
•

Introduction to OSFTMDCE

OPE N SOFTWARE FOUNDATION

Introduction to OSF™ DeE
Revision 1.0

Open Software Foundation

P T R Prentice Rall t Englewood Cliffs t New Jersey 07632

Cover design: BETH FAGAN
Cover illustration: STEVE LEWONTIN

This book was formatted with troff.

Ij Published by P T R Prentice-HaII,Inc.
- A Simon & Schuster Company
- Englewood Qiffs, New Jersey fJ7632

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or
consequential damages in connection with the furnishing, performance, or use of this material.

Copyright ©1992 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the
following:

• © Copyright 1990, 1991 Digital Equipment Corporation

• © Copyright 1990, 1991 Hewlett-Packard Company

• © Copyright 1989, 1990,1991 Transarc Corporation

• © Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG

• © Copyright 1990, 1991 International Business Machines Corporation

• © Copyright 1988, 1989 Massachusetts Institute of Technology

• © Copyright 1988, 1989 The Regents of the University of California

All rights reserved.
Printed in U.S.A.

Printed in the United States of America
ill 9 8 7 6 5 432

ISBN 0-13-490624-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A
LICENSE, AND MAY BE USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF
SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE TO
AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.

Open Software foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S. and other countries.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS and Transarc are registered trademarks of the Transarc Corporation.

Episode is a trademark of the Transarc Corporation.

AIX and RISC System/6000 are trademarks of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File system, SunOS and Sun Microsystems are trademarks of sun Microsystems, Inc.

X/Open is a trademark of the X/Open Company Limited in the U.K. and other countries.

PostScript is a trademark of Adobe Systems Incorporated.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE
ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other leases or license that may pertain to, or accompany the delivery of,
this computer software, the rights of the Government regarding its use, reproduction and disclosure are
as set forth in Section 52.227-19 of the FARS Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR
7-104.9(a). This computer software is submitted with "restricted rights." Use, duplication or disclosure is
subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software - Restricted Rights (April 1985):' If the contract contains the Clause at 18-52.227-74 "Rights in
Data General" then the "Alternate III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface .

Audience

Applicability

Purpose • .

Document Usage

Related Documents

Acknowledgements

ix

IX

X

X

X

XU

xii

Chapter 1. Overview of DCE 1-1

1-1
1-3
1-5

1.1 Why Distributed Computing?
1.1.1 Why DCE? .
1.1.2 Potential Users of DCE .

1.2 Models of Distributed Computing
1.2.1 The Client/Server Model
1.2.2 The Remote Procedure Call Model
1.2.3 The Data Sharing Model

1.3 Architectural Overview of DCE .
1.3.1 Overview of DCE Technology

1-6
1-6

1-10
1-10

1-12

Components .. .•... 1-13
1.3.2 Organization of a Distributed Computing

Environment 1-16
1.3.3 Integration of the DCE Technology

Components .. . • . 1-17
1.3.4 Relationship ofDCE to Network and System

Services 1-18

Chapter 2. DCE Configuration .

2.1 Introduction to DCE Configuration .

2.2 Basic Configuration Components

2.3 DCE Machine Configuration Examples

2-1

2-2

2-4

2-6

Introduction to OSF DeE

2.3.1 DCE User Machine Configuration . 2-6
2.3.2 DCE Administrator Machine

Configuration 2-7
2.3.3 DCE Server Machine Configuration 2-8

2.4 DCE Cell Configuration Examples · 2-9
2.4.1 Simple DCE Cell 2-9
2.4.2 DCE Cell with DFS 2-11
2.4.3 Connected DCE Cell . 2-12
2.4.4 Multicell Configurations 2-13

Chapter 3. DCE Technology Components 3-1

3.1 DCE Threads 3-2
3.1.1 What is DCE Threads? 3-3
3.1.2 End User's Perspective . 3-4
3.1.3 Programming with DCE Threads 3-4
_3.1.4 DCE Threads Administration 3-8
3.1.5 Additional Information on DCE

Threads 3-8

3.2 DCE Remote Procedure Call . 3-8
3.2.1 What Is DCE RPC? 3-10
3.2.2 End User's Perspective . 3-11
3.2.3 Programming with DCE RPC 3-12
3.2.4 DCE RPC Administration 3-16
3.2.5 How It Works 3-17
3.2.6 System Independence · 3-19
3.2.7 Additional Information on DCE RPC . 3-21

3.3 DCE Directory Service · · . . 3-21
3.3.1 DCE Directory Service Architecture 3-22
3.3.2 DCE Cell Directory Service 3-30
3.3.3 DCE Global Directory Service • 3-34
3.3.4 DCE Global Directory Agent . 3-42
3.3.5 The Directory Service Interfaces 3-44

3.4 DCE Distributed Time Service 3-46
3.4.1 What Is DTS? . · 3-47
3.4.2 End User's Perspective 3-50
3.4.3 Programming with DTS 3-50
3.4.4 DTS Administration 3-51
3.4.5 Interaction with the Network Time

Protocol · 3-51
3.4.6 Additional Information on DTS 3-52

3.5 DCE Security Service 3-52
3.5.1 What Is the DCE Security Service? 3-52
3.5.2 How DCE Security Works · 3-54
3.5.3 End User's Perspective . 3-56
3.5.4 Programming with DCE Security 3-56

ii

Contents

3.5.5 DCE Security Service
Administration . 3-58

3.5.6 DCE Security and Kerberos 3-59
3.5.7 Additional Information on DCE

Security 3-59

3.6 DCE Distributed File Service 3-60
3.6.1 What is DFS? . 3-60
3.6.2 DFS Configuration 3-67
3.6.3 End User's Perspective 3-69
3.6.4 Programming with DFS . 3-69
3.6.5 DFS Administration . 3-69
3.6.6 Additional Information on DFS 3-70

3.7 DCE Diskless Support Service 3-70
3.7.1 What Is DCE Diskless Support

Service? . . . 3-71
3.7.2 Booting Support for Diskless

Operation . 3-72
3.7.3 The Diskless Configuration Process 3-73
3.7.4 File Service Support for Diskless

Operation . 3-73
3.7.5 Swapping Support for Diskless

Operation . 3-7 4
3.7.6 Additional Information on DCE Diskless

Support. 3-75

3.8 Two DCE Application Examples 3-76
3.8.1 The greet Application: An Implementation Using

DCE RPC • • 3-76
3.8.2 The greet Application: An Implementation Using

DCE DFS . 3-85

Chapter 4. Integration of DCE Technology Components

4.1 Integration Matrix .

4.2 Integration by Technology Component •

4.3 Implications of Mutual Dependencies .

Appendix A. Overview of DCE Documentation

A.1 DCE Documentation
A.1.1 Introduction to OSF DeE
A.1.2 OSF DeE User's Guide and

Reference .
A.1.3 OSF DeE Administration Guide .
A.1.4 OSF DeE Administration Reference
A.1.5 OSF DeE Application Development

Guide

4-1

4-2

4-3

4-5

A-I

A-I
A-2

A-2
A-2
A-3

A-3

iii

Introduction to OSF DeE

A.l.6 OSF DCE Application Development
Reference •

A.I.7 OSF DCE Porting and Testing Guide •
A.l.S OSF DCE Release Notes
A.l.9 Application Environment Specification/Distributed

Computing. •••
A.l.lD OSF DCE Technical Supplement

A.2 Reading Paths • .
A.2.l High-Level Overview ofDCE .
A.2.2 End Users . .
A.2.3 Application Programmers
A.2.4 System Administrators
A.2.S DCE Developers .
A.2.6 DCE Implementors

Appendix B. DCE Documentation Outline

Appendix C. List of Acronyms and Abbreviations .

Glossary Usage

Glossary

Index

iv

A-3
A-3
A-4

A-4
A-4

A-4
A-S
A-S
A-S
A-6
A-7
A-7

B-1

C-l

G-l

GL-l

Index-l

Contents

List of Figures

Figure 1-1. A Potential DCE Network . 1-2

Figure 1-2. The Client/Server Model 1-7

Figure 1-3. Communication Between the Print Client and Print Server . 1-7

Figure 1-4. The Print Server Acting as a Client of the File Server 1-8

Figure I-S. Two Servers Running on One Node . 1-8

Figure 1-6. A Client Is General; Servers Are Specialized 1-9

Figure 1-7. Client as a Library; Server as a Continuous Process 1-10

Figure 1-8. Layering of DCE and Related Software . 1-12

Figure 1-9. DCE Architecture 1-13

Figure 2-1. Types of DCE Machines 2-3

Figure 2-2. DCE Machines and Their Software 2-4

Figure 2-3. Distributed Service Configuration Components 2-S

Figure 2-4. DCE User Machine Configuration 2-7

Figure 2-S. DCE Administrator Machine Configuration 2-8

Figure 2-6. DCE Server Machine Configuration Examples • 2-8

Figure 2-7. Simple DCE Cell Configuration 2-10

Figure 2-8. DCE Application in Simple Cell • 2-11

Figure 2-9. Simple Cell Plus Distributed File Server 2-12

Figure 2-10. Cell Connected via Global Directory Agent 2-13

Figure 3-1. DCE RPC Programming Process • 3-13

Figure 3-2. Client Finds Server Using CDS and RPC Daemon 3-16

Figure 3-3. RPC Runtime Process 3-18

Figure 3-4. Three One-Celled Organizations . 3-23

Figure 3-S. GDS and DNS Connect DCE Cell Namespaces 3-24

v

Introduction to OSF DeE

Figure 3-6. Use of Global Directory Agents

Figure 3-7. XDS: Interface to GDS and CDS .

Figure 3-8. Four Cells in DCE Global Namespace

Figure 3-9. Top of a Typical DCE Cell Namespace .

Figure 3-10. GDS Components

Figure 3-11. GDS Object Entry

Figure 3-12. The OSI Protocol Layers

Figure 3-13. GDA and Other Directory Service Components

Figure 3-14. DTS Time Clerks and Servers .

Figure 3-15. Local, Courier, and Global Time Servers

Figure 3-16. DCE Security Interactions .

Figure 3-17. DCE ACL Example .

Figure 3-18. Files, Directories, Filesets, and Aggregates .

Figure 3-19. DFS Client and File Server Machines

Figure 3-20. Other DFS Servers .

Figure 3-21. Diskless Client and Related Servers .

Figure 3-22. Swap Process from Application to Server

vi

3-25

3-25

3-26

3-27

3-36

3-38

3-40

3-43

3-48

3-49

3-54

3-58

3-61

3-67

3-68

3-72

3-75

List of Tables

Table 4-1. DCE Component Integration . . .

Table B-1. DCE Documentation Outline

Table C-l. DCE Acronyms and Abbreviations .

Contents

4-2
B-1

C-l

vii

Preface

Introduction to aSF DeE provides an introduction to the OSF™ Distributed
Computing Environment (DCE) offering. The glossary introduces terms
used in DCE documentation.

Audience

The content and intended audience of this manual change from less
technical to more technical as the manual progresses. Chapter 1 is written
for anyone interested in an overview of DCE, including managers, system
administrators, and application programmers. Chapter 2 is intended for
network managers and administrators. Chapters 3 and 4 are targeted
primarily for administrators and programmers.

Appendix A is written for anyone wishing to find further information on
DCE. It suggests reading paths through the DCE documentation set for
various audiences. The glossary contains terms used throughout the DCE
documentation. Each term is defined for the audience of the manual in
which it appears. For example, the definition of a term used in the aSF
DeE Administration Guide is targeted for the same audience as the aSF
DeE Administration Guide itself.

ix

Introduction to OSF DeE

Applicability

This is Revision 1.0 of this manual. It applies to the aSF DCE 1.0 offering.

Purpose

After reading this document, a user will

• Have a high-level understanding of DCE

• Understand the individual technology components comprising DCE

• Understand the interdependencies of the DCE technology components

• Be able to find further information about DCE in related documents

Document Usage

x

The manual is organized as follows:

• Chapter 1

Chapter 1 gives an overview of DCE. It describes distributed computing
and its uses, and presents the client/server model of distributed
computing, on which DCE is based. It gives a summary of the DCE
architecture, along with a brief description of each of the technology
components that comprise DCE, and their integration with one another.

• Chapter 2

Chapter 2 gives examples of typical DCE configurations. It explains the
concept of a DCE cell, and describes the DCE software configuration
components. It describes the configuration of different types of DCE
machines. It then gives examples of different cell configurations,
including a simple DCE cell, and cells with various combinations of
DCE services.

Preface

• Chapter 3

Chapter 3 describes each of the technology components that comprise
DCE. It includes sections on DCE Threads, Remote Procedure Call,
Directory Service, Distributed Time Service, Security Service,
Distributed File Service, and Diskless Support Service. Its last section
shows how some of these services are used in a simple distributed
application example.

• Chapter 4

The DCE technologies are integrated with one another; that is, they use
each other's services wherever appropriate. Chapter 4 describes the
ways in which each of the DCE components uses the other technology
components of DCE, and what implications their integration has for
porting, testing, configuring, and starting up DCE systems.

• Appendix A

Appendix A gives an overview of DCE documentation, and suggests
reading paths for different audiences.

• Appendix B

Appendix B gives an outline of the contents of the DCE documentation
set.

• Appendix C

Appendix C lists the acronyms and abbreviations used in this manual.

• Glossary

The glossary. defines terms used in this manual and the rest of the DCE
documentation set.

xi

Introduction to OSF DeE

Related Documents

The DCE documentation set comprises the following manuals. See
Appendix A for a description of each of these manuals.

• Introduction to OSF DCE

• OSF DCE User's Guide and Reference

• OSF DCE Application Development Guide

• OSF DCE Application Development Reference

• OSF DCE Administration Guide

• OSF DCE Administration Reference

• OSF DCE Porting and Testing Guide

• Application Environment Specification/Distributed Computing

• OSF DCE Technical Supplement

• OSF DCE Release Notes

Acknowledgements

xii

DCE Revision 1.0 is the result of the work of Gary Aberle, Robert Acosta,
Teresa Acosta, R.K. Aditham, Maria Aicher, Mark Akers, Pervaze Akhtar,
Vijay Anand, Ted Anderson, Dick Annicchiarico, Vasilis Apostolides, Larry
Augustus, Brian Bailey, Anju Bansal, Jeff Barry, Ko Baryiames, Steve
Bertrand, Andrew Birrell, Michael Blackstock, Sumner Blount, Winfrid
Blumann, Gil Bogo, Beth Bottos, John Bowe, Mary Brady, Michael Brady,
Gertjan van den Brandhof, Bill Brown, Josef Buchenberg, Terri Buchman,
Mike Burati, Carl Burnett, Lisa Burns, Ann Burton, Bob Burton, Yakov
Burtov, Sandra Bushnell, Dave Butenhof, Marysia Cahill, Gerald Cantor,
Martine Carannante, Greg Carpenter, Noreen Casey, Debbie Caswell,
Monica Cellio, Alex Chen, David Cheriton, David Chinn, Sailesh Chutani,
Danny Cobb, Mike Comer, Joe Comuzzi, Elizabeth Connolly, Orla
Connolly, Bob Conti, Eileen Coons, Cesar Cortes, Laurie Cura, John Curry,
Paul Curtin, Richard Curtis, Sue-fen Cuti, Beth Cyr, Ron Czik, Fred
Dalrymple, Sachin Danait, Martha DasSarma, Manfred Demus, Rajendra

Preface

Desai, Marcia Desmond, Terry Dineen, Chris Doherty, Nick Dokos, Emer
Donnelly, Amy Dorman, Eddie Doyle, Niamh Doyle, John Dugas, Teodor
Dumitrescu, Philip Dunne, Donna Esterling, Craig Everhart, Rick Fadden,
Patrick Fantou, Dietmar Fauth, Gary Fernandez, Alan Finger, Tony Fiore,
Dick Flowers, Ken Flowers, Roger Fondrillon, Mark Fox, Carolyn
Francisco, Tonie Franz, Jean Fullerton, Mary Gacoin, Prasad Ganni, Dave
Geise, Frank Ginac, Ken Goach, Josh Goldman, Bob Goldschneider,
Jonathan Gossels, Roger Gourd, John Grober, Paul Groff, Michael Gross,
Praveen Gupta, Bill von Hagen, Alan Hamilton, Debbie Hamilton, Eric
Hamilton, Bill Hankard, Peter Harbo, Ward Harold, Melanie Harper, Jerry
Harrow, Doug Hartman, Bob Hathaway, Sally Hehir, Walter Heldmann,
Mark Heroux, Juergen Herrmann, Ann Hewitt, Mark Hickey, Bill Hileman,
Susanna Hill, Liz Hines, Tony Hinxman, Phil Hirsch, Ken Hobday, Heinz
Hoffman, Angie Holloway, Tony Hooten, Anne Hopkins, Reinhard Horn,
Grace Hsiao, Wei Hu, Liz Hughes, Christian Huitema, Peter Hurley, Jim
Jackson, Reinhard Jahn, Sanjay Jain, Vicky Janicki, Eric Jendrock, Brad
Johnson, Kathleen Johnson, Melissa Johnston, Ed Jones, Jeff Kaminski, John
Kaminsky, Sandhya Kapoor, Mark Karuzis, Don Kassebaum, Greg
Kattawar, Marsha Kaufman, Mike Kazar, Katie Kean, Brian Keane, Peter
Keegan, David Kenney, Andy Klein, Natasha Kogan, Mike Kong, Kothari,
Julie Kownacki, Ernst Kraemer, Mary Kumar, Ram Kumar, Dale
Labossiere, Johnathan Lahr, Dick Leban, Gregg Lebovitz, Philip Lehman,
Bob Leigh, Norbert Leser, Bruce Leverett, Kristen Levy, Steve Lewontin,
Jeff Liotta, Suzanne Lipsky, Dave Lounsbury, Kevin Lynch, Tom Lyons,
Mike Machutt, Dick Mackey, David Magid, Dottie Mamos, Saul Marcus,
Beth Martin, Liza Martin, Sandra Martin, Tony Mason, Tony Mauro,
Howard Mayberry, Bob Mayes, Raymond Mazzaferro, Janet McCann, Marll
McDonald, Craig McGowan, Andy McKeen, Michael McMahon, Dave
Mehaffy, Howard Melman, John Milburn, Steve Miller, Pam Millett, Dah
Ming Chiu, Nathaniel Mishkin, Mamata Misra, Wayne Mock, Paul
Mockapetris, Keith Morgan, Kathy Moriconi, Howard Morris, Bill Mowson,
Johann Mueller, Vera Mueller, Sape Mullender, Scott Nacey, Parul
Nanvanti, Roger Needham, Gerhard Neumann, Wick Nichols, Laura Norton,
Scott Norton, Bridget Notzon, Gary Oden, Dave Oran, Mary Orcutt, Dave
Ortmeyer, Ken Ouellette, Larry Ouellette, Phil Owens, Scott Page,
Maryanne Paratore, Margo Parent, Joe Pato, Marco Pauletti, Peter Pawlita,
Alan Peckham, Steve Peckham, Jean Pehkonen, Ed Perkins, Jim Perry,
Dennis Phillips, Shiobhan Pigott, William Pigott, Marty Port, Jeff Prem, Hal
Prince, Giovanni Rabaioli, Dan Raizen, John Raleigh, Mary Beth Raven,
Ron Rebeiro, Joel Richman, Susie Richter, Davie Robinson, Larry Rose,
Ward Rosenberry, Danna Rother, ~ohn Rousseau, David Royal, Donna

xiii

Introduction to OSF DeE

xiv

Ruane, Gabi Rustemeyer, Vincent Ryan, Mike Saboff, Sandy Sadowski,
Rusty Sandberg, Mark Sawyer, Webb Scales, Peter Schay, Brian Schimpf,
Wolfgang Schmid, Heinrich Schmidt, Gary Schmitt, Tom Sgouros, Ellen
Sharp, Diane Sherman, Margie Showman, Chi Shue, Bob Sidebotham, Al
Simons, Hermi Singh, David Skeen, Paula Slotkin, Bill Sommerfeld-, Alfred
Spector, Dave Stephenson, Dawn Stokes, Ellen Stokes, Kevin Sullivan,
Henk Tinkelenberg, David Tory, Dave Treff, Hubert Trieb, Shu-Tsui Tu,
Walt Tuvell, Walter Ulrich, Ellen Vliet, Helmut Volpers, Jim Wade, Ed
Wahl, Ken Walker, Susanna Wallace, Linda Walmer, Una Walsh, Aidan
Walters, Terri Warren, Peter Weinberger, Doug Weir, Dave Weisman,
Beatrice Weiss, Reinhard Weltrich, Alvin Wen, Eric Wertz, Wayne
Wheeler, Anne Williams, Frank Willison, Jean Wilson, Elaine Wolfe,
Angelika Wolff, Roger Woodbury, Julie Yarsa, Lisa Zahn, Ed Zayas, Rich
Zeliff, Joseph Zrihen, and the author of this manual, Jennifer Steiner.

Chapter 1

Overview of DCE

asp's Distributed Computing Environment provides services and tools that
support the creation, use, and maintenance of distributed applications in a
heterogeneous computing environment. This chapter provides an overview
of DCE, beginning with a section describing distributed computing and its
benefits. The next section describes three distributed computing models­
client/server, RPC, and data sharing. The final section gives an overview of
DCE itself, describing its technology components, the organization of a
DCE environment, and the relationship between DCE and the underlying
computing system.

1.1 Why Distributed Computing?

By "distributed computing" we mean computing that involves the
cooperation of two or more machines communicating over a network (see
Figure 1-1). The machines participating in the system can range from
personal computers to supercomputers; the network can connect machines
in one building or on different continents.

1-1

Introduction to OSF DeE

Figure 1-1. A Potential DeE Network

1-2

Why is enabling this type of cooperative computing important? One reason
is historical: computing resources that used to operate independently now
need to work together. For example, consider an office that acquired
personal workstations for individual use. After a while, there were many
workstations in the office building, and the users recognized that it would be
desirable to share data and resources among the individual computers. They
accomplished this by connecting the workstations over a network.

A second reason is functional: if there is special-function hardware or
software available over the network, then that functionality does not have to
be duplicated on every computer system (or "node") that needs to access
the special-purpose resource. For example, an organization could make a
typesetting service available over the network, allowing users throughout
the organization to submit their jobs to be typeset.

A third reason is economical: it may be more cost-effective to have many
small computers working together than one large computer of equivalent
power. In addition, having many units connected to a network is the more
flexible configuration-if more resources are needed, another unit can be
added in place, rather than bringing the whole system down and replacing it
with an upgraded one.

Overview of DeE

Finally, a distributed system can be more reliable and available than a
centralized system. This is a result of the ability to replicate both data and
functionality. For example, when a given file is copied on two different
machines, then even if one machine is unavailable, the file can still be
accessed on the other machine. Likewise, if several printers are attached to
a network, then even if an administrator takes one printer offline for
maintenance, users can still print their files using an alternate printer.

Distributed computing inherently brings with it not only potential
advantages, but also new problems. Examples are keeping multiple copies
of data consistent, and keeping the clocks on different machines in the
system synchronized. A system that provides distributed computing support
must address these new issues.

1.1.1 Why DeE?

Given that, for one of the reasons previously mentioned or some other
reason, an organization decides that it wants to acquire distributed
computing capability, why is DCE in particular advantageous? Why would
an organization with a network such as the one in Figure 1-1 benefit from
using DCE to enable distributed computing? DCE's benefits can be
categorized into its support of distributed applications, the integration of its
components with each other, DCE's relationship to its platforms, its support
for data sharing, and DCE' s interaction with the world outside of DCE:

• DCE provides tools and services that support distributed applications.

DCE provides a high-level, coherent environment for developing and
running applications on a distributed system. The DCE components fall
into two categories: tools for developing distributed applications, and
services for running distributed applications. The tools, such as DCE
Remote Procedure Call and DCE Threads, assist in the development of
an application. The services, such as the DCE Directory Service,
Security Service, and Distributed Time Service, provide the support
required in a distributed system that is analogous to the support an
operating system provides in a centralized system.

(It is possible to develop distributed applications with much less
assistance than what DCE offers. Programmers can write applications
that cooperate across machines by explicitly writing the code that
performs the network communications between them, but this requires

1-3

Introduction to OSF DeE

1-4

much time and expertise. Programmers can also write distributed
applications using a communications tool, such as remote procedure
call, while explicitly using other necessary technologies, like standalone
name and security services. However, DeE provides a set of
components necessary for distributed computing that are already
integrated, and that do as much work as possible automatically for the
application programmer, system administrator, and end user.)

• DeE's set of services is integrated and comprehensive.

A second benefit is the integration and comprehensiveness of the DeE
components. Not only does DeE provide all the tools and services
needed for developing and running distributed applications, but the DeE
components themselves are well integrated. They use one another's
services whenever possible, since many of the DeE components are
themselves distributed applications. In addition to supporting the
development of distributed applications, DeE includes services that
address some of the new problems inherent in the distributed system
itself, such as data consistency and clock synchronization. Finally, DeE
includes management tools for administering all of the DeE services
and many aspects of the distributed environment itself.

• DeE provides interoperability and portability across heterogeneous
platforms.

Another benefit of DeE is its orientation toward heterogeneous rather
than homogeneous systems. One way to implement a distributed system
is to use a single operating system that runs on all nodes participating in
the distributed network. The DeE architecture, however, allows for
different operating systems and hardware platforms. U sing DeE, a
process running on one computer can interoperate with a process on a
second computer, even when the two computers have different hardware
or operating systems. DeE can therefore accommodate a wider range of
networks-especially networks needing distributed computing for the
historical reasons previously listed-than a model that requires the same
operating system running on every node. Applications that are built
using DeE are portable to other hardware/operating system platforms
that run DeE.

• DeE supports data sharing.

Another benefit is DeE's support of data sharing through its directory
service and distributed file service. A user anywhere in the distributed
system can share data by placing it in the namespace or in a file,

Overview of DeE

whichever is appropriate for the application. The data is then accessible
by authorized users throughout the system.

• DeE participates in a global computing environment.

One final benefit of DeE is the way it interacts with the outside world.
In addition to supporting cooperation within and between themselves,
DeE systems can also interoperate with computing environments
outside of DeE. In particular, the DeE Directory Service can
interoperate with two standard, global directory services-X.SOO and
Domain Name Service-allowing users from within DeE to access
information about the outside world. In this way, DeE participates in a
global directory service. One benefit of such participation can be seen
in DeE's distributed file system: it looks like one global file system, and
users anywhere in the world can address the same file using the same
global name.

1.1.2 Potential Users of DeE

This section gives some examples of computing environments that can profit
from distributed computing capabilities. In general, any computing
organization wishing to take advantage of the benefits of a distributed
computing environment-data and resource sharing, extensibility,
availability, interoperability-can benefit from using DeE. For example:

• An office with isolated computing resources can network the computers
together and use DeE for data and resource sharing.

• An organization consisting of multiple computing sites that are already
interconnected by a network can use DeE to tie together and access
resources across the different sites. The different sites can be in
different countries, or even on different continents.

• Any computing organization comprising, or expecting to comprise in the
future, more cooperating hosts than can be easily administered manually
(perhaps over a dozen nodes) can benefit greatly from the administrative
support afforded by a DeE environment. For example, in DeE the
database of computer users and their associated information (such as
passwords) can be administered centrally, removing the need for an
administrator to update information on every single node in the network
each time a new user is added.

1-5

Introduction to OSF DeE

• Organizations that write distributed applications can use DeE as a
platform for their software. Applications that are written on DeE can be
readily ported to other software and hardware platforms that also support
DeE.

• Organizations wishing to use applications that run on DeE platforms.

• Organizations that wish to participate in networked computing on a
global basis. Since DeE supports standard directory services that will
be used throughout the world, a site that participates in DeE will be able
to plug into that worldwide directory service database, allowing it to
both "see" and access information about other sites and organizations
around the world. In turn, it will be able to add itself to the directory
service, allowing itself to be "seen" and accessed, if desired, by other
sites worldwide.

• System vendors whose customers are in any of the preceding categories.

• Organizations that would like to make a service available over the
network on one system (for example, VMS), and have it accessible from
other kinds of systems (for example, UNIX based workstations).

1.2 Models of Distributed Computing

DeE is based on three distributed computing models-client/server, remote
procedure call, and data sharing. The client/server model is a way of
organizing a distributed application. The remote procedure call model is a
way of communicating between parts of a distributed application. The data
sharing model is a way of handling data in a distributed system. The
following subsections briefly describe each model.

1.2.1 The Client/Server Model

1-6

A useful model for implementing distributed applications is the
"client/server" model. In this model, the distributed application is divided
into two parts, one part residing on each of the two computers that will be
communicating during the distributed computation (see Figure 1-2).

Overview of DeE

Figure 1-2. The Client/Server Model

Request

Response

The client side of the application is the part that resides on the node that
initiates the distributed request and receives the benefit of the service (for
example, a workstation that requests that a file be printed). The server side
of the application is the part that resides on the node that receives and
executes the distributed request (for example, the node with the printer). In
this model, two different sets of code are produced-one that runs as a
client, the other as a server.

Figure 1-3 shows a workstation running the client side of a distributed print
program, and a print server running the server side of the distributed
program.

Figure 1-3. Communication Between the Print Client and Print Server

Workstation

Print
Request

Print
Response

Print Server

Note that the terms "client" and "server" can be seen as relative roles
rather than as absolutes. For example, in executing the print request, the
print server may in turn become a client in a distributed communication-it
may ask the file server to send it a copy of the file to be printed (see Figure
1-4).

1-7

Introduction to OSF DeE

Figure 1-4. The Print Server Acting as a Client of the File Server

Workstation Print Server File Server

Print
Request

Print
Response

File
Request

File
Response

The terms "client" and "server" are also used to refer to specific nodes.
This can be confusing since a given node, or even a given process, can be
acting in both the client and server role. Nevertheless, it is often convenient
to use the term "file server" when referring to the node on which the server
side of a distributed file system is running-probably a machine that
contains a lot of disk storage. Likewise, the "directory server" is a node
that contains a database with names in it, and answers requests for access to
those names. When clarification is needed, we use the term "machine" to
indicate the node rather than the role. For example, in Figure 1-4, the print
server, which runs on the print server machine, is acting as a client to the file
server.

Note that it is possible for more than one server to run on a given node. For
example, both a security server and a time server can run on the same
machine. In this case, the given node is both the security server machine
and the time server machine (see Figure 1-5).

Figure 1-5. Two Servers Running on One Node

1-8

Time
Request

Time
Response

Time and Security Servers

Security
Request

Security
Response

Overview of DeE

In general, when referring to clients and servers as nodes, the server nodes
are specialized -they require software that is found only on that particular
server (for example, the directory server); whereas client nodes are
generalized-client machines are typically configured with the capability to
be many types of client (for example, a directory, file, and security service
client). See Figure 1-6.

Figure 1-6. A Client Is General; Servers Are Specialized

The reason client nodes are generalized is that the client code is usually
relatively small compared to the code that implements a server, and
typically many nodes need to be able to run the client side of an application;
whereas only one or two nodes may be equipped to run the server side of an
application.

One final distinction between client and server: the server is typically
implemented as a continuous process (daemon); whereas the client is
usually implemented as a library. In other words, the client side of an
application consists of a call to a routine that executes (sending the request
over the network and receiving the result) and then returns and goes on with
whatever else it was doing; whereas the server side of an application is a
dedicated process that runs continuously-waiting for a request, executing
it and returning the answer, then waiting for the next request, and so on.
Figure 1-7 illustrates this distinction.

1-9

Introduction to OSF DeE

Figure 1-7. Client as a Library; Server as a Continuous Process

DCE is based on the client/server model. The DCE services are themselves
examples of distributed programs with a client and server side. The basic
communications mechanism used in DCE, remote procedure call, assumes
the presence of a client and a server. Since DCE applications are built using
remote procedure call, they are also based on the client/server model of
distributed computation.

1.2.2 The Remote Procedure Call Model

One way of implementing communications between the client and server
sides of a distributed application is to use the procedure call model. In this
model, the client makes what looks like a procedure call. The procedure
call is translated into network communications by the underlying RPC
mechanism. The server receives a request and executes the procedure,
returning the results to the client. One of the DCE technology components,
DCE RPC, is an implementation of this model. It is used by most of the
other DCE technology components for their network communications. (See
Section 3.2 of this manual for more information on remote procedure calls
and DCE RPC.)

1.2.3 The Data Sharing Model

1-10

Some of the DCE services are based on the' 'data sharing" model, in which
data is shared by distributing it throughout the system. Like RPC, data
sharing assumes the existence of clients and servers. Data sharing, however,
focuses on distributed data rather than distributed execution. In RPC, the
client's procedure is executed on the server. In data sharing, the server's
data is sent to the client. For example, if a client wants to access a file, a
copy of the file is sent from the server to the client. The client then proceeds

Overview of DeE

to access the file locally. Data sharing can be built on top of RPC, using
RPC as the communications mechanism between the client and server, and
as the means of transferring data.

Data sharing usually entails having multiple copies of the same data; for
example, a master copy of a file on a file server, and a copy of the file on one
or more client machines. As a result, copies of data may diverge-a client
may make changes to its copy that make the client's copy inconsistent with
the copy on the server. Therefore, distributed services based on the data
sharing model usually include mechanisms for keeping copies of data
consistent.

In addition, services that implement data sharing must be able to
synchronize multiple access to data. For example, two clients may each
want to modify a given record in a database. The server that manages the
database must either prevent them from making conflicting modifications, or
decide which modification takes precedence.

Two DCE services are based on the data sharing model. The first is the
Directory Service. Both DCE directory services, CDS and GDS, maintain
caches on the client. The caches contain copies of data that users on the
client have recently accessed. Subsequent access to the data can be made
locally to the cache, rather than over the network to the server.

The DCE Distributed File Service is also based on the data sharing model.
A DFS client maintains a cache of files that have recently been accessed by
a user on the system. DFS servers distribute and revoke tokens, which
represent a client's capability to perform operations on files. Through
careful token management, the DFS server can ensure that its clients do not
perform conflicting operations on shared files, and that they do not see
inconsistent copies of the same file.

Data sharing, like RPC, enables users and programmers to communicate
transparently in a distributed system.

1-11

Introduction to OSF DeE

1.3 Architectural Overview of DeE

aSF's Distributed Computing Environment is a layer between the operating
system and network on the one hand, and the distributed application on the
other. DCE provides the services that allow a distributed application. to
interact with a collection of possibly heterogeneous computers, operating
systems, and networks as. if they were a single system. Figure 1-8 shows
DCE in relation to operating systems, network communications software,
and applications software.

Figure 1-8. Layering of DeE and Related Software

1-12

Distributed Applications

DeE

as and Network Services

Several technology components work together to implement the DCE layer.
Many of these components provide in a distributed environment what an
operating system provides in a centralized (single-node) environment.

Figure 1-9 shows the DCE architecture and its technology components,
along with their relationship to applications, underlying system support, and
placeholders for future technologies.

Overview of DeE

Figure 1-9. DeE Architecture

,-------------------------------------,
I I
I Applications I
I I
I I

L _____ ~-------------------------------J

DCE
SS
e e
c r
u v
r i
i c
t e
y

DCE Diskless
Support Service

DCE
Distributed

Time Service

·---------------1
I Other Distributed I
: Services (Future) :
L ________________ J

DCE Distributed File Service

DCE
Directory
Service

r------I
lather Basic I
I Services I
I (Future) I
L- ______ J

DCE Remote Procedure Call

DCE Threads

M
a
n
a
g
e
m
e
n
t

r-------------------------------------l
I Operating System and Transport Services I L _____________________________________ J

1.3.1 Overview of DCE Technology Components

This section gives a short description of each of the DCE technology
components. A more in-depth description of each of these components is
given in Chapter 3 of this manual.

1-13

Introduction to OSF DeE

1-14

DeE Threads supports the creation, management, and synchronization of
multiple threads of control within a single process. This component is
conceptually a part of the operating system layer, the layer below DCE. If
the host operating system already supports threads, DCE can use that
software and DCE Threads is not necessary. However, not all operating
systems provide a threads facility, and DCE components require that threads
be present, so this user-level threads package is included in DCE.

The DCE Remote Procedure Call (RPC) facility consists of both a
development tool and a runtime service. The development tool consists of a
language (and its compiler) that supports the development of distributed
applications following the client/server model. It automatically generates
code that transforms procedure calls into network messages. The runtime
service implements the network protocols by which the client and server
sides of an application communicate. DCE RPC also includes software for
generating unique identi fiers, which are useful in identifying service
interfaces and other resources.

The DCE Directory Service is a central repository for information about
resources in the distributed system. Typical resources are users, machines,
and RPC-based services. The information consists of the name of the
resource and its associated attributes. Typical attributes could include a
user's home directory, or the location of an RPC-based server.

The DCE Directory Service comprises several parts: the Cell Directory
Service (CDS), the Global Directory Service (GDS), the Global Directory
Agent (GDA), and a directory service programming interface. The Cell
Directory Service manages a database of information about the resources in
a group of machines called a DCE cell. (Cells are described in the next
section.) The Global Directory Service implements an international
standard directory service, and provides a global namespace that connects
the local DCE cells into one worldwide hierarchy. The Global Directory
Agent (GDA) acts as a go-between for cell and global directory services.
Both CDS and GDS are accessed using a single directory service
application programming interface, the X/Open Directory Service (XDS)
API.

The DCE Distributed Time Service (DTS) provides synchronized time on
the computers participating in a Distributed Computing Environment. DTS
synchronizes a DCE host's time with Coordinated Universal Time (UTC),
an international time standard.

Overview of DeE

The DCE Security Service provides secure communications and controlled
access to resources in the distributed system. There are three aspects to
DCE security: authentication, secure communications, and authorization.
These aspects are implemented by several services and facilities that
together comprise the DCE Security Service, including the Registry Service,
the Authentication Service, the Privilege Service, the Access Control List
(ACL) Facility, and the Login Facility.

The identity of a DCE user or service is verified, or authenticated, by the
Authentication Service. Communications are protected by the integration of
DCE RPC with the Security Service-communication over the network can
be checked for tampering or encrypted for privacy. Finally, access to
resources is controlled by comparing the credentials conferred to a user by
the Privilege Service with the rights to the resource, which are specified in
the resource's Access Control List. The Login Facility initializes a user's
security environment, and the Registry Service manages the information
(such as user accounts) in the DCE Security database.

The DCE Distributed File Service (DFS) allows users to access and share
files stored on a File Server anywhere on the network, without having to
know the physical location of the file. Files are part of a single, global
names pace, so no matter where in the network a user is, the file can be found
using the same name. The Distributed File Service achieves high
performance, particularly through caching of file system data, so that many
users can access files that are located on a given File Server without
prohibitive amounts of network traffic and resulting delays.

DCE DFS includes a physical file system, the DCE Local File System
(LFS), which supports special features that are useful in a distributed
environment. They include the ability to replicate data; log file system data,
enabling quick recovery after a crash; simplify administration by dividing
the file system into easily managed units called filesets; and associate ACLs
with files and directories.

DeE also offers Diskless Support Service, which provides the tools that
allow a diskless node to acquire an operating system over the network,
obtain configuration information, connect to DFS to obtain the diskless
node's root file system, and perform remote swapping. When these tools are
incorporated into the client's operating system and hardware, the diskless
node can operate in a DCE environment.

1-15

Introduction to OSF DeE

The Management block shown in Figure 1-9 is actually not a single
component, but a cross section of the other components. Each DCE service
contains an administrative component so it can be managed over the
network. In addition, some of the DCE services themselves provide for
management of the distributed system as a whole. For example, users are
registered in the Security Service, and servers' network addresses are
registered in the Directory Service.

1.3.2 Organization of a Distributed Computing Environment

1-16

This section introduces the concept of a DCE cell, and gives a brief
summary of how different machines participating in a Distributed
Computing Environment are organized.

A group of DCE machines that work together and are administered as a unit
is called a cell. For example, imagine an organization comprised of several
departments, each in a different building and operating on its own budget.
Each department in such an organization could have its own DCE cell.

A "Distributed Computing Environment" (or "DCE environment") is a
group of one or more DCE cells that can communicate with each other. A
cell becomes a part of a DCE environment when it obtains access to one or
more global directory services in which the other cells in the environment
are registered.

Going back to the example, if the different departments' cells are a part of a
DCE environment, then a user in one department's cell may be able to
access resources in another department's cell, although this access would
typically be less frequent and more restricted than access to resources
within the user's own cell.

A DCE cell can be configured in many ways, depending on its users'
requirements. A cell consists of a network connecting three kinds of nodes:
DCE User Machines, DCE Administrator Machines, and DCE server
machines. DCE User Machines are general-purpose DCE machines. They
contain software that enables them to act as clients to all of the DCE
services. DCE Administrator Machines contain software that enables a
DCE administrator to manage DCE system services remotely.

Overview of DeE

The DCE server machines are equipped with special software enabling them
to provide one or more of the DCE services. Every cell must have at least
one each of the following servers in order to function:

• Cell Directory Server

• Security Server

• Distributed Time Server

Other DCE servers may be present in a given DCE cell to provide additional
functionality -a Global Directory Agent may be present to enable the cell's
directory server to communicate with other cells' directory servers; a Global
Directory Server may be present to provide X.SOO directory service; and
Distributed File Servers may be present to provide storage of files, the
special functions of the Local File System, and possibly Diskless Support
Service. (See Chapter 2 of this manual for more detailed information on
DCE cell configuration.)

1.3.3 Integration of the DeE Technology Components

One of the benefits of asF' s DCE is its coherence: although the components
themselves are modular with well-defined interfaces, they are also well
integrated; the various DCE components each make use of the services of
the other components wherever possible. For example, the RPC facility
uses the Directory Service to advertise and look up RPC-based servers and
their characteristics; it uses the Security Service to ensure message integrity
and privacy; and it uses DCE Threads to handle concurrent execution of
multiple RPCs. The Distributed File Service uses Threads, RPC, Directory
Service, Distributed Time Service, and Security Service in providing its file
service.

In general, the DCE components shown higher in the DCE Architecture (see
Figure 1-9) make use of the components shown lower in the architecture.
For example, DCE Threads is used by most other DCE components, but does
not itself use other components. This ordering is not strictly hierarchical;
often two services each depend on the other. For example, the Directory
Service uses the Security Service, which in turn uses the Directory Service.
The interdependence of DCE components is explained in more detail in
Chapter 4.

1-17

Introduction to OSF DeE

1.3.4 Relationship of DeE to Network and System Services

1-18

As shown in Figure 1-8, DCE is layered on top of local operating system and
networking software. DCE makes certain assumptions about the services
provided by the underlying network and operating systems. DCE's
requirements for these services are described in the following subsections.

1.3.4.1 Network Services

In general, DCE is layered over a transport level service, such as UDP (User
Datagram Protocol), TCP (Transmission Control Protocol), or ISO TPO-TP4
transport protocols, which is accessed through a transport interface, such as
sockets or XTI (X/Open Transport Interface). DCE assumes that all nodes
participating in the DCE environment are physically connected by a highly
available network. The network can be a Local Area Network (LAN), a
Wide Area Network (WAN), or a combination of both.

The DCE architecture supports different types of network protocol families.
For example, DCE could be ported to run over Open Systems
Interconnection (OSI) protocols. (The OSF DCE 1.0 reference
implementation runs over the Internet Protocol (IP) family.) However, in
order for DCE systems to communicate with one another they must have at
least one set of network protocols in common. For example, DCE is not
designed to enable a node running only IP protocols to communicate with a
node running only OSI protocols.

Finally, DCE assumes the ability to identify a node with a unique network
address, and the ability to identify a process with a network endpoint
address (for example, a port or T-selector).

Overview of DeE

1.3.4.2 Operating System Services

DeE assumes that certain services are available through the underlying
operating system, namely:

• Multitasking

• Timers

• Local interprocess communications

• Basic file system operations (VFS layer)

• Memory management

• Local security mechanisms (if appropriate)

• Threads (or the ability to use DeE Threads)

• General system utility functions

1.3.4.3 DeE Reference Implementation Dependencies

The previous two subsections listed assumptions made by the DeE
architecture. The OSF DeE 1.0 reference implementation contains
additional dependencies on the operating system and network, which are
specific to the implementation. These include the use of Internet Protocol
and socket networking services, and UNIX operating system facilities.

1-19

Chapter 2

DCE Configuration--

Chapter 1 gave some examples of organizations that could benefit from a
Distributed Computing Environment. The examples showed that DCE
could be useful to organizations for widely varying reasons. Similarly, one
organization using DCE could require a DCE configuration that is quite
different from the DCE configuration that another organization develops.

This chapter gives an overview of DCE configuration. It describes the basic
DCE software configuration components, and how they are organized on
different types of DCE machines. It then describes some typical DCE cell
configurations.

The DCE configuration description in this chapter is based on technical
configuration considerations. The packaging of DCE software by OSF and
other vendors will involve somewhat different configurations, since the
packaging is influenced by additional considerations.

2-1

Introduction to OSF DeE

2.1 Introduction to DCE Configuration

2-2

A Distributed Computing Environment (or DCE environment) consists of
machines that communicate over a network and run DCE software. The
machines serve different functions and therefore run different configurations
of DCE software. There are three basic types of machines in a DCE
environment:

• DCE User Machine

A DCE User Machine contains DCE software that enables the machine
to participate as a client in the DCE environment. A typical example is
a user's workstation.

• DCE Administrator Machine

A DCE Administrator Machine contains DCE software that enables an
administrator to control servers running in the environment. A typical
example is the DCE system administrator's workstation.

• DCE Server Machine

A DCE server machine runs software that implements one or more of the
DCE services. There can be different kinds of DCE server machines.
Some examples are a DCE File Server machine and a DCE Security
Server machine.

Figure 2-1 shows an example of a DCE environment containing the three
different kinds of DCE machines.

DCE Configuration

Figure 2-1. Types of DeE Machines

XX Server ZZ Server

YY Server

The different types of DeE machines run different parts of the DeE
software. The basic software necessary for any machine to participate in a
DeE environment is the "DeE User" software: The DeE User runs on all
three types of DeE machines. The software necessary for an administrator
to control DeE servers remotely is the "DeE Administrator" software.
The DeE Administrator runs on DeE Administration Machines, along with
DeE User software.

Finally, some of the DeE software implements a particular DeE service,
and is intended to run only on a machine acting as that particular server. For
example, the DeE Security Server software only runs on a machine
designated as a DeE Security Server machine. There are different kinds of
DeE server machines. They run their server-speci fic software, plus the
DeE User software. Figure 2-2 summarizes the DeE software that runs on
different kinds of DeE machines.

2-3

Introduction to OSF DeE

Figure 2-2. DeE Machines and Their Software

DeE User Machine

8

DeE Administrator Machine

DeE xx Server Machine

DCE XX Server

DeE User

DeE YY Server Machine

DeE YY Server

DeE User

DeE ZZ Server Machine

DeE ZZ Server

DeE User

The following sections describe the DeE software configuration
components, machine configuration, and cell configuration in more detail.

2.2 Basic Configuration Components

2-4

DeE software can be divided into several "configuration components;" that
is, parts of the DeE software that are installed in various combinations on
DeE machines. Different configuration components are installed on
different machines in a DeE environment, depending on what the machine's
intended use is. For example, a user's workstation that acts mainly as a
client in the DeE environment requires a different set of DeE software from
a machine that acts as a DFS File Server.

The following description is a model for dividing DeE services into
configuration components. The way a service's implementation maps to
this model varies from service to service.

First, each DeE service can be divided into two general categories of
functionality, user and administration. The user functionality is the service
provided to its users; for example, reading a file or searching a database.
The administration functionality allows administrators to manage the
server; for example, stopping and starting server programs or backing up
data.

DCE Configuration

Since the DCE services are based on the client/server model, both the user
and administration functions are divided into two parts-the client and
server sides. In total, each DCE technology component can be conceptually
divided into four configuration components:

• User Client

• User Server

• Administration Client

• Administration Server

As shown in Figure 2-3, the User Client communicates over the network
with the User Server, and the Administration Client communicates over the
network with the Administration Server.

Figure 2-3. Distributed Service Configuration Components

Distributed
Service Server Machine

User
Server

Administration
)--t--l~ Server

The User Client component is typically installed on DCE users'
workstations. The Administration Client might run only on the workstation
used by the administrator of the service. Both the User Server and the
Administration Server run on the server machine, since they require access
to the resource (such as a database) that the server manages. The User
Server and Administration Server may actually run in the same process, or
be implemented by several processes.

2-5

Introduction to OSF DeE

As an example, consider the DCE Security Service. One part of the Security
Service software is the Login Facility, which sets up a user's security
environment. This is an example of a User Client. It communicates over
the network with the Privilege Server, which runs on the Security Server
machine. The Privilege Server is an example of a User Server. An example
of an Administration Client in the Security Service is the rgy _edit program,
which administrators use to modify data in the security database. It
communicates over the network with the Registry Server, which runs on the
Security Server machine. The Registry Server is an example of an
Administration Server.

The software for each of the DCE services, namely the Directory Service,
the Distributed Time Service, the Security Service, the Distributed File
Service, and the Diskless Support Service, can all be divided roughly into
these four configuration components.

DCE Threads and DCE RPC are separate configuration components. They
help to implement the communications between machines, so they must be
present on every DCE machine, whether the machine acts as a client or a
server.

Section 2.3 describes how machines participating in a DCE environment are
configured, using various combinations of configuration components.
Section 2.4 describes how DCE cells are configured, using various
combinations of DCE machines.

2.3 DCE Machine Configuration Examples

DCE machine configurations fall into three general categories: client
machines, administrator machines, and server machines.

2.3.1 DCE User Machine Configuration

2-6

An example of a DCE User Machine is a user's workstation. This machine
acts as a client to any of the DCE servers, but it does not act as a server
itself (with one possible exception noted in the next paragraph). A DCE
User Machine contains DCE Threads and DCE RPC software so it can
communicate with other machines in the DCE environment. In addition, it

DCE Configuration

contains the User Client configuration components of all the DCE services
(see Figure 2-4). Part of this software may be present in the form of
libraries linked with DCE application software.

Figure 2-4. DCE User Machine Configuration

(DFS Server)

DFS Client

Security Service Client

DTS Client

Directory Service Client

DCE RPC

DCE Threads

A DCE User Machine may also contain DFS Server software, although this
is not required. This enables the machine not only to access remote files
through its DFS Client software, but also to export its own file system to
other machines through its DFS Server software.

We call the software configuration of a typical DCE User Machine the
"DeE User" software. In summary, the DCE User contains

• DCE Threads and DCE RPC

• User Client configuration components of each DCE service

• DFS Server software (optional)

2.3.2 DCE Administrator Machine Configuration

A DCE administrator's workstation is configured with the client sides of
DCE administration programs, to enable the administrator to control servers
remotely. This configuration contains the Administration Client software
for each of the DCE services. It also contains the DCE User software, since
the Administrator Machines act as User Clients as well as Administration
Clients (see Figure 2-5).

2-7

Introduction to OSF DeE

Figure 2-5. DCE Administrator Machine Configuration

Diskless Support Administration Client

DFS Administration Client

Security Service Administration Client

DTS Administration Client

Directory Service Administration Client

DCE User

2.3.3 DCE Server Machine Configuration

Some machines in the DeE environment contain special-purpose server
software. These are called DeE server machines.

A DeE server machine is configured with the User Server and
Administration Server· components of a DeE service. It also contains the
DeE User software, since a server machine can act as a client to other
servers. For example, a DTS Server machine contains the DeE User plus
the DTS User Server and DTS Administration Server configuration
components. It is not necessary to run one server per node; two or more
types of servers can run on a single machine. Figure 2-6 shows the
configuration of a Distributed Time Server machine and the configuration of
a second machine acting as both a eDS Server and a Security Server.

Figure 2-6. DCE Server Machine Configuration Examples

Distributed Time Server Machine CDS and Security Server Machine

DTS User Server CDS User Server
----------------- -----------------DTS Administration Server CDS Administration Server

DCE User Security User Server

Security Administration Server

DCE User

2-8

DCE Configuration

From now on, we will use the term "Server" to mean both the User Server
and Administration Server software combined; for example, the term
"Security Server" means the Security User Server and the Security
Administration Server together.

2.4 DCE Cell Configuration Examples

DCE cells consist of various combinations of DCE machines connected by a
network. In order for DCE applications and the DCE services themselves to
run, there must be at least one each of the Cell Directory, Security, and
Distributed Time Servers in every DCE cell. In addition, a DCE cell can
contain any combination of the remaining DCE servers-GDS, DFS, and
Diskless Support Service-depending on the needs of the DeE users.

The following subsections describe these typical DCE cell configurations:

• Simple DCE Cell

• DCE Cell with DFS File Server Machine

• Connected DCE Cell

• Multicell Configurations

2.4.1 Simple DCE Cell

Figure 2-7 shows an example of a simple DCE cell. The cell contains seven
nodes, each of them running the DCE User software. Four of the nodes are
typical workstations; they are running only the DCE User software. One is
an administrator's workstation; it runs the DCE Administrator software in
addition to the DCE User software. The other two nodes are DCE server
machines. One of the server machines is running a Security Server. The
other server machine is running both a Cell Directory Server and a
Distributed Time Server. This configuration is a complete, basic DCE cell.

2-9

Introduction to OSF DeE

Figure 2-7. Simple DCE Cell Configuration

2-10

Time Provider

Figure 2-8 shows the same simple DCE cell, this time with a DCE
application running in it. Node C is offering the Bank Service, and Nodes A
and B have the client code for accessing the Bank Service. The Bank Server
has registered itself in the Cell Directory Service so the Bank Clients are
able to locate it.

DCE Configuration

Figure 2-8. DCE Application in Simple Cell

Node A

Node B

DTS Server

DCE User

Bank: location = Node C

2.4.2 DCE Cell with DFS

In order to have full Distributed File Service support, including DeE's
Local File System, a DeE cell can contain one or more DFS File Server
machines (see Figure 2-9). As mentioned in Section 2.3.1, the DeE User is
equipped to act as a DFS client, and may also export the client's local file
system to other machines on the network, using the DFS Server software.
The DFS File Server machine, however, is specially equipped with DeE
LFS, a physical file system that supports distributed file system features
such as file replication, online backup, and other advanced administrative
support.

2-11

Introduction to OSF DeE

Figure 2-9. Simple Cell Plus Distributed File Server

DFS File Server
(& LFS)

DeE User

2.4.3 Connected DCE Cell

2-12

An organization may wish to communicate with other DCE cells, or with
systems outside of DCE. One way this can be accomplished is through the
DCE Global Directory Service, an implementation of the X.SOO directory
service standard. DCE also supports the use of the Domain Name Service
(DNS) as a global directory service. The cell's CDS communicates with
CDS servers in foreign cells with the help of an intermediary, the Global
Directory Agent. When a Global Directory Agent machine is added to a
DCE cell, the nodes in the cell will be able to contact other systems using
X.SOO or DNS. Figure 2-10 shows the simple DCE cell with a Global
Directory Agent added to it.

DCE Configuration

Figure 2-10. Cell Connected via Global Directory Agent

Finally, if a cell contains a Global Directory Server, it can not only access
the X.SOO namespace through the GDA, but it can also own and administer a
portion of that namespace in the GDS. For more information on the Global
Directory Service and Cell Directory Service, see Section 3.3 of this
manual.

2.4.4 Multicell Configurations

An organization may decide to have a DCE configuration that consists of
more than one cell. For example, the organization might consist of several
departments, each wanting to have administrative control of its resources.
In this case, each department in the organization could administer its own
cell. This results in slightly more total administrative overhead than a
single, large cell, but the local administrative control of each cell may be
worth the tradeoff. If the cells were connected through a global directory
service, as described in the previous section, then the users of one cell will
be able to access the resources in another cell, if they are authorized.

2-13

Chapter 3

DCE Technology Components

The aSF Distributed Computing Environment comprises several technology
components:

• DCE Threads

• DCE Remote Procedure Call

• DCE Directory Service

• DCE Distributed Time Service

• DCE Security Service

• DCE Distributed File Service

• DCE Diskless Support Service

The DCE components fall into two general categories: distributed
programming facilities and distributed services. The DeE Threads and
RPC components are distributed programming facilities, which include
libraries that implement Application Programming Interfaces (APls) and
program development tools.

3-1

Introduction to OSF DeE

The remammg DCE components are distributed services. These
components consist in part of a daemon, or server process, that runs
continuously on a machine and responds to requests sent over the network.
They are equipped with administrative sUbcomponents to manage the
service. They also have APIs through which a programmer can access the
server.

In general, application programmers deal mostly with the distributed
programming facilities, DCE Threads and RPC. Although the distributed
services also have APIs for accessing them, the programmer often uses
distributed services only indirectly-through the RPC facility, which in turn
uses the distributed services' APIs. System administrators, on the other
hand, deal mostly with the distributed services, since they have significant
management requirements.

This chapter contains one section devoted to each of the technology
components (Sections 3.1 through 3.7). Each of these sections starts with an
overview of its technology, along with a description of the pieces that
comprise the technology. The sections then describe their technologies
from the perspective of different types of users: the end user's viewpoint,
how the programmer develops an application with the technology, and how
the administrator manages the technology. Finally, the sections each
explain how their technology works, and describe important benefits or
features of the particular technology.

The last section of this chapter, Section 3.8, gives an example of a very
simple distributed application, describing the process for developing,
installing, and running it.

3.1 DeE Threads

3-2

In a traditional computer program, there is only one thread of control.
Execution of the program proceeds sequentially, and at any given time,
there is only one point in the program that is currently executing. It is
sometimes useful, however, to write a program that contains multiple
threads of control. For example, some programs lend themselves to being
structured as multiple flows of control, some programs show better
performance when they are multithreaded, and multiple threads can be
mapped to multiple processors when they are available.

DCE Technology Components

A distributed computing environment based on the client/server model and
remote procedure call can make good use of the capability for multiple
threads of control. For example, when a client makes an RPC call, it blocks
until a response is returned from the server. If there are mUltiple threads of
control in the client, then work can continue in another thread while the

,thread waiting for the RPC response is blocked. On the server side, this
same situation applies, since a server may itself issue an RPC. In addition,
servers often handle the requests of multiple clients. It is sometimes easier
to write a well-structured program when each request can be handled by a
separate thread of control. Often servers manage information, requiring
input/output operations to a storage device. While one server thread is
waiting for its input or output operation to finish, another server thread can
continue working, improving overall performance.

Using multiple threads puts new requirements on programmers: they must
manage the threads, synchronize threads' access to global resources, and
make choices about thread scheduling and priorities. A threads
implementation must provide facilities for programmers to perform these
tasks.

Threads can be provided by a programming language, an operating system
kernel, or a user-space library. DCE Threads is provided as a user-space
library; this has implications for its interaction with other software on the
system, such as an operating system that delivers signals to or blocks a
whole process, rather than just a thread, and pre-existing library calls that
were not originally written for a multithreaded environment.

The following subsections give an overview of the DCE Threads technology
component. They describe the different kinds of functions provided by the
technology, and how DCE Threads is seen from the end user's,
programmer's, and administrator's perspective, focusing particularly on
programming with DCE Threads, since the application programmer is the
main consumer of this technology.

3.1.1 What is DeE Threads?

DCE Threads is a user-level (nonkernel) threads library based on the
pthreads interface specified by pas IX in their I003.4a standard (Draft 4). It
consists of an API that gives programmers the ability to create and
manipulate threads, as described in Section 3.1.3. The other technology
components of OSF's Distributed Computing Environment assume the
availability of threads support. DCE Threads is provided for use on

3-3

Introduction to OSF DeE

operating systems that do not provide threads already; if a threads package
is already available, then DeE Threads may not be needed. DeE Threads
can be used as is-as a user-level threading facility-or it can be mapped to
an existing threads facility provided by the host operating system.

DeE Threads is designed for compatibility with existing operating systems
that deal with processes rather than threads, and libraries that are not
reentrant (that is, not written to handle multiple threads executing within
them at the same time). This compatibility is provided through the use of
"jacket" routines, which are used in conjunction with existing libraries, and
modified operating system calls. Since messages from the outside world
(such as interrupts and signals) have traditionally been addressed to a
process, rather than a specific thread in a process, this interaction must be
modified as well. For further information on the way DeE Threads interacts
with other software, see the chapters on threads in the OSF DeE Application
Development Guide.

3.1.2 End User's Perspective

An end user is not aware whether or not threads are being used in an
application, except for a possible difference in performance. An application
written with threads may run faster than a single-threaded version of the
same application.

3.1.3 Programming with DeE Threads

3-4

The distributed application programmer can use threads to help structure a
program. However, having multiple threads of control can introduce a
higher level of complexity than programming with a single thread of
control. Threads must be managed, scheduled, and allowed to communicate
with one another in a controlled manner.

DCE Technology Components

3.1.3.1 Threads Management

In a traditional process, there is only one thread of control, and it is started
and terminated implicitly. However, when it is possible to have more than
one thread of control, the threads must be created and destroyed explicitly.
DeE Threads provides the facilities for doing this.

3.1.3.2 Threads Scheduling

In the traditional process model, no scheduling is needed since there is only
one thread of control, and whenever the process runs, that thread runs.
However, with multiple threads, if there are fewer available processors than
the number of threads to be run, some decision must be made as to which
thread runs first. This is analogous to the scheduling of processes by the
operating system on a timesharing system, except that the threads
scheduling is visible to and controllable by the application programmer.
(Note that POSIX specifies that scheduling is optional, so systems using
their own threads implementations may not include the functionality
provided by DeE Threads that is described in this section.)

DeE Threads scheduling is built on two basic, interacting mechanisms:

• Scheduling priorities

• Scheduling policies

Each thread has a scheduling priority associated with it. Threads with a
higher priority have precedence over threads with a lower priority when
scheduling decisions are made. The exact treatment of threads of different
priorities depends on the scheduling policy they are running under.

DeE Threads offers three scheduling policies:

• First-In, First-Out (FIFO)

In FIFO scheduling, the thread in the highest priority category that has
been waiting the longest to run is scheduled first. It runs until it blocks,
then again the thread that has been waiting the longest runs, and so on.
Threads in the highest priority level are run in this first-in, first-out
manner, then the threads in the next highest priority level are run FIFO,
and so on.

3-5

Introduction to OSF DeE

3-6

• Round-Robin (RR)

With round-robin scheduling, all of the threads at the highest priority
level are given turns running by timeslicing. That is, one thread runs for
a period of time, then it is interrupted and another thread runs for a
period of time, and so on, until all threads have had a chance. The
process is repeated until all threads in that priority are finished or
blocked. Then the threads in the next highest priority level are also run
round-robin until they are all finished or blocked, and so on.

• Default

In the default scheduling, each thread is given turns running by
timeslicing. Higher priority threads are given longer periods of time to
run, but even the lowest priority thread eventually has a chance to run.
This is in contrast to FIFO and round-robin scheduling, in which it is
possible for higher priority threads to prevent lower priority threads from
running at all.

3.1.3.3 Thread Communication and Synchronization

Threads communicate through shared variables-one thread sets a variable
that another thread later reads. However, if multiple threads are accessing
the same variable, incorrect results can occur due to scheduling of threads
and race conditions. To resolve this problem, access to shared variables
must be synchronized. DCE Threads provides three facilities for
synchronizing threads within a process:

• Mutual exclusion objects (mutexes)

• Condition variables

• The join routine

The mutex object is used to synchronize access to a given resource, such as
a shared variable, by multiple threads. Mutexes ensure that only one thread
accesses the resource associated with the mutex at a time-thus the
"mutual exclusion" or "mutex" name.

The mutex works as follows. One mutex object is associated with each
shared resource; for example, a shared variable. Before reading or writing
the variable, a thread attempts to lock the variable's mutex. If it succeeds in
locking the mutex, the thread proceeds to access the variable, and then it
unlocks the mutex.

DCE Technology Components

If a second thread tries to access the object while the first thread is
accessing it (the condition that can cause indeterminate results if the shared
variable is not protected), the second thread is blocked when it tries to lock
the mutex. When the first thread finishes with the variable and unlocks the
mutex, the second thread is unblocked and gains the lock for the mutex. It
can then proceed to access the shared variable.

The mutex is a facility by which threads can ensure that their access to
shared resources is synchronized. The threads mayor may not be
communicating through the shared data. The second method of thread
synchronization, the condition variable, is used for explicit
communications among threads. This is done through the use of a shared
resource-the condition variable-and as a result requires the use of a
mutex.

For example, using a condition variable, Thread A can wait for Thread B to
accomplish some task. To do this, Thread A waits on the condition variable
until Thread B signals the condition variable, indicating that the particular
task has been accomplished.

Note that although the condition variable is used for explicit
communications among threads, the communications are anonymous. For
example, Thread B does not necessarily know that Thread A is waiting on
the condition variable that Thread B signals, and Thread A does not know
that it was Thread B that woke it up from its wait on the condition variable.

There is another synchronization method that is not anonymous-the join
routine. This allows a thread to wait for another, specific thread to complete
its execution. When the second thread has finished, the first thread unblocks
and continues its execution. Unlike mutexes and condition variables, the
join routine is not associated with any particular shared data.

3.1.3.4 DeE Threads Exceptions

DCE Threads provides two ways to obtain information about the results of a
threads call. One way is specified by the POSIX PI003.4a (pthreads) draft
standard-status values are returned to the thread. DCE Threads also gives
the programmer an alternative to status values. This is provided by the
exception-returning interface, which is an extension to the basic POSIX
functionality. Exceptions enable routines to ignore status returns when
other parts of the program are handling errors.

3-7

Introduction to OSF DeE

3.1.4 DCE Threads Administration

There are no administrative tasks associated with the DCE Threads
component.

3.1.5 Additional Information on DCE Threads

For additional information on DCE Threads, see the following:

• The DCE Threads chapters of the OSF DeE Application Development
Guide

• The (3thr) reference pages of the OSF DeE Application Development
Reference

• The POSIX PI003.4a/Draft 4 Threads Extension for Portable Operation
Systems Specification

• The Implementation-Specific Addendum to the POSIX PI003.4a/Draft 4
Speci fication

3~2 DCE Remote Procedure Call

3-8

A distributed application based on the client/server model consists of two
parts: the client side of the application, which runs on one machine and
makes a request for service on behalf of a user, and the server side of the
application, which runs on another machine on the network and fulfills the
service request. The two pieces of code on two different machines need to
be able to communicate across the network. One model for implementing
communications between the client and server of an application is the
Remote Procedure Call (RPC).

RPC gives programmers the ability to express an interaction between the
client and server of a distributed application as if it were a procedure call:
the programmer defines a calling interface and a procedure that implements
it, makes a call to the procedure along with any arguments, and receives a
return value through the argument list or as the procedure result.

DCE Technology Components

In RPC, as in a traditional local procedure call, control is passed from one
code segment to another, and then returns to the original segment.
However, in a local procedure call, the code segments are in the same
address space on the same machine; whereas in a remote procedure call, the
called procedure runs in a different address space, usually on a different
machine than the calling procedure. As a result, arguments and results are
passed differently for local and remote procedure calls. In local procedure
calls, arguments and return values can be passed on the process's stack. In
remote procedure calls, arguments and return values must be packed up into
messages and sent to the peer machine over the network. The underlying
RPC mechanism makes this look like a procedure call to the programmer.

An RPC facility shields the application programmer from the details of
network communications between client and server nodes, such as:

• Fragmentation and reassembly of messages

• Handling different data formats (such as byte ordering) between
different machines

• Using a directory service to find message recipients

• Using security services to ensure secure communications

Programmers using RPC do not need to rewrite applications in order to port
them to different architectures, operating systems, communications
protocols, or languages. RPC provides a high level programming model to
the distributed application programmer, hiding communications details, and
removing nonportable system and hardware dependencies.

The following subsections give an overview of the DCE Remote Procedure
Call technology component. They describe the components that comprise
the technology, and how DCE RPC is seen from the end user's,
programmer's, and administrator's perspective, focusing primarily on
programming with RPC, since the application programmer is the main
consumer of this technology. The subsections also describe the steps
involved in the execution of a remote procedure call. They describe the
ways in which DCE RPC frees the programmer from system software and
hardware dependencies, and then list additional sources of information on
DCERPC.

3-9

Introduction to OSF DeE

3.2.1 What Is DCE RPC?

3-10

DCE RPC is a facility for calling a procedure on a remote machine as if it
were a local procedure call. To the application programmer, a remote call
looks (almost) like a local call, but there are several RPC components that
work together to implement this facility, including the Interface Definition
Language (IDL) and its compiler, a Universal Unique Identifier (UUID)
generator, and the RPC Runtime, which supports two RPC protocol
implementations. One RPC protocol operates over connection-oriented
transports such as the Transmission Control Protocol/Internet Protocol
(TCPIIP) and the other RPC protocol operates over connectionless
transports such as the User Datagram Protocol/Internet Protocol (UDP/IP).

An end user does not see RPC at all, and the minimal amount of
administration involved in RPC can usually be handled by the server-side
application code, such as advertising an application server in the DCE
Directory Service. It is the application programmer who most comes into
contact with the RPC component. Since many of the DCE components are
themselves client/server applications, they use RPC as their basis for
distributed communications.

The components that comprise the DCE RPC are as follows:

• The Interface Definition Language (IDL) and its Compiler

An RPC interface is described in DCE IDL. The IDL file is compiled
into object code using the IDL compiler. The object code is in two main
parts-one for the client side of the application, and one for the server
side.

• The RPC Runtime Library

This library consists of a set of routines, linked with both the client and
server sides of an application, which implement the communications
between them. This involves the client finding the server in the
distributed system, getting messages back and forth, managing any state
that exists between requests, and processing any errors that occur.

• Authenticated RPC

DCE RPC is integrated with the DCE Security Service component to
provide secure communications. Levels of security can be controlled by
the RPC application programmer through the Authenticated RPC API.
(See Section 3.5.4 for more information on Authenticated RPC.)

DCE Technology Components

• Name Service Independent (NSI) API

DCE RPC is integrated with the DCE Directory Service component to
facilitate the location of RPC-based servers by their clients. The NSI
routines allow a programmer to control the association, or binding, of a
client to a server during RPC.

• The RPC Daemon

The RPC daemon (rpcd) is a program that runs on every DCE machine.
It is an RPC-specific name server, which manages a database that maps
RPC servers to the transport endpoints (in IP, the ports) that the server is
listening for requests on.

• The RPC Control Program

The RPC control program (rpccp) is a tool for administering rpcd. It
also allows an administrator to access RPC data in CDS.

• UUID Facilities

These are ancillary commands and routines for generating Universal
Unique Identifiers (UUIDs), which uniquely identify an RPC interface or
any other resource. The uuidgen program can optionally generate an
IDL template for a service interface, along with a unique identi fier for
the interface.

3.2.2 End User's Perspective

The end user does not come in direct contact with DCE RPC, but does see
the end result, in the form of

• The availability of distributed applications built using RPC

• The ability to use remote resources accessed via RPC

An end user who is browsing through the namespace may also notice the
names of RPC-based servers, since these servers advertise themselves to
their clients through the DCE Directory Service.

3-11

Introduction to OSF DeE

3.2.3 Programming with DCE RPC

3-12

This section provides a brief overview of the process a programmer goes
through in using DCE RPC to write an application. For an example of how
this process applies to a simple application, see Section 3.8 of this manual.
For a more detailed description of the DCE RPC programming process, see
the introductory chapters and the RPC chapters of the OSF DeE Application
Development Guide.

Figure 3-1 shows an overview of the DCE RPC application development
process. The dashed boxes indicate application code written by the DCE
programmer. The other boxes indicate compiled code or code generated
automatically for the programmer by DCE RPC.

DCE Technology Components

Figure 3-1. DCE RPC Programming Process
IDL File r ~t~:d:f :c:o:; l

I debitO I
Define Interface in DCE IDL: I I

I creditO I
I geCbalanceO I
L ________ J

Run IDL Compiler:

Header File Server Stub

3.2.3.1 The IDL File

First, the application programmer defines the RPC interface, and associated
data types, using the DCE Interface Definition Language (lDL). An
interface is a group of operations that a server can perform. This grouping
is similar to a module or library in a conventional programming language­
a group of operations defined in a single file or unit. For example, a Bank
Service might perform operations to debit, credit, or read the balance of an

3-13

Introduction to OSF DeE

3-14

account. Each. of those operations and their parameters must be defined in
the IDL file. The collection of Bank Service operations-debit, credit, read
balance-together form the Bank Service interface.

The process of defining RPC operations is similar to defining the input and
output of a local procedure call, except in IDL only the calling interface is
defined, not the implementation of the procedure. (An IDL interface
definition is similar to an ANSI C prototype definition.)

Next, the programmer compiles the IDL file using the IDL compiler. The
compiler produces output either in a conventional programming language,
which is the C language in the DCE offering, or in object code. The output
of the compilation consists of a client stub, a server stub, and a header file.
The client and server stubs are routines that make the remoteness of the
operation transparent to the caller or callee of the operation.

3.2.3.2 The Client Side

For the client side of the application, the programmer writes application
code that makes calls to the operations in the IDL file. The client stub code
is linked with this application code, and (along with the RPC Runtime code)
performs the tasks that turn what looks like a procedure call into network
communications with the server side of the application. Usually the client
side of the application contains a relatively small amount of RPC code.

3.2.3.3 The Server Side

For the server side, the programmer writes application routines that
implement the operations defined in the IDL file. For example, in the
banking application, a database lookup might implement the operation to
read an account balance. The server stub, generated by the IDL compiler, is
linked with the server application code. The server stub unpacks the
arguments and makes the call to the application routine as if the client
program had called it directly. The server side of the application contains
the bulk of the RPC code that needs to be written by the distributed
application programmer.

DCE Technology Components

3.2.3.4 Binding

In order for the client to send an RPC to the server, it must be able to find
the server. This process is called binding. A client may have some direct
way of knowing what server it needs to communicate with; for example, it
may get this information from a file, a value hardcoded into its program, an
environment variable, or a user. A more flexible way for a client to find a
server is to take advantage of DCE RPC' s use of the DCE Directory Service.

A client can find a server by asking the Directory Service for the location of
a server that handles the interface that the client is interested in (in our
example, a Bank Server). In order for the Directory Service to be able to
give the client this information, a server must first advertise itself in the
Directory Service. The server adds itself to the namespace, along with
information about what interfaces it implements, what protocols it uses to
communicate with, and where it is located. This way, a server can move, or
there can be multiple servers implementing a given interface, without
affecting the client. The client can still go to the Directory Service, a well­
known central source of information, and find out where the server IS

located.

The DCE programmer does not make calls directly to CDS; binding is
supported by the Name Service Independent (NSI) API, an RPC-specific
name service layer. Calls to this library are made by the client side of an
application in order to look up binding information for a server based on
various criteria, such as the type of service, the objects it manages, and the
interfaces it supports. The server side of an application calls this library to
advertise information about itself to the namespace where clients can find it.

3.2.3.5 The RPC Daemon

There are two parts to a server's location: the address of the machine it
resides on, and the address of the process-the network endpoint (for
example, a UNIX port). The machine location is fairly stable, so its address
can reasonably be entered into the Cell Directory Service. The network
endpoint, however, can change each time the server process is started up.
Instead of making frequent changes to CDS to update a server's endpoint
address, DCE RPC uses a specialized type of directory service, the RPC
daemon, or rpcd. When a server starts up, it registers its process address
with rpcd.

3-15

Introduction to OSF DeE

Every machine that runs an RPC server also runs an rpcd. The rpcd process
always uses the same network endpoint, so its process address is well
known. Therefore, once a client knows what machine a server is running on,
it can find the rpcd process running on that same machine. It can then ask
the rpcd process for the network endpoint of the server process. This
process is shown in Figure 3-2 (read the messages, show in quotes, in
clockwise order).

Figure 3-2. Client Finds Server Using CDS and RPC Daemon

Node A

3.2.4 DCE RPC Administration

3-16

A few administrative tasks must be performed when running a distributed
application using RPC. The application server executes most of these tasks
when it first starts up. As described in the previous section, the server
registers its (dynamically assigned) listening endpoint with rpcd. The
server also advertises information about itself and the interfaces it supports
in the DCE Directory Service.

Nonautomated RPC administration is minimal. The administrator must
ensure that each DCE machine has an RPC daemon running on it. An
administrator may be involved in registering servers in the namespace, but
this can also be done from server code upon initialization as just described.

DCE Technology Components

A management program, rpccp, allows an administrator to control the rpcd
and administer RPC information in the namespace.

An administrator may be involved in installing a new RPC-based
application. In particular, the server side of the application must be started
up before it can begin receiving and servicing requests. The administrator
may arrange for the server process to be run each time the machine is
booted, for example.

3.2.5 How It Works

A short walk-through of what happens during an RPC call may help clarify
the RPC concept and how it works. This section describes the RPC call
shown in Figure 3-3. (This description is somewhat simplified. The use of
rpcd is not shown.)

3-17

Introduction to OSF DeE

Figure 3-3. RPC Runtime Process

Bank Client Bank Server

2. Find Server 1. Advertise

3. credit(acct) 6. Receive RPC

4. Package
Arguments

7. Unpack
Arguments

5. Make RPC

3-18

8. credit(acct)

On the server side, the Bank Server process is started up. Before it begins
its continuous cycle of receiving and servicing requests, the server process
advertises its location in the Cell Directory Service (see Point 1 in Figure
3-3). In this way, when a client queries the Directory Service for a bank
server, it will be able to find it. After initialization, the server listens for a
request to come in from a client over the network. This call to wait for
client requests is a call to the RPC Runtime, since the Runtime handles
network communications.

Eventually, a user on the Bank Client machine invokes the bank application.
The Bank Client initialization code calls the RPC Runtime to find a server
offering the Bank Service (see Point 2). The Bank Client application code
makes a call to a remote procedure; for example, a call to a procedure that
credits a bank account (3). This results in a call to the client stub code. The
stub transforms the arguments of the call into a network message (4). It then
calls the client's RPC Runtime library, which sends the message to the
server (5).

DCE Technology Components

Back on the server side, the RPC request is received by the RPC Runtime,
which has been waiting for a client request (6). The Runtime passes control,
and the received packet, to the server stub. The stub unpacks the arguments
sent by the client (7) and passes them to the appropriate operation by
making a procedure call to it. At this point, the server application code that
implements the requested operation is called. The operation is
performed-the account is credited (8).

The RPC reply (not shown in the figure) returns in the reverse direction.
The Bank Server application procedure returns the results of the credit
operation to the stub. The stub packs up the return parameters and passes
the resulting message to the RPC Runtime to send off to the client over the
network. The server then waits for the next client request to come in.

The client's Runtime receives the server's reply. The client stub then
unpacks the received network message, arranging returned parameters such
that when the client application call to RPC returns, it looks like it has just
performed a local procedure call.

The mechanisms in both the client and server stubs and the Runtime library
are transparent to the application programmer. The programmer writes the
application calls to the RPC operations on the client side, and provides
implementations for those operations on the server side, but the network
communications code is generated automatically.

3.2.6 System Independence

There are several ways in which using DCE RPC frees a programmer from
depende!1ce on other parts of a system. It provides portability across
programming languages, data transfer syntax mechanisms, transport and
network protocols, and operating system and architecture platforms .

• Language Independence

DCE RPC is language independent in the sense that the stubs generated
by the IDL compiler can be called by programs written in any traditional
programming language, provided that the language follows the calling
conventions that the stub expects. The DCE IDL compiler generates
stubs that use the C language calling conventions. A client written in
FORTRAN, for example, can call an IDL stub in the same way that it
calls any local C procedure. It can then make a remote call to a server
(possibly written in another language) that contains the server stub
generated from the same IDL file as the client stub was generated from.

3-19

Introduction to OSF DeE

3-20

• Data Representation Independence

The default data representation format is the DCE Transfer Syntax,
which is currently the Network Data Representation (NDR). It allows
various representations for different types of data, including multiple
encodings for characters, integers, and floating-point numbers. It is
"multicanonical;" that is, there are several canonical formats that can
be used. The sender chooses one of these formats (in most cases, it will
be the sender's native data representation), with information about what
representation it has chosen. The receiver transforms data into its own
format, if it is different from the format the data was sent in. This model
optimizes for the case when both sender and receiver use the same data
representation, a frequent occurrence. (Note that this data transfer is
handled by the RPC software, and is not visible to the application
programmer.)

The DCE RPC architecture allows the use of transfer syntaxes other than
DCE Transfer Syntax (although the only transfer syntax currently
provided in the OSF implementation is DCE Transfer Syntax). For
example, data could be formatted according to the ISO ASN.l!BER
specification and sent over the wire in that way.

• Protocol Independence

Independence of RPC, transport, and network protocols is achieved as
follows. The DCE RPC offering includes two different RPC protocols.
The first runs over connection-oriented transport protocols; the second
runs over connectionless (datagram) transport protocols. The
programmer can specify the underlying RPC protocol, but the semantics
of RPC calls are the same whether the RPC is running over a
connectionless or connection-oriented transport. Another RPC protocol
could be used in place of these two DCE RPC protocols; for example,
when ISO defines an RPC standard, it could be used transparently as a
third RPC protocol under the DCE RPC interfaces.

Servers identify themselves to the Directory Service according to the
interface they support and the protocols they use. In this way, a client
can look up a server that uses network protocols that are compatible
with those that the client supports.

DCE Technology Components

• Machine Independence

Because DCE RPC uses the DCE Transfer Syntax, distributed
applications are machine independent. DCE Transfer Syntax allows
machines to transfer data even when their native data representations are
not the same.

• Operating System Independence

Finally, DCE RPC offers independence from the local operating system.
The application programmer is not directly using the networking system
calls provided by the local operating system. By being one level of
abstraction up from this layer, the programmer is insulated from
networking system calls that are operating system specific.

3.2.7 Additional Information on DCE RPC

For additional information on DCE RPC, see the following:

• The RPC chapters of the OSF DCE Application Development Guide and
the OSF DCE Administration Guide

• The (lrpc) and (3rpc) reference pages of the OSF DCE Application
Development Reference

• The (Srpc) and (Srpc) reference pages of the OSF DCE Administration
Reference

3.3 DeE Directory Service

A distributed system may contain many users, machines, and other
resources, along with large amounts of data, all geographically dispersed.
The distributed system's attributes, such as the number of users, location of
servers, and contents of data, are continuously changing. It is difficult to
keep track of this potentially large, geographically distributed, rapidly
changing system.

3-21

Introduction to OSF DeE

A directory service can help solve this problem. When a directory service is
available, it is no longer necessary to maintain local copies of information,
such as databases of users, hosts, and server locations, on each system.
Instead, an application queries the directory service when it needs
information. In a sense, the directory service is the most basic of all
distributed system services, since it is used to find the information needed
for accessing other services.

The next section gives an overview of the DCE Directory Service
architecture. Sections 3.3.2 through 3.3.4 describe each of the DCE
Directory Service components-the Cell Directory Service, the Global
Directory Service, the Global Directory Agent. Section 3.3.5 describes the
Directory Service application programming interface.

3.3.1 DeE Directory Service Architecture

3-22

The DCE Directory Service is a distributed, replicated database service. It
is distributed because the information that forms the database is stored in
different places-information about one group of users and resources might
be stored in one directory server, while information about a second group of
users and resources is stored in a different directory server. The Directory
Service is replicated because information about a given name or group of
names can be stored in more than one location, for higher availability.

The Directory Service database consists of a hierarchical set of names, the
namespace, which have associated attributes. Given a name, its associated
attributes can be looked up in the Directory Service. For example, given the
name of a print server, the Directory Service can return the printer's
location. The Directory Service gives distributed system users a well­
known, central place to store information, which can then be retrieved from
anywhere in the distributed system.

DCE Technology Components

3.3.1.1 Overview of Directory Service Components

There are three components that together comprise the DCE Directory
Service:

• The DCE Cell Directory Service (CDS)

• The DCE Global Directory Service (GDS)

• The DCE Global Directory Agent (GDA)

The X10pen Directory Service (XDS) application programming interface is
used to access the Directory Service components. A brief overview of the
Directory Service components and interface is given in this section;
subsequent sections in this chapter describe them in more detail.

DCE Cell Directory Service. The Cell Directory Service stores names and
attributes of resources located in a DCE cell. It is optimized for local
access, since most directory service queries are for information about
resources within the same cell as the originator of the query. CDS is
replicated -this is important for a local directory service, since the
directory service must be highly available. There must be at least one Cell
Directory Server in each DCE cell.

DCE Global Directory Service. The Global Directory Service is a
distributed, replicated directory service based on the CCITT X.500/ISO
9594 international standard. It is used when looking up a name outside of
the local DCE cell. In particular, it acts as the high-level connector that
allows independent cells to find out about and interact with one another.
GDS interworks with other X.500 implementations, and can therefore
participate in the worldwide X.500 directory service. Figure 3-4 shows
three organizations, each with its own DCE cell.

Figure 3-4. Three One-Celled Organizations

8 8 8
Organization A Organization B Organization C

3-23

Introduction to OSF DeE

The Global Directory Service can act as a higher level directory service to
connect cells, as shown in Figure 3-5. DCE supports the use of a second
standard directory service, the Domain Name Service (DNS), which is
widely used in the Internet community. It, too, can act as a higher level
connector of DCE cells.

Figure 3-5. GDS and DNS Connect DCE Cell Namespaces

3-24

(:)
/ \

/ \
/ \

Organization A Organization B

\
\

8
Organization C

DeE Global Directory Agent. The Global Directory Agent is the
intermediary between a cell's CDS and the rest of the world. It takes a
name that cannot be found in the local cell and finds the foreign cell in
which the name resides, using GDS or DNS, depending on where the foreign
cell is registered. Figure 3-6 gives a functional picture, including the use of
GDAs, of the configuration shown in Figure 3-5.

DCE Technology Components

Figure 3-6. Use of Global Directory Agents

~------~~------~

CeliA Cell B

Organization A Organization B

0:)
/ ,

/ ,
/ ,

/ , ,

Organization C

DeE Directory Service Application Programming Interface. DCE
programmers use the XlOpen Directory Service (XDS) application
programming interface to make all Directory Service calls. The XDS
library knows, based on the format of the name to be looked up, whether to
direct the calls it receives to the Global Directory Service or to the Cell
Directory Service (see Figure 3-7). XDS uses the XlOpen Object
Management (XOM) application programming interface to define and
manage its information.

Figure 3-7. XDS: Interface to GDS and CDS

1 .. .IC=US/O=OSF/OU=DCElCN=SIG-DCE 1 .. .Ics.univ.edu/hosts/machine-b

3-25

Introduction to OSF DeE

3.3.1.2 The DeE Namespace

The DCE namespace is the set of names used by the DCE Directory Service.
It is hierarchical, similar to the structure of a UNIX file system. Names can
be typed or untyped, reflecting the different name formats supported by the
two global directory services, GDS and DNS.

Figure 3-8 shows the root of the DCE namespace, indicated by the I ...
prefix, and four cell entries below it. The two cells on the left,
I •• .IC=US/O=OSF/OU=DCE and 1 .• .IC=CA/O=B-College/OU=EE­
Department, are in the X.SOO namespace, while the two cells on the right,
1 •. .Icompany_b.com and 1 .. .Ics.univ.edu, are in the DNS namespace.

Figure 3-8. Four Cells in DCE Global Namespace

3-26

Global Root: / ...

I
I I

c=us C=CA company_b. com cs. univ. edu

I I
O=OSF a = B-CoJlege

I I
au = DCE au = EE-Department

Figure 3-9 shows the top of a typical DCE cell namespace. It contains an
entry for security information, an entry for the cell's DFS file system, an
entry for subsystems such as DCE services, an RPC Profile entry, and an
entry for hostnames. (See the first module of the aSF DeE Administration
Guide for more information on the cell namespace.)

DCE Technology Components

Figure 3-9. Top of a Typical DCE Cell Namespace

Global Root: I ...

I
Cell Root: cs. univ. edu

I

sec fs subsys cell-profile

The following is a list of examples of typed and untyped names.

1 .. .IC=US/O=OSF/OU=DCE/sec/principals/snowpaws
I .. .IC= US/O=OSF IOU=DCE/fs/usrlsnowpaws

1 .. .Ics.univ.edulsec/principals/ziggy
1 .. .Ics.univ.edulfs/usr/ziggy

hosts

The I ... prefix indicates that the name is a global name. The first two
names are typed names using X.SOO syntax, and the second two names are
untyped names using DNS syntax. The first name in each set indicates the
name of a user in an authentication database; the second name in each set is
the user's home directory in a file system.

In each of the name examples, there is a global component and a local
component. The global component consists of a cell name, which is
registered in a global directory service. In one case, the cell is an entry in
the X.SOO namespace: I .• .IC=US/O=OSF/OU=DCE. In the other case, the
cell is an entry in the DNS namespace: 1 •• .Ics.univ.edu. The remainder of
the name is an entry in the cell's namespace; for example,
Ifs/usrlsnowpaws.

The names listed above reside in the DeE cell namespace, but it is also
possible to maintain names in the X.SOO namespace by using GDS. An
example of this kind of name is I .. .IC=US/O=OSF/OU=DCE/CN=SIG­
DCE. This name could be used, for example, for an electronic mail list.

3-27

Introduction to OSF DeE

3-28

3.3.1.3 Viewpoints on the Directory Service

The DCE Directory Service looks very different to the end user;
programmer, and administrator. This section takes a brief look at the
Directory Service from each of these three perspectives.

End User's Perspective. The DCE Directory Service is one of the few
DCE technologies that is visible to the end user. Ari end user can use the
CDS Browser to look through the cell's namespace. A frequent use of the
namespace is in referencing the file system. The pathname for a file in a
foreign cell is partially a pathname in the Directory Service, as in the
example I .• .!cs.univ.edulfs/usrlziggy given previously.

Application Programmer's Perspective. DCE application programmers
do not necessarily need to interface directly with the Directory Service,
since a frequent use of the Directory Service-to look up the location of a
server-can be done automatically by DCE RPC. Programmers who do use
the Directory Service interact with it through the XlOpen Directory Service
interface. XDS provides facilities for adding, deleting, modifying, and
looking up names and their attributes.

Programmers use XDS for accessing both DCE directory services-CDS
and GDS. However, the programmer needs to understand the different types
of names used for different namespaces, and be aware of some XDS calls
that are not available when CDS is being used. An example is the search
query, which is possible in GDS, but not in CDS.

Administrator's Perspective: Two Directory Services and an
Intermediary. Unlike the end user and application programmer, the
Directory Service administrator is aware of the cell's directory service
configuration, since the two directory services are administered separately.
The administrator manages the CDS server, the Global Directory Agent, and
the GDS server, if the cell has one.

DCE Technology Components

3.3.1.4 Related Services: Registration and Lookup Path

There are two services in DCE that are distinct from, but related to, the DCE
Directory Service. The first is registration. In naming an object in a
distributed system, it is useful to have a unique name for the object. DCE
provides a facility for generating Universal Unique Identifiers (UUIDs),
which are used to name DCE objects such as RPC interfaces, users, and
computing resources. More information on UUIDs is contained in the RPC
chapters of the OSF DCE Application Development Guide.

A second service that is related to directory service is the ability to specify a
path through the directory service for looking up names. In DCE, this
capability is provided by RPC profiles. Profiles can be used, for example, to
look up names relative to a certain location. If a user wants to look up a
printer based on the printer's proximity to the user, for example, a profile
may specify that a directory service lookup for a printer begin in the local
cell, then if a printer is not found, look in the two neighboring cells, and so
on. For more information on RPC Profiles, see the RPC chapters of the OSF
DCE Application Development Guide.

3.3.1.5 Specialized Naming Services

The DCE namespace is not contained entirely in the DCE Directory Service.
Other system services contain parts of the namespace and some of them
require their own specialized naming services, which supplement the DCE
Directory Service. These include:

• The Security Service Database

The Security Service keeps a database of DCE principals (users and
servers) and information related to them such as their passwords. An
example of a name in the security part of the DCE namespace is
/ .. .Ics.univ.edulsec/principal/ziggy .

• The Fileset Location Service in DFS

The Fileset Location Service keeps a database that maps DFS filesets to
the DFS File Server machines they are kept on. An example of a name
in the DFS part of the DCE namespace is / .. .Ics.univ.edulfs/usr/ziggy.

3-29

Introduction to OSF DeE

3.3.2 DCE Cell Directory Service

3-30

One of the two directory services underlying the XDS API is the DCE Cell
Directory Service (CDS). The following subsections describe CDS in terms
of the data elements that it deals with and the components that implement it.
They then describe how CDS handles replication, caching, and data
consistency. Finally, they describe CDS from the end-user, programmer,
and administrator perspectives.

3.3.2.1 What Is CDS?

The DCE Cell Directory Service is made up of several components,
including the CDS Server, CDS Clerk, and CDS administration programs.

• CDS Server

The CDS Server runs on a node contammg a database of directory
information. It responds to queries from clients by accessing the
database. (A CDS database is called a clearinghouse.)

• CDS Clerk

The CDS Clerk runs on the client node and serves as an intermediary
between client applications and CDS Servers. One of the Clerk's most
important functions is to maintain a cache of information acquired
through directory queries. The Clerk stores the response to a query in its
cache so that the next time a related query is made, the information is
already available on the client node, and no network communications
with the CDS Server are necessary. The cache is written to disk
periodically, so it persists even if the Clerk process dies or the client
node crashes.

• CDS Administration Programs

Two administrative programs are included in the CDS technology-the
CDS Namespace Browser and the CDS Control Program. The CDS
Namespace Browser, which is used by CDS administrators as well as
end users, is a CDS client application that allows the user to inspect the
cell's namespace. The CDS Control Program, cdscp, enables
administrators to control CDS Servers.

DCE Technology Components

3.3.2.2 The CDS Database

CDS information is contained in three types of data elements-directory
entries, directories, and clearinghouses.

• Directory Entries

A directory entry consists of a name and its attributes. One example is
the name of an application server, whose attributes include the interface
it exports and its location on the network.

• Directories

A CDS directory is a logical grouping of CDS information-it is a
collection of directory entries. The directory is the administrative unit
for replication. There can be one or more copies, or replicas, of a given
directory. CDS directories are in a hierarchical relationship to one
another; each directory has a parent directory, and may also have child
directories.

• Clearinghouses

A clearinghouse is a physical CDS database-it is a collection of
directory replicas. The clearinghouse is the database on a CDS Server
machine that the CDS Server accesses in order to respond to its requests.

As an example of how the different types of CDS data elements relate to one
another, imagine a directory P, which contains all the information about the
printers in a given cell. This directory contains one directory entry per
printer. The administrator of the cell may decide that the information
contained in the P directory is important enough that it needs to be
replicated on more than one CDS Server, so if one server goes down, the P
information can still be found on the other server. To that end, replicas of
the P directory might be kept in two clearinghouses-one replica in
Clearinghouse A, and the other in Clearinghouse B.

3-31

Introduction to OSF DeE

3-32

3.3.2.3 Replication and Data Consistency in CDS

A directory service must be highly available, since other services depend on
it. It must also be fast. CDS achieves these two goals through the
replication of directories and caching of directory entries. It also provides
mechanisms for keeping various degrees of consistency among copies of
data.

There are two types of directory replicas in CDS:

• Master Replica

• Read-Only Replica

There is exactly one master replica of a given directory, and any kind of
operation can be performed on it. The only operations that can be
performed on a read-only replica are those limited to read access to the
directory; no updates can be made to this type of directory replica. There
can be zero or more read-only replicas.

CDS provides two methods for maintaining data consistency among replicas
of a directory:

• Immediate Propagation

• Skulking

With immediate propagation, a change made to one copy is immediately
made to other copies of the same data. Immediate propagation is used when
it is important for all copies of a directory to be consistent at all times.

In some cases, it is not necessary for copies to be updated immediately.
Sometimes it is not even possible, since a server holding a copy may be
unavailable to receive updates. In these cases, the other consistency
mechanism, skulking, can be used. A skulk happens periodically (for
example, every 24 hours), and is done on a per-directory basis. All changes
made to the given directory are collected and propagated in bulk to all
clearinghouses that contain replicas of the directory. If a skulk cannot
complete-that is, if one or more of the nodes containing a replica to be
updated is down-then an administrator is notified and the skulk is
attempted again later.

DCE Technology Components

Caching is also a form of replication, and therefore leads to the problem of
keeping multiple copies of information consistent (or in this case, dealing
with the fact that cached information may be out of date). As mentioned
previously, the CDS Clerk caches directory information so that information
will be available on the local node rather than having to repeatedly query
directory servers. CDS allows the client application to bypass the Clerk's
cache and go directly to the CDS Server for information, when the
application wants to make sure it has the latest information.

3.3.2.4 End User's Perspective

An end user may be interested in perusing the cell namespace to look for
information contained in CDS. This can be done using the CDS Namespace
Browser.

3.3.2.5 Programming with CDS

Programmers can access CDS through XDS (see Section 3.3.5). They also
use CDS indirectly when they use the Name Service routines of the RPC
API.

3.3.2.6 CDS Administration

CDS administrators use the CDS Control Program to administer CDS, and
the CDS Namespace Browser to inspect its data. Some administrative tasks
include determining the number of CDS Servers in the cell, and specifying
replication and update of CDS data.

3-33

Introduction to OSF DeE

3.3.2.7 Additional Information on CDS

For additional information on CDS, see the following:

• The CDS chapters of the OSF DeE Administration Guide

• The (8cds) reference pages of the OSF DeE Administration Reference

3.3.3 DeE Global Directory Service

3-34

The DCE Global Directory Service (GDS) is a directory service
implementation based on the international standard CCITT X.500/ISO 9594.
When present in a DCE cell, the GDS can serve two basic functions. First,
it can participate in a high level, possibly worldwide directory service tying
together independent DCE cells. Second, it can be used as an additional
directory service to CDS for storing object names and attributes in a central
place.

Like the Cell Directory Service, GDS is a replicated, distributed database.
The GDS database contains information that can be distributed over several
GDS servers. In addition, copies of information can be stored in multiple
GDS servers, and the information can also be cached. The unit of
replication in GDS is the directory entry (whole subtrees can also be
specified).

The GDS directory is structured differently from CDS, and names are also
different in that they are typed, as described later. Programmers can access
both DCE Directory Services, however, using the XlOpen Directory Service
API (see Section 3.3.5 for a description of XDS).

The following subsections describe the GDS components, possible GDS
configurations, the GDS database and names, an overview of how GDS
works, and the relationship of DCE GDS to underlying network services and
international standards.

DCE Technology Components

3.3.3.1 What Is GnS?

There are several components that work together to provide the DCE Global
Directory Service:

• The Directory System Agent (DSA)

This process runs on the GDS Server machine and manages the GDS
database. It is the server side of GDS. In order to handle simultaneous
requests from different users, the GDS Server machine can run several
DSA processes.

• The Directory User Agent (DUA)

The DUA is a library that implements the GDS client; this library is
present on all GDS client machines.

• The Directory User Agent Cache

This process keeps a cache of information obtained from DSAs. One
DUA Cache runs on each client machine and is used by all the users on
that machine. The DUA Cache contains copies of recently accessed
object entries and information about DSAs. The programmer specifies
which information should be cached, and it is possible to bypass the
DUA Cache to obtain information directly from a DSA. This is
desirable, for example, when the user wants to make sure the
information obtained is up-to-date.

• The C-Stub and S-Stub

The C-Stub process runs on each client machine and manages
communications with DSAs. It implements the upper layers of the ISO
protocol stack (see Section 3.3.3.6). Its function is similar to the RPC
Runtime (GDS uses OSI protocols instead of DCE RPC). The S-Stub is
similar to the C-Stub, except it runs on the server machine and manages
its communications with DUAs and other DSAs.

• The Shadow Update and Cache Update Processes

Unlike the processes listed previously, which run continuously, the
processes for updating replicas in DSAs and DUA Caches run as needed
and then terminate. The shadow update process runs on the GDS Server
machine; the cache update process runs on GDS client machines.

3-35

Introduction to OSF DeE

• The GDS Administration Programs

DCE GDS provides programs for administering its service. One,
gdssysadm, supports administration of the local GDS installation, such
as configuration, server activation, and backup. The gdsditadm program
supports remote administration of the' contents of a GDS database.
Finally, the gdscacheadm program supports the administration of the
contents of the local DUA cache.

Figure 3-10 shows the interaction between the Directory Service
application, the XDS interface, and the GDS client and server. The GDS
client and server use the Directory Access Protocol (DAP) to communicate.
The GDS servers use the Directory System Protocol (DSP) to communicate
with one another. DAP and DSP perform functions similar to the function
that the DCE RPC protocols perform in other DCE services. The DAP and
DSP protocols are defined in the X.SOO standard, enabling worldwide
interoperability among directory services.

Figure 3-10. GDS Components

3-36

GDS Client GDS Server

Application I I DUA r ! DSA . I .. I XDS I L _D!-~ ~ ~
~--~~--~\, ~--~--~

,
I DUA Cache I ' , ,

DAP' ,
I
IDSP
I
I

\ I GDS Server

~ t
\--1 -DS'--A -~

DCE Technology Components

3.3.3.2 GDS Configurations

A GDS machine can be configured in two ways:

• Client Only

A node can contain only the client side of GDS. This node can access
remote DSAs and cache some information in the DUA cache.

• Client/Server

A machine can be configured with both the GDS client and server. This
is the typical configuration for a machine acting as a GDS server. This
configuration can be useful even if a node acts mainly as a client
because the DSA can be used as a larger, more permanent cache of
information contained in remote DSAs.

3.3.3.3 The GDS Database

The GDS database is a hierarchical, object-oriented database. The DCE
Release 1.0 GDS implementation uses the C-ISAM database software. The
information comprising the Global Directory Service takes the following
forms:

• Object Entry

An object entry is an entry in the database that names and describes an
object, such as a person, machine, or server. It consists of one or more
attributes, and each of the attributes has a type and a value. For
example, an attribute type might be COMMON NAME (or CN) and the
value might be snowpaws; another attribute might be type MACHINE
ADDRESS and the value might be 100.100.1.177. Some attributes may
have more than one value. Each object entry has an attribute of type
OBJECT CLASS, and its value specifies what the object's class is,
which determines what other attributes the object entry has. The name
of an entry consists of one or more of its attributes (see Figure 3-11).

3-37

Introduction to OSF DeE

Figure 3-11. GDS Object Entry

Object Entry

L.-,_T_Y_PE_,_,_VA_L_U_E_, I' TYPE I (wi L.-_O_c~_~_~C_sT __ I_c_a_t _I L.~_C_O_N_~:~:~:N::_I_s_n_ow_p_a_ws--..J1
Attribute

3-38

Attribute
(Multivalued)

Attribute
(Class)

• Relative Distinguished Name (RDN)

Attribute
(RON)

The name attribute of an object contains the object's Relative
Distinguished Name. An RDN contains both the type and value of the
naming attribute; for example, "CN = snowpaws" or "MACHINE
NAME = MachineA.' , (In DCE Directory Service notation, the type and
value of an attribute are separated by an equal sign.)

• Distinguished Name (DN)

The Distinguished Name is the concatenation of the object's RDN and
the RDNs of all its ancestors in the GDS naming hierarchy, like a full
pathname for a file in a UNIX file system. An example of a DN might
be 1 .. .IC=US/O=OSF/OU=DCE/CN=snowpaws. (In DeE Directory
Service notation, the RDNs are separated by slashes.)

• Directory Information Base (DIB)

The Directory Information Base consists of all the object entries in all
the Directory Service Agents in GDS.

• Directory Information Tree (DIT)

The Directory Information Tree is the structure of the GDS namespace;
it determines the hierarchy of GDS names. For example, the DIT might
specify that the only entries that can come directly under the DIT root
are entries describing countries, such as I .. .IC=US or I .. .IC=JP.

• Directory Schema

The Directory Schema contains structuring rules for the GDS
information. This includes object classes, their attributes, and their
syntax.

DCE Technology Components

• GDS Access Control Lists

Security in GDS is not integrated with the DCE Security Service. It is
based on Access Control Lists, but GDS ACLs are different from other
DCE ACLs. Each object entry has an ACL associated with it. It
specifies permission to access the object's attributes. The attributes can
be classified as PUBLIC, STANDARD, or SENSITIVE. The object's
ACL grants a user or group of users five different types of permission:
modify PUBLIC attributes, read or modify STANDARD attributes, read
or modify SENSITIVE attributes. When a new object entry is created in
the GDS directory, it inherits the security characteristics of its parent
entry by default. An object entry's ACLs are attributes of the object
entry.

3.3.3.4 How ODS Works

When an application program makes a Global Directory Service call using
the XDS API, the call is handed to the DUA library. The DUA first looks in
the DUA Cache (if specified) to see if the requested information is already
available on the local node. If it is not, the DUA queries a Directory
Service Agent. The DSA may have the requested information, and if it does
it returns the results to the DUA. If it does not, the query can proceed in one
of two ways. Either the DSA can query a different DSA on behalf of the
DUA, or the DSA can return information such that the DUA can query a
second DSA itself. The first method is called chaining and the second
method is called referral. In either case, different DSAs are queried until
the information is found. It is cached (if specified) in the DVA Cache and
the results are returned to the GDS application program.

3.3.3.5 ODS and Network Services

The X.SOO Directory Service standard was written to run on top of the Open
Systems Interconnection (OSI) communications protocols. The OSI
protocols are divided into seven layers: the Physical, Data Link, Network,
Transport, Session, Presentation, and Application Layers (see Figure 3-12).
The upper three layers are usually implemented as libraries that are linked
together with the application process. The lower layers are part of the

3-39

Introduction to OSF DeE

operating system and their services are made available to the upper layers
through a transport interface. The transport interface is the double line in
Figure 3-12.

Figure 3-12. The OSI Protocol Layers

3-40

Application Layer

Presentation Layer

Session Layer
Transport Interface

Transport Layer

Network Layer

Data Link Layer

Physical Layer

The Directory Service is an Application Layer protocol. Its specification
requires the use of two other application layer service elements: ACSE
(Association Control Service Element) and ROSE (Remote Operation
Service Element), and of the underlying layers. ROSE and ACSE of Layer
7, and the Presentation Service of Layer 6, are implemented in GDS by the
Remote Operation Service (ROS) library. The OSI Session Service (Layer
5) is implemented in GDS by the OSI Session Service (aSS) library. These
layers are equivalent to the communications support supplied by the DCE
RPC Runtime system, which also fills in the gap between an application and
the underlying transport communications. Although GDS supplies support
for these upper OSI layers, they are used only for the Directory Service and
are not made available for application programmers.

DCE assumes that the system it runs on provides support for transport layer
communications (either OSI transport or IP transport). The OSI protocols
running above the transport layer were originally designed to run over OSI
transport protocols. Many DCE systems run TCPIIP, so GDS provides the
capability for running over the TCPIIP transport protocol as specified in
RFC 1006.

The GDS software includes a compiler and a runtime library called
MA VROS. The compiler takes specifications written in the Abstract Syntax
Notation (ASN.l) and compiles them into C language code for header files
and encoding/decoding routines, much as the RPC IDL compiler takes an
IDL specification and compiles it into a header file and client and server
stubs. MA VROS is used to encode/decode the DAP and DSP protocols and
their data values.

DCE Technology Components

3.3.3.6 GDS Relation to Standards

The OSI software provided in DCE is based on the following ISO standards:

• X.500/ISO 9594

The CCITT 1988 version (Blue Book), which shares the same text as
ISO Directory Standard 9594 (vI) published in 1990.

• ROSE/ ACSE/Presentation/Session

ISO 9072 (vl:1989), 8650 (vl:1988), 8649, 8823 (vl:1988), and 8327
(v2: 1988) Protocol International Standards. The implementation follows
EWOS agreements.

• ASN.l/BER

The ASN.l compiler accepts ASN.l syntax conformant to ISO 8824 and
generates routines to encode/decode data conformant to ISO 8825 Basic
Encoding Rules.

The GDS software provides functional extensions to the standards in the
following areas:

• Replication

• Knowledge Information Modelling and Administration

• Schema Modelling and Administration

• Subtree Administration

• Caching

• Remote Administration

• Security (Access Control)

3-41

Introduction to OSF DeE

3.3.3.7 Additional Information on GDS

Additional information on the DCE Global Directory Service and related
standards can be found in the following:

• The chapters on GDS in the OSF DCE Administration Guide

• The (8gds) reference pages of the OSF DCE Administration Reference

• See also the standards documents listed in the previous section

3.3.4 DeE Global Directory Agent

3-42

The DCE Global Directory Agent (GDA) is the third major component of
the DCE Directory Service. It acts as an intermediary between the local
cell's directory service and the global directory services. In particular, the
GDA handles CDS calls that are directed to foreign cells. The foreign cells
must be registered with one of the two global directory services that DCE
supports-the X.SOO Directory Service or the Domain Name Service.

3.3.4.1 What is GDA?

The DCE Global Directory Agent is a process that interfaces between CDS
and GDS or the Domain Name Service. The GDA is not visible to the end
user. Programmers access the GDA indirectly through the XDS API. GDA
administration consists simply of starting and stopping the GDA process.

At least one GDA must be present in a DCE cell in order for that cell to
acquire directory service information from other DCE cells.

DCE Technology Components

3.3.4.2 GDA and Other Directory Service Components

Figure 3-13 shows how the GDA relates to other Directory Service
components.

Figure 3-13. GOA and Other Directory Service Components

The application uses XDS to make a Directory Service call. If the name to
be accessed is a typed name, such as
"I .. ./C=US/O=OSF/OU=DCE/CN=SIG-DCE" , then the query is passed to
the Global Directory Service. If the name to be accessed is an untyped
name, such as I .. ./cs.univ.edulfs/usr/ziggy, or a partially typed name, such
as 1 .. ./C=US/O=OSF/OU=DCE/fs/usrlsnowpaws, then the query is passed
to the Cell Directory Service. If the name is a local name, contained in the
local CDS, then the query is handled by the local CDS server. If it is a name
that resides in a foreign cell, it is passed to the GDA.

3-43

Introduction to OSF DeE

The GDA determines whether the foreign cell is registered in X.SOO or
DNS, based on the format of the name. It then contacts a GDS server or
DNS server to find the foreign cell. Once the foreign cell is found,
information about that cell is cached so that subsequent lookups of names in
that cell do not require the involvement of a global directory server.
Finally, the CDS server in the foreign cell is contacted to handle the query
about the name.

3.3.4.3 Additional Information on DeE GDA

For additional information on DCE GDA, see the GDA sections of the OSF
DeE Administration Guide.

3.3.5 The Directory Service Interfaces

3-44

The X/Open Directory Service (XDS) and X/Open Object Management
(XOM) application programming interfaces provided by the DCE Directory
Service are based on X/Open specifications. APls are not really separate
components (every DCE component includes APls to access it), but we call
them out separately in this case because programmers use the Directory
Service APls to access both DCE directory services-CDS and GDS.

3.3.5.1 The XOM Application Programming Interface

XOM is an interface for creating, deleting, and accessing objects containing
information. It is an object-oriented architecture-each object belongs to a
particular class, and classes can be derived from other classes, inheriting the
characteristics of the original class. The representation of the object is
transparent to the programmer; the object can only be manipulated through
the XOM interface, not directly. XOM is used to create the objects that
make up the Directory Service.

DCE Technology Components

XOM defines basic data types, such as Boolean, string, object, and so on. It
defines an information architecture, including concepts such as objects,
their attributes, and their classes. It also provides definitions of routines for
manipulating objects.

3.3.5.2 The XDS Interface

The X/Open Directory Service (XDS) API is used by DCE programmers for
accessing information in the DCE Directory Service, whether the
information is managed by CDS or GDS. It uses the XOM interface for
defining and handling the information objects that comprise the directory.
These objects are passed as parameters and as return values to the XDS
routines. The XDS API contains routines for managing connections with a
Directory Server; reading, comparing, adding, removing, and modifying
entries; listing directories; and searching for entries. Some extensions to the
X/Open standard that the DCE XDS API provides include provisions for
security and cache management.

3.3.5.3 Additional Information on XDS and XOM

For additional information on the XDS and XOM interfaces, see the
following:

• The XDS and XOM chapters of the aSF DeE Application Development
Guide

• The (3xds), (4xds), (3xom), and (4xom) reference pages of the aSF
DeE Application Development Reference

• X/Open CAE Draft 1 (May 1991) Specification, API to OSI Object
Management (XOM)

• XlOpen CAE Draft 1 (May 1991) Specification, API to Directory
Services (XDS)

3-45

Introduction to OSF DeE

3.4 DeE Distributed Time Service

3-46

A distributed computing system has many advantages but also brings with it
new problems. One of them is keeping the clocks on different nodes
synchronized. In a single system, there is one clock that provides the time
of day to all applications. Computer hardware clocks are not completely
accurate, but there is always one consistent idea of what time it is for all
processes running on the system.

In a distributed system, however, each node has its own clock. Even if it
were possible to set all of the clocks in the distributed system to one
consistent time at some point, those clocks would drift away from that time
at different rates. As a result, the different nodes of a distributed system
have different ideas of what time it is. This is a problem, for example, for
distributed applications that care about the ordering of events. It is difficult
to determine whether Event A on Node X occurred before Event B on Node
Y because different nodes have different notions of the current time.

The DCE Distributed Time Service (DTS) addresses this problem in two
ways:

1. DTS provides a way to periodically synchronize the clocks on the
different hosts in a distributed system.

2. DTS also provides a way of keeping that synchronized notion of time
reasonably' close to the correct time. (In DTS, correct time is
considered to be Coordinated Universal Time (UTC), an
international standard.)

These services together allow cooperating nodes to have the same notion of
what time it is, and to also have that time be meaningful in the rest of the
world.

Distributed time is inherently more complex than time originating from a
single source-since clocks cannot be continuously synchronizing, there is
always some discrepancy in their ideas of the current time as they drift
between synchronizations. In addition, indeterminacy is introduced in the
communications necessary for synchronization-clocks synchronize by
sending messages about the time back and forth, but that message passing
itself takes a certain (unpredictable) amount of time. So in addition to being
able to express the time of day, a distributed notion of time must also
include an inaccuracy factor-how close the timestamp is to the real time.

DCE Technology Components

As a result, keeping time in a distributed environment requires not only new
synchronization mechanisms, but also a new form of expression of time­
one that includes the inaccuracy of the given time. In DTS, distributed time
is therefore expressed as a range, or interval, rather than as a single point.

3.4.1 What Is DTS?

There are several different components that comprise the DCE Distributed
Time Service:

• Time Clerk

• Time Servers

- Local Time Server

- Global Time Server

- Courier Time Server

- Backup Courier Time Server

• DTS Application Programming Interface

• Time Provider Interface (TPI)

• Time format, which includes inaccuracy

The active components are the Time Clerk and different kinds of Time
Servers. There are two interfaces-a programming interface (DTS API) and
an interface (TPI) to an External Time Provider. Finally, DTS defines a new
format for expressing time.

Time Clerk. The Time Clerk is the client side of DTS. It runs on a client
machine, such as a workstation, and keeps the machine's local time
synchronized by asking Time Servers for the correct time and adjusting the
local time accordingly.

The Time Clerk is configured to know the limit of the local system's
hardware clock. When enough time has passed that the system's time is
above a certain inaccuracy threshold (that is, the clock may have drifted far
enough away from the correct time), the Time Clerk issues a
synchronization. It queries various Time Servers for their opinion of the
correct time of day, calculates the probable correct time and its inaccuracy
based on the answers it receives, and updates the local system's time.

3-47

Introduction to OSF DeE

The update can be gradual or abrupt. If an abrupt update is made, the
software register holding the current time is modified to reflect the new
time. Usually, however, it is desirable to update the clock gradually, and in
this case the tick increment is modified until the correct time is reached. In
other words, if a clock is normally incremented 10 milliseconds at each
clock interrupt, and the clock is behind, then the clock register will instead
be incremented 11 milliseconds at each clock tick until it catches up.

Figure 3-14 shows a LAN with two Time Clerks (C) and three Time Servers
(S). Each of the Time Clerks queries two of the Time Servers when
synchronizing. The Time Servers all query each other.

Figure 3-14. DTS Time Clerks and Servers

3-48

Time Servers. A Time Server is a node that is designated to answer queries
about the time. The number of Time Servers in a DCE cell is configurable;
three per LAN is a typical number. Time Clerks query these Time Servers
for the time, and the Time Servers query one another, computing the new
system time and adjusting their own clocks as appropriate. One or more of
the Time Servers can be attached to an External Time Provider (described
later in this section).

A distinction is made between Local Time Servers (Time Servers on a given
LAN) and Global Time Servers. This is because they are located differently
by their clients. A client may need to contact a Global Time Server if, for
example, the client wants to get time from three servers, but only two
servers are available on the LAN. In addition, it may be desirable to
configure a DTS system to have two LAN servers and one Global Time
Server synchronizing with each other, rather than just having Time Servers
within the LAN synchronizing with each other. This is where Couriers are
needed.

DeE Technology Components

A Courier Time Server is a Time Server that synchronizes with a Global
Time Server; that is, a Time Server outside the Courier's LAN. It thus
imports an outside time to the LAN by synchronizing with the outside Time
Server. Other Time Servers in the LAN can be designated as Backup
Courier Time Servers. If the Courier is not available, then one of the
Backup Couriers serves in its place.

Figure 3-15 shows two LANs (LAN Aand LAN B) and their Time Servers
(S). In each LAN, one of the Time Servers acts as a Courier Time Server
(Co) by querying a Global Time Server (G) (that is, a Time Server outside of
either LAN) for the current time.

Figure 3-15. Local, Courier, and Global Time Servers

LANA LAN B

Time Provider Interface. So far, all the components described are those
supporting the synchronization of a distributed system's clocks. There must
also be a way to ensure they are synchronized to the correct time. The
notion of the correct time must come from an outside source-the External
Time Provider. This may be a hardware device such as one that receives
time from radio or telephone sources. This external time is given to a Time
Server, which then communicates it to other servers. Such an External Time
Provider can be very accurate. If no such device is available, the external
time source can be the system administrator, who consults a trustworthy
time source and enters it into the system. This cannot, of course, be as
accurate as an automatic time source, but it may be sufficient in some cases.

3-49

Introduction to OSF DeE

DTS supports the ability to interface with an External Time Provider
through the Time Provider Interface. The External Time Provider itself,
however, is a hardware device (or a person), and is therefore outside the
scope of DCE.

DTS Time Format. The time format used in DTS is a standard one: UTC,
which notes the time since October 15, 1582, the beginning of the Gregorian
calendar. This time is interpreted using the Time Differential Factor (TDF)
for use in different time zones. For example, the TDF in New York City is
-5 hours. The TDF for Greenwich, England is O.

3.4.2 End User's Perspective

From a user's point of view, the advantage of having a distributed time
service is that more applications work as expected in a distributed
environment. For example, the UNIX make program compiles new binary
files if it discovers that the source file has been changed since the last time
the binary was compiled. In a distributed system, this may not work
properly if the source is on one machine and the binary is on another, and
the two machines have different ideas of what time it is (and of what time it
was when their files were updated). Having DTS means that the nodes have
roughly the same notion of time, and the make program works as expected.

3.4.3 Programming with DTS

3-50

There are two ways a programmer can be affected by the presence of DTS in
a system. It is possible for an application to retrieve the time from the
system in the same way as before DTS was introduced. But with DTS, the
system's time is more correct, and is synchronized with other nodes' clocks
in the distributed system.

It is also possible for the programmer to use the DTS API to directly deal
with distributed time. Since DTS time is represented differently than
single-node time-it includes inaccuracy-new routines are provided for
comparing times and for converting from DTS time format to the native
system's time format. The API also includes routines for retrieving the
current time, performing calculations on times, and handling time zone
information.

DCE Technology Components

If programmers choose to use DTS directly, they must handle a new
contingency when comparing times. When asking the question "Which
time is earlier, Time Aor Time B?" it is possible to get the answer "We do
not know." When the two time intervals overlap, there is no way of
determining which occurred first. Programmers can handle this in two
ways: they can ignore the inaccuracy and compare the two median times; or
(the safer alternative) they can acknowledge that either time or could have
been first, and take the more conservative action. For example, if it cannot
be determined, when running the make program, whether the source or the
executable was modified last, the compilation can be rerun, just in case the
source was modified after the executable was generated.

3.4.4 DTS Administration

Administering a distributed time service is more involved than
administering the time in a single node. In a single node, time
administration typically consists of setting the time and date when a system
is first started up, and then updating the time occasionally to compensate for
clock drift.

DTS requires more set-up and configuration work for the administrator,
although once it is up and running, the administrative maintenance tasks are
infrequent.

3.4.5 Interaction with the Network Time Protocol

The Network Time Protocol (NTP), an Internet recommended standard that
is widely used in the Internet, is another method of synchronizing time in a
distributed environment. It is possible for NTP servers to provide time to a
DTS system, and for DTS servers to provide time to an NTP system. See the
chapter on NTP in the aSF DeE Administration Guide for additional
information.

3-51

Introduction to OSF DeE

3.4.6 Additional Information on DTS

For additional information on the DCE Distributed Time Service, see the
following:

• The DTS chapters of the aSF DeE Application Development Guide and
the aSF DeE Administration Guide

• The (3dts) reference pages of the aSF DeE Application Development
Reference

• The (8dts) reference pages of the aSF DeE Administration Reference

3.5 DeE Security Service

A distributed computing environment brings with it new security
requirements beyond those found in a nondistributed system. In a
nondistributed system, the operating system can be trusted to protect
resources from unauthorized access. This is not the case in open distributed
systems, however. Communications take place over an accessible network,
where messages between machines can be observed or forged. A new
security system is required in order to control access to resources in a
distributed environment. In DCE, resource protection is provided by the
DCE Security Service.

3.5.1 What Is the DeE Security Service?

3-52

The DCE Security Service comprises several parts, including the
Authentication Service, the Privilege Service, the Registry Service, the
Access Control List Facility, and the Login Facility.

• The Authentication Service

The Authentication Service enables two processes on different machines
to be certain of one another's identity, or authenticated. On a
timesharing system, this functionality is provided in part by the
operating system kernel. However, since a local host's operating system
cannot necessarily be trusted in a distributed system, an authentication
service is necessary in a distributed computing environment.

DCE Technology Components

• The Privilege Service

Once a server has verified the identity of the user who is making a
request, it still needs to determine whether the user should be
authorized, or granted the requested access to a resource that the server
controls. This functionality is provided by the DCE authorization
service, called the Privilege Service. It forwards in a secure way the
information that a server needs to know in order to determine what
permissions it should grant to the user.

Both the DCE Authentication Service and the DCE Privilege Service are
used in conjunction with DCE RPC and the Login Facility, so the typical
application programmer does not interact with them directly, but instead
uses Authenticated RPC.

• The Registry Service

The DCE Registry Service is a replicated service that manages the cell's
Security database. The Security database contains entries for security
entities, which are called principals. A principal can be a user or a
server, for example. The database also contains information associated
with each principal; for example, encryption keys, which are used in
authentication, authorization, and encryption of messages. The Registry
Service enables administrators to access and modify the database of
DCE users.

• The Access Control List Facility

DCE Access Control Lists (ACLs) are lists of users who are authorized
to access a given resource. For example, a user can put a colleague on
an ACL for a certain file, thereby granting the colleague permission to
read and write the file. DCE ACLs are associated with many DCE
resources: files, entries in the Directory Service, and entries in the
Security Service. DCE ACLs are based on the POSIX l003.6/Draft 3
specification. An ACL API allows programmers to manipul"te ACLs,
and the ad_edit command allows users to modify ACLs associated with
resources they own.

3-53

Introduction to OSF DeE

• The Login Facility

The DeE Login Facility initializes a user's DeE security environment.
It authenticates the user to the Security Service by means of the user's
password. The Security Service returns security credentials, which are
then used to authenticate the user to distributed services that are
accessed during the user's session, such as the Distributed File Service
or other applications.

3.5.2 How DeE Security Works

This section gives an overview of how the DeE security services and
facilities interact to provide a secure distributed computing environment.
Figure 3-16 shows this process. The presentation in this section is a
simplified view of the transactions that actually take place.

Figure 3-16. DeE Security Interactions

3-54

I
I

L ,:s.:r ______ J

Create User

Log Me In

Ticket

Authorize Me
(with Ticket)

PAC

Authenticated RPC
(with PAC)

~----------------l
I Security Server I
: (seed) I

I

I--.-.....,~ Security
Database

L ________________ _

ACL

DCE Technology Components

When a DCE cell is first created, the DCE security administrator runs a
program to create an initial DCE security database. The administrator then
starts up a DCE Security Server, called seed, on the same machine as the
database. Using the rgy_edit command, the administrator creates user
accounts in the security database.

After the administrator has created an account for a user, the user can
participate in a secure DCE system. Typically a user logs in at the
beginning of a session. The Login Facility interacts with both the
Authentication Server and the Privilege Server. It sends a request for
authentication credentials to the Authentication Server. The Authentication
Server sends back the authentication credentials, called a Ticket. The
Authentication Server's reply is encrypted using the user's password, so if
the user can supply the right password, the reply can be decrypted and the
Ticket can be accessed. Tickets are used by clients to authenticate
themselves to servers; that is, to prove that clients are really who they say
they are.

Next, the Login Facility sends the Ticket to the Privilege Server. The
Privilege Server returns authorization credentials, called a PAC (Privilege
Attribute Certificate). The PAC contains authorization information specific
to the user, such as which groups the user belongs to. P ACs are used to
authorize users; that is, to help a server decide whether users should be
granted access to resources that the server manages. When the Login
Facility has finished running, the user has a security environment and can
communicate in a secure way with application servers.

For example, if the user runs an application client, the application client can
use Authenticated RPC to communicate with the application server. The
application server receives the RPC-based request, which includes the
user' s PAC. The server inspects the user's authorization credentials and the
Access Control List associated with the resource the user wants to access.
If, for example, the ACL says that any user in the group friends can access
the resource, and the user' s PAC shows that the user is in the friends group,
then the server will give the user access to the resource.

The authentication and authorization information that is sent over the
network is all encrypted so that only the intended recipients are able to
decrypt and read the messages. If desired, the application data can be
encrypted as well. This prevents any unauthorized user from being able to
read data that is sent over the network.

3-55

Introduction to OSF DeE

The encryption used in DCE Release 1.0 is secret key encryption, in which
two parties share a secret -the encryption key. Using that key, they can
encrypt and decrypt each other's messages. (For information on the
generation, transfer, and use of encryption keys in DCE Security, see the
Security chapters of the aSF DeE Application Development Guide.)

3.5.3 End User's Perspective

Much of the DCE Security mechanism occurs without the knowledge of
users; for example, secure communications take place without the user's
intervention. There are several ways, however, in which users do come in
contact with DCE Security. One instance is when users type in their
passwords to authenticate themselves to DCE, usually at login time.
Another case is when they change access to resources they own, using the
ad_edit program. Finally, a user notices the Security Service in action
when he or she is denied unauthorized access to resources.

3.5.4 Programming with DeE Security

3-56

Typically, a DCE programmer uses DCE RPC to implement a distributed
application. DCE Security is integrated with RPC, so in some cases the
programmer does not need to access security services directly. However,
programming interfaces to the Security Service are available to the
programmer who needs them. They include the ACL, Login, and Registry
APIs, along with the API for Authenticated RPC. This section gives an
overview of programming with Authenticated RPC and DCE ACLs.

Authenticated RPC. DCE RPC and DCE Security cooperate to provide
authentication, authorization, and secure communications. In order to use
Authenticated RPC, the client must already have a security environment,
such as that set up by the Login Facility. The server side of the application
registers its name and the type of authentication service it supports. In DCE
Version 1.0, two types of authentication service are supported-secret key
authentication, which is based on Kerberos (see Section 3.5.6), or no
authentication.

DCE Technology Components

The client makes a call to indicate which authentication service, protection
level, and authorization service it wants to use for RPC communications
with a given server. The authentication service can be either secret key
authentication, or no authentication. The protection level ranges from
authentication at the beginning of an RPC session, to authenticating each
message or packet, to ensuring that a packet has not been modified in transit,
to encrypting all user data. In general, the more secure the protection level,
the higher the price paid in terms of performance, since the security
mechanisms involve encrypting and decrypting data, which take up CPU
time.

The authorization service chosen by the client can be either uncerti fied or
certi fied. In uncerti fied authorization, the authorization information sent to
a server consists only of the client's name. In certi fied authorization, the
authorization information consists of the UUIDs of the client's name and
groups. The certified authorization information is in the form of a Privilege
Attributes Certificate (PAC), which is produced by the Privilege Service. In
both the certified and uncertified authorization service, the authorization
information is sent securely.

The authentication and authorization information about the client are used
by the server to determine whether the client should be granted the access to
the resource that it has requested. The server knows for certain the identity
of the client, and what authorization groups the client belongs to. The
server can therefore compare the client's credentials against information in
Access Control Lists and determine whether a client should be given the
access it is requesting.

Access Control Lists. If a distributed application uses ACLs to control
access to its resources, then the distributed application programmer needs to
write an ACL Manager to handle access to the resources. The ACL
Manager is part of the server side of the application. Typically, there is one
Access Control List associated with each resource that the server manages.
The ACL contains one or more entries specifying a user or group and what
operations the user or group is permitted to perform on the resource (for
example, read, write, or execute permission). The ACL Manager takes the
authorization information supplied by the application client during an RPC,
and compares it to the ACL for the requested resource. The ACL Manager
indicates whether the client is or is not allowed the requested access to the
resource.

3-57

Introduction to OSF DeE

Figure 3-17 shows a simple DCE ACL. Every DCE ACL contains a field
indicating what type of ACL it is. The ACL type in this case is
sp_data_acl. Each DCE ACL also contains a field indicating what the
default cell is for the entries in the ACL. In the example, the default cell is
1 .• .lC=US/O=OSF/OU=DCE. The rest of the ACL consists of ACL entries.

Figure 3-17. DCE ACL Example

sp_data_aci ~-- ACL Type
~------------------------~

I .. .IC=US/O=OSF/OU=DCE ~-- Default Cell
~------------------------~ user:snowpaws:rw ~-- ACL Entry
~------------------------~

group:friends:r -- ACL Entry
~------------------------~

foreign_user:ziggy@I .. .Ics.univ.edu:r ~-- ACL Entry
~------------------------~

ACL entries can be of several types. The example shows three types of
ACL entries: user, group, and foreign_user. The cell to which the user
and group entries belongs is the default cell listed in the ACL. The cell to
which the foreign_user entry belongs is specified in the entry.

Each entry includes a list of permissions. The different possible permissions
are determined by the ACL type (in this example, sp_data_acl). There are
two types of permissions in the ACL example: r for read permission, and w
for write permission.

Based on this ACL, the sp_data_acl ACL Manager will give the principal
snowpaws in the cell 1 •• .lC=US/O=OSF/OU=DCE read and write
permission to the object, the members of the friends group in the
1 •• .lC=US/O=OSF/OU=DCE cell read permission to the object, and the
principal ziggy in the foreign cell I .. .lcs.univ.edu read permission.

3.5.5 DeE Security Service Administration

3-58

There are two types of DCE Security administration: local and cellwide.
The administrator of a DCE machine controls the local passwd_override
file. This file determines some security aspects that are specific to the local
machine, such as which principals may use the machine, the password for a
local account (such as root), and so forth. The local security administrator
also controls the local file that contains user and password information, if it
exists. (This file may contain a copy of information from the security
database to be used in case the security server cannot be reached, or for
already existing applications that expect such a local file.)

DCE Technology Components

The cell-wide security administrator manages the cell's Security Server(s).
This includes managing the seed process, which provides security services
on the security server machine, creating and editing the security database
using rgy _edit, and controlling replication of security data.

The cell-wide security administrator is also involved in cross-cell
authentication. It is possible for clients in one cell to communicate securely
with servers in another cell. In order for this to happen, the security
administrators in the two cells must register each other's Authentication
Service in their Registry. This enables clients in one cell to authenticate to
servers in another cell. In this way, it is possible for authorized clients in
one cell to access services in a foreign cell.

3.5.6 DCE Security and Kerberos

A note on the relationship between the DCE Security Service and Kerberos,
for those who are already familiar with Kerberos: The DCE Authentication
Service is based on MIT Project Athena's Kerberos Network Authentication
Service, Version 5. The Kerberos Key Distribution Center (KDC) server is
a part of the DCE Security server, seed. The authorization information that
is created by the DCE Privilege server is passed in the Kerberos Version 5
Ticket's authorization data field.

The Kerberos user commands kinit, klist, and kdestroy are used in DCE
Security. The Kerberos API is used internally by DCE Security, but is not
exposed for use by the application programmer. Instead, DCE application
programmers use the Authenticated RPC API.

3.5.7 Additional Information on DCE Security

For additional information on the DCE Security Service, see the following:

• The Security chapters of the OSF DeE User's Guide and Reference, the
OSF DeE Application Development Guide, and the OSF DeE
Administration Guide

3-59

Introduction to OSF DeE

• The (3sec) reference pages of the OSF DeE Application Development
Reference

• The (8sec) reference pages of the OSF DeE Administration Reference

3.6 DeE Distributed File Service

Distributed systems can provide many advantages over centralized systems,
such as higher availability of data and resources, the ability to share
information throughout a very large (even worldwide) system, and efficient
use of special computing functionality.

A distributed file system is an example of an application that can take
advantage of all of these aspects of a distributed system. It can make files
highly available through replication, making it possible to access a copy of a
file even if one of the machines on which the file is stored goes down. A
distributed file system can provide access to files from anywhere in the
world, allowing cooperation among geographically dispersed users. The
distributed file system can also give users on machines with very little
storage space the ability to access and store data on machines with much
more disk space available.

DCE's Distributed File Service (DFS) is a distributed client/server
application, built on the underlying DCE services. It takes full advantage of
both the lower-level DCE services (such as RPC, Security, and Directory)
and the distributed computing system itself. The following subsections
describe DFS, the configuration of its components, and various user
perspectives on DFS.

3.6.1 What is DFS?

3-60

DFS is a distributed application that manages information in the form of a
file system. This section describes the units into which DFS data is
organized, the active components that manage that data, and the benefits of
DFS.

DCE Technology Components

3.6.1.1 DFS Data Organization

DFS data is organized at three levels (see Figure 3-18).

Figure 3-18. Files, Directories, Filesets, and Aggregates

Disk

/
/

Aggregate (
'\

'\

/
/

/
/

/
/

/
/

/
/

/
/

/

,-

/
/

/
/

/

Fileset.(

'\
'\

'\
'\

'\
'\

'\
'\

'\
'\

'\
'\

'\
'\

'\

'\

'\
'\

"

,

I
Fileset

File

File

Directory

File

Directory

...

Fileset

I
Aggregate

The three levels of DFS data are, from smallest to largest:

• Files and Directories

Aggregate

The file is the unit of user data. Directories organize files (and other
directories) into a hierarchical tree structure .

• Filesets

The fileset is the unit of administration. A fileset is a subtree of files and
directories, no larger than a disk or partition (or logical volume if
supported). The file set is a convenient grouping of files for
administrative purposes; for example, the subtree of files pertaining to a
particular project can be grouped on the same fileset.

3-61

Introduction to OSF DeE

3-62

• Aggregates

The aggregate is the unit of disk storage, similar to a disk partition. It is
also the unit of fileset exporting. It can contain one or more filesets.

3.6.1.2 DFS Components

DFS is implemented by several components; this section describes each of
them briefly, beginning with the software that runs on DCE client machines
(the Cache Manager), then the software that runs on DCE File Server
machines (the File Exporter, DCE LFS, and Token Manager), and finally the
administrative servers, which may also run on DFS File Server machines
(the Fileset Server, Basic OverSeer Server, Replication Server, Update
Server, Scout, Backup Server, and Fileset Location Server).

Cache Manager. The Cache Manager is the client side of DFS, which runs
on any machine acting as a DFS client. It takes a user's file system request
and looks in a cache to see if a copy of the data is already on the local
system. If not, the Cache Manager sends a request to the File Server
machine for the data and caches it locally. Since files are cached on the
client, a local copy of the file can subsequently be accessed instead of the
remote copy on the File Server machine. As a result, network traffic to the
File Server machine, as well as File Server machine load, is much lighter
than if the client always had to go to the server each time it needed to access
the file.

File Exporter. The File Exporter is the server side of DFS. It runs on a
DFS File Server machine, where it handles requests from remote clients for
the files that it manages. The File Exporter receives an RPC call and
accesses its own local file system, which can be the DCE Local File System
or another file system such as a UNIX File System (UFS), to service the
request. Using the Token Manager, it handles the synchronization of
different clients, which may be concurrently accessing the same file, and
returns the requested information to the client.

DCE Local File System. The DCE Local File System (DCE LFS) is the
physical file system provided with DCE. It manages the storage of files on a
disk. The scope of DCE LFS is a single computer, and LFS is analogous to
a UNIX file system. However, LFS is more powerful than most UNIX local
file systems-it includes features that result in greater capabilities than a
distributed file service based on a traditional UNIX file system. These

DCE Technology Components

capabilities include the ability to use more flexible authorization in the form
of DCE Access Control Lists (ACLs); the ability to replicate, back up, and
even move different parts of the file system without interruption in service;
and fast recovery after a crash, made possible through logging (in contrast to
UNIX file systems, which must execute the time-consuming fsck
command). DCE LFS includes support for DCE cells; for example, the
owner of a file or name in an Access Control List can be a name in a foreign
cell.

A UNIX File System (UFS) can be used as the File Server machine's
physical file system as an alternative to LFS. DFS can export UFS, issue
synchronization tokens for files in UFS, and perform fileset operations such
as dump and restore on UFS. However, there is only one fileset per UFS
partition, which results in large filesets that are not as convenient to move.
Also, UFS filesets cannot be replicated. So a File Server machine using LFS
will have more functionality than a File Server machine using UFS,
although UFS systems can be supported in DFS.

Token Manager. The Token Manager runs on the File Server machine and
synchronizes access to files by multiple clients. It does this by issuing
tokens, which represent the ability to perform operations. The tokens that a
Token Manager issues to DFS clients carry various access rights, usually
read or write. There are four different kinds of tokens: data tokens for
access to file and directory data, status tokens for access to file and directory
status, lock tokens for locking a portion of a file, and open tokens for
opening a file.

The Token Manager on the server side cooperates with the Token
Management Layer in the Cache Manager (on the client side) to manage
tokens. If a client requests an operation that conflicts with a token that
another client holds, then the conflicting token is revoked before the
requested operation is allowed to proceed.

Fileset Server. The Fileset Server allows administrators to create, delete,
move, and perform other operations on filesets. For example, an
administrator can use the Fileset Server to move a fileset from one File
Server machine to another for load balancing. (If DCE LFS is not being
used as the physical file system, then an entire partition is treated as a single
fileset and some fileset operations may not be supported.)

Basic OverSeer Server. The Basic OverSeer Server, or BOS Server,
monitors the DFS processes that run on a server and restarts them when
needed. It maintains information about those processes and responds to
administrative requests for that information.

3-63

Introduction to OSF DeE

3-64

Replication Server. The Replication Server is an administrative server that
handles replication of filesets. For example, an administrator can create a
copy of a fileset on a second File Server machine. The Replication Server
will update the replica at a specified interval (every 30 minutes, for
example). This means that even if the file's master File Server machine
goes down, a copy of the file is still available online through the secondary
copy on the alternate File Server machine.

Update Server. The Update Server provides the ability to distribute binary
files or administration information to nodes in the DFS system. The Update
Server consists of an up client and an upserver. The up client software runs
on a machine that needs to receive new versions of the binary files or
administration information. The upserver program runs on a master
machine and automatically propagates any changes to binaries or
administration information to the machines running the up client software.

Scout. The Scout administrative tool collects and displays information
about the File Exporters running on File Server machines, enabling a system
administrator to monitor the DFS system.

Backup Server. The Backup Server is a facility for backing up File Server
data. It maintains backup records in the Backup Database. It schedules file
system backups, and has the ability to make incremental dumps. The unit
for backup is the fileset.

Fileset Location Server. The Fileset Location Server is a replicated
directory service, which keeps track of which filesets can be found on which
File Server machines. It provides lookup service analogous to the service
CDS provides, except the Fileset Location Server is specialized for DFS. It
supports fileset location transparency, since a fileset can be accessed simply
by knowing its name rather than having to know where it resides. As a
result, a fileset can be moved and its location can be updated in the Fileset
Location Database without users and applications having to know about the
move.

Some DFS components run in the host machine's kernel. These are the
Cache Manager and Token Management Layer on DFS client machines; the
File Exporter, Token Manager, and DCE Local File System on File Server
machines; and parts of the Fileset Location Server.

DCE Technology Components

3.6.1.3 Features of DeE DFS

The DCE Distributed File Service has the following features:

• Uniform File Access

DFS is based on a global namespace. A DFS file is accessed by the
same name no matter where in the distributed system it is accessed from.
Users do not need to know the network address or name of the File
Server machine(s) on which the file is located in order to name and
access the file. For example, the file / .. ./cs.univ.edulfs/usr/ziggy/thesis
can be addressed by that name from anywhere in the DCE system,
including from foreign cells.

• Intracell Location Transparency

Data can move from one location to another within a cell without a user
or programmer being affected by the move. Because of this, an
administrator can move a fileset from one File Server machine to
another for load balancing, for example, without disturbing users.

• Performance

DFS is a high-performance file service. Fast response is achieved in part
through the caching of file and directory data on the DFS client machine.
This reduces the time it takes for a user to access a file, and it also
reduces traffic on the network and the load on the File Server machine.
The first time a user on a machine accesses a file, the Cache Manager
gets a copy of the file from the File Server machine, and caches it on the
client machine. Subsequent accesses to the file can then be made to the
copy on the client machine rather than to the File Server machine.

• Availability

DFS makes its service and data highly available in several ways. One
way is through replication -a copy of a file can be stored on more than
one File Server machine. This way, if the file's main File Server
machine is down, a copy of the file may still be available (although
possibly not up-to-date) on another File Server machine. This type of
replication is especially useful for files that are accessed by many users
and change infrequently (for example, binary files).

3-65

Introduction to OSF DeE

3-66

Another way DFS achieves high availability is through caching. Copies
of files are cached on DFS clients, so even if a client is temporarily
disconnected from the network, it may be possible for a user to access a
file since a copy may reside in the local cache.

DFS administration can occur while users continue to access DFS files,
which is another means of providing high availability. Both backups
and relocation of DFS files can be done without making the files
unavailable to users.

The physical file system portion of DFS, called the DCE Local File
System, is designed for fast recovery (yielding higher availability) after
failures. This is possible because DCE LFS is a log-based file system;
that is, LFS keeps a record of actions taken that affect the file system
structure, so that in the case of a system crash, the record can be
replayed to bring the file system to a consistent state.

• Support for Distributed Application Programming

DFS is itself a distributed application, but it in turn supports the
development of other distributed applications. Programmers can use
DFS to share data or to communicate in a distributed application. DFS
takes care of the network communications and movement,
synchronization, and storage of shared data.

• Ease of Administration and Scalability

DFS files are grouped into units called filesets, which are convenient to
administer. The processes that implement DFS, such as the File
Exporter and backup processes, are monitored and maintained
automatically by the Basic OverSeer Server, resulting in less work for a
DFS administrator and a more scalable system. Because of the high
performance mentioned previously, DFS has a high client-to-server
ratio. This leads to a scalable system-clients can be added with low
impact on other clients and the rest of the system. Finally, DFS includes
tools such as the Backup Server and Update Server that automate time­
consuming administrative tasks.

• Integration

DFS is fully integrated with other DCE components, including RPC,
Security, Directory Service, and Threads.

DCE Technology Components

• Interoperation

DFS interoperates with other file systems; for example, a UFS file
system can be exported using DFS .

• Standards

DFS maintains POSIX single-site read/write semantics. The DCE Local
File System is POSIX 1003.1 conformant.

3.6.2 DFS Configuration

This section describes which of the DFS components run on the different
types of DFS machines-DFS client machines, DFS File Server machines,
and other DFS server machines.

The Cache Manager runs on every machine that acts as a DFS client. It
communicates with File Server machines to provide DFS service (see
Figure 3-19).

Figure 3-19. DFS Client and File Server Machines

DFS File Server Machine

BOS upclient
DFS Client Machine Server

Fileset Replication User
Server Server

I Cache Manager I File I Token Kernel
(in Kernel) I Exporter I Manager

I

- DCE LFS

fO;rnSkJ
orUFS

\-...... Cache - ~

Files and
Directories

...... ...,." -

3-67

Introduction to OSF DeE

Several processes run on DFS File Server machines: the File Exporter
(which includes a Token Manager), the Basic OverSeer Server, the
Replication Server, the Fileset Server, and the client side of the Update
Server. Also present on the File Server machine is a physical file system,
either DeE LFS or UFS.

Finally, some processes must run on a machine that contains the database
they access (usually the DFS File Server machine). See Figure 3-20.

Figure 3-20. Other DFS Servers

3-68

Update Server

Fileset Location Server

DFS

Backup Server

upclient

upclient

DFS File
Server

DFS File
Server

These processes are the server side of the Update Server (which runs both on
machines containing master copies of configuration files and machines
containing master copies of binary files), the Fileset Location Server (which
runs on the machine where the Fileset Location Database is located), and
the Backup Server (co-located with the Backup Database).

DCE Technology Components

3.6.3 End User's Perspective

Users are usually not aware that some of the files that they access are stored
on their local computer, some on their cell's File Server, and some in
another cell-to a user, the DCE Distributed File Service presents one large,
worldwide file system. Users will notice a few differences between working
on a distributed file system and working on a local file system. For example,
DFS users are issued quotas for file storage and can run commands for
information about quotas. There are also commands for determining the
location of a file, and other information that is specific to a distributed file
system.

3.6.4 Programming with DFS

Application programmers typically use DFS transparently by making
POSIX 1003.1 file system calls. Additional DFS interfaces provide
administrative capabilities, such as calls for administering filesets.

The fact that programmers can use a distributed file system through a
familiar interface means that DFS enables distributed applications
programming without special distributed programming expertise. Through
the use of the Distributed File Service, programmers can write distributed
applications without the use of RPC and the client/server model, if the DFS
data sharing model is appropriate to the application.

3.6.5 DFS Administration

Administration of DFS is a significant task, since there are several processes
that implement DFS that need to be set up and maintained. However,
administrative tools are provided to aid in this task. DFS configuration is
varied and flexible, so a DFS administrator has the additional task of
designing and evolving a configuration of DFS servers and clients that best
suits the needs of the system's users.

DFS day-to-day administration includes fileset administration, such as
making filesets available, backing them up, and moving them.

3-69

Introduction to OSF DeE

3.6.6 Additional Information on DFS

For additional information on the DeE Distributed File Service, see the
following:

• The DFS chapters and (Idfs) reference pages of the aSF DeE User's
Guide and Reference

• The DFS chapters of the aSF DeE Application Development Guide and
the aSF DeE Administration Guide

• The (2dfs) and (3dfs) reference pages of the aSF DeE Application
Development Reference

• The (Idfs), (4dfs), and (8dfs) reference pages of the aSF DeE
Administration Reference

3.7 DeE Diskless Support Service

3-70

The DeE Diskless Support Service enables nodes without disks to
participate in a DeE environment. A diskless node has no disk on which to
store a local file system. Diskless support means providing facilities over
the network to replace the functionality that the local disk traditionally
supports. The four areas that must be dealt with are as follows:

• Booting a kernel

• Obtaining configuration information

• Remote file system support

• Remote swapping support

When starting up, a traditional machine looks for a binary image of its
operating system in a well-known file on its local disk (such as Ivrnunix on
many UNIX machines). A diskless system, since it has no local disk on
which to store its kernel, must be able to boot by some other method. In
DeE, this is done by obtaining a copy of the kernel over the network.

DCE Technology Components

Once a diskless client is booted, there is still some information it needs
before it can be fully operational. Since it still cannot read that information
off the root file system (it does not have one yet), it has to get it from
another source. The diskless node obtains this information from a Diskless
Configuration (DLC) Server.

One of the main functions of a local disk is the permanent storage of user
and system files. A diskless system needs a place to store its files, since it
cannot store them locally. DCE provides the ability for diskless machines to
use a remote file server to store and retrieve their files.

Another typical use of local disks on traditional machines is for swapping.
When a process is blocked and the CPU needs more space in main memory
to run the next process, the disk can be used to temporarily store the blocked
process. When it is time for the blocked process to run again, it is brought
back into main memory from the disk. A diskless node needs another way
to swap processes in and out of its memory, since it cannot use a disk. In
DCE, this is done by using a remote swap server; that is, by using the disk
on another machine on the network for the diskless machine's swap space.
(Depending on the diskless machine's operating system, this facility may be
used for paging as well as swapping.) For diskless machines using DFS,
paging can be done to files instead of through the Swap Server.

3.7.1 What Is DeE Diskless Support Service?

DCE diskless configurations involve four types of machines (see Figure 3-
21):

• Diskless Client (BOOTP and TFTP clients)

• Boot Server (bootpd and tftpd)

• Configuration Server

• Swap Server (optional)

• DFS File Server

Some of these servers can be co-located; for example, the Boot Server and
Configuration Server can run on a Distributed File Server machine. (The
Boot Server and Configuration Server must run on the same machine.)

3-71

Introduction to OSF DeE

Figure 3-21. Diskless Client and Related Servers

3.7.2 Booting Support for Diskless Operation

3-72

Booting support consists of code that resides in the diskless client machine's
Read-Only Memory (ROM), since that is the only place on a diskless node
that is available for permanent storage. The code contains the client sides of
the BOOTP and Trivial File Transfer Protocol (TFTP) protocols. Since
DeE is limited to offering software, not hardware, the actual supplied code
runs in user mode and demonstrates the ability to get a kernel over the
network using these two protocols.

During the boot process, the diskless client uses BOOTP to obtain its own
network address and the address of its Boot Server. It then uses TFTP to
obtain the kernel file to be booted.

DCE Technology Components

3.7.3 The Diskless Configuration Process

A diskless node needs configuration information before the root file system
is available; this is obtained from the Diskless Configuration Server. This
server supplies the diskless node with information about the following:

• The Client's Swap Server (if needed)

• The Client's root file system location and server

• DFS Cache Manager configuration parameters

Using these configuration values, the diskless node starts the DFS Cache
Manager and mounts the appropriate root file system from the DFS File
Server machine.

3.7.4 File Service Support for Diskless Operation

DCE Diskless Support Service provides the ability for a diskless machine to
use a remote file service. This facility is based on the DCE Distributed File
Service (see Section 3.6), and it has several aspects:

• Diskless Cache Manager

• Machine-Specific Files

• Device Files

When DFS is used on a machine with a local disk, the DFS Cache Manager
(the client side of DFS) uses storage on the disk to keep a cache of recently
accessed files. This greatly reduces network traffic to the File Server
machine, and increases performance. On a diskless machine, no local disk
is available, so the Cache Manager uses an in-memory cache instead.

Since DCE supports interoperation among heterogeneous systems, it is
possible that a File Server machine may have clients with different kinds of
systems. A mechanism is needed to distinguish between, for example,
binary files intended for one platform, and binaries for a second platform, so
that when a diskless client needs to execute the binary file, it gets the right
version for its system. DFS provides a mechanism for making this
distinction in the file system.

3-73

Introduction to OSF DeE

The machine-specific file mechanism consists of two special filenames:

• @host

• @sys

The @host filename is replaced with the hostname of the client. This
special filename is used for files that are specific to the individual client
machine; for example, an letc/rc file or equivalent.

The @sys filename is replaced with the client's system name. For example,
the diskless server may have copies of executable files for various
platforms-the @sys filename is replaced with the specific client's
platform, so the client can access the appropriate executables for its
operating system/hardware configuration.

Finally, some of the files in a DCE file system are actually devices (that is,
Idev files). These are interpreted as devices on the client machine, not as
devices on the server machine.

3.7.5 Swapping Support for Diskless Operation

3-74

DCE provides diskless swapping support for systems that swap or page to
devices; systems that page to files do not need this support. The diskless
swapping support comprises the following components:

• Swap Server

On the Swap Server machine, the diskless swap server daemon, dswd,
runs in user mode. It maintains a database of information about its
clients, swap files, and swap devices, and accepts administrative
requests to modify that information. It also accepts requests from users
to access swap space, which it keeps on disk.

• Client Swap Driver

On the diskless node, the Swap Client runs in kernel mode. It looks like
a device driver to the diskless node's operating system. It takes swap
requests from the client's kernel and forwards them across the network
to the Swap Server.

DCE Technology Components

• Swap Administration Program

The diskless swap administration program, dsw _adm, allows an
administrator to control the Swap Server remotely. This program makes
requests to the Swap Server to modify the Swap Server's database.
Requests modify client information and information about files and
devices to be used for swapping.

Figure 3-22 shows the interaction among an application on the diskless
machine, its operating system and swap driver, and the Swap Server and
swap store on the Swap Server machine.

Figure 3-22. Swap Process from Application to Server

Diskless Client Machine Swap Server Machine

User Kernel User

Application OS Swap Client Swap Server

--- -~

3.7.6 Additional Information on DeE Diskless Support

For additional information on the DeE Diskless Support Service, see the
following:

• The Diskless module of the aSF DeE Administration Guide

• The (8dskl) reference pages of the aSF DeE Administration Reference

• The Diskless sections of the aSF DeE Porting and Testing Guide

3-75

Introduction to OSF DeE

3.8 Two DeE Application Examples

This section presents two implementations of a very simple distributed
application, called greet. This section assumes some familiarity with UNIX
systems and the C programming language. The greet application is
implemented two different ways-one using DCE RPC, the other using
DCE DFS. For a more extensive application example, which uses many
more DCE services and facilities, see the timop example in Part 1 of the
OSF DeE Application Development Guide.

3.8.1 The greet Application: An Implementation Using DCE RPC

3-76

This first implementation of the greet application is an example of a simple
DCE RPC-based application. The client side of the application sends a
greeting to the server side of the application. The server prints the client's
greeting and sends a return greeting back to the client. The client prints the
server's reply and terminates.

3.8.1.1 Steps in Developing a DCE RPC Application

This section provides a step-by-step description of the development of the
greet application.

1. Generate an IDL template.

The first step is to run the uuidgen program, which creates a Unique
Universal Identifier for uniquely labelling the application's interface.
It also creates a template for an IDL file. The following command:

uuidgen -i > greet.idl

creates the file greet.idl.

DeE Technology Components

It contains the following:

uuid(3d6ead56-06e3-11ca-8ddl-826901beabcd),
version(1.0)
]

interface INTERFACENAME

2. Name the interface.

Replace the string INTERFACENAME in the IDL file with the name of
the application interface, in this case, greetif.

uuid(3d6ead56-06e3-11ca-8ddl-826901beabcd),
version(1.0)
]

interface greetif
{

3. Define the interface operations.

Within the braces, write definitions of the operations comprising the
interface. In this example, there is only one operation, call~d greet.

/*
* greet.idl

*
* The "greet" interface.
*/

[uuid(3d6ead56-06e3-11ca-8ddl-826901beabcd) ,
version (1. 0)]

interface greetif
{

canst long int REPLY_SIZE = 100;

3-77

Introduction to OSF DeE

3-78

void greet (
[in] handle_t h,
[in, string] char client~reeting[],
[out, string] char server_reply[REPLY_SIZE]

) ;

The first line of the operation definition gives the name of the
operation, greet I and indicates by the void declaration that it has
no meaningful return value. The next three lines specify the
arguments to the operation, namely hi client_greeting I and
server_reply. The first argument is a handle containing binding
information for the server. The second is a string that is passed from
the client to the server (the client's greeting). The third argument is a
string returned from the server back to the client (the server's reply).

4. Run the IDL compiler.

The following command runs the IDL compiler:

idl greet.idl

(Some of the commands in this section are somewhat simplified. See
the Makefile in Section 3.8.1.3 for the complete command.) Three
new files are created automatically as a result of this command:

• greet.h

• greet_cstub.o

• greet_sstub.o

5. Write the client application code greet_c1ient.c.

In general, the DCE RPC application programmer writes three
application code files:

• The Client code

• The Server initialization code

• The Server operation code

DCE Technology Components

The following is the client code for the greet application, a file called
greet_c1ient.c.

/*
* greet_client.c
*
* Client of "greetn interface.
*/

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/rpc.h>

#include "greet.h"
#include "util.h"

int
main (

int argc,
char * argv []

rpc_ns_handle_t import_context;
handle_t binding_hi
error_status_t status;
idl_char reply[REPLY_SIZE];

if (argc < 2) {
fprintf(stderr, "usage: greet_client <CDS pathname>\n");
exit(l);

/*
* Start importing servers using the name specified
* on the command line.
*/

rpc_ns_binding_import_begin(
rpc_c_ns_syntax_default, (unsigned_char-p_t) argv[l],

greetif_vl_O_c_ifspec, NULL, &import_context, &status);
ERROR_CHECK (status, "Can't begin import");

/*
* Import the first server (we could interate here,
* but we'll just take the first one).
*/

rpc_ns_binding_import_next(import_context, &binding_h, &status);
ERROR_CHECK (status , "Can't import");

3-79

Introduction to OSF DeE

3-80

/*
* Make the remote call.
*/

greet (binding_h, (idl_char *) "hello, server", reply);

printf(IIThe Greet Server said: %s\n", reply);

In this routine, the client makes two calls to the RPC runtime to
acquire binding information needed to communicate with the server.
The client then calls the greet remote procedure, supplying a
greeting to be sent to the server. The client prints the reply received
by the server.

6. Write the server initialization code greet_server.c.

The second file that the DCE RPC application programmer must write
is the server initialization code. This is "boilerplate" code; that is, it
is largely the same for any RPC application. The greet_server.c file
contains the server initialization code for the greet application.

/*
* greet_server.c

*
* Main program (initialization) for "greet" server.
*/

#include <stdio.h>
#include <dce/dce_error.h>
#include <dce/rpc.h>

#include "greet.h"
#include "util.h"

int
rna in (

int argc,
char * argv []

unsigned32 status;
rpc_binding_vector_t *binding_vector;

if (argc < 2) {
fprintf(stderr, "usage: greet_server <CDS pathname>\n");
exit(l);

DCE Technology Components

/*
* Register interface with RPC runtime.
*/

rpc_server_register_if(greetif_vl_O_s_ifspec, NULL, NULL,
&status) ;

ERROR_CHECK (status, "Can't register interface");

/*
* Use all protocol sequences that are available.
*/

rpc_server_use_all-protseqs(rpc_c-protse~max_reqs_default,

&status);
ERROR_CHECK (status, "Can't use protocol sequences");

/*
* Get the binding handles generated by the runtime.
*/

rpc_server_in~bindings(&binding_vector, &status);
ERROR_CHECK (status, "Can't get bindings for server");

/*
* Register assigned endpoints with endpoint mapper (RPCD).
*/

rpc_ep_register(
greetif_vl_O_s_ifspec, binding_vector, NULL,
(unsigned_char-p_t) "greet server version 1.0", &status);

ERROR_CHECK (status, "Can't register with endpoint map");

/*
* Export ourselves into the CDS namespace.
*/

rpc_ns_binding_export(
rpc_c_ns_syntax_default, (unsigned_char-p_t) argv[l],
greetif_vl_O_s_ifspec, binding_vector, NULL, &status);

ERROR_CHECK (status, "Can't export into CDS namespace");

/*
* Start listening for calls.
*/

printf ("Listening ... \n") ;

rpc_server_Iisten(rpc_c_Iisten_max_calls_default, &status);
ERROR_CHECK (status, "Can't start listening for calls");

/*
* Unregister from endpoint mapper.
*/

rpc_ep_unregister(
greetif_vl_O_s_ifspec, binding_vector, NULL, &status);

ERROR_CHECK (status, "Can't unregister from endpoint map");

3-81

Introduction to OSF DeE

3-82

In this file, the server registers its interface witp. the RPC
runtime. It then retrieves the binding information assigned to it
by the runtime. It registers its binding information with the RPC
endpoint mapper, and then with the Cell Directory Service. It
then is ready to service requests. Before exiting, the server
unregisters its information in the endpoint map.

7. Write the server operation code greet_manager.c.

The third file that an RPC programmer writes is the code that
implements the operations defined in the IDL file. In this case, there
is only one operation, greet. The greet_manager.c file implements
this operation.

/*
* greet_manager.c

*
* Implementation of "greet" interface.
*/

#include <stdio.h>
#include "greet.h"

void
greet (

handle_t h,
idl_char *client~reeting,
idl_char *server_reply

printf ("The client says: %s\n", client~reeting);

strcpy(server_reply, "Hi, client!");

The server prints the message it received from the client, then puts its
own message in the reply parameter to be sent back to the client.

8. Write any utility code.

In addition to the three standard RPC application code files,
greet_client.c, greet_server.c, and greet_manager.c, the greet
application contains a utility file for handling errors. This file is
called util.c.

DCE Technology Components

/*
* util.c

*
* Utility routine(s) shared by "greet" client and server programs.
*/

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/dce_error.h>

void
error_exit (

error_status_t status,
char *text

unsigned char error_text[lOO];
int dummy;

dce_error_in~text(status, error_text, &dummy);
fprintf(stderr, "Error: %s - %s\n", text, error_text);
exit(l);

The util.e file comes with a header file called utH.h.

/*
* util.h

*
* Declarations of utility routine(s) shared by "greet" client
* and server programs.
*/

#define ERROR_CHECK (status, text) \
if (status != error_status_ok) error_exit (status, text)

void
error_exit (

error_status_t status,
char *text

) ;

3-83

Introduction to OSF DeE

3-84

9. Compile the client and server programs.

The greet_client and greet_server programs can now be compiled.
The client side of the application is compiled using the following
command (again, somewhat simplified):

CC -0 greeCclient greeCclient.c greeCcstub.o utiI.o -Idce

The server side of the application is compiled as follows:

cc -0 greeCserver greeCserver.c greeCmanager.c greet_sstub.o utiI.o -Idce

3.8.1.2 Installing and Running the greet Application

This section describes the process for an administrator who is installing and
starting up the greet application, and a user who is running it.

• Installing the Client and Server Programs

An administrator installs the greet_client program on machines on
which users will run the greet application. The administrator also
installs the greet_server program on one or more machines that will
execute the server part of the greet application.

• Starting the Greet Server

To start up the Greet Server, the administrator enters the following
command on a machine that has the Greet Server installed:

greeCserver I .. .!my _ceIVsubsys/my _company/greeCserver

• Running the greet Application

To run the greet application, a user types the following command on any
Greet Client machine:

greeCclient I .. .!my _ceIVsubsys/my _company/greeCserver

The Greet Server will print the message it received from the Greet
Client. Then the Greet Client prints the reply that the Greet Server sent
back to it.

DCE Technology Components

3.8.1.3 Makefile for the greet Application

The commands given in the preceding description for building the greet
application have been simplified. Following is the actual Makefile,
containing the complete commands for generating the application.

OCEROOT
CC
IDL
LIBDIRS
LIBS
LIBALL
INCDIRS
CFLAGS
IDLFLAGS

= /opt/dcelocal
= /bin/cc

idl
-L${OCEROOT}/usr/lib
-ldce
${LIBDIRS} ${LIBS}
-I. -I${OCEROOT}/usr/include
-g ${INCDIRS}

-v ${INCDIRS} -cc_cmd "${CC} $ {CFLAGS} -c"

all: greet_client greet_server

greet.h greet_cstub.o greet_sstub.o: greet.idl
${IDL} ${IDLFLAGS} greet.idl

greet_client: greet.h greet_client.o util.o greet_cstub.o
${CC} -0 greet_client greet_client.o greet_cstub.o \

util.o ${LIBALL}

greet.h greet_server.o greet_rnanager.o util.o \

${CC} -0 greet_server greet_server.o greet_rnanager.o \
greet_sstub.o util.o ${LIBALL}

greet_client.c greet_server.c util.c: util.h
greet_rnanager.c greet_client.c greet_server.c: greet.h

3.8.2 The greet Application: An Implementation Using DeE DFS

This section describes an implementation of the greet application using the
DCE Distributed File Service. In this version, the client and server use
well-known files in the DCE filespace to communicate with each other.

3-85

Introduction to OSF DeE

3-86

This application looks just like an application using a local file system,
except for the names of the files in the DCE filespace. The communication
(using RPC) is done by DFS, and is not visible to the programmer.

(Please note that this example is intended to be simple, not necessarily to
model good programming. For example, a real application would check
return values for errors, and would be likely to use the lock system call to
synchronize client and server access to files, rather than waking up every
few seconds to check if a file had been created.)

The application contains three files: dfs_greet.h, dfs_greet_client.c, and
dfs_greet_server .c.

• The dfs_greet.h File

This file gives the well-known filenames that the client and server
communicate through.

/*
* DCE Program Example Using DFS

*
* dfs_greet.h
*/

#define C_GREET_FILE "/ ... /rny_cell/fs/opt/rny_company/greet/client"
#define S_GREET_FILE "/ ... /rny_cell/fs/opt/rny_company/greet/server"

• The dfs_greet_client.c File

This is the client side of the application.

/*
* DCE Program Example Using DFS
* dfs~reet_client.c
*
* The client writes a message for the server into
* a well-known file. It waits until the server has
* created its own well-known file, then reads the
* server's message from the file, prints it, and
* deletes the file.
*/

#include <stdio.h>
#include "dfs_greet.h"

#define C_GREET_TEXT "Hi, server!"

DCE Technology Components

main()
{

FILE *f;
size_t ret;
char s[BUFSIZ];

f = fopen (C_GREET_FILE, "w");
ret = fwrite(C_GREET_TEXT, sizeof(C_GREET_TEXT), 1, f);
fclose(f);
while ((f = fopen(S_GREET_FILE, "r")) == NULL)

sleep(3) ;
ret = fread(s, sizeof(char) , BUFSIZ, f);
fclose(f);
printf("Server says: %sO, s);
unlink(S_GREET_FILE);

• The dfs_greet_server.c File

This file contains the server side of the greet application.

/*
* DCE Example Program Using DFS
* dfs_greet_server.c

*
* The server waits until the client has created a
* well-known file, then reads the client's message
* from the file, prints the message, and removed the
* file. The server then writes a message. for the
* client into another well-known file.
*/

#include <stdio.h>
#include "dfs_greet.h"

#define S_GREET_TEXT "Hi, client!"

main()
{

FILE *f;
size_t ret;
char s[BUFSIZ];

while ((f = fopen(C_GREET_FILE, "r")) == NULL)
sleep(3);

ret = fread(s, sizeof(char) , BUFSIZ, f);
fclose(f);
printf("Client says: %sO, s);
unlink (C_GREET_FILE) ;

3-87

Introduction to OSF DeE

3-88

f = fopen(S_GREET_FILE, "w");

ret = fwrite(S_GREET_TEXT, sizeof(S_GREET_TEXT), 1, f);
fclose(f);

The Makefile for creating the client and server programs is as follows:

Makefile for DCE Program Example Using DFS

dfs_greet_client: dfs~reet.h dfs~reet_client.c

cc -0 dfs-9reet_client dfs~reet_client.c

dfs_greet_server: dfs~reet.h dfs~reet_server.c
cc -0 dfs~reet_server dfs~reet_server.c

The Greet Client and Server are installed as in the RPC application. They
are run in the same way, except they do not take a <servername> argument.

Chapter 4

Integration of DeE Technology
Components

One of the advantages of the OSF Distributed Computing Environment is
the integration of its component technologies with one another. Wherever
appropriate, DCE technologies make use of other DCE technologies to
accomplish their tasks. For example, the Cell Directory Service uses many
of the other DCE components-Threads, RPC, DTS, and Security-in
providing its service.

Because the DCE technologies are well integrated, they also depend on one
another for correct functioning. For example, CDS needs a running DCE
Security Server in order to provide its directory service in a secure manner.
These dependencies among technology components have implications for
DCE activities such as porting, planning, and bringing up a DeE cell.

This chapter describes how DCE components are integrated and the
implications of their resulting interdependencies. First a matrix shows the
integration of the technology components. Then a section on each of the
components describes its use of other DCE technologies. The final section
discusses the impact of technology interdependencies on DCE-related
activities.

4-1

Introduction to OSF DCE

4.1 Integration Matrix

Table 4-1 shows which DCE components are used by each of the other DCE
components. The components listed in the leftmost column are the
technology consumers. The components listed in the top row are the
technology providers. For example, in the box (row RPC, column Threads),
the X indicates that RPC makes use of the Threads technology. The
abbreviation NA (for Not Applicable) in a box shows the intersection of a
technology with itself. A blank box indicates that the consuming
technology does not use the providing technology. The following sections
include discussions of technology integration, including reasons why certain
technologies do not make use of other technologies.

Table 4-1. DCE Component Integration

4-2

Threads RPC CDS DTS Security GDS DFS Diskless

Threads NA
RPC X NA X X

CDS X X NA X X X

DTS X X X NA X

Security X X X X NA
GDS NA
DFS X X X X X NA
Diskless X X X X NA

The DCE components support distributed applications, and in
accomplishing that task, they also use each other's services, as shown in the
matrix. The use of a given DCE component by another DCE component can
provide an example for the application programmer.

Note that many of the boxes are filled in, especially those representing the
five most basic components (Threads, RPC, CDS, DTS, and Security). As a
result, some pairs of components have mutual dependencies; for example,
the Security and CDS components. The Security Service uses information
from the Cell Directory Service, while CDS uses the Security Service to
control access to its information. The implications of these mutual
dependencies are discussed in Section 4.3.

Integration of DCE Technology Components

4.2 Integration by Technology Component

This section takes each of the DCE technology components in turn and
describes its use of other technology components.

• DCE Threads Integration

The DCE Threads component does not involve distribution across nodes
and therefore does not use any other DCE component.

• DCE RPC Integration

RPC uses Threads, CDS, and the Security Service. Threads are used to
allow clients and servers to deal with multiple simultaneous RPCs. Note
that as a result of the use of threads by RPC, any component that uses
DCE RPC also uses threads.

RPC uses CDS to look up servers that support a given interface or object
in order to discover the locations of those servers and the protocols that
they use. GDS can be used indirectly by RPC. If an RPC server is
located in a foreign cell that is registered in the X.SOO namespace, then
GDS is accessed via CDS to find the given RPC server.

RPC uses a notion of time; for example, how long to wait for a reply to a
message. However, this involves only the time on the local node, such
as comparing the time when a message was sent with the current time to
see if a time-out has expired. As a result, RPC does not use DTS
timestamps directly. RPC does, however, depend on DTS to help ensure
that clocks on different machines run at approximately the same rate.

The DCE Security Service is used to authenticate the RPC client and
server to one another, and to pass authorization information about the
client for the server to check against its ACLs.

• DCE CDS Integration

CDS makes use of several DCE technology components. It uses DCE
Threads to allow the CDS server and the CDS clerk to handle multiple
requests concurrently. It uses RPC in communications between CDS
clerks and CDS servers, as well as in communications between CDS
servers, such as for keeping replicated information consistent.

CDS relies on DTS to maintain synchronized clocks in the network for
use in the sequencing of updates to the namespace and for use in
replication. CDS uses GDS (via the GDA) to find foreign cells

4-3

Introduction to OSF DeE

4-4

registered in GDS. And finally, CDS uses DCE Security's Access
Control Lists and authenticated RPC to ensure authorized access to
directory data and administrative functions.

• DCE DTS Integration

DTS uses RPC in the communications between DTS clients and DTS
servers. It also uses RPC in the protocol between a Time Server and a
Time Provider. Since DTS is based on DCE RPC, which uses DCE
Threads, DTS also uses Threads.

DTS depends on CDS to find Time Servers and their locations. GDS
may be used indirectly if a Global Time Server is registered in a foreign
cell that is registered in the X.SOO namespace. DTS uses the DCE
Security Service to authenticate its interactions.

• DCE Security Service Integration

The DCE Security Server, like all DCE RPC-based applications, uses
DCE Threads. The Security Server communicates with its clients using
DCE RPC. CDS is used to find Security Servers. GDS may be used
indirectly in accessing a Security Server that is in a foreign cell
registered in the X.SOO namespace.

The Security Service uses a notion of time for the expiration of
credentials and for detecting replays of authentication information. It
assumes reasonable synchronization of the clocks in the network, which
is accomplished in DCE by the Distributed Time Service. The Security
Service does not use DTS timestamps in this version of DCE.

• DCE GDS Integration

The GDS server does not use DCE Threads in DCE Release 1.0; instead,
it uses mUltiple processes to handle multiple requests. Since GDS is
based on the X.SOO standard, which is specified to run over ISO
protocols, GDS does not use DCE RPC.

GDS does not use CDS; since GDS is at a higher level in the global
namespace hierarchy, CDS refers to GDS but not the other way around.
GDS has a separate security mechanism and ACLs from the DCE
Security Service. Again, this is in order for GDS to comply to the
international directory service standard.

• DCE DFS Integration

The DFS servers that run in user space (for example, the Backup, Fileset
Location, and Fileset Servers) all use DCE Threads to handle multiple

Integration of DCE Technology Components

requests. Because the DFS File Exporter and Cache Manager run in the
kernel, they do not use DCE Threads; DCE Threads is a user-space, not
kernel, threads implementation.

DFS uses DCE RPC for all remote interaction between the DFS clients
(for example, the Cache Manager and Scout) and servers (for example,
the File Exporter, Fileset Location Server, and Backup Server). Because
the Cache Manager and File -Exporter run in the kernel, they use a kernel
version of RPC. DFS uses CDS to locate Fileset Location Servers. DFS
may use GDS indirectly (via CDS) to locate Fileset Location Servers in
foreign cells registered in the X.SOO namespace. DFS uses authenticated
RPC and DCE ACLs to protect its resources. DFS relies on DTS to
maintain clock synchronization in the network.

• DCE Diskless Support Service Integration

The Swap Server component of the Diskless Support Service uses DCE
Threads for concurrency. The Diskless Support Service uses RPC for its
interactions with CDS and between the Swap Client and Server. The
Diskless Cache Manager also uses RPC to communicate with the DFS
File Exporter. It does not use RPC for booting, however, since booting
requires very small, simple network services. Diskless Support uses
CDS to find its configuration information. Diskless Support Service
includes instructions on how to modify the diskless node's kernel to use
the DFS Cache Manager (DFS client) to mount the client's root file
system.

For diskless operation to be secure, it would require hardware support,
which is outside the scope of DCE.

4.3 Implications of Mutual Dependencies

Mutual dependencies among DCE technology components result in
restrictions in areas such as the startup of a cell. For example, since the
Security Service depends on CDS to find the location of a Security Server,
and CDS depends on the Security Service to verify the authenticity of a
CDS server, how can a DCE system ever get started? This section identifies
the implications of mutual dependencies in the areas of DCE system startup,
porting and testing of DCE, and planning for DCE configuration.

4-5

Introduction to OSF DeE

4-6

• Implications for Startup

Mutual dependencies in DCE technologies dictate the order in which
some steps must be taken in bringing up a DCE client machine, a DCE
server machine, and a DCE cell. In particular, a DCE cell's servers must
be started up in a particular order. The Security Server is started first,
since its dependency on CDS can be circumvented through the use of a
local file to find Security Servers. Then the CDS Server is started. For
information on starting up DCE, see the first module of the OSF DeE
Administration Guide.

• Implications for Porting and Testing

The interdependencies among DCE technologies constrain the order in
which technologies can be ported. DCE Threads can be ported first,
since other technologies use it, and it has no dependencies. Many of the
other technologies have mutual dependencies, however. To resolve this,
a porting effort can proceed by first porting the libraries of all the
components, and then going on to port and test the servers. GDS can be
ported independently, since it has no dependencies on other DCE
components. For information on porting DCE technologies, see the OSF
DeE Porting and Testing Guide.

• Implications for Configuration

DCE technology interdependencies also have implications for
configuration. The servers that other servers depend on are the servers
that are the highest priority for replication, in environments where high
availability is important. This means that CDS and Security Servers
should be replicated, since other DCE servers depend on them in order to
operate. Among the various DFS servers, the Fileset Location Server is
the highest priority for replication. For information on DCE
configuration, see the first module of the OSF DeE Administration
Guide.

• Implications for Application Programmers

Since DCE RPC is integrated with DCE Threads, programmers writing
RPC-based applications need to be aware of the implications of using
multiple threads of control. See the introductory chapter and the
Threads chapters of the OSF DeE Application Development Guide for
information about programming with Threads.

Appendix A

Overview of DeE Documentation

This appendix describes the documentation set supplied with the OSF DeE
offering and suggests reading paths for different audiences. Except where
noted, the manuals comprising the DeE documentation set are made
available through Prentice-Hall.

A.I DeE Documentation

The DeE documentation is organized under the following titles:

• Introduction to OSF DeE

• OSF DeE User's Guide and Reference

• OSF DeE Administration Guide

• OSF DeE Administration Reference

• OSF DeE Application Development Guide

• OSF DeE Application Development Reference

• OSF DeE Porting and Testing Guide

A-1

Introduction to OSF DeE

• OSF DCE Technical Supplement

• OSF DCE Release Notes

• Application Environment Specification/Distributed Computing

A brief description of the purpose and audience of each document follows.

A.I.I Introduction to aSF DeE

This manual is the Introduction to OSF DCE. It provides an overview of
DCE, and serves as an introduction to the rest of the DCE documentation. It
also contains the Glossary of terms used in DCE documentation.

A.I.2 aSF DeE User's Guide and Reference

This guide presents task and reference material for the DCE end user. Most
of what the DCE user sees is related to the DCE Distributed File Service
and the Access Control List facility of the DCE Security Service. Since
much of DCE is software for supporting the development and execution of
distributed applications, much of the DCE documentation is targeted for
application programmers and administrators rather than end users.
However, some parts of DCE are actually distributed applications (for
example, the DCE Distributed File Service), and are therefore seen at the
end-user level.

A.I.3 aSF DeE Administration Guide

A-2

This guide, which consists of seven modules, provides conceptual and task­
oriented information for a DCE administrator. The first module is an
overview, which describes administering DCE as a whole, including
planning and configuring information. Subsequent modules are devoted to
the management of specific components-RPC, Directory Service,
Distributed Time Service, Security Service, and Distributed File Service.
This guide is available through DCE licensees and OSF Educational
Services.

Overview of DeE Documentation

A.l.4 aSF DeE Administration Reference

This manual provides reference material for commands needed by the DCE
administrator. It is divided into technology component sections.

A.l.S aSF DeE Application Development Guide

This guide is targeted for the distributed application programmer. It
provides conceptual and task-oriented information for developing an
application using DCE. The first chapter describes programming with DeE
in general, providing a typical example. Subsequent chapters explain the
use of application programming interfaces for each of the relevant
technology components.

The DCE application programmer typically uses the RPC facility, which in
turn uses other components. The bulk of the guide therefore describes the
use of RPC. Other components are also described, since they are useful for
more specialized applications.

A.l.6 aSF DeE Application Development Reference

This manual provides reference material for the DCE programming
interfaces. It also has command references for a few commands needed by
the DCE programmer; in particular, those used with the RPC component.

A.l.7 aSF DeE Porting and Testing Guide

This guide describes the DCE code and documentation source trees, issues
that arise when porting the different components to new platforms, and how
to test software that has been ported or rebuilt. It also contains information
for improving the performance of various components. This manual is
available through DCE licensees and OSF Educational Services.

A-3

Introduction to OSF DeE

A.l.8 OSF DCE Release Notes

The OSF DCE Release Notes describe a given version of DeE software
from OSF. They include information on building the code and
documentation, and known defects and restrictions. This manual is
available through DeE licensees and OSF Educational Services.

A.l.9 Application Environment Specification/Distributed Computing

The Application Environment Specification/Distributed Computing
(AES/DC) specifies the interfaces, services, and protocols that comprise the
core, stable components of the DeE offering. It is intended for systems
vendors who wish to implement a conformant DeE offering, or for
application writers who wish to write programs that are portable to any
conformant DeE system.

A.l.10 OSF DCE Technical Supplement

This manual describes internal DeE interfaces and protocols. It also
contains architectural specifications to provide the interested reader with
conceptual information about the DeE components. This manual is of
interest primarily to developers who are extending DeE, and is available
only to DeE licensees; it may not be redistributed.

A.2 Reading Paths

A-4

This section suggests reading paths through the DeE documentation for
various audiences, including the following:

• People interested in a high-level overview of DeE

• End users

• Application programmers

Overview of DeE Documentation

• System administrators

• DCE developers

• DCE implementors

Note that the aSF DeE Release Notes describe a given version of DCE, and
are therefore potentially of interest to all DCE audiences, in addition to the
documents listed for each audience below.

A.2.1 High-Level Overview ofDCE

For a high-level overview of DCE, including its architecture, components
and potential use, read this manual, the Introduction to aSF DeE.

A.2.2 End Users

The curious user might begin by reading the High-Level Overview path to
get an idea of DCE as a whole. The aSF DeE User's Guide and Reference
provides information on the specific parts of DCE that are visible to the
user, in particular the DCE Distributed File Service, viewing the DCE
Directory Service namespace, and using Access Control Lists to protect
users' resources.

A.2.3 Application Programmers

Application programmers may wish to begin with the High-Level Overview
in order to understand the system as a whole. Alternatively, they can begin
directly with information pertaining to programming DCE, starting with the
aSF DeE Application Development Guide. For detailed information on a
specific function or command, see the aSF DeE Application Development
Reference.

A-5

Introduction to OSF DeE

A.2.3.1 System-Specific Applications

Applications for a specific DCE implementation, such as a reference
implementation provided by OSF, or a DCE implementation provided by a
vendor for a specific platform, can be written by following the
documentation mentioned in the previous section.

A.2.3.2 Portable Applications

Applications written to be portable across multiple DCE implementations,
such as applications written by Independent Software Vendors, should be
limited to using only the interfaces contained in the Application
Environment Specification/Distributed Computing (AES/DC). Those
interfaces are a subset of the interfaces contained in the DCE
documentation, and the AES/DC interfaces are the ones that every DCE­
conformant implementation supports.

A.2.4 System Administrators

A-6

We divide the audience of system administrators into two categories: those
who are planning, configuring, and installing DCE; and those who are
responsible for maintaining DCE once it is up and running.

People in the first category should begin with the Introduction to OSF DCE
to gain an understanding of the whole system. Next, the first module of the
OSF DCE Administration Guide provides insight into issues and
conventions pertaining to DCE as a whole system, and provides guidance
for planning and configuring a DCE system. Administrators may then want
to read the OSF DCE Release Notes to learn how to build and install the
various components of a DCE system. Finally, specific sections on a given
component to be installed (for example, the Directory Service or Time
Service) should be reviewed in the OSF DCE Administration Guide, and for
even more detailed information, the OSF DCE Administration Reference.

Overview of DeE Documentation

Administrators in the second category, DeE system maintainers, should
refer first to the OSF DeE Administration Guide, and then the OSF DeE
Administration Reference, for information on the particular DeE component
they are administering.

A.2.S DCE Developers

Some of the audience for DeE documentation are system developers, such
as system vendors who are taking the DeE source code and extending it or
modifying it to suit the specific requirements of their customers. This
audience should begin by reading the OSF DeE Release Notes to determine
the state of DeE software in the specific release they are working with.
They may also want to read the Introduction to OSF DeE for an overview of
the system.

The OSF DeE Application Development Guide and OSF DeE Application
Development Reference may be helpful in understanding the use of the other
DeE components by the component being developed. Finally, the OSF
DeE Technical Supplement has been included in the DeE documentation
set particularly for the DeE developer. It contains information on DeE
internals, architectures, and concepts. This information is not needed by
most DeE end users or programmers, but may be very~ helpful to a DeE
developer. The OSF DeE Porting and Testing Guide also contains useful
information for this audience.

A.2.6 DCE Implementors

Finally, one expected audience for DeE documentation is people who are
developing their own implementation of part or all of DeE. They should
begin by reading the Introduction to OSF DeE. Then they should consult
the appropriate sections of the Application Environment
Specification/Distributed Computing to determine which interfaces need to
be implemented to have a conformant DeE implementation. If the
implementor is also a DeE licensee, the documentation listed previously for
the DeE developer will probably also be helpful in the implementation
project.

A-7

Appendix B

DeE Documentation Outline

This appendix gives an outline of the DCE documentation set contents. The
purpose is to give readers looking for information on a particular subject an
idea of where to look. For example, readers interested in information on
DCE Threads can see which sections of the documentation contain relevant
information, noting that there is no applicable (NA) information for Threads
administration.

Table 8-1. DeE Documentation Outline

Introduction to OSF DeE

Component or Subject Chapter or Part

Overview Chapter 1

Configuration Chapter 2

Technology Components Chapter 3

Integration Chapter 4

Glossary

8-1

Introduction to OSF DCE

OSF DCE User's Guide and Reference

Component or Subject Chapter or Part

Threads NA

RPC NA

CDS Guide

GDS NA

GDA NA

XDS NA

DTS NA

Security Guide

Security Reference (1 sec, 1)

DFS Guide

Diskless NA

OSF DCE Application Development Guide

Component or Subject Chapter or Part

All Components Part 1

Threads Part 2

RPC - Using RPC Part 3A

RPC - Language Syntax Part 38

RPC - Supplement Part 3C

CDS NA

GD NA

GDA NA

XDS Part 4

XOM Part 5

DTS Part 6

Security Part 7

DFS Part 8

Diskless NA

8-2

DCE Documentation Outline

OSF DCE Application Development Reference

Component or Subject Chapter or Part

Threads (3thr)

RPC (1 rpc, 3rpc, 7rpc)

CDS NA

GDS NA

GDA NA

XDS (3xds, 4xds)

XOM (3xom, 4xom)

DTS (3dts)

Security (3sec)

DFS (2dfs, 3dfs)

Diskless NA

OSF DCE Administration Guide

Component or Subject Chapter or Part

All Components Module 1

Threads NA

RPC Module 2

CDS Module 3

GDS Module 4

GDA in CDS Module

XDS NA

DTS Module 5

Security Module 6

DFS Module 7

Diskless Module 8

8-3

Introduction to OSF DCE

OSF DCE Administration Reference

Component or Subject Chapter or Part

Threads NA

RPC Part 1 (8rpc)

CDS Part 2 (8cds)

GDS Part 3 (8gds)

GDA in CDS Part

XDS NA

DTS Part 4 (8dts)

Security Part 5 (8sec)

DFS Part 6 (1dfs, 4dfs, 8dfs)

Diskless Part 7 (8dskl)

OSF DCE Porting and Testing Guide

Component or Subject Chapter or Part

Building Chapter 1

Threads Chapter 2

RPC Chapter 3

CDS Chapter 4

GDS Chapter 5

GOA in CDS Chapter

XDS in GDS Chapter

DTS Chapter 6

Security Chapter 7

DFS Chapter 8

Diskless Chapter 9

System Testing Chapter 10

8-4

DCE Documentation Outline

OSF DeE Technical Supplement

(available to DeE licensees only)

Component or Subject Chapter or Part

Introduction Part 1

Threads Part 2

RPC Part 3

CDS Part 4

GDS Part 5

GOA Part 6

XDS in GDS Part

DTS Part 7

Security Part 8

DFS Part 9

LFS Part 10

Diskless Part 11

OSF DeE Release Notes

Component or Subject Chapter or Part

Overview Release 1.0 Chapter 1

Building & Installing Chapter 2

Restrictions & Defects Chapter 3

Building Documentation Chapter 4

8-5

Appendix C

List of Acronyms and Abbreviations

This appendix consists of a table that lists the acronyms and abbreviations
used in DeE.

Table C-1. DCE Acronyms and Abbreviations

Acronyml Abbreviation Definition

ACF Attribute Configuration File

ACL Access Control List

ACSE Association Control Service Element

AES Application Environment Specification

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

AVA Attribute Value Assertion

BER Basic Encoding Rules

BOS Basic OverSeer Server

C Country

C-1

Introduction to OSF DCE

Acronym! Abbreviation Definition

C-ISAM C-Ianguage Indexed Sequential Access Method

CCITT
International Telegraph & Telephone
Consultative Committee

CDS Cell Directory Service

CDSPI Cell Directory Service Portable Interface

CPU Central Processing Unit

DAP Directory Access Protocol

DB Database

DCE Distributed Computing Environment

DFS Distributed File Service

DIB Directory Information Base

DIT Directory Information Tree

DLC Diskless Configuration Service

DN Distinguished Name

DNS Domain Name Service

DSA Directory System Agent

DSP Directory System Protocol

DTS Distributed Time Service

DUA Directory User Agent

FIFO First In, First Out

GDA Global Directory Agent

GDS Global Directory Service

IDL Interface Definition Language

IP Internet Protocol

ISO International Organization for Standardization

LAN Local Area Network

LFS Local File System

LRU Least Recently Used

MAVROS Not an acronym

MS-DOS Microsoft Disk Operating System

C-2

List of Acronyms and Abbreviations

Acronyml Abbreviation Definition

NA Not Applicable

NetBIOS Network Version of Basic Input/Output System

NSI Name Service Independent

NTP Network Time Protocol

0 Organization

OS Operating System

OS/2 Operating System/2

OSF Open Software Foundation

OSI Open Systems Interconnection

OSS OSI Session Service

OU Organizational Unit

RDN Relative Distinguished Name

ROM Read-Only Memory

ROS Remote Operation Service

ROSE Remote Operation Service Elements

RPC Remote Procedure Call

RR Resource Record (DNS)

RR Round Robin (scheduling)

TCP/IP Transmission Control Protocol/Internet Protocol

TDF Time Differential Factor

TFTP Trivial File Transfer Protocol

TLI Transport Layer Interface

TPI Time Provider Interface

UDP/IP User Datagram Protocol/Internet Protocol

UFS UNIX File System

UTC Coordinated Universal Time

UUID Universal Unique Identifier

VFS Virtual File System

WAN Wide Area Network

XOM X/Open Object Management

C-3

Introduction to OSF DeE

Acronyml Abbreviation Definition

XDS X/Open Directory Service

XTI X/Open Transport Interface

C-4

Glossary Usage

The Glossary defines terms used in this manual and the rest of the DCE
documentation set. Each term is defined for the audience of the manual in
which it appears. In some cases, a given term has a different meaning when
used in the context of different technology components. This is indicated by
the technology's abbreviation as a prefix to its definition. For example, the
term server has a different meaning when used in conjunction with the RPC,
CDS, DTS, and DFS technology components. The four definitions are listed
in the entry for server in the Glossary. When no prefix is given, the
definition applies to all DCE documentation.

G-1

Glossary

absolute time

A point on a time scale. For DTS, absolute time refers to the
UTe standard.

abstract class

ODS: An OM class of OM object of which instances are
forbidden. An abstract class typically serves to document the
similarities between instances of two or more concrete classes.

Abstract Syntax Notation One (ASN.l)

A notation that both enables complicated types to be defined
and also enables values of these types to be specified.

GL-1

Introduction to OSF DeE

Access Control List (ACL)

GL-2

1. Security: Data that controls access to a protected object.
An access control list specifies the privilege attribute(s)
needed to access the object and the permissions that can
be granted, with respect to the protected object, to
principals that possess such privilege attribute(s).

2. DFS: The following ACL permissions are defined for
file system objects: (1) read (abbreviated r): allows you
to read a file or, with x, list a directory and the ACLs of
its objects; (2) write (abbreviated w): allows you to
modify a file or, with i, add a new object to a directory
or, with d, remove an object from a directory; (3)
execute (abbreviated x): allows you to execute a file or,
with r, list a directory and the ACLs of its objects; (4)
control (abbreviated c): allows you to modify a file's
ACLs or a directory's ACLs; (5) insert (abbreviated i):
with w, allows you to add a new object to a directory or,
with wand d, rename an object in a directory; (6) delete
(abbreviated d): with w, allows you to remove an object
from a directory or, with wand i, rename an object in a
directory.

3. The following ACL permissions are defined for CDS:
(1) read (abbreviated r): allows a principal to look up a
name and view the attribute values associated with it;
(2) write (abbreviated w): allows a principal to change
the modifiable attributes associated with a name, except
its ACLs; (3) insert (abbreviated i): (for use with
directory entries only) allows a principal to create new
names in a directory; (4) delete (abbreviated d): allows
a principal to delete a name from the namespace; (5) test
(abbreviated t): allows a principal to test whether an
attribute of a name has a particular value without being
able to actually see any of the values (that is, without
having read permission to the name). Test permission
provides application programs a more efficient way to
verify a CDS attribute value. Rather than reading an
entire set of values, an application can test for the
presence of a particular value; (6) control (abbreviated
c): allows a principal to modify the ACL entries
associated with a name. Control permission is

Glossary

automatically granted to the creator of a CDS name; (7)
administer (abbreviated a): (for use with directory
entries only) allows a principal to issue cdscp
commands that control the replication of directories.

4. ODS: A recurring attribute of an entry for specifying the
access authorization for an object. The following ACL
permissions are defined for ODS: (1) MODIFY
PUBLIC: specifies the user, or subtree of users, that can
modify attributes classified as public attributes; (2)
READ STANDARD: specifies the user, or subtree of
users, that can read attributes classi fied as standard
attributes; (3) MODIFY STANDARD: specifies the
user, or subtree of users, that can modify attributes
classified as standard attributes; (4) READ SENSITIVE:
specifies the user, or subtree of users, that can read
attributes classified as sensitive attributes; (5) MODIFY
SENSITIVE: specifies the user, or subtree of users, that
can modify attributes classified as sensitive attributes.

access control list entry

Data in an access control list that specifies a set of
permissions. In the case of a principal or group entry, the
permission set is that which can be granted to a principal
having the privilege attribute specified in the entry; in the case
of a mask entry, the permission set is that which masks the
permission set in a principal or group entry.

Access Control List Facility

access point

access right

A DCE Security facility that enables a principal's access to an
object to be determined by a comparison of the principal's
privileges to entries in an object's ACL.

The point at which an Abstract Service is obtained. (A
connection between a DUA and a DSA.)

See permission.

GL-3

Introduction to OSF DeE

GL-4

accessible

account

ACF

ACL

Said of an object for which the client possesses a valid
designator or handle.

Data in the Registry database that allows a principal to log in.
An account is indistinguishable from a principal identi fier and
is the registry object that represents a principal.

See Attribute Configuration File.

See Access Control List.

active context handle

address

RPC: In RPC applications, a context handle that the remote
procedure has set to a non-null value and passed back to the
calling program; the calling program supplies the active
context handle in any future calls to procedures that share the
same client context. See also client context, context handle.

An unambiguous name, label, or number that identifies the
location of a particular entity or service. See also
presentation address.

administration domain

GDS: A collection of several DSAs that share the same
schema object (mastered by one of these DSAs and shadowed
by all the others).

administrative domain

1. DFS: A collection of machines configured as the server
machines necessary to be administered as a single unit.
The administration is typically handled by groups of
administrative users.

Glossary

2. GDS: A collection of several DSAs that share the same
schema object (mastered by one of these DSAs and
shadowed by all the others).

administrative list

aggregate

DFS: A file used to determine who can issue commands that
affect filesets or DFS server processes. Administrative lists
allow system administrators to control the security of the
administrati ve domains in a cell. See also administrative
domain, privilege required.

DFS: A logical unit of disk storage that can contain multiple
DCE LFS file sets or a single UFS fileset. An aggregate is
physically equivalent to a standard UNIX disk partition, but a
DCE LFS aggregate supports an optimized metadata structure
and a number of specialized fileset-Ievel operations not
available on standard UNIX partitions. A UFS partition
exported into the global namespace is referred to as an
aggregate, even though it does not support the optimizations
and features of a DCE LFS aggregate.

aggregate identifier

alias

alias entry

DFS: The part of the file set representation that identifies the
aggregate on the File Server machine on which the fileset is
stored.

GDS: A name for a (directory) object, provided by the use of
one or more alias entries in the DIT.

GDS: A directory entry, of Object Class alias, contammg
information used to provide an alternative name for an object.

alias, alias name

GDS: A name for a directory object, which is provided by the
use of one or more alias entries in the DIT.

GL-5

Introduction to OSF DeE

GL-6

aliased object

aliasing

anode

Object to which an alias entry refers.

RPC: Aliasing occurs when two pointers of the same operation
point at the same storage.

DFS: An abstraction for referring to an open-ended address
space of storage. See also vnode.

anonymous user

API

A user who is not entered in the directory as an object and who
logs on to the directory service without giving a name and
password.

See Application Programming Interface.

application thread

ASN.l

RPC: A thread of execution created and managed by
application code. See also client application thread, local
application thread, RPC thread, server application thread.

See Abstract Syntax Notation One.

asynchronous operation

AT

An operation that does not of itself cause the process
requesting the operation to be blocked from further use of the
CPU. This implies that the process and the operation are
running concurrent! y.

See Attribute Table.

Glossary

at-most-once semantics

RPC: A characteristic of a procedure that restricts it to
executing once, partially, or not at all-never more than once.
See also idempotent semantics, broadcast semantics,
maybe semantics.

atomic transaction

DFS: A transaction that happens entirely or not at all; used
when partial completion of a transaction is undesirable.

attention threshold

attribute

DFS: In the Scout program, the value at which the program
highlights a statistic in its graphical display. Separate
attention thresholds can be set for most Scout statistics. See
also Scout.

1. Threads: The individual components of the attributes
object. Attributes specify detailed properties about the
objects to be created.

2. RPC: (1) An IDL or ACF syntax element, occurring
within [] (brackets), and conveying information about an
interface, type, field, parameter, or operation. (2) An
attribute of an entry in a name service database that
stores binding, group, object, or profile information for
an RPC application and identifies the entry as an RPC
server entry; an NSI attribute.

3. DTS: A piece of information associated with a DTS
entity or command. DTS has four attribute categories:
characteristics, counters, identifiers, and status.

4. XDS: Information of a particular type concerning an
object and appearing in an entry that describes the
object in the DIB.

5. XOM: A component of an object, comprising an integer
that denotes the attribute's type and an ordered sequence
of one or more attribute values, each accompanied by an
integer denoting the value's syntax.

GL-7

Introduction to OSF DeE

GL-8

Attribute Configuration File (ACF)

RPC: An .acf file. An optional. companion to an interface
definition file (an .idl file) that modifies how the DCE IDL
compiler locally interprets the interface definition. See also
interface definition, Interface Definition Language.

Attribute Configuration Language

RPC: A high-level declarative language that provides syntax
for attribute configuration files. See also Attribute
Configuration File.

attribute syntax

GDS: A definition of the set of values that an attribute can
assume. It includes the data type, in ASN.l, and usually one or
more matching rules by which values can be compared.

Attribute Table (AT)

GDS: A recurring attribute of the directory schema with the
description of the attribute types that are permitted.

attribute type

attribute value

1. XDS: The component of an attribute that indicates the
class of information given by that attribute. It is an
Object Identifier, so it is completely unique.

2. XOM: Any of the various categories into which the
client dynamically groups values on the basis of their
semantics. It is an integer unique only within the
package.

1. XDS: A particular instance of the class of information
indicated by an attribute type.

2. XOM: An atomic information object.

Attribute Value Assertion (A V A)

GDS: A proposition, which may be true, false, or undefined,
concerning the values (or perhaps only the distinguished
values) of an entry.

Glossary

attribute value syntax

See also attribute syntax, syntax.

authentication

The verification of a principal's network identity.

authentication header

A record contammg a ticket. and an authenticator to be
presented to a server as part of the authentication process.

authentication level

See protection level.

authentication path

The sequence of cells transited when a principal in one cell
communicates with one in another cell. Also known as a trust
path.

authentication protocol

A formal procedure for verifying a principal's network
identity; Kerberos is an instance of a shared-secret
authentication protocol.

Authentication Service

One of three services provided by DeE Security: the
Authentication Service authenticates principals according to a
specified authentication protocol. The other Security services
are the Privilege Service and the Registry Service.

authentication service

See authentication protocol.

GL-9

Introduction to OSF DeE

GL-10

authentication surrogate

A type of principal represented by an entry in a cell's Registry
database that specifies the same secret key as a corresponding
entry in another cell's Registry database. The Authentication
Services of the two cells use the secret key for the purpose of
exchanging data about principals without either
Authentication Service having to share its private key with the
other.

authenticator

A record containing information that can be shown to have
been recently generated using a conversation key known only
by two principals that are participating in an authenticated
network exchange.

authorization

1. The determination of a principal's permission(s) with
respect to a protected object.

2. The approval of a permission sought by a principal with
respect to a protected obj ect.

authorization protocol

A formal procedure for establishing the authorization of
principals with respect to protected objects. Authorization
protocols supported by DCE Security include DCE
Authorization and Name-Based Authorization.

authorization service

See authorization protocol.

automatic binding method

RPC: A method of managing the binding for a remote
procedure call. The automatic method completely hides
binding maI)agement from client application code. If the client
makes a series of remote procedure calls, the stub passes the
same binding handle with each call. See also binding handle,
implicit binding method, explicit binding method.

Glossary

AVA

See Attribute Value Assertion.

background skulk time

backup

An automatic timer that guarantees a maximum lapse of time
between skulks of a CDS directory, regardless of other factors,
such as namespace management activities and user-initiated
skulks. Every 24 hours, a CDS server checks each master
replica in its clearinghouse and initiates a skulk if changes
were made in a replica since the last time a skulk of that
replica completed successfully.

DFS: The dump of a fileset to a permanent medium such as
tape. Backup also means to clone a read/write fileset, which
results in a backup file set.

Backup Database

DFS: A database that records the dump schedule for backups,
the Backup System's Tape Coordinators, the fileset families
that can be dumped, and other administrative information.

Backup Database machine

DFS: A server machine in a cell that houses the Backup
Database. See also server machine.

backup fileset

,

DFS: A fileset created by cloning (copying) a read/write fileset
(referred to as the source fileset). The backup version always
resides on the same aggregate as its source and usually
requires little disk space. It preserves the state of the
read/write fileset at the time of the cloning. See also clone,
read-only fileset, read/write fileset.

backup fileset ID

DFS: A unique fileset identification number (fileset TD)
assigned to the backup version of a fileset.

GL-11

Introduction to OSF DeE

GL-12

Backup Server

DFS: A server process that runs on Backup Database machines
(which house the Backup Database). It communicates with the
Backup Database to back up and restore filesets and
aggregates.

Backup System

basename

DFS: A system that allows you to copy file set data to tape and
restore it from tape if necessary. The DFS Backup System
consists of the Backup Server, the Backup Database, and one
or more Tape Coordinator machines. See also dump, restore.

DFS: In the Scout program, the DCE pathname prefix common
to the File Server machines to be monitored. If specified on
the command line, the basename is displayed in the program's
banner line. See also Scout.

Basic Encoding Rules (BER)

A set of rules used to encode ASN.1 values as strings of octets.

Basic OverSeer Server (BOS Server)

BER

big endian

DFS: A server process that runs on all DFS server machines.
It monitors the other DFS server processes running on its
machine; it can usually restart those that fail without requiring
intervention from a human operator.

See Basic Encoding Rules.

An attribute of data representation that reflects how multi octet
data is stored in memory. In big endian representation, the
lowest addressed octet of a multi octet data item is the most
significant. See also endian, little endian.

Glossary

Binary Distribution machine

DFS: A server machine that distributes DFS binaries to other
File Server machines of its machine type (same
CPU/operating system). It runs the server portion of the
Update Server for this purpose. There is one Binary
Distribution machine of each machine type that the cell uses
as a DFS server machine. See also server machine, Update
Server,upserver.

binary timestamp

binding

An opaque 128-bit (l6-octet) binary number that represents a
DTS time value.

RPC: A relationship between a client and a server involved in
a remote procedure call.

binding handle

RPC: A reference to binding information that defines one
possible binding (a client/server relationship). See also
binding, customized binding handle, primitive binding
handle.

binding handle vector

RPC: A data structure that contains an array of binding
handles and the size of the array. See also binding handle.

binding information

RPC: Information about one or more potential bindings,
including an RPC protocol sequence, a network address, an
endpoint, at least one transfer syntax, and an RPC protocol
version number. See also binding, endpoint, network
address, RPC protocol sequence, RPC protocol, transfer
syntax.

binding management method

RPC: Any of the methods for managing the binding for a
remote procedure call. See also automatic binding method,
implicit binding method, explicit binding method.

GL-13

Introduction to OSF DeE

blocking call

bnode

BOS Server

broadcast

A call in which a caller is suspended until a called procedure
completes.

DFS: A structure that describes common characteristics of the
BOS Server process. There are two types, simple and cron.
Processes are created through bnodes. See also Basic
OverSeer Server.

See Basic OverSeer Server.

Threads: To wake all threads waiting on a condition variable.
See also signal.

broadcast semantics

Browser

butc process

GL-14

RPC: A form of idempotent semantics that indicates that the
operation is always broadcast to all host systems on the local
network, rather than delivered to a specific system. An
operation with broadcast semantics is implicitly idempotent.
Broadcast semantics are supported only by connectionless
protocols. See also at-most-once semantics, idempotent
semantics, maybe semantics.

A Motif-based program that lets users view the contents and
structure of a cell namespace.

DFS: A process that runs on a Tape Coordinator machine to
monitor the activity of a tape drive. One butc process must run
for each tape drive on the machine. See also Tape
Coordinator.

C interface

C-stub

cache

Glossary

The interface, defined at a level that depends on the variant of
C standardized by ANSI.

The part of the DUA that implements the connection with the
communications network.

1. CDS: The information that a CDS clerk stores locally to
optimize name lookups. The cache contains attribute
values resulting from previous lookups, as well as
information about other clearinghouses and namespaces.
The cache is written to disk periodically so that it can
survive a system reboot. See also copy.

2. DFS: A reserved amount of disk or memory space on a
DFS client machine. The DFS Cache Manager uses the
cache to temporarily store files or parts of files retrieved
from DFS File Server machines so that future access
time and network load are reduced. DFS uses a cache­
consistency mechanism (token-passing) to guarantee
that the source and cached data are consistent. See also
caching.

Cache Manager

caching

DFS: The portion of a DFS client machine's kernel that
communicates with DFS server processes by translating local
file requests into RPCs (if needed). It stores the requested files
in a local disk or memory cache, from which it makes the files
available to users on that machine.

DFS: The technique of copying a file from a File Server
machine (its central storage place) to a client machine's local
disk or memory; users then access the copy locally. Caching
reduces network load because a file does not have to be
fetched across the network more than once (unless the central
copy changes).

GL-15

Introduction to OSF DeE

GL-16

caching layer

call queue

call thread

callback

cancel

DFS: The part of the DFS Cache Manager that manages the
cached data, performing fetches and stores and answering
status requests.

RPC: A first-in, first-out queue used by an RPC server to hold
incoming calls when the server is already executing its
maximum number of concurrent calls.

RPC: A thread created by a server's RPC runtime to execute
remote procedures. When engaged by a remote procedure call,
a call thread temporarily forms part of the RPC thread of the
call. See also application thread, RPC thread.

DFS: A procedure that is registered with a token to be called
automatically if the token is revoked. The act of revoking a
token is also referred to as a callback.

1. Threads: A mechanism by which a thread informs either
itself or another thread to terminate as soon as possible.
If a cancel arrives during an important operation, the
cancelled thread may continue until it can terminate in a
controlled manner.

2. RPC: A mechanism by which a client thread notifies a
server thread (the canceled thread) to terminate as soon
as possible. See also thread.

CDS control program

A command interface that CDS managers use to control CDS
servers and clerks and manage the namespace and its contents.

CDS-defined attribute

A standard attribute that CDS associates with names. A
specific CDS-defined attribute has the same meaning no
matter what type of entry (clearinghouse, directory, object) it

cell

cell module

Glossary

is associated with. However, different types of entries can
have different CDS-defined attributes. For example, every
CDS name has the CDS-defined attributes of Creation
Timestamp (CDS_CTS), Update Timestamp (CDS_UTS), and
Access Control Set (CDS_ACS). In addition to those
attributes, a soft link has unique CDS-defined attributes
containing its expiration time and the name it points to.

1. The basic unit of operation in the DCE. A cell is a group
of users, systems, and resources that are typically
centered around a common purpose and that share
common DCE services. At a minimum, a cell
configuration includes one Cell Directory Server, one
Security Server, and one Distributed Time Server. A
cell can consist of from one system to as many as
several thousand systems. Systems in the cell can be in
the same geographic area (for example, on the same
LAN), but geography does not necessarily determine a
cell's boundaries. The boundaries of a cell are typically
influenced by its purpose, as well as by security,
administrative, and performance considerations. With
respect to individual DCE technologies, a cell represents
the following definitions.

2. CDS: A unified naming environment consisting of CDS
clerks and servers.

3. DFS: An administratively independent installation of
server and client machines.

4. Security: The set of principals that share their secret
keys with the same Authentication Service.

DFS: The part of the DFS Cache Manager that maintains a list
of cells that have been contacted.

cell-relative name

See local name.

GL-17

Introduction to OSF DeE

GL-18

cellular mount point

chaining

DFS: A mount point that resides in a different cell from the
fileset it references. It directs the Cache Manager to the cell in
which the fileset is located. See also mount point.

A mode of interaction optionally used by a DSA that cannot
perform an operation itself. The DSA chains by invoking an
operation of another DSA and then relaying the outcome to the
original requester.

characteristic attribute

A type of attribute that reflects or affects the behavior of a
software entity. You generally can set or change characteristic
attributes.

child directory

child pointer

ciphertext

class

A CDS directory that has a directory above it is considered a
child of the directory immediately above it.

A pointer that connects a directory to a directory immediately
below it in a namespace. You do not explicitly create child
pointers; CDS creates them for you when you create a new
directory. CDS stores the child pointer in the directory that is
the parent of the new directory.

The output of an encryption function. Encryption transforms
plaintext into ciphertext.

A category into which objects are placed on the basis of both
their purpose and their internal structure. See also object
class, OM class.

Glossary

class-specific attribute

CDS: An attribute that has meaning only to a particular class
of object and to the application using that object class. A CDS
object's class can be defined in an attribute named
CDS_Class. Programmers who write applications that use
CDS can define their own object classes and class-speci fic
attributes.

clearinghouse

A collection of directory replicas on one CDS server. A
clearinghouse takes the form of a database file. It can exist
only on a CDS server node; it cannot exist on a node running
only CDS clerk software. Usually only one clearinghouse
exists on a server node, but there may be special cases when
more than one exists.

clearinghouse object entry

clerk

A special class of object entry that describes a clearinghouse.
The clearinghouse object entry is a pointer to the network
address of an actual clearinghouse. This pointer enables CDS
to find a clearinghouse and use and manage its contents. A
clearinghouse modifies and manages its own object entry
when necessary; normally CDS managers do not need to
maintain it. The clearinghouse object entry has the same name
as the clearinghouse.

1. CDS: The software that provides an interface between
client applications and ~DS servers. The clerk receives
a request from an application, sends the request to a
CDS server, and returns any resulting information to the
application. The clerk saves (caches) the results of
lookups so that it does not have to repeatedly go to a
CDS server for the same information.

2. DTS: A software component that synchronizes the clock
for its client system by requesting time values from
servers, computing a new time from the values, and
supplying the computed time to client applications.

GL-19

Introduction to OSF DeE

GL-20

client

1. CDS: Any application that interacts with a CDS server
through the CDS clerk.

2. DTS: Any application that interacts with a DTS server
through the DTS clerk.

3. RPC: The party that initiates a remote procedure call.
Some applications act as both an RPC client and an RPC
server. See also server.

4. DPS: A consumer of resources or services. See also
server.

5. GDS: The client consists of an application that links the
DUA library, the C-stub that handles the connection
over the communications network for accessing a
remote server, and the DUA cache.

client application thread

RPC: A thread executing client application code that makes
one or more remote procedure calls. See also application
thread, local application thread, RPC thread, server
application thread.

client binding information

RPC: Information about a calling client provided by the client
runtime to the server runtime, including the address where the
call originated, the RPC protocol used for the call, the
requested object UUID, and any client authentication
information. See also binding information, server binding
information.

client context

RPC: The state in an RPC server's address space generated by
a set of remote procedures (manager) and maintained across a
series of calls for a particular client. See also manager,
context handle.

Glossary

client machine

DFS: A machine whose kernel includes the DFS Cache
Manager. A client machine is capable of requesting data from
remote File Exporters and caching the data locally. See also
server machine.

client portion of Update Server

See up client.

client stub

clock

RPC: The surrogate code for an RPC interface that is linked
with and called by the client application code. In addition to
general operations such as marshalling data, a client stub calls
the RPC runtime to perform remote procedure calls and,
optionally, manages bindings. See also server stub, stub.

The combined hardware interrupt timer and software register
that maintain the system time. In many systems, the hardware
timer sends interrupts to the operating system; at each
interrupt, the operating system adds an increment to a software
register that contains the time value.

clock adjustment

clone

The DTS process of changing the system clock time by
modifying the incremental value that is added to the clock's
software register for a specified duration.

DFS: A backup or read-only copy of a fileset created by
copying only the read/write (source) fileset's header rather
than the data it contains. The clone preserves pointers to fileset
data that existed when the clone was made; it therefore must
exist on the same aggregate as the source. Cloning a fileset
also refers to making a copy of it with the proper fts
commands for later use with the DFS Backup System. See
also replica.

GL-21

Introduction to OSF DeE

GL-22

clone ID number

collapse

DFS: The fileset ID number of the last clone made from the
fileset's read/write source for the purpose of replication.

To remove the contents of a directory from the display (close
it) using the CDS Browser. To collapse an open directory, you
double-click on its icon. Double-clicking on a closed directory
expands it.

command suite

commit

DFS: A group of related commands. The DFS command suites
are bak, bos, cm, and fts.

DFS: An indication that all of the actions associated with a
specific transaction have been written to the log. Once a
transaction has committed, its actions are permanent. In the
event of system problems, those actions are repeated when the
system's recovery mechanism replays the log.

communications link

RPC: A network pathway between an RPC client and server
that uses a valid combination of transport and network
protocols that are available to both the client and server RPC
runtimes.

compatible server

RPC: A server that offers the requested RPC interface and
RPC object and that is available over a valid combination of
network and transport protocols that are supported by both the
client and server RPC runtimes.

computed time

The result of the synchronization process-the time value that
the clerk or server process computes according to the values it
receives from several servers.

Glossary

concrete class

An OM class of which instances are permitted.

condition variable

A synchronization object used in conjunction with a mutex. A
condition variable allows °a thread to block until some event
happens.

configuration of directory service

GDS can be configured as a client system or a client/server
system. In a client system a DUA either accesses the local
DUA cache or a remote server over the communications
network. In a client/server system a DUA either accesses a
local server or a remote server over the communications
network. The local server is also accessible from a remote
client or server.

conformant array

RPC: An array whose size is determined at runtime. A
structure containing a conformant array as a field is a
conformant structure.

connection-oriented protocol

A connection-based, reliable, virtual-circuit transport protocol,
such as TCP; an RPC protocol that runs over a connection­
based transport protocol.

context handle

RPC: A reference to the state (client context) maintained
across remote procedure calls by a server on behalf of a client.
See also client context.

continuation reference

A continuation reference describes how the performance of all
or part of an operation can be continued at a different DSA or
DSAs. See also referral.

GL-23

Introduction to OSF DeE

GL-24

control access

convergence

CDS: An access right that grants users the ability to change
the access control on a name and do other powerful
management tasks, such as replicate a directory or move a
clearinghouse.

The degree to which CDS attempts to keep all replicas of a
directory consistent. Two factors control the persistence and
speed at which CDS keeps directory replicas up to date: the
setting of a directory's CDS_Convergence attribute and the
background skulk time. You can set the CDS_Convergence
attribute to high, medium, or low. By default, every directory
inherits the convergence setting of its parent. See also
background skulk time.

conversation key

A short-lived encryption key provided by the Authentication
Service to two principals for the purpose of ensuring secure
communications between them.

Coordinated Universal Time (UTC)

copy

core leak

An international time standard that DTS uses. The zero hour of
Coordinated Universal Time is based on the zero hour of
Greenwich (England) mean time.

Either a copy of an entry stored in other DSAs through
bilateral agreement, or a locally and dynamically stored copy
of an entry resulting from a request (a cache copy).

DFS: A situation that can develop as a process allocates
virtual memory but does not free it again. When memory is
completely exhausted, the machine crashes. The BOS Server
automatically restarts all processes on a File Server machine
once a week to reduce the likelihood of core leaks.

courier

Glossary

DTS: A local server that requests a time value from a
randomly selected global server each time it synchronizes.

Creation Timestamp (CTS)

credentials

cron bnode

cron process

CTS

An attribute of all CDS clearinghouses, directories, soft links,
child pointers, and object entries that contains a unique value
reflecting the date and time the name was created. The
timestamp actually consists of two parts-a time portion, and
a portion containing the system identi fier of the node on which
the name was created. This guarantees uniqueness among
timestamps generated on different nodes.

A general term for privilege attribute data that has been
certified by a trusted privilege certification authority. The
DCE authorization service implements credentials as Privilege
Attribute Certificates (PACs).

DFS: A bnode that manages a single process that is to be run
either exactly once or periodically. See also Basic OverSeer
Server, bnode.

DFS: A type of process defined in a server machine's
BosConfig file. It executes weekly or daily at a defined time,
rather than running continuously.

See Creation Timestamp.

customized binding handle

DAP

RPC: A user-defined data structure from which a pnmitIve
binding handle can be derived by user-defined routines in
application code. See also primitive binding handle.

See Directory Access Protocol.

GL-25

Introduction to OSF DeE

GL-26

Data Encryption Standard (DES)

data limit

data token

datagram

A data encryption algorithm widely used in the United States.

RPC: A value that specifies which elements of an array are
transmitted during a remote procedure call.

DFS: A token that grants access to a range of bytes in a file.
Read and write data tokens are available. See also token.

An unreliable network data packet that is independent of all
other packets and lacks any guarantees of delivery or
sequentiality.

datagram protocol

A connectionless, datagram-based transport protocol, such as
UDP; an RPC protocol that runs over a connectionless
transport protocol.

date-specific restore

default DSA

DFS: In the DFS Backup System, a restore that returns a fileset
to its state when it was last dumped before a specified date. A
date-speci fic restore differs from a full restore. See also full
restore, restore.

The DSA generally used when the user does not specify any
particular DSA when connecting to the directory system.

default element

RPC: An optional profile element that contains a nil interface
identi fier and object UUID and that specifies a default profile.
Each profile can contain only one default element. See also
default profile, profile, profile element.

Glossary

default profile

DES

descriptor

RPC: A backup profile, referred to by the default element in
another profile. The NSI import and lookup operations use the
default profile, if present, whenever a search based on the
current profile fails to find any useful binding information.
See also default element, profile.

See Data Encryption Standard.

1. XOM: The means by which the client and service
exchange an attribute value and the integers that denote
its representation, type, and syntax.

2. XDS: A defined data structure that is used to represent
an OM attribute type and a single value.

descriptor list

destructor

DFS

dfsd

DIB

GDS: An ordered sequence of descriptors that IS used to
represent several OM attribute types and values.

A user-supplied routine that is expected to finalize and then
deallocate a per-thread context value.

See Distributed File Service, DeE.

DFS: A program that initializes the Cache Manager and
several daemons on a DFS client machine. It must run each
time the client machine reboots for the machine to function as
a DFS client.

See Directory Information Base.

GL-27

Introduction to OSF DeE

GL-28

directory

1. CDS: A logical unit for storing entries under one name
(the directory name) in a CDS namespace. In addition to
object entries, a directory can contain soft links and
child pointers. You can copy, delete, and control access
to a directory. Each physical instance of a directory is
called a replica.

2. XDS: A collection of open systems that cooperate to
hold a logical database of information about a set of
objects in the real world.

Directory Access Protocol (DAP)

ODS: The protocol used by a DUA to access a remote DSA.

directory ID

See directory identifier.

directory identifier (directory ID)

An identifier for distinguishing several configurations of the
directory service within an installation.

Directory Information Base (DIB)

ODS: The complete set of information to which the directory
provides access, which includes all of the pieces of
information that can be read or manipulated using the
operations of the directory. It consists of entries.

Directory Information Tree (DIT)

ODS: The DIB considered as a tree, whose vertices (other than
the root) are the directory entries.

directory package

DFS: The part of the DFS Cache Manager that stores directory
(rather than file) caching information.

directory schema

See schema.

Glossary

directory service

ODS: A system using a directory. The directory service
consists of the DVA and the directory system. The
components of the directory service are connected by a
communications network.

directory system

ODS: A system for managing a directory, consisting of one or
more DSAs. Each DSA manages part of the DIB.

Directory System Agent (DSA)

ODS: An OSI application process that is part of the directory.

Directory System Protocol (DSP)

ODS: The protocol by a DSA to access another DSA.

Directory User Agent (DUA)

ODS: An OSI application process that represents a user
accessing the directory.

discriminator

disk usage

dispatcher

RPC: The data item that determines which union case IS

currently used.

DFS: A statistic reported by the Scout program that indicates
space usage on a File Server machine's aggregates and
partitions. An administrator can use Scout to highlight disk
usage statistics that exceed specified values. See also Scout.

XOM: The software that implements the service interface
functions using workspace interface functions.

distinguished encoding

The restrictions to the Basic Encoding Rules designed to
ensure a unique encoding of each ASN.l value, defined in the
X.SOO Directory Standards (CCITT X.S09).

GL-29

Introduction to OSF DeE

GL-30

Distinguished Name (DN)

ODS: One of the names of an object, formed from the
sequence of RDNs of its object entry and each of its superior
entries.

distinguished value

ODS: An entry's attribute value that has been designated to
appear in the RDN of the entry.

Distributed File Service, DeE (DeE DFS)

DFS: A file service that joins the local file systems of several
File Server machines, making the file systems equally
available to all DFS client machines.

Distributed Time Service (DTS), DeE

DIT

DN

drift

DSA

DSP

DTS

The Distributed Time Service synchronizes the clocks in
networked systems.

See Directory Information Tree.

See Distinguished Name.

DTS: The change in a clock's error rate over a specified period
of time.

See Directory System Agent.

See Directory System Protocol.

See Distributed Time Service, DeE.

DTS entity

DUA

DUA cache

dump

Glossary

DTS: The server or clerk software on a system.

See Directory User Agent.

GDS: The part of the DUA that stores frequently required
information.

DFS: Generally, the conversion of a fileset's contents into a
format suitable for storage on a backup tape and the data
object that results from this action. However, the operation
need not involve dumping to other media such as tape. See
also full dump, incremental dump, restore.

dump hierarchy

DFS: A logical structure in the DFS Backup System that
defines the parent/child relationship between full and
incremental dump levels. See also full dump, incremental
dump.

dump ID number

dump level

DFS: A unique identification number that the DFS Backup
System assigns to a dump set. It is distinct from the job ID
number assigned to an operation in interactive mode. See also
job ID number.

DFS: An entry in the dump hierarchy recorded in the DFS
Backup System's Backup Database. There are two types of
dump levels: full and incremental. See also full dump,
incremental dump.

GL-31

Introduction to OSF DeE

GL-32

dump set

In the DFS Backup System, the fileset data that results from
dumping a particular fileset family at a given dump level. By
implication, all of the data in a dump set was dumped at the
same time and in the same manner (fully or incrementally).

dynamic endpoint

RPC: An endpoint that is generated by the RPC runtime for an
RPC server when the server registers its protocol sequences
and that expires when the server stops running. See also well­
known endpoint, endpoint.

effective permissions

element

The permissions granted to a principal as a result of a masking
operation.

Any of the bits of a bit string, the octets of an octet string, or
the octets by means of which the characters of a character
string are represented.

encryption key

endian

endpoint

A value used to encrypt data so that only possessors of the
encryption key can decipher it.

An attribute of data representation that reflects how certain
multioctet data is stored in memory. See also big endian,
little endian.

RPC: An address of a specific server instance on a host. See
also dynamic endpoint, well-known endpoint.

Glossary

endpoint map

RPC: A system-wide database where local RPC servers
register binding information associated with their interface
identifiers and object OOIDs. The endpoint map is maintained
by the endpoint map service of the RPC Daemon. See also
endpoint map service, RPC Daemon.

endpoint map service

entity

entity type

entry

RPC: A service provided by the RPC Daemon that maintains a
system's endpoint map for local RPC servers. When an RPC
client makes a remote procedure call using a partially bound
binding handle, the endpoint map service looks up the
endpoint of a compatible local server. See also endpoint
map, partially bound binding handle, RPC Daemon.

1. CDS: A component of CDS software that you can
manage independently of any other component. The
CDS control program commands are based on directives
targeted for specific entities.

2. DTS: A specific software implementation on a system.

DTS: An identifier of an entity that determines its relationship
to other components-clerk or server.

GDS: The part of the DIB that contains information relating to
a single directory object. Each entry consists of directory
attributes.

Entry Point Vector (EPV)

RPC: A list of addresses for the entry points of a set of remote
procedures that implements the operations declared in an
interface definition. The addresses are listed in the same order
as the corresponding operation declarations.

GL-33

Introduction to OSF DeE

GL-34

epoch

A timestamp that identifies directory replicas as being part of
the same set. CDS uses the epoch timestamp when it skulks a
directory: it finds all replicas of the directory that are in the
same epoch and makes their contents consistent. If not all
replicas share the same epoch, the skulk aborts. The set
directory to new epoch command updates the value of the
CDS_Epoch attribute.

epoch number

EPV

error

DTS: An identi fier that a server appends to the time values it
sends to other servers. Servers only use time values from other
servers with whom they share epoch numbers.

See Entry Point Vector.

DTS: The difference between a system's clock value and the
computed time.

error tolerance

DTS: The amount of system clock error to which DCE Time
Service responds by abruptly setting the system clock to the
computed time, rather than gradually adjusting the clock.

execution semantics

expand

RPC: The rules of execution for a remote procedure call,
including the effect of mUltiple invocations on the outcome of
a procedure's operation. See also at-most-once semantics,
broadcast semantics, maybe semantics, idempotent
semantics.

To display the contents of (open) a directory using the CDS
Browser. You expand a directory that is closed by double­
clicking on its icon. Double-clicking on an expanded directory
collapses it.

Glossary

expiration age

RPC: The amount of time that a local copy of name service
data from an NSr attribute remains unchanged before a request
from an RPC application for the attribute requires updating it.
See also NSI attribute.

explicit binding method

export

fault

RPC: The explicit method of managing the binding for a
remote procedure call in which a remote procedure call passes
a binding handle as its first parameter. The binding handle is
initialized in the application code. See also automatic
binding method, binding handle, implicit binding method.

1. RPC: (1) To place the server binding information
associated with an RPC interface or a list of object
UUrDs or both into an entry in a name service database.
(2) To provide access to an RPC interface.

2. DFS: Offering data or making data available to another
system. For example, hosts must export a local DCE
LFS or non-LFS aggregate to make it available in the
DCE namespace.

RPC: An exception condition, occurring on a server, that is
transmitted to a client.

File Exporter

DFS: The part of a File Server machine's kernel that responds
to file or directory information requests from the client's
Cache Manager.

File Server machine

DFS: A system that maintains one or more local file systems
on disk and makes them available (exports them) to other
nodes through the File Exporter. See also server machine.

GL-35

Introduction to OSF DeE

GL-36

file system

fileset

DFS: A mountable subtree of the directory hierarchy.

DFS: A hierarchical grouping of files managed as a single unit.
DeE LFS supports multiple filesets within a single aggregate;
when using other file systems, filesets are equivalent in size to
a partition.

Fileset Database machine

fileset family

DFS: A server machine in a cell that houses the Fileset
Location Database (FLDB). See also server machine.

DFS: In the DFS Backup System, a collection of one or more
fileset entries. It defines a group of filesets to be backed up
together (at the same time and in the same manner).

fileset family entry

DFS: A single definition in a DFS Backup System fileset
family. It defines a collection of filesets in terms of their
common site, their prefix, or both. See also site.

fileset header

DFS: A data structure that implements the fileset concept. It
resides on the disk aggregate with all of the files in its fileset
and records physical memory addresses for the files. It also
records the fileset's size, quota, fileset ID number, and other
information.

fileset ID number

DFS: A number that uniquely identifies each fileset. The
read/write and backup versions of a fileset each have their own
fileset ID; all copies of the read-only version share the same
fileset ID.

fileset label

Glossary

DFS: A file containing information about a fileset such as its
name, fileset rD, unique identifier, type, and status.

Fileset Location Database (FLDB)

DFS: A database that records the location and other status
information about available DCE LFS and non-LFS filesets,
allowing transparent data access. To be available, a fileset
must be exported, registered in the FLDB, and mounted in
DFS. The Fileset Location Database is maintained by the
Fileset Location Server (FL Server).

Fileset Location Server (FL Server)

DFS: A server process that runs on Fileset Database machines
and maintains the Fileset Location Database (FLDB), which
tracks the location of all available DCE LFS and non-LFS
filesets.

fileset module

fileset name

fileset quota

DFS: The part of the Cache Manager that maintains a list of
accessed filesets, their mounted positions in the global file
system tree, and their physical locations.

DFS: A name that uniquely identifies each fileset. All
versions of a fileset have the same name; the read-only and
backup versions have .readonly and .backup extensions.

DFS: A disk space limit that a system administrator imposes
on each read/write file set.

Fileset Registry

DFS: The part of the File Exporter that stores information
about filesets residing on the local machine.

GL-37

Introduction to OSF DeE

GL-38

Fileset Server

filespace

filter

DFS: A server process that runs on all File Server machines.
It provides the interface for system administrators to perform
all tasks that treat a fileset as a unit, including: creating,
deleting, backing up, cloning, and moving.

DFS: The global file system made available to all cells in the
DCE by DFS. Every entry for a file or directory in DFS resides'
in the DFS filespace. See also Distributed File Service,
DeE.

An assertion about the presence or value of certain attributes
of an entry in order to limit the scope of a search.

first level DSA

GDS: A DSA that holds the master entry of a first level object.
See also first level object.

first level object

FL Server

FLDB

flush

foreign cell

GDS: A directory object that is an immediate subordinate to
the root.

See Fileset Location Server.

See Fileset Location Database.

DFS: To force the Cache Manager to discard data from the
local cache so that the next time an application requests the
data, the data must be fetched from the File Exporter.

A cell other than the one to which the local machine belongs.
See also local cell.

full dump

full name

full pointer

full restore

Glossary

DFS: A dump set in the DFS Backup System that includes all
of the data from a fileset. A full dump is different from an
incremental dump. See also dump, incremental dump.

The complete specification of a CDS name, including all
parent directories in the path from the cell root to the entry
being named.

RPC: A pointer without the restrictions of a reference pointer.

DFS: In the DFS Backup System, a full restore returns a fileset
to its state when last dumped. The resultant fileset includes
data from the last full dump and all subsequent incremental
dumps, if any. A full restore is different from a date-speci fic
restore. See also date-specific restore, restore.

fully bound binding handle

function

GDA

GDS

RPC: A server binding handle that contains a complete server
address including an endpoint. See also partially bound
binding handle.

A programming language construct, modelled after the
mathematical concept. A function encapsulates some
behavior. It is given some arguments as input, performs some
processing, and returns some results. Also known as
procedures, subprograms or subroutines. See also operation.

See Global Directory Agent.

The DeE Global Directory Service.

GL-39

Introduction to OSF DeE

GL-40

generic interface

The interface, defined at a level that is independent of any
particular programming language.

gigabyte (GB)

A unit of measurement for storage capacity equal to
1,073,741,824 (230) bytes.

Global Directory Agent (GDA)

global name

A DCE component that makes it possible for the local Cell
Directory Service (CDS) to access names in foreign cells. The
GDA provides a connection to foreign cells through either the
Global Directory Service (GDS) or the Domain Name System
(DNS).

A name that is universally meaningful and usable from
anywhere in the DCE naming environment. The prefix I ...
indicates that a name is global.

Global Server

global set

glue layer

group

DTS: A server that frequently provides its clock value to
Courier Servers on other LANs, or infrequently provides its
clock value to systems that have failed to obtain the specified
number of servers locally.

DTS: The group of Global Servers in a network.

DFS: The VFS+ functions that integrate the token and
authentication requirements of the DCE environment with the
standard VFS functions available to a file system.

1. RPC: A name service entry that corresponds to one or
more RPC servers that offer common RPC interface(s),
RPC object(s), or both. A group contains the names of
the server entries, other groups, or both that are
members of the group. See also NSI group attribute.

Glossary

2. Security: Data that associates a named set of principals
who can be granted common access rights. Also, the
second field of a subject identifier.

group member

handle

RPC: A name service entry whose name occurs in the group.
See also group.

RPC: An opaque reference to information. See also binding
handle, context handle, interface handle, name service
handle, thread handle.

high convergence

home cell

host ID

Host Module

A setting that controls the degree to which CDS attempts to
keep all replicas of a directory consistent. High convergence
means CDS makes one attempt to immediately propagate an
update to all replicas. If that attempt fails (for example, if one
of the replicas is unavailable), the software schedules a skulk
for within 1 hour. Under normal circumstances, a skulk occurs
at least once every 12 hours on a directory with high
convergence. High convergence is expensive, so constant use
of it is not advisable. To control convergence, you modify a
directory's CDS_Convergence attribute. See also low
convergence, medium convergence.

See local cell.

See network address.

DFS: The part of the File Exporter that associates information
with each Cache Manager's request. This information includes
the state of the client that made the call and authentication
information about the user who made the request.

GL-41

Introduction to OSF DeE

GL-42

idempotent semantics

IDL

RPC: A characteristic of a procedure in which executing it
more than once with identical input always produces the same
result, without any undesirable side effects; for example, a
procedure that reads a particular block of an immutable file is
idempotent. DCE RPC supports maybe and broadcast
semantics as special forms of idempotent operations. See also
at-most-once semantics, broadcast semantics, maybe
semantics.

See Interface Definition Language.

IDL compiler, DeE

illegal

RPC: A compiler that processes an RPC interface definition
and optional Attribute Configuration File (ACF) to generate
client and server stubs, header files, and auxiliary files. See
also Interface Definition Language, stub.

A violation of an architecture rule that an implementation is
required to report. See also unpredictable.

immediate subclass

A subclass, of a class C, having no superclasses that are
themselves subclasses of C.

immediate subobject

One object that is a value of an attribute of another.

immediate subordinate

In the DIT, an entry is an immediate subordinate of another if
its distinguished name is formed by appending its RDN to the
distinguished name of the other entry.

Glossary

immediate superclass

The superclass, of a class C, having no subclasses that are
themselves superclasses of C.

immediate superior

In the DIT, an entry is the immediate superior of another if its
distinguished name, followed by the RDN of the other, forms
the distinguished name of the other entry.

immediate superobject

One object that contains another among its attribute values.

implicit binding method

import

inaccessible

inaccuracy

RPC: The implicit method of managing the binding for a
remote procedure call in which a global variable in the client
application holds a binding handle that the client stub passes
to the RPC runtime. See also automatic binding method,
binding handle, explicit binding method.

1. RPC: To obtain binding information from a name
service database about a server that offers a given RPC
interface by calling the RPC NSI import operation.

2. RPC: To incorporate constant, type, and import
declarations from one RPC interface definition into
another RPC interface definition by means of the IDL
import statement.

XOM: Said of an object for which the client does not possess
a valid designator or handle.

DTS: The bounded uncertainty of a clock value as compared
to a standard reference.

GL-43

Introduction to OSF DeE

GL-44

incremental dUQIP

DFS: A dump set in the DFS Backup System that includes
only data from a file set that changed since the previous dump.
An incremental dump is different from a full dump. See also
dump, full dump.

index priority

Priority of an attribute type in search queries.

index window

A navigation aid in the CDS Browser. When the namespace is
in the display window, dragging the slider up and down the
vertical scroll bar produces a rectangular box called the index
window. The index window displays the name where the slider
is currently positioned; releasing MB 1 causes the Browser to
position that name at the top of the window.

information architecture

initial DSA

instance

GDS: Describes the representation of the information stored in
OM objects and the hierarchical relationships between
different classes of OM objects.

GDS: The master DSA of the directory schema.

XOM: An object in the category represented by a class.

instance UUID

integrity

RPC: An object UUrD that is associated with a single server
instance and is provided to clients to unambiguously identify
that instance. See also object UUID, server instance.

A protection level that can be specified in secure RPC
communications that ensures that data transferred between
two principals has not been modified in transit.

Glossary

interface

See also API, RPC interface, SPI.

interface definition

RPC: A description of an RPC interface written in the DCE
Interface Definition Language (IDL). See also RPC
interface.

Interface Definition Language (IDL)

RPC: A high-level declarative language that provides the
syntax for interface definitions. The file syntax of the IDL
interface definition is part of the Network Computing
Architecture (NCA). See also IDL compiler, DCE.

interface handle

RPC: A reference in code to an interface specification. See
also interface specification.

interface identifier

RPC: A string containing the interface's Universal Unique
Identifier (UUID) and major and minor version numbers of a
given RPC interface. See also RPC interface.

interface specification

RPC: An opaque data structure, generated by the DCE IDL
compiler from an interface definition, that contains identifying
and descriptive information about an RPC interface. See also
interface definition, interface handle, RPC interface.

interface UUID

RPC: The universal unique identifier generated for an RPC
interface definition using the UVID generator, uuidgen. See
also interface definition, RPC interface, Universal Unique
Identifier (UUID).

intermediate data type

Any of the basic data types in terms of which the other,
substantive data types of the interface are defined.

GL-45

Introduction to OSF DeE

interval

invoke ID

IP

DTS: The combination of a time value and the inaccuracy
associated with it; the range of values represented by a
combined time and inaccuracy notation. As an example, the
interval 08:00.00100:05:00 (8 o'clock, plus or minus 5
minutes) contains the time 07:57.00.

An integer used to distinguish one (directory) operation from
all other outstanding ones.

Internet Protocol. A family of network protocols defined by
the U.S. Department of Defense (DoD).

job ID number

junction

Kerberos

key

GL-46

DFS: A number assigned to each operation by the DFS Backup
System when the Backup System is used in interactive mode.
It is distinct from the dump ID number assigned to a dump set.
See also dump ID number.

A specialized entry in the DCE namespace containing binding
information to enable communications between different
implementations of the Directory Service.

The authentication protocol implemented by DCE shared­
secret authentication. Kerberos was developed at the
Massachusetts Institute of Technology. In classical
mythology, Kerberos was the three-headed dog that guarded
the entrance to the underworld.

A value used to encrypt and decrypt data. See also
encryption key.

key file

Glossary

DFS: A file that stores the unique server encryption keys used
by the DFS server processes on a DFS server machine. Each
DFS server machine has its own unique key file. See also
encryption key.

Key Management Facility

A DCE Security facility that enables noninteractive principals
to manage their secret keys.

kilobyte (KB)

A unit of measurement for storage capacity equal to 1024 (210
)

bytes.

knowledge reference

leaf entry

leap seconds

LFS

LFS,DCE

little endian

Knowledge that associates, either directly or indirectly, a DIT
entry with the DSA in which it is located.

A directory entry that has no subordinates. It can be an alias
entry or an object entry.

An infrequent adjustment to UTC to account for the
irregularity of the earth's rotation.

See Local File System.

See Local File System, DCE.

An attribute of data representation that reflects how multioctet
data is stored in memory. In little endian representation, the
lowest addressed octet of a multi octet data item is the least
significant. See also big endian.

GL-47

Introduction to OSF DeE

GL-48

load balancing

DFS: Distributing system load evenly across File Server
machines by placing frequently accessed DCE LFS filesets
among available File Server machines.

local application thread

local cell

local DSA

RPC: An application thread -that executes within the confines
of one address space on a local system and passes control
exclusively among local code segments. See also application
thread, RPC thread, client application thread, server
application thread.

The cell to which the local machine belongs. See also foreign
cell.

GDS: A DSA that is resident on the same computer as the
DUA.

Local File System, DCE (DCE LFS)

local name

local server

local set

DFS: The high-performance, log-based file system provided by
DCE. The DCE LFS supports multiple filesets within a single
aggregate, fileset replication, fast system restarts, and DCE
Access Control Lists.

A name that is meaningful and usable only from within the
cell where the entry exists. The local name is a shortened form
of a global name. Local names begin with the prefix I.: and do
not contain a cell name.

DTS: A server that synchronizes with its peers and provides its
clock value to other servers and clerks on the same Local Area
Network (LAN).

DTS: All of the servers in a particular LAN.

local type

lock token

log

Glossary

RPC: A type named in a [represent_as] clause and used by
application code to manipulate data that is passed in a remote
procedure call as a network type. See also network type.

DFS: A token that allows a client to place a lock on a range of
bytes in a file. Read and write lock tokens are available.

DFS: A record of the actions of a program or system and any
changes to data associated with those actions. DCE LFS also
maintains a log of changes to metadata on each LFS
aggregate.

log-based file system

DFS: A file system in which changes to metadata are recorded
in a log associated with the aggregate on which that file
system is located. DCE LFS is a log-based file system. See
also log.

Login Facility

A DCE Security facility that enables a principal to establish
its identity and assume other identities.

low convergence

A setting that controls the degree to which CDS attempts to
keep all replicas of a directory consistent. Low convergence
means CDS does not immediately propagate an update; it
simply waits for the next skulk to distribute all updates that
occurred since the last skulk. Skulks occur at least once every
24 hours on directories with low convergence. Low
convergence helps conserve resources by avoiding update
propagations between skulks. To control convergence, you set
a directory's CDS_Convergence attribute. See also high
convergence, medium convergence.

GL-49

Introduction to OSF DeE

manager

RPC: A set of remote procedures that implement the
operations of an RPC interface and that can be dedicated to a
given type of object. See also object, RPC interface.

manager Entry Point Vector (manager EPV)

marshalling

mask

master DSA

master entry

GL-50

RPC: The runtime code on the server side uses this entry point
vector to dispatch incoming remote procedure calls. See also
Entry Point Vector, manager.

RPC: The process by which a stub converts local arguments
into network data and packages the network data for
transmission. See also network data, unmarshalling.

1. Wi th respect to DCE access control lists, a set of
permissions that may be intersected (logically ANDed)
with another set of permissions associated with a
specified privilege attribute in order to yield the
effective permissions for principals that possess that
privilege attribute.

2. To apply a mask.

3. DFS: A pattern of bits or characters used to control the
retention or elimination of portions of another pattern of
bits or characters, usually through an AND or OR
operation.

4. GDS: Refers to the administration screen interface
menus.

GDS: The DSA that contains the master entry of an object.

GDS: The original entry of an object. This is the entry in the
DSA that is specified in the master knowledge attribute of the
entry.

Glossary

master information

GDS: The information from the master entries.

master knowledge attribute

GDS: An attribute that designates the master DSA of an entry.

master replica

The first instance of a specific directory in the namespace.
Once copies of the directory have been made, it is possible to
designate a different replica as the master if necessary, but
only one master replica of a directory can exist at a time. CDS
can create, update, and delete object entries and soft links in a
master replica.

maybe semantics

RPC: A form of idempotent semantics that indicates that the
caller neither requires nor receives any response or fault
indication for an operation, even though there is no guarantee
that the operation completed. An operation with maybe
semantics is implicitly idempotent and lacks output
parameters. See also at-most-once semantics, broadcast
semantics, idempotent semantics.

medium convergence

A setting that controls the degree to which CDS attempts to
keep all replicas of a directory consistent. Medium
convergence means CDS makes one attempt to immediately
propagate an update to all replicas of the directory in which a
change was just made. If the attempt fails, the software lets the
next scheduled skulk take care of making the replicas
consistent. Skulks occur at least once every 12 hours on a
directory with medium convergence. When you create a
namespace, the default setting on the root directory is medium.
To control convergence, you set a directory's
CDS_Convergence attribute. See also high convergence,
low convergence.

GL-51

Introduction to OSF DeE

GL-52

megabyte (MB)

metadata

A unit of measurement for storage capacity equal to 1,048,576
(io) bytes.

The structural data associated with the file system, such as the
organization of directories, inode tables, and links. Metadata is
not data supplied by a user; it is information about the
structure of user data.

minimally consistent

Said of an object that satisfies various conditions set forth in
the definition of its class.

monitoring window

mount point

DFS: A separate terminal session dedicated to tracking the
activities of a Tape Coordinator on a Tape Coordinator
machine. A monitoring window must run on the same machine
as the Tape Coordinator and tape drive it is monitoring.

DFS: An access point to a fileset in the DFS file tree. If a
fileset has been mounted, the resulting mount point looks and
acts like a directory in the file tree.

mount-level directory

mutex

DFS: The top-level directory of a mounted file set. It becomes
transparently equivalent to the mount point for that fileset
after the fileset is mounted. See also mount point.

A synchronization object that provides mutual exclusion
among threads. A mutex is often used to ensure that shared
variables are always seen by other threads in a consistent state.

name

Glossary

GDS: A construct that singles out a particular directory object
from all other objects. A name must be unambiguous (that is,
denote just one object); however it need not be unique (that is,
be the only name that unambiguously denotes the object).

name service handle

RPC: An opaque reference to the context used by the series of
next operations called during a specific NSI search or inquiry.

Name Service Interface (NSI)

namespace

RPC: A part of the application programming interface of the
RPC runtime. NSI routines access a name service, such as
CDS, for RPC applications.

A complete set of CDS names (these can include directories,
object entries, and soft links) that one or more CDS servers
look up, manage, and share. CDS names are stored in directory
replicas in clearinghouses at each server. The logical picture
of a namespace is a hierarchical tree of all of those directories,
with the root directory at the top, and one or more levels of
directories beneath the root directory. The physical
implementation of the namespace consists of directories
replicated in one or more clearinghouses in the network.

naming attribute

An attribute used to form the RDN of an entry.

NCA

See Network Computing Architecture.

NDR

See Network Data Representation.

network address

RPC: An address that identi fies a specific host on a network.

GL-53

Introduction to OSF DeE

GL-54

Network Computing Architecture (NCA)

RPC: An architecture for distributing software applications
across heterogeneous collections of networks, computers, and
programming environments. NCA specifies the DCE Remote
Procedure Call architecture.

network data

RPC: Data represented in a format defined by a transfer
syntax. See also transfer syntax.

Network Data Representation (NDR)

RPC: The transfer syntax defined by the Network Computing
Architecture. See also transfer syntax.

network descriptor

RPC: The identifier of a potential network channel, such as a
UNIX socket.

network protocol

A communications protocol from the Network Layer of the
OSI network architecture, such as the Internet Protocol (IP).

Network Time Protocol (NTP)

Internet-recommended time standard.

network type

RPC: A type defined in an interface definition and referenced
in a [represent_as] clause that is converted into a local type
for manipulation by application code. See also local type.

NFSIDFS translator

DFS: A utility that allows users working on NFS client
machines to access the DFS file space.

nonspecific subordinate reference

A knowledge reference that holds information about the DSA
that holds one or more unspecified subordinate entries.

Glossary

NSI

See Name Service Interface.

NSI attribute

RPC: An RPC-defined attribute of a name service entry used
by the DCE RPC name service interface. An NSI attribute
stores one of the following: binding information, object
UUIDs, a group, or a profile. See also NSI binding attribute,
NSI group attribute, NSI object attribute, NSI profile
attribute.

NSI binding attribute

RPC: An RPC-defined attribute (NSI attribute) of a name
service entry; the binding attribute stores binding information
for one or more interface identi fiers offered by an RPC server
and identifies the entry as an RPC server entry. See also
binding information, NSI object attribute, server entry.

NSI group attribute

RPC: An RPC-defined attribute (NSI attribute) of a name
service entry that stores the entry names of the members of an
RPC group and identifies the entry as an RPC group. See also
group.

NSI object attribute

RPC: An RPC-defined attribute (NSI attribute) of a name
service entry that stores the object UUIDs of a set of RPC
objects. See also object.

NSI profile attribute

NTP

RPC: An RPC-defined attribute (NSI attribute) of a name
service entry that stores a collection of RPC profile elements
and identifies the entry as an RPC profile. See also profile.

See Network Time Protocol.

GL-55

Introduction to OSF DeE

NULL

The value of a pointer that indicates that the pointer does not
point to data.

null binding handle

object

object class

GL-56

RPC: A binding handle containing the NULL value. See also
binding handle.

1. A data structure that implements some feature and has
an associated set of operations.

2. RPC: For RPC applications, an object can be anything
that an RPC server defines and identi fies to its clients
(using an object UUID). Often, an RPC object is a
physical computing resource such as a database,
directory, device, or processor. Alternatively, an RPC
object can be an abstraction that is meaningful to an
application, such as a service or the location of a server.
See also object UUID.

3. XDS: Anything in some "world," generally the world
of telecommunications and information processing or
some part thereof, that is identifiable (can be named)
and for which the DIB contains some information.

4. XOM: Any of the complex information objects created,
examined, modified, or destroyed by means of the
interface.

CDS, ODS: An identified family of objects that share certain
characteristics. An object class can be specific to one
application or shared among a group of applications. An
application interprets and uses an entry's class-speci fic
attributes based on the class of the object that the entry
describes.

Glossary

Object Class Table (OCT)

object entry

A recurring attribute of the directory schema with the
description of the object classes permitted.

CDS: The name of a resource (such as a node, disk, or
application) and its associated attributes, as stored by CDS.
CDS managers, client application users, or the client
applications themselves can give a resource an object name.
CDS supplies some attribute information (such as a creation
timestamp) to become part of the object, and the client
application can supply more information for CDS to store as
other attributes. See also entry.

object identifier

A value (distinguishable from all other such values) that is
associated with an information object. (X.208)

object management

object name

object UUID

OCT

octet

The creation, examination, modification, and deletion of
potentially complex information objects.

A CDS name for a network resource.

RPC: The universal unique identifier that identifies a
particular RPC object. A server specifies a distinct object
UUID for each of its RPC objects; to access a particular RPC
object, a client uses the object UUID to find the server that
offers the object. See also object, Universal Unique
Identifier.

See Object Class Table.

An 8-bit quantity of data.

GL-57

Introduction to OSF DeE

GL-58

OM

SeeXOM.

OM attribute

OM class

opaque

An OM attribute comprises one or more values of a particular
type (and therefore syntax).

A static grouping of OM objects, within a specification, based
on both their semantics and their form.

A piece of data or a data type whose contents are not visible to
the application routines that use it.

opaque structure

open token

operation

A data item or data type whose structure is hidden from the
code that is handling it.

DFS: A token that grants the right to open a file. The types of
tokens available are as follows: normal reading, normal
writing, executing, shared reading, and exclusive writing. See
also token.

1. A· set of step-by-step actions speci fied by a procedure,
function, or routine.

2. RPC: The task performed by a given routine or
procedure.

3. ODS: Processing performed within the directory to
provide a service, such as a read operation. It is given
some arguments as input, performs some processing, and
returns some results. An application process invokes an
operation by calling an interface function.

organization

Glossary

Data that associates a named set of users who can be granted
common access rights that are usually associated with
administrative policy. Also, the third field of a subject
identifier.

orphaned call

PAC

package

RPC: A call executing in an RPC server after the client that
started the call fails or loses communications with the server.

See Privilege Attribute Certificate.

A specified group of related OM classes, denoted by an Object
Identifier.

package closure

The set of classes that need to be supported in order to be able
to create all possible instances of all classes defined in the
package.

parent directory

Any directory that has one or more levels of directories
beneath it in a cell namespace. A directory is the parent of any
directory immediately beneath it in the hierarchy.

parent dump level

DFS: An entry in the dump hierarchy that is used as the
reference point for dumps made at an incremental dump level.
Both a full dump level and another incremental dump level
can serve as a parent. See also dump, dump hierarchy, full
dump, incremental dump.

GL-59

Introduction to OSF DeE

GL-60

parent ID number

DFS: A fileset ID number stored in a fileset header. If the
fileset being examined is a read/write fileset, the parent ID is
its file set ID. If the fileset being examined is a read-only or
backup copy of a read/write fileset, the parent ID is the fileset
ID of the read/write fileset. See also fileset ID number.

partially bound binding handle

password

peer trust

permission

RPC: A server binding handle that contains an incomplete
server address lacking an endpoint. See also fully bound
binding handle.

A string presented by a principal, which the Authentication
Service uses to authenticate that principal. In addition to
user-specific passwords, a user may also be required to enter a
group-specific password for the purposes of authenticating
membership in a group.

A type of trust relationship established between two cells by
means of a secret key shared by mutual authentication
surrogates maintained by the two cells. A peer trust
relationship enables principals in the one cell to communicate
securely with principals in the other.

1. The modes of access to a protected object. In DCE
Security, the number and meaning of permissions with
respect to the object are defined by the ACL Manager of
the object. See also Access Control List.

2. GDS: One of five groups that assigns modes of access to
users: MODIFY PUBLIC, READ STANDARD,
MODIFY STANDARD, READ SENSITIVE, or
MODIFY SENSITIVE. See also Access Control List.

person

pipe

plaintext

Glossary

The name assigned to a DCE principal. The Registry database
contains the person objects with which accounts can be
associated. Also, the first field of a subject identifier.

1. RPC: A mechanism for passing large amounts of data in
a remote procedure call.

2. RPC: The data structure that represents this mechanism.

The input to an encryption function or the output of a
decryption function. Decryption transforms ciphertext into
plaintext.

position (within a string)

The ordinal position of one element of a string relative to
another.

position (within an attribute)

The ordinal position of one value relative to another.

potential binding

predicate

RPC: A specific combination of an RPC protocol sequence,
RPC protocol major version, network address, endpoint, and
transfer syntax that an RPC client can use to establish a
binding with an RPC server. See also binding, endpoint,
network address, RPC protocol sequence, RPC protocol,
transfer syntax.

A Boolean logic term denoting a logical expression that
determines the state of some variable(s). For example, a
predicate can be an expression stating that "variable A must
have the value 3." The control expression used in conjunction
with condition variables is based upon a predicate. Use a
condition variable to wait for some predicate to become true;
for example, to wait for something to be in a queue.

GL-61

Introduction to OSF DeE

GL-62

presentation address

An unambiguous name that is used to identify a set of
presentation service access points. Loosely, it is the network
address of an OSI service. See also address.

Presentation Service Access Point (PSAP)

Address of an OSI communications partner. It addresses an
application in a computer.

presented type

RPC: For data types with the IDL transmit_as attribute, the
data type that clients and servers manipulate. Stubs invoke
conversion routines to convert the presented type to a
transmitted type, which is passed over the network. See also
transmitted type.

primary name

The string name of an object to which any aliases for that
object refer. The DeE refers to objects by their primary
names, although DeE users can refer to them by their aliases.

primary representation

The form in which the service supplies an attribute value to
the client.

primitive binding handle

principal

RPC: A binding handle whose data type in IDL is handle_t
and in application code is rpc_bindin~handle_t. See also
customized binding handle.

An entity that is capable of believing that it can communicate
securely with another entity. In the DeE, principals are
represented as entries in the Registry database and include
users, servers, computers, and authentication surrogates.

Glossary

principal identifier

privacy

private key

The name used to identify a principal uniquely. In the DCE,
principal identifiers are implemented as UUIDs.

A protection level that may be specified in secure RPC
communications and that encrypts RPC argument values.

A long-lived encryption key known to only one principal. In
the DCE, the Authentication Service is the only principal that
has a private key.

private object

1. XDS: An OM object created in a workspace using the
object management functions. The term is simply used
for contrast with a public object.

2. XOM: An object that is represented in an unspecified
fashion.

privilege attribute

An attribute of a principal that can be associated with a set of
permissions. DCE privilege attributes are identity-based and
include the principal's name, group memberships, and native
cell.

Privilege Attribute Certificate (PAC)

Data, describing a principal's privilege attributes, that has
been certified by an authority. In the DCE, the Privilege
Service is the certifying authority and seals the privilege
attribute data in a ticket. The authorization protocol, DCE
Authorization, determines the permIssIOns granted to
principals by comparing the privilege attributes in P ACs with
entries in an access control list.

GL-63

Introduction to OSF DeE

GL-64

privilege required

DFS: The administrative privilege required to issue a DFS
command that affects filesets or DFS server processes.
Administrative privilege for a DFS server process is granted to
a user who is listed in the administrative list for that server
process. See also administrative list.

Privilege Service

One of three services provided by DCE Security; the Privilege
Service certifies a principal's privileges. The other services
are the Registry Service and the Authentication Service.

procedure declaration

RPC: The syntax for an operation, including its name, the data
type of the value it returns (if any), and the number, order, and
data types of its parameters (if any).

process entry

profile

DFS: A definition in the BosConfig file that determines a
server process to run, the process's type, and any command
parameters used by the process.

RPC: An entry in a name service database that contains a
collection of elements from which NSI search operations
construct search paths for the database. Each search path is
composed of one or more elements that refer to name service
entries corresponding to a given RPC interface and, optionally,
a given object. See also NSI profile attribute, profile
element.

profile element

RPC: A record in an RPC profile that maps an RPC interface
identifier to a profile member (a server entry, group, or profile
in a name service database). See also group, interface
identifier, profile, server entry.

Glossary

profile member

RPC: A name service entry whose name occupies the member
field of an element of the profile. See also profile.

protection level

The degree to which secure network communications are
protected.

protocol sequence

See RPC protocol sequence.

protocol sequence vector

PSAP

RPC: A data structure that contains an array-size count and an
array of pointers to RPC protocol-sequence strings. See also
RPC protocol sequence.

See Presentation Service Access Point.

public object

1. XOM: An object that is represented by a data structure
whose format is part of the service's specification.

2. XDS: A descriptor list that contains all of the OM
attributes of an OM object.

purported name

RDN

read access

A construct that is syntactically a name, but that has not yet
been shown to be a valid name.

See Relative Distinguished Name.

An access right that grants the ability to view CDS data.

read-only fileset

DFS: A fileset created by replicating a read/write fileset. See
also backup fileset, read/write fileset.

GL-65

Introduction to OSF DeE

GL-66

read-only replica

A copy of a CDS directory in which applications cannot make
changes. Although applications can look up information (read)
from it, they cannot create, modify, or delete entries in a read­
only replica. Read-only replicas become consistent with other,
modifiable replicas of. the same directory during skulks and
routine propagation of updates.

read/write fileset

DFS: The single version of a fileset that houses the modifiable
versions of files and directories. The read/write fileset is the
original version for which an FLDB entry is allocated. It
serves as the source fileset for its associated read-only and
backup filesets. It is also referred to as the read/write source or
read/write version. See also backup fileset, read-only fileset.

read/write mount point

realm

DFS: A type of mount point that instructs the Cache Manager
to access only the exact fileset specified in the mount point,
not its read-only version. See also mount point, regular
mount point.

A cell, considered exclusively from the point of view of
Security; this term is used in Kerberos specifications. In DCE
documentation, the term "cell" designates the basic unit of
DCE configuration and administration, and incorporates the
notion of a realm.

recurring attribute

An attribute with several attribute values.

reentrant service

A service that is safe to call from multiple threads in parallel.
If a service is reentrant, there is no burden placed on calling
routines to serialize their access or take other explicit
precautions. See also thread-serial service, thread­
synchronous service.

Glossary

reference monitor

Code that controls access to an object. In the DCE, servers
control access to the objects they maintain; and for a given
object, the ACL Manager associated with that object makes
authorization decisions concerning the object.

reference pointer

referral

register

RPC: A non-null pointer whose value is invariant during a
remote procedure call and cannot point at aliased storage.

An outcome that can be returned by a DSA that cannot
perform an operation itself. The referral identi ties one or more
other DSAs more able to perform the operation.

1. RPC: To list an RPC interface with the RPC runtime.

2. RPC: To place server-addressing information into the
endpoint map.

3. RPC: To insert authorization and authentication
information into binding information. See also
endpoint map, RPC interface.

Registry database

A database of information about persons, groups,
organizations, and accounts.

Registry replica

A read-only instance of a Registry database.

Registry Service

One of three services provided by DCE Security; the Registry
Service manages account information for principals. The other
serVIces are the Privilege Service and the Authentication
Service.

GL-67

Introduction to OSF DeE

GL-68

regular mount point

DFS: The most common type of mount point. If the fileset it
names is a read/write fileset, the Cache Manager is free to
access a read-only version of the fileset (if one exists). See
also mount point, read/write mount point.

Relative Distinguished Name (RDN)

relative time

A set of Attribute Value Assertions (A V As), each of which is
true, concerning the distinguished values of a particular entry.

A discrete time interval that is usually added to or subtracted
from an absolute time.

Release Replication

DFS: A method of updating read-only copies of filesets.
Release Replication is not automatic like Scheduled
Replication; each update must be initiated by an administrator.
See also replication, Scheduled Replication.

remote executor

DFS: The DFS client machine that executes DFS-specific
system calls on behalf of an NFS client machine.

remote procedure

RPC: An application procedure located in a separate address
space from the calling code. See also Remote Procedure
Call.

Remote Procedure Call (RPC)

replica

RPC: A procedure call executed by an application procedure
located in a separate address space from the calling code. See
also remote procedure.

1. CDS: a copy of a directory in the CDS namespace. The
first instance of a directory in the namespace is the
master replica. When CDS managers make copies of the
master replica to store in other clearinghouses, all of the

replica set

replication

Glossary

copies, including the master replica, become part of the
directory's replica set. See also read-only replica.

2. DFS: A read-only copy of a fileset containing all the
data of the source fileset. As a full copy of a fileset, a
replica can exist on any aggregate. A replica is different
from a clone, which can reside only on the same
aggregate as the source fileset. See also clone.

The set of all copies of a CDS directory. Information about a
directory's replica set is contained in an attribute of
directories and child pointers called CDS_Replicas. The
attribute contains the type of each replica (master or read­
only) and the clearinghouse where it is located. When skulking
a directory, CDS refers to the directory's replica set to ensure
that it finds all copies of that directory. During a lookup, CDS
can refer to the replica set in a child pointer when trying to
locate a directory that does not exist in the local
clearinghouse.

1. CDS: Making a copy of a CDS directory in another
clearinghouse. Replication can improve availability and
load sharing. See also replica.

2. GDS: The process by which copies of objects are
created and maintained.

3. DFS: The process of creating read-only copies of a
fileset. In DFS, there are two types of replication:
Release Replication and Scheduled Replication.
Replication is supported only for DCE LFS filesets. See
also Release Replication, Scheduled Replication.

Replication Server

DFS: A server process used in Release Replication and
Scheduled Replication. The Replication Server, in conjunction
with the Cache Manager, tracks the currency of replicas and
updates the version of data being used at the replication sites.
See also replication.

GL-69

Introduction to OSF DeE

GL-70

request buffer

restore

return value

RPC

RPC: A first-in, first-out queue where an RPC system
temporarily stores call requests that arrive at an endpoint of an
RPC server, until the server can process them.

DFS: The translation of a previously dumped fileset back into
fileset format and its eventual replacement in the file system.
The operation need not involve recovery from other media
such as tapes. The DFS Backup System allows several
different types of restores, including full restores and date­
specific restores. See also date-specific restore, dump, full
restore.

A function result that is returned in addition to the values of
any output or input/output arguments.

See Remote Procedure Call.

RPC control program

RPC: An interactive management facility for managing name
service entries and endpoint maps for RPC applications. The
program is started by the rpccp command.

RPC Daemon (RPCD)

RPC: The process that provides the endpoint map service for a
system. The RPC Daemon is started by the rpcd command.
See also endpoint map, endpoint map service.

RPC interface

RPC: A logical grouping of operation, data type, and constant
declarations that serves as a network contract for calling a set
of remote procedures. See also interface definition.

Glossary

RPC protocol

RPC: An RPC-specific communications protocol that supports
the semantics of the DCE RPC API and runs over either
connectionless or connection-oriented communications
protocols.

RPC protocol sequence

RPC: A valid combination of communications protocols
represented by a character string. Each protocol sequence
typically includes three protocols: a network protocol, a
transport protocol, and an RPC protocol that works with those
network and transport protocols. See also network protocol,
RPC protocol, transport protocol.

RPC runtime

RPC: A set of operations that manages communications,
provides access to the name service database, and performs
other tasks, such as managing servers and accessing security
information, for RPC applications. See also RPC runtime
library.

RPC runtime library

RPC thread

RPCD

RPC: Routines of the RPC runtime that support the RPC
applications on a system. The runtime library provides a
public interface to application programmers, the Application
Programming Interface (API), and a private interface to stubs,
the Stub Programming Interface (SPI). See also RPC
runtime.

RPC: A logical thread within which a remote procedure call
executes. See also thread.

See RPC Daemon.

GL-71

Introduction to OSF DeE

GL-72

rundown procedure

S-stub

Salvager

RPC: A procedure, typically used with a context handle, that
is called following a communications failure to recover
resources reserved by a server for servicing requests by a
particular client. See also context handle.

The part of the DSA that establishes the connection to the
communications network.

DFS: A program that finds and attempts to repair
inconsistencies in DCE LFS aggregates; it is similar to the
fsck program in other, non-LFS file systems.

Scheduled Replication

schema

Scout

seal

DFS: A method of updating read-only copies of filesets.
Scheduled Replication is automatically performed by the
Replication Server at specified intervals. See also Release
Replication, replication.

The directory schema is the set of rules and constraints
concerning the DIT structure, object class definitions, attribute
types, and syntaxes that characterize the DIB.

DFS: A program that can be run on any machine configured as
a DFS client. It monitors the File Exporter running on
designated File Server machines by periodically collecting
statistics and displaying them in a graphical format. See also
attention threshold, basename, disk usage.

To encrypt a record containing several fields in such a way
that the fields cannot be modified without either knowledge of
the encryption key or leaving evidence of tampering.

Glossary

secondary representation

A second form, an alternative to the primary representation, in
which the client can supply an attribute value to the service.

secondary site

secret key

segment

DFS: A read-only site that receives updates to its copies of the
database from the Ubik synchronization site. There can be
more than one secondary site. If necessary, a secondary site
can be elected to assume the role of synchronization site. See
also synchronization site, Ubik.

A long-lived encryption key known to more than one
principal, usually two. In the DCE, each secret key is known to
the Authentication Service and one other principal.

Zero or more contiguous elements of a string.

self-pointing type

server

RPC: A data type containing a pointer member that can point
directly or indirectly to another item of the same type.

1. RPC: The party that receives remote procedure calls. A
given application can act as both an RPC server and an
RPC client. See also client.

2. CDS: A node running CDS server software. A CDS
server handles name-lookup requests and maintains the
contents of the clearinghouse or clearinghouses at its
node.

3. DTS: A system or process that synchronizes with its
peers and provides its clock value to clerks and their
client applications.

4. DFS: A provider of resources or services. See also
client.

GL-73

Introduction to OSF DeE

GL-74

5. GDS: The server consists of a DSA, which accesses the
database, and an S-stub, which handles the connection
over the communications network for responding to
remote clients and accessing remote servers.

server addressing information

RPC: An RPC protocol sequence, network address, and
endpoint that represent one way to access an RPC server over
a network; a part of server binding information. See also
binding information, endpoint, network address, RPC
protocol sequence.

server application thread

RPC: A thread executing the server application code that
initializes the server and listens for incoming calls. See also
application thread, client application thread, local
application thread, RPC thread.

server binding information

server entry

RPC: Binding information for a particular RPC server. See
also binding information, client binding information.

1. RPC: A name service entry that stores the binding
information associated with the RPC interfaces of a
particular RPC server and, also the object UUIDs for
any objects offered by the server. See also binding
information, NSI binding attribute, object, NSI
object attribute, RPC interface.

2. DFS: A unique identifier for a server machine in the
FLDB.

server instance

RPC: A server executing in a specific address space; multiple
server instances can coexist on a single system. See also
server.

Glossary

server machine

DFS: A machine that runs one or more DFS server processes.
Depending on the process it runs, a server machine can be
further classified as a File Server machine, a System Control
machine, a Binary Distribution machine, a Fileset Database
machine, or a Backup Database machine. See also client
machine.

server module

DFS: The part of the DFS Cache Manager that provides
information for tracking server activity.

server portion of Update Server

See upserver.

server process

server stub

service

DFS: A process that runs on server machines, providing
services such as storing and transferring files or tracking fileset
locations to clients. See also server machine.

RPC: The surrogate calling code for an RPC interface that is
linked with server application code containing one or more
sets of remote procedures (managers) that implement the
interface. See also client stub, manager, stub.

RPC: An integral set of of RPC interfaces offered together by
a server to meet a specific goal. See also RPC interface.

service controls

session

A group of parameters, applied to all directory operations, that
direct or constrain the provision of the service.

A sequence of directory operations requested by a particular
user of a particular DUA using the same session OM object.

GL-75

Introduction to OSF DeE

GL-76

session key

Used in Kerberos specifications; acronym for "conversation
key. ' , See also conversation key.

shadow entry

signal

signed

A copy entry of an object. This is an entry of an object in a
DSA other than the master DSA.

Threads: To wake only one thread waiting on a condition
variable. See also broadcast.

Information is digitally signed by appending to it an
enciphered summary of the information. This is used to ensure
the integrity of the data, the authenticity of the originator, and
the unambiguous relationship between the originator and the
data.

simple bnode

simple name

DFS: A bnode that manages a single process that is to be kept
running at all times. See also bnode, Basic OverSeer Server.

One element in a CDS full name. Simple names are separated
by slashes.

simple process

site

DFS: A type of process defined in a server machine's
BosConfig file. It runs continuously and can be stopped and
restarted independently of any other process on its machine.
See also cron process, simple bnode.

DFS: The location of a fileset expressed as a specific machine
and aggregate.

site count

site flags

skew

skulk

soft link

source fileset

specific

Glossary

DFS: A count of the number of sites where the read/write and
read-only versions of a fileset reside.

DFS: A term for the flags associated with each site definition
in an FLDB entry. The flags can indicate the fileset type
(read/write or read-only) and other administrative information.

The time difference between two clocks or clock values.

A process by which CDS makes the data consistent in all
replicas of a particular directory. CDS collects all changes
made to the master replica since the last skulk completed, and
disseminates the changes from the up-to-date replica to all
other existing replicas of the directory. All replicas of a
directory must be available for a skulk to be considered
successful. If a skulk fails, CDS informs you of the replicas
that it could not reach.

A pointer that provides an alternate name for an object entry,
directory, or other soft link in the namespace. A soft link can
be permanent or it can expire after a period of time that you
specify. The CDS server also can delete it automatically after
the name that the link points to is deleted.

See read/write fileset.

The attribute types that can appear in an instance of a given
class, but not in an instance of its superclasses.

GL-77

Introduction to OSF DeE

SPI

SRT

status flag

status token

string

Stub Programming Interface. A private RPC runtime interface
whose routines are unavailable to application code.

See Structure Rule Table.

DFS: In a BosConfig file, the flag that tells the BOS Server
whether a server process should be running. In an FLDB entry,
the flag that indicates whether a fileset of each possible type
(read/write, read-only, and backup) actually exists at a site. In
a fileset header, a flag that indicates whether the contents of
the fileset are accessible via the File Server machine.

DFS: A token that grants access to the status information
associated with a file or directory. Read and write status
tokens are available.

An ordered sequence of bits, octets, or characters,
accompanied by the string's length.

Structure Rule Table (SRT)

stub

GL-78

A recurring attribute of the directory schema with the
description of the permitted structures of distinguished names.

RPC: A code module specific to an RPC interface that is
generated by the DCE IDL compiler to support remote
procedure calls for the interface. RPC stubs are linked with
client and server application and hide the intricacies of remote
procedure calls from the application code. See also client
stub, server stub.

subclass

subobject

subordinate

superclass

superior

superobject

Glossary

One of the classes, designated as such, whose attribute types
are a superset of those of another class.

An object that is in a subordinate relationship to a given
object.

In the DIT, an entry is subordinate to another if its
distinguished name includes that of the other as a prefix.

One of the classes, designated as such, whose attribute types
are a subset of those of another class.

In the DIT, an entry is superior to another if its distinguished
name is included as a prefix of the distinguished name of the
other. Each entry has exactly one immediate superior.

An object that is in a superior relationship to a given object.

synchronization

DTS: The process by which a DTS entity requests clock values
from other systems, computes a new time from the values, and
adjusts its system clock to the new time.

synchronization list

DTS: The list of servers that a DTS entity has discovered; the
entity sends requests for clock values to the servers on the list.

synchronization site

DFS: The one Ubik site that accepts changes to its copy of the
database and distributes them to the other, secondary sites.
The synchronization site can change as necessary. See also
secondary site, Ubik.

GL-79

Introduction to OSF DeE

GL-80

syntax

XOM: (1) An OM syntax is any of various categories into
which the object management specification statically groups
values on the basis of their form. These categories are
additional to the OM type of the value. (2) A category into
which an attribute value is placed on the basis of its form. See
also attribute syntax.

syntax template

A lexical construct containing an asterisk from which several
attribute syntaxes can be derived by substituting text for the
asterisk.

System Control machine

system time

DFS: .The machine that distributes common configuration files
to other server machines in the cell or administrative domain.
The System Control machine runs the server portion of the
Update Server for this purpose. See also server machine,
Update Server, up server .

The time value that the operating system maintains according
to its reading of the system's hardware clock.

Tape Coordinator

DFS: A process that runs on a Tape Coordinator machine and
controls the behavior of one tape drive. There must be one
Tape Coordinator running for each tape drive in use.

Tape Coordinator ID (TCID)

DFS: A number, assigned when a Tape Coordinator machine is
configured, that uniquely identifies each Tape Coordinator and
the associated tape drive. Backup operators use it to specify
the Tape Coordinator to execute a command.

Glossary

Tape Coordinator machine

TCID

TDF

thread

DFS: A client machine from which backup and restore
operations are initiated in the DFS Backup System. Each Tape
Coordinator machine must have one tape drive attached and
must run one instance of the butc process for each drive.

See Tape Coordinator ID.

See Time Differential Factor.

A single sequential flow of control within a process.

thread handle

RPC: A data item that enables threads to share a memory
management environment.

thread-serial service

A reentrant system service is thread-serial if it blocks the
current thread and all other threads that attempt to call the
same service or other related services until the first call
returns.

thread-synchronous service

tick

ticket

A reentrant system service is thread-synchronous if it blocks
only the current thread and allows other threads to execute the
same operation during the block.

DTS: The clock timer interrupt that causes the operating
system to increment the system time.

1. An application-transparent mechanism that transmits the
identity of one principal to another.

GL-81

Introduction to OSF DeE

GL-82

2. An application-transparent mechanism that transmits the
identity of an initiating principal to its target. A simple
ticket contains the principal's identity, a session key, a
timestamp, and other information, sealed using the
target's secret key. A privilege ticket contains the same
information as a simple ticket, and also includes a
privilege attribute certificate. A ticket-granting ticket is
ticket to the ticket -granting service; a service ticket is a
ticket for a specified service other than the ticket­
granting service.

Time Differential Factor (TDF)

DTS: The difference between UTe and the time in a particular
time zone.

time provider

DTS: A hardware device that monitors UTe time and forwards
it to a DTS server.

Time Provider Interface (TPI)

A software intermediary between the DTS server and external
time provider processes. The DTS server uses the interface to
obtain UTe time values and to determine the associated
inaccuracy of each value.

time provider program

timeslicing

token

DTS: Software that enables a time provider device to call the
time provider interface and supply time values to a DTS
server.

A mechanism by which running threads are preempted at fixed
intervals. This ensures that every thread is allowed time to
execute.

DFS: A device sent along with requested data from a File
Server machine to a client machine to indicate the types of
operations (for example, read or write) the client can perform
on the data. It prevents simultaneous access while permitting

Glossary

cooperative access; for example, only one client can possess a
write token for a single piece of data at any given time. A
client must have the appropriate tokens to operate on a File
Exporter. See also data token.

token management layer

DFS: The part of the DFS Cache Manager that handles file and
directory tokens. See also Token Manager.

Token Manager

DFS: A component that maintains the set of file and directory
tokens that have been granted to existing clients of a File
Server machine. See also token management layer.

top-level pointer

tower

TP server

TPI

transaction

RPC: A pointer parameter that in a chain of pointers is the
only member that is not the referent of any other pointer.

Physical address and protocol information for a particular
server. CDS uses this information to locate the system on
which a server resides and to determine which protocols are
available at the server. Tower values are contained in the
CDS_Towers attribute associated with the object entry that
represents the server in the cell namespace.

DTS: A server system connected to a time provider.

See Time Provider Interface.

A related set or unit of changes to metadata. The events in a
transaction are atomic. No change takes effect unless all the
changes that make up that transaction are performed. See also
log.

GL-83

Introduction to OSF DeE

GL-84

transfer syntax

RPC: A set of encoding rules used for transmitting data over a
network and for converting application data to and from
different local data representations. See also Network Data
Representation.

translator machine

DFS: A DFS client machine that is also an NFS server. The
machine provides DFS with access to NFS client machines.
See also client machine.

Transmission Control Protocol (TCP)

A protocol of the Internet Protocol (IP) family.

transmitted type

RPC: For data types with the IDL transmit_as attribute, the
data type that stubs pass over the network. Stubs invoke
conversion routines to convert the transmitted type to a
presented type, which is manipulated by clients and servers.
See also presented type.

transparen t access

DFS: A feature that allows users to access files without
needing to know which machine stores the files. The Fileset
Location Database keeps track of fileset locations, so the user
needs to know only a file's pathname. See also Fileset
Location Database.

transport independence

RPC: The capability, without changing application code, to
use any transport protocol that both the client and server
systems support, while guaranteeing the same call semantics.
See also transport layer, transport protocol.

transport layer

A network service that provides end-to-end communications
between two parties, while hiding the details of the
communications network. The TCP and ISO TP4 transport
protocols provide full-duplex virtual circuits on which

Glossary

delivery is reliable, error free, sequenced, and duplicate free.
UDP provides no guarantees (the connectionless RPC protocol
provides some guarantees on top of UDP).

transport protocol

trust peer

type

type UUID

Ubik

UFS

unexport

uniquifier

A communications protocol from the transport layer of the
OSI network architecture, such as the Transmission Control
Protocol (TCP) or the User Datagram Protocol (UDP).

A characterization of one cell with respect to another with
which the cell maintains a mutual authentication surrogate.

XOM: A category into which attribute values are placed on
the basis of their purpose. See also attribute type.

RPC: The universal unique identifier that identifies a
particular type of object and an associated manager. See also
manager, object, Universal Unique Identifier.

DFS: A library of utilities that the DFS Fileset Location
Server and the DFS Backup Server use to keep individual
copies of their databases synchronized. See also secondary
site, synchronization site.

See UNIX File System.

RPC: To remove binding information from a server entry in a
name service database. See also export.

DFS: A piece of data that, in combination with a fileset ID,
produces a globally unique identi fier.

GL-85

Introduction to OSF DeE

GL-86

Universal Unique Identifier (UUID)

RPC: An identifier that is immutable and unique across time
and space. A UUID can uniquely identify an entity such as an
RPC interface or object. See also interface UUID, object
UUID, type UUID.

UNIX File System (UFS)

A section of the UNIX file tree that is physically contained on
a single device or disk partition and that can be separately
mounted, dismounted, and administered.

unmarshalling

RPC: The process by which a stub disassembles incoming
network data and converts it into local data in the appropriate
local data representation. See also marshalling, network
data.

unpredictable

upclient

A violation of an architecture rule that an implementation is
not required to report. Results can include an error report from
a threads call, the operating system, or the hardware; a hang or
deadlock of the program; or an incorrect operation of the
program without indication of error. See also illegal.

DFS: A process that runs on DFS server machines, taking
copies of common configuration files and new DFS server
process binary files from central sources. See also Update
Server,upserver.

update propagation

An immediate attempt to apply a change to all replicas of the
CDS directory in which the change was just made. An update
propagation delivers changes in a more efficient and timely
way than a skulk, which is the periodic distribution of a whole
collection of changes.

Glossary

Update Server

DFS: A process that guarantees that all DFS server machines
in a cell have the same versions of common configuration files
and the same versions of DFS binary files appropriate for their
machine type. It has a server portion called the upserver and a
client portion called the upclient. See also upclient,
upserver.

Update Timestamp (UTS)

upserver

user

An attribute that identi fies the time at which the most recent
change was made to any attribute of a particular CDS name.
For directories, the UTS reflects changes made only to
attributes that apply to the directory as a whole (not one of its
replicas).

DFS: A process that runs on DFS server machines, making
local copies of common configuration files and new DFS
server process binary files available to other DFS server
machines. See also upclient, Update Server.

GDS: The end user of the directory; the entity or person that
accesses the directory. A user can be an application program
that is calling the directory interface on behalf of a human
user.

user authentication cache module

user data

DFS: The part of the DFS Cache Manager that maintains per­
user Kerberos tickets and credential information.

DFS: The data in a fileset or aggregate, such as applications
and data files, created and referenced by users of the system.

User Datagram Protocol (UDP)

A protocol of the Internet Protocol (IP) family.

GL-87

Introduction to OSF DeE

GL-88

UTC

UTS

V file

value

See Coordinated Universal Time.

See Update Timestamp.

DFS: With disk caches, a file on the disk that, by default, can
hold up to 64 kilobytes of cached data. A maximum of 32,000
V files can be used for one disk cache.

XOM: An arbitrarily complex information item that can be
viewed as a characteristic or property of an object. See also
attribute value.

varying array

vector

VFS

VFS+

RPC: An array whose elements do not all need to be
transmitted during a remote procedure call.

RPC: An array of other structures and the number of array
items.

See Virtual File System.

DFS: Extensions to the standard UNIX Virtual File System
(VFS). See also Virtual File System.

Virtual File System (VFS)

DFS: A level of abstraction above the specific interfaces to
various types of file systems. It is used to avoid having to
change kernel code to handle low-level, system-speci fic
differences.

vnode

Glossary

DFS: The structure used to access the inode or anode structure
associated with a specific file through a virtual file system
interface. The term vnode stands for virtual node. See also
anode.

well-known endpoint

workspace

RPC: A preassigned, stable endpoint that a server can use
every time it runs. Well-known endpoints typically are
assigned by a central authority responsible for a transport
protocol. An application declares a well-known endpoint
either as an attribute in an RPC interface header or as a
variable in the server application code. See also dynamic
endpoint, endpoint.

XDS: A space in which OM objects of certain OM classes can
be created, together with an implementation of the object
management functions that supports those OM classes.

workspace interface

XDS

XOM

The interface as realized, for the dispatcher's benefit, by each
workspace individually.

XlOpen Directory Service.

XlOpen Object Management.

GL-89

Index

Symbols
@host, 3-74
@sys, 3-74

A
ACLs

example (figure), 3-58
in GDS, 3-39
in Security Service, 3-53,

3-57
Administration Client, 2-5
Administration Server, 2-5
aggregate, 3-62
application example. See greet
Authentication Service, 3-52,

3-57
authorization service, 3-57

B
Backup Server, 3-64

Basic OverSeer Server, 3-63
binding, 3-15

c
Cache Manager, 3-62
caching

in CDS, 3-33
in GDA, 3-44
in GDS, 3-35

CDS, 1-14,3-23,3-30 to 3-34
additional information, 3-34
administration, 3-33
components, 3-30
database, 3-31
end user's perspective, 3-33
programming with, 3-33

cdscp, 3-30
cell, definition, 1-16
chaining, in GDS, 3-39
clearinghouse, 3-30, 3-31
client/server

model, 1-6 to 1-10
model (figure), 1-7

condition variable, 3-7
configuration, 2-1 to 2-13

basic components, 2-4 to
2-6

Index-1

Introduction to OSF DeE

cells, 2-9 to 2-13,4-6
Connected DCE Cell, 2-12
DCE Cell with DFS, 2-11
DFS, 3-67
machines, 2-2 to 2-3, 2-6

to 2-9
overview, 1-16 to 1-17,2-2

to 2-4
Simple DCE Cell, 2-9

configuration components. See
configuration,ba~c

components
consistency

D

in CDS, 3-32
in DFS, 3-64
in GDS, 3-35

data sharing
in DFS, 1-11
in Directory Service, 1-11
model, 1-10 to 1-11

database

DCE

Index-2

CDS, 3-31
GDS, 3-37
Security, 3-53

and related software, 1-12,
1-18,3-19,3-59
network, 1-18,3-39
operating system,

1-19
and related software

(figure),1-12
architecture, 1-12 to 1-19

architecture (figure), 1-13
motivation, 1-3
overview, 1-1 to 1-19
potential users, 1-5

DCE Administrator Machine, 2-2
DCE Administrator software, 2-3
DCE CDS. See CDS
DCE DFS. See DFS
DCE Directory Service. See

Directory Service
DCE Diskless Support Service. See

Diskless Support Service
DCE DTS. See DTS
DCE GDA. See GDA
DCE GDS. See GDS
DCE RPC. See RPC
DCE Security Service. See

Security Service
DCE server machines, 2-2
DCE Threads. See Threads
DCE User Machine, 2-2
DCE User software, 2-3
DCE XDS. See XDS
DFS, 1-15,3-60 to 3-70

additional information, 3-70
administration, 3-69
components, 3-62
configuration, 3-67
configuration (figure), 3-67,

3-68
data organization, 3-61
end user's perspective, 3-69
features, 3-65
programming with, 3-69

directories
CDS, 3-31
DFS, 3-61

directory entry, 3-31
Directory Information Base, 3-38
Directory Information Tree, 3-38
Directory Service, 1-14,3-21 to

3-45
administration, 3-28
architecture, 3-22 to 3-29
components (figure), 3-43
components overview, 3-23
end user's perspective, 3-28
lookup, 3-29

See Also RPC
Profiles

programming with, 3-28
Directory System Agent, 3-35
Directory User Agent, 3-35
Diskless Support Service, 1-15,

3-70 to 3-75
additional information, 3-75
and DFS, 3-73
booting, 3-72
components, 3-71
initialization, 3-73
swapping, 3-74

Distinguished Name, 3-38
distributed computing, 1-1 to 1-11

models, 1-6 to 1-11
motivation for, 1-1 to 1-6

Distributed Computing
Environment, definition,
1-16

DTS, 1-14,3-46 to 3-52
additional information, 3-52
administration, 3-51
components, 3-47
end user's perspective, 3-50
programming with, 3-50

E
example. See greet
External Time Provider, 3-49

F
File Exporter, 3-62
files, 3-61
fileset, 3-61
Fileset Location Server, 3-64
Fileset Server, 3-63

G

Index

GDA, 1-14,3-24,3-42 to 3-44
additional information, 3-44

GDS, 1-14,3-23,3-34 to 3-42
additional information, 3-42
and network services, 3-39
and standards, 3-41
components, 3-35
configuration, 3-37
how it works, 3-39

global names, 3-27
global root (/ •..), 3-26, 3-27
greet, 3-76 to 3-88

Index-3

Introduction to OSF DeE

I
IDL files, 3-13
implementation dependencies,

1-19
inaccuracy, time, 3-46
information architecture, 3-45
initialization, cell, 4-6
integration, overview, 1-17
interface, definition, 3-13

J
join, 3-6

K
Kerberos,3-59

L
LFS, 1-15,3-62
Login Facility, 3-54

Index-4

M
management, 1-16
mutex,3-6

N
namespace, 3-22,3-26 to 3-27,

3-29
naming

See Also CDS; Directory
Service; GDS
specialized naming services,

3-29
NTP,3-51

o
object entry, in GDS, 3-37

p
porting, 4-6
principals, 3-53
Privilege Service, 3-53
profiles, 3-29
protection level, 3-57

R
referral, in GDS, 3-39
registration, 3-29
Registry Service, 3-53
related documents, A-I to A-7

reading paths through, A-4
toA-7

Relative Distinguished Name,
3-38

replication
in CDS, 3-32
in DFS, 3-64
in GDS, 3-41

Replication Server, 3-64
RPC, 1-14,3-8 to 3-21

additional information, 3-21
administration, 3-16
and system independence,

3-19
authenticated,3-56
end user' s perspective, 3-11
how it works, 3-17
model, 1-10, 3-8
programming, 3-12 to 3-16

RPC daemon. See rpcd
rpccp, 3-11
rpcd,3-11, 3-15,3-17

s
schema, 3-38
Scout, 3-64
Security Service, 1-15, 3-52 to

3-60
additional information, 3-59

administration, 3-58
components, 3-52

Index

end user's perspective, 3-56
how it works, 3-54 to 3-56
programming with, 3-56

skulking, 3-32
standards

stub

T

and DFS, 3-67
and DTS, 3-46
and GDS, 3-41
and Threads, 3-3
and XDS, 3-44

client, 3-14
server, 3-14

technology components, 3-1 to
3-88 See Also CDS; DFS;
Directory Service; Diskless
Support Service; DTS;
GDA; GDS; RPC; Security
Service; Threads; XDS
integration, 4-1 to 4-6

implications, 4-5
matrix (table), 4-2

overview, 1-13 to 1-16
testing, 4-6
Threads, 1-14,3-2 to 3-8

additional information, 3-8
administration, 3-8
communications, 3-6
end user's perspective, 3-4
exceptions, 3-7
management, 3-5

Index-5

Introduction to OSF DeE

time

programming with, 3-4
scheduling, 3-5
synchronization, 3-6

correctness, 3-46
DTS format, 3-50
synchronization, 3-46, 3-47

Time Differential Factor, 3-50
Token Manager, 3-63
tokens, 3-63

u
upclient, 3-64
Update Server, 3-64
upserver, 3-64
User Client, 2-5
User Server, 2-5
UTC, 3-46
uuidgen, 3-11

x
XDS, 1-14,3-25,3-44 to 3-45
XOM.SeeXDS

Index-6

OPEN SOFTWARE FOUNDATIO~

INFORMATION REQUEST FORM

Please send to me the following:

() OSF" Membership Information

() OSF"DCE License Materials

(OSF"DCE Training Information

Contact Name

Company Name

Street Address

Mail Stop

City

Phone

Electronic Mail

MAIL TO:

________ State __ Zip _____ _

_________ FAX ___________ __

Open Software Foundation
11 Cambridge Center

Cambridge, MA 02142

Attn: OSF"DCE

For more information about OSF'DCE call OSF Direct Channels at 617 621 7300.

Introduction to OSFTMDCE
TITLES IN THE OSpMDCE SERIES:

Introduction to OSPDCE /

OSpMDCE User's Guide and Reference

OSpMDCE Administration Reference

OSpMDCE Application Development Guide

OSpMDCE Application Development Reference

Printed in the U.S.A.

Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142

ISBN 0-13-490624-1

90000

P T R Prentice-Hall, Inc.
$2400 -

97801340624

