DS_MEDIUM 
Priority) 

DS_SCOPE Enum(DS_ - o or 1 DS_COUNTRY -
OF_REFERRAL Scope_ 

of_Referral) 

DS_SIZE OM_S_ - o or 1 -1 -
LIMIT INTEGER 

30-10 OSF DCE Application Development Guide 



XDS Class Definitions 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_TIME OM_S_ - o or 1 -1 -
LIMIT INTEGER 

Local Controls 

OS_ OM_S_ - 1 OM_FALSE 
ASYNCHRONOUS BOOLEAN 

OS_AUTOMATIC OM_S_ - 1 OM_TRUE -
CONTINUATION BOOLEAN 

The context gathers several arguments passed to interface functions, which 
are presumed to be relatively static for a given directory user during a 
particular directory interaction. The context is passed as an argument to 
each function that interrogates or updates the directory. Although it is 
generally assumed that the context is changed infrequently, the value of 
each argument can be changed between every operation if required. The 
DS_ASYNCHRONOUS argument must not be changed. Each argument is 
represented by one of the OM attributes of the DS _ C _ CONTEXT OM 
class. 

The context contains the common arguments defined in the standards (see 
The Directory: Abstract Service Definition, ISO 9594-3, CCITT X.511), 
except that all security information is omitted for reasons discussed in 
Section 29.9. These are made up of a number of service controls explained 
in the following text, possible extensions in the DS _EXT OM attribute, and 
operation progress and alias dereferencing information in the 
DS OPERATION PROGRESS OM attribute. It also contains a number - -
of arguments that provide local control over the interface. 

The OM attributes of the DS C CONTEXT OM class are as follows: 

• Common Arguments 

- DS EXT 

This attribute represents any future standardized extensions that 
need to be applied to the Directory Service operation. The DCE 
XDS implementation does not evaluate this optional OM attribute. 

OSF DeE Application Development Guide 30-11 



XDS/XOM Supplementary Information 

30-12 

- DS OPERATION PROGRESS - -
This attribute represents the state that the Directory Service assumes 
at the start of the operation. 

This OM attribute normally takes its default value, which is the 
value DS OPERATION NOT STARTED described III the - --
DS C OPERATION PROGRESS OM class definition. - - -

- DS ALIAS ED RDNS - -
This attribute indicates to the Directory Service that the object 
component of the operation parameter is created by dereferencing of 
an alias on an earlier operation attempt. This value is set in the 
referral response of the previous operation. 

• Service Controls 

- DS CHAINING PROHIB - -
This attribute indicates that chaining and other methods of 
distributing the request around the Directory Service are prohibited. 

- DS DONT DEREFERENCE ALIASES - - -
This attribute indicates that any alias used to identify the target entry 
of an operation is not dereferenced. This allows interrogation of 
alias entries (aliases are never dereferenced during updates). 

- DS DONT USE COPY - - -
This attribute indicates that the request can only be satisfied by 
accessing directory entries, and not by using copies of entries. This 
includes both copies maintained in other DSAs by bilateral 
agreement, and copies cached locally. 

- DS LOCAL SCOPE - -
This attribute indicates that the directory request will be satisfied 
locally. The meaning of this option is configured by an 
administrator. This option typically restricts the request to a single 
DSAorDMD. 

- DS PREFER CHAINING - -
This attribute indicates that chaining is preferred to referrals when 
necessary. The Directory Service is not obliged to follow this 
preference, and can return a referral even if it is set. 

OSF DeE Application Development Guide 



XDS Class Definitions 

- DS PRIORITY 

This attribute indicates the priority, relative to other directory 
requests, according to which the Directory Service attempts to 
satisfy the request. This is not a guaranteed service since there is no 
queuing throughout the directory. Its value must be one of the 
following: 

- DS LOW 

- DS MEDIUM 

- DS HIGH 

- DS SCOPE OF REFERRAL - --
This attribute indicates the part of the directory to which referrals 
are limited. This includes referral errors and partial outcome 
qualifiers. Its value must be one of the following: 

- DS_COUNTRY, meaning DSAs within the country in which the 
request originates. 

- DS_DMD, meaning DSAs within the DMD in which the request 
originates. 

DS _SCOPE_OF _REFERRAL is an optional attribute. The lack of 
this attribute in a DS _ C _CONTEXT object indicates that the scope 
is not limited. 

- DS SIZE LIMIT - -
If present, this attribute indicates the maximum number of objects 
about which ds Jist() or ds _search() needs to return infomiation. 
If this limit is exceeded, information is returned about exactly this 
number of objects. The objects that are chosen are not specified 
because this can depend on the timing of interactions between 
DSAs, among other reasons. 

- DS TIME LIMIT - -
If present, this attribute indicates the maximum elapsed time, in 
seconds, within which the service needs to be provided (not the 
processing time devoted to the request). If this limit is reached, a 
service error (DS _ E _TIME_LIMIT_EXCEEDED) is returned, 
except for the ds JistO or ds _ searchO operations, which return an 
arbitrary selection of the accumulated results. 

OSF DeE Application Development Guide 30-13 



XDS/XOM Supplementary Information 

30-14 

• Local Controls 

- DS _ASYNCHRONOUS (Optional Functionality) 

The interface currently only operates synchronously as detailed in 
Section 29.8. There is only one possible value: 

- OM_FALSE, meaning that the operation is performed 
sequentially (synchronously) with the application being blocked 
until a result or error is returned. 

- DS AUTOMATIC CONTINUATION - -
This attribute indicates the requestor's requirement for continuation 
reference handling, including referrals and those in partial outcome 
quali fiers. The value is one of the following: 

- OM_FALSE, meaning that the interface returns all continuation 
references to the application program. 

- OM_TRUE, meaning that continuation references are 
automatically processed, and the subsequent results are returned 
to the application instead of the continuation references, 
whenever practical. This is a much simpler option than 
OM_FALSE unless the application has special requirements. 

Note: Continuation references can still be returned to the 
application if, for example, the relevant DSA cannot be 
contacted. 

Applications can assume that an object of OM class DS _ C _CONTEXT, 
created with default values of all its OM attributes, works with all the 
interface functions. The DS DEFAULT CONTEXT constant can be used - -
as an argument to interface functions instead of creating an OM object with 
default values. 

OSF DeE Application Development Guide 



XDS Class Definitions 

30.11 DS C CONTINUATION REF 

An instance of OM class DS _ C _ CONTINUATION_REF comprises the 
infonnation that enables a partially completed directory request to be 
continued; for example, following a referral. 

An application is not pennitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its superclass, 
OM_C_OBJECT, in addition to the OM attributes listed in Table 30-7. 

Table 30-7. OM Attributes of DS_C_CONTINUATION_REF 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_ACCESS_ Object(DS_C_ - 1 or more -
POINTS ACCESS_POINT) 

DS_ALlASED_ OM_S_INTEGER - 1 -
RDNS 

DS_OPERATION Object(DS_C_ - 1 --
PROGRESS OPERATION -

PROGRESS) 

DS_RDNS_ OM_S_INTEGER - o or 1 -
RESOLVED 

DS_TARGET_ Object(OS_C_ - 1 -
OBJECT NAME) 

• DS ACCESS POINTS - -
This attribute indicates the names and presentation addresses of the 
DSAs from where the directory request is continued . 

• DS ALIASED RDNS - -
This attribute indicates how many (if any) of the RDNs in the target 
name are produced by dereferencing an alias. Its value is 0 (zero) if no 
aliases are dereferenced. This value needs to be used in the 
DS _ C _CONTEXT of any continued operation. 

OSF DCE Application Development Guide 30-15 



XDS/XOM Supplementary Information 

• DS OPERATION PROGRESS - -
This attribute indicates the state at which the directory request must be 
continued. This value needs to be used in the DS _ C _CONTEXT of any 
continued operation. 

• DS RDNS RESOLVED - -
This attribute indicates the number of RDN s in the supplied object name 
that are resolved (using internal references), and not just assumed to be 
correct (using cross-references). 

• DS_TARGET_OBJECT 

This attribute indicates the name of the object upon which the 
continuation must focus. 

30.12 DS C DS DN 

30-16 

An instance of OM class DS _ C _ DS _ DN represents a name of a directory 
object. 

An instance of this OM class has the OM attributes of its superclasses, 
OM _ C _OBJECT and DS _ C _NAME, in addition to the OM attribute listed in 
Table 30-8. 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_RDNS Object(DS_C_DS_ - o or more -
RDN) 

• DS RDNS 

This attribute indicates the sequence of RDNs that define the path 
through the DIT from its root to the object that the DS _ C _ DS _ DN 
indicates. The DS _ C _ DS _ DN of the root of the directory is the null 
name (no DS _ RDNS values). The order of the values is significant; the 
first value is closest to the root, and the last value is the RDN of the 
object. 

OSF DeE Application Development Guide 



XDS Class Definitions 

30.13 DS C DS RDN 

An instance of OM class DS _ C _ DS _ RDN is a relative distinguished name. 
An RDN uniquely identifies an immediate subordinate of an object whose 
entry is displayed in the DIT. 

An instance of this OM class has the OM attributes of its superclasses, 
OM_C_OBJECT and DS_C_RELAIIVE_NAME, in addition to the OM 
attribute listed in Table 30-9. 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_AVAS Object{DS_C_AVA) - 1 or more -

• DS AVAS 

This attribute indicates the DS _ AVAS that are marked by the DIB as 
components of the object's RDN. The assertion is TRUE of the object 
but not of any of its siblings, and the attribute type and value are 
displayed in the object's directory entry. The order of the DS _ AVAS is 
not significant. 

30.14 DS C ENTRY INFO 

An instance of OM class DS C ENTRY INFO contains selected 
information from a single directory entry. 

An instance of this OM class has the OM attributes of its superclasses, 
OM_C_OBJECT and DS_C_ATTRIBUTE_LIST, in addition to the OM 
attributes listed in Table 30-10. 

OSF DeE Application Development Guide 30-17 



XDS/XOM Supplementary Information 

Table 30-10. OM Attributes of DS_C_ENTRY _INFO 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_FROM_ENTRY OM_S_ - 1 -
BOOLEAN 

OS_OBJECT_NAME Object(OS_C_ - 1 -
NAME) 

The OM attribute DS _ATTRIBUTES is inherited from the superclass 
DS C ATTRIBUTE LIST. It contains the information extracted from the - - -
directory entry of the target object. The type of each attribute requested 
and located is indicated in the list as are its values, if types and values are 
requested. 

The OM class-speci fic OM attributes are as follows: 

• DS FROM ENTRY - -
This attribute indicates whether the information is extracted from the 
specified object's entry, rather than from a copy of the entry . 

• 'DS_OBJECT_NAME 

This attribute contains the object's distinguished name. 

30.15 DS C ENTRY INFO SELECTION 

30-18 

An instance of OM class DS C ENTRY INFO SELECTION identifies - - - -
the information to be extracted from a directory entry. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-11. 

OSF DCE Application Development Guide 



XDS Class Definitions 

Table 30-11. OM Attributes of DS_C_ENTRY _I NFO_SELECTION 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_ALL_ OM_S_ - 1 OM_TRUE 
ATTRIBUTES BOOLEAN 

DS_ String (OM_S_ - o or more -
ATTRIBUTES - OBJECT_ 
SELECTED IDENTIFIER_ 

STRING) 

DS_INFO_TYPE Enum(DS_ - 1 DS_TYPES -
Information - AND_VALUES 
Type) 

• DS ALL ATTRIBUTES - -
This attribute indicates which attributes are relevant. It can take one of 
the following values: 

- OM_FALSE, meaning that information is only requested on those 
attributes that are listed in the OM attribute 
DS ATTRIBUTES SELECTED. - -

- OM_TRUE, meaning that information is requested on all attributes 
in the directory entry. Any values of the OM attribute 
DS _ ATTRIBUTES _SELECTED are ignored in this case. 

• DS ATTRIBUTES SELECTED - -
This attribute lists the types of attributes in the entry from which 
information will be extracted. The value of this OM attribute is used 
only if the value of DS_ALL_ATTRIBUTES is OM_FALSE. If an 
empty list is supplied, no attribute data is returned that could be used to 
verify the existence of an entry for a distinguished name. 

• DS INFO TYPE - -
This attribute identifies what information will be extracted from each 
attribute identified. It must take one of the following values: 

- DS_TYPES_ONLY, meaning that only the attribute types of the 
selected attributes in the entry are returned. 

OSF DCE Application Development Guide 30-19 



XDS/XOM Supplementary Information 

- DS_TYPES_AND_ VALUES, meaning that both the attribute types 
and the attribute values of the selected attributes in the entry are 
returned. 

30.16 DS C ENTRY MOD 

Ail instance of OM class DS_C_ENTRY_MOD describes a single 
modification to a specified attribute of a directory entry. 

An instance of this OM class has the OM attributes of its superclasses, 
OM_C_OBJECT and DS_C_ATTRIBUTE, in addition to the OM attribute 
listed in Table 30-12. 

Table 30-12. OM Attribute of DS_C_ENTRY MOD 

30-20 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_MOO_TYPE Enum(DS_ - 1 OS_ADD -
Modification ATTRIBUTE -
Type) 

The attribute type to be modified, and the associated values, are specified in 
the OM attributes DS ATTRIBUTE TYPE and - -
DS ATTRIBUTE VALUES that are inherited from the - -
DS _ C _ATTRIBUTE superclass . 

• DS MOD TYPE - -
This attribute identifies the type of modification. It must have one of the 
following values: 

- DS _ADD _ATTRIBUTE, meaning that the specified attribute is 
absent and will be added with the specified values. 

- DS _ADD _ VALUES, meaning that the specified attribute is present 
and that one or more specified values will be added to it. 

- DS _REMOVE_ATTRIBUTE, meaning that the specified attribute 
is present and will be removed. Any values present in the OM 
attribute DS_ATTRIBUTE_ VALUES are ignored. 

OSF DCE Application Development Guide 



XDS Class Definitions 

- DS_REMOVE_ VALUES, meaning that the specified attribute is 
present and that one or more specified values will be removed from 
it. 

30.17 DS C ENTRY MOD LIST 

An instance of OM class DS C ENTRY_MOD LIST comprises a 
sequence of changes to be made to a directory entry. 

An instance of this OM class has the OM attributes of its superclass, 
OM_C_OBJECT, in addition to the OM attribute listed in Table 30-13. 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_CHANGES Object(DS_C_ - 1 or more -
ENTRY_MOD) 

• DS CHANGES 

This attribute identifies the modifications to be made (in the order 
specified) to the directory entry of the specified object. 

30.18 DS C EXT 

An instance of OM class DS C EXT indicates that a standardized 
extension to the Directory Service is outlined in the standards. Such 
extensions will only be standardized in post-1988 versions of the standards. 
Therefore, this OM class is not used by the XDS API and is only included 
for X/Open conformance purposes. 

An instance of this OM class has the OM attributes of its superclass, 
OM_C_OBJECT, in addition to the OM attributes listed in Table 30-14. 

OSF DeE Application Development Guide 30-21 



XDS/XOM Supplementary Information 

Table 30-14. OM Attributes of DS_C_EXT 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_CRIT OM_S_BOOLEAN - 1 OM_FALSE 
DS_IOENT OM_S_INTEGER - 1 -
OS_ITEM Any - 1 --
PARAMETERS 

• DS CRIT 

This attribute must have one of the following values: 

- OM_FALSE, meaning that the originator permits the operation to 
be performed even if the extension is not available. 

- OM_TRUE, meaning that the originator mandates that the extended 
operation be performed. If the extended operation is not performed, 
an error is reported. 

• DS IDENT 

This attribute identifies the service extension. 

• DS ITEM PARAMETERS - -
This OM attribute supplies the parameters of the extension. Its syntax is 
determined by the value of DS _ IDENT. 

30.19 DS C FILTER 

30-22 

An instance of OM class DS C FILTER is used to select or reject an 
object on the basis of information in its directory entry. At any point in 
time, an attribute filter has a value relative to every object. The value is 
FALSE, TRUE, or undefined. The object is selected if, and only if, the 
filter's value is TRUE. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-15. 

OSF DCE Application Development Guide 



XDS Class Definitions 

Table 30-15. OM Attributes of DS_C_FILTER 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_FILTER_ Object(OS_C_ - o or more -
ITEMS FILTER_ITEM) 

OS_FILTERS Object(OS_C_ - o or more -
FILTER) 

OS_FILTER Enum(OS_Filter_ - 1 OS_AN 0 -
TYPE Type) 

A filter is a collection of less elaborate filters and elementary 
DS_FILTER_ITEMS, together with a Boolean operation. The filter value 
is undefined if, and only if, all the component DS _FILTERS and 
DS_FILTER_ITEMS are undefined. Otherwise, the filter has a Boolean 
value with respect to any directory entry, which can be determined by 
evaluating each of the nested components and combining their values using 
the Boolean operation. The components whose values are undefined are 
ignored. 

• DS FILTER ITEMS - -
This attribute is a collection of assertions, each relating to just one 
attribute of a directory entry. 

• DS FILTERS 

This attribute is a collection of simpler filters. 

• DS FILTER TYPE - -
This attribute is the filter's type. It can have any of the following 
values: 

- DS _AND, meaning that the filter is the logical conjunction of its 
components. The filter is TRUE unless any of the nested filters or 
filter items is FALSE. If there are no nested components, the filter is 
TRUE. 

OSF DCE Application Development Guide 30-23 



XDS/XOM Supplementary Information 

- DS _OR, meaning that the filter is the logical disjunction of its 
components. The filter is FALSE unless any of the nested filters or 
filter items is TRUE. If there are no nested components, the filter is 
FALSE. 

- DS_NOT, meaning that the result of this filter is reversed. There 
must be exactly one nested filter or filter item. The filter is TRUE if 
the enclosed filter or filter item is FALSE, and is FALSE if the 
enclosed filter or filter item is TRUE. 

30.20 DS C FILTER ITEM 

An instance of OM class DS C FILTER ITEM is a component of 
DS _ C _FILTER. It is an assertion about the existence or values of a single 
attribute type in a directory entry. 

An instance of this OM class has the OM attributes of its superc1asses, 
OM _ C _OBJECT and DS _ C _ATTRIBUTE, in addition to the OM attributes 
listed in Table 30-16. 

Table 30-16. OM Attributes of DS_C_FILTER_ITEM 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_FILTER Enum(OS_Filter_ - 1 --
ITEM_TYPE Item_Type) 

OS_FINAL_ String(*) 1 or more o or 1 -
SUBSTRING 

OS_INITIAL_ String(*) 1 or more o or 1 -
SUBSTRING 

Note: The following OM attributes are inherited from the superc1ass 
DS C ATTRIBUTE: DS ATTRIBUTE TYPE and - - --
DS ATTRIBUTE VALUES. - -

30-24 OSF DeE Application Development Guide 



XDS Class Definitions 

The value of the filter item is undefined in the following cases: 

• The DS ATTRIBUTE TYPE is not known. - -
• None of the DS ATTRIBUTE VALUES conform to the attribute - -

syntax defined for that attribute type. 

• The DS_FILTER_ITEM_TYPE uses a matching rule that IS not 
defined for the attribute syntax. 

Access control restrictions can also cause the value to be undefined. 

• DS FILTER ITEM TYPE - - -
This attribute identifies the type of filter item and thus, the nature of the 
filter. The filter item can adopt any of the following values: 

- DS_APPROXIMATE_MATCH, meaning that the filter is TRUE if 
the directory entry contains at least one value of the specified type 
that is approximately equal to that specified (the meaning of 
"approximately equal" is implementation dependent); otherwise, 
the filter is FALSE. 

Rules for approximate matching are defined locally. For example, 
an approximate match may take into account spelling variations or 
employ phonetic comparison rules. In the absence of any such 
capabilities, a DSA needs to treat an approximate match as a test for 
equality. DeE GDS supports phonetic comparisons. There must be 
exactly one value of the OM attribute DS_ATTRIBUTE_ VALUES. 

- DS_EQUALITY, meaning that the filter is TRUE if the entry 
contains at least one value of the specified type that is equal to the 
value specified, according to the equality matching rule in force; 
otherwise, the filter is FALSE. There must be exactly one value of 
the OM attribute DS ATTRIBUTE VALUES. - -

- DS_GREATER_OR_EQUAL, meaning that the filter item is 
TRUE if, and only if, at least one value of the attribute is greater 
than or equal to the supplied value. There must be exactly one value 
of the OM attribute DS ATTRIBUTE VALUES. - -

- DS_LESS_OR_EQUAL, meaning that the filter item is TRUE if, 
and only if, at least one value of the attribute is less than or equal to 
the supplied value. There must be exactly one value of the OM 
attribute DS ATTRIBUTE VALUES. - -

OSF DeE Application Development Guide 30-25 



XDS/XOM Supplementary Information 

- DS_PRESENT, meaning that the filter is TRUE if the entry 
contains an attribute of the specified type; otherwise, it is FALSE. 

Any values of the OM attribute DS_ATTRIBUTE_ VALUES are 
ignored. 

- DS_SUBSTRINGS, meaning that the filter is TRUE if the entry 
contains at least one value of the specified attribute type that 
contains all of the specified substrings in the given order; otherwise, 
the filter is FALSE. 

Any number of substrings can be given as values of the OM attribute 
DS_ATTRIBUTE_ VALUES. Similarly, no substrings can be 
specified. There can also be a substring in 
DS_INITIAL_SUBSTRING or DS_FINAL_SUBSTRING, or 
both. The substrings do not overlap, but they can be separated from 
each other or from the ends of the attribute value by zero or more 
string elements. However, at least one attribute of type 
DS_ATTRIBUTE_ VALUES, DS_INITIAL_SUBSTRING, or 
DS FINAL SUBSTRING must exist. - -

• DS FINAL SUBSTRING - -
If present, this attribute is the substring that will match the final part of 
an attribute value in the entry. This attribute can only exist if the 
DS _FILTER_ITEM_TYPE is equal to DS _SUBSTRINGS. 

• DS INITIAL SUBSTRING - -
If present, this attribute is the substring that will match the initial part of 
an attribute value in the entry. 

30.21 DS C LIST INFO 

30-26 

An instance of OM class DS _ C _LIST_INFO is part of the results of 
ds_list( ). 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_COMMON_RESULTS, III 

addition to the OM attributes listed in Table 30-17. 

OSF DeE Application Development Guide 



XDS Class Definitions 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_OBJECT_ Object(OS_C_ - o or 1 -
NAME NAME) 

DS_PARTIAL_ Object(DS_C_ - o or 1 -
OUTCOME_ PARTIAL_ 
QUAL OUTCOME_ 

QUAL) 

DS_ Object(DS_C_ - o or more -
SUBORDINATES LIST_I N FO_ 

ITEM) 

• DS_OBJECT_NAME 

This attribute is the distinguished name of the target object of the 
operation. It is present if 
DS _ALIAS _ DEREFERENCED, inherited 
DS _ C _COMMON_RESULTS, is OM_TRUE. 

• DS_PARTIAL_OUTCOME_QUAL 

the OM 
from the 

attribute 
superc1ass 

This OM attribute value is present if the list of subordinates is 
incomplete. The DSA or DSAs that provided this list did not complete 
the search for some reason. The partial outcome qualifier contains 
details of why the search is not completed, and which areas of the 
directory have not been searched. 

• DS SUBORDINATES 

This attribute contains information about zero or more subordinate 
objects identified by ds_list(). 

OSF DeE Application Development Guide 30-27 



XDS/XOM Supplementary Information 

30.22 DS C LIST INFO ITEM 

30-28 

An instance of OM class DS _ C _LIST_INFO_ITEM comprises details 
returned by ds Jist() of a single subordinate object. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its superc1ass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-18. 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_ALlAS_ENTRY OM_S_ - 1 -
BOOLEAN 

OS_FROM_ENTRY OM_S_ - 1 -
BOOLEAN 

OS_RON Object(OS_C_ - 1 -

RELATIVE_ 
NAME) 

• DS ALIAS ENTRY - -
This attribute indicates whether the object is an alias. 

• DS FROM ENTRY - -
This attribute indicates whether information about the object was 
obtained directly from its directory entry, rather than from a copy of the 
entry. 

• DS RDN 

This attribute contains the RDN of the object. If this is the name of an 
alias entry, as indicated by DS _ALIAS _ ENTRY, it is not dereferenced. 

OSF DeE Application Development Guide 



XDS Class Definitions 

30.23 DS C LIST RESULT 

An instance of OM class DS_C_LIST_RESULT comprises the results of a 
successful call to ds _list( ). 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its superclass, 
OM_C_OBJECT, in addition to the OM attributes listed in Table 30-19. 

Table 30-19. OM Attributes of DS_C_L1ST _RESULT 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_LlST_INFO Object(OS_C_ - o or 1 -
LIST_INFO) 

OS_ Object(OS_C_ - o or more -
UNCORRELATEO_ LIST_RESULT) 
LIST_INFO 

Note: No instance contains values of both OM attributes. 

• DS LIST INFO - -
This attribute contains the full results of ds _list(), or just part of them . 

• DS UNCORRELATED LIST INFO - - -
When the DUA requests a protection request of "signed," the 
information returned can comprise a number of sets of results 
originating from, and signed by, different components of the directory. 
Implementations can reflect this structure by nesting 
DS_LIST_RESULT OM objects as values of this OM attribute. 
Alternatively, they can collapse all results into a single value of the OM 
attribute DS _LIST_INFO. The DeE Directory Service does not 
support the optional feature of signed results; therefore, this OM 
attribute is never present. 

OSF DCE Application Development Guide 30-29 



XDS/XOM Supplementary Information 

30.24 DS C NAME 

The OM class DS _ C _NAME represents a name of an object in the directory, 
or a part of such a name. 

It is an abstract class, which has the attributes of its superclass, 
OM _ C _OBJECT, and no other OM attributes. 

A name uniquely distinguishes the object from all other objects whose 
entries are displayed in the DIT. However, an object can have more than 
one name; that is, a name need not be unique. A DN is unique; there are no 
other DNs that identify the same object. An RDN is part of a name, and 
only distinguishes the object from others that are its siblings. 

Most of the interface functions take a name parameter, the value of which 
must be an instance of one of the subclasses of this OM class. Thus, this 
OM class is useful for amalgamating all possible representations of names. 

The DeE XDS implementation defines one subclass of this OM class, and 
thus, a single representation for names; that is, DS_C_DS_DN, which 
provides a representation for names, including distinguished names. 

30.25 DS C OPERATION PROGRESS 

30-30 

An instance of OM class DS_C_OPERATION_PROGRESS specifies the 
progress or processing state of a directory request. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-20. 

OSF DeE Application Development Guide 



XDS Class Definitions 

Table 30-20. OM Attributes of DS_C_OPERATION_PROGRESS 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_NAME_ Enum(DS_Name_ - 1 -
RESOLUTION - Resolution_Phase) 
PHASE 

DS_NEXT_ OM_S_INTEGER - o or 1 -
RDN -
TO_BE_ 
RESOLVED 

The target name mentioned as follows is the name upon which processing 
of the directory request is currently focused . 

• DS NAME RESOLUTION PHASE - - -
This attribute indicates what phase is reached in handling the target 
name. It must have one of the following values: 

- DS _ COMPLETED, meaning that the DSA holding the target 
object is reached. 

- DS_NOT_STARTED, meaning that so far a DSA is not reached 
with a naming context containing the initial RDNs of the name. 

- DS_PROCEEDING, meaning that the initial part of the name has 
been recognized, although the DSA holding the target object has not 
yet been reached . 

• DS NEXT RDN TO BE RESOLVED - - - - -
This attribute indicates to the DSA which of the RDN s in the target 
name is next to be resolved. It takes the form of an integer in the range 
from one to the number of RDN s in the name. This OM attribute only 
has a value if the value of DS NAME RESOLUTION PHASE is - - -
DS PROCEEDING. 

The constant DS OPERATION NOT STARTED can be used in the - --
DS _ C _ CONTEXT of an operation instead of an instance of this OM class. 

OSF DCE Application Development Guide 30-31 



XDS/XOM Supplementary Information 

30.26 DS_C_PARTIAL_OUTCOME_QUAL 

30-32 

An instance of OM class DS_C_PARTIAL_OUTCOME_QUAL explains 
to what extent the results of a call to ds_listO or ds_searchO are 
incomplete and why. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its superclass, 
OM_C_OBJECT, in addition to the OM attributes listed in Table 30-21. 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_LlMIT_ Enum(DS_Limit_ - 1 -
PROBLEM Problem) 

DS_ OM_S_ - 1 -
UNAVAILABLE BOOLEAN -
CRIT_EXT 

DS Object(DS_C_ - o or more --
UNEXPLORED CONTINUATION -

REF) 

• DS LIMIT PROBLEM - -
This attribute explains fully or partly why the results are incomplete. It 
can have one of the following values: 

- DS_ADMIN_LIMIT_EXCEEDED, 
administrative limit is reached. 

meaning that an 

- DS_NO_LIMIT_EXCEEDED, meaning that there is no limit 
problem. 

- DS_SIZE_LIMIT_EXCEEDED, meaning that the maximum 
number of objects specified as a service control is reached. 

- DS_TIME_LIMIT_EXCEEDED, meaning that the maximum 
number of seconds specified as a service control is reached. 

OSF DeE Application Development Guide 



XDS Class Definitions 

• DS UNAVAILABLE CRIT EXT - --
If OM_TRUE, this attribute indicates that some part of the Directory 
Service cannot provide a requested critical service extension. The user 
requested one or more standard service extensions by including values 
of the OM attribute DS _EXT in the DS _ C _ CONTEXT supplied for the 
operation. Furthermore, the user indicated that some of these extensions 
are essential by setting the OM attribute DS _ CRIT in the extension to 
OM _ TRUE. Some of the critical extensions cannot be performed by 
one particular DSA or by a number of DSAs. In general, it is not 
possible to determine which DSA could not perform which particular 
extension . 

• DS UNEXPLORED 

This attribute identifies any regions of the directory that are left 
unexplored in such a way that the directory request can be continued. 
Only continuation references within the scope specified by the 
DS SCOPE OF REFERRAL service control are included. - --

30.27 DS C PRESENTATION ADDRESS 

An instance of OM class DS C PRESENTATION ADDRESS is a 
presentation address of an OSI application entity, which is used for OSI 
communications with this instance. 

An instance of this OM class has the OM attributes of its superclasses, 
OM_C_OBJECT and DS_C_ADDRESS, in addition to the OM attributes 
listed in Table 30-22. 

OSF DeE Application Development Guide 30-33 



XDS/XOM Supplementary Information 

Table 30-22. OM Attributes of DS_C_PRESENTATION_ADDRESS 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_N_ String(OM_S_ - 1 or more -
ADDRESSES OCTET_STRING) 

DS_P _SELECTOR String(OM_S_ - o or 1 -
OCTET_STRING) 

DS_S_SELECTOR String(OM_S_ - o or 1 -
OCTET_STRING) 

DS_T_SELECTOR String(OM_S_ - o or 1 -
OCTET_STRING) 

• DS N ADDRESSES 

This attribute is the network addresses of the application entity. 

• DS P SELECTOR 

This attribute is the presentation selector. 

• DS S SELECTOR 

This attribute is the session selector. 

• DS T SELECTOR 

This attribute is the transport selector. 

30.28 DS C READ RESULT 

30-34 

An instance of OM class DS _ C _READ_RESULT comprises the result of a 
successful call to ds_read(). An application is not permitted to create or 
modify instances of this OM class. An instance of this OM class has the 
OM attributes of its superclasses, OM C OBJECT and 
DS_C_COMMON_RESULTS, in addition to the OM attribute listed in 
Table 30-23. 

OSF DCE Application Development Guide 



XDS Class Definitions 

Table 30-23. OM Attribute of DS_C_READ_RESULT 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_ENTRY Object(DS_C_ENTRY _ - 1 -
INFO) 

• DS ENTRY 

This attribute contains the information extracted from the directory 
entry of the target object. 

30.29 DS C RELATIVE NAME 

The OM class DS_C_RELifI'/VE_NAME represents the RDNs of objects in 
the directory. It is an abstract class, which has the attributes of its 
superclass, OM_C _OBJECT, and no other OM attributes. 

An RDN is part of a name, and only distinguishes the object from others 
that are its siblings. This OM class is used to accumulate all possible 
representations of RDNs. An argument of interface functions that is an 
RDN, or an OM attribute value that is an RDN is an instance of one of the 
subclasses of this OM class. 

The DCE XDS API defines one subclass of this OM class, and thus, a single 
representation for RDNs; that is, DS_C_DS_RDN, which provides a 
representation for RDNs. 

OSF DCE Application Development Guide 30-35 



XDS/XOM Supplementary Information 

30.30 DS C SEARCH INFO 

30-36 

An instance of OM class DS _ C _SEARCH_INFO is part of the result of 
ds_search( ). 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_Object and DS_C_COMMON_RESULTS, in addition to 
the OM attributes listed in Table 30-24. 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_ENTRIES Object(OS_C_ENTRY _ - o or more -
INFO) 

OS_OBJECT_ Object(OS_C_NAME) - o or 1 -
NAME 

DS_PARTIAL_ Object(OS_C_ - o or 1 -
OUTCOME_ PARTIAL_ 
QUAL OUTCOME_QUAL) 

• DS ENTRIES 

This attribute contains information about zero or more objects found by 
ds_searchO that matched the given selection criteria. 

• DS_OBJECT_NAME 

This attribute contains the distinguished name of the target object of the 
operation. It is present if 
DS _ALIAS _ DEREFERENCED, inherited 
DS_C_COMMON_RESULTS, is OM_TRUE. 

• DS_PARTIAL_OUTCOME_QUAL 

the OM 
from the 

attribute 
superclass 

This OM attribute value is only present if the list of entries is 
incomplete. The DSA or DSAs that provided this list did not complete 
the search for some reason. The partial outcome qualifier contains 
details of why the search was not completed, and which areas of the 
directory were not searched. 

OSF DeE Application Development Guide 



XDS Class Definitions 

30.31 DS C SEARCH RESULT 

An instance of OM class DS_C_SEARCH_RESULT comprises the result 
of a successful call to ds_searchO. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-25. 

Table 30-25. OM Attributes of DS_C_SEARCH_RESULT 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_SEARCH_INFO Object(DS_C_ - o or 1 -
SEARCH_INFO) 

DS_ Object(DS_C_ - o or more -
UNCORRELATED SEARCH - -
SEARCH_INFO RESULT) 

Note: No instance contains values of both OM attributes . 

• DS SEARCH INFO - -
This attribute contains the full result of ds_searchO, or part of the 
result . 

• DS UNCORRELATED SEARCH INFO - --
When the DUA requests a protection request of "signed," the 
information returned can comprise a number of sets of results 
originating from and signed by different components of the Directory 
Service. Implementations can reflect this structure by nesting 
DS_C_SEARCH_RESULT OM objects as values of this OM attribute. 
Alternatively, they can collapse all results into a single value of the 
OM attribute DS_SEARCH_INFO. The DeE Directory Service does 
not support the optional feature of signed results; therefore, this OM 
attribute is never present. 

OSF DCE Application Development Guide 30-37 



XDS/XOM Supplementary Information 

30.32 DS C SESSION 

An instance of OM class DS _ C _SESSION identifies a particular link from 
the application program to a DUA. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 30-26. 

Table 30-26. OM Attributes of DS_C_SESSION 

30-38 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_DSA_ Object(DS_C_ - o or 1 local' 
ADDRESS ADDRESS) 

DS_DSA_NAME Object(DS_C_ - o or 1 loca/1 

NAME) 

DS_FILE OM_S_INTEGER - 1 See the text -
DESCRIPTOR 

DS_ Object(DS_C_ - o or 1 NULL 
REQUESTOR NAME) 

1The default values of these OM attributes are set to the address and name of 
the default DSA entry in the local cache. If this cache entry is not present, then 
these OM attributes are set to NULL. 

The DS_C_SESSION gathers all the information that describes a 
particular directory interaction. The parameters that will control such a 
session are set up in an instance of this OM class, which is then passed as 
an argument to ds _ bind(). This sets the OM attributes that describe the 
actual characteristics of this session, and then starts the session. A session 
started in this way must pass as the first argument to each interface 
function. The result of modifying an initiated session is unspecified. 
Finally, ds_unhind() is used to terminate the session, after which the 
parameters can be modified and a new session started using the same 
instance, if required. Multiple concurrent sessions can run using multiple 
instances of this OM class. 

OSF DCE Application Development Guide 



XDS Class Definitions 

The OM attributes of a session are as follows: 

• DS DSA ADDRESS - -
This attribute indicates the address of the default DSA named by 
DS DSA NAME. - -

• DS DSA NAME - -
This attribute indicates the distinguished name of the DSA that is used 
by default to service directory requests. 

• DS_FILE_DESCRIPTOR (Optional Functionality) 

This OM attribute is not used by DeE XDS and is always set to 
DS NO VALID FILE DESCRIPTOR. - - - -

• DS_REQUESTOR 

This attribute is the distinguished name of the user of this Directory 
Service session. 

Applications can assume that an object of OM class DS _ C _SESSION, 
created with default values of all its OM attributes, works with all the 
interface functions. Local administrators need to ensure that this is the 
case. Such a session can be created by passing the constant 
DS_DEFAULT_SESSION as an argument to ds_hindO. 

OSF DeE Application Development Guide 30-39 





Chapter 31 

XDS Errors 

This chapter defines the errors that can arise when using the Directory 
Service interface and describes the method for reporting them. 

Errors are reported to the application program by means of DS_status, 
which is a result of every function (it is the function result in the C language 
binding for most functions). A function that completes successfully returns 
the value DS _SUCCESS, whereas one that is not successful returns an 
error. The error is a private object containing details of the problem that 
occurred. The error constant DS_NO_ WORKSPACE can be returned by 
all Directory Service functions, except ds_initializeO. 
DS_NO_ WORKSPACE is returned if dsJnitializeO is not invoked before 
calling any other Directory Service function. 

Errors are classified into 10 OM classes. The standards (see The Directory: 
Abstract Service Definition, ISO 9594-3, CCITT X.511) classify errors into 
eight different groups, as follows: 

• Abandoned 

• Abandon Failed 

• Attribute Error 

• Name Error 

OSF DeE Application Development Guide 31-1 



XDS/XOM Supplementary Information 

• Referral 

• Security Error 

• Service Error 

• Update Error 

The Directory Service interface never returns an Abandoned error. The 
interface also defines three more kinds of errors: 
DS_C_LIBRARY_ERROR, DS_C_COMMUNICATIONS_ERROR, and 
DS _ C _SYSTEM_ERROR. Each of these kinds of errors is represented by 
an OM class. These OM classes are detailed in subsequent sections of this 
chapter. All of them inherit the OM attribute DS_PROBLEM from their 
superclass DS _ C _ERROR, which is described first. The OM classes defined 
in this chapter are part of the Directory Service Package (see Chapter 30). 

The ds_hindO operation returns a Security Error or a Service Error. All 
other operations can also return the same errors as ds _ bind(). Such errors 
can arise in the course of following an automatic referral list. 

31.1 OM Class Hierarchy 

31-2 

This section shows the hierarchical organization of the OM classes defined 
in this chapter and thus indicates how OM attributes are inherited from 
superclasses. In the following list, subclassification is indicated by 
indentation, and the names of abstract OM classes are in italics. Thus, for 
example, the concrete OM class DS_C_ATTRIBUTE_PROBLEM is an 
immediate subclass of the abstract OM class DS _ C _ERROR, which in tum 
is an immediate subclass of the abstract OM class OM C OBJECT. The 
OM _ C _OBJECT class is defined in Chapter 26 of this guide. 

OM C OBJECT 

• DS C ATTRIBUTE ERROR - - -
• DS_C_CONTINUATION_REF (see Chapter 30) 

- DS C REFERRAL 

• DS C ERROR 

- DS C ABANDON FAILED - - -

OSF DeE Application Development Guide 



XDS Errors 

- DS C ATTRIBUTE PROBLEM - - -
- DS _ C _COMMUNICATIONS_ERROR 

- DS C LIBRARY ERROR - - -
- DS C NAME ERROR - - -
- DS C SECURITY ERROR - - -
- DS C SERVICE ERROR - - -
- DS C SYSTEM ERROR - - -
- DS C UPDATE ERROR - - -

The application program is not permitted to create or modify any instances 
of any of these OM classes. None of the OM classes in the preceding list 
are encodable using om _ encode() and om _ decode(). 

DS _ C _REFERRAL is not a real error, and it is not a subclass of 
DS _ C _ERROR, although it is reported in the same way as a DS _status 
result. A DS _ C _ATTRIBUTE_ERROR, also not a subclass of 
DS _ C _ERROR, is special because it can report several problems at once. 
Each one is reported in DS_C_ATTRIBUTE_PROBLEM, which is a 
subclass of DS C ERROR. 

31.2 DS C ERROR 

The OM class DS _ C _ERROR comprises the parameters common to all 
errors. 

It is an abstract OM class with the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attribute listed in Table 31-1. 

Table 31-1. OM Attribute of DS_C_ERROR 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_PROBLEM Enum(OS _Problem) - 1 -

OSF DCE Application Development Guide 31-3 



XDS/XOM Supplementary Information 

31-4 

Details of errors are returned in an instance of a subclass of this OM class. 
Each such subclass represents a particular kind of error, and is one of the 
following: 

• DS C ABANDON FAILED - - -
• DS C ATTRIBUTE PROBLEM - - -
• DS C COMMUNICATIONS ERROR - - -
• DS C LIBRARY ERROR - - -
• DS C NAME ERROR - - -
• DS C SECURITY ERROR - - -
• DS C SERVICE ERROR - - -
• DS C SYSTEM ERROR - - -
• DS C UPDATE ERROR - - -

A number of possible values are defined for these subclasses. DeE XDS 
does not return other values for error conditions described in this chapter. 
Information on system errors can be found in Section 31.12. Each of the 
following standard values is described under the relevant error OM class: 

• DS E ADMIN LIMIT EXCEEDED - - - -
• DS E AFFECTS MULTIPLE DSAS - -
• DS E ALIAS DEREFERENCING PROBLEM - - - -
• DS E ALIAS PROBLEM - - -
• DS E ATTRIBUTE OR VALUE EXISTS - - -
• DS E BAD ARGUMENT 

• DS E BAD CLASS - - -
• DS E BAD CONTEXT 

• DS E BAD NAME - - -

• DS E BAD SESSION - - -
• DS E BAD WORKSPACE - - -
• DS E BUSY 

• DS E CANNOT ABANDON - - -

OSF DeE Application Development Guide 



XDS Errors 

• DS_E_CHAINING_REQUIRED 

• DS E COMMUNICATIONS PROBLEM 

• DS E CONSTRAINT VIOLATION - - -

• DS EDIT ERROR - - -
• DS E ENTRY EXISTS - - -
• DS E INAPPROP AUTHENTICATION 

• DS E INAPPROP MATCHING 

• DS E INSUFFICIENT ACCESS RIGHTS - -
• DS E INVALID ATTRIBUTE SYNTAX - -

• DS E INVALID ATTRIBUTE VALUE - -
• DS E INVALID CREDENTIALS 

• DS E INVALID REF - - -

• DS E INVALID SIGNATURE 

• DS E LOOP DETECTED - - -
• DS E MISCELLANEOUS 

• DS E MISSING TYPE - - -
• DS E MIXED SYNCHRONOUS - - -
• DS E NAMING VIOLATION - - -

• DS E NO INFO - - -
• DS E NO SUCH ATTRIBUTE OR VALUE - - - - - -
• DS_E_NO_SUCH_OBJECT 

• DS E NO SUCH OPERATION - -
• DS E NOT ALLOWED ON NON LEAF - - - - - -
• DS E NOT ALLOWED ON RDN - - - --
• DS E NOT SUPPORTED - - -
• DS_E_OBJECT_CLASS_MOD_PROHIB 

• DS_E_OBJECT_CLASS_ VIOLATION 

OSF DeE Application Development Guide 31-5 



XDS/XOM Supplementary Information 

• DS E OUT OF SCOPE 

• DS_E_PROTECTION_REQUIRED 

• DS E TIME LIMIT EXCEEDED - -
• DS E TOO LATE - - -
• DS E TOO MANY OPERATIONS - -
• DS E TOO MANY SESSIONS - -
• DS E UNABLE TO PROCEED - - --
• DS E UNAVAILABLE 

• DS_E_UNAVAILABLE_CRIT_EXT 

• DS E UNDEFINED ATTRIBUTE TYPE - -
• DS E UNWILLING TO PERFORM - - - -

31.3 DS C ABANDON FAILED 

31-6 

An instance of OM class DS_C_ABANDON_FAILED reports a problem 
encountered during an attempt to abandon an operation. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional OM 
attributes. 

The OM attribute DS _PROBLEM, which is inherited from the superclass 
DS _ C _ERROR, identifies the problem. Its value is one of the following: 

• DS E CANNOT ABANDON - - -
An attempt is made to abandon an operation for which this is prohibited, 
or the abandon cannot be performed. 

• DS E NO SUCH OPERATION - - - -
The Directory Service has no knowledge of the operation that is to be 
abandoned. 

OSF DeE Application Development Guide 



XDS Errors 

• DS E TOO LATE 

The operation is already completed, either successfully or erroneously. 

The Directory Abandon operation is not supported by DeE. Thus, a 
ds _ abandon() XDS call always returns a DS _ E _TOO _LATE error for the 
DS C ABANDON FAILED OM class. - - -

31.4 DS C ATTRIBUTE ERROR 

An instance of OM class DS_C_ATTRIBUTE_ERROR reports an 
attribute-related Directory Service error. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 31-2. 

Table 31-2. OM Attributes of DS_C_ATTRIBUTE_ERROR 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_OBJECT_ Object(OS_C_ - 1 -
NAME NAME) 

OS_PROBLEM Object(DS_C_ - 1 or more -
ATTRIBUTE -
PROBLEM} 

• DS_OBJECT_NAME 

This attribute contains the name of the directory entry to which the 
operation is applied when the failure occurs . 

• DS PROBLEMS 

This attribute documents the attribute-related problems encountered. 
Uniquely, a DS_C_ATTRIBUTE_ERROR can report several problems 
at once. All problems are related to the preceding object. 

OSF DCE Application Development Guide 31-7 



XDS/XOM Supplementary Information 

31.5 DS C ATTRIBUTE PROBLEM 

An instance of OM class DS C ATTRIBUTE PROBLEM documents one - - -
attribute-related problem encountered while performing an operation as 
requested on a particular occasion. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM _ C _OBJECT and DS _ C _ERROR, in addition to the OM 
attributes listed in Table 31-3. 

Table 31-3. OM Attributes of DS_C_ATTRIBUTE_PROBLEM 

31-8 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_ATIRIBUTE String(OM_S_ - 1 --
TYPE OBJECT_ 

IDENTIFIER -
STRING) 

DS_ATIRIBUTE Any - o or 1 --
VALUE 

• DS ATTRIBUTE TYPE - -
This attribute identifies the type of attribute with which the problem is 
associated. 

• DS ATTRIBUTE VALUE - -
This attribute specifies the attribute value with which the problem is 
associated. Its syntax is determined by the value' of 
DS _ATTRIBUTE_TYPE. This OM attribute is present if it is 
necessary to avoid ambiguity. 

The OM attribute DS_PROBLEM, which is inherited from the superclass 
DS _ C _ERROR, identifies the problem. Its value is one of the following: 

• DS E ATTRIBUTE OR VALUE EXISTS - - - - -
An attempt is made to add an attribute or value that is already present in 
the directory entry in question. 

OSF DCE Application Development Guide 



XDS Errors 

• DS E CONSTRAINT VIOLATION 

The attribute or attribute value does not conform to the constraints 
imposed by the standards (see The Directory: Models, ISO 9594-2, 
CCITT X.50l) or by the attribute definition; for example, the value 
exceeds its upper bound. 

• DS E INAPPROP MATCHING 

An attempt is made to use a matching rule that is not defined for the 
attribute type. 

• DS E INVALID ATTRIBUTE SYNTAX - - - -
A value presented as an argument does not conform to the attribute 
syntax of the attribute type. 

• DS E NO SUCH ATTRIBUTE OR VALUE - - - -
The specified attribute or value is not found in the directory entry in 
question. This is only reported by a ds_readO or ds_searchO 
operation if an explicit list of attributes is specified by the selection 
parameter, but none of them are present in the entry. 

• DS E UNDEFINED ATTRIBUTE TYPE - - - -
The attribute type, which is supplied as an argument to ds _add _ entry( ) 
or ds _modify _ entry(), is undefined. 

31.6 DS C COMMUNICATIONS ERROR 

An instance of OM class DS _ C _ COMMUNICATIONS_ERROR reports 
an error occurring in the other OSI services supporting the Directory 
Service. . 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional OM 
attributes. 

Communications errors include those arising in remote operation, 
association control, presentation, session, and transport. 

OSF DeE Application Development Guide 31-9 



XDS/XOM Supplementary Information 

The OM attribute DS _PROBLEM, which is inherited from the superc1ass 
DS _ C _ERROR, identifies the problem. Its value is 
DS E COMMUNICATIONS PROBLEM. - - -

31.7 DS C LIBRARY ERROR 

31-10 

An instance of OM class DS_C_LIBRARY_ERROR reports an error 
detected by the interface function library. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional OM 
attributes. 

Each function has several possible errors that can be detected by the library 
itself, and that are returned directly by the subroutine. These errors occur 
when the library itself is incapable of performing an action, submitting a 
service request, or deciphering a response from the Directory Service. 

The OM attribute DS_PROBLEM, which is inherited from the superclass 
DS _ C _ERROR, identifies the particular library error that occurred. (In the 
OSF DCE Application Development Reference, the ERRORS section of 
each function description lists the errors that the respective function can 
return.) Its value is one of the following: 

• DS E BAD ARGUMENT - - -
A bad argument (other than name) was supplied. Use of an instance of 
OM class DS C ATTRIBUTE with no values of the OM attribute 
DS _ATTRIBUTE_VALUES as an input argument to a Directory 
Service function results in this error. This is because directory attributes 
always have at least one value. 

• DS E BAD CLASS - - -
The OM class of an argument is not supported for this operation. 

• DS E BAD CONTEXT - - -
An invalid context parameter was supplied. 

OSF DeE Application Development Guide 



XDS Errors 

• DS E BAD NAME 

An invalid name parameter was supplied. 

• DS E BAD SESSION 

An invalid session parameter was supplied. 

• DS E MISCELLANEOUS 

A miscellaneous error occurred in interacting with the Directory 
Service. This error is returned if the interface cannot clear a transient 
system error by retrying the affected system call. 

• DS E MISSING TYPE - - -
The attribute type is not included in an AVA that is passed as part of a 
distinguished name argument. 

• DS E MIXED SYNCHRONOUS 

An attempt is made to start a synchronous operation when there are 
outstanding asynchronous operations. 

• DS E NOT SUPPORTED 

An attempt is made to use optional functionality, which is not available 
in this implementation. 

• DS E TOO MANY OPERATIONS - -
No more Directory Service operations can be performed until at least 
one asynchronous operation is completed. 

• DS E TOO MANY SESSIONS - -
No more Directory Service sessions can be started. 

OSF DeE Application Development Guide 31-11 



XDS/XOM Supplementary Information 

31.8 DS C NAME ERROR 

An instance of OM class DS _ C _NAME_ERROR reports a name-related 
Directory Service error. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_ERROR, in addition to the OM 
attribute listed in Table 31-4. 

Table 31-4. OM Attribute of DS_C_NAME_ERROR 

31-12 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_MATCHED Object(OS_C_NAME) - 1 -

• DS MATCHED 

This attribute identifies the initial part (up to, but excluding, the first 
RDN that is unrecognized) of the name that is supplied, or of the name 
resulting from dereferencing an alias. It names the lowest entry (object 
or alias) in the DIT that is matched. 

The OM attribute DS _PROBLEM, which is inherited from the superclass 
DS _ C _ERROR, identifies the cause of the failure. Its value is one of the 
following: 

• DS E ALIAS DEREFERENCING PROBLEM - - - -
An alias is encountered where an alias is not permitted; for example, in a 
modification operation when the 
DS _ DONT _DEREFERENCE_ALIASES service control is set, or 
when one alias points to another alias. 

• DS E ALIAS PROBLEM - - -
An alias is dereferenced that names an object that does not exist; that is, 
for which no directory entry can be found. 

• DSE INVALID ATTRIBUTE VALUE - - - -
The attribute value in an AVA of an RDN contained in the name does 
not conform to the attribute syntax prescribed for the attribute type in 

OSF DCE Application Development Guide 



XDS Errors 

the AVA. This problem is called invalidAttributeSyntax in the 
standards, but that name is used only for a 
DS C ATTRIBUTE PROBLEM in this interface. 

• DS_E_NO_SUCH_OBJECT 

The specified name does not match the name of any object III the 
directory. 

31.9 DS C REFERRAL 

An instance of OM class DS _ C _REFERRAL reports failure to perform an 
operation and redirects the requestor to one or more access points better 
equipped to perform the operation. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_CONTINUATION_REF, and no 
additional OM attributes. 

The referral is a continuation reference by means of which the operation can 
progress. 

31.10 DS C SECURITY ERROR 

An instance of OM class DS _ C _SECURITY_ERROR reports a security
related Directory Service error. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional OM 
attributes. 

OSF DeE Application Development Guide 31-13 



XDS/XOM Supplementary Information 

The OM attribute DS _PROBLEM, which is inherited from the superclass 
DS _ C _ERROR, identifies the cause of this failure. Its value is one of the 
following: 

• DS E INAPPROP AUTHENTICATION - - -
The level of security attached to the requestor's credentials is 
inconsistent with the level of protection requested; for example, simple 
credentials are supplied whereas strong credentials are required. 

• DS E INSUFFICIENT ACCESS RIGHTS - - --
The requestor does not have permission to perform the operation. A 
ds _read() operation only returns this error when access rights preclude 
the reading of all requested attribute values. 

• DS E INVALID CREDENTIALS - - -
The requestor's credentials are invalid. 

• DS E INVALID SIGNATURE - - -
The signature affixed to the request is invalid. 

• DS E NO INFO - - -
The request produced a security error for which no other information is 
available. 

• DS_E_PROTECTION_REQUIRED 

The Directory Service is unwilling to perform the operation because it is 
unsigned. 

31.11 DS C SERVICE ERROR 

31-14 

An instance of OM class DS_C_SERVICE_ERROR reports a Directory 
Service error related to the provision of the service. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional OM 
attributes. 

OSF DeE Application Development Guide 



XDS Errors 

The OM attribute DS_PROBLEM, which is inherited from the superc1ass 
DS _ C _ERROR, identifies the cause of the failure. Its value is one of the 
following: 

• DS E ADMIN LIMIT EXCEEDED - -
The operation could not be performed within the administrative 
constraints on the directory, and no partial results are available. 

• DS E BUSY 

Some part of the Directory Service is temporarily too busy to perform 
the operation, but will be available after a short while. 

• DS_E_CHAINING_REQUIRED 

Chaining is required to perform the operation, but is prohibited by the 
DS CHAINING PROHIBITED service control. - -

• DS EDIT ERROR 

An inconsistency is detected in the DIT that can be localized to a 
particular entry or set of entries. 

• DS E INVALID REF - - -
The DSA is unable to perform the request as directed; that is, VIa 

DS C OPERATION PROGRESS in the DS C CONTEXT. This - - -
can be due to an invalid referral. 

• DS E LOOP DETECTED 

A DSA detected a loop within the directory. 

• DS E OUT OF SCOPE - - --
The Directory Service cannot provide a referral or partial outcome 
qualifier within the required scope. 

• DS E TIME LIMIT EXCEEDED - - - -
The operation could not be performed within the time specified by the 
DS _TIME_LIMIT service control, and no partial results are available. 

• DS E UNABLE TO PROCEED - - --
A DSA without administrative authority over a particular naming 
context is asked to resolve a name in that context. 

OSF DeE Application Development Guide 31-15 



XDS/XOM Supplementary Information 

• DS E UNAVAILABLE 

Some part of the directory is not currently available. 

• DS E UNAVAILABLE CRIT EXT - -
One or more critical extensions are requested, but are not available. 

• DS E UNWILLING TO PERFORM - - - -
Some part of the Directory Service is not willing to perform the 
operation because it requires excessive resources, or because doing so 
violates administrative policy. 

31.12 DS C SYSTEM ERROR 

31-16 

An instance of OM class DS _ C _SYSTEM_ERROR reports an error that 
occurred in the underlying operating system. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM_C_OBJECT and DS_C_ERROR, and no additional OM 
attributes, although there can be additional implementation-defined OM 
attributes. 

The OM attribute DS_PROBLEM, which is inherited from the superclass 
DS _ C _ERROR, identifies the cause of the failure. Its value is the same as 
that of errno defined in the C language. 

The standard names of system errors are defined in Volume 2 of the X/Open 
Portability Guide. 

If such an error persists, a DS C LIBRARY ERROR - - -
(DS _ E _MISCELLANEOUS) is reported. 

OSF DeE Application Development Guide 



XDS Errors 

31.13 DS C UPDATE ERROR 

An instance of OM class DS_C_UPDATE_ERROR reports a Directory 
Service error peculiar to a modification operation. 

An application is not permitted to create or modify instances of this OM 
class. An instance of this OM class has the OM attributes of its 
superclasses, OM _ C _OBJECT and DS _ C _ERROR, and no additional OM 
attributes. 

The OM attribute DS _PROBLEM, which is inherited from the superclass 
DS _ C _ERROR, identifies the cause of the failure. Its value is one of the 
following: 

• DS E AFFECTS MULTIPLE DSAS - -
The modification affects several DSAs, and such a modification is 
prohibited. Local agreement between DSAs can allow modifications 
that affect multiple DSAs; for example, adding entries whose immediate 
superior entry is in a different DSA. This problem is not reported in 
such cases. 

• DS E ENTRY EXISTS 

The name passed to ds _add _ entry() already exists. 

• DS E NAMING VIOLATION 

The modification leaves the DIT structured incorrectly. This means that 
it adds an entry as the subordinate of an alias; or in a region of the DIT 
not permitted to a member of its object class; or it defines an RDN that 
includes a forbidden attribute type. 

• DS E NOT ALLOWED ON NON LEAF - - - - - -
The modification would be to an interior node of the DIT, and such a 
modification is prohibited. 

• DS E NOT ALLOWED ON RDN - - - - -
The modification alters an object's RDN. 

OSF DeE Application Development Guide 31-17 



XDS/XOM Supplementary Information 

31-18 

• DS_E_OBJECT_CLASS_MOD_PROHIB 

The modification alters an entry's object class attribute . 

• DS_E_OBJECT_CLASS_ VIOLATION 

The modification leaves a directory entry inconsistent with its object 
class definition. 

OSF DeE Application Development Guide 



Chapter 32 

Basic Directory Contents Package 

The standards define a number of attribute types (known as the selected 
attribute types), attribute syntaxes, attribute sets, and object classes (known 
as the selected object classes). These definitions allow the creation and 
maintenance of directory entries for a number of common objects so that the 
representation of all such objects is the same throughout the directory.1 
They include such objects as Country, Person, and Organization. 

This chapter outlines names for each of these items, and defines OM classes 
to represent those that are not represented directly by OM syntaxes. The 
values of attributes in the directory are not restricted to those discussed in 
this chapter, and new attribute types and syntaxes can be created at any 
time. (For further information on how the values of other syntaxes are 
represented in the interface, see Section 29.6.1.) 

The constants and OM classes in this chapter are defined in addition to those 
in Chapter 30, since they are not essential to the working of the interface, 

1. These definitions are chiefly in The Directory: Selected Attribute Types (ISO 9594-6, CCITT X.520) 
and The Directory: Selected Object Classes (ISO 9594-7, CCITT X.521) with additional material in 
The Directory: Overview of Concepts, Models, and Services (ISO 9594-1, CCITT X.500) and The 
Directory: Authentication Framework (ISO 9594-8, CCITT X.509). 

OSF DeE Application Development Guide 32-1 



XDS/XOM Supplementary Information 

but instead allow directory entries to be utilized. The definitions belong to 
the Basic Directory Contents Package (BDCP), which is supported by the 
DCE XDS API following negotiation of its use with ds_ version(). 

Note: The definitions for the Global Directory Service Package are 
provided in Chapter 34. The definitions for the MRS 
Directory User Package are provided in Chapter 33. 

The object identifier associated with the BDC Package is {iso(l) 
identified-organization(3) icd-ecma(0012) member-company(2) 
dec(lOll) xopen(28) bdcp(l)} with the following encoding: 

\x2B\xC\x2\x87\x73\xl C\xl 

This identifier is represented by the constant 
DS BASIC DIR CONTENTS PKG. The C constants associated with - - - -
this package are in the xdsbdcp.h header file (see the aSF DeE Application 
Development Reference). 

The concepts and notation used are introduced in Section 30.1. A complete 
explanation of the meaning of the attributes and object classes is not given 
since this is beyond the scope of this guide. The purpose here is simply to 
present the representation of these items in the interface. 

The selected attribute types are presented first, followed by the selected 
object classes. Next, the OM class hierarchy and OM class definitions 
required to support the selected attribute types are presented. 

32.1 Selected Attribute Types 

32-2 

This section presents the attribute types defined in the standards that are to 
be used in directory entries. Each directory entry is composed of a number 
of attributes, each of which comprises an attribute type together with one or 
more attribute values. The form of each value of an attribute is determined 
by the attribute syntax associated with the attribute's type. 

In the interface, attributes are displayed as instances of OM class 
DS _ C _ATTRIBUTE with the attribute type represented as the value of the 
OM attribute DS_ATTRIBUTE_TYPE, and the attribute value (or values) 
represented as the value (or values) of the OM attribute 
DS_ATTRIBUTE_ VALUES. Each attribute type has an object identifier, 

OSF DeE Application Development Guide 



Basic Directory Contents Package 

assigned in the standards, which is the value of the OM attribute 
DS _ATTRIBUTE_TYPE. These object identifiers are represented in the 
interface by constants with the same name as the directory attribute, and are 
prefixed with DS _ A_so that they can be easily identified. 

Table 32-1 shows the names of the attribute types defined in the standards, 
together with the Basic Encoding Rules (BERs) for encoding of the object 
identifiers associated with each of them. Table 32-2 shows the names of the 
attribute types, together with the OM value syntax that is used in the 
interface to represent values of that attribute type. Table 32-2 also includes 
the range of lengths permitted for the string types. This indicates whether 
the attribute can be multivalued and which matching rules are provided for 
the syntax. Following the table is a brief description of each attribute. 

The standards define matching rules that are used for deciding whether two 
values are equal (E), for ordering (0) two values, and for identifying one 
value as a substring (S) of another in Directory Service operations. Specific 
matching rules are given in this chapter for certain attributes. In addition, 
the following general rules apply as indicated: 

• All attribute values whose syntax is as follows: 

- String(OM_S_NUMERIC_STRING) 

- String(OM_S_PRINTABLE_STRING) 

- String(OM_S_TELETEX_STRING) 

are considered insignificant for the following reasons: 

- Differences caused by the presence of spaces preceding the first 
printing character 

- Spaces following the last printing character 

- More than one consecutive space anywhere within the value 

• For all attribute values whose syntax is 
String (OM_S_TELETEX_STRING) , differences 
alphabetical characters are considered insignificant. 

in the case of 

Note: The third and fourth columns of Table 32-1 contain the 
contents octets of the BER encoding of the object identifier. 
All these object identifiers stem from the root Uoint-iso
ccitt(2) ds(5) attributeType(4)}. 

OSF DeE Application Development Guide 32-3 



XDS/XOM Supplementary Information 

Table 32-1. Object Identifiers for Selected Attribute Types 

Object Identifier BER 

Package Attribute Type Decimal Hexadecimal 

SDCP DS_A_ALlASED_OBJECT_ 85,4,1 \x55\x04\x01 
NAME 

SDCP DS_A_BUSINESS - 85,4,15 \x55\x04 \xO F 
CATEGORY 

SDCP DS_A_COMMON_NAME 85,4,3 \x55\x04\x03 
SDCP DS_A_COUNTRY_NAME 85,4,6 \x55\x04\x06 
SDCP DS_A_DESCRIPTION 85,4,13 \x55\x04 \xO D 
SDCP DS_A_DEST_INDICATOR 85,4,27 \x55\x04\x1 S 
SDCP DS_A_FACSIMILE - 85,4,23 \x55\x04\x17 

PHONE_NBR 
SDCP DS_A_INTERNAT_ISDN - 85,4,25 \x55\x04\x19 

NBR 
SDCP DS_A_KNOWLEDGE - 85,4,2 \x55\x04\x02 

INFO 
SDCP DS_A_LOCALITY - 85,4,7 \x55\x04\x07 

NAME 
SDCP DS_A_MEMBER 85,4,31 \x55\x04 \x 1 F 
SDCP DS_A_OBJECT_CLASS 85,4,0 \x55\x04\xOO 
SDCP DS_A_ORG_NAME 85,4,10 \x55\x04 \xOA 
SDCP DS_A_ORG_UNIT_NAME 85,4,11 \x55\x04 \xO S 
SDCP DS_A_OWNER 85,4,32 \x55\x04\x20 
SDCP DS_A_PHYS_DELlV_OFF _ 85,4,19 \x55\x04 \x 13 

NAME 
SDCP DS_A_POST_OFFICE_BOX 85,4,18 \x55\x04 \x 12 
SDCP DS_A_POSTAL_ADDRESS 85,4,16 \x55\x04\x10 
SDCP DS_A_POSTAL_CODE 85,4,17 \x55\x04\x11 
SDCP DS_A_PREF _DELIV - 85,4,28 \x55\x04\x1 C 

METHOD 
SDCP DS_A_PRESENTATION - 85,4,29 \x55\x04\x1 D 

ADDRESS 
SDCP DS_A_REGISTERED_ 85,4,26 \x55\x04\x1 A 

ADDRESS 
SDCP DS_A_ROLE_OCCUPANT 85,4,33 \x55\x04\x21 

32-4 OSF DeE Application Development Guide 



Basic Oirectory Contents Package 

Object Identifier BER 

Package Attribute Type Decimal Hexadecimal 

BOCP DS_A_SEARCH_GUIDE 85,4,14 \x55\x04 \xO E 
BOCP DS_A_SEE_ALSO 85,4,34 \x55\X04\X22 
BOCP DS_A_SERIAL_NBR 85,4,5 \x55\X04\X05 
BOCP DS_A_STATE_OR_PROV_ 85,4,8 \x55\x04\x08 

NAME 
BOCP DS_A_STREET_ADDRESS 85,4,9 \x55\x04\x09 
BOCP DS_A_SUPPORT_APPLlC_ 85,4,3 \x55\X04 \x 1 E 

CONTEXT 
BOCP DS_A_SURNAME 85,4,4 \X55\x04\X04 
BOCP DS_A_PHONE_NBR 85,4,20 \x55\x04\x14 
BOCP DS_A_TELETEX_TERM - 85,4,22 \x55\x04\x16 

IDENT 
BOCP DS_A_TELEX_NBR 85,4,21 \x55\X04 \x 15 
BOCP DS_A_TITLE 85,4,12 \x55\x04 \x0 C 
BOCP DS_A_USER_PASSWORD 85,4,35 \x55\X04\x23 
BOCP DS_A_X121_ADDRESS 85,4,24 \x55\X04 \x 18 

OSF DeE Application Development Guide 32-5 



XDS/XOM Supplementary Information 

Table 32-2. Representation of Values for Selected Attribute Types 

Value Multi- Matching 
Attribute Type OM Value Syntax Length valued Rules 

DS_A_ALlASED Object(DS_C_ - No E -
OBJECT_NAME NAME) 

DS_A_BUSINESS - String(OM_S_ 1-128 Yes E,S 
CATEGORY TELETEX_ 

STRING) 

DS_A_COMMON - String(OM_S_ 1-64 Yes E,S 
NAME TELETEX_ 

STRING) 

DS_A_COUNTRY_ String(OM_S_ 2 No E 
NAME PRINTABLE 

STRING)1 
-

DS_A_ String(OM_S_ 1-1024 Yes E,S 
DESCRIPTION TELETEX_ 

STRING) 

DS_A_DEST_ String(OM_S_ 1-128 Yes E,S 
INDICATOR PRINTABLE_ 

STRING)2 

DS_A_FACSIMILE_ Object(DS_C_ - Yes -
PHONE_NBR FACSIMILE_ 

PHONE_NBR) 

DS_A_INTERNAT_ String(OM_S_ 1-16 Yes -
ISDN_NBR NUMERIC 

STRING)3-

DS_A_ String(OM_S_ - Yes E,S 
KNOWLEDGE_INFO TELETEX_ 

STRING) 

DS_A_LOCALITY _ String(OM_S_ 1-128 Yes E,S 
NAME TELETEX_ 

STRING) 

DS_A_MEMBER Object(DS_C_ - Yes E 
NAME)_ 

32-6 OSF DeE Application Development Guide 



Basic Directory Contents Package 

Value Multi- Matching 
Attribute Type OM Value Syntax Length valued Rules 

DS_A_OBJECT_ String(OM_S_ - Yes E 
CLASS OBJECT_ 

IDENTIFIER_ 
STRING) 

DS_A_ORG - String(OM_S_ 1-64 Yes E,S 
NAME TELETEX_ 

STRING) 

DS_A_ORG - String(OM_S_ 1-64 Yes E,S 
UNIT_NAME TELETEX_ 

STRING) 

DS_A_OWNER Object(OS_C_ - Yes E 
NAME) 

DS_A_PHYS - String(OM_S_ 1-128 Yes E,S 
DELIV _OFF _NAME TELETEX_ 

STRING) 

DS_A_POST_ String(OM_S_ 1-40 Yes E,S 
OFFICE_BOX TELETEX_ 

STRING) 

DS_A_POSTAL_ Object(DS _ C_ - Yes E 
ADDRESS POSTAL_ 

ADDRESS) 

DS_A_POSTAL_ String(OM_S_ 1-40 Yes E,S 
CODE TELETEX_ 

STRING) 

DS_A_PREF_ Enum(DS_Preferred - Yes -
DELIV _METHOD De live ry_ 

Method) 

DS_A_ Object(DS_C_ - No E 
PRESENTATION PRESENTATION - -
ADDRESS ADDRESS) 

DS_A_ Object(DS_C_ - Yes -
REGISTERED _ POSTAL_ 
ADDRESS ADDRESS) 

OSF DeE Application Development Guide 32-7 



XDS/XOM Supplementary Information 

Value Multi- Matching 
Attribute Type OM Value Syntax Length valued Rules 

DS_A_ROLE_ Object(OS_C_ - Yes E 
OCCUPANT NAME) 

DS_A_SEARCH Object(DS_C_ - Yes --
GUIDE SEARCH -

GUIDE) 

DS_A_SEE_ Object(OS_C_ - Yes E 
ALSO NAME) 

DS_A_SERIAL_ String(OM_S_ 1-64 Yes E,S 
NBR PRINTABLE -

STRING) 

DS_A_STATE_ String(OM_S_ 1-128 Yes E,S 
OR_PROV_NAME TELETEX_ 

STRING) 

DS_A_STREET_ String(OM_S_ 1-128 Yes E,S 
ADDRESS TELETEX 

STRING) 

DS_A_SUPPORT_ String(OM_S_ - Yes E 
APPLlC_CONTEXT OBJECT_ 

IDENTIFIER -
STRING) 

DS_A_SURNAME String (OM_S_ 1-64 Yes E,S 
TELETEX_ 
STRING) 

DS_A_PHONE_ String(OM_S_ 1-32 Yes E,S 
NBR PRINTABLE 

STRING)4 
-

DS_A_TELETEX_ Object(DS_C_ - Yes -
TERM_IDENT TELETEX -

TERM_IDENT) 

DS_A_TELEX_ Object(DS_C_ - Yes -
NBR TELEX_ 

NBR) 

32-8 OSF DeE Application Development Guide 



Basic Directory Contents Package 

Value Multi- Matching 
Attribute Type OM Value Syntax Length valued Rules 

DS_A_TITLE String(OM_S_ 1-64 Yes E,S 
TELETEX -
STRING) 

DS_A_USER String(OM_S_ 0-128 Yes --
PASSWORD OCTET_ 

STRING) 

DS_~X121 - String(OM_S_ 1-15 Yes E,S 
ADDRESS NUMERIC 

STRING)5-

1 As permitted by ISO 3166. 
2As permitted by Recommendations F.1 and F.31. 
3As permitted by E.164. 
4As permitted by E.123 (for example, +44582 10101). 
5As permitted by X.121. 

Throughout the descriptions that follow, the tenn object indicates the 
directory object whose directory entry contains the corresponding directory 
attributes. 

o DS_A_ALIASED_OBJECT_NAME 

This attribute occurs only in alias entries. It assigns the Distinguished 
Name (DN) of the object provided with an alias using the entry in which 
this attribute occurs. An alias is an alternative to an object's DN. Any 
object can (but need not) have one or more aliases. The Directory 
Service is said to dereference an alias whenever it replaces the alias 
during name processing with the distinguished name associated with it 
by means of this attribute . 

• DS A BUSINESS CATEGORY - - -
This attribute provides descriptions of the businesses in which the 
object is engaged . 

• DS A COMMON NAME - - -
This attribute provides the names by which the object is commonly 
known in the context defined by its position in the DIT. The names can 
confonn to the naming convention of the country or culture with which 
the object is associated. They can be ambiguous. 

OSF DeE Application Development Guide 32-9 



XDS/XOM Supplementary Information 

32-10 

• DS A COUNTRY NAME - - -
This attribute identifies the country in which the object is located or 
with which it is associated in some other important way. The matching 
rules require that differences in the case of alphabetical characters be 
considered insignificant. It has a length of two characters and its values 
are those listed in ISO 3166. 

• DS A DESCRIPTION 

This attribute gives informative descriptions of the object. 

• DS A DEST INDICATOR - - -
This attribute provides the country-city pairs by means of which the 
object can be reached via the public telegram service. The matching 
rules require that differences in the case of alphabetical characters be 
considered insignificant. 

• DS A FACSIMILE PHONE NBR - - --
This attribute provides the telephone numbers for facsimile terminals 
(and their parameters, if required) by means of which the object can be 
reached or with which it is associated in some other important way. 

• DS A INTERN AT ISDN NBR - -
This attribute provides the international ISDN numbers by means of 
which the object can be reached or with which it is associated in some 
other important way. The matching rules require that differences caused 
by the presence of spaces be considered insignificant. 

• DS A KNOWLEDGE INFO - - -
This attribute occurs only in entries that describe a DSA. It provides a 
human-intelligible accumulated description of the directory knowledge 
possessed by the DSA. 

• DS A LOCALITY NAME - - -
This attribute identifies geographical areas or localities. When used as 
part of a directory name, it specifies the localities in which the object is 
located or with which it is associated in some other important way. 

• DS A MEMBER 

This attribute gives the names of objects that are considered members of 
the present object; for example, a distribution list for electronic mail. 

OSF DeE Application Development Guide 



Basic Directory Contents Package 

• DS_A_OBJECT_CLASS 

This attribute identifies the object classes to which the object belongs, 
and also identifies their superclasses. All such object classes that have 
object identifiers assigned to them are present, except that object class 
DS _ 0 _TOP need not (but can) be present provided that some other 
value is present. This attribute must be present in every entry and 
cannot be modified. For a further discussion, see Section 32.3. 

• DS A ORG NAME 

This attribute identifies organizations. When used as part of a directory 
name, it specifies an organization with which the object is affiliated. 
Several values can identify the same organization in different ways. 

• DS A ORG UNIT NAME - - - -
This attribute identifies organizational units. When used as part of a 
directory name, it specifies an organizational unit with which the object 
is affiliated. The units are understood to be parts of the organization 
that the DS A ORG NAME attribute indicates. Several values can - - -
identify the same unit in different ways. 

• DS A OWNER 

This attribute gives the names of objects that have responsibility for the 
object. 

• DS A PHYS DELIV OFF NAME - --
This attribute gives the names of cities, towns, villages, and so on, that 
contain physical delivery offices through which the object can take 
delivery of physical mail. 

• DS A POST OFFICE BOX - - - -
This attribute identifies post office boxes at which the object can take 
delivery of physical mail. This information is also displayed as part of 
the DS _A_POSTAL _ADDRESS attribute, if it is present. 

• DS A POSTAL ADDRESS - - -
This attribute gives the postal addresses at which the object can take 
delivery of physical mail. The matching rules require that differences in 
the case of alphabetical characters be considered insignificant. 

OSF DeE Application Development Guide 32-11 



XDS/XOM Supplementary Information 

32-12 

• DS A POSTAL CODE - - -
This attribute gives the postal codes that are assigned to areas or 
buildings through which the object can take delivery of physical mail. 
This information is also displayed as part of the 
DS_A_POSTAL_ADDRESS attribute, if it is present. 

• DS A PREF DELIV METHOD - -
This attribute gives the object's preferred methods of communication, in 
the order of preference. The values are as follows: 

- DS_ANY_DELIV_METHOD, meaning that the object has no 
preference. 

- DS_G3_FACSIMILE_DELIV, meaning via the Group 3 facsimile. 

- DS_G4_FACSIMILE_DELIV, meaning via the Group 4 facsimile. 

- DS _lAS_TERMINAL _DELIV, meaning via the IA5 text. 

- DS _MHS _ DELIV, meaning via XAOO. 

- DS _PHYS _ DELIV, meaning via the postal or other physical 
delivery system. 

- DS_PHONE_DELIV, meaning via telephone. 

- DS _ TELETEX _ DELIV, meaning via teletex. 

- DS _TELEX _ DELIV, meaning via telex. 

- DS _ VIDEOTEX _DELIV, meaning via videotex. 

• DS A PRESENTATION ADDRESS - - -
This attribute contains the OSI presentation address of the object, which 
is an OSI application entity. The matching rule for a presented value to 
match a value stored in the directory is that the P-Selector, S-Selector, 
and T -Selector of the two presentation addresses must be equal, and the 
N-Addresses of the presented value must be a subset of those of the 
stored value. 

OSF DeE Application Development Guide 



Basic Directory Contents Package 

• DS A REGISTERED ADDRESS 

This attribute contains mnemonics by means of which the object can be 
reached via the public telegram service, according to Recommendation 
F.1. A mnemonic identifies an object in the context of a particular city, 
and is registered in the country containing the city. The matching rules 
require that differences in the case of alphabetical characters be 
considered insignificant. 

• DS A ROLE OCCUPANT 

This attribute occurs only in entries that describe an organizational role. 
It gives the names of objects that fulfill the organizational role. 

• DS A SEARCH GUIDE 

This attribute contains the criteria that can be used to build filters for 
conducting searches in which the object is the base object. 

• DS A SEE ALSO 

This attribute contains the names of objects that represent other aspects 
of the real-world object that the present object represents. 

• DS A SERIAL NBR 

This attribute contains the serial numbers of a device. 

o DS A STATE OR PROV NAME - - -
This attribute specifies a state or province. When used as part of a 
directory name, it identifies states, provinces, or other geographical 
regions in which the object is located or with which it is associated in 
some other important way. 

• DS A STREET ADDRESS 

This attribute identifies a site for the local distribution and physical 
delivery of mail. When used as part of a directory name, it identifies the 
street address (for example, street name and house number) at which the 
object is located or with which it is associated in some other important 
way. 

• DS A SUPPORT APPLIC CONTEXT - - - -
This attribute occurs only in entries that describe an OSI application 
entity. It identifies OSI application contexts supported by the object. 

OSF DeE Application Development Guide 32-13 



XDS/XOM Supplementary Information 

32-14 

• DS A SURNAME 

This attribute occurs only in entries that describe individuals. The 
surname by which the individual is commonly known, normally 
inherited from the individual's parent (or parents) or taken at marriage, 
as determined by the custom of the country or culture with which the 
individual is associated. 

• DS A PHONE NBR - - -
This attribute identifies telephones by means of which the object can be 
reached or with which it is associated in some other important way. The 
matching rules require that differences caused by the presence of spaces 
and dashes be considered insignificant. 

• DS A TELETEX TERM IDENT - - --
This attribute contains descriptions of teletex terminals by means of 
which the object can be reached or with which it is associated in some 
other important way. 

• DS A TELEX NBR - - -
This attribute contains descriptions of telex terminals by means of 
which the object can be reached or with which it is associated in some 
other important way. 

• DS A TITLE 

This attribute identifies positions or functions of the object within its 
organization. 

• DS A USER PASSWORD - - -
This attribute contains the passwords assigned to the object. 

• DS A X121 ADDRESS - - -
This attribute identifies points on the public data network at which the 
object can be reached or with which it is associated in some other 
important way. The matching rules require that differences caused by 
the presence of spaces be considered insignificant. 

OSF DeE Application Development Guide 



Basic Directory Contents Package 

32.2 Selected Object Classes 

This section presents the object classes that are defined in the standards. 
Object classes are groups of directory entries that share certain 
characteristics. The object classes are arranged into a lattice, based on the 
object class DS _ 0 _TOP. In a lattice, each element, except a leaf, has one 
or more immediate subordinates but also has one or more immediate 
superiors. This contrasts with a tree, where each element has exactly one 
immediate superior. Object classes closer to DS _ 0 _TOP are called 
superclasses, and those further away are called subclasses. This 
relationship is not connected to any other such relationship in this guide. 

Each directory entry belongs to an object class, and to all the superclasses 
of that object class. Each entry has an attribute named 
DS _ A_OBJECT _ CLASS, which was discussed in the previous section, 
and which identifies the object classes to which the entry belongs. The 
values of this attribute are object identifiers, which are represented in the 
interface by constants with the same name as the object class, prefixed by 
DS O. 

Associated with each object class are zero or more mandatory and zero or 
more optional attributes. Each directory entry must contain all the 
mandatory attributes and can (but need not) contain the optional attributes 
associated with the object class and its superclasses. 

The object classes defined in the standards are shown in Table 32-3, 
together with their object identifiers. 

Note: The third and fourth columns of Table 32-3 contain the 
contents octets of the BER encoding of the object identifier. 
All these object identifiers stem from the root Goint-iso
ccitt(2) ds(5) objectClass(6)}. 

OSF DeE Application Development Guide 32-15 



XDS/XOM Supplementary Information 

Table 32-3. Object Identifiers for Selected Object Classes 

Object Identifier BER 

Package Attribute Type Oecimal Hexidecimal 

SOCP OS_O_ALIAS 8S, 6, 1 \xSS\X06\X01 
SOCP OS_O_APPLlC_ENTITY 8S,6,12 \xSS\x06\xOC 
SOCP OS_O_APPLlC_PROCESS 8S,6,11 \xSS\x06\xOS 
SOCP OS_O_COUNTRY 8S,6,2 \XSS\X06\x02 
SOCP OS_O_OEVICE 8S,6,14 \xSS\x06\x0 E 
SOCP OS_O_OSA 8S,6,13 \xSS\x06\xOD 
SOCP OS_O_GROUP_OF_NAMES 8S,6,9 \xSS\x06\x09 

SOCP OS_O_LOCALITY 8S,6,3 \xSS\x06\x03 
SOCP OS_O_ORG 8S,6,4 \xSS\X06\X04 
SOCP OS_O_ORG_PERSON 8S,6,7 \xSS\x06\x07 
SOCP OS_O_ORG_ROLE 8S,6,8 \xSS\x06\x08 
SOCP OS_O_ORG_UNIT 8S,6,S \xSS\x06\xOS 
SOCP OS_O_PERSON 8S,6,6 \xSS\x06\x06 
SOCP OS_O_RESIOENTIAL_ 8S, 6, 10 \xSS\x06\xOA 

PERSON 
SOCP OS_O_TOP 8S,6,0 \xSS\x06\xOO 

32.3 OM Class Hierarchy 

32-16 

The remainder of this chapter defines the additional OM classes used to 
represent values of the selected attributes described in Section 32.1. Some 
of the selected attributes are represented by OM classes that are used in the 
interface itself, and hence are defined in Chapter 30; for example, 
DS _ C _NAME. As mentioned in the introductory text to this chapter, an 
explanation of the purpose of these attributes is beyond the scope of this 
guide. 

This section shows the hierarchical organization of the OM classes that are 
defined in the following sections, and it shows which OM classes inherit 
additional OM attributes from their OM superclasses. In the following list, 
subclassification is indicated by indentation, and the names of abstract OM 
classes are in italics. For example, DS_C_POSTAL_ADDRESS is an 
immediate subclass of the abstract OM class OM C OBJECT. 

OSF DCE Application Development Guide 



Basic Directory Contents Package 

OM C OBJECT 

• DS C FACSIMILE PHONE NBR - - --
• DS C POSTAL ADDRESS - - -
• DS C SEARCH CRITERION 

• DS C SEARCH GUIDE 

• DS C TELETEX TERM IDENT - - --
• DS C TELEX NBR - - -

None of the OM classes in the preceding list are encodable using 
om _ encode( ) and om _ decode( ). 

32.4 DS C FACSIMILE PHONE NBR 

An instance of OM class DS C FACSIMILE PHONE NBR identifies - - --
and describes a facsimile terminal, if required. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 32-4. 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_PARAMETERS Object(MH_C_ - o or 1 -
G3 FAX_ 
NBPS)1 

OS_PHONE_NBR String (OM_S_ 1-32 1 -
PRINTABLE_ 
STRING)2 

1 As defined in the X.400 API Specifications. 
2As permitted by E.123 (for example, +44582 10101). 

• DS PARAMETERS 

If present, this attribute identifies the facsimile terminal's nonbasic 
capabilities. 

OSF DeE Application Development Guide 32-17 



XDS/XOM Supplementary Information 

• DS PHONE NBR - -
This attribute contains a telephone number by means of which the 
facsimile terminal is accessed. 

32.5 DS C POSTAL ADDRESS 

An instance of OM class DS _ C _POSTAL_ADDRESS is a postal address. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attribute listed in Table 32-5. 

Table 32-5. OM Attribute of DS_C_POSTAL_ADDRESS 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_POSTAL_ String(OM_S_ 1-30 1-6 -
ADDRESS TELETEX -

STRING) 

• DS POSTAL ADDRESS - -
Each value of this OM attribute is one line of the postal address. It 
typically includes a name, street address, city name, state or province 
name, postal code, and possibly a country name. 

32.6 DS C SEARCH CRITERION 

32-18 

An instance of OM class DS_C_SEARCH_CRITERION is a component 
ofa DS_C_SEARCH_GUIDE OM object. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 32-6. 

OSF DCE Application Development Guide 



Basic Directory Contents Package 

Table 32-6. OM Attributes of DS_C_SEARCH_CRITERION 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_ String(OM_S_ - o or 1 -
ATTRIBUTE - OBJECT_ 
TYPE IOENTIFIER_ 

STRING) 

OS_CRITERIA Object(OS_C_ - o or more -
SEARCH -
CRITERION) 

OS_FILTER Enum(OS_Filter_ - o or 1 --
ITEM_TYPE Item_Type) 

OS_FILTER_ Enum(OS_Filter_ - 1 OS_ITEM 
TYPE Type) 

A DS _ C _SEARCH_CRITERION suggests how to build part of a filter to 
be used when searching the directory. Its meaning depends on the value of 
its OM attribute DS_FILTER_TYPE. If the value is DS_ITEM, then the 
criterion suggests building an instance of OM class 
DS_C_FILTER_ITEM. If DS_FILTER_TYPE has any other value, it 
suggests building an instance of OM class DS _ C _FILTER . 

• DS ATTRIBUTE TYPE - -
This attribute indicates the attribute type to be used in the suggested 
DS _ C _FILTER_ITEM. This OM attribute is only present when the 
value of DS FILTER TYPE is DS ITEM. - - -

• DS CRITERIA 

This attribute contains nested search criteria. This OM attribute is not 
present when the value of DS_FILTER_TYPE is DS_ITEM . 

• DS FILTER ITEM TYPE - - -
This attribute indicates the type of suggested filter item. Its value can 
be one of the following: 

- DS APPROXIMATE MATCH - -
- DS_EQUALITY 

OSF DCE Application Development Guide 32-19 



XDS/XOM Supplementary Information 

- DS_GREATER_OR_EQUAL 

- DS_LESS_OR_EQUAL 

- DS SUBSTRINGS 

However, the filter item cannot have the value DS _PRESENT. This 
OM attribute is only present when the value of DS_FILTER_TYPE is 
DS ITEM. 

• DS FITER TYPE - -
This attribute indicates the type of suggested filter. The value 
DS _ITEM means that the suggested component is a filter item, not a 
filter. The other values suggest the corresponding type of filter. Its 
value is one of the following: 

- DS AND 

- DS ITEM 

- DS NOT 

- DS OR 

32.7 DS C SEARCH GUIDE 

32-20 

An instance of OM class DS _ C _SEARCH_GUIDE suggests a criterion for 
searching the directory for particular entries. It can be used to build a 
DS _ C _FILTER parameter for ds _searchO operations that are based on the 
object in whose entry the search guide occurs. 

An instance of this OM class has the OM attributes of its superclass, 
OM_C_OBJECT, in addition to the OM attributes listed in Table 32-7. 

OSF DeE Application Development Guide 



Basic Directory Contents Package 

Table 32-7. OM Attributes of DS_C_SEARCH_GUIDE 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_OBJECT_CLASS String (OM_S_ - o or 1 -
OBJECT_ 
IOENTIFIER -
STRING) 

OS_CRITERIA Object(OS_C_ - 1 -
SEARCH -
CRITERION) 

• DS_OBJECT_CLASS 

This attribute identifies the object class of the entries to which the 
search guide applies. If this OM attribute is absent, the search guide 
applies to objects of any class . 

• DS CRITERIA 

This attribute contains the suggested search criteria. 

32.8 DS C TELETEX TERM IDENT 

An instance of OM class DS C TELETEX TERM IDENT identifies and - -
describes a teletex terminal. 

An instance of this OM class has the OM attributes of its superclass, 
OM_C_OBJECT, in addition to the OM attributes listed in Table 32-8. 

OSF DCE Application Development Guide 32-21 



XDS/XOM Supplementary Information 

Value Value Value Value 
OM Attribute Syntax Length Number Initially 

OS_PARAMETERS Object(MH_C_ - o or 1 -
TELETEX_ 
NBPS)1 

OS_TELETEX_ String(OM_S_ 1-1024 1 -
TERM PRINTABLE -

STRfNG)2 

, As defined in the X.400 API Specifications. 
2As permitted by F.200 . 

• DS PARAMETERS 

This attribute identifies the teletex terminal's nonbasic capabilities . 

• DS TELETEX TERM - -
This attribute identi fies the teletex terminal. 

32.9 DS C TELEX NBR 

32-22 

An instance of OM class DS C TELEX NBR identifies and describes a - - -
telex terminal. 

An instance of this OM class has the OM attributes of its superclass, 
OM_C_OBJECT, in addition to the OM attributes listed in Table 32-9. 

OSF DeE Application Development Guide 



Basic Directory Contents Package 

Table 32-9. OM Attributes of DS_C_TELEX_NBR 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

OS_ANSWERBACK String(OM_S_ 1-8 1 -
PRINTABLE -
STRING) 

OS_COUNTRY_COOE String(OM_S 1-4 1 -
PRINTABLE -
STRING) 

OS_ TELEX_NBR String(OM_S_ 1-14 1 -
PRINTABLE -
STRING) 

• DS ANSWERBACK 

This attribute contains the code with which the telex tenninal 
acknowledges calls placed to it. 

• DS COUNTRY CODE - -
This attribute contains the identifier of the country through which the 
telex tenninal is accessed. 

• DS TELEX NBR - -
This attribute contains the number by means of which the telex tenninal 
is addressed. 

OSF DCE Application Development Guide 32-23 





Chapter 33 

MRS Directory User Package 

The Message Handling Systems Directory User Package (MDUP) contains 
definitions to support the use of the directory in accordance with the 
standard 1988 XAOO User Agents and Message Transfer Agents (MTAs) for 
name resolution, Distribution List (DL) expansion, and capability 
assessment. The definitions are based upon the attribute types and syntaxes 
specified in X.402, Annex A. 

The MDUP is an optional package that can be used by the XDS interface. 
Applications must negotiate use of this package with ds _ version() before 
using any of the MDUP features. If an application attempts to use features 
specific to the package without first negotiating its use, an appropriate error 
(for example, OM_NO_SUCH_CLASS) is returned by the Object 
Management (OM) function. 

The object identifier associated with the MDUP is {iso(l) identified
organization(3) icd-ecma(OOI2) member-company(2) dec(1011) 
xopen(28) mdup(3)} with the following encoding: 

\x2B\xC\x2\xS7\x73\xlC\x3 

This identifier is represented by the constant DS_MHS_DIR_USER_PKG. 
The C constants associated with this package are defined in the xdsmdup.h, 
xmhp.h, and xmsga.h header files (see the aSF DeE Application 
Development Reference). 

OSF DeE Application Development Guide 33-1 



XDS/XOM Supplementary Information 

The concepts and notation used are first mentioned in Section 30.1. They 
are also fully explained in Chapters 35 through 37. The attribute types are 
introduced first, followed by the object classes. Next, the OM class 
hierarchy and OM class definitions required to support the new attribute 
types are described. 

33.1 MDUP Attribute Types 

33-2 

This section presents additional directory attribute types that are used with 
the MDUP. Each attribute type has an object identifier, which is the value 
of the OM attribute DS_ATTRIBUTE_TYPE. These object identifiers are 
represented in the interface by constants with the same name as the 
directory attribute and are prefixed by DS _A_so that they can be easily 
identified. 

This section contains two tables that are used to indicate the object 
identifiers for MDUP attribute types (see Table 33-1), and the values for 
MDUP attribute types (see Table 33-2), respectively. Following these two 
tables is a brief description of each attribute. (See Section 32.1 for 
information on general matching rules). 

Note: The third and fourth columns of Table 33-1 contain the 
contents octets of the BER encoding of the object identifier. 
All these object identifiers stem from the root {joint-iso
ccitt(2) mhs-motis(6) arch(5) at(2)}. 

OSF DeE Application Development Guide 



MHS Directory User Package 

Table 33-1. Object Identifiers for MDUP Attribute Types 

Object Identifier BER 

Package Attribute Type Decimal Hexidecimal 

MDUP DS_A_DELIV _ 86,S,2,0 \xS6\xOS\x02\x00 
CONTENT_ 
LENGTH 

MDUP DS_A_DELIV _ 86,S,2,1 \xS6\xOS\x02\xO 1 
CONTENT_ 
TYPES 

MDUP DS_A_DELIV _EITS 86,S,2,2 \XS6\xOS\X02\X02 

MDUP DS_A_DL_MEMBERS 86,S,2,3 \XS6\XOS\x02\X03 

MDUP DS_A_DL_SUBMIT_ 86,S,2,4 \XS6\XOS\x02\X04 
PERMS 

MDUP DS_A_MESSAGE_ 86,S,2,S \XS6\XOS\x02\XOS 
STORE 

MDUP DS_A_OR - 86,S,2,6 \XS6\XOS\x02\X06 
ADDRESSES 

MDUP DS_A_PREF _DELlV_ 86,S,2,7 \xS6\xOS\x02\x07 
METHODS 

MDUP DS_A_SUPP_AUTO_ 86,S,2,8 \xS6\XOS\X02\X08 
ACTIONS 

MDUP DS_A_SUPP_ 86,S,2,9 \xS6\XOS\X02\X09 
CONTENT_ 
TYPES 

MDUP DS_A_SUPP_OPT_ 86,S,2,10 \xS6\XOS\X02\XOA 
ATTRIBUTES 

OSF DeE Application Development Guide 33-3 



XDS/XOM Supplementary Information 

Table 33-2. Representation of Values for MDUP Attribute Types 

Value Multi- Matching 
Attribute Type OM Value Syntax Length valued Rules 

DS_A_DELIV _ OM_S_ - No -
CONTENT_ INTEGER 
LENGTH 

DS_A_DELIV _ String(OM_S_ - Yes -
CONTENT OBJECT_ 
TYPES IDENTIFIER_ 

STRING) 

DS_A_DELIV _ String(OM_S_ - Yes -
EITS OBJECT_ 

IDENTIFIER -
STRING) 

DS_A_DL_ Object(DS_C_ - Yes -
MEMBERS OR_NAME) 

DS_A_DL_ Object(DS_C_ - Yes -
SUBMIT DL_SUBMIT_ 
PERMS PERMS) 

DS_A_MESSAGE_ String (DS_C_ - No -
STORE DS_DN) 

DS_A_OR_ Object(MH_C_ - Yes -
ADDRESSES OR_ADDRESS) 

DS_A_PREF_ Enum(MH_ - No E 
DELlV_ Delivery_ 
METHODS Mode) 

DS_A_SUPP_ String(OM_S_ - Yes -
AUTO_ OBJECT_ 
ACTIONS IDENTIFIER -

STRING) 

DS_A_SUPP_ String(OM_S_ - Yes -
CONTENT_ OBJECT_ 
TYPES IDENTIFIER_ 

STRING) 

33-4 OSF DeE Application Development Guide 



MHS Directory User Package 

Value Multi- Matching 
Attribute Type OM Value Syntax Length valued Rules 

DS_A_SUPP_ String(OM_S_ - Yes -
OPT_ OBJECT_ 
ATTRIBUTES IDENTIFIER -

STRING) 

Throughout the descriptions that follow, the term object indicates the 
directory object whose directory entry contains the corresponding directory 
attributes. 

• DS A DELIV CONTENT LENGTH - - - -
This attribute identifies the maximum content length of the messages 
whose delivery a user will accept. 

• DS A DELIV CONTENT TYPES - - - -
This attribute identifies the content types of the messages whose 
delivery a user will accept. 

• DS A DELIV EITS - - -
This attribute identifies the Encoded Information Types (EITs) of the 
messages whose delivery a user will accept. 

• DS A DL MEMBERS - - -
This attribute identifies the members of a DL. 

• DS A DL SUBMIT PERMS - -
This attribute identifies the users and DLs that may submit messages to 
aDL. 

• DS A MESSAGE STORE - - -
This attribute identifies a user's Message Store (MS) by name. 

• DS A OR ADDRESSES - - -
This attribute specifies a user's or DL's Originator/Recipient (O/R) 
addresses. 

• DS A PREF DELIV METHODS - - - -
This attribute identifies, in the order of decreasing preference, the 
methods of delivery a user prefers. 

OSF DeE Application Development Guide 33-5 



XDS/XOM Supplementary Information 

• DS A SUPP AUTO ACTIONS - - - -
This attribute identifies the automatic actions that an MS fully supports. 

• DS A SUPP CONTENT TYPES - - - -
This attribute identifies the content types of the messages whose syntax 
and semantics an MS fully supports. 

• DS A SUPP OPT ATTRIBUTES - - - -
This attribute identifies the optional attributes that an MS fully supports. 

33.2 MDUP Object Classes 

There are five MDUP object classes and their associated object identifiers 
(see Table 33-3). 

Note: The third and fourth columns of Table 33-3 contain the 
contents octets of the BER encoding of the object identifier. 
MDUP object identifiers stem from the root {joint-iso-ccitt(2) 
mhs-motis(6) arch(S) oc(l)}. 

Table 33-3. Object Identifiers for MDUP Object Classes 

Object Identifier BER 
Package Object Class Decimal Hexidecimal 
MDUP DS_O_MHS_ 86,S, 1,0 \xS6\xOS\xO 1 \x00 

DISTRIBUTION_LIST 
MDUP DS_O_MHS_MESSAGE_ 86,S, 1, 1 \xS6\xOS\xO 1 \x0 1 

STORE 
MDUP DS_O_MHS_MESSAGE - 86,S,1,2 \xS6\xOS\x01 \x02 

TRANS_AG 
MDUP DS_O_MHS_USER 86,S,1,3 \xS6\xOS\xO 1 \X03 

MDUP DS_O_MHS_USER_AG 86,S,1,4 \xS6\xOS\x0 1 \X04 

33-6 OSF DCE Application Development Guide 



MHS Directory User Package 

33.3 MDUP OM Class Hierarchy 

The remainder of this chapter defines the additional OM classes used by 
MDUP. This section shows the hierarchical organization of the OM classes 
that are defined in the following sections, and shows which classes inherit 
additional OM attributes from their OM superclasses. In the following list, 
subclassification is indicated by indentation and the names of abstract OM 
classes are represented in italic font. 

• MH C OR ADDRESS 

- MH C OR NAME - - -
• DS C DL SUBMIT PERMS - - - -

None of the OM classes in the preceding list are encodable using 
om _ encode() and om _ decode( ). 

33.4 MH C OR ADDRESS 

An instance of class MH _ C _ OR_ADDRESS distinguishes one user or DL 
from another, and identifies its point of access to the Message Transfer 
System (MTS). Every user or DL is assigned one or more MTS access 
points and thus one or more originator/recipient (OIR) addresses. 

The attributes specific to this class are listed in Table 33-4. The 1988 
column indicates that the attribute applies only to the 1988 standard. 

OSF DeE Application Development Guide 33-7 



XDS/XOM Supplementary Information 

Table 33-4. Attributes Specific to MH_C_OR_ADDRESS 

Value Value 
Attribute Value Syntax Length Number 1988? 

MH T ADMD String(OM_S_ 0-16 o or 1 -
NAMEl - PRINTABLE -

STRING} 

MH_T_COMMON - String (OM_S_ 1-64 0-2 1988 
NAME PRINTABLE_ 

STRING} or 
String(OM_S_ 
TELETEX 
STRINGf-

MH T COUNTRY String(OM_S_ 2-3 o or 1 -
NAMEl - PRINTABLE -

STRING} 

MH_T_DOMAIN String(OM_S_ 1-8 0-24 --
TYPE_1 PRINTABLE_ 

STRING} or 
String(OM_S_ 
TELETEX 
STRINGf-;3 

MH_T_DOMAIN String(OM_S_ 1-8 0-24 --
TYPE_2 PRINTABLE_ 

STRING} or 
String(OM_S_ 
TELETEX 
STRING}2-;3 

MH_T_DOMAIN String (OM_S_ 1-8 0-24 --
TYPE_3 PRINTABLE_ 

STRING} or 
String (OM_S_ 
TELETEX 
STRING}2-;3 

33-8 OSF DCE Application Development Guide 



MHS Directory User Package 

Value Value 
Attribute Value Syntax Length Number 1988? 

MH_T_DOMAIN_ String (OM_S_ 1-8 0-24 -
TYPE_4 PRINTABLE_ 

STRING) or 
String(OM_S_ 
TELETEX 
STRING)2"] 

MH_T_DOMAIN String(OM_S_ 1-128 0-24 --
VALUE_1 PRINTABLE_ 

STRING) or 
String(OM_S_ 
TELETEX 
STRINGf"] 

MH_T_DOMAIN_ String(OM_S_ 1-128 0-24 -
VALUE_2 PRINTABLE_ 

STRING) or 
String(OM_S_ 
TELETEX 
STRINGf"] 

MH_T_DOMAIN String(OM_S_ 1-128 0-24 --
VALUE_3 PRINTABLE -

STRING) or 
String(OM_S_ 
TELETEX 
STRING)2.3 

MH_T_DOMAIN String(OM_S_ 1-128 0-24 --
VALUE_4 PRINTABLE -

STRING) or 
String(OM_S_ 
TELETEX 
STRING)2"] 

OSF DeE Application Development Guide 33-9 



XDS/XOM Supplementary Information 

Value Value 
Attribute Value Syntax Length Number 1988? 

MH_T_ String(OM_S_ 1-3 0-24 -
GENERATION PRINTABLE_ 

STRING) or 
String(OM_S_ 
TELETEX 
STRING)2:3 

MH_T_GIVEN String(OM_S_ 1-16 0-24 --
NAME PRINTABLE -

STRING) or 
String(OM_S_ 
TELETEX 
STRING)2:3 

MH_T_INITIALS String(OM_S_ 1-5 0-24 -
PRINTABLE -
STRING) or 
String(OM_S_ 
TELETEX 
STRING)2"] 

MH_T_ISDN - String(OM_S_ 1-15 o or 1 1988 
NUMBER NUMERIC_ 

STRING) 

MH_T_ISDN - String(OM_S_ 1-40 o or 1° 1988 
SUBADDRESS NUMERIC_ 

STRING) 

MH_T_NUMERIC_ String(OM_S_ 1-32 o or 1 -
USER - NUMERIC_ 
IDENTIFIER STRING) 

MH_T_ String(OM_S_ 1-64 0-24, 6 -
ORGANIZATION PRINTABLE - -
NAME STRING) or 

String(OM_S_ 
TELETEX 
STRiNG)2:3 

33-10 OSF DeE Application Development Guide 



MHS Directory User Package 

Value Value 
Attribute Value Syntax Length Number 1988? 

MH_T_ String (OM_S_ 1-32 0-24 -
ORGANIZATIONAL_ PRINTABLE -
UNIT _NAME_1 STRING) or 

String(OM_S_ 
TELETEX 
STRING)2-;3 

MH_T_ String(OM_S_ 1-32 0-24 -
ORGANIZATIONAL_ PRINTABLE -
UNIT_NAME_2 STRING) or 

String (OM_S_ 
TELETEX 
STRING)2-;3 

MH_T_ String (OM_S_ 1-32 0-24 -
ORGANIZATIONAL_ PRINTABLE -
UNIT_NAME_3 STRING) or 

String(OM_S_ 
TELETEX 
STRINGf-;3 

MH_T_ String (OM_S_ 1-32 0-24 -
ORGANIZATIONAL_ PRINTABLE -
UNIT_NAME_ 4 STRING) or 

String (OM_S_ 
TELETEX 
STRING)2-;3 

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
ADDRESS_ PRINTABLE -
DETAILS STRING) or 

String(OM_S_ 
TELETEX 
STRING)2-

MH_T_POSTAL_ String(OM_S_ 1-185 o or 1 1988 
ADDRESS_ TELETEX_ 
IN_FULL STRING) 

OSF DeE Application Development Guide 33-11 



XDS/XOM Supplementary Information 

Value Value 
Attribute Value Syntax Length Number 1988? 
MH_T_POSTAL_ String(OM_S_ 1-30 0-6 1988 
ADDRESS_ PRINTABLE -
IN_LINES STRING) 

MH_T_POSTAL_ String (OM_S_ 1-16 o or 1 1988 
CODE PRINTABLE -

STRING) 

MH_T_POSTAL_ String(OM_S_ 2-3 o or 1 1988 
COUNTRY_ PRINTABLE -
NAME STRING) 

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
DELIVERY_ PRINTABLE -
POINT_NAME STRING) or 

String(OM_S_ 
TELETEX 
STRINGf-

MH_T_POSTAL_ String(OM_S_ 1-16 o or 1 1988 
DELlV_ PRINTABLE -
SYSTEM_NAME STRING) 

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
GENERAL_ PRINTABLE -
DELlV_ADDR STRING) or 

String(OM_S_ 
TELETEX 
STRING)2-

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
LOCALE PRINTABLE_ 

STRING) or 
String(OM_S_ 
TELETEX 
STRING)2-

33-12 OSF DeE Application Development Guide 



MHS Directory User Package 

Value Value 
Attribute Value Syntax Length Number 1988? 

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
OFFICE_ PRINTABLE -
BOX_NUMBER STRING) or 

String(OM_S_ 
TELETEX 
STRING)2-

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
OFFICE_ PRINTABLE_ 
NAME STRING) or 

String (OM_S_ 
TELETEX 
STRING)2-

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
OFFCE_ PRINTABLE -
NUMBER STRING) or 

String(OM_S_ 
TELETEX 
STRING)2-

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
ORGANIZATION PRINTABLE - -
NAME STRING) or 

String(OM_S_ 
TELETEX 
STRING)2-

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
PATRON PRINTABLE - -
DETAILS STRING) or 

String(OM_S_ 
TELETEX 
STRINGf-

OSF DeE Application Development Guide 33-13 



XDS/XOM Supplementary Information 

Value Value 
Attribute Value Syntax Length Number 1988? 

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
PATRON PRINTABLE - -
NAME STRING} or 

String(OM_S_ 
TELETEX 
STRINGf-

MH_T_POSTAL_ String(OM_S_ 1-30 0-2 1988 
STREET_ PRINTABLE_ 
ADDRESS STRING} or 

String(OM_S_ 
TELETEX 
STRING}2-

MH_T_ Object(DS_C_ - o or 1 1988 
PRESENTATION PRESENTATION - -
ADDRESS ADDRESS} 

MH T PRMD String(OM_S_ 1-16 o or 1 -
NAME1 

-
PRINTABLE -
STRING} 

MH_T_SURNAME String(OM_S_ 1-40 0-24 -
PRINTABLE -
STRING} or 
String (OM_S_ 
TELETEX 
STRINGf:3 

MH_T_TERMINAL_ String (OM_S_ 1-24 o or 1 -
IDENTIFIER PRINTABLE_ 

STRING} 

MH_T_TERMINAL_ Enum(MH_ - o or 1 1988 
TYPE Terminal -

Type} 

MH_T_X121 String(OM_S_ 1-15 o or 1 --
ADDRESS NUMERIC_ 

STRING} 

33-14 OSF DeE Application Development Guide 



MHS Directory User Package 

Footnotes to Table 33-4 

1The value initially is the current session's attribute of the same name. 

21f only one value is present in international communications, its syntax is 

String(OM_S_PRINTABLE_STRING). If two values are present, in either domestic or 

international communications, the syntax of the first is String(OM_S_PRINTABlE_STRING), 

the syntax of the second is STRIN(OM_S_TELETEX_STRING), and the two convey the same 

information such that either can be safely ignored. For example, Teletex strings allow inclusion 

of the accented characters commonly used in many countries. Not all input/output devices, 

however, permit the entry and display of such characters. Printable strings are required 

internationally to ensure that such device limitations do not prevent cummunications. 

3For 1984, the syntax of the value is String(OM_S_PRINTABLE_STRING). 

4For 1984, at most one value is present. 

5This attribute is present only if the ISDN Number attribute is present. 

6For 1988, this attribute is required if any Organization Name is present. 

• MH T ADMD NAME - - -
This attribute contains the name of the user's or DL's Administration 
Management Domain (ADMD). It identifies the ADMD relative to the 
country that the MH_T_COUNTRY_NAME attribute indicates. Its 
values are defined by that country. 

Note that the attribute value that comprises a single space is reserved. If 
permitted by the country that the MH_T_COUNTRY;...NAME attribute 
indicates, a single space designates "any;" that is, all ADMDs within 
the country. This affects both the identification of users and DLs within 
the country and the routing of messages, probes, and reports to and 
among the ADMDs of that country. Regarding the former, it requires 
that the OIR addresses of users and DLs within the country be chosen so 
as to ensure their unambiguousness, even in the absence of the actual 
names of the users' and DLs' ADMDs. Regarding the latter, it permits 
both Private Management Domains (PRMD) within the country and 
ADMDs outside the country to route messages, probes, and reports to 
any of the ADMDs within the country indiscriminately. It also requires 
that the ADMDs within the country interconnect themselves in such a 
way that the messages, probes, and reports are conveyed to their 
destinations. 

OSF DeE Application Development Guide 33-15 



XDS/XOM Supplementary Information 

33-16 

• MH T COMMON NAME - - -
This attribute contains the name commonly used to refer to the user or 
DL. It identifies the user or DL relative to the entity indicated by 
another attribute; for example, MH_T_ORGANIZATION_NAME. Its 
values are defined by that entity. 

• MH T COUNTRY NAME - - -
This attribute contains the name of the user's or DL's country. Its 
defined values are the numbers that X.121 assigns to the country, or the 
character pairs that ISO 3166 assigns to it. 

• MH T DOMAIN TYPE 1 - -
This attribute contains the name of a class of information. Its values are 
defined by the user's or DL's ADMD and PRMD, if any, in combination. 

• MH T DOMAIN TYPE 2 - - --
This attribute contains the name of a class of information. Its values are 
defined by the user's or DL's ADMD and PRMD, if any, in combination. 

• MH T DOMAIN TYPE 3 - - --
This attribute contains the name of a class of information. Its values are 
defined by the user's or DL's ADMD and PRMD, if any, in combination. 

• MH T DOMAIN TYPE 4 - - --
This attribute contains the name of a class of information. Its values are 
defined by the user's or DL's ADMD and PRMD, if any, in combination. 

• MH T DOMAIN VALUE 1 - - - -
This attribute is an instance of the class of information that the 
MH T DOMAIN TYPE 1 attribute indicates. - - --

• MH T DOMAIN VALUE 2 - - - -
This attribute is an instance of the class of information that the 
MH T DOMAIN TYPE 2 attribute indicates. - - --

• MH T DOMAIN VALUE 3 - - - -
This attribute is an instance of the class of information that the 
MH T DOMAIN TYPE 3 attribute indicates. - - --

OSF DeE Application Development Guide 



MHS Directory User Package 

• MH T DOMAIN VALUE 4 - - - -
This attribute is an instance of the class of infonnation that the 
MH T DOMAIN TYPE 4 attribute indicates. - - --

• MH T GENERATION 

This attribute contains the user's generation; for example, Jnr. 

• MH T GIVEN NAME - - -
This attribute contains the user's given name; for example, Robert. 

• MH T INITIALS 

This attribute contains the initials of all of the user's names except the 
user's surname; for example, RE. 

• MH T ISDN NUMBER - - -
This attribute contains the ISDN number of the user's tenninal. Its 
values are defined by E.163 and E.164. 

• MH T ISDN SUBADDRESS - - -
This attribute contains the ISDN subaddress, if any, of the user's 
tenninal. Its values are defined by E.163 and E.164. 

• MH T NUMERIC USER IDENTIFIER - - --
This attribute numerically identifies the user or DL relative to the 
ADMD that the MH T ADMD NAME attribute indicates. Its values - - -
are defined by that ADMD. 

• MH T ORGANIZATION NAME - - -
This attribute contains the name of the user's or DL's organization. As a 
national matter, such names may be assigned' by the country that the 
MH _ T _ COUNTRY_NAME attribute indicates, the ADMD that the 
MH T ADMD NAME attribute indicates, the PRMD that the 
MH _ T _ PRMD _NAME attribute indicates, or the latter two 
organizations together. 

• MH T ORGANIZATIONAL UNIT NAME 1 - - - - -
This attribute contains the name of a unit (for example, a division or 
department) of the organization that the 
MH T ORGANIZATION NAME attribute indicates. The attribute's - - -
values are defined by that organization. 

OSF DeE Application Development Guide 33-17 



XDS/XOM Supplementary Information 

33-18 

• MH T ORGANIZATIONAL UNIT NAME 2 - - - - -
This attribute contains the name of a subunit (for example, a division or 
~~~ ~ ~ ~ ~ ~ 
MH T ORGANIZATIONAL UNIT NAME 1 attribute indicates. - - - - -
The attribute's values are defined by the latter unit.

• MH T ORGANIZATIONAL UNIT NAME 3 - - - - -
This attribute contains the name of a subunit (for example, a division or
department) of the unit that the
DS A ORGANIZATIONAL UNIT NAME 2 attribute indicates. - - - - -
The attribute's values are defined by the latter unit.

• MH T ORGANIZATIONAL UNIT NAME 4 - - - - -
This attribute contains the name of a subunit (for example, a division or
~~~ ~ ~ ~ ~ ~ 
MH T ORGANIZATIONAL UNIT NAME 3 attribute indicates. - - - - -
The attribute's values are defined by the latter unit. 

• MH T POSTAL ADDRESS DETAILS - - - -
This attribute contains the means (for example, a room and the floor 
numbers in a large building) for identifying the exact point at which the 
user takes delivery of physical messages. 

• MH T POSTAL ADDRESS IN FULL - - - - -
This attribute contains the free-form and possibly multiline postal 
address of the user as a single Teletex string with the lines being 
separated as prescribed for Teletex strings. 

• MH_T_POSTAL_ADDRESS_IN_LINES 

This attribute contains the free-form postal address of the user in a 
sequence of printable strings, each representing a line of text. 

• MH T POSTAL CODE - - -
This attribute contains the postal code for the geographical area in 
which the user takes delivery of physical messages. It identifies the area 
relative to the country that the MH_T_POSTAL_COUNTRY_NAME 
attribute indicates. Its values are defined by the postal administration of 
that country. 

OSF DeE Application Development Guide 



MHS Directory User Package 

• MH T POSTAL COUNTRY NAME - - - -
This attribute contains the name of the country in which the user takes 
delivery of physical messages. Its defined values are the numbers X.121 
assigns to the country, or the character pairs ISO 3166 assigns to it. 

• MH T POSTAL DELIVERY POINT NAME - - - --
This attribute identifies the locus of distribution, other than that 
indicated by the MH_T_POSTAL_OFFICE_NAME attribute (for 
example, a geographical area) of the user's physical messages. 

• MH T POSTAL DELIV SYSTEM NAME - - - - -
This attribute contains the name of the Postal Delivery System (PDS) 
through which the user is to receive physical messages. It identifies the 
PDS relative to the ADMD that the MH T ADMD NAME attribute - - -
indicates. Its values are defined by that ADMD. 

• MH T POSTAL GENERAL DELIV ADDRESS - - - --
This attribute contains the code that the user gives to the post office to 
collect the physical messages awaiting delivery to the user. The post 
office is indicated in the MH T POSTAL OFFICE NAME attribute. - - - -
The values for the MH T POSTAL GENERAL DELIV ADDRESS - - - --
attribute are defined by that post office. 

• MH T POSTAL LOCALE - - -
This attribute identifies the point of delivery, other than that indicated 
by the following attributes: 

- MH T POSTAL GENERAL DELIV ADDR - - - --
- MH T POSTAL OFFICE BOX NUMBER - --
- MH T POSTAL STREET ADDRESS. - - - -
For example, a building or a hamlet of the user's physical messages. 

• MH T POSTAL OFFICE BOX NUMBER - - - --
This attribute contains the number of the post office box by means of 
which the user takes delivery of physical messages. The box is located 
at the post office that the MH _ T _POSTAL_OFFICE_NAME attribute 
indicates. The attribute's values are defined by that post office. 

OSF DeE Application Development Guide 33-19 



XDS/XOM Supplementary Information 

33-20 

• MH T POSTAL OFFICE NAME - - - -
This attribute contains the name of the municipality (for example, city 
or village) where the post office is situated through which the user takes 
delivery of physical messages. 

• MH T POSTAL OFFICE NUMBER - -
This attribute contains the means of distinguishing among several post 
offices indicated by the MH_T_POSTAL_OFFICE_NAME attribute. 

• MH T POSTAL ORGANIZATION NAME - - - -
This attribute contains the name of the organization through which the 
user takes delivery of physical messages. 

• MH T POSTAL PATRON DETAILS - - - -
This attribute contains additional information (for example, the name of 
the organizational unit through which the user takes delivery of physical 
messages) necessary to identify the user for purposes of physical 
delivery. 

• MH_T_POSTAL_PATRON_NAME 

This attribute contains the name under which the user takes delivery of 
physical messages. 

• MH T POSTAL STREET ADDRESS - - - -
This attribute contains the street address (for example, 43 Primrose 
Lane) at which the user takes delivery of physical messages. 

• MH T PRESENTATION ADDRESS - - -
This attribute contains the presentation address of the user's terminal. 

• MH T PRMD NAME 

This attribute contains the name of the user's PRMD. As a national 
matter, such names may be assigned by the country that the 
MH T COUNTRY NAME attribute indicates or the ADMD that the 
'1\1:H - T - ADMD NAME attribute indicates. 

• MH T SURNAME 

This attribute contains the user's surname; for example, Lee. 

OSF DeE Application Development Guide 



MHS Directory User Package 

• MH T TERMINAL IDENTIFIER 

This attribute contains the terminal identifier of the user's terminal; for 
example, a Telex answer back or a Teletex terminal identifier. 

• MH T TERMINAL TYPE 

This attribute contains the type of the user's terminal. Its value IS 

selected from the following: 

- MH TT G3 FAX - - -
- MH TT G4 FAX - - -
- MH TT lAS TERMINAL - - -
- MH TT TELETEX 

- MH TT TELEX 

- MH TT VIDEOTEX 

The meaning of each value is indicated by its name. 

• MH T X121 ADDRESS - - -
This attribute contains the network address of the user's terminal. Its 
values are defined by X.121. 

Note: The strings admitted by X.121 include a telephone number 
preceded by the telephone escape digit (9), and a Telex 
number preceded by the Telex escape digit (8). 

Certain attributes are grouped together for reference as follows: 

• Personal Name Attributes 

These comprise the following: 

- MH T GIVEN NAME 

- MH T INITIALS 

- MH T SURNAME 

- MH T GENERATION 

OSF DeE Application Development Guide 33-21 



XDS/XOM Supplementary Information 

33-22 

• Organizational Unit Name Attributes 

These comprise the following: 

- MH T ORGANIZATIONAL UNIT NAME 1 - - - - -
- MH T ORGANIZATIONAL UNIT NAME 2 - - - - -
- MH T ORGANIZATIONAL UNIT NAME 3 - - - - -
- MH T ORGANIZATIONAL UNIT NAME 4 - - - - -

• Network Address Attributes 

These comprise the following: 

- MH T ISDN NUMBER - - -
- MH T ISDN SUBADDRESS - - -
- MH T PRESENTATION ADDRESS - - -
- MH T X121 ADDRESS - - -

For any i in the interval [1, 4], the Domain Type i and Domain Value i 
attributes constitute a Domain-Defined Attribute (DDA). 

Note: The widespread avoidance of DDAs produces more uniform 
and thus more user-friendly OIR addresses. However, it is 
anticipated that not all Management Domains (MDs) will be 
able to avoid such attributes immediately. The purpose of 
DDAs is to permit an MD to retain its existing native 
addressing conventions for a time. It is intended, however, 
that all MDs migrate away from the use of DDAs, and thus 
that DDAs are used only for an interim period. 

An OIR address may take any of the forms summarized in Table 35-5. 
Table 35-5 indicates the attributes that may be present in an OIR address of 
each form. It also indicates whether it is mandatory (M) or conditional (C) 
that they do so. When applied to a group of attributes (the network address 
attributes, for example), mandatory means that at least one member of the 
group must be present, while conditional means that no members of the 
group need necessarily be present. 

The presence or absence in a particular OIR address of conditional 
attributes is determined as follows. If a user or DL is accessed through a 
PRMD, the ADMD that the MH_T_COUNTRY_NAME and 
MH _ T _ ADMD _NAME attributes indicate governs whether attributes used 
to route messages to the PRMD are present, but it imposes no other 

OSF DeE Application Development Guide 



MHS Directory User Package 

constraints on attributes. If a user or DL is not accessed through a PRMD, 
the same ADMD governs whether all conditional attributes, except those 
specific to postal OIR addresses, are present. All conditional attributes 
specific to postal OIR addresses are present or absent so as to satisfy the 
postal addressing requirements of the users they identify. 

Table 33-5. Forms of Originator/Recipient Address 

Attribute Mnem1 Num2 Spost3 Upost Terms 

MH_T_ADMD_NAME M M M M C 

MH_T_COMMON_NAME C - - - -
MH_T_COUNTRY_NAME M M M M C 

Domain-Defined C C - - C 
Attributes 

Network Address - - - - M 
Attributes 

MH_T_NUMERIC_USER_ - M - - -
IDENTIFIER 

MH_T_ORGANIZATION C - - - --
NAME 

Organizational Unit C - - - -
Name Attributes 

Personal Name C - - - -
Attributes 

MH_T_POSTAL_ - - C - -
ADDRESS_DETAILS 

MH_T_POSTAL_ - - - M -
ADDRESS_IN_FULL 

MH_T_POSTAL_CODE - - M M -
MH_T_POSTAL_ - - M M -
COUNTRY_NAME 

MH_T_POSTAL_ - - C - -
DELIVERY_POINT _ 
NAME 

OSF DeE Application Development Guide 33-23 



XDS/XOM Supplementary Information 

Attribute Mnem1 Num2 Spost3 uposr Terms 

MH_ T _POSTAL_DELlV_ - - C C -
SYSTEM_NAME 

MH_T_POSTAL_ - - C - -
GENERAL_DELIV _ 
ADDR 

MH_T_POSTAL_ - - C - -
LOCALE 

MH_T_POSTAL_ - - C - -
OFFICE_BOX_ 
NUMBER 

MH_T_POSTAL_ - - C - -
OFFICE_NAME 

MH_T_POSTAL_ - - C - -
OFFICE_NUMBER 

MH_T_POSTAL_ - - C - -
ORGANIZATION -
NAME 

MH_T_POSTAL_ - - C - -
PATRON DETAILS 

MH_T_POSTAL_ - - C - -
PATRON_NAME 

MH_T_POSTAL_STREET_ - - C - -
ADDRESS 

MH_T_PRMD_NAME C Co C C C6 

MH_T_TERMINAL_ - - - - C 
IDENTIFIER 

MH_T_TERMINAL_ - - - - C 
TYPE 

33-24 OSF DeE Application Development Guide 



MHS Directory User Package 

Footnotes to Table 33-5 

, Mnemonic. XAOO (1984) calls this Form 1 Variant 1. 
2Numeric. XAOO (1984) calls this Form 1 Variant 2. 
3Structured postal. For 1984 this O/R address form is undefined. 
4Unstructured postal. For 1984 this O/R address form is undefined. 
5XAOO (1984) calls this Form 1 Variant 3 and Form 2. 
6For 1984 this attribute is absent (-). For 1988 it is conditional (C). 

• Mnemonic O/R Address 

This address mnemonically identifies a user or DL. Using the 
MH_T_ADMD_NAME and MH_T_COUNTRY_NAME attributes, it 
identifies an ADMD. Using the MH_T_COMMON_NAME attribute 
or the personal name attributes, the 
MH _ T _ ORGANIZATION_NAME attribute, the Organizational Unit 
Name attributes, the MH _ T _ PRMD _NAME attribute, or a 
combination of these, and optionally DDAs, it identifies a user or DL 
relative to the ADMD. 

The personal name attributes identify a user or DL relative to the entity 
indicated by another attribute; for example, 
MH T ORGANIZATION NAME. The MH T SURNAME - - -
attribute will be present if any of the other three personal name 
attributes are present . 

• Numeric O/R Address 

This address numerically identifies a user or DL. Using the 
MH_T_ADMD_NAME and MH_T_COUNTRY_NAME attributes, it 
identifies an ADMD. Using the 
MH _ T _ NUMERIC _USER_IDENTIFIER attribute and possibly the 
MH _ T _ PRMD _NAME attribute, it identifies the user or DL relative to 
the ADMD. Any DDAs provide information that is additional to that 
required to identify the user or DL. 

OSF DeE Application Development Guide 33-25 



XDS/XOM Supplementary Information 

33-26 

• Postal O/R Address 

This address identifies a user by means of its postal address. Two kinds 
of postal aIR address are distinguished: 

- Structured 

Said of a postal aIR address that specifies a user's postal address by 
means of several attributes. The structure of the postal address is 
described in the following text in some detail. 

- Unstructured 

Said of a postal aIR address that specifies a user's postal address in 
a single attribute. The structure of the postal address is left largely 
unspecified in the following text. 

Whether structured or unstructured, a postal aIR address does the 
following. Using the MH T ADMD_NAME and 
MH_T_COUNTRY_NAME attributes, it identifies an ADMD. Using 
the MH T POSTAL CODE and - - -
MH_T_POSTAL_COUNTRY_NAME attributes, it identifies the 
geographical region in which the user takes delivery of physical 
messages. Using the MH_T_POSTAL_DELIV_SYSTEM_NAME or 
MH _ T _ PRMD _NAME attribute or both, it also may identify the PDS 
by means of which the user is to be accessed. 

An unstructured postal aIR address also includes the 
MH T POSTAL ADDRESS IN FULL attribute. A structured - - - - -
postal aIR address also includes every other postal addressing attribute 
that the PDS requires to identify the postal patron. 

Note: The total number of characters in the values of all 
attributes, except for MH_T_ADMD_NAME, 
MH_T_COUNTRY_NAME, and 
MH_T_POSTAL_DELIV _SYSTEM_NAME, in a 
postal aIR address should be small enough to permit their 
rendition in 6 lines of 30 characters, the size of a typical 
physical envelope window. The rendition algorithm, 
while defined by the Physical Delivery Access Unit 
(PDAU), is likely to include inserting delimiters (for 
example, spaces) between some attribute values. 

OSF DeE Application Development Guide 



MHS Directory User Package 

• Terminal O/R Address 

This address identifies a user by identifying the user's terminal using 
the network address attributes. It also may identify the ADMD through 
which the terminal is accessed by using the MH_T_ADMD_NAME 
and MH T COUNTRY NAME attributes. The - - -
MH _ T _ PRMD _NAME attribute and any DDAs, which will be present 
only if the MH_T_ADMD_NAME and MH_T_COUNTRY_NAME 
attributes are present, provide information additional to that required to 
identify the user. 

If the terminal is a Telematic terminal, it gives the terminal's network 
address and possibly, using the MH_T_TERMINAL_TYPE and 
MH _ T _TERMINAL_IDENTIFIER attributes, its terminal type and 
identifier. If the terminal is a Telex terminal, it gives the terminal's 
Telex number. 

Whenever two OIR addresses are compared for equality, the following 
differences are ignored: 

• Whether an attribute has a value whose syntax is 
String (OM_S_PRINTABLE_STRING) , a value whose syntax is 
String(OM_S_TELETEX_STRING), or both . 

• Whether a letter in a value of an attribute not used in DDAs is an 
uppercase or lowercase letter. 

• All leading, all trailing, and all but one consecutive embedded space in 
an attribute value. 

Note: An MD may impose additional equivalence rules upon the 
OIR addresses it assigns to its own users and DLs. It may 
define, for example, rules concerning punctuation characters 
in attribute values, the case of letters in attribute values, or 
the relative order of DDAs. 

As a national matter, MDs may impose additional rules 
regarding any attribute that may have a value whose syntax is 
String (OM_S_PRINTABLE_STRING), a value whose 
syntax is String(OM_S_TELETEX_STRING), or both. In 
particular, the rules for deriving from a Teletex string the 
equivalent printable string may be nationally prescribed. 

OSF DeE Application Development Guide 33-27 



XDS/XOM Supplementary Information 

33.5 MC C OR NAME 

An instance of class MH_C_OR_NAME comprises a directory name, an 
OIR address, or both. The name is considered present if, and only if, the 
MH T DIRECTORY_NAME attribute is present. The address 
comprises the attributes specific to the MH _ C _ OR_ADDRESS class and 
is considered present if, and only if, at least one of those attributes is 
present. 

An OIR name's composition is context sensitive. At submission, the name, 
the address, or both may be present. At transfer or delivery, the address is 
present and the name can (but need not) be present. Whether at 
submission, transfer or delivery, the MTS uses the name, if it is present, 
only if the address is absent or invalid. 

The attribute specific to this class is listed in Table 33-6. 

Table 33-6. Attribute Specific to MH_C_OR_NAME 

Value Value Value 
Attribute Value Syntax Length Number Initially 1988? 

MH_T_ Object(OS_ - o or 1 - 1988 
DIRECTORY_ C_NAME) 
NAME 

• MH T DIRECTORY NAME 

This attribute contains the name assigned to the user or DL by the 
worldwide X.500 directory. 

33.6 DS C DL SUBMIT PERMS 

33-28 

An instance of OM class DS C DL SUBMIT PERMS characterizes an - -
attribute each of whose values are a submit permission. An instance of this 
OM class has the OM attributes of its superclass, OM _ C _OBJECT, and 
additionally the OM attributes listed in Table 33-7. 

OSF DCE Application Development Guide 



MHS Directory User Package 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DS_PERM_ TYPE Enum(DS_ - 1 -
Permission_ 
Type) 

DS_INDIVIDUAL Object(MH_C_ - o or 1 -
OR_NAME) 

DS_MEMBER_OF _DL Object(MH_C_ - o or 1 -
OR_NAME) 

DS_PATTERN_MATCH Object(MH_C_ - o or 1 -
OR_NAME) 

DS_MEMBER_OF _ Object(DS _ C_ - o or more -
GROUP DS_DN) 

• DS PERM TYPE - -
This attribute contains the type of the permission specified herein. Its 
value can be one of the following: 

- DS PERM INDIVIDUAL - -
- DS PERM MEMBER OF DL - - --
- DS_PERM_PATTERN_MATCH 

- DS PERM MEMBER OF GROUP - - --
• DS INDIVIDUAL 

This attribute contains the user or unexpanded DL, any of whose OIR 
names is equal to the specified OIR Name. 

• DS MEMBER OF DL - --
This attribute contains each member of the DL, any of whose OIR 
names is equal to the specified OIR name, or of each nested DL, 
recursively. 

• DS PATTERN MATCH - -
This attribute contains each user or unexpanded DL, any of whose OIR 
names matches the specified OIR name pattern. 

OSF DeE Application Development Guide 33-29 



XDS/XOM Supplementary Information 

33-30 

• DS MEMBER OF GROUP - --
This attribute contains each member of the group-of-names whose 
name is specified, or of each nested group-of-names, recursively. 

Note that exactly one of the four name attributes will be present at any 
time, according to the value of the DS _PERM_TYPE attribute. 

OSF DeE Application Development Guide 



Chapter 34 

Global Directory Service Package 

The Global Directory Service Package (GDSP) is an OSF extension to the 
XDS interface. Applications must negotiate use of this package with 
ds _ version() before using any of the additional features. If an application 
attempts to use features specific to this package without first negotiating its 
use, then an appropriate error (for example, OM_NO_SUCH_CLASS) is 
returned by the Object Management function. 

The object identifier associated with the GDSP is {iso(l) identified
organisation(3) icd-ecma(0012) member-company(2) siemens
units(1107) sni(l) directory(3) xdsapi(lOO) gdsp(O)} with the following 
encoding: 

\x2B\xC\x2\xSS\xS3\xl \x3\x64\xO 

The identifier is represented by the constant DSX_GDS_PKG. The C 
constants associated with this package are contained in the xdsgds.h header 
file (see the aSF DeE Application Development Reference). 

The concepts and notation used are first mentioned in Section 30.1. They 
are also fully explained in Chapters 35 through 37. The attribute types are 
introduced first, followed by the object classes. Next, the OM class 
hierarchy and OM class definitions required to support the new attribute 
types are described. 

OSF DeE Application Development Guide 34-1 



XDS/XOM Supplementary Information 

34.1 GDSP Attribute Types 

This section presents the additional directory attribute types that are used 
with GDSP. Each attribute type has an object identifier, which is the value 
of the OM attribute DS_ATTRIBUTE_TYPE. These object identifiers are 
represented in the interface by constants with the same name as the 
directory attribute, and are prefixed by DSX _ A_so that they can be easily 
identified. 

This section contains two tables that are used to indicate the object 
identifiers for GDSP attribute types (see Table 34-1), and the values for 
GDSP attribute types (see Table 34-2), respectively. Following these two 
tables is a brief description of each attribute. (See Section 32.1 for 
information on general matching rules.) 

Table 34-1 shows the names of the GDSP attribute types, together with the 
BER encoding of the object identifiers associated with each of them. 

Note: The third column of Table 34-1 contains the contents octets of 
the BER encoding of the object identifier in hexadecimal. All 
these object identifiers stem from the root {iso(l) identified
organization(3) idc-ecma(OOI2) member-company(2) 
siemens-units(1107) sni(l) directory(3) attribute-type(4)}. 

34-2 OSF DeE Application Development Guide 



Global Directory Service Package 

Table 34-1. Object Identifiers for GDSP Attribute Types 

Object Identifier BER 

Package Attribute Type Hexadecimal 

GDSP DSX_A_ACL \x2B\xOC\x02\x88\xS3\xO 1 \x03\x04 \xO 1 
GDSP DSX_A_AT \x2B\xOC\x02\x88\xS3\xO 1 \x03\x04 \x06 
GDSP DSX_A_ \x2B\xOC\x02\x88\xS3\x0 1 \x03\x04 \X07 

CACHE_ArrR 
GDSP DSX_A_CDS_ \x2B\xOC\X02\x88\xS3\xO 1 \x03\x04\xOD 

CELL 
GDSP DSX_A_CDS_ \x2B\xOC\x02\x88\xS3\x0 1 \X03\x04\xOE 

REPLICA 
GDSP DSX_A_ \x2B\xOC\x02\x88\xS3\xO 1 \X03\X04 \XOA 

CLIENT 
GDSP DSX_A_ \x2B\xOC\x02\x88\xS3\xO 1 \x03\x04 \x08 

DEFAULT_ 
DSA 

GDSP DSX_A_ \X2 B\xOC\x02\x88\xS3\xO 1 \x03\x04 \xO B 
DNLlST 

GDSP DSX_A_ \x2B\xOC\x02\x88\xS3\x0 1 \x03\x04 \x09 
LOCDSA 

GDSP DSX_A_ \x2B\xOC\x02\x88\xS3\xO 1 \X03\X04 \xOO 
MASTER -
KNOWLEDGE 

GDSP DSX_A_OCT \x2B\xOC\x02\x88\xS3\xO 1 \X03\X04 \xOS 
GDSP DSX_A_ \x2B\xOC\x02\x88\xS3\xO 1 \x03\x04\x03 

SHADOWED -
BY 

GDSP DSX_A_ \X2B\xOC\X02\x88\xS3\x0 1 \x03\x04\xOC 
SHADOWING_ 
JOB 

GDSP DSX_A_SRT \x2B\xOC\x02\x88\xS3\xO 1 \x03\x04\x04 
GDSP DSX_A_ \x2B\xOC\x02\x88\xS3\xO 1 \x03\x04\x02 

TIME_STAMP 

Table 34-2 shows the names of the attribute types, together with the OM 
value syntax used in the interface to represent values of that attribute type. 
The table also includes the range of lengths permitted for the string types, 
indicates whether the attribute can be multi valued, and lists which matching 
rules are provided for the syntax. 

OSF DeE Application Development Guide 34-3 



XDS/XOM Supplementary Information 

Table 34-2. Representation of Values for GDSP Attribute Types 

Value Multi- Matching 
Attribute Type OM Value Syntax Length Valued Rules 

DSX_A_ACL Object(DSX_ - No E 
C_GOS_ACL) 

DSX_A_AT String(OM_S_ 101 Yes E,S 
PRINTABLE -
STRING) 

DSX_A_ No syntax, - - -
CACHE_ATTR no values 
DSX_A_CDS_ String(OM_S_ 36 No E 
CELL OCTET_ 

STRING) 
DSX_A_CDS - String(OM_S_ 45 Yes E 
REPLICA OCTET_ 

STRING) 
DSX_A_ Onlya - - -
CLIENT cache entry 
DSX_A_ Onlya - - -
DEFAULT_ cache entry 
DSA 
DSX_A_ Object(DS_C_ 1K max. Yes E,S 
DNLlST OS_DN) 
DSX_A_ Only a - - -
LOCDSA cache entry 
DSX_A_ Object(OS_C_ 1K max. No E,S 
MASTER - DS_ON) 
KNOWLEDGE 
DSX_A_OCT String(OM_S_ 310 Yes E,S 

PRINTABLE -
STRING) 

DSX_A_ Not used yet - - -
SHADOWED -
BY 

34-4 OSF DeE Application Development Guide 



Global Directory Service Package 

Value Multi- Matching 
Attribute Type OM Value Syntax Length Valued Rules 

DSX_A_ Not used yet - - -
SHADOWING -
JOB 
DSX_A_SRT String(OM_S_ 56 Yes E,S 

PRINTABLE_ 
STRING) 

DSX_A_ String (OM_S_ 18 No E,O 
TIME_STAMP UTe_TIME -

STRING) 

Note: With the exception of the DSX_A_ACL attribute, the GDSP 
attributes in Table 34-2 are only to be manipulated through 
the GDS administration interface (see the aSF DCE 
Administration Guide.) 

Descriptions of the GDSP attributes follow: 

• DSX A ACL 

This attribute describes the access rights for one or more Directory 
Service users. 

• DSX A AT 

This attribute describes the attribute types permitted in GDS. For further 
information, see the aSF DCE Administration Guide. 

• DSX A CACHE ATTR - - -
This attribute is used internally by GDSP to separate return values that 
can be cached from those that cannot be cached. 

• DSX A CDS CELL and DSX A CDS REPLICA - - - - - -
These two attributes always exist together in the same object. They 
describe the information necessary for contacting a remote CDS cell. 

• DSX A CLIENT 

This attribute is a cache entry. This naming attribute allows the DUA to 
retrieve its own PSAP address. 

OSF DeE Application Development Guide 34-5 



XDS/XOM Supplementary Information 

• DSX A DEFAULT DSA 

This attribute is a cache entry. This naming attribute allows the DUA to 
retrieve the PSAP address of its default DSA. 

• DSX A DNLIST 

This attribute is used internally by the GDS DSA. 

• DSX A LOCDSA 

This attribute is a cache entry. This naming attribute allows the DSA to 
retrieve its own PSAP address. 

• DSX A MASTER KNOWLEDGE 

This attribute contains the Distinguished Name (DN) of the DSA that 
holds the master copy of this entry. 

• DSX A OCT 

This attribute describes the object classes supported by the GDS DSA. 
(For further information, see the aSF DCE Administration Guide.) 

• DSX_A_SHADOWED_BY and DSX_A_SHADOWING_JOB 

These two GDSP attributes are intended for future use. 

• DSX A SRT 

This attribute describes the structure of the DNs permitted in GDS. 

• DSX A TIME STAMP 

This attribute is part of the DSX _ 0 _SCHEMA object. It contains the 
creation time of the DSX _ 0 _SCHEMA object. 

34.2 GDSP Object Classes 

34-6 

The only additional GDSP object class is DSX _ 0 _SCHEMA (see Table 
34-3). It is stored in GDS as an object directly under root. The most 
important attributes of the DSX _ 0 _SCHEMA object are the three 
recurring attributes DSX _ A_OCT, DSX _A_AT, and DSX _ A _ SRT. These 
three objects describe the GDS DIT structure. For a more detailed 
explanation of the GDSP DSX _ 0 _SCHEMA object, see the aSF DCE 
Administration Guide. 

OSF DeE Application Development Guide 



Global Directory Service Package 

Note: The third column of Table 34-3 contains the contents octets of 
the BER encoding of the object identifier in hexadecimal. 
This object identifier stems from the root {iso(I) identified
organization(3) idc-ecma(OOI2) member-company(2) 
siemens-units(1107) sni(I) directory(3) object-class(6)}. 

Table 34-3. Object Identifier for GDSP Object Classes 

Object Identifier BER 

Package Attribute Type Hexadecimal 
GDSP DSX_O_ \X2B\xOC\x02\x88\x53\X01 \x03\x06\xOO 

SCHEMA 

34.3 GDSP OM Class Hierarchy 

The remainder of this chapter defines the additional OM classes used by 
GDSP. This section shows the hierarchical organization of the OM classes 
that are defined in the following sections, and it shows which classes inherit 
additional OM attributes from their OM superclasses. In the following list, 
subclassification is indicated by indentation, and the names of abstract OM 
classes are represented in italics. 

OM_C_OBJECT (defined in the OM package) 

• DS_ C_SESSION (defined in the Directory Service Package) 

- DSX C GDS SESSION 

• DS_C_CONTEXT (defined in the Directory Service Package) 

- DSX C GDS CONTEXT - - -
• DSX C GDS ACL 

• DSX C GDS ACL ITEM - -
None of the OM classes in the preceding list are encodable using 
om _ encode() and om _ decode(). 

OSF DCE Application Development Guide 34-7 



XDS/XOM Supplementary Information 

34.4 DSX C GDS ACL 

34-8 

An instance of OM class DSX _ C _ GDS _ ACL describes up to five 
categories of rights for one or more directory users. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 34-4. 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DSX_MODIFY_ Object(DSX_C_ - 0-4 -
PUBLIC GDS_ACL_ITEM) 
DSX_READ_ Object(DSX_C_ - 0-4 -
STANDARD GDS_ACL_ITEM) 
DSX_MODIFY_ Object(DSX_C_ - 0-4 -
STANDARD GDS_ACL_ITEM) 
DSX_READ Object(DSX_ C_ - 0-4 --
SENSITIVE GDS_ACL_ITEM) 
DSX_MODIFY_ Object(DSX_C_ - 0-4 -
SENSITIVE GDS_ACL_ITEM) 

The OM attributes of DSX C GDS ACL are as follows: - - -
• DSX MODIFY PUBLIC - -

This attribute specifies the user, or subtree of users, that can modify 
attributes classified as public attributes. 

• DSX READ STANDARD - -
This attribute specifies the user, or subtree of users, that can read 
attributes classified as standard attributes. 

• DSX MODIFY STANDARD - -
This attribute specifies the user, or subtree of users, that can modify 
attributes classified as standard attributes. 

• DSX READ SENSITIVE - -
This attribute specifies the user, or subtree of users, that can read 
attributes classified as sensitive attributes. 

OSF DeE Application Development Guide 



Global Directory Service Package 

• DSX MODIFY SENSITIVE - -
This attribute specifies the user, or subtree of users, that can modify 
attributes classified as sensitive attributes. 

34.5 DSX C GDS ACL ITEM 

An instance of OM class DSX_C_GDS_ACL_ITEM is a component of a 
DSX _ C _ GDS _ ACL. It specifies the user, or subtree of users, to whom an 
access right applies. 

An instance of this OM class has the OM attributes of its superclass, 
OM _ C _OBJECT, in addition to the OM attributes listed in Table 34-5. 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DSX_ Enum(OSX_ - 1 -
INTERPRETATION Interpretation) 
OSX_USER Object(OS_C_ - 1 -

OS_ON) 

The OM attributes of a DSX C GDS ACL ITEM are as follows: - - - -
• DSX INTERPRETATION 

This attribute specifies the scope of the access right. It can have one of 
the following values: 

- DSX _SINGLE_OBJECT, meaning that the access right is granted 
to the user specified in the DSX _ USER OM attribute. 

- DSX_ROOT_OF _SUBTREE, meaning that the access right is 
granted to all users in the subtree below the name specified in the 
DSX USER OM attribute. 

• DSX USER 

This attribute is the DN of the user, or subtree of users, to whom an 
access right applies. 

OSF DeE Application Development Guide 34-9 



XDS/XOM Supplementary Information 

34.6 DSX C GDS CONTEXT 

An instance of OM class DSX _ C _ GDS _CONTEXT comprises per
operation arguments that are accepted by most of the interface functions. 
GDSP supports additional service controls that are defined by the 
DSX C GDS CONTEXT OM class. - - -
An instance of this OM class has the OM attributes of its superc1asses, 
OM _ C _OBJECT and DS _ C _CONTEXT, in addition to the OM attributes 
listed in Table 34-6. 

Table 34-6. OM Attributes of DSX_C_GDS_CONTEXT 

34-10 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

Service Controls 

DSX_ OM_S_ - 1 OM_FALSE 
DUAFIRST BOOLEAN 
DSX_DONT_ OM_S_ - 1 OM_TRUE 
STORE BOOLEAN 
DSX_NORMAL_ OM_S_ - 1 OM_FALSE 
CLASS BOOLEAN 
DSX_PRIV_ OM_S_ - 1 OM_FALSE 
CLASS BOOLEAN 
DSX_RESIDENT _ OM_S_ - 1 OM_FALSE 
CLASS BOOLEAN 
DSX_USEDSA OM_S_ - 1 OM_TRUE 

BOOLEAN 
DSX_DUA_ OM_S_ - 1 OM_FALSE 
CACHE BOOLEAN 
DSX_PREFER OM_S_ - 1 OM_FALSE -
ADMIN_FUNCS BOOLEAN 

The OM attributes of the DSX C GDS CONTEXT OM class are as - - -
follows: 

• DSX DUAFIRST 

This attribute defines whether the DUA cache or the DSA needs to be 
read first for query operations. The default value is OM_FALSE; that 
is, search the DSA first, if not found then search the DUA cache. 

OSF DCE Application Development Guide 



Global Directory Service Package 

• DSX DONT STORE - -
This attribute specifies whether the information read from the DSAs by 
the query functions also needs to be stored in the DUA cache. When this 
service control is set to OM_TRUE (default value), nothing is stored in 
the DUA cache. 

When this service control is set to OM_FALSE, the infonnation read is 
stored in the DUA cache. The objects returned by ds_listO and 
ds _ compare() are stored in the cache without their associated attribute 
information. The objects returned by ds_readO and ds_searchO are 
stored in the cache with all their "cacheable" attributes; these are all 
public attributes, except the ACL attribute. This information is only 
cached when a list of requested attributes is supplied. If all attributes 
are requested, then nothing is stored in the cache. 

The DUA cache categorizes the information stored into three different 
memory classes. The user specifies the category with the following service 
controls: 

• DSX NORMAL CLASS - -
If this attribute is set to OM_TRUE, the entry in the DUA cache is 
assigned to the class of normal objects. If the number of entries in this 
class exceeds a maximum value, the entry that is not addressed for the 
longest period of time is removed from the DUA cache. 

• DSX PRIV CLASS - -
If this attribute is set to OM_TRUE, the entry in the DUA cache is 
assigned to the class of privileged objects. Entries can be removed from 
the class in the same way as normal objects. By using this memory 
sparingly, the user can protect entries from deletion. 

• DSX RESIDENT CLASS - -
If this attribute is set to OM_TRUE, the entry in the DUA cache is 
assigned to the class of resident objects. An entry in this memory class 
is never removed automatically, rather it can only be removed with 
ds_remove_entryO. The number of entries is limited; if this limit is 
exceeded, ds _add _ entry( ) reports an error. 

Only the service control of one memory class can be set. The 
ds _add _ entry() function also evaluates these service control bits if the 
function is used on the DUA cache. 

OSF DeE Application Development Guide 34-11 



XDS/XOM Supplementary Information 

34-12 

• DSX DUA CACHE and DSX USED SA - - -
These attributes define whether the entries in the DUA cache or in the 
DSA, or both, need to be used when providing the service. Depending 
on the values of these attributes, the following situations can arise: 

- DSX_DUA_CACHE and DSX_USEDSA, both OM_TRUE 

- The ds_add_entryO and ds_remove_entryO functions report 
an error. 

- The query functions evaluate the service controls 
DS DONT USE COPY and DSX DUAFIRST. When - - -
DS DONT_USE_COPY is OM_FALSE, then 
DSX DUAFIRST determines whether the DUA cache or the 
DSA is read first. When DS DONT USE COPY is - - -
OM_TRUE, information from the DSA only is read. 

- DSX_DUA_CACHE, 
OM FALSE 

OM TRUE and DSX _ USEDSA, 

- The ds -,-add _ entry() and ds _remove _ entry() functions and the 
query functions only go to the DUA cache. 

- DSX_DUA_CACHE, 
OM TRUE 

OM FALSE and DSX _ USEDSA, 

- The ds _add _ entry() and ds _remove _ entry() functions and the 
query functions only go to the DSA. 

- DSX_DUA_CACHE and DSX_USEDSA, both OM_FALSE 

- The ds _add _ entry() and ds _remove _ entry() functions and the 
query functions report an error. 

All other functions always operate on the DSA currently connected . 

• DSX PREFER ADM FUNCS - --
GDS uses the three following optional attributes: 

- DSX_A_MASTER_KNOWLEDGE, which contains the 
Distinguished Name of the DSA that holds the master copy of an 
entry. 

- DSX_A_ACL, which is used for GDS access control. 

- DS A USER PASSWORD as an attribute of the DS 0 DSA - - -
object class, which is used by the GDS shadowing mechanism. 

OSF DeE Application Development Guide 



Global Directory Service Package 

The DSX A MASTER KNOWLEDGE and DSX A ACL attributes - - - - -
are present in every GDS entry. 

When an application requests all attributes, it can prevent any of the 
three optional attributes from being returned by setting this service 
control to OM FALSE. 

If GDS applications (for example, GDS administration) require these 
attributes, they are obtained by setting this service control to 
OM TRUE. 

Applications can assume that an object of OM class 
DSX _ C _ GDS _CONTEXT, created with default values of all its OM 
attributes, works with all the interface functions. The constant 
DS_DEFAULT_CONTEXT can be used as an argument to functions 
instead of creating an OM object with default values. 

The default DSX C GDS CONTEXT is defined in Table 34-7. 

OSF DeE Application Development Guide 34-13 



XDS/XOM Supplementary Information 

OM Attribute Default Value 

Common Arguments 

DS_EXT NULL 
DS_OPERATION_PROGRESS DS_OPERATION -

NOT_STARTED 
DS_ALlASED_RDNS 0 

Service Controls 

DS_CHAINING_PROHIB OM_TRUE 
DS_DONT_DEREFERENCE - OM_FALSE 
ALIASES 
DS_DONT_USE_COPY OM_FALSE 
DS_LOCAL_SCOPE OM_FALSE 
DS_PREFER_CHAINING OM_FALSE 
DS_PRIORITY OS_MEDIUM 
DS_SCOPE_OF_REFERRAL OS_COUNTRY 
DS_SIZE_LlMIT -1 
DS_TI ME_LI MIT -1 

Local Controls 

DS_ASYNCHRONOUS OM_FALSE 
DS_AUTOMATIC_CONTINUATION OM_TRUE 

Private Extensions 

DSX_DUAFIRST OM_FALSE 
DSX_OONT_STORE OM_TRUE 
DSX_NORMAL_CLASS OM_FALSE 
DSX_PRIV _CLASS OM_FALSE 
DSX_RESIDENT _CLASS OM_FALSE 
DSX_USEDSA OM_TRUE 
DSX_DUA_CACHE OM_FALSE 
DSX_PREFER_ADM_FUNCS OM_FALSE 

34-14 OSF DeE Application Development Guide 



Global Directory Service Package 

34.7 DSX C GDS SESSION 

An instance of OM class DSX _ C _ GDS _SESSION identifies a particular 
link from an application program to a GDSP DUA. This additional OM 
class is necessary if the user either wants to specify a password as part of 
the user credentials, or wants to specify the GDSP directory identifier, or 
alternatively wants to specify both a password and the directory identifier. 
DSX_C_GDS_SESSION can be passed as an argument to ds_bindO. 

An instance of this OM class has the OM attributes of its superclasses, 
OM _ C _OBJECT and DS _ C _SESSION, in addition to the OM attributes 
listed in Table 34-8. 

Table 34-8. OM Attributes of DSX_C_GDS_SESSION 

Value Value Value 
OM Attribute Value Syntax Length Number Initially 

DSX_PASSWORD String{OM_S_ - o or 1 NULL 
OCTET_ 
STRING) 

DSX_DIR_ID OM_S_ - 1 1 
INTEGER 

The OM attributes of DSX C GDS SESSION are as follows: - - -
• DSX PASSWORD 

This attribute indicates the password for the user credentials . 

• DSX DIR ID 

This attribute contains an identifier for distinguishing between several 
configurations of the Directory Service within a GDS installation. The 
valid range is from 1 to 20. 

Applications can assume that an object of OM class 
DSX_C_GDS_SESSION, created with default values of all its OM 
attributes, works with all the interface functions. Such a session can be 
created by passing the constant DS_DEFAULT_SESSION as an argument 
to ds _ bind(), having already negotiated the GDSP package. 

OSF DCE Application Development Guide 34-15 



XDS/XOM Supplementary Information 

Table 34-9 defines DS DEFAULT SESSION. - -

OM Attribute Default Value 

DS_DSA_ADDRESS Value obtained from the cache or NULL 
DS_DSA_NAME Value obtained from the cache or NULL 
DS_FILE_DESCRIPTOR Not used 
OS_REQUESTOR NULL 
DSX_PASSWORD NULL 
DSX_DIR_I0 1 

34-16 OSF DeE Application Development Guide 



Chapter 35 

Information Syntaxes 

This chapter defines the syntaxes permitted for attribute values. The 
syntaxes are closely aligned with the types and type constructors of ASN.1. 
The OM_value data type specifies how a value of each syntax is 
represented in the C interface (see Section 36.2). 

35.1 Syntax Templates 

The names of certain syntaxes are constructed from syntax templates. A 
syntax template is a lexical construct comprising a primary identifier 
followed by an asterisk enclosed in parentheses: 

identifier (*) 

A syntax template encompasses a group of related syntaxes. Any member of 
the group, without distinction, is indicated by the primary identifier 
(identifier) alone. 

OSF DeE Application Development Guide 35-1 



XDS/XOM Supplementary Information 

A particular member is indicated by the template with the asterisk (*) 
replaced by one of a set of secondary identifiers associated with the 
template: 

identifier 1 (identifier 2) 

35.2 Syntaxes 

35-2 

A variety of syntaxes are defined. Most are functionally equivalent to 
ASN.l types, as documented in Sections 35.5 through 35.8. 

The following syntaxes are defined: 

• OM S BOOLEAN 

A value of this syntax is a Boolean; that is, it can be OM_TRUE or 
OM FALSE. 

• Enum(*) 

A value of any syntax encompassed by this syntax template is one of a 
set of values associated with the syntax. The only significant 
characteristic of the values is that they are distinct. 

The group of syntaxes encompassed by this template is open-ended. 
Zero or more members are added to the group by each package 
definition. The secondary identi fiers that indicate the members are also 
assigned there. 

• OM S INTEGER 

A value of this syntax is a positive or negative integer. 

• OM S NULL 

The one value of this syntax is a valueless placeholder. 

• Object(*) 

A value of any syntax encompassed by this syntax template is an object, 
which is any instance of a class associated with the syntax. 

OSF DeE Application Development Guide 



Information Syntaxes 

The group of syntaxes encompassed by this template is open-ended. 
One member is added to the group by each class definition. The 
secondary identifier that indicates the member is the name of the class . 

• String(*) 

A value of any syntax encompassed by this syntax template is a string 
(as defined in Section 35.3) whose form and meaning are associated with 
the syntax. 

The group of syntaxes encompassed by this template is closed. One 
syntax is defined for each ASN.1 string type. The secondary identifier 
that indicates the member is, in general, the first word of the type's 
name. 

35.3 Strings 

A string is an ordered sequence of zero or more bits, octets, or characters 
accompanied by the string's length. 

The value length of a string is the number of bits in a bit string, octets in an 
octet string, or characters in a character string. Any constraints on the 
value length of a string are specified in the appropriate class definitions. The 
length is confined to the range 0 to 232. 

Note: The length of a character string does not necessarily equal the 
number of characters it comprises because, for example, a 
single character can be represented using several octets. 

The elements of a string are numbered. The position of the first element is 0 
(zero). The positions of successive elements are successive positive 
integers. 

The syntaxes that form the string group are identified in Table 35-1, which 
gives the secondary identifier assigned to each such syntax. 

Note: The identifiers in the first, second, and third columns of Table 
35-1 indicate the syntaxes of bit, octet, and character strings, 
respectively. The String group comprises all syntaxes 
identified in the table. 

OSF DeE Application Development Guide 35-3 



XDS/XOM Supplementary Information 

Table 35-1. String Syntax Identifiers 

Character String 
Bit String Identifier Octet String Identifier Identifier 

OM_S_BIT_STRING OM S ENCODING - OM S GENERAL 
STRING 1 STRlNG2 -

OM S OBJECT OM_S_ 
I DENTIFIER_STRING3 GENERALlSED_ 

TIME_STRING2 

OM_S_OCTET_STRING OM S GRAPHIC -
STRlNG2 

OM S IA5 
STRlNG2 -

OM S NUMERIC 
STRlNG2 -

OM_S_OBJECT_ 
DESCRIPTOR_ 
STRING2 

OM_S_ 
PRINTABLE_ 
STRING2 

OM S TELETEX 
STRlNG2 -

OM S UTC 
TIME_STRING2 

OM_S_ 
VIDEOTEX 
STRING2 -

35-4 OSF DeE Application Development Guide 



Information Syntaxes 

Character String 
Bit String Identifier Octet String Identifier Identifier 

OM S VISIBLE 
STRtNG2 -

1 The octets are those that BER permits for the contents octets of 
the encoding of a value of any ASN.1 type. 

2The characters are those permitted by ASN.1 's type of the 
corresponding name. Values of these syntaxes are represented in 
their BER encoded form. The octets by means of which they are 
represented are those that BER permits for the contents octets of 
a primitive encoding of a value of that type. 

3The octets are those that BER permits for the contents octets of 
the encoding of a value of ASN.1 's object identifier type. 

35.4 Representation of String Values 

In the service interface, a string value is represented by a string data type. 
This is defined in Section 35.3. The length of a string is the number of 
octets by which it is represented at the interface. It is confined to the range 0 
to 232. 

The length of a character does not need to be equal to the number of 
characters it comprises because, for example, a single character can be 
represented using several octets. 

It may be necessary to segment large string values when passing them 
across the interface. A segment is any zero or more contiguous octets of a 
string value. Segment boundaries are without semantic significance. 

OSF DeE Application Development Guide 35-5 



XDS/XOM Supplementary Information 

35.5 Relationship to ASN.l Simple Types 

As shown in Table 35-2, for every ASN.l simple type except Real, there is 
an OM syntax that is functionally equivalent to it. The simple types are 
listed in the first column of the table; the corresponding syntaxes are listed 
in the second column. 

Table 35-2. Syntax for ASN.1 's Simple Types 

Type Syntax 

Bit String String(OM_S_BIT _STRING) 
Boolean OM_S_BOOLEAN 
Integer OM_S_INTEGER 
Null OM_S_NULL 
Object Identifier String(OM_S_OBJECT_IDENTIFIER_STRING) 
Octet Stri ng String(OM_S_OCTET_STRING) 
Real None1 

'A future edition of XOM may define a syntax 
corresponding to this type. 

35.6 Relationship to ASN.l Useful Types 

35-6 

As shown in Table 35-3, for every ASN.l useful type, there is an OM syntax 
that is functionally equivalent to it. The useful types are listed in the first 
column of the table; the corresponding syntaxes are listed in the second 
column. 

OSF DeE Application Development Guide 



Information Syntaxes 

Table 35-3. Syntaxes for ASN.1 's Useful Types 

Type Syntax 

External Object(OM_ C _EXTERNAL) 
Generalized Time String(OM_S_GENERALlSED_TIME_STRING) 
Object Descriptor String(OM_S_OBJECT_DESCRIPTOR_STRING) 
Universal Time String(OM_S_UTC_ TIME_STRING) 

35.7 Relationship to ASN.l Character String Types 

As shown in Table 35-4, for every ASN.l character string type, there is an 
OM syntax that is functionally equivalent to it. The ASN.l character string 
types are listed in the first column of the table; the corresponding syntax is 
listed in the second column. 

Table 35-4. Syntaxes for ASN.1 's Character String Types 

Type Syntax 

General String String(OM_S_GENERAL_STRING) 
Graphic String String(OM_S_GRAPHIC_STRING) 
lAS String String(OM_S_IAS_STRING) 

- String(OM_S_LOCAL_STRING) 
Numeric String String(OM_S_NUMERIC_STRING) 
Printable String String(OM_S_PRINTABLE_STRING) 
Teletex String String(OM_S_ TELETEX_STRING) 
Videotex String String (OM_S_ VIDEOTEX_STRING) 
Visible String String(OM_S_ VISIBLE_STRING) 

OSF DCE Application Development Guide 35-7 



XDS/XOM Supplementary Information 

35.8 Relationship to ASN.l Type Constructors 

As shown in Table 35-5, there are functionally equivalent OM syntaxes for 
some (but not all) ASN.l type constructors. The constructors are listed in 
the first column of the table; the corresponding syntaxes are listed in the 
second column. 

Table 35-5. Syntaxes for ASN.1 's Type Constructors 

35-8 

Type Constructor 

Any 

Choice 
Enumerated 
Selection 
Sequence 
Sequence Of 
Set 
Set Of 
Tagged 

Syntax 

String(OM_S_ENCODING_ 
STRING) 
OM_S_OBJECT 
OM S ENUMERATION 
None1-

OM_S_OBJECT 
OM_S_OBJECT 
OM_S_OBJECT 
OM S OBJECT 

. None2-

1 This type constructor, a purely specification-time 
phenomenon, has no corresponding syntax. 

2This type constructor is used to distinguish the 
alternatives of a choice or the elements of a sequence or 
set. This function is performed by attribute types. 

The effects of the principal type constructors can be achieved, in any of a 
variety of ways, using objects to group attributes, or using attributes to 
group values. An OM application designer can (but need not) model these 
constructors as classes of the following kinds: 

• Choice 

An attribute type can be defined for each alternative with just one being 
permitted in an instance of the class. 

• Sequence or Set 

An attribute type can be defined for each sequence or set element. If an 
element is optional, then the attribute has zero or one value. 

OSF DCE Application Development Guide 



Information Syntaxes 

• Sequence Of or Set Of 

A single muItivalued attribute can be defined. 

An ASN.1 definition of an Enumerated Type component of a structured type 
is generally mapped to an OM attribute with an OM syntax 
OM _ S _ENUMERATION in this interface. Where the ASN.l component 
is optional, this is generally indicated by an additional member of the 
enumeration, rather than by the omission of the OM attribute. This leads to 
simpler programming in the application. 

OSF DeE Application Development Guide 35-9 





Chapter 36 

XOM Service Interface 

This chapter describes the following aspects of the XOM service interface: 

• The conformance of the DCE X/Open OSI-Abstract-Data Manipulation 
(XOM) implementation to the X/Open specification. 

• The data types whose data values are the parameters and results of the 
functions that the service makes available to the client. 

• An overview of the functions that the service makes available to the 
client. For a complete description of these functions, see the 
corresponding reference pages in the aSF DeE Application 
Development Reference. 

• The return codes that indicate the outcomes (in particular, the 
exceptions) that the functions can report. 

See Chapter 28 for examples of using the XOM interface. 

OSF DeE Application Development Guide 36-1 



XDS/XOM Supplementary Information 

36.1 Standards Conformance 

The DeE XOM implementation conforms to the following specification: 

X/Open CAE Specification, OSI-Abstract-Data Manipulation (XOM) 
(November 1991) 

The following apply to the DeE XOM implementation: 

• A single workspace for XDS objects is supported. 

• The OM package is supported. 

• The om_ encode() and om _ decode() functions are not supported. The 
transfer of objects between workspaces is not envisaged within the DeE 
environment. The OM classes used by the DeE XDS/XOM API are not 
encodable. 

• Translation to local character sets is not provided. 

36.2 XOM Data Types 

36-2 

The data types of the XOM service interface are defined in this section and 
listed in Table 36-1. These data types are repeated in the XOM reference 
pages (see xom.h(4xom) in the OSF DCE Application Development 
Reference ). 

OSF DeE Application Development Guide 



XOM Service Interface 

Table 36-1. XOM Service Interface Data Types 

Data Type Description 

OM_boolean Type definition for a Boolean data value. 
OM_descriptor Type definition for describing an 

attribute type and value. 
OM_enumeration Type definition for an Enumerated data 

value. 
OM_exclusions Type definition for the exclusions 

parameter for om_get{). 
OM_integer Type definition for an Integer data value. 
OM_modification Type definition for the modification 

parameter for om_put{). 
OM_object Type definition for a handle to either a 

private or a public object. 
OM_object_identifier Type definition for an Object Identifier 

data value. 
OM_private_object Type definition for a handle to an object 

in an implementation-defined, or private, 
representation. 

OM_public_object Type definition for a defined 
representation of an object that can be 
directly interrogated by a programmer. 

OM_return_code Type definition for a value returned from 
all OM functions, indicating either that 
the function succeeded or why it failed. 

OM_string Type definition for a data value of one of 
the String syntaxes. 

OM_syntax Type definition for identifying a syntax 
type. 

OM_type Type definition for identifying an OM 
attribute type. 

OM_type_list Type definition for enumerating a 
sequence of OM attribute types. 

OM_value Type definition for representing any data 
value. 

OSF DeE Application Development Guide 36-3 



XDS/XOM Supplementary Information 

36-4 

Data Type Description 
OM_value_position Type definition for designating a 

particular location within a String data 
value. 

OM_workspace Type definition for identifying an 
application-specific API that implements 
OM, such as directory or message 
handling. 

Some data types are defined in terms of the following intermediate data 
types, whose precise definitions in C are defined by the system: 

• OM sint 

The positive and negative integers that can be represented in 16 bits 

• OM sint16 

The positive and negative integers that can be represented in 16 bits 

• OM sint32 

The positive and negative integers that can be represented in 32 bits 

• OM uint 

The nonnegative integers that can be represented in 16 bits 

• OM uint16 

The nonnegative integers that can be represented in 16 bits 

• OM uint32 

The nonnegative integers that can be represented in 32 bits 

Note: The OM_sint and OM_uint data types are defined by the 
range of integers they must accommodate. As typically 
declared in the C interface, they are defined by the range of 
integers permitted by the host machine's word size. The latter 
range, however, always encompasses the former. 

The type definitions for these data types are as follows: 

typedef int 
typedef short 
typedef long int 

OM_sinti 
OM_sint16i 
OM_sint32 i 

OSF DeE Application Development Guide 



\ 

XOM Service Interface 

typedef unsigned 
typedef unsigned short 
typedef long unsigned 

36.2.1 OM boolean 

OM_uint; 
OM_uint16; 
OM_uint32; 

The C declaration for an OM boolean data value is as follows: 

A data value of this data type is a Boolean; that is, either FALSE or TRUE. 

FALSE (O~I_FALSE) is indicated by 0 (zero). TRUE is indicated by any 
other integer, although the symbolic constant OM TRUE refers to the 
integer 1 specifically. 

36.2.2 OM_descriptor 

The OM_descriptor data type is used to describe an attribute type and 
value. Its C declaration is as follows: 

typedef struct OM_descriptor_struct 
{ 

type; 
OM_syntax syntax; 
union OM_value_union value; 
OM_descriptor; 

Note: Other components are encoded in high bits of the syntax 
member. 

See the OM_value data type in Section 36.2.16 or the xom.h(4xom) 
reference page in the aSF DeE Application Development Reference for a 
description of the OM_value_union structure. 

A data value of this type is a descriptor, which embodies an attribute value. 
An array of descriptors can represent all the values of all the attributes of an 
object, and is the representation called OM_public _object. 

OSF DeE Application Development Guide 36-5 



XDS/XOM Supplementary Information 

36-6 

A descriptor has the following components: 

• type 

An OM_type data type. It identifies the data type of the attribute value. 

• syntax 

An OM_syntax data type. It identifies the syntax of the attribute value. 
Components 3 to 7 (that is, the components long-string through private 
that follow) are encoded in the high-order bits of this structure member. 
Therefore, the syntax always needs to be masked with the constant 
OM_S_SYNTAX. For example: 

my_syntax = my-pub1ic_object[3] . syntax & 
OM_S_SYNTAX; 

my-public_object[4] . syntax = 

my_syntax + (my -public_obj ect [ 4] . syntax & 

~OM_S_SYNTAX) ; 

• long-string 

An OM_boolean data type. It is OM_TRUE only if the descriptor is a 
service-generated descriptor and the length of the value is greater than 
an implementation-defined limit. 

This component occupies bit 15 (Ox8000) of the syntax and is 
represented by the constant OM _ S _LONG_STRING. 

• no-value 

An OM_boolean data type. It is OM_TRUE only if the descriptor is a 
service-generated descriptor and the value is not present because 
OM EXCLUDE VALUES or OM EXCLUDE MULTIPLES is set - - --
in om _get(). 

This component occupies bit 14 (Ox4000) of the syntax and is 
represented by the constant OM _ S _NO _ VALUE. 

• local-string 

An OM_boolean data type, significant only if the syntax is one of the 
string syntaxes. It is OM_TRUE only if the string is represented in an 
implementation-defined local character set. The local character set may 
be more amenable for use as keyboard input or display output than the 
nonlocal character set, and can include specific treatment of line 

OSF DeE Application Development Guide 



XOM Service Interface 

termination sequences. Certain interface functions can convert 
information in string syntaxes to or from the local representation, which 
may result in a loss of information. 

This component occupies bit 13 (Ox2000) of the syntax and is 
represented by the constant OM_S_LOCAL_STRING. The DCE 
XOM implementation does not support translation of strings to a local 
character set. 

• service-generated 

An OM_boolean data type. It is OM_TRUE only if the descriptor is a 
service-generated descriptor and the first descriptor of a public object, 
or the defined part of a private object (see the XOM reference pages in 
the aSF DeE Application Development Reference). 

This component occupies bit 12 (Oxl000) of the syntax and is 
represented by the constant OM_S_SERVICE_GENERATED. 

• private 

An OM_boolean data type. It is OM_TRUE only if the descriptor in 
the service-generated public object contains a reference to the handle of 
a private subobject, or in the defined part of a private object. 

Note: This applies only when the descriptor is a service-
generated descriptor. The client need not set this bit in a 
client-generated descriptor that contains a reference to a 
private object. 

In the C interface, this component occupies bit 11 (Ox0800) of the 
syntax and is represented by the constant OM _ S _PRIVATE. 

• value 

An OM_value data type. It identifies the attribute value. 

36.2.3 OM enumeration 

The OM_enumeration data type is used to indicate an Enumerated data 
value. Its C declaration is as follows: 

typedef OM_sint32 OM_enumeration; 

OSF DeE Application Development Guide 36-7 



XDS/XOM Supplementary Information 

A data value of this data type is an attribute value whose syntax is 
OM S ENUMERATION. 

36.2.4 OM exclusions 

The OM_exclusions data type is used for the exclusions parameter of 
om _get( ). Its C declaration is as follows: 

typedef OM_uint OM_exclusions; 

A data value of this data type is an unordered set of one or more values, all 
of which are distinct. Each value indicates an exclusion, as defined by 
om _get(), and is chosen from the following set: 

• OM EXCLUDE ALL BUT THESE TYPES - - - - -
• OM EXCLUDE MULTIPLES - -
• OM EXCLUDE ALL BUT THESE VALUES - - - - -
• OM EXCLUDE VALUES - -
• OM_EXCLUDE_SUBOBJECTS 

• OM EXCLUDE DESCRIPTORS - -
Alternatively, the single value OM_NO_EXCLUSIONS can be chosen; 
this selects the entire object. 

Each value except OM_NO _EXCLUSIONS is represented by a distinct 
bit. The presence of the value is represented as 1; its absence is represented 
as 0 (zero). Thus, multiple exclusions are requested by DRing the values 
that indicate the individual exclusions. 

36.2.5 OM integer 

36-8 

The OMJnteger data type is used to indicate an integer data value. Its C 
declaration is as follows: 

typedef OM_sint32 O~integer; 

OSF DeE Application Development Guide 



XOM Service Interface 

A data value of this data type is an attribute value whose syntax IS 

OM S INTEGER. 

36.2.6 OM modification 

The OM modification data type is used for the modification parameter of 
om _put(). Its C declaration is as follows: 

typedef OM_uint OM_modification; 

A data value of this data type indicates a kind of modification, as defined by 
om _put(). It is chosen from the following set: 

• OM INSERT AT BEGINNING - --
• OM INSERT AT CERTAIN POINT - - - -

• OM INSERT AT END - --
• OM REPLACE ALL - -
• OM REPLACE CERTAIN VALUES - - -

36.2. 7 OM_object 

The OM_object d~ta type is used as a handle to either a private or a public 
object. Its C declaration is as follows: 

typedef struct OM_descriptor_struct *OM_object; 

A data value of this data type represents an object, which can be either 
public or private. It is an ordered sequence of one or more instances of the 
OM_descriptor data type. See the OM_private_object and 
OM_public_object data types for restrictions on that sequence (Sections 
36.2.9 and 36.2.10, respectively). 

OSF DeE Application Development Guide 36-9 



XDS/XOM Supplementary Information 

36.2.8 OM_object _identifier 

36-10 

The OM_objectJdentifier data type is used as an ASN.l object identifier. 
Its C declaration is as follows: 

A data value of this data type contains an octet string that comprises the 
contents octets of the BER encoding of an ASN.l object identifier. 

36.2.8.1 C Declaration of Object Identifiers 

Every application program that uses a class or another object identifier must 
explicitly import it into every compilation unit (C source module) that uses 
it. Each such class or object identifier name must be explicitly exported 
from just one compilation module. Most application programs find it 
convenient to export all the names they use from the same compilation unit. 
Exporting and importing is performed using the following two macros: 

• The importing macro makes the class or other object identifier constants 
available within a compilation unit. 

- OM_IMPORT(class_name) 

- OM_IMPORT(OID _name) 

• The exporting macro allocates memory for th~ constants that represent 
the class or another object identifier. 

- OM_EXPORT(class_name) 

- OM_EXPORT(OID _name) 

Object identifiers are defined in the appropriate header files, with the 
definition identifier having the prefix OMP _0_ followed by the variable 
name for the object identifier. The constant itself provides the hexadecimal 
value of the object identifier string. 

OSF DeE Application Development Guide 



XOM Service Interface 

36.2.8.2 Use of Object Identifiers in C 

The following macro initializes a descriptor: 

It sets the type component to that given, sets the syntax component to 
OM_S_OBJECT_IDENTIFIER_STRING, and sets the value component 
to the specified object identifier. 

The following macro initializes a descriptor to mark the end of a client
allocated public object: 

OM NULL DESCRIPTOR - -

For each class there is a global variable of type OM_STRING with the 
same name; for example, the External class has a variable called 
OM _ C _EXTERNAL. This is also the case for other object identifiers; for 
example, the object identifier for BER rules has a variable called 
OM _ BER. This global variable can be supplied as a parameter to functions 
when required. 

This variable is valid only when it is exported by an OM_EXPORT macro 
and imported by an OM_IMPORT macro in the compilation units that use 
it. This variable cannot form part of a descriptor, but the value of its length 
and elements components can be used. The following code fragment 
provides examples of the use of the macros and constants. 

/ * Examples of the use of the macros and constants * / 

#include <xom.h> 

OM_IMPORT (OM_C_ENCODING) 
OM_IMPORT (OM_CANONICAL_BER) 

/* The following sequence must appear in just one compilation 
* unit in place of the above: 

* 
* #include <xom.h> 

* 
* OM_EXPORT (OM_C_ENCODING) 
* OM_EXPORT (OM_CANONICAL_BER) 

OSF DeE Application Development Guide 36-11 



XDS/XOM Supplementary Information 

*/ 

main ( } 
{ 

/* Use #1 - Define a public object of class Encoding 

* 
* 
*/ 

(Note: xxxx is a Message Handling class which can be 
encoded) 

OM_descriptor rny-public_object[] = { 

OM_OID_DESC(OM_CLASS, OM_C_ENCODING}, 
OM_OID_DESC (OM_aBJECT_CLASS, MA_C_xxxx), 
{ OM_aBJECT_ENCODING, OM_S_ENCODING_STRING, some_BER_value }, 
OM_OID_DESC (OM_RULES, OM_CANONICAL_BER), 
OM_NULL_DESCRIPTOR 
} ; 

/* Use #2 - Pass class Encoding as a parameter to om_instance ( } 
*/ 

return_code = om_instance(rny_object, OM_C_ENCODING, 
&boolean_result}; 
} 

36.2.9 OM_private _object 

36-12 

The OM_private _object data type is used as a handle to an object in an 
implementation-defined or private representation. Its C declaration is as 
follows: 

A data value of this data type is the designator or handle to a private object. 
It comprises a single descriptor whose type component is 
OM_PRIVATE_OBJECT and whose syntax and value components are 
unspecified. 

Note: The descriptor's syntax and value components are essential to 
the service's proper operation with respect to the private 
object. 

OSF DeE Application Development Guide 



XOM Service Interface 

36.2.10 OM_public _object 

The OM_public_object data type is used to define an object that can be 
directly accessed by a programmer. Its C declaration is as follows: 

typedef OM_object OM-public_object; 

A data value of this data type is a public object. It comprises one or more 
(usus ally more) descriptors, all but the last of which represent values of 
attributes of the object. 

The descriptors for the values of a particular attribute with two or more 
values are adjacent to one another in the sequence. Their order is that of 
the values they represent. The order of the resulting groups of descriptors is 
unspecified. 

Since the Class attribute specific to the Object class is represented among 
the descriptors, it must be represented before any other attributes. 
Regardless of whether or not the Class attribute is present, the syntax field 
of the first descriptor must have the OM_S_SERVICE_GENERATED bit 
set or cleared appropriately. 

The last descriptor signals the end of the sequence of descriptors. The last 
descriptor's type component is OM_NO_MORE_TYPES and its syntax 
component is OM_S_NO_MORE_SYNTAXES. The last descriptor's 
value component is unspecified. 

36.2.11 OM return code 

The OM_return_code data type is used for a value that is returned from all 
OM functions, indicating either that the function succeeded or why it 
failed. Its C declaration is as follows: 

A data value of this data type is the integer in the range 0 to 216 that 
indicates an outcome of an interface function. It is chosen from the set 
specified in Section 36.4. 

OSF DeE Application Development Guide 36-13 



XDS/XOM Supplementary Information 

Integers in the narrower range 0 to 215 are used to indicate the return codes 
they define. 

36.2.12 OM_string 

36-14 

The OM_string data type is used for a data value of String syntax. Its C 
declaration is as follows: 

typedef OM_uint32 OM_string_length; 
typedef struct { 

OM_string_length length; 
void *elernents; 

OM_string; 

#define OM_STRING (string) \ 
{ (OM_string_length) (sizeof(string)-l), (string) } 

A data value of this data type is a string; that is, an instance of a String 
syntax. A string is specified either in tenns of its length or whether or not it 
tenninates with NULL. A string has the following components: 

• length (OM _stringJength) 

The number of octets by means of which the string is represented, or the 
OM_LENGTH _UNSPECIFIED value if the string tenninates with 
NULL . 

• elements 

The string's elements. The bits of a bit string are represented as a 
sequence of octets (see Figure 36-1). The first octet stores the number 
of unused bits in the last octet. The bits in the bit string, commencing 
with the first bit and proceeding to the trailing bit, are placed in bits 7 to 
o of the second octet. These are followed by bits 7 to 0 of the third 
octet, then by bits 7 to 0 of each octet in tum, followed by as many bits 
as are required of the final octet, commencing with bit 7. 

OSF DeE Application Development Guide 



XOM Service Interface 

Figure 36-1. OM_String Elements 

Position in Bit String: 0 1 2 3 4 5 6 7 8 9 ••• 

Bit Position in Octet: 7 6 5 4 3 2 1 t 2nd Octet 

o 7 6 ... t 3rd Octet 

Most-Significant 
Bit 

Least-Significant 
Bit 

The service supplies a string value with a specified length. The client can 
supply a string value to the service in either fonn, either with a specified 
length or tenninated with NULL. 

The characters of a character string are represented as any sequence of 
octets pennitted as the primitive contents octets of the BER encoding of an 
ASN.l type value. The ASN.l type defines the type of character string. A 0 
(zero) value character follows the characters of the character string, but is 
not encompassed by the length component. Thus, depending upon the type 
of character string, the 0 (zero) value character can delimit the characters 
of the character string. 

The OM_STRING macro is provided for creating a data value of this data 
type, given only the value of its elements component. The macro, however, 
applies to octet strings and character strings, but not to bit strings. 

36.2.13 OM syntax 

The OM_syntax data type IS used to identify a syntax type. Its C 
declaration is as follows: 

A data value of this data type is an integer in the range 0 to 29 that indicates 
an individual syntax or a set of syntaxes taken together. 

The data value is chosen from among the following: 

• OM S BIT STRING - - -
• OM S BOOLEAN 

OSF DeE Application Development Guide 36-15 



XDS/XOM Supplementary Information 

• OM S ENCODING STRING - - -
• OM S ENUMERATION 

• OM S GENERAL STRING 

• OM S GENERALISED TIME STRING - - --
• OM S GRAPHIC STRING - - -
• OM S lAS STRING 

• OM S INTEGER 

• OM S NULL 

• OM S NUMERIC STRING - - -
• OM_S_OBJECT 

• OM_S_OBJECT_DESCRIPTOR_STRING 

• OM_S_OBJECT_IDENTIFIER_STRING 

• OM S OCTET STRING - - -
• OM S PRINTABLE STRING - - - • 
• OM S TELETEX STRING - - -
• OM S VIDEOTEX STRING - - -
• OM S VISIBLE STRING - - -
• OM S UTC TIME STRING - -

Integers in the narrower range 0 to 29 are used to indicate the syntaxes they 
define. The integers in the range 29 to 210 are reserved for vendor 
extensions. Wherever possible, the integers used are the same as the 
corresponding ASN.l universal class number. 

36.2.14 OM type 

36-16 

The OM_type data type is used to identify an OM attribute type. Its C 
declaration is as follows: 

OSF DeE Application Development Guide 



XOM Service Interface 

A data value of this data type is an integer in the range 0 to 216 that 
indicates a type in the context of a package. However, the following values 
in Table 36-2 are assigned meanings by the respective data types. 

Table 36-2. Assigning Meanings to Values 

Value Data Type 

OM_NO_MORE_TYPES OM_type_list 

OM_PRIVATE_OBJECT OM_private _object 

Integers in the narrower range 0 to 215 are used to indicate the types they 
define. 

36.2.15 OM_type_list 

The OM_type_list data type is used to enumerate a sequence of OM 
attribute types. Its C declaration is as follows: 

A data value of this data type is an ordered sequence of zero or more type 
numbers, each of which is an instance of the OM_type data type. 

An additional data value, OM_NO _MORE_TYPES, follows and thus 
delimits the sequence. The C representation of the sequence is an array. 

36.2.16 OM value 

The OM value data type is used to represent any data value. Its C 
declaration is as follows: 

typedef struct { 
OM_uint32 padding; 
OM_object object; 

OM-padded_object; 

OSF DeE Application Development Guide 36-17 



XDS/XOM Supplementary Information 

36-18 

OM_string 
OM_boolean 
OM_enumeration 
OM_integer 
OM-padded_object 

OM_value; 

string; 
boolean; 
enumeration; 
integer; 
object; 

Note: The first type definition (in particular, its padding 
component) aligns the object component with the elements 
component of the string component in the second type 
definition. This facilitates initialization in C. 

The identifier OM value union is defined for reasons of - -
compilation order. It is used in the definition of the 
OM_descriptor data type. 

A data value of this data type is an attribute value. It has no components if 
the value's syntax is OM_S_NO_MORE_SYNTAXES or 
OM_S_NO_ VALUE. Otherwise, it has one of the following components: 

• string 

The value if its syntax is a string syntax 

• boolean 

The value if its syntax is OM _ S _BOOLEAN 

• enumeration 

The value if its syntax is OM_S_ENUMERATION 

• integer 

The value if its syntax is OM _ S _INTEGER 

• object 

The value if its syntax is OM _ S _ OBJECT 

Note: A data value of this data type is only displayed as a 
component of a descriptor. Thus, it is always accompanied 
by indicators of the value's syntax. The latter indicator 
reveals which component is present. 

OSF DeE Application Development Guide 



XOM Service Interface 

The OM_value_length data type is used to indicate the number of bits, 
octets, or characters in a string. Its C declaration is as follows: 

A data value of this data type is an integer in the range 0 to 232 that 
represents the number of bits in a bit string, octets in an octet string, or 
characters in a character string. 

Note: This data type is not used in the definition of the interface. It 
is provided for use by client programmers for defining 
attribute constraints. 

36.2.18 OM_value_position 

The OM_value_position data type is used to indicate an attribute value's 
position within an attribute. Its C declaration is as follows: 

typedef OM_uint32 OM_value-PQsitioni 

A data value of this data type is an integer in the range 0 to 232_1 that 
indicates the position of a value within an attribute. However, the value 
OM_ALL_ VALUES has the meaning assigned to it by om_get(). 

36.2.19 OM_workspace 

The OM_workspace data type is used to identify an application-specific 
API that implements OM; for example, directory or message handling. Its 
C declaration is as follows: 

typedef void *OM_workspacei 

A data value of this data type is the designator or handle for a workspace. 

OSF DeE Application Development Guide 36-19 



XDS/XOM Supplementary Information 

36.3 XOM Functions 

This section provides an overview of the XOM service interface functions 
as listed in Table 36-3. For a full description of these functions, see the 
corresponding reference pages in the (3xom) section of the OSF DeE 
Application Development Reference. 

Table 36-3. XOM Service Interface Functions 

36-20 

Function Description 

om_copy() Copies a private object. 
om_copy_value( ) Copies a string between private objects. 
om_create( ) Creates a private object. 
om_decode( ) This function is not supported by the DCE XOM 

interface; it returns an OM_FUNCTION_DECLINED 
error. 

om_delete( ) Deletes a private or service-generated object. 
om_encode( ) This function is not supported by the DCE XOM 

interface; it returns an OM_FUNCTION_DECLINED 
error. 

om_get() Gets copies of attribute values from a private object. 
om_instance( ) Tests an object's class. 
om_put() Puts attribute values into a private object. 
om_read() Reads a segment of a string in a private object. 
om_remove( ) Removes attribute values from a private object. 
om_write() Writes a segment of a string into a private object. 

The purpose and range of capabilities of the service interface functions can 
be summarized as follows: 

• om_copy() 

This function creates an independent copy of an existing private object 
and all its subobjects. The copy is placed in the workspace of the 
original object, or in another workspace specified by the DeE client. 

• om_copy _ value() 

This function replaces an existing attribute value or inserts a new value 
in one private object with a copy of an existing attribute value found in 
another. Both values must be strings. 

OSF DeE Application Development Guide 



XOM Service Interface 

• om _ create() 

This function creates a new private object that is an instance of a 
particular class. The object can be initialized with the attribute values 
specified as initial in the class definition. 

The service does not permit the client to explicitly create instances of 
all classes, but rather only those indicated by a package's definition as 
having this property. 

• om _ delete( ) 

This function deletes a service-generated public object, or makes a 
private object inaccessible. 

• om_get() 

This function creates a new public object that is an exact but 
independent copy of an existing private object. The client can request 
certain exclusions, each of which reduces the copy to a part of the 
original. The client can also request that values be converted from one 
syntax to another before they are returned. 

The copy can exclude: attributes of types other than those specified, 
values at positions other than those specified within an attribute, values 
of multivalued attributes, copies of (not handles for) subobjects, or all 
attribute values. Excluding all attribute values reveals only an 
attribute's presence. 

• om _instance() 

This function determines whether an object is an instance of a 
particular class. The client can determine an object's class simply by 
inspection. This function is useful since it reveals that an object is an 
instance of a particular class, even if the object is an instance of a 
subclass of that class. 

OSF DeE Application Development Guide 36-21 



XDS/XOM Supplementary Information 

• omyut() 

This function places or replaces in one private object copies of the 
attribute values of another public or private object. 

The source values can be inserted before any existing destination 
values, before the value at a specified position in the destination 
attribute, or after any existing destination values. Alternatively, the 
source values can be substituted for any existing destination values or 
for the values at specified positions in the destination attribute. 

• om_readO 

This function reads a segment of a value of an attribute of a private 
object. The value must be a string. The value can first be converted 
from one syntax to another. This function enables the client to read an 
arbitrarily long value without requiring that the service place a copy of 
the entire value in memory. 

• om _remove( ) 

This function removes and discards particular values of an attribute of 
a private object. The attribute itself is removed if no values remain. 

• om _ write( ) 

This function writes a segment of an attribute value to a private object. 
The value must be a string. The segment can first be converted from 
one syntax to another. The written segment becomes the value's last 
segment since any elements beyond it are discarded. The function 
enables the client to write an arbitrarily long value without having to 
place a copy of the entire value in memory. 

36.4 XOM Return Codes 

36-22 

This section defines the return codes of the service interface, and thus the 
exceptions that can prevent the successful completion of an interface 
function. Table 36-4 identifies the abbreviated column headings that are 
used in Table 36-5; see Table 36-4 for the complete function names of the 
abbreviated column heads used in Table 36-5. 

Table 36-5 lists the XOM return codes and the functions to which they 
apply. (The information in this table also appears in the ERRORS sections 

OSF DeE Application Development Guide 



XOM Service Interface 

of the function descriptions in the (3xom) reference pages in the aSF DeE 
Application Development Reference.) The first column of Table 36-5 lists 
the return codes. The other columns identify the return codes that apply to 
each function by means of an x. 

Table 36-4. OM Functions and their Corresponding Abbreviations 

Function Abbreviation 
om_copy() Cop 
om_copy_value( ) CoV 
om_create( ) Cre 
om_decode( ) Dec 
om_delete( ) Del 
om_encode( ) Enc 
om_get() Get 
om_instance( ) Ins 
om_put() Put 
om_read() Rea 
om_remove( ) Rem 
om_write() Wri 

OSF DCE Application Development Guide 36-23 



XDS/XOM Supplementary Information 

Table 36-5. XOM Service Interface Return Codes 

Return Code Cop CoV Cre Dee Del Ene Get Ins Put Rea Rem Wri 

OM_SUCCESS x x x x x x x x x x x x 

OM - - - x - - - - - - - --
ENCODING_ 
INVALID 

OM - x x - - x - - x - x x -
FUNCTION -
DECLINED 

OM_ x x x x x x x x x x x x 
FUNCTION -
INTERRUPTED 

OM x x x x x x x x x x x x -
MEMORV_ 
INSUFFICIENT 

OM x x x x x x x x x x x x -
NETWORK_ 
ERROR 

OM_NO_ x - x x - - - x x - - -
SUCH -
CLASS 

o M_N 0_ - - - - - - x - - - - -
SUCH -
EXCLUSION 

OM_NO_ - - - - - - - - x - - -
SUCH -
MODIFICATION 

36-24 OSF DCE Application Development Guide 



XOM Service Interface 

Return Code Cop CoV Cre Dee Del Ene Get Ins Put Rea Rem Wri 

OM_NO_ x x - x x x x x x x x x 
SUCH -
OBJECT 

OM_NO_ - - - x - x - - - - - -
SUCH -
RULES 

OM_NO_ - - - - x - - x x - - x 
SUCH -
SYNTAX 

OM_NO_ - x - - x - x - x x x x 
SUCH -
TYPE 

OM_NO_ x - x - - - - - - - - -
SUCH -
WORKSPACE 

OM_NOT_AN - - - x - - - - - - - --
ENCODING 

o M_NOT_ - - x - - - - - x - - -
CONCRETE 

o M_NOT_ - x - - - - - - x x - x 
PRESENT 

o M_NOT_ x x - x - x x - x x x x 
PRIVATE 

OM_NOT_ - - - - x - - x - - - -
THE -
SERVICES 

OSF DeE Application Development Guide 36-25 



XDS/XOM Supplementary Information 

Return Code Cop CoV Cre Dee Del Ene Get Ins Put Rea Rem Wri 

OM x x x x x x x x x x x x -
PERMANENT_ 
ERROR 

OM x x x x x x x x x x x x -
POINTER_ 
INVALID 

OM_SYSTEM - x x x x x x x x x x x x 
ERROR 

OM x x x x x x x x x x x x -
TEMPORARY_ 
ERROR 

OM_TOO_ x - - x - - - - x - - -
MANY_ 
VALUES 

OM_VALUES_ - - - - - - - - x - - -
NOT_ 
ADJACENT 

OM_WRONG - x - x - - - - x - - x -
VALUE -
LENGTH 

OM_WRONG - - - x - - - - x - - x -
VALUE -
MAKEUP 

OM_WRONG - - - x - - - - x - - --
VALUE -
NUMBER 

36-26 OSF DeE Application Development Guide 



XOM Service Interface 

Return Code Cop CoV Cre Dee Del Ene Get Ins Put Rea Rem Wri 

OM_WRONG - - - - - - - - x - - x -
VALUE -
POSITION 

OM_WRONG - x - x - - x - x x - x -
VALUE -
SYNTAX 

OM_WRONG - x - x - - x - x - - --
VALUE_ 
TYPE 

The return code values are as follows: 

o OM SUCCESS 
The function completed successfully. 

1 OM ENCODING INVALID - -
The octets that constitute the value of an encoding's Object 
Encoding attribute are invalid. 

2 OM FUNCTION DECLINED - -
The function does not apply to the object to which it is addressed. 

3 OM FUNCTION INTERRUPTED - -
The function is aborted by an external force; for example, a 
keystroke designated for this purpose at a user interface. 

4 OM MEMORY INSUFFICIENT - -
The service cannot allocate the main memory it needs to complete 
the function. 

5 OM NETWORK ERROR - -
The service could not successfully employ the network upon which 
its implementation depends. 

6 OM NO SUCH CLASS - - -
A purported class identifier is not defined. 

7 OM NO SUCH EXCLUSION - - -
A purported exclusion identifier is not defined. 

8 OM NO SUCH MODIFICATION - - -
A purported modification identifier is not defined. 

OSF DeE Application Development Guide 36-27 



XDS/XOM Supplementary Information 

36-28 

9 OM_NO_SUCH_OBJECT 
A purported object is nonexistent, or the purported handle is invalid. 

10 OM NO SUCH RULES - - -
A purported rules identifier is not defined. 

110M NO SUCH SYNTAX - - -
A purported syntax identifier is not defined. 

12 OM NO SUCH TYPE - - -
A purported type identifier is not defined. 

13 OM NO SUCH WORKSPACE - - -
A purported workspace is nonexistent. 

14 OM NOT AN ENCODING - --
An object is not an instance of the Encoding class. 

15 OM NOT CONCRETE - -
A class is abstract, not concrete. 

16 OM NOT PRESENT - -
An attribute value is absent, not present. 

17 OM NOT PRIVATE - -
An object is public, not private. 

18 OM NOT THE SERVICES - - -
An object is a client-generated object, rather than a service
generated or private object. 

19 OM PERMANENT ERROR - -
The service encountered a permanent difficulty other than those 
indicated by other return codes. 

20 OM POINTER INVALID - -
In the C interface, an invalid pointer is supplied as a function 
parameter, or as the receptacle for a function result. 

210M SYSTEM ERROR - -
The service could not successfully employ the operating system 
upon which its implementation depends. 

22 OM TEMPORARY ERROR - -
The service encountered a temporary difficulty other than those 
indicated by other return codes. 

OSF DeE Application Development Guide 



XOM Service Interface 

23 OM TOO MANY VALUES - - -
An implementation limit prevents a further attribute value from 
being added to an object. This limit is undefined. 

24 OM_VALUES_NOT_ADJACENT 
The descriptors for the values of a particular attribute are not 
adjacent. 

25 OM WRONG VALUE LENGTH - - -
An attribute has, or would have, a value that violates the value 
length constraints in force. 

26 OM WRONG VALUE MAKEUP - - -
An attribute has, or would have, a value that violates a constraint on 
the value's syntax. 

27 OM WRONG VALUE NUMBER - - -
An attribute has, or would have, a value that violates the value 
number constraints in force. 

28 OM WRONG VALUE POSITION - - -
The use defined for value position in the parameter or parameters of 
a function is invalid. 

29 OM WRONG VALUE SYNTAX - - -
An attribute has, or would have, a value whose syntax is not 
permitted. 

30 OM WRONG VALUE TYPE - - -
An object has, or would have, an attribute whose type is not 
permitted. 

OSF DeE Application Development Guide 36-29 





Chapter 37 

Object Management Package 

This chapter defines the Object Management Package (aMP). The object 
identifier (referred to as om) assigned to the package, as defined by this 
guide, is the object identifier specified in ASN.l as {joint-iso-ccitt(2) mhs
motis(6) group(6) white(l) api(2) om(4}}. 

37.1 Class Hierarchy 

This section shows the hierarchical organization of the OM classes. 
Subclassification is indicated by indentation, and the names of abstract 
classes are in italics. Thus, for example, OM_C_ENCODING is an 
immediate subclass of OM _ C _OBJECT, an abstract class. The names of 
classes to which om _ encode( ) applies are in boldface. (nCE XOM does not 
support the encoding of any OM classes.) The om_createO function 
applies to all concrete classes . 

• OM C OBJECT 

- OM C ENCODING 

- OM C EXTERNAL 

OSF DeE Application Development Guide 37-1 



XDS/XOM Supplementary Information 

37.2 Class Definitions 

The following subsections define the OM classes. 

37.2.1 OM C ENCODING 

An instance of class OM_C_ENCODING is an object represented in a fonn 
suitable for transmission between workspaces, for transport via a network, 
or for storage in a file. Encoding can also be a suitable way of indicating to 
an intennediate service provider (for example, a directory, or message 
transfer system) an object that it does not recognize. 

This class has the attributes of its superclass, OM _ C _OBJECT, in addition 
to the specific attributes listed in Table 37-1. 

Table 37-1. Attributes Specific to OM_C_ENCODING 

37-2 

Value Value Value 
Attribute Value Syntax Length Number Initially 

OM_OBJECT_ String{OM_S_ - 1 -
CLASS OBJECT_ 

IDENTIFIER_ 
STRING) 

OM_OBJECT_ String 1 - 1 -
ENCODING 

OM_RULES String{OM_S_ - 1 ber 
OBJECT_ 
IDENTIFIER_ 
STRING) 

11f the Rules attribute is ber or canonical-ber, the syntax of the present 
attribute must be String{OM_S_ENCODING_STRING) . 

• OM_OBJECT_CLASS 

This attribute identifies the class of the object that the Object Encoding 
attribute encodes. The class must be concrete. 

OSF DCE Application Development Guide 



Object Management Package 

• OM_OBJECT_ENCODING 

This attribute is the encoding itself . 

• OM RULES 

This attribute identifies the set of rules that are followed to produce the 
Object Encoding attribute. Among the defined values of this attribute 
are those represented as follows: 

- OM BER 

This value is specified in ASN.l as {joint-iso-ccitt(2) asnl(l) 
basic-encoding(l)}. This value indicates the BER.1 

- OM CANONICAL BER 

This value is specified in ASN.l as {joint-iso-ccitt(2) mhs-motis(6) 
group(6) white(l) api(2) om(4) canonical-ber(4)}. This value 
indicates the canonical BER.2 

Note: In general, an instance of this class cannot appear as a value 
whose syntax is Object (C) if C is not OM_C_ENCODING, 
even if the class of the object encoded is C. 

37.2.2 OM C EXTERNAL 

An instance of class OM C EXTERNAL is a data value and one or more 
information items that describe the data value and identify its data type. 
This class corresponds to ASN.l 's External type, and thus the class and the 
attributes specific to it are described indirectly in the specification of 
ASN.1.3 

1. (See Clause 25.2 of Recommendation X.209, "Specification of Basic Encoding Rules for Abstract 
Syntax Notation 1 (ASN.l)," CCITT Blue Book, Fascicle VIII.4, International Telecommunications 
Union, 1988. Also published by ISO as ISO 8825.) 

2. (See Clause 8.7 of Recommendation X.509, "The Directory: Authentication Framework," CCITT Blue 
Book, International Telecommunications Union, 1988. Also published by ISO as ISO 9594-8.) 

3. (See Clause 34 of Recommendation X.208, "Specification of Abstract Syntax Notation 1 (ASN.l)," 
CCITT Blue Book, Fascicle VIII.4, International Telecommunications Union, 1988. Also published by 
ISO as ISO 8824.) 

OSF DeE Application Development Guide 37-3 



XDS/XOM Supplementary Information 

This class has the attributes of its superclass, OM _ C _OBJECT, in addition 
to the OM attributes specific to this class that are listed in Table 37-2. 

Table 37-2. Attributes Specific to OM_C_EXTERNAL 

37-4 

Value Value Value 
Attribute Value Syntax Length Number Initially 

OM String(OM_S_ - o or l' --
ARBITRARV_ BIT_STRING) 
ENCODING 

OM_ASN1 String(OM_S_ - o or 11 --
ENCODING ENCODING_ 

STRING) 

OM_DATA_ String(OM_S_ - o or 1 -
VALUE - OBJECT_ 
DESCRIPTOR DESCRIPTOR -

STRING) 

OM_DIRECT_ String(OM_S_ - o or 1 -
REFERENCE OBJECT_ 

IDENTIFIER -
STRING) 

OM_INDIRECT_ OM_S_ - o or 1 -
REFERENCE INTEGER 

OM_OCTET_ String (OM_S_ - o or 11 -
ALIGNED - OCTET_ 
ENCODING STRING) 

, Only one of these three attributes is present. 

• OM ARBITRARY ENCODING . - -
This attribute is a representation of the data value as a bit string . 

• OM ASNI ENCODING - -
The data value. This attribute can be present only if the data type is an 
ASN.l type. 

OSF DCE Application Development Guide 



Object Management Package 

If this attribute value's syntax is an Object syntax, the data value's 
representation is that produced by om_encode() when its Object 
parameter is the attribute value and its Rules parameter is ber. Thus, the 
Object's class must be one to which om _ encode() applies. 

• OM DATA VALUE DESCRIPTOR - - -
This attribute contains a description of the data value. 

• OM DIRECT REFERENCE - -
This attribute contains a direct reference to the data type. 

• OM INDIRECT REFERENCE - -
This attribute contains an indirect reference to the data type. 

• OM OCTET ALIGNED ENCODING - - -
This attribute contains a representation of the data value as an octet 
string. 

37.2.3 OM_C_OBJECT 

The class OM_C_OBJECT represents information objects of any variety. 
This abstract class is distinguished by the fact that it has no superclass and 
that all other classes are its subclasses. 

The attribute specific to this class is listed in Table 37-3. 

Table 37-3. Attribute Specific to OM_C_OBJECT 

Value Value Value 
Attribute Value Syntax Length Number Initially 

OM_CLASS String(OM_S_ - 1 -
OBJECT_ 
IDENTIFIER_ 
STRING) 

• OM CLASS 

This attribute identifies the object's class. 

OSF DCE Application Development Guide 37-5 





Part 5 
DeE Distributed Time Service 





Chapter 38 

Introduction to the Distributed Time 
Service API 

This chapter describes the DCE Distributed Time Service (DTS) 
programming routines. You can use these routines to obtain timestamps that 
are based on Coordinated Universal Time (UTC). You can also use the DTS 
routines to translate among different timestamp formats and perform 
calculations on timestamps. Applications can use the timestamps that DTS 
supplies to determine event sequencing, duration, and scheduling. 
Applications can call the DTS routines from server or clerk systems. 

The DCE Distributed Time Service routines are written in the C 
programming language. You should be familiar with the basic DTS 
concepts before you attempt to use the Applications Programming Interface 
(API). The DTS chapters of the aSF DeE Administration Guide provides 
conceptual information about DTS. 

The DTS API routines offer the following basic functions: 

• Retrieving timestamp information 

• Converting between binary timestamps that use different time structures 

• Converting between binary timestamps and ASCII representations 

• Converting between UTC time and local time 

• Manipulating binary timestamps 

OSF DeE Application Development Guide 38-1 



DeE Distributed Time Service 

• Comparing two binary time values 

• Calculating binary time values 

• Obtaining time zone information. 

The sections that follow describe how DTS represents time, discuss the DTS 
time structures, discuss the DTS API header files, and briefly describe the 
DTS API routines. 

38.1 DTS Time Representation 

Coordinated Universal Time (UTC) is the international time standard that 
has largely replaced Greenwich Mean Time (GMT). The standard is 
administered by the International Time Bureau (BIH), and is widely used. 
DTS uses opaque binary timestamps that represent UTC for all of its 
internal processes. You cannot read or disassemble a DTS binary timestamp; 
the DTS API allows applications to convert or manipulate timestamps, but 
they cannot be displayed. DTS also translates the binary timestamps into 
ASCII text strings, which can be displayed. 

38.1.1 Absolute Time Representation 

38-2 

An absolute time is a point on a time scale. For DTS, absolute times 
reference the UTC time scale; absolute time measurements are derived from 
system clocks or external time-providers. When DTS reads a system clock 
time, it records the time in an opaque binary timestamp that also includes 
the inaccuracy and other information. When you display an absolute time, 
DTS converts the time to ASCII text as shown in the following display: 

1990-11-21-13:30:25.785-04:001000.082 

DTS displays all times in a format that complies with the International 
Standards Organization (ISO) 8601 (1988) standard. Note that the 
inaccuracy portion of the time is not defined in the ISO standard; times that 
do not include an inaccuracy are accepted. Figure 38-1 explains the ISO 
format that generated the previous display. 

OSF DeE Application Development Guide 



Introduction to the Distributed Time Service API 

Figure 38-1. ISO Format for Time Displays 

Inaccuracy 
Calendar Date and Time TDF Component 

Component Component / 
~ ____ ~A~ ____ ~\~~ 

In the previous figure, the relative time preceded by the + (plus) or - (minus) 
character indicates the hours and minutes that the calendar date and time are 
offset from UTC. The presence of this Time Differential Factor (TDF) in the 
string also indicates that the calendar date and time are the local time of the 
system, not UTC. Local time is UTC plus the TDF. The Inaccuracy (I) 
designator indicates the beginning of the inaccuracy component associated 
with the time. 

Although DTS displays all times in the previous format, variations to the 
ISO format shown in Figure 38-2 are also accepted as input for the ASCII 
conversion routines. 

OSF DeE Application Development Guide 38-3 



DeE Distributed Time Service 

Figure 38-2. Variations to the ISO Time Format 

38-4 

Inaccuracy 
Calendar Date and Time TDF Component 

Component Component / 
,---_____ A'-__ ------...\ ~ ~ 

In the previous figure, the Time (T) designator separates the calendar date 
from the time, a , (comma) separates seconds from fractional seconds, and 
the + (plus) or - (minus) character indicates the beginning of the inaccuracy 
component. 

The following examples show some valid time formats. 

The following represents July 4, 1776 17:01 GMT and an unspecified 
inaccuracy (default): 

1776-7-4-17:01:00 

The following represents a local time of 12:01 (17:01 GMT) on July 4, 1776 
with a TDF of -5 hours and an inaccuracy of 100 seconds: 

1776-7-4-12:01:00-05:00I100 

OSF DeE Application Development Guide 



Introduction to the Distributed Time Service API 

Both of the following represent 12:00 GMT in the current day, month, and 
year with an unspecified inaccuracy: 

12:00 and T12 

The following represents July 14, 1792 00:00 GMT with an unspecified 
inaccuracy: 

1792-7-14 

38.1.2 Relative Time Representation 

A relative time is a discrete time interval that is usually added to or 
subtracted from another time. A TDF associated with an absolute time is 
one example of a relative time. A relative time is normally used as input for 
commands or system routines. 

Figure 38-3 shows the full syntax for a relative time. 

Figure 38-3. Full Syntax for a Relative Time 

Inaccuracy 
Relative Date and Time Component 

~,< 

OSF DeE Application Development Guide 38-5 



DeE Distributed Time Service 

The following example shows a relative time of 21 days, 8 hours, and 30 
minutes, 25 seconds with an inaccuracy of 0.300 seconds: 

21-08:30:25.000100.300 

The following example shows a negative relative time of 20.2 seconds with 
an unspecified inaccuracy (default): 

-20.2 

The following example shows a relative time of 10 minutes, 15.1 seconds 
with an inaccuracy of 4 seconds: 

10:15.114 

Notice that a relative time does not use the calendar date fields, since these 
fields concern absolute time. A positive relative time is unsigned; a negative 
relative time is preceded by a - (minus) sign. A relative time is often 
subtracted from or added to another relative or absolute time. Relative times 
that DTS uses internally are opaque binary timestamps. The DTS API offers 
several routines that can be used to calculate new times using relative 
binary timestamps. 

Representing Periods of Time 

A given duration of a period of time can be represented by a data element of 
variable length that uses the syntax shown in Figure 38-4. 

Figure 38-4. Syntax for Representing a Duration 

P nYnM nW nD T nH nM nS In 

Period Designator Inaccuracy Designator/Inaccuracy 

YearslYear Designator Seconds/Second Designator 

Months/Month Designator Minutes/Minute Designator 

WeekslWeek Designator Hours/Hour Designator 

Days/Day Designator Time Designator 

38-6 OSF DeE Application Development Guide 



Introduction to the Distributed Time Service API 

The Data Element Parts 

The data element contains the following parts: 

• The designator P precedes the part that includes the calendar 
components, including the following: 

- The number of years followed by the designator Y 

- The number of months followed by the designator M 

- The number of weeks followed by the designator W 

- The number of days followed by the designator D 

• The T designator precedes the part that includes the time components, 
including the following: 

- The number of hours followed by the designator H 

- The number of minutes followed by the designator M 

- The number of seconds followed by the designator S 

• The designator I precedes the number of seconds of inaccuracy. 

The following example represents a period of 1 year, 6 months, 15 days, 11 
hours, 30 minutes, and 30 seconds and an unspecified inaccuracy: 

PIY6M15DTIIH3OM3OS 

The following example represents a period of 3 weeks and an inaccuracy of 
4 seconds: 

P3WI4 

OSF DeE Application Development Guide 38-7 



DeE Distributed Time Service 

38.2 Time Structures 

DTS can convert among several types of binary time structures that are 
based on different base dates and time unit measurements. DTS uses UTC
based time structures, and can convert other types of time structures to its 
own presentation of UTC-based time. The DTS API routines are used to 
perform these conversions for applications on your system. 

Table 38-1 lists the absolute time structures that the DTS API uses to modify 
binary times for applications. 

Table 38-1. Absolute Time Structures 

Structure Time Units Base Date Approximate Range 

utc 1 OO-nanosecond 15 October 1582 A.D. 1 to A.D. 30,000 
tm second 1 January 1900 A.D. 1 to A.D. 30,000 
timespec nanosecond 1 January 1970 A.D. 1970 to A.D. 2106 

Table 38-2 lists the relative time structures that the DTS API uses to modify 
binary times for applications. 

Table 38-2. Relative Time Structures 

Structure Time Units Approximate Range 

utc 100-nanosecond +/- 30,000 years 
tm second +/- 30,000 years 
reltimespec nanosecond +/- 68 years 

The remainder of this section explains the DTS time structures in detail. 

38.2.1 The utc Structure 

38-8 

Coordinated Universal Time (UTC) is useful for measuring time across 
local time zones and for avoiding the seasonal changes (summer time or 
daylight savings time) that can affect the local time. DTS uses 128-bit 
binary numbers to represent time values internally; throughout this guide, 
these binary numbers representing time values are referred to as binary 

OSF DeE Application Development Guide 



Introduction to the Distributed Time Service API 

timestamps. The DTS ute structure determines the ordering of the bits in a 
binary timestamp; all binary timestamps that are based on the ute structure 
contain the following information: 

• The count of 100-nanosecond units since 00:00:00.00, 15 October 1582 
(the date of the Gregorian reform to the Christian calendar) 

• The count of 100-nanosecond units of inaccuracy applied to the 
preceding item 

• The Time Differential Factor (TDF), expressed as the signed quantity 

• The DTS version number 

The binary timestamps that are derived from the DTS ute structure have an 
opaque format. This format is a cryptic character sequen-ce that DTS uses 
and stores internally. The opaque binary timestamp is designed for use in 
programs, protocols, and databases. 

Note: Applications use the opaque binary timestamps when storing 
time values or when passing them to DTS. 

The API provides the necessary routines for converting between opaque 
binary timestamps and character strings that can be displayed and read by 
users. 

38.2.2 The tm Structure 

The tm structure is based on the time in years, months, days, hours, minutes, 
and seconds since 00:00:00 GMT (Greenwich Mean Time), 1 January 1900. 
The tm structure is defined in the time.h header file. 

The tm structure declaration follows: 

struct tm { 
int tm_sec; /* Seconds (0 - 59) 
int tm_min; /* Minutes (0 - 59) 
int tm_hour; /* Hours (0 - 23) 
int trn_mday; /* Day of Month (1 - 31) 
int tm_mon; /* Month of Year (0 - 11) 
int tm-year; /* Year - 1900 
int tm_wday; /* Day of Week (Sunday = 

int tm-yday; /* Day of Year (0 - 364) 

OSF DeE Application Development Guide 

0) 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

38-9 



DeE Distributed Time Service 

int tm_isdst; /* Nonzero if Daylight Savings Time */ 
/* is in effect */ 

} ; 

Not all of the tm structure fields are used for each routine that converts 
between tm structures and ute structures. (See the parameter descriptions 
that accompany the routines in the OSF DeE Application Development 
Reference manual for additional information about which fields are used for 
specific routines.) 

38.2.3 The timespec Structure 

The times pee structure is normally used in combination with or in place of 
the tm structure to provide finer resolution for binary times. The timespee 
structure is similar to the tm structure, but the timespee structure specifies 
the number of seconds and nanoseconds since the base time of 00:00:00 
GMT, 1 January 1970. You can find the structure in the dee/ute.h header 
file. 

The timespee structure declaration follows: 

struct tirnespec { 
unsigned long tv_sec; /* 

/* 
Seconds since 00:00:00 GMT, 

1 January 1970 
*/ 
*/ 

/* Additional nanoseconds since */ 
/* tv_sec 

timespec_t; 
*/ 

38.2.4 The reltimespec Structure 

38-10 

The reltimespee structure represents relative time. This structure is similar 
to the times pee structure, except that the first field is signed in the 
reltimespee structure. (The field is unsigned in the timespee structure.) 
You can find the reltimespee structure in the dee/ute.h header file. 

OSF DeE Application Development Guide 



Introduction to the Distributed Time Service API 

The reltimespec structure declaration follows: 

struct reltimespec { 
long tv_seci /* Seconds of relative time */ 
long tv_nseci /* Additional nanoseconds of */ 

/* relative time 
reltimespec_ti 

38.3 DTS API Header Files 

*/ 

The time.h and dce/utc.h header files contain the data structures, type 
definitions, and define statements that are referenced by the DTS API 
routines. The time.h header file is a standard UNIX file. The dce/utc.h 
header file includes time.h and contains the timespec, reltimespec , and utc 
structures. 

These header files are located in lusr/include/dce. 

38.4 DTS API Routine Functions 

Figure 38-5 categorizes the DTS portable interface routines by function. 

OSF DeE Application Development Guide 38-11 



DeE Distributed Time Service 

Figure 38-5. DTS API Routines Shown by Functional Grouping 

38-12 

Retrieving Times .•. 

[ Converting Times ... 
1 

To/From 
tm Structures: 

utc_anytime 
utc.-Qmtime 
utc_localtime 
utc_mkanytime 
utc_mkgmtime 
utc_mklocaltime 
utc mkreltime 
utc=reltime 

Manipulating Times ... 1-------. 

Comparing Times •.. 

[ Calculating Times ... JI-------.I 
utc_abstime 
utc_addtime 
utc_mulftlme 
utc_niultime 
utc_subtime 

, Obtaining Time Zone 
Information 1-------. 

I I 
To/From To/From 

tlmespec Structures: ASCII text: 

utc_blnreltime utc_ascanytime 
utc_bintime utc_ascgmtime 
utc_mkblnreltime utc_asclocaltime 
utc_mkbintime utc ascreltime 

utc-mkasctime 
utc=mkascreltime 

An alphabetical listing of the DTS portable interface routines and a brief 
description of each one follows: 

• ute abstime 

Computes the absolute value of a binary relative timestamp 

• ute addtime 

Computes the sum of two binary timestamps; the timestamps can be two 
relative times or a relative time and an absolute time 

OSF DeE Application Development Guide 



Introduction to the Distributed Time Service API 

• ute_anytime 

Converts a binary timestamp into a tm structure by using the TDF 
information contained in the timestamp to determine the TDF returned 
with the tm structure 

• ute _ anyzone 

Gets the time zone label and offset from GMT by using the TDF 
contained in the input ute 

• ute_aseanytime 

Converts a binary timestamp into an ASCII string that represents an 
arbitrary time zone 

• ute_asegmtime 

Converts a binary timestamp into an ASCII string that expresses a GMT 
time 

• ute ascloealtime 

Converts a binary timestamp to an ASCII string that represents a local 
time 

• ute asereltime 

Converts a binary timestamp that expresses a relative time to its ASCII 
representation 

• ute binreltime 

Converts a relative binary timestamp into two timespee structures that 
express relative time and inaccuracy 

• ute bintime 

Converts a binary timestamp into a timespee structure 

• ute boundtime 

Given two UTC times, one before and one after an event, returns a 
single UTC time whose inaccuracy includes the event 

• ute _ empintervaltime 

Compares two binary timestamps or two relative binary timestamps 

OSF DeE Application Development Guide 38-13 



DeE Distributed Time Service 

38-14 

• ute _ empmidtime 

Compares two binary timestamps or two relative binary timestamps, 
ignoring inaccuracies 

• ute _gettime 

Returns the current system time and inaccuracy as an opaque binary 
timestamp 

• ute _getusertime 

Returns the time and process-specific TDF, rather than the system
specific TDF 

• ute_gmtime 

Converts a binary timestamp into a tm structure that expresses GMT or 
the equivalent UTC 

• ute _gmtzone 

Gets the time zone label, given ute 

• ute loealtime 

Converts a binary timestamp into a tm structure that expresses local 
time 

• ute loealzone 

Gets the time zone label and offset from GMT, given ute 

• ute _ mkanytime 

Converts a tm structure and TDF (expressing the time in an arbitrary 
time zone) into a binary timestamp 

• ute mkasereltime 

Converts a NULL-terminated character string, which represents a 
relative timestamp, to a binary timestamp 

• ute mkasetime 

Converts a NULL-terminated character string, which represents an 
absolute timestamp, to a binary timestamp 

• ute mkbinreltime 

Converts a timespee structure expressing a relative time to a binary 
timestamp 

OSF DeE Application Development Guide 



Introduction to the Distributed Time Service API 

• ute mkbintime 

Converts a timespee structure into a binary timestamp 

• ute _ mkgmtime 

Converts a tm structure that expresses GMT or UTC to a binary 
timestamp 

• ute mkloealtime 

Converts a tm structure that expresses local time to a binary timestamp 

• ute mkreltime 

Converts a tm structure that expresses relative time to a binary 
timestamp 

• ute mulftime 

Multiplies a relative binary timestamp by a floating-point value 

• ute multime 

Multiplies a relative binary timestamp by an integer factor 

• ute _pointtime 

Converts a binary timestamp to three binary timestamps that represent 
the earliest, most likely, and latest time 

• ute reltime 

Converts a binary timestamp that expresses a relative time into a tm 
structure 

• ute_spantime 

Given two (possibly unordered) binary timestamps, returns a single UTC 
time interval whose inaccuracy spans the two input timestamps 

• ute subtime 

Computes the difference between two binary timestamps that express 
either an absolute time and a relative time, two relative times, or two 
absolute times 

OSF DeE Application Development Guide 38-15 





Chapter 39 

Time-Provider Interface 

This chapter describes the Time-Provider Interface (TPI) for DCE 
Distributed Time Service software. The chapter provides a brief overview of 
the TPI, explains how to use external time-providers with DTS, and 
describes the data structures and message protocols that make up the TPI. 

Coordinated Universal Time (UTC) is widely used and is disseminated 
throughout the world by various standards organizations. Several 
manufacturers supply devices that can acquire UTC time values via radio, 
satellite, or telephone. These devices can then provide standardized time 
values to computer systems. Normally, one device is connected to a 
computer system; the device runs a process that interprets signals and 
translates them to time values, which can either be displayed or be provided 
to the server process running on the connected system. 

To synchronize its system clock with UTC using an external time-provider 
device, a DTS server needs a software interface to the device to periodically 
obtain UTC. In effect, this interface serves as an intermediary between the 
DTS server and external time-provider processes. The DTS server requires 
the interface to obtain UTC time values and to determine the associated 
inaccuracy of each value. The interface between the DTS server process and 
the time-provider process is called the Time-Provider Interface (TPI). 

OSF DeE Application Development Guide 39-1 



DeE Distributed Time Service 

The remainder of this chapter describes the TPI and its attendant processes 
in detail. The following section describes the control flow between the DTS 
server process, the TPI, and the Time-Provider process. 

39.1 General TPI Control Flow 

39-2 

When you use a time-provider with a system running DTS, the external 
time-provider is implemented as an independent process that communicates 
with a DTS server process through Remote Procedure Calls (RPCs). A 
remote procedure call is a synchronous request and response between a 
main calling program and a procedure executing in another process. RPC 
applications are based on the client/server model. In this context, the 
following processes act as the client and server components in the RPC
based application: 

• The DTS daemon is the client. 

• The Time-Provider process (TP process) is the server. 

Both the RPC-client (DTS daemon) and the server (TP process) must be 
running on the same system. 

Applications running on RPC communicate through an interface that is well 
known to both the client and the server. The RPC interface consists of a set 
of procedures, data types, and constants that describe how a client can 
invoke a routine running on the server. The server offers the interface to the 
clients through the Interface Definition Language (IDL) file. 

The IDL file defines the syntax for an operation, including the following: 

• The name of the operation 

• The data type of the value that the operation returns (if any) 

• The order and data types of the operation's parameters (if any) 

The TP process offers two procedures that DTS calls to obtain time values. 
These procedures are ContactProvider and ServerRequestProviderTime. 

At each system synchronization, DTS makes the initial remote procedure 
call (ContactProvider) to a TP process that is assumed to be running on the 
same node. 

OSF DeE Application Development Guide 



Time-Provider Interface 

If the TP process is active, the RPC call returns the following arguments: 

• A successful communication status message 

• A control message that DTS uses for further processing 

If the TP process is not active, the RPC call either returns a communication 
status failure or a time-out occurs. DTS then synchronizes with other 
servers instead of with the external time-provider. 

If the initial call (ContactProvider) is successful, DTS makes a second call 
(Server RequestProviderTime) to retrieve the timestamps from the 
external time-provider. The control message sent by the TP process in the 
first RPC call specifies the length of time DTS waits for the RPC call to 
complete. The TP process returns the following parameters in the procedure 
call: 

• A communication status message. 

• A time structure that contains timestamps collected from the external 
time-provider. (DTS then uses these timestamps to complete its 
synchronization. ) 

Figure 39-1 illustrates the RPC calling sequence between DTS and the TP 
process. Note that solid black lines represent the path followed by input 
parameters; dashed lines represent the path followed by output parameters 
and return values. 

OSF DeE Application Development Guide 39-3 



DeE Distributed Time Service 

Figure 39-1. DTS/Time-Provider RPC Calling Sequence 

DTS Daemon 

RPC Interface 

0: 
I 
I 
I 
I 
I 

RPC Runtime Library 

TP Process 

RPC Interface 

® 0: 
I 
I 
I 
I 
I 

I 
I 
I 
I L ______________________________ ~ 

----+- = Path followed by input parameters. 

- - -.. = Path followed by output parameters 
and return values. 

® 

The following steps describe the process shown in the previous figure: 

1. At synchronization time, DTS calls the ContactProvider remote 
procedure. Input parameters are passed to the TP client stub, 
dispatched to the RPC runtime library, and then passed to the TP 
server stub. 

2. The TP process receives the call and executes the ContactProvider 
procedure. 

3. The procedure terminates and returns the results through the TP server 
stub, the RPC runtime library, and the TP client stub. 

4. The procedure terminates in the DTS call, where the returned 
parameters are examined. 

5. DTS then calls the Server RequestProviderTime remote procedure. 
Input parameters are passed to the TP client stub, dispatched to the 
RPC runtime library, and then passed to the TP server stub. 

39-4 OSF DCE Application Development Guide 



Time-Provider Interface 

6. The TP process receives the call and executes the 
Server RequestProviderTime procedure. 

7. The procedure terminates and returns the results through the TP server 
stub, the RPC runtime library, and the TP client stub. 

8. The DTS remote procedure call terminates and the timestamps are 
returned as an output parameter. DTS then synchronizes using the 
timestamps returned by the external time-provider. 

The following section describes the remote procedures that are exported by 
the TP process during the previous sequence. 

39.1.1 ContactProvider Procedure 

ContactProvider is the first routine called by DTS. The routine is called to 
verify that the TP process is running and to obtain a control message that 
DTS uses for subsequent communications with the TP process and for 
synchronization after it receives the timestamps. The parameters passed in 
the ContactProvider procedure call consist of the following elements: 

• Binding Handle 

An input parameter that establishes the relationship between DTS and 
the TP process. A binding handle enables the client (DTS) to recognize 
and find a server (the TP process) that offers the same interface. 

• Control Message 

An output parameter that contains information used by DTS for 
subsequent processing. The control message consists of the following 
elements: 

TPstatus 

nextPoll 

timeout 

One of the following values: 

- K TPI SUCCESS 

- K TPI FAILURE 

A time value that tells DTS when to contact the TP 
process again. For example, once a day through dial-up, 
radio, or satellite. 

A value that tells DTS how long to wait for a response 
from the TP process. 

OSF DeE Application Development Guide 39-5 



DeE Distributed Time Service 

noClockSet A value that specifies whether or not DTS is allowed to 
alter the system clock. If noClockSet is specified as OxOl 
(TRUE), DTS does not adjust or set the clock during the 
current synchronization. This option is useful for systems 
whose system clock is known to be accurate (such as 
systems equipped with special hardware) or systems that 
are managed by some other time service (such as 
Network Time Protocol (NTP», but which still wish to 
function as a DTS server. 

• Communication Status 

An output parameter that contains a status code returned by the DeE 
RPC runtime library. The status rpe _ s _ ok is returned if the TP process is 
successfully contacted. 

39.1.2 Server RequestProviderTime Procedure 

39-6 

After the TP process is successfully contacted, DTS makes the 
ServerRequestProviderTime procedure call to obtain the timestamps from 
the external time-provider. The parameters passed in the 
ServerRequestProviderTime procedure call consist of the follOWIng 
elements: 

• Binding Handle 

An input parameter that establishes the relationship between DTS and 
the TP process. A binding handle enables the client (DTS) to recognize 
and find a server (the TP process) that offers the same interface. 

• Time Response Message 

An output parameter that contains a TP process status value 
(K_TPI_SUCCESS or K_TPI_FAILURE), a count of the timestamps 
that are returned, and the timestamps obtained from the external time
provider. The timestamp count is an integer in the range 
K_MIN_TIMESTAMPS to K_MAX_TIMESTAMPS. Each timestamp 
consists of three ute time values: 

- The system clock time immediately before the TP process polls the 
external time source. (The TP process normally obtains the time 
from the ute _gettime() DTS API routine.) 

OSF DeE Application Development Guide 



Time-Provider Interface 

- The time value returned to the TP process by the external time 
source. 

- The system clock time immediately after the external time source is 
read. (The TP process obtains the time from the ute _gettime() DTS 
API routine.) 

• Communication Status 

An output parameter that contains a status code returned by the DCE 
RPC runtime library. The status rpc _ s _ ok is returned if the TP process is 
successfully contacted. 

39.2 Time-Provider Process IDL File 

/* 

* 
* 

A remote procedure call can only work if an interface definition that clearly 
defines operation signatures exists. Operation signatures define the syntax 
for an operation, including its name and parameters (input and output) that 
are passed as part of the procedure call. The TP process interface exports the 
two operation signatures that have been previously explained. The interface 
is provided in the file examples/dts/dtsprovider.idl. When building the TP 
process application, this file must be compiled using the Interface Definition 
Language (lDL) compiler, which creates three files: 

• dtsprovider.h (header file) 

• dtsprovider _sstub.e (server stub file) 

• dtsprovider _ cstub.e (client stub file) 

The Time-Provider program must be compiled along with the 
dtsprovider _ sstub.e code and then linked together. The TP program must 
also include the stub-generated file dtsprovider .h. The following sample 
code shows the structure of this interface. 

Time Service Provider Interface 

* This interface is defined through the Network Interface 
* Definition Language (NIDL). 
*/ 

[uuid (bfca123S-62Sa-llc9-a073-0S002bOdea7a), 

OSF DeE Application Development Guide 39-7 



DeE Distributed Time Service 

version (1) 

interface time-provider 

import IIdce/nbase.idl ll
; 

import IIdce/utctypes.idl ll
; 

/* Minimum and Maximum number of times to read time source at each 
* synchronization 
*/ 

const long K_MIN_TIMESTAMPS 1; 
const long K_MAX_TIMESTAMPS 6; 

/* Message status field return values 
*/ 

const long K_TPI_FAILURE 
const long K_TPI_SUCCESS 

0; 
1; 

/* This structure contains one reading of the TP wrapped in the 
* timestamps of the local clock. 
*/ 

typedef struct TimeResponseType 
{ 

utc_t beforeTime; 
utc_t TPtime; 
utc_t afterTime; 

TimeResponseType; 

/* local clk just before getting UTC */ 
/* source UTC; inacc also supplied */ 
/* local clk just after getting UTC */ 

/* Time-provider control message. This structure is returned in 
* response to a time service request. The status field returns TP 
* success or failure. The nextPol1 gives the client the time at 
* which to poll the TP next. The timeout value tells the client how 
* long to wait for a time response from the TP. The noClockSet will 
* tell the client whether or not it is allowed to alter the system 
* clock after a synchronization with the TP. 
*/ 

typedef struct TPctlMsg 
{ 

unsigned long 

39-8 

status; 

OSF DeE Application Development Guide 



Time-Provider Interface 

1lllsigned long 
1lllsigned long 
1lllsigned long 

TPctlMsg; 

nextPoll; 
timeout; 
noClockSet; 

/* TP timestamp message. The actual time-provider synchronization 
* data. The status is the result of the operation (success or 
* failure). The timeStampCo1lllt parameter returns the number of 
* timestamps being returned in this message. The timeStampList is 
* the set of timestamps being returned from the TP. 
*/ 

typedef struct TPtimeMsg 
{ 

status; 1lllsigned long 
1lllsigned long 
TimeResponseType 

timeStampCo1lllt; 
timeStampList[K_MAX_TIMESTAMPS]; 

TPtimeMsg; 

/* The Time-Provider Interface structures are described here. 
* There are two types of response messages from the TP: 
* control message and data message. 

* 
* «« TPI CONTROL MESSAGE »» 

* 
* 31 o 
* +--------------------------------------------+ 

* I Time-Provider Status 
* +--------------------------------------------+ 

* I Next Poll Delta 
* +------------------------------~-------------+ 
* I Message Time Out 
* +--------------------------------------------+ 

* I NoSet Flag 
* +--------------------------------------------+ 

* 
* «« a single timestamp »» 

* 

OSF DeE Application Development Guide 39-9 



DeE Distributed Time Service 

* 128 o 
* +--------------------------------------------+ 
* I Before Time 
* +--------------------------------------------+ 
* I TP Time 
* +--------------------------------------------+ 
* I After Time 
* +--------------------------------------------+ 
* 
* «« TPI DATA MESSAGE »» 

* 
* 31 o 
* +--------------------------------------------+ 
* I Time-Provider Status 
* +--------------------------------------------+ 
* I Timestamp Count 
* +--------------------------------------------+ 
* I 
* I 
* I 

<timestamp one> 

* +--------------------------------------------+ 
* I 
* I 
* I 
* I 
* I 
* +--------------------------------------------+ 
* I 
* I <timestamp K_MAX_TlMESTAMPS> 
* I 
* +--------------------------------------------+ 
*/ 

/* The RPC-based Time-Provider Program (TPP) interfaces are defined 
* here. These calls are invoked by a Time Service daemon running as a 
* server (in this case it makes an RPC client call to the TPP server) . 
*/ 

/* CONTACT_PROVIDER 
* Send initial contact message to the TPP. The TPP server 
* responds with a control message. 

39-10 OSF DeE Application Development Guide 



Time-Provider Interface 

*/ 
void Contact Provider 

[in] handle_t bind_h, 
[out] TPctLMsg *ctrlRespMsg, 
[out] error_status_t *comStatus 
) ; 

/ * SERVER_REQUEST_PROVIDER_TIME 
* The client sends a request to the TPP for times. 
* The TPP server responds with an array of timestamps 
* obtained py querying the Time-Provider hardware that it polls. 
*/ 

void ServerRequestProviderTime 
( 

[in] handle_t bind_h, 
[out] TPtimeMsg *timesRspMsg, 
[out] error_status_t *comStatus 
) ; 

39.3 Initializing the Time-Provider Process 

Initializing the RPC-based TP process prepares it to receive remote 
procedure calls from a DTS daemon requesting the timestamps. The 
following steps are involved: 

1. Include the header file (dtsprovider.h) that is created by compiling 
/usr/include/dce/dtsprovider .idl, which contains the interface 
definition. 

2. Register the interface with the DCE RPC runtime. 

3. Select one or more protocol sequences that are compatible with both 
the interface and the runtime library. It is recommended that the TP 
process application selects all protocol sequences available on the 
system. Available protocol sequences are obtained by calling an RPC 
API routine, described in the example that follows. This ensures that 
transport independence is maintained in RPC applications. 

OSF DeE Application Development Guide 39-11 



DeE Distributed Time Service 

4. Register the TP process with the endpoint mapper (rpcd) database 
running on the system. This makes the TP process available to the 
DTS daemon. 

5. Obtain the name of the machine's principal and then register an 
authentication service to use with authenticated remote procedure 
calls coming from the DTS daemon. Note that DTS and the Time
Provider program are presumed to be running in an authenticated 
environment. 

6. Listen for remote procedure calls. 

The following example illustrates these steps, including the sequence of 
calls needed. 

/* Register the TP server interface with the RPC runtime. 
* The interface specification time-provider_vl_O_ifspec 
* is obtained from the generated header file dtsprovider.h 
* The entry point vector is normally defined at the top of 
* the TP source program similar to this: 

* 
* 
* 
* 
* 
* 
*/ 

globaldef time-provider_vl_O_epv_t time-provider_epv 
{ 

} ; 

Contact Provider , 
ServerRequestProviderTime 

rpc_server_register_if (time-provider_vl_O_s_ifspec, 
NULL, 

/* 

(rpc_mgr_epv_t) &time-provider_epv, 
&RPCstatus) ; 

* This call tells the DCE RPC runtime to listen for remote 
* procedure calls using all supported protocol sequences. 
* To listen for a specific protocol sequence, use the 
* rpc_server_use-protreq call. 
*/ 

rpc_server_use_all-protseqs (max_calls, 
&RPCstatus) ; 

39-12 OSF DeE Application Development Guide 



Time-Provider Interface 

/* This routine is called to obtain a vector of binding handles 
* that were established with registration of protocol sequences. 
*/ 
rpc_server_in~bindings (&bind_vector, 

&RPCstatus) ; 

/* This routine adds the address information of the binding 
* handle for the TP server to the endpoint mapper database. 
*/ 

rpc_ep_register (time-provider_vl_O_s_ifspec, 
bind_vector, 
NULL, 
"Time Provider", 
&RPCstatus) ; 

/* Obtain the name of the machine's principal and register an 
* authentication service to use for authenticated remote procedure 
* calls corning from the time service daemon. 
*/ 

dce_cf-prin_name_from_host (NULL, 
&machinePrincipalName, 
&status); 

rpc_server_register_auth_info (machinePrincipalName, 
rpc_c_authn_dce-private, 
NULL, 
NULL, 
&RPCstatus); 

/* This routine is called to listen for remote procedure calls 
* send b¥ the DTS client. The possible RPC calls corning from 
* the DTS client are ContactProvider and ServerRequestProviderTime. 
*/ 

rpc_server_Iisten (max_calls, 
&RPCstatus) ; 

OSF DeE Application Development Guide 39-13 



DeE Distributed Time Service 

39.4 Time-Provider Algorithm 

39-14 

The time-provider algorithm assumes that the two remote procedure calls 
will come in the following order: ContactProvider followed by 
ServerRequestProviderTime. The algorithm to create a generic time
provider follows: 

1. Initialize the TP process, as described previously. Listen for RPC 
calls. 

2. If the ContactProvider procedure is invoked, perform the following 
steps: 

a. Initialize the control message to the appropriate values (status 
value to K_TPI_SUCCESS; nextPoll, timeout, and noClockSet 
to valid integer values). 

b. Set the communication status output parameter to rpc_s_ok. 

c. Return from the procedure call. (The DCE RPC runtime returns 
the values to DTS.) 

3. If the ServerRequestProviderTime procedure is run, perform the 
following steps: 

a. Initialize the timestamp count to the appropriate number. 

b. Use the utc_gettimeO DTS API routine to read the system 
time. 

c. Poll the external time source and read a UTC value. Use the 
utc _gmtime() routine to convert the UTC time value to a 
binary timestamp. 

d. Use the utc_gettimeO routine to read the system time. 

e. Repeat steps b, c, and d the number of times specified by the 
values of K MIN TIMESTAMPS and - -
K MAX TIMESTAMPS. - -

f. If steps b, c, or d return erroneous data, initialize the TP process 
status field (TPstatus) of the data message to 
K _ TPI _FAILURE; otherwise, initialize the data message 
timestamps. 

OSF DeE Application Development Guide 



Time-Provider Interface 

g. Set the communication status output parameter to rpc_s_ok. 

h. Return from the procedure call. (The DCE RPC runtime sends 
the values back to DTS.) 

4. The TP process continues listening for RPC calls. 

39.5 DTS Synchronization Algorithm 

DTS performs the following steps to synchronize with an external time
provider: 

1. At start-up time, create the binding handle for the Time-Provider 
interface. The binding handle is obtained from the list of available 
protocol sequences on the system. 

2. At synchronization time, make the remote procedure call 
ContactProvider, assuming that a TP process is running on the 
system. If the procedure call fails, examine the RPC communication 
status, checking the availability of the server. If the server is 
unavailable, synchronize with peer servers; otherwise, continue. 

3. Wait for the procedure call to return the control message in the output 
parameter. If the procedure call does not return within the specified 
LAN time-out interval, synchronize with peer servers. Otherwise, go 
to step 4. 

4. If the procedure call returned successfully (communication status is 
rpc _s _ok), read the data in the control message. 

5. Make the remote procedure call ServerRequestProviderTime to 
obtain the timestamps from the external time-provider. If the 
procedure does not return within the elapsed time specified by the 
control message (timeout), then synchronize with peer servers. 
Schedule the next synchronization based upon the applicable DTS 
management parameters, ignoring nextPoli. 

6. If the procedure returns successfully, verify that the TP process status 
is K _ TPI _SUCCESS. Otherwise, synchronize with peer servers and 
schedule the next synchronization. 

7. Extract the timestamps from the data message and synchronize using 
the timestamps. 

OSF DeE Application Development Guide 39-15 



DeE Distributed Time Service 

8. Schedule the next synchronization time by adding the value of 
nextPoll seconds to the current time. At the next synchronization, go 
to step 2. 

Note: Application developers do not have to perform these steps; 
DTS performs these steps internally during synchronization 
with an external time-provider. 

39.6 Running the Time-Provider Process 

Both the TP process and the DTS daemon must run on the same system. 
The TP process must be started up under the login context of the machine's 
principal, which has root privileges. The DTS daemon and the TP process 
are started independently. However, before starting the TP process, ensure 
that the endpoint mapper daemon (rpcd) is running on the system. If it is 
not running, start it. The TP process can always exit without affecting the 
DTS daemon. DTS dynamically reestablishes communications with the TP 
process when it creates binding handles. 

39.7 Sources of Additional Information 

39-16 

Refer to the following for additional information: 

• See /exampies/dts for examples of time-provider programs that you can 
use with several different types of external time-provider devices. 

• See the aSF DCE Administration Guide for commercial sources of 
external time providers. 

• See the aSF DCE Application Development Reference for detailed 
information about the RPC API and DTS API routines. 

OSF DeE Application Development Guide 



Chapter 40 

DTS API Routines Programming 
Example 

This chapter contains a C programming example showing a practical 
application of the DTS API programming routines. The program performs 
the following actions: 

• Prompts the user to enter two sets of time coordinates corresponding to 
the timestamps of two "events." 

• Stores those coordinates in a tm structure. 

• Converts the tm structure to a ute structure. 

• Prints out the ute structure in ISO text format. 

• Determines which event occurred first. 

• Determines if Event 1 may have caused Event 2 by comparing the 
intervals. 

#include time.h 
#include dce/utc.h 

void ReadTime(); 
void PrintTime(); 

/* time data structures 
/* utc structure definitions 

*/ 
*/ 

/* This program requests user input about events, then prints out 

OSF DeE Application Development Guide 40-1 



DeE Distributed Time Service 

* information about those events. 
*/ 

main() 
{ 

struct utc event1,event2; 
enum utc_cmptype relation; 

/* Read in the two events. 
*/ 

ReadTime (&event1) ; 
ReadTime(&event2); 

/* Print out the two events. 
*/ 

printf ("The first event is ") ; 
PrintTime(&event1); 
printf("\nThe second event is : "); 
PrintTime(&event2); 
printf ("\n") ; 

/* Determine which event occurred first. 
*/ 

if (utc_cmpmidtime(&relation,&event1,&event2)) 
exit (1) ; 

switch ( relation 
{ 

} 

case utc_lessThan: 
printf ( "comparing midpoints: Event1 < Event2 \n" ) ; 
break; 
case utc~reaterThan: 
printf ("comparing midpoints: Event1 > Event2\n"); 
break; 
case utc_equalTo: 
printf ( "comparing midpoints: Event1 
break; 
default: 
exit (1) ; 
break; 

Event2 \n ") ; 

40-2 OSF DeE Application Development Guide 



DTS API Routines Programming Example 

/ * Could Event 1 have caused Event 2? Compare the intervals. 
*/ 

if (utc_cmpintervaltime(&relation,&eventl,&event2)) 
exit(l); 

switch ( relation 
{ 

case utc_lessThan: 
printf("comparing intervals: Eventl < Event2\n"); 
break; 
case utc-9TeaterThan: 
printf ( "comparing intervals: Eventl > Event 2 \n" ) ; 
break; 
case utc_equalTo: 
printf ( "comparing intervals: Eventl 
break; 

Event2 \n" ) ; 

case utc_indeterminate: 
printf ( "comparing intervals: Eventl ? Event2 \n" ) ; 
default: 
exit(l); 
break; 

/* Print out a utc structure in ISO text format. 
*/ 

void PrintTime(utcTime) 
struct utc *utcTime; 

char string[50]; 

/* Break up the time string. 
*/ 

if (utc_ascgmtime(string, 
50, 
utcTime) ) 

exit(l); 
printf ("%s\n", string) ; 

/ * Out: Converted time 
/* In: String length 
/* In: Time to convert 

*/ 
*/ 
*/ 

/* Prompt the user to enter time coordinates. Store the coordinates 

OSF DeE Application Development Guide 40-3 



DeE Distributed Time Service 

* in a tm structure and then convert the tm structure to a utc structure. 
*/ 

void ReadTime(utcTime) 
struct utc *utcTime; 

struct tm tmTime,tmInacc; 
(void)memset«void *)&tmTime, 0, sizeof(tmTime»; 
(void)rnemset«void *)&tmInacc, 0, sizeof(tmInacc»; 
(void) printf ("Year? "); 
(void) scanf ("%d", &tmTime. tm-year) ; 
tmTime.tm-year -= 1900; 
(void)printf ("Month? "); 
(void) scanf ("%d", &tmTime. tm_mon); 
tmTime. tm_mon -= 1; 
(void)printf ("Day? "); 
(void) scanf ( "%d" ,&tmTime. tm_mday) ; 
(void) printf ("Hour? "); 
(void) scanf ("%d", &tmTime. tm_hour); 
(void) printf ("Minute? "); 
(void) scanf ("%d", &tmTime. tm_min) ; 
(void)printf ("Inacc Secs? "); 
(void) scanf ("%d", &tmInacc. tm_sec) ; 

if (utc_mkanytime(utcTime, 
&tmTime, 
(long) 0, 
&tmInacc, 
(long) 0, 

(long)O» 
exit(l); 

40-4 OSF DeE Application Development Guide 



Part 6 

DeE Security Service 





Chapter 41 

Overview of Security' 

This chapter provides a brief overview of the DCE Security Service from an 
application programmer's perspective. Refer to the aSF DeE Application 
Development Reference for detailed information on the Application 
Program Interfaces (APIs) discussed in this Part of the guide. 

41.1 Purpose and Organization of This Part of the 
Guide 

The purpose of the discussions in this Part of the guide is to explain the 
major features of DCE Security, so that you can decide what, if anything, 
you need to do in order to ensure that your DCE application is sufficiently 
secure. A lot of security is built into DCE, so in many cases you will need to 
do nothing, or very little, to secure your DCE application. Furthermore, you 
do not need to understand all of the details of DCE Security in order to use it 
effectively. 

Following the overview of DCE Security in this chapter are two chapters 
that contain conceptual discussions of authentication and authorization. The 
remaining chapters in this Part of the guide discuss the five Security APIs: 
Registry, Login, Key Management, Access Control List (ACL), and ID Map. 

OSF DeE Application Development Guide 41-1 



DeE Security Service 

41.2 About Authenticated RPC 

Perhaps the most important Security API is the Authenticated Remote 
Procedure Call facility. Authenticated RPC enables distributed applications 
to participate in authenticated network communications. Applications using 
the Authenticated RPC routines may select the authentication protocol and 
the authorization protocol to be used, and set various protocol-independent 
protection levels for communicating with remote principals (users, servers 
and computers). 

The usage of Authenticated RPC is explained in the RPC chapters of Part 3 
of this guide. This Part, however, contains conceptual information that is 
useful for understanding the authentication and authorization protocols that 
Authenticated RPC routines use; for this information, we recommend that 
you read Chapters 42 and 43, as well as this one. 

41.3 UNIX System Security and DCE Security 

41-2 

UNIX system security mostly presumes that a computer's backplane can be 
trusted because computing operations are assumed to be local, and because 
the computer itself can be physically secured. In a distributed environment, 
the logical equivalent of the single system's backplane is the network itself. 
Network computing means distributed, rather than localized, computing 
operations, and in the case of an open network (which DCE assumes), little 
of the network is physically secure. Thus, the nature of distributed systems 
poses special security risks, in addition to those posed by nondistributed 
systems. Unlike UNIX system security, DCE Security is designed 
specifically to address those risks. 

These considerations notwithstanding, network security is ultimately 
dependent on the security features that are local to the individual computers 
in the network, and what is more important, the manner in which those 
features are used and administered. Since any compromise to the local 
security of a computer in the distributed environment may introduce 
opportunities for compromising network security, DCE Security does not 
diminish the importance of local security. In fact, the relative importance of 
local system security is greater in the distributed environment because the 
consequences of a local security breach may not be local. Finally, while 

OSF DeE Application Development Guide 



Overview of Security 

DCE Security does nothing to enhance local security, neither does it 
introduce any new avenues for compromising local security. 

In the discussions in this guide, we assume you are familiar with the 
authentication and authorization features that UNIX systems provIde: 
/etc/passwd and /etc/group file processing; routines that return or change 
file attributes; routines that return or change real or effective user IDs 
(UIDs) and group IDs (GIDs); and data encryption and decryption. 

41.4 What Authentication and Authorization Mean 

There are two questions that DCE Security can answer for a principal about 
another principal with which it might want to communicate: 

• Is this principal really who it says it is? 

• Does it have the right to do what it wants to do? 

Depending on the answers to these questions, a security-sensitive principal 
takes different courses of action with respect to a principal with which it is 
communicating. 

To authenticate a principal means to verify that the principal is representing 
its true identity. To authorize a principal means to grant permission for the \ 
principal to perform an operation. While distinct, the concepts of 
authentication and authorization are also intertwined. For one thing, a 
principal's authorization is explicitly linked to its identity. For another, 
there is the possibility that authorization data concerning an authenticated 
principal can be falsified, which raises the additional question, "Should the 
authorization data concerning this principal be believed?" To this question 
also, DCE Security can provide an answer to a principal for which this issue 
is a concern. 

We refer to the specific mechanisms by which authentication and 
authorization are performed as authentication and authorization protocols, 
and DCE Security supports at least one of each. However, RPC 
documentation refers to authentication and authorization protocols as 
services. We use the term "protocol" instead of "service" in this context 
in order to prevent confusion between the protocol-independent DCE 
authentication and authorization services, and the various authentication 
and authorization protocols that those services may support. 

OSF DeE Application Development Guide 41-3 



DeE Security Service 

41.5 Authentication, Authorization, and Data 
Protection in Brief 

When one principal talks to another in a distributed computing environment, 
there is a risk that communications between the two will provide a means 
for compromising the security of one or the other. For example, a client may 
attack a server, or a server may set a trap for clients. An attack is most 
likely to succeed if the malevolent principal can convince its victim that it 
is something other than what it really is (an attacker), and/or that it 
possesses authorization that it does not really have. A counterfeit identity 
and/or authorization data grants an attacker access that it presumably would 
not otherwise have, and so provides an opportunity for the attacker to do 
damage. Therefore, a security-sensitive principal needs assurances that the 
identity and authorization of any principal with which it communicates are 
authentic. 

Another security risk is that posed by a third party that attempts to modify or 
steal data passed between a client and a server. In these cases, it is not the 
identity or authorization of the eavesdropping party that is particularly 
relevant, but the security of transmitted data. DCE Security enables a 
principal to detect whether some party has attempted to modify data sent to 
the principal from another legitimate principal, and to be reasonably certain 
that an eavesdropper can make no use of stolen data. 

Figure 41-1 is an extremely condensed and highly stylized representation of 
the essentials of DCE Security in terms of the DCE Shared-Secret 
authentication protocol and the DCE Authorization authorization protocol. 
Unless we note otherwise, assume that discussions in this Part of this guide 
refer to these two protocols, used in conjunction with one another. 

Following is a description of the events depicted in the illustration: 

1. Principal A, which might actually be an attacker masquerading as 
Principal A, seeks authentication of its identity from the 
Authentication Service. The Authentication Service responds with a 
kind of puzzle; that is, it responds with information about how to 
contact the Privilege Service that is encrypted under a secret key 
known only to Principal A and the Authentication Service. 

2. Other than the Authentication Service, only the real Principal A 
possesses the key that solves the puzzle (unless its key has been 
compromised). So, if the principal that requested authentication is 

41-4 OSF DeE Application Development Guide 



Overview of Security 

really A, it learns how to ask the Privilege Service to authenticate its 
privilege attributes (privilege attributes are data used in making 
authorization decisions; they consist of the principal's name and 
group memberships). If Principal A fails to get authenticated privilege 
attributes (sometimes referred to as "credentials"), it may simply 
assert its privilege attributes to Principal B. 

3. Principal A now makes a request to Principal B to perform some 
operation that requires the c permission to object d, and presents its 
certified privilege attributes. Principal B may grant or deny c access to 
d after examining the Access Control List (ACL) that protects object 
d (an ACL associates the privilege attributes of principals with 
permissions to an object). If c is one of the permissions listed in the 
ACL entry that specifies the permission set that may be granted to 
Principal A, then Principal A is allowed to perform the operation; if 
the c permission is not listed in that entry, A is denied access. 

Figure 41-1. Shared-Secret Authentication and DCE Authorization in Brief 

Request for Authentication r 
CD via RPC Authentication Service 

I "Puzzle" I 
I I 

~ReqUest for Privilege AttributesJ----. 

Principal A ® viaRPC Privilege Service 

Certified Privilege Attributes ~ 

Do "e" to "d" 

Certified Privilege Attributes 

® via RPC 
Principal B 

Response to Request ~ 

Had Principal A failed to solve the puzzle that the Authentication 
Service provided, it would have been unauthenticated, and as a 
consequence, unable to acquire certified privilege attributes from the 
Privilege Service. In that case, Principal A might have simply 
asserted its privilege attributes to B; that is, claimed them for itself, 
without the benefit of having the Privilege Service certify this data as 

OSF DCE Application Development Guide 41-5 



DeE Security Service 

being genuine. Had Principal A then presented asserted privilege 
attributes to Principal B, then B might have denied the requested 
permission or granted it, depending on whether B grants permissions 
to unauthenticated principals, and whether c is among the permissions 
that B grants to such principals. 

If Principals A and B are especially sensitive to security concerns, 
they may request that RPC data be checked for integrity to establish 
whether it has been modified in transit, and possibly also encrypted to 
ensure that the data is unintelligible to any party other than Principals 
AandB. 

41.6 Summary of DeE Security Services and Facilities 

41-6 

The DCE Security Service comprises three services and four facilities. The 
three services are 

• The Registry Service, which maintains a database of principals, groups, 
organizations, accounts, and administrative policies. 

• The Authentication Service, which verifies the identity of a principal 
and issues tickets that the principal uses to access remote services (a 
ticket is data about a principal that is presented to the principal 
providing the service). 

• The Privilege Service, which certifies a principal's privilege attributes 
(that is, its name and group memberships, which are represented as 
UUIDs). 

The three security services are implemented as a single daemon, the 
Security Server. 

The four facilities are 

• The Login facility, which enables a principal to establish its network 
identity. 

• The Access Control List (ACL) facility, which enables a principal's 
access to an object to be determined by a comparison of the principal's 
privilege attributes to the object's permissions. 

• The Key Management facility, which enables noninteractive principals 
(most frequently, servers) to manage their secret keys. 

OSF DeE Application Development Guide 



Overview of Security 

• The ID Map facility, which maps cell-relative principal names to global 
principal names, and global principal names to cell-relative principal 
names. This facility is used in connection with the transmission of 
information about principals that are members of different DCE cells. 

For UNIX system compatibility with DCE, the Security Service also 
provides implementations of UNIX system C library interfaces to the 
/etc/passwd and /etc/group files. 

41.6.1 Interfaces to the Security Server 

Following are the user interfaces to the Security Server itself (see the OSF 
DeE Administration Guide and the OSF DeE Administration Reference): 

• secd 

Starts the Security daemon 

• sec create db - -
Creates the Security databases 

• sec admin 

Administers instances of the Security daemon, which is a replicated 
server 

• sec_salvage_db 

Salvages a corrupted Security database 

• sec clientd 

Enables clients of the Security Server to communicate with it 

All other interfaces to the Security Server are more precisely characterized 
as interfaces to its three services: Registry, Authentication, and Privilege. 

OSF DeE Application Development Guide 41-7 



DeE Security Service 

41-8 

41.6.1.1 Registry Service Interfaces 

User interfaces to the Registry Service are described in the aSF DeE User's 
Guide and Reference, the aSF DeE Administration Guide, and the aSF 
DeE Administration Reference. Following is a summary of them: 

• rgy_edit 

Edits Registry database entries 

• passwd Jrnport 

Creates Registry database entries from UNIX system /etc/passwd and 
/etc/group files 

• passwd _export 

Creates local Registry information that corresponds to network Registry 
database entries; used when the Security Server is unavailable 

• chpass 

Changes a user's password in a Registry database entry 

The API to the Registry Service consists of calls that are prefixed 
sec_rgy ... (). Since this is the same interface that the Registry Service user 
and administration tools call, few applications make use of it, unless they 
are to replace some or all of the functionality of the default Registry tools. 

41.6.1.2 Authentication Service Interfaces 

Following is a summary of the user interfaces to the Authentication Service 
when the default authentication protocol is in effect (the default protocol is 
DCE Shared-Secret, which is based on the Kerberos Version 5 network 
authentication system). These interfaces are described in the aSF DeE 
User's Guide and Reference: 

• kinit 

Obtains a login session's ticket(s) to remote services (the login and su 
tools also perform this service) 

OSF DeE Application Development Guide 



Overview of Security 

• klist 

Lists a login session's tickets to remote services 

o kdestroy 

Destroys a login session's tickets to remote services 

The API to the Authentication Service is the Authenticated RPC facility, 
which is the Security API that a distributed application is most likely to call. 
Authenticated RPC is not, however, the API that the authentication tools 
call; these tools call Kerberos program interfaces and are undocumented. 

41.6.1.3 Privilege Service Interfaces 

There are neither user interfaces nor application program interfaces to the 
Privilege Service; the Login facility and authenticated RPC encapsulate 
interactions between a principal and the Privilege Service. 

41.6.2 Interfaces to the Login Facility 

User interfaces to the Login facility consist of the following tools (see the 
aSF DeE User's Guide and Reference for a description): 

• dee_login 

Enables an interactive principal to log into the DCE, but does not change 
the principal's local identity 

• login 

Enables an interactive principal to log in 

• SU, enables a logged-in interactive principal to assume a different 
principal identity 

The API to the Login facility consists of calls that are prefixed 
see _login ... (). This API enables application processes to assume their 
network identities. Network login and system login programs are examples 
of applications that call this API. 

OSF DeE Application Development Guide 41-9 



DeE Security Service 

41.6.3 Interfaces to the Key Management Facility 

For a distributed application, it may be important for a server to have a 
network identity that is distinct from the principal identity it inherits from 
the user who invokes it or the host on which it runs. The Key Management 
facility provides features that enable noninteractive principals to manage 
their secret keys. 

The user interface to the Key Management facility consist of a few rgy _edit 
subcommands that enable an administrator to change or delete the secret 
key of a noninteractive principal, in the event that the administrator 
discovers that such a key has been compromised. These subcommands call 
the Key Management API, which consists of several calls with the prefix 
sec_ key ... (). 

41.6.4 Interfaces to the ID Map Facility 

There are no user interfaces to the ID Map facility. The API to this facility 
consists of calls that are prefixed sec Jd ... (). These routines map a global 
principal or group name into a cell name and a cell-relative principal or 
group name, and generate a global principal or group name from a cell name 
and a cell-relative principal or group name. This API also converts the 
internal (UUID) representation of a name to a human-readable string and 
back again. 

41.6.5 Interfaces to the Access Control List Facility 

41-10 

The only user interface to the Access Control List facility is the tool 
acl_edit. This tool edits an object's ACL, the entries of which specify the 
permissions to the object that may be granted to principals possessing 
specified privilege attributes (acl_edit is described in the aSF DeE User's 
Guide and Reference). 

The ACL API consists of routines that are prefixed sec_acl. .. O. This is the 
same API that acl_edit calls, so an ACL editor or browser that is intended to 
replace acl_ edit would call this API. A different case is that of an 
application server that needs to store and retrieve application-specific, 

OSF DeE Application Development Guide 



Overview of Security 

access-control information for its clients. Such an applic~tion needs to 
implement its own ACL manager using the subset of the ACL API routines 
that are prefixed sec _ acl_ mgr ... (); and if its clients are remote, then the 
ACL manager must also export the ACL manager interface (refer to Chapter 
47 for more information on ACL managers). 

41.6.6 DeE Implementations of UNIX System Program Interfaces 

DCE Security provides implementations of UNIX system C library 
interfaces related to security. These are getpwentO and the related program 
interfaces to the /etc/passwd file, and getgrentO and the related program 
interfaces to the /etc/group file. Applications that bind with Jibdce.a are 
bound with the DCE Security implementations of these interfaces; 
otherwise, they are bound with the local operating system implementations. 

41.7 Relationships Between the Security Service and 
DeE Applications 

Figure 41-2 is a schematic illustration of the relationships among the 
interfaces to. the DCE Security Service, and the relationship of Security 
interfaces to DCE applications. 

Figure 41-2. DeE Security and the DeE Application Environment 

Applications I Default DCE 
Security Tools 

Local OS I I Security API Remote 
Security APls RPCAPI 

Client 

I 
I RPC or Server 

Security and RPC Runtime Libraries 

Local Operating System 

OSF DeE Application Development Guide 41-11 



DeE Security Service 

41.8 DTS, the Cell Namespace, and Security 

The following subsections discuss the dependencies of DCE Security on the 
Distributed Time Service (DTS), and the relationship between the Security 
namespace and the Cell Directory Service (CDS) namespace. For 
information about how DCE components such as CDS use features of DCE 
Security, refer to the documentation on the component of interest (for 
example, the section of the OSF DeE Administration Guide on CDS). 

41.8.1 DTS and Security 

The Security Service depends on a relatively close synchronization of 
network clocks, a service provided by the Distributed Time Service. When 
network clocks become too skewed, unexpired tickets to services may be 
regarded as invalid, and/or expired tickets considered valid. Excessive 
skewing can inconvenience users and introduce opportunities for security 
breaches; in the latter case, administrative intervention is required. 

41.8.2 The Cell Namespace and the Security Namespace 

41-12 

The Registry database maintains three Security namespaces: the principal, 
group, and organization (PGO) namespaces. These namespaces are distinct 
from the cell namespace maintained by CDS. Security names take the form: 

I .. ./cell_ namelpgo _name 

whereas CDS names take the form: 

I .. ./cell_ name/mount yointlobject _name 

OSF DeE Application Development Guide 



Overview of Security 

Since the Security namespace is rooted in the CDS namespace, Security 
names have equivalent CDS names. Thus, for example, an entry for a 
principal in the Registry database has this form in the Security namespace: 

/ .. ./cell_ name/principal_name 

and this form in the CDS namespace: 

/ ... / cell_name! sec/principal/principaC name 

The Security mount-point name (sec as shown in the preceding syntax) is 
determined when DCE is configured. Therefore, the name may differ at 
individual sites. 

There is no ambiguity about the Security namespace to which a name refers 
because Security names are always supplied in contexts that identify the 
namespace in question. For example, logging into DCE requires a principal 
name to be supplied. 

However, an ACL is an object that is referenced not directly, but by the 
name of the object it protects. Since protected objects are not always 
Security objects (and therefore may be registered only in the CDS 
namespace), ACL management interfaces always take CDS names rather 
than Security names as input, whether or not it is the ACL of a Security 
object (such as a Registry database entry) that is being read or modified. 

OSF DeE Application Development Guide 41-13 





Chapter 42 

Authentication 

This chapter explains concepts related to authentication. The Authenticated 
RPC facility enables you to select the authentication protocol that your 
application uses to perform authentication. Among the authentication 
protocols that may be supported by DCE Security for use by Authenticated 
RPC is DCE Shared-Secret Authentication, which is the default and the 
chief subject of this chapter. Other authentication protocols that the Security 
component may support include DCE Public Key Authentication, which this 
guide does not discuss. 

For specific information about using the Authenticated RPC routines, refer 
to Part 3 of this guide. 

OSF DeE Application Development Guide 42-1 



DeE Security Service 

42.1 Background Concepts 

The following subsections present a few background concepts that are 
useful for understanding the discussions of authentication in this chapter: 

• Principals, which are the subjects of authentication. 

• The cell, which is the environment in which authentication takes place. 

• The Shared-Secret Authentication protocol, which is the mechanism by 
which authentication is effected when applications specify this protocol 
via the Authenticated RPC facility. 

• Protection levels, which are the various degrees to which RPC data may 
be protected. 

• Data encryption algorithms, which are the mechanisms that the Security 
Server and client runtimes use to encrypt and decrypt data exchanged 
between principals. 

42.1.1 Principals 

42-2 

Previously in this guide, we defined the term "principal" rather loosely. 
"Principal" is more precisely defined as follows: an entity that is capable 
of believing that it can communicate securely with another entity. In DCE 
Security, principals are represented as entries in the Registry database. DCE 
principals include the following: 

• Users, who are also referred to as "interactive principals" 

• Instances of DCE servers 

• Instances of application servers 

• Computers in a DCE cell 

• Authentication Service surrogates 

The Registry database entry representing every principal contains the name 
of the principal and a secret key that the principal shares with the 
Authentication Service. (It is the secret key that enables a principal to solve 
the "puzzle" provided by the Authentication Service.) In the case of a user, 
the secret key is derived from the user's password. In order to establish its 

OSF DeE Application Development Guide 



Authentication 

identity as a principal, a noninteractive principal, such as a server or 
computer, must store its secret key in a data file or hardware device, or rely 
on a system administrator to enter it. 

The Security Server itself comprises three principals that correspond to the 
three services that it provides: Registry, Privilege, and Authentication. 

Note: The Authentication Service is an exceptional principal in that 
it does not share its key with any other principal. 
Authentication Service surrogates are also exceptional in that 
they are not autonomous participants in authenticated 
communications, as other kinds of principals are. 
Authentication surrogates more resemble aliases for the 
Authentication Services of cells. (Refer to the discussion of 
intercell authentication in Section 42.3 of this chapter for 
more information on these subj ects.) 

In the theory of Shared-Secret Authentication (and perhaps some other 
authentication protocols as well), all principals are untrusted, except for the 
Authentication Service itself. Therefore, a security-sensitive application 
would authenticate all such principals with which it may communicate. 
However, since the Security Service implements the Registry Service, the 
Privilege Service, and the Authentication Service (including its surrogates) 
as a single server process, it is not necessary for any DCE application to 
authenticate these principals. 

42.1.2 Cells and Realms 

The cell is the basic unit of configuration and administration in DCE. In 
terms of Security, a cell is the set of principals that share a secret key with 
an instance of the Authentication Service. Therefore, each instance of a 
Security Server (not counting its replicas) defines a separate cell. 

From the perspective of security only, a cell is also known as a "realm." 
We mention this because the term "realm" is more familiar to some readers 
than is the term "cell." A security cell is always configured to coincide 
with a corresponding CDS cell, and perhaps Distributed File System (DFS) 
cell as well. DCE documentation refers to such a collective configuration of 
services as a "cell." 

OSF DeE Application Development Guide 42-3 



DeE Security Service 

42.1.3 The Shared-Secret Authentication Protocol 

Authenticated RPC enables you to specify the authentication protocol to be 
used in authenticating principals. Authentication protocols other than DCE 
Shared-Secret Authentication mayor may not be supported. 

DCE Shared-Secret Authentication implements an extended version of the 
Kerberos Version 5 system as its authentication protocol. The Kerberos 
system was developed at the Massachusetts Institute of Technology as part 
of Project Athena, and provides a trustworthy, shared-secret authentication 
system. The walk-through of the authentication protocol in this chapter 
describes the protocol in general terms. 

42.1.4 Protection Levels 

42-4 

The protection level that an application may set using Authenticated RPC 
determines how much of network messages exchanged by principals are 
encrypted. As a rule, the higher the protection level, the greater the negative 
impact on performance. The Authenticated RPC facility provides several 
levels of protection so that applications can control tradeoffs between 
security and performance. Following is a summary of some of the protection 
levels that an application using Authenticated RPC may specify: 

• Connect Level: Performs authentication only when a client and server 
establish a relationship 

• Call Level: Attaches a verifier to each client call and server response 

• Packet-Integrity Level: Ensures that none of the data transferred 
between two principals has been modified in transit 

• Packet-Privacy Level: Incorporates lesser protection levels and in 
addition encrypts all RPC argument values 

Refer to the discussion of Authenticated RPC in Part 3 of this guide for 
complete information about protection levels. 

OSF DeE Application Development Guide 



Authentication 

42.1.5 Data Encryption Mechanisms 

Authentication protocols assume the availability of a data encryption 
mechanism. One that is frequently used is the Data Encryption Standard 
(DES), although DCE supports at least one other encryption mechanism. 
Your version of DCE Security may use DES for data privacy, or for 
principal authentication and data-integrity checking; or it may use another 
encryption mechanism, or no encryption at all. Consult the documentation 
supplied by your DCE vendor for specific information. 

42.2 A Walk-Through of the Shared-Secret 
Authentication Protocol 

This section presents a two-part walk-through of the Shared-Secret 
Authentication protocol: 

• The first part ("A Walk-Through of User Authentication" in Section 
42.2.1) explains what happens when a user logs in using the default DCE 
login tool. 

• The second part ("A Walk-Through of DCE Application 
Authentication" in Section 42.2.2) explains what happens when the 
logged-in user runs an authenticated application. 

The walk-through is seen primarily from the user and the associated 
application-client side. Schematic representations of events related to the 
protocol accompany the discussions. The illustrations in this chapter do not 
show what literally happens when a user logs in and runs an authenticated 
application; they are intended only to provide a general understanding of 
the protocol. 

In these illustrations, fill patterns represent encryption key values and 
encrypted data. When the key symbol appears in a box, it indicates a key is 
being passed as data. When the key symbol appears on a line, it indicates 
that encryption or decryption is taking place, depending on whether the 
resulting data is represented as encrypted or not (see Figure 42-1). 

OSF DeE Application Development Guide 42-5 



DeE Security Service 

Figure 42-1. Representational Conventions Used in Authentication Walk-Through 
Illustrations 

Various 
encryption 
keys. 

~
--------------------------------------------

D 
D 
Data encrypted 
with various 
encryption keys. 

An encryption 
key being passed 
as data. 

Data being 
encrypted. 

Data being 
decrypted. 

Note: All computer-to-computer communications are via the 
Remote Procedure Call mechanism, although client and server 
RPC runtimes are not illustrated. 

Finally, note that it is unnecessary to understand the Shared-Secret protocor
in order to use it. We have described it here so that application developers 
who may be uncertain about whether it is sufficiently secure for their needs 
can decide whether it is or not. If you already know that it is adequate for 
your needs (or are simply uninterested), go to the next chapter. 

42.2.1 A Walk-Through of User Authentication 

42-6 

This section explains how DCE Security authenticates a user. This feature 
of DCE Security requires no modification of DCE nor of the applications 
that run on it. 

Note: Refer to Figure 42-2 as you read the following steps. 

1. The user logs in, entering the correct usemame. The login tool 
invokes secJogin_setup_identityO, which takes the user's principal 
name as one of its arguments. This call causes the client Security 
runtime to request a Ticket-Granting Ticket (TGT) and passes the 
user's name (represented as a UUID) to the Authentication Service. A 
TGT enables a principal to be granted a ticket to a service of interest; 
in this case, it is the Privilege Service. 

OSF DCE Application Development Guide 



Authentication 

2. Upon receiving the request for a TGT, the Authentication Service 
obtains the user's secret key from the Registry database (where the 
secret keys of all principals in the cell are stored). Using its own 
secret key, the Authentication Service encrypts the user's identity, 
along with a conversation key, in a TGT. The Authentication Service 
seals the TGT in an "envelope" that is encrypted using the user's 
secret key. The envelope also contains the same conversation key 
that is encrypted in the TGT, and is returned to the client. 

3. When the TGT envelope arrives, the login tool prompts the user for 
the password and invokes sec_login_valid_and_cert_identO. This 
call passes the password to the local Security runtime library. The 
Security runtime derives the user's secret key from the password, and 
uses it to decrypt the envelope. (If the user enters the wrong 
password, the envelope is undecryptable.) The envelope reveals the 
conversation key, but the Security runtime cannot decrypt the TGT, 
since it does not know the Authentication Service's secret key. (A 
validated TGT is the principal's certificate of identity.) 

Note: One of the functions of 
sec_login_ valid_and_cert_identO is to demonstrate 
that the Authentication Service knows the key of the 
host computer at which the principal is logging in (a 
server pretending to be the Security server is unlikely 
to know the host's key). How this is accomplished is 
not illustrated here, but is explained in Chapter 45. 

Dividing the login sequence into two parts 
(sec_login_setup_identityO and sec_login_ validand_cert_identO) 
minimizes the time that the password remains in clear text in the 
client's address space. From this point on, the client principal uses 
four different conversation keys, rather than the key derived from the 
user's password, to talk with other principals. This design feature 
obviates the need for principals (other than the Authentication 
Service) to know the secret keys of other principals, which is itself a 
security risk. Also, by using a number of short-lived conversation 
keys for encryption instead of a long-lived secret key, cracking 
encryption keys becomes a considerably more difficult task for an 
attacker: there are more encryption keys to discover and less time in 
which to discover them. 

OSF DeE Application Development Guide 42-7 



DeE Security Service 

Figure 42-2. Client Acquires Ticket-Granting Ticket 

Client Principal 

User-Interface : 

login: principalname : 
password I 
I I 

~----~ I -----------------1 
sec_login_setup_ 
Identity (principalname ... ) 

It status - OK, then 
get the password. 

secJogln_valid_and_ 
cerUdent (passwd ... ) 

Legend: 

It status = OK, then 
get PTGT. 

API layer 

@f] Client principal's secret key. 

I 

C)::l Authentication Service's secret key. 

~ Conversation key 1. 

Get TGT for client 10 
corresponding to 
principalname. 

Security Runtime 

APC 

Security Server 

Registry Service 

-------------
I Prepare TGT. r 
I 

Authentication Service -------------
Privilege Service 

rn Encrypted with client principal's secret key. 

~ Encrypted with Authentication Service's secret key. 

~ Encrypted with conversation key 1. 

Note: Refer to Figure 42-3 as you read the following steps. 

4. When the Security client runtime has succeeded in decrypting the 
envelope, the API calls a network layer interface that requests a 
Privilege-Ticket Granting Ticket (PTGT) from the Privilege Service. 
For a PTGT to be granted, however, the user must first acquire a 

42-8 OSF DCE Application Development Guide 



Authentication 

ticket to talk to the Privilege Service, which is a principal distinct 
from the Registry and Authentication Service. The Security runtime 
therefore requests such a ticket from the Authentication Service. The 
Security runtime encrypts this request using the conversation key it 
learned when it decrypted the TGT envelope. 

5. Since the request for a ticket to the Privilege Service is encrypted 
under the conversation key associated with the TGT, the 
Authentication Service believes that the identity of the user is 
authentic; that is, no other principal could have sent a message so 
encrypted because no other principal knows the secret key under 
which the Authentication Service encrypted that conversation key. 
Since the user has proved to the Authentication Service knowledge 
of the key, the Authentication Service allows the user to talk to the 
Privilege Service, and so prepares a ticket to that service. This ticket 
contains the identity of the user (and a second conversation key) 
encrypted under the secret key of the Privilege Service. Like the 
TGT envelope, the envelope containing the ticket to the Privilege 
Service also contains the second conversation key, for use in 
conversing with the Privilege Service, and is encrypted with the first 
conversation key. 

Note: Beginning with Figure 42-3, the illustrations do not 
show the Authentication Service decrypting and 
reencrypting requests for tickets, since it knows all of 
the keys. 

6. Upon receipt of the envelope containing the ticket to the Privilege 
Service, the Security client runtime decrypts the envelope using the 
first conversation key, and in the process learns the second 
conversation key. The client RPC runtime sends the Privilege 
Service ticket to the Privilege Service. 

OSF DeE Application Development Guide 42-9 



DeE Security Service 

Figure 42-3. Client Acquires Privilege-Ticket-Granting Ticket 

42-10 

Client Principal Security Server 

API Layer I 
------------~ 

Security Runtime Registry Service 

Network Interface Layer 

Get PTGT. 

Legend: 

~ Privilege Service's secret key. 

~ Conversation key 1. 

.. Conversation key 2. 

@fD Conversation key 3. 

~ Authentication Service's secret key. 

Authentication Service 

RPe 

Privilege Service 

~ Encrypted with Privilege Service's secret key. 

~ Encrypted with conversation key 1. 

lit Encrypted with conversation key 2 . 

It§ Encrypted with conversation key 3. 

Ed] Encrypted with Authentication Service's secret key. 

OSF DCE Application Development Guide 



Authentication 

7. The Privilege Service decrypts the ticket sent to it, learning both the 
identity of the user and the conversation key it will use to encrypt its 
response. The Privilege Service believes the identity is authentic 
because the ID information was encrypted under its own secret key, 
and no principal other than the Authentication Service could have 
encrypted the information using this secret key. Because the 
Privilege Service trusts the authenticity of the user's identity, it 
prepares a Privilege Attribute Certificate (PAC), which describes the 
user's privilege attributes (data that is used in making authorization 
decisions). The Privilege Service incorporates the user's PAC and a 
third conversation key into the PTGT, which is encrypted using the 
Authentication Service's secret key. (The Authentication Service and 
Privilege Service cooperate to prepare the PTGT, although the 
illustration only shows the Privilege Service preparing it). The PTGT 
envelope is encrypted using the second conversation key and also 
includes the third conversation key. (The Authentication Service 
supplies the third conversation key, although the illustration does not 
show this detail.) 

8. The Security client runtime decrypts the PTGT envelope using the 
second conversation key, and learns the third conversation key. It 
cannot decrypt the PTGT itself, since the PTGT is encrypted under 
the secret key of the Authentication Service. 

At this point, the Security Server has authenticated the user's identity, and 
as a result, the user has been able to acquire information about its privilege 
attributes that the Privilege Service has certified. The client now calls 
sec_login_setup_identity() to set the login context (a handle to this user's 
network identity and privilege attributes) to the identity that has been 
established. Henceforth, processes invoked by this user assume the user's 
login context, and among these processes is the client-side of an 
application that is the subject of the rest of the walk-through. 

42.2.2 A Walk-Through of DeE Application Authentication 

This section explains how DCE Security authenticates an application to 
which the application developer has added Authenticated RPC calls. It is a 
continuation of the walk-through in the previous section. 

OSF DeE Application Development Guide 42-11 



DeE Security Service 

42-12 

Note: Refer to Figure 42-4 as you read the following steps. 

1. Having been authenticated and having acquired a PTGT, the user 
now invokes an application. The client side of the application calls 
rpc _ binding_ im port _ begin( ), rpc _ binding_ im port _ next( ), and 
the like. These calls specify the remote interfaces required by the 
client for the application. 

2. The Cell Directory Service returns the client binding handles to the 
specified interfaces. (For this example, we have arbitrarily chosen 
the binding model in which the client consults the CDS for the server 
principal name.) 

3. The client next sets authorization information for the binding 
handles by calling rpc _ binding_set _ auth Jnfo( ). Among other 
parameters that it sets, rpc _ binding_set _ auth JnfoO sets the 
authentication protocol, the protection level, and authorization 
protocol for the binding handle corresponding to the remote 
interface. In this case, assume the following: the authentication 
protocol (authn_svc parameter) is DCE Shared-Secret 
Authentication; the protection level (protect _level) is Packet Privacy 
(all RPC argument values are encrypted); and the authorization 
protocol (authz_svc) is DCE Authorization (a PAC contains UUIDs 
representing the client's privilege attributes, and the server is most 
likely to compare this information with the ACLs protecting the 
objects of interest in order to determine the principal's 
authorization). 

OSF DeE Application Development Guide 



Authentication 

Figure 42-4. Client Sets Authentication and Authorization Information 

Client Principal 

User Interface 

I Start Application I CDS Server 

________ J ________ 
API Layer 

rpc_ns_binding_imporCbeginO RPe 
Binding Handle 

rpc_ns_binding_import_nextO to Application 
Server 

If status = OK, then set auth_infoO 

rpc_binding_set_auth_infoO 
binding 
server_princ_name 
authn_svc 
protecL/evel 
authz_svc 

(Applies the specified authentication 
protocol, protection level, and 
authorization protocol to the binding 
service) . 

Note: Refer to Figure 42-5 as you read the following steps. 

4. The client now requests some operation to be performed by the 
server. The client RPC runtime determines the binding handle that 
corresponds to the remote interface that can perform the operation, 
and requests a ticket to the· principal that supports that interface. To 
acquire the ticket, the Security runtiIIle encloses the PTGT, along 
with the principal name of the application server, in an envelope 
encrypted under the third conversation key. The client sends the 
envelope to the Authentication Service. 

5. The Authentication Service uses the application server's secret key 
to reencrypt the PAC and a fourth conversation key. The ticket to the 
application server is in tum encrypted with the third conversation 
key in an envelope that also includes the fourth conversation key. 
The Authentication Service returns the envelope to the client's 
Security runtime. 

OSF DCE Application Development Guide 42-13 



DeE Security Service 

6. The Security runtime decrypts the envelope using the third 
conversation key, in the process learning the fourth conversation 
key. The Security runtime then uses the fourth conversation key to 
encrypt the application request to the server, and the client RPC 
runtime sends the application request to the server. 

7. The Security runtime receives the client's request, and learns from 
the header that the request is authenticated. 

Figure 42-5. Client Principal Makes Application Request 

42-14 

Client Principal 

I _User Action I Application User Interfaca 

~------ ------.--------------
API I Security Runtime 

lapp_request (binding ... ) I : I Getticketto I 
'-______ .c~....-,II application server. 

r--------------J 
If status = OK, then 
encrypt application 
request. 

lapp_request 0 I 

APe 

Security Server 

Registry Service 

-------------
Privilege Service -------------

Authentication Service 

II
:···· 

-=~-PAC-:""---- --
-~-=-- .-: ... =-- ---------------

Application Server 

L-----======~---_+_-...J__!.I:: .. : ':; ~pp' ,;;qu.st(i .::: ,:t ... ~"'., .:-: .. " '., ... ~.; I 

@tJ Authentication Service's secret key. 

@!B Conversation key 3. 

~ Conversation key 4. 

~ Application server's secret key. 

[3J Encrypted with Authentication Service's secret key. 

~ Encrypted with conversation key 3. 

D Encrypted with conversation key 4. 

(§ Encrypted with application server's secret key. 

OSF DCE Application Development Guide 



Authentication 

Note: Refer to Figure 42-6 as you read the following steps. 

8. Before fulfilling the client's request, the Security runtime must learn 
the conversation key for communicating with the client, and the 
client's authorization. To begin the challenge to the client's identity 
and authorization, the runtime generates a random number and sends 
it (in plaintext) to the client. 

9. The Security runtime encrypts the random number using the fourth 
conversation key, which the Authentication Service gave it for the 
purpose of talking to the application server. The RPC runtime sends 
the encrypted random number and the server ticket to the 
application server. 

10. The Security runtime decrypts the ticket using its secret key, in the 
process learning the conversation key and the client's authorization. 
It uses the conversation key to decrypt the number sent by the client. 
Since the number is the same random number that the server sent 
previously, the runtime concludes that the client knows the 
conversation key, and therefore that the client's identity is authentic. 

OSF DeE Application Development Guide 42-15 



DeE Security Service 

Figure 42-6. Application Server Challenges Client 

Client Principal 

Security Runtime 

~ Conversation key 4. 

~ Application server's secret key. 

APC 

Application Server 

random number (svr) 

---.: PAC :....----------2@--= ...... :. =-= 
-- ---------

PAC 
~ 
~ 

(Use key to decrypt random 
number sent by client.) 

(II client random number - server random 
number, then client knows conversation key.) 

D Encrypted with conversation key 4. 

~ Encrypted with application server's secret key. 

Note: Refer to Figure 42-7 as you read the following steps. 

11. The Security runtime for the application server uses the fourth 
conversation key to decrypt the client's request, and if it determines 
from the information in the PAC that the client is authorized, it 
performs the server operation and prepares a response. The server 
runtime encrypts the response using the conversation key and sends 
it to the client. 

42-16 OSF DCE Application Development Guide 



Authentication 

12. The client runtime receives and decrypts the response, and returns 
data to the application interface through the API. 

Figure 42-7. Application Server Responds to Client's Request 

Client Principal Application Server 

Application 
User Interface Security Runtime 

----- -------i 
API 

Legend: 

~ Conversation key 4. 

RPC 

If client is authorized for application 
request. then perform the operation. 

EJ Encrypted with conversation key 4. 

The application server and client can continue to use the fourth 
conversation key indefinitely for subsequent conversations. If the server 
receives an application request after discarding the conversation key, 
which it may do if it has not heard from client for some time, then the 
server challenges the client to learn the key (see Figure 42-6). If the 
client's ticket to the application server expires, it must acquire a new one 
(see Figure 42-5), and so on. If the client wishes to talk to a new service, it 
must acquire a ticket to that service (see Figure 42-5). 

OSF DCE Application Development Guide 42-17 



DeE Security Service 

Note: The illustrations in the walk-through show the 
authentication protocol in the context of a datagram-based 
network communications protocol. In the case of a 
connection-oriented protocol, the client sends both the 
application request and the ticket to the server at connection 
setup, rather than separately, as illustrated in Figures 42-5 
and 42-6. 

42.3 Intercell Authentication 

While the intercell authentication model is an extension of intracell 
authentication, there are certain concepts that are particular to intercell 
authentication. The following subsections discuss those concepts. 

42.3.1 Authentication Service Surrogates 

42-18 

A principal trusts another principal in its cell because it trusts the 
Authentication Service to authenticate all principals that are members of 
the cell, except for the Authentication Service itself, which its member 
principals trust a priori. The Authentication Service can authenticate all 
principals in its cell because it shares a secret key with each of them. A 
principal that wants to talk to a foreign principal (that is, a principal in 
another cell) must acquire a ticket to that principal. Furthermore, the 
ticket must be encrypted in the secret key of the foreign principal, or else 
the foreign principal may disregard the initiator of the conversation. The 
local principal cannot get such a ticket from its own Authentication 
Service because the local Authentication Service does not know the secret 
keys of any foreign principals. Therefore, there must be some other means 
by which the two instances of the Authentication Service can securely 
convey information about their respective principals to one another. 

Besides the fact that it is trusted a priori, a cell's Authentication Service 
is an exceptional principal in this other respect: other kinds of principals 
share their secret keys with the local Authentication Service, whereas the 
Authentication Service's key is private; that is, known to no other 
principal. Thus, one problem of intercell authentication is the means by 
which the Authentication Service in one cell may communicate securely 

OSF DeE Application Development Guide 



Authentication 

with that in another cell without either of them having to share their 
private keys, which would introduce an unacceptable security risk. 

Note: The Kerberos network authentication specification makes a 
distinction between the terms "secret" and "private." The 
term "secret" refers to data that is known to two principals, 
and the term "private" refers to data that is known to only 
one principal. We make the same distinction in this guide. 

The solution to this problem is an extension of the Shared-Secret 
Authentication model previously discussed in this chapter; that is, an 
entry in the Registry database of one cell specifies the same secret key as 
that in an entry in the other cell's Registry database. The two Registry 
database entries are known as mutual authentication surrogates, and the 
two cells that maintain mutual authentication surrogates are called "trust 
peers." It is through their surrogates that two instances of the 
Authentication Service are enabled to convey information about their 
respective principals to one another, thus enabling a principal from one 
cell to acquire a ticket to a principal in another cell. 

An authentication surrogate is a principal in the sense that it is 
represented by an entry in a Registry database, but it is not an autonomous 
participant in authenticated communications in the same sense that, for 
example, a user or a server is. Rather, it is more like an alias that is 
assumed by a cell's Authentication Service when it communicates with a 
trust peer. The establishment of a trust peer relationship between two cells 
is an implicit expression of mutual trust in the two Authentication 
Services on the part of the cell administrators who establish the 
relationship; administrators use the rgy _edit tool to establish the 
relationship. 

42.3.2 Intercell Authentication by Trust Peers 

This section explains how a client principal in one cell is authenticated by 
an Authentication Service in a peer cell so that the client principal may 
communicate with another principal that is a member of the foreign cell. 

OSF DeE Application Development Guide 42-19 



DeE Security Service 

42-20 

1. A client principal, having already been authenticated by its 
Authentication Service and having acquired its PAC, requests a 
service from a foreign cell. The client specifies the server principal 
that provides the service by its fully qualified name, which 
identifies the foreign cell as well as the cell-relative server principal 
name. 

2. Recognizing by its name that the server principal is foreign, the 
client's Security runtime makes a request to the local 
Authentication service for a TGT to the Authentication service of 
the foreign cell of which the server principal is a member. The 
request for the foreign TGT (FTGT) proceeds like a ticket-granting 
request for any other target principal. The local Authentication 
Service constructs the ticket, preserving PAC data from client's 
existing PTGT, and encrypts it using the secret key that the two 
Authentication surrogates share. 

3. Upon receiving the request for the FTGT, the foreign 
Authentication Service decrypts it using the surrogates' secret key, 
and returns a ticket to the foreign Privilege Service to the client's 
Security runtime. 

4. The client's Security runtime uses the ticket to the foreign Privilege 
Service to obtain a Foreign Privilege-Ticket-Granting Ticket 
(FPTGT). The FPTGT is simply the client's original PAC encrypted 
with the key of the foreign Privilege Service. 

5. After the client principal receives the FPTGT, it requests a ticket to 
the foreign server principal from the foreign Authentication 
Service, exactly as it would request a ticket to a local principal 
from its own Authentication Service. The client principal may also 
reuse the FPTGT to the foreign cell to acquire tickets to any other 
principals in that cell. 

OSF DeE Application Development Guide 



Chapter 43 

Authorization 

This chapter explains concepts related to authorization. The Authenticated 
RPC facility enables you to select the authorization protocol that your 
application uses. Among the authorization protocols supported by DCE 
Security for use by Authenticated RPC is DCE Authorization (the default), 
and Name-Based Authorization. 

This chapter first discusses DCE Authorization, and more particularly, DCE 
Access Control Lists (ACLs). At the end of this chapter, we also briefly 
discuss the Name-Based Authorization protocol. 

43.1 DeE Authorization 

The DCE Authorization protocol is based in part on the UNIX system file
protection model, but is extended with ACLs. An ACL is a list of access 
control entries that protects an object. Each entry in the ACL specifies a set 
of permissions. Usually, most of the entries in the ACL specify a privilege 
attribute (such as membership in a group) and the set of permissions that 
may be granted to the principal(s) that possesses that privilege attribute. 
Some other entries specify a set of permissions that may mask the 
permission set in a privilege attribute entry. 

OSF DeE Application Development Guide 43-1 



DeE Security Service 

Every ACL is managed by an ACL manager type. An ACL manager type 
determines a principal's authorization to perform an operation on an object 
by reading the object's ACL to find the appropriate entry (or entries) that 
matches some privilege attribute possessed by the principal. If the type of 
access requested by the principal is one of the permissions listed in the 
matching entry, and assuming no applicable mask entry denies that 
permission, then the ACL manager type allows the principal to perform the 
requested operation. If the requested permission is not listed in the matching 
ACL entry, or is denied by a mask, permission to perform the operation is 
denied. Permission to perform the operation is also denied if the ACL 
contains no matching privilege attribute entry. 

Unlike UNIX system file permissions, DCE ACLs are not limited to the 
protection of file system objects; that is, files, directories, and devices. 
ACLs may also control access to nonfile-system objects, such as the 
individual entries in a database. 

Note: The implementation of DCE ACLs is aligned with POSIX 
PI003.6 Draft 12. 

In the discussions in this chapter, we use the general term "name" to refer 
to a principal, group, or cell identifier; but readers should always bear in 
mind that these names have two representations: as UUIDs in ACL program 
interfaces, and as print strings in user interfaces. 

43.1.1 Object Types and ACL Types 

43-2 

The ACL facility distinguishes between two types of objects: container 
objects and simple objects. Container objects contain other objects, which 
may be simple and/or other container objects. Simple objects do not contain 
other objects. Examples of container objects may include a file-system 
directory or a database; examples of simple objects may include a file or a 
database entry. 

To protect both object types, and to enable newly created objects to inherit 
default ACLs from their parent container objects, the ACL facility supports 
two basic kinds of ACLs: 

• An Object ACL is associated with either a container or a simple object, 
and controls access to it. 

OSF DeE Application Development Guide 



Authorization 

• A Creation ACL is associated with a container object only. Its function 
is not to control access to the container, but to supply default values for 
the ACLs of objects created in the container. There are two types of 
Creation ACLs: 

An Initial Object Creation ACL supplies default values for a simple 
object's Object ACL and for a container object's Initial Object 
Creation ACL. 

An Initial Container Creation ACL supplies default values for both a 
container object's Object ACL and its Initial Container Creation 
ACL. 

Figure 43-1 illustrates how ACL defaults are derived from Creation ACLs. 

Figure 43-1. Derivation of ACL Defaults 

Container Object A 

ObjectACL 

Initial Container Creation ACL 

.---
Initial Object Creation ACL 

r--

Container Object Created 
in Container A 

Object ACL Defaults ~ 
s imple Object Created 

in Container A Initial Container Creation ACL Defaults l+-

I Object ACL Defaults ~ Initial Object Creation ACL Defaults 

Aside from the distinctions previously described, there are no differences 
between Object ACLs and Creation ACLs; therefore, the infonnation about 
ACLs in the rest of this chapter does not differentiate between them. 

OSF DCE Application Development Guide 43-3 



DeE Security Service 

43.1.2 ACL Manager Types 

A separate ACL manager type manages the ACLs for each class of objects 
for which permissions are uniquely defined. The manager type defines the 
permissions for those objects whose ACLs it manages: the number of 
permissions, the meanings of the permissions, and the tokens that represent 
the permissions in user interfaces to ACL manipulation tools (the default 
DCE tool is ad_edit). 

For example, for the purpose of access control, five classes of objects are 
defined in the Registry database, and five ACL manager types manage the 
ACLs for the Registry database objects (the five Registry manager types run 
in a single Security Server process). Other DCE components implement 
their own manager types, and applications layered on DCE may also 
implement manager types for the objects that the applications protect. 

Refer to the aSF DCE Administration Guide and the aSF DCE 
Administration Reference for information about standard DCE ACL 
manager types and the permissions they implement. Refer to Part 1 and to 
Chapter 47 of this guide for information about implementing ACL manager 
types for distributed applications. 

43.1.3 Access Control Lists 

43-4 

An ACL consists of 

• An ACL manager type identifier, which identifies the manager type of 
the ACL. 

• A default cell identifier, which specifies the cell of which a principal or 
group identified as local is assumed to be a member. A DCE global 
pathname is necessary to specify a principal or a group from a 
non default cell; this consists of a pair of UUIDs representing the 
principal or group, and the cell of which it is a member. It is necessary 
to use the ID Map API to convert the global print string names of 
foreign principals and groups to the UUID representations that DCE 
ACL managers recognize. (Refer to Chapter 48 for more information on 
this subject.) 

• At least one ACL entry. 

OSF DeE Application Development Guide 



Authorization 

The rest of this chapter discusses ACLs primarily from a user-interface 
point of view, since this perspective provides an orientation to the 
discussion of the ACL API in this part. 

43.1.4 ACL Entries 

DCE Authorization defines two basic kinds of ACL entries: 

1. Those that associate a specified privilege attribute with a permission 
set; these are privilege attribute entries. 

2. Those that specify a permission set that masks a permission set 
specified in a privilege attribute entry; these are mask entries. 

The following subsections describe the two kinds of ACL entries in detail. 

43.1.4.1 Privilege Attribute Entry Types 

The privilege attributes of a principal are based on identity and include the 
principal's name, its group membership(s), and native cell. Note that not all 
ACL manager types implement all privilege attribute entry types. For 
example, the ACL manager type of a database object probably would not 
support the user _ obj and group _ obj entry types. 

Note: The term "local cell" means the cell specified in the ACL 
header; this is not necessarily the cell in which the protected 
object resides. 

Following are descriptions of the ACL entry types that specify privilege 
attributes: 

• user_obj 

The user _ obj entry establishes the permissions for the object's "user" 
(in the UNIX system sense). An ACL may contain only one entry of this 
type. The identity of the principal to which this ACL entry refers is 
assumed to be local and is specified somewhere other than in this entry. 
In the case of a file, for example, the identity is attached to the file's 
inode. 

OSF DeE Application Development Guide 43-5 



DeE Security Service 

43-6 

• user 

The user entry establishes the permissions for the local principal named 
in this entry. An ACL may contain a number of entries of this type, but 
each entry must be unique with respect to the principal it specifies. 

• foreign_user 

The foreign _user entry establishes the permIssIOns for the foreign 
principal named in this entry. An ACL may contain a number of entries 
of this type, but each entry must be unique with respect to the foreign 
principal it specifies. This entry type is exactly like the user entry type, 
except that this entry explicitly names a cell (for the entry type user, the 
principal inherits the cell specified by the default cell identifier in the 
ACL header). 

• group_obj 

The group _ obj entry establishes the permIssIons for the object's 
"group" (in the UNIX system sense). An ACL may contain only one 
entry of this type. As is the case with the user _ obj entry, the identity of 
the group is assumed to be local and is specified elsewhere than in the 
group _ obj entry itself. 

• group 

The group entry establishes the permissions for the local group named 
in this entry. An ACL may contain a number of entries of this type, but 
each entry must be unique with respect to the group it specifies. 

• foreign_group 

The foreign_group entry establishes the permissions for the foreign 
group named in this entry. An ACL may contain a number of entries of 
this type, but each entry must be unique with respect to the foreign 
group it specifies. This entry type is exactly like the group entry type, 
except that this entry explicitly names a cell (for the entry type group, 
the principals inherit the default cell identifier). 

• other_obj 

The other _ obj entry establishes the permIssIons for local principals 
whose identities do not correspond to any entry type that explicitly 
names a principal or group; an ACL may contain only one entry of this 
type. 

OSF DeE Application Development Guide 



Authorization 

• foreign_other 

The foreign_other entry establishes the pennissions for all principals 
that are members of a specified foreign cell and whose identities do not 
correspond to any foreign_user or foreign_group entry. An ACL may 
contain a number of entries of this type, but each entry must specify a 
different foreign cell. 

• any_other 

The any_other entry establishes the pennissions for principals whose 
privilege attributes do not match those specified in any other entry type. 
An ACL may contain only one entry of this type. 

ACL entries for privilege attributes consist of three fields in the fonn: 

entry _ type[:key}:permissions 

Following are descriptions of the fields: 

• The ACL entry_type specifies an ACL entry type as described in the 
previous list. 

• The key field specifies the privilege attribute to which the pennissions 
listed in the entry apply. The key field for the ACL entry types user, 
group, foreign_user , foreign_group, and foreign_other explicitly 
names a principal, group, or cell. For the entry types foreign_user, 
foreign_group, and foreign_other, the key field must contain a global 
DCE pathname of the fonns / .. ./cellnamelprincipalname, 
/ .. ./cellnamelgroupname, or I .. ./cellname, respectively. The entry types 
user _ obj, group _ obj, other _ obj, and any_other do not use the key 
field. 

• The permissions field lists the pennissions that may be granted to the 
principal possessing the privilege attribute specified in the entry, unless 
a mask (or masks) further restricts the pennissions that may be granted 
to the principal. As noted previously, the number and meaning of the 
pennissions that may protect an object are defined by the object's ACL 
manager type. Therefore, the pennissions that an ACL entry may 
specify must be the set, or a subset, of the pennissions implemented by 
the manager type of the ACL in which the entry appears. 

A principal is denied access when a user or foreign_user entry that 
names the principal contains an empty pennission set. 

OSF DeE Application Development Guide 43-7 



DeE Security Service 

43-8 

43.1.4.2 Mask Entry Types 

Following are descriptions of the ACL entry types that specify masks: 

• mask_obj 

The mask _ obj entry establishes the permISSIOn set that masks all 
privilege attribute entry types except the user _ obj and other _ obj types. 

• unauthenticated 

The unauthenticated entry establishes the permission set that masks 
the permission set in a privilege attribute entry that corresponds to a 
principal whose privilege attributes have not been certified by an 
authority such as the Privilege Service. 

The two masks are similar in this respect: the permission set specified in the 
mask entry is intersected (logically ANDed) with the permission set in a 
privilege attribute entry. This masking operation yields the effective 
permission set (that is, the permissions that may be granted to the principal) 
for the principal possessing the privilege attribute. For example, if a 
privilege attribute entry specifies the permissions ab, and a mask entry that 
specifies the permissions bc masks that privilege attribute entry, then the 
effective permission set is b. Similarly, a mask entry that specifies the 
empty permission set means that none of the permissions in any privilege 
attribute entry that that mask entry masks is granted to the principal 
possessing the privilege attribute. 

The two masks are dissimilar in one notable respect. Adding an 
unauthenticated mask entry with an empty permission set to an ACL is 
equivalent to omitting the unauthenticated mask entry from the ACL: in 
both cases, the set of effective permissions for principals possessing 
unauthenticated privilege attributes is empty. However, adding a mask _ obj 
entry with an empty permission set to an ACL is different from having no 
mask _ obj entry in the ACL: in the first case, the effective permission set is 
empty; in the second case, the effective permission set is identical to the 
permission set in the privilege attribute entry. 

ACL entries for masks consist of two fields in the form: 

entry_type :permissions 

OSF DeE Application Development Guide 



Authorization 

Following are descriptions of the fields: 

• The entry_type field specifies one of the two masks entry types: 
mask _ obj or unauthenticated. 

• The permissions field specifies the permIssIOn set that masks the 
permission set in any privilege attribute entry masked by the mask 
entry. 

43.1.4.3 The Extended ACL Entry Type 

The ACL entry type extended is a special entry type for ensuring the 
compatibility of ACL data created by different software revisions. It 
enables old application clients to copy ACLs from one newer revision 
object store to another without losing data. It also enables obsolete clients 
to manipulate ACL data that they understand without corrupting the 
extended entries that they do not understand. 

43.1.5 Access Checking 

Standard DCE ACL manager types use a common access-check algorithm 
to determine the permissions they grant to a principal. Access checking is 
executed in up to six stages, in the following order: 

1. The user _ obj entry check 

2. The check for a matching user or foreign_user entry 

3. The group_obj entry check and the check for matching group or 
foreign_group entries 

4. The other _ obj entry check 

5. The check for a matching foreign_other entry 

6. The any_other check 

If during any stage of access checking an ACL manager type finds a 
privilege attribute entry that matches a privilege attribute possessed by a 
principal, then the manager type does not execute any subsequent stages, 
even though the principal may possess other privilege attributes for which 

OSF DeE Application Development Guide 43-9 



DeE Security Service 

43-10 

there are other matching entries.The following subsections describe the 
algorithms used at each stage of access checking. 

43.1.5.1 The user_obj Entry Check 

The pseudocode that follows illustrates the user _ obj check algorithm. If the 
principal seeking access is the identity to which the user _ obj entry refers, 
then the remaining checks are not executed. 

IF (no USER_OBJ principal name is available) 
THEN 

the requested permission is denied 
ELSE IF (the principal name matches the user name associated 

wi th the USER_OBJ entry) AND (the cell name matches 
the cell name for that entry) 

THEN 
IF (the requested permission is listed in the USER_OBJ entry) 
THEN 

IF (the principal's privilege attributes are certified) 
THEN 

the requested permission is granted 
ELSE 

IF (the requested permission is listed in the 
unauthenticated mask entry) 

THEN 
the permission is granted 

ELSE 
the permission is denied 

ENDIF 

ENDIF 

ENDIF 

ELSE 
the permission is denied 

ENDIF 

OSF DeE Application Development Guide 



Authorization 

43.1.5.2 The User Entries Check 

The pseudocode that follows illustrates the algorithm for checking user or 
foreign_user entries. If the principal's identity matches one of these 
entries, then the remaining checks are not executed. 

IF (the principal name matches the user name of any USER 
or FOREIGN_USER entry) AND (the principal's cell name 
matches the cell name for that entry) 

THEN" 

IF (the requested permission is listed in the USER or 
FOREIGN_USER entry) AND ((the requested permission 
is listed in the mas~obj entry) OR (there is no 
mask_obj entry)) 

THEN" 

IF (the principal's privilege attributes are certified) 
THEN 

the requested permission is granted 
ELSE 

IF (the requested permission is listed in the 
unauthenticated mask entry) 

THEN 

the permission is granted 
ELSE 

the permission is denied 
ENDIF 

ENDIF 
ELSE 

the permission is denied 
ENDIF 

ENDIF 

OSF DeE Application Development Guide 43-11 



DeE Security Service 

43-12 

43.1.5.3 The Group Entries Check 

The pseudocode that follows illustrates the algorithm for checking group 
entries. If a principal is associated with a concurrent group set, more than 
one search of the ACL entries for groups is executed: one for the primary 
group (the one specified in the principal's account information), and one for 
each group in the concurrent group set. 

The permissions granted are the union (the logical OR operation) of the 
permissions yielded by each search of the group entries. For example, if two 
groups of which an authenticated principal is a member specify the 
permission sets abe and ede, then the principal is granted the permission set 
abede. 

If one or more matching group entries are found, then the remaining checks 
are not executed. . 

IF (a group name among the principal's privilege 

THEN" 

attributes matches the group ID of any GROUP_OBJ, GROUP, 
or FOREIGN_GROUP entry) AND (the principal's cell name 
matches the cell name for that entry) 

IF (the requested permission is listed in the group entry) 
AND ((the requested permission is listed in the 
mask_obj entry) OR (there is no mask_obj entry» 

THEN" 

IF (the principal's privilege attributes are certified) 
THEN" 

the permission is granted 
ELSE 

IF (the requested permission is listed in the 
unauthenticated mask entry) 

THEN" 

the permission is granted 
ELSE 

the permission is denied 
ENDIF 

ENDIF 
ELSE 

the permission is denied 
ENDIF 

ENDIF 

OSF DeE Application Development Guide 



Authorization 

43.1.5.4 The other_obj Entry Check 

The pseudocode that follows illustrates the algorithm for checking the 
other _ obj entry. 

IF (the requested permission is listed in the OTHER_OBJ entry 
AND (the principal's cell name matches the cell name for 
that entry) 

THEN 

IF (the principal's privilege attributes are certified) 
THEN 

the permission is granted 
ELSE 

IF (the requested permission is listed in the 
unauthenticated mask entry) 

THEN 

the permission is granted 
ELSE 

the permission is denied 
ENDIF 

ENDIF 
ELSE 

the permission is denied 
ENDIF 

43.1.5.5 The foreign_other Entries Check 

The pseudocode that follows illustrates the algorithm for checking the 
foreign_other entries. 

IF (the requested permission is listed in a FOREIGN_OTHER 
entry) AND (the principal's cell name matches the cell name 
for that entry) AND ((the requested permission is listed 
in the mask_obj entry) OR (there is no mask_obj entry)) 

THEN 

IF (the principal's privileges are certified) 
THEN 

the permission is granted 

OSF DeE Application Development Guide 43-13 



DeE Security Service 

43-14 

ELSE 
IF (the requested permission is listed in the 

unauthenticated mask entry) 
THEN 

the permission is granted 
ELSE 

the permission is denied 
ENDIF 

ENDIF 
ELSE 

the permission is denied 
ENDIF 

43.1.5.6 The any_other Entry Check 

The pseudocode that follows illustrates the any_other check algorithm. If 
no privilege attribute possessed by a principal matches any entry checked in 
any preceding stage of access checking, then the principal may be granted 
the effective permissions yielded by this check. 

Note that if an ACL listing this entry also lists the other_obj entry, then 
only undistinguished foreign identities can match this entry. However, if 
the ACL does not list the other_obj entry, then all undistinguished 
identities, whether foreign or local, match this entry. 

IF (the requested permission is listed in the any_other entry 
AND ((the requested permission is listed in the mask_obj 
entry) OR (there is no mask_obj entry)) 

THEN 

IF (the principal's privilege attributes are certified) 
THEN 

the permission is granted 
ELSE 

IF (the requested permission is listed in the 
unauthenticated mask entry) 

THEN 

the permission is granted 
ELSE 

the permission is denied 

OSF DeE Application Development Guide 



Authorization 

ENDIF 

ENDIF 

ELSE 
the permission is denied 

ENDIF 

43.1.6 Examples of ACL Checking 

The following subsections provide some examples that illustrate ACLs and 
the access-check algorithms. The examples use the arbitrary convention of 
ordering entries as follows: masks, principals, groups, and "other" entries. 
However, the access check algorithm disregards the order in which entries 
appear in an ACL. Also note that the permissions in these examples do not 
refer to any particular permissions implemented by any ACL manager type. 

43.1.6.1 Example 1 

Following is an ACL that protects an object to which three principals, 
janea, 1 .. .Icella/fritzb, and mariac, seek access: 

rnask_obj:ab 
user_obj:abc 
user:janea:abdef 
foreign_user:/ ... /cella/fritzb:abc 
group:projectx:abcf 
group:projecty:bcg 

Note: The numbered lists in the discussions that follow correspond 
to stages 1, 2, 3, 4, 5 and 6 of the access-check algorithm 
referred to in Section 43.1.5. 

The principal janea requests permission c to the object protected by the 
ACL. Assume that the principal janea has the privilege attributes of being a 
member of the groups projectx and projecty (as well as having a user 
entry that names her) and that janea is the principal to which the user _ obj 

OSF DeE Application Development Guide 43-15 



DeE Security Service 

43-16 

entry refers. Assume also that this principal's privilege attributes are 
certified: 

1. The user _ obj check yields the permissions abc. 

The result of this check is that the effective permission set for jaDea is abc. 
Because a matching entry is found during the first stage of access checking, 
none of the remaining stages of access checking is executed, even though 
there are three other matching entries. The mask _ obj entry does not mask 
the user _ obj entry, so janea's effective permissions are the permissions in 
the user _ obj entry. Since janea requested a permission that is a member of 
the effective permission set, her request is granted. 

The second principal seeking access to the protected object is 
I .. .!cella/fritzb. This principal requests permission b. Assume that user obj 
resolves to some identity other than I .. .!cella/fritzb, and that this principal's 
privilege attributes are uncertified: 

1. The user _ obj check yields no permissions because I .. .!cella/fritzb's 
identity does not match that of the user _ obj (no foreign principal can 
ever match this entry). 

2. The foreign_user entry for 1 .. .Icella/fritzb specifies the permissions 
abc. The application of the mask _ obj, which specifies the 
permissions ab to this permission set, yields the permissions abo 
Since the unauthenticated mask entry is missing from the ACL, all 
permissions for unauthenticated identities are masked, yielding an 
empty effective permission set. 

The result of these checks is that I .. .!cella/fritzb's request is denied (and 
would be denied, regardless of the permission requested). In this case, only 
the first two stages of access checking are executed. 

The third principal seeking access is mariac, who requests permission a. 
Assume that the privilege attributes of mariac are certified, that mariac is 
not the principal that corresponds to the user _ obj entry, and that mariac is 
a member of the groups projectx and projecty: 

1. The user _ obj check yields no permissions. 

2. There is no matching user entry. 

3. The group check finds two matching entries. The permIsSIOns 
associated with projectx (abcf) when masked by the mask _ obj entry 

OSF DeE Application Development Guide 



Authorization 

(ab) yield the pemllssIOns abo The permIssIOns associated with 
projecty (beg) when masked by the mask _ obj entry yield the 
permission b. The union of the permission sets ab and b is the set abo 

The effective permission set for mariae is ab, and since the requested 
permission (a) is a member of that set, mariae's request is granted. The 
remaining stages of access checking are not executed. 

43.1.6.2 Example 2 

Following is the ACL for an object to which two principals, ugob and 
I .. '!eellb/lolad, seek access: 

mask_obj : bcde 
unauthenticated:ab 
user_obj:abcdef 
user:ugob:abcdefg 
group:projectz:abh 
foreign_other:/ ... /cellb/:abc 

Note: The numbered lists in the discussions that follow correspond 
to stages 1, 2, 3, 4, 5 and 6 of the access check algorithm 
referred to in Section 43.1.5. 

The principal ugob requests permission b. Assume that ugob is not the 
principal to which the user _ obj entry refers. Assume also that the privilege 
attributes of ugob include membership in the group projectz, in addition to 
the user entry that names him. In this case, the principal has failed to 
acquire certified privilege attributes: 

1. The user _ obj check yields no permissions. 

2. The matching entry among the user entries specifies the permissions 
abedefg. Applying mask _ obj (bede) yields the permission set bede. 
Applying the unauthenticated mask (ab) to the permission set bede 
yields the effective permission set b. 

Since the principal ugob requests a permission (b) that is a member of the 
effective permissions set, this principal's request is granted. 

OSF DeE Application Development Guide 43-17 



DeE Security Service 

A case that illustrates how access is determined for otherwise 
undifferentiated members of a specified foreign cell is that of the principal 
I .. .!cellb/lolad, who requests permission e. Assume that the privilege 
attributes of this principal are certified: 

1. The principal is foreign, so the user _ obj check cannot be a match. 

2. There are no foreign_user entries. 

3. There are no foreign_group entries. 

4. The principal lolad is a member of cellb, meaning that the privilege 
attributes match those in the foreign_other entry for cellb. The 
permissions specified by the foreign_other entry for cellb (abc) as 
masked by mask _ obj (bcde) yields the effective permission set bc. 

The permission requested (e) is not a member of the effective permission 
set (bc), so the request is denied. 

43.1.6.3 Example 3 

Following is the ACL for an object to which one principal, silviob, seeks 
access. 

unauthenticated: a 
user: jeand: abcde 
user:denisf:
group:proj ectx: abed 
foreign_other:/ ... /cella:-
foreign_other:/ ... /cellc:abc 
any_other: ab 

Note: The user entry for denisf and the foreign_other entry for 
cella both specify an empty permission set with notation -
(dash), meaning that identities corresponding to these entries 
are explicitly denied all permissions. Also, the numbered lists 
in the discussions that follow correspond to stages 1,2,3,4,5 
and 6 of the access-check algorithm referred to in Section 
43.1.5. 

43-18 OSF DeE Application Development Guide 



Authorization 

The principal silviob requests pennission a. Assume that this principal's 
privileges include membership in the group projecty and that they are not 
certified: 

1. There is no user _ obj entry, so this check can yield no permissions. 

2. There is no user entry for this principal, so this check yields no 
pennissions. 

3. There is no entry for the group projecty, so this check yields no 
pennissions. 

4. There is no other _ obj entry, so this check can yield no pennissions. 

5. The principal is local, so no foreign_other entry can be a match; this 
check yields no pennissions. 

6. Having failed to match any entry examined in the preceding checks, 
the principal matches the any_other entry, which yields the 
pennission set abo There is no mask _ obj entry, but there is the 
unauthenticated mask entry, which specifies the permission set a. 
Applying the unauthenticated mask to this privilege attribute entry 
yields the effective pennission a. 

The pennission requested (a) is a member of the effective pennission set 
(a), so this principal's request is granted. 

43.2 Name-Based Authorization 

The Kerberos authentication service, upon which the DCE Shared-Secret 
Authentication protocol is based, authenticates the string name 
representation of a principal. DCE Security converts these string 
representations to UUIDs, and it is these UUIDs that an ACL manager uses 
to make authorization decisions. However, since some existing (non-DCE) 
applications implement Kerberos authentication, DCE Security supports an 
authorization protocol based on principal string names: Name-Based 
Authorization. 

It is assumed that applications that use Name-Based Authorization have a 
means to associate string names with pennissions, since DCE Security 
offers no such facility. Because in Name-Based Authorization there is no 
UUID representation of privilege attribute data, and because DCE ACL 

OSF DeE Application Development Guide 43-19 



DeE Security Service 

43-20 

managers recognize only UUIDs, if an application uses Name-Based 
Authorization, then a principal's privilege attributes are represented as an 
anonymous PAC. Such PAC data can only match the ACL entry types 
other _ obj , foreign_other, or any_other, and are masked by the 
unauthenticated mask. 

Also note that there is essentially no intercell security for an application 
that uses the Name-Based Authorization protocol: such applications never 
communicate with the Privilege Service, which evaluates intercell trust. 

OSF DeE Application Development Guide 



Chapter 44 

The Registry Application Program 
Interface 

This chapter describes the Registry API. Like the other Security APIs, this 
one provides a simpler binding mechanism than the standard RPC handle 
structure. It includes facilities for creating and maintaining the Registry 
database. Applications that run in the default DCE Registry environment 
(that is, those that assume the presence of the default Registry tools and 
servers) have no reason to call this API. 

44.1 Binding to a Registry Site 

Although it is often convenient to speak of the Registry database in a way 
that implies that it is a single physical database, the Registry database is 
replicated in all but the very smallest cells. Replication reduces network 
traffic and increases the availability of Registry data to clients. A cell's 
Registry database usually consists of an update site (also known as the 
master site), and a number of query sites (also known as read-only, or slave 
sites). Changes to data at the master site are propagated to its slaves by 
messages sent by the master. Query sites can only satisfy requests for data 
(for example, sec_rgy_acct_lookupO, which returns account information). 
Requests for database changes (for example, sec_rgy_acct_passwdO, 

OSF DeE Application Development Guide 44-1 



DeE Security Service 

44-2 

which changes the password for an account) must be directed to the master 
site; a query site that receives such a request returns an error. 

To submit requests to the Registry Server, a client must first select a site and 
bind to it. The client may select a site by name, ask the Directory Service to 
bind to the master site, or select an arbitrary site. 

The Registry API enables a client to communicate with the Registry server 
using a specified authentication protocol, at a specified protection level, and 
using a specified authorization protocol. For instance, a developer may 
decide that the protection level for communicating with an update site 
should be higher (that is, more secure) than that for a query site; that is, the 
developer may feel that, on the one hand, the relatively infrequent changes 
to Registry data should be done in a highly secure manner, and that on the 
other hand, authentication overhead should be reduced for the more frequent 
requests for Registry data. The Registry API accommodates these varying 
needs. 

The following calls bind a client to a Registry Server in preparation for 
Registry operations. The argument list of these calls enables an application 
to specify the authentication protocol, the protection level, and the 
authorization protocol to be used: 

• sec_rgy_site_hindO 

Binds to a specified site 

• sec_rgy_site_hind_updateO 

Binds to any update site 

• sec _rgy _site_hind _ query( ) 

Binds to any query site 

• sec_rgy _site_hinding_getJnfoO 

Extracts the Registry site name and security information from the 
binding handle 

The following calls are similar to the binding calls just described, except 
that an application cannot specify security information. By default, 
however, the following calls use DCE Shared-Secret Authentication, the 
packet-integrity level of protection, and DCE Authorization. 

• sec_rgy_site_openO 

OSF DeE Application Development Guide 



The Registry Application Program Interface 

Binds to the specified site 

• sec _ rgy _site_open _ update( ) 

Binds to any update site 

• sec _ rgy _site_open _ queryO 

Binds to any query site 

• sec_rgy_site_getO 

Gets the Registry site name from the binding handle 

The following calls provide miscellaneous binding management 
functionality: 

• sec_rgy_site_closeO 

Terminates binding to a Registry site 

• sec _rgy _site _is _readonlyO 

Tests whether a bound site is an update or query site 

44.2 The Registry Database 

The Registry database comprises three container objects: 

• principal 

Contains principal names; each name is associated with account 
information that is also specified here (for example, the name of the 
primary group). 

• group 

Contains groups and the names of their member principals. 

• organization 

Contains organizations and the names of their member principals. 

These three objects are referred to as name domains, and each member of a 
domain is referred to as a PGO item. Principal items are contained in the 
principal domain, groups in the group domain, and organizations in the 

OSF DeE Application Development Guide 44-3 



DeE Security Service 

organization domain. A principal may have a name such as Ird/writers/tom, 
from which you might infer that tom is a member of the group writers and 
the organization rd. However, this is not the case because the name 
Ird/writers/tom only indicates that tom and the data corresponding to the 
account of this principal (if any) reside in Ird/writers in the principal 
domain. There may also be a group named Ird/writers in the group domain, 
but the principal tom is not a member unless he is explicitly named in the 
group Ird/writers in the group domain. 

Each PGO item consists of a printstring name, a UUID, and a UNIX number 
(for compatibility with UNIX system security interfaces). For various 
administrative reasons, it is frequently convenient to be able to refer to a 
PGO item by more than one name. Consequently, some PGO items are 
aliases for other items. An alias uses the same UUID and UNIX number as 
the PGO item to which it refers, but contains only a pointer to that item. 

The Registry also contains the rgy object, which describes Registry 
properties and policies, and organization policies. 

44.2.1 Creating and Maintaining PGO Items 

44-4 

The PGO items in the Registry database are created and maintained with 
routines that are prefixed sec _rgy _pgo ... (). The contents of a PGO item vary 
with the domain. If the domain is group or organization, the contents are 
the membership list of principal names. If the domain is principal, the 
contents are the data corresponding to the Registry account using that name. 

The sec _rgy _pgo ... () interface contains the following calls for maintaining 
the PGO trees: 

• sec_rgy_pgo_add() 

Adds a PGO item 

• sec _rgy _pgo _ delete( ) 

Deletes a PGO item 

• sec_rgy_pgo_rename() 

Changes the name of a PGO item 

OSF DeE Application Development Guide 



The Registry Application Program Interface 

• sec_rgy-pgo_replace() 

Replaces information corresponding to the specified PGO item 

The sec _rgy _pgo ... () interface contains the following calls for maintaining 
PGO membership lists: 

• sec _ rgy _pgo _add _ member( ) 

Adds a member to a group or organization membership list 

• sec _ rgy _pgo _delete _ member() 

Deletes a member from a group or organization membership list 

• sec_rgy_pgo_get_members() 

Returns a list of members of a group or organization 

• sec_rgy_pgoJs_member() 

Tests whether a principal is a member of a specified group or 
organization 

The sec _rgy _pgo ... () interface contains the following calls for retrieving 
PGO item data: 

• sec_rgy_pgo_get_by_idO 

Returns the PGO item with the specified UUID 

• sec_rgy_pgo_get_by_nameO 

Returns the PGO item with the specified name 

• sec _rgy _pgo _get_by _unix _ num() 

Returns the PGO item with the specified UNIX number 

• sec _rgy -pgo _get _ next( ) 

Returns the PGO item that follows the last PGO item returned 

The sec _ rgy _pgo ... () interface also contains routines that convert PGO item 
specifiers, as follows: 

• sec_rgy_pgoJd_to_nameO 

• sec_rgy_pgo_id_to_unix_num() 

• sec _rgy _pgo _name_to Jd() 

OSF DeE Application Development Guide 44-5 



DeE Security Service 

• sec _rgy _pgo _unix _ num _ to _id( ) 

• sec _rgy _pgo _name_to _unix _ num() 

• sec _rgy _pgo _unix _ num _to _ name() 

44.2.2 Creating and Maintaining Accounts 

44-6 

The login-name field of an account contains a principal name, a primary 
group name, and an organization name. The account may also contain a 
project list (also known as a concurrent group set) that specifies all the 
groups to which the principal corresponding to the account belongs, but the 
login-name field itself specifies only one group name. 

An account can be added to the Registry database only when all of its 
constituent PGO items are established. For instance, to create an account 
with the principal name tom, the group name writers, and the organization 
name rd, all three names must exist as individual PGO items in the 
database; and the writers group and the rd organization must specify that 
tom is a member. 

When an account is created with sec_rgy_acct_addO (and if a project list is 
enabled for the new account), the call scans the groups in the Registry and 
creates a project list containing all the groups in which the principal name 
appears. Subsequently, the project list may be modified with the 
sec _rgy _pgo _add _ member() and sec _rgy _pgo _delete _member() calls. 

The following calls create and maintain accounts: 

• sec _ rgy _ acct _ add( ) 

Adds an account to an existing principal item 

• sec_rgy_acct_deleteO 

Deletes an account, leaving the principal item 

• sec_rgy_acct_renameO 

Changes an account login name, perhaps moving the account to a 
different principal item 

OSF DeE Application Development Guide 



The Registry Application Program Interface 

The following calls return the information in an account: 

• sec _ rgy _ acct _get yrojlist( ) 

Returns the project list for an account 

• sec_rgy_acct_Jookup() 

Returns all the account data 

The following calls modify the information in an account: 

• sec _ rgy _ acct _passwd( ) 

Changes an account password 

• sec_rgy_acct_repJace_all() 

Replaces all of an account's data 

• sec_rgy_acct_adrnio_repJace() 

Replaces only the administrative account data 

• sec_rgy_acct_user_repJace() 

Replaces only the account data that is accessible to the user of the 
account 

44.2.3 Registry Properties and Policies 

The following subsections outline some Registry API parameters that affect 
the cell as a whole, and the routines that enable an application to retrieve 
and set values for them. 

44.2.3.1 Registry Properties 

Several Registry parameters and flags affect all accounts in the Registry. 
These Registry properties include the following: 

• The version number of the Registry software used to create and read the 
Registry 

OSF DeE Application Development Guide 44-7 



DeE Security Service 

44-8 

• The name and UUID of the cell associated with the Registry, and 
whether the current Registry site is an update site or a query site 

• Minimum and default lifetimes for certificates of identity issued to 
principals 

• Bounds on the UNIX numbers used for principals, and whether the 
UUIDs of principals also contain embedded UNIX numbers 

The routines associated with this parameter set are 

• sec _rgy _properties_get Jnfo( ) 

• sec _ rgy _properties_set _ info( ) 

44.2.3.2 The Registry Authentication Policy 

Another set.. of parameters affecting all principals is the Registry 
authentication policy. This set only controls the maximum lifetime of 
certi ficates of identity, upon first issue and renewal. Accounts also have 
authentication policies, and the policy in effect for any principal is the most 
restrictive combination of the Registry policy and the policy for a 
principal's account. The associated routines are 

• sec _rgy _ auth _pley _get Jnfo() 

• sec _rgy _ auth _pley _get _ effective() 

• sec _rgy _ auth yley _set _info() 

44.2.3.3 Organization Policies 

Another parameter set controls the set of accounts of principals that are 
members of an organization. These parameters control the lifetime and 
length of passwords, as well as the set of characters from which passwords 
may be composed. This parameter set also specifies the default lifespan of 
accounts associated with the organization. 

OSF DeE Application Development Guide 



The Registry Application Program Interface 

The routines associated with this parameter set are 

• sec _ rgy _plcy _get Jnfo() 

• sec _rgy _plcy _get _ effective( ) 

• sec _ rgy _plcy _set Jnfo() 

44.2.4 Miscellaneous Registry Routines 

The Registry API includes a few miscellaneous routines, as follows: 

• sec_rgyJogin_get_info() 

Returns login information for the specified account. 

• sec _rgy Jogin _get _ effective() 

Applies local overrides (if such data is available) to Registry account 
information and returns information about which account information 
fields have been overridden. 

• sec _ rgy _wait _ until_ consistent( ) 

Blocks until all previous database updates have been propagated to all 
sites. This is useful for applications that first bind and write to an update 
site, and then bind to an arbitrary query site and depend upon up-to-date 
information. 

• sec_rgy_cursor_reset() 

Resets the database cursor to return the first suitable entry. 

OSF DeE Application Development Guide 44-9 





Chapter 45 

The Login Application Program 
Interface 

The Login API communicates with the Security Server to establish, and 
possibly change, a principal's login context. A login context contains the 
information necessary for a principal to qualify for (although not necessarily 
be granted) access to network services and possibly local resources as well. 
Login context information normally includes the following: 

• Identity information concerning the principal, including its certificate of 
identity (in Shared-Secret Authentication, this is the TGT); its PAC; and 
Registry policy information, such as the maximum lifetime of 
certificates of identity. 

• The context state; that is, whether the Authentication Service has 
validated the context or not. 

• The source of authentication information (it may originate from the 
network Authentication Service, or locally, if that network service is 
unavailable ). 

OSF DeE Application Development Guide 45-1 



DeE Security Service 

45.1 Establishing Login Contexts 

45-2 

The basic procedure by which a network login context is established (see 
Chapter 42 for more details) is as follows: 

1. The client calls sec_login_setup_identityO, specifying the name of 
the principal whose network identity is to be established. The 
Authentication Service creates an encrypted message containing a 
certificate of identity (the TGT) and returns it to the client's security 
runtime, which in tum passes a login context handle back to the 
client. 

2. The client submits the context handle and the principal's password to 
sec Jogin _valid_and _ cert _identO, which attempts to decrypt the 
TGT. If the attempt succeeds, the client's security runtime forwards 
the ticket to the Privilege Service, which creates a PAC for the 
principal and encloses it in a Privilege-Ticket Granting Ticket 
(PTGT), which is returned to the client's security runtime. The 
runtime decrypts the message containing the PTGT and returns 
information about the source of the authentication information to the 
API (if the authentication information comes from the network 
Security Server, then the login context is validated). 

3. Finally, the client invokes sec_login_set_contextO, which enables 
child processes spawned from the calling process to inherit the 
validated context. 

In the walk-through of user authentication in Chapter 42, we mentioned that 
one of the functions of secJogin_ valid_and_cert_identO is to demonstrate 
that a valid trust path exists between the Authentication Service and the host 
computer on which the principal is logging in. After setting up and 
validating a login context, any application that sets identity information for 
local processes should check to be sure that the server that provided the 
certificate of identity is legitimate in order to demonstrate that the trust path 
between the client and the Authentication Service is valid. 

OSF DeE Application Development Guide 



The Login Application Program Interface 

45.1.1 Validating the Login Context and Certifying the Security 
Server 

Whereas a validated login context is one that is regarded as legitimate by 
the local security runtime, a validated and certified login context is one that 
is not only regarded as legitimate, but also can be demonstrated to have 
been (in all likelihood, that is) issued by a legitimate Security Server. 
Certifying that the Security Server is legitimate prevents faked identity 
information from being propagated to local processes. For example, a 
spurious server could collaborate with a dishonest user in order to obtain an 
identity that conferred comprehensive permissions (for example, the root 
identity). With such an identity, the dishonest user could gain access to 
sensitive local objects, such as key-storage files for server principals that 
run on the host. (Servers running on other hosts would not trust this 
principal, however, because it does not know their keys.) Of course, if a 
spurious server can return to the application a ticket encrypted with the 
host's secret key, it means the server has access to the host's key; but if this 
is the case, network security has already been seriously undermined. 

When an application needs to certify the originator of a certificate of 
identity, it may call sec Jogin _certify _identityO. This routine makes an 
authenticated remote procedure call to the local sec _ clientd daemon in 
order to acquire a ticket to the host principal. If sec _ c1ientd succeeds in 
decrypting the message containing the ticket, then the server that granted 
the certificate of identity must know the host principal's secret key; this 
evidence indicates that it is a legitimate Security Server. Since sec _ clientd 
runs with the identity root (in order to access the host's key), the process 
calling sec Jogin _certify _identity( ) need not. 

The sec_Iogin_valid_and_cert_identO is similar to 
sec _login_certify Jdentity(), except that it combines the validation and 
certification procedures (and therefore, the password of the principal that is 
logging in must be known to the process making this call). The 
sec_Iogin_valid_and_cert_identO routine calls the Security Server for a 
ticket to the host and attempts decryption. The process calling 
sec_Iogin_valid_and_cert_identO must have access to the host's secret 
key, and so must run as root. 

Note: Because system login programs should not set local identities 
derived from an uncertified context, all Login API routines 
that return data from an uncertified context issue a warning. 

OSF DeE Application Development Guide 45-3 



DeE Security Service 

45.1.2 Validating the Login Context Without Certifying the Security 
Server 

An application that does not use login contexts to set local identity 
information does not need to certify its login contexts. Since an illegitimate 
Security Server is unlikely to know the key of a remote server principal with 
which the application may communicate, the application will simply be 
refused the service requested from the remote server principal. If local 
operating system identity information is assumed to be neither of interest 
nor of concern to an application, it may call sec_login_validate Jdentity( ), 
which does not attempt to verify the Security Server's knowledge of the host 
principal's key. 

The sec _login_validate Jdentity( ) routine does not acquire a PTGT, unlike 
the sec _login_certify Jdentity() and sec Jogin _valid_and _ cert _ident( ) 
routines. Instead, the PTGT is acquired when the application first makes an 
authenticated remote procedure call. 

45.1.3 Example of a System Login Program 

45-4 

Following is an example of a system login program that obtains a login 
context that can be trusted for both network and local operations. 

Note: One of the function calls that appears in the following 
example, sec _login_purge _ context(), is described in Section 
45.6. 

if (sec_login_setup_identity(principal,sec_login_no_flags, 
&login_context,&st)) 

... get password ... 

if (sec_login_valid_and_cert_ident(login_context, password, 
&reset-passwd, &auth_src&st)) 

{ 

if (auth_src==sec_login_auth_src_network) 
{ 

if (GOOD_STATUS (&st) 
sec_login_set_context(login_context)j 

OSF DeE Application Development Guide 



The Login Application Program Interface 

if (reset-passwd) 

... reset the user's password ... 

... application login-failure actions ... 

... application-specific login-valid actions ... 

45.2 Context Inheritance 

A process inherits the login context of its parent process unless the child 
process is associated with a principal that has logged in and so established a 
separate login context. The following subsections describe two additional 
aspects of context inheritance: 

• How the initial context is established. 

• How a process may inhibit context inheritance. 

45.2.1 The Initial Context 

An application invokes sec _login_setup Jdentity() so that it can then make 
other authenticated RPC calls. However, sec _login_setup Jdentity() is 
itself a local interface to an authenticated remote procedure call, and 
authenticated RPC needs a validated login context in order to execute. For 
applications like system login, the daemon sec _ c1ientd supplies the 
validated context. However, a daemon that is started before sec _ c1ientd is 
running on the host, needs to be able to assume its host's identity. The 

OSF DeE Application Development Guide 45-5 



DeE Security Service 

initial context is established at boot time with sec_Iogin_init_firstO, which 
establishes the default context inheritance for processes running on the host. 
The routines sec _login_setup _ first() and sec_login_validate _ first() then 
set up and validate the context in a procedure like that used for user context 
validation. 

45.2.2 Private Contexts 

A process may inhibit context inheritance by setting a flag in 
sec_Iogin_setupJdentityO. If the flag indicates that the login context is 
private, then children of the calling process cannot inherit it. A child 
process can neither set a private context (since it is the function of 
sec Jogin _set _ contextO to make the context inheritable) nor export it to 
any other process (see Section 45.4 for more information on this subject). 

45.3 Handling Expired Certificates of Identity 

45-6 

For a dishonest principal to make use of an intercepted certificate of 
identity, it must succeed in decrypting it. In order to make the task of 
decryption more difficult, a certificate of identity has a limited lifespan; and 
once it expires, the associated login context is no longer valid. 

Because this security feature may inconvenience users, an application may 
wish to warn a user when the certificate of identity is about to expire. The 
sec_Iogin_get_expirationO routine returns the expiration date of a 
certificate of identity. When a certificate of identity is about to expire, the 
application may call sec_Iogin_refreshJdentityO, which may be used to 
refresh any login context. 

Similarly, a server principal may need to determine whether a certificate of 
identity may expire during some long network operation, and if the 
certificate of identity is likely to expire, refresh it to ensure that the 
operation is not prevented from completion. Following is an example: 

if (expire_time < (current_time + operation_duration)) 

OSF DeE Application Development Guide 



The Login Application Program Interface 

... identity has changed and must be validated again ... 

else 

... login context cannot be renewed ... 

exit{O}; 

operation{}; 

Because sec_login_refresh_identityO acquires a certificate of identity, 
refreshed contexts must be revalidated with sec_login_validate Jdentity() 
or sec Jogin _valid_and _ cert() before they can be used. 

The expiration date of a login context has no meaning with respect to local 
identity information; for the same reason, sec _login_refresh _identity() 
cannot refresh a login context that has been authenticated locally. 

45.4 Importing and Exporting Contexts 

Under some circumstances, an application may need two processes to run 
using the same login context. A process may acquire its login context in a 
form suitable for imparting to another process by calling 
sec_login _ export_ context(). This call collects the login context from the 
local context cache and loads it into a buffer. Another process may then call 
secJogin_import_contextO to unpack the buffer and create its own login 
context cache to store the imported context. Since the context has already 
been validated, the process that imports it may use it immediately. (The 
CDS Clerk is an example of a context importer.) 

These operations are strictly local: the exporting and importing processes 
must be running on the same host. In addition, a process cannot export a 
private context. 

OSF DeE Application Development Guide 45-7 



DeE Security Service 

45.5 Changing a Groupset 

45-8 

The sec _login _ newgroups() routine enables a principal to assume the 
minimum groupset that is required to accomplish a given task. For example, 
a user may have privilege attributes that include membership in an 
administrative group associated with a comprehensive permission set, and 
membership in a user group associated with a more restricted permission 
set. Such a user may not want the permissions associated with the 
administrative group, except when those permissions are essential to an 
administrative task (so as to avoid inadvertant damage to objects that are 
accessible to members of the administrative group, but not to members of 
the user group). 

To offer users the capability of removing groups from their group sets , an 
application may use the Login API as shown in the following example. 

Note: Two of the function calls that appear in the following 
cxamplc, sec Jogin _get_current _ contextO and 
sec_loginJnquire_netJnfoO, are described in Section 45.6. 

for (i=Oi i < num~roupsi i++) 
{ 

... query whether the user wants to discard any of the current 
group memberships. Copy new group set to the new~roups array ... 

if (!sec_login_newgroups(login_context,sec_login_no_flags, 
num_new~roups, new~roups, &restricted_context,&st)) 

printf ("Newgroupsetinvalid\n") i 

... application-specific error handling ... 

OSF DeE Application Development Guide 



The Login Application Program Interface 

Note that the sec_login_newgroupsO call can only return a restricted 
groupset: it cannot return a groupset larger than the one associated with the 
login context that is passed to it. This routine also enables the calling 
process to flag the new login context as private to the calling process. 

45.6 Miscellaneous Login API Functions 

The following subsections describe a few miscellaneous Login API 
routines, some of which have appeared previously in examples in this 
chapter. 

45.6.1 Getting the Current Context 

The sec_login_get_current_contextO routine returns a handle to the login 
context for the currently established principal. This routine is useful for 
several Login API functions that take a login context handle as input. 

45.6.2 Getting Information from a Login Context 

The sec_login_inquire_netJnfoO routine returns a data structure 
comprising the principal's PAC, account expiration date, password 
expiration date, and identity expiration date. The 
sec_login_free_net_infoO frees the memory allocated to this data 
structure. 

45.6.3 Getting Password and Group Information for Local Process 
Identities 

Two calls, sec_login_get_pwentO and secJogin_get_groupsO, are 
useful for setting the local identity of a process. These routines return 
password or group information from the network Registry, if that service is 

OSF DeE Application Development Guide 45-9 



DeE Security Service 

available, or from the local files of password and group information, if the 
network service is unavailable. 

45.6.4 Releasing and Purging a Context 

45-10 

When a process is finished using a login context, it may call 
sec _login_release _ context() to free storage occupied by the context 
handle. When a process releases a login context, the context is still 
available to other processes that use it. If an application needs to destroy a 
login context, it may call sec_login Jlurge _ context(), which also frees 
storage occupied by the handle. Since a destroyed context is unavailable to 
all processes that use it, application developers should be careful when 
using sec Jogin Jlurge _ contexte ). 

OSF DeE Application Development Guide 



Chapter 46 

The Key Management Application 
Program Interface 

Every principal has an entry in the Registry database that specifies a secret 
key. In the case of an interactive principal (that is, a user), the secret keyis 
derived from the principal's password. Just as users need to keep their 
passwords secure by memorizing them (rather than writing them down, for 
example), a noninteractive principal also needs to be able to store and 
retrieve its secret key in a secure manner. The Key Management API 
provides simple key management functions for noninteractive principals. 

While the key management routines themselves are relatively secure, it is 
up to the application to ensure the security of the file or other device used to 
store the key. By default, server principals that run on the same computer 
share a local key file; however, the Key Management API also allows 
principals to specify an alternative local file. 

When users change their passwords, they are free to forget their old 
passwords. When a noninteractive principal changes its secret key, however, 
there may be clients with valid tickets to that principal that are encoded 
with the old key. To save clients the trouble of having to request new tickets 
to a noninteractive principal when the principal's key has changed, every 
key is flagged with a version number, and old key versions are retained until 
all tickets that could have been encoded with that key have expired. 

OSF DeE Application Development Guide 46-1 



DeE Security Service 

Finally, if a noninteractive principal's key has been compromised, it may be 
invalidated (along with all the corresponding tickets held by any clients) by 
simply deleting it from the local key storage. 

Note: The Key Management API is for use only by applications 
using the DCE Shared-Secret Authentication protocol and the 
key-type DES (Data Encryption Standard). 

Part 1 of this guide contains additional information, in the context of writing 
a distributed application, of the Key Management API. 

46.1 Retrieving a Key 

46-2 

The Key Management API provides two functions for retrieving a key from 
the local key storage. The sec_key _ mgmt _get _ key() function returns a 
specified key version for a specified principal. The meaning of specifying 
version 0 (zero) in this routine may vary depending on the authentication 
protocol in effect (if the protocol is DCE Shared-Secret, the value 0 for the 
version identifier means the version that was most recently added to the 
local storage). In any case, a principal's login is almost always successful if 
the principal uses the version 0 key. 

When there are valid tickets that are encoded with different key versions, an 
application may need to retrieve more than one key version. In that case, the 
application may call sec_key _ mgmt Jnitialize _ cursorO to set a cursor in 
the local storage to the first suitable entry corresponding to the named 
principal and key type, and then call sec_key _ mgmt _get_next _ key( ) to get 
all versions of that key in storage. The application may then call 
sec_key _ mgmt _release _ cursorO, which disposes of information 
associated with the cursor. Neither of the key-retrieval routines can return 
keys that have been explicitly deleted, or that have been "garbage 
collected" after expiring. 

The two key-retrieval functions dynamically allocate the memory for the 
returned keyes). To enable the efficient allocation of memory, an application 
may call sec_key _ mgmt _free _ key(), which frees the memory occupied by 
the key and returns it to the allocation pool. 

OSF DeE Application Development Guide 



The Key Management Application Program Interface 

46.2 Changing a Key 

The sec_key _ mgmt _change _ key() function communicates with the 
Registry to change the principal's key to a specified string, and also places 
the new string in the local key storage. The keydata input argument for this 
call may be a new key that the application specifies, or a random key 
returned by the sec_key _ mgmt _gen _rand _ key() routine. An application 
may call sec_key_mgmt_get_next_kvnoO to determine the next key 
version number that should be assigned to the new key, so that it may 
reference this key version when retrieving a key. 

In some circumstances, a principal may need to change its key in the local 
key storage, but not immediately update the Registry database. For 
example, a database application may maintain replicas of a master database 
that are managed by servers running on different computers. If these servers 
all provide exactly the same service, it makes sense for them to share the 
same key (meaning that they share the same principal identity). This way, a 
user with a ticket to the principal can be directed to whichever server is 
least busy. 

When the Registry database obtains a new key for a principal, the 
Authentication Service can immediately begin issuing tickets to the 
principal that are encoded under the new key. However, suppose the master 
for a single-principal replicated service were to call 
sec_key_mgmt_change_keyO, and a client presented a ticket encoded 
with the latest key to a replica that had not yet learned that key. In this 
case, the replica would refuse service, even though the ticket was valid. 
Therefore, if an application employs replicated servers that are also 
instances of a single principal identity, the application should: 

1. Generate a new key by calling sec _key _ mgmt _gen_rand _ keyO. 
This routine simply returns a key to the calling process, without 
updating the Registry or local storage. 

2. Disseminate the new key to all replicas. 

3. Cause the replicas to call sec_key_mgmt_set_keyO. This call 
updates the local storage to the new key, but does not update the 
Registry database entry for the principal (the key version specified in 
this routine must not be 0 (zero).) The replicas should notify the 
master when they have completed setting their local stores to the new 
key. 

OSF DeE Application Development Guide 46-3 



DeE Security Service 

4. Cause the master to call sec_key_mgmt_cbange_keyO (here again, 
the key version must not be 0) after all replicas have set the new key 
locally, thereby updating both the master's local storage and the 
Registry database entry. 

Of course, if the master and each replica has its own principal identity, each 
server may call sec_key _ mgmt _change _ keyO without coordinating this 
activity with any others. 

46.3 Automatic Key Management 

It is sometimes convenient for a principal to be able to change its key on a 
schedule determined by the password expiration policy for that principal, 
rather than to rely on a network administrator to decide when this should be 
done. In this case, the application may call sec_key_mgmt_manage_keyO. 
This function invokes sec_key _ mgmt _gen _rand _ keyO shortly before the 
current key is due to expire, updates both the local key storage and the 
Registry database entry with the new key, and then calls 
sec_key_mgmt_garbage_collectO to discard any obsolete keys. This 
function runs indefinitely; it will never return during normal operation and 
so should be invoked from a thread dedicated to key management. It is not 
intended for use by server principals that share the same key. 

46.4 Deleting Expired Keys 

46-4 

In order to prevent service interruptions, the Key Management API does 
not immediately discard keys that have been replaced; instead, it maintains 
the keys, with a version number and key-type identifier, in the local key 
storage. However, after a key has been out of use for longer than the 
maximum life of a ticket to the principal, it is no longer possible that any 
client of that principal has a valid ticket encoded with that key. At this time, 
the key storage may have its "garbage" collected. 

OSF DeE Application Development Guide 



The Key Management Application Program Interface 

The sec_key _ mgmt _garbage _ collect() routine collects garbage in the 
local key storage by deleting all keys older than the maximum ticket 
lifetime for the cell. The garbage _collect _time argument, which is returned 
by sec_key_mgmt_change_keyO, specifies when key-storage garbage is to 
be collected. 

46.5 Deleting a Compromised Key 

When a principal's key has been compromised, it should be deleted as soon 
as the damage has been discovered in order to prevent another party from 
masquerading as that principal. Two routines delete a principal's key: 

• The sec_key _ mgmt _delete _ key() routine removes all key types having 
the specified key version identifier from the local key storage, thus 
invalidating all extant tickets encoded with that key. 

• The sec_key _ mgmt _delete_key _ type( ) routine removes only a 
specified version of a specified key type. 

If the compromised key is the current one, the application should first 
change the key with sec_key_mgmt_change_keyO. It is not an error for a 
process to delete the current key as long as it is done after the login context 
has been established, but it may inconvenience legitimate clients of a 
service. The inconvenience may be justified, however, if the application 
data is sensitive. 

Since an application may have no means to discover that its key has been 
compromised, the rgy _edit tool provides interfaces that call 
sec_key _ mgmt _delete _ key( ), sec_key _ mgmt _change _ key( ), and 
sec_key_mgmt_gen_rand_keyO so that a network administrator, who is 
more likely to detect that a key has been compromised, may handle a 
security breach of this kind. As an alternative, the application may provide 
user interfaces to these routines. 

OSF DeE Application Development Guide 46-5 





Chapter 47 

The Access Control List Application 
Program Interfaces 

As a rule, DCE Security program interfaces are local client-side APIs only. 
The ACL facility includes this kind of interface, and some others as well, as 
follows: 

• The DCE ACL interface, sec _ acl. .. (), which enables clients to browse or 
edit DCE ACLs. 

• The DCE ACL manager interface, sec_acl_mgr ... O, which enables 
servers to perform DCE-conformant authorization checks at runtime. 

• The DCE ACL network interface, rdacl .•. (), which enables servers that 
manage access control (such as sec_acl_mgr-based ACL managers) to 
communicate with sec acl-based clients. 

Figure 47-1 provides a schematic view of the relationships and usage of 
these interfaces, as well as some relevant RPC interfaces. This chapter first 
discusses the client API, and then the two server program interfaces. 

OSF DeE Application Development Guide 47-1 



DeE Security Service 

Figure 47-1. ACL Program Interfaces 

~ "" "" "" "" "" "" "" ""~ "" "" "" "" "" "" ~ For a DCE-com- .~ To perform DCE-conformant ",\:: 
man browser or 0: runtime authorization checks, '-,> 
editor interface, ~"implement the ACL manager ~ 
export the ACL " " interface. ~ 
network interface. '-'", 

47.1 The Client-Side API 

47-2 

The client-side API is a local interface consisting of a set of routines that 
are prefixed sec_ad. This is the interface from which the default DCE ACL 
editor (ad_edit) is built. An application that needs to replace ad_edit with 
a DCE ACL editor or browser of its own calls this interface and binds to 
libdce.a The following subsections provide specific information on the 
functionality that this API supports. 

OSF DCE Application Development Guide 



The Access Control List Application Program Interfaces 

47.1.1 Binding to an ACL 

Any operation performed on an ACL uses an ACL handle to identify the 
target of the operation. The handle is bound to the object protected by the 
ACL, not to the ACL itself. Since an object may be protected by more than 
one ACL manager type, the ACL itself can only be uniquely identified by 
the ACL handle in combination with the manager type that manages it. ACL 
editing calls must also specify the ACL type to be read or otherwise 
manipulated (the object, default container, or default object ACL types). 

An application may call sec_acl_bindO to get an ACL handle. The handle 
itself is opaque to the calling program, which needs none of the information 
encoded in it to use the ACL interface. A program can obtain a list ACL 
manager types protecting an object with the sec _ acl_get _ manager _ types( ) 
call, which returns a list of UUIDs corresponding to these manager types; 
and pass this data, along with the ACL type identifier, to another client-side 
routine. (In the absence of a Cell Directory Service, an application may call 
sec_acl_bind_to_addrO; this call binds to a network address rather than a 
cell namespace entry.) 

Once an application is finished using an ACL handle, it may call 
sec _ acl_ release _ handle() to dispose of it. 

47.1.2 ACL Editors and Browsers 

After obtaining a handle to the object in question (and using 
sec_acl_get_manager_typesO to determine the ACL manager types 
protecting the object), editors and browsers use the sec_acl_IookupO 
function to return a copy of an object's ACL. Once an object's ACL is 
loaded in memory, the editor can call sec_acl_get_printstringO to receive 
instructions about how to display the permissions of the ACL in a human
readable form. This call returns a symbol or word for each permission, as 
well as common combinations of permissions. In addition, the printstring 
structure includes a short explanation of each permission. 

An ACL cannot be modified in part. To change an ACL, an editor must read 
the entire ACL (the sec_acl_t structure), modify it, and replace it entirely by 
calling sec _ acl_ replace( ). 

OSF DeE Application Development Guide 47-3 



DeE Security Service 

An ACL can occupy a substantial amount of memory. The memory 
management routine, sec_acl_releaseO, frees the memory occupied by an 
ACL, and returns it to the pool. This is implemented strictly as a local 
operation. 

47.1.3 Testing Access 

47-4 

Access testing by clients is not definitive because the state of an ACL can 
change between the access test and the request to the server to perform an 
application operation. More typically, a client simply requests an operation; 
then, upon receiving the request, the server performs the access test, and 
depending on the result, either executes the client's request or returns an 
error to the client. However, if an application server acts as a client of 
another server that manages ACLs for the application objects, the 
application server needs the results of access tests from the ACL manager 
server in order to process requests from application clients. 

After calling sec_acl_bindO to acquire an ACL handle to the target object, 
such an application server would call sec_acl_test_accessO with the 
returned handle, the UUID of the ACL manager, and the permission(s) 
requested in order to perform the requested operation. The access-test 
function returns TRUE if the object's ACL allows the client to perform the 
operation; otherwise, it returns FALSE. An alternative to 
sec_acl_test_accessO, sec_acl_get_accessO is useful for implementing 
operations like the conventional UNIX system access function. 

Some applications need to check an ACL on behalf of a principal other than 
the one represented by the calling process. For example, a replicated 
database server would presumably need to check the privilege attributes of 
its clients against the database ACL entries. In this case, the server would 
use the sec _ acl_ test_access _ on _ behalf() function, which is identical to the 
sec_acl_test_accessO function, except that it also requires the PAC of the 
principal for which the server principal is acting as an agent. This function 
checks both the privilege attributes of the principal represented by the 
calling process and those encoded in the PAC. It returns TRUE if the most 
restrictive combination of the two permission sets grants the requested 
permission(s). 

OSF DeE Application Development Guide 



The Access Control List Application Program Interfaces 

47.1.4 Errors 

Although the ACL API saves errors received from the DCE RPC runtime (or 
other APIs) in ACL handle data, it returns an error describing the ACL 
operation that failed as a result of the RPC error. However, if an error occurs 
and the client needs to know the cause of the ACL operation failure, it may 
call sec _ad_get _ error JnfoO. This routine returns the error code last 
stored in the handle. 

47.2 The Server-Side API 

The server-side API consists of a set of routines that are prefixed 
sec _ acl_ mgr. This is the interface from which the default DCE ACL 
managers are built. It would be used by any application that accesses 
persistent storage of access control information in order to make runtime 
authorization decisions that are DCE-conformant (in terms of the 
representation of identities, the access-check algorithm, and so on). This is a 
local interface that is supplied in source code form (interfaces to these 
routines are described in the aSF DeE Application Development 
Reference). This interface can be tailored as necessary for integration into 
application code. 

A second program interface is the ACL network interface (or "wire" 
protocol). This interface consists of a set of routines that are prefixed rdacl. 
This is a remote interface that enables any server program that manages 
access control information (preferably, though not necessarily, DCE ACL 
managers) to communicate with sec_acl-based clients. 

47.2.1 The ACL Manager Interface 

Following is a summary of ACL manager routines: 

• sec _ acl_ mgr _ configure( ) 

Creates an ACL database and returns a handle to it 

OSF DeE Application Development Guide 47-5 



DeE Security Service 

47-6 

• sec _ acl_ mgr Js _authorized() 

Takes a principal's PAC and the requested permission set and returns 
TRUE if the permission set is granted 

• sec _ acl_ mgr _get _ access( ) 

Returns a principal's permissions to an object (useful for implementing 
operations like the conventional UNIX system access function) 

• sec _ acl_ mgr _replace( ) 

Replaces the specified ACL 

• sec_acl_mgrJookup() 

Returns a copy of the object's ACL 

• sec _ acl_ mgr _get_manager _ types( ) 

Returns a list of manager types protecting the object 

• sec _ acl_ mgr _get _printstring( ) 

Returns human-readable representations of permissions 

47.2.1.1 A Sample ACL Manager 

Following is sample application server code that tests a client's access to an 
object that the application protects: 

application_op(handle_th, ... ) 
{ 

rpc_binding_in~auth_client(h,&PAC, & server_name , 
&protect_level, &authn_svc, 
&authz_svc, &st); 

rpc_in~object(h, &object, &st); 

if (authentication_levels_are_appropriate(server_name, 
protect_level, 
authn_svc, 
authz_svc) 

&& sec_acl_rngr_is_authorized(sec_acl_rngr_handle_t, 

OSF DeE Application Development Guide 



} 

The Access Control List Application Program Interfaces 

sec_acl-permset_t, &PAC, 
(sec_acl_key_t)&object, 
sec_acl_type_object, NULL, 
NULL, &st» 

... Application code to perform operation 

else 

... Perform appropriate application logging etc. 

For more information about writing ACL managers, refer to Part 1 of this 
guide. 

47.2.1.2 Extended Naming of Protected Objects 

The DCE ACL model supports extended naming, which enables ACL 
managers to protect separately objects that are not registered in the cell 
namespace. For example, suppose an application manages different kinds of 
printers. The application may register only printer types, such as laser and 
line, with the Cell Directory Service. Among the laser printers is a high
resolution printer that is available only to members of the group writers, 
and low-resolution laser printers that anyone may use. When the Cell 
Directory Service receives a name such as /laser/high-resolution, it passes 
the residual part of the name (high-resolution) to the appropriate ACL 
manager, which resolves the residual and makes a determination as to 
whether the principal requesting to print on the high-resolution laser printer 
may do so. 

To take advantage of extended naming, an ACL manager must register the 
server name, object UUID, and rdaclif.idl interface with the Cell Directory 
Service (refer to the CDS chapters in Part 4A of this guide for more 
information). In addition, the ACL manager must register the object UUID 
and rdaclif.idl interface with the RPC endpoint mapper (refer to the RPC 
chapters in Part 3 of this guide). 

OSF DeE Application Development Guide 47-7 



DeE Security Service 

47.2.2 The ACL Network Interface 

47-8 

The ACL network interface, rdacl ... (), provides a DCE-common interface 
to ACL managers. It is the interface exported by the default DCE ACL 
managers to the default DCE ACL client (that is, the acl_edit tool), and any 
other sec acl-based client. 

The client API, sec_acl ... O, is a local interface that calls a client-side 
implementation of the ACL network interface. However, application 
developers are responsible for implementing the server side of this interface. 
The implementation needs to conform the reference pages in OSF DeE 
Application Development Reference that describe the rdacl ... () routines; 
following is a summary of them: 

• rdacl_lookupO 

Retrieves a copy of the object's ACL. 

• rdacl_replaceO 

Replaces the specified ACL. 

• rdacl_get _ access( ) 

Returns a principal's permissions to an object (useful for implementing 
operations like the conventional UNIX system access function). 

• rdacl_ test _ access( ) 

Determines whether the calling principal has the requested 
permission(s). 

• rdacl_ test_access _ on _ bebalf( ) 

Determines whether the principal represented by the calling principal 
has the requested permission(s). This function returns TRUE if both the 
principal and the calling principal acting as its agent have the requested 
permission(s). 

• rdacl_get _ manager _ types( ) 

Returns a list of manager types protecting the object. 

OSF DeE Application Development Guide 



The Access Control List Application Program Interfaces 

• rdacl_get yrintstring( ) 

Obtains human-readable representations of permissions . 

• rdacl_get_referraJO 

Returns a referral to an ACL update site. This function enables a client 
that attempts to modify an ACL at a read-only site to recover from the 
error and rebind to an update site. 

OSF DeE Application Development Guide 47-9 





Chapter 48 

The ID Map Application Program 
Interface 

In the multi cell environment, the global print string representation of a 
principal identity can be ambiguous, even though every principal and its 
native cell have unique names in the form of UUIDs to which the print 
string representations normally resolve. For example, all ACLs maintain 
UUIDs as the definitive representations of principal and cell names. The 
acl_ edit tool, on the other hand, takes as input (and also outputs) this same 
information as print strings. This string-to-UUID mapping is accomplished 
easily enough when an ACL entry refers to a local identity; that is, a 
member of the local cell. However, when a user adds an ACL entry for a 
foreign principal identity such as I . .. Iworld/dce/rd/writers/tom, it is not 
evident to the ACL Manager which part of the name identifies the cell, and 
which identifies the principal within the cell. The name I . .. Iworld/dce 
may refer to a cell containing the principal Ird/writers/tom, or the cell 
name may be I ... Iworld/dce/rd and the principal name, Iwriters/tom. 

To parse the fully qualified principal name that the user types into its cell 
name and local principal-name components, and for these components to be 
mapped to UUIDs, ACL Managers that support entries for foreign identiti~s 
use the ID Map API. For the same reasons, many other kinds of servers in a 
DCE multicell environment need a facility to parse global names and 
translate UUIDs into print string names. 

OSF DeE Application Development Guide 48-1 



DeE Security Service 

48-2 

The ID Map API provides a simple interface to translate a fully qualified 
name (that is, the global representation of a name) into its components and 
back again. This API consists of the following calls: 

• The sec Jd _parse _ name() call takes as input a context handle and a 
fully qualified principal name, and returns the principal's print string 
name and UUID, and the print string name and UUID of the principal's 
native cell. 

• The sec Jd _gen _ name() call translates a principal UUID and the UUID 
of its native cell UUID into a cell-relative principal name, a cell name, 
and a fully qualified principal name. 

• The sec _id _parse _group() call is like sec Jd _parse _ name(), except 
that it operates on group names. 

• The sec _id _gen _group() call is like sec Jd _gen _ name(), except that it 
operates on group names. 

OSF DeE Application Development Guide 



Part 7 
DeE Distributed File Service 





Chapter 49 

DCE Distributed File Service 
Overview 

This chapter describes the architecture of the DCE Distributed File Service 
(DFS), a high-performance distributed file system that provides transparent 
local and remote file access, and also provides background information for 
writing DFS applications. DFS is designed to maximize reliability and 
interoperability with other file systems. When accessing remote data, DFS 
uses DCE Remote Procedure Calls (RPCs) to communicate with 
participating systems, to exchange access requests, authentication 
information, and file and directory data, and to synchronize information. 

DFS also includes a high-performance, log-based local file system, the DCE 
Local File System (DCE LFS). The DCE LFS offers capabilities not 
generally available in conventional UNIX File Systems (UFSs), such as 
support for logical groups of files (filesets) within a disk partition, and 
support for DCE Access Control Lists (ACLs). The DCE LFS maintains a 
log (on disk) of all actions that affect file and directory metadata, such as 
file creation and modification dates, file sizes, and directory entries. 
Maintaining a log of file system operations provides a fast, robust 
mechanism for recovering from computer system problems that do not 
actually involve damage to the physical storage media. 

This chapter and the ones that follow it assume that you are familiar with 
the Introduction to aSF DeE. 

OSF DeE Application Development Guide 49-1 



DeE Distributed File Service 

49.1 Writing DFS Applications 

The capabilities of the DFS are used in writing applications that depend 
heavily on file set manipulation, file server process management, and client 
management. Such applications include backup systems, mail and bulletin 
board programs, and graphical file set management tools for system 
administrators. In addition, customers may wish to replace stock 
applications with customized versions; this is made possible by the 
programming interface provided. 

49.1.1 Related DCE Components 

49-2 

Because DFS is built on top of other DCE components, a complete 
understanding of the other components is necessary for an understanding of 
DFS. The information in this section is intended only as an overview of the 
other components; it is assumed that you have read about and understand the 
following DCE components: 

• DCE Remote Procedure Calls 

• DCE Security Service, especially how to use and interpret Access 
Control Lists (ACLs) 

• DCE Directory Service, especially details about the namespace 

• DCE Distributed Time Service, especially client and server machine 
synchronization 

• DCE Threads 

For more information about these components, consult the appropriate parts 
of this guide and the aSF DeE Application Development Reference. 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

49.1.1.1 DCE Remote Procedure Calls 

DCE Remote Procedure Calls are central to the DFS client/server model. 
All communications between server machines and client machines happen 
through RPCs. DFS functions generally take handles as arguments, which 
direct the functions to use the correct RPC interfaces. An application 
programmer will need to know how to obtain these handles, and should have 
a thorough understanding of the use of RPCs in general. 

49.1.1.2 DCE Security Service 

The DCE Security Service is composed of several different components that 
are used in conjunction with DFS: the Authentication Service, the Privilege 
Service, the Access Control List component, and the Registry Service. 

The DCE Authentication Service component perfonns several security 
functions that interact with DFS. It ensures that only certified users can log 
in and use the system, and it ensures that only authorized machines can 
access the system. 

The DCE Privilege Service component ensures that those people using the 
system have the correct access rights to perfonn the operations they request. 

The DCE Access Control List component provides an interface that allows 
you to set different levels of protection on file system objects such as 
directories and files. The different ACLs interact with the UNIX file system 
protection mode bits. You can grant pennissions to individuals, or you can 
define groups of users and grant pennissions to the groups. For specific 
infonnation on ACLs and file system objects, see the aSF DCE 
Administration Guide and the afs_syscallO description in this guide and in 
the aSF DCE Application Development Reference. 

The DCE Registry Service maintains a Registry Database. This database 
contains infonnation similar to that stored in UNIX password files, such as 
user, group, and account infonnation. An account defines who can log in to 
the system and includes infonnation about passwords and home directories. 

The DCE Security Service operates through principals. A principal is a 
representation of a user or process that can read and/or alter user or system 
data. Principals have keys associated with them, which are, roughly, 
passwords (see Part 6 of this guide); a process must know a principal's key 

OSF DeE Application Development Guide 49-3 



DeE Distributed File Service 

49-4 

to exercise the principal's access rights. Typically, there is a one-to-one 
mapping between people and principals. DFS server processes on a single 
machine all share a single principal, while some other DeE components 
assign separate principals to each server process. 

49.1.1.3 DCE Directory Service 

The DCE Directory Service provides a consistent way to identify and locate 
users and resources, including files and directories, anywhere in a networked 
computing environment. The Directory Service has three main components: 
the Cell Directory Service, the Global Directory Service, and a Global 
Directory Agent (a gateway between the local and the global naming 
environments ). 

The Cell Directory Service (CDS) manages names within a cell. The Global 
Directory Service (GDS) supports the global naming environment between 
cells and outside of cells. The Global Directory Agent (GDA) makes cell 
interoperability possible by allowing CDS to participate in the global 
naming environment. 

DFS uses the Directory Service to locate fileset, backup, and other servers. 

49.1.1.4 DCE Distributed Time Service 

The DCE Distributed Time Service (DTS) provides precise clock 
synchronization for system clocks in a network. It is used to keep DFS client 
and server machines synchronized. 

DTS is important for communications between client machines using the 
Cache Manager and server machines running the File Exporter and other 
server processes. Clients must remain in contact with server machines 
whose tokens they hold to ensure that they have the most recent copies of 
cached data. Clients and servers must refer to a common time standard for 
communications to remain constant and data to remain current. 

DTS is also important for replicated Fileset Location Databases (FLDBs), 
which must be coordinated on different server machines. Like clients and 
servers, machines housing replicated databases must remain in constant 
contact to ensure that each server has the current copy of the database. 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

Failure to maintain synchronization can result in unnecessary disruption of 
database access. 

49.1.1.5 DeE Threads 

DCE Threads provides a parallel processing-like environment. DFS uses 
DCE Threads, and DFS programmers need to understand DCE Threads to 
use any of the DFS application programming interfaces, except the pioctl() 
and afs _ syscall() interfaces. Applications are required to coexist with DCE 
Threads. It is possible that nonserver applications can be written without 
DCE Threads if the applications do not make remote procedure calls. 

49.1.2 The DFS Application Programming Interface 

The DFS Application Programming Interface (API) consists of the following 
parts: 

• Cache Manager (pioctlO, ioctlO, afs_syscallO): Provides calls to 
manipulate system information, client cache information, ACLs, and 
related items 

• General Fileset Functions (Ve_ ... O): Manipulates file sets and the 
Fileset Location Database at a high level 

• Fileset Location Server (VL ... (»: Provides functions to manipulate 
Fileset Location Database entries 

• Fileset Server (FTSERVER ... O): Provides functions to manipulate 
filesets on servers 

• BOS Server (BOSSVR ... O): Provides functions to manipulate processes 
on File Server machines 

Some parts of the DFS API can be called by any user, but those functions 
that involve altering fileset, FLDB, process, or Cache Manager information 
are restricted to users with the appropriate privileges, usually a DFS 
administrator or root on the local machine. More information about these 
authorization issues is given in later sections that decribe these functions. In 
general, if the application is going to perform these operations, it must be 
installed with the appropriate privileges. 

OSF DeE Application Development Guide 49-5 



DeE Distributed File Service 

The rest of this chapter describes the DFS architecture in detail. While an 
interface is not provided for each component, some level of understanding 
of the various pieces and how they fit together greatly assists in 
understanding DFS. The chapters following this one describe the Cache 
Manager, the functions for manipulating filesets, and the Basic OverSeer 
Server. 

49.2 Overview of the DeE Distributed File Service 
Architecture 

49-6 

Each node, or system, in a DFS installation is either a server machine, 
running a DFS server process or maintaining local file systems on disk and 
making them available to other nodes (exporting them), a client machine, 
running applications that access files that are exported by File Server 
machines, or hoth. A client node can act as a server if it exports a local file 
system. An exported local file system can either be a DCE LFS or a 
conventional UNIX File System (UFS). 

To expedite file system response, DFS clients maintain a local cache of 
recently requested file and directory information. To synchronize locally 
cached file and directory information with requests made by other systems 
for that same information, DFS uses a token-based synchronization system. 
When a client requests file or directory information from a File Server 
machine, the File Exporter returns that information and grants an access 
token that describes the remote system's capabilities with respect to that file 
or directory. Subsequent requests made by other clients for conflicting 
operations on that same information are not granted until the first token can 
be revoked. On systems with a local hard disk, cache information is stored 
on disk. On diskless client machines, cache information is stored in system 
memory. 

DFS uses an enhanced Virtual File System interface (called VFS+) to 
ensure consistency between requests for remote files (from File Server 
machines) and requests for local files present in exported physical file 
systems on the client machine. To guarantee consistency, all exported DFS 
file systems types share the same access mechanism. The VFS+ interface 
guarantees that local requests for files located on the local file system 
generate the same types of access tokens as requests for these files that 
originate from a remote system. 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

The three main components of DFS are the Virtual File System, the Cache 
Manager, and the File Exporter. These components have the following 
responsibilities: 

• The enhanced Virtual File System (VFS+) component supports both 
local and remote file access. Part of the server VFS+ interface is the 
concept of DCE LFS filesets, which are logical groups of files present in 
single disk partitions. 

• The Cache Manager runs on client machines, and maintains a copy of 
data that has been obtained from a server in the "recent" past. If the file 
or information requested is already present in this cache, no remote call 
is necessary. If the file or information requested by the application is not 
already present in the local cache, the Cache Manager makes calls to the 
File Exporter on the appropriate File Server machine to retrieve that 
information, and stores it. How long information is kept in the local 
cache depends on the size of the cache and the amount of data retrieved. 

• The File Exporter makes any exported VFS that is physically located on 
the File Server machine available to client machines. This process also 
synchronizes requests for access to files and directories to prevent 
conflicting access to files and directories by clients. (These clients may 
include the machine on which the files and directories reside, if a client 
is also acting as a server.) The synchronization mechanism is called the 
Token Manager. Access rights are granted through tokens that 
summarize the current read, write, and access capabilities of a client 
with respect to each cached file or directory. 

These primary components are supported by three other modules: the Fileset 
Location Server, the Fileset Server, and the Replication Server. These 
components have the following responsibilities: 

• The Fileset Location Server, which maintains the Fileset Location 
Database (FLDB), records the location of all available file sets and the 
File Server machines associated with those filesets. Fileset location 
lookups are necessary when translating new references to different 
logical file systems when, for example, file system' 'mount points" (see 
the glossary in the Introduction to the OSF DeE) are encountered. 

• The Fileset Server performs operations that involve entire filesets. 
These include making entire filesets available to DFS requests, 
producing incremental dumps of filesets, and moving filesets from one 
File Server machine to another to aid in load and resource balancing. 

OSF DeE Application Development Guide 49-7 



DeE Distributed File Service 

• The Replication Server makes it possible to dynamically create read
only replicas of an active fileset. 

49.3 Component Overview 

DFS provides a transparent distributed file system environment to both users 
and applications. However, developing system-level DFS applications 
requires an understanding of the purpose of each of the DFS modules and 
their interactions. The following subsections discuss each DFS module in 
detail, examining the functions provided by each module, its role in the DFS 
architecture, and the interactions with the various services required and 
provided by DFS. Not all of these components are visible via the API. 

49.3.1 The DeE Local File System 

49-8 

DCE LFS is a fast-restarting UNIX file system that integrates the 
capabilities needed for a large-scale distributed system with a sophisticated 
recovery mechanism, providing performance equal to or better than most 
existing physical file systems. DCE LFS offers several capabilities not 
generally available in UNIX file systems, such as support for logical groups 
of files (file sets) within a disk partition, support for ACLs, and the ability to 
recover quickly from system failures. 

DCE LFS is based on UNIX disk partitions and is integrated into the kernel. 
DCE LFS is designed to take advantage of a multithreaded environment and 
asynchronous I/O. DCE LFS can be accessed both as a local file system 
when individual filesets are mounted and as a remote file system exported 
from File Server machines. To provide uniform local and remote access, 
DCE LFS implements a compatible extension of the standard VFS 
functions. 

The next subsections describe the DCE LFS capabilities that represent 
advances over older physical file systems. These include the file set and 
aggregate concepts, the log-based file system, and support for ACLs. 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

These subsections also introduce some implementation issues, such as how 
DeE LFS and conventional UNIX File Systems are integrated, and the 
anode abstraction, which is comparable to the inode structure in UNIX File 
Systems. 

49.3.1.1 Filesets and Aggregates 

In many UNIX environments, a file system is associated with a partition, 
which is a disk or logical portion of a disk that can be mounted, addressed, 
and administered as a single unit. DeE LFS provides an additional logical 
level of organization by introducing filesets, which are mountable subtrees 
within a standard disk or partition. Filesets can be administered and 
referenced individually. To avoid confusion with conventional UNIX 
terminology, DFS uses the term "aggregate" (see the glossary in the 
Introduction to OSF DeE) to refer to a unit of disk storage (equivalent to a 
UNIX partition) because it can be logically composed of multiple filesets. 
The use of the term aggregate also provides a reminder that partitions 
composed of file sets enable DFS-specific administrative operations such as 
moving and cloning, which are not possible (or meaningful) on UNIX file 
systems. 

The distinction between mountable logical filesets and physical partitions 
allows DeE LFS file sets to be moved among partitions on a single server or 
from one server to another. This provides the system administrator with a 
mechanism for balancing the system load across File Server machines by 
redistributing frequently accessed filesets among the available file servers. 
DeE LFS supports dynamic file set motion, which does not require taking 
down any servers or prohibiting the use of any standard facilities when 
moving filesets. During such a move, the file set itself is temporarily 
unavailable. This absence is fairly transparent to application programs, 
which are temporarily blocked from accessing the files and applications in 
that file set. 

In addition to the standard interfaces required of any VFS, DeE LFS 
provides higher-level fileset and aggregate interfaces. Although each VFS is 
a mountable fileset, these fileset interfaces are separate from the VFS 
interface. This ensures that fileset operations such as moving, cloning, and 
replicating can be performed on filesets that are not mounted. 

OSF DeE Application Development Guide 49-9 



DeE Distributed File Service 

49-10 

49.3.1.2 The Log-Based File System 

Conceptually, the data available in filesets and aggregates can be divided 
into two general types: user data and metadata. User data is the data in a 
fileset, such as applications and data files, that is created and referenced by 
users of the system. 

Metadata is the data in any part of a file system that is used to describe and 
organize the files and directories in that fileset or aggregate. Metadata is 
logged in DCE LFS, but user data is not. 

Tracking the actions of a program or system is generally referred to as 
keeping a log of that program or system. DCE LFS is a log-based file system 
because all changes to metadata in a given aggregate are recorded in the log 
for that aggregate. To provide a method for organizing the changes recorded 
in these log records, associated changes to metadata are grouped together 
into "atomic transactions." The term "transaction" indicates that all of the 
individual changes in that group are related to a larger logical operation. 
The term "atomic" means that no single change that is a part of a 
transaction takes effect unless all the changes associated with that 
transaction are performed. The log entry for each change records the old and 
new values for all changed metadata and the identity of the transaction of 
which the change is part. 

A transaction has "committed" once all of the log records associated with 
that transaction are written to the log on disk. A separate log entry notes 
when a transaction commits. If a system failure occurs, the file system 
recovery procedure replays the log, completing transactions that have been 
recorded as committed, and undoing any effects of transactions that did not 
commit. Log-based file systems are frequently referred to as "recoverable" 
file systems because, even with system problems, any file system changes 
that have been logged are easily recovered by simply replaying the 
operations recorded in the log on disk. 

49.3.1.2.1 DFS Logging Versus Conventional Logging 

The log maintained by DCE LFS records the most recent changes to file 
system metadata in a given aggregate. In conventional UNIX file systems, 
system failures that interrupt certain operations can leave the file system in 
an inconsistent state, making it potentially unsafe to use and requiring the 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

use of the fsck command after reboot to check for and repair any damage. 
Maintaining a record of the changes made to metadata enables the DeE LFS 
to resume normal operation as quickly as possible after a system failure; it 
eliminates the need to call fsck, unless the medium that stores the file 
system is physically damaged. After a system crash, DeE LFS applies 
recovery techniques that either undo operations that have begun but not 
finished, or complete operations that have finished but have not yet been 
written to the file system. The time spent in recovery is proportional to the 
size of the active portion of the log instead of the size of the file system. 

In conventional UNIX file systems, file system operations that can introduce 
file system inconsistencies must be written to disk as soon as possible after 
they have been performed. Although these writes are generally performed 
asynchronously, they generate so much disk traffic that they can affect the 
overall performance of the system. In addition, subsequent updates to a disk 
block already queued for one of these asynchronous writes generally wait 
until the first write operation completes, also impairing system performance. 

In comparison, a log-based file system does not need to force modified 
metadata to the disk in order to guarantee consistency in the event of a 
crash. The file system is always consistent, even if slightly out-of-date, after 
the log is replayed. The file system may periodically commit all pending 
transactions, but fidelity to the spirit of the UNIX file system requires this to 
occur only every 30 seconds. For this reason, the DeE LFS log usually 
maintains log records for changes to meta data within only the last 30 to 45 
seconds of file system activity. 

All pending transactions are automatically written to the log whenever a 
sync() or fsync() system call is executed. These "batch" commits have 
very low overhead because of the sequential organization of the log, and 
because disks are especially efficient at performing these types of writes. 
This means that the DeE LFS actually generates considerably fewer disk 
updates than a UNIX file system, especially when performing operations 
that primarily change file system metadata, such as file creation, deletion, 
and truncation. 

OSF DeE Application Development Guide 49-11 



DeE Distributed File Service 

49-12 

49.3.1.2.2 How Logging Works 

Each aggregate has its own log, which is simply another portion of a 
physical disk. The size of the log for each aggregate is fixed when that 
aggregate is initialized. When the amount of data held in the log 
approaches the limits of the space allocated to the log for that aggregate, the 
processing of new file system requests is halted to allow pending 
transactions to commit. File system changes are then flushed to disk, 
ensuring that the log space previously required for records of those 
operations can be freed. 

DCE LFS only logs file system metadata, such as ACLs, directory entries, 
UNIX protection modes, and file and directory status information. It does 
not keep a log of the changes to the user data in a partition. Changes to 
metadata can be logged quickly in small log records. The overhead 
introduced by writing these small log records does not affect the 
performance of the file system. On the other hand, maintaining a log of 
changes to user data would require larger, longer transactions that could 
easily require gigabytes of storage for log records. 

To optimize the efficiency of the log and to minimize its size, some 
restrictions are placed on the scope and type of operations that can occur 
during a single transaction. DCE LFS restricts transactions to a maximum of 
one VFS interface call. This is especially important when a large number of 
log records are pending and their size nears the physical limits of the log. In 
this case, new file system operations are temporarily blocked to allow 
pending operations to complete, reducing the number of records that must 
be retained in the log. If transactions were allowed to span VFS interface 
calls, all pending transactions could end up waiting for additional high-level 
VFS operations to complete. In this case, none of these operations could 
complete successfully, no log space could be freed, and all subsequent 
system operations would be blocked. Bounding the scope of a transaction 
eliminates this possibility, guaranteeing smaller, more easily completed 
transactions. 

Similarly, long file system operations are broken into sequences of short
lived transactions, each of which leaves the file system in a consistent state. 
For example, a single operation that truncates a file may be logged as a 
number of smaller transactions, each of which truncates only a few blocks at 
a time. This guarantees that transactions are short-lived, minimizing the size 
of the log without requiring complex algorithms for log truncation, and 
identifying the parts of the log that it is "safe" to reuse. 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

The logging system is also integrated into the management of the disk 
cache. File system functions must not directly modify data held in the disk 
cache because all file system functions must use the logging primitives in 
order to be recoverable. To guarantee this, most higher-level functions 
simply release cached data when done, leaving the logging system with the 
responsibility for writing that data back to the file system or File Server 
machine. The log mechanism keeps a record of the most recent log entry for 
each unit of locally cached data. The cached data cannot be written back to 
a file system until all relevant records are logged. 

49.3.1.3 Access Control Lists 

DCE ACLs are an enhancement to UNIX file protection and access control 
mode bits. ACLs are not supported by conventional UNIX file systems, 
although some vendors modify their file systems to support specific ACL 
implementations. ACLs expand the control that the owner of a file has over 
granting or denying file and directory access to specific users or groups of 
users. ACLs allow a finer granularity of access control for specific files and 
directories than do UNIX protection bits. 

The DCE LFS supports both file and directory ACLs. A description of the 
access control mechanisms provided by ACLs, and the use of ACLs when 
developing applications, are presented in the ACL section of Chapter 50 of 
this guide and in the security sections of the aSF DeE Administration 
Guide and Part 6 of this guide. 

49.3.1.4 Anodes 

For an applications programmer, one of the most important abstractions 
provided by a file is its open-endedness. Programs can write to files without 
having to directly allocate the storage associated with the file. In 
conventional UNIX file systems, this open-endedness is implemented at the 
level of the inode. Other file-oriented abstractions, such as authorization 
(mode bits and ACLs), status information (access and update times), 
position in the directory hierarchy, and reference . (link) counts are also 
associated with UNIX inodes. 

OSF DeE Application Development Guide 49-13 



DeE Distributed File Service 

49-14 

Bundling all of these abstractions into a primary file system structure can be 
inconvenient to the kernel programmer. When these high-level abstractions 
are irrelevant, the additional overhead of having them can discourage taking 
advantage of a file's open-endedness. This encourages either abandoning 
open-endedness in favor of fixed limits, or reimplementing a primary form 
of open-ended resource allocation. 

The DFS's anode abstraction provides a convenient descriptor for 
referencing an open-ended address space of storage, and nothing more. All 
DFS objects that require disk storage (for example, files, ACLs, filesets, 
aggregates, transaction logs, and low-level disk allocation bitmaps) are 
implemented as anodes. Files are implemented as anodes with additional 
information including a set of status bytes, a pointer to an ACL, and a 
position in the directory hierarchy. 

Because both user and metadata are referenced through anodes, disk utilities 
can access the disk uniformly, regardless of the level of file system access 
that is required. This simplifies the construction of utilities, such as the 
logging system and disk recovery mechanisms, which might otherwise have 
to distinguish between anode and nonanode disk areas. 

49.3.1.5 DeE LFS and UNIX File System Differences 

In DCE, UNIX file systems can be accessed from remote machines if they 
are exported to the DFS filespace. The only practical way to export a UFS to 
the DCE environment is to export it as a unit at the lowest level for which a 
parallel DFS organization exists. This means that a UFS partition is 
exported as a single fileset. Once exported, this partition is referred to as an 
aggregate that contains at most one fileset. The Virtual File System 
interface (VFS+) provides a consistent mechanism for accessing the UFS 
files either via DFS or by local processes running on the machine exporting 
the UFS. 

Not all fileset operations are supported for these non-LFS filesets because 
DCE LFS functionality is a superset of the functionality provided by 
standard UFSs. DCE LFS aggregates can accommodate multiple DCE LFS 
filesets; UNIX disk partitions can store only a single fileset. Because of this, 
DCE LFS filesets are usually smaller than non-LFS file sets and easier to 
manage. Lone fileset operations, such as dump and restore, can be 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

supported for non-LFS filesets. The cloning, move, and replication file set 
operations are not supported for non-LFS filesets because these require the 
capability of accommodating mUltiple filesets in an aggregate. 

49.3.2 The Virtual File System Interface (VFS+) 

The VFS+ interface used in DFS is an enhancement of the Virtual File 
System interface found in most UNIX kernels, or the Generic File System 
(GFS) found in Ultrix. The VFS+ interface extends the VFS interface in 
several ways, adapting it to provide the operational requirements of a 
distributed computing environment. 

The VFS+ interface adds the following enhancements to standard VFS 
interfaces: 

• Generalized Credentials: The VFS+ interface implements an open 
credential mechanism that allows the use of a variety of authentication 
mechanisms. The new credential can therefore carry both conventional 
UNIX authentication information and any other form of authentication 
information required, such as authentication tickets. 

• Synchronization: A synchronization package is incorporated into the 
VFS+ interface operations, implementing a mechanism for 2-way 
communications between servers and their clients. When an object in 
any type of VFS is changed, the Token Manager notifies all interested 
parties. 

• Fileset/Aggregate Interface: The VFS+ interface supports operations on 
DFS filesets and aggregates, including creating new file sets within an 
aggregate, putting those filesets online, taking existing filesets offline, 
iterating through the files in a fileset, and enumerating existing filesets. 

The enhancements implemented by the VFS+ interface ensure compatibility 
among local and remote processes simultaneously accessing files. For 
example, a VFS+ server can make guarantees about when an exported file 
changes while, at the same time, clients attempt to modify these files. All of 
these types of access are synchronized through the VFS+ interface. 

The VFS+ interface does not require that changes be made to external 
servers or software in order to access standard VFS or vnode-Ievel 
functions. To eliminate potential problems with non-DCE software and 
servers, the standard VFS vnode-Ievel functions are redefined to invoke the 

OSF DeE Application Development Guide 49-15 



DeE Distributed File Service 

synchronization package that keeps track of the guarantees made by the 
various servers. These updated function definitions are implemented by 
writing "wrapper" functions for existing virtual file system operations. 
These wrapper functions perform the appropriate synchronization calls 
before and after the original VFS call. 

When using the VFS+ interface, calling a VFS function initially executes an 
internal locking routine that provides a consistent interface to all VFS types. 
The call declares the operation to be performed and also identi fies the file 
IDs involved in that operation. As part of this function, other virtual file 
systems may be called upon to relinquish conflicting access guarantees 
(such as tokens) that they may already have issued for the same files. Once 
the required access guarantees are obtained, the original virtual file system 
operation is performed. When that operation is complete, the locks are 
released. Releasing these locks does not directly return the access 
guarantees required by the VFS operation, but simply notifies the local 
synchronization package that the access guarantees for this operation may 
now be reclaimed whenever necessary. 

49.3.3 The Cache Manager 

49-16 

The DFS Cache Manager is a kernel-resident part of DFS that is responsible 
for the local caching of file and directory data on machines used as file 
system clients. Caching means that once any portion of a file is requested 
and retrieved by a client, a copy of that data is kept on the client machine. If 
the same part of the file is requested again, the locally cached copy is 
immediately available; it is not necessary to re-retrieve the data. The tokens 
associated with the data the first time it was retrieved ensure that the file has 
not changed on the server since it was first cached. If the file has changed, a 
new copy is retrieved from the File Server machine. Caching provides a 
substantial performance improvement over using remote operations to fetch 
file and directory information each time it is required. 

The client's Cache Manager presents a VFS+ interface to the UNIX kernel. 
Logically, the Cache Manager sits between the File Exporter, from which it 
receives file services, and the kernel, to which it provides files. Neither the 
kernel nor the processes that use the kernel to perform file operations need 
to know the physical location of the files referenced. The VFS+ interface 
ensures that all files are obtained through the same mechanism, regardless of 
whether their source was a conventional UNIX file system or a DFS file 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

system. If the target fileset/file for a particular operation is local, avoiding 
an RPC to the local File Exporter results in increased system performance. 
This is handled by consulting the local file set registry to see if this fileset 
belongs to the local disk before executing any vnode-Iayer procedure. If the 
file set is local, the local operation can be executed directly. If the fileset is 
not local, the standard Cache Manager VFS+ call is executed. 

The Cache Manager is divided into several layers, as shown in Figure 49-1 
.The lowest layer is the Operating System Independent (OSI) layer, which is 
responsible for isolating all low-level operating system calls such as basic 
I/O and network, physical file system, and virtual memory calls. This layer 
helps isolate higher-level Cache Manager functions from vendor-specific or 
system-specific issues. 

Figure 49-1. The Organization of the DFS Cache Manager 

VFS+ Modules 

Token Management Layer 

Caching Layer I Directory Package 

I ~ I 

User Authentication I Server Module I Fileset Module I Cell Module 
Cache Module I I I ~ ________ J _________ ~ _________ L ________ _ 

DCE Resource Layer 

OSI Layer 

The next layer is the DCE Resource Layer, which is responsible for 
maintaining RPC connections, authentication, fileset location information, 
and other information about the state of the DCE environment. The resource 
layer is divided into several modules: 

• A User Authentication Cache Module maintains a per-user list of tickets 
and additional per-user credential information. 

• A Server Module maintains a set of per-server structures for tracking the 
status of recently contacted servers. 

• A Fileset Module maintains a list of accessed filesets, their mounted 
positions in the global file system tree, and their physical locations on 
one or more File Server machines. 

OSF DCE Application Development Guide 49-17 



DeE Distributed File Service 

• A Cell Module maintains a list of the administrative DCE cells that have 
been accessed by the particular Cache Manager. 

Above the resource layer is the Caching Layer itself. This layer maintains 
the set of cached file information, separated into status and data 
components. The basic operations performed at the caching layer are 
fetching and storing the data and status information associated with files. A 
client uses the directory package to keep its cached directories synchronized 
with the server's originals. When an RPC call to a file server causes the 
contents of a remote directory to be updated, the Cache Manager's directory 
package can update the cached directory. This avoids having to refetch 
directory information each time a directory is updated. 

The highest levels of the DFS Cache Manager are the VFS modules, which 
implement the functions exported to the VFS+ interface, and therefore offer 
the functions required by the kernel in order to treat DCE DFS as a true 
external file system. This layer also contains the VFS functions that provide 
the OS-specific code needed to support different VFS/kernel interfaces. This 
isolates the Cache Manager from OS-related differences in virtual file 
systems in the same way the Cache Manager's OSI layer isolates the Cache 
Manager from as differences in lower kernel layers. 

49.3.4 The File Exporter 

49-18 

The File Exporter is the kernel-resident part of a DFS File Server machine 
that evaluates client requests and sends file and directory information in 
response to those requests. The File Exporter actually consists of several 
components: 

• Token Manager 

• Host Module 

• VFS+ Interface 

• Fileset Registry 

• Server Procedure 

The Token Manager, called by the File Exporter, maintains the set of file 
and directory tokens that have been granted to existing clients of that File 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

Server machine. Among these tokens is a binary compatibility relation 
telling which other tokens can be simultaneously granted to other clients. 
The Token Manager is discussed in more detail in the next section. 

The File Exporter's Host Module associates a pair of structures with every 
client request. One structure describes the state of the client Cache Manager 
that made the call and contains such information as the delivery status of 
any token revocation messages issued to the client. The other structure 
contains authentication information about the user who made the file system 
request on the client machine. This includes the user's authentication system 
identity and group memberships. 

The File Exporter's VFS+ Interface interacts with the Cache Manager, File 
Exporter, and DCE LFS to access the data stored at the server. 

The File Exporter's Fileset Registry is a table that enumerates the file sets 
residing locally on the server. It is the "glue" that sits between the File 
Exporter and the Cache Manager and UFS. Given a file set name or ID, the 
file set registry must be able to identify and locate the mount-level directory 
of that file set. The fileset registry fills two important functions in the 
processing of an incoming DFS request. First, it tells the File Exporter 
whether a fileset is local, which determines whether the request can be filled 
by that File Exporter. Second, it maps the fileset specified in the request 
into a VFS identifier, so that the appropriate file system anode can be 
located for a given request. 

Finally, the File Exporter's Server Procedure implements the RPC interface 
in terms of calls to the previous components. 

Processing a request for file data or status information starts with the host 
module, which keeps track of the information about each client that is 
needed by the file server. To expedite client requests, the host module 
maintains a cache of authenticated users on that File Server machine and the 
RPC connections they have previously used to contact the server. 

The information maintained by the host module for each user is associated 
with a credential structure before the VFS file system layer is called. This 
allows the File Exporter to invoke various types of virtual file systems while 
still allowing each file system to use its own authentication information. 

Once a request is associated with a host module client structure, the File 
Exporter checks with the fileset registry for the fileset referenced in the 
request, and passes the file IDs associated with the request to the Token 
Manager. This gives all other DFS File Exporters that may be holding 
tokens for the file set an opportunity to revoke the appropriate tokens or 

OSF DeE Application Development Guide 49-19 



DeE Distributed File Service 

other forms of promises they may have made to external clients. At this 
time, the Token Manager locks the file set IDs for the duration of the server 
call. Other File Exporters can issue callbacks or revoke tokens at this stage 
of handling the call. 

After the relevant file IDs are locked, the File Exporter converts the 
incoming file IDs into vnode structures in a local fileset by calling the 
appropriate VFS layer function. At this time, the actual VFS operation is 
invoked to perform the desired function. 

49.3.4.1 The File Exporter's Token Manager 

49-20 

In order to guarantee that file or directory information in use by a client 
machine is not simultaneously being modified, each DCE File Server kernel 
includes a Token Manager to guarantee file access synchronization. The 
Token Manager' keeps track of the clients that are referencing files located 
on that File Server machine. A Token Manager is local to each File Server 
machine, and maintains tokens for, and monitors access to, only files and 
directories on that particular File Server machine. For example, the File 
Exporter for a given File Server machine may grant a read token for a 
specific file, allowing a client to read the contents of that file until otherwise 
notified. The File Exporter records that the client has received a guarantee, 
and does not allow any other client to write data to the file without first 
revoking that guarantee by notifying the client that its cached data must no 
longer be used. 

When a File Exporter obtains any tokens on behalf of a client, it registers a 
procedure to be called in the event that the token later has to be revoked. 
Calls registered for later communications with other processes are referred 
to as "callbacks." When an incompatible token must be revoked, the Token 
Manager executes that callback to the client to revoke the token. 

The Token Manager is invoked by all calls through the VFS+ interface, and 
ensures that any access incompatible with privileges already granted 
through existing tokens are revoked before the operation continues. The 
Token Manager is invoked by the VFS+ layer because both non-DFS File 
Exporters and locally executed system calls can perform various operations 
on local physical file systems that must be synchronized with the guarantees 
exported by the I?FS File Exporter. 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

U sing the Token Manager to control physical file and directory access rights 
suggests expanding the term "client" from simply being a remote user of 
files exported by a file server, to being any system (local or remote) that 
requests tokens on a file. This is a more flexible and appropriate definition 
of a client, because the potential clients of a Token Manager can range from 
the local UNIX kernel to any number of remote File Exporters. 

49.3.4.2 Types of Tokens 

DFS File Exporters support a number of different types of tokens. These 
different token types reflect the different types of access to files and 
directories that are required in a distributed computing environment. 
Because tokens reflect the type of file or directory access requested by a 
client, some types of tokens are incompatible. Before granting a new token, 
the Token Manager may have to revoke some existing tokens. The following 
types of tokens can be granted by a File Server machine's File Exporter: 

• Data Tokens: Data Tokens grant the client the right to access a range of 
bytes in a file. Both read and write data tokens are available. A read data 
token allows the client to cache and use a copy of the relevant file data 
without repeatedly performing RPCs to the appropriate file server (either 
for validating the data or for re-reading it). A write data token allows the 
client to update the data in a cached copy of the file without storing the 
data back to the server or notifying the server. 

• Status Tokens: Status Tokens allow the client to access the status 
information associated with a file or directory. Both read and write 
status tokens are available. A read status token allows the client to refer 
to cached copies of the status information without calling the server to 
check the status. A write status token allows the client to update its 
cached copy of the file's status without notifying the server. The Token 
Manager blocks other VFS+ functions from any access to status 
information for the cached file or directory while the client has its write 
token . 

• Lock Tokens: Lock Tokens allow the client to set a lock on a particular 
range of bytes within a file. Both read and write lock tokens are 
available. With a lock token, the client is assured that the server does not 
attempt to set conflicting locks on the file without first revoking the 

OSF DeE Application Development Guide 49-21 



DCE Distributed File Service 

token. If a client does not hold a lock token, it must get one before being 
able to operate on the data. Lock tokens behave in the same way as 
open tokens with respect to revocation; see the following. 

• Open Tokens: Open Tokens grant the holder the right to open a file. 
Different types of open tokens are available, corresponding to different 
possible open modes: normal reading, normal writing, executing, shared 
reading (same as executing), and exclusive writing. 

Different types of tokens can be held simultaneously for the same file 
because they refer to separate components of the file. Table 49-1 describes 
the compatibility matrix of open tokens. Tokens of the same type may also 
be incompatible with each other, as in the following examples: 

• Read and write data tokens are incompatible if the byte ranges 
associated with those tokens overlap, but otherwise are compatible. 

• All write tokens are incompatible with all others. 

• Read and write lock tokens are incompatible if the byte ranges 
associated with those tokens overlap, but otherwise are compatible. 

Table 49-1. Compatibility Between Open Tokens 

49-22 

Normal Normal Shared Shared 
Access Reading Writing Reading Writing 

Open for normal reading C C C I 

Open for normal writing C C I I 

Open for shared reading 
or open for executing C I C I 

Open for exclusive writing I I I I 

C = Compatible I = Incompatible 

DFS tokens are managed by the VFS+ wrapper functions, as described 
previously. To summarize, the VFS+ wrapper functions modify all standard 
VFS functions to first call the Token Manager, obtaining the appropriate 
tokens for the operations they will perform before actually performing those 
operations. The functions that compose this part of the VFS+ interface are 
frequently referred to as the "glue layer." 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

When the. Token Manager wishes to revoke a token, the File Exporter 
notifies the client that holds the token. If the token was granted for 

• Reading (status or data), the client only has to return it. 

• Writing, the client must write back any status or data that it modifies 
before returning the token. 

• Locking or opening, the client cannot return the token if the file is still 
open, or if the corresponding lock is still held. This is the normal action 
if the client has already locked or opened the file. 

For remote clients, token management requires two-way RPC 
communications. Clients must call File Server machines to access files and 
obtain tokens, and File Exporters must call clients to revoke tokens. Token 
revocation requests for file systems that are local to the client making the 
requests do not require RPC communications. When handling requests to 
local file systems, the Token Manager and VFS+ interface communicate 
directly, except for the use of the Host Module. 

49.3.5 The Fileset Server 

Filesets are the basic storage and administrative unit for data in the DFS. 
The abstraction provided by file sets is similar to that provided by UNIX disk 
partitions, although DCE LFS filesets are actually implemented as logical 
subsets of disk partitions (aggregates). The entire contents of a DCE LFS 
fileset must physically be located within a single aggregate, and its size is 
determined by a per-fileset quota. Non-LFS filesets are equal in size to the 
exported partition. Keeping file sets small compared to aggregates simplifies 
load balancing. Load balancing involves moving file sets from one aggregate 
to another when the first aggregate becomes nearly full or when equalizing 
file set access across various File Server machines. It is easier to find room 
on other aggregates for a fileset if it is relatively small. DCE LFS file sets 
can be moved between aggregates on the same File Server machine, or to an 
aggregate on another server. The files stored together in a file set form an 
entire subtree of the file system, which can be separately mounted and 
administered. Filesets are mounted so that they create the illusion of a 
seamless hierarchy of files, even though that hierarchy may actually be 
distributed across multiple File Server machines. Storing filesets on multiple 
File Server machines, or dynamically moving filesets between different 
machines, does not affect the transparency of user access. 

OSF DeE Application Development Guide 49-23 



DeE Distributed File Service 

49-24 

A fileset header is associated with each fileset, and must be stored on the 
same aggregate as the file set it describes. The file set header contains the 
fileset name, fileset ID number (not guaranteed to be unique), unique 
identifier (which combined with the file set ID produces a unique 
identification), type, and status. The file set header also contains the anode 
indexes of all of the files and directories present in that fileset. The fileset 
label must be stored on the same aggregate as the file set. 

The Fileset Server allows system administrators to create, delete, duplicate 
(clone), move, back up, or restore entire filesets with a single operation. 
Each of these operations is carried out as a single operation that requires an 
exclusive lock on a specified fileset. The administration of DCE LFS 
filesets is covered in detail in the aSF DeE Administration Guide. 

Creating, deleting, and moving filesets are standard administrative functions 
that are required to effectively manage any subset of a file system. Cloning 
allows an administrator to dynamically produce an inexpensive read-only 
copy of a DCE LFS file set, recording its exact state at the time of the copy. 
Uses of file set clones include serving as online backups from which users 
can retrieve a former version of a file they accidently change or delete, or as 
file set replicas, which can be distributed to multiple File Server machines. 
Replication increases the availability of the contents of a fileset, and can 
reduce the overhead associated with accessing file sets that contain 
frequently used system binaries and files. When copies of these files are 
available at multiple locations, the requests for. these files are distributed 
across the File Server machines on which these files are available. An 
incidental benefit of replicated file sets is that the File Exporter does not 
need to revoke tokens because (by definition) files in a read-only clone 
cannot change. Replication and cloning require features of DCE LFS and 
thus ate not supported for non-LFS filesets. 

It is important to underst~nd the difference between cloning and replication. 
Cloning means to create fl· ~ead-only copy of an existing file set on the same 
aggregate. Replication, which uses the cloning operation as a primitive, 
means making an exact c~py of a fileset, including all of the data blocks 
associated with the files and directories in that file set. This copy mayor may 
not be located· on the same aggregate or File Server machine as the parent 
file set. 

Filesets can be cloned only to the aggregate on which the original fileset is 
located because the cloning operation initially copies only the anode 
indexes for the files on the specified fileset, rather than copying the files 
themselves. Once these are copied, the original inqexes are updated to point 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

to the clone's copied indexes, and a bit is set in each parent anode to 
indicate that this indirection is occurring. Subsequent write operations on 
parts of the file set first check the status of the indirection bit for the anode 
associated with a file. If this bit is set, the original data must be copied to 
other blocks, the indirection must be undone, and the indirection bit must be 
cleared before the write actually occurs. This ensures that cloning a file set 
initially involves copying the minimum amount of information. Initially, 
the parent fileset consists of a skeleton fileset that simply points to the 
blocks in the clone. As more writes occur in a cloned fileset, the parent 
fileset comes to own an increasing number of "new" blocks. Only the 
blocks that change are copied; a small change to a large file does not result 
in the entire file being copied. 

Dumping and restoring files are standard administrative functions necessary 
for any computer system. Dumping a fileset refers to the process of copying 
a fileset to a data stream. The target of this data stream is usually some 
archival device, such as a tape drive. Restoring refers to the process of 
converting a data stream back into proper fileset format. The ability to dump 
and restore logical portions of disk storage is necessary to create backups 
for long-term storage on tape. Backups are done both as a precaution against 
loss of data due to hardware failure and as a way of protecting users against 
the accidental deletion of their own data. Backups are also routinely 
performed when deleting a fileset from the file system. Dumping and 
restoring can also be used when moving filesets between machines that store 
or represent filesets in different formats. 

49.3.6 The Fileset Location Database and Server 

The Fileset Location Database (FLDB) is a cell-wide replicated database 
that maps fileset names to the servers on which they are actually located. 
The FLDB is accessed only via a collection of Fileset Location Server 
processes, one at each machine on which the FLDB is replicated. These 
RPC server processes provide calls to examine and change information 
about the filesets located in the cell. 

An individual fileset location entry, an FLDB entry, contains the file set's 
name, its type, the File Server machines where the fileset is located, the 
numeric identifier of the aggregate on the specified File Server machine on 
which the fileset is located, any status flags specific to that file server 

OSF DeE Application Development Guide 49-25 



DeE Distributed File Service 

location, any flags associated with the fileset, and the numeric identifiers of 
this and any associated filesets such as backups and read-only copies. 

For more detailed information about legal file set types and the contents of 
fileset location entries, see the OSF DeE Administration Guide. 

49.3.7 The Replication Server 

49-26 

Note: Replication only operates on DCE LFS filesets; it cannot be 
applied to the UNIX File System. 

The organization of DCE LFS filesets into aggregates provides a number of 
features not found on ordinary UNIX file systems. First, the concept of DCE 
LFS filesets as logical subsets of aggregates means that filesets are not tied 
to a physical location on the storage media and can therefore be 
manipulated independently. This allows filesets to be moved among 
partitions or moved from one server to another. 

Similarly, a read-only copy of a fileset (a clone) can be created within the 
same aggregate where the original fileset is located. Fileset cloning can be 
used as an intermediate backup mechanism or as a part of the replication 
process. The administrative procedure of cloning a fileset and copying the 
clone(s) is called read/only replication of that fileset. Cloned copies of 
filesets cannot exist outside the aggregate on which the parent fileset is 
located, while replicas of filesets can be located on any file server machine. 
This is similar to the distinction between the cp (copy) and In (link) 
commands in UNIX type operating systems; that is, files can be physically 
copied across partitions because the cp command creates a copy of both file 
and user data at the destination of the copy, but files can never be 
hardlinked across partitions. Similarly, file sets cannot be cloned outside the 
aggregate that holds their parent file set because they directly share storage. 

The DFS replication servers provide for both scheduled replication and 
release replication of filesets. In scheduled replication, a file set can be 
copied and updated at specified intervals by the replication server. A replica 
is therefore maintained permanently and is guaranteed to be out-of-date by 
no more than an interval specified by the system administrator. For practical 
reasons, the existing implimentation is unable to keep up with short 
intervals of time (less than 10 minutes). However, system administrators 
can replicate a fileset at any time explicitly; this is called release 
replication. 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

Any client of a replicated fileset is guaranteed to always see a consistent 
snapshot of the fileset and is guaranteed that the data in the replica is never 
replaced by older data. When a replication server must update the replica, it 
obtains only those files that have changed during the replication interval 
from the master file set. 

Both cloning and replication are useful tools for system administration 
because the basic DFS backup unit is the fileset and not the aggregate. A 
system administrator can back up a fileset by first cloning it and then 
copying the clone to removable media whenever convenient. Cloning is also 
an efficient backup mechanism because of the small initial size of the 
cloned file set, and because it initially copies only the fileset's metadata. 
Cloned filesets can continue to exist on disk indefinitely, during which time 
files can be directly restored from the cloned fileset. This can eliminate, in 
some cases, the most time-consuming part of restoring files from backups, 
which is the time required to mount and search removable backup media. 

49.3.8 The BOS Server 

The BOS Server (Basic OverSeer Server) runs on every DFS server machine 
and monitors the other DFS server processes on the machine. It restarts 
processes automatically if they fail, in the correct order. The BOS Server 
also provides an interface through which processes can be started, stopped, 
and monitored, and through which binaries for software can be maintained. 

The programming interface to the BOS Server allows the creation, deletion, 
and modification of processes. Processes are managed by the use of bnodes, 
which keep track of process parameters, start times, and frequency of 
execution. 

OSF DeE Application Development Guide 49-27 



DeE Distributed File Service 

49.4 An Example of DFS File Access Synchronization 

49-28 

This section provides an example of the interaction between the various 
DFS support modules, showing the roles of the Token Manager and File 
Exporters in synchronizing access to a file. The file in this example is stored 
in a conventional UNIX file system, and is being written by both a local 
user (Used), who is issuing both read and write system calls, and a remote 
user (User2), who is attempting to access the same file through a client 
Cache Manager. 

Initially, User2's remote application issues a write system call to the file. 
This operation is handled by the client's Cache Manager, which requires a 
token guaranteeing that it is permitted to update the cached copy of the file 
locally. This token is requested from the File Exporter of the File Server 
machine where the master copy of the file is located. The File Exporter 
registers the client with the File Server machine's Token Manager as having 
a data write token. Once User2 receives the data write token, the client can 
handle all remote writes to the cached copy of the file without contacting 
the File Server machine further. 

At some point Used, through a process local to the File Server machine and 
therefore accessing the file locally (not through a DFS File Exporter), 
decides to read some data from the master copy of the file. Before reading 
the master copy, the VFS+ interface calls the local Token Manager, 
requesting a read data token for the file. Because there is a conflicting write 
data token already granted to User2 by the File Exporter, the read token for 
Userl cannot be granted immediately; User2's incompatible token must be 
revoked before Used's local process can be granted its own token. 

At this point, the Token Manager attempts to resolve the access conflict by 
requesting that the File Exporter revoke the conflicting token. As part of the 
revocation procedure, the File Exporter makes an RPC back to User2's 
client Cache Manager, asking it to return the write token. Before the client 
returns the write token, it also stores its modifications back to the file set on 
the File Server machine in a separate RPC. Once this occurs, the File 
Exporter returns from the revocation call made by the Token Manager. The 
new read data token can be granted to the VFS+ interface call. Once the 
new token is granted, the VFS+ interface can then proceed with Userl's 
read operation by calling the original virtual file system's read data function. 

OSF DeE Application Development Guide 



DeE Distributed File Service Overview 

The read data token can be returned at any time after the read data call has 
completed, although it is usually held as long as possible to avoid 
unnecessary RPCs. Remote clients always hold on to tokens as long as they 
can to avoid unnecessary RPCs. If U ser2 issues another call to write the 
specified data, the client system must contact the File Server machine again 
to get another guarantee, and the File Exporter must call the local Token 
Manager again to obtain another write data token. Thus, the VFS+ layer 
provides a consistent file system image regardless of the dispersion of 
clients making reference to anyone piece of it. 

OSF DeE Application Development Guide 49-29 





Chapter 50 

General Cache Manager Operations 

This chapter describes the operations you can perform with the DFS Cache 
Manager. The Cache Manager is the process on the client machine that 
maintains information about filesets that have already been fetched from the 
server. For more information about the general operation of the Cache 
Manager, see the introductory chapter of this guide, or the aSF DCE 
Administration Guide. For more information about the functions described 
in this chapter, see the aSF DCE Application Development Reference. 

The Cache Manager is the part of DFS that is responsible for the local 
caching of file and directory data on file system clients. Once a file or 
directory is requested by a client, the data is kept (cached) until either it is 
flushed or the cache storage is recycled. DFS provides functions to access 
cached data, manipulate related fileset information, and control the behavior 
of the Cache Manager. These function calls are described in this chapter. 

At the end of this chapter is a summary of the syntax and parameters for the 
various calls. 

Most Cache Manager management operations are done through the ioctl() 
and pioctlO calls. ACLs are manipulated through the afs_syscallO system 
call. The ioctl() call is a standard (BSD) UNIX call; pioctl() and 
afs_syscallO are DFS extensions. All three calls take several arguments, 
one of which is the identifier of the specific call to apply. 

OSF DeE Application Development Guide 50-1 



DeE Distributed File Service 

50.1 Extensions to the ioctl() System Call 

The Cache Manager provides one additional ioctl() . call, 
VIOCIGETCELL. This call finds the cell name associated with an open 
file descriptor. This is the recommended method of determining whether a 
file is stored in the DCE Distributed File System; if it is not, then it has no 
associated cell. 

50.2 Using the pioctl() System Call 

50-2 

The syntax for pioctl( ) is as follows: 

long pioctl ( 
char *pathname, /* in */ 
int command, /* in * / 
struct afsJoctl *ioDesc, /* inout */ 
int follow _links) /* in * / 

The pioctl() call is very similar to the ioctl() call. One important difference 
between the two is that for pioctl(), the first argument, which refers to the 
file or directory to which the call applies, is passed via a pathname rather 
than via a file descriptor. (The p in pioctiO stands for pathname.) Using 
pathnames is necessary because pathnames, unlike file descriptors, can refer 
to files or directories that do not actually exist. Some calls, in fact, use the 
first argument to supply a directory and another argument to supply the 
name of a file in that directory; if the file does not exist but the directory 
does, some actions can still be taken, while a descriptor cannot be obtained 
on a nonexistent file. 

The second argument, as with ioctl(), is the specific call to be issued. 
Constants are defined for these values; you should use those constants rather 
than specific numeric values. The syntax summary at the end of this chapter 
contains these constants and other parameter information for each pioctl() 
call. Further information is also provided in the aSF DeE Application 
Development Reference. 

As with ioctl(), the third argument is a pointer to the block of data to be 
manipulated by the call. This data block contains an input buffer and an 

OSF DeE Application Development Guide 



General Cache Manager Operations 

output buffer, one, both, or neither of which may be used for any particular 
call. The exact nature of this data depends on which call is being made. 
More information is given later in this chapter. 

The fourth argument is unique to pioctl(). It determines what file should be 
used if the file specified is a symbolic linle If this parameter is 1, the 
symbolic link is followed to its destination and the call is applied to that 
destination file. If the parameter is 0 (zero), the call is applied to the 
symbolic link itself. Note that this fourth parameter applies to a symbolic 
link only if the link is the last component of the pathname; links 
encountered in intermediate components are always followed. 

Not all pioctl() calls affect files. In those cases, a null pointer may be used 
for the pathname argument (in other words, (char *)0). 

All calls either return 0 (zero), indicating successful execution, or return -1 
and set errno to an error flag. Output, when provided, is placed in the output 
buffer, which is the third argument to pioctl(). 

The pioctl() calls described in this chapter are only meaningful for 
operations on the DFS; in particular, they do not operate on files in the local 
file system. 

The following pioctl() calls require root privileges to perform: 

• VIOC AFS SYSNAME - -
• VIOC_CLOCK_MGMT (setting only) 

• VIOC _ EXPORTAFS (setting only) 

• VIOCGETREQUEST 

• VIOCSENDRESPONSE 

• VIOCSETCACHESIZE 

• VIOC SETCELLSTATUS 

• VIOCSETVOLSTAT 

OSF DeE Application Development Guide 50-3 



DeE Distributed File Service 

50.2.1 System, Cell, and Fileset Operations 

50-4 

The calls in the following subsections have to do with getting information 
and performing operations on the system (workstation), cell, and file sets. 
Some information is related to the system in general (and not DFS in 
particular), some is related to the cell as a whole, and some is related to 
filesets. Anyone with access to the right directories, as determined by 
Access Control Lists on those directories, can examine this information, but 
usually only system administrators or root can change it. You should make 
sure you know the implications of what you are doing before you alter 
things at the system or cell level, as you will be affecting many other 
people. For more information about these implications, see the aSF DeE 
Administration Guide. 

50.2.1.1 System Information 

It is often useful to be able to check to see which file servers are up before 
starting expensive operations. This sort of test can be much faster than an 
attempt to contact a server that is not available. The pioetl() call 
VIOCCKSERV can be used to get this information. It returns a list of 
socket addresses of servers that are down (or none, if no servers are down). 
It can operate in one of two modes. The first (the "quick" mode) uses 
cached information about server status, which is updated periodically. The 
second (the "thorough" mode) performs the check when the call is made, so 
the information is more accurate, but at a price. The fast check is the 
recommended one unless your application really needs up-to-the-minute 
information. The thorough check is potentially expensive, as a query to a 
server that is down will have to wait to time out. Cached information about 
which servers are up is usually updated every 10 or 15 minutes; this time is 
controlled by parameters set by the system administrator. 

The pioetl() call VIOC _ AFS _ SYSNAME is used to set or query the string 
that the @sys variable uses for pathname expansion. This variable, when 
used in a path, is expanded by the kernel; if you set it to different values on 
different hardware platforms, you can, for instance, use @sys to point to 
platform-dependent binaries while still using only one path in the code that 
calls them. The user command em sysname checks the current platform's 
type. 

OSF DeE Application Development Guide 



General Cache Manager Operations 

It is not generally necessary to set the pathname variable, as DFS usually 
knows what its hardware and operating system are. 

The input to this call contains a flag that indicates whether to query or set 
the value, and if setting a value, which value to use. 

Because so many Cache Manager operations are tied to the time, there is a 
pioctl() call to examine and change the setting of the local machine's clock. 
This call, VIOC _ CLOCK _ MGMT, also fetches and stores kernel values 
that describe the clock's accuracy. This feature is typically used only on 
client-only machines to set the machine's clock based on the time as set on a 
local File Server machine. This feature is initialized with dfsd (see the aSF 
DCE Administration Guide). 

The clock data block contains a number of items, which are described in the 
aSF DCE Application Development Reference. 

50.2.1.2 Cells 

There are several types of information that you may want to get about a cell. 

The pioctl() call VIOCGETCELL provides a list of the known Fileset 
Location Servers (FL Servers) for a cell. The call provides the addresses of 
FL Servers known to the workstation on which the call is made. The way to 
use this function is to keep calling it, incrementing the cell number (starting 
with 0 (zero)), until you reach the end of the list of cells, at which point the 
call returns an error. 

Sometimes a client application needs to be able to determine the name of 
the cell that the machine on which it is running belongs to. This information 
is provided by the VIOC _ GET _ WS _CELL pioctl() call. A machine, of 
course, can access many cells; the cell under discussion here is the primary 
cell to which users of the machine authenticate by default. Programs such 
as the login authentication call make this call once, at startup. 

VIOC GETCELLSTATUS and VIOC SETCELLSTATUS obtain and set - -
the status information for a named cell. Currently, the only information 
available is a status bit that indicates whether the named cell is the local 
one. 

OSF DeE Application Development Guide 50-5 



DeE Distributed File Service 

50-6 

50.2.1.3 Mount Points 

A file set is connected to the root directory of other filesets through a DFS 
mount point. Each mount point connects to the root directory of a file set. 
The mount point looks like an ordinary subdirectory, but it is actually a 
special interface to a file set. A mount point's name is the name of the 
subdirectory. Mount points are created after the filesets themselves are 
created. 

Unlike Network File System (NFS) mount points, DFS mount points are 
stored in the file system. They are thus persistent, meaning that they survive 
system restarts. 

Given the name of a mount point, it is possible to find the name of the file set 
to be mounted at that place. Mount point and fileset names can, and should, 
be different. A fileset's name should be more verbose than the name that 
users of the system see. Users want to see terse names, but system 
administrators often want verbosity to make tasks such as accounting and 
backups easier. For example, the fileset corresponding to the mount point 
jones in the user tree may be user.jones, indicating that this file set 
corresponds to a user directory. Users browsing through the directory 
already know that this file set is in the user space because a directory named 
something like user or usr is above it in the tree, so the information should 
not be repeated in the mount point name itself. 

The pioctlO call VIOC_AFS_STAT_MT_PT maps mount point names to 
fileset names. In addition to the fileset name, this call provides the type of 
the mount point. (The call actually produces a single string that begins with 
the character representing the type.) Mount points come in three types: 

• The first type (regular), indicated by the # (number sign) character, tells 
the Cache Manager to use the latest read-only replica (file set copy) that 
corresponds to the named fileset, if the mount point is part of a read-only 
tree and there is a read-only version of the file set. 

• The second type, indicated by the % (percent sign) character, forces the 
Cache Manager to use the read/write copy. 

• The third type, indicated by the ! (exclamation point) character, 
indicates a mount point for the global namespace itself. 

OSF DeE Application Development Guide 



General Cache Manager Operations 

The third type is typically only used for diskless support. Using regular 
mount points is more efficient than forcing the use of the read/write copy, 
but there are times when you want to force access to the original file set. 
Replicas are discussed in more detail in Chapter 49 of this guide. 

Anyone who has delete access to the directory can delete a mount point. 
The pioctlO call VIOC_AFS_DELETE_MT_PT accomplishes this. If 
you want to completely remove a fileset and its mount points, you should 
use the file set manipulation functions described in Chapter 51 of this guide. 

50.2.1.4 Filesets and Files 

The pioctl() call VIOCWHEREIS locates copies of a fileset, given the 
name of any file in it. It returns the addresses of all servers that have copies 
of the fileset. This call allows you to make the correspondence between a 
server being down and a directory access timing. out. If you give 
VIOCWHEREIS a file in a read-only fileset, it returns the read-only 
servers. If you give it a file in a read/write file set, it returns the read/write 
servers. 

Given a filename, you may want to find out additional information about the 
file set and cell in which it is stored. VIOCWHEREIS is useful for finding 
copies, but if you want other information, such as the fileset's cell or the file 
ID number of a particular file in the fileset, you need to lise the pioctl() call 
VIOCGETFID. This call, given a filename, gets the file handle, which is a 
string representing that file's cell identifier, fileset identifier, file slot 
number, and a uniquifier that, combined with the other information, ensures 
uniqueness. 

The cell and file set identifiers are unique IDs assigned ~o the cell and fileset, 
respectively. The file slot number is the number of the file in the file set. 
These numbers can be reused when files are deleted and others are created; 
you can think of a file set as being art array of files (referenced by index 
number), and it is most efficient to fill the array from beginning to end. It is 
therefore preferable to put a new file in the earliest open slot in the array, 
rather than extending the array and giving the new file the highest position 
assigned to date. 

Because of this scheme, a uniquifier is needed to distinguish among files 
that occupy, or once occupied, a particular file slot. This is simply an integ~r 
specifying which file this is; when a file slot is first occupied the file is given 

OSF DeE Application Development Guide 50-7 



DeE Distributed File Service 

50-8 

a uniquifier of 1, and for each subsequent occupant of that file slot, the 
uniquifier is incremented. 

If all you want is the cell name for a file, you can call 
VIOC_FILE_CELL_NAME, which returns the name of the cell in which a 
file is stored. This is easier than calling VIOCGETFID and extracting the 
cell data. Note, however, that while VIOCGETFID returns the cell ID, 
VIOC FILE CELL NAME returns the cell name. - - -
To summarize, VIOCWHEREIS finds copies of a file set, VIOCGETFID 
gets the file handle for a particular file within a file set, and 
VIOC_FILE_CELL_NAME, given a filename, finds the name of the cell 
in which that file is stored. 

50.2.1.5 Fileset and File Access 

The VIOC _ SETCELLSTATUS and VIOe _ GETCELLSTATUS piocH() 
calls control and report status information about a cell. Currently, the only 
status information available is whether a cell is the local one. 

The calls VIOCGETVOLSTAT and VIOCSETVOLSTAT control status 
information about a particular fileset, rather then the cell. There are two 
status flags for filesets. The first controls whether the setuid and setgid bits 
are to be honored for the file set. The second controls whether special device 
files (those in /dev) can be seen from workstations other than the local one. 

To determine if a caller has access rights to a file, according to the DFS 
ACL, use the pioctl() call VIOCACCESS. When making this call, you 
supply the name of the file or directory and a mask specifying the types of 
access you want. The call fails if any of the requested permissions are 
denied, but it does not provide a way of finding out which one failed (short 
of iterating over all of the access rights). Because the denial of any single 
access right causes the entire call to fail, you should make sure you request 
only the rights you actually need to check. 

VIOCACCESS does not actually retrieve the file or change the last 
modification time; it just checks that you are able to access the file. You 
may want to check this in advance if, for example, you will be running a job 
later that requires access. 

The Cache Manager allows clients to fetch files before they are actually 
needed in order to save time later. This is done to take advantage of idle 

OSF DeE Application Development Guide 



General Cache Manager Operations 

time, or to prepare for accesses that must happen very quickly for 
application-specific reasons. The pioctl() call VIOCPREFETCH 
prefetches the desired file into the local cache, so that the first file access is 
treated like a later access. If the caller does not have access rights to the file, 
the pre fetch is unsuccessful. 

50.2.2 The Cache 

There are several pioctl() calls that directly manipulate the local cache and 
its parameters. It is possible to manipulate cache parameters on only a 
single machine at a time; changes that you make on one machine do not 
propagate to any other. Further, these calls cannot affect remote machines; 
you have to run the application on each machine separately to make changes 
on multiple machines. If you want to permanently change cache parameters, 
it is probably better to do this through the standard system administration 
procedures, described in the aSF DCE Administration Guide. These calls 
are intended primarily for use by applications that need to make temporary 
or localized changes. 

50.2.2.1 Manipulating Cache Parameters 

There is currently only one cache parameter that can be set or monitored: 
the cache size. The larger the cache, the more information you are able to 
store without performing unnecessary remote accesses. (If the cache fills up, 
the oldest entries are discarded first.) You need to balance this convenience 
against your other disk space needs, such as swap space and a local file 
system. More information about suggested sizes can be found in the aSF 
DCE Administration Guide. 

To change the size of the cache, use the pioctiO call 
VIOCSETCACHESIZE. Size is allocated in l024-byte units; you supply 
the number of these units to allocate. If you reduce the size of the cache, 
data is immediately deleted, oldest first, to make room. 

OSF DeE Application Development Guide 50-9 



DeE Distributed File Service 

50-10 

If you attempt to reduce the cache size to an unrealistic value, the cache is 
not resized. (See the OSF DeE Administration Guide for guidelines on 
appropriate values.) If you specify a size of 0 (zero), it is reset to its default 
value. 

The pioctl call VIOCGETCACHEPARMS can be used to find out how 
many blocks of data are currently allocated to the cache, and how many of 
those are in use. 

There is no way to find out what is actually in the cache; you can only find 
out how much space it is using. 

50.2.2.2 Manipulating Pending File Writes 

Sometimes the Cache Manager attempts to write a file and cannot do so 
because the file set is over quota. This type of write failure is different from 
others because quota problems can be corrected more easily than, for 
example, protection problems. Thus, the Cache Manager will remember that 
it is trying to write the file and keep trying, rather than rejecting the write 
entirely, in the hope that room will be cleared for the file. By default, the 
Cache Manager repeats these attempts approximately once per minute. 

If you want to flush the queue of pending writes, you can use the 
VIOCRESETSTORES call. There are no inputs or outputs. By the time a 
write gets to this point, the error [EDQUOT] has already been returned to 
the caller, so it is not sent again. At this stage, no guarantees are made that 
the write will actually succeed, but efforts are made anyway. Thus, 
canceling these efforts does not significantly change expectations held by 
the application. 

To see what is in this queue, use VIOCLISTSTORES. This call produces a 
count of the files waiting and an array describing the filesets to which they 
are to be written. 

OSF DeE Application Development Guide 



General Cache Manager Operations 

50.2.2.3 Flushing Information from the Cache 

As discussed earlier, when the Cache Manager needs to make room to cache 
something, it flushes the oldest data it has. Sometimes your cache fills 
quickly causing the Cache Manager to flush something you still need. Thus, 
it is sometimes useful to be able to explicitly flush data from the cache to 
reclaim space, to prevent flushing data you still want, or to repair a 
corrupted cache. 

The most general way to flush data from the cache is to use the pioctl() 
calls VIOeFLUSH and VIOe FLUSHVOLUME. The former flushes the 
cache entry for a single file, and the latter for an entire fileset. The next 
time that file or file set is accessed, the server is queried and new data is 
retrieved. 

The pioctl() call VIOeCKBACK flushes the Cache Manager's memory of 
the mappings between fileset names and IDs, and between the ID of the 
read/write file set and its replicas, if any. This information must be flushed 
periodically to allow for the fact that file sets can be moved. This flushing is 
normally done automatically once every hour. 

Before flushing data, these functions try to write any local modifications to 
the server. You should not rely on this, however, as they may not succeed; 
do not use these functions in place of the fsync() call. 

50.2.3 Other Operations 

The following subsections describe other Cache Manager pioctl( ) 
operations. 

50.2.3.1 Exporting the LFS to NFS 

The pioctl() call VIOe _ EXPORTAFS exports a DFS Local File System 
(LFS) to the Network File System (NFS).1t can be used to query and set the 
export status of the DCE LFS. (See the aSF DeE Application Development 
Reference for details.) 

OSF DeE Application Development Guide 50-11 



DeE Distributed File Service 

50.2.3.2 Using Nonkernel Helper Functions 

Because DCE is very large, most of the code cannot reside in the kernel. 
When the kernel needs to call a routine or access data that is not resident in 
the kernel, it obtains its access through a helper function that is resident in 
user space. The user space process that makes the call is sometimes called a 
slave process. 

The VIOCGETREQUEST and VIOCSENDRESPONSE pioctl() calls are 
used by a user process to communicate with the kernel. The process 
announces its readiness to accept kernel calls with VIOCGETREQUEST, 
and the process then waits until the kernel returns from the call. When the 
kernel returns, the process should then take the contents of the output buffer 
and issue the call described therein. Once it has done this, it calls 
VIOCSENDRESPONSE to communicate the results back to the kernel. At 
this point it may call VIOCGETREQUEST again to repeat the process. 

50.3 Using the afs_syscall() System Call 

50-12 

File and directory protection is handled by DCE Access Control Lists 
(ACLs), which are manipulated through the afs_syscallO system call. An 
ACL specifies the types of access users and groups have to a file or 
directory. The use of ACLs is described fully in the OSF DeE User's Guide 
and Reference; the fo.1lowing subsections describe only the programming 
interface to them. DFS provides calls to set, retrieve, and copy ACLs, and 
to try to access files or directories. 

All ACL calls are issued through the afs_syscallO call. The first argument 
selects a DFS component; all ACL system calls use 
AFSCALL _ VNODE _ OPS for this argument. The second argument to 
afs_syscallO is the name of the particular call to issue; it is analogous to the 
second argument to pioctlO or ioctlO. There are also additional call
specific arguments. 

OSF DeE Application Development Guide 



General Cache Manager Operations 

50.3.1 Retrieving ACLs 

The afs_syscallO VNX_OPCODE_GETACL retrieves an ACL for an 
object. It takes four additional arguments: 

• The pathname of the file or directory whose ACL is requested 

• Memory in which to store the ACL (a string) 

• Memory in which to store the length of the ACL 

• An indication of which ACL is requested. 

A directory can have up to three ACLs: 

• One for its own use (VNX_ACL_REGULAR_ACL) 

• One for files created in it (VNX_ACL_INITIAL_ACL) 

• One for directories created in it (VNX_ACL_DEFAULT_ACL) 

A regular file can have only a VNX_ACL_REGULAR ACL set. 

The ACL is an array of bytes, and is very complex. The full description of 
the fonnat is contained in the afs_syscall(2dfs) reference page in the OSF 
DeE Application Development Reference. 

50.3.2 Setting ACLs 

The afs_syscallO VNX_OPCODE_SETACL sets an ACL for an object. 
Like VNX _ OPCODE _ GETACL, it takes four additional arguments: 

• A pathname, an ACL (represented as a string) 

• The length of the string 

• Which ACL to set 

The ACL types are the same as for VNX_OPCODE_GETACL. It is an 
error to try to set any ACL type other than VNX _ ACL _REGULAR _ ACL 
for files. 

OSF DeE Application Development Guide 50-13 



DeE Distributed File Service 

50.3.3 Copying ACLs 

The VNX_OPCODE_COPYACL call copies an ACL from one object to 
another. It takes four additional arguments: 

• The destination pathname 

• The source pathname 

• Which ACL to set in the destination 

• Which ACL to copy from the source. 

As with VNX_OPCODE_SETACL, files can only have one of the three 
ACL types set. 

50.4 Syntax Summary 

The following subsections provide a summary of the syntax and parameters 
for the ioctlO, pioctlO, and afs_syscallO system calls. 

50.4.1 The ioctl() Call 

The syntax for a call to ioctl() follows: 

#include<ioctl.h> 

long ioctl( 
char *pathname, /* in */ 
int command, /* in * / 
struct afsJoctl *ioDesc) /* inout */ 

\ 

50-14 OSF DeE Application Development Guide 



General Cache Manager Operations 

The foilowing table shows the specific call implemented in DeE. 

Contents of Contents of 
Call Input Buffer Output Buffer 
VIOCIGETCELL none string 

50.4.2 The pioctl() Call 

The syntax for a call to pioctl() follows: 

#inclllde<ioctl.h> 

long pioctl ( 
char *pathname, /* in * / 
int command, /* in * / 
strllct afsJoctl *ioDesc, /* inout */ 
int/ollow links) /* in */ 

The pioctl() calls are invoked not by name but by opcode number or by a 
defined constant. The following table contains these constants and the input 
and output types for each call. 

OSF DeE Application Development Guide 50-15 



DeE Distributed File Service 

Call Contents of Contents of 
Input Buffer Output Buffer 

VIOCACCESS long none 
VIOC_AFS_DELETE_MT _PT string none 
VIOC_AFS_STAT_MT_PT string( ) string 
VIOC_AFS_SVSNAME long + string long + string 
VIOC_CLOCK_MGMT (see text) (see text) 
VIOCCKBACK none none 
VIOCCKSERV long [+ string] long + sockaddrs 
VIOC_EXPORTAFS long long 
VIOC_FILE_CELL_NAME none string 
VIOCFLUSH none none 
VIOC_FLUSHVOLUME none none 
VIOCGETCACHEPARMS none array of longs 
VIOCGETCELL long long + sockaddrs + 

string 
VIOC_GETCELLSTATUS string long 
VIOCGETFID none afsFid 
VIOCGETREQUEST none long + bytes 
VIOCGETVOLSTAT none long 
VIOC_GET_WS_CELL none string 
VIOCLISTSTORES none long + long + 

array of afsHyper 
VIOCPREFETCH none none 
VIOCRESETSTORES none none 
VIOCSENDRESPONSE bytes none 
VIOCSETCACHESIZE long none 
VIOC_SETCELLSTATUS 2 longs + string none 
VIOCSETVOLSTAT long none 
VIOCWHEREIS none long + array of 

sockaddrs + string 

50-16 OSF DeE Application Development Guide 



General Cache Manager Operations 

50.4.3 The afs _ syscall() Call 

The syntax for the DFS part of syscall follows: 

#inel ude<syscall.h> 
#inelude<aelint.h> 

int afs _syscall( 
AFSCALL _ VNODE _ OPS, 
VNX _ OPCODE _ GETACL, 
char * pathname, /* in * / 
char *acl, /* out */ 
int * length, /* out * / 
int whichacl) /* in * / 

int afs_syscall( 
AFSCALL_VNODE_OPS, 
VNX_OPCODE_SETACL, 
char *pathname, /* in */ 
char *acl, /* in */ 
int length, /* in * / 
int whichacl) /* in * / 

int afs_syscall( 

/* in */ 
/* in */ 

/* in */ 
/* in */ 

AFSCALL_ VNODE_OPS, /* in */ 
VNX_OPCODE_COPYACL, /* in */ 
char *destyathname, /* in */ 
char *source yathname, /* in */ 
int dest _ whichacl, /* in */ 
int source _ whichacl) /* in */ 

OSF DeE Application Development Guide 50-17 





Chapter 51 

Manipulating Filesets 

This chapter describes the three sets of functions available for manipulating 
filesets. These sets are: 

• Volume Call (VC ... O) 

• Fileset Location Database (VL ... (» 

• Fileset Server (FTSERVER ... (» 
The VC •.. () functions meet most fileset manipulation needs. These are 
high-level, general-purpose functions for maintaining filesets. (They are not, 
technically, RPC calls, but they build on the VL •.. () and FTSERVER ... () 
RPC calls.) These functions automatically keep the Fileset Location 
Database (FLDB) up-to-date, and handle errors gracefully. Failing to keep 
the FLDB and actual filesets in sync with each other could leave the system 
in an inconsistent state, as explained in the following paragraph. The 
VC .•. () functions are implemented using the VL .•. () and FTSERVER ... () 
functions. They also provide consistency guarantees that naive use of the 
other two sets cannot provide. 

At times, you may need to perform very specific operations that are not 
covered by the general VC ..• () functions. In those cases, you can use the 
VL ..• () and FTSERVER ... () functions to alter the FLDB entries and actual 
data, respectively. If you use these functions instead of the VC .•. O 
functions, you have to do your own consistency checking when you alter 

OSF DeE Application Development Guide 51-1 



DeE Distributed File Service 

file sets or FLDB entries to ensure that the two stay in sync. Changing either 
the data or FLDB entry alone, without changing the other, leads to 
inconsistency that can eventually eliminate your change; that is, if the 
wrong thing, database or data, is synchronized with the other. You need to 
be careful to make both changes at the same time. If you are creating new 
filesets or copies of filesets, you should make the copy first and then create 
the FLDB entry because if you have an entry and no fileset, applications that 
try to access the file set before you create it get errors. When you are making 
a change, such as renaming a fileset, there is no good rule about which to 
change first, the data or the database entry. Just make sure you do one 
immediately after the other. 

In addition, you need to make sure that if one of the two changes you make 
(to the file set or FLDB entry) gets an error that prevents the change from 
actually being made, you do not make the other change anyway or leave the 
disk or database in an intermediate state. 

All of the functions in this chapter operate, directly or indirectly, through 
remote procedure calls. You must write your own code to obtain and 
manage RPC connections. (See Part 3 of this guide for information on doing 
this.) 

All of the functions in this chapter operate on DFS filesets, and not on files 
resident on the native UNIX File System (UFS) that are not exported to 
DFS. An exported UFS is treated as a DFS file set. 

51.1 DeE and DFS API Terminology Differences 

51-2 

There are some differences in terminology between DCE documentation and 
the DFS API. In the DFS API, a fileset is referred to as a volume, an 
aggregate as a partition, and the FLDB as the VLDB. Although the DCE 
documents have been changed to use fileset terminology, the DFS API has 
not always been changed. Thus, calls, parameter lists, and structures often 
include the vol, volume, and vldb strings, and refer to partitions. In the DFS 
API, volume always means fileset, and partition means aggregate unless a 
UFS partition is explicitly being referred to. 

OSF DeE Application Development Guide 



Manipulating Filesets 

51.2' Parameters, Types, and Return Values 

Many UNIX functions either return 0 (zero) if the function succeeds, or 
return -1 and set a global variable (errno) to a status code. The functions 
described in this chapter do not do this; they always return a status code, or 
zero if there is no error. 

Because the functions return error codes, the problem of how to return other 
data arises. Because these calls are issued over a network, rather than on the 
local machine, the functions cannot simply return pointers to modified data. 
Thus, you must allocate space for this additional data in advance, and pass 
pointers to this space in the calls. You simply need to allocate and manage 
the memory for these parameters using standard UNIX memory 
management techniques (the malloc() and free() calls, or stack variables). 

All DFS functions with RPC interfaces have one argument in common, the 
RPC handle. It is always the first argument to a function and is of type 
rpc _ binding_handle _ t, as defined in Part 3 of this guide. This handle 
identifies the particular remote client, and is supplied when the remote 
connection is first established. 

For the purpose of the examples in this chapter, we assume that you have 
created a function to obtain an RPC handle and set the variable Rpc _Handle 
to its output. For information about creating RPC handles, see Part 3 of this 
guide. 

51.3 Data Types 

Most of the structures described in this chapter have been defined in 
typedefs as well as structures. For example, struct afsHyper and afsHyper 
are the same. For reasons of extra clarity, the structure notation is used in 
describing the syntax of these functions. In the unlikely event that an 
application programmer needs to use the IDL interface for application 
development, only the latter format is acceptable in that environment. 

Likewise, most of the fields of these structures are of unsigned types, 
including characters. These are explicitly labeled as unsigned only in cases 
where ambiguity could result otherwise. 

OSF DeE Application Development Guide 51-3 



DeE Distributed File Service 

51.4 Authorization Requirements 

The Fileset Location Server (FL Server) and the Fileset Server (Ff Server) 
each have administrative lists stored in dcelocallvar/dfs. The Fileset 
Location Server for a cell runs on some subset of the machines in the cell, 
and the Fileset Server runs on every machine configured as a file server. 

FL Server administrators can create file server entries in the FLDB that are 
owned by specific groups. People in the group owning a server entry can 
create, delete, and modify FLDB entries for filesets that are housed on the 
declared file server. Specifically, the caller has to be in the group owning the 
file server entry for all file servers referenced by the FLDB file set entry, 
either before or after any proposed modification. This is transparent to the 
application programmer because the caller uses authenticated DCE RPC 
and the permissions are granted on the basis of that authentication. 

FL Server administrators can make changes to the FLDB. All functions in 
this chapter that require altering the FLDB, including those in the ve ... o 
set that create, delete, and move filesets, can be called only by those 
administrators whose principals are in the security group that is the 
"owner" of an FLDB server machine entry. 

The administrative list for the Fileset Server should be the union of the FL 
Server administrative list, and the members of the group declared as owning 
the server entry in the FLDB. People on this list can alter any filesets on the 
affected servers. Callers of functions in this chapter that alter filesets 
themselves must be in the appropriate groups. (See the aSF DeE 
Administration Guide for more information about these administrative lists.) 

51.5 The VC Functions: General Fileset Operations 

51-4 

The Volume Call (VC •.. ()) functions obtain information and perfonn actions 
on filesets. These functions allow you to manipulate filesets and their 
corresponding Fileset Location Database (FLDB) entries; for example, you 
can read them, delete them, move them around, get status infonnation from 
them, and so forth. 

All of the VC ... () functions except VC _ VolumeStatus() require 
authorization. 

OSF DeE Application Development Guide 



Manipulating Filesets 

51.5.1 Parameters 

Because filesets are accessed through RPC calls, almost all functions in this 
section take an RPC connection and a socket address as arguments. These 
are necessary in order to tell the file server where to look for the fileset you 
are manipulating. When you first establish the remote connection, you 
should save the information about the connection and simply pass it to these 
functions. (See Part 3 of this guide for more information.) 

A socket address is needed in addition to an RPC connection because the 
RPC connection is a connection to a fileset server and the socket address 
represents a file server machine to the file set location server. The socket 
address can be obtained with the standard UNIX function gethostbyname(). 

Most of these functions also take an aggregate identifier, which identifies 
the aggregate containing the fileset. This identifier is unique only within a 
single file server. This information is available from the Fileset Location 
Database (see Section 51.6). 

Filesets have both names and identifiers. The name is a string. Because 
system administrators and programmers create these names, there is no 
guarantee that the names are unique, although they are checked for 
collisions. The identifier is numeric, is generated by the system, and is 
unique. 

51.5.2 Creating and Deleting Filesets 

VC_CreateVolumeO creates a fileset. Only DCE LFS filesets can be 
created with this function. It takes a fileset name and other identifying 
information, creates the fileset, creates an FLDB entry for the file set, and 
returns the fileset's identifier. You should save this identifier for future 
references to this fileset. 

The fileset name is a string of up to 111 characters, plus a null terminator as 
the 112th character. 

There are two functions that can be used to delete a fileset. The first, 
VC_DeleteVolumeO, removes the fileset and updates the FLDB. The 
second, VC _ VolumeZap(), removes the fileset, but does not update the 
FLDB. You may want to use the latter if the database entry is already 
corrupted or nonexistent, or if you have mUltiple copies of a file set and some 

OSF DeE Application Development Guide 51-5 



DeE Distributed File Service 

of those copies are corrupted or out of date. You can use VC_SyncVldbO, 
described later in this chapter, to correct the FLDB entry for the file set. 
Until you update the FLDB manually, the entry for this fileset is still there, 
and this could interfere with other operations on the file set. 

Both VC _ DeleteVolumeO and VC _ VolumeZapO take four input 
parameters: an RPC connection, a socket address, an aggregate identifier, 
and a fileset identi fier. 

Note that the file set name is not used in these calls. Both of these functions 
operate only on DCE LFS filesets. 

51.5.3 Moving, Renaming, and Backing Up Filesets 

51-6 

There are three functions for modifying filesets. These are 
VC_MoveVolume, VC_RenameVolume, and VC_BackupVolume. 

51.5.3.1 Moving Filesets 

VC_MoveVolumeO moves a file set from one aggregate to another. Both the 
source and destination must be DCE LFS filesets; moving a UFS file set, 
which by definition occupies an entire disk partition, would not be helpful. It 
takes five arguments: a fileset identifier, a socket address for the source 
server, the source aggregate, a socket address for the destination server, and 
the destination aggregate. The source and destination socket addresses can, 
of course, be on the same server, but they cannot be the same aggregate. 

VC_MoveVolume() moves the given file set to the new aggregate. It deletes 
any backups that existed on the old aggregate, but does not make new 
backups. If an error occurs (for example, if the fileset or the destination 
aggregate does not exist), an error is returned and any partially completed 
actions are undone. 

As a general guideline, if there is a system failure you should check the state 
of the system to find out what the FLDB believes to be true and what is 
actually true (which filesets exist where). This enables you to recover 
appropriatel y. 

OSF DeE Application Development Guide 



Manipulating Filesets 

51.5.3.2 Renaming Filesets 

VC_RenameVolumeO changes the name of a fileset. It also renames all 
associated backup and replicated copies of the file set. Only the fileset name 
is changed; the file set stays in the same aggregate and retains the same ID 
and mount point. To move a file set from one aggregate to another, use 
VC_MoveVolumeO. If you want to change both a fileset's name and 
aggregate, you need to call both functions. 

VC_RenameVolumeO takes three parameters: an FLDB entry for the 
fileset, the old name, and the new name. The FLDB entry must be obtained 
using the function VL _ GetEntryByIDO or VL _ GetEntryByNameO (see 
Section 51.6). 

51.5.3.3 Backing Up Filesets 

VC_BackupVolumeO makes a copy of a file set and registers it as a backup 
in the FLDB. Backups have the name flleset.backup, where fileset is the 
name of the source fileset. Backups are important for recovering to a 
previous state, in the event that the fileset becomes corrupted due to 
programmer, user, or system errors. There is (by default) only one backup 
copy of a fileset; if one already exists, VC_BackupVolumeO brings it up to 
date. Because VC _BackupVolume() uses cloning, it can be called only on 
DCE LFS filesets. 

VC_BackupVolumeO has four parameters: an RPC connection, a socket 
address, an aggregate identifier, and a fileset identifier. 

51.5.4 Saving and Restoring Changes to Filesets 

There are two fairly general functions for dumping and restoring filesets. 
These dumps can either be full or incremental; the changes since the last 
dump (if incremental) are written to or read from a pipe that you 
manipulate. 

OSF DeE Application Development Guide 51-7 



DeE Distributed File Service 

51-8 

51.5.4.1 Dumping Changes 

VC_DumpVolllJll~O is used for dumping file set changes to a file. This 
function is meapt primarily for short-term dumping, such as moving file sets 
around by hand. For long-term storage, you should use the DCE backup 
facility (see the aSF DeE Administration Guide). 

In addition to the parameters described previously, VC_DumpVolumeO 
takes a source aggregate identifier and the reference date, which is the date 
from which changes should be written. This date is a structure containing 
fields for the date, the version number, and the mask. (You do not need to 
supply all three of these.) You must specify the mask, which is used to 
determine how VC_DumpVolumeO should decide what changes to write. 
A value of 1 means to use the date only (so the version number does not 
need to be supplied). A value of 2 means to use the fileset's version number 
only (so the date does not need to be supplied). A value of 0 (zero) means to 
use neither of these, and just do a complete dump of the contents of the 
fileset. Keep in mind that any of these, but especially the complete dump, 
could require quite a bit of disk space. How much disk space you need 
depenc:Is on the amount of data you are dumping. 

You can cause VC_DumpVolumeO to write to standard output (stdout) by 
passing a NULL pointer as the filename. 

51.5.4.2 ~estoring Changes 

The function VC_RestoreVolumeO is used to restore data changes that you 
have" recorded using VC DumpVolumeO. The file set must be a DCE LFS 
fileset. The function takes an RPC connection, a socket address, a file set 
identifier, the destination aggregate (for the fileset), a new file set name, and 
a pointer to a filename where the dump is stored. It also takes an option that 
tells the function what to do with any preexisting copy of the named fileset. 
If the Value is 1, the old copy is overwritten; if the value is 0 (zero), the 
restoration is canceled if a file set with that name already exists. 
VC _ RestoreVolumeO restores from standard input (stdin) if the fileset 
name is a NULL pointer. 

When restoring from incremental dumps, be sure to do the restorations in 
the same order in which the dumps were made, starting with the full dump, 
if applicable. 

OSF DeE Application Development Guide 



Manipulating Filesets 

51.5.5 Setting Fileset Quotas 

The function VC_SetQuotaO is used to change the disk quota for a DCE 
LFS fileset. You supply a fileset ID and a new quota. If the new quota is not 
sufficient to hold the current contents of the fileset, the quota is set anyway 
and any future write to the fileset will fail until the usage is reduced below 
the new limit. 

The quota is measured in units of 1024 bytes. 

51.5.6 Synchronizing the Database and File Server 

It is possible for the Fileset Location Database (FLDB) to become 
inconsistent with the actual state of the system. Sometimes filesets will be 
deleted without the FLDB being updated (for example, VC _ VolumeZap() 
does this); sometimes "garbage" like incomplete filesets will be generated 
and not cleaned up. For these reasons, there are two functions for 
synchronizing the FLDB and the actual contents of the aggregates. 

VC _ SyncVldbO operates on a specific aggregate on a server, or all 
aggregates on one server. It makes sure that everything in the aggregate(s) is 
represented in the FLDB, creating or updating entries as necessary. This 
function should always be called before VC_SyncServerO, or you risk 
throwing away data. 

VC _ SyncServer() synchronizes the server with the FLDB. Filesets on the 
aggregate and not in the given FLDB entries are deleted, unless they are 
corrupted, in which case they are removed. Once deleted, there is no way to 
recover this data (except from backups), so make sure you really want to do 
this and have first called VC _ SyncVldb(). 

VC _SykcServer() either operates on a single aggregate or, if the aggregate 
ID parameter is -1, operates on all aggregates on a server. 

OSF DeE Application Development Guide 51-9 



DeE Distributed File Service 

51.5.7 Getting Information About Filesets 

51-10 

Several functions are available for obtaining various types of infonnation 
about filesets. VC _ ListVolumesO lists all of the filesets in a given 
aggregate. VC _ VolumeStatus() reports the status of a particular file set. 
VC _ VolserStatus( ) reports the status of the fileset server. 

51.5.7.1 Listing Filesets in an Aggregate 

VC_ListVolumesO provides a list of all file sets in an aggregate. It takes an 
RPC connection, a socket address, an aggregate identifier, and an option as 
input parameters, and a pointer to an array of results structures and the size 
of that structure as output parameters. One structure is returned for each 
fileset in the aggregate. 

The result of a call to VC_ListVolumesO is an array of ftserver_status 
structures, one per fileset. Some of the fields of this structure include the 
file set identifier, the type of file set (read-only, read/write, or backup), the 
identifiers and dates of the last backup, the last clone and other copies, the 
fileset's creation date and last update date, the number of files in the fileset, 
infonnation about disk quotas, and so on. For detailed infonnation about this 
structure, see the aSF DeE Application Development Reference. 

51.5.7.2 Getting the Status of One Fileset 

VC _ VolumeStatus() returns the same fileset infonnation as 
VC_ListVolumesO, but for only one (specified) file set. It takes an RPC 
connection, a socket address, an aggregate identifier, and a fileset identifier 
as input parameters, and returns the status (a ftserver _status structure) as an 
output parameter. (See the previous section and the aSF DeE Application 
Development Reference for infonnation about this structure.) 

This is an unprivileged call. 

OSF DeE Application Development Guide 



Manipulating Filesets 

51.5.7.3 Getting the Status of the Fileset Server 

Currently active operations ("transactions") are the basis for all file server 
operations, such as manipulating processes or filesets. When an operation is 
started a transaction is opened, and at the end of the operation the 
transaction is closed. Transactions are explained further in Section 51.7. 

VC _ VolserStatus() returns a list of all active transactions on the fileset 
server. These transactions cover all file server operations, such as rename, 
delete, create, move, and copy. 

The transaction information is represented by an array of 
flserver transStatus structures. The structures contains information such as 
the transaction identifier, the aggregate identifier, the file set identifier, a 
descriptor of the open file set, the time the transaction was started, and the 
time the transaction was last active. For more information, see the aSF DeE 
Application Development Reference. 

51.5.8 Syntax Summary 

The VC ... () functions are as follows: 

• VC_BackupVolume(): Makes a backup copy of a file set (DCE LFS 
file sets only) 

• VC _ CreateVolume(): Creates a new file set (DCE LFS filesets only) 

• VC _ DeleteVolume(): Deletes a file set (DCE LFS filesets only) 

• VC_DumpVolume(): Dumps recent changes to a fileset 

• VC _ ListVolumes(): Gets a list of filesets on a particular aggregate 

• VC_MoveVolume(): Moves a fileset from one aggregate to another 
(DCE LFS filesets only) 

• VC_RenameVolume(): Renames a fileset 

• VC_RestoreVolume(): Restores previously saved changes to a fileset 
(DCE LFS filesets only) 

• VC_SetQuota(): Sets the disk space quota for a file set (DCE LFS 
filesets only) 

OSF DeE Application Development Guide 51-11 



DeE Distributed File Service 

51-12 

• VC _ SyncServer(): Removes file sets from an aggregate that are not 
listed as being there in the Fileset Location Database 

• VC _ SyncVldb(): Synchronizes the Fileset Location Database with the 
actual state of an aggregate 

• V C _ VolserStatus( ): Reports the status of a fileset server 

• VC _ VolumeStatus(): Reports the status of a particular fileset 

• VC _ VolumeZap(): Deletes a fileset without updating the Fileset 
Location Database (DCE LFS filesets only) 

A syntax summary of each VC function follows. 

#include <param.h> 
#include <sysincludes.h> 
#include <stds.h> 
#include <common data.h> 
#include <rpc.h> 
#include <pthread.h> 
#include <cma _ exception.h> 
#include <compat.h> 
#include <nubik.h> 
#include <fldb _proc.h> 
#include <flserver .h> 
#include <flclient.h> 
#include <fcntl.h> 
#include <ftserver _proc.h> 
#include <queue.h> 
#include <volume.h> 
#include <fldb data.h> 
#include <ftserver .h> 
#include <ftserver trans.h> 
#include <aggr .h> 
#include <volc.h> 

long VC_BackupVolume( 
rpc_binding_handle_t RpcBinding, /* in */ 
struct sockaddr *servAddrp, /* in */ 
unsigned long aggrld, /* in */ 
struct afsHyper *filesetIDp) /* in * / 

OSF DeE Application Development Guide 



long VC _ CreateVolume( 
rpc _ hinding_ handle _ t RpcB in ding , /* in * / 
struct sockaddr *servAddrp, /* in */ 
unsigned long aggrld, /* in */ 
char *filesetNamep, /* in */ 
struct afsHyper *filesetIDp) /* out */ 

long VC _ DeleteVolume( 
rpc _ hinding_ handle _ t RpcBinding, /* in * / 
struct sockaddr *servAddrp, /* in */ 
unsigned long aggrld, /* in */ 
struct afsHyper *fi lese tIDp ) /* in * / 

long VC_DumpVolume( 
rpc _ hinding_ handle _ t RpcB inding, /* in * / 
struct sockaddr *servAddrp, /* in */ 
struct afsHyper *filesetIDp, /* in */ 
unsigned longfromAggrld, /* in */ 
struct ftserver_Date *dumpDatep, /* in */ 
char *filename) /* in */ 

long VC _ ListVolumes( 
rpc_hinding_handle_tRpcBinding, /* in */ 
struct sockaddr *servAddrp, /* in */ 
unsigned long aggrld, /* in */ 
int allFlag, /* in */ 
struct ftserver _status **resultPtr, /* out */ 
long * sizep) /* out * / 

long VC _ MoveVolume( 
struct afsHyper *filesetIDp, 
struct sockaddr *fromservAddrp, 
unsigned longfromaggrld, 

/* in */ 
/* in */ 

/* in */ 
struct sockaddr *toservAddrp, 
unsigned long toaggrld) 

long VC _ RenameVolume( 
struct vldhentry *entryp, 
char * o IdNam ep , 
char *newNamep) 

OSF DeE Application Development Guide 

/* in */ 
/* in */ 

/* in */ 
/* in */ 
/* in */ 

Manipulating Filesets 

51-13 



DeE Distributed File Service 

long VC _RestoreVolume( 
rpc_hinding_handle_t ToRpcBinding, /* in */ 
struct sockaddr *toservAddrp, /* in */ 
unsigned long toaggrld, /* in */ 
struct afsHyper *filesetIDp, /* in */ 
char *filesetNamep, /* in */ 
int override, /* in * / 
char *filename) /* in * / 

long VC_SetQuota( 
rpc_hinding_handle_t RpcBinding, /* in */ 
struct sockaddr *servAddrp, /* in */ 
unsigned long aggrld, /* in */ 
struct afsHyper *filesetIDp, /* in */ 
unsigned long quota) /* in */ 

long VC_SyncServer( 
rpc _ hindiilg_ handle _ t RpcBinding, /* in * / 
struct sockaddr *servAddrp, /* in */ 
unsigned long aggrJd) /* in */ 

long VC_SyncVldh( 
rpc_hinding_handle_t RpcBinding, /* in */ 
struct sockaddr *servAddrp, /* in */ 
unsigned long aggrld) /* in */ 

long VC _ VolserStatus( 
rpc_hinding_handle_t RpcBinding, /* in */ 
struct sockaddr *servAddrp, /* in */ 
ftserver_transEntries *rstatusp) /* out */ 

long VC _ VolumeStatus( 
rpc_hinding_handle_t RpcBinding, /* in */ 
struct sockaddr *servAddrp, /* in */ 
unsigned long aggrld, /* in */ 
struct afsHyper *filesetIDp, /* in */ 
struct ftserver _status * statusp ) /* out * / 

51-14 OSF DeE Application Development Guide 



Manipulating Filesets 

long VC_ VolumeZap( 
rpc_hinding_handle_t RpcBinding, /* in */ 
struct sockaddr *servAddrp, /* in */ 
unsigned long aggrld, /* in */ 
struct afsHyper *filesetlDp) /* in * / 

51.6 The VL Functions: Interacting with the Fileset 
Location Database 

The Volume Location (VL ... () functions are used by remote clients to 
interact with the Fileset Location Server. (To interact with the file sets 
themselves, use the FTSERVER ... O functions.) As described in Chapter 
49, each fileset has one entry in the FLDB, and this entry is accessed by the 
Fileset Location Server. 

The VL ... () functions are the basic means by which DFS Cache Managers 
locate resources, primarily filesets, in a DCE cell. The locations of file sets 
are listed in the Fileset Location Database (FLDB), which is primarily read 
and updated by the Fileset Location Server. 

The VL ... () functions fall into several categories: 

• Fileset location: These functions determine the location of a file set 
given either its assigned unique identifier ("uniquifier") or its name. 

• Fileset maintenance: These functions create, delete, and change 
attributes of filesets, enumerate entries in the Fileset Location Database, 
report statistics, and change attributes of file set-bearing servers. 

• Obtaining configuration information: This function allows an 
application to get configuration information about a cell from the Fileset 
Server. 

The VL ... () functions have, in addition to the RPC handle that is common to 
all RPC functions, a second common argument, which is always the last 
output parameter. This parameter contains the RPC error codes, if any RPC 
errors occurred during the call. It is of type error _status _ t, which is defined 
in Part 3 of this guide. 

OSF DeE Application Development Guide 51-15 



DeE Distributed File Service 

51.6.1 The Fileset Location Database Entry 

51-16 

An FLDB entry contains the following information: 

• Fileset name 

• Fileset type (read/write, read-only, or backup) 

• Information about all of the servers on which the file set is replicated 

• Information used for replicating and cloning the file set 

• The DCE principal for the fileset 

This information is represented by the vldbentry structure, which is defined 
as follows. It is discussed fully in the OSF DeE Application Development 
Reference. 

struct vldbentry{ 
char name[MAXNAMELEN]; 
unsigned long volumeType; 
unsigned long nServers;O 
struct afsNetAddr siteAddr[MAXNSERVERS]; 
unsigned long sitePartition[MAXNSERVERS]; 
unsigned long siteFlags[MAXNSERVERS]; 
unsigned long sitemaxReplicaLatency[MAXNSERVERS]; 
struct kerb _princ _name sitePrincipal[MAXNSERVERS]; 
struct afsUUID siteOwner[MAXNSERVERS]; 
struct afsUUID siteObjID[MAXNSERVERS]; 
struct afsHyper VoIIDs[MAXVOLTYPES]; 
unsigned long VoITypes[MAXVOLTYPES]; 
struct afsHyper cioneld; 
unsigned long flags; 
unsigned long maxTotalLatency; 
unsigned long hardMaxTotalLatency; 
unsigned long minimumPounceDally; 
unsigned long defaul tMaxReplicaLatency; 
unsigned long reciaimDally; 
unsigned long WhenLocked; 
unsigned long spare1; 
unsigned long spare2; 
unsigned long spare3; 
unsigned long spare4; 
char LockerName[MAXLOCKNAMELEN]; 

OSF DeE Application Development Guide 



Manipulating Filesets 

char charSpares[50]; 
} 

The fields of this structure are 

name The string naming the file set. 

volumeType 

nServers 

siteAddr 

The file set type, one of the following: 

• VOLTIX_TO_ VOLTYPE(RWVOL) (read/write) 

• VOLTIX_TO_ VOLTYPE(ROVOL) (read-only) 

• VOLTIX_TO_ VOLTYPE(BACKVOL) (backup) 

The macro VOLTIX TO VOLTYPE takes one of the three 
types as its argument and produces the actual type 
representation, which is internal. 

The number of servers that contain this fileset, up to 
MAXNSERVERS. 

An array of server addresses; a value higher than the value of 
nServers is meaningless. 

sitePartition An array listing aggregate identifiers for the fileset on each 
server; a value higher than the value of nServers is 
meaningless. 

siteFlags Flags for each server, as described in the aSF DeE 
Application Development Reference under VL. 

sitemaxReplicaLatency 
The maximum age, in seconds, that a file set replica can be 
without the Replication Server attempting to update it. 

sitePrincipal 
The name of the DeE principal. 

siteOwner The UUID of the authentication group that can modify site 
information. 

siteObjId The UUID of the site. 

VolIDs The file set IDs for all related filesets. 

VolTypes The types of those related filesets. This a\fay and the previous 
one are paired. 

OSF DeE Application Development Guide 51-17 



DeE Distributed File Service 

51-18 

cloneld IDs of cloned copies of a file set. 

flags General flags, as opposed to site flags, as described in the aSF 
DCE Application Development Reference under VL. 

maxTotalLatency 
The maximum age, in seconds, a cached copy of data from a 
file set can be before the DFS Cache Manager seeks to refresh 
it. 

hardMaxTotalLatency 
The fileset age at which the Cache Manager will refuse to use 
cached data. 

minimumPounceDally 
The amount of time, in seconds, for the Replication Server to 
wait before attempting to retrieve a new token after losing 
one. 

defaultMaxReplicaLatency 
The age, in seconds, a replica can be before the replication 
server will not trust it. 

reclaimDally 
The time, in seconds, between keep-alive messages sent by the 
Cache Manager. 

WhenLocked 
The time at which this entry was locked, if it is currently 
locked. 

LockerName 
The name of the user holding the current lock on the entry, if 
any. 

Caution: While DFS gives you the ability to alter any of this 
information, doing so could have severe ramifications 
throughout the file system. You should not attempt to 
alter any of this information directly unless you are 
fully aware of the consequences. (See the aSF DCE 
Administration Guide for further information.) 

In addition to the vldbentry structure, the compactvldbentry structure 
holds a subset of this information. The latter, being much smaller, is more 
efficient to pass around. (See Section 51.6.2 for a discussion of this.) 

OSF DeE Application Development Guide 



Manipulating Filesets 

The standard fileset types are obtained with a call to the 
VOLTIX_TO_ VOLTYPE macro with one of the following three values: 

RWVOL Read/write fileset 

ROVOL Read-only fileset 

BACKVOL Backup file set 

51.6.2 Fileset Location 

There are two ways to get the FLDB entry for a fileset: by the fileset's name 
or by its unique identifier. 

VL_GetEntryByID() and VL_GetEntryByName() return a full FLDB 
entry for the given fileset. This is the most straightforward way to get fileset 
information from the FLDB. 

If VL_ GetEntryByID() is being used, there are two input parameters: a 
fileset ID (an afsHyper structure) and the fileset type (a number). A fileset 
has a number of IDs (one per distinct type); you just need to supply one of 
them. The type is used to distinguish the various copies of a file set from the 
read/write version because you could be asking for information about any 
of these and they share the same name. The type is used as a hint to 
locating the correct entry. IfVL_GetEntryByName() is being used, there 
is a single input parameter, a string. 

In addition to VL_GetEntryByID() and VL_GetEntryByName(), DFS 
provides two functions to get "compact" information from the FLDB. 
These functions, VL _ GetCEntryByID() and VL _ GetCEntryByName( ), 
take the same arguments and have the same behavior as the 
VL _ GetEntryByID() and VL _ GetEntryByName() functions, except that 
instead of returning structures, they return compactvldbentry structures. 

The compact entry has the following fields from the original structure: 

• name 

• volumeType 

• nServers 

• sitePartition 

OSF DeE Application Development Guide 51-19 



DeE Distributed File Service 

51-20 

• siteFlags 

• sitemaxReplicaLatency 

• volIDs 

• VolTypes 

• c10neld 

• flags 

• maxTotalLatency 

• hardMaxTotalLatency 

• minimumPounceDalIy 

• defaultMaxReplicaLatency 

• reclaimDalIy 

• WhenLocked 

• LockerName 

There is also one additional field, siteCookies. The contents of this field 
can be used to generate detailed site infonnation; more infonnation on this 
is given later in this section. 

The FLDB stores infonnation about the servers on which a fileset is 
available, such as addresses, server partition numbers, and so on. 
Depending on your configuration, a fileset may exist on only one server or 
on a large number of servers. Because there is no way to guess how much 
server data will have to be stored for a file set, VL _ GetEntryByld() and 
VL _ GetEntryByName() may not be able to return all of the server 
infonnation that is available in a single call. An FLDB entry can contain up 
to 16 addresses for a fileset, but each server can have up to four addresses, 
so a fileset could have as many as 64 addresses. 

In order to get this additional infonnation, you must use the 
VL _ GetNextServersByID( ) and VL _ GetNextServersByName() 
functions. As with the functions described previously, the only difference 
between the two is the means of identifying the fileset. 

The VL _ GetNextServersByID() and VL _ GetNextServersByName() 
functions are used to get a list of all of the file servers that contain a given 
fileset. Call them repeatedly until you have received all of the server 

OSF DeE Application Development Guide 



Manipulating Filesets 

information. Each produces an output value whose low-order bit is set to 1 
if the results from this call end the list. Otherwise, this bit is set to 0 (zero). 

This iteration is done by feeding the functions a start position. This 
indicates how far through the list of servers you have gotten; the initial 
value .is 0 (zero). VL _ GetNextServersByIDO and 
VL_ GetNextServersByName() will return, along with the expected data, 
a new start number to use in the next call. You simply keep calling the 
functions with the new start numbers until you run out of servers, which is 
signalled by the functions returning a special error code 
(VL _ ENDOFLIST). The iterator is not used except as input to the 
subsequent call. 

If the next call to the function would return VL _ ENDOFLIST, the low
order bit will be set in the output flags parameter. 

The first time VL _ GetNextServersByID() or 
VL _ GetNextServersByName() is called, the data looks like the output 
from VL_GetEntryByIDO and VL_GetEntryByNameO. If you know 
that you are going to want to retrieve all of the server information, use the 
server functions instead of VL_ GetEntryByID() and 
VL_ GetEntryByName(). 

The inputs to VL _ GetNextServersByID() aiJ.d 
VL _ GetNextServersByName() are analogous to those for 
VL _ GetEntryByID() and VL _ GetEntryByName(); the former takes a 
fileset ID and a type, and the latter takes a fileset name (a string). 

The following code fragment obtains a list of all servers that contain the 
user.jones file set. 

char *fileset = "user.jones"; 
unsigned long startIterator, newIterator, flags; 
struct vldbentry *entry; 
error_status_t error; 
long nextServ = 0; 
int j; 

while (nextServ ! = VL_ENOOFLIST && ((nextServ ! = 0) I I (flags & j) 0) ) 
{ 

nextServ = VL_GetNextServersByName(Rpc_Handle, fileset, 
startIterator, &newIterator, &entry, &flags, &error); 

if (error) 
printf ("Got an error! \n"); 

OSF DeE Application Development Guide 51-21 



DeE Distributed File Service 

else 

} 

} 

startlterator = newlteratorj 
printf ( II Servers: \n ") j 

for(j=Oj j<16 && j < entry->nServersj j++) 
/* net address is in two pieces, a short and a string */ 
printf(" %2d: %d%s\n", j, entry[j]->type, entry[j]->data)j 

As with VL _ GetEntryByID() and VL _ GetEntryByName(), there are 
also analogs for the server functions that produce compact FLDB entries. 
These functions are VL _ GetCNextServersByID() and 
VL _ GetCNextServersByName(), and they behave as the similarly named 
function pair described previously. 

The' 'compact" functions, as mentioned earlier, store a compacted version 
of the server information instead of the larger version found in the 
vldbentry structure. This compacted format is only useful if it is easy to 
convert from this to an expanded format. VL _ ExpandSiteCookie() does 
exactly this. It takes the cookie field from a compactvldbentry structure 
and returns a siteDesc structure, which contains network addresses and the 
DeE principal. 

51.6.3 Fileset Entry Maintenance 

51-22 

Most of the VL ... () functions relate to maintaining the FLDB. This 
maintenance includes routine activities like creating, deleting, and 
modifying entries, obtaining various information, changing the servers 
associated with filesets, and locking filesets to block other access to them. 
This maintenance is usually initiated by system administrators, but 
applications may need to create and maintain filesets and their associated 
data as well. 

You should lock file set entries before modifying them or their filesets; this 
lock will serve as a signal to others who may wish to operate on it. Locks 
are discussed in Section 51.6.3.2. 

In order to modify FLDB entries, you must have administrator privileges on 
the FLDB or, in some cases, be in the owner group for any file server 
entries that your action refers to. 

OSF DeE Application Development Guide 



Manipulating Filesets 

51.6.3.1 Creating and Deleting Fileset Entries 

The functions VL_ CreateEntry() and VL _ DeleteEntry() do what their 
names imply, they create and delete FLDB entries. 

VL _ CreateEntry() is used to create a new FLDB entry; creating the actual 
file set is a separate issue. You have to supply a full vldbentry structure, as 
described earlier. You must fill in all fields except the name of the user who 
last locked the entry. 

The FLDB entry that you supply to VL _ CreateEntry() includes a fileset 
ID. Before creating an entry, you need to allocate this ID. You really need 
to allocate three such IDs: one for the source, one for the backup, and one 
for a replica. 

The functions VL _ GetNewVolumeId( ) and VL _ GetNewVolumeIds() 
allocate fileset IDs for future use. VL _ GetNewVolumeId() allocates one 
ID; VL _ GetNewVolumeIds() takes an argument that specifies the number 
of identifiers to reserve. 

Avoid allocating more IDs than you actually need because these IDs are 
kept forever once they are allocated. There is no way to reclaim them. 
While the limit on the total number of IDs is large, it is still finite, and it is 
beneficial to keep the numbers representing IDs as low as possible. The 
best approach is to allocate IDs right before you need them, rather than 
allocating a large block and then using only a few of them later. 

VL_DeleteEntryO deletes an entry from the FLDB. As with other 
functions in this set, you must separately remove the actual file set. 
VL _ DeleteEntry() takes two arguments: the file set ID and file set type. 

Because there is only one FLDB entry per fileset, deleting the entry 
automatically deletes information about backups, clones, and replicas. The 
filesetType parameter to VL _ DeleteEntry() is used as a hint; if you know 
the type of fileset, you should supply this information so that the function 
can locate the entry more easily. 

If you do not know the type, use a value of -1. 

OSF DeE Application Development Guide 51-23 



DeE Distributed File Service 

51-24 

51.6.3.2 Locks 

In order to reserve an FLDB entry for your exclusive use, such as to write to 
it, you must first lock it. There is no way to lock a fileset directly; all locks 
are handled through the FLDB. 

Locking an FLDB entry alerts the FLDB that the file set is reserved for 
writing by one particular client. Applications are free to bypass locks and 
alter the fileset directly; locks are purely advisory. You should make sure 
your applications attempt to set locks before modifying FLDB entries or 
filesets; applications must never make modifications without setting locks 
first. Locks are there to help you: that is, to protect you from other 
applications (including user commands) that might attempt to manipulate 
the same file sets that you are manipulating. However, locks do not enforce 
anything, and if any application bypasses the use of locks, the potential for 
incompatible changes exists. 

The function used to set a lock is VL _ SetLock(). It takes three arguments: 
a fileset ID, file set type, and a set of options (represented as a number; the 
following names are the names of constants). The options indicate the 
reason for the lock, such as VLOP _MOVE for moving the fileset and 
VLOP _DELETE for deleting the fileset. You should set the correct options 
so that other applications attempting to access the FLDB entry know why 
the lock is in place. 

A list of the possible options follows: 

• VLOP MOVE 

• VLOP RELEASE 

• VLOP BACKUP 

• VLOP DELETE 

• VLOP DUMP 

• VLOP RESTORE 

• VLOP ADDSITE 

Any client that tries to lock a locked file set entry will be informed of the 
existing lock, and its attempt to obtain a lock will fail. 

You should make sure you release the lock as soon as you are done with it, 
so that the file set entry will be available to others who need to write it. 

OSF DeE Application Development Guide 



Manipulating Filesets 

VL _ ReleaseLock() releases a fileset lock acquired by VL _ SetLock(). It 
takes three arguments: the fileset ID, fileset type, and a mask for the FLDB 
lock options to clear. 

51.6.3.3 Modifying Fileset Entries 

Sometimes it is necessary to change information in an FLDB entry, such as 
a fileset name or server information, to reflect changes on the file servers. 
For example, backup facilities may need to do this. You can change any 
field of an FLDB entry, although as discussed before, it can be dangerous to 
change them without being aware of the consequences. 

VL _ ReplaceEntry() replaces one entry in the FLDB with another. As with 
VL _ CreateEntry(), you are responsible for making sure the new entry is 
complete. The function takes four arguments: the fileset ID for the entry 
you wish to change, the file set type, the new entry, and the lock fields to be 
cleared at the end of the operation. 

Calling VL _ ReplaceEntry() is functionally equivalent to calling 
VL _ CreateEntry() with the new entry then calling VL _ DeleteEntry( ) 
with the old entry; however, actually doing this is prohibited because you 
cannot have two file sets with the same name or ID. 

51.6.3.4 Modifying Server Addresses 

A machine can have several network addresses, generally corresponding to 
different networks for which the machine has an interface. Because 
network addresses sometimes change, and network interfaces may be added 
and dropped from server machines, and addresses specified when the server 
is first added to the file system may become out-of-date and need to be 
changed. The functions described in this section are used to be added, 
remove, change, and look up these addresses. 

VL_AddAddress() declares another network address for a server. It takes 
two arguments: any current address for the server (to identify it) and the 
address to be added. All known addresses can be found by the 
VL _ GetSiteInfo() call. 

OSF DeE Application Development Guide 51-25 



DeE Distributed File Service 

51-26 

VL _ RemoveAddress( ) removes a network address from the list of 
addresses for a server. It takes two arguments, the associated RPC 
connection and the address to be removed. 

VL _ ChangeAddress() changes one of the network addresses for a file 
server to a new value. It is comparable to the VL_AddAddress(OldAddr, 
NewAddr) sequence followed by VL_RemoveAddress(OldAddr), but does 
not require that the set of addresses have space available for a new entry. 

The maximum number of addresses that a server can have is 
ADDRSINSITE. 

In order to get all of the addresses for a server, use the VL _ GetSitelnfo() 
function, which returns all known server addresses and the DCE principal, 
given anyone address. It produces a siteD esc structure as output. This 
structure contains several fields: 

• Addr, an array of four site addresses 

• KerbPrin, a string identifying the principal 

• Owner, the UUID for the owning authentication group 

• ObjID, the UUID for the server itself 

• CreationQuota, the maximum number of filesets allowed (0 means 
unlimited) 

• CreationUses, the number of file sets that currently exist 

51.6.3.5 Modifying the Set of Servers 

In addition to modifying addresses and principals for existing servers, DCE 
provides a way to add and change servers themselves in the FLDB. 

The VL_ CreateServerO function adds a server to the FLDB. It takes a 
siteD esc structure, described previously. Before you can create entries on a 
server or modify the server's addresses, you must create it in the FLDB. 
Merely having a File Exporter running on the server is not sufficient; if the 
FLDB is not told about the server explicitly, it will not be able to locate 
file sets on the servers in question. This is an operation that should be 
performed only once. If the FLDB contains servers marked as deleted, one 
of these is reused to save space. 

OSF DeE Application Development Guide 



Manipulating Filesets 

The VL _ AlterServer() function makes changes to an existing server. It 
takes an address (any single address by which the server is known can be 
used) and a siteAlter structure, which specifies the properties to change. 
The siteAlter structure is defined as follows: 

struct siteAlter { 
unsigned long Mask; 
char KerbPrin[MAXKPRINCIPALLEN]; 
afsUUID Owner; 
afsUUID ObjID; 
unsigned long CreationQuota; 
unsigned long CreationUses; 
unsigned long spare1; 
unsigned long spare2; } 

The mask is the bitwise OR of the options for the fields to be altered; the 
new values for those fields are taken from the rest of this structure. (Any 
other values that are filled in are ignored.) The options are 

• SITEALTER PRINCIPAL 

• SITEALTER OWNER 

• SITEALTER _ OBJID 

• SITEALTER _ CREATIONQUOTA 

• SITEALTER CREATIONUSES 

• SITEALTER DELETEME 

CreationQuota is the maximum number of filesets that can be created on 
the server. If it is 0 (zero), there is no limit. 

CreationUses is the current number of entries in the FLDB that point to 
this server. Do not modify this field. 

OSF DeE Application Development Guide 51-27 



DeE Distributed File Service 

51.6.3.6 Manipulating Other FLDB Information 

51-28 

If SITEALTER_DELETEME is specified, the server is deleted from the 
FLDB. It is an error to combine this bit with any other, or to delete a server 
that is still in use. Once a site is deleted, there is no way to retrieve it. The 
memory used to store the data is zeroed and reused by the next site 
creation. 

It is sometimes useful to be able to get a list of all FLDB entries, so that 
you can perform some global actions or just survey the existing filesets. 
The VL _ ListEntry() function provides a list of all entries in the FLDB. 
The vldbentry structure for each is provided; this structure lists a variety of 
information about the entry, and was described earlier in this chapter. 

You should be sure that you really want information about the entire FLDB 
before issuing this call repeatedly. The database could be quite large. 

VL _ ListEntry() provides FLDB entries one at a time by using an iterator, 
as described earlier. The function returns, along with an entry, an entry 
number saying where to start on the next call. On subsequent calls, you 
pass in that number and it starts there, rather than at the beginning. On the 
first call, pass 0 (zero) for this value. This allows you to get all of the 
information, although it generally takes many calls. When that number is 
returned as 0 (zero), all of the entries have been supplied. 

This number is the only input argument to VL _ ListEntry(). Three values 
are placed into the output buffer: an estimate of the number of entries 
remaining, the start number for the next call, and the returned entry. 

VL_ListByAttributesO addresses two limitations in the VL_ListEntryO 
mechanism: that each FLDB entry is returned in individual calls, and that 
no selection of FLDB entries is done at the database location itself. 
VL _ ListBy Attributes() uses a selector structure that describes the subset 
of the FLDB entries that should be returned. The results are returned in an 
array (up to MAXBULKLEN entries). 

The selector is a VldbListBy Attributes structure. 

struct VldbListBy Attributes { 
unsigned long Mask; 
struct afsNetAddr site; 
unsigned long partition; 
unsigned long volumetype; 
struct afsHyper volumeid; 

OSF DeE Application Development Guide 



Manipulating Filesets 

unsigned long flag; 
unsigned long sparel; 
unsigned long spare2; 
unsigned long spare3; 
unsigned long spare4; 
unsigned long spareS; }; 

The fields are as follows: 

site 

partition 

The network address of the server. 

The aggregate numeric rD. 

volumetype The fileset type, one of the following: 

• (VOLTIX _TO _ VOLTYPE(RWVOL) 

• VOLTIX _TO _ VOLTYPE(ROVOL) 

• VOLTIX _ TO _ VOLTYPE(BACKVOL) 

volumeid The file set rD. 

flag The options. 

Mask A value for the whole FLDB, indicating the fields about 
which information is desired. Possible mask values are 

Site VLLIST _SITE (Oxl) 

Partition VLLIST_PARTITION (Ox2) 

Fileset type VLLIST _ VOLUMETYPE (Ox4) 

Fileset ID VLLIST _ VOLUMEID (Ox8) 

Flags VLLIST_FLAG (OxlO) 

To generate a mask, take the bitwise OR of the constants listed previously 
for the fields you want to see. (The numeric values are provided for 
convenience; you should always use the constants.) 

For example, to select all filesets on a particular server and aggregate, use a 
mask value of Ox3 and fill in the site and partition fields with the particular 
site and aggregate in which you are interested. 

More information about this data structure is provided in the OSF DeE 
Application Development Reference. 

OSF DeE Application Development Guide 51-29 



DeE Distributed File Service 

51-30 

As with VL _ ListEntry( ), iteration is used to get all of the entries, but up to 
MAXBULKLEN entries are returned on each call. 

VL _ ListBy Attributes() takes two input parameters: the structure 
described previously and the iteration value (starting with 0). It returns four 
values: the number of entries returned, the entries, the next iterator value, 
and a flag. Only the low order bit of this flag is defined; if it is set, then this 
return includes the last matching entry. 

The following code obtains all read/write entries on a particular server; the 
ID of this server is presumed to be stored in the global variable 
This Server. 

struct VldbListByAttributes attrib; 
unsigned long iterator, newlterator, numEntries, flags; 
bulkentries *entries; 
error_status_t error; 
/* The size of the following array depends on how many 

filesets you expect to match. */ 
struct vldbentry AllEntries[256]; 
int lastFilledEntry = 0, j; 

attrib.volumeType = VOLTIX_TO_VOLTYPE(RWVOL); 
attrib.Mask = VLLIST_SITE I VLLIST_VOLUMETYPE; 
bcopy(&This_Server, &attrib.site, sizeof(afsNetAddr)); 

flags = 0; 
iterator = 0; 

while (flags == 0) 
{ 

VL_ListByAttributes(Rpc_Handle, &attrib, iterator, 
&numEntries, &entries, 
&newlterator, &flags, &error); 

if (error) 
printf(IIGot an error! \n"); 

else 

vldbentry *entry; 

iterator = newlterator; 
entry= &entries.bulkentries_val[O]; 

OSF DeE Application Development Guide 



Manipulating Filesets 

for(j=O; j<numEntries; j++, entry++, 
lastFilledEntry++) 

AIIEntries[lastFilledEntry] = entry; 

It is possible to get information about the FLDB itself, such as when servers 
started running, how many requests of what types have been made, and so 
on. VL _ GetStats() returns two data structures that describe both the 
specific operational statistics that have been gathered by this Fileset 
Location Server instance and the basic information describing the FLDB as 
a whole. 

The operational statistics, represented by the vlstats structure, include the 
following: 

• start_time, when the server started up 

• requests, the number of requests of each type of RPC procedure 

• aborts, the number of aborts of each type 

These last two are arrays; the index values for each RPC are listed in the 
aSF DeE Application Development Reference under the 
VL _ GetStats(3dfs) reference page. 

The basic FLDB information, a vital_ vlheader structure, contains 
frequently used global values and general information such as internal 
statistics. 

If you do not want all of the preceding information, you can get just a list of 
all active file servers known to the FLDB (in other words, any servers 
mentioned in it and not marked as deleted) by using the 
VL _ GenerateSites() function. This function uses an iterator, and provides 
siteD esc structures (see VL _ GetSiteInfoO) compacted together into a 
bulkSites structure, nine at a time. 

You can also check for communications problems involving the Fileset 
Location Server with the VL _ Probe() function. There are no error 
conditions specific to the Fileset Location Server, although the underlying 
communications mechanism may encounter errors and signal the errors in 
the final output parameter. 

OSF DeE Application Development Guide 51-31 



DeE Distributed File Service 

51.6.4 Obtaining Configuration Information 

There is a single function to get cell-wide information from the Fileset 
Location Server. VL _ GetCelllnfo() allows a DFS Cache Manager to learn 
all the configuration information about a cell simply by contacting one of 
the Fileset Location Server instances for that cell. It takes no input (other 
than the RPC connection) and returns a vlconf _cell structure containing the 
information. 

The vlconf _cell structure contains fields for the name of the cell, the cell's 
ID, the number of database servers on which Fileset Location Servers are 
running, and the network addresses and names of those servers. There is a 
limit on the size of these last two values (see the structure definition, 
described in the aSF DeE Application Development Reference); if the 
number of servers is greater than the limit imposed by this size, then there 
is no way to get the information about the additional servers. 

51.6.5 Syntax Summary 

51-32 

The functions in this set are 

• Fileset Location 

- VL _ExpandSiteCookie(): Expands compacted site representation 

- VL _ GetCEntryByID(): Gets the compact FLDB entry 
corresponding to a fileset ID 

- VL_GetCEntryByName(): Gets the compact FLDB entry 
corresponding to a fileset name 

- VL _ GetCNextServersByID(): Returns the next set of servers from 
a compact FLDB entry for a file set (using the ID for lookup) 

- VL _ GetCNextServersByName(): Returns the next set of servers 
from a compact FLDB entry for a file set (using the name for lookup) 

- VL _ GetEntryByID(): Gets the FLDB entry corresponding to a 
fileset ID 

- VL _ GetEntryByName(): Gets the FLDB entry corresponding to a 
fileset 

OSF DeE Application Development Guide 



Manipulating Filesets 

- VL _ GetNextServersByIDO: Returns the next set of servers for a 
fileset (using the ID for lookup) 

- VL_ GetNextServersByName(): Returns the next set of servers for 
a fileset (using the name for lookup) 

• Fileset Maintenance 

- VL _ AddAddress(): Declares another network address for a server 

- VL _ AlterServer(): Alters server information in the FLDB 

- VL _ ChangeAddress(): Alters a network address for a server 

- VL _ CreateEntry(): Creates a new FLDB entry 

- VL _ CreateServer(): Declares another server machine to the FLDB 

- VL _ DeleteEntry(): Deletes an entry from the FLDB 

- VL _ GenerateSites(): Lists all file servers known to the FLDB 

- VL _ GetNewVolumeld(): Allocates one file set ID 

- VL_ GetNewVolumelds(): Allocates several file set IDs 

- VL_ GetSitelnfo(): Finds out a server's addresses and principal 

- VL _ GetStats(): Gets FLDB and server statistics 

- VL_ListByAttributesO: Returns selected FLDB entries 

- VL _ ListEntry(): Lists the contents of the FLDB 

- VL _ Probe(): Checks whether the Fileset Location Server is 
reachable 

- VL_ReleaseLock(): Releases a previously held lock on an FLDB 
entry 

- VL_RemoveAddress(): Removes a network address for a server 

- VL _ ReplaceEntry(): Replaces an FLDB entry for a file set 

- VL_SetLockO: Marks an FLDB entry as locked 

• Obtaining Configuration Information 

- VL_ GetCelllnfo() Gets configuration information for the server's 
cell 

A syntax summary for each VL ... () function follows. 

OSF DeE Application Development Guide 51-33 



DeE Distributed File Service 

51-34 

#include <param.h> 
#include <sysincludes.h> 
#include <stds.h> 
#include <common data.h> 
#include <rpc.h> 
#include <pthread.h> 
#include <cma _ exception.h> 
#include <compat.h> 
#include <nubik.h> 
#include <fldb _proc.h> 
#include <flserver .h> 
#include <flclient.h> 

long VL _AddAddress( 
rpc _binding_handle _ t rpcB inding, 
struct afsNetAddr *OldAddr, 
struct afsNetAddr * AddrToAdd, 
eiioi_status_t *theCommStatus) 

int VL _ AlterServer( 

/* in */ 
/* in */ 

/* in */ 
/* out */ 

rpc_binding_handle_t rpcBinding, /* in */ 
struct afsNetAddr *Addr, /* in */ 
struct siteAlter *Attrs, /* in */ 
error _status_t *theCommStatus) /* out */ 

long VL _ ChangeAddress( 
rpc _binding_handle _ t rpcBinding, 
struct afsNetAddr *OldAddr, 
struct afsNetAddr *NewAddr, 
error _status_t *theCommStatus) 

long VL _ CreateEntry( 

/* in */ 
/* in */ 
/* in */ 
/* out */ 

rpc_binding_handle_t rpcBinding, /* in */ 
struct vldbentry *new, /* in */ 
error_status_t *theCommStatus) /* out */ 

long VL _ CreateServer( 
rpc_binding_handle_t rpcBinding, /* in */ 
struct siteDesc *FullSitelnfo, /* in */ 
error_status_t *theCommStatus) /* out */ 

OSF DeE Application Development Guide 



Manipulating Filesets 

long VL _ DeleteEntry( 
rpc_hinding_handle_t rpcBinding, /* in */ 
struct afsHyper *fi lese tID , /* in * / 
unsigned longfilesetType, /* in */ 
error_status_t *theCommStatus) /* out */ 

long VL _ ExpandSiteCookie( 
rpc_hinding_handle_t rpcBinding, /* in */ 
unsigned long Cookie, /* in */ 
struct siteDesc *FullSitelnfo, /* out */ 
error _status_t *theCommStatus) /* out */ 

long VL _ GenerateSites( 
rpc_hinding_handle_t rpcBinding, /* in */ 
unsigned long startH ere, /* in * / 
unsigned long *nextStartP, /* out */ 
struct hulkSites * TheseSites , /* out * / 
long *nSites, /* out */ 
error_status_t *theCommStatus) /* out */ 

long VL _ GetCellInfo( 
rpc_hinding_handle_t rpcBinding, /* in */ 
struct vlconf_cell *MyCell, /* out */ 
error _status_t *theCommStatus) /* out */ 

long VL_ GetCEntryByID( 
rpc_hinding_handle_t rpcBinding, /* in */ 
struct afsHyper *filesetID, /* in * / 
unsigned longfilesetType, /* in */ 
struct compactvldhentry *entry, /* out */ 
error_status_t *theCommStatus) /* out */ 

long VL_ GetCEntryByName( 
rpc_hinding_handle_t rpcBinding, /* in */ 
char *filesetName, /* in */ 
struct compactvldhentry *entry, /* out */ 
error_status_t *theCommStatus) /* out */ 

OSF DeE Application Development Guide 51-35 



DeE Distributed File Service 

long VL _ GetCNextServersByID( 
rpc_hinding_handle_t rpcBinding, /* in */ 
struct afsHyper *fi lese tID , /* in * / 
unsigned longfilesetType, /* in */ 
unsigned long startH ere, /* in * / 
unsigned long *nextStartP, /* out */ 
struct compactvldbentry *entry, /* out */ 
unsigned long *flags, /* out */ 
error_status_t *theCommStatus) /* out */ 

long VL _ GetCNextServersByName( 
rpc_hinding_handle_t rpcBinding, /* in */ 
char *filesetName, /* in */ 
unsigned long startH ere, /* in * / 
unsigned long *nextStartP, /* out */ 
struct compactvldhentry * entry , /* out */ 
unsigned long *flags, /* out */ 
error_status_t *theCommStatus) /* out */ 

long VL_ GetEntryByID( 
rpc_binding_handle_t rpcBinding, /* in */ 
struct afsHyper *fi lese tID , /* in * / 
unsigned longfilesetType, /* in */ 
struct vldhentry *entry, /* out */ 
error_status_t *theCommStatus) /* out */ 

long VL_GetEntryByName( 
rpc_hinding_handle_t rpcBinding, /* in */ 
char *name, /* in */ 
struct vldbentry *entry, /* out */ 
error _status_t *theCommStatus) /* out */ 

long VL _ GetNewVolumeld( 
rpc_hinding_handle_t rpcBinding, /* in */ 
unsigned long BumpCount, /* in */ 
struct afsNetAddr *serverAddr, /* in */ 
struct afsHyper *NewfilesetID, /* out */ 
error_status_t *theCommStatus) /* out */ 

51-36 OSF DeE Application Development Guide 



long VL _ GetNewVolumeIds( 
rpc_binding_handle_t rpcBinding, /* in */ 
unsigned long numWanted, /* in */ 
struct afsNetAddr *serverAddr, /* in */ 
struct bulkIds *newIDs, /* out */ 
error_status_t *theCommStatus) /* out */ 

long VL _ GetNextServersBy ID( 
rpc_binding_handle_t rpcBinding, /* in */ 
struct afsHyper *filesetID, /* in * / 
unsigned longfilesetType, /* in */ 
unsigned long startH ere, /* in * / 
unsigned long *nextStartP, /* out */ 
struct vldbentry *entry, /* out */ 
unsigned long *fiags, /* out */ 
error_status_t *theCommStatus) /* out */ 

long VL _ GetNextServersByName( 
rpc_binding_handle_t rpcBinding, /* in */ 
char *name, /* in */ 
unsigned long startH ere, /* in * / 
unsigned long *nextStartP, /* out */ 
struct vldbentry *entry, /* out */ 
unsigned long *fiags, /* out */ 
error_status_t *theCommStatus) /* out */ 

long VL _ GetSiteInfo( 
/* in */ 

/* in */ 
rpc _ binding_handle _ t rpcBinding, 
struct afsNetAddr *OldAddr, 
struct siteD esc *FullSitelnfo, 
error_status _ t *theCommStatus) 

/* out */ 
/* out */ 

long VL _ GetStats( 
rpc_binding_handle_t rpcBinding, /* in */ 
struct vldstats * stats, /* out * / 
struct vital_ vlheader *vital_ header, /* out * / 
error_status_t *theCommStatus) /* out */ 

OSF DeE Application Development Guide 

Manipulating Filesets 

51-37 



DeE Distributed File Service 

51-38 

long VL _ ListBy Attributes( 
rpc_binding_handle_t rpcBinding, /* in */ 
struct VldbListByAttributes *attributes, /* in */ 
unsigned long cookie, /* in * / 
unsigned long *nentries, /* out */ 
bulkentries * blkentries, /* out * / 
unsigned long *nextcookiep, /* out */ 
unsigned long *jiagp, /* out * / 
error_status_t *theCommStatus) /* out */ 

long VL _ ListEntry( 
rpc_binding_handle_t lpcBinding, /* in */ 
unsigned long previous_index, /* in */ 
unsigned long *count, /* out */ 
unsigned long *next_index, /* out */ 
struct vi db entry *entry, /* out */ 
error_status_t *theCommStatus) /* out */ 

long VL _ Probe( 
rpc _ binding_handle _ t rpcBinding , 
error _status_t *theCommStatus) 

long VL _ ReleaseLock( 

/* in */ 
/* out */ 

rpc_binding_handle_t rpcBinding, /* in */ 
struct afsHyper *filesetID, /* in */ 
unsigned longfilesetType, /* in */ 
long ReleaseType, 
error _status_t *theCommStatus) 

long VL _RemoveAddress( 
rpc _ binding_handle _ t rpcBinding, 
struct afsNetAddr AddrToRemove, 
error _status_t *theCommStatus) 

long VL _ ReplaceEntry( 

/* in */ 
/* out */ 

/* in */ 
/* in */ 

/* out */ 

rpc_binding_handle_t rpcBinding, /* in */ 
struct afsHyper *fi lese tID , /* in * / 
unsigned longfilesetType, /* in */ 
struct vldbentry *new, /* in */ 
long ReleaseType, 
error _status _ t * theC ommStatus) 

/* in */ 
/* out */ 

OSF DeE Application Development Guide 



Manipulating Filesets 

long VL _ SetLock( 
rpc_hinding_handle_t rpcBinding, /* in */ 
struct afsHyper *filesetID, /* in * / 
unsigned longfilesetType, /* in */ 
longjsOper, /* in */ 
error _status_t *theCommStatus) /* out */ 

51.7 The FTSERVER Functions: Interacting with the 
Fileset Server 

The Fileset Server (FTSERVER ... ()) functions are used to perform basic 
operations on filesets, such as creating, deleting, moving, and replicating 
them. Unlike the Volume Call (VC ... ()) functions, these functions do not 
change the corresponding entries in the Fileset Location Database. To do 
that, use the VL ... () functions, described in the previous section. Unless 
you need the extra flexibility that the FTSERVER ... () functions provide, 
you should use the VC ... () functions instead; the VC ... () functions do more 
for you automatically. 

All of the FTSERVER .•. () functions require authorization except 
FTSERVER _ ListAggregates(), FTSERVER _ ListVolumes(), 
FTSERVER _ AggregateInfo(), and FTSERVER _ GetOneVoIStatus(). 

Each FTSERVER ... () operation is carried out as a transaction, which can 
be logically viewed as an "open fileset" operation with an exclusive lock 
on the affected file set. The term "transaction" is somewhat of a misnomer 
here; Fileset Server transactions are not atomic. The Fileset Server does not 
use a 2-phase commit mechanism, nor does it attempt to undo changes on 
abort. Instead, the Filset Server's transactions are simply a convenient way 
of denoting state information being held by the Fileset Server itself. 

There is a large amount of state associated with holding a fileset open. That 
state is not returned to the client. So, if you open a transaction and do not 
complete it, the FLDB and file server are not returned to the states they 
were in before the transaction was opened. 

Fileset Server transactions do prevent simultaneous access to a file set. 
Opening a transaction signals to other servers that the fileset in question is 
unavailable while the Fileset Server is manipulating it. 

OSF DeE Application Development Guide 51-39 



DeE Distributed File Service 

Before calling any function except FTSERVER_CreateVolumeO or 
FTSERVER_GetOneVoIStatusO, you must first open a transaction by 
calling FTSERVER _ CreateTrans(), or the function fails. 
(FTSERVER_CreateVolumeO opens its own transaction automatically.) 
You then must explicitly close every transaction, even those created by 
FTSERVER_CreateVolumeO, with FTSERVER_DeleteTransO, or the 
affected file set rerpains locked even after you are done making changes to 
it, and other prQce~ses will not be able to access it. 

Transactions do not time out so long as they are still actively referenced, 
such as in a long-running operation like a dump. Once they are no longer 
being actively referenced, they time out after 10 minutes, and the file sets 
are restored to service. However, applications should not rely on timing 
out; you should call FTSERVER _ DeleteTrans() as soon as you no longer 
need a transaction. Timing out is provided to prevent file sets from 
becoming permanently unavailable if the failure of a machine or other 
problem interrupts a transaction before FTSERVER_DeleteTransO is 
called. 

51.7.1 Basic Transaction Functions 

51-40 

The functions in this section are used to create and delete transactions on 
filesets. No other functions in this set, except 
FTSERVER_CreateVolume() and FTSERVER_GetOneVoIStatus() can 
be called before a transaction has been opened for the file set in question. 

FTSERVER _ CreateTrans() creates a new fileset transaction and returns 
its unique transaction identifier. You must use this ID in all calls to 
FTSERVER ... () functions that operate on that file set. 

The function accepts a fileset ID, an aggregate ID (where the file set lives), 
and a set of options. The options represent the operations that will be 
performed while the file set is open and the status codes to report to other 
processes attempting to access the same fileset. The options are combined 
via bitwise OR in the options variable. 

OSF DeE Application Development Guide 



Manipulating Filesets 

The following options represent operations that will be performed on the 
fileset during the transaction: 

• FTSERVER_OP_DELETE() 

• FTSERVER_OP_DUMP() 

• FTSERVER_OP _RESTORE() 

• FTSERVER_OP_CLONEO 

• FTSERVER_OP_RECLONE() 

• FTSERVER_OP_GETFLAGS() 

• FTSERVER_OP_SETFLAGSO 

• FTSERVER_OP_SETSTATUSO 

• FTSERVER_OP_GETSTATUSO 

The following options represent the error codes that can be reported: 

o VOLERR _ PERS _LOWEST: The lowest bound for persistent errors. 

• VOLERR_PERS_DELETED: The file set has already been 
deleted/moved. 

• VOLERR_PERS_BADDUMPOPCODE: A bad opcode was passed to 
the dump. 

• VOLERR_PERS_BADDUMP: A bad dump fonnat. 

• VOLERR_PERS_BADFTSOPSVECTOR: A bad ftserver ops vector 
was passed in. 

• VOLERR_PERS_REPDESTROY: The file set was deleted by the 
rep server. 

• VOLERR PERS DAMAGED: The file set is inconsistent. - -
• VOLERR_PERS_BADVOLOPSVECTOR: A bad file set ops vector 

was passed in. 

• VOLERR TRANS LOWEST: The lowest bound for transient errors. - -
• VOLERR _TRANS_DELETE: The file set is being deleted/moved. 

• VOLERR_TRANS_DUMP: The file set is being dumped. 

• VOLERR _TRANS_RESTORE: The file set is being restored. 

OSF DeE Application Development Guide 51-41 



DeE Distributed File Service 

51-42 

• VOLERR _TRANS_CLONE: The fileset is being cloned. 

• VOLERR _TRANS _ RECLONE: The fileset is being recloned. 

• VOLERR TRANS LIST: Lists the filesets. - -
• VOLERR TRANS GETSTATUS: Gets the status of a file set. - -
• VOLERR TRANS CREATEFILESET: Creates a new fileset. - -
• VOLERR TRANS RELEASE: Releases a file set. - -
• VOLERR_TRANS_SETQUOTA: Sets the quota on a file set. 

• VOLERR_TRANS_FILESETEXISTS: A file set already exists. 

• VOLERR_TRANS_SETFLAGS: Sets the options on a file set. 

• VOLERR_TRANS_MOVE: The fileset is being moved. 

• VOLERR TRANS SETSTATUS: Sets the status on a file set. - -
• VOLERR_TRANS_COPYCLONE: Copies the clone to a new 

location. 

• VOLERR _TRANS _FORWARD: Copies the file set to a different 
server or aggregate. 

• VOLERR _TRANS _ BACKUPDUMP: Dumps a file set to tape. 

• VOLERR TRANS BACKUPRESTORE: Restores a fileset from - -
tape. 

• VOLERR_TRANS_REPGETSTATUS: The rep server gets the status 
on a fileset. 

• VOLERR_TRANS_REPSETSTATUS: The repserver sets the status 
on a file set. 

• VOLERR_TRANS_REPSETFILESETVERSION: The repserver sets 
the fileset version. 

• VOLERR _TRANS _ REPCLONE: The rep server clones a file set. 

• VOLERR _TRANS _ REPEDITSTATUS: The rep server edits file set 
status. 

• VOLERR _TRANS _ REPCLEARSTATUS: The rep server clears 
fileset status. 

• VOLERR _TRANS _ REPUNCLONE: The repserver unclones the 
file set. 

OSF DeE Application Development Guide 



Manipulating Filesets 

• VOLERR TRANS REPSWITCHFILESETS: 
switches filesets. 

The repserver 

• VOLERR TRANS REPGETFILESETCHANGES: The rep server 
gets file set changes. 

• VOLERR_TRANS_REPFORWARD: The repserver forwards the 
file set. 

• VOLERR_PERS_NOMEM: No more memory available. 

• VOLERR _ PERS _10: Pipe I/O failure. 

• VOLERR_TRANS_QUOTA: The file set is over quota. 

• VOLERR _ TRANS _HIGHEST: The upper bound for transient errors. 

Additional VOLERR codes are allocated as spares to provide for future 
expansion. 

If no option is set, the fileset is available. 

Any number of operation options can be specified, but only one error code 
may be given. The operation options are used by DFS to determine what 
operations may occur concurrently with this one; the error code is returned 
to any process that attempts to open the fileset for an incompatable 
operation. 

FTSERVER _ DeleteTrans() takes one argument (in addition to the RPC 
connection): a transaction ID, and deletes the transaction associated with it. 
Once you delete a transaction, you will not be able to perform 
FTSERVER ... () operations on the file set until you create another 
transaction. 

51.7.2 Creating, Deleting, and Cloning Filesets 

The functions in this section create, delete, clone, and update clones of 
filesets. They all apply only to DCE LFS filesets. All except 
FTSERVER_CreateVolumeO require that a transaction be open for the 
file set. 

FTSERVER _ CreateVolumeO is used to create a fileset. Like 
VC_CreateVolume, it takes an RPC connection, an aggregate ID, a fileset 
name, and a fileset ID. In addition, you must specify the fileset type and the 
ID of the parent file set. This parent fileset has nothing to do with where the 

OSF DeE Application Development Guide 51-43 



DeE Distributed File Service 

51-44 

fileset will eventually be mounted on the file server; rather, this refers to 
relationships with other filesets. For example, a copy of a file set has that 
file set as its parent. If you are creating a copy, use the file set ID for the 
source as the parent; if you are creating a new fileset, pass a 0 (zero) ID. 
Finally, FTSERVER_CreateVolumeO takes an option argument like the 
one taken by FTSERVER _ CreateTrans(). 

FTSERVER _ CreateVolume() returns a transaction ID, which should be 
treated like transaction IDs returned by FTSERVER _ CreateTrans(). 

The types of filesets are as follows: 

VOLTIX _ TO _ VOLTYPE(RWVOL): read/write fileset 

VOLTIX _TO _ VOLTYPE(ROVOL): read-only fileset 

VOLTIX _ TO _ VOLTYPE(BACKVOL): backup fileset 

The fileset will not actually be accessible until FTSERVER _ SetFlags() or 
FTSERVER _ SetStatus() is called to bring it online and the transaction 
ends. Be sure to call FTSERVER _ DeleteTrans() to close the transaction, 
or the file set will remain unavailable until the transaction times out. 

The following example shows the creation of a read/write file set. 

char *fileset = II fOO" ; /* arbitrary name * / 
long AggID = 0; /* arbitrary disk no. */ 
struct afsHyper filesetID, parentID; 
unsigned long transactionID; 
int code; 
error_status_t error; 

/* return code */ 

bzero(&filesetID, sizeof(filesetID)); 
bzero(&parentID, sizeof(parentID)); 
bzero(&transactionID, sizeof(transactionID)); 

/* PARENT FILESET */ 

/* get ID */ 
VL_GetNewVolumeId(Rpc_Handle, 1, &filesetID, &error); 
if (error) 

printf("Got an RPC error while getting fileset ID! \n"); 

OSF DeE Application Development Guide 



Manipulating Filesets 

/* create fileset */ 
code = FTSERVER_CreateVolurne(Rpc_Handle, AggID, fileset, 

VOLTIX_TO_VOLTYPE (RWVOL) , 
&parentID,&filesetID, 
&transactionID); 

if (code ! = 0) 
printf("Got an RPC error while creating parent fileset! \n"); 

/* bring fileset online */ 
code = FTSERVER_SetFlags(Rpc_Handle, transactionID, VOL_RW); 
if ( code ! = 0) 

printf ("Got an RPC error while bringing fileset online! \n ") ; 

/* delete transaction */ 
code = FTSERVER_DeleteTrans(Rpc_Handle, transactionID); 
if (code ! = 0) 

printf("Got an RPC error while deleting transaction! \n"); 

FTSERVER_DeleteVolume() deletes a fileset from the aggregate. It takes 
two arguments: an RPC connection and the transaction ID that was 
obtained from FTSERVER _ CreateTrans( ) or 
FTSERVER _ CreateVolume(). 

FTSERVER _ Clone() creates a clone (read-only or backup copy) of a 
read/write fileset. It takes an RPC connection and transaction ID and the ID, 
type, and name of the copy. 

To make administration easier, the name of the clone should be related to 
the name of the source fileset. For example, a backup clone of fileset roo 
could be named roo.backup. 

Once you have made a clone, you may wish to update it from time to time. 
This is more efficient than making new clones and then deleting the old 
ones, as only the information that has changed will need to be updated. 

FTSERVER _ ReClone() brings a clone up to date with the source file set. 
It takes three arguments: an RPC connection, the transaction ID of the 
source file set, and the fileset ID of the clone. 

There is no explicit "unclone" function to delete a clone. 
FTSERVER_DeleteVolume(), if given a clone as a parameter, removes 
that clone only. 

OSF DeE Application Development Guide 51-45 



DeE Distributed File Service 

51.7.3 Getting and Modifying Fileset Status 

51-46 

The functions in this section are used to find and modify the status of 
filesets; for instance, to move them online or offline, or to examine or 
change fileset header fields. 

You must explicitly set the status of a file set when you create it, and 
manually change it, when using the FTSERVER ... () functions. The status 
determines the conditions under which the fileset can be accessed, and what 
types of operations can be done. 

FTSERVER _ SetFlags( ) is used to set the current status of a file set. 

The status is a bitwise OR of values from the following list: 

• VOL RW indicates that the fileset allows both read and write access. 

• VOL_READONLY indicates that the fileset is read-only. Writes to this 
file set will fail. 

• VOL _ DELONSALVAGE indicates that the fileset is not usable; it will 
be deleted upon reboot. This is an intermediate state used to guarantee 
correctness for large operations such as cloning a fileset. 

• VOL OFFLINE indicates that the file set is offline. Reads and writes to 
this fileset will fail. 

• VOL_BUSY indicates that the fileset is temporarily unavailable. 

• VOL _ OUTOFSERVICE indicates that the file set is not usable; it will 
not be deleted upon reboot. 

• VOL _ DEAD MEAT indicates that the file set is in the process of being 
deleted. 

• VOL_OK is the bitwise negation of VOL_BUSY, VOL_OFFLINE, 
VOL_DELONSALVAGE, and VOL_OUTOFSERVICE. It is used to 
mark a file set as usable. 

• VOL _ REPFIELD is used for replication and should never be modified 
by applications. 

FTSERVER _ GetFlags() gets the current availability of a file set. It takes 
two arguments: an RPC connection and the transaction ID of the file set in 
question, and returns a mask derived from the options described previously 
for FTSERVER _ SetFlags(). 

OSF DeE Application Development Guide 



Manipulating Filesets 

In addition to the current availability, there are other types of status 
information that can be set. FTSERVER _ SetStatus() sets this status 
information. It takes four arguments: an RPC connection, the transaction ID 
for the file set, a mask, and a structure representing the status to set. The 
status is an ftserver status structure. 

struct ftserver _status { 
ftserver _status_static vss; 
ftserver _status_dynamic vsd; 
} 

struct ftserver _status _static { 
struct afsHyper volId; 
struct afsHyper parentld; 
struct afsTimeval cloneTime; 
struct afsTimeval vvCurrentTime; 
struct afsTimeval vvPingCurrentTime; 
unsigned long type; 
unsigned long accStatus; 
unsigned long accError; 
unsigned long states; 
unsigned long reclaimDally; 
long static_spare1; 
long static_spare2; 
long static_spare3; 
long static_spare4; 
long static_spareS; 
long static _spare6; 
long static_spare7; 
char voIName[FTSERVER_MAXFSNAME]; 
char static_cspares[16]; 
} 

struct ftserver _status_dynamic { 
struct afsTimeval creationDate; 
struct afsTimeval updateDate; 
struct afsTimeval accessDate; 
struct afsTimeval backupDate; 
struct afsTimeval copyDate; 
struct afsHyper vol version; 
struct afsHyper backupJd; 

OSF DeE Application Development Guide 51-47 



DeE Distributed File Service 

51-48 

struc~ afsHyper cloneld; 
struct afsHyper IlBackld; 
struct afsHyper llFwdld; 
long fileCount; 
long maxQuota; 
long minQuota; 
long size; 
long owner; 
long unique; 
long index; 
long rwindex; 
long backuplndex; 
long parentIndex; 
long clonelndex; 
long dynamic _spare1; 
long dynamic _ spare2; 
long dynamic _spare3; 
long dynamic_spare4; 
long dynamic_spareS; 
long dynamic_spare6; 
char statusMsg[128]; 
char dynamic _ cspares[16]; 
} 

The fields of these structures are as follows: 

• ftserver status static - -
- volId: The ID of the fileset, which should be unique throughout the 

cell. 

- parentId: The fileset ID of the read/write source, if this is a read
only or backup clone. 

- cloneTime: The time the last clone was made of this file set. 

- vvCurrentTime: The most recent time that the fileset version 
number was known to be current on the read/write site. 
Applications should not modify this field. 

- vvPingCurrentTime: The most recent time that a read-only site 
tried to contact a read/write site to determine how current the file set 
version number there is. Applications should not modify this field. 

OSF DeE Application Development Guide 



Manipulating Filesets 

- type: The fileset's type. 

- accStatus: The access status on the file set; the status will be one of 
the codes described under FTSERVER _ CreateTrans(). This field 
should never be modified by an application program. 

- accError: The access error on a fileset; this will be one of the codes 
described under FTSERVER _ CreateTrans(). This field should 
never be modified by an application program. 

- states: The status flag, as set by FTSERVER _ SetFlags(). 

- reclaimDally: The time, in seconds, between keep-alive messages 
sent by the Cache Manager. 

- static_spare! through static _spare3: Spares reserved for future use. 

- volName: The name of the fileset. 

- static _ cspares: Reserved for future use. 

• ftserver _status_dynamic 

- creationDate: The date of the fileset's creation. 

- updateDate: The timestamp of the last modification by a user. 

- accessDate: The last access time by a user. 

- backupDate: The date at which the last backup clone was made. 

- copyDate: The time that this copy of the fileset was created. 

- volVersion: The current version number of the file set. 

- backupld: The file set ID of the latest backup version of this fileset. 

- c1oneld: The file set ID of the clone. 

- IIBackld and IIFwdld: Links all related file sets in a doubly linked 
list; used to find the correct file set to unclone when deleting a 
file set. 

- fileCount: The number of files in the file set. 

- maxQuota: The maximum amount of disk space the fileset is 
allowed to take up, expressed in units of 1024 bytes. A value of 0 
(zero) means there is no limit. 

OSF DeE Application Development Guide 51-49 



DeE Distributed File Service 

51-50 

- minQuota: The amount of disk space guaranteed to be available for 
the file set, expressed in units of 1024 bytes. Other filesets on the 
partition are prevented from growing if their growth would impinge 
on this limit. 

- size: The size of the fileset, in units of 1024 bytes. 

- owner: The DFS ID of the owner of the file set. 

- unique: The uniquifier, a value combined with other IDs to 
guarantee uniqueness (do not modify this). 

- index, rwindex, backupIndex, parentlndex, and cloneIndex: 
Information about where other related file sets are located within an 
aggregate; for the remote application user they are meaningless. 
They cannot be set remotely. 

- dynamic_spare! through dynamic_spare6: Spares reserved for 
future use. 

- statusMsg: A message field used by low-level code to transmit error 
messages back up to the caller (across the FTServer-to-kernel 
interface). Applications should not use this field. 

- dynamic _ cspares: Reserved for future use. 

The mask is the bitwise OR of identifiers for the fields to be set. The fields 
are defined by the following constants: 

• VOL STAT VOLNAME - -
• VOL STAT VOLID - -
• VOL STAT VERSION - -
• VOL_STAT_UNIQUE 

• VOL STAT OWNER - -
• VOL STAT TYPE - -
• VOL STAT STATES - -
• VOL STAT ACCSTATUS - -
• VOL STAT BACKUPID - -
• VOL STAT PARENTID - -
• VOL STAT CLONEID - -

OSF DeE Application Development Guide 



Manipulating Filesets 

• VOL STAT LLBACKID - -
• VOL STAT LLFWDID - -
• VOL STAT CREATEDATE - -
• VOL STAT UPDATEDATE - -
• VOL STAT ACCESSDATE - -
• VOL STAT COPYDATE - -
• VOL STAT FILECOUNT - -
• VOL_STAT_MAXQUOTA 

• VOL_STAT_MINQUOTA 

• VOL STAT SIZE - -

• VOL STAT INDEX - -
• VOL STAT BACKVOLINDEX - -
• VOL STAT STATUSMSG - -
• VOL STAT CLONETIME - -

• VOL STAT VVCURRTIME - -
• VOL STAT VVPINGCURRTIME - -
• VOL STAT ACCERROR - -
• VOL STAT BACKUPDATE - -
• VOL STAT RECLAIMDALLY - -

FTSERVER _ GetStatus() returns the status information listed previously 
for a file set. It takes two arguments: an RPC connection and the transaction 
ID for the file set in question, and returns a ftserver _status structure 
containing the information. 

FTSERVER _ GetStatus(), like most calls in this section, requires that 
FTSERVER _ CreateTrans() and FTSERVER _ DeleteTrans() be called, 
thus locking the file set while the status check is in progress. An easier 
solution for those cases where you wish to quickly check the status of a 
single file set is FTSERVER _ GetOneVoIStatus(). This function does not 
require the two transaction calls, and does not require any special 

OSF DeE Application Development Guide 51-51 



DeE Distributed File Service 

authentication to use. It takes an RPC handle, the identifier for the fileset to 
check, and an aggregate ID, and returns the same status as 
FTSERVER _ GetStatus() does in the output buffer. 

51.7.4 Dumping, Restoring, and Moving Filesets 

51-52 

This section describes functions for dumping and restoring file sets and 
moving dumps around. 

Dumping refers to the process of copying a fileset, or portion thereof, to a 
byte stream, which is suitable for storage on tape or as an intermediate 
format when moving filesets between file server machines that store file sets 
in different formats. Restoring refers to conversion of a byte stream back 
into the appropriate fileset format and placement back into the file system. 
Dumping is different from backing up because the result is not a mountable 
file set. In order to use a backed up fileset, you merely need to bring it 
online, which is a fast operation. In order to use a dumped fileset, you need 
to restore it. However, dumping is necessary for offline storage. 

FTSERVER _ Dump() dumps a fileset as a byte stream. It takes four 
arguments: an RPC connection, the transaction ID for the affected file set, a 
specification of what to dump, and an RPC pipe to accept the output. The 
date is represented as an ftserver _Date structure, described previously. 

The ftserver _Date structure contains a mask slot that indicates which of 
the other two fields, the date or version number, to use. A mask of 1 means 
to use the date, and a mask of 2 means to use the version. A mask of 0 
means to use neither. All other values are undefined. 

The dump data itself is returned as an output pipe parameter. 

A file set dump consists of a file set header dump followed by a set of 
individual vnode dumps, followed by an end-of-fileset opcode. Individual 
vnode dumps consist of a vnode start opcode, multiple vnode descriptor 
opcodes, and an end-of-vnode opcode. 

Complete information about these opcodes is given in the aSF DeE 
Application Development Reference. The information that is represented 
follows: 

• Maximum uniquifier, the value of the highest uniquifier that has been 
used. 

OSF DeE Application Development Guide 



Manipulating Filesets 

• Maximum quota, the maximum number of 1024-byte units that the 
file set can grow to (0 (zero) means no limit). 

• Minimum quota, the minimum number of 1024-byte units that the 
file set has reserved (0 (zero) means no reservation). 

• Actual disk usage, in 1024-byte units. 

• The number of files in the fileset. 

• Fileset owner ID. 

• Creation date, when the fileset ID was first used by this fileset. 

• Last access date. 

• Last update date. 

• Message of the day, a string that gives human readable information 
about the particular state of this fileset; that is, why the file set is 
unavailable, when it will be back, and so on. 

• Volume version. 

• Fileset type from which the dump was made. 

• Vnode type. 

• Vnode link count. 

• Vnode data version. 

• Vnode fileset version. 

• Vnode access time. 

• Vnode modify time (from the client rather than from server). 

• Vnode change time. 

• Vnode true modify time (from the server rather than from client). 

• Vnode group owner. 

• Vnode author (the person who last modified the fileset). 

• Vnode owner. 

• Vnode UNIX mode bits. 

• Vnode access control lists. 

OSF DeE Application Development Guide 51-53 



DeE Distributed File Service 

• Vnode size. 

• Vnode data. 

If you are planning to immediately restore the dumped fileset elsewhere, for 
efficiency reasons, you should call FTSERVER_ForwardO instead of 
calling FTSERVER _ Dump() followed by FTSERVER _ Restore( ). 

FTSERVER _ Restore() restores a DCE LFS fileset from a dump. It takes 
three arguments: an RPC connection, the transaction ID for the file set, and 
a third argument that is reserved for future use (use 0 (zero)). 

Dumping and restoring filesets are CPU- and network-intensive processes, 
so you should be careful about their use. 

FTSERVER _Forward() dumps a fileset from one file server and restores 
it on another. The destination must be a DCE LFS fileset. It takes five 
arguments: an RPC connection, a transaction ID for the source fileset, an 
ftserver _Date structure describing what kind of dump to make (this is the 
same as the corresponding argument to FTSERVER_DumpO), the address 
of the destination machine in an ftserver _ dest structure, and a transaction 
ID for the file set on the destination machine. 

You must first create a file set on the destination machine, and then open 
transactions on both the source and destination filesets. 

51.7.5 Enumerating Filesets, Aggregates, and Transactions 

51-54 

The functions in this section supply information about filesets, aggregates, 
and current transactions. Because these functions do not directly 
manipulate filesets, they do not require open transactions. 

FTSERVER _ ListAggregates() returns the names, devices, IDs, and types 
of all valid aggregates on a server. It takes an RPC connection on the server 
in question. It returns an array of ftserver_aggrList structures. This 
structure has four main fields that correspond to the four pieces of 
information returned for each aggregate. The array contains up to 
FTSERVER _ MAXAGGR() structures. 

FTSERVER _ListAggregates( ) uses iterators to return the aggregates. 

To get more specific information about a single aggregate, use 
FTSERVER _ Aggregatelnfo(). This function returns detailed information 
about a single aggregate, unlike FTSERVER _ListAggregates(), which 

OSF DeE Application Development Guide 



Manipulating Filesets 

returns general infonnation about all of them. 
FTSERVER _ Aggregatelnfo() takes two arguments: an RPC connection 
and an aggregate ID, and returns a ftserver_aggrlnfo structure. The 
structure contains the following infonnation: 

• The name of the partition on which the aggregate resides 

• The new device name on which the aggregate is mounted 

• The type of aggregate (for example, UFS or DCE LFS) 

• The number of usable l024-byte units allocated 

• The total space free, in l024-byte units 

• The reserved space, in l024-byte units 

If you want to list the contents of an aggregate, use 
FTSERVER_ListVolumes(). This function returns a list of all filesets on 
a given aggregate. It takes three arguments: an RPC connection, an 
aggregate ID, and an iterator. It returns two values: the iterator to use for 
the next call and the actual infonnation. As with other functions that use an 
iterator, you should give an initial value of 0 (zero) and use the output 
iterator as the next input iterator value until you have all of the data. 

This operation has substantial overhead because it reads the file set headers 
for all the file sets on that aggregate on the disk. If you are really only 
interested in a small number of filesets, you would be much better off using 
FTSERVER_ GetStatus() or FTSERVER _ GetOneVolStatus() to get 
infonnation on those specific filesets only. For infonnation about the 
infonnation returned, see Section 51.7.3. 

Finally, FTSERVER _ Monitor() is provided to return a list of all active 
transactions involving a given file server. This function allows processes to 
monitor the progress of a transaction. The function takes one argument, an 
RPC connection for the server, and returns an array of ftserver _trans 
structures containing the results. 

The following infonnation about each transaction is returned: 

• The transaction ID 

• The open fileset's aggregate 

• The open fileset's ID 

• The descriptor of the open fileset 

OSF DeE Application Development Guide 51-55 



DeE Distributed File Service 

• The time the transaction was last active 

• The time the transaction started 

• The transaction error code, if any errors have occurred 

• The transaction's status bits 

51.7.6 Syntax Summary 

The FTSERVER ... () functions are as follows: 

• Transactions 

- FTSERVER _ CreateTrans(): Opens a transaction on a fileset 

- FTSERVER _ DeleteTrans(): Closes a transaction on a fileset 

• Creating, Deleting, and Cloning (LFS filesets only) 

- FTSERVER _ Clone(): Creates a read-only copy of a fileset 

- FTSERVER _ CreateVolume(): Creates a new fileset 

- FTSERVER_DeleteVolumeO: Deletes a fileset 

- FTSERVER_ReCloneO: Brings a clone up to date with the 
read/write copy 

• Modifying Fileset Status 

- FTSERVER _ GetFlags(): Gets the current availability of a fileset 

- FTSERVER_GetOneVoIStatusO: Gets the full status of a file set 
without requiring explicit transactions 

- FTSERVER _ GetStatus(): Gets the full status of a file set 

- FTSERVER_SetFlagsO: Sets the current availability of a file set 

- FTSERVER_SetStatusO: Sets the various status information for a 
fileset 

• Dumping, Restoring, and Moving 

- FTSERVER_Dump(): Dumps a fileset to a character stream 

- FTSERVER_ForwardO: Dumps a file set from one file server and 
restores it to another (DCE LFS filesets only) 

51-56 OSF DeE Application Development Guide 



Manipulating Filesets 

- FTSERVER _ Restore(): Restores a fileset from a character stream 
(DeE LFS file sets only) 

• Enumerating Filesets, Aggregates, and Transactions 

- FTSERVER_ AggregateInfo(): Provides specific information 
about an aggregate 

- FTSERVER _ ListAggregates(): Identifies all valid aggregates on a 
server 

- FTSERVER_ListVolumes(): Lists the filesets on a file server 

- FTSERVER _ Monitor(): Identifies all active transactions 
involving a given file server 

A syntax summary for each FTSERVER ... ( ) function follows. 

#include <param.h> 
#include <fcntl.h> 
#include <compat.h> 
#include <ftserver _proc.h> 
#include <queue.h> 
#include <sysincludes.h> 
#include <ftdb data.h> 
#include <ftserver .h> 
#include <ftserver .h> 
#include <ftserver trans.h> 
#include <rpc.h> 

long FTSERVER _ AggregateInfo( 
rpc _ binding_handle _ t RpcBinding, /* in * / 
unsigned long aggrID, /* in */ 
struct ftserver _aggrInfo *aggrDesc) /* out */ 

long FTSERVER _ Clone( 
rpc_binding_handle_t RpcBinding, /* in */ 
unsigned long transID, /* in */ 
unsigned long newType, /* in */ 
char *newName, /* in */ 
struct afsHyper *newfilesetID) /* inout */ 

OSF DeE Application Development Guide 51-57 



DeE Distributed File Service 

long FTSERVER _ CreateTrans( 
rpc_hinding_handle_t RpcBinding, /* in */ 
struct afsHyper *filesetIDp, /* in */ 
unsigned long aggregateID, /* in * / 
unsigned longjlags, /* in */ 
unsigned long *transID) /* out */ 

long FTSERVER _ Create Volume( 
rpc_hinding_handle_t RpcBinding, /* in */ 
long aggregateID, /* in */ 
char *name, /* in */ 
unsigned long type, /* in * / 
unsigned longjlags, /* in */ 
struct afsHyper *parentID, /* in */ 
struct afsHyper *filesetID, /* in out * / 
unsigned long *transID) /* out */ 

long FTSERVER _ DeleteThans( 
rpc_hinding_handle_t RpcBinding, /* in */ 
unsigned long transID) /* in */ 

long FTSERVER _Delete Volume( 
rpc_hinding_handle_t RpcBinding, /* in */ 
unsigned long transID) /* in */ 

long FTSERVER _Dump( 
rpc_hinding_handle_t RpcBinding, /* in */ 
unsigned long transID, /* in */ 
struct ftserver_Date *dumpDate, /* in */ 
struct pipe_t *dataPipeP) /* out */ 

long FTSERVER_Forward( 
rpc_hinding_handle_t RpcBinding, /* in */ 
unsigned longfromTrans, /* in */ 
struct ftserver Date *fromDate, /* in * / 
struct ftserver _ dest * destAddress, /* in * / 
unsigned long destTrans) /* in */ 

51-58 OSF D"CE Application Development Guide 



Manipulating Filesets 

long FTSERVER _ GetFlags( 
rpc _ hinding_ handle _ t RpcB inding, /* in * / 
unsigned long transID, /* in */ 
unsigned long *flags) /* out */ 

long FTSERVER_GetOneVoIStatus( 
rpc_hinding_handle_t RpcBinding, /* in */ 
struct afsHyper *filesetID, /* in * / 
unsigned long aggrld, /* in */ 
unsigned long spare1, /* in * / 
ftserver _status * status) /* out * / 

long FTSERVER _ GetStatus( 
rpc_hinding_handle_tRpcBinding, /* in */ 
unsigned long transID, /* in */ 
struct ftserver _status * status) /* out * / 

long FTSERVER _ ListAggregates( 
rpc _ hinding_ handle _ t RpcB inding, /* in * / 
ftserver Jterator *inCookie, /* in */ 
ftserver Jterator *outCookie, /* out */ 
struct ftserver_aggrEntries *aggrEnts) /* out */ 

long FTSERVER _ ListVolumes( 
rpc _ hinding_ handle _ t RpcB inding, /* in * / 
unsigned long aggrID, /* in */ 
ftserver _ iterator * inC ookie , /* in * / 
ftserver Jterator *outCookie, /* out */ 
struct ftserver _statEntries *resultEnts[]) /* out */ 

long FTSERVER _ Monitor( 
rpc _ hinding_ handle _ t RpcB in ding , /* in * / 
struct ftserver _transEntries *transP) /* out */ 

long FTSERVER _ ReClone( 
rpc_hinding_handle_t RpcBinding, /* in */ 
unsigned long transID, /* in * / 
struct afsHyper *cloneID) /* inout */ 

OSF DeE Application Development Guide 51-59 



DeE Distributed File Service 

long FTSERVER _ Restore( 
rpc _ hinding_ handle _ t RpcBinding, /* in * / 
unsigned long transID, /* in * / 
unsigned long flags, /* in */ 
pipe_t *dataPipeP) /* in */ 

long FTSERVER _ SetFlags( 
rpc_hinding_handle_t RpcBinding, /* in */ 
unsigned long transID, /* in */ 
unsigned longflags) /* in */ 

long FTSERVER_SetStatus ( 
rpc _ hinding_ handle _ t Rp cB in ding , /* in * / 
unsigned long transID, /* in * / 
unsigned long mask, /* in * / 
struct ftserver _status * status, /* in * / 
unsigned long spare1) /* in */ 

51-60 OSF DeE Application Development Guide 



Chapter 52 

The BOS Server: Monitoring File 
Server Processes 

The BOS Server interface (BOSSVR •.• O) functions maintain all necessary 
DFS processes and software on DFS File Server machines. At the time the 
File Server machine is initially configured, a system administrator sets 
parameters for these operations, probably interactively using the BOS 
command suite; the functions in this chapter allow the manipulation of this 
information. Care must be taken in doing so, however, because such changes 
impact everyone who uses the server machines on which the operations are 
performed. 

The BOS interface is useful for writing administrative monitoring tools, 
such as monitoring whether a server is running or shutdown is reported. In 
addition, you can obtain statistics about the time of last restart and other 
similar information, which could be used in system monitoring applications. 

You can use this interface to write a graphical command interface, wherein 
an administrator may use a point-and-click interface to describe what 
servers should be running on which machines. 

The functions in this set fall into several categories: 

• Process Monitoring: Monitoring processes and restarting them upon 
failure. 

• Server Key Maintenance: Maintaining the set of authentication keys 
used by the various DFS servers. 

OSF DeE Application Development Guide 52-1 



DeE Distributed File Service 

• Binary Maintenance: Installing new binaries on the server machines and 
scheduling server restarts to pick up the newly installed binaries. 

• Authorization: Ensuring that only authorized users reconfigure the 
servers. Authentication of these users is handled by the DCE Security 
Service. 

Most of the functions in this set require that the caller be on the server's 
BOS user list. The ones that do not are 

• BOSSVR _ GetCellName() 

• BOSSVR _ GetStatus( ) 

• BOSSVR _ EnumerateInstance( ) 

• BOSSVR _ GetlnstanceInfo( ) 

• BOSSVR _ GetCellName() 

• BOSSVR _ GetlnstanceParm( ) 

• BOSSVR _ ListSUsers( ) 

• BOSSVR _ GetDates( ) 

• BOSSVR _ GetRestartTime( ) 

• BOSSVR _ GetLog( ) 

Note: There are situations in which BOSSVR _ GetLog() does 
require the caller to be on the BOS user list; see the discussion 
of this function later in this chapter for more information. 

52.1 Common Arguments 

52-2 

As with the other RPC interfaces, the functions in this set have two common 
arguments: an RPC handle that is supplied when the remote connection is 
first established, and an output parameter giving RPC error status. 

For the purpose of the examples in this chapter, we assume that the 
programmer has created a function to obtain an RPC handle and set the 
variable Rpc_Handle to its output. For information about creating RPC 
handles, see Part 3 of this guide. 

OSF DeE Application Development Guide 



The 80S Server: Monitoring File Server Processes 

All structure types described in this chapter are also defined as types; for 
example, struct bossvr _key and bossvr _ key are equivalent. The former 
form is used in this document. 

52.2 Configuration Files 

The BaS Server uses a configuration file dcelocal/var/dfs/BosConfig, 
which records all of the processes to be run when the BaS Server starts up. 
The BaS process itself should not be included in this file; doing this will 
result in process recursion and as a result performance penalties and 
possible system failures. 

Some of the functions described in this chapter, and some of the commands 
in the BaS command suite, modify the BosConfig file. This file should not 
be edited manually; use one of the two interfaces (application or command 
suite) to do this. The file format is internal to the BaS Server and is subject 
to change. 

52.3 Process Monitoring 

The process monitoring functions are responsible for bnode maintenance. 
These functions create and delete bnodes, examine and change their 
properties, and start and stop process execution on a server. 

52.3.1 Bnodes 

A bnode is a structure that gives the static characteristics of a process; that 
is, the characteristics that apply to every instance of a process with that 
name. Bnodes have types, and for any given type of bnode, the BOS Server 
has embedded code that defines how those types of processes are managed. 
There are two types of bnodes: simple bnodes and cron bnodes. 

All bnodes are parameterizable at bnode creation time. Bnode parameters 
are character strings, and each type of bnode has its own specific set of 
parameters. 

OSF DeE Application Development Guide 52-3 



DeE Distributed File Service 

52-4 

A simple bnode manages a single process, and manages it with a simple 
goal: to keep the process running. If a process managed by a simple bnode 
crashes, any resulting core file is saved for future reference and the process 
is restarted. If the process restarts too often in a given period, the bnode 
instance is marked as damaged and is shut down pending an operator's 
intervention. Most bnode instances in a File Server machine installation are 
simple bnodes. 

A simple bnode has only one parameter, which is the command string to be 
used to start the process. The command string is parsed by execve, and thus 
cannot contain the usual shell-provided expansions, such as those 
containing asterisks, but otherwise resembles a typical UNIX command. 
This command is reexecuted whenever the process needs to be restarted. 

A cron bnode manages a single process that is to be run either exactly once 
or periodically. Essentially, this is a generalization of the simple bnode that 
runs a process, but leaves it shut down after it exits until the next time that 
the process is scheduled to be executed. After a process's last scheduled 
execution (assuming that it has a last execution), a cron bnode deletes itself; 
this generally only occurs with once-only bnodes. 

A cron bnode has two parameters. The first is the command to be used to 
start the process to be managed, and the second is a string that can be parsed 
as a periodically recurring date, giving the times that the process should be 
run. 

The date format is one of the following (all are strings): 

• never 

• now 

• A day of the week and a time, separated by spaces, such as "wed 
16:00." Such processes run once per week. The day must come first 
and begin with a lowercase character. Use either the entire day name or 
the first three letters. . 

• A time, in 24-hour notation. The process runs once per day. 

OSF DeE Application Development Guide 



The BOS Server: Monitoring File Server Processes 

52.3.2 Creating and Deleting Bnodes 

Because processes are represented by bnodes, and most of the time the BOS 
Server is used to manage processes, the most fundamental BOS functions 
are those to create bnodes. 

You can use the function BOSSVR _ CreateBnode( ) to create a bnode. This 
function creates a bnode instance that represnts a new process to be run. The 
name you give that instance is used to refer to this bnode until you delete it. 
In addition to the name, you specify the type (simple or cron) and further 
parameters, the nature of which depends on the type. 

The following two examples create two bnodes, a simple one called test! 
and a cron one called test2. The simple bnode simply runs a program called 
test!; the cron bnode runs a program called test2 every Saturday at 23:00. 

handle_t Rpc_Handle; 
error_status_t error; 
int bos_error = 0; 
char *errorStringp = ""; 

/* assign Rpc_Handle */ 

bos_error = BOSSVR_CreateBnode(Rpc_Handle, "simple", 
"testl" , 
"/afs/tr/usr/bin/testl", 

1111 "", &error); 
if(error != error_status_ok) 

printf ("Got an error! (testl) \n\tError text: 
error_text(error»; 

else printf ("First call completed. \n"); 

%s\n" , 

bos_error = BOSSVR_CreateBnode(Rpc_Handle, "cron", 
"test2" , 
"/afs/tr/usr/bin/test2" , 
"sat 23:00", 
"", &error); 

if(error != error_status_ok) 
printf("Got an error! (test2)\n\tError text: %s\n", 

error_text(error»; 
else printf ("Second call completed. \n"); 

OSF DeE Application Development Guide 52-5 



DeE Distributed File Service 

if ((error == error_status_ok) && (bossvy_error 
printf ("Test Completed OK\n") ; 

} 

0» { 

To delete a bnode, first shut down all its processes (described later in this 
chapter) and then call BOSSVR _DeleteBnode(). This function takes the 
instance name, which you supplied to BOSSVR _ CreateBnode. If you only 
want to kill processes, and do not want to permanently remove those 
processes from the BOS Server start-up file, do not use this function. 
Operations on processes are described later in this chapter. 

52.3.3 Changing and Examining Bnode Instances 

52-6 

The BOS Server provides a number of functions for examining or changing 
various information associated with bnodes. This information includes: 

• Current run status 

• Permanent run status 

• Bnode type (cannot be changed once bnode is created) 

• Process start and stop times 

• bnode parameters (cannot be changed once bnode is created) 

• Lists of all known bnodes 

The most commonly accessed information about a bnode is its run status. 
The run status is, as the name implies, the status of the process associated 
with the bnode; that is, running or stopped. A process could be stopped for a 
number of reasons deriving from system problems that are beyond the scope 
of this guide. 

The function BOSSVR _ GetStatus() returns, in an output parameter, the run 
status of the named bnode. This status is a long integer; the following 
constants represent possible values: 

• BSTAT_SHUTDOWN: The process is not currently running. 

• BSTAT_NORMAL: The process is running normally. 

OSF DeE Application Development Guide 



The BOS Server: Monitoring File Server Processes 

• BSTAT STARTINGUP: The BaS Server is still starting up the 
process; likely, checking again will result in a normal status. 

• BSTAT_SHUTTINGDOWN: A kill signal has been sent to the process, 
but it has not exited yet. 

The functions BOSSVR _ SetStatus() and BOSSVR _ SetTStatus() set the 
status of a bnode to one of the previously listed options. The difference 
between the two is that BOSSVR_ SetStatus() records the change in the 
BaS initialization file, so that the change will be in effect in future startups 
of the BaS Server, while BOSSVR_ SetTStatus() changes the status only 
in the current environment. (The T stands for temporary.) Of course, a 
change made with BOSSVR _ SetStatus() can be changed by a later call to 
that function, or can be temporarily overridden. 

There is other useful information about a bnode, such as the bnode type and 
the parameters supplied when it was created. The function 
BOSSVR_ Getlnstancelnfo() provides such information about a bnode. It 
provides two output parameters, the type and a bossvr _status structure. The 
bossvr _status structure contains a number of fields, including the 
following: 

• procStartTime: The time this process last started 

• procStarts: The total number of times this process has been started 

• lastAnyExit: The last time this process exited 

• lastErrorExit: The last time this process got an error 

• errorCode: The last error code returned by a process 

To only obtain the parameters that are associated with a bnode, the function 
BOSSVR_ GetlnstanceParm( ) should be used instead of 
BOSSVR _ Getlnstancelnfo(). BOSSVR _ GetlnstanceParm() takes a 
bnode instance name and the parameter number (the first one is number 0 
(zero)). Simple bnodes have only one parameter, while cron bnodes have 
two. 

All of the preceding functions require the bnode instance name. One way to 
get a list of all names is to diligently keep track of all names as they are 
created. Another way is to use the function 
BOSSVR _ Enumeratelnstance(). This function can be used to enumerate 
all instance names at a server; however, because the number of instances is 
unknown, this function cannot return all of them at once. Thus, a single call 
to this function produces one instance. You use this function by continuing 

OSF DeE Application Development Guide 52-7 



DeE Distributed File Service 

to call it until there are no more instances, at which point the function 
signals this by returning an error code. You supply an instance number when 
calling the function; start with 0 (zero) and increment by one on each call. 

The following code stores the names of all the bnode instances into the 
array Savedlnstances. 

handle_t Rpc_Handle; 
long j; 
bossvr_out_string instance; 
char Savedlnstances[256]; 
error_status_t error; 
long code; 

/* assign Rpc_Handle */ 

for(j=O; (code != BZDOM) && (error == 0) 
&& (j < 256); j++) 

code = BOSSVR_Enumeratelnstance(Rpc_Handle, j, 
&instance, &error); 

if(error != error_status_ok) 
printf ("Got an error! \nError text: %s\n", 

error_text(error)); 
else { 

printf ("Call completed. \n") ; 
strcpy(Savedlnstances[j], instance.theString);} 

if (j == 256 && code != BZDOM) 
printf ("Too many instances! Give me more room! \n"); 

else printf ("%d instances. \n", j); 

52.3.4 Stopping and Starting Bnode Instances 

52-8 

The BOS Server provides functions to start, stop, and restart bnode 
instances. Most of these functions take a bnode instance name; some 
operate on all bnodes on the server. All of them take the standard two RPC 
arguments: the RPC handle and the RPC error status, which were described 
at the beginning of this chapter. Some of the following functions read the 

OSF DeE Application Development Guide 



The BOS Server: Monitoring File Server Processes 

initialization file, and some take arguments specifying the processes to 
manipulate. 

The following functions manage bnode instances: 

• BOSSVR _ ShutdownAll() shuts down all of the bnode instances at a 
server. It does not change the BOS Server initialization file, so all BOS 
processes start up again when BOS is restarted. 

• BOSSVR _ Restart() restarts a single bnode instance. If that instance is 
already running, the function stops it and restarts it. This function does 
not alter the initialization file. 

• BOSSVR_RestartAllO restarts all bnode instances on a server. Note 
that BOSSVR _ RestartAll() restarts all processes marked in the 
initialization file as runnable; processes that are currently running are 
shut down and restarted. This function does not alter the initialization 
file. 

BOSSVR _ RestartAll() does not restart the BOS Server itself. To do 
that, you must call BOSSVR _ ReBossvr(). 

• BOSSVR _ ReBossvr() restarts the BOS Server and then restarts all of 
the bnode instances at a server that are marked as runnable in the 
initialization file. It is like BOSSVR_ RestartAll() except that it also 
restarts the BOS Server itself. This is useful in cases where the BOS 
Server binary has changed and you want to start using the new version 
immediatel y. 

• BOSSVR _ StartupAll() starts all of the bnode instances at a server that 
are not running and that are marked as runnable in the BOS Server's 
initialization file. This call does not change the initialization file, or do 
anything to those bnode instances marked in the file as not runnable. It 
also does not restart processes that are already running; if you want to 
do that, you must use BOSSVR _ RestartAll() or BOSSVR_ ReBossvrO. 

It is not necessary to call BOSSVR _ ShutdownAll() before calling 
BOSSVR _ StartupAll(). 

• BOSSVR_ WaitAll() waits until all of the bnode instances that are 
changing state from running to not running, or vice versa, complete their 
state changes. The call does not return until all state changes are 
complete. When it is important to have the status of all bnode instances 
up-to-date before proceeding, this function should be called 
immediately after all the status-changing calls. 

OSF DeE Application Development Guide 52-9 



DeE Distributed File Service 

• BOSSVR _ SetRestartTime( ) and BOSSVR _ GetRestartTime( ) are 
used to set and retrieve the restart times associated with BOS processes 
and the BOS Server itself. It is useful to occasionally restart BOS 
processes to pick up new versions of binaries (for example, ones that 
have been installed on the File Server machine since the BOS Server 
started running), or to clean up after core leaks. 

52.4 Server Key Maintenance 

52-10 

The server key maintenance functions maintain the authentication keys used 
by DFS servers. More information about server keys can be found in Part 6 
of this guide. 

BOSSVR _ AddKey() adds a key to the server key database. It takes a 
principal name, the key version number, the new password to use, and a flag 
that indicates whether the change is local or global. The password is a 
string. 

The change can be either local to the BOS Server machine, or it can be 
exported to the Registry Server as well. If the value of this flag is nonzero, 
the change is local only. 

You can also add a key by calling BOSSVR_GenerateKey(), which 
generates a key randomly so that you do not have to provide one. There is 
no option for specifying a local or global change; all changes are global. 

BOSSVR _ ListKeys() returns the key given an iteration value. Like other 
iterative functions, you continue calling this, incrementing the iterator, until 
the end of the list is signaled. In this case, the error flag BZDOM will be 
returned when there are no more keys to return. 

BOSSVR_ListKeys() returns the key version number, the key, and a 
checksum value for each key. If the server is not running in NoAuth mode, 
only the checksum (rather than the key) is returned. 

BOSSVR _DeleteKey() removes the key with a given key version number 
from the key database. 

BOSSVR _ GarbageCollectKeys() removes all keys that are no longer used 
for a given principal. It operates on the local key file only. 

OSF DeE Application Development Guide 



The BOS Server: Monitoring File Server Processes 

52.5 Installing Binaries 

There are several functions for managing system binaries and reverting to 
older versions when necessary. 

The BOS Server maintains up to three copies of a program: the current 
version, a backup (.BAK) version, and an old (.OLD) version, which is 
older than the .BAK version. Generally, the .BAK version of a program is 
the previously installed version of the program. The .OLD version is created 
from the previous .BAK version, but only if this version is at least 7 days 
old or there is no already existing .OLD version. The BOS Server attempts 
to make sure that the .OLD version is at least a week old in case it is 
necessary to revert to a previous version of the software; if the BOS Server 
did not enforce this and several changes were made in a short amount of 
time, there would be no prior version to use. 

The function BOSSVR _ Install() installs a new version of a binary on a 
server. It takes the pathname (on the destination machine) of a program to 
install, a pipe to the source, and other information about the binary. 
BOSSVR _ Install() moves the current .BAK file to the .OLD file if it is at 
least a week old. It then moves the current file to the .BAK file and installs 
the new file. Any processes running the old binary at the time must be 
stopped and restarted to get the new version. This can be done by the 
application unless special privileges are needed to start the processes. 

The information you must supply is the destination pathname, the size of the 
binary, a set of flags (reserved for future use), the last modification date of 
the file, and a pipe that points to the actual file data. The pipe is of type 
pipe _ t; pipes are discussed in more detail in Part 3 of this guide. 

If the binary cannot be installed for some reason, such as disk space 
limitations, the following happens: 

1. BOSSVR _ Install() empties the input pipe to prevent RPC errors. 

2. The function deletes the temporary file that was being used to collect 
the new binary. 

3. The function returns the value BZINSTALLFAILED. 

The .BAK and .OLD files are not moved around until the entire binary has 
been successfully received in the temporary file. 

OSF DeE Application Development Guide 52-11 



DeE Distributed File Service 

Sometimes it is necessary to undo an installation; for example, if something 
went wrong in the installation. In that case, use the function 
BOSSVR_UnInstaIlO, which reverts to the previous version of a binary. It 
renames any existing .BAK file to be the currently installed program, and 
renames any existing .OLD file to be the new .BAK file. If there is no .BAK 
file but there is a .OLD file, it installs the .OLD file instead. (This situation 
can only exist if something unusual is done, such as manually operating on 
these files.) Note that the binary being uninstalled will be deleted from the 
server; if you want to keep a copy, you need to make the copy before calling 
this function. 

The age of binaries can be checked with BOSSVR _ GetDates(), which 
provides the modification times for a binary, its .BAK version, and its .OLD 
version. 

Occasionally, old versions of binaries on a server need to be removed. 
(Lack of disk space sometimes requires this.) The function 
BOSSVR _ Prune() can be used to delete prior versions and core files. 

The way to specify pruning actions is to pass the bitwise OR of the 
following flags. 

• BOSSVR_PRUNEOLDO deletes all.OLD files. 

• BOSSVR _PRUNEBAK() deletes all .BAK files. 

• BOSSVR _ PRUNECORE() deletes all saved core files. 

Note that BOSSVR_Prune() cannot be used to selectively remove files of a 
given type; the function removes all files of a given type (.BAK, .OLD, or 
core). If more selectivity is required, files must be removed manually. 

52.6 Authorization Issues 

52-12 

The functions in this section relate to authorization issues. Specifically, they 
manipulate the 'administrative user lists. 

All administrative list manipulation functions take a pathname argument 
that is the name of the user list file. If the filename contains any slashes, it is 
used as an absolute pathname. Otherwise, the path dcelocallvar/dfsl is 
prepended to the name and the resultant filename is used as the name of the 
file containing the user list. 

OSF DeE Application Development Guide 



The 80S Server: Monitoring File Server Processes 

All of these functions also have arguments that are reserved for future use. 
They are strings, so pass"" (the empty string) for these arguments. 

BOSSVR _ AddSUser() adds a user to the administrative user list contained 
in the named file. It takes a filename and a DeE Registry identity for the 
user to be elevated to administrative status. 

BOSSVR _ AddSUser() also takes a flag that indicates whether to create the 
file for the administrative user list if it does not already exist (in other 
words, if there are no other administrative users in the file specified). If the 
flag is 0 (zero), the file is not created and an error is returned; otherwise, the 
file is created. 

BOSSVR _ DeleteSUser() removes a user from a named administrative user 
list. The user's DeE principal (DeE Registry identity) is passed. This 
function also takes a flag that indicates whether the file should be deleted if 
this administrative user is the last one. A value of 0 (zero) means to keep the 
file; otherwise it is deleted. 

BOSSVR_ ListSUsers() enumerates the administrative users. It is an 
iterative function; keep calling it, incrementing the iterator, until the value 
BZDOM is returned to signal the end of the list. 

52.7 Miscellaneous Functions 

Some BOS functions cannot easily be categorized: 

• BOSSVR_GetCellNameO provides the name of the current cell (a 
string). This is similar to the pioctl call VIOCGETWSCELL but the 
piocti call finds the cell associated with the workstation on which the 
call is made, while BOSSVR _ GetCellName() instead finds the cell 
associated with the BOS Server. 

• BOSSVR _ Exec() executes a shell command in a bosserver subprocess. 
The command runs as root. The call does not return until the subprocess 
exits. Any output generated by the subprocess is discarded. 

• Most BOS Server processes write log files. BOSSVR _ GetLog( ) 
provides access to this data; it returns a pipe (see Part 3 of this guide) to 
which this output is fed. You must process the data in the pipe yourself. 
Logs are typically stored in dcelocallvar/dfs/adm. Because the BOS 
Server runs as root, logs in this directory are accessible to any BOS 

OSF DeE Application Development Guide 52-13 



DeE Distributed File Service 

Server process. If this function is called for a file not in this directory, 
however, the caller must be in the BOS Server's user list. See the aSF 
DeE Administration Guide for more information about the user list. 

52.8 Syntax Summary 

52-14 

The BOS Server functions are as follows: 

• Process Monitoring 

- BOSSVR _ CreateBnode( ): Creates a new process bnode instance 

- BOSSVR_DeleteBnode(): Deletes a bnode instance 

- BOSSVR _ Enumeratelnstance(): Enumerates all bnode instances 
on a server 

- BOSSVR _ GetInstance!nfo( ): Gets a basic bnode instance 
description 

- BOSSVR _ GetInstanceParm(): Gets the parameters for a bnode 
instance 

- BOSSVR _ GetRestartTime(): Gets the BOS Server restart process 
time 

- BOSSVR _ GetStatus( ): Gets the run status of a bnode instance 

- BOSSVR _ ReBossvr(): Restarts all servers, including the BOS 
Server 

- BOSSVR _ Restart(): Restarts a given BOS process 

- BOSSVR _ RestartAll(): Restarts all BOS processes 

- BOSSVR_SetRestartTimeO: Sets BOS Server process restart times 

- BOSSVR_SetStatus(): Sets the run status of a bnode instance 

- BOSSVR_SetTStatus(): Temporarily sets the run status of a bnode 
instance 

- BOSSVR _ ShutdownAll(): Shuts down all BOS processes 

OSF DeE Application Development Guide 



The 80S SeNer: Monitoring File SeNer Processes 

- BOSSVR _ StartupAll(): Starts all BOS processes 

- BOSSVR_ WaitAll(): Waits for all bnodes to stabilize their status 

• Server Key Maintenance 

- BOSSVR _ AddKey(): Adds a new server key to the database 

- BOSSVR _ DeleteKey(): Deletes the named server key 

- BOSSVR _ GarbageCollectKeys(): Gets rid of obsolete keys 

- BOSSVR _ GenerateKey(): Generates and adds a key to the server 
key database 

- BOSSVR_ListKeys(): Lists all known server keys 

• Binary Maintenance 

- BOSSVR _ GetDates(): Gets the modification times of a program 
and its backups 

- BOSSVR _ Install(): Installs a server binary on a server 

- BOSSVR _ Prune(): Deletes old and unnecessary binaries 

- BOSSVR _ UnInstall(): Reverts to an older copy of a server binary 

• Authorization 

- BOSSVR _ AddSUserO: Adds a user to the named administrative 
user list 

- BOSSVR_DeleteSUser(): Deletes a user from the named 
administrative user list 

- BOSSVR_ListSUsersO: Gets the list of all administrative users 

- BOSSVR _ SetNoAuthFlag(): Sets the flag that controls whether 
DFS servers check authorization 

• Miscellaneous 

- BOSSVR_Exec(): Executes a command from the BOS Server 

- BOSSVR _ GetCellName(): Gets the server's cell name 

- BOSSVR _ GetLog(): Retrieves a text log file 

Full syntax for each BOS Server function follows. 

OSF DeE Application Development Guide 52-15 



DeE Distributed File Service 

52-16 

#include<bbos ncs interface.h> 

const BOSSVR _ BSSIZE = 256; /* bosserver string length * / 

long BOSSVR _ AddKey( 
handle_t bosserverBinding, /* in */ 
char prinNameP[BOSSVR _BSSIZEj, /* in */ 
long kvno, /* in */ 
char passwdP[BOSSVR_BSSIZEj, /* in */ 
long loealOnly, /* in * / 
error _status_t *theCommStatus) /* out */ 

long BOSSVR _ AddSUser( 
handle_t bosserverBinding, 
char filename [BOSSVR _BSSIZE j, 
char typeStr[BOSSVR _BSSIZEj, 
charname[BOSSVR_BSSIZEj, 
char pcrmStr BOSSVR_BSSIZEj, 

/* in */ 
/* in */ 

/* in */ 
/* in */ 

/* in */ 
long createFile, /* in * / 
error _status_t *theCommStatus) 

long BOSSVR _ CreateBnode( 
handle _ t bosserverBinding, 
char type[BOSSVR_BSSIZEj, 
char instanee[BOSSVR _BSSIZEj, 
char pI [B OSSVR_BSSIZEj , 
charp2[BOSSVR_BSSIZEj, 
charp3[BOSSVR_BSSIZEj, 
charp4[BOSSVR_BSSIZEj, 
char p5[B OSSVR_BSSIZEj , 
char p6[B OSSVR_BSSIZEj , 
error _status_t *theCommStatus) 

long BOSSVR _ DeleteBnode( 
handle_t bosserverBinding, 
char instanee[BOSSVR_BSSIZEj, 
error _status_t *theCommStatus) 

/* out */ 

/* in */ 
/* in */ 

/* in */ 
/* in */ 
/* in */ 
/* in */ 
/* in */ 
/* in */ 
/* in */ 

/* out */ 

/* in */ 
/* in */ 

/* out */ 

OSF DeE Application Development Guide 



The 80S Server: Monitoring File Server Processes 

long BOSSVR _ DeleteKey( 
handle_t bosserverBinding, /* in */ 
char prinNameP[BOSSVR_BSSIZEj, /* in */ 
long kvno, /* in */ 
error_status_t *theCommStatus) /* out */ 

long BOSSVR _ DeleteSUser( 
handle_t bosserverBinding, /* in */ 
char filename[BOSSVR _BSSIZEj, /* in */ 
char typeStr[BOSSVR_BSSIZEj, /* in */ 
char name[BOSSVR_BSSIZEj, /* in */ 
long removeFile, /* in * / 
error_status_t *theCommStatus) /* out */ 

long BOSSVR_ EnumerateInstance( 
handle_t bosserverBinding, 
long instanceNum, 

/* in */ 
/* in */ 

bossvr _ out_string * result 
error_status_t *theCommStatus) 

long BOSSVR _ Exec( 
handle_t bosserverBinding, 
char cmd[BOSSVR_BSSIZEj, 
error_status_t *theCommStatus) 

long BOSSVR _ GarbageCollectKeys( 

/* out */ 
/* out */ 

/* in */ 
/* in */ 
/* out */ 

handle_t bosserverBinding, /* in */ 
char prinNameP[BOSSVR _BSSTRINGj, /* in */ 
error_status_t *theCommStatus) /* out */ 

long BOSSVR_ GenerateKey( 
handle_t bosserverBinding, /* in */ 
char prinNameP[BOSSVR_BSSIZEj, /* in */ 
long kvno, /* in * / 
error_status_t *theCommStatus) /* out */ 

long BOSSVR _ GetCellName( 
handle_t bosserverBinding, 
bossvr _out_string *nameP, 
error_status_t *theCommStatus) 

OSF DeE Application Development Guide 

/* in */ 
/* out */ 

/* out */ 

52-17 



DeE Distributed File Service 

52-18 

long BOSSVR _ GetDates( 
handle_t bosserverBinding, /* in */ 
char path[BOSSVR_BSSIZEj, /* in */ 
long *newtime, /* out */ 
long *baktime, /* out */ 
long *oldtime, /* out */ 
error_status_t *theCommStatus) /* out */ 

long BOSSVR _ Getlnstancelnfo( 
handle_t bosserverBinding, /* in */ 
char instance[BOSSVR_BSSIZEj, /* in */ 
bossvr _out_string * type, /* out * / 
struct bossvr _status *status /* out * / 
error _statu(.t *theCommStatus) /* out */ 

long BOSSVR _ GetlnstanceParm( 
handle_t bosserverBinding, /* in */ 
char instance[BOSSVR_BSSIZEj, /* in */ 
long num, /* in * / 
bossvr_out_string *parm, /* out */ 
error _status_t *theCommStatus) /* out */ 

long BOSSVR _ GetLog( 
handle_t bosserverBinding, /* in */ 
char name[BOSSVR _BSSIZEj, /* in */ 
pipe_t *thePipeP, /* out */ 
error _status_t *theCommStatus) /* out */ 

long BOSSVR _ GetRestartTime( 
handle_t bosserverBinding, /* in */ 
long type, /* in * / 
struct bossvr _netKTime *restartTime, /* out */ 
error _status_t *theCommStatus) /* out */ 

long BOSSVR _ GetStatus( 
handle_t bosserverBinding, 
char instance[BOSSVR_BSSIZEj, 

/* in */ 
/* in */ 

long *status, /* out */ 
bossvr _out_string * statdescrP, /* out * / 
error _status_t *theCommStatus) /* out */ 

OSF DeE Application Development Guide 



The BOS Server: Monitoring File Server Processes 

long BOSSVR_Install( 
handle_t bosserverBinding, 
char path[BOSSVR _BSSIZEj, 
long size, /* in */ 
long flags, /* in */ 
long date, /* in */ 

/* in */ 
/* in */ 

pipe_t *thePipeP, /* in */ 
error_status_t *theCommStatus) /* out */ 

long BOSSVR _ ListKeys( 
handle_t bosserverBinding, /* in */ 
char prinNameP[BOSSVR_BSSIZEj, /* in */ 
long an, /* in * / 
long *kvno, /* out */ 
struct bossvr _ key * key, /* out * / 
struct bossvr _key Info * keyinfo, /* out * / 
error_status_t *theCommStatus) /* out */ 

long BOSSVR _ ListSUsers( 
handle_t bosserverBinding, 
char filename[BOSSVR BSSIZEj, 
long an, /* in * / 
bossvr _out_string * nameP, 
bossvr _out_string * typeStrP, 
bossvr_out_string *permStrP, 
error _status_t *theCommStatus) 

long BOSSVR _ Prune( 
handle_t bosserverBinding, 
long flags, /* in */ 
error _status_t *theCommStatus) 

long BOSSVR _ ReBossvr( 
handle_t bosserverBinding, 
error_status_t *theCommStatus) 

long BOSSVR _ Restart( 
handle _ t bosserverBinding, 
char instance[BOSSVR _BSSIZEj, 
error_status_t *theCommStatus) 

OSF DeE Application Development Guide 

/* in */ 
/* in */ 

/* out */ 
/* out */ 
/* out */ 

/* out */ 

/* in */ 

/* out */ 

/* in */ 
/* out */ 

/* in */ 
/* in */ 

/* out */ 

52-19 



DeE Distributed File Service 

52-20 

long BOSSVR _ RestartAll( 
handle_t bosserverBinding, 
error _status_t *theCommStatus) 

long BOSSVR_SetNoAuthFlag( 
handle _ t bosserverBinding, 
longjlag, /* in */ 
error _status_t *theCommStatus) 

long BOSSVR _ SetRestartTime( 

/* in */ 
/* out */ 

/* in */ 

/* out */ 

handle_t bosserverBinding, /* in */ 
long type, /* in * / 
struct bossvr _ netKTime *restartTime, /* in */ 
error_status_t *theCommStatus) /* out */ 

long BOSSVR _ SetStatus( 
handle _ t bosserverBinding, 
char instance[BOSSVR _BSSIZEj, 
long status, /* in */ 
error_status_t *theCommStatus) 

long BOSSVR _ SetTStatus( 
handle _ t bosserverBinding, 
char instance[BOSSVR _BSSIZEj, 
long status, /* in * / 
error_status_t *theCommStatus) 

long BOSSVR _ ShutdownAll( 
handle _ t bosserverBinding, 
error_status_t *theCommStatus) 

long BOSSVR_StartupAll( 
handle_t bosserverBinding, 
error_status_t *theCommStatus) 

long BOSSVR _ Unlnstall( 
handle _ t bosserverBinding, 
char path[BOSSVR_BSSIZEj, 
error_status_t *theCommStatus) 

/* in */ 
/* in */ 

/* out */ 

/* in */ 
/* in */ 

/* out */ 

/* in */ 
/* out */ 

/* in */ 
/* out */ 

/* in */ 
/* in */ 
/* out */ 

OSF DeE Application Development Guide 



The 80S Server: Monitoring File Server Processes 

long BOSSVR _ WaitAlI( 
handle_t bosserverBinding, 
error _status_t *theCommStatus) 

OSF DeE Application Development Guide 

/* in */ 
/* out */ 

52-21 





Index 

A 
abstract OM class, 26-23,26-24 
Abstract Service, 29-1 
Abstract Service Definition, 27-16 
Abstract Syntax Notation 1, 37-3 

abstract syntaxes, 25-26 
relating to Basic Encoding 

Rules, 25-26 
sample definition, 25-22 
simple types, 25-27 
transfer syntaxes, 25-26 
types, 25-27 

abstract syntaxes. See Abstract 
Syntax Notation 1 

access control, 27-14 
access control list. See ACL 
access testing, ACL, 47-4 
accessing files, 50-8 
accounts, Registry database, 44-6 
ACF, 16-1, 18-2 

See also Attribute 
Configuration Language; 
Language Grammar 
Synopsis 
attribute list, 18-3 
body, 18-5 
compiling, 18-2 
features, 18-3 
file extension, 18-2 
header, 18-4 

naming, 18-2 
RPC, 10-6, 13-22 
structure, 18-3 
table of attributes, 18-23 

ACL, 13-32,43-2,43-4,49-13 
access checking, 43-9 to 

43-19 
access testing, 47-4 
accessing files, 50-8 
contents, 43-4 
default for files, 50-13 
default for subdirectories, 

50-13 
definition, 43-1 
editor, 47-2 
entries, 43-5 to 43-9 
errors, 47-5 
extended naming, 47-7 
format of, 50-13 
handle, 47-3 
in DCE, 50-12 
manager interface, 47-7 
manager types, 43-2 
names, 41-13 
network interface, 47-8 
permissions, for RPC 

control program, 
13-18 

regular, 50-13 

Index-1 



OSF DeE Application Development Guide 

acl.c, 28-14 
acl.h, header file, 28-36 
Ada compiler, generating reentrant 

code,6-14 
adding 

administrative users, 52-13 
server keys, 52-10 
servers to FLDB, 51-26 

additional parameter, 18-8, 18-12 
address, OIR, 33-25 to 33-27 
address space association, 17-66 
ADMD. See administration 

management domain 
administration management 

domain, 33-15 
administrative limit exceeded, 

30-32 
administrative users, 52-13 
afs_syscall, 50-12 

syntax, 50-17 
aggregates 

definition, 49-9 
listing, 51-54 
listing contents of, 51-10, 

51-55 
listing detailed information, 

51-54 
alias entries, 25-12 
aliasing, 17-49,17-50 
alignment of network data, 17-76 
allocating memory, 17-54, 18-20 
anodes, 49-14 
API, 29-4, 30-2 

Index-2 

Access Control List, 47-1 
definition of, 9-10 
ID map, 48-1 
Key Management, 46-1 
Login, 45-1 
Registry, 44-1 

security, 41-1 
Security services and 

facilities, 41-8 to 
41-11 

server-side, 47-5 
application 

See also RPC application 
RPC code, 9-8 
RPC thread, 14-14 
tasks for distributing, 9-3 

Application Programming 
Interface. See API 

approximate match, 30-25 
array attributes, 17-31, 17-43 
arrays, 17-41 

array_declarator, 17-42 
attributes, 17-23 

first_is, 17-45 
last_is, 17-45 
length_is, 17-46 
max_is, 17-44 
size_is, 17-44 
vI_array, 17-75 

bounds, 17-42 
conformant, 17-41,17-75 
fixed, 17-41,17-75 
multidimensional, 17-43 
rules for, 17-47 
varying, 17-75 

array_attribute attribute, 17-31 
array_declarator, 17-42 
ASCII text strings, binary 

timestamps translated to, 
38-2 

ASN.l. See Abstract Syntax 
Notation 1 

asynchronous cancelability, 5-17 



asynchronous signals, 6-8 
AT. See Attribute Table 
at-most-once semantics, 12-20 
atomic transactions, 49-10 
atomicity, 51-39 
attribute, 30-5,30-7 

cacheable, 34-11 
error, 31-7 
list, 30-6 
OM syntax, object type, 

26-38 
type,30-6,35-8,36-17 

mandatory, 25-22 
optional, 25-22 

attribute configuration file 
See also ACF 

Attribute Configuration Language, 
18-1 
syntax, 18-1,18-4,20-9 

Attribute Value Assertion, 25-11, 
30-7 

attributes 
ACF, 18-2 to 18-22 
adding, 30-20 
array. See arrays 

array_attribute, 17-31 
code, 18-23 
condition variable, 5-9 
domain-defined, 33-22 
IDL, 17-6 
ignore, 17-31 
inherit scheduling, 5-8 
matching rules, 27-12 
multi-valued, 27-12 
mutex type, 5-9 
OM syntax, 26-36 

enumerated type, 
26-36 

Index 

string type, 26-38 
value, 27-12 

OM type, 36-16 
out, 17-6 
privilege, 43-5 
scheduling policy, 5-6 
scheduling priority, 5-7 
stacksize, 5-9 
syntax template, 26-36 
table, 25-23 
thread, 5-6 
type 

describing, 36-5 
directory, 25-5 
OM, 26-2 
selected directory, 

32-2 
value, 26-36 

assertion; 25-10 
OM, 30-6, 36-7 

value length, 27-12 
attributes object 

creating, 5-5 
definition of, 5-4 
deleting, 5-5 

authenticated bind, 27-7 
authenticated RPC, 10-10, 10-12 

access checking, 13-30 
and DCE Security, 13-27, 

13-32 
and RPC runtime, 13-27 
authenticate, 9-13 
authentication, 13-27 

cross-cell, 13-28 
authorization, 9-13 

See also 
authorization 

basic operations, 13-3 
choosing a server principal 

name, 15-13 

Index-3 



OSF DeE Application Development Guide 

definition, 13-27 
protection level, 13-27, 

13-29 
routines, 13-32 
rpc_ss_register_auth_info( ), 

13-33 
server principal name, 

13-28, 13-33 
authentication, 13-27, 13-28, 

27-13,41-3,42-1 to 42-20 
commands, 42-6 
mutual surrogates, 42-19 
protection level, 13-29 
protocol. See Shared-Secret 

Authentication 
protocol 

protocols, 43-1 
See also protocols 

server principal name, 
13-28, 13-33 

surrogates, 42-2 
Authentication Service. See 

authentication 
authorization, 13-27, 13-30,41-3, 

43-1 to 43-19 

Index-4 

See also authenticated RPC 
DCE, 13-32 
name-based, 13-32 
options, 13-31 
protocols, 43-1 

See also protocols 
requirements 

BOSSVR,52-2 
FTSERVER, 51-39 

with PACs, 13-32 

authorization interface, 
authenticated RPC, 9-13 

automatic binding, 13-19, 18-6, 
automatic connection management, 

27-9 
automatic continuation, 30-14 
auto_handle attribute, 18-4, 18-6, 

18-23 
auxiliary file, 18-15 
AVA. See Attribute Value 

Assertion 
avoiding 

B 

deadlocks, 6-16 
nonreentrant software, 6-13 
priority inversion, 6-14 
race conditions, 6-15 

backing up 
filesets, 51-7 
vs. dumping, 51-52 

Backus-Naur Form. See Language 
Grammar Synopsis 

base type specifiers, 17-19 
Basic Directory Contents Package, 

26-29,26-30 
Basic Encoding Rules, 25-28, 

29-8 
BER. See Basic Encoding Rules 
BIH, 38-2 
binaries 

deleting old DFS, 52-12 
installing DFS, 52-11 



reverting to previous DFS 
versions, 52-12 

Binary Timestamps, 38-8 
bind 

authenticated, 27-7 
credentials, 27-8 

binding, 12-2 
automatic, 18-6 
context handle, 17-69 
explicit, 18-8 
handle, 12-5 
implicit, 18-10 
information, 12-5 
management methods, 

13-19 
binding attribute, 14-2 

searches of, 14-5 
BLISS compiler, generating 

reentrant code, 6-14 
blocking system calls, 6-5 
BNF. See Language Grammar 

Synopsis 
bnodes, 49-27, 52-3 to 52-9 

getting status, 52-6 
simple, 52-3 

body, ACF, 18-5 
Boolean, 36-5,36-18 
boolean type, 17-26 
Booleans, 17-16 
BOS, 52-13 

creating bnodes, 52-5 
deleting bnodes, 52-6 
deleting old files, 52-12 
executing commands, 52-13 
getting bnode instance 

descriptions, 52-7 
getting bnode status, 52-6 
getting cell name, 52-13 
getting instance parameters, 

52-7 

Index 

getting process restart time, 
52-10 

getting text log, 52-13 
installing binaries, 52-11 
listing all bnode instances, 

52-7 
restarting bnode instances, 

52-9 
restarting BOS Server, 52-9 
reverting binaries, 52-12 
setting bnode status, 52-7 
setting process restart time, 

52-10 
shutting down instances, 

52-9 
starting bnode instances, 

52-9 
waiting for status changes, 

52-9 
BOS Server, 49-27, 52-1 

authorization, 52-12 
configuration files, 52-3 
function syntax, 52-14 
process monitoring, 52-3 
server key maintenance, 

52-10 
boss/worker software model, 4-3 
BOSSVR, 52-6 to 52-21 
BOSSVR functions, 52-1 to 52-21 

See also BOS 
broadcast attribute, 17-8, 17-21, 

17~22 

broadcast semantics, 12-20 
broadcasting, 17-21, 17-22 
byte type, 17-27 

Index-5 



OSF DeE Application Development Guide 

c 
C 

compiler, 6-14 
library interfaces, 41-11 
naming conventions, 26-7 

Cache Manager. See DFS Cache 
Manager 

cache size 
getting, 50-10 
setting, 50-9 

cache update process, 25-33 
caching, definition, 49-16 
call queue, 14-33 
call thread, 14-14 
callbacks, definition, 49-20 
calling 

fork(),6-5 
UNIX services, 6-2 

calls 
Registry database, 44-4 
Registry server, 44-2 

cancel-time-out period, 14-18 
canceled thread, 14-18 
canceling a thread, 5-17 
cancels, RPC, use of, 12-21, 14-18 
canonical-ber, 37-2 
CCITT, 37-3 
CDS, and Security namespace, 

41-12 
cell 

and security, 42-3 
name, RPC, 15-3 
profile, RPC, 15-20 
root, RPC, 15-3 
RPC, 15-2 

Cell Directory Service. See CDS. 
See NSI 

Index-6 

cell-relative name, RPC, 15-3 
certificate of identity, 45-2,45-6 

See also Ticket-Granting 
Ticket 

chaining, 25-31 
chaining prohibited, 30-12 
changing servers in FLDB, 51-26 
character set, local, 36-6 
character string, 35-3, 36-15, 

36-19 
length, 36-19 
type, 35-7 

characters, 17-17, 17-26 
checking run status of file servers, 

50-4 
class 

abstract OM, 26-23 
concrete OM, 26-23 
OM, 37-1, 37-2 
OM hierarchy, 26-22 
OM inheritance, 26-22 
OM object, 26-22 

client, 18-2 
and server components, 

39-2 
application thread, RPC, 

14-14 
authentication information, 

RPC, 9-13 
auxiliary file, 18-15 
binding handle, RPC, 12-14 
binding information, RPC, 

12-14 
definition of, 9-1 
exceptions, 18-11 
machine, 49-6 
memory, 17-56 



memory management, 
17-56 

clients becoming servers, 17-58 
clones, 51-45 
cloning, 49-24 

versus replication, 49-24 
closure, package, 26-32 
COBOL compiler, generating 

nonreentrant code, 6-14 
code attribute, 18-4, 18-14, 18-23 
combination software model, 4-5 
commands 

authentication, 42-6, 42-8 
idl, 18-2 
nidl_to_idl, 21-3 

committing, definition, 49-10 
common results, 30-7 
communication failure, 16-1 

context rundown, 17-67 
status attributes, 18-11 

communications 
criteria for remote 

procedure calls, 
12-11 

protocols, 12-3 
RPC protocol, 12-3 

communications error, 31-9 
communications link, RPC, 10-10 
comm_status attribute, 18-5, 18-7, 

18-11,18-23 
comm_status routine, 16-1 
compact FLDB entries, 51-18, 

51-19 
compare result, 30-8 
compatibility, 21-1 
compatible 

binding information, RPC, 
12-8 

Index 

programming language, 
9-14 

server, 12-10 
compatible interfaces, between 

NIDL and IDL, 21-2 
compiler, NIDL, 21-3 
compilers 

generating nonreentrant 
code,6-14 

generating reentrant code, 
6-14 

compiling, ACF, 18-2 
complex types, 17-72 
concrete OM class, 26-23,26-24 
concurrency control, RPC, 14-20 
condition variable, 5-12 to 5-15 

attributes, 5-9 
diagram of, 5-13 
figure of, 5-14 
signaling, 6-16 

conformant array, 17-75 
connection-oriented RPC protocol, 

12-4 
connectionless RPC protocol, 12-3 
constant declarations, 17-15 
constant expressions, 17-16 
constants 

Booleans, 17-16 
characters, 17-17 
integers, 17-15, 17-16 
nulls, 17-17 
strings, 17-15, 17-17 

constructed data types, 17-30 
constructed type specifiers, 17-20 
ContactProvider 

procedure, 39-5 
remote procedure call, 39-2 

Index-7 



OSF DeE Application Development Guide 

contents of an FLDB entry, 51-16 
context, 27-10,29-1,30-9 

common parameters, 27-10 
GDSP, 34-10 
local controls, 27-10 
login. See login context 

service controls, 27-10 
context handle, 17-53, 17-66 

and binding, 17-69 
attribute, 17-66 
creating new, 17-68 
definition of, 12-18 
resource recovery, 17-67 
usage rules, 17-69 

context rundown procedure, 12-21, 
17-67 

context_handle attribute, 17-8, 
17-18,17-22,17-23,17-66 

continuation reference, 29-14, 
30-15 

controls, service, 34-12 
conventions, 11-3, 11-4 
Coordinated Universal Time, 38-2 
creating 

attributes object, 5-5 
bnodes, 52-5 
context, 17-68 
files with jacket routines, 

6-2 
filesets, 51-5 
threads, 5-2 

cron bnodes, 52-4 
cross-cell authentication, 13-28 
customized binding handle, 13-22 
customized handles, 17-64 

Index-8 

D 
daemon, RPC, 10-8 
DAP. See Directory Access 

Protocol 
data 

encryption mechanisms, 
42-5 

thread-specific, 5-16 
Data Encryption Standard, 42-5 
data tokens, 49-21 
data types 

handle_t, 13-22 
rpc_binding_handle_t( ), 

13-22 
DCE Authorization protocol, 43-1 
DCE Interface Definition 

Language. See IDL 
DCE LFS versus UFS, 49-14 
DCE Local File System, 49-8 
DCE Threads Exceptions, table of, 

7-11 
DCE Threads signal handling, 6-9 
dce/utc.h header file, 38-10 
DDA. See domain-defined attribute 
deadlock, avoiding, 6-16 
default 

authentication protocol, 
41-8 

authorization protocol, 43-1 
context, 29-7, 30-14 
directory session, 29-6 
pointer semantics, 17-49 
profile, 15-9 
profile element, 15-8 
session, 29-6 

defining, epilogue actions, 7-7 
deleting 

administrative users, 52-13 



attributes object, 5-5 
bnodes, 52-6 
condition variables, 6-17 
filesets, 51-5 
mount points, 50-7 
old binaries, 52-12 
server keys, 52-10 
threads, 5-4 

DES. See Data Encryption 
Standard 

descriptor list, 26-10 
initializing, 26-42 
OM_descriptor data 

structure, 26-40 
representation of public 

object, 26-11 
DFS 

Cache Manager, 49-7, 
49-16,50-1 to 50-2 

Cache Manager syntax 
summary, 50-14 

File Exporter, 49-7,49-18 
file system component, 49-7 
Fileset Registry, 49-19 
Host Module, 49-19 
Server Procedure, 49-19 
Token Manager, 49-7, 

49-18,49-20 
DIB. See Directory Infonnation 

Base 
directional attributes, 17-24 
directory, 27-38 

access control, 27-14 
alias entries, 25-12 
Attribute Table, 25-23 
attribute types, 25-5, 25-22 
authentication, 27-13 
automatic connection 

management, 27-9 

Index 

building a distinguished 
name, 26-13 

class definitions, 27-11 
context, 27-10 
defining subclasses, 25-25 
distinguished name, 25-9 
example of entry, 25-7 
filter, 27-26 
GDS Standard Schema, 

25-15 
modify operations, 27-37 
modifying entries, 27-38 
name verification, 25-14 
naming attributes, 25-17 
Object Class Table, 25-19 
object entries, 25-7 
object identifiers, 25-5 
objects, 25-3 
reading an entry, 27-17 
relationship between 

schemas and the DIT, 
25-25 

relative distinguished name, 
25-10 

search, 27-31 
search criteria, 27-26 
search operation, 27-26 
selected attribute types, 

27-11 
selected object classes, 

27-11 
session, 27-6 
structure of the DIB, 25-4 
Structure Rule Table, 25-16 

Directory Access Protocol, 25-30 
Directory class, 33-28 
Directory Connection Management 

Functions, 27-1,27-6 

Index-9 



OSF DeE Application Development Guide 

Directory Information Base, 25-4, 
25-9 

Directory Information Model, 25-3 
Directory Information Tree. See 

DIT 
directory modify operations, 27-37 
Directory Operation Functions, 

27-16 
directory pathname, RPC, 15-3 
directory read operations, 27-16 
directory search operations, 27-26 
directory service 

entries, 15-2 
handle, 15-14 
when to use, 12-13 

Directory Service Agent. See DSA 
directory service entries, RPC 

server entries, 15-4 
Directory Service Functions, 27-1 
directory service interface, RPC, 

definition of, 10-11 
Directory Service Package, 27-12 
Directory System Protocol, 25-30 
directory user agent cache, 25-33, 

25-34,25-36,27-15 
disabling memory, 17-55 
distinguished encoding, 29-9 
distinguished name, 25-9, 26-13 

as a public object, 26-13 
example of distinguished 

name, 25-9 
relative, 25-10 

distribution list, 33-1 
DIT,25-9,25-25 

GDS Standard Schema, 
25-15 

DL. See distribution list 

Index-10 

DMD, 30-13 
domain 

defined attribute, 33-22 
management, 33-22 

domain-defined attribute, 33-22 
double type, 17-26 
DSA, 25-29 

address, 30-4, 30-39 
name, 30-39 

DSP. See Directory System 
Protocol 

DTS 
API routines, 40-1 
relative time structures, 

38-8 
routines, 38-1 
security dependencies, 

41-12 
synchronization algorithm, 

39-15 
DTS time structures, 38-8,38-9, 

38-10 
dtsprovider files, 39-7 
DUA. See directory user agent 

cache 
dumping filesets, 51-8, 51-52 
dynamic endpoint, 12-17 

E 
editor, ACL, 47-2 
BIT. See encoded information type 
elements, 35-3 
elements, string, 36-14 
enable_allocate attribute, 18-5, 

18-20, 18-23 



enabling memory, 17-55 
encoded information type, 33-5 
encoding, 36-16 
encryption mechanisms, 42-5 
endpoint 

attribute, 17-8, 17-12 
map, 10-8, 14-27 
register operation, 13-14, 

15-25 
role of within server 

address, 12-6 
RPC, 10-8 
unregister operation, 13-15 

entries, 30-35,30-36 
entry, modification, 30-20 

list, 30-21 
entry types, ACL. See ACL, entries 
Enum(*),35-2 
enumerated type, 26-36 
enumeration, 17-34,17-76,36-7 

to 36-18 
environment variable, NSI, 15-16 
epilogue actions, 7-7 
errors, 16-1 

See also status 
ACL,47-5 
attributes, 18-5 
Directory Service, 31-1 to 

31-18 
attribute, 31-7 
communications, 

31-9 
library, 31-10 
name, 31-12 
security, 31-13 
service, 31-14 
system, 31-16 
update, 31-17 

Index 

error_status_t type, 17-28 
See also unsigned32 type 

examining, local clock, 50-5 
example program, prime number 

search, 8-1 
example.c, 28-2 
exception codes, RPC exceptions, 

16-2 
exception-returning interface, 7-1, 

7-12 
invoking, 7-4 
syntax for C, 7-2 

exceptions, 16-1, 18-7 
and definitions, table of, 

7-11 
catching, 7-7 
client, 11-12,11-20,18-11 
declaring and initializing, 

7-5 
defining a region of code to 

catch, 7-6 
defining epilogue actions, 

7-7 
definition, 7-5 
handler, 16-1 
importing error status, 7-8 
invoking the exception-

returning interface, 
7-4 

naming convention for, 7-8 
operations on, 7-5 
raising, 7-6,11-12,11-20 
rules for modular use of, 

7-8 
server, 11-12,11-20,18-11 

executing commands from BOS 
Server, 52-13 

Index-11 



OSF DeE Application Development Guide 

execution semantics, 12-19 
expanding compacted information, 

51-22 
expiration age, 14-13 
explicit binding, 13-20, 18-8 
explicit_handle attribute, 18-4, 

18-8, 18-23 
export operation, 13-2, 13-16 
exporting LFS to NFS, 50-11 
extended ACL entry type, 43-9 
extended naming, ACL, 47-7 
extensions, 30-21 
external type, 37-3 

F 
facsimile telephone number, 32-17 
failures, 16-1, 18-7 

See also status 
attributes, 18-5 

faulcstatus attribute, 18-5, 18-11, 
18-23 

FIFO (First in, First out) 
scheduling, 5-6 

file 
extension, ACF, 18-2 
name, ACF, 18-2 
protection, 49-13 
slot number, 50-7 

File Server machine, 49-6 
files 

Index-12 

getting cell information, 
50-7,50-8 

getting fileset information, 
50-7 

getting handles, 50-7 

IDL, 39-2 
pre-fetching, 50-8 
reading/writing with jacket 

routines, 6-2 
Fileset Location Database, 49-7, 

49-25,51-15,51-16 
checking run status of, 

51-31 
entries 

creating, 51-23 
deleting, 51-23 
listing, 51-28 
replacing, 51-25 
retrieving, 51-19 

function syntax, 51-33 
getting network information, 

51-26 
getting server statistics, 

51-31 
listing known servers, 51-31 
locking filesets, 51-24 
releasing file set locks, 

51-25 
reserving file set IDs, 51-23 
retrieving server 

information, 51-20 
selected entries, listing, 

51-28 
server addresses 

adding, 51-25 
changing, 51-26 
removing, 51-25 

synchronizing with filesets, 
51-9 

Fileset Registry, 49-19 
Fileset Server, 49-7 

aggregates 
listing, 51-54 
listing contents of, 

51-54,51-55 



cloning filesets, 51-45 
creating filesets, 51-43 
deleting filesets, 51-45 
dumping filesets, 51-52 
functions, 51-5,51-39 
getting status of file sets, 

51-46,51-51 
moving filesets, 51-54 
restoring dumped filesets, 

51-54 
setting status of filesets, 

51-46,51-47 
syntax, 51-56 
transaction, getting 

information, 51-11 
transactions, 51-40 

creating, 51-40 
deleting, 51-43 
listing active, 51-55 

updating clones, 51-45 
filesets, 49-7, 49-23 

backing up, 51-7 
cloning, 49-24,51-45 
creating, 51-5, 51-43 
definition, 49-9 
deleting, 51-5,51-45 
dumping, 49-25, 51-8, 

51-52 
getting addresses, 50-7 
getting cell, 50-7 
getting data, 49-19 
getting detailed information, 

51-10 
getting information about, 

51-10 
getting status of, 51-46, 

51-51 
headers, 49-23 . 
listing aggregate contents, 

51-55 

Index 

listing contents of an 
aggregate, 51-10 

locating, 51-19 
moving, 51-6, 51-54 
renaming, 51-7 
replication, 49-24 
restoring, 49-25,51-52, 

51-54 
restoring from dump, 51-8 
setting quotas, 51-9 
setting status of, 51-46, 

51-47 
synchronizing with 

database, 51-9 
types, 51-17,51-18 
types of data, 49-10 
updating clones, 51-45 

filter, 27-26,27-32,30-22 
item, 30-23 
item type, 30-25 
type, 30-23 

final substring, 30-26 
first_is attribute, 17-8, 17-45, 

17-53 
fixed array, 17-75 
FLDB. See Fileset Location 

Database 
float type, 17-26 
floating-point numbers, 17-26 
flushing 

pending write queue, 50-10 
the cache, 50-11 

fork(), calling, 6-5 
format, of ACLs, 50-13 
freeing memory, 17-54,18-20 
from entry, 30-18,30-28 
FTSERVER functions, 51-39 to 

51-60 
syntax, 51-56 

Index-13 



OSF DeE Application Development Guide 

full pointer, 17-50 
fully bound binding handle, 12-8 
function results, pointers, 17-53 

G 
GDS 

Index-14 

as distributed service, 25-28 
authenticated bind,25-38 
binding with credentials, 

25-38 
chaining, 25-31 
DAP, 25-30 
directory user agent cache. 

See directory user 
agent cache 

DSA-DU A relationship, 
25-29 

DSP, 25-30 
Extension Package, 26-31, 

27-15 
referral, 25-30 
security, 25-38 
Standard Schema, 25-15 

Attribute Table, 
25-23 

naming attributes, 
25-17 

Object Class Table, 
25-19 

Structure Rule Table, 
25-16 

structured object 
classes, 25-17 

XDS API, 25-2 
XOM API, 25-2 

GDSP, 27-13 
context, 34-10 
DUA,34-15 
session, 34-15 

general cancelability, 5-17 
generating nonreentrant code, 6-14 
generating server keys, 52-10 
getting 

a machine's cell, 50-5 
administrative users, 52-13 
all bnode instances, 52-7 
all known cells, 50-5 
bnode instance descriptions, 

52-7 
bnode instance parameters, 

52-7 
bnode status, 52-6 
cache size, 50-10 
configuration cell name, 

52-13 
contents of aggregate, 

51-10 
detailed fileset information, 

51-10 
file set addresses, 50-7 
fileset data, 49-19 
fileset information, 50-7, 

51-10 
file set names from mount 

points, 50-6 
fileset status, 51-51 
pending write queue, 50-10 
restart time for BaS 

processes, 52-10 
server keys, 52-10 
text logs, 52-13 



transaction information, 
51-11 

Global Directory Service. See GDS 

directory user agent cache, 
25-33 

Global Directory Service Package. 
See GDSP 

global lock, 6-12,6-13 
Greenwich Mean Time (GMT), 

38-2 
group 

H 

RPC, 15-2 
RPC attribute, 14-2, 14-5 
RPC member, 15-6 

handle, 17-23 
ACL, 47-3 
attribute, 17-8,17-18, 

17-53, 17-64 
context, 17-66 
customized binding, 13-22, 
RPC, 51-3 

handlers not provided with UNIX 
signals, 6-9 

handles, customized, 17-64 
handle_t type, 17-28 
header, ACF, 18-4 
header files 

XDS API, 28-36 
XOM API, 26-52 

Index 

heap attribute, 18-5, 18-21, 18-23 
helper functions, 50-12 
high priority, 30-13 
Host Module, 49-19 
hyper type, 17-25 

I 
ID map API, 48-1 
idempotent attribute, 17-8, 17-21, 

17-22 
idempotent semantics, 12-20 
identifier, 30-22 
IDL, 17-1 to 17-76, 18-2,21-3 

array attributes, 17-23, 
17-31 

arrays. See arrays 

attributes, 17-6 to 17-72 
base type specifiers, 17-19 
basic data types, 17-25 
boolean type, 17-26 
byte type, 17-27 
case sensitivity, 17-5 
comments, 17-5 
const declaration, 17-15 
constant declarations, 17-15 
constructed type specifiers, 

17-20 
constructed types, 17-30 
customized handles, 17-64 
data types, 17-6 
declarations, 17-6 
enumerations, 17-34 
file, 39-2 
identifiers, 17-3 

Index-15 



OSF DeE Application Development Guide 

Index-16 

idl_macros, 17-19 
import declarations, 17-8, 

17-14 
interface definition body, 

17-7 
interface definition header, 

17-7 
interface definition 

structure, 17-7 
international characters, 

17-29 
keywords, 17-4 
lexical elements, 17-3 
named types, 17-18 
operation declaration, 

17-21 
parameter declarations, 

17-22 
pipes. See pipes 

predefined type specifiers, 
17-20 

punctuation characters, 
17-4 

special symbols, 17-2 
strings, 17-47 
structures, 17-30 
syntax notation, 17-2 
Time-Provider process file, 

39-7 
type attributes, 17-18 
types. See types, IDL 

typography, 17-2 
unions, 17-32 
unsigned integer types, 

17-26 
white space, 17-4 

idl command, 18-2 
idl_macros, 17-19 
idl_ void_p_t type, 17-54, 17-55 
ignore attribute, 17-8,17-31 
implicit binding, 13-20, 18-10 
implicit_handle attribute, 18-4, 

18-6,18-10,18-23 
import declarations, 17-14 
import operation, RPC, 13-2 
in attribute, 17-8, 17-23, 17-24 
inaccuracy, specifying ISO, 38-3 
include statement, 18-5, 18-6 
information type, 30-19 
information type, encoded, 33-5 
inherit scheduling attribute, 5-8 
initial substring, 30-26 
initialization routines, one-time, 

5-15 
inline code, RPC, 10-7 
inodes, 49-13 
input jacket routines, 6-2 
installing binaries, 52-11 
instance 

of an RPC server, 10-8 
distinguishing, 15-29 
interchangeable 

instances, 
15-4,15-22 

ofRPC server, 14-30, 
15-26 

RPC UUID, 12-5 
int type, 17-25 
integers, 17-15, 17-16, 17-25, 

17-26,36-16 to 36-19 
interface 

See also API; RPC interface 
body, 18-5 
C library, 41-11 
definitions, 11-2, 17-1, 

17-7 



exception-returning. See 
exception-returning 
interface 

handle, RPC, 10-6 
header, 18-4 
Registry database, 44-4 
RPC identifier, 15-8 
RPC specification, 13-11 
RPC UUIDs, 9-4 
Security Server, 41-7 
Security services and 

facilities, 41-8 to 
41-11 

UNIX security, 41-11 
Interface Definition Language. See 

IDL 
interface definitions, 17-7 

header, 17-7 
interface handle, RPC use of, 

13-16 
interface specification, RPC 

definition of, 10-6 
interface UUID, 11-2 

RPC definition of, 9-4 
RPC use of, 12-9 

intermediate data type, 36-4 
international characters, 17-29 
International Standards 

Organization. See ISO 
International Time Bureau, 38-2 
in_line attribute, 18-4, 18-15, 

18-23 
ioctl, 50-2, 50-14 
ISO, 37-3 
ISO format, 38-2 to 38-4 
item, 30-24 

J 
jacket routines, 6-2 to 6-4 
join primitive, 5-15 

K 

Index 

kernel vs. user space, 50-12 
key management, 46-1 to 46-5 
Key Management API, 46-1 

L 
Language Grammar Synopsis, 

18-4,20-1,20-9 
lasCis attribute, 17-8, 17-45, 

17-53 
leaf name, RPC, 15-4 
length, string, 35-3 
length-unspecified, 36-14 
length_is attribute, 17-8, 17-46, 

17-53 
levels, protection, 42-4 
LFS, 49-8 
limit problem, 30-32 
list, info, 30-26, 30-29 
local application thread, RPC, 

14-14 
local attribute, 17-8, 17-13 
local file system, 49-8 
local management operations, 

RPC, 10-12 

Index-17 



OSF DeE Application Development Guide 

local scope, 30-12 
local type, 18-17 
lock, global, 6-13 
lock tokens, 49-21 
locking a mutex, 6-16 
log-based file system, 49-10 
login context, 45-1,45-2,45-10 

changing a group set, 45-8 
expiration, 45-6 
importing and exporting, 

45-7 
inheritance, 45-5 
validating, 45-3 

logs, definition, 49-10 
long type, 17-25 
lookup operation, RPC, 13-2 
low priority, 30-13 

M 
major version number, 12-6, 12-9 
management domain, 33-22 
management program, RPC, 10-13 
manager, RPC, 9-7 
manager interface, ACL,47-7 
mapping string-to-UUID, 48-1 
marshalling, 18-15 
masks, 51-29 

ACL entry types, 43-8 
matched, 30-9 
max outstanding operations, 29-12 
max_is attribute, 17-8, 17-44 
maybe attribute, 17-8, 17-21, 

17-23 

Index-18 

maybe semantics, 12-20 
MD. See management domain 
MDUP. See MRS Directory User 

Package 
medium priority, 30-13 
memory 

advanced management 
support, 17-55 

allocating, 17-54, 18-20 
disabling, 17-55 
enabling, 17-55 
freeing, 17-54, 18-20 
heap attribute, 18-21 
management, 17-54 

client, 17-56 
server, 18-20 
server threads, 17-57 
usage rules, 17-59 

routines, 17-54 to 17-57 
server threads, 17-57 
setting client, 17-56 
setting for thread stack, 5-9 
swapping memory, 17-56 

message 
handling system, 33-1 
store, 33-5 

message transfer agent. See MTA 
metacharacters, 23-18 

in CDS, 23-18 
in DNS, 23-18 
in ODS, 23-18 

metadata, definition, 49-10 
MRS Directory User Package, 

33-1 
migration, 21-3 

attributes, 17-75 
minor version number, 12-6, 12-9 



mnemonic OIR address, 33-25 
models for multithreaded 

programming, 4-3 to 4-5 
modification type, 30-20 
modular use of exceptions, 7-8 
mount points, 50-6 
moving filesets, 51-6 
MS. See message store 
MTA,33-1 
multithreaded, applications, 14-20 
multithreaded programming, 6-15 

introduction, 4-1, 9-1 
potential disadvantages, 

4-5,4-6,6-14,6-16 
software models. See 

models for 
multi threaded 
programming 

mutex, 5-10 to 5-12 
locking before signaling 

condition variable, 
6-16 

type attribute, 5-9 
mutual authentication surrogates, 

42-19 

N 
name, 30-30 

domain, 44-3 
resolution phase, 30-31 

Name Service Interface. See NSI 
Name-Based Authorization, 43-19 
named types, 17-18 
names, 11-3,11-4 

directory service entry, 
15-11 

maximum sizes, 23-22 
server principal, 15-13 
valid characters, 23-16 

namespace, definition, 10-11 
naming 

attributes, 25-17 
rules, 23-16 

NCS Version 1, 17-75 
NDR. See Network Data 

Representation 
nested remote procedure call, 

14-22 
network 

Index 

ACL interface, 47-8 
address, 12-6 
addressing information, 

12-6 
alignment of data, 17-76 
descriptor, 12-21 
protocol, 12-3 
type, 18-17 

network addresses, 30-34 
Network Data Representation, 9-1 
NIDL. See IDL 
nidCto_idl command, 21-3 
nil UUID, RPC, 12-9 
no limit exceeded, 30-32 
nocode attribute, 18-4,18-14, 

18-23 
nonreentrant code, 6-14 
nonreentrant software, 4-6, 6-13, 

6-14 
using global lock to avoid, 

6-13 
non terminating signals, 6-7 
non threaded libraries, 6-11 
NSI 

attribute, 15-14 

Index-19 



OSF DeE Application Development Guide 

attributes, 14-5 
RPC,14-2 

binding attribute, 14-2 
CDS ACL pennissions, 

13-18 
definition, 10-11 
directory service entries, 

15-2 
profile, 15-2 
server entry, 15-2 

directory service handle, 
15-14 

directory service names, 
15-11 

export operation, 13-16 
group attribute, 14-2 
import operation, 13-2 
lookup operation, 13-2 
object attribute, 14-2 
operations, 13-2 
potential binding, 13-13 
profile attribute, 14-2 
search operations, 14-4, 

15-6 
search path, 15-10 
unexport operation, 13-3 
usage models, 15-21, 

15-22, 15-29 
null constants, 17-17 
numeric O/R address, 33-25 

o 
O/R,33-5,33-28 

address, 33-25 to 33-27 

Index-20 

object 
attribute, 14-2 
class attribute, 25-7 
class hierarchy, 26-22 
directory, 25-3 
dynamically-defined static 

public,28-49 
encoding OM, 37-3 
entries, 25-7,27-17 
example of internal 

structure, 26-3 
identifier 

directory, 25-5 
Object Class Table, 

25-20 
OM class, 26-6 

identifier, XDS Package, 
25-6 

name, 30-9,30-18,30-27, 
30-36,31-7 

OM. See OM 

partially-de fined static 
public, 28-48 

predefined static public, 
28-46 

private, 36-9, 36-17 
public, 26-10,36-5,36-9, 

36-17 
representation of public 

object, 26-11 
RPC, 9-7 

use of, 12-9 
selected attribute types, 

27-11 
selected classes, 27-11 
subordinate, 26-43,30-27 
type, 26-38 



UUID, 12-4 
value, 26-3 

Object Class Table, 25-19 
acronyms of super class, 

25-19 
attributes, 25-22 
class inheritance, 25-20 
partial representation of, 

25-19 
OCT. See Object Class Table 
OM 

attribute types, 26-2, 26-6 
classes, 26-22,30-2,37-2 

abstract, 26-23 
concrete, 26-23 
defining, 26-26 
hierarchy, 26-22 
inheritance, 26-22 
mapping class 

definition, 
26-4 

object identifier, 
26-6 

OM attribute, 26-28 
value syntax, 26-28 

objects, 26-2 
syntax, 26-3 
value syntax, 27-12 

one-time initialization routines, 
5-15 

opaque pointer, 17-66 
open tokens, 49-22 
opening, files with jacket routines, 

6-2 
operation 

attribute, ACF, 13-22 
attributes, 17-22 
declaration, 10-3, 17-21, 

17-22,17-23 

Index 

Directory Service, 29-1 
not started, 30-12, 30-31 
progress, 30-12, 30-16, 

30-30 
operations, 17-21, 17-22, 17-23 

IDL, 10-3 
NSI, 13-2 
on exceptions, 7-5 

optional functionality, 30-14, 
30-39 

originator/recipient. See aIR 
OSI 

application contexts, 32-13 
application entity, 30-5, 

32-12 
communications, 30-5 
presentation address, 32-12 

out attribute, 17-8, 17-23, 17-24 
out-of-line code, 10-7 
output jacket routines, 6-2 
out_of_line attribute, 18-4, 18-15, 

18-23 

p 
PAC, 13-32 
package, 26-29 

Basic Directory Contents, 
26-30,27-4 

closure, 26-32 
Directory Service, 26-29, 

27-4 
ds_ version, 26-30 
GDS, 26-29, 27-4, 27-13 
GDS Extension, 26-31 
MRS Directory User, 

26-29,27-4 

Index-21 



OSF DeE Application Development Guide 

negotiating features, 26-30 
service, 30-1 
XDS, 29-2 

parameters, 17-22, 17-23, 17-24, 
17-52 

parent directory, 15-3 
partial outcome qualifier, 30-27, 

30-32,30-36 
partially bound binding handle, 

12-8 
PASCAL compiler, generating 

reentrant code, 6-14 
path, for NSI searches, 15-10 
pioctls, 50-4 to 50-12 
pipelining software model, 4-4 
pipes, 17-34 to 17-40,52-11 

in, 17-37 
in,out, 17-39, 17-40 
out, 17-38, 17-39 

pointer levels, 17-52 
pointers, 17-48 to 17-53, 17-66 

in function results, 17-53 
opaque, 17-66 

pointer_default attribute, 17-8, 
17-13,17-49,17-53 

port, 17-12 
position, string, 35-3 
POSIX 

sigaction service, 6-10 
sigwait service, 6-9 

postal address, 32-18 
postal OIR address, 33-26 
potential binding, RPC, 13-13 
pre-fetching files, 50-8 
predefined type specifiers, 17-20 
prefer chaining, 30-12 
presentation 

Index-22 

address, 30-33 
selector, 30-34 

prime number search example, ·8-1 
primitive binding handle, 13-22 
principal, 42-2 
priority, 30-13 

inversion, 6-14 
of scheduling routines, 5-19 

private management domain. See 
PRMD 

private object, 26-20 
privelege attributes, 43-5 
privilege attribute certificate, 

13-32 
Privilege Service. See Security 

Server 
Privilege Ticket-Granting Ticket, 

42-8 
PRMD, 33-15 
procedure declaration, 9-4 
processes, Time-Provider. See 

Time-Provider,process 
profile, 15-2, 15-8, 15-10, 15-20 

attribute, 14-2, 14-6 
programming with threads, 6-1 
protection levels, 13-27, 13-29, 

42-4 
protocol 

family, 17-12 
sequence, 12-5 

protocols 
authentication and 

authorization, 41-3 
See also services 

DCE Authorization, 41-3, 
43-1 

for RPC communications, 
12-3 

Name-Based Authorization, 
43-19 



Shared-Secret 
Authentication, 42-4 

PTGT. See Privilege Ticket
Granting Ticket 

pthread functions, 5-3 to 5-18, 
6-13 

ptr attribute, 17-8, 17-18 to 17-23, 
17-31,17-33,17-49,17-50 

public object, 26-10 
building for ds_search( ), 

27-31 
client-generated, 26-18 
comparison with private 

objects, 26-20 
creating, 27-20 
dynamically-defined static, 

28-49 
partially-de fined static, 

28-48 
predefined static, 28-46 
representation using 

descriptor list, 26-11 
service-generated, 26-18 

public profile, 15-20 
purging obsolete server keys, 

52-10 

Q 
query site, 44-1 
quotas, setting for filesets, 51-9 

R 
race conditions, 6-15 
raising exceptions, 7-6 
RDN, 25-10, 30-15, 30-16 

resolved, 30-16 

Index 

read result, 27-23,30-34 
reading/writing files with jacket 

routines, 6-2 
realm. See cell 
recoverable file systems, 49-10 
reentrant code, 4-6, 6-14 
ref attribute, 17-8, 17-18, 17-23, 

17-31,17-49 
reference pointer, 17-49 
referral, 25-30,29-14,31-13 
Registry, 44-1, 44-3, 44-7 

API, 44-1 
database, 42-2 
database accounts, 44-6 
database calls and 

interfaces, 44-4 
Server, 44-2 
Service, 13-27 

See also Security 
Server 

Relative Distinguished Name. See 
RDN 

relative name, 30-35 
relative time, 38-5,38-6 
remote management operations, 

10-12 
remote procedure call, 9-1 

See also RPC 
renaming filesets, 51-7 
replication, 49-24 

release, 49-26 
scheduled, 49-26 
versus cloning, 49-24 

Index-23 



OSF DeE Application Development Guide 

Replication Server, 49-7 
represenCas attribute, 18-5, 18-6, 

18-17,18-23 
request buffer, 14-32 
requestor, 30-39 
resource, 15-22 
resource model, 15-29 
restarting 

bnode instances, 52-9 
BOS Server, 52-9 

restoring 
binaries, 52-12 
file sets from dumps, 51-8, 

51-52 
return codes, 36-14 

service interface, 36-22 
reverting binaries, 52-12 
routines 

RPC 

Index-24 

ACF, 18-18 
context rundown, 17-67 
error, 16-1 
jacket. See jacket routines 

marshalling, 18-15 
RPC, 17-54, 17-55, 17-56, 

18-20, 19-1 

application, definition of, 
9-1 

Authenticated, 41-2 
daemon, 10-8 
data types, 13-22 
handles, 51-3 
inline code, definition of, 

10-7 
interface, 9-4 

body, 10-3 
definition, 10-3 
handle, 10-6, 13-16 

header, 10-3 
identifier, 15-8 
name, 10-3 
operation declaration, 

10-3 
specification, 10-6, 

13-11 
UUID, 12-9 
version numbers, 

12-9 
object, 9-7, 12-9 
operations, 13-14 
parts of application, 9-8 
profile, 15-8, 15-20 

definition of, 15-2 
explanation of, 15-10 

profile element, 15-8 
protocol, 12-3 

sequence, 12-5 
version numbers, 

12-6 
public profile, 15-20 
remote management 

operations, 10-12 
resource, 15-22 
resource model, 15-29 
runtime, 9-10 

basic operations, 
10-9 

library, 39-4 
routines, 13-15, 14-3 

search path, 15-10 
server instances, 10-8, 

15-29 
thread, 14-15 

RR (Round Robin) scheduling, 5-6 
rules, OM object encoding, 37-3 
rundown. See context rundown 

procedure 



running routines with fork( ), 6-4 
running Time-Provider process, 

39-16 
runtime, 17-66,18-6,21-3 

RPC, 10-9 
RPC library, 39-4 

s 
saved server state, 17-66 
scheduling, 5-7, 5-8, 5-19 

policy attribute, 5-6 
threads. See threads, 

scheduling 
search 

criterion, 32-18 
guide, 32-20 
info, 30-36 
operations, 14-4, 15-6, 

15-14 
path, 15-10 

security 
commands used in 

authentication, 42-6, 
42-8 

DTS dependencies, 41-12 
risks, 41-2 
services, 41-3 
UNIX vs. DCE, 41-2 

Security Server, 41-6 
and cells, 42-3 
interfaces, 41-7 

Security Service 
namespaces, 41-12 
RPC principal names, 15-13 

Index 

selected attribute types, 32-2 
sending and receiving messages on 

sockets, 6-2 
server, 9-1,18-2 

adding keys, 52-10 
addresses, 51-25 

changing, 51-26 
removing, 51-25 

application thread, 14-14 
auxiliary file, 18-15 
binding handle, 12-6 
binding information, 12-6 
distinguishing RPC 

instances, 15-26, 
15-29 

entry, 15-2 
exceptions, 18-11 
failure, 16-1 
initialization code, 9-11 
instance, 15-4 
interchangeable instances, 

14-30, 15-22 
keys, 52-10 
memory management, 

18-20 
process management, 52-1 
state, 17-66 
threads, 17-57 

Server Procedure, 49-19 
server-side APIs, 47-5 
servers 

adding to FLDB, 51-26 
changing in FLDB, 51-26 

service 
controls, 34-10,34-12 
interface data types, 26-40 
model, 15-22 
package, 30-1 
RPC,9-6 

Index-25 



OSF DeE Application Development Guide 

service-generated descriptor, 36-7 
session, 29-1 

default directory, 29-6 
directory, 27-6 
GDSP, 34-15 
mUltiple concurrent, 27-6 
selector, 30-34 

Set of, 35-9 
setting 

@sys variable, 50-4 
bnode status, 52-7 
cache size, 50-9 
client memory, 17-56 
file set quotas, 51-9 
local clock, 50-5 
restart time for BaS 

processes, 52-10 
shadow update process, 25-33 
Shared-Secret Authentication 

protocol, 42-3 
short type, 17-25 
shutting down bnode instances, 

52-9 
signal handlers, 6-9 
signals, 6-7 to 6-11 
sigwait service, 6-9 
simple bnodes, 52-3 
size limit, 30-13 
size_is attribute, 17-8, 17-44 
skeletal interface definitions, 11-2 
slave functions, 50-12 
small type, 17-25 
spawning server threads, 17-57 
SPI, RPC, 10-10 
SRT. See Structure Rule Table, 

SRT 
stacksize attribute, 5-9 
standards, 29-1,31-1 

Index-26 

starting 
bnode instances, 52-9 
threads, 5-2 

state transitions, threads, 5-2 
status, 18-7 

attributes, 18-5, 18-11 
codes, 14-4 
directory, 29-12 

status codes, 14-13, 14-34 
status tokens, 49-21 
storage management, 26-33 
string, 35-3,36-18 

attribute, 17-8, 17-18, 
17-22, 17-23, 17-31, 
17-33, 17-47 

bindings, 12-11, 12-13, 
13-23 

length, 35-3, 36-14 
position, 35-3 
type, 26-38 
vI_string attribute, 17-76 

string(*), 35-3 
string-to-UUID mapping, 48-1 
strings, 17-15, 17-17, 17-47 

in Directory Service, 35-3 
struct type, 17-30 
structure, representation of, 17-76 
structure member attributes, 17-30 
Structure Rule Table, 25-16, 

25-17 
structured aIR address, 33-26 
structured object classes, 25-17 
stub,9-8 
stub programming interface, 10-10 
subclasses, 32-15 
substrings, 30-26 
superclasses, 32-15 

OM, 32-16 



surrogates 
authentication, 42-2 
mutual authentication, 

42-19 
swapping client memory, 17-56 
synchronization methods, 5-15 
synchronization objects, 5-12, 

6-16 
mutex, 5-10 
race conditions, 6-15 

synchronizing file sets with FLDB, 
51-9 

synchronous programming 
techniques, 6-11 

synchronous signals, 6-8 
syntax 

See also Language 
Grammar Synopsis 
afs_syscall, 50-17 
BOSSVR functions, 52-14 
Cache Manager, 50-14 
FTSERVER functions, 

51-56 
ioctl, 50-14 
pioctl, 50-15 
template, 26-36,35-2 
VC functions, 51-11 
VL functions, 51-33 

system profile, 15-20 

T 
target object, 30-16 
TDF, 38-3 

Index 

teldir.c, 28-46 
teletex terminal identifier, 32-21 
telex number, 32-22 
terminal OIR address, 33-27 
terminating, threads, 5-3,6-8 
terminating signals, 6-7 
TGT. See Ticket-Granting Ticket 
thread 

canceling, 5-17 
example, 8-1 to 8-9 
scheduling, priority 

attribute, 5-7 
state transitions, 5-2 

thread-specific data, 5-16,6-13, 
6-14 

thread-specific storage, 6-14 
threads, 14-14 

attributes, 5-6 
avoiding nonreentrant 

routines, 4-6 
canceling, 5-17 
creating, 5-2 
definition, 4-1, 9-1 
deleting, 5-4 
exception-returning 

interface, 7-1 
exceptions and definitions, 

table of, 7-11 
memory management for, 

17-57 
multithreaded programming, 

4-5 
priorities, 5-19 
reentrant, 6-12 
scheduling, 5-6 t6 5-8, 

5-18 to 5-20 
starting, 5-2 
states, 5-2 
terminating, 5-3 

Index-27 



OSF DeE Application Development Guide 

waiting for another to 
terminate, 5-3 

Ticket-Granting Ticket, 42-6 
See also certificate of 
identity 

time, relative. See relative time 
Time Differential Factor, 38-3 
time limit, 30-13 

exceeded,30-13,30-32 
time representation, 38-2 
time structures. See DTS, time 

structures 
Time-Provider 

algorithm, 39-14 
interface, 39-1 
process, 39-16 

time.h header file, 38-9 
timeslice, 5-6 
tm time structure, 38-9 
Token Manager, 49-7,49-18, 

tokens 
49-20 

compatibility, 49-22 
data, 49-21 
lock, 49-21 
open, 49-22 
revocation, 49-23 
status, 49-21 

TP stub, 39-4 
TPI, 39-1 
TPI Control Flow, 39-2 
transaction, atomic, 49-10 
transactions, 49-10, 51-39 

Index-28 

and simultaneous access, 
51-39 

atomicity of, 51-39 
basic functions, 51-40 
committing, 49-10 
creating, 51-40 

deleting, 51-43 
getting information about, 

51-11 
listing active, 51-55 
status, 51-41 
timing out, 51-40 

transfer syntax, 12-6,25-26 
RPC, definition of, 10-9 

translator, 21-3 
transmiCas attribute, 17-8, 17-18, 

17-72 
transport protocol, 12-3 
type 

declarations, 17-18 
declarators, 17-21 
of a manager EPV, 13-11 
specifiers, 17-19, 17-20, 

17-22,17-24 
UUID, 12-5, 13-8, 13-11 

typedef declaration, 17-18 
types, 17-72 

u 

and values, 30-20 
IDL, 17-18 to 17-32, 17-64 
of signals, 6-7 

undefining jackets, 6-4 
unexport operation, 13-3 
uninstalling binaries, 52-12 
union type, 17-32 
unions, 17-32 
uniquifier, 50-7 
universal unique identifier, 9-4 
UNIX 

security interfaces, 41-11 



services, 6-2 to 6-3 
signals, installing signal 

handlers for, 6-9 
UNIX file system, accessing from 

DFS, 49-14 
UNIX signals. See signals 

table of, 6-9 
unmarshalling, RPC, 9-9 
unsigned integer types, 17-26 
unsigned32 type, 18-12 
unstructured aIR address, 33-26 
update site, 44-1 
usage models. See NSI usage 

models 
user agent cache. See directory 

user agent cache 
user data, definition, 49-10 
using 

a thread attributes object, 
5-6 

jacketed system calls, 6-4 
signals, 6-7 
synchronization objects, 

6-15 
UTC, 38-2, 39-1 
uuid attribute, 17-8, 17-10 
UUID generator, 10-2 
UUIDs, 12-4 

definition of, 9-4 

v 
value 

OM attribute, 36-7 
OM data, 36-17 

varying array, 17-75 
VC 

Index 

functions, 51-4, 51-5 to 
51-14 

syntax, 51-11 
vs. VL and FTSERVER 

functions, 51-1 
version attribute, 17-8, 17-10 
version numbers, 12-6,12-9 
VFS+, 49-6, 49-15 
VFS+ Interface, 49-19 
VIOC functions, 50-15 
Virtual File System interface, 

49-6,49-15 
VL functions, 51-20 to 51-39 
VNX functions, 50-13 to 50-17 
void type, 17-27 
Volume Call. See VC 

w 
waiting 

for a thread to terminate, 
5-3 

for bnode status changes, 
52-9 

well-known endpoint, 12-16 
wire interoperability, 21-2 
work crew software model, 4-3, 

4-4 

Index-29 



OSF DeE Application Development Guide 

work queue variation of 
boss/worker model, 4-3 

workspace, 26-2,26-32,36-19 

x 
X.500 

Directory Information 
Model, 25-3 

naming concepts, 25-9 
X/Open Directory Service API, 

25-2 See also XDS 
X/Open OSI-Abstract-Data 

Manipulation API, 25-2 
See also XOM 

XDS, 26-5 to 26-54, 27-1 to 
27-26 

Index-3D 

definitions, 27-9 
directory read operations, 

27-16 
dynamically-defined static 

public objects, 28-49 
header files, 28-36 
Interface Class Definitions, 

27-9 
Interface Management 

Functions, 27-1 
Management Functions, 

27-2 
partially-de fined static 

public object~, 28-48 
predefined static public 

objects, 28-46 
programming guidelines, 

28-2 
sample programs, 28-1 

XDS Application Interface, 27-1 
acl.c, 28-1 
bind credentials, 27-8 
Directory Connection 

Management 
Functions, 27-6 

example.c, 28-1 
Global Directory Service 

Package, 27-13 
MHS Directory User 

Package, 27-4 
modifying entries, 27-38 
performing a read operation, 

27-22 
sample programs, 28-46 
teldir.c, 28-46 
XDS Interface Management 

Functions, 27-1, 
27-2 

XOM, 26-1 to 26-56 
header files, 26-52 
macros, 26-53 

XOM Application Interface 
macros, 27-18, 27-29 
OM class hierarchy, 26-22 
OM class inheritance, 

26-22 
OM functions, 26-45 
workspace, 26-2 

xom.h header file, 26-52 



Notes 



Notes 



Notes 



Notes 



OPEN SOFTWARE FOUNDATIONThI 

INFORMATION REQUEST FORM 

Please send to me the following: 

Contact Name 

OSP'" Membership Information 

OSP"'OCE Ucense Materials 

OSP"'OCE Training Information 

Company Name 

Street Address 

Mail Stop 

City 

Phone 

Electronic Mail 

MAIL TO: 

________ State __ Zip _____ _ 

________ FAX ________________ __ 

Open Software Foundation 
11 Cambridge Center 

Cambridge, MA 02142 

A Un: OSP"'OCE 

For more information about OSP"'OCE call OSF Direct Channels at 617 6217300. 





OSF™DCE 
Application Development Guide 

TITLES IN THE OSpMDCE SERIES: 

Introduction to OSpMDCE 

OSpMDCE User's Guide and Reference 

OSpMDCE Administration Guide 
- Introduction 
- Core Components 
- Extended Services 

OSpMDCE Administration Reference 

OSpMDCE Application Development Guide 

OSpMDCE Application Development Reference 

Application Environment Specification (AES) 
Distributed Computing 

Printed in the U.S.A. 

Open Software Foundation 
11 Cambridge Center 
Cambridge, MA 02142 

ISBN 0-13-643826-1 

Prentice Hall, Inc. 

DISTRIBUTED SYSTEMS 


