
j

Enhanced ONYX System V

PROGRAMMER REFERENCE MANUAL

The information in this document reflects Onyx System, Inc.
implementation of AT&T UNIX System V. No responsibility is
assumed for inaccuracies. Furthermore, Onyx reserves the
right to make changes to any product herein for a particular
purpose. Onyx does not assume any liability arising out
of the application or USe of any product or circuit described
herein; neither does it convey any license under its patent
rights or the rights of others.

UNIX is a trademark of AT&T Bell Laboratories, Inc. PDP, VAX,
and DEC are trademarks of Digital Equipment Corporation.
PRINTRONIX is a trademark of Printronix, Inc. CENTRONICS
is a trademark of Data Computer Corporation.

Product Number: 805-02656-001

First Edition

Copyright, 1985, by Onyx Systems, Inc.

Portions of this document are reprinted from copyrighted documents
by permission of AT&T Technologies, Inc.

INTRODUCTION

This manual describes the features of the UNIX system. It pro
vides neither a general overview of the UNIX system nor details
of the implementation of the system.

Not all commands, features, and facilities described in this
manual are available in every UNIX system.

This manual is divided into two sections, some containing inter
filed sub-classes:

? System Calls

3. Subroutines:

3C. C ann Assembler Library Routines

3S. Stannard 1/0 Library Routines

3M. Mathematical Library Poutines

3X. Miscellaneous Rouitnes

4. F i 1 e Format s

5. Miscellaneous Facilities

Section 2: System Calls

This section describes the entries into the UNIX system kernel,
including the C language interface.

Section 3: Subroutines

This section describes the available subroutines. Their binary
versions reside in various system libraryies in the Ilib and
lusrllib directories. See intro(3) for descriptions of these
libraries and the files in which they are stored.

Section 4: File Formats

This section documents the structure of particular kinds of
files; for example, the format of the outour file of the link
editor is given in a.out(4). Excluded are files used by only one
command (for example, the assembler's intermediate files). In
general, the C language struct declarations corresponding to

these formats can be found in the directories /usr/include and
/usr/include/sys.

Section 5: Miscellaneous Facilities

This section contains a variety of things. Included are nescrip
tions of character sets, macro packages, etc.

Each section consists of a number of independent entries of a
page or so in length. The name of the entry appears in the upper
corners of its page. Entries within each section are alphabet
ized, with the exception of an introductory entry that begins
each section. Some entries may describe several routines, com
mands, etc. Tn such cases, the entry appears only once, alpha
betized under its "major" name. All entries are based on a com
mon format, not all of whose parts always appear in the following
manner.

The NAME part gives the name(s) of the entry and
its purpose.

states briefly

The SYNOPSIS summerizes the use of the program being
A few conventions are used, particularly in Section 1

described.
(Comm and s) :

Boldface strings are literals and are to be typed
as the appear.

just

Italic strings usually represent substitutable argument proto
types and program names found elsewhere in the manual. (They are
underlined in the typed version of the entries.)

Square brackets [] around an argument prototype indi
cate that the argument is optional. When an argument
prototype is given as "name" or "file," it always
refers to a file name.

Ellipses .•• are used to show that the
ment prototype may be repeated.

previous argu-

A final convention is used by the commands themselves.
An argument beginning with a minus -, plus +, or equal
sign = is often taken to be some sort of flag argument,
even if it appears in a position where a file name
could appear. Therefore, it is unwise to have files
whose names begin with -, +, or -.

The DESCRIPTION part discusses the subject at hann.

The EXAMPLE(S) part gives example(s) or usage, where appropriate.

The FILES part gives the file names that are built into the pro
gram.

The SEE ALSO part gives pointers·to related information.

The DIAGNOSTICS part rliscusses the
may be produced. Messages that
explanatory are not listed.

diagnostic indications
are intenrled to be

7he WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiences.
sionally, the suggested fix is also described.

that
SEl 1 f-

Occa-

A table of contents and a permuted index derived from that table
precede Section 1. On each index line, the title of the entry to
which that line refers is followed by the appropriate section
number in parentheses. This is important because there is con
siderable duplication of names among the sections, arising prin
cipally from commands that exist only to exercise a particular
system call.

On most systems, all entries are available on-line via the man(1)
command (see Section 1 of the Enhanced Onyx System V User Refer
ence Manual).

2 • System Calls
intro •••
access
ace t •••
alarm.
brk ••
chdir.
chmod.
chown ••
chroot.
close ••
create
dup •••
exec.
exit.
fcntl.
fork ••
getpid.
getuid.
ioctl.
kill ••
link.
lseek ••
mk no d ••
mo un t ••

msgctl.
msgget ••
ms go p ••
nice.
open.
pause.
pipe •••
plock.
profile
ptrace.
read •••
sernctl.

....
semget.
semop •••
setpgrp.
setuid ••
shmctl.
shmget.
shmop ••
signal ••
stat •••
stime •••
sync ••
time •••
times

TABLE OF CONTENTS

.introduction to system calls and error numbers
• ••• determine accessibility of a file
.enable or disable process accounting
• ••••••••• set a process's alarm clock

..change data segment space allocation
• •••••• change working directory

.~ •••• change mode of file
• •• change owner and group of a file

• •••••••••••• change root directory
•••••••••••••• close a file descriptor

..create a new file or rewrite an existing one
.duplicate an open file descriptor

••••• execute a file
..terminate process

• ••••• file control
• •• create a new process

.get process ID information
.get user ID information

• •••••••••• control device
..terminate a process or a group of processes

• ••••••••••••••••••••• link to a file
••••••••••••••• move read/write file pointer

.make a directory, or a special or ordinary file
•••••••• mount a file system

..message control operations
•••••••••••• get message queue

• •••••••• message operations
.change priority of a process

• •• open for reading or writing
..suspend process until signal

..create an interprocess channel
• ••••• lock process, text, or data in memory

••••• .execution time profile

••• specify

• ••••••••• process trace
• •••••••• read from file

.semaphore control operations
•••• get set of semaphores

• ••••• semaphore operations
• ••• set process group ID
..set user and group IDs

..shared memory control operations
• •• get shared memory segment

• •••••••• shared memory operations
what to do upon receipt of a signal

• •••• get file status
• ••••••••••••••• set time

.update super-block
• ••••••••••• get time

•• get process and child process times
i

Table of Contents

umask.
umount.
uname .•
unlink.

.get

•• set and get file creation mask
• •••••• unmount a file systeIT.

name of current operating system
• ••••• remove directory entry

ustat ••
utime ••
wait ••
write ••

••••• • •••••••• get file system statistics
• ••••••••• set file access and modification times

..wait for child process to stop or terminate
• ••••••••••••••••••••••••••••••• write on a file

3. Subroutines
intro. • ••••••••• introduction to subroutines and libraries
a641 ••• convert between long integer and base-64 ASCII string
abort. • ••••••••• generate an lOT fault
abs.. • ••• return integer absolute value
acos...... • ••• return cosigne values
asin. • •• return sine of a number
assert. ..verify program assertion
atan.. • •••••• return tangent values
atof ••••••••• convert ASCII string to floating-point number
bessel. ••••• ..Bessel functions
bsearch. ••••••••••• • •••••• binary search
clock.. ••••• ..report CPU time used
conv... •••••• ..translate characters
crypt. •••••••••• .generate DES encryption
ctermid........ • •• generate filename for terminal
ctime.. • ••••• convert date and time to string
ctype.. •• • ••••••••••••• classify characters
cuserid. .get character login name of the user
dial ••••••••• establish an out-going terminal line connection
drand48.generate uniformly distributed pseudo-random numbers
ecvt...... • •• convert floating-point number to string
end. • ••••••••••••••••••••••••••• last locations in program
erf.. • ••••• error function and complementary error function
exp ••••• exponential) logarithm) power) square root functions
fclose.................... ..close or flush a stream
ferror.............. •••••• ..stream status inquiries
floor •••• floor) ceiling) remainder, absolute value functions
fopen ••
fread ••
frexp ••
fseek.
ftw ••••
ftype.
gamma ••
getarg ••
getc •••
getcwd ••
getenv.
getenv.
getgrent.
getlogin •••••
getopt •••

•••••••••••• • •••••••••••• open a stream
•••••••••••••• • •••••• binary input/output

.manipulate parts of floating-point numbers
• ••• reposition a file pointer in a stream

••••• • ••••••••••••••••• walk a file tree
.explicit Fortran type conversion

•••••••••••••••• log gamma function
••••• ..return Fortran command-line argument

• •••••••• get character or word from stream
• •• get pathname of current working directory

• •••• return value for environment name
• ••••• return Fortran environment variable

• ••• get option
ii

. . . . • •••••••••• obtain
••• • ••• get login name

letter from argument vector

/

/

Table of Contents

getpass. • ••••• read a password
getpw... • ••••••• get name from UID
getpwent ••••• .get password file entry
gets.... ..get a string from a stream
getut... •••••• • ••••• access utmp file entry
hsearch. • •• manage hash search tables
hypot.. • •• Euclidean distance function
index. •••. .return location of Fortran substring
13tol •••••• convert between 3-byte integers and long integers
ldahread. • •• read the archive header of an archive file
ldclose... • ••••••••••••••••••• close a common object file
ldfhread •••••• read the file header of a common object file
ldgetname. • •••••••• retrieve symbol name for object file
ldlread ••••• alter line number entries for common object file
ldlseek ••• seek to line number entries for common object file
ldohseek.seek to optional file header for common object file
ldopen ••••••••••••••••• open a common object file for reading
ldrseek •••• seek to relocation entries for common object file
ldshread •••• read named section header for common object file
ldsseek ••••••••• seek to named section for common object file
ldtbindex •• compute symbol table entry for common object file
ldtbread •••• read symbol table entry for common object file
ldtbseek.. ..seek to symbol table of a common object file
logname. .return login name of user
lsearch. ..linear search and update
malloc.. • ••••••• main memory allocator
matherr.. .error-handling function
memory.. • ••••••• memoryoperations
mktemp.. ••••• .make a unique filename
monitor.. •••••• • ••••••• prepare execution profile
nlist.. .get entries from name list
perror. • ••••• system error messages
plot... ••••• ..graphics interface subroutines
popen.. .initiate pipe to/from a process
printf. • •••••••••• print formatted output
putc... .put character or word on a stream
putpwent.. • •••• write password file entry
puts....... • ••••• put a string on a stream
qsort. ••••• • ••••••••••••••••••••• quicker sort
rand... •••••• .simple random-number generator
regcmp. • ••••• compile and execute a regular expression
scanf.. • •••••• convert formatted input
setbuf. •••• .assign buffering to a stream
setjmp. • •••••••••••••••• non-local goto
signal •• specify Fortran action on receipt of a system signal
sinh.. •••• • •••••••••••• hyperbolic functions
sleep ••••••••••••••••••••••••• suspend execution for interval
spat~ess long integer data in a machine independent fashion.
ssignal.. • •••••••••••••••••••••••••••• software signals
stdio.. • •••••• standard buffered input/output package
stdipc. ..standard interprocess communication package
string ••••••••••••••••••••••••••••••••••• string operations

iii

Table of Contents

strtol. ••••• • ••••• convert string to integer
swab... ••••• • ••••••••••••••• swap bytes
system... ••••• • ••••• issue a shell command
termcap.. ..terminal independent operation routines
tmpfile.. • ••••••••••• create a temporary file
tmpnam.. .create a name for a temporary file
trig..... • •••••••• trigonometric functions
tsearch.. .manage binary search trees
ttyname. •••••••••• • ••• find name of a terminal
ttyslot ••• find the slot in the utmp file of the current user
ungetc ••••••••••••••• push character back into input stream

4. File Formats
intro ••
a.out
acct.
aouthdr.
a r • • • • • • •
checklist.
core.
cpio ••
dir ••
errfile
filehdr •••
f s •••••
fspec •••
gettydefs.

• •••••••••••• introduction to file
•• common assembler and link editor

•• per-process accounting file

formats
output
format

• ••••••••••••••• optional aout header
• ••••••••• common archive file format

..list of file systems processed by fsck
••••••• .format of core image file

.format of cpio archive
•••••• .format of directories

•••••• .error-log file format
• ••••••• file header for common object files

gps •••• graphical
group •••
inittab.

• ••••••••••••• format of system volume
••••• .format specification in text files
..speed and terminal settings used by getty
primitive string, format of graphical files

•••••••••••••••• group f il e
•••• .script for the init process

inode ••
issue ••
ldfcn ••
linenum ••
master.
mnttab.
passwd.
plot •••
pnch •••
profile.
reloc ••
scnhdr.
syms ••
utmp ••

••••• • •••••••••••• format of an inode
• ••••••••••••••••• issue identification file

.common object file access routines
• ••• line number entries in a common object file

•••••• .master device information table
•••• ..mounted file system table

• ••••••••••••••••••••••• password file
• •••••••• graphics interface

••••••••••• ..file format for card images
• •••••••• setting up an environment at login time

..relocation information for a common object file
•• section header for a common object file

..common object file symbol table format
• ••••••••••••• utmp and wtmp entry formats

5. Miscellaneous Facilities
intro.
ascii •••
environ ••
eqnchar.
fcntl ••
greek.

.introduction to miscellaneous facilities
• •••••••••••••••• map of ASCII character set
• ••••••••••••••••••••• · ••••• user environment

•••• special character definitions for eqn and neqn
• •••••••••••••••••••••• file control options
..graphics for the extended TTY-37 type-box

iv

)

Table of Contents

man ••••••••••••• macros for formatting entries in this manual
mm ••••••• ~ ••••• the MM macro package for formatting documents
masd.the OSDD adapter macro package for formatting documents
mptx ••••••• the macro package for formatting a permuted index
mv ••••••••••••••••••••• a troff macro package for typesettine
regexp ••••••••• regular expression compile and match routines
stat ••••••••••••••••••••••• data returned by stat system call
term ••••.••••••••••••••••••• conventional names for terminals
termcap •••••••••••••••••••••••• terminal capability data base
types •••••••••••••••••••••••••••• primitive system data types

v

PERMUTED INDEX

special functions of HP 2640 and
Ihandle special fu~ctions of HP
functions of DASI 300 and 300s1

handle special functions of DA3T
DAST 300 and 300s1 300,

special functions of DA3T 300 and
13tol, Ito13: convert between

comparison diff3:
4014 terminal

,4014: paginator for the Tektronix
the DA~t 4~0 terminal

special functions of the DA3T
onyx: Onyx
onyx: Onyx

int@ger and base-64 ASCTII

value
abs: return integer

fabs: floor, ceilin~, remainder,
LP requests.

utime: set file
a file toucr.: update

of a file
machinpl sputl, sgetl:

sarip: riisk
ldfcn: cornmo~ object file

copy file systems for optimal
Isetutent, enrlutent, utmpname:

access: determine
acct: enable or disable process

acctprc1, acctprc2: process
runa~ct: run daily

acctcon2: connect-time
laccton, acctwtmp: overview of

accounting and miscellaneous
acct: per-process

acctcom: search and print process
acctmerg: merge or add total

summary from per-process
wtmpfix: manipulate connect

turnacct: shell procedures for
accounting

format
per-process accounting!

accounting file(s)
connect-tim@ accountin~.

accounting. acctcon1,
acctwtrnp: overview ofl
overview off acctdisk,

accounting files.

2621-series terminals /handle •.•..
2640 and 2621-series terminals ••••
300, 300s: handle special ••••.••••
300 and 300s terminals 1300s: .•.••
300s: handle special functions of •
300s terminals /300s: handle •••.••
3-byte integers and long/ •••••.•••
3-way differential file •••••••••••
4014: paginator for the Tektronix.
4014 terminal •••••••••••••••••••••
4~O: handle speCial functions of ••
450 terminal 450: handle ••••••..••
6810 special system service •••••••
6810 special system service ••••.••
a64l, 164a: convert between long ••
abort: generate an lOT fault ••.••.
abs: return integer absolute ••••••
absolute value ••••••••••••••••••••
absolute value functions /fmoo, •••
accept, reject: allow/prevent
access ann modification times .••••
access ann modification times of ••
access: determine accessibility •••
access long integer data in a •••••
access profiler •••••••••••••••••••
access routines •••••••••••••••.•••
access time. dcopy: •••••••••••••••
access utmp file entry ••••••••••••
accessibility of a file •••••••••••
accounting ••••••••••••••••••••••••
accoun t i ng.
accounting ••••••••••••••••••••••••
accounting.acctcon1, •••••••••••••
accounting ann miscellaneousl •••••
accounting commands. lof ••••••••••
accounting file format •••••••••.••
accounting file(s) ••••••••••••••••
accounting files ••••••••••••••••••
accounting records. Icommand ••••••
accounting records. fwtmp, ••••••••
accounting. /startup, •••••••••••••
acct: enable or disable process •••
acct: per-process accounting file •
acctcms: command summary from •••••
acctcom: search and print process.
acctcon1, acctcon2: •••••••••••••••
acctcon2: connect-time •.••••••••••
acctdisk, acctdusg. accton, •••••••
acctdusg, accton, acctwtmp: •••••••
acctmerg: merge or and total ••••••

- i -

hp(1)
hp(1)
300(1)
300(1)
3°0(1)
300(1)
13tol(3C)
diff3(1)
4014(1)
4014(1)
4~()(')
450(1)
on yx (?)
onyx (2)
a641(3C)
abort(3C)
abs(3C)
abs(3C)
floor(3r~)

accept(1M)
uti.me(2)
touch(1)
access(2)
sputl(3X)
sanp(1)
ldfcn(4)
dcopy(1M)
getut(3C)
access(2)
acct(2)
acctprc(1M)
runacct(1M)
acctcon(1M)
acct(1M)
acct(1M)
acct(4)
ace tcom (1)
acctmerg(1M)
acctcms(1M)
fwtmp(1M)
acctsh(1M)
acct(2)
acct(4)
acctcms(1M)
acctcom(1)
acctcon(1M)
acctcon(1 M)
acct(1M)
acct(1M)
acctmerg (1 tv

Per mut ed In(1 ex

acctrlisk, acctrlusg,
ace 0 un tin g •

aectprc 1 ,
aectrlisk, aectrlusg, accton,

functions sin, cos, tan, asin,
killall: kill all

sag: system
sa1, sa?, sarlc: system

sar: system
report process data and system

formatting/ moso: the OSDD
dOO user:

acctmerg: merge or

alarm: set a process's
clock

sbrk: chan~e rlata segment space
realloe, calloc: main memory

accept, reject:
fsba: file system block

sort: sort
link editor output
aouthrlr: optional

introrluction to commands and
maintenance commands and
maintainer for portable/

langlJage be:
cpio: format of cpio

for portable archives ar:
ar: common

archive hpader of a member of an
archive file lda~read: read the

tar: tape file
library maintainer for portable

cpio: copy file
command xargs: construct

getopt: get option letter from
echo: echo

expr: evaluate
bc: arbitrary-precision

number facts
expr: evallJate arguments

asa: interpret
control characters

a sc i i: map 0 f
set

between long integer and base-64
number ator: convert

time/ ctime, local time, gmtime,

accton, acctwtmp: overview off •••• acct(1H)
acctprcl, acctprc?: process ••••••• acctprc(1M)
aectprc?: process accounting •••••• acctprc(1M)
acctwtmp: overview off •••••••••••• acct(nO
acos, atan, atan2: trigonometric •• trig(3M)
active processes •••••••••••••••••• killallC 1M)
activity graph sag(1)
activity report package ••••••••••• sar(1M)
activity reporter •••••••••••••.••• sar(1)
activity timex: time a command; ••• timex(1)
adapter macro package for ••••••••• mosd(~)
add a user to the system ••••••• 0. .• arid user (1t~)
add total accounting files •••••••• acctmerg(1M)
a~duser: add a user to the system. adrluser(1M)
alarm clock ••••••••••••••••••••••• alarm(?)
alarm: set a process's alarm •••••• alarm(2)
allocation brk, •••••••••••••••••.• brk(2)
allocator malloc, free, ••••••••••• malloc(3C)
allow/prevent LP requests ••••••••• accept(lM)
analyzer' •••••••••••••••••••••••••• fsba(lM)
anrl/or merge files •••••••••••••••• sort(1)
a.out: common assembler and ••••••• a.out(4)
aout header ••••••••••••••••••••••• aouthrlr(4)
aouthdr: optional aout hearler ••••• aouthdr(4)
application programs intro: ••••••• intro(1)
appl icatiol1 programs. /system ••••• intro(1M)
ar: archive ann library ••••••••••• ar(1)
ar: common archive file format •••• ar(4)
arbitrary-precision arithmetic •••• beCl)
archive ••••••••••••••••••••••••••• cpio(4)
archive and library maintainer •••• ar(1)
archive file format ••••••••••••••• ar(4)
archive file ldahread: read the ••• lrlahrearl (3X)
archive header of a member of an •• ldahread(3X)
archiver •••••••••••••••••••••••••• tar(1)
archives ar: archive and •••••••••• ar(1)
archives in and out ••••••••••••••• cpio(1)
argument list(s) and execute •••••• xargs(1)
argument vector ••••••••••••••••••• getopt(3C)
arguments ••••••••••••••••••••••••• echo(1)
arguments as an eXpression •••••••• expr(1)
arithmetic language ••••••••••••••• bee,)
arithmetic: provide drill in •••••• arithmetic(6)
as an expression •••••••••••••••••• expr(1)
as- common assembler •••••••••••••• as(1)
ASA carriage control characters ••• asaC')
asa: interpret ASA carriage •••••• ~ asa(1)
ASCII character set ••••••••••••••• ascii(S)
ascii: map of ASCII character ••••• ascii(S)
ASCII string /164a: convert ••••••• a641(3C)
ASCII string to floating-point •••• atof(3C)
asctime, tzset: convert date and •• ctime(3C)

- ii -

trigonometric/ sin, cos, tan,
hel p:

as- common
a.out: common

assert: verify program
setbuf:

/list the spareo sectors
sin, cos, tan, asin, acos,

sin, cos, tan, asin, acos, atan,
floating-point number

strtol, atol,
integer strtol t

wait:
processing language

unget~: push character

back: the game of
fine: fast incremental

daily/weekly UNIX file system
free: recover files from a

spare: replace d

termcap: terminal capability oata
convert between long integer ann
oriented (visual) display eoitor

portions of pathnames
arithmetic language

system initialization/ brc,

files
cb: C prograrn

j 0, j 1, j n, yO, y 1 t yn:

fread, fwri te:
bsearch:

tsearch. tdelete, twalk: manage

bj: the game of
sync: update the super

fsba: file system
bcopy: interactive

sum: print checksum and
df: report number of free disk

system initialization shell/
space allocation

morlest~sized programs

strl io: stanri ard
setbuf: assign

mknori :
swab: swap

Permuteri Inri ex
...

asin, acos, atan, atan2: •••••.•••• trig(3M)
ask for help •.•••• r ••••••••••••••• help(1)
assembler ••••.•••••••••.•.•.••.•.. as(1)
assembler and link editor output •• a.out(4)
assert: verify program assertion •• assert(3X)
assertion ••••••••••••••••••••••••• assert(3X)
assign buffering to a stream •••••• setbuf(3S)
associated with a slice ••••••••••• sparelist(S)
atan, atan2: trigonometric/ •..•••• trig(3M)
atan?: trigonometric functions •••• trig(3M)
atof: convert ASCII string to ••••• atof(3C)
atoi: convert string to integer ••• strtol(3C)
atol, atoi: convert string to ••••• strtol(3C)
await completion of process ••••••• waite')
awk: pattern scanning ann ••• ~ ••••• awk(1)
back into input stream •••••••••••• ungetc(3S)
back: the game of backgammon •••••• back(6)
backgammon •••••••••••••••••••••••• back(6)
backup •••••••••••••••••••••••••••• finc(lM)
backup. filesave, tapesave: ••••••• filesave(lM)
backup tape ••••••••••••••••••••••• frec(1M)
ban sector with a spare one ••••••• spare(8)
banner: make posters •••••••••••••• banner(1)
ba se ••••••••••••••••••••••••••••••
base-64 ASCII string /164a: •••••••
based on ex vi: screen ••••••••••••
basenCll'le, 0 irname: del i ver ••••••••
bc: arbitrary~precision ••••••.••••
bcheckrc. rc. powerfail: ••••••••••
bcopy: interactive block copy •••••
boiff: file comparator for large ••
beautifier ••••••••••••••••••••••••
Be sse I func tions ••••••••••••••••••
bfs: big file Scanner •••••••••••••
binary input/output •••••••••••••••
binary search •••••••••••••••••••••
binary search trees •••••••••••••••
bj: the game of black jack ••••••••
black jack ••••••••••••••••••••••••
block•.••.....•.....•.....••.
block analyzer ••••••••••••••••••••
block copy ••••••••••••••••••••••••
block count of a file •••••••••••••
blocks ••••••••••••••••••••••••••••
brc, bcheckrc, rc, powerfail: •••••
brk, sbrk: change data segment ••••
bs: a compiler/interpreter for ••••
bsearch: binary search ••••••••••••
buffered input/output package •••••
buffering to a stream •••••••••••••
build special file ••••••••••••••••
bytes ••••••••• e .•••••••••••••••••••

oro iii ...

termcap(S)
a641(3C)
vi(1)
baspname(1)
bc(1)
brc (, M)

bcopy(1M)
bdiff(1)
cb (1)
bessel(3M)
b fs (1)
frearl(3S)
bsearch(3C)
tsearch(3C)
bj(6)
bj(6)
sync(1)
fsba(1M)
bcopy(1M)
sum (1)
d f(1M)
brc(lM)
brk(2)
bs(l)
bsearch(3C)
stdio(3S)
setbuf(3S)
mknod (1M)
swab(3C)

/

Permuteri Inri ex

cc
cflow: generate

cpp: thp
cb:

lint: a
cxref: generate

dc: desk
cal: print

cu:
data returnerl by stat system

malloe, free, realloc,
intro: introrluction to system

link anrl unlink system
an LP linp printer lp,

termcap: terminal
asa: interpret ASA

text erlitor (variant of ex for

remainder, absolute valup/ floor,
floor, ceil, frno~, fabs: floor,

pipe: create an interprocess
ungetc: push

neqn eqnchar: special
cuseriri: get

getc, getchar, fgetc, getw: get
putc, putchar, fputc, putw: put

ascii: map of ASCII
tr: translate

interpret ASA carriage control
iscntrl, isaseii: classify

_tolower, toascii: translate
lastlogin, monacct, nulladm,/

/dfsck: file system consistency
checking procedure.
text for troff cw,

for nroff or troff eqn, neqn,
lint: a C program

grpck: password/group file
checkall: faster file system
copy file systems with label
copy file systems with label

processed by fsck
formatted with the HM/ mm, osdd,

fi 1 e sum: pr in t

C compi I er ••••••••••••••••••••••••
C flow graph
C language preprocessor ••••••••.••
C program beauti fier ••.•••••••••••
C program checker •••••••••••••••••
C program cross-reference •••••..••
cal: print calenrlar •••••••••••••••
calculator ••••••••••••••••••••••••
calendar ••••••••••••••••••••••••••
calenrlar: reminder service ••••••••
call another UNIX SYSTEM V system •
call stat: ••••••••••••••••••••••••
calloc: main memory allocator •••••
calls and error numbers •••••••••••
calls. link, unlink: exercise
cancel: send/cancel requests to •••
capability data base ••••••••••••••
carriage control characters •••••••
casual users) erlit: •••••••••••••••
cat: concatenate and print files ••
cat: phototypesetter interface ••••
cb: C program beautifier ••••••••••
cc- C compiler ••••••••••••••••••••
co: change working directory ••••••
ceil, fmod, fabs: floor, ceiling, •
ceiling, remainder, absolute/ •••••
cflow: generate C flow graph ••••••
channel •••••••••••••••••••••••••••
character
character
character
character
character
character
characters
characters

back in to input stream ••
definitions for eqn ann •
login name of thp. user ••
or word from stream •••••
or word on a stream ••••.
set •••••••••••••••••••••
........................
asa: .•.............••..

char ac ters / i spr int, i sgraph, •••••
characters /tolower, toupper, ••••
chargefee, ckpacct, dOdisk, •••••••
chdir: change working directory •••
check and interactive repair ••••••
checkall: faster file system ••••••
checkcw: prepare constant-width •••
checkeq: format mathematical text •
checker •••••••••••••••••••••••••••
checkers. pwck, •••••••••••••••••••
checking procedure ••••••••••••••••
checking. volcopy, labelit: •••••••
checking. volcopy, labelit: •••••••
checklist: list of file systems •••
checkmm: print/check documents ••••
checksum and block count of a •••••

.... iv

cc(1)
c flow(,)
c pp (,)
cbCl)
lint(l)
cxref(1)
cal (1)
dc(l)
cal(1)
cal end ar (1)
cu(1C)
stat(5)
malloc(3C)
intro(?)
link(lM)
1 p(,)

termcap(5)
a sa (,)
edit(1)
cat(l)
cat(7)
cb(1)
cc(1)
cd(1)
floor(3M)
floor(3M)
cflow(1)
pipe(2)
ungetc(3S)
eqnchar(5)
cu:!erit1(3S)
getc(3S)
putc(3S)
asci 1 (5)
tr(1)
asa (1)
ctype(3C)
conv(3C)
acctsh(1M)
chdir(2)
fsck(1M)
checkall(1M)
ewe,)
eqn(1)
lintel)
pwck(1M)
checkall(1M)
volcopy(1M)
volcopy.1m.old
checkl i st (4)
mm(1)
sume 1)

chess: the ~ame of

chown ,
timps: get process and

terminate wait: wait.for

a file
group

fo r a comm and.

monacct, nulladm,1 chargefee,
isgraph, iscntrl. isascii:

uuclean: uucp spool directory
clri:

inquiries ferror, feof,
alarm: set a process's alarm

cron:

Idclose, Idaclose:
close:

fclose, ffl ush:

lirlint, real, float, sngl, dblp,

common to two sorted files
system: issue a shell

test: condition evaluation
time: time a
nice: run a

change root directory for a
env: set environrne~t for

uux: unix to unix
quits nohup: run a

getopt: parse
Ishell, the stanrlard/restricted

system activity timex: time a
per-processl acctcms:

argument list(s) and execute
install: install

mk: how to remake the system and
programs intro: introduction to

Ito system maintenance
anrl miscellaneous accounting

ar:
as

out put a .out :
ldclose, ldaclose: close a

Isection header of a
linenum: line number entries in a

permuted Inrlex

chess
chess: the game of chess •••.••••••
chgrp: change owner or group ••••••
chi Ie! process times •••••.••.••••.•
chilrl process to stop or ••••••••••
crmorl: change morle ••••••••••••••••
chmed: change mode of file ••••••••
chown: change owner and group of ••
chown, chgrp: change owner or
chroot: change root directory
chroot: change root directory
ckpacct, dodisk, lastlogin, •••••••
classify characters /isprint, •••••
clean-up ••••.•••••••••••••••••••••
clear i node ••••••••••••••••••••••
clearerr, fileno: stream status •••
c1 oc k •..••••••••••••.•....•••.....
clock dap.mon. • ••••••••••••••••••••
clock: report CPU time used •••••••
close a common object file ••••••••
close a file ~escriptor •••••••••••
close: close a file descriptor ••••
close or flush a stream •••••••••••
clri:· clear i-node ••••••••••••••••
cmp: compare two files ••••••••••••
cmplx, dcmplx, ichar, char:/ ••••••
col: filter reverse line-feeds ••••
comm: select or reject lines ••••••
cornmanrf •••••••••••••••••••••••••••
commanrl
command

........................... '
command at low priority •••••••••••
command. chroot: •••••••••••••.••••
command execution
command execution •••••••••••••••••
command immune to hangups ann •••••
command options •••••••••••••••••••
command programming language ••••••
command; report process data and ••
command summary from ••••••••••••••
commanrf xargs: construct ••••••••••
command s • • ••••••••••••••••••••••••
commands
commanrls and application ••••••••••
commands and application/ •••••••••
commands. /of accounting ••••••••••
common archive file format ••••••••
common assembler ••••••••••••••.•••
common assembler and11nk editor ••
common object file ••••••••••••••••
common object file ••••••••••••••••
common object file ••••••••••••••••

- v --

chess(6)
chess(6)
chown (1)
times(2)
wait(2)
c hmor:l (1)
chmori (;»
chown(2)
chown(1)
chroot(1M)

chroot(2)
acctsh(1M)

ctype(3C)
uuclean(1M)
clri(1M)
ferror(3S)
alarm(2)
cron(1M)
clock(3C)
10 close (3X)
close(?)
close (2)

fclose(3S)
clri(1M)
cmp(1)
ft ype (3F)
col(1)
comm(1)
system(3S)
test(1)
time(1)
nice(1)
chroot(1M)
env(1)
uux (1 C)
nohup(l)
getopt(1)
she,)
timex(1)
acctcms(1M)
xargs(1)
install(1M)
mk(8)
intro(1)
intro(1M)
acct(lM)
ar(4)
as(l)
a.out(4)
lff cl OBe (3X)
Id shr earl (3X)
linent.m'l(4)

Perrnut erl I;'lrl ex

nm: print name list of
scnhrlr: section hearler for a

routines lrlfen:
ldope~1, lrlaopen: open a

II ine number entr ies of a
rea~ the file hearler of a

seek to tr.e symbol table of a
inrlexerl symbol table entry of a

relocation information for a
entr ies of a section of a

to the optional file hearler of a
to an inrlexerl/narnerl section of a
number entries of a section of a

format syms:
of a symbol table entry of a

filehdr: file hearler for
Id: link erlitor for

size: print section sizps of
comrn: select or reject lines

ipcs: report inter-process
strlipc: stannard interprocess

diff: differe;'ltial file
brliff: file

cmp:
rliff3: 3-way rlifferential file

dircmp: directory
reF cmp: regul ar ex pr ession
expression re~crnp, regex:

repexp: regular expression
cc- C

yacc: yet another
moriest-sizerl programs bs: a

erf, erfc: error function anrl
wait: aWCiit

pack, peat, unpack:
table entry of al lrltbinrlex:

cat:
synchronous printer scat:

test:

system. Iparlmin:
conftg:

fwtmp, wtmpfix: manipulate
an out-going terminal line

acctconl, acctcon2:
fsck, dfsck: file system

report and interactive status
cw, checkcw: prepare

mkfs:
execute command xargs:

remove nroff/troff, tbl, anrl eqn
ls: list

common object file •••••••••••••••• nrn(1)
common object file •.••••••••••••••• scnhrlr(4)
common object file access ••••••••• lrlfcn(4)
common object file for reading •••• Idopen(3X)
common object file function ••••••• lrllread(3X)
common object file Idfhrean: •••••• lrlfhrearl(3X)
common object file ldtbseek: •••••• Idtbseek(3X)
common object file Iread an ••••••• Idtbrearl(3X)
common object file reloc: ••••••••• reloc(4)
common object file Irelocation •••• lorseek(3X)
common object file Iseek •••••••••• lrlohseek(3X)
common object file Iseek •••••••••• Irlsseek(3X)
common object file Iseek to line •• Idlseek(3X)
common object file symbol table ••• syrns(4)
common object file Ithe index ••••• Irltbtndex(3X)
common object files •••••••••••.••• filehrlr(4)
common object files •••••••••••••.• Id(1)
common Object files ••••••••••••••• slzp.(1)
common to two sorten fi les •••••••• cemm(1)
communication facilities status ••• ipcs(1)
communication package ••••••••••••• strlipc(3C)
comparator •••••••••••••••••••••••• diff(1)
comparator for large files •••••••• bdiff(')
compar e two fi les ••••••••••••••••• cmp(')
comparison ••.••••••••••••••••••••• rliff3(1)
comparison •••••••••••••••••••••••• riircmp(')
compile ••••••••••••••••••••••••••• regcmp(1)
compile and execute a regular ••••• regcmp(3X)
compile and match routines •••••••• regexp(5)
compiler •••••••••••••••••••••••••• cc(1)
compiler-compiler ••••••••••••••••• yaccC1'
compiler/interpreter for •••••••••• bs(1)
complementary error function •••••• p-rf(3H)
completion of process ••••••••••••• waite,)
compress anrl expand files ••••••••• pack(l)
compute the index of a symbol ••••• Idtbindex(3X)
concatenate and print files ••••••• cate,)
concatenate and print files on •••• scat(l)
condition evaluation commann •••••• test(l)
config: configure UNIX SYSTEM V ••• config.68(1M)
configure the LP spooling ••••••••• IpadmlnC1M)
configure UNIX SYSTEM V ••••••••••• config.68(lM)
connect accounting records •••••••• Cwtmp(1M)
connection dial: establish •••••••• dial(3C)
connect-time accounting ••••••••••• acctcon(lM)
consistency check and/ •••••••••••• fsck(lH)
console rjestat: RJE status ••••••• rjestat(lC)
constant-width text for troCr ••••• ew(l)
construct a file system ••••••••••• mkfs(1H)
construct argument list(s) and •••• xargs(1)
constructs deroff: •••••••••••••••• deroff(')
contents of directories ••••••••••• Is(1)

.- vi -

csplit:
fentl: file
ve: version

asa: interpret ASA carriage
ioctl:

i~it. telinit: process
msgetl: message

semctl: semaphore
shmetl: sharerl memory

fcntl: fi Ie
uuep status inquiry and job

tty:
term:

units:
dd:

floating-point number atof:
and long in teger s 13tol, I tol3:

base-64 ASCII/ a64l, 164a:
/gmtime, asctime, tzset:

and VAX~'1/780/ fscv:
string ecvt, fcvt, gcvt:

seanf, fseanf, sscanf:
strtol, atol, atoi:

bcopy: interactive block
uucp, uulog, uunam~: unix to unix

dd: convert and
cpio:

access time. dcopy:
checking. volcopy, labelit:
checking. volcopy, labelit:

cp, In, mv:
UNIX System~to-UNIX System file

core: format of
mem, kmem:

atan2: trigonometric/ sin,
sinh,

we: word
sum: print checksum and block

files
epio: format of

out

clock: report
craps: the game of

crashes
crash: what to do when the system

rewrite an existing one
file tmpnam, tempnam:

Permuterl Ind ex

context
control
control
control
control

s pl it•........
characters ••••••••••••••••
device ••••••••••••••••••••

control initialization ••••••••••••
control operations ••••••••••••••••
control operations ••••••••••••••••
control operations ••••••••••••••••
control options •••••••••••••••••••
control uustat: •••••••••••••••••••
controlling terminal interface ••••
conventional names for terminals ••
conversion program ••••••••••••••••
convert and copy a file •••••••••••
conve~t ASCII string to •••••••••••
convert between 3-byte integers •••
convert between long integer and ••
convert date and time to string •••
convert files between M68000 ••••••
convert floating-point number to ••
convert formatted input •••••••••••
convert string to integer •••••••••
copy. • ••••••••••••••••••••••••••••
copy ••••••••••••••••••••••••••••••
copy a file .••••••••••••••••••••••
copy file archives in and out •••••
copy file systems for optimal •.•••
copy file syst~ms with label ••••••
copy file systems with label ••••••
copy. link or move files ••••••••••
copy uuto, uupick: public •••••••••
core: format of core image file •••
core image file •••••••••••••••••••
core memory •••••••••••••••••••••••
cos, tan, asin, acos, atan ••••••••
cosh, tanh: hyperbolic functions ••
coun t
count of a file •••••••••••••••••••
cp, In, mv: copy. link or move ••••
cpio archive ••••••••••••••••••••••
cpio: copy file archives 1n and •••
cpio: format of cpio archi ve ••••••
cpp: the C language preprocessor ••
CPU time used •••••••••••••••••••••
cr aps •••••••••••••••••••••••••••••
craps: the game of craps ••••••••••
crash: examine system images ••••••
crash: what to do when the system.
crashes •••••••••••••••••••••••••••
creat: create a new file or •••••••
create a name for a temporary •••••

.... vii -

csplit(1)
fcntl(2)
ve(l)
asa(1)
loctIC?)
init(1M)
msgctl(2)
semctl(2)
shmctl(2)
fcntl(S)
uustat(1C)
t t y(7)
term(5)
units(')
dd (1)
atof(3C)
13tol(3C)
a6~1(3C)
ctime(3C)
fscvC1M)
ecvt(3C)
scanf(3S)
strtol (3C)
bcopyC1M)
uucp(1C)
rid(l)
cpio(1)
dcopy(lM)
volcopy(lH)
volcopy.lm.old
cp(1)
uuto(1C)
core(4)
coree 4)
mem(7)
trig(3M)
s'inh(3H)
wc(1)
sum(1)
cp(')
cpio(4)
epio(,)
cpio(4)
cpp(1)
clock(3C)
eraps(6)
craps(6)
crash(1M)
crash.m68(S)
crash.m68(8)
creat(2)
tmpnam(3S)

/

Permuteri Inri ex

existing one creat:
fork:

tmpfile:
pi pe:

umask: set anrl get file

cxref: generate C program
DES encryption

terminal
terminal

asctime, tzset: convert rlate andl

ttt,
unalT1P: get name of

unam p : print ~amp of
the slot in the utmp file of the

getcwd: get path~ame of
of the user

each 1 ine of a file
line of a file cut:

constant-wirlth text for troff
cross-reference

cron: clock
errdemon: error-logging

lpd: line printer
terminate the error-logging

runacct: run
backtlp. filesave, tapesave:

1300s: hanrile special functions of
handle special functions of the

prof: rlisplay profile
time a commanrl; report process

termcap: terminal capability
sputl, sgetl: access long integer

plock: lock process, text, or
call stat:

brk, sbrk: change
types: primitive system

I gmtime,

join: relational
date: print and set the
date: print anrl spt the
asctime, tzset: convert

lifix, idint, real, float, sngl,

Ireal, float, sngl, dble, cmplx,
optimal access time.

fsdb, fsrlb1b: file system
sc1b: symbolic

create a new file or rewrite an ••• creat(2)
create a new process •••••••••••••• fork(2)
create a temporary file ••••••••••• tmpfile(3S)
create an interprocess channel •••• pipe(2)
c rea t ion mas k ••••••••••••••••••••• urn ask (2)
cron: clock naemon •••••••••••••••• cron(1H)
cross-reference ••••••••••••••••••• cxref(l)
crypt, setkey, encrypt: generate •• crypt(3C)
csplit: context split ••••••••••••• csplit(l)
ct: spawn getty to a remote ••••••• ct(,C)
ctermirl: generate filename for •••• ctermid{3S)
ctime, localtime, gmtime, ••••••••• ctime(3C)
cu: call another UNIX SYSTEM V system cuC1C)
cubic: tic-tac-toe •••••••••••••••• ttt(6)
current operating system •••••••••• uname(2)
current UNIX System ••••••••••••••• unarne(1)
current user ttyslot: find •••••••• ttyslot(3C)
current working directory ••••••••• getcwrl(3C)
cuserid: get character login name. cuserid(3S)
cut: cut out selected fielrls of ••• cut(1)
cut .out selected fielns of each ••• cute 1)
cw, checkcw: prepare •••••••••••••• cw(1)
cxref: generate C program ••••••••• cxref(1)
daemon .•..•••••••••••••••••••••••• cron(1M)
daemon •••••••••••••••••••••••••••• errnemone'M)
daemon •••••••••••••••••••••••••••• 1 pd (1 C)
daemon. errstop: •••••••••••••••••• errstop(1M)
daily accounting •••••••••••••••••• runacctC'M)
naily/weekly UNIX file system ••••• filesave(1H)
DASI 300 ann 3005 terminals ••••••• 300(')
DASI 450 terminal 450: •••••••••••• 450(1)
data •••••••••••••••••••••••••••••• prof(')
data and system activity timex: ••• timex(1)
data base •.••••••••••••• : ••••••••• termcap(5)
data in a machine independentl •••• sputl(3X)
data in memory •••••••••••••••••••• plock(2)
nata returned by stat system •••••• stat(5)
data segment space allocation ••••• brk(2)
nata types •••••••••••••••••••••••• types(S)
rlatabase operator ••••••••••••••••• join")
date •••••••••••••••••••••••••••••• nate(')
nate ••..•..•.•.••.••.•••..•.•••.•.
date and time to string •••••••••••
date: print and set the date ••••••
date: print and set the date ••••••
dble, cmplx, dcmplx, iehar, ehar:1
dc: nesk calculator •••••••••••••••
dcmplx, ichar, char: explicit/ ••••
dcopy: copy file systems for ••••••
dd: convert and copy a file •••••••
debugger ••••••••••••••••••••••••••
debugger ••••••••••••••••••••••••••

- viii -

date.1.old
ctime(3C)
date(1)
date. , .old
ftype(3F)
dc(1)
ftype(3F)
dcopy(1M)
dd(1)
fsdb(1M)
srlb(')

sysdef: system
eqnchar: special character

basename. rlirnamp.:
ta i 1 :

mpsg: perm i t or
and eqn constructs

crypt, setkey. encrypt: generate
close: close a file

dup: duplicate an open file
dc:

file Clccess:
fi 1 e:

ioctl: control
master: master

devnm:

blocks.
check and interactive/ fsck.

terminal line connection
comparator
compar ison

soiff: side-by-side
diffmk: mark

(ii ff:
rliff3: 3 way

files

dir: format of
Is: list contents of

rm, rmrlir: remove files or
cd: change working

chdir: change working
chroot: change root

mkd ir: make a
mvdir: move a

lJuclean: UUcp spool
rlircmp:

unlink: remove
chroot: change root

get pathname of current working
pwd: working

ordinary file mknod: make a
pathnames basename,

pr in ter s enabl e ,
acct: enable or

type, modes, speed, and line
sadp:

df: report number of free
du: summar i ze

moun t, umoun t: moun t and
vi: screen oriented (visual)

Permuted Inn ex

definition ••••••••••••••••••••••••
defini tions for eqn .and neqn •••.••
riel i ver portions of pathnames •••••
deliver the last part of a file •••
den y messages •••••••••••••••••••••
rleroff: remove nroff/troff, tbl, ••
DE S en c r yp t ion •••••••••••••••••• ••
descriptor ••••••••••••••••••••••••
descriptor ••••••••••••••••••••••••
desk calculator •••••••••••••••••••
determine accessibility of a ••••••
determine file type •••••••••••••••
device ••••••••••••••••••••••••••••
device information table ••••••••••
rlevice name •••••••••••••••••••••••
devnm: device name ••••••••••••••••
df: report number of free disk ••••
rlfsck: file system consistency· ••••
dial: establish an out-going ••••••
diff: differential file •••••••••••
diff3: 3-way differential file ••••
difference program ••••••••••••••••
differences between files •••••••••
differential file comparator ••••••
differential file comparison ••••••
diffmk: mark differences between ••
dir: format of directories ••••••••
dircmp: directory comparison ••••••
directories •••••••••••••••••••••••
directories •••••••••••••••••••••••
directories •••••••••••••••••••••••
directory
directory
directory
directory

· · · ·
directory. • •••••••••••••••••••••••
directory clean-up ••••••••••••••••
directory comparison ••••••••••••••
directory entry •••••••••••••••••••
directory for a command •••••••••••
directory getcwd: •••••••••••••••••
directory name ••••••••••••••••••••
directory, or a special or ••••••••
dirname: deliver portions of ••••••
disable: enable/disable LP ••••••••
disable process accounting ••••••••
discipline. Iset terminal •••••••••
disk access profiler ••••••••••••••
disk blocks •••••••••••••••••••••••
disk usage ••••••••••••••••••••••••
dism~unt file system ••••••••••••••
display editor based on ex ••••••••

- ix -

sysdef(1M)
eqnchar(5)
basenam e (1)

tail(')
mesg(1)
deroff(1)
crypt(3C)
close (2)
dup(2)
dc(1)
access(2)
file(1)
ioctl(2)
master .riec (4)
oevnm(1t~)
rievnrn(1M)
df(1M)
fsck(1H)
dial(3C)
diff(1)
diff3(1)
sd i fr(1)
oiffmk(l)
diff(1)
diff3(1)
riiffmk(1)
dir(4)
dircmp(1)
dir(4)
Is(1)
rm(1)
cd (1)
chdir(2)
chroot(2)
mkdir(1)
mvdir(1M)
uuclean(1M)
dircmp(1)
unlink(2)
chroot(1M)
getcwcf(3C)
pwd (,)
mknod (2)
basename(1)
enable(1)
acct(2)
getty('M)
sadp(1)
df(1M)
du(1)
mount(1M)
vie,)

/

Per[l'lute ri Inri ex

prof:
hypot: Euclirlean

Ilcong48: generate u:1iformly
mm, osdrl, checkmm: print/check

MM mdcro package for formatting
macro package for formatting

slides m~t, mvt: typeset
nullaric,1 chargefee, ckpacct,

whodo: who is
reversi: a [lame of

nranrl48, mranrl48, jranrl48,1
aritr.metic: provine

trace: event-tracing

orl: octal
obj e~t file

extract error records from
fi 1 e dump:
descriptor

descriptor dup:
echo:

floating--point number to string

end, etext,
for casual users)

en, rerl: tex t
ex: text

sed: stream
screen orienteri (visual) display

lrl: I ink
common assembler ano link

users) edit: text
effective user, real group, anrl

Igetgirl, getegid: get real user,
fsplit: split f77. ratfor. or

pattern grep,
LP printers

accounting acct:
enable, disable:

crypt, setkey,
setkey, encrypt: generate DES

makekey: generate
in program

getgrgirl, getgrnarn, setgrent,
/~etpwuin, getpwnam, setpwent,

Igetutline, pututline, setutent,
nlist: get

1 inenum: 1 ine number
man, manprog: print

man: macros for formatting
Ildlitem: manipulate line number

display profile data ••••••••••.•••
distance function .~ •••••••••••••••
distributed pseurlo-ranrtoml ••••••••
documents formatted with the MM/ ••
documents mm: the •••••••••••••••••
documents /the OSDD adapter •••••••
nocuments, viewgraphs, and ••••••••
dorlisk, lastlogin, monacct, •••••••
dOing wha t • • ••••••••••••••••••••••
rlramatic reversals ••••••••••••••••
drand48, erand48, lrand48, ••••••••
drill in number facts •••••••••••••
d r i ver ••••••••••••••••••••••••••••
du: summarize disk usage ••••••••••
Otnnp ••••••••••••••••••••••••••••••
dump: oump selected parts of an •••
dump. erroead: ••••••••••••••••••••
dump selected parts of an object ••
dup: duplicate an open file •••••••
duplicate an open file ••••••••••••
echo arguments ••••••••••••••••••••
echo: echo arguments ••••••••••••••
ecvt, fcvt, gcvt: convert •••••••••
en, red: text enitor ••••••••••••••
edata: last locations in program ••
pdit: text erlitor {variant of ex ••
editor
ed i tor

............................

............................
erlitor .•••.•••••••••••••••••••••••
editor based on ex vi: ••••••••••••
eoitor for common object files ••••
editor output a.out: ••••••••••••••
editor (variant of ex for casual ••
effective group IDs /real user, •••
effective user, real group, and/ ••
efl files •••••••••••••••••••••••••
egrep, fgrep: search a file for a •
enable, disable: enable/disable •••
enable or disable process •••••••••
enable/disable LP printers ••••••••
encrypt: generate DES encryption ••
encryption crypt, •••••••••••••••••
encryption key ••••••••••••••••••••
end, etext, edata: last locations.
endgrent: obtain getgrent, ••••••••
endpwent: get password file/ ••••••
endutent, utmpname: access utmp/ ••
entries from name list ••••••••••••
entries in a common object file •••
entries in this manual ••••••••••••
entries in this manual ••••••••••••
entries of a common object filel ••

- x ...

prof(1)
hypot(3M)
dran rl 48(3C)
rom (,)
mmeS)
mos(i(5)
mmt(1)
acctsh(1M)
whorlo(lM)
reversi(6)
dran ri 48(3C)
ar i tr.meti c (6)

trace(7)
du(l)
od (1)
dump(1)
errdearl (, H)

riump(1)
d up (2)
dup(2)
echo(1)
echo(1)
ecvt(3C)
erie,)
end(3C)
edit(,)
eo(,)
exC"
sed(1)
vi(1)
Id C 1)
a.out(4).
ed i t(1)
getuid(2)
getuid(2)
fspl i t(1)
grep(1)
enable(')
acct(2)
enable(,)
crypt(3C)
crypt(3C)
makekey(1)
end(3C)
getgrent(3C)
getpwent(3C)
getut(3C)
nlist(3C)
linenum(4)
mane 1)
mane 5)
ldlread (3X)

Ilrlnlseek: seek to line number
Ildnrseek: seek to relocation
putpwent: write password file

unlink: remove rlirectory
utmp, wtmp: utmp anrl wtmp

endpwent: get password file
/t~e inrlex of a symbol table

Iread an indexerl. symbol table
utmpname: access utmp file

execution

e:1viron: IJser
profile: setting up an

execution env: set
getel'lv: return value for

sky: obtai:1
special character definitions for

remove nroff/troff. tbl, and
mathematical text for nroff or/

defin i t ions for eqn a;lrl. neqn
mranrl48, jrand48.' drand48.

complementary error function
complementary errorl erf,

from dump.
rlaemon.

system error messages perror.
error function erf, erfc:

error function and complementary
sys errlist, sys nerr: system

introduction to system calls and
errrlead: extract

matherr:
errfile:

errdemon:
errstop: terminate the

err:
process a report of logged

spellin, hashcheck: find spelling
logged errors.

error-logging daemon.
line connection dial:

setmnt:
prog r am end.

hypot:
expression expr:
te st: conn i tion

trace:
edit: text editor (variant of

(visual) display editor based on

Permuterl Inri ex

entries of a section of a common/ •
entries of a sectio~ of a common/ •
entry
en tr y .•..•.••••.••••••••••••••••.•
entry formats •••••••••••••••••••••
entry /getpwnam, setpwent, ••••••••
e:1try of a common object file •••••
entry of a common object file •••••
entry /setutent, endutent, ••••••••
env: set environment for command ••
environ: user environment •••••••••
environrnen t •••••••••••••••••••••••
environment at login time •••••••••
environment for command •••••••••••
environment name ••••••••••••••••••
epherner ides
eqn anri neqn eqnchar: •••••••••••••
eqn constructs deroff: ••••••••••••
eqn, neqn, checkeq: format ••••••••
eqnchar: special character ••••••••
erand48, Iranrl48, nrand48, ••••••••
er f, er fc: error func tion and •••••
er fc: error func tion and ••••••••••
err: error-logging interface ••••••
errdearl: extract error records ••••
errdemon: error-logging •••••••••••
errfile: error-log file format ••••
errno, sys errlist, sys nerr: •••••
error function and comPlementary ••
error function erf, erfc: •••••••••
error messages perror, errno, •••••
error numbers intro: ••••••••••••••
error records from dump •••••••••••
error-hgndling function •••••••••••
error-log file format •••••••••••••
error-logging daemon ••••••••••••••
error-logging daemon ••••••••••••••
error-logging interface •••••••••••
errors. errpt: •••••••••••••••••••.
errors spell, hashmake, •••••••••••
errpt: process a report of ••••••••
errstop: terminate the ••••••••••••
establish an out-going terminal •••
establish mount table •••••••••••••
etext, edata: last locations in •••
Euclidean distance function •••••••
evaluate arguments
evaluation command

as an ••••••••••
................

event-tracing driver ••••••••••••••
ex fo rca sua 1 us e r s) ••••••••••••••
ex: text editor •••••••••••••••••••
ex vi: screen oriented ••••••••••••

... xi -

I ri 1 se p k (3 X) .
ld rseek(3X)
putpwentC 3C)
unlink(2)
utrnp(4)
getpwp.~t(3C)

ldtbinrlex(3X~

ld tbrearl (3X)
getut(3C)
env(1)
environ(~)

environ(13)
profile(~)
env(l)
getenv(3C)
sky(6)
eqnchar ('3)

deroff(1)
eqn (1)
eqnc har ('5)
drand48(3C)
er f(3M)
erf(3M)
err('!)
erroearl(1M)
errdemon(1M"
errfile(4)
perror(3C)
erf(3M)
erf(3M)
perror(3C)
intro(2)
errdeart (1M)
matherr(3M)
errfile(4)
errnemon(1M)
errstop(1M)
err(7)
errpt(1M)
spell(1)
errpt(1M)
err stope 1 H)
dial(3C)
setmnt(1M)
end(3C)
hypot(3M)
ex pr (1)
teste,)
trace(7)
ed i t(,)
ex(1)
vie,)

"
\

)

Permuteri Inrl ex

crash:
execlp, execvp: execute a file

execu~e a file execl, execv,
execi, execv, execle, execve,

execle, execve, execlp, execvp:
regcmp, regex: compile and

construct argument list(s) and
env: set environment for command

uux: unix to unix command
sleep: suspend
sl eep: sus pend

moni tor: prepare
profi 1 :

execvp: execute a file execl,
file execl, execv, execle,

execv, execle, execv€, execlp,
system calls. link, unlink:

create a new file or rewrite an

exit,
ex panen t 1. aI, log ar i tr.m, power, I

pack, pcat, unpack: compress and
exp, log, 10g10, pow, sqrt:

expression
expr: evaluate ar~uments as an

regcmp: regular
routines regexp: regular

compile anri execute a regular
greek: graphics for the

dump. errdearl:
fsplit: split

absolute/ floor, ceil, fmod,
factor:

true,
rlata in a machine independent

finc:
procedure. checkall:

abort: generate an TOT
stream

floating-point number tol ecvt,
fopen, freopen,

status inquiries ferror,
stream status inquiries

statistics for a file system.
fclose,

worrJ from stream getc, getchar,
stream gets,

pattern grep, egrep,
chmod: change mode of

examine system images ••••••••••••• crash(1M)
execl, execv, execl~, execve, ••.•• exec(?)
execle, execve, execlp, execvp: ••• exec(?)
execlp, execvp: execute a file •••• exec(2)
execute a file execl, execv, •••••• exec(?)
execute a regular expression •••.•• regcmp(3X)
execute command xargs: •••••••••••• xargs(1)
execution ••••••••••••••••••••••••• env(1)
execution ••••••••••••••••••••••••• uux(1C)
execution for an interval ••••••••• sleep(1)
execution for interval •••••••••••• sleep(3C)
execution profile ••••••••••••••••• monitor(3C)
execution time profile •••••••••••• profile?)
execv, execle, execve, execlp, •••• exec(?)
execve, execlp, execvp: execute a . exec(2)
execvp: execute a file execl, ••••• exec(2)
exercise link ann unlink •••••••••. link(1M)
existin~ one creat: ••••••••••••••• create?)
exit, exit: terminate process •••• exit(2)
_exit:-terminate process •••••••••• exit(2)
exp, log, 10g10, pow, sqrt: ••••••• exp(3H)
expann files •••••••••••••••••••••• pack(1)
exponential, logarithm, power,l ••• exp(3M)
expr: evaluate arguments as an •••• expr(1)
expression •••••••••••••••••••••••• expr(1)
expression compile •••••••••••••••• regcmp(1)
expression compile ano match •••••• regexp(5)
expression regcmp, regex: ••••••••• regcmp(3X)
extended TTY~37 type~box •••••••••• greek(5)
extract error records from •••••••• errdead(1M)
f77, ratfor, or efl files ••••••••• fsplit(,)
fabs: floor, ceiling, remainder, •• floor(3M)
factor a number ••••••••••••••••••• factor(1)
factor: factor a number ••••••••••• factor(1)
false; provide truth values ••••••• true(1)
fashion. laccess long integer ••••• sputl(3X)
fast incremental backup ••••••••••• finc(1M)
faster file system checking ••••••• checkall(1M)
fault ••••••••••••••••••••••••••••• abort(3C)
fclose, fflush: close or flush a •• fclose(3S)
fcntl: file control ••••••••••••••• fcntl(2)
fcntl: file control options ••••••• fcntl(5)
fcvt, gcvt: convert ••••••••••••••• ecvt(3C)
fdopen: open a stream ••••••••••••• fopen(3S)
feof, clearerr, fileno: stream •••• ferror(3S)
ferror, feof, clearerr, fileno: ••• ferror(3S)
ff: list file names ano ••••••••••• ff(1M)
fflush: close or flush a stream ••• fclose(3S)
fgetc, getw: get character or ••••• getc(3~)
fgets: get a string from a •••••••• gets(3S)
fgrep: search a file for a •••••••• grep(1)
file•...................... chmori(2)

.... xii

core: format of core image
rirl: convert and copy a

group: group
issue: issue irlentification

link: link to a
mknorl: build spec 1al

null: the null
passwd: password
read: read from

ta i I: t1 eli v er t he I a st pa r t 0 f a
tmpfile: create a temporary

uniq: report repeatp.d lines in a
write: write on a

determine accessibility of a
times utime: set

lrlfen: common object
tar: tape

cpio: copy
pwck, grpck: password/group
change owner and group of a

diff: differential
bd i ff:

diff3: 3-way riifferential
rentl:
fontI:

public UNIX Systern-to-UNTX System
umask: set and get

selecterl fielrls of each line of a
close: close a

dup: duplicate an open

dump selected parts of an object
putpwent: write password

setpwent. enopwent: get password
endutent, utmpname: access utmp

execve, execlp, execvp: execute a
grep. egrep, fgrep: search a

ld ao pen: open a common obj ec t
acct: per-process accounting

ar: common archive
errfile: error-log

intro: introduction to
number entries of a common object

files filehdr:
file ldfhread: read the

ldohseek: seek to the optional
split: split a

header of a member of an archi ve
ldaclose: close a common object
file heaner of a common object

retrieve symbol name for object
symbol table of a common object

Permuterl Tn'" ex

fi 1 e
file
file
fi 1 e
file

· · · · ·
fi 1 e. • •.•.•.••••••••••••••••••••••
file
fil e
fi Ie
file
file
fi Ie
file
file

·
·
· · ·
· ·
access: ••••••••••••••••••••••

file access and modification ••••••
file access routines ••••••••••••••
fi I e archi ver •••••••••••••••••••••
file archives in ano out ••••••••••
file checkers •••••••••••••••••••••
fi Ie c hown: •••••••••••••••••••••••
fi Ie compar ator •••••••••••••••••••
file comparator for large files •••
fi I e com pa r i so n •••••••••••••••••••
file control ••••••••••••••••••••••
file control options ••••••••••••••
file copy uuto, uupick: •••••••••••
file creation mask ••••••••••••••••
file cut: cut out •••••••••••••••••
file descriptor •••••••••••••••••••
file descriptor •••••••••••••••••••
file: determine file type •••••••••
fi led ump: ••••••••••••••••••••••••
file entry ••••••••••••••••••••••••
file entry /getpwu1d, getpwnam, •••
file entry /pututline, setutent, ••
fi Ie execl, execv. execle, ••••••••
file for a pattern ••••••••••••••••
fi I e for read ing ldopen, ••••••••••
file format •••••••••••••••••••••••
fi I e format •••••••••••••••••••••••
file format •••••••••••••••••••••••
file formats ••••••••••••••••••••••
file function /manipulate line ••••
file header for common object •••••
file header of a common object ••••
file header of a common object/ •••
file into pieces ••••••••••••••••••
file Idahread: read the archive •••
file lrlclose, •••••••••••••••••••••
flle Idfhread: read the •••••••••••
file Idgetname: •••••••••••••••••••
file ldtbseek: seek to the ••••••••

.... xiii

core(4)
rid(1)
groupe 4)
issue (4)

1 ink(2)
mknorl (no
null(7)
passwrl (4)
reaci(?)
tail(')
tmpfile(3S)
uniq(1)
write(?)
access(2)
utime(2)
Idfcn(4)
tar(1)
cpio(1)
pwck(11~)
chown(2)
diff(1)
brf i ff(,)
01ff3(1)
fcntl(2)
fcntl(5)
uuto(1C)
umask(2)
cut (,)
close(2)
dup(2)
f1 I e(1)
dump(1)
putpwent(3C)
getpwen t(3C)
getut (3C)
exec(2)
grep(1)
ldopen(3X)
acct(4)
ar(4)
errfile(4)
intro(4)
Iii lrean (3X)
filehdr(4)
Idfhread(3X)
Idohseek(3X)
split(1)
10 ahread (3X)
Idclose(3X)
lrl fhr ea(f(3X)
Idgetname(3"
Id tbseek(3X I

Permut ed Ind ex

number entries in a ~ommon object
or a special or ordinary

a file system. ff: list
chan~e the format of a text

print name list of common object
/find the slot in the utmp

creat: create a new
lseek: move read/write

rewind, ftell: reposition a
table entry of a common object

section header of a common object
information for a common object

files or subsequent lines of one
bfs: big

header for a common objec t
section of a common object

of a section of a common object
filp header of a common object

number information from an obje~t
checksun anti block count of a

syms: common object
mkfs: construct a

mount: mount a
UO'1oun t: unmOW1 t a

tapesavp: daily/weekly UNIX
fsba:

procedure. checkall: faster
and intera~tive/ fsck. rifsck:

fsdb, fsdb1b:
names and statistics for a

vol ume
umount: mount and dismount

ustat: get
mnttab: mounteti

access time. dcopy: copy
c he c kl i s t: list 0 f

volcopy, label it: copy
volcopy, label it: copy

table entry of a common object
create a name for a temporary

of a section of a common object
and motiification times of a

ftw: walk a
fi Ie: determine

umask: set
object files

mktemp: make a unique
ctermid: generate

ferror, feof, clearerr.
txiiff: file comparator for large

cat: concatenate and print
cmp: compare two

fi. 1 eli n en urn: 1 in e ••••••••••••••••
file mknorl: make a ~irectory, •••.•
file names and stati stics for •••••
file newform: •••••••••••••••••••••
f1 Ie nm: ••••••••••••••••••••••••••
file of the current user ••••••••••
file or rewrite an existing one •••
file pointer ••••••••••••••••••••••
file pointer in a stream fseek, •••
file /read an indexed symbol ••••••
file /read an indexed/named •••••••
file reloc: relocation ••••••••••••
file /same lines of several •••••••
file scanner ••••••••••••••••••••••
file scnhdr: section ••••••••••••••
file Iseek to an indexed/name~ ••••
file /seek to relocation entries ••
fi.l~ /s~ek to the optional •••••••.
file /strip symbol ano line ••••.••
file sum: print •••••••••••••••••••
file symbol table format ••••••••••
fi Ie s ys tern. • •••••••••••••••••••••
file system •••••••••••••••••••••••
file system •••••••••••••••••••••••
fi Ie system backup. fi lesav e. • ••.•
file system block analyzer •••••••.
file system checking ••••••••••••••
file system consistency check •••••
file system debugger ••••••••••••••
file system. ff: list file ••••••••
file system: format of system •••••
file system. mount, •••••••••••••••
file system statistics ••••••••••••
file system table •••••••••••••••••
file systems for optimal ••••••••••
file systems processed by fsck ••••
file systems with labell ••••••••••
file systems with labell ••••••••••
file Ithe innex of a symbol •••••••
file tmpnam, tempnam: •••••••••••••
file Ito line number entries ••••••
file touch: update access •••••••••
file tree •••••••••••••••••••••••••
file type •••••••••••••••••••••••••
file-creation mode mask •••••••••••
filehor: file header for common •••
filename ••••••••••••••••••••••••••
filename for terminal •••••••••••••
fileno: stream status inquiries •••
files •••••••••••••••••••••••••••••
files
files

... xiv

.............................

1 in e:1 urn (4)
mknocH2)
ff(lH)
newformC 1)
nm(1)
ttyslot(3C)
creat(2)
lseek(?)
fseek(3S)
ld tbreao (3X)
Id shreari(3X)
reloc(4)
paste(1)
b fs (1)
scnhnr(4)

1" sseek(3X)
10rseek(3X)
1 0 0 h se e k (3 X)
strip(1)
sum(1)
syms(4)
mkfs(1M)
mount(2)

umoun t(2)
f i 1 e sa v e (, H)
fsba(1M)
c he c ka 11 (1 M)
fsck(1M)
fsrib(1M)
ff(1M)
fs(4)
mount(1M)
ustat(2)
mnttab(4)
dcopy(1M)
checklist(4)
volcopy(1M)
volcopy. 1m .010
Id tbind ex (3X)
tmpnam(3S)
Idlseek(3X)
touch(1)
ftw(3C)
file(1)
umask(1)
fi lehdr(4)
mktemp(3C)
ctermid(3S)
ferror(3S)
bOiff(1)
cat(1)
cmp(')

cp, In, mv: copy, link or move
diffmk: mark differences betweerl

fi nri: fi nrl
intro: introrluction to special

In: link editor for common object
pr: pr in t

sort: sort anri/or merp p

an~ print process accounting
merge or add total accounting

VAX-"/780/ fscv: convert
reject lines common to two sorted

file header for common object
free: recover

format specification in text
split f77. ratfor, or efl

scat: concatenate anri print
rm, rmdir: remove

/merge same lines of several
pcat, unpack: compress and expand

section sizes of common object
daily/weekly UNIX file system/

greek: select termirlal
nl: 1 ine numbering

col:

fi no :

hyphen:
t t yn am e, i sa tty:

object library lorder:
hashmake, spell in, hashcheck:

the current user ttyslot:
tee: pi pe

ichar,/ int, ifix, irlint, real,
atof: convert AgeT! string to

ecvt, fevt, gcvt: convert
Idexp, morlf: manipulate parts of

ceiling, remainder, absolute/
floor, ceil, fmoo, fabs:

cflow: generate C
fclose, fflush: close or

remainder, absolute/ floor, ceil,
stream

acct: per-process accounting file
ar: common archive file
errfile: error-log file

nro ff or/ eqn, neqn, checkeq:
newform: change the

inode:
core:
cpio:

Permuted Inrlex

fil es
fi les
files
files
fi les
files

·
·
· · · ·

fi 1 e s •••••••••••••••••••••••••••••
file(s) acctcom: search •••••••••••
files. acctmerg: ••••••••••••••••••
files between M68000 ano ••••••••••
files comm: select or •••••••••••••
files filehor: ••••••••••••••••••••
files from a backup tape ••••.•••••
files fspec: ••••••••••••••••••••••
files fsplit: •••••••••••••••••••••
files on synchronous printer ••••••
fi.les or Ii irectories ••••••••••••••
files or subsequent lines of one/ •
files pack, •••••••••••••••••••••••
files size: print •••••••••••••••••
filesave, tapesave: •••••••••••••••
filter ••••••••••••••••••••••••••••
fi Iter ••••••••••••••••••••••••••••
filter reverse line feeds ••..•..••
fine: fast incremental backup •••••
fin n fi 1 e s ••••••••••••••••••••••••
finn: fino files ••••••••••••••••••
find hyphenated words •••••••••••••
finn name of a terminal •••••••••••
find ordering relation for an •••••
find spelling errors spell, •••••••
finri the slot in the utmp file of •
fitting •••••••••••••••••••••••••••
float, sngl, dble, cmplx, dcmplx, •
floating-point number •••••••••••••
floating-point number to string •••
floating-point numbers frexp, •••••
floor, ceil, (mod, fabs: floor, •••
floor, ceiling, remainder,/ •••••••
flow graph ••••••••••••••••••••••••
flush a stream ••••••••••••••••••••
fmod, fabs: floor, ceiling, •••••••
fopen, freopen, fdopen: open a ••••
fork: create a new process ••••••••
form at ••••••••••••••••••••••••••••
format
format
format
format
format
format
format

-- xv --

............................
mathematical text for ••••••
of a text file •••••••••••••
of an inooe ••••••••••••••••
of core image file •••••••••
of epio archive ••••••••••••

c pC 1)
diffmk(1)
fi nci(1)
intro('l)
10 (1)
pr(l)
sort(l)
aectcom(1)
acctmerg(1H)
fscv(lM)
comm(')
fl Ie hn r (4)
frec(1r4)
fs pec(4)
fs pI i t (,)
scat(,)
rm (1)
paste(1)
pack(1)
si ze (1)
filesave(lH)
greek(1)
nl(')
001(1)
fl nc (1 M)
fi nti (1)
find(1)
hyphen(l)
tt yname(3C)
lorn er (1)
spell(')
t t yslot (3C)
tee(1)
ftype(3F)
atef(3C)
ecvt(3C)
frexp(3C)
floor(3M)
floor(3M)
cflow(1)
fclose(3S)
fleor(3H)
fopen(3S)
fork(2)
aect(4)
ar(4)
errfile(4)
eqn(l)
newform(1)
inode(4)
core(4)
epio(4)

Permuted Inrlex

d ir :
file system:
files fspec:

common object file symbol table
tbl:

nroff:
intra: introrlu0tion to file

utmp, wtmp: utmp and wtmp entry
seanf, fscanf, sscanf: convert

printf, fprintf, sprintf: print
/checkmm: print/check documents

mptx: the macro package for
mm: the MM macro package for

OSOD arlapter macro package for
manual man: macros for

out put pr in tf ,
word on a strea~ putc, putchar,

puts,
input/output
backup tape.

d f: report number of
memory allocator malloc,

fopen,
parts of floating-point numbers

frec: recover files
gets, fgets: get d string

and line number information
getopt: get option letter

errrlearl: extract error records
real'i: read

ncheck: generate names
nlist: get entries

acctcms: command summary
getw: get character or word

getpw: get name
anal yzer.

input scanf,
list of file systems processed by

consistency check and/
M68000 and VAX-11/780/

debugger.
fsdb,

a fi Ie pointer in 'a stream
text files
efl files

in a stream fseek, rewind,

gamma: log gamma
hypot: Euclidean distance
. matherr: error-hanrlling

function erf, erfc: error
function and complementary error

format of directories ••••••••.•••• dir(~)
format of system volume ••••••••••• f5(4)
format specification in text ••.••• fspec(4)
fo rm a t s ym s: ••.••••.••••••••••.••• S ym S (4)
format tables for nroff or troff •• tbl(l)
format tex t •••••••••.••••••••••••• nro ff(1)
formats ••••••••••••••••••••••••••• i.ntro(4)
formats ••••.•••••••••••••••••••••• utmp(4)

formatted input •••.••••••••••••••• scanf(3S)
formatted output •••••••••••••••••• printf(3S)
formatted with the MM macros •••••• rome')
formatting a permuted index ••••••• mptx(5)
formatting documents •••••••••••••• mm(~)
formatting documents mosri: the •••• mosrl(~)
formatting entries in this •••••.•• maneS)
fprintf, sprintf: print formatted. printf(35)
fputc, putw: put character or ••••• putc(3S)
fputs: put a string on a stream ••• puts(3S)
freari, fwrite: binary ••••••••••••• frearl(35)
free: recover files from a •••••••• frec(1M)
free disk blocks •••••••••••••••••• tif(1M)
free, real1oc, ca1loc: main ••••••• malloc(3C)
freopen, fdopen: open a stream •••. fopen(3S)
frexp, lriexp, modf: manipulate •••• frexp(3C)
from a backup tape •••••••••••••••• frec(1M)
from a stream ••••••••••••••••••••• gets(3S)
from an object file /symbol ••••••• stripe 1)
from argument vector •••••••••••••• getopt(3C)
from dump •••.••••••••••••••••••••• errdeadC1M)
from file ••••••••••••••••••••••••• read(2)
from i-numbers •••••••••••••••••••• ncheckC1H)
from name list •••••••••••••••••••• nlist(3C)
from per-process accounting/ •••••• acctcms(lM)
from stream /getchar, fgetc, •••••• getc(3S)
from UTD •••••••••••••••••••••••••• getpw(3C}
fsba: file system block ••••••••••• fsba(1M)
fscanf, sBcanf: convert formatted • scanf(3S)
fsck checklist: ••••••••••••••••••• checklist(4)
fsck, ofsck: file system •••••••••• fsck(1H)
fscv: convert files between ••••••• fscv(1H)
fsdb, fsdb1b: file system ••••••••• fsdb(1M)
fsdb1b: file system debugger •••••• fsdb(1M)
fseek, rewind, ftell: reposition •• fseek(3S)
fspec: format specification in •••• fspec(4)
fsplit: split f77, ratfor, or ••••• fsplit(1)
ftell: reposition a file pointer •• fseek(3S)
ftw: walk a file tree ••••••••••••• ftw(3C)
function •••••••••••••••••••••••••• gamma(3M)
function •••••••••••••••••••••••••• hypot(3M)
function •••••••••••••••••••••••••• matherr(3M)
function ann complementary error •• erf(3M)
fune tion er f, er fc: error •••••.••• er f(3H)

.... xvi

entries of a commO:1 object file
jO, j', j n, yO, Y', yn: Be sse 1

3i~h, cosh, tanh: hyperbolic
remai~der, absolute value
300, 300s: hanrlle special

2621-seriesl hp: handle special
terminal 450: handle special

acos, atan, atan?: trigonometric
logoritr~, power, square root

freart ,
connect accountintl records.

jotto: secret worn
moo: guessing

back: the
bj: the

chess: the
craps: the
reversi: a

wump: the
intro: introduction to

gamma: log

numb~r to string ecvt, fcvt,
maze:

abort:
cflow:

cross-reference cxref:
crypt, setkey, encrypt:

makekey:
ctermid:
ncheck:

lexical tasks lex:
Isranrt48, seed48, lcong48:

rand, srann: simple random-number
gets, fgets:

ulimit:
IJser cuserid:

getc, getchar, fgetc, getw:
nlist:

umask: set and
ustat:

getlog in:
logname:
msgget:

getpw:
. system uname:
vector getopt:

/getpwnam, setpwent. enrtpwent:
directory getcwd:

times times:
parentI getpin, getpgrp, getppid:
getuid. geteuiri, getgid, getegid:

Permuten Inri ex

function Imanipulate line number ••
functions ••.•••••• , •••••••••.••.••
functions
functions Ifabs: floor, ceiling, ••
functions of DASI 300 and 300s1 •••
func tions 0 f HP 2640 and ••••••••••
functions of the DASI 450 •••••••••
functions sin, cos, tan, asin, ••••
functions /sqrt: exponential, •••••
fwrite: binary input/output •••••••
fwtmp, wtmpf!x: manipulate ••••••••
game ••••••••••••••••••••••••••••••
game ••••••••••••••••••••••••••••••
game of backgammon ••••••••••••••••
game of black jack ••••••••••••••••
game of chess •••••••••••••••••••••
game of craps •••••••••••••••••••••
game of dramatic reversals ••••••••
game of hunt-the-wumpus •••••••••••
games
g amm a func tion ••••••••••••••••••••
gamma: log gamma function •••••••••
gcvt: convert floating-point ••••••
generate
generate
generate
generate
generate
generate
generate
generate
generate
generate

a maze
an TOT fault •••••••••••••
C flow graph •••••••••••••
C progranl ••••••••••••••••
DES encryption •••••••••••
encryption key •••••••••••
filename for terminal ••••
names from i-numbers. • •••
programs for simple ••••••
uniformly distributed/ •••

generator •••••••••••••••••••••••••
get a string from a stream ••••••••
get and set user limits •••••••••••
get character login name of the •••
get character or word from/ •••••••
get entries from name list ••••••••
get fil~ creation mask ••••••••••••
get file system statistics ••••••••
get login name ••••••••••••••••••••
get login name ••••••••••••••••••••
get message queue •••••••••••••••••
get name from UTD ••• ~ •••••••••••••
get name of current operating •••••
get option letter from argument •••
get password file entry •••••••••••
get pathname of current working •••
get process and child process •••••
get process, process group, and
get real user, effective user,/ •••

«'" xvii -

ld 1 rearH 3X)
bessel(3M)
sinh(3M)
floor(3r·n
300(1)
hp(1)
450(1)
trig(3M)
exp(3M)
freari(3S)
fwtmp(1M)
jotto(6)
moo(6)
back(6)
bj(6)
chess(6)
craps(6)
reversi(6)
wump(6)
intro(6)
gamma(3M)
gamma(3M)
ecvt(3C)
maze(6)
abort(3C)
cflow(')
cxre!(1)
crypt(3C)
makekey(1)

ctermid(33)
ncheck(1M)
lex(')
dranrt48(3C)
ran(i(3C)
gets(33)
ulimit(2)
cuserid(3S)
getc(3S)
nlist(3C)
umask(2)
ustat(2)
getlogin(3C)
logname(1)
msgget(2)
getpw(3C)
uname(2)
getopt(3C)
getpwent(3C)
getcwd (3C)
times(2)
getpi rj(2)
getuid(2)

Permuted Inn ex

semget:
shmget:

tty:
time:

character or word from stream
charactpr or word from/ getc,

working oirectory
user,/ getuiri, geteuio, getgirl,

env ironment name
real user, effective/ getuirl,

effective user,/ getuid, geteuin,
setgrent, endgrent: obtain
enrigrent: obtain getgrent,
obtain getgrent, getgrgid,

argument vector

process group, ann! getpiri,
process, process group, anrl/
group, anrl/ getpirl, getpgrp,

setpwent, enrlpwent: get password/
j:>asswoni/ ~etpwent, getpwuirl,

endpwent: ~et password/ getpwent,
stream

ann terminal settings used by
mories, speed, and line/

ct: spawn
settings used by getty

get real user, effective user,/
pututline, setutent, endutent,/
setutent, endutent,/ getutent,
endutent,/ getutent, getutid,

stream getc, getchar, fgetc,
date and time/ ctime, localtime,

setjmp, longjmp: non-local
cflow: generate C flow

sag: system activity
type box greek:
TTY-37 type-box

for a pattern
chown, chgrp: change owner or

newgrp: log in to a new
Ireal user, effective user, real

/getppid: get process, process
group:

setpgrp: set process
setuin, setgirl: set user anrl

io: print user ano

get set of semaphores ••••••••••••• semget(2)
get shared memory se~ment ••••••••• shmget(2)
get the terminal's name ••••••••••• tty(1)
get time •••••••••••••••••••••••••• timet?)
gete, getchar, fgetc, getw: get ••• getc(3S)
gptchar, fgete, getw: get ••••••••• gete(3S)
getcwrl : get pathname of current ••• getcw~(3C)
getegid: get real user, effective. getuio(2)
getenv: return value for •••••••••• getenv(3C)
geteuirl, getgid, getegid: get ••••• getuirl(2)
getgid, getegid: get real user, ••• getuid(2)
getgrent, getgrgid, getgrnam, getgrent(3C)
getgrgid, getgrnam, setgrent, ••••• getgrent(3C)
getgrnClTl, setgrent, endgrent: ••••• getgrent(3c)
getlogin: get login name •••••••••• getlogin(jC)
getopt: ~et option letter from •••• getopt(3C)
getopt: parse command options ••••• getopt(1)
getpass: read a password •••••••••• getpass(3C)
getpgrp, getppirJ: get process, •••• getpirl(2)
getpirl, getpgrp, getppid: get ••••• getpirJ(2)
getppirl: get process, process ••••• getpirl(2)
getpw: get name from UTO •••••••••• getpw(3C)
getpwent, getpwuirJ, getpwnam. getpwent(3C)
getpwnam, setpwent, endpwent: get. getpwent(3C)
getpwutrJ, getpwnam, setpwel1t, ••••• getpwen t(3C)
gets, fgets: get a string from a •• gets(3S)
getty gettydefs: speed •••••••••••• getty~efs(4)
getty: set terminal type, ••••••••• getty(1M)
getty to a remote terminal •••••••• ct(1C)
gettydefs: speed and terminal ••••• gettydefs(4)
getuio, geteuid, getgid, getegid: • getuid(2)
getutent, getutid, getutline, ••••• getut(3C)
getutirl, getutllne, pututllne ••••• getut(3C)
getutline, pututline, setutent, ••• getut(3C)
getw: get character or word from •• getc{3S)
gmtime, asctime, tzset: convert ••• ctime(3C)
goto ••••••••••••••••••••••••• ~ •••• setjmp(3C)
graph ••••••••••••••••••••••••••••• cflow(1)
graph ••••••••••••••••••••••••••••• sag(1)
graphics for the extended TTY-31 •• greek(S)
greek: graphics for the extended •• greek(S)
greek: select terminal filter ••••• greek{')
grep, egrep, fgrep: search a file. grep(1)
group ••••••••••••••••••••••••••••• chown(1)
group ••••••••••••••••••••••••••••• newgrp(')
group, and effective group IDs •••• getuid(2)
group, and parent process IDs ••••• getpid(2)
group file •••••••••••••••••••••••• group(4)
group: group file ••••••••••••••••• group(4)
group ID •••••••••••••••••••••••••• setpgrp(2)
group IDs ••••••••••••••••••••••••• setuirJ(2)
group TDs and names ••••••••••••••• ide,)

- xviii -

user, real group, and effective
chown: change owner and

seno a signal to a process or d

maintain, uprlate, and re~enerate
checkers. pwck,

ssignal,
hangman:

moo:
300 and 30051 300, 300s:

2640 anrl ?621-seriesl hp:
DASI 450 terminal 450:

nohup: run a command immune to
hcreate, hdestroy: manage
spell, hashmake, spellin,

find spelling errors spell,
search tables hsearch,

tables hsearch, hcreate,
aouthrlr: optional aout

scnhdr: section
filehdr: file

ldfhrearl: read the file
Iseek to the optional file

Irearl an indexed/named section
file ldahrean: rean the archive

hel p: ask for

hp: handle special functions of
HP 2640 and 2621-seriesl

manage hash search tables
wump: the game of .
sinh, cosh, tanh:

hyphen: finrl
function

setpgrp: set process group
names

semaphore set or shared memory
issue: issue

cmplx, dcmplx, tchar ,I int, i fi x,
id: print user and group

process group, and parent process
real group, and effective group

setgid: set user and group
dble, cmplx, dcmplx, ichar,1 int,

core: format of core
crash: examine system

nohup: run a command
fine: fast

long integer data in a machine
Itgetstr, tgoto, tputs: terminal

ptx: permuterl

Permuted Inri ex

group IDs Ireal user, effective •••
g 1"'0 up 0 f a file •••• 0 •••••••••••••••

~roup of processes kill: ••••••••••
groups of programs make: ••••••••••
grpck: password/group file ••.•••••
gsignal: software Signals •••••••••
guess the word ••••••••••••••••••••
guessing game •••••••••••••••••••••
handle special functions of DASI ••
handle special functions of HP ••••
handle special functions of the •••
hangman: guess the word •••••••••••
hangups and quits •••••••••••••••••
hash search tables hsearch, •••••••
hashcheck: find spelling errors •••
hashmake, spellin, hashcheck: •••••
hcreate, hdestroy: manage hash ••••
hdestroy: manage hash search ••••••
header ••••••••••••••••••••••••••••
header for a common object file •••
header for common object files
hearler of a common object file
hearler of a common object file
header of a common object file
hearler of a member of an archi ve ••
h~ 1 p ••••••••••••••••••••••••••••••
help: ask for help ••••••••••••••••
HP 2640 and 2621-seriesl ••••••••••
hp: hanole special functions of •••
hsearch, hcreate, hdestroy: .~ •••••
hunt-the-wumpus •••••••••••••••••••
hyperbolic functions ••••••••••••••
hyphen: find hyphenated words •••••
hyphenateo words ••••••••••••••••••
hypot: Euclidean distance •••••••••
ID ••••••••••••••••••••••••••••••••
id: print user and group IDs and ••
id Iremove a message queue, •••••••
identification file •••••••••••••••
tdint, real, float, sngl. dble, •••
IDs anrl names •••••••••••••••••••••
IDs Igetppid: get process, ••••••••
IDs Ireal user, effective user, •••
IDs setuirl ••••••••••••••••••••••••
ifix, idint, real, float, sngl ••••
image file ••••••••••••••••••••••••
images ••••••••••••••••••••••••••••
immune to hangups and quits •••••••
i ncremen tal backup. • ••••••••••••••
independent fashion. laccess ••••••
independent operation routines ••••
ind ex •••••••••••••••••••••••••••••

- xix -

getutd(2)
chow:1 (?)
kill(2)
make(1)
pwck(1 M)

ssignal(3C)
hangman(6)
moo(6)
300(1)
hp(1)
4')0(1)
hangman(6)
nohup(,)
hsearcr.(3C)
spell(1)
spell(')
hsearch(3C)
hsearch(3C)
aouthdr(4)
scnhdr(4)
filehdr(4)
ld fhreari (3X)
ldohseek(3X)
ld shrearl (3X)
Id ahreac1 (3X)

help(1)
help(1)
hp(1)
hp(1)
hsearch(3C)
wump(6)
sinh(3M)
hyphen(')
hyphen(1)
hypot(3M)
setpgrp(2)
'id(1)
ipcrm(1)
i ssue(4)
ft ype(3F)
td(1)
getpiti (2)
getu1d(2)
setuid(2)
ft ype(3F)
core(4)
crash(1M)
nohup(1)
finc(1M)
sputl(3X)
termcap(3)
ptxC,)

--- -- - - _._. --- -- --.. -- -- - - - . - _._- - --- --

Permuteri In~ ex

package for formatting a permuterl
a common/ Idtbinriex: compute the
common object/ l~tbreari: rearl an
a/ Idshread, lnnshrearl: rearl an

ldsseek, ldnsseek: seek to an
inittab: script for the

initialization.
init, telinit: process control

/re, power fail : system
popen, pclose:

process
clri: clear

inone: format of an

fscanf, sscanf: convert formatteri
ungetc: push chdracter back into

frean, fwrite: binary
striio: stanriard buffererl

clearerr, fileno: stream status
uustat: uucp status

install:

sngl, rlble, crnplx, rlcmplx,/
abs: return

a641, 164a: convprt between long
sputl, sgetl: acceSS long

atol, atoi: convert string to
/lto13: convert between 3-byte

between 3-byte integers anri long
bcopy:

system consistency check ann
rjestat: RJE status report ano

cat: phototypesetter
err: error~logging

termio: general terminal
tty: controlling terminal

characters asa:
sno: SNOBOL

pipe: create an
facilities status ipcs: report

package stdipe: stannard
sieep: suspend execution for an

sleep: suspenrl execution for
subroutines and libraries
miscellaneous facilities
and application programs

formats

files
maintenance commands and/

calls and error numbers
maintenance procedures

index mptx: the macro •••••••••••••
index of a symbol table entry of ••
indexed symbol table entry of a •••
innexerl/namerl section hearler of •••
inrlexed/named section of a/ •••••••
init process ••••••••••••••••••••••
init, telinit: process control ••••
initialization ••••••••••••••••••••
initialization shell scripts ••••••
initiate pipe to/from a process •••
inittab: script for the init ••••••
i~nooe ••••••••••••••••••••••••••••
inod e ...•.••..•..•......•......•••
inone: format of an inode •••••••••
input seanf, ••••••••••••••••••••••
in put stream ••••••••••••••••••••••
input/output ••••••••••••••••••••••
input/output package ••••••••••••••
inquiries ferror, feof, •••••••••••
inquiry anrl job control •••••••••••
install commands. • ••••••••••••••••
in stall: in stall command s. • •••••••
int, i.fix, irlint, real, float, ••••
integer absolute value ••••••••••••
integer and base-64 ASCII string ••
integer data in a machine/ ••••••••
integer strtol, •••••••••••••••••••
integers and long integers ••••••••
integers 13tol, Ito13: convert ••••
interactive block copy ••••••••••••
interactive repair. /file •••••••••
interactive status console ••••••••
interface •••••••••••••••••••••••••
interface
interface •••••••••••••••••••••••••
interface •••••••••••••••••••••••••
interpret ASA carriage control ••••
interpreter •••••••••••••••••••••••
interprocess channel ••••••••••••••
inter-process communication •••••••
interprocess communication ••••••••
interval ••••••••••••••••••••••••••
interval ••••••••••••••••••••••••••
intro: introduction to
intro: introduction to
intra: introduction to commands ...
intro: introduction to file
intro: introduction to p;ames
intro: introduction to special
intra: introduction to system
intro: introduction to system
in tro: introduction to system

or- xx

rnpt x (S)
Idtbinriex(3X)
lt1 tbr ea~ (3X)
ld shr earl (3X)
lri sseek(3X)
inittab(4)
init(1M)
init(1M)
brc(1M)
popen(35)
inittab(4)
clri(un
inode(4)
'inooe(4)
scanf(33)
ungetc(33)
frea rl (3S)
stdio(3S)
ferror(3S)
uustat(1C)
install(1M)
install(1H)
ft ype (3F)
abs(3C)
a64l(3C)
sputl(3X)
strtol(3C)
13tol(3C)
13tol(3C)
bcopy(1M)
fsck(1M)
rjestat(1C)
cat(7)
err(7)
termio(7)
tty(7)
asa(1)
5no(1)
pi pe(2)
i pc s(1)
std i pe (3C)
sleep(1)
sleep(3C)
intro(3)
intro(S)
intro(1)
intro(4)
intro(6)
intro(7)
intro(1M)
in tro(2)
in tro(8)

application programs intra:
in tro :
intro:

facilities intro:
in tro :

libraries intro:
maintenance commands! intro:

maintenance procedures intro:
error numbers intro:

ncheck: generate names from

abort: generate an
semaphore set or share~ memory/
communication facilities status

/islower, isdigit, isxdigit,
section header of a/ Idshread,

indexed/named section/ lnsseek,
file hp.ader of a common object!

obj ec t fi 1 e for read i~1g
relocation entrip.s of a section/
indexed/named section hpader ofl

in~exed/namerl spction of a/
symbol table entry of a common!
table entry of a common objectl

table of a common object file
getopt: get option

lexical tasks
lex: generate progra~s for simple

introduction to subroutines ann
ordering relation for an object

archives ar: archive and
ulimit: get and set user

line: rp.ao one
establish an out-going terminal

type, modes. speed, and
object file linenum:

/lrllinit, Inlitem: manipulate
of a/ .1dlseek, lrinlseek: seek to
object/ strip: strip symbol and

nl:
cut out selected fields of each

Iprl:
send/cancel requests to an LP

lpr:

Isearch:
col: filter reverse

common object file
comm: select or reject
uniq: report repeated

of several files or subsequent
subsequent/ paste: merge same

Permuted Ind ex

introduction to commands and
in trod uc tion to file formats
introduction to games
introduction to mi scellaneous
introduction to special files
introduction to subroutines and ...
introduction to system
in troduction to system
introduction to system calls and ..
i-numbers •••••••••••••••••••••••••
ioctl: control rlevice •••••••••••••
lOT fault •••••••••••••••••••••••••
ipcrrn: remOve a message queue, ••••
ipcs: report inter-process ••••••••
isalnum, tsspace, ispunct,/ •••••••
Idnshrearl: read an inrlexed/named ••
Idnsseek: seek to an ••••••••••••••
Idohseek: seek to the optional ••••
Idopen, lrfaopen: open a common ••••
ldrseek, ldnrseek: seek to ••••••••
ldshread, ldnshread: read an ••••••
ldsseek, ldnsseek: seek to an •••••
ldtbindex: compute the index of a •
ldtbread: read an indexed symbol ••
ldtbseek: seek to the symbol ••••••
letter from argument vector •••••••
lex: ~eneratp. programs for simple.
lexical tasks •••••••••••••••••••••
libraries intro: ••••••••••••••••••
library lorder: find ••••••••••••••
library maintainer for portable •••
limits ••••••••••••••••••••••••••••
line
line connection dial: •••••••••••••
line discipline. Iset terminal ••••
line number entries in a common •••
line number entries of a common/ ••
line number entries of a section ••
line number information from an •••
line numbering filter •••••••••••••
line of a file cut: •••••••••••••••
line printer daemon •••••••••••••••
line printer Ip, cancel: ••••••••••
line printer spooler ••••••••••••••
line: read one line •••••••••••••••
linear search and update ••••••••••
line-feeds ••••••••••••••••••••••••
linenum: line number entries in a •
lines common to two sorted files ••
lines in a file •••••••••••••••••••
lines of one file /same lines •••••
lines of several files or •••••••••

- xxi -

intro(1)
intro(4)
intro(6)
intro(':)
intro(7)
intro(3)
intro(1r~)
intro(S)
intro(2)
ncheck(1M)
ioctl(2)
abort(3C)
ipcrm(')
i pc s(1)
ctype(3ti.on
Id shr earl (3X)
ld sseek(3X)
ldohseek(3X)
ldopen (3X)
ldrseek(3X)
ld shread (3X)
Id sseek (3X)
ldtbindex(3X)
Id tbreat! (3X)
ld tbseek(3X)
getopt(3C)
lex (1)
lex(')
in tro(3)
lorder(1)
ar (1)
ulimit(2)
line(')
dial(3C)
getty('M)
1 inen'-lIl (4)
lrllread (3X)
ldlseek(3X)
strip(1)
nl(1)
cut(1)
Ipn(1C)
Ip(')
1 pr (,)
1 ine' 1)
lsearch(3C)
col(1)
linenum(4)
comm(1)
uniq(1)
paste(1)
paste(1)

Per-mut eri Inri ex

link, unlink: exercise
files 111:

a.out: common assemblpr ann

cp, In, mv: copy,
1 ink:

ano unlink system calls.

nlist: get entries from na~e
Is:

for a file system. ff:
nm: print name

fsck cteckl ist:
associaterl with a/ sparelist:

xargs: construct argument
cp,

tzset: convert date anrl/ ctirne,
end, ptext, eriata: last

memory plock:
gamma:

newgrp:
exponential, logaritr~,/ exp,

logarithm, power,/ exp, log,
/log10, pow, sqrt: exponential,

errpt: process a report of
getlogin: get

lognamp: get
cuserirl: get character

logname: return
passwrl: change

se t t ing up an env i ronrnen tat

user
a641, 164a: convert between

inriepenrlent/ sputl, sgetl: access
betwee:1 3-byte in teger sand

setjmp,
for an object library

nice: run a command at
to an LP line printer

send/cancel requests to an
enable, disable: enable/disable
Ilpshut, lpmove: start/stop the

accept, reject: allow/prevent
lparlmin: configure the

Ipstat: print
spool in~ system.

request/ lpscherl, Ipshut,

start/ stop the LP request/

1 ink anrl unl ink system calls •••••• 1 ink(1M)
link erlitor for common object ••••• lrl(1)
link erlitor output •••••••••••••••• a.out(4)
link: li:1k to a file •••••••••••••• link(2)
link or move files •••••••••••••••• cp(1)
link to a file •••••••••••••••••••• link(?)
link, unlink: exercise link ••••••• link(1H)
lint: a C program checker ••••••••• lint(1)
list ••••••.••••••••••••••••••••••• nlist(3C)
list contents of directories •••••• 15(1)
list file names and statistics •••• ff(1M)
list of common object file •••••••• nrn(1)
list of file systems processed by • checklist(4)
list the spared sectors ••••••••••• sparelist(B)
list(s) anrl execute command ••••••• xargs(1)
In, mv: copy, link or move files •• cp(1)
loc a I tim e. gm tim e. a sc tim e. ••••••• c tim e (3 c)
locations in program •••••••••••••• end(3C)
lock process, text, or data in •••• plock(2)
log gamma function •••••••••••••••• gamma(3M)
log in to a new group ••••••••••••• newgrp(1)
log, log10, pow, sqrt: •••••••••••• exp(3M)
log10, pow, sqrt: exponential, •••• exp(3M)
logaritrm. power, square rootl •••• exp(3H)
loggerl errors ••••••••••••••••••••• errpt(1M)
login name •••••••••••••••••••••••• getlogi~(3C)
log in name •••••••••••••••••••••••• logname(1)
login name of the user •••••••••••• cuseridC3S)
log in name of user •••••••••••••••• lognamp(3X)
login password •••••••••••••••••••• passwn(l)
login: sign on •••••••••••••••••••• login(1)
login time profile: ••••••••••••••• profile(4)
logname: get login name ••••••••••• logname(1)
logname: return login name of ••••• logname(3X)
long integer and base-64 ASCII/ ••• a64l(3C)
long integer data in a machine •••• sputl(3X)
long integers Iltol3: convert ••••• l3tol(3C)
longjmp: non-local goto ••••••••••• setjmp(3C)
lorder: find ordering relation •••• lorder(1)
low priority •••••••••••••••••••••• nice(1)
lp, cancel: senrl/cancel requests •• Ip(l)
LP line printer lp, cancel: ••••••• Ip(1)
LP printers ••••••••••••••••••••••• enable(1)
LP request scheduler and movel •••• lpsched(1H)
LP requests ••••••••••••••••••••••• accept(1M)
LP spooling system •••••••••••••••• Ipadmin(1M)
LP status information ••••••••••••• lpstat(1)
Ipadmin: configure the LP ••••••••• lpaomin(1M)
lpd: line printer daemon •••••••••• Ipd(1C)
lpmove: start/stop the LP ••••••••• Ipsched(1H)
Ipr: line printer spooler ••••••••• Ipr(1)
Ipsched, lpshut, lpmove: •••••••••• Ipsched(1H)

- xxii -

LP r~quest sche~uler/ lpscheo,
information

jranri48,/ dranrl48, eranrl48,

uprlate
pOinter

integers and lon~1 13tol,

fscv: convert files between
your processor! prlp'1, u3b, vax,

/ac~ess long inteRer rlata in a
docume~1ts mm: the MM

mosrl: the OSDD adapter
permuted inrlex mptx: the

viewgraphs anri/ mv: a troff
m4:

documents formatt~rl with the MM
this manual man:

rmail: senri mail to users or read
or read mail

mail, rmail: spnd
malloc, free, realloc, calloc:

groups of programs make:
ar: arcr.ivp. and library

intro: introduction to system
intro: introrluction to system

mkdir:
ordinary file mknod:

mktemp:
regenerate groups of programs

banner:

main memory allocator
entries in this manual

onyx:
service

one spare:
spare: replace a barl

sparelist: list the spared
onyx: Onyx 6810 special system

spared sectors associated with a
replace a bad sector with a

a spare one
slice sparelist: list the

sectors associated with a slice
onyx: Onyx 6810

adduser: arld a user to the
onyx: Onyx 6810 special

checkcw: prepare constant-width
plock: lock process,

tgetstr, tgoto, tputs: terminal/
terminal/ tgetent, tgetnum,

Permuterl Inri ex

lpshut, lpmove: start/stop the •••• lpscherl(1H)
lpstat: print LP st~tus •••••••..•• Ipstat(1)
lrand48, nranrl48, mranrl48, ••••.••• rlran ri 48(3C)
Is: list contents of directories •• Is(1)
Isearch: linear search and •••••••• Isearch(3C)
Iseek: move rearl/write file ••••••• lseek(?)
Ito13: convert between 3-byte ••••• 13tol(3C)
m4: macro processor •••••••••••.••• m4(1)
M68000 and VAX-11/7BO/ •••••••••••• fscv(1M)
m68k: provide truth value about ••• machi0(1)
machine independent fashion •••.••• sputl(3X)
macro package for formatting •••••• mm(S)
macro package for formatting/ ••••• rnosd(5)
macro package for formatting a •••• mptx(5)
macro package for typesetting .•••. mv(~)
macro processor •••••••••••••••.••• m4(1)
macros /checkmm: print/check •••••• mm(1)
rnacros for formatting entries in •• man(5)
mail mail, •••••••••••••••••••••••• mail(1)
mail, rmail: send mail to users ••• mailC')
mail to users or read mail •••••••• mail(1)
main memory allocator ••••••••••••• malloc(3C)
maintain, upnate, and regenerate •• make(')
maintainer for portable archives •• are,)
maintenance commands and/ ••••••••• intro(1M)
maintenance procedures •••••••••••• intro(8)
make a directory •••••••••••••••••• mkdir(1)
make a directory, or a special or • mknod(2)
make a unique filename •••••••••••• mktemp(3C)
make: maintain, update, and ••••••• make(1)
make posters •••••••••••••••••••••• banner(')
makekey: generate encryption key •• makekey(1)
malloc. free, realloc, calloc: •••• malloc(3C)
man: macros for formatting ••••.••• maneS)
Onyx 6810 special system service •• onyx(2)
onyx: Onyx 6B10 special system •••• onyx(2)
replace a bad sector with a spare. spare(8)
sector with a spare one ••••••••••• spare(8)
sectors associated with a slice ••• sparelist(8)
service ••••••••••••••••••••••••••• onyx(2)
slice sparelist: list the ••••••••• spareIist(8)
spare one spare: •••••••••••••••••• spare(B)
spare: replace a bad sector with •• spare(B)
spared sectors associated with a •• sparelist(8)
sparelist: list the spared •••••••• sparelist(8)

'special system service •••••••••••• onyx(2)
system •••••••••••••••••••••••••••• adduser('M)
system service •••••••••••••••••••• onyx(2)
text for troff cw, •••••••••••••••• cw(1)
text, or data in memory ••••••••••• plock(?)
tgetent, tgetnum, tgetflag, ••••••• termcap(3)
tgetflag, tgetstr. tgoto, tputs: •• termcap(3)

..,.. xxiii

/

Permuted Inri ex

t~oto, tputs: terminal/ t~etent,
tgetent, tgetnum, tgetfla~,
t~etnum, tgetflag, tgetstr,

ttt, cubic:
stime: set

time: get
time:

data anrl system activity timex:
systems for optimal access

profil: execution
up an environment at login

asctime, tzset: convert date and
clock: report CPU

process times
upriate access anrl modi fication
~et process ano child process

set file access and modification
process data ano system!

for a temporary file
/tolower, toupper, tolower,
. po pen , pelose: initiate pipe

toupper, tolower, toupper,
toascii: translate/-toupper,

tsort:
acctrnerg: merge or arld

mod 1 fication times of a fi 1 e
translate! toupper, tolower,
tolower, toascii: translatel

- /tgetflag, tgetstr, tgoto,

ptrace: process

tr:
_toupper, tolower, toascii:

ftw: walk a file
twalk: mana~e binary search

tan, aSin, acos, atan, atan2:
tbl: format tables for nroff or
prepare constant-width text for

typesetting viewgraphs and/ mv: a
mathematical text for nroff or

values
pdp11, u3b, vax, m68k: provide

true, false: provirle
binary search trees

interface

tgetnurn, tgetflag, tgetstr, ••••••• termcap(3)
tgetstr, tgoto, tpu~s: terminal/ •• termcap(3)
tgoto, tputs: terminal/ tgetent, •• termcap(3)
tic ~ ta c - to e ••••••••••••••••.•••••• t t t (6)
time
time
time

..............................
a command ••••••••••••••••••••

time a commanrl; report process ••••
ti.me. dcopy: eopy file ••••••••••••
time: get time ••••••••••••••••••••
time profile ••••••••••••••••••••••
time profile: setting •••••••••••••
time: time a command ••••••••••••••
time to string Igmtime, •••••••••••
time used •••••••••••••••••••••••••
times: get process and child ••••••
times of a file touch: ••••••••••••
times times: ••••••••••••••••••••••
times utime: ••••••••••••••••••.•••
timex: time a command; report •••••
tmpfile: create a temporary file ••
tmpnam, tempnam: create a name ••••
toascii: translate characters •••••
to/from a process •••••••••••••••••
tolower, toascii: translatel •••••

tolower, toupper, tolower, ••••••
topological sort •• -: ••••••••••.••••
total accounting files •••••.••••••
touch: uprlate access and ••••••••••
toupper. tolower. toasci i: ••••••

toupper, tolower, to upper , •••••••
tputs: terminal independentl ••••••
tr: translate characters ••••••••••
trace •••••••••••••••••••••••••••••
trace: event-tracing rlriver •••••••
translate characters ••••••••••••••
translate characters ltolower t ••••

tree ••••••••••••••••••••••••••••••
trees tsearch. tdelete ••••••••••••
trigonometric functions Icos, •••••
troff •••••••••••••••••••••••••••••
troff ew, eheckew: ••••••••••••••••
troff macro package for •••••••••••
troff Ineqn, eheckeq: format ••••••
troff: typeset text •••••••••••••••
true, false: provide truth ••••••••
truth value about your processorl •
truth values ••••••••••••••••••••••
tsearch t tdelete, twalk: manage •••
tsort: topological sort •••••••••••
ttt, cubic: tic-tac-toe •••••••••••
tty: controlling terminal •••••••••

- xxiv -

stime(2)
time(2)
time(1)
timex (,)
r.lcopy(1M)

time(2)
proft 1 (2)
profile(4)
time(1)
ctime(3C)
clock(3C)
times(2)
touch(')
ti.mes(2)
utime(2)
timex (,)
tmpfile(3S)
tmpnam(3S)
conv(3C)
popen(33)
conv(3C)
conv(3C)
tsort(l)
aecmer g (1 M)
touch(1)
conv(3C)
conv(3C)
termcap(3)
tr(1)
ptrace(2)
trace(1)
tr(1)
conv(3C)
ftw(3C)
tsearch(3C)
trig(3M)
tbl(1)
ewe,)
mv(S)
eqn(')
troff(1)
true(1)
maehid(l)
true(')
tsearch(3C)
tsort(l)
ttt(6)
tty(1)

greek: graphics for the extenrlerl
terminal

utmp ftle of the current user
/runacct, shutacct, startup.

trees tsearch, trlelete,
file: determine file
getty: set terminal

truth value about your processor
graphics for the extendpd TTY-37

types: primitive system data
types

and slides mmt, mvt:
troff:

mv: d troff macro package for
/localtime, ~mtime, asctime,

value about your/ pop'1,
getpw: get name from

mask
mask

file system. mount,

operating system
System

input stream
seerl48, Icong48: generate

fi le
mkt.emp: make a

config: configure
cu: call another

unlink system calls. link,

unlink: exercise link and
umount:

files pack, peat,
lsearch: linear search and

times of a file touch:
programs make: maintain,

sync:
sync:

du: summarize disk
logname: return login name of

su: become super user or another
write: write to another

setuid, setgid: set
id: print

get character login name of the
and/ /getgid, getegid: get real

environ:
ulimit: get and set

Permuted Inri f'X

tty: ~et the terminal's name ••..••
TTY-31 type-box ••• ~ •••••••.•••••••
ttyname, isatty: find name of a •••
ttyslot: find the slot in the •••••
turnacct: shell procedures forI •••
twalk: manage binary search ••••••.
type •.........•.•••....••••••.•.•.
type, modes, speed, and line/ •••••
type /u3b, vax. m68k: provide •••••
type-box greek: •••••••••••••••••••
type s
types: primitive system data ••••••
typeset documents, viewgraphs, •••.
typeset text ••••••••••••••••••••••
typesetting viewgraphs and/ •••••••
tzset: convert date and time to/ ••
u3b. vax, m68k: provide truth •••••
U I D •••••••••••••••••••••••••••••••
ulimit: get and set user limits •••
umask: set and get file creation ••
umask: set file-creation mode •••••
umount: mount and dismount ••••••••
umount: unmount a file system •••••
uname: get name of current ••••••••
uname: print name of current UNIX •
ungetc: push character back into
uniformly distributed/ /sranrl48, ••
uniq: report repeated lines in a ••
unique filename •••••••••••••••••••
'Jni ts: conversion program •••••••••
UNIX SYSTEM V •••••••••••••••••••••
UNIX SYSTEM V system ••••••••••••••
unlink: exercise link and •••••••••
unlink: remove directory entry ••••
unlink system calls. link, ••••••••
unmount a file system •••••••••••••
unpack: compress and expanri •••••••
upd ate ••••••••••••••••••••••••••••
update access and modification ••••
update, and regenerate groups of ••
update super-block ••••••••••••••••
update the super block ••••••••••••
usage •••••••••••••••••••••••••••••
user
user

..............................
user••..•.....
user and group IDs ••••••••••••••••
user and group IDs and names ••••••
user cuserid: •••••••••••••••••••••
user, effective user, real group, •
user environment ••••••••••••••••••
user limits •••••••••••••••••••••••

- xxv -

tty(1)
greek(5)
t t yn am p (3 c)
ttyslot(3C)
acctsh(1M)
tsearc h(3C)
fi I p(1)
getty(HO
machid (,)
greek(5)
types(5)
types(~)
mmt(1)
troff(,)
mv(S)
ctime(3C)

machit1(1)
getpw(3C)
ulimit(2)
urnask(2)
umask(1)
mount(1M)
umount(2)
uname(?)
uname(1 }
ungetc(3S)
rlrand48(3C)
unlq(1)
mktemp(3C)
units(1}
con fig. 68 (1 M)

cu(1C)
link(1M)
unlink(2)
link(1M)
umount(2)
pack(1)
lsearch(3C)
touch(')
make(1)
sync (2)
sync(1)
due,)
logname(3X)
su(1)
wrl tee 1)
setuid(2)
ide,)
cuserid(3S)
getuid(2)
environ(S)
ulimit(2)

)

I

/

Permuterl Tnrl ex

Igeteg1d: ~et real uspr, effective
arlduser: adrl a

in the utmp file of the current
wall: write to all

f.1itor (variant of ex for casual
mail, rmail: send mail to

statistics
modification times

utmp, wtmp:
ennutent, utmpname: access

ttyslot: find the slot in the
formats

Ipututline, setutent, endutent,
clean ... up.

uusub: monitor
uuclean:

control uustat:
copy

UIlCP,

uue p, uulog,
System-to-UNIX System file/ uuto,

job control

System~to-UNTX System file copy
execut i.on

abs: return integer absolute
lu3b, vax, m68k: provine truth

getenv: return
ceiling, remainoer, absolute

true, false: provide truth
edit: text editor

about your processorl prlp11, u3b,
Ifiles between M68000 and

get option letter from argument
assert:

vpr:
vc:

display editor based on ex
mmt, mvt: typeset documents,

macro package for typesetting
ex vi: screen oriented

systems wi th label checking.
systems with label checking.

file system: format of system

process
terminate wait:

stop or terminate
ftw:

user, real group, and effectivel •• getuid(2)
user to the system , ••••••••••••••• ad~user(1M)
user ttyslot: find the slot ••••••• ttyslot(3C)
users ••••••••••••••••••••.•.•••••• wall(1M)
users) edit: text ••••••••••••••••• erlit(1)
users or read mail ••••••••••••.••• mail(1)
ustat: get file system •••••••••••• ustat(2)
utime; set file access and •••••••• utime(2)
utmp and wtmp entry formats ••••••• utmp(4)
utmp file entry /setutent, •••••••• getut(3C)
utmp file of the current user ••••• ttyslot(3C)
utmp, wtmp; utmp anri wtmp entry ••• utmp(4)
utmpname: access utmp file entry •• getutC3C)
uuclean: uucp spool directory ••••• uuclean(HD
uucp network •••••••••••••••••••••• uusub(1r~)
uucp spool directory clean-up ••••• uucl ean(un
uucp status inquiry and job ••••••• uustat(1C)
uuep, uulog. uunarne: unix to unix • uucp(1C)
uulog, uuname: unix to unix copy •• uucp(1C)
uuname: unix to unix copy ••••••••• uucp(1C)
uupick: public UNIX ••••••••••••••• uuto(1C)
uustat: uucp status inquiry ann ••• uustat(1C)
uusub: monitor uucp network ••••••• uusubC'M)
uuto, uupick: public UNIX ••••••••• uuto(1C)
uux: unix to unix command ••••••••• uux(lC)
value ••••••••••••••••••••••••••••• abs(3C)
value about your processor type ••• machid(1)
value for environment name •••••••• getenv(3C)
value functions Ifabs: floor, ••••• floor(3M)
values •••••••••••••••••••••••••••• true(1)
(variant of ex for casual users) •• erii t(,)
vax, m68k: provide truth value •••• machid(1)
VAX-11/780 processors ••••••••••••• fscv(lM)
vc: version control ••••••••••••••• ve(1)
vector getopt: •••••••••••••••••••• getopt(3C)
verify program assertion •••••••••• assert(3X)
Versatec printer spooler •••••••••• vpr(1)
version control ••••••••••••••••••• vc(l)
vi: screen oriented (visual) •••••• vi(1)

. viewgraphs, and slides •••••••••••• mmt(1)
viewgraphs ann slides la troff •••• mv(~)
(visual) display editor based on •• vi(1)
volcopy, labelit: copy file ••••••• volcopy(1M)
volcopy. labelit: copy file ••••••• volcopy.1m.ol~
volume •••••••••••••••••••••••••••• f5(4)
vpr: Versatec printer spooler ••••• vpr(l)
wait: await completion of ••••••••• wait(1)
wait for child process to stop or • wait(2)
wait: wait for child process to ••• wait(2)
walk a file tree •••••••••••••••••• ftw(3C)
wall: write to all users •••••••••• wallC1M)
wc: word count •••••••••••••••••••• wc(1)

- xxvi -

siFnal signal: specify
signal signal: specify

crashes crash:
whono:

who:

cd: change
chd ir: change

getcwd: get pathname of current
pwn:

wri te:
putpwent:

wall:
wri te:

open: open for rearling or
utmp, wtmp: utmp and

formats utmp,
accounting records. fwtmp,

hunt-the-wumpus
and execute comma,rl

jO, j1, jn.
jO, jl, jn, yO,

compiler-compiler
jO, jl, jn, yO, yl.

Perrnuterl Inrlex

what to do upon receipt of
what to 00 upon receipt of
what to do when the system

a ••••••
a ••••••
........

who is doing what. • •••••••••••••••
who is on the system ••••••••••••••
who: who is on the system •••••••••
whono: who is doing What ••••••••••
working directory •••••••••••••••••
working directory •••••••••••••••••
working directory •••••••••••••••••
working directory name ••••••••••••
write on a file •••••••••••••••••••
write passwor~ file entry •••••••••
write to all users ••••••••••••••••
write to another user •••••••••••••
write: write on a file ••••••••••••
write: write to another user •••••.
wr it i ng •••••••••••••••••••••••••••
wtmp entry formats ••••••••••••••••
wtmp: utmp and wtmp entry •••••••••
wtmpfix: manipulate connect •••••••
~Jmp: the game of ••••••••••.••••••
xargs: construct argument list(s) •
yO, Y 1. yn: Bessel func tions ••••••
y1, yn: Bessel functions ••••••••••
yacc: yet another •••••••••••••••••
yn: Bessel functions ••••••••••••••

- xxvii -

signal(2)
signal.?olrl
crash.m68(8)
whodo(1t-D
who (1)
who(')
whorlo(lM)
cd (,)
chdir(2)
getcwO (3C)
pwrl (1)
write(2)
put pwen t(3C)
wall(1M)
write(1)
wr i tee?)
write(1)
open C 2)
utmp(4)
utmp(4)
fwtmp(1 M)
wump(6)
xargs(l)
bessel(3M)
bessel(3H)
yacc(')
bessel(3M)

tN1RO(2) IN'rRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
'include <errno.h>

DESCRIPTION
T~is sp.ction describps all the system calls. Most of these
calls have one or more error returns. An error condition is
inrlicated by an otherwise impossible returned value. This
is almost always -1; the individual descriptions specify the
rletails. An error number is also made available in the
external variable errno. Errno is not cleared on successful
calls, so it should be test~nly after an error has been
i:1rlicaterl.

All the possible error numbers are not listed in each system
call description because many errors are possible for most
of the calls. The following is a complete list of the error
numbers and their names as defined in <errno.h>.

EPEPM Not owner
Typically this error inrlicates an attempt to modify a
file in some way forbidden· except to its owner or
superuser. It is also returned for attempts by ordi
nary users to do things allowed only to the superuser.

2 ENOENT No such file or directory
This error occurs when a filename is specified and the
file should exist but doesn't, or when one of the
directories in a pathname does not exist.

3 ESPCH No such process
No process can be found corresponding to that specified
by the process identifier (~) in kill(2) or
pt~~(2) •

4 EINT? Interrupted system call
An asynchronous signal (such as interrupt or quit),
which the user has elected to catch, occurred during a
system call. If execution is resumed after processing
the signal, it will appear as if the interrupted system
call returned this error condition.

5 ETO liD error
Some phYSical 1/0 error. This error may in some cases
occur on a call following the one to which it actually
applies.

6 ENXTO No such device or address
1/0 on a special file refers to a subdevice which does
not exist; or the liD is beyond the limits of the

- 1 - Printed 6 1985

INTRO(2) INTRO(2)

rievice. This error may also occur when, for example, a
tape drive is not on-line or no disk pack is loaded on
a rlrive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presenteri
to a member of the exec(2) family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it
has the appropriate permissions, does not start with a
valid magic number (see ~.out(4».

9 EBADF Bari file number
Either a file riescriptor refers to no open file or a
read (respectively write) request is made to a file
which is open only for writing (respectively reariing).

10 ECHILD No chilri processes
A wai!(2) was executed by a process that had no exist
ing or unwaited-for child processes.

11 EAGAIN No more processes
A fork(2) faileri because the system's process table is
fu~or the user is not allowed to create any more
processes.

12 ENOMEM Not enough space
D uri n g a n ~~ (2), £~ (2), 0 r s b r k (2) call, apr 0 g ram
asked for more space than the system is able to supply.
T~is is not a temporary conrlition; the maximum space
size is a system parameter. The error may also occur
if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there
is not enough swap space during a fork(2).

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden
by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting
to use an argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was
required, e.g., in mount(2).

16 EBUSY Mount device busy
An attempt was made to mount a device that was alreariy
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current

- 2 - Printed 6 1985

INTRO(2) INTRO(2)

directory, mounted-on file, active text segme:1t). This
error also occurs if an attempt is made to enable
accounting when it is already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate con
text, e.g., link(2).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system
call to a device; e-.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directorv was specified where a directory is
required; e.g., in a path prefix or as an argument to
chrlir(2). ---

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted
device; mentioning an undefined signal in signal(2), or
kill(?); reading or writing a file for which Iseek(?)
has- generated a negative pointer). Also se~bY-the
math functions described in the (3M) entries of this
manual.

23 ENFILE File table overflow
The system's table of open files is full, and
porarily op~(2) cannot be accepted.

24 EMFILE Too many open files

tem-

No process may have more than 20 file descriptors open
at a time.

25 ENOTTY Not a typewriter

26 ETXTB~Y Text file busy
An attempt was made to execute a pure-procedure program
which is currently open for writing or reading. This
error also indicates an attempt to open for writing a
pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ~~.!:.(2).

28 ENOSPC No space left on device

- 3 - Printed 6 1985

INTRO(2) INTPO(2)

During a write(2) to an ordinary file, there is no free
space lef~on-the device.

29 ESPIPE Illegal seek
An lE~~~(2) was issued to a pipe.

30 EROF~ Rearl-only file system
An attempt to moriify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links
An attempt was made to make more than the maximum
number of links (1000) to a file.

32 EPIPE Broken pipe
An attempt was made to write on a pipe for which there
is no process to read the data. This condition nor
mally generates a signal; the error is returned if the
signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is
out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not
representable within machine precision.

35 ENOM~G No message of desired type
An attempt was made to receive a message of a type that
does not exist on the specified message queue; see
msg££(2).

36 EIDPM Identifier Removed
This error is returned to processes that resume execu
tion due to the removal of an identifier from the file
system's name space (see msgctl(2), ~mctl(2), and
shmctl(2».

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOC$I No CSI structure available

- 4 - Printed 6 198~

/

IN!RO(2) INTRO(2)

44 EL?HLT Level 2 halted

45 EDEADLOCK File locking deadlock situation

46 ENOSHP Not a binary shareable file

DEFINITIONS
Process ID

Eac~ active process in the system is uniquely identified by
a positive integer called a process ID. The range of this
ID is from 0 to 30,00 0 •

Parent Process ID
A new process is created by a currently active process; see
for~(2). The parent process ID of a process is the process
TD of its creator.

Process Group ID
Each active process is a member of a process group that is
identified by a positive integer called the process group
TD. This ID is the process ID of the group leader. This
grouping permits the signaling of related processes; see
kill(2).

Tty Group ID
Each active process can be a member of a terminal group that.
is identified by a positive integer called the tty group ID.
This grouping is used to terminate a group of related
processes upon termination of one of the processes in the
group; see ~~(2) and ~£~~!(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive
integer called a real user ID.

Each user is also a member of a group. The group is identi
fied by a positive integer called the real group ID.

An active process has a real user ID and real group ID that
are set to the real user ID and real group ID of the user
responsible for the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective
group ID that are used to determine file access permissions
(see below). The effective user ID and effective group ID
are equal to the process's real user ID and real group ID
unless the process or one of its ancestors evolved from a
file that had the set-user-ID bit or set-group-ID bit set;
see ~(2).

Super user

- 5 - Printed 6 1985

INTRO(2) INTRO(2)

A process is recognizeo as a superuser process ano is
granted special privileges if its effective user ID is O.

Special Processes
The processes with a process ID of 0 and a process ID of
are special processes ano are referred to as pro~ ano
pr 0 c 1 •

ProcO is the scheduler. Proc1 is the initialization process
TInit). Proc1 is the ancestor of every 'other process in the
system and is used to control the process structure.

Filename.
Names consisting of 1 to 14 characters may be used to name
an ordinary file, special file, or directory.

These characters may be selected from the set of all charac
ter val~es excluding \0 (null) and the ASCII code for I
(slash).

Note that it is generally unwise to use .,1, [, or] as
part of filenames because of the special meaning attached to
these characters by the shell; see ~(1). Although permit
ted, it is advisable to avoid the use of unprintable charac
ters in filenames.

Pathname and Path Prefix
A pathname is a nUll-terminated character string starting
with an optional slash (I), followed by zero or more direc
tory names separated by slashes, optionally followed by a
filename.

More precisely, a pathname is a null-terminated character
string constructed as follows:

<pathname>::=<filename>:<path-prefix><filename>:1
<path-prefix>::=<rtprefix>:/<rtprefix>
<rtprefix>::=<dirname>/:<rtprefix><dirname>1

where <filename> is a string of 1 to 14 characters other
than the ASCII slash and null, and <dirname> is a string of
1 to 14 characters (other than the ASCII slash and null)
that names a directory.

If a pathname begins with a slash, the path search begins at
the root directory. Otherwise, the search begins from the
current working directory.

A slasr. by itself names the root directory.

Unless specifically stated otherwise, the null pathame is
treated as if it named a non-existent file.

- 6 - Printed 6 1985

/

/
/

INTRO(2) INTRO(2)

Directory.
Directory entries are called links. By convention, a direc-
tory contains at least two links, • anri •• , referred to as
no.!:. anti i 0 t - .9.9.!, res p e c t i vel y • Dot ref e r s tot h e d ire c tor y
itself and riot-riot refers to its parent directory.

Root Directory and Current Working Directory.
Each process has associated with it a concept of a root
directory anti a current working directory for the purpose of
resolving pathname searches. A process's root directory
need not be the root directory of the root file system.

File Access Permissions.
Read, write, and execute/search permissions on a file are
granted to a process if one or more of the following are
true:

The process's effective user ID is superuser.

The process's effective user ID matches the user TD of
the owner of the file and the appropriate access bit of
the "owner" portion (0700) of the file mode is set.

The process's effective user 1D rloes not match the user
1D of the owner of the file, and the process's effec
tive group ID matches the group of the file anrl the
appropriate access bit of the "group" portion (070)
of the file mode is set.

The process's effective user 1D does not match the USer
1D of the owner of the file, and the process's effec
tive group ID does not match the group ID of the file,
and the appropriate access bit of the "other" portion
(07) of the file morle is set.

If none of these conditions exists, the corresponding
missions are denied.

per-

Message Queue Identifier
A message queue identifier (msqid) is
integer created by a msgget(2) system
a message queue and a data structure
The nata structure is referred to as
the following members:

a unique positive
call. Each msqid has
associated with it.
~~~ and contains 

struct i pc_perm msg_perm; 1* operation permission struct */ 
ushort msg _qnum; 1* number of msgs on q *1 
ushort msg_qbytes; 1* max number of bytes on q *1 
ushort msg_lspid; 1* pid of last m sg snd operation */ 
ushort msg_lrpid; 1* pid of last msgrcv operation */ 
time t m sg_ st ime; 1* last msgsnd time·1 -+ . ..,1 me t m sg_rti me; 1* last msgrcv time *1 

- 7 - Printed 6 1985 



INTRO(2) INTRO(2) 

time t msg_ctime; II last change time II 
II Times measured in secs since *1 
II 00:00:00 GMT, Jan. " 1970 *1 

Msg perm is an ipc perm structure that specifies the message 
operation permission (see below). This structure includes 
the followi~g members: 

ushort cuiri ; II creator user id II 
ushort cgid; II creator group id II 
ushort uid; II user id II 
ushort gid; II group id II 
ushort mode; II r/w permission II 

~qnum is the number of messages currently on the queue. 
Msg qbytes is the maximum number of bytes allowed on the 
queue:-~Sg lspid is the process id of the last process that 
performe~~--msgsnd operation (see ~£E(2)). Ms~lrpid is 
the process id of the last process that performed a msgrcv 
operation (see msgop(2)). Msg stime is the time of the lost 
msgsnrl operation,-msg rtimeiSthe time of the last msgrcv 
operation, anrl msg-ctime is the time of the last msgctI(2) 
operation that chang;d a member of the above structure:--

Message Operation Permissions. 
In the msgop(2) and msgctl(2) system call descriptions, the 
permission required for an operation is given as {token}, 
where token is the type of permission neerled, interpreted as 
follows:--

00400 
00200 
00060 
00006 

Read by user 
Write by user 
Read, Write by group 
Read, Write by others 

Rearl and Write permissions on a msqid are granted to a pro
cess if one or more of the following are true: 

The process's effective user 10 is superuser. 

The process's effective user 10 matches msg perm.[~]uid 
in the data structure ~~sOciated with ~~ and the 
appropriate bit of the user" portion (0600) of 
~g pe.!:.!!!..~ is set. 

The process's effective user 10 does not match 
msg perm.[c]uid, the process's effective group ID 
ma~~msg p;rm.[c]gid, and the appropriate bit of the 
"grOup'~rtion TObe) of msg perm.~ is set. 

The process's effective user TO does not match 
msg perm.[c]uirl, the process's effective group TO does --- ---

- 8 - Printed 6 1985 



; 

INTRO(2) INTRO(2) 

not match msg perm.[c]gid, and the appropriate bit of 
the "0 the r:-r-' -port ion (06) 0 f . m s g per m • ~~ iss e t • 

Otherwise, the corresponding permissions are denied. 

Semaphore Identifier 
A semaphore identifier (semid) is a unique positive integer 
created by a ~~K~!(2) system call. Each semid has a set of 
semap~ores anrl a data structure associated with it. The 
data structure is referred to as semid ds and contains the 
following members: 

struct 
ushort 
timp t 
time t 

ipc_perm sem_perm; 
sem_nsems; 
sem_otime; 
sem_ctime; 

II operation permission struct *1 
1* number of sems in set II 
II last operation time II 
1* last change time II 
II Times measured in secs since *1 
II 00:00:00 GMT, Jan. " 1970 II 

Sem perm is an ipc perm structure that specifies the sema
phore operation permission (see below). This structure 
includes the following members: 

ushort cuirl; II creator user id II 
ushort c g id ; II creator group id II 
ushort uirl; II user id *1 
ushort gid; II group id *1 
ushort mod e; II ria permission II 

The value of sem nsems is equal to the number of semaphores 
in the set. Each semaphore in the set is referenced by a 
positive integer referred to as a sem num. Sem num values 
run sequentially from 0 to the value of sern-ns;ms-rninus 1. 
Sem otime is the time of the last semop(2-)--operation, and 
~~~ is the time of the last ~~(2) operation that 
changed a member of the above structure.

A semaphore is a data structure that contains the following
members:

ushort
short
ushort
ushort

semval;
sempid;
semncnt;
sernzcnt;

II semaphore value *1
II pid of last operation *1
II H awaiting semval > cval */
1* # awaiting semval = 0 II

Semval is a non-negative integer. Sempid is equal to the
process ID of the last process that performed a semaphore
operation on this semaphore. Semncnt is a count of the
number of processes that are currently suspended until this
semaphore's semval becomes greater than its current value.
Semzcnt is a count of the number of processes that are
currently suspended until this semaphore's semval becomes

- 9 - P·r i n ted 6 1 9 8 5

INTRO(2) INTRO(2)

zero.

Semaphore Operation Permissions.
Tn the semop(2) anrl semctl(2) system call descriptions, the
pArmission-required-for- an operation is given as {token},
where tokAn is the type of permission needed, interpr"eterl as
followS-:--

00400
00200
00060
00006

Pearl by user
Alter by user
Pearl, Alter by group
Pead, Alter by others

Pead anrl Alter permissions on a semid are granted to a pro
cess if one or more of the following are true:

The process's effective USAr ID is superuser.

The process's effective user ID matches sern perm.[c]uirl
in the data structure associated with semid anrl the
appropriate bit of the "user" portion (0600) of
~perm.mod~ is set.

The process's effective user ID does not match
sem perm.[c]uid, the process's effective group ID
matches sern perm.[c]gid, and the appropriate bit of the
"group'-'-portion (060) of sem perm.mod~ is set.

The process's effective user ID does not match
sem perm.[c]uid, the process's effective group ID does
no~match sem-perm.[c]gid, and the appropriate bit of
the" other" portion (06) of sem perm.~ is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive
integer created by a sh~get(2) system call. Each shmid has
a segment of memory (referred to as a shared memory segment)
and a data structure associated with it. The data structure
is referred to as shmid ds and contains the following
members:

struct i pc_perm shm _perm; II: operation permission struct 1:1
in t shm _segsz; II: si ze of segment 1:1
ushort shm_cpid; II: creator pid 1:1
ushort shm _1 pi d ; II: pid of last operation *1
short shm _nattch; II: number of current attaches *1
time t shm _atime; II: last attach time *1 -time t shm _dtime; 1* last rletach time *1 -time t shm _ctime; 1* last change time *1

II: Times measured in secs since 1:1

- 10 - Printed 6 198'5

INTRO(2) INTRO(2)

/* 00:00:00 GMT, Jan. 1, 1970 *!

Shm perm is an ipc perm structure that specifies the shared
memory operation -permission (see below). This structure
includes the following members:

ushort cuirl ; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permiSSion */

Shm segsz specifies the size of the shared memory segment.
Shm cpia is the process id of the process that created the
shared memory identifier. Shm lpid is the process id of the
last process that performed a shmop(2) operation.
Shm nattch is the number of processes that currently have
thTS---segment attached. Shm atime is the time of the last
shmat operation and shm dtime is the time of the last shmrlt
operation; see shmop(2):--Shm ctime is the time of the last
shmctl(2) operationthat changed one of the members of the
above structure.

Shared Memory Operation Permissions.
In the shmop(2) and shmctl(2) system call descriptions, the
permission required--for an operation is given as {toke~}t
where token is the type of permission needed, interpreted as
followS-:--

00400
00200
00060
00006

Read by user
Write by user
Read, Write by group
Read, Write by others

Read and Write permiSSions on a shmid are granted to a pro
cess if one or more of the following are true:

The process's effective user ID is superuser.

The process's effective user ID matches shm_perm.[c]uid
in the nata structure associated with shmid ann the
appropriate bit of the user" portion (0600) of
~perm.~~ is set.

The process's effective user ID does not match
shm perm.[c]uid, the process's effective group TD
~~shm perm.[c]gid, and the appropriate bit of the
"'group" portion (060) of shm perm.~ is set.

The process's effective user ID does not match
shm perm.[c]uid,. the process's effective group ID does
no~match Shm-perm.[~]gid, and the appropriate bit of

- 11 - Printed 6 1985

INTRO(2) INTRO(2)

the "0 the r " p 0 r t ion (0 6) 0 f s h m per m • ~i~ iss e t •

Otherwise, the corresponding permissions are denied.

SEE ALSO
intro(3) •

- 12 - Printed 6 1985

ACC[SS(2)

NAME
accpss - determine accessibility of a file

SYNOPSIS
int access (patb., arnorle)
char *patb.;
int arnode;

DESCRIPTION
Patb. points to a pathnarne naming a file. Access checks the
named file for accessibility according to~e bit pattern
contained in arnode, using the real user ID in place of the
effective user--YD and the real group ID in place of the
effective group ID. The bit pattern contained in amode is
constructed as follows:

04 read
02 'write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following
are true:

A component of the path prefix is not a directory.
[ENOTDIR]

Read, write, or execute (search) permission is
requested for a null pathname. [ENOENT]

T~e named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EAeCES]

Write access is requested for a file on a read~only

file system. [EROFS]

Write access is requested for a pure procedure (shared
text) file that is being executed. [ETXTBSY]

Permission bits of the file mode do not permit the
requested access. [EACCES]

Path pOints outside the process's allocated
space. [EFAULT]

arldress

The owner of a file has permission checked with respect to
the "owner" read, write, and execute mode bits; members of
the file's group other than the owner have permissions
checked with respect to the "group" mode bits; all others
have permissions checked with respect to the "other" mode
bits.

Printed 6 1985

ACCESS(2)

RETURN VALUE'
If t~e requested access is permitted, a value
returnerl. Ot~erwise, a value of -1 is returned and
set to inrlicate t~e error.

SEE ALSO
c~mod(2), stat(2).

ACCESS(2)

of 0 is
errno is

... 2 ... Printed 6 1985

/

ACCT(2) ACC1'(2)

NAME
acet - enable or dis~ble process accounting

SYNOPSIS
int acct (path)
char .pat.r.;

DESCRIPTION
Acct is uspd to enable or disable the system's process
accounting routine. If the routine is enabled, an account
ing record is written on an accounting file for each process
that terminates. Termination can be caused by one of two
things: an exit call or a signal; see exit(2) and signal(2).
The effectrve- user ID of the calling process must be
super user to use this call.

Path points to a pathname naming the accounting file. The
accounting file format is given in ~(4).

Tr.e accounting routine is enabled if path is non-zero and no
errors occur during the system call. It is disabled if .E.§..!..!:.
is zero and no errors occur during the system call.

Acct fails if one or more of the following are true:

The effective user ID of the calling process is not
superuser. [EPEFM]

An attempt is made to enable accounting when it is
already enabled. [EBUSY]

A component of the path prefix is not a directory.
[ENOTDIF]

One or more components of the accounting file's path
name do not exist. [ENOENT]

A component of the path prefix denies search permis~

sion. [EACCES]

The file named by path is not an ordinary file.
[EACCES]

Mode permission is denied for the named accounting
fire. [EACCES]

The named file is a directory. [EISDIR]

The named file resides on a read-only file system.
[EROFS]

Path points to an illegal address. [EFAULT]

Printed 6 1985

ACC1(2) ACCT(2)

RETURN VALUE
Upon successful completion, a -value of 0 is returned. Other
wise, a valuE=' of 1 is returned and~.£ is set to inrlicate
the error.

SEE -ALSO
acct(4).

.... 2 Printed 6 1985

ALARH(2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the calling process's alarm clock to senrl
the signal SIGALRM to the calling process after the number
of real time seconds specified by ~ have elapserl; see sig=
nal(2).

Alarm requests are not stacked; successive calls reset the
calling process's alarm clock.

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the ---calling process's alarm clock.

SEE ALSO
pause(?), signal(2).

Printed 6 1985

NAME
brk, sbrk - c~a~ge oata segment space allocation

SYNOPSIS
int brk (enrlds)
char *enrlds;

char .sbrk (incr)
int incr;

DESCRIPTION
Brk ano sbrk are used to change dynamically the amount of
space allocated for the calling process's data segment; see
exec(2). The change is made by resetting the process's
break value ano allocating the appropriate amount of space.
The break value is the aodress of the first location beyond
the end of the data segment. The amount of allocated space
increases as the break value increases. The newly allocated
space is set to zero.

Brk sets the break value to endos and changes the allocated
sPace accordingly.

Sbrk adds ~~~ bytes to the break value and changes the
allocated space accordingly. Incr can be negative, in which
case the amount of allocated space is decreased.

Brk and sbrk fail without making any change in the allocated
space if-one or more of the following are true:

The requested change would result in more space being
allocated than is allowed by a system~imposed maximum
(see ulimit(2)). [ENOMEM]

The requested change would result in the break value
being greater than or equal to the start address of any
attached shared memory segment (see shmop(2)).

RETURN VALUE
Upon successful completion, brk returns a value of 0 and
sbrk returns the old break value. Otherwise, a value of ~1
rs-returned ano errno is set to indicate the error.

SEE ALSO
exec(2).

Printed 6 1985

J

CHDIR(2)

NAME
chair ~ cr.ange working rlirectory

SYNOPSIS
int chdir (path)
char .path;

DESCRIPTION
Path points to tr.e pathname of a rlirectorv. Chdir causes
the-namerl rlirectory to become the current ~orking-;rrrectory.
The starting point for path searches for pathnames that rio
not begin with I.

Chrlir fails anri the current working directory remains
unchangerl if one or more of the following are true:

A component of the pathname is not a directory.
[ENOTDIP]

The namerl directory does not exist. [ENOENT]

Search permission is denieri for any component of the
pathname. [EACCES]

Path paints outsirle the process's allocaterl address
spac e • [E F A U L T J

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth
erwise, a value of -1 is returnerl and errno is set to inrli
cate the error.

SEE ALSO
chroot(?) .

...... 1 Printed 6 1985

CHMOD(2)

NAME
chmarl - change morle of file

SYNOPSIS
int chmod (path, morle)
char .path;
int morle;

DESCRIPTION
Path pOints to a pathname naming a file. Chmod sets the
access permission portion of the namerl file's morle according
to the bit pattern contained in morle.

Access permission bits are interpreted as follows:

Set user ID on execution.
Set group ID on execution.
Save text image after execution.
Rearl by owner.
Wr i te by owner.

04000
02000
01000
00400
00200
00100
00070
00007

Execute (or search if a riirectory) by owner.
Pearl, write, execute (search) by group.
Pearl, write, execute (search) by others.

The effective user ID of the process must match the owner of
the file or be super user to change the mode of a file.

If the effective user ID of the process is not superuser,
morle bit 01000 (save text image on execution) is clearerl.

If the effective user ID of the process is not super user or
the effective group ID of the process does not match the
group ID of the file, mode bit 02000 (set group ID on execu~
tion) is cleared.

If an executable file is preparerl for sharing, mode bit
01000 prevents the system from abandoning the swap-space
image of the program-text portion of the file when its last
user terminates. Thus, when the next user of the file exe~
cutes it, the text need not be read from the file system but
can simply be swapped in, saving time.

Chmod fails and the file mode remains unchanged
more-of the following are true:

if one or

A component of the path prefix
[ENOTDIR]

The named file does not exist.

is not a directory.

[ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

- 1 - Printed 6 1985

/

CHMOD(2) CHMOD(2)

The effective user ID noes not match the owner of the
file ann the effective user ID is not superuser.
[EPEPH]

The namerl file resides on a read~only file system.
[EPOFS]

Path points outsirle the process's allocaterl
space. [EFAULT]

address

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth~

erwise, a value of -1 is returned and errno is set to indi
cate the error.

SEE ALSO
chown(2), mknorl(2).

Printed 6 1985

CHOWN(2) CHOWN(2)

NA~1E

chow~ ~ change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char .path;
int owner, group;

DESCRIPTION
Path points to a pathname naming a file. The owner ID and
~ouo ID of the named file are set to trye numeric values
contained in owner and group respectively.

Only processes with the effective user ID equal to the file
owner or superuser may change the ownership of a file.

If chow~ is invoked by other than the superuser, the set
user-ID and set-group~ID bits of the file mode are cleared
(bits 04000 and 02000, respectively). See chmod(2) for a
complete list of access permission bits.

Chown fails and the owner and group of the named file remain
unchanged if one or more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

The effective user ID does not match the owner of the
file and the effective user ID is not superuser.
[EPERM]

The named file resides on a read-only file system.
[E R O'F S]

Path points outside the process's allocated address
space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth~

erwise, a value of -1 is returned and errno is set to indi
cate the error.

SEE ALSO
chmod(2) •

- 1 Printed 61985

)

CHROOT(2)

NAME
cr.root ~ cr.ange root directory

SYNOPSIS
int chroot (path)
char *patb.;

DESCRIPTION
Patr. points to a pathname naming a directory. Chroot causes
the- named directory to become the root directory. Tb.e
starting point for path searches for pathnames that begin
wit h /.

The effective user ID of the process must be superuser to
change the root directory.

Tb.e •• entry in the root directory is interpreted to mean
the root directory itself. Thus, cannot be used to
access files outside the subtree rooted at the root direc~

to r y.

Cr.root fails and the root directory remains unchanged if one
or-more of the following are true:"

Aoy component of the pathname is not a directory.
[ENOTDTP]

The named directory does not exist. [ENOENT]

The effective user ID is not superuser. [EPEPM]

Path points outside the process's allocated
space. [EFAULT]

RETURN VALUE

address

Upon successful completion, a value of 0 is returned. Oth
erwise, a value of ~1 is returned and errno is set to indi~

cate the error.

SEE ALSO
chdir(2).

... 1 ..,.. Pr in teo 6 198')

NAME
close ~ close a file rlescriptor

SYNOPSIS
int close (fildes)
int filrles;

DESCRIPTION
Fildes is 0 file descriptor obtained from a creat(2),
ope nc'2), d up (2), f c n t 1 (2), 0 r pip e (2) s y s t em cal r:--c los e
CTOSes the-file descriptor indica~by fildes. -----

C los e. fa i 1 s i f f i 1 ~~~ i s not a val i d 0 pen f i 1 e 0 esc rip tor •
[EBADF]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth
erwise, a value of ~1 is returned and ~~ is set to indi
cate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

.... 1 ~ Printeci 6 1985

/

NAME
creot ~ create a new file or rewrite an existing one

SYNOPSIS
int creat (path, morle)
char .path;
int mone;

DESCRIPTION
Creat creates a new orrlinary file or prepares to rewrite an
existing filp namerl by the pathname pointed to by patte

If the file exists, the length is truncated
morle anrl owner are unchanged. Otherwise,
ID is set to the process's effective user
group ID is set to the process's effective
low-orrler 12 bits of the file mode are set
mon~, morlified as follows:

to 0 ann the
the file's owner
ID, the file's

group TD, and the
to the value of

All bits set in the process's file mode creation mask
are clearerl; see umask(2).

Morle bit 01000 (save text image after execution) is
clearerl; see chmod(2).

Upon successful completion, a non~negative integer, namely
the file descriptor, is returned and the file is open for
writing, even if the mode -does not permit writing. The file
pointer is set to the beginning of the file. The file
rlescriptor is set to remain open across exec system calls;
see fcntl(2). No process may have more than 20 files open
simulta'i'1;Qusly. A new file may be created with a morle that
forbins writing.

Creat fails if one or more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIP]

A component of the path prefix does not
[ENOENT]

exist ..

Search permission is denied on a component of the path
prefix. [EACCES]

The pathname is null. [ENOENT]

The file does not exist and the directory in which the
file is to be created does not permit writing.
[EACCFS]

The named file resides or would reside on a read-only
file system. [EROFS]

- 1 co Printed 6 1985

CREAT(2) CREAT(2)

Thp. file is a pure procedure (shared text) file that is
being executerl. [ETXTBSY]

T~e file exists and write permission is
[fACCES]

denied.

T~e named file is an existing directory. [EISDTF]

Twenty (20)
[EMFILE]

file descriptors are currently open.

~!~ points outside the process's allocated address
space. [EFAULT]

RETURN VALUE
Upon successful completion, a non-negative integer (i.e.,
the file descriptor) is returned. Otherwise, a value of oro 1
is returned and errno is set to indicate the error.

SEE ALSO
close(2), dup(2), lseek(2), open(2), read(2), umask(2),
write(,?) •

Printed 6 1985

/

NAME
rlup ~ rluplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int filrles;

DESCRIPTION
Fildes is a file descriptor obtained from a creat(2),
op~(2), i~(2), fcntl(2), or ~(2) system call-.- ~up
returns a new file descriptor having the following in common
with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share
one file pointer).

Same access mode (read, write, or read/write).

The new file descriptor is set to remain open across exec(2)
system calls; see fcntl(2).

The file descriptor returned is the lowest one available.

Dup fails if one or more of the following are true:

Fi~~ is not a valid open file descriptor. [EBADF]

Twenty (20)
[EHFILEJ

RETURN VALUE

file descriptors are currently open.

Upon successful completion a non-negative integer (i.e., the
file descriptor) is returned. Otherwise, a value of ~1 is
returned and errno is set to indicate the error.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2) t open(2), pipe(2).

.... 1 ..,. Printed 6 1985

EXEC(2) EXEC(2)

NAME
execl, execv, execle, execve, execlp,
file

execyp execui:.e a

SYNOPSIS
int execl (pat~, argO, arg1, ••• , argn, 0)
char *path, largO, *arg1, ••• , *argn;

tnt execv (path, argy)
char 'path, 'argv[];

int execle (path, argO, arg1, ••• , argn, 0, envp)
char 'path, 'argO, *arg1, ••• , *argn, 'envp[];

int execve (pat~, argy, envp)
char 'path, *argv[], *envp [];

int execlp (file, argO, arg1, ••• , argn, 0)
char 'file, 'argO, *arg1, ••• , 'argn;

tnt execvp (file, argv)
char 'file, 'argv[J;

DESCRIPTION
Exec in all its forms transforms the calling process into a
new process. The new process is constructed from an ordi
nary, executable file called the ~ ~£~~ fi!~. This
file consists of a header (see a.out(4», a text segment,
and a data segment. The data segmen~ontains an initial
ized portion and an uninitialized portion (bss). There can
be no return from a successful ~£ because the calling pro
cess is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envE)
int ar-gc·

--' char "argv, '.~;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. As indi
cated, argc is conventionally at least one and the first
member -or- the array points to a string containing the name
of the fi.le.

Path points to a pathname that identifies the new process
TIIe.

File points to the new process file. The
t h TS f i lei sob t a i ned by a sea r c h 0 f the
as the environment line "PATH :" (see
environment is supplied by the shell (see

- 1 -

path prefix for
directories passed
environ(5». The
~(1».

Printed 6 198'5

EXEC(2) EXEC(2)

!!.:JiQ., .§.!:.,[l, ..., a r g n are poi n t e r s ton u 1 1 - t e r min ate rl c h a r -
acter strings. These strings consti.tute the argument list
available to the new process. By convention, at least ~~2

must be present and pOint to a string that is the same as
~th (or its last component).

Argv is an array of char'acter pointers to null-terminated
strings. These strings constitute the argument list avail
able to the new process. By convention, argv must have at
least one membpr, and it must point to a-string that is the
sarr.e as pa!~ (or its last component). Argv is terminated by
a null pointer.

Envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the
new process. En!.£ is terminated by a null pOinter. For
execl anrl execv, the C run-time start-off routine places a
poI:"1ter to thecalling process's environment in the global
cell extern char **environ;. This pOinter is used to pass
the calling process's environment to the new process.

File descriptors open in the calling process remain open in
.the new process, except for those whose close-on-exec flag
is set; see fcntl(2). For those file descriptors that
remain open, th;-file pointer is unchanged.

Si.gnals set to terminate the calling process are set to ter
minate the new process •. Signals set to be ignored by the
calling process are set to be ignored by the new process.
Signals set to be caught by the calling process are set to
terminate the new process; see signal(2).

If the set-user-ID morle bit of the new process file is set
(see chmod(2)) t exec sets the effective user 10 of the new
process to-the owner-ID of the new process file. Similarly,
if the set-group-IO mode bit of the new process file is set,
the effective group 10 of the new process is set to the
group ID of the new process file. The real user 10 and real
group TD of the new process remain the same as those of the
calling process.

The shared memory segments attached to the calling process
are not attached to the new process (see shmop(2)).

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from
the calling process:

nice value (see nice(2))
process TO
parent process TD

- 2 - Printed 6 1985

EXEC(2) EXEC(2)

process group ID
semadjv~lues (see semop(2»
tty g r 0 u p I D (s e e e XitT'2) an rl s i g n a I (2))
trace flag (see ptrace(2) request-oT
time left until an-aIarm clock signal (see ~~rm(2»
current working directory
root directory
file mode creation mask (see umask(2» ---file size limit (see ulimit(2»
utl~~, ~~imp., cutime, and ~sti~ (see !~(2»

Exec fails and returns to the calling process if one or more
of the following ~re true:

One or more components of the new process file's pat~

name do not exist. [ENOENT]

A component of the new process file's path prefix is
not a directory. [ENOTDIR]

Search permission is denied for a directory listed in
the new process file's path prefix. [EACCES]

The new process file is not an ordinary file. [EACCE~J

T~e new process file mode denies execution permission.
[EACCES]

The exec is not an execlp or execvp, and the new pro
cess file has the appropriate access permission but an
invalid magic number in its header. [ENOEXEC]

The new process file is a pure procedure (shared text)
file that is currently open for writing by some pro
cess. [ETXTBSY]

The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM. [ENOMEM]

The number of bytes in the new process's argument list
is greater than the system-imposed limit of 5,120
bytes. [E2BIG]

The new process file is not as long as indicated by the
size values in its header. [EFAULT]

Path, argv, or ~ points to an illegal address.
TIFAULn--

RETURN VALUE
If exec
occurred;

returns to
the return

the calling process an
value is -1 and errno

error has
is set to

- 3 - Printed 6 1985

EXIT(2)

NAME
exit, exit ~ terminate process

SYNOPSIS
void exit (status)
int status;
void exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following
consequences:

All the file descriptors open in the calling process
are closen.

If the parent process of the calling process is execut~
ing a wait, it is notifien of the calling process's
termination ann the low~order 8 bits (i.e., bits 0377)
of ~at~~ are made available to it; see wait(2).

If the parent process of the calling process is not
executing a wai!, the calling process is transformen
into a zombie process. A zombie erocess is a process
that only occupies a slot in the process table; it has
no other space allocated either in user or kernel
space. The process table slot that it occupies is par~
tially overlaid with time accounting information (see
<sys/proc.h» to be used by times.

The parent process ID of all of the calling process's
eXisting child processes and zombie processes is set
to 1. This means the initialization process (see
.!.E.!..!:.£(2)) inherits each of these processes.

Each attached shared memory segment is detached and the
value of shm nattach in the data structure associated
with its shared memory identifier is decremented by 1;
see shmop(2).

For each semaphore for which the calling process has
set a semaphore adjustment (semadj) value (see
semop(2)), that semadj value is added to the semval of
the-Specified semaphore.

If the process has a process, text, or data lock, an
unlock is performed (see plock(2)).

An accounting record is written on the accounting file
if the system's accounting routine is enabled; see
~.9.! (2) •

If "the process ID, tty group ID, and process group ID
of the calling process are equal, the SIGHUP signal is

.,.. 1 - Printed 6 1985

EXIT(2) EXIT(2)

sent to each process that has a process group ID equal
to that of the calling process.

The C function exit may cause
process exits. The function

SEE ALSO

cleanup actions before the
exit circumvents all cleanup.

acct(2), plock(2), semop(2), shmop(2), signal(2), times(2),
wait(2) •

WARNING
See WARNINQ in signal(2).

Printed 6 1985

FCNTL(2) FCNTL(2)

NAME
fentl ~ filp control

SYNOPSIS
'include <fcntl.h>

int fcntl (filrles, cmrl, arg)
int filrles, cmd, arg;

DESCRIPTION
Fcntl provides control over open files. Fildes is an open
file- rlescriptor obtained from a creat(2-)-,-ope~(2), dup(2),
~ntl(2), or Elpe(2) system call.

The cmos available are:

F DUPFD

F GETFD

F SETFD

F GETFL

Peturn a new file descriptor as follows:

Lowest numbererl available file descriptor greater
than or equal to argo

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both
file descriptors share one file pointer).

Same access mode (read, write, or rearl/write).

Same file status flags (i.e., both file descrip
tors share the same file status flags).

The close~on-exec flag
file descriptor is
exec(2) system calls. -- .

associated with the new
set to remain open across

Get the close~on-exec flag associated with the
file descriptor fildes. If the low-order bit is
0, the file remains open across!..!!.£; otherwise
the file is closed upon execution of exec.

Set the close~on-exec flag associated with fildes
to the low~order bit of ~ (0 or 1 as above):----

Get file status flags.

Set filp. status flags to argo Only certain flags
can ~et; see fcntl(5).

Fcntl fa i 1 s if one or more of the following ar e tr ue : ---
Fi 1 des is not a val id open fi 1 e descriptor. [EBADF]

Cmci is F DUPFD and 20 fi 1 e descriptors are currently
open. (EMFILE]

..,. 1 ..,... Printed 6 1985

FCNTL(2) FCNTL(2)

Cm~ is F_DUPFD anrl ~K is negative or greater than en.
[EINVAL]

Refer to fcntl(S) for a list of the flag values containerl in
<fcntl.h>.

RETURN VALUE
Upon successful
cmrl as follows:

F DUPFD
F G E TF D

F SETFD
F GETFL
F SETFL

completion, the value returned depends

A new file descriptor.
Value of flag (only the low-order bit
rlefined) •
Value other than -1.
Value of file flags.
Value other than -1.

on

is

OtherwIse, a value of -1 is returned and errno is set to
inrlicate the error.

SEE ALSO
close(2), exec(2), open(2), fcntl(S).

.,.. 2 or Printed 6 1985

FORK(2) FORK(2)

NAME
fork ~ create a new process

SYNOPSIS
int fork ()

DESCFIPTION
Fork causes creation of a new process. The new process
<Chilo process) is an exact copy of the calling process
(parent process). This means the child process inherits the
following attributes from the parent process:

environment
close~on~exec flag (see exec(2»
signal handling settings-cT:e., SIG_DFL, SIG_IGN,
function arl~ress)
set~user~ID mode bit
set~group~ID mode bit
profiling on/off status
nice value (see ~(2»
all attacheo shared memory segments (see shmop(2»
process group ID
tty group tD (see exit(2) and signal(2»
trace flag (see pt~(2) request 0)

time left until an alarm clock signal (see
alarm(2))
current working directory
root directory
file mode creation mask (see umask(2»
file size limit (see ulimit(2»

The child process differs from the parent process in the
following ways:

The child process has a unique process ID.

The chilo process has a different parent process ID
(i.e., the process ID of the parent process).

The child process has its own copy of the parent's file
descriptors. Each of the child's file descriptors
shares a common file pOinter with the corresponding
file descriptor of the parent.

All semadj values are cleared (see semop(2».

Process locks, text locks, and data locks are not
inherited by the child (see plock(2».

The child process's utime, stime, cutime,
are set to O.

and cstime

Fork fails and no child process is created if one or more of
the following are true:

.... 1 ..,. Printed 6 1985

/

FORK(2)

The system~imposed limit on
processes under execution would

The system~imposed limit on
processes under execution by
exceeded. [EAGAINJ

RETURN VALUE

the total
be exceeded.

FORK(2)

number of
[EAGAIN]

the total number of
a single user would be

Up 0 n s 1J c c e s sf u 1 c·om pIe t ion, for k ret urn s a val u e 0 f 0 tot h e
child process and returns the-process ID of the child pro
cess to thp. parent process. Otherwise, a value of ~1 is
returned to the parent process, no child process is created,
and errno is set to indicate the error.

SEE ALSO
exec(2), times(2), wait(2).

Printed 6 1985

NAME
getpirl, getpgrp, getppirl ~ get process, process group, and
parent process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.

GetE~~E returns the process group TD of the calling process.

Getppirl returns the parent process ID of the calling pro~

cess.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

... 1 ... Pr i n ted 6 1 985

/

GETUID(2) GE'1'UID(2)

NAME
getuiri, geteuiti, getgiri, getegid - get real user, effective
user, real group, anti effective group IDs

SYNOPSIS
int getuid ()

int geteuid ()

int getgid ()

int getegid ()

DESCRIPTION
Qetui~ returns the real user ID of the calling process.

Geteuiti returns the effective user ID of the calling pro
cess.

Getgiri returns the real group ID of the calling process.

Getegirl returns the effective group TD of the calling pro
cess.

SEE ALSO
i~tro(2), setuid(2).

..... 1 ..,.. Printed 6 1985

IOCTL(2) IOCTl.(2)

NAME
ioctl ~ control aevice

SYNOPSIS
ioctl (fildes, request, arg)

DESCRIPTION
~~l performs a variety of functions on character special
f i 1 e s (de vic e s) • Th e des c rip t ion s 0 f va rio us d e vic e sin
Section 7 of the Administrator'! Manu~ discuss how loctl
applies to them.

Toctl fails if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Fil~~ is not associated with a character special dev~

ice. [ENOTTY]

Request or arg is not valid. See Section 7. [EINVAL]

RETURN VALUE
If an error has occurred, a value of ~1 is returned and
errno is set to indicate the error.

SEE ALSO
termio(7) in the Administrator's Manual •

.,. 1 .,. Printed 6 1985

KILL(2) KILL(2)

NAME
kill ~ send a signal to a process or a group of processes

SYNOPSIS
int kill (pirl, sig)
int pia, sig;

DESCRIPTION
Kill sends a signal to the process or group of processes
specified by piri. The signal that is to be sent is speci
fied by sig anrl-r5 either one from the list given in sig~
n a 1 (?) Or-0 . I f s i g i s 0 (t hen u 11 s i g n a 1), err 0 r c h e c kin g
IS-performed but nO-signal is actually sent. This can be
used to check the validity of ~.

The real or effective user ID of the sending process must
match the real or effective user ID of the receiving process
unless the effective user ID of the sending process is
superuser.

The processes with a process ID of 0 and a process ID of
are special processes (see intro(2» and are referenced
below as pl~oc0 anrl .E.!:£S..l, respectively.

If pid is greater than zero, si~

whose-process ID is equal to pid.
is sent to the

Pid may equal 1.
process

If pirl is 0, sig is sent to all processes, excluding E~
and--proc1, whose process group ID is equal to the process
grbup~-of the sender.

Tf El~ is ~1 and the effective user ID of the sender is not
superuser, sig is sent to all processes, excluding procO and
proc1, whose-real user ID is equal to the effective-Us;r ID
of the sender.

Tf pin is 1 and the effective user ID of the sender is
sup e r use r, ~K iss en t to a IIp roc e sse s. e xcI u din g pro c 0 and
EOC 1.

If ~ is negative but not -1, sig is sent to all processes
whose process group ID is equal to the absolute value of
pi.9. •

Kill fails and no signal is sent if one or more of the
lowing are true:

fol

Sig is not a valid signal number. [EINVAL]

No process can be found corresponding to that specified
by pid. [ESRCH]

The
and

user
its

ID of the sending process is not superuser.
real or effective user ID does not match the

Printed 6 1985

KILL(2) KILL(2)

real or effective user ID of the receiving process.
[E PEP r·1]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth
erwise, a value of -1 is returned and errno is set to indi
cate the error.

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2).

Printed 6 1985

)

NAME
link - link to a file

SYNOPSIS
int link (path1, path2)
char 'path1, 'path2;

DESCRIPTION
Path1 points to a pothname naming an existing file. ~!~~

pOints to a pathname naming the new directory entry to be
created. Link creates a new link (directory entry) for the
existing file.

Link fails and no link is created if one or more of the fol
lowing are true:

A component of either path prefix is not a directory.
[ENOTDIR]

A component of either path prefix does not exist.
[ENOEN!]

A component of either path prefix denies search permis~
sion. [EAeCES]

The file named by ~th1 does not exist. [ENOENT]

The link named by ~th2 exists. [EEXIST]

The file named by path 1 is a directory and the effec~

tive user ID is not superuser. [EPERM]

The link named by path2 and the file named by path1 are
on different logical devices (file systems). TIXDEV]

Path? points to a null pathname. [ENOENT]

The requested link requires writing in a directory with
a mode that denies write permiSSion. [EACCES]

• The requested link requires writing in a directory on a
read-only file system. [EROFS]

~th pOints outside the process's allocated address
space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth
erwise, a value of -1 is returned and errno is set to indi~

cate the error.

SEE ALSO
unlink(2) •

..,.. 1 ..,.. Printed 6 1985

L.!!K'~)

NAME
lseek ~ move rearl/write file pOinter

SYNOPSIS
long lseek (fildes, offset, whence)
int filrles;
long offset;
int whenc~;

DESCRIPTION
Fildes is a file descriptor returned from a creat(2),
~(2) , rl up (2), 0 r f c n t 1 (2) s y s t e m call. L see kg e t s the
fITe pOinter-associated-;ith fildes as follows:

If whence is o , the ---- pointer is se t to offset b yt e s.

If wh en c e is ---- 1 , the pointer is set to its current loca~
tion plus offset.

If whence is 2, the pointer is se t to the si ze of the
fi I e plus offset.

Upon successful completion, the resulting pOinter location
as measured in bytes from the beginning of the file is
returned.

~~ fails and the file pOinter remains unchanged if one or
more of the following are true:

Fildes is not an open file descriptor. [EBADF]

Filrles is associaterl with a pipe or fifo. [ESPIPE]

_W_h_e_n_c_e is no to, 1, or 2. [EINVAL and SIGSYS signal]

The resulting file pOinter would be negative. [EINVAL]

Some rlevices are incapable of seeking. The value of the
file pOinter associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non~negative integer indicat
ing the file pOinter value is returned. Otherwise, a value
of ~1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

..... 1 .,. Pr in ted 6198'3

)

/

MKNOO(2)

NAME
mknod - makp a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char .path;
int morle, dev;

DESCRIPTION
Mknod creates a new file named by the pathname pointed to by
path: The mode of the new file is initialized from mode,
where the value of mode is interpreted as follows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the fol
lowing:

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The file's owner ID is set to the process's effective user
ID. The file's group ID is set to the process's effective
group ID.

Values of mode other than those above are undefined anrl
should no~e used. The low~order 9 bits of mode are modi
fied by the process's file mode creation mask;-aII bits set
in the process's file mode creation mask are cleared (see
umask(2)). If mode indicates a block or character special
file, dev is -a-Configuration~dependent specification of a
character-or block I/O device. If mode does not indicate a
block special or character special device, ~ is ignored.

Mknod may be inVOked only by the super user for file types
other than FIFO special.

Mknod fails and the new file is not created if one or more
of the following are true:

The process's effective user ID is not superuser.
[EPERM]

A component of the path prefix is not a directory.
[ENOTDIR]

..,.. 1 Printed 6 198'3

MKNOD(2) MKNOD(2)

A cow.pone~t of the path prefix rloes not
[ENnENT]

exist.

The rlirectory in which the file is
locaterl on a rearl-only file system.

The named file exists. [EEXIST]

to be created
[EROFS]

is

Path points outside the process's allocaterl arldress
space. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Other
wise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
mkrlir(1), chmod(?), exec(2) t umask(2), fs(4).

..... 2 ..,.. Printed 6 1985

/

I
/

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION
Mount requests that a removable file system contained on the
block special file identified by ~ be mounted on the
directory identified by dire Spec and ~ir are pOinters to
pathnames.

Upon successful completion, references to the file dir refer
to the root directory on the mounted file system.

The low-order bit of ~flag is used to control write permis~
sion on the mounted file system. If the low~order bit is 1,
writing is forbidden; otherwise writing is permitted accord
ing to individual file accessibility.

Mount may be invoked only by the superuser.

Mount fails if one or more of the following are true:

The effective user ID is not superuser. [EPERM]

Any of the named files does not exist. [ENOENT]

A component of a path prefix is not a directory.
[ENOTDIB]

Sp~ is not a block special device. [ENOTBLK]

The device associated with spec does not
[ENXIO]

Dir is not a directory. [ENOTDIR]

ex i st •

~~ or dir points outside the process's allocated
address space. [EFAULT]

Dir is currently mounted on, is someone's current work~
ing directory, or is otherwise busy. [EBUSY]

The device associated with spec is currently mounted.
[EBUSY]

RETURN VALUE
Upon successful completion a value of 0 is returned. Other~

wise, a value of ~1 is returned and errno is set to indicate
the error.

~ 1 ~ Printed 61985

/

MSOCTL(2) MloeTL'"

NAME
msgctl ~ message control operations

SYNOPSIS
'include <sys/types.h)
6include <sys/ipc.h)
Hinclude <sys/msg.h)

int msgctl (msqid, cmd, bur)
int msqid, cmd;
struct msqid_ds .buf;

DESCRIPTION
Msgctl provides a variety of message control operations as
specified by cmd. The following cmds are available:

IPC RMID

Place the current value of each member of the
datd structure associated with msqid into the
structure pointed to by buf. The contents of
this structure are define~n intro(2). {READ}

Set the value of the following members of the
data structure associated with msqid to the
corresponding value found in the structure
pointed to by ~:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that
has an effective user ID equal to either that of
super user or to the value of msg perm.uid in the
data structure associated with msqId. Only
super user Cdn raise the value of ~~ytes.

Remove the message queue identifier specified by
msqid from the system and destroy the message
queue and data structure associated with it.
This cmd can only be executed by a process that
has an-effective user ID equal to either that of
super user or to the value of msg perm.uid in the
data structure associated with msqid. ---

Msgctl fails if one or more of the following are true:

Msqid is not a valid message
[EINVAL]

queue

Cmd is not a valid command. [EINVAL]

identifier.

Cmd is equal to IPC STAT and {READ} operation permis
Slon is denied to-the calling process (see intro(2».
[EACCES]

- 1 - Printed 6 1985

MSGCTL(2) MSGCTL(2)

Cmd is equal to lPC_RMID or lPC_SET and the effective
user ID of the calling process is not equal to that of
superuser and is not equal to the value of msg perm.uiri
in the data structure associated with ~~-.---[EPEPI~-]--

Crod is equal to lPC SET, an attempt is being made to
increase to the vaIue of msg qbytes, and 'the effective
user ID of the calling process is not equal to that of
superuser. [EPERM]

Buf points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Other
wise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
msgget(?), msgop(2).

- 2 - Printed 6 1985

)

MSGGET(2) MSGGET(2)

NAME
msgget ~ get message queue

SYNOPSIS
'include <sys/types.h>
Dinclude <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key t key;
int-msgflg;

DESCRIPTION
Msgg~ returns the message queue identifier associated with

~1·

A message queue identifier and
data structure (see intro(2))
the following is true:

associated message queue and
are created for key if one of --"

Kel is equal to IPC PRIVATE.

Kel does not already have a
associated with it, and
"true".

message
(msgflg

queue identifier
& lPC_CREAT) is

Upon creation, the data structure associated with the new
message queue identifier is initialized as follows:

~L..perm . .9J:!~, msg perm.uid, msg perm.cgi,9., and
~E~.gid are set equal-r0 the effective user ID and
effective group ID, respectively, of the calling pro~

cess.

The low~order 9 bits of msg perm.mode are set equal to
the low-order 9 bits of msgflg.

~~, msg lspid, msg lrpid, msg stime, and
msg rtirne are set equal to O.

MS~ ctime is set equal to the current time.

~~qbyt~ is set equal to the system limit.

Msgget fails if one or more of the following are true:

A message queue identifier exists for key but operation
permission (see intro(2)), as specT1ied by the low
order 9 bits of msgflg, would not be granted. [EACCES]

A message queue identifier does not exist for key and
(msgflg & lPC_CREAT) is "false". [ENOENT]

..,. 1 C'" Printed 6 1985

MSOOE1(2) MSGGET(2)

A message queue identifier is to be created but the
system imposed limit on the maximum number of allowed
message queue identifiers system wide would be
exceederl. [ENOSPC]

A message queue identifier exists for key but ((msgflg
& IPC CREAT) & (msgflg & IPC_EXC~) is "true,r:
[EEXIS~J

RETURN VALUE
Upon successful completion, a non-negative integer (i.e., a
message queue identifier) is returned. Otherwise, a value
of _1 is returnerl and errno is set to indicate the error.

SEE ALSO
msgctl(2), msgop(2).

Printed 6 1985

/

/

M800P(2)

NAME
msgsnri, msgrcv - message operations

SYNOPSIS
'include <sys/types.h>
linclude <sys/ipc.h>
Uinclude <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
1nt msqirl;
struct msgbuf *rnsgp;
int msgsz, msgflg;

int msgrcv (msqirl, msgp, msgsz, msgtyp, msgflg)
1nt msqirl;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
Msgsnd is used to send a message to the queue associated
with the message queue identifier specified by ~id.{WRITE}
Msgp points to a structure containing the message. This
structure is composed of the following members:

long
char

mtype;
mtext[J;

/* message type */
/* message text */

Mtype is a positive integer that can be used bv the receiv
ing process for message selection (see msgrcv below). Mtext
is any text of length msg~ bytes. Msgsz can range from--o
to a system impos.en max imum.

Ms~l~ specifies the action to be taken if one or more of
the following are true:

The number of bytes already on the queue is equal to
~~3byt!~ (see intro(2».

The total number of messages on all queues system-wine
is equal to the system imposed limit.

These actions are as follows:

If (msgflg & IPC NOWAIT) is true", the message is
not sent and the-calling process returns immediately.

If (msg flg & IPC HOWAIT) is fal se' , ,
cess suspends execution until one
occurs:

- 1 -

the calling pro
of the following

Printed 6 198C:;

MSGOP(2) MSGOP(2)

The condition responsible for the suspension no
longer exists, in which case the message is
sent.

~~ is removed from the system (see
msgctl(2)). When this occurs, errno is set
e q u aI-to E I DR H an d a v a ll,J e 0 f - 1 i s -ret'u r ned •

The calling process receives a signal that is
to be caught. In this case the message is not
sent and the calling process resumes execution
i~ the manner prescribed in signal(2)).

Msgsnd fails and no message is sent if one or more of the
fOITowi~g are true:

~3~ is not a valid message
[EINVAL]

queue identifier.

Operation permission is denied to the calling process
(sp.e i:1t.!:..9.(2)). [EACCES]

Mtype is less than 1. [EINVAL]

The message cannot be sent for one of the reasons cited
above and (msgflg & IPC_NOWAIT) is true". [EAGAIN]

Msgsz is less than zero or greater than the system
imposed limit. [EINVAL]

~~ points to an illegal andress. [EFAULT]

Upon successful completion, the following actions are taken
with respect to the data structure associated with ~3l~
(see intro (2)).

~~qnum is incremented by 1.

Ms~lspid is set equal to the process ID of the calling
process.

Ms£-stirn! is set equal to the current time.

Msgrcv reads a message from the qu~ue associated with the
message queue identifier specified by msqid and places it in
the structure pointed to by msgp.{READ} This structure is
composed of the following members:

long
char

mtype;
mtp.xt[];

/* message type */
/* message text *1

Mtype is the received message's type, as specified by the

- 2 - Printed 6 1985

)

MSGOP(2)

se~rli~g process. Mtext is the text of the message. Msgsz
specifies the size in-bytes of mtext. The received message
i s t run eat edt 0 m s g s z b Y t e s i Tit i s 1 a r g e r t han m s g s zan rl
em s g fIg & H S G NO E R R 0 TI-is' , t rue' '. Th e t run cat e d p art 0 f
the -m;ssage -is lost and no indication of the truncation is
given to the calling process.

~gtyp specifies the type of message requested as follows:

If ~gtyp is equal to 0, the first message on the queue
is received.

If msgtyp is greater than 0, the first message of type
~£ty£ IS received.

If msgtyp is·less than 0, the first message of the
lowes~type that is less than or equal to the absolute
val 1J e a f ~~ t Y.E i s r e c e i v e rl •

~gflg specifies the action to be taken if a message of the
desired type is not on the queue. These are as follows:

If (msgflg & lPG_NOWAIT) is "true' I, the calling pro
cess returns immediately with a return value of -1 and
errno set to ENOMSG.

If (msgflg & lPG_NOWAIT) is "false' I,
cess suspends execution until one
occurs:

the calling pro
of the following

A message of the desired type is placed on the
queue.

Msq~ is removed from the system. When this
occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a Signal that is
to be caught. In this case a message is not
received and the calling process resumes execu
tion in the manner prescribed in .signal(2)).

Msgrcv fails and no message is received if one or more of
the following are true:

Msqirl is not a valid message
[EINVAL]

queue irlentifier.

Operation permission is denied to the calling process.
[EAGCES]

Msgsz is less than O. [EINVAL]

- 3 - Printed 6 1985

MSGOP(2) MSGOP(2)

Mtext is greater than msgsz ano (msgflg & MSG NOERROR)
TS~false". [E2BIG]-----

The qu~ue ooes not contain a message of
type ann (~gtyp & IPC NOWAIT) is "" true' , •

the desirerl
[ENOMSG]

~gp poi~ts to an illegal actdress. [EFAULT]

Upon successful completion, the following actions are taken
with respect to the data structure associated with msqi~
(see intro (2»).

~3~ is rlecremented by 1.

Msg lrpirl is set equal to the process ID of the calling
process.

MSI-~~~ is set equal to the current time.

RETURN VALUES
If ~~~~ or msgrcv returns due to the receipt of a signal,
a value of ~rs-returned to the calling process and ~~
is set to EINTR. If they return due to removal of msqi~

from the system, a value of -1 is returned and errno is set
to EIDRM.

Upon successful completion, the return value is as follows:

Hsgsn~ returns a value of O.

Msgrcv returns a value equal to the number of bytes
actually placed into mtext.

Otherwise, a value of -1 is returnerl and
inoicate the error.

SEE ALSO
msgctl(2), msgget(2).

- 4 -

errno is set to

Printed 6 1985

)
/

NICE(2)

NAME
nice ~ change priority of a process

SYNOPSIS
int nice (iner)
int incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling
process. A process's nice value is a positive number for
which a more positive value-results in lower CPU priority.

A maximum nice value of 39 and a minImum nice value of 0 are
imposed by the system. Requests for values above or below
these limits result in the nice value being set to the
corresponding limit.

Bl~ fails and does not change the nice value if incr is
negative ann the effective user ID of the calling process is
not superuser. [EPERMJ

RETURN VALUE
Upon successful completion, nice returns the new nice value
minus 20. Otherwise, a valu;-Qf ~1 is returned and errno is
set to i n ci i cat e the err 0 r' • ---

SEE ALSO
nice(1), exec(?).

~ 1 oro Printed 6 1985

ONYX(2) ONYX(2)

NAME
onyx ~ Onyx 6810 special system service

SYNOPSIS
'include <onyx.h)
int onyx (request, arg1, arg2)
int request, arg2;
char 'arg1;

DESCRIPTION
onyx is used to provide some special operating system ser
vices for the ONYX 6810 system. Currently, the request argu~
ment can be one of the following:

ONYX CONF

ONYX UCP

The arg2 is ignored by this call and
the -SYStem configuration information
is stored into arg1.

With this request 3K bytes of informa
tion are copied into arg1. First, 1K
bytes of the user stack are copied,
followed by the user area of the the
process.

arg2 specifies the table entry in the
proc table for the process desired.

onyx will fail and not perform the requested operation if
one or more of the following are true:

There is not enough memory allocated for the informa~

tion to be copied. [EFAULT]

Request code is invalid. [EINVAL]

RETURN VALUE
Upon successful completion, a value of 0 is returned to the
calling process. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

- 1 - Printed 6 1985

)

OPEN(2) OPEN(2)

NAME
open ~ open for reading or writing

SYNOPSIS
linclude <fcntl.h>
int open (path, of lag , [mode])
char .path;
int of lag , mode;

DESCRIPTION
Path points to a pathname naming a file. QE~ opens a file
descriptor for the named file and sets the file status flags
according to the value of of lag. Oflag values are con~

structed by or~ing flags from the following list (only one
of the first three flags below may be used):

o RDONLY Open for reading only.

o WRONLY Open for writing only.

o RDWR Open for reading and writing.

o NDELAY This flag may affect subsequent reads and writes.
See read(2) and write(2).

When opening a FIFO with 0 RDONLY or O_WRONLY set:

If 0 NDELAY is set:

An open for reading~only returns without
delaY:-- An open for writing-only returns an
error if no process currently has the file
open for reading.

If 0 NDELAY is clear:

An open for reading~only blocks until a pro~

cesS--opens the file for writing. An open for
writing-only blocks until a process opens the
file for reading.

When opening a file associated with a communication
line:

If 0 NDELAY is set:

The ~ returns without waiting for carrier.

If 0 NDELAY is clear:

The open blocks until carrier is present.

o APPEND If set, the file pointer is set to the end of the
file prior to each write.

Printed 6 1985

OPEN(2) OPEN(2)

o CREAT If the file exists, this flag has no effect. Oth~

erwise, the file's owner ID is set to the process's
effective user ID, the file's group ID is set to
the process's effective group ID, and the low~order
12 bits of the file morle are set to the value of
mode modified as follows (see creat(2)):

All bits set in the process's file mode crea~

tion mask are cleared. See umask(2).

Mode bit 01000 (save text image after execu~

tion) is cleared. See chmo~(2).

O_TRUNC If the file exists, its length is truncated to 0
and the mode and owner are unchanged.

If 0 EXCL and 0 CREAT are set, open fails if the
file exists.

Upon successful completion a non-negative integer, the file
descriptor, is returned.

The file pointer used to mark the current position within
the file is set to the beginning of the file.

The new file descriptor is set to remain open across exec
system calls. See fcn!l(2).

No process may have more than 20 file descriptors open
simultaneously.

The named file is opened unless one or more of the following
are true:

A component of the path prefix is not a directory.
[ENOTDIR]

o CREAT is not set and the named file does not exist.
['ENOENT]

A component of the path prefix denies search permis
sion. [EACCES]

Oflag permisSion is denied for the
[EACCES]

named fi 1 e.

The named file is a directory and oflag is write or
read/write. [EISDIR]

The named file resides on a read~only file system and
oflag is write or read/write. [EROFS]

20 file descriptors are currently open. [EMFILE]

- 2 - Printed 6 1985

!
/

OPEN(2) OPEN(2)

The named file is a character special or block special
file, and the device associated with this special file
does not exist. [ENXTO]

The filp. is a pure procedure (shared text)
being p.xecuted and oflag is write or
[ETXTBSY] -----

file that is
read/write.

Path points outside the process's allocated
space. [EFAULT]

address

o CREAT and 0 EXCL are set and the named
(EEXISTJ

file exists.

o NDELAY is set, the named file is a FIFO, 0 WPONLY is
set, and no process has the file open for reading.
[ENXTO]

RETURN VALUE
Upon successful completion, a non~negative integer (i.e., a
file descriptor) is returned; otherwise, a value of -1 is
returned and errno is set to indicate the error.

Refer to fcntl(5) for a list of the flag values contained in
<fcntl.h>.

SEE ALSO
close(2), creat(2), dup(2),
write(2), fcntl(S).

fcntl(2), lseek(2) t read(2),

Printed 6 198')

PAUS!(2) PAUS[(2)

NAME
pause ~ suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
~~ suspenos the calling process until it receives a sig
nal. The signal must be one that is not currently set to be
ignored by the calling process.

If the signal causes termination of the calling process,
~~~ does not return. 

If the signal is caught by the calling process and control 
is returned from the signal-catching function (see sig= 
nal(2», the calling process resumes execution from the 
point of suspension. A value of ~1 is returned from pause 
ano errno is set to EINTR. 

SEE ALSO 
alarm(2), kill(2), signal(2), wait(2). 

Printed 6 1985 



) 

PIPE(2) PIPE(2) 

NAME 
pipe ~ create an interprocess channel 

SYNOPSIS 
int pipe (fildes) 
int fildes[2]; 

DESCRIPTION 
Pipe creates an 1/0 mechanism called a pipe and returns two 
fIle descriptors, fildes[O] and fildes[1]. Fildes[O] is 
opened for reading and fildes[1] is opened for writing. 

Writes up to 5,120 bytes of data are buffered by the pipe 
before the writing process is blocked. A read on file 
descriptor !llde~[O] accesses the data written to 1ildes[1] 
on a first~in~first-out basis. 

No process may have more than 20 file descriptors open 
simul taneousl y. 

Pipe fails if 19 or more file descriptors are currently 
open. [EMFILE] 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Oth
erwise, a value of ~1 is returned and ~~ is set to indi~ 

cate the error. 

SEE ALSO 
sh(1), read(2), write(2). 

... 1 ... Printed 6 1985 



P1.0CK(2) PLOCK(2) 

NAME 
plock - lock process, text, or data in memory 

SYNOPSIS 
linclude <sys/lock.h) 

int plock (op) 
int op; 

DESCRIPTION 
Plock allows the calling process to lock its text segment 
( text 1 0 c k), its d Q t a s e g men t (d a t a I 0 c k), 0 r bot hit s t ext 
and data segments (process lock) into memory. Locked seg ... 
ments are immune to all routine swapping. Plock also allows 
these segments to be unlocked. The effective user ID of the 
calli.ng process must be super user to use this call. Op 
specifies the following: 

PROCLOCK lock text & data segments into memory 
(process 1 oc k) 

TXTLOCK lock text segment into memory (text 
loc k) 

DATLOCK lock data segment in to memory (data 
loc k) 

UNLOCK remove locks 

il£~ fails and does not perform the requested operation if 
one or more of the following are true: 

The effective user ID of the calling process is not 
superuser. [EPERM] 

Op is equal to PROCLOCK and a process lock, a text 
lock, or a data lock already exists on the calling pro ... 
cess. [EINVAL] 

op is equal to TXTLOCK and a text lock or 
lock already exists on the calling process. 

Op is equal to DATLOCK and a data lock or 
TOck already exists on the calling process. 

a process 
[EINVAL] 

a process 
[EINVAL] 

op is equal to UNLOCK and no type of lock exists on the 
calling process. [EINVAL] 

RETURN VALUE 
Upon successful completion, a value of 0 is returned to the 
calling process. Otherwise, a value of -1 is returned and 
errno is set to indicate the error. 

.,. 1 .,. Printed 6 1985 



PROFIL(2) PROFIL(2) 

NAME 
profil ~ execution time profile 

SYNOPSIS 
void profil (buff, bufsiz, offset, scale) 
char Ibuff; 
int bufsiz, offset, scale; 

DESCRIPTION 
Buff pOints to an area of core whose length 
given by bufsiz. After this call, the 
counter (pc-)-~xamined each clock tick 
offset is subtracted from it and the result 
sea 1 e • 1ft her e suI tin gnu m be r cor res po n d s 
buff: that word is incremented. 

(in bytes) is 
user's program 

(60th second); 
is multiplied by 
to a word inside 

The scale is interpreted as an unsigned, fixed-point frac~ 

tion with binary point at the left: 0177777 (octal) gives a 
1~1 mapping of pc's to words in buff; 077777 (octal) maps 
each pair of instruction wor~ogether. 02(8) maps all 
instructions onto the beginning of buff (producing a non-
interrupting core clock). ----

Profiling is turned off by giving a scale of 0 or 1. It is 
rendered ineffective by giving a bufsiz of O. Profiling is 
turned off when an exec is executed, but remains on in child 
and parent both after-a fork. Profiling is turned off if an 
update in buff would cause-a memory fault. 

RETURN VALUE 
Not defined. 

SEE ALSO 
prof(1), monitor(3C). 

Printed 6 1985 



/ 

PTRACE(2) PTRACE(2) 

NAME 
ptrace ~ process trace 

SYNOPSIS 
int ptrace (request, pirl, arldr, data); 
1nt request, pirl, addr, data; 

DESCRIPTION 
~~~ provides a means by which a parent process may con
trol the execution of a child process. Its primary use is
for the implementation of breakpoint debugging; see sdb(1).
The child process behaves normally until it encounters a
signal (see signal(2) for a list of signals), at which time
it enters ;--Stopped state and its parent is notified via
wait(2). When the child is in the stopped state, its parent
can-p.xamine and modify its "core image" using Etrace. The
parent also can cause the child either to terminate or con-
tinue, with the possibility of ignoring the signal that
caused it to stop.

The req~~~ argument determines the precise action to be
taken by ptr~~ and is one of the following:

o This request must be issued by the child process
if it is to be traced by its parent. It turns on
the child's trace flag that stipulates that the
child should be left in a stopped state upon
receipt of a Signal rather than the state speci
fied by the ~ argument of signal(2). The pi~,

addr, and data arguments are ignored and a return
vaTUe is -nOt defined for this request. Peculiar
results ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent
process. For each, ~ is the process ID of the Child. The
child must be in a stopped state before these requests are
made.

1, 2 With these requests, the word at location ~ in
the address space of the child is returned to the
parent process. If I and D space are separated,
request 1 returns a word from I space, and request
2 returns a word from D space. If I and D space
are not separated, either request 1 or request 2
may be used with equal results. Th~data argument
is ignored. These two requests fa~f addr is
not the start address of a word. in which case a
value of ~1 is returned to the parent process and
the parent's ~~ is set to EIO.

3 With this request, the word at location addr in
the child's USER area in the system's-address
space (see <sys/user.h» is returned to the parent

- 1 - Printed 6 1985

PTRACE(2) PTRACE(2)

process. Addresses in this area range from 0 to
1024 on the PDP~11s and 0 to 2048 on the 3B203,
VAX, ann M68000. The data argument is ignored.
This request fails if addr is not the start
address of a word or is 0 u t sid et h e USER area, in
which case a value of ~1 is returned to the parent
process and the parent's errno is set to EIO.

4, 5 \~ith these requests, the value given by the ~
argument is written into the address space of the
child at location addr. If I and D space are
separated, reques~ writes a word into I space
ann request 5 writes a'word into D space. If I
and D space are not separated, either request 4 or
request 5 may be used with equal results. Upon
successful completion, the value written into the
address space of the child is returned to the
parent. These two requests fail if addr is a
location in a pure procedure space and--;nother
process is executing in that space, or if addr is
not the start address of a word. Upon failure a
value of -1 is returned to the parent process and
the parent's errno is set to EIO.

6 With
USER
that
the
ar e :

this request, a few entries in the child's
area can be written. Data gives the value

is to be written and addr~the location of
entry. The few entries that can be written

the general registers (i.e., registers 0-11
on the 3B20S, registers O~1 on PDP~11s, and
registers O~15 on the VAX and M68000)

certain bits of the Processor Status Word on
the M68000 and M68010 (i.e., bits 0-4 and 15)

the condition codes of the Processor Status
Word on the 3B20S •

the floating pOint status register and six
floating point registers on PDP-11s

certain bits of the Processor Status Word on
PDP-11s (i.e, bits 0-4, and 8-11)

certain bits of the Processor Status Longword
on the VAX (i.e., bits 0-7, 16-20, and
30-31)

7 This request causes the child to resume execution.
If the data argument is 0, all pending Signals,
including the one that caused the child to stop,
are canceled before it resumes execution. If the

- 2 - Printed 6 1985

PTRACE(2) PTRACE(2)

data argument is a valid signal number, the child
reS;:; In e sex e cut ion a s i fit han inc u r red t hat s i g ~
nal; any other penning signals are canceled. The
arlrl£ argument must be equal to 1 for this request.
Upon successful completion, the value of data is
returned to the parent. This request fails if
data is not 0 or a valid signal number, in which
case a value of -1 is returned to the parent pro
cess and the parent's ~~£ is set to EIO.

8 This request causes the child to terminate with
the same consequences as ~1l(2).

9 This request sets the trace bit in the Processor
Status Word of the child (i.e., bit 4 on PDP-1 1 s;
bit 30 on the VAX; bit 15 on the M68000) ann then
executes the same steps as listed above for
request 7. The trace bit causes an interrupt upon
completion of one machine instruction. This
effectively allows single stepping of the child.
On the 3B20S there is no trace bit anrl this
request returns an error.
Note: the trace bit remains set after an interrupt
on PDP~11s but is turned off after an interrupt on
the VAX ann M68000.

To forestall possible fraun, ptra~ inhibits the set~user-irl

facility on subsequent exec(2) calls. If a traced process
calls exec, it stops before-executing the first instruction
of the-new image showing signal SIGTRAP.

GENERAL ERRORS
Ptrace in general fails if one or more of the following are
tr ue :

SEE ALSO

~~~~ is an illegal number. [EIO] 

Pid identifies a child that ooes not exist or has not 
executed a ptrace with request O. [ESRCH] 

sob(1), exec(2), signal(2), wait(2). 

... 3 ... Printed 6 198'5 



REAO(2) REAO(2) 

NAME 
rearl ~ rearl from file 

SYNOPSIS 
int read (filrles, buf, nbyte) 
int fildes; 
char *buf; 
unsigned nbyte; 

DESCRIPTION 
Filrles is a file descriptor obtained 
dUE, fcntl, or pipe system call. 

from a E.,!.eat, open, 

Read attempts to read nbyte bytes from the file associated 
with !llde~ into the buffer pOinted to by bUf. 

On devices capable of seeking, the read starts at a position 
in the file given by the file--pointer associated with 
!l~~. Upon return from read, the file pOinter is incre~ 
mented by the number of bytes-actually read. 

Devices that are incapable of seeking always read from the 
current position. The value of a file pointer associated 
with such a file is undefined. 

Upon successful completion, read returns the number of bytes 
actually read and placed in the buffer; this number may be 
less than nbyte if the file is associated with a communica
tion line (see ioc!l(2) and termio(7», or if the number of 
bytes left in the file is less than nbyte bytes. A value of 
o is returned when an end-of-file has been reached. 

When attempting to read from an empty pipe (or FIFO): 

If 0 NDELAY is set, the read returns a O. 

If 0 NDELAY is clear, the read blocks until data is 
written to the file or the file is no longer open for 
writing. 

When attempting to read a file associated with a tty that 
has no data currently available: 

If 0 NDELAY is set, the read returns a O. 

If O_NDELAY is clear, the read blocks until data 
becomes available. 

Read fails if one or more of the following are true: 

Fildes is not a valid file descriptor open for reading. 
TISADF] 

..... 1 ..... Pr in ted 6 1985 



READ(2) READ(2) 

~i points outside the allocated 
[EFAULT] 

address space. 

RETURN VALUE 
Upon successful completion a non~negative integer 
returned indicating the number of bytes actually read. 
erwise, a ~1 is returned and errno is set to indicate 
error. 

SEE ALSO 

is 
Oth~ 

the 

creat(2) t dup(2) t fcntl(2) t ioctl(2), open(2), pipe(2), ter
mio(7). 

Printed 6 1985 



SEMCTl(2) SEMCTl(2) 

NAME 
semctl - semaphore control operations 

SYNOPSIS 
'include <sys/types.h) 
'include <sys/ipc.h) 
'include <sys/sem.h) 

int semctl (semid, semnum, cmd, arg) 
int semid, cmd; 
int semnum; 
union semun { 

int val; 
struct semid ds *buf; 
ushort array[ ]; 

} arg; 

DESCRIPTION 
Semctl provides a variety of semaphore control operations as 
specified by cmd. 

The following ~s are executed with respect to the sema
phore specified by semid and semnum (see intro(2) for defin
itions of values and permissions): 

GETVAL 

SETVAL 

GETPID 

GETNCNT 

GETZCNT 

The following 
val in the set 

GETALL 

SETALL 

Return the value of semval.{READ} 

Set the value of semval to arg.val.{ALTER} 
When this cmd is successfully-executed, the 
semadj value-(see exit(2» corresponding to 
the specified semaphore in all processes is 
cleared. 

Return the value of sempid. {READ} 

Return the value of semncnt. {READ} 

Return the value of semzcnt.{READ} 

cmos return and se t, respectively, ever y sem..,... 
of semaphores. 

Place semvals into array pointed to by 
arg.array.{READ} 

Set semvals according to the array pOinted 
to by !!!.array.{ALTER} When this cmd is 
successfully executed, the semadj values 
corresponding to each specified semaphore in 
all processes are cleared. 

The following cmds are also available: 

... 1 - Pr in ted 6 1 985 



SEMCTL(2) 

IPC STAT 

IPC SET 

IPC RMID 

SEMCTL(2) 

Place the current value of each member of 
the data structure associated with semid 
into the structure pOinted to byarg.buf: 
The contents of this structure are~fined 
in intro(2) .{READ} -----
Set the value of the following members of 
the data structure associated with semid to 
the corresponding value found in the--sIruc
ture pointed to by ~.buf: 
sem perm.uid 
sem-perm.gid 
sem:perm.mode /* only low 9 bits */ 

This ~~ can only be executed by a process 
that has an effective user ID equal to 
either that of superuser or to the value of 
sem perm.uid in the data structure associ
ated with-semid. 

Remove the semaphore identifier specified by 
semid from the system and destroy the set of 
semaphores and data structure associated 
with it. This cmd can only be executed by a 
process that has-an effective user ID equal 
to either that of superuser or to the value 
of sem perm.~ in the data structure asso
ciated with semid. -----

Semctl fails if one or more of the following are true: 

Semid· is not a valid 
[EINVAL] 

semaphore 

Semnum is less than zero 
sem nsems. [EINVAL] 

or 

identifier. 

greater than 

Cmd is not a valid command. [EINVAL] 

Operation permiSSion is denied to the calling pro~ 
cess (see intro(2». [EACCES] 

Cmd is SETVAL or SETALL and the value to which 
~val is to be set is greater than the system 
imposed maximum. [ERANGE] 

Cmd is equal to IPC RMID or IPC SET and the effec~ 
tive user ID of the calling process is not equal 
to that of superuser and is not equal to the value 
of sem perm.uid in the data structure associated 
with semid. [EPERM] 

Arg.bu! pOints to an illegal address. [EFAULT] 

Printed 6 1985 



SEMCTL(2) 

RETURN VALUE 
Upon successful 
clOd as follows: 

GETVAL 
GETPID 
GETNCNT 
GETZCNT 
All others 

completion, the value returned 

The value of sernval. 
The value of sernpid. 
The value of sernncnt. 
The value of sernzcnt. 
A value of O. 

SEMCTL(2) 

depends on 

When semctl is unsuccessful, a value of -1 is returned and 
errno is set to indicate the error. 

SEE ALSO 
semget(2) t semop(2), intro(2), exit(2). 

Printed 6 1Q8'5 



;' 

/ 

SEMGE!(2) 

NAME 
semget - get set of semaphores 

SYNOPSIS 
linclude <sys/types.h> 
linclude <sys/ipc.h> 
Hinclude <sys/sem.h> 

int semget (key, nsems, semflg) 
key_t key; 
int nsems, semflg; 

DESCRIPTION 
Semget returns the semaphore identifier associated with key. 

A semaphore identifier and associated data structure and set 
containing nsems semaphores (see intro(2)) are created for 
key if one or-the following is true: 

Key is equal to lPC PRIVATE. 

Kpy does not already have a semaphore identifier asso
eTateo wi th it, and (semflg & lPC_CREAT) is .... true' , • 

Upon creation, the data structure associated with the new 
semaphore identifier is initialized as follows: 

Sem perm.~l~, sem perm.uid, sem perm.~ii, and 
~perm .gid are set equal to the effective user ID and 
effective group ID, respectively, of the calling pro
cess. 

The low-order 9 bits of ~£~.~ are set equal to 
the low~order 9 bits of semflg. 

Sem nsems is set equal to the value of nsems. 

Sem otime is set equal to 0 and sem ctime is set equal 
to the current time. 

SemK~ fails if one or more of the following are true: 

Nsems is either less than or equal to zero or greater 
than-the system imposed limit. [EINVAL] 

A semaphore identifier exists for key but operation 
permission (see intro(2)), as specified by the low
order 9 bits of semflg, would not be granted. [EACCES] 

A semaphore identifier exists for key but the number of 
semaphores in the set associated with it is less than 
nsems and nsems is not equal to zero. [EINVAL] 

.... 1 .,.. Printed 61985 



SEMGET(2) 

A semaphore identifier does not 
(~£l& & lPC_CREAT) is ...... fal se' , • 

exist for 
[ENOENT] 

SEMGET(2) 

and 

A semaphore identifier is to be created but the system 
imposed limit on the maximum number of allowerl sema
phores system wide would be exceeded. [ENOSPC] 

A semaphore identifier exists for key but (semflg & 
IPC CREAT) & ( semflg & lPC_EXCL) ) is"'''' true". 
[EEllST] 

RETURN VALUE 
Upon successful completion, a non-negative integer (i.e., a 
semaphore identifier) is returned. Otherwise, a value of ~1 
is returnerl and errno is set to indicate the error. 

SEE ALSO 
semctl(2), semop(2). 

Printed 6 1985 



J 

SEMOP(2) SEMOP(2) 

NAME 
se~op - semaphore operations 

SYNOPSIS 
linclude <sys/types.h> 
linclude <sys/ipc.h> 
'include <sys/sem.h> 

int semop (semid, sops, nsops) 
tnt semid; 
struct sembuf (*sops)[]; 
int nsops; 

DESCRIPTION 
~emop is used to atomically perform an array of semaphore 
operations on the set of semaphores associated with the 
semaphore irle!1tifier specified by ~mid. Sops is a pointer 
to the array of semaphore-operation structures. Nsops is 
the number of such structures in the array. Each structure 
inclurles the following members: 

short 
short 
short 

sem_num; 
sem_op; 
sem_fIg; 

!* semaphore number */ 
1* semaphore operation */ 
1* operation flags *1 

Each semaphore operation specified by sem oE is performed on 
the corresponding semaphore specified by ~id and ~~~. 

Sem op specifies one of three semaphore operations as fo1-
lOws--Csee semaphore data structure in in~(2»: 

If sem op is a negative integer, one of the follow
i n g o"C'C'tir s: { A L T E R } 

If semval is greater than or equal to the abso
lute value of sem oE, the absolute value of 
sem oE is subtracted from semval. Also, if 
(sem fIg & SEM UNDO) is "true", the absolute 
value o~ sem ~E is added to the calling 
process's semadj value (see exit(2» for the 
specified semaphore. ----

If semval is less than the absolute value of 
sem op and (sem fIg & IPC NOWAIT) is "true", 
semop returns immediately.-

If semval is less than the absolute value of 
sem oE ann (sem fIg & IPC_NOWAIT) is ...... false" t 

semop increments the semncnt associated with 
the specified semaphore-a~suspends execution 
of the calling process until one of the follow
ing occurs: 

- 1 - Pr in ted 6 , 985 



SEMOP(2) SEMOP(2) 

Semval becomes greater than or equal to the 
absolute value of sem op. When this occurs, 
the value of semncnt associated with the -----specified semaphore is decremented, the 
absolute value of ~££ is subtracted from 
semval and, if (sem flg & SEM UNDO) is 

"t"'", true", the absolute value of sem op is 
added to the calling process's semadj value 
for the specified semaphore. 

The ~mid for which the calling process is 
awaiting action is removed from the system 
(see semctl(2)). When this occurs, errno is 
set equal to EIDRM and a value of -1 is 
returned. 

The calling process receives a signal that 
is to be caught. When this 'occurs, the 
value of semncnt associated with the speci
fied semaphore is decremented and the cal
ling process resumes execution in the manner 
prescribed in signal(2). 

If sem op is a positive integer, the value of sem op 
is -arlded to semval and, if (sem fIg & SEM UNDO~ 
"true", the value-of sem op TSsubtrac'ted-from the 
calling process's semadj value for the specified 
semaphore. {ALTER} 

If sem op is zero, one of the following occurs: 
{ READ} 

If semval is zero, ~emop returns immediately. 

If semval is not equal to zero and (sem flg & 
IPC NOWAIT) is" true", sernop returns immedi
ately. 

If semval is not equal t6 zero and (sem flg & 
IPC_NOWAIT) is"" false", semop increments the 
semzcnt associated with the specified semaphore 
and suspends execution of the calling process 
until one of the following occurs: 

Semval becomes zero, at which time the value 
of sernzcnt associated with the specified 
semaphore is decremented. 

The semid for which the calling process is 
awaiting action is removed from the system. 
When this occurs, errno is set equal to 
EIDRM and a value of -1 is returned. 

- 2 - Printed 6 1985 



/ 

/ 

SEMOP(2) SEMOP(2) 

The calling process receives a signal that 
is to be caught. When this occurs, the 
value of semzcnt associated with the speci
fied semaphore is decremented and the cal
ling process resumes execution in the manner 
prescribed in signal(2). 

Semop fails if one or more of the following are true for any 
of the semapr.ore operations specified by ~: 

~~ is not a valid semaphore identifier. [EINVAL] 

Sem num is less than zero or greater than or equal to 
the--number of semaphores in the set associated with 
~.!.2." [ EF BIG] 

Nsops is greater than the system imposed maximum. 
TI2BIGJ 

Operation permission is denied to the calling process 
(see in!~~(2». [EACCESJ 

The operation would result in suspension of the calling 
process but (~~~ & IPC_NOWAIT) is "true". 
[EAGAIN] 

The limit on the number of individual processes 
requesting a SEM UNDO would be exceeded. [ENOSPC] 

The number of individual semaphores for which the cal
ling process requests a SEM_UNDO would exceed the 
limit. [EINVAL] 

An operation would cause a semval to overflow the sys
tem imposed limit. [ERANGE-]-----

An operation would cause a semadj value to overflow the 
system imposed limit. [ERANGE] 

Sops pOints to an illegal address. [EFAULT] 

Upon successful completion, the value of .sempirl for each 
semaphore specified in the array pointed to by ~ is set 
equal to the process ID of the calling process. 

RETURN VALUE 
If semop returns due to the receipt of a signal, a value of 
-1 is returned to the calling process and errno is set to 
EINTR. If it returns due to the removal of a semid from the 
system, a value of -1 is returned and errno is set to EIDRM. 

Upon successful completion, the value of semval at the time 

- 3 - Printed 6 1985 



SEMOP(2) SEMOP(2) 

of the call for the last operation in the array pOinted to 
by ~ops is returned. Otherwise, a value of -1 is returned 
and errno is set to indicate the error. 

SEE ALSO 
intro(2), exec(2), exit(?), fork(2), semctl(2), semget(2). 

- 4 - Printed 6 1985 



/ 

) 

~rTPOPp(2) S£TPGRP(2) 

NAME 
setp~rp - set process group ID 

SYNOPSIS 
int setpgrp () 

DESCRIPTION 
Se!Rf~E sets the process group ID of the calling process to 
the process ID of the calling process and returns the new 
process group ID. 

RETURN VALUE 
Setpg~ returns the value of the new process group ID. 

SEE ALSO 
exec(2), fork(2), getpirl(2) t intro(2) t kill(2), signal(2). 

~ 1 ~ Printed 6 1985 



SETUID(2) SETUID(2) 

NAME 
setuirl, setgid ~ set user anrl group IDs 

SYNOPSIS 
in t setuid (uirl) 
in t u i rl ; 

in t setgid (girl) 

int gid; 

DESCRIPTION 
Setuirl (setgirl) is used to set the real user (group) ID and 
~r;ctive user (group) ID of the calling process. 

If the effective user ID of the 
superuser, the real user (group) 
(group) ID are set to uirl (girl). 

calling process 
ID and effective 

is 
user 

If the effective user ID of the calling process is not 
superuser, but its real user (group) ID is equal to uirl 
(10.i) , the effective user (group) ID is set to uid (gi2). 

Set u i rl ( ~~.!.~..!.~ ) fa i 1 s i f the rea 1 use r ( g r 0 up) I D 0 f the 
calling process is not equal to uid (gid) ann its effective 
use rID i s not sup e r use r • [ E PEP H-]-

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Oth~ 

erwise, a value of ~1 is returned and errno is set to indi
cate the error. 

SEE ALSO 
getuirl(2), intro(2). 

Printed 6 1985 



,I 

) 

SHHCTL(2) SHMCTL(2) 

NAME 
shmctl - shared memory control operations 

SYNOPSIS 
'include <sys/types.h> 
#include <sys/ipc.h) 
Dinclude <sys/shm.h) 

int shmctl (shmid, crnd, buf) 
int shmid, cmd; 
struct shmid ds .buf; 

DESCRIPTION 
Shmctl provides a variety of shared memory control opera
tions as specified by cmd. The following cmds are avail~ 
able: 

IPC RMID 

Place the current value of each member of 
the data structure associated with shmid 
into the structure pOinted to by buf.--rhe 
contents of this structure are defined in 
intro(2). {READ} 

Set the value of the following members of 
the data structure associated with shmid to ---the corresponding value founn in the struc-
ture pointed to by buf: 
shm perm.uid 
shm-perm.gid 
shm:perm.mode 1* only low 9 bits II 

This ~ can only be executed by a process 
that has an effective user ID equal to 
either that of superuser or to the value of 
shm perm.uio in the data structure associ~ 
ated with---shmid. 

Remove the shared memory identifier speci
fied by shmid from the system and destroy 
the shared memory segment and data structure 
associated with it. This cmd can only be 
executed by a process that has-in effective 
user ID equal to either that of super user or 
to the value of shm perm.uid in the data 
structure associated with ShIDid. 

Shmctl fails if one or more of the following are true: 

Shmid is not a valid shared memory identifier. 
TIINVAL] 

Cmd is not a valid command. [EINVAL] 

.... 1 ..,. Printed 6 1985 



SHMCTL(2) 

RETURN VALUE 

SHMCTL(2) 

Cm~ is equal to lPC_STAT and {READ} operation per~ 
mission is denied to the calling process (see 
intro(2)). [EACCES] 

Crno is equal to lPC RMlD or lPC SET and the effec~ 

tive user ID of the calling process is not equal 
to that of superuser and is not equal to the value 
of shm perm.uid in the data structure associated 
with shmid. [EPERM] 

Buf pOints to an illegal address. [EFAULT] 

Upon successful completion, a value of 0 is returned. Other
wise, a value of -1 is returned and errno is set to indicate 
the error. 

SEE ALSO 
shmget(2), shmop(2). 

- 2 - Printed 6 1985 



I 
/ 

SHMOET(2) 

NAME 
shmget ~ get shared memory segment 

SYNOPSIS 
#include <sys/types.h) 
Dinclude <sys/ipc.h) 
Dinclude <sys/shm.h) 

1nt shmget (key, size, shmflg) 
key_t key; 
int size, shmflg; 

DESCRIPTION 
Shmg~ returns the shared memory identifier associated with 

£1· 
A shared memory identifier and associated data structure and 
shared memory segment of size bytes (see intro(2)) are 
created for ~1 if one of the-roTlowing is true-:----

Kel is equal to IPC PRIVATE. 

~1 does not already have a 
associated with it, and 
"true". 

shared 
(shmflg 

memory identifier 
& lPC_CREAT) is 

Upon creation, the data structure associated with the new 
shared memory identifier is initialized as follows: 

ShE:.-~!'.1E..~l.9., ~E.erm.uid, shm Eerm.cgid, and 
shm perm.gid are set equal to the effective user ID and 
effective-group ID, respectively, of the calling pro
cess. 

The low~order 9 bits of shm perm.~ are set equal to 
the low~order 9 bits of shmflg. ~segsz is set equal 
to the value of size. 

Shm Ipid, shm na~, shm atime, ann shm dtime are set 
equal to O. 

Shm ctime is set equal to the current time. 

Shmget fails if one or more of the following are true: 

Size is less than the system imposed minimum or greater 
than the system imposed maximum. [EINVAL] 

A shared memory identifier exists for key but operation 
permission (see intro(2)), as specifIed by the low
order 9 bits of shmflg, would not be granted. [EACCES] 

A shared memory identifier exists for key but the 
of the segment associated with it is less than size 

si ze 
and 

..,.. 1 - Printed 6 1985 



SHMGET(2) SHMGET(2) 

si ze is not equal, to zero. [EINVAL] 

A shared memory identifier does not exist for key and 
(shmflg & lPC_CREAT) is .... false". [ENOENT] 

A s~ared memory identifier is to be created but the 
system imposed limit on the maximum number of allowed 
shared memory identifiers system~wide would be 
exceerled. [ENOSPC] 

A shared memory identifier and associated shared memory 
segment are to be created but the amount of available 
physical memory is not sufficient to fill the request. 
[ENOMEM] 

A shared memory identifier exists for key but ( (shmflg 
& IPC CPEAT) . & ( shmflg & lPC EXCU) is"" tru~ 
[EEXIST] -

RETURN VALUE 
Upon successful completion a non-negative integer, i.e., a 
shared memory identifier, is returned. Otherwise, a value 
of -1 is returned and errno is set to indicate the error. 

SEE ALSO 
shmctl(2), shmop(2). 

.- 2 - Printed 6 1985 



IHMOP(2) 

NAME 
shmat, shmdt ~ shared memory operations 

SYNOPSIS 
linclude <sys/types.h> 
linclude <sys/ipc.h> 
#include <sys/shm.h> 

char .shmat (shmirl, shmarldr, shmflg) 
int shmid; 
char *shmarldr 
int shmflg; 

int shmdt (shmaddr) 
char *shmaddr 

DESCRIPTION 
Shmat attaches the shared memory segment associated with the 
shared memory identifier specified by shmid to the data seg
ment of the calling process. The segment is attached at the 
address specified by one of the following criteria: 

If shmaddr is equal to zero, the segment is attached at 
the first available address as selected by the system. 

If shmaddr is not equal to zero and (shmflg & SHM RND) 
is < <true", the segment is attached at the address 
given by (shmaddr ~ (shmaddr modulus SHMLBA». 

If shmaddr is not equal to zero and (shmflg & SHM RND) 
is ~ < false", the segment is attached at the address 
given by shmadrlr. 

The segment is attached for reading if (shmflg & SHM RDONLY) 
is "true" {READ}; otherwise it is attached for reading ann 
writing {READ/WRITE}. 

Sh~ fails ann does not attach the shared memory segment if 
one or more of the following are true: 

Shmid is not a valid shared 
[EINVAL] 

memory identifier. 

Operation permission is denied to the calling process 
(see intro(2». [EACCES] 

The available data space is not large enough to accom~ 

mod ate the shared memory segment. [ENOMEM] 

Shmaddr is not equal to zero, and the value of (shmaddr 
(shmaddr modulus SHHLBA» is an illegal address. 

[EINVAL]-

- 1 - Printed 61985 



SHMOP(2) 

Shmarldr is not equal to zero, (~~mflg & 
"false" ann the value of shmaddr 
address. [EINVAL] 

SHMOP(2) 

SHM_RND) is 
is an illegal 

The number of shared memory segments attacherl to the 
calling process would exceerl the system imposed limit. 
[EMFILE] 

Shmdt rletaches from the calling process's data segment the 
shared memory segment located at the address specifierl by 
~~ddr. 

Shmdt fails anrl does not detach the shared memory segment if 
shmarlrlr is not the data segment start address of a shared 
memory segment. [EINVAL] 

RETURN VALUES 
Upon successful completion, the return value is as follows: 

Shmat returns the data segment start address of the 
attached sh a red memory segment. 

Shmdt returns a val ue of o. ---
Otherwise, a value of -1 is returned and errno is set to 
indicate the error. 

SEE ALSO 
exec(2), exit(2), fork(2), shmctl(2), shmget(2). 

Printed 6 1985 



SIGNAL(2) SIONAl.(2) 

NAME 
signal - specify what to do upon receipt of a signal 

SYNOPSIS 
'include <sys/signal.h> 

int (.signal (sig, func))() 
int sig; 
1nt (.func) (); 

DESCRIPTION 
Signal allows the calling process to choose one of three 
ways in which it is possible to handle the receipt of a 
specific signal. Sig specifies the signal and func speci
fies the choice. 

Sig can be assigned anyone of the following except SIGKILL: 

SIGHUP 
SlGlNT 
SlGQUlT 
SlGlLL 

SlGTRAP 

SIGlOT 
SIGEMT 
SIGFPE 
SIGKILL 

SIGBUS 
SIGSEGV 
SlGSYS 
SlGPIPE 

SIGALRH 
SIGTERM 
SlGUSR1 
SIGUSR2 
SlGCLD 

SIGPWR 

01 
02 
03* 
04* 

05* 

06* 
07* 
08* 
og 

10* 
1 1 * 
12* 
1 3 

1 4 
15 
1 6 
1 7 
18 

1 9 

hangup 
interrupt 
qui t 
illegal instruction (not 
reset when caught) 
trace trap (not reset when 
caught) 
IOT instruction 
EMT instruction 
floating point exception 
kill (cannot be caught or 
ignored) 
bus error 
segmentation violation 
bad argument to system call 
write on a pipe with no one 
to read it 
alarm clock 
software termination signal 
user defined signal 1 
user defined signal 2 
death of a child (see WARN
ING below) 
power fail (see WARNING 
below) 

See below for the significance of the asterisk (.) in the 
above list. 

Func is assigned one of three values: SIG DFL, SIG IGN, or a 
functio~ address. The actions prescribed by these values 
are as follows: 

SIG DFL - terminate process upon receipt of a signal 

- 1 - Printed 6 1985 



SIGNAL(2) SIGNAL(2) 

Upon receipt of the signalsig, the receiving pro
cess is to be terminated-wTth all of the conse
quences outiined in exit(2); a ...... core image" is 
made in the curre~working directory of the 
receiving process if sig is one for which an 
asterisk appears in th;-above list and the follow
ing conditions are met: 

The effective user TD and the real user ID 
of the receiving process are equal. 

An ordinary file named core exists and is 
writable or can, be created. If the file 
must be created, it will have the follow
ing properties: 

a mode of 0666 modified by the 
file creation mask (see ~sk(2)) 

a file owner ID that is 
as the effective user 
receiving process 

the same 
ID of the 

a file group 1D that is the same 
as the effective group ID of the 
receiving process 

SIG TGN ignore signal 
The signal ~~ is to be ignored. 

Note: the signal SIGKTLL cannot be ignored. 

func!io~ ~~~~ - catch signal 
Upon receipt of the signal sig, the receiving pro
cess is to execute the signal-catching function 
pointed to by func. The signal number sig is passed 
as the first-ariument to the signal-catching func
tion. A second argument, sig code, is also passed 
to the function. Sig code has various contents, 
according to the value of sig. These values are 
provided in the table below. Before entering the 
signal-catching function, the value of func for the 
caught signal is set to SIG DFL unless ~signal is 
SIGILL, SIGTRAP, or SIGPWR.-

Upon return from the signal-catching function, the 
receiving process resumes execution at the point it 
was interrupted. See the WARNINGS section below. 

When a signal that is to be caught occurs during a 
read(2), write(2), open(2), or ioctl(2) system call 
on-a slow device (li~ terminal; but not a file), 

- 2 - p'r in ted 6 1 985 



SIGNAL(2) SIGNAL(2) 

during a pause(2) system call, or during a wait(2) 
s y s t e m call that doe s not ret urn i m m e d i ate I y 0 u e- to 
the existence of a previously stopped or zombie pro
cess, the signal catching function is executed; the~ 

the i0terrupted system call returns a -1 to the cal
ling process with errno set to EINTR. 

Note: the signal SIGKILL cannot be caught. 

A call to signal cancels a pending signal sig except for a 
pending SIGKILL-signal. 

Signal fails if one or more of the following are true: 

Sig is an illegal 
[EINVAL] 

signal number, 

Func points to an illegal address. 

including SIGKILL. 

[EFAULT] 

The table below shows how SIGTRAP handles M68000 traps. 
Most traps result in signals being sent to the user process 
that caused the trap. All other traps are consioered to be 
STRAYFT, spurious interrupts. 

The following meanings apply to information in the "SIGNAL 
CODE" column of the table: 

code -_ address means the address causing the fault 

code __ pc means the program counter value at the time 
of the trap 

code == (%dO) means the user parameter to the TRAP 
instruction 

The definitions of KINTDIV, KINTOVF, and KSUBRNG are provided in 
the include file (sys/signal.h>. 

- 3 - Printed 6 1985 



SIGNAL(2) SIGNAL(2) 

TRAP 
TYPE 

BU~ERR 

ADDRERR 
IN~TERR 

TRAP 
NO. A~SIGNMENT 

? bus error 
3 arldress error 
4 illegal instruction 

SIGNAL 
SIGNAL CODE 

SIGBUS adrlress 
SIGILL aodress 
SIGILL pc 

'ZDVDERP 
CHKTRAP 
TRAPVFT 
PRIVFLT 

5 zero rlivide fault 
6 CHK instruction fault 
7 TRAPV instruction fault 
8 privileged instruction 

fa ul t 

SIGFPE KINTDIV 
SIGFPE KSUBRNG 
SIGFPE KINTOVF 
SIGILL pc 

TRCTRAP 9 tr ace trap SIGTRAP pc 
L1010FT 10 line 1010 emulator SIGILL pc 
L1111FT 11 line 1 1 1 1 emulator SIGILL pc 
STRAYFT ?4 spurious interrupt n/a n/a 
SYS-CALL 32 TRAP 0 - system call n/a (~oO) 

BPTFLT 33 TRAP 1 - breakpoint SIGTRAP pc 
IOTTRAP 34 TRA P 2 - simulate DEC SIGIOT (~dO) 

lOT instruction 
,EMTTRAP 35 TRAP 3 - simulate DEC SIGEMT (%dO) 
I , EMT instruction 
:FPETRAP 36 TRAP 4 - floating pOint SIGFPE (~dO) 

I exception 

RETURN VALUE 
Upon successful completion, signal returns 
value of func for the specified signal sig. 
value of -1-rS-returnen ann errno is set to 
error. 

SEE ALSO 

the previous 
Otherwi se, a 

indicate the 

kill(1), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C). 

WARNINGS 
Two other signals that behave differently than the signals 
described above exist in this release of the system. They 
ar e : 

SIGCLD 18 
SIGPWR 19 

death of a chilo (reset when caught) 
power fail (not reset when caught) 

There is no guarantee that, in future releases of the UNIX 
System, these signals will continue to behave as described 
below;" they are included only for compatibility with other 
versions of the UNIX System. Their use in new programs is 
strongly discouraged. 

For these Signals, func is assigned one of three values: 
SIG DFL, SIG IGN, -or- a function address. The actions 
prescribed by-the.se values are as follows: 

- 4 - Printed 6 1985 



SIGNAL(2) SIGNAL(2) 

SIG DFL - ignore signal 
The signal is to be ignored. 

SIG IGN - ignore signal 
The signal is to be ignored. If sig is SIGCLD, 
the calling process's child processes do not 
create zombie processes when they terminate; see 
exit(2) • 

function address - catch signal 
If the signal is SIGPWR, the action to be taken is 
the same as that oescribed above for func equal to 
functi~ address. The same is true ir-the signal 
is SIGCLD, except that, while the process is exe
cuting the signal-catching function, any received 
SIGCLD signals are queued and the signal-catching 
function is continually reentered until the queue 
is empty. 

The SIGCLD affects two other system calls (wait(2) ano 
~l!(2)) in the following ways: 

wait 

exit 

If the func value of SIGCLD is set to SIG IGN and 
a wait--Is executed, the wait blocks until all of 
the calling process's child---processes terminate; 
it then returns a value of -1 with errno set to ---ECHILD. 

If in the exiting process's parent process the 
runc value of SIGCLD is set to SIG IGN, the exit
ing-process does not create a zombie process. 

When processing a pipeline, the shell makes the last pro
cess in the pipeline the parent of the preceding 
processes. A process that may be piped into in this 
manner (ano thus become the parent of other processes) 
should take care not to set SIGCLD to be caught. 

The ability to resume execution upon return from the 
signal-catching function is machine-dependent. For the 
M68000, resumption cannot occur after faults requiring 
instruction recovery. These faults are bus errors ano 
address errors. 

- 5 - Printed 6 1985 



.TAT(2) 

NAME 
stat, fstat - get file status 

SYNOPSIS 
linclude <sys/types.h> 
#include <sys/stat.h> 

int stat (path, buf) 
char .path; 
struct stat 'buf; 

int fstat (fildes, buf) 
int fildes; 
struct stat .buf; 

DESCRIPTION 
Path pOints to a pathname naming a file. Read, write or 
execute permission of the named file is not required, but 
all directories listed in the pathname leading to the file 
must be searchable. Stat obtains information about the 
named file. 

Similarly, fstat obtains information about an open file 
known by the file descriptor fildes, obtained from a suc~ 

cessful open(2), creat(2), dup(2T, fcntl(2), or pipe(2) sys~ 
tern call-.--- ----- --- ----

Buf is a pointer to a stat structure into which information 
rs-placed concerning t~ile. 

The contents of the structure pointed to by buf include the 
following members: 

ushort st_mode; 1* Fi I e mod e; see mknod(2) *1 
ino t st _ino; 1* Inode number II -dev t st_dev; II ID of device containing II 

1* a directory entry for this file *1 
dev t st_rdev; II ID of device II 

II Thi s entry is defined only for II 
II char ac ter special or block II 
II special fi I es II 

short st_nlink; II Number of I inks ·1 
ushort st uid; I· User ID of the file's owner II 
ushort st_gid; II Group ID of the fi Ie's group II 
off t st _si ze ; II Fil e size in bytes II 
time t st atime; 1* Time of last access II 
time - t st:mtime; 1* of modification II Time last data -time t st_ctime; II Time of last fi I e status change II 

II Times measured in seconds sinc e II 
II 00:00:00 GMT, Jan. 1 , 1910 II 

St atime, st mtime, and st ctime are changed by system calls 
as stated below. 

... 1 ... Printed 6 1985 



/ 

STAT(2) STAT(2) 

~~ime Time when file data was last accesserl. Changed by 
the follow 1. n g s y s t e m calls: c rea t ( 2 ), m k ~9.5:!. ( 2 ) , 
~~(2), ~~(2), and ~~(2).-----

st mtime Time when data was last modified. Changed by the 
following system calls: creat(2), mknorl(2), 
l?1:.~ ( 2 ), !3. t i ~ ( 2 ), and !!!: i t e ( 2 ) • ---

st ctime Time when file status was last changed. Changed 
by the following system calls: chmod(2), chown(2), 
~.!: ( 2 ), 1 ink ( 2 ), .!£ k n ~ ( 2 ), P i l? e (2), u iilTnk ( 2) , 
uti~(2), and write(2). 

Stat fails if one or more of the following are true: 

A component of the path prefix is not a directory. 
[ENOTDIR] 

The named file does not exist. [ENOENT] 

Search permission is denied for a component of the path 
prefix. [EACCES] 

Buf or .Eath pOints to an invalid address. [EFAULT] 

Fstat fails if one or more of the following are true: 

Filrles is not a valid open file descriptor. [EBADF] 

Buf pOints to an invalid address. [EFAULT] 

RETURN VALUE 
Upon successful completion a value of 0 is returned. Other
wise, a value of ~1 is returned and errno is set to indicate 
the error. 

SEE ALSO 
chmod(2), chown(2), creat(2), link(2), mknod(2) t time(2), 
unlink(2). 

Printed 6 1985 



UTIME(2) UTIME(2) 

NAME 
utime ~ set file access and modification times 

SYNOPSIS 
'include <sys/types.h> 
int utime (path, times) 
char .path; 
struct utimbuf .times; 

DESCRIPTION 
Path points to a pathname naming a file. Utime sets 'the 
access and modification times of the named file. 

If !l~ is NULL, the access and modification times of the 
file are set to the current time. A process must be the 
owner of the file or have write permission to use utime in 
this manner. 

If ~~ is not NULL, times is interpreted as a pOinter to a 
utimbuf structure and the access and modification times are 
set to the values contained in the designated structure. 
Only the owner of the file or the superuser may use utime 
this way. 

The times in the following structure are measured in seconds 
since 00:00:00 GMT, Jan. 1, 1970. 

struct utimbuf { 
time t 
time-t 

actime; /* access time ./ 
modtime;/* modification time */ 

} ; 

Utime fails if one or more of the following are true: 

The named file does not exist. [ENOENT] 

A component of the path prefix is not a directory. 
[ENOTDIR] 

Search permission is denied by a component of the path 
prefix. [EACCES]' 

The effective user ID is not superuser 
owner of the file and times is not NULL. 

and not the 
[EPERM] 

The effective user ID is not superuser and not the 
owner of the file, times is NULL, and write access is 
denied. [EACCES] 

The file svstem containing the file is mounted read~ 
only. [EROFS] 

Times is not NULL and pOints outside 
allocated address space. [EFAULT] 

- 1 -

the process's 

Printed 6 1985 



/ 

UTIME(2) UTIME(2) 

Path pOints outside the process's allocated address 
sp~e. [EFAULT] 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Oth
erwise, a value of ~1 is returned and errno is set to indi
cate the error. 

SEE ALSO 
stat(2). 

Printed 6 1985 



INTRO(3) 

NAME 
intro ~ introrluction to subroutines and libraries 

SYNOPSIS 
'include <stdio.h> 

01nclude <math.h> 

DESCRIPTION 
This section describes functions found in various libraries, 
other than those functions that directly invoke system prim~ 
itives, which are described in Section 2 of this volume. 
Certain major collections are identified by a letter after 
the secti.on number: 

(3C) These functions, together with those of Section 2 and 
those marked (3S), constitute the Standard C Library, 
libc, which is automatically loaded by the C compiler, 
C'CTI) . The I ink ed i tor ld (1) searches thi s I ibrarv 
under the ~lc option. Some-runctions require declara: 
tions that can be included in the program being com~ 

piled by adding the line 

'include <header filename> ---
The appropriate #include file is indicated in the 
SYNOPSIS part of a function description. 

(3F) These functions constitute the FORTRAN intrinsic func~ 
tion library, libF77. These functions are automati~ 
cally available to the FORTRAN programmer and require 
no special invocation of the compiler. 

(3M) These functions constitute the Math Library, libm. 
They are automatically loaded as needed by the FORTRAN 
compiler f77(1). They are not automatically loaded by 
the C compiler, cc(1); however, the link editor 
searches this library under the ~lm option. Declara
tions for these functions may be obtained from the 
'include file <math.h>. 

(3S) These functions constitute the "standard 1/0 pack~ 
age"; an introduction to this package is provided in 
~dio(3S). The functions are in the library libc, 
already mentioned. Declarations should be obtained 
from the 'include file <stdio.h>. 

(3X) Various specialized libraries. The files in which 

DEFINITIONS 

these libraries are found are given on the appropriate 
pages. 

For descriptions and examples of #include files, refer 
to the "Libraries" section of the Programming Guide. 

A character is 
the machine. 
0, represented 

any bit pattern able to fit into a byte on 
The null character is a character with value 

in the-C-Ianguage as '\0'. A character array 

... 1 ..,. -P r in ted 6 1 985 



INTRO(3) INTRO(3) 

FILES 

is a sequence of characters. A null-terminated character 
array is a sequence of characters, 't"'h"e"last of which is the 
null char~cter. A string is a designation for a ~ll~ 
termi~ated character array. The ~ll string is a character 
array containing only the null character. A NULL pOinter is 
the value that is obtained by casting 0 into a pOinter. The 
C language guarantees that this value will not match that of 
any legitimate pOinter, so many functions that return 
pOinters return it to indicate an error. NULL is defined as 
o in <stdio.h>; the user can include his own definition if 
he is not using <stdio.h>. 

Many groups of FORTRAN intrinsic functions have generic 
function names that do not require explicit or implicit type 
declaration. The type of the function is determined by the 
type of its argument(s). For example, the generic function 
max returns an integer value if given integer arguments 
(maxO) , a real value if given real arguments (amax1), or a 
double-precision value if given double~precision--arguments 
(dma~J). 

Ilib/libc.a 
lusr/lib/libF77.a 
Ilib/libm.a 

SEE ALSO 
ar(1), cc(1), f77(1), Id(1), nm(1), intro(2), stdio(3S). 
Programming Guide. 

DIAGNOSTICS 
Functions in the Math Library (3M) may return the conven
tional values 0 or HUGE (the largest single-precision 
floating~point number) when the function is undefined for 
the given arguments or when the value is not representable. 
In these cases, the external variable errno (see intro(2)) 
is set to the value EDOM or ERANGE. Because many of the 
FOPTPAN intrinsic functions use the routines found in the 
Math Library, the same conventions apply. 

.... 2 - Printed 6 1985 



A64I.C3C) A64L(3C) 

NAME 
a641, 164a ~ convert between long integer and base~64 ASCTT 
string 

SYNOPSIS 
long a641 ( s) 
char * s; 

char *164a ( 1 ) 
long 1 • t 

DESCRIPTION 

BUGS 

These functions are used to maintain numbers stored in 
base~64 ASCII characters. This is a notation by which long 
Integers can be represented by up to 6 characters; each 
character represents a "digit" in a radix~64 notation. 

The characters useci to represent "digits" are. for 0, / 
for 1, ° through 9 for 2-11, A through Z for 12-37, and a 
thr~ugh z for 38-63. 

A641 takes a pointer to a null-terminated base-64 represen
tati.on ann returns a corresponding .long value. If the 
string pointed to by s contains more than 6 characters, a641 
uses the first 6. 

L64a takes a long argument and returns a pointer to the 
corresponding base-64 representation. If the argument is 0, 
164a returns a pointer to a null string. 

The value returned by ~~ is a pOinter into a static 
buffer, the contents of which are overwritten by each call. 

Printed 6 1985 



) 

ASORT(3C) ABORT(3C) 

/ NAME 
abort ~ generate an lOT fault 

SYNOPSIS 
int abort ( ) 

DESCRIPTION 
Ab£.!:..!:. causes an lOT signal to be sent to the process. 
usually results in termination.with a core dump. 

Thi s 

It is possible for ~~rt to return control if SIGIOr is 
caught or ignored, in which case the value returnerl is that 
of the kill(2) system call. 

SEE ALSO 
adb( 1), exit(2), kill(2), signal(2). 

DIAGNOSTICS 
If SIGIOT is neither caught nor ignored, and the current 
directory is writable, a core dump is produced and the mes~ 
sage abort - core dumped is written by the shell. 

.,.. 1 - Printed 6 1985 



ABS(3C) ABSC3C) 

NAME 
abs ~ return integer absolute value 

SYNOPSIS 
int abs (i) 
in t i; 

DESCRIPTION 

BUGS 

Abs returns the absolute value of its integer operand. 

In two's-complement representation, the absolute value of 
the negative integer with largest magnitude is undefined. 
Some implementations trap this error, but others simply 
ignore it. 

SEE ALSO 
floor( 3M). 

Printed 6 198'5 



ASSERT(3X) ASSERT(3X) 

NAME 
assert ~ verify program assertion 

SYNOPSIS 
'include (assert.h> 

assert (expression) 
int expression; 

DESCRIPTION 
This macro is useful for putting diagnostics into programs. 
If expression is false (zero) when ~~ is executed, 
~rt prints 

Assertion failed: expression, fil~ ~!, line ~ 

on the standard error output and aborts. In the errormes
sage, xyz is the name of the source file and nnn is the 
source Tine number of the assert statement. 

Compiling with the preprocessor option -DNDEBUG (see 
cpp(1)), or with the preprocessor control statement 'define 
NDEBUG ahead of the 'include (assert.h> statement, stops 
assertions from being compiled into the program. 

SEE ALSO 
cpp( 1), abort( 3C) . 

Printed 6 1985 



ATOF(3C) ATOF(3C) 

NAME 
atof - convert ASCII string to floating-point number 

SYNOPSIS 
double atof (nptr) 
char *nptr; 

DESCRIPTION 
Atof converts a character string pointed to by ~!£ to a 
dOUble~precision floating~point number. The first unrecog
nized character ends the conversion. Atof recognizes an 
optional string of white.-space characters-(blanks or tabs), 
then an optional sign, then a string of digits optionally 
containing a decimal point, then an optional e or E followed 
by an optionally signed integer. If the string begins with 
an unrecognized character, atof returns the value zero. 

DIAGNOSTICS 
When the correct value would overflOW, atof returns HUGE, 
and sets errno to ERANGE. Zero is retur~~on underflow. 

SEE ALSO 
scanf(3S) • 

.,. 1 .,. Printed 61985 



/ 

DESSEL(3M) BESSEL(3M) 

NAME 
j () , j 1 , jn, yO, y 1 , yn ~ Bessel functions 

SYNOPSIS 
'include <math.h> 

double jO ( x) 
double x • , 

double j 1 ( x) 
double x • , 

double jn ( n , x) 
in t n ; 
double x • , 

double yO ( x) 
double x ; 

double y1 ( x) 
double x • 

t 

double yn ( n , x) 
int n · , 
double x • • 

DESCRIPTION 
JO anrl 11 return Bessel functions of ~ of the first kinrl of 
orders 0 and 1 respectively. ~ returns the Bessel function 
of x of the first kind of order n. 

YO and 11 return the Bessel functions of x of the second 
kind of orders 0 ann 1 respectively. Yn returns the Bessel 
function of x of the second kind of order n. The value of x 
must be positive. 

DIAGNOSTICS 
Non~positive arguments cause yO, y1, and yn to return the 
value HUGE and to set errno to-EDOM. TheY-also cause a mes
sage indicating DOMAIN error to be printed on the stannard 
error output; the process will continue. 

These error~handling procedures may be changed with the 
function matherr(3M). 

SEE ALSO 
matherr(3M) • 

Printed 6 198'5 



BSEARCH(3C) BSEARCH(3C) 

NAME 
bsearch ~ binary search 

SYNOPSIS 
char *bsearch «char *) key. (char *) 
(*key), compar) 
unsigned nel; 
int (*compar)( ); 

base, nel, sizeof 

DESCRIPTION 
Bsearch is a binary search routine generalizeo from Knuth 
(6.2.1) Algorithm B. It returns a pointer into a table 
indicating where a datum may be found. The table must be 
previously sorted in increasing order according to a pro
video comparison function. Key pOints to the datum to be 
sought in the table. Base points to the element at the base 
of the table. Nel is the number of elements in the table. 
Compar is the name of the comparison function, which is 
callerl with two arguments that point to the elements being 
compared. The function must return an integer less than, 
equal to, or greater than zero, depending on whether the 
first argument is to be considered less than, equal to, or 
greater than the second. 

DIAGNOSTICS 

NOTES 

A NULL pOinter is returned if the key cannot be founn in the' 
table. 

The pOintprs to the key and the element at the base of the 
table should be of type pointer~to~element. and cast to type 
pointer~to~character. 

The comparison function need not compare every byte, so 
arbitrary data may be contained in the elements in addition 
to the values being compared. 
Although declared as type pointer-to-character, the value 
returned should be cast into type pointer~to~element. 

SEE ALSO 
Isearch(3C), hsearch(3C), qsort(3C), tsearch(3C). 

Printed 6 1985 



/ 

CI.OCK(3C) CLOCK(3C) 

NAME 
clock - report CPU time used 

SYNOPSIS 
long clock ( ) 

DESCRIPTION 
Clock returns the amount of CPU time (in microseconds) used ---since the first call to clock. The time reported is the sum 
of the user and system times of the calling process and its 
terminated child processes for which it has executed ~(2) 
or system (3S) • 

The resolution of the clock is 16.667 milliseconds on M68000 
or DEC processors. 

SEE ALSO 

BUGS 

times(2), wait(2), system(3S). 

The value returned by clock is defined in microseconds for 
compatibility with systems that have CPU clocks with much 
higher resolution. Because of this, the value returned 
wraps around after accumulating only 2,147 seconds of CPU 
time (about 36 minutes). 

..,. 1 - P.r in ted 6 1985 



(HJNVC3C) CONV(3C) 

NAME 
toupper, tolower, toupper, tolower, toascii translate 
characters 

SYNOPSIS 
'include <ctype.h) 

in t toupper ( c) 
in t c • , 

in t tolower ( c) 
int c • , 

in t _toupper ( c) 
int c • , 

in t tolower ( c) 
int c • , 

int toascii (c) 
int c • , 

DESCRIPTION 
Toupper and tolower have as domain the range of get~(3S): 
the integers from -1 through 255. If the argument of 
toupper represents a lower-case letter, the result is the 
corresponding upper-case letter. If the argument of tolower 
represents an upper~case letter, the result is the 
corresponning lower-case letter. All other arguments in the 
nomain are returned unchanged. 

toupper and tolower are macros that accomplish the same 
thing as toupper-an~tolower but have restricted domains and 
are faster. toupper requires a lower~case letter as its 
argument; its result is the corresponding upper-case letter. 
~lower requires an upper-case letter as its argument; its 
result is the corresponding lower-case letter. Arguments 
outside the domain cause undefined results. 

Toascii yields its argument with all bits turned off that 
are not part of a standard ASCII character; it is intended 
for compatibility with other systems. 

SEE ALSO 
ctype(3C), getc(3S). 

Printed 6 1985 



j 

CRYP!(3C) CRYPT(3C) 

NAME 
crypt, setk~y, encrypt - generate DES encryption 

SYNOPSIS 
char .crypt (key, salt) 
char .key, .salt; 

void setkey (key) 
char .key; 

void encrypt (block, edflag) 
char .block; 
int edflag; 

DESCRIPTION 
CrIE! is the password encryption function. It is based on 
the NBS Data Encryption Standard (DES), with variations 
intended to frustrate use of hardware implementations of the 
DES for key search. 

Key is a user's typed password. Salt is a 2~character 

String chosen from the set [a-zA-ZO-9./]; this string is 
used to perturb the DES algorithm in one of 4,096 different 
ways, after which the password is used as the key to encrypt 
repeatedly a constant string. The returned value pOints to 
the encrypted password. The first 2 characters are the salt 
itself. 

The ~~~ and encrypt entries provide (rather primitive) 
access to the actual DES algorithm. The argument of setkey 
is a character array of length 64 containing only the char: 
acters with numerical value ° and 1. If this string is 
divided into groups of 8, the low-order bit in each group is 
ignored; this gives a 56~bit key which is set into the 
machine. The 56~bit key is used with the above~mentioned 

algorithm to encrypt or decrypt the string block with the 
function encrypt. 

The argument to the encrypt entry is a character array of 
length 64 containing only the characters with numerical 
value 0 and 1. The argument array is modified in place to a 
similar array representing the bits of the argument after 
having been subjected to the DES algorithm using the key set 
by setkey. If edflag is zero, the argument is encrypted; if 
non-zero, it is decrypted. 

SEE ALSO 

BUGS 

login(1), passwd(1), getpass(3C), passwd(4). 

The return value pOints to static data that is overwritten 
by each call. 

Printed 6 1985 



CTKRMID(3S) CTERMID(3S) 

NAME 
ctermirl ~ generate filename for terminal 

SYNOPSIS 
'include <stdio.h) 

char *ctermid(s) 
char *s; 

DESCRIPTION 

NOTES 

Ctermid generates the pathname of the controlling terminal 
for the current process, and stores it in a string. 

If s is a NULL pOinter, the string is stored in an internal 
staTic area, the contents of which are overwritten at the 
next call to ctermin, ann the address of which is returnen. 
Otherwise, s is assumed to point to a character array of at 
least L ctermid elements; the pathname is placed in this 
array and the value of s is returned. The constant 
L_ctermid is defined in the (stdio.h) header file. 

The difference between ctermid and ttyname(3C) is that 
ttyname must be handed a file descriptor and returns the 
actual name of the terminal associated with that file 
descriptor, while ctermid returns a string (/dev/tty) that 
refers to the terminal if used as a filename. For this rea~ 
son, ttyname is useful only if the process already has at 
least one file open to a terminal. 

SEE ALSO 
ttyname(3C) • 

Printed 6 1985 



) 

CTIME(3C) CTIME(3C) 

NAME 
ctime, localtime, gmtime, asctime, tzset ~ convert date ann 
,t i m e to s t r in g 

SYNOPSIS 
'include <time.h> 

char 'ctime (clock) 
long 'clock; 

struct tm 'localtime (clock) 
long 'clock; 

struct tm 'gmtime (clock) 
long 'clock; 

char 'asctime (tm) 
struct tm 'tm; 

'extern long timezone; 

extern int daylight; 

extern char 'tzname[2]; 

void tzset ( ) 

DESCRIPTION 
~~ converts a long integer, pointed to by clock, 
representing the time in seconds since 00:00:00 GMT, January 
1, 1970, and returns a pOinter to a 26or:-character string in 
the following form. All the fields have constant width. 

Sun Sep 16 01:03:52 1973\n\O 

Lo~im! and gmtime return pointers to tm structures, 
described below. Localtime corrects for the-time zone and 
possible Daylight Savings Time; gmtime converts directly to 
Greenwich Mean Time (GMT), which is the time the system 
use s. 

Asctime converts a tm structure to a 26~charactp.r string, as 
shown in the above example, and returns a pointer to the 
string. 

Declarations of all the functions and externals, and the tm 
structure, are in the <time.~> header file. The structure 
declaration is: 

struct tm { 
int tm sec; 1* seconds (0 .,. '59) */ 
int tm-min; I' minutes (0 .,. 59) */ 
int tm-hour; 1* hours (0 .,. 23) */ 
int tm=mday; 1* day of month (1 .,. 31) '/ 

.,. 1 .,.. Printed 6 1985 



CTIME(3C) CTIME(3C) 

in t tm _mon; 1* month of year (0 C'" 1 1 ) *1 
int tm _year; 1* year ~ 1900 *1 
int tm wd a y; 1* day of week (Sunday = 0) *1 
int tm_yday; 1* day of year (0 ... 365) *1 
int tm_isdst; 

} ; 

Tm isnst is non~zero if Daylight Savings Time is in effect. 

The external long variable timezone contains the difference, 
in seconns, between GMT and local staridard time (in EST, 
timezone is 5*60*60); the external variable daylight is 
non~zero if, ann only if, the standard U.S.A. Daylight Sav~ 

ings Time conversion should be applied. The program knows 
about the peculiarities of this conversion in 1974 and 1975; 
if necessary, a table for these years can be extended. 

If an environment variable named TZ is present, asctime uses 
the contents of the variable to override the default time 
zone. The value of TZ must be a 3~letter time zone name, 
followerl by a number representing the difference between 
local time and Greenwich Mean Time in hours, followed by an 
optlonal 3C"'letter name for a daylight time zone. For exam~ 

pIe, the setting for New Jersey would be.EST5EDT. The 
effects of setting TZ are thus to change the values of the 
external variables timezone and daylight; in addition, the 
time zone names containerl in the external variable 

char *tzname[2] = { "EST", "EDT" }; 

are set from the environment variable TZ. The function 
tzset sets these external variables from TZ; tzset is called 
byasctime and may also be called explicitly by the user. 

Note that in most installations, TZ is set by default when 
the user logs on, to a value in the local letclprofile file 
(see £!ofile(4». 

SEE ALSO 

BUGS 

time(2), getenv(3C), profile(4), environ(5). 

The return values point to static data whose content is 
overwritten by each call. 

oro 2 ... Printed 6 1985 



/ 

CTYPE(3C) CTYPE(3C) 

NAME 
isalpha, isupper, islower, isnigit, isxdigit, isalnum, 
isspace, ispunct, isprint, isgraph, iscntrl, isascii .... clas~ 

sify characters 

SYNOPSIS 
'include <ctype.h> 

int isalpha (c) 
in t c; 

DESCRIPTION 
These macros classify character-coded integer values by 
table lookup. Each is a predicate returning nonzero for 
true, zero for false. Isascii is defined on all integer 
values; the rest are defined only where isascii is true and 
on the single non~ASCII value EOF (-1); see stdio(3S)). 

isalpha 

isupper 

islower 

isalnum 

isspace 

isprint 

isgraph 

iscntrl 

isascii 

DIAGNOSTICS 

c is a letter. 

c is an upper~case letter. 

c is a lower~case letter. 

c is a digit [O~9]. 

c is a hexadecimal digit [0~9], [A-F] or [a
r] . 
c is an alphanumeric (letter or digit). 

c is a space, tab, carriage return, new-line, 
vertical tab, or form-feed. 

c is a punctuation character (neither control 
nor alphanumeric). 

c is a printing character, code 040 (space) 
through 0176 (tilde). 

c is a printing character, similar to isprint 
except false for space. 

c is a delete character (0177) or an ordinary 
control character (less than 040). 

c is an ASCII character, code less than 0200. 

If the argument to any of these macros is not in the domain 
of the function, the result is undefined. 

Printed 6 1985 



/ 

CUSERID(3S) 

NAME 
cuserirl ~ get character login name of the user 

SYNOPSIS 
'include (stdio.h) 

char *cuserid (s) 
char *s; 

DESCRIPTION 
Cuserirl generates a character-string representation of the 
login name of the owner of the current process. If s is a 
NULL pOinter, this representation is generated in an inter
nal static area, the address of which is returned. Other
wise, ~ is assumed to point to an array of at least 
L cuserid characters; the representation is left in this 
array. The constant L cuserid is defined in the (stdio.h> 
hearler file. 

DIAGNOSTICS 
If the login name cannot be founrl,cuserid returns a 
pointer; if s is not a NULL pointer, a null character 
is placerl at ~[QJ. 

SEE ALSO 
getlogin(3C), getpwent(3C). 

NULL 
(\0) 

Printed 61985 



DtALC3C) DIAL(3C) 

NAME 
dial ~ establish an out~going terminal line connection 

SYNOPSIS 
'include <dial.h> 

int dial (call) 
CALL *call; 

void und ial (fd) 
in t fd; 

DESCRIPTION 
Dial returns a file descriptor for a terminal line open for 
read/write. The argument to dial is a CALL structure 
(definerl in the <dial.h> header file. 

When finished with the terminal line, the calling program 
must invoke undial to release the semaphore that has been 
set during the allocation of the terminal device. 

The CALL typedef in the <dial.h> header file is: 

typerlef struct { 
struct termio 
in t 
in t 
char 
char 
in t 

CALL; 

*attr;/* 
baud; 1* 

speed; 1* 
*line; /* 
*telno; 1* 
modem; 1* 

pointer to termio attribute struc t */ 
transmission data rate */ 
212A modem: low=300, high=1200 *1 
device name for out~going line */ 
pointer to tel-no digits string */ 
specify modem control for direct line 

The CALL element seeed is intended only for use with an out
going dialed call, in which case its value should be either 
300 or 1200 to identify the 113A modem, or the high-speed or 
low~speed setting on the 212A modem. The CALL element baud 
is for the desired transmission baud rate. For example,-one 
might set baud to 110 and speed to 300 (or 1200). 

If the desired terminal line is a direct line, a string 
pointer to its device name should be placed in the line ele~ 
ment in the CALL structure. Legal values for such terminal 
device names are kept in the L-devices file. In this case, 
the value of the baud element need not be specified as it 
will be determine~om the L-devices file. 

The tel~£ element is for a pointer to a character string 
representing the telephone number to be dialed. Such 
numbers may consist only of symbols described on the acu(7). 
The termination symbol will be supplied by the diar-runc~ 
tion, and should not be included in the telno stri~passed 
to dial in the CALL structure. 

... 1 ... Printed 6 1985 



) 

DIAL(3C) DIAL(3C) 

FILES 

The CALL element ~dem is used to specify modem control for 
direct lines. This element should be non-zero if modem con~ 

trol is required. The CALL element attr is a pointer to a 
~~mi£ structure, as defined in the~rmio.h> header file. 
A NULL value for this pointer element may be passed to the 
dial function, but if such a structure is included, the ele~ 

m;nts specified in it will be set for the outgoing terminal 
line before the connection is established. This is impor~ 
tant for attributes such as parity and baud rate. 

lusr/lib/uucp/L-devices 
lusrlspool/uucp/LCK··!!X-~~ 

SEE ALSO 
uucp(1C), alarm(2), read(2), write(2). 
termio(7) in the Administrator's Manual. 

DIAGNOSTICS 
On failure, a negative value indicating the reason fo~ the 
failure is returned. Mnemonics for these negative indices 
as listed here are defined in the <dial.h> header file. 

INTRPT c--1 1* interrupt occured *1 
D HUNG .... 2 1* dialer hung (no return from write) *1 -NO ANS .... 3 1* no an swer within 10 second s *1 
ILL BD .... 4 1* illegal baud .... rate *1 
A PROB .... 5 1* ac u problem (open() failure) *1 -
L PROB .... 6 1* line problem (open() failure) *1 
N'IT Ldv -7 1* can't open LDEVS fi 1 e *1 -DV NT A c--8 1* requested device not available *1 - -DV NT K -9 1* requested device not known *1 - -NO BD A .... 10 1* no device available at requested baud - -NO BD K -11 1* no rlevice known at requested ba ud *1 

WARNINGS 

BUGS 

Inclurling the <dial.h> header file automatically includes 
the <termio.h> header file. 

Because the above routine uses <stdio.h>, the size of pro .... 
grams not otherwise using standard 1/0 is increased more 
than might be expected. 

An alarm(2) system call for 3,600 seconds is made (and 
caught) within the dial module for the purpose of "touch .... 
ing" the LCK •. file aii'dconstitutes the device allocation 
semaphore -r0r the terminal device. Otherwise, uucp(1C) may 
simply delete the LCK •• entry on its 90c--minur;--clean-up 
rounds. The alarm-may go off while the user program is in a 
!!~(2) or ~~(2) system call, causing an apparent error 
return. If the user program is to run for an hour or more, 
error returns from reads should be checked for 
(errno==EINTR), and the read possibly reissued. 

.... 2 .... Printed 6 1985 

*1 



DRAND48(3C) DRAND48(3C) 

NAME 

delim $$ 

drand48, erano48, lrand48, nrand48, mrand48, jrano 48, 
srand48, seed48, lcong48 - generate uniformly distributed 
pseudo-random numbers 

SYNOPSIS 
double drand48 ( ) 

double erand48 (xsubi) 
unsigned short xsubi[3]; 

long lrand48 ( ) 

long nrand48 (xsubi) 
unsigned short xsubi[3]; 

long mrand48 ( 

long jrand48 (xsubi) 
unsigned short xsubi[3]; 

void srand48 (seedval) 
long seedval; 

unsigned short *seed48 (seed16v) 
unsigned short seed16v[3]; 

void lcong48 (param) 
unsigned short param[7]; 

DESCRIPTION 
This family of functions generates pseudo-random numbers 
using the well-known linear congruential algorithm and 48-
bit integer arithmetic. 

Functions drand48 and erann48 return non-negative double~ 

precision floating-point values uniformly distributed over 
the interval $[0.0, -1.0).$ 

Functions 
integers 
31 ). $ 

lranri48 and nrand48 return non-negative long 
uniformly distributed over the interval $[0,-2 sup 

Functions mrand48 and jrand48 return signed long integers 
uniformly distributed over the interval $[-2 sup 31 ,-2 sup 
31 ). $ 

Functions srand48, seed48, and lcong48 are initialization 
entry pOints, one of which should be invoked before drand48, 
Irand48, or mrand48 is called. (Although it is not recom~ 

mended practice, constant default initializer values are 
supplied automatically if drand48, lrand48, or mrand48 is ---

Printed 6 1985 



DRAND48(3C) DRAND48(3C) 

called witr.out a prior call to an initialization entry 
pOint.) Functions erand48, nrand48, and jrand48 do not 
require an initialization entry point to be called first. 

All the routines work by generating a sequence of 48~bit 
integer values, $X sub i ,$ according to the linear 
congruential formula 

The parameter $m~:~2 sup 48$; hence 48~bit integer arith
metic is performed. Unless Icong48 has been invoked, the 
multiplier value $a$ and the addend value $c$ are given by 

a-mark :-roman 5DEECE66D~sub 16-:-roman 
273673163155~sub 8 
c-lineup :-roman B~sub 16-:-roman 13 A sub 8 . 

The value returned by any of the functions drand48, erand48, 
lran rl 48, nrand48, mranrl48, or jrand48 is computed by first 
generating the next 489""bTt-$X sub i$ in the sequence. Then 
the appropriate number of bits, according to the type of 
data item to be returned, are copied from the high~order 

(leftmost) bits of $X sub i$ and transformed into the 
returned value. 

The functions drand48, Irand48, and mrand48 store the last 
4 8 ~ bit 4> X sub i $ g en -;; ate d - i n ·a n in t ern alb u f fer; t hat i s 
why they must be initialized prior to being invoked. The 
functions erand48, nrand48, and jrand48 require the calling 
program to provide storage for the successive $X sub i$ 
values in the array specified as an argument when the func
tions are invoked. That is why these routines do not have 
to be initialized; the calling program merely has to place 
the desired initial value of $X sub i$ into the array and 
pass it as an argument. By using different arguments, func~ 

tions erand48, nrand48, and jrand48 allow separate modules 
of a large-programto generate several independent streams 
of pseudo~random numbers, i.e., the sequence of numbers in 
each stream does not depend upon how many times the routines 
have been called ~generate numbers for the other streams. 

The initializer function srand48 sets the high~order 32 bits 
of $X sub i$ to the 32 bits contained in its argument. The 
low~order 16 bits of $X sub i$ are set to the arbitrary 
value $roman 330E sub 16 .$ 

The initializer function seed48 sets the value of $X sub i$ 
to the 48-bit value specified in the argument array. The 
previous value of$X sub i$ is copied into a 48~bit internal 
buffer, used only by seed48. A pOinter to this buffer is the 
value returned by seed'4a.-The returned pOinter, which can be 
ignored if not needed, is useful if a program is to be res
tarted from a given pOint at some future time. Use the 

oro 2 ~ Printed 6 1985 



DRAND48(3C) DRAND48(3C) 

NOTES 

pOinter to get and store thi last $X sub i$ value; then use 
this value to reinitialize via seed48 when the program is 
restar ted. 

The initialization function Icong48 allows the user to 
specify the initial $X sub i ,$ the multiplier value $a,$ 
and the addend value $c.$ Argument array elements param[O~2J 
specify $X sub i ,$ elements param[3~5J specify the multT~ 
plier $a,$ and param[~J specifies th; -16~bit addend $c.$ 
After Icong48 has been called, a subsequent call to either 
srand48 or seed48 will restore the "standard" multiplier 
and addend values, $a$ and $c,$ specified on the previous 
page. 

The versions of these routines for the VAX~11 and PDP-11 are 
coded in assembly language for maximum speed. It requires 
approximately 80 Msec on a VAX~111180 and 130 Msec on a 
PDP-11110 to generate one pseudo~random number. On other 
computers, currently including the M68000 processors, the 
routines are coded in portable C. The source code for the 
portable version can even be used on computers which do not 
have floating~point arithmetic. In such a situation, func
tions dranrl48 ann erand48 do not exist: instead, they are 
replaced by the following two functions: 

long irand48 em) 
unsigned short m; 

long krand48 (xsubi, m) 
unsigned short xsubi[3J. m; 

Functions 
integers 
J • $ 

irand48 
un i forml y 

and krand48 
distributed 

return non-negative long 
over the interval $[O,-m-1 

SEE ALSO 
ranli(3C) • 

- 3 .... Printed 6 1985 



) 

ECVT(3C) ECVT(3C) 

NAME 
ecvt, fcvt, gcvt ~ convert floating~point number to string 

SYNOPSIS 
char *ecvt (value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

char *fovt (value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, .sign; 

char *gcvt (value, ndigit, buf) 
double value; 
char *buf; 

DESCRIPTION 
Ecvt converts value to a null-terminated string of ndigit 
digits and returns a pOinter to this string. The low::Ord"er 
digit is rounded. The position of the decimal point rela~ 

tive to the beginning of the string is stored indirectly 
through decpt (negative means to the left of the returned 
digits). The decimal point is not included in the returned 
string. If the sign of the result is negative, the word 
pointed to by !!~~ is non-zero; otherwise it is zero. 

Fcvt is identical to ecvt, except that the correct digit has 
been rounded for Fortran F~format output of the number of 
digits specified by ndigit. 

Gcvt converts the value to a null-terminated string in the 
array pointed to by buf and returns~. It attempts to 
produce ~igit significant digits in Fortran F-format, ready 
for printing; E~format is produced when F~format is not pos
sible. A minus sign, if there is one, or a decimal pOint is 
included as part of the returned string. Trailing zeros are 
suppressed. 

SEE ALSO 
printf(3S) • 

BUGS 
The return values point to static data whose content is 
overwritten by each call. 

.,. 1 ... Printed 6 1985 



ENO(3C) END(3C) 

NAME 
enrl, etext, edata - last locations in program 

SYNOPSIS 
extern end; 
extern etext; 
extern edata; 

DESCRIPTION 
These names refer neither to routines nor to locations with 
interesting contents. The address of etext is the first 
address above the program text, edata above the initialized 
data region, and end above the uninitialized data region. 

When execution begins, the program break (the first location 
beyond the data) coincides with end, but the program break 
may be reset by the routines of brk(2) , malloc(3C), standard 
input/output (stdio(3S)), the profile (-p) option of cc(1), 
and others. Thus:-the current value of the program ~reak 
should be determined by sbrk(O) (see brk(2)). 

SEE ALSO 
brk(?), malloc(3C). 

..... 1 .,. Printed 6 1985 



./ 

ERF(3M) ERF(3M) 

NAME 
erf, erfc ~ error function ann complementary error function 

SYNOPSIS 
#include <math.h> 

double er f ( x) 
double x ; 

double er fc C x) 
double x ; 

DESCRIPTION 
Erf returns the error function of x, defined as {2 over sqrt 
PIT int from 0 to x e sup {~ t sup-2} dt • 

Erfc, whict returns 1.0 .... erf(x), is provided because of the 
extreme loss of relativ~ccuracy if erf(x) is called for 
large x ann the result subtracted from 1:O-Ce.g. for x = 5, 
12 places are lost). 

SEE ALSO 
exp(3M) . 

Pr in ted 6 1985 



IXP(3M) EXP(3M) 

NAME 
exp, log, log10, pow, sqrt ~ exponential, logarithm, power, 
square root functions 

SYNOPSIS 
'include <math.h> 

double exp ( x) 
double x • , 

double log ( x) 
double x • , 

double log10 (x) 
double x . , 
double pow ( x , y) 
double x , v · . , 

double sqrt ( x) 
double x • , 

DESCRIPTION 
~E returns ~8~9. 

Lo~ returns the natural logarithm of ~. 
be positive. 

The value of x must 

Log10 returns the logarithm base ten of x. 
must be positive. 

The value of x 

Pow returns x8y9. The values of x and X may not both be zero. 
rr-x is non~positive, r must be an integer. 

~! returns the square root of x. The value of x may not 
be negative. 

DIAGNOSTICS 
!!.E returns HUGE when ·the correct value would overflow, and 
sets errno to ERANGE. 

Log ann log10 return 0 and set errno to EDOH when x is non~ 
positive:--xn error message is printed on the standard error 
output. 

Pow returns a a~d sets errno to EDOM when ~ is non-positive 
and y is not an integer, or when! and X are both zero. In 
these-cases a message indicating DOMAIN error is printeo on 
the standard error output. When the correct value for pow 
wo ul d 0 v e r flo w, pow ret urn sHU G E and set S err not 0 ERA N G E-.--

Sqrt returns a ann sets errno to EDOM when x is negative. A 
message indicating DOMAIN error is printed on the standard 
error output. 

.,. 1 «'" Printed 6 1985 



EXP(3M) EXP(3M) 

/ 

These error-hanrlling procerlures may be changed with the 
function math~(3H). 

SEE ALSO 
hypot(3M), matherr(3M), sinh(3M). 

/ 

Printed 6 1985 



FCLOSE(3S) FCLOSE(3S) 

NAME 
fclose, fflush ~ close or flush a stream 

SYNOPSIS 
'include <stdio.h) 

int fclose (stream) 
FILE .stream; 

int fflush (stream) 
FILE ·stream; 

DESCRIPTION 
Fclose causes any buffered data for the named stream to be 
written out and the stream to be closed. 

Fclose is performed automatically for all open files upon 
carTIng exi.!:(2). 

Fflush causes any buffered data for the named stream to be 
written to that file. The stream remains open. 

DIAGNOSTICS 
These functions return 0 for success, and EOF if any error 
(such as trying to write to a file that has not been opened 
for writing) was detected. 

SEE ALSO 
close(2), exit(2), fopen(3S), setbuf(3S). 

... 1 ... Printed 6 1985 



/ 

/ 

FERROR(3S) FERROR(3S) 

NAME 
ferror, feof, clearerr, fileno ~ stream status inquiries 

SYNOPSIS 
'include <stdio.h> 

int feof (stream) 
FILE ·stream; 

int ferror (stream) 
FILE .stream; 

void clearerr (stream) 
FILE .stream; 

int fileno (stream) 
FILE ·stream; 

DESCRIPTION 

NOTE 

Feof returns non~zero when EOF has previously been detected 
reading the named input stream; otherwise, it returns zero. 

Fe~ returns non~zero when an I/O error has previously 
occurred reading from or writing to the named stream; other~ 

wise, it returns zero. 

Clearerr resets the error indicator and EOF indicator to 
zero on th~ named stream. 

Fileno returns the integer file descriptor associated with 
tne-n8med stream; see open(2). 

All these functions are implemented as macros; they cannot 
be declared or redeclared. 

SEE ALSO 
open(2), fopen(3S). 

.... 1 .,. Printed 6 1985 



FLOOR(3M) FLOOR(3M) 

NAME 
floor, ceil, fmod, fabs - floor, cei.l ing, remainder, abso ..... 
lute value functions 

SYNOPSIS 
'include <math.h> 

double floor ( x) 
double x • , 

double ceil ( x) 
double x • , 

double fmod ( x , y) 
double x , v • • t 

double fabs ( x) 
double x • , 

DESCRIPTION 
Floor returns the largest integer (as a double-precision 
number) not greater than ~. 

Ceil returns the smallest integer not less than 

Fmod returns x if X is zero; otherwise, it 
number f with the same sign as !t such that x 
some integer 2-., and :.£: < lX:. 

Fabs returns :~l. 

SEE ALSO 
abs(3C) • 

x • 

returns the 
= i y + f fo r 

Printed 6 1985 



;' 

FOPEN(3S) FOPEN(3S) 

NAME 
fopen, freopen, fdopen - open a stream 

SYNOPSIS 
'include <stdio.h) 

FILE 'fopen (filename, type) 
char 'filename, 'type; 

FILE 'freopen (filename, type, stream) 
char 'filename, 'type; 
FILE 'stream; 

FILE 'fdopen (fildes, type) 
int fildes; 
char 'type; 

DESCRIPTION 
Fopen opens the file named by filename and associates a 
Stream with it. Fopen returns a pOinter to the FILE struc
ture-associated with the stream. 

Fi~~~ pOints to a character string that contains the name 
of the file to be opened. 

Type is a character string having one of the following 
values: 

r 

w 

a 

r+ 

w+ 

a+ 

open for reading 

truncate or create for writing 

append; open for writing at end of file, or 
create for writing 

open for update (reading and writing) 

truncate or create for update 

append; open or create for update at end-of
file 

Freopen substitutes the named file in place of the open 
stream. The original stream is closed, regardless of 
whether the open ultimately succeeds. Freopen returns a 
pointer to the FILE structure associated with stream. 

Freopen is typically used to attach the preopened streams 
associated with stdin, stdout, and stderr to other files. 

Fdopen associates a stream with a file descriptor by format
rrng-a file structure from the file descriptor. Thus, fdo
pen can be used to access the file descriptors returned~ 
open(2), ~E.(2), ~~(2), or pipe(2). (These calls open 

.,. 1 .,. Printed 6 198r; 



FOPEN(3S) FOPEN(3S) 

files but no not return pointers to a FILE structure.) The 
type of ~~~ must agree with the mode of the open file. 

When a file is opened for upnate, both input and output may 
be done on the resulting stream. However, output may not be 
directly followed by input without an intervening fseek or 
~wind, and input may not be directly followed by output 
without an intervening fseek, rewind, or an input operation 
which encounters end~of~file. 

When a file is opened for append (i.e., when type is "a" or 
"a+"), it is impossible to overwrite information alreacty in 
the file. Fseek may be used to reposition the file pointer 
to any poSitiOn in the file, but when output is written to 
the file the current file pointer is disregarded. All o~t~ 

put is written at the end of the file and causes the file 
pOinter to be repositioned at the end of the output. If two 
separate processes open the same file for append, each pro
cess may write freely to the file without fear of destroying 
output being written by the other. The output from the two 
processes will be intermixed in the file in the order in 
which it is written. 

SEE ALSO 
open(2), fclose(3S). 

DIAGNOSTICS 
FOE~ and freopen return a NULL pointer on failure. 

- 2 - Printed 6 1985 



J 

FREAD(33) FREAO(3S) 

NAME 
frean, fwrite ~ binary input/output 

SYNOPSIS 
#include <stdio.h> 

int fread (ptr, size, nitems, stream) 
char • ptr; 
int size, nitems; 
FILE .stream; 

int fwrite (ptr, size, nitems, stream) 
char .ptr; 
int size, nitems; 
FILE ·stream; 

DESCRIPTION 
Frean copies nitems items of nata from the namen input 
stream into an-ar;ay beginning at~. An item of nata is a 
sequence of bytes (not necessarily terminated by a null 
byte) of length ~~. Fr~ stops appending bytes if an 
end~of~file or error condition is encountered while reading 
stream or if nitems items have been read. Fread leaves the 
file-pointer in-5tream, if defined, pointing to the byte 
following the last byte read if there is one, Frean does 
not change the contents of stream. 

Fwrit~ appends at most ni!~ items of data from the the 
array pointed to by ptr to the named output stream. Fwrite 
stops appending when it has appended nitems items of data or 
if an error condition is encountered on strea~. Fw~ does 
not change the contents of the array pointed to by ptr. 

The variable size is typically siz~(*~) 

pseudo-function sizeof specifies the length 
pOinted to by~. If ~ points to a data type 
char it should be cast into a pointer to ~. 

SEE ALSO 
rea d (2), write(2), fopen(3S), getc(3S), 
printf(3S), putc(3S), puts(3S), scanf(3S). 

DIAGNOSTICS 

where the 
of an item 
other than 

gets(3S) , 

Fread and fwrite return the number of items read or written. 
If nitems is non~positive, no characters are read or written 
anrl-o-rs-returned by both fread and fwrite. 

oro 1 - Printed 6 1985 



FREXP(3C) FREXP(3C) 

NAME 
frexp, lriexp, morif 
numbers 

manipulate parts of floating-point 

SYNOPSIS 
double frexp (value, eptr) 
double value; 
int *eptr; 

double ldexp (value, exp) 
double value; 
int exp ; 

double modf (value, iptr) 
double value, *iptr; 

DESCRIPTION 
Every non-zero number can be written uniquely as x* 28n9, 
where the "mantissa" (fraction) x is in the range 0.5 < 
:~: < 1.0, and the "exponent" .!! is an integer. I!:.exp 
returns the mantissa of a double value, and stores the 
exponent inriirectly in the location pOinted to by ~. 

Lrl~E returns the quantity ~lue* 28~!E9. 

Morlf returns the signed fractional part of value and stores 
the- integral part indirectly in the location pointed to by 
iP!.!:. 

DIAGNOSTICS 
If ldexp woulrl cause overflOW, HUGE is returned and errno is 
settOERANGE. 

.... 1 or Printed 6 1985 



/ 

/ 

FS!!K(3S) FSEEK(3S) 

NAME 
fseek, rewind, ftell ~ reposition a file pOinter in a stream 

SYNOPSIS 
linclude <stdio.h) 

int fseek (stream, offset, ptrname) 
FILE ·stream; 
long offset; 
int ptrname; 

void rewind (stream) 
FILE ·stream; 

long ftell (stream) 
FILE ·stream; 

DESCRIPTION 
Fseek sets the position of the next input or output opera~ 

tion on the stream. The new position is at the signed dis~ 
tance offset bytes from the beginning, the current position, 
or the end of the file, when the value of ptrname is 0, 1, 
or 2, respectively. 

Rewind(stream) is equi.valent to fseek(stream, OL, 0), except 
thatno-v3lue is returned. 

Fsee~ and rewind undo any effects of ungetc(3S). 

After fseek or rewind, the next operation on a file opened 
for update-may be-either input or output. 

Ftell returns the offset of the current byte relative to the 
beginning of the file associated with the named stream. 

SEE ALSO 
Iseek(2), fopen(3S). 

DIAGNOSTICS 
Fseek returns non~zero for improper seeks; otherwise it 
returns zero. An improper seek can be, for example, an 
fseek done on a file that has not been opened via fopen; in 
particular, fseek may not be used on a terminal or on a file 
opened via ~~~(3g). 

WARNING 
On an offset returned by ftell is measured in bytes, and it 
is permissible to seek to positions relative to that offset; 
however, portability to systems other than requires that an 
offset be used by fseek directly. Arithmetic may not mean~ 
ingfully be performed on such an offset, which is not neces
sarily measured in bytes. 

.... 1 ..,.. Printed 6 1985 



FTW'3C) FTW(3C) 

NAME 
ftw ~ walk a file tree 

SYNOPSIS 
'include <ftw.h> 

int ftw (path, fn, depth) 
char ·path; 
in t (. fn) ( ); 
int depth; 

DESCRIPTION 
I!~ recursively descends the directory hierarchy rooted in 
path. For each object in the hierarchy, ftw calls fn, pass~ 

ing-it a pointer to a null-terminated character string con
taining the name of the object, a pOinter to a stat struc
ture (see stat(2» containing information about the object, 
and an integer. Possible values of the integer, defined in 
the <ftw.h> header file, are FTW F for a file, FTW D for a 
directory, FTW_DNR for a directory that cannot be-read, and 
FTW NS for an object for which stat could not be executed 
successfully. If the integer-is FTW_DNR, descendants of 
that directory will not be processed. If the integer is 
FTW_NS, the stat structure will contain garbage. An example 
of an object that would ca~se FTW NS to be passed to fn is a 
file in a directory with read-permission but not execute 
(search) permission. 

Ftw visits a directory before visiting any of its descen~ 

dants. 

The tree traversal continues until the tree is exhausted, an 
invocation of fn returns a nonzero value, or an error is 
detected withinftw (such as an I/O error). If the tree is 
exhausted, !!~ returns zero. If!~ returns a nonzero value, 
ftw stops its tree traversal and returns whatever value was 
returned by fn. If ftw detects an error, it returns ~1, and 
sets the error type rn-errno. 

F t!! use son e f i led esc ri p tor for e a chI eve lin the t r e e • 
The depth argument limits the number of file descriptors so 
used.---Ir-depth is zero or negative, the effect is the same 
as if it were 1. Depth must not be greater than the number 
of file descriptorscurrently available for use. Ftw runs 
more quickly if depth is at least as large as the number of 
levels in the tree. 

SEE ALSO 

BUGS 

stat(2), malloc(3C). 

Because ftw is recursive, it is possible for it to terminate 
with a memory fault when applied to very deep file struc~ 
tures. 

.,. 1 or- . Pr in ted 6 1985 



J 

FTW(3C) FTW(3C) 

£..!:.~ c 0 u 1 rl b e marl e tor un fa s t era n d use 1 e s sst 0 rag eon dee p 
structures at the cost of consirlerable complexity. 
F t ~ use s !!!~U9.S. ( 3 C ) to a 11 0 cat e d y n ami cst 0 rag e d uri n g its 
operation. If ftw is forcibly terminaterl, such as by 
longjmp being executed by fn or an interrupt routine, ftw 
does--not have a chance to-free that storage, so it remains 
permanently allocated. A safe way to hanrlle interrupts is 
to store the fact that an interrupt has occurred, ann 
arrange to have fn return a nonzero value at its next invo~ 

cation. 

or- 2 .... Printed 6 1985 



GAMMA(3M) GAMMA(3M) 

NAME 
gamma ~ log gamma function 

SYNOPSIS 
'include <math.h> 

extern int signgam; 

double gamma (x) 
double x; 

DESCRIPTION 
Gamma returns the natural log of gamma as a function of the 
absolute value of a given value. delim $$ Gamma returns $ln 
( : GA~1HA ( ,.. x ) : )$, where $GAMMA ( ,.. x )$ is defined as 

$ i il t fr 0 mOt 0 in f e sup { ..,. t } t sup { x or 1 } d t $ • 

The sign of GAMMA (,.. x is returned in the external 
integer signgam. The argument x may not be a non-positive 
integer. 

The followiilg C program fragment might be used to calculate 
G: 

if «y = gamma(x» > LOGHUGE) 
error() ; 

y = signgam * exp(y); 

where LOGHUGE is the least value that causes exp(3M) to 
return a range error. 

DIAGNOSTICS 
For non-negative integer arguments HUGE is returned, and 
errno is set to EDOM. A message indicating DOMAIN error is 
printed on the standard error output. 

If the correct value would overflow, gamma returns HUGE and 
sets ~~ to ERANGE. 

These error..,.handling procedures may be changed with the 
function matherr(3M). 

SEE ALSO 
exp(3M), matherr(3M). 

or 1 ..,. Printed 6 198'5 



GETC(3S) GETC(3S) 

NAME 
getc, getchar, fgetc, getw ~ get character or word 
stream 

from 

SYNOPSIS 
'include <stdio.h) 

int getc (stream) 
FILE 'stream; 

int getchar () 

int fgetc (stream) 
FILE 'stream; 

int getw (stream) 
FILE 'stream; 

DESCRIPTION 
Getc returns the next character (i.e., byte) from the named 
input str~~. It also moves the file pOinter, if defined, 
ahead one character in stream. Getc is a macro and there~ - --fore cannot be used if a function is necessary; for example, 
one cannot have a function pOinter point to it. 

Getchar returns the next character from the standard input 
stream, E!din. As in the case of getc, ~~~ is a macro. 

~etc performs the same function as getc, but is a genuine 
function. Fgetc runs more slowly than getc, but takes less 
space per invoCation. 

Getw returns the next word (i.e., integer) from the named 
input ~~. The size of a word varies from machine to 
machine. It returns the constant EOF upon end~of~file or 
error, but as that is a valid integer value, feof anri 
ferror(3S) should be used to check the success or--getw. 
GetW--increments the associated file pointer, if definerl:-ro 
pOint to the next word. Getw assumes no special alignment 
in the file. 

SEE ALSO 
fclose(3S), ferror(3S), fopen(3S), fread(3S), 
putc(3S), scanf(3S). 

gets(3S). 

DIAGNOSTICS 

BUGS 

These functions return the integer constant ,EOF at end .... of .... 
file or upon an error. 

Because it is implemented as a macro, getc treats 
incorrectly a stream argument with side effects:--In partic
ular, getc(*f++) doesn't work sensibly. Fgetc should be 
used instead. 

..,. 1 - Printed 6 1985 



GETC(3S) GETC(3S) 

Because of possible differences in word length and byte ord
ering, files written using putw are machine~dependent, and 
may not be read using get!! on a different processor. 

Printed 6 1985 



/ 

GETCWD(3C) GETCWD(3C) 

NAME 
getcwrl ~ get pathname of current working directory 

SYNOPSIS 
char *getcwd (buf, size) 
char *buf; 
int size; 

DESCRIPTION 
Getcwrl returns ~ pOinter to the current directory pathname. 
The value of size must be at least two greater than the 
length of the pathname to be returnerl. 

If buf is a NULL pOinter, getcwd obtains size bytes of space 
using malloc(3C). In this case, the pOinter returned by 
getc~~ maY-be used as the argument in a subsequent call to 
fr ee • 

The function is implementerl by using popen(3S) to pipe the 
output of the pw~(1) command into the specified string 
space. 

EXAMPLE 
char *cw rl , *getcwd(); 

if «cwrl = g~tcwd«char *)NULL, 64» -- NULL) { 
perror("pwd" ); 
exit(1); 

} 

pr in t f ( , , % s \ n' " c wd ) ; 

SEE ALSO 
pwd(1), malloc(3C), popen(3S). 

DIAGNOSTICS 
Returns NULL wi th errno set i f E1.~ is not large enough, or 
if an error occurs in a lower-level function. 

or- 1 .... Printed 6 1985 



GETENV(3C) GETENV(3C) 

NAME 
getenv - return value for environment name 

SYNOPSIS 
char -setenv (name) 
char -name; 

DESCRIPTION 
Getenv searches the environment list (see environ(5)) for a 

-StrIng of the form narne:value, and returns a pointer to the 
~lue in the current--environment if such a string is 
present; otherwise a NULL pOinter is returned. 

SEE ALSO 
environ(5). 

..,. 1 ..,. Pr in ted 6 1985 



/ 

G!TGRENT(3C) GETGRENT(3C) 

NAME 
getgrent, getgrgid, getgrnam, setgrent, endgrent 
group file entry from a group file 

obtain 

SYNOPSIS 
'include <grp.h) 

struct group *getgrent ( ) 

struct group *getgrgid (gid) 
int girl; 

struct group *getgrnam (name) 
char *name; 

void setgrent ( ) 

void endgrent 

DESCRIPTION 

FILES 

Getgrent, getgrgid, and getgrnam each return pOinters to an 
object with the following structure containing the broken
out fields of a line in the /etc/group file. Each line con
tains a group structure, defined in the <grp.h) header file. 

st r uc t group 
char * gr _nam e ; 1* the name of the group *1 
char * gr passwd; /* the encrypted group pa ssword */ 
in t gr gid; 1* the numerical group ID *1 
char **gr memo 1* vector of po inter s to m em b er names - ' } ; 

When first called, getgrent returns a pOinter to the first 
group structure in the file; thereafter, it returns a 
pOinter to the next group structure in the file; therefore, 
successive calls may be used to search the entire file. 
Getgrgid searches from the beginning of the file until a 
numerical group id matching gid is found; it returns a 
pOinter to the particular structure in which the match was 
found. Getgrnam searches from the beginning of the file 
until a group name matching name is found; it returns a 
pointer to the particular structure in which the match was 
found. If an end-of-file or an error is encountered on 
reading, these functions return a NULL pOinter. 

A call to setgrent has the effect of rewinding the group 
file to allow repeated searches. Endgrent may be called to 
close the group file when processing is complete. 

letc/group 

SEE ALSO 
getlogin(3C), getpwent(3C), group(~). 

.,.. 1 ..,. Printed 6 1985 

*1 



GETGRENT(3C) GETGRENT(3C) 

DIAGNOSTICS 
A NULL pOinter is returned on EOF or error. 

WARNING 

BUGS 

The above routtnes use <stdio.h>. This causes them to 
increase the size of programs not otherwise using standard 
1/0 more than might be expected. 

All information is contained in a static area, so it must be 
copied if it is to be saved. 

.,.. 2 - Printed 6198'5 



;' 

J 

GETLOGTN(3C) GETLOGIN(3C) 

NAME 
getlogin -get login name 

SYNOPSIS 
char *getlogin ( ); 

DESCRIPTION 
Getlogin returns a pointer 'to the login name as found in 
/etc/utmp. It may be used in conjunction with getpwnam to 
locate the correct password file entry when the same user ID 
is shared by several login names. 

If getlogin is called within a process that is not attached 
to -a~erminalt it returns a NULL pOinter. The correct pro~ 
cedure for determining the login name is to call cuserid or 
gellogi~. If getlogin fails, call getpwuid. 

FILES 
/etc/utmp 

SEE ALSO 
cuserid(3S), getgrent(3C) t getpwent(3C), utmp(4). 

DIAGNOSTICS 

BUGS 

Getlogin returns the NULL pointer if name is not found. 

Thp return values pOint to static data whose content is 
overwritten by each call. 

Pr in ted 6 1985 



GETOPT(3C) GETOPT(3C) 

NAME 
getopt - get option Iptter from argument vector 

SYNOPSIS 
int getopt (argc, argv, optstring) 
1nt argc; 
char **argv; 
char *optstring; 

extern char *optarg; 
extern int optind; 

DESCRIPTION 
Gptopt returns the next option letter in argv that matches a 
letter in optstring. Optstring is a string of recognized 
option letters; if a letter is followed by a colon, the 
option is expected to have an argument that mayor may not 
be separated from it by white space. OEtarg is set to point 
to the start of the option argument on return from getopt. 

Getopt places in optind the argv index of the next argument 
to~processed. -secause ££tind is external, it is normally 
initialized to zero automatically before the first call to 
getopt. 

When all options have been processed (i.e., up to the first 
non~option argument), getopt returns EOF. The special 
option -- may be used to delimit the end of the options; EOF 
will be returned, and -- will be skipped. 

DIAGNOSTICS 
Getopt prints an error message on stderr and returns a ques~ 

tion mark (1) when it encounters an option letter not 
included in optstring. 

WARNING 
The above routine uses <stdio.h). This causes the size of 
programs not otherwise using standard IIO to increase more 
than might be expected. 

EXAMPLE 
The following code fragment shows how one might process the 
arguments for a command that can take the mutually exclusive 
options a and b, and the options f and 0, both of which 
require arguments: 

main (argc, argv) 
int argc; 
char **argv; 
{ 

int c; 
extern int optind; 
extern char *optarg; 

Printed 6 1985 



J 

GETOPT(3C) 

SEE ALSO 
getopt(1). 

GETOPT(3C) 

while «c = getopt (argc, argv, "abf:o:")) != EOF) 
switch (c) { 
case 'a': 

if (bfIg) 
errfIg++; 

el se 
aflg++; 

break; 
case 'b': 

if (afIg) 
err flg++; 

el se 
bproc( ); 

break; 
case 'f': 

ifile = optarg; 
break; 

case '0': 
ofile = optarg; 
bufsiza = 512; 
break; 

case '?': 
errflg++; 

} 
if (errfIg) { 

fprintf (stderr, "usage: ••• It); 
exit (2); 

for'( ; optind < argc; optind++) { 
if (access (argv[optind], 4)) { 



GETPASS(3C) GETPASS(3C) 

NAME 
getpass - read a password 

SYNOPSIS 
char *getpass (prompt) 
char * prompt; 

DESCRIPTION 

FILES 

Getpass reads up to a newline or EOF from the file Idev/tty, 
after prompting on the standard error output with the null~ 
terminateri string prompt and disabling echo. A pOinter is 
returned to a null~terminated string of at most 8 charac
ters. If /dev/tty cannot be opened, a NULL pOinter is 
returned. An interrupt terminates input and sends an inter~ 

rupt signal to the calling program before returning. 

/dev/tty 

SEE ALSO 
crypt(3C) • 

WARNING 

BUGS 

The above routine uses <stdio.h>. This causes 
programs not otherwise using standard I/O to 
than might be expected. 

the si ze of 
increase more 

The return value points to static data whose content is 
overwritten by each call. 

Printed 6 1985 



/ 

G!TPW(3C) GETPW(3C) 

NAME 
getpw ~ get name from UID 

SYNOPSIS 
int getpw (uiri, buf) 
int uid; 
char *buf; 

DESCRIPTION 

FILES 

Getpw searches the password file for a user id number that 
equals ~i, copies the line of the password file in which 
uiri was found into the array pointed to by buf, and returns 
o. G~t£~ returns non-zero if uid cannot be-COund. 

This routine is included only for compatibility with prior 
systems anrl shoulrl not be used; see getpwent(3C) for rou~ 

tines to use instead. 

/etc/passwrl 

SEE ALSO 
get p w ~ n t ( 3 C), pas s wd ( 4 ) • 

DIAGNOSTICS 
Ge!E~ returns non~zero on error. 

WARNING 
The above routine uses <stdio.h>. Therefore, the size of 
programs not otherwise using standard I/O is increased more 
than might be expect~d. 

~ 1 -- Printed 6 1985 



O!TPWENT(3C) GETPWENT(3C) 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent - get pass
word file entry 

SYNOPSIS 
'include <pwd.h) 

struct passwd -getpwent ( ) 

struct passwd -getpwuid (uid) 
int uid; 

struct passwd -getpwnam (name) 
char -name; 

void setpwent 

void endpwent ) 

DESCRIPTION 
Getpwent, getpwuid, and getpwnam each return a pointer to an 
object with--the following structure containing the broken~ 
out fields of a line in the /etc/passwd file. Each line in 
the file contains a passwd structure, declared in the 
<pwd.h) hearler file: 

struct passwd { 

} ; 

char 
char 
int 
in t 
char 
char 
char 
char 
char 

*pw_name; 
* pw_pa sswd ; 
pw uid; 
pw- gid; 
*pw_age; 
*pw comment; 
*pw=gecos; 
*pw_dir; 
*pw_shell; 

struct comment { 
char *c_dept; 
char *c_name; 
char *c_acct; 
char *c_bin; 

} ; 

Because this structure is declared in <pwd.h>, 
necessary to redeclare it. 

it is not 

The pw comment field is unused; 
described in passwd(4). 

the others have meanings 

When first called, getpwent returns a pOinter to the first 
passwd structure in the file; thereafter, it returns a 
pOinter to the next Easswd structure in the file; therefore, 

·Printed 6 1985 



/ 

GETPWENT(3C) GETPWENT(3C) 

FILES 

successive calls can be used to search the entire file. 
Getpwuirl searches from the beginning of the file until a 
numerical user id matching uid is found; it returns a 
pointer to the particular structure in which the match was 
founrl. Getpwnam searches from the beginning of the file 
until a login name matching name is found; - it returns a 
pointer to the particular structure in which the match was 
found. If an end-of~file or an error is encountered on 
rearling, these functions return a NULL pointer. 

A call to setpwent has the effect of rewinding the password 
file to allow repeated searches. Endpwent may be called to 
close the password file when processing is complete. 

/etc/passwrl 

SEE ALSO 
getlogin(3C), getgrent(3C), passwd(4). 

DIAGNOSTICS 
A NULL pOinter is returned on EOF or error. 

WARNING 

BUGS 

The above routines use <stdio.h>. Therefore the size of pro
grams not otherwise using standard I/O is increased more 
than might be expected. 

All information is contained in a static area, so it must be 
copied if it is to be saved. 

- 2 - Printed 6 1985 



GETS(3S) 0£T5(35) 

NAME 
gets, fgets - get a string from a stream 

SYNOPSIS 
'include (stdio.h) 

char .gets (s) 
char .s; 

char .fgets (s, n, stream) 
char .s; 
in t n; 
FILE .stream; 

DESCRIPTION 
Gets rearls characters from the standard input stream, stdin, 
into the array pOinted to by s, until a new~line character 
is read or an end~of~file condition is encountered. The 
new~line character is discarded and the string is terminated 
with a null character. 

Fge~ reads characters from the stream into the array 
pointed to by ~ until ]-1 characters are read, or a new~line 
character is rearl and transferred to s, or an end-of~file 

condition is encountered. The string is then terminated 
with a null character. 

SEE ALSO 
ferror(3S), fopen(3S), frea~(3S), getc(3S), scanf(3S). 

DIAGNOSTICS 
If end-of-file is encountered and no characters have been 
read, no characters are transferred to s and a NULL pointer 
is returned. If a read error (e.g., trying to use these 
functions on a file that has not been opened for rearling) 
occurs, a NULL pOinter is returned. Otherwise s is 
returned. 

..,.. 1 ..,. Printed 6 1985 



/ 

GETUT(3C) GETUT(3C) 

NAME 
getutent, getutid, getutline, pututline, setutent, endutent, 
utmpname - access utmp file entry 

SYNOPSIS 
'include <utmp.h> 

struct utmp *getutent ( ) 

struct utmp *getutid (id) 
struct utmp *id; 

struct utmp *getutline (line) 
struct utmp *line; 

void pututline (utmp) 
struct utmp *utmp; 

void setutent 

void endutent ( ) 

void utmpname (file 
char *file; 

DESCRIPTION 
Getutent, getutid, and getutl~ each return a pOinter to a 
structure of the following type: 

struct utmp 
char 
char 
char 
short 
short 
st r uc t 

} ; 

short 
short 

} ut_exit; 

time t 

ut user[8J; 
ut-id[4J; 
ut:line[12J; 
ut_pid; 
ut_type; 
exit status { 

1* User login name *1 
1* letc/inittab id (usually lin 
1* device name (console, lnxx) 
1* process id *1 
1* type of entry *1 

e termination; 1* 
e:exit; 1* 

1* 

Process termination status * 
Process exit status II 
The exit status of a process 
marked as DEAD PROCESS. *1 
time entry was-made *1 

1* 
1* 

Getutent reads in the next entry from a utmp-like file. If 
the file is not already open, it opens it. If it reaches 
the end of the file, it fails. 

Getutid searches forward from the current point in the utmp 
file until it finds an entry with a ut type matching 
id->ut type if the type specified is RUN_LVL, BOOT_TIME, 
OLD TYM~-or NEW TIME. If the type specified in id is 
INT! PROCESS, LOGIN PROCESS, USER PROCESS, or DEAD PROCESS, 
geturid will retur; a pointer to-the first entry w~ose type 
~-one of these four and whose ut id field matches 

Printed 6 1985 



GETUT(3C) GETUT(3C) 

FILES 

id~>ut id. Getutirl fails if the end of file is reached -- -----without a match. 

Getutli~ searches forward from the current point in the 
utmp file until it finds an entry of the type LOGIN_PROCESS 
or USER PROCESS which also has a ut line string matching the 
line~>ut !!~ string. If the end of file is reached without 
a match, it fails. 

Pututline writes out the supplied utmp structure into the 
utmp fire. It uses getutid to search forward for the proper 
place if it finds that it is not already at the proper 
place. It is assumed that the user of pututline has 
searched for the proper entry using one of the getut rou
tines. If this has been done, pututline will not search. 
If pututline does not find a matching slot for the new 
entry, it will add a new entry to the end of the file. 

Se!uten! resets the input stream to the beginning of the 
file. This should be done before each search for a new 
entry if it is desired that the entire file be examined. 

Endutent closes the currently open file. 

Utmpname allows the user to change the name of the file 
examined from /etc/utmp to any other filename. It is 
expected that most often this other file will be /etc/wtmp. 
If the file doesn't exist, this will not be apparent until 
the first attempt to reference the file is made. Utmpname 
does not open the file. It just closes the old file, if it 
,is currently open, and saves the new filename. 

/etc/utmp 
/etc/wtmp 

SEE ALSO 
ttyslot(3C) t utmp(4). 

DIAGNOSTICS 
A NULL pointer is returned upon failure to read or write. 
Failure to read may be due to permissions or because end~ 
of-file has been reached. 

COMMENTS 
The most current entry is saved in a static structure. Mul~ 

tiple accesses require that it be copied before further 
accesses are made. Each call to either getutid or getutline 
sees the routine examine the static structure before per
forming more 1/0. If the search of the static structure 
results in a match, no further search is performed. To use 
getutline to search for multiple occurences, zero out the 
static structure after each success; otherwise getutline 
will just return the same painter over and over again. 

Printed 6 1985 



J 

GETUT(3C) GETUT(3C) 

T~ere is one exception to the rule about removing the struc
ture before further reads are done. If the implicit read 
done by pututline finds that it isn't already at the correct 
place in the file, the contents of the static structure 
returned by the getutent, getutid,'or getutline routines are 
not harmed, if the user has just modified those contents and 
passed the pOinter back to pututline. 

These routines use buffered standard lID for input, but 
pututline uses an unbuffered non-standard write to avoid 
race conditions between processes trying to modify the utmp 
and wtmp files. 

Printed 6 1985 



HSEARCH(3C) HSEARCH(3C) 

NAME 
hsearch, hcreate, hdestroy - manage hash search tables 

SYNOPSIS 
'include <search.h> 

ENTRY *hsearch (item, action) 
ENTRY item; 
ACTION action; 

int hcreate (nel) 
unsigned nel; 

void hdestroy ( ) 

DESCRIPTION 

NOTES 

Hsearch is a hash-table search routine generalizeo from 
Knuth (6.4) Algorithm D. It returns a pOinter into a hash 
table indicating the location at which an entry can be 
founo. l!~ is a structure of type ENTRY (defined in the 
<search.h> header file) containing two pOinters. Item.kel 
points to the comparison key and item.data points to any 
other data to be associated with tha~eY:-- (Pointers to 
types other than character should be cast to pOinter-to
character.) Action is a member of an enumeration type 
ACTION, indicating the disposition of the entry if it cannot 
be founo in the table. ENTER indicates that the item should 
be inserted in the table at an appropriate pOint. FIND 
indicates that no entry should be made. Unsuccessful reso
lution is indicated by the return of a NULL pOinter. 

Hcreate allocates sufficient space for the table and must be 
called before hsearch is used. Nel is an estimate of the 
maximum number of entries that the table will contain. This 
number may be adjusted upward by the algorithm in order to 
obtain certain mathematically favorable circumstances. 

Hdestrol destroys the search table and may be followed by 
another call to hcreate. 

Hsearch uses open addressing with a multiplicative hash 
function. However, many other options are available in the 
source code. The user may select an option by compiling the 
hsearch source with the following symbols defined to the 
preprocessor: 

DIV 

useR 

Use the remainder modulo 
hash function instead 
algorithm. 

table size as the 
of the multiplicative 

Use a User Supplied Comparison Routine for 
ascertaining table membership. The routine 
should be named hcompar and should behave in a 

Printed 6 1985 



/ 

HSEARCH(3C) HSEARCH(3C) 

mannner similar to ~trcmE (see string(3C)). 

CHAINED Use a linkeo list to resolve collisions. If 
this option is selected, the following other 
options become available. 

START 

SORTUP 

SORTDOWN 

Place new entries at the beginning 
of the linked list (default is at 
the end). 

Keep the linked list sorted by key 
in ascenoing ord er • 

Keep the linked 1 i st sorten by key 
in descending ord er • 

Additionally, there are preprocessor flags for obtaining a 
debugging printout (-DDEBUG) and for including a test driver 
in the calling routine (-DDRIVER). The source code should 
be consulted for further details. 

SEE ALSO 
bsearch(3C), lsearch(3C), string(3C), tsearch(3C). 

DIAGNOSTICS 

BUGS 

Hsearch returns a NULL pointer if either the action is FIND 
and the item could not be found or the action is ENTER and 
the table is full. 

Hcreate returns zero if it cannot allocate sufficient space 
forthe table. 

Only one hash search table may be active at any given time. 

Printed 6 198~ 



HYPOT(3M) HYPOT(3M) 

NAME 
hypot ~ Euclirlean riistance function 

SYNOPSIS 
'include <math.h> 

double hypot (x, y) 
double x, y; 

DESCRIPTION 
Hypot returns the following,- taking precautions against 
unwarranted overflows: 

sqrt(x * x + y * y) 

DIAGNOSTICS 
When the correct value would overflow, hypot returns HUGE 
an~ sP.ts errno to ERANGE. 

Thesp. error~handling procedures may be changed with the 
function matherr(3M). 

SEE ALSO 
matherr(3M), sqrt(3F). 

or- 1 oro Printed 6 198'3 



./ 

L3TOL(3C) L3TOL(3C) 

NAME 
13tol, Ito13 - convert between 3-byte integers and 
integers 

long 

SYNOPSIS 
void 13tol (lp, cp, n) 
long IIp; 
char ICp; 
in t n; 

void Ito13 (cp, Ip, n) 
char Icp; 
long IIp; 
int n; 

DESCRIPTION 
lltol converts a list of n 3-byte integers (packed into a 
character string pOinted to by ~) into a list of long 
integers pointed to by ,!.E. 

Lto13 performs the reverse conversion from long integers 
(lp)-to 3-byte integers (.£.E). 

These functions are useful for file system maintenance where 
the block numbers are 3 bytes long. 

SEE ALSO 
fs(4). 

BUGS 
Because_ of possible differences in byte ordering, the numer
ical values of the long integers are machine-dependent; 

.. " 
.... 1 ..,. Printed 6 1985 



l.DAH~EAD(3X) LDAHREAD(3X) 

NAME 
Idahrearl ~ read the archive hearler of a member of an archive 
fi 1 e 

SYNOPSIS 
linclude <stdio.h> 
lIinclude <ar.h> 
iinclude <filehdr.h> 
Hinclude <ldfcn.h> 

int ldahread (lrlptr, arhead) 
LDFILE *ltiptr; 
ARCHDR *arhea rl ; 

DESCRIPTION 
If TYPEClrlp!£) is the archive file magic number, ~ah~ead 
rearls the archive header of the common object file currently 
associaterl with Idp~~ into the area of memory beginning at 
arhearl. -----

Ldahrearl returns SUCCESS or FAILURE. Ldahrearl fails if ------TYPE(ltiptr) does not represent an archive file or if it can~ 
not read the archive header. 

The program must be loaded with the object file access rou~ 

tine library libld.a. 

SEE ALSO 
Idclose(3X), Idopen(3X), Idfcn(4). 

.... 1 .... Printed 6 1985 



/ 

LDCLOSE(3X) LDCLOSE(3X) 

NAME 
Inclose, lrlaclose ~ close a common objeot file 

SYNOPSIS 
'include <stdio.h) 
#include <filehdr.h) 
Uinclude <ldfcn.h) 

1nt Idclose (ldptr) 
LDFILE *ldptr; 

int ldaclose (ldptr) 
LDFILE *ldptr; 

DESCRIPTION 
~open(3X) and ~£l~ are designed to provide uniform 
access to both simple object files and object files thdt are 
members of archive files. Thus an archive of common object 
files can be processed as if it were a series of simple com~ 
mon object files. 

If TYPE(ldptr) does not represent an archive file, li~lose 
closes the file ann frees the memory allocated to the LDFILE' 
structure associated with ldptr. If TYPE(ldptr) is the 
magic number of an archiv;-[ile, and if there are any more 
files iri the archive, Idclose reinit1alizes OFFSET(ldptr) to 
the file address of the next archive member and returns 
FAILURE. The LDFILE structure is prepared for a subsequent 
~~pe~(3X). In all other cases, ~~lose returns SUCCESS. 

~~los~ closes the file and frees the memory allocated to 
the LDFILE structure associated with Idptr regardless of the 
val u e ofT Y P E (~p t r). ~~~ a 1 way s ret urn s S U C C E S S • Th e 
function is often used in conjunction with ldaopen. 

The program must be loaded with the object file access rou~ 

tine library libld.a. 

SEE ALSO 
fclose(3S), Idopen(3X), Idfcn(4). 

.... 1 ... Printed 6 1985 



L,DFHPEAO(3X) LDFHREAD(3X) 

NAME 
ldfhread - read t~e file header of a common object file 

·SYNOPSIS 
'include <stdio.h> 
Hinclude <filehdr.h> 
tlinclude <ldfcn.h> 

1 n tId fh rea d (1 rl P t r, f i 1 e he a rl ) 
LDFILE * Id ptr; 
FILHDR *ftlehead; 

DESCRIPTION 
Lrlfhrearl reads the file header of 
currently associaterl with lrlptr 
beginning at filehead. 

the common object file 
into the area of memory 

Ldfhread returns SUCCESS or FAILURE. Ldfhrearl fails if it 
cannot read the file hearler. 

Tn most cases the use of lrlfhread can be avoided by using 
the macro HEADER(ldptr) defined in <ldfcn.h> (see ~fcn(4». 
The information in any field, fieldname, of the file header 
may be accessed using HEADER(~ptr}.fieldname. 

The program must be loaded with the object file access rou~ 

tine library libld.a. 

SEE ALSO 
ldclose(3X), Irlopen(3X), lrlfcn(4). 

Printed 6 198'3 



LOOETNAME(3X) LDGETNAME(3X) 

NAME 
lrlgetname - retrieve symbol 
table entry 

name for object file symbol 

SYNOPSIS 
linclude <stdio.h> 
Dinclude <filehdr.h> 
Hinclude <syms.h> 
Uinclude <ldfcn.h> 

char Idgetname (ldptr, symbol) 
LDFILE ld ptr; 
SYMENTsymboli 

DESCRIPTION 
Ldge!~ returns a pOinter to the name associated with sym~ 

bol as a string. The string is contained in a static buffer 
local to lrlgetn~~~. Because the buffer is overwritten by 
each call to Idgetname, it must be copied by the caller if 
the name is to be-saved. 

The common object file format has been extended to handle 
arbitrary length symbol names with the addition of a "string 
table". Ldgetname returns the symbol name associated with a 
symbol table-entry for either an object file or a pre~object 
file. Thus, Idgetname can be used to retrieve names from 
object files without any backward compatibility problems. 
l2getna~! returns NULL (defined in (stdio.h» for an object 
file if the name cannot be retrieved. This occurs when: 

the string table cannot be found. 

not enough memory can be allocated for the string 
table. 

the string table appears not to be a string table 
(e.g., if an auxiliary entry is handed to Idgetname 
that looks like a reference to a name in a non~ 

ex i sten t str ing tabl e) • 

the name's offset into the string table is beyond 
the end of the string table. 

Typically, Idgetname is called immediately after a success~ 

ful call to ldtbread to retrieve the name associated with ----the symbol table entry filled by Idtbread. 

The program must be loaded with the object file access rou~ 

tine library libld.a. 

SEE ALSO 
Idclose(3X) , Idopen(3X) , ldtbseek(3X) , ldtbread(3X), 

.... 1 ~ Printed 6 1985 



/ 

LDLPEAD(3X) LDLREAD(3X) 

NAME 
lrllrearl, lrllinit, ldlitem ~ manipulate line number entries 
of a common object file function 

SYNOPSIS 
'include <stdio.h> 
Dinclude <filehdr.h> 
#include <linenum.h> 
'include <ldfcn.h> 

int Idlread (ldptr, fcninrlx, linenum, linent) 
LDFILE Ildptr; 
long fcnindx; 
unsigned short linenum; 
LINENO linent; 

int Idlinit (lrlptr, fcnindx) 
LDFILE Ilrlptr; 
long fcninrlx; 

int Idlitem (ldptr, linenurn, linent) 
LDFILE Ildptr; 
unsigned short linenum; 
LINENO linent; 

DESCRIPTION 
Ldlread searches the line number entries of the common ----object file currently associated with ldptr. Ldlread begins 
its search with the line number entry for the beginning of a 
function anrl confines its search to the line numbers associ~ 
ated with a single function. The function is identified by 
fcnindx, the inrlex of its entry in the object file symbol 
table. ~~~~ reads the entry with the smallest line 
number equal to or greater than linenum into ll~!. 

Ldlinit and Idlitem together perform exactly the same func~ 
tion as lrllrearl.- After an initial call to ~~~ or 
lrllinit, ldlitem-may be used to retrieve a series of line 
number entries associated with a single function. Ldlinit 
simply locates the line number entries for the function 
identified by fcnindx. Ldlitem finds and reads the entry 
with the smallest line number equal to or greater than line~ 
num into linent. 

Ldlread, Idlinit, and Idlitem each return either SUCCESS or 
FAILURE. Ldlread faiTS-if there are no line number entries 
in the Objeet-rrre, if fcnindx does not index a function 
entry in the symbol -rabTe: or if it finds no line number 
equal to or greater than linenum. Ldlinit fails if there 
are no line number entries in the object file or if fcnindx 
does not inrlex a function entry in the symbol table. Ldli
tern fails if it finds no line number equal to or greater 
than linenum. 

• 
.,.. 1 ... Printe~ 6 1985 



LDLREAD(3X) LDLREAD(3X) 

T~e programs must be loaded with the object file access rou~ 
tine library libld.a. 

SEE ALSO 
Idclose(3X), Idopen(3X), Idtbindex(3X), Idfcn(4). 

- 2 - Printed 6 198t5 



/ 

LDLSEEK(3X) LDLSEEK(3X) 

NAME 
ldlseek, ldnlseek - seek to line number entries of a section 
of a common object file 

SYNOPSIS 
'include <stdi6.h> 
#include <filehdr.h> 
#1nclude <ldfcn.h> 

int ldlseek (ldptr, sectindx) 
LDFILE *ldptr; 
unsigned short sectindx; 

int ldnlseek (ldptr, sectname) 
LDFILE *ldptr; 
char *sectname; 

DESCRIPTION 
Ldlseek seeks to the line number entries of the section 
specified by ~~ind! of the common object file currently 
associated with ldptr. 

Ldnlseek seeks to the line number entries of the section --------specified by sectname. 

Lrllseek and ldnlseek return SUCCESS or FAILURE. Ldlseek 
78ils--if sectTndX-rs greater than the number of sections in 
the object file; ldnlseek fails if there is no section name 
corresponding to--.3;ctname. Either function fails if the 
specified section has no line number entries or if it cannot 
seek to the specified line number entries. 

Note that the first section has an index of one. 

The program must be loaded with the object file access rou
tine library libld.a. 

SEE ALSO 
ldclose(3X), Idopen(3X), Idshread(3X), ldfcn(4). 

Printed 6 1985 



LtHHtaE!K (3X) LDOHSEEK(3X) 

NAME 
ldohseek - seek to the optional fi 1 e header of a common 
o b j ec t fi 1 e 

SYNOPSIS 
linclude <stdio.h) 
'include <filehdr.h> 
II incl ud e <ldfcn.h> 

in t ldohseek (ldptr) 
LDFILE Ildptr; 

DESCRIPTION 
Ldohseek seeks to the optional fi 1 e hearler of the common 
object fi 1 e currently associated with 1 d p!:..!:. • 

Ldohseek returns SUCCESS or FAILURE. Ldohseek fails if the 
object file has no optional header or if it cannot seek to 
the optional header. 

The program must be loaden with the object file access rou
tine library libld.a. 

SEE ALSO 
1 rj c los e ( 3 X ) , 1 d 0 pen ( 3 X) , 1 d fh rea d ( 3 X) t 1 rl fen ( 4 ) • 

Printed 6 1985 



/ 

LOOPEN(3X) LDOPEN(3X) 

NAME 
ldope~, ldaopen ~ open a common object file for reading 

SYNOPSIS 
linclude <stdio.h> 
#include <filehrlr.h> 
Uinclude <ldfcn.h) 

LDFILE *ldopen (filename, Idptr) 
char *filename; 
LDFILE * 10 ptr; 

LDFILE *ldaopen (filename, oldptr) 
char *filename; 
LDFILE *oldptr; 

DESCRIPTION 
Ldop~ and Idcl~~(3X) are designed to provide uniform 
a~cess to both simple object files and object files that are 
members of archive files. Thus, an archive of common object 
files can be processed as if it were a series of simple com
mon object files. 

If ~ptr has the value NUll, ~~ opens filename, allo~ 
cates and initializes the LDFILE structure:-anrl-returns a 
pOinter to the structure to the calling program. 

If ~B!I is valid and TYPE(ldptr) is the archive magic 
number, ldopen reinitializes the LDFILE structure for the 
next archive member of filename. -----
Ldopen and ldclose are designed to work in concert. Ldclose 
retUrns FAIIU~only when TYPE(ldptr) is the archive magic 
number and there is another file in the archive to be pro
cessed. Only then should Idopen be called with the current 
value of ~ptr. In all other cases, in particular whenever 
a new filename is opened, ldopen should be called with a 
NULL Idptr-argument. 

The following is a prototype for the use of Idopen anrl 
Idclose. 

Printed 6 198'5 



LDOPEN(3X) 

1* for each filename to be processeri II 

Idptr = NULL; 
do 

LDOPEN(3X) 

if (lrlptr = lrlopen(filename, Idptr)) != NULL) 

II check magic number II 
II process the file II 

while (ldclose(ldptr) == FAILURE ); 

I f the v a lu e 0 f .£...!.~ p t r i s not NUL L, 1 d a 0 pen 0 pen s f i I ~~ 
anew and allocates and initializes a new LDFILE structure, 
copying the TYPE, OFFSET, and HEADER fields from olrlptr. 
Ldaopen returns a pointer to the new LDFILE structure. This 
new pointer is independent of the old pointer, oldptr. The 
two poi~ters may be used concurrently to read separate parts 
of the object file. For example, one pOinter may be used to 
step sequentially through the relocation information, while 
the other is used to read indexed symbol table entries. 

Both ldopen and ldaopen open filename for reading. Both 
functions return NULL if filename cannot be opened or if 
memory for the LDFILE structure cannot be allocated. A suc~ 
cessful open does not insure that the given file is a common 
object file or an archived object file. 

The program must be loaded with the object file access rou~ 
tine library 11bld.a. 

SEE ALSO 
fopen(3S), Idclose(3X), Idfcn(4). 

Printed 6 1985 



/ 
/ 

/ 

LDRSEEK(3X) LORSEEK(3X) 

NAME 
ldrseek, ldnrseek - seek to relocation entries of a section 
of a common object file 

SYNOPSIS 
'include <stdio.h) 
'include <filehdr.h) 
'inclu~e <ldfcn.h) 

int ldrseek (ldptr, sectindx) 
LDFILE .ld ptr; 
unsigned short sectindx; 

int ldnrseek (ldptr, sectname) 
LDFILE *ldptr; 
char *sectname; 

DESCRIPTION 
Ldrseek seeks to the 
specified by sectindx 
associated with Idptr. 

relocation entries of the section 
of the common object file currently 

Ldnrseek seeks to the relocation entries of the section 
specified by sectname. 

Ldrseek and ldnrseek return SUCCESS or FAILURE. Ldrseek 
fails if sectinnx is greater than the number of sections in 
the object file; Idnrseek fails if there is no section name 
corresponding with sectname. Either function fails if the 
specified section has no relocation entries or if it cannot 
seek to the specified relocation entries. 

Note that the first section has an index of ~. 

The program must be loaded with the object file access rou
tine library libld.a. 

SEE ALSO 
Idclose(3X). Idopen.(3X), Idshread(3X), Idfcn(4). 

..".1..". Printed 6 1985 



LDSHREAD(3X) LDSHREAD(3X) 

NAME 
ldshread, ldnshread - read an indexed/named section header 
of a common object file 

SYNOPSIS 
linclude <stdio.h> 
'include <filehdr.h> 
'include <scnhdr.h) 
linclude <ldfcn.h) 

1nt ldshread (ldptr, sectindx, secthead) 
LDFILE *ldptr; 
unsigned short sectindx; 
SCNHDR *secthead; 

• 

int Idnshread (ldptr, sectname, secthead) 
LDFILE *ldptr; 
char sectname; 
SCNHDR ·secthead; 

DESCRIPTION 
Ldshread reads the section header specified by sectindx of 
the common object file currently associated with ldptr into 
the area of memory beginning at secthead. 

Ldnshread reads the section header specified by sectname 
into the area of memory beginning at secthead. 

Ldshread and ldnshread return SUCCESS or FAILURE. Ldshr~ad 

fails if sectindx is greater than the number of sections in 
the object flIe; Idnshread fails if there is no section name 
corresponding with sectname. Either function fails if it 
cannot read the specified section header. 

Note that the first section header has an index of ~. 

The program must be loaded with the object file access rou
tine library libld.a. 

SEE ALSO 
ldclose(3X), ldopen(3X), ldfcn(~). 

- 1 - Printed 6 1985 



;' 

LDSSEEK(3X) LDSSEEK(3X) 

NAME 
Idsseek, l('insseek ~ seek to an inrlexed/named section of a 
common object file 

SYNOPSIS 
'include <stdio.h) 
#include <filehdr.h> 
Hinclude <ldfcn.h> 

int Idsseek (ldptr, sectindx) 
LDFILE *lrlptr; 
unsigned short sectindx; 

int Idnsseek (lrlptr, sectname) 
LDFILE *lrlptr; 
char *sectname; 

DESCRIPTION 
L('isseek seeks to the section specified by sectindx of the 
common object file currently associated with Idptr. 

~~~~~ seeks to the section specified by sectname. 

Ldsseek and ldnsseek return SUCCESS or FAILURE. Ldsseek
raTI-s--if ~ctlndx is greater than the number of sections in
the object file; 1!!~seek fails if there is no section name
corresponding with sectname. Either function fails if there
is no section data for the speci"fied section or if it cannot
seek to the specified section.

Note that the first section has an index of ~~.

The program must be loaded with the object file access rou~

tine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

~ 1 ... Printed 6 1985

LDTBINDEX(3X) LDTBINDEX(3X)

NAME
Idtbinrlex ~ compute the index of a symbol table entry of a
common object file

SYNOPSIS
'include <stdio.h>
#include <filehdr.h>
Dinclude <syms.h>
linclude <ldfcn.h>

long ldtbindex (ldptr)
LDFILE *lrj ptr;

DESCRIPTION
Ldtbindex returns the (long) index of the symbol table entry
at the current position of the common object file associated
with ~E.!:!..

The index returned by ldtbindex may be used in subsequent
calls to Idtbread(3X). However, since Idtbindex returns the
index of the symbol table entry that begins at the current
position of the object file, if Idtbindex is called immedi
ately after a particular symbol table entry has been rearl,
it returns the the index of the next entry.

Ldtbindex fails if there are no symbols in the object file
or if the object ftle is not positioned at the beginning of
a symbol table entry.

Note that the first symbol in the symbol table has an index
of zero.

The program must be loaded with the object file access rou
tine library libld.a.

SEE ALSO
Idclose(3X) ,
Idfcn(4).

Idopen(3X) ,

..,.. 1 or-

Id tbread (3X) , Idtbseek(3X) ,

Printed 61985

;

/

LDTS~!AO(3X) LDTSftIAD(3X)

NAME
ldtbrearl ~ read an indexed symbol table entry of a common
object file

SYNOPSIS
'include <stdio.h>
Hinclude <filehdr.h>
Uinclude <syms.h>
Uinclude <ldfcn.h>

int ldtbread (ldptr, symi~dex, symbol)
LDFILE *ldptr;
long symindex;
SYMENT *symbol;

DESCRIPTION
~!£~~~ reads the symbol table entry specified by symind~!

of the common object file currently associated with lrlptr
i~to the area of memory begi~ning at symb£!.

L d t b ~~ ret lJ r n s S U C C E S S 0 r F A I L U R E • L d t b rea d fa i 1 s i f E.XE!.=
~rle~ is greater than the number of symbols in the object
file or if it cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index
of zero.

The program must be loaded with the object file access rou~

tine library libld.a.

SEE ALSO
Idclose(3X) ,
ldfcn(4) •

ldgetname(3X) ,

.... 1 ...

Idopen(3X), Idtbseek(3X) t

Printed 6 1985

LDTBSEEK(3X) LDTBS!EK(3X)

NAME
ldtbseek ~ seek to the symbol table of a common object file

SYNOPSIS
'include <stdio.h>
'incluoe <filehdr.h>
~include <ldfcn.h>

int Idtbseek (ldptr)
LDFILE Ildptr;

DESCRIPTION
Ldtbsepk seeks to the symbol table of the
currentIy associated with ~ptr.

object file

Ldtbseek returns SUCCESS or FAILURE. Ldtbseek fails if the
symboI~able has been stripped from the object file or if it
cannot seek to the symbol table.

The program must be loaden with the object file access rou~

tine library libld.a.

SEE ALSO
lrlclose(3X), ldopen(3X), ldtbread(3X), ldfcn(4).

Printed 6 1985

/

LOGNAME(3X) I..OGNAME(3X)

NAME
logname - return login name of user

SYNOPSIS
char *logname()

DESCRIPTION

FILES

Logname returns a pointer to the null-terminated login name;
it extracts the $LOGNAME variable from the user's environ~
men t •

This routine is kept in Ilib/libPW.a.

/etc/profil e

SEE ALSO

BUGS

env(1), login(1) t profile(4), environ(5).

The return values point to static data whose content is
overwritten by each call.

This method of rl~termining a login name is subject to for~

g er y.

•
.... 1 .,.. Printed 61985

LSEARCH(3C) LSEARCHC3C)

NAME
lsearch - linear search and update

SYNOPSIS
char *lsearch (char *)key,(char *)base, nelp, sizeof(*key),
com par
unsigned *nelp;
int (*compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth
T6:1-)--Algorithm S. It returns a pointer into a table indi~
cating where data may be found. If the data does not occur,
it is added at the end of the table. Key pOints to the data
to be sought in the table. Base points-to the first element
in the table. NelE poin~to an integer containing the
current number of elements in the table. The integer is
incremented if the data is added to the table. Compar is
the name of the comparison function which the user musr-sup
ply (~E.E.mp, for example). It is called with two arguments
that point to the elements being compared. The function
must return zero if the elements are equal and non~zero oth~

erwise.

The pOinters to the key and the element at the base of the
table should be of type pointer~to~element and cast to type
pointer~to-character.

The comparison function need ndt compare every byte, so
arbitrary data may be contained in the elements in addition
to the v~lues being compared.
Although declared as type pointer~to-character, the value
returned should be cast into type pointer~to-element.

SEE ALSO

BUGS

bsearch(3C), hsearch(3C), tsearch(3C).

Undefined results can occur if there is not enough room in
the table to add a new item.

.... 1 Printed 6 1985

/

MALLOC(3C) MALLOC(3C)

NAME
malloc, free, realloc, calloc ~ main memory allocator

SYNOPSIS
char *malloc (size)
unsigned size;

v 0 i d fr e e (p t r)
char *ptr;

char *realloc (ptr, size)
char ·ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Malloc and i~~ provide a simple general-purpose memory
allocation package. Malloc returns a pOinter to a block of
at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously
allocated by malloc; after free is performed this space is
made available for further allocation, but its contents are
left unriisturbed.

Undefined results occur if the space assigned by malloc is
overrun or if some random number is handed to free.

Malloc allocates the first contiguous reach of free space of
sufficient size found in a circular search from the last
block allocated or freed; it coalesces adjacent free blocks
as it searches. It calls sbrk (see ~(2)) to get more
memory from the system when there is no suitable space
alrearly free.

Realloc changes the size of the block pointed to by ptr to
size bytes and returns a pointer to the (possibly moved)
block. The contents are unchanged up to the lesser of the
new and old sizes. If no free block of size bytes is avail
able in the storage arena, realloc asks malloc to enlarge
the arena by size bytes and then moves the data to the new
sPace.

Realloc also works if ptr points to a block freed since the
lasr--Call of malloc,-realloc, or calloc; thus sequences of
free, malloc, anrl-realloc can exploit the search strategy of
malloc~o rio storage compaction.

Call£~ allocates space for an array of nelem elements of
size ~~~~. The space is initialized to-zeros.

Printed 6 1985

MALLOC(3C) MALLOC(3C)

Each of the allocation routines returns a pointer to space
suitably aligned (after pos~ible pointer coercion) for
storage of any type of object.

DIAGNOSTICS

NOTE

Malloc, realloc, and calloc return a NULL pointer if there
is no avaTIable memory or if the arena has been detectablv
corrupted by storing outside the bounrls of a block. When
this happens the block pOinted to by ptr may be destroyed.

Search time increases when many objects have been allocated;
i.e., if a program allocates space but never frees it, each
successive allocation takes longer.

Printed 6 1985

/

HATHERR(3M) MATHERR(3M)

NAME
matherr - error-handling function

SYNOPSIS
'include <math.h>

int matherr (x)
struct exception .x;

DESCRIPTION
Matherr is invokerl by functions in the Math Library when
errors are detected. Users may define their own procedures
for handling errors bv including a function named matherr in
their programs. Mat-herr must be of the form--rfescribed
above. A pointer to- the- exception structure x will be
passed to the user-supplied matherr function when an error
occurs. This structure, which is defined in the <math.h>
header file, is as follows:

struct exception
int type;
char *name;
double arg1, arg2, retval;

} ;

The element type is an integer describing the type of error
that has occurred; one of the following constants (defined
in the header file) is used:

DOHAIN
SING
OVEPFLOW
UNDERFLOW
TLOSS
PLOSS

domain error
singularity
overflow
und er flow
total loss of significance
partial loss of significance

The element name points to a string containing the name of
the functio-n--that had the error. The variables arg1 and.
~~~ are the arguments to the function that had the error. 
~~ is a double that is returned by the function having 
the error. If it supplies a return value, the user's math
err must return non-zero. If the default error value is to 
be-returned, the user's matherr must return O. 

If matherr is not supplied by the user, the default error
hanrlITng-procedures, described with the math functions 
involved, will be invoked upon error. These procedures are 
summarized in the table following the example below. In 
every case, ~~ is set to non-zero and the program contin
ues. 

EXAMPLE 

- 1 - Printed 6 1985 



MATHERR(3M) 

matherr(x) 
register struct exception IX; 
{ 

switcr. (x->type) 
case DOMAIN: 

MATHERR(3M) 

case SING: II print message ann abort II 
fprintf(stderr, "domain error in %s\n", x->name); 
abort( ); 

case OVEPFLOW: 
if (!strcmp(lfexp" " x->name)) 

II if exp, print message, return the argument II 
fprintfCstderr, "exp of %f\n", x->arg1); 
x->retval = x->arg1; 

else if (!strcmpC"sinh", x->name)) 
II if sinh, set errno, return 0 II 
errno = ERANGE; 
x->retval = 0; 

el se 
II otherwise, return HUGE II 
x->retval = HUGE; 

break; 
case UNDEPFlOW: 

return (0); II execute default procerlure II 
case TLOSS: 
case PLOSS: 

II print message and return 0 *1 
f p r i n t f ( s t d err, "los S 0 f s i g n i fie an c e i n % s \ n", x - > n a n, 
x->retval = 0; 
break; 

return (1); 

- 2 - Printed (, 1985 



MATHERR(3M) 

_: ____________ ~EFAULT ERROR HANDLING PROCEDURES 
: : Typ.::.E of Errors 

I 
I 

MATHERR(3M) 

lDOMAIN: SING OVERFLOW WNDERFLOW : TLO~S : PLOSS 
~ES~EL: 
yO, y1, yn 
l(neg. no.) 

I ---
I H o ----- * 
: H, -H 

ltxp: H ______ ~ __ ~O. ______ , 
WOW: 
(neg .. )**(non
:int.), 0**0 

tOG: 
~og(O): 

~og(neg.): 

$QRT: 

I 
I 

l M, 0 

H, 
H, 

I 
I 

l H, -H 
-Hl 
0 I 

I 

~AMHA: l l M, H SYPOT:---------:-------:-----

$- IN H, CO~ H: 
-~-$IN, COS: 

tA N: 
!COS, A~IN: H, () 

H 0 

, 
. I 

H 

H 

H 

: ABBREVIATIONS 

, 
I 

~-------~----
I 

M, 0 M, * 
o * 

l * As much as possible of the value is returnerl. 
H Message is printeri. 
H HUGE is returned. 
-H -HUGE is returned. 
o 0 is returnerl. 

- 3 - Pr in ted t6 1985 



MEMORY(3C) MEHORY(3C) 

NAME 
memccpy, memchr, memcmp, memcpy, memset - memory operations 

SYNOPSIS 
'include <memory.h> 

c h a r 'm em c c p y (s 1, s 2, c, n) 
char 's1, *s2; 
int c, n; 

char 'memchr (5, c, n) 
char IS; 
int c, n; 

int memcmp (51, 52, n) 
char '51, '52; 
in t n; 

char *memcpy (51, 52, n) 
char *51, 152; 
in t n; 

char *memset (5, c, n) 
char *5; 
int c, n; 

DESCRIPTION 
These functions operate efficiently on memory areas (arrays 
of characters bounded by a count, not terminated by a null 
character). They do not check for the overflow of any 
receiving memory area. 

Memc£py copies characters from memory area ~ into ~, stop~ 
ping after the first occurrence of character c has been 
copied or after E characters have been copied, whichever 
comes first. It returns either a pointer to the character 
after the copy of ~ in ~ or a NULL pointer if c was not 
found in the first n characters of 52. 

Memchr returns either a pointer to the first occurrence of 
character c in the first n characters of memory area s or a 
NULL pointer if c does not occur. 

Memcmp compares its arguments, looking at the first n char~ 

acters only. It returns an integer less than, equal to, or 
greater than 0, depending on whether ~ is lexicographically 
less than, equal to, or greater than s2. 

Memcpy copies n characters from memory area s2 to s1. It 
returns s 1. 

Memset sets the first n characters in memory area 5 to the 
value of character c. It returns 5 • 

.... 1 .,.. Printed 6 1985 



HEMORY(3C) MEMORY(3C) 

NOTE 

BUGS 

For use r con v en 'i en c e, a I I the s e fun c t ion s are rl eel are din 
the optional <memory.h) hearler file. 

Memcmp uses native character comparison, which is signerl on 
PDP ..... TIs, unsigned on other machines. 

Because character movement is performed differently in dif~ 

ferent implementations, overlapping moves may yielrl unex
pecten results. 

..,.. 2 .... Printed 6 1985 



HKTEMP(3C) HKTEHP(3C) 

NAME 
mktemp - make a unique filename 

SYNOPSIS 
char *mktemp (template) 
char .template; 

DESCRIPTION 
Mktemp replaces the contents of the string pointed to by 
terriPTate with a unique filename; it returns the address of 
tem.Elat~. The string in template should look like a 
filename with six trailing Xs; mktemp replaces the Xs with a 
letter anrl the current process ID. The letter is chosen so 
that the resulting name does not duplicate an existing file. 

SEE ALSO 
getpirl(2), tmpfile(3S),tmpnam(3S). 

BUGS 
It is possible to run out of letters. 

.... 1 ..,.. Printed 6 198'5 



HONITOR(3C) MONITORC3C) 

NAME 
monitor ~ prepare execution profile 

SYNOPSIS 
void monitor (lowpc, highpc, buffer, bufsize, nfunc) 
1nt C*lowpc) ( ), (*highpc) ( ); 
short *buffer; 
int bufsize, nfunc; 

DESCRIPTION 

FILES 

An executable program created by cc -p automatically 
includes calls for monitor with default parameters; monitor 
needn't be called explicitly except to gain fine control 
over profiling. 

Monitor is an interface to profil(2). Lo~ and highpc are 
the addresses of two functions; buffer is the address of a 
(user supplied) array of bufsize short integers. Monitor 
arranges to record a histogram in the buffer. This histo~ 
gram shows periodically sampled values of the program 
counter and counts of calls of certain functions. The 
lowest address sampled is that of lowpc; the highest address 
is just below highpc. Lowpc may not equal ° for this use of 
monitor. NfunC-rs-the maximum number of call counts that 
can be kept-;-only calls of functions compiled with the pro
filing option ~p of cc(1) are recorded. (The C Library and 
Math Library supplT;d when cc -p is used also have call 
counts recorded.) For the results to be significant, espe
cially where there are small, heavily used routines, it is 
suggested that the buffer be no more than a few times 
smaller than the range of locations sampled. 

To profile the entire program, it is sufficient to use 

extern etext; 

monitor «int (*)(»2, etext, buf, bufsize, nfunc); 

I!~~ lies just above all the program text; see ~~(3C). 

To stop execution monitoring and write the results on the 
file mon.out, use 

monitor «int (*)(»NULL, 0,0,0,0); 

Prof(1) can then be used to examine the results. 

mon.out 

SEE ALSO 
cc(1), prof(1), profil(2), enrl(3C). 

.... 1 - Printed 6 1985 



NLIST(3C) 

NAME 
nlist - get entries from name list 

SYNOPSIS 
'include <a.out.h> 

int nlist (filename, nl) 
char 'filename; 
struct nlist nl[ J; 

DESCRIPTION 
Nlist examines the name list in the executable file whose ----name is pOinten to by filename; it selectively extracts a 
list of values ann puts them in the array of nlist struc~ 

tures pOinterl to by ~. The name list ~ conSists of an 
array of structures containing names of variables, types, 
anrl v~lues. The list is terminaterl with a null name; i.e., 
a null string is in the name position of the structure. 
Each variable name is lookerl up in the name list of the 
file. If the name is found, the type ano value of the name 
are inserterl in the next two fields. If the name is not 
founrl, both entries are set to O. See ~.out(4) for a ois~ 

cussion of the symbol table structure. 

This subroutine is useful for examining the system name list 
kept in the file /unix. In this way programs can obtain 
system adnresses that are up to date. 

SEE ALSO 
a.out(4). 

DIAGNOSTICS 
All type entries are set to 0 if the file cannot be read or 
if it rloesn't contain a valid name list. 

]list returns -1 upon error; otherwise it returns O. 

.,. 1 - Printed 6 1985 



PERROR(3C) PERROR(3C) 

NAME 
perror, errno, sys_errlist, sys nerr ~ system error messages 

SYNOPSIS 
void perror (s) 
char *s; 

extern int errno; 

extern char *sys_errlist[ J; 

extern int sys_nerr; 

DESCRIPTION 
Perror produces a message on the standard error output, 
describing the last error encountered during a call to a 
system or library function. The argument string s is 
printed first, then a colon and a blank, then the message 
and a new-line. To be of most use, the argument string 
shoulrl inclurle the name of the program that incurred the 
error. The error number is taken from the external variable 
~~ , w hi chi sse t w hen err 0 r soc cur but not c I ear e d w hen 
non-erroneous calls are made. 

To simplify variant formatting of messages, the array of 
message strings sys errlist is provided; errno can be used 
as an index in this table to get the message-string without 
the new~line. Sys nerr is the largest message number pro
vided for in the table;-rt should be checked because new 
error codes may be adrled to the system before they are added 
to the table. 

SEE ALSO 
intro(2) • 

.... 1 -
.. 

Printed 6 6 1985 



POPEN(3S) POPENC3S) 

NAME 
popen, pclose - initiate pipe to/from a process 

SYNOPSIS 
'include <stdio.h) 

FILE 'popen (command, type) 
char 'command, 'type; 

int pelose (stream) 
FILE 'stream; 

DESCRIPTION 
The arguments to popen are painters to null~terminated 

strings; one string--Contains a shell command line and the 
other contains an I/O mode. The mode may be either r for 
reading or w for writing. Popen creates a pipe between the 
calling program and the comman~to be executed. The value 
returned is a stream pOinter. If the I/O mode is w, one can 
write to the standard input of the command by writing to the 
file ~~~~; if the I/O mode is r, one can read from the 
standard output of the command, by reading from the file 
stream. 

A stream opened by popen should be closed by pclose, which 
waits for the associated process to terminate and returns 
the exit status of the command. 

Because open files are shared, a type r command may be used 
as an input filter and a type w as an output filter. 

SEE ALSO 
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S). 

DIAGNOSTICS 

BUGS 

Popen returns a NULL pOinter if files or processes cannot be 
created or if the shell cannot be accessed. 

Pclose returns -1 if stream is not associated with a command ------opened by pop~. 

If the original processes and processes opened by popen con
currently read or write a common file, neither should use 
buffered I/O, because the buffering gets all mixed up. 
Problems with an output filter may be forestalled by careful 
buffer ~luShing, e.g., by using fflush; see fcl~(3S). 

- 1 - Printed 6 1985 



/ 

PRINTF(3S) PRINTF(3S) 

NAME 
printf, fprintf, spri~tf - print formatted output 

SYNOPSIS 
'include <stdio.h) 

int printf (format [ , arg J ••• ) 
char * fOl~mat; 

int fprintf (stream, format [ , arg J ••• ) 
FILE *stream; 
char * fo rmat; 

int sprintf (s, format [ t arg ] ••• ) 
char *s, format; 

DESCRIPTION 
Printf places output on the standard output stream stnout. 
Fprintf places output on the named output stream. ~£rintf 
Places' , 0 u t put ' " foIl 0 we d b y the null c h a rae t e r ( \ 0 ) in 
consecutive bytes starting at *~; it is the user's responsi
bility to ensure that enough storage is available. Each 
function returns the number of characters transmitted (not 
includi~g the \0 in the case of sprintf), or a negative 
value if an output error was encountered. 

Each of these functions converts, formats, and prints its 
args under control of the format. The format is a character 
string that contains two types-Df objects: plain characters, 
which are simply copied to the output stream, ann conversion 
specifications, each of which results in fetching zero or 
more args. The results are undefined if there are insuffi
cient args for the format. If the format is exhausted while 
~~s remain, the excess args are simply ignored. 

Each conversion specification is introduced by the character 
I. After the I, the following appear in sequence: 

Zero or more flags, which modify the meaning of the 
conversion specification. 

An optional decimal digit string specifying a minimum 
field width. If the converted value has fewer charac
ters than the field width, it will be padded to the 
field width on the left (default) or right (if the 
left-adjustment flag has been given); see below for 
flag specification. 

A ~~ision that gives the minimum number of digits to 
appear for the d, 0, u, x, or X conversions, the number 
of digits to appear after the decimal point for the e 
and f conversions, the maximum number of significant 

- 1 - Printed 6 1985 



PRINTF(3S) PRINTF(3S) 

digits for the g conversion, or the maximum number of 
characters to be printed from a string in s conversion. 
The format of the precis(on is a period (.) followed by 
a decimal digit string; a null digit string is treated 
as zero. 

An optional 1 specifying that a following d, 0, U, x, 
or X conversion character applies to a long integer 

2I.~ • 

A character that inoicates the type of conversion to be 
applied. 

A field width or precision may be inoicated by an asterisk 
(*) instead of a digit string. In this case, an integer ~ 
supplies the field width or precision. The ~~ that is 
actually converted is not fetched until the conversion 
letter is seen; therefore, the args specifying field width 
or precision must appear before-the ~~ (if any) to be con
verted. 

The flag characters and their meanings are: 

+ 

blank 

# 

The result of the conversion will be 
justified within the field. 

1 eft-

The result of a signed conversion will always 
begin with a sign (+ or -). 

If the first character of a signed conversion is 
not a sign, a blank will be prefixed to the 
result. This implies that if the blank and + 
flags both appear, the blank flag will be ignored. 

This flag specifies that the value is to be con
verted to an "alternate form.'f For c, d, s, and 
U conversions, the flag has no effect. For 0 

conversion, it increases the precision to force 
the first digit of the result to be a zero. For x 
(X) conversion, a non-zero result will have Ox 
(OX) prefixed to it. For e, E, f, g, and G 
conversions, the result will always contain a 
decimal point, even if no digits follow the point 
(normally, a decimal point appears in the result 
of these conversio~s only if a digit follows it). 
For I and G conversions, trailing zeroes will not 
be removed from the result (which they normally 
ar e) • 

The conversion characters and their meanings are: 

d,o,u,x,X The integer arg is converted to signed decimal, 

- 2 - Printed 6 1985 



PRINTF(3S) 

f 

e,E 

g,G 

c 

s 

PRINTF(3S) 

unsigned octal, decimal, or hexadecimal notation 
(x ann X), respectively; the letters abcdef are 
used for x conversion and the letters ABCDEF for X 
conversion. The precision specifies tr.e minimum 
number of digits to appear; if the value being 
converted can be represented in fewer digits, it 
will be expanded with leading zeroes. The default 
precision is 1. The result of converting a zero 
value with a precision of zero is a null string. 

The float or double arg is converted to decimal 
notation in the style" [-Jddd.tidd", where the 
number of digits after the decimal point is equal 
to the precision specification. If the precision 
is missing, 6 digits are output; if the precision 
is explicitly 0, no decimal point appears. 

The float or double arg is converted in the style 
"[-Jd.rldde+dd", where there is one digit before 
the decimal-point and the number of digits after 
it is equal to the precision; when the precision 
is missing, 6 digits are produced; if the preci
sion is zero, no decimal point appears. Th,e E 
form~t code produces a number with E instead of e 
introducing the exponent. The exponent always 
contains at least two digits. 

The float or double arg is printed in style f or e 
(or in style E in~he case of a G format code) t 

with the precision specifying the number of signi
ficant digits. The style used depends on the 
value converted; style e is used only if the 
exponent resulting from the conversion is less 
than -4 or greater than the precision. Trailing 
zeroes are removed from the result; a decimal 
point appears only if it is followed by a digit. 

The character arg is printed. 

The arg is taken to be a string (character 
pOinter) and characters from the string are 
printed until a null character (\0) is encountered 
or the number of characters indicated by the pre
cision specification is reached. If 'the precision 
is missing, it is taken to be infinite, so all 
characters up to the first null character are 
printed. If the string pointer arg has the value 
zero, the result is undefined. A~ll arg yields 
undefined results. 

Print a S; no argument is converted. 

- 3 - Printed 6 1985 



PRINTF(3S) PRINTFC3S) 

In no case does a non-existent or sm~ll field width cause 
truncation of a field; if the result of a conversion is 
wider than the field width, the field is simply expanded to 
contain the conversion result. Ch~racters generated by 
printf and i£~intf are printed as if putcC3S) had been 
callen. 

EXAMPLES 
To print a date and time 
10:02", where weekday 
terminated strings: 

in 
and 

the form 
month are 

"Sunday, July 3, 
pointers to null-

printfC"%s, %s %d, S.2d:S.2d", weekday, month, day, hour, min); 

To print £l to 5 decimal places: 

printf("pi = %.5f", 4*atan(1.0»; 

SEE ALSO 
ecvt(3C), putc(3S), scanf(3S), stdio(3S). 

- 4 - Printed 6 1985 



PUTC(3S) PUTC(3S) 

NAME 
putc, putchar, fputc, putw ~ put character or word on a 
stream 

SYNOPSIS 
'include <stdio.h) 

int putc (c, stream) 
char c; 
FILE ·stream; 

int putchar (c) 
char c; 

int fputc (c, stream) 
char c; 
FILE ·stream; 

int putw (w, stream) 
in t w; 
FILE ·stream; 

DESCRIPTION 
Putc writes the character c onto the output stream at the 
position where the file-pointer, if define~rs-pointing. 
~l c h a r ( .9) i s d e fin e d a s put c ( .£' s t d 0 u t). Put can d put c h a r 
are macros. 

Fp~~ behaves like putc, but is a function rather than a 
macro. i.e.utc runs more slowly than .£utc, but takes less 
space per invocation. 

Put~ writes the word (i.e., integer) w to the output stream 
at the position at which the file pointer, if defined:-rs 
pointing. The size of a word is the size of an integer and 
varies from machine to machine. Putw neither assumes nor 
causes special alignment in the file-.---

Output streams, with the exception of the standard error 
stream stderr, are by default buffered if the output refers 
to a file and line~buffered if the output refers to a termi~ 
nal. The standard error output stream stderr is by default 
unbuffered, but use of freopen(see fO~(3S)) causes it to 
become buffered or line-buffered. When an output stream is 
unbuffered information, it is queued for writing on the des~ 
tination file or terminal as soon as written; when it is 
buffered, many characters are saved up and written as a 
block; when it is line-buffered, each line of output is 
queued for writing on the destination terminal as soon as 
the line is completed (i.e., as soon as a new~line character 
is written or terminal input is requested). Setbuf(3S) may 
be used to change the stream's buffering strategY:-

: 
Printed 6 1985 



PUTC(3S) PUTC(3S) 

SEE ALSO 
fclose(3S), ferror(3S), 
puts(3S), setbuf(3S). 

fopen(3S), frearl(3S), printf(3S), 

DIAGNOSTICS 

BUGS 

On success, these functions each return the value they have 
written. On failure, they return the constant EOF. This 
occurs if the file stream is not open for writing or if the 
output file canno-t--~ grown. Because EOF is a valid 
integer, ferror(3S) should be used to detect ~!~ errors. 

Because it is implemented as a macro, putc treats 
incorrectly a stream argument with side effects-.--In partic~ 
ular, putc(c, *1++); doesn't work sensibly. FQutc should be 
used instead. 
Because of possible differences in word length and byte ord~ 
ering, files written using putw are machine~rlependent and 
may not be read using getw on adifferent processor. For 
this reason the use of putw should be avoided. 

.... 2 - Printed 6 1985 



PUTPWENTC3C) PUTPWENT(3C) 

NAME 
putpwent .... write password file entry 

SYNOPSIS 
'include <pwd.h> 

1nt putpwent Cp, f) 
struct passwd *p; 
FILE *f; 

DESCRIPTION 
Pu~pw~nt is the inverse of getpwent(3C). Given a pointer to 
a passwrl structure created by getpwent (or getpw~i or 
~tpwna~), putpwuid writes a line on the stream f which 
matches the format of /etc/passwd. 

The <pwd.h> header file is described in ~!£went(3C). 

SEE ALSO 
getpwen t (3C) • 

DIAGNOSTICS 
~tpwent returns non .... zero if an error was detected during 
its operation; otherwise it returns zero. 

WARNING 
The above routine uses <stdio.h>. Therefore, the size of 
programs not otherwise using standard I/O is increased more 
than might be expected. 

Printed 6 1985 



PUTS(3S) PUTS(3S) 

NAME 
puts, fputs ~ put a string on a stream 

SYNOPSIS 
'include <stdio.h) 

int puts (s) 
char .s; 

int fputs (s, stream) 
char *s; 
FILE ·stream; 

DESCRIPTION 
Puts writes the null-terminated string pOinted to by s, fol~ 

lowed by a new ..... line character, to the standard output-stream 
strlout. ---
Fputs writes the null-terminated string pointed to by s to 
The-nameri output ~~~. 

Neither function writes the terminating null character. 

SEE ALSO 
ferror(3S), fopen(3S), frearl(3S), printf(3S), putc(3S). 

DIAGNOSTICS 

NOTES 

Both routines return EOF on error. This occurs if the rou~ 

tines try to write on a file that has not been opened for 
writing. 

Puts appends a new~line character while fputs does not. 

.,. 1 .... Printed 6 1985 



/ 

QSORT(3C) QSORT(3C) 

NAME 
qsort ~ quicker sort 

SYNOPSIS 
void qsort «char *) base, nel, sizeof (.base), compar 
unsigned int nel; 
int (icompar)( ); 

DESCRIPTION 

NOTES 

Qso~ is an implementation of the quicker-sort algorithm. 
It sorts a table of data in place. 

Base poi~ts to the element at the base of the table. Nel is 
the number of elements in the table. Comear is the name of 
the comparison function, which is callerl with two arguments 
that pOl~t to the elements being compared. Depending on 
whether the first argument is to be considered less than, 
equal to, or greater than the second argument, the ~mpar 
function must return an integer less than, equal to, or 
greater than zero, 

Th~ pointer to the base of the table should be of type 
pointer~to~element and cast to type pointer-to~character. 
The comparison function need not compare every byte, so 
arbitrary data may be contained in the elements in addition 
to the values being compared. 
Although declared as type pointer-to-character, the value 
returned should be cast into type pointer-to-element. 

SEE ALSO _ 
sort( 1), bsearch(3C), Isearch(3C), string(3C). 

..,. 1 .,.. Printed 6 1985 



RAND(3C) RAND(3C) 

NAME 
ranri, sranri - simple ranriom-number generator 

SYNOPSIS 
int rand ( 

void srand (seed) 
unsigned seed; 

DESCRIPTION 

NOTE 

Rand uses a multiplicative congruential random-number gen
~tor with period 28329 that returns successive pseudoc-ranrlom 
numbers in the range from 0 to 28159~1. 

~and can be called at any time to reset the ranriom-number 
generator to a ranriom starting pOint. The generator is ini
tially seeded with a value of 1. 

The spectral properties of rand leave a great deal to be 
desired. Drand48(3C) provides a much better, though more 
elaborate, random:number generator. 

SEE ALSO 
drand48C3C) • 

Printed 6 1985 



/ 

ft!OCMPC3X) REGCMP(3X) 

NAME 
regcmp, regex - compile and execute a regular expression 

SYNOPSIS 
char *regcmp(string1 [, string2, ••• J, 0) 
char *string1, *string2, ••• ; 

char *regexCre, subject[, retO, ••• ]) 
char *re, *subject, *retO, ••• ; 

extern char *10c1; 

DESCPIPTION 
Regcmp compiles a regular expression and returns a pointer 
to the compiled form. Malloc(3C) is used to create space 
for the vector. It is the user's responsibility to free 
unneeded space that has been allocated by malloc. A NULL 
return from regcmp indicates an incorrect argument. 
~K~mp(1) has been written to generally preclude the need 
for this routine at execution time. 

~~~ executes a compiled pattern against the subject 
string. Additional arguments are passed to receive values
back. Regex returns NULL on failure or a pointer to the
next unmatched character on success. A global character
pointer 10c1 pOints to where the match began. Regcmp and
regex were-mostly borrowed from the editor, ed(1); however,
the-syntax and semantics have been changed Slightly. The
following are the valid symbols ann their associated mean
i ng s.

[] * . A

$

+

These symbols retain their current meaning.

This symbol matches the end of the string;
matches the new-line.

\n

Hithin brackets the minus means "through". For
example, [a~zJ is equivalent to [abcd ••• xyz]. The
- can appear as itself only if used as the last or
first character. For example, the character class
expression []-J matches the characters] and -.

A regular expression followed by + means "one or
more times". For example, [0-9]+ is equivalent to
[0~9J[0~9J*.

{~} {~,} {~t~} Integer values enclosed in {} indicate the
number of times the preceding regular expression
is to be applied. The minimum number is m and the
maximum number is U t which must be less than 256.
If only m is present (e.g., {m}), it indicates the
exact number of times the reg~lar expression is to
be applied. {~,} is analogous to {~tinrinity}.
The plus (+) and star C*) operations are

..
..,.. 1 Printed 6 1985

REGCMP(3X) REGCMP(3X)

equivalent to {1,} and {O,l, respectively.

()$~ The value of the enclosed regular expression is to
be returned. The value will be stored in the
(n+1)th argument following the subject argument.
At -present, at most 10 enclosed regular expresor
sions are allowed. Pegex makes its assignments
unconrlitionally.

(...) Parentheses are used for grouping. An operator
(e.g., ., +, I}) can work on" a single character or
a regular expression enclosed in parentheses. For
example, (a*(cb+)*)$O.

By necessity, all the above defined symbols are special.
They must, therefore, be escaped to be used as themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor, *ptr;

newcursor = regex«ptr = regcmp(" \n", 0)), cursor);
free(ptr);

This example will match a leading new~line in the subject
string pointed at by cursor.

Example 2":
char retO[9J;
char *newcursor, *name;

name = regcmp("([A Za""""z][A~za zOor-9]{n,7})$O", 0);
newcursor = regex(name, "123Testini321", retO);

This example will match through the string "Testing3" and
will return the address of the character after the last
matched character (cursor+11). The string "Testing3" will
be copied to the character array ~.

Example 3:
lIinclude "file.i"
char .string, *newcursor;

newcursor = regex(name, string);

This example applies a precompiled regular expression in
file.i (see ~~mp(1» against string.

This routine is kept in Illb/l1bPW.a.

SEE ALSO
ed(1), regcmp(1), malloc(3C).

c- 2 - Printed 6 1985

REGCMP(3X) REGCMP(3X)

BUGS
The user program may run out of memory if regcmp is called
iteratively without freeing the vectors no longer required.
The following user-supplied replacement for malloc(3C)
r e use s the sam eve c tor, s a v i n g tim e an ci spa c e : ---

!* user's program *1

malloc(n)
static int rebuf[256J;
return rebuf;

Printeci 6 1985

SCAN'(3S) SCANFC3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#incluoe <stdio.h)

int scanf (format [• pOinter] •••)
char *format;

1nt fscanf (stream, format [• pointer] •••)
FILE *stream;
char *format;

tnt sscanf (s, format [, pOinter] •••)
char *s, *format;

DESCRIPTION
Scanf reads from the stannard input stream ~~in. Fscanf
rearls from the named input stream. Sscanf reads from~
character string~. Each function readS-characters, inter
prets tr.em according to format, and stores the results in
its arguments. Each function expects two arguments: a con
trol string format (described below) and a set of pointer
arguments indicating where the converted input shoul~~
stored.

The control string usually contains conversion specifica
tions, which are used to direct interpretation of input
sequences. The control string may contain:

1. White-space chara~ters (blanks and tabs) which, except in
two cases described below, cause input to be read up to
the next non-white-space character.

2. An ordinary character (not S), which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character S,
an optional assignment suppression character * an
optional numerical maximum field width, an optional 1 or
h indicating the size of the receiving variable, and a
conversion code.

A conversion specification directs the conversion of the
next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment
suppression has been indicated by *. The suppression of
assignment provides a way of describing an input field which
is to be skipped. An input field is defined as a string of
non-white-space characters; it extends to the next inap
propriate character or until the field width, if specified,
is exhausted.

The conversion code indicates the interpretation of the

- 1 - Printed 6 1985

SCANF(3S) SCANF(3S)

input field; the corresponding pointer argument must usually
be of a restricted type. For a suppressed field, no pointer
argument should be given. The following conversion codes
are legal:

S A single S is expected in the input at this poi~t; no
assignment is done.

d A decimal integer is expected; the corresponding argu-
ment should be an integer pOinter.

u An unsigned decimal integer is expected; the
corresponding argument should be an unsigned integer
pOinter.

o An octal integer is expected; the corresponding argu
ment should be an integer pointer.

x A hexadecimal integer is expected; the corresponding
argument should be an integer pointer.

e,f,g
A floating point number is expected; the next field is
converted accordingly and stored through the
corresponding argument, which should be a pOinter to a
float. The input format for floating point numbers is
an-optionally signed string of digits, possibly con
taining a decimal point, followed by an optional
exponent field consisting of an E or an e, followed by
an optionally signed integer.

s A character string is expected; the corresponding argu
ment should be a character pOinter to an array of char
acters large enough to accept the string and a ter
minating \0, which will be added automatically. The
input field is terminated by a white-space character.

o A character is expected; the corresponding argument

[

should be a character pOinter. The normal skip over
white space is suppressed in this case; to read the
next non-space character, use S1s. If a field width is
given, the corresponding argument should refer to a
character array; the indicated number of characters is
read.
String data and the normal skip over leading white
space is suppressed. The left bracket is followed by a
set of characters (the scanset) and a right bracket;
the input field is the maximal sequence of input char
acters consisting entirely of characters in the scan
set. The circumflex, (A), when it appears as the first
character in the ~~et, serves as a complement opera
tor and redefines the scanset as the set of all charac-----ters not contained in the remainder of the scanset
string. There are some conventions used in the con
struction of the scanset. A range of characters may be
represented by the construct first-last; thus,
[0123456789] may be expressed [0-9]. -Using--this con
vention, first must be lexically less than or equal to
~st, or else the dash will stand for itself. The dash

- 2 - Printed 6 1985

SCANF(3S) SCANF(3S)

will also stann for itself whenever it is the first or
the last character in the scanset. To incluoe the
right square bracket as an element of the scanset, it
must appear as tr.e first character (possibly preceded
by a circumflex) of the ~nset; otherwise it will be
interpreted syntactically as the closing bracket. The
corresponding argument must point to a c~aracter array
large enough to hold the data field and the terminating
\0, which will be arlrled automatically.

The conversion characters d, u, 0, ano x may be preceded by
1 or h to indicate that a pOinter to long or short, rather
than int, is in the argument list. Similarly, the conver
sion characters e, f, ann g may be preceded by I to indicate
that a pointer to double, rather than float, is in the argu
ment list.

Scanf conversion terminates at EOF, at the end of the con
t r 01 s tr in g ,or w hen ani n p IJ t c h a r act e r con f 1 i c t s wit h the
control string. In thp. latter case, the offending character
is left unread in the input stream.

Scanf returns the number of successfully matched ann
assigned input items; this number can be zero when an early
conflict between an input character and the control string
occurs. If the input ends before the first conflict or
conversion, EOF is returned.

EXAMPLES
The call

int i; float x; char name[50];
scanf ("Sd~f~s", &1, &x, name);

with the input line

25 54.32E-1 thompson

will assign the value 25 to i, ann the
name will contain thompson\o:

The call

1nt 1; float x; char name[50];

value

soanf ("S2dSfS*d S[0-9]", &1, &x, name);

with input

56789 0123 56a72

will assign 56 to !, 789.0 to ~, skip 0123,
string 56\0 in name. The next call to

- 3 -

5.432 to

and place
getchar

x •
-'

the
(see

Printed 6 1985

SCANF(3S) SCANF(3S)

getc(3S» will return a.

SEE ALSO

NOTE

atof(3C), getc(3S), printf(3S), strtol(3C).

Trailing whi~e space is left unrearl unless matcherl in the
control string.

DIAGNOSTICS

BUGS

These functions return EOF on end of input ann a short count
for missing or illegal data items.

The success of literal matches and suppressed assignments is
not directly determinable.

- 4 - Printed,J> 1985

SETBUF(3S) SETBUF(3S)

NAME
setbuf - assign buffering to a stream

SYNOPSIS
linclude <stdio.h)

void setbuf (stream, buf)
FILE .stream;
char ·buf;

DESCRIPTION
Setbuf is used after a stream has been opened but before it
is read or written. It causes the character array pointed
to by buf to be used instead of an automatically allocated
buffer-.-- If buf is a NULL character pointer, input/output
will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h) header file,
tells how big an array is needed:

charbu.£[BUFSIZ];

A buffer is normally obtained from malloc(3C) at the time of
the first ge!~(3S) or ~(3S) on the file, except that the
standard error stream stderr is normally not buffered.

Output streams directed to terminals are always line
buffered unless they are unbuffered.

SEE ALSO

NOTE

fopen(3S), getc(3S), malloc(3C), putc(3S).

A common source of error is allocating buffer space as an
"automatic" variable in a code block and then failing to
close the stream in the same block.

.,. 1 Printed 6 1985

SETJMP(3C) SETJMP(3C)

NAME
setjmp, longjmp ~ non-local goto

SYNOPSIS
'include <setjrnp.h)

int setjmp (pnv)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful
interrupts encountererl in
gr am.

for dealing with errors anrl
~ low-level subroutine of a pro-

Setjmp saves its stack environment in env for later use by
lOngjmp. The environment type jmp~uf is definerl in the
<setJmp.h) hearler file. Setjmp returns the value O.

Longjmp restores the environment saved by the last call of
setjmp with the corresponding env argument. After longjmp
YS--COmpleted, program executiOi1" continues as if the
corresponding call of setjmp (which must not itself have
returnpd in the interim) had just returned the value val.
Longjmp cannot cause setjmp to return the value O.---If
l£ngjmp is invoked with a-s;cond argument of 0, setjmp will
return 1. All accessible data have values as of the time
longjmp was called.

SEE ALSO
signal(2) •

WARNING
Longjmp fails if it is called when env was never primed by a
carr---to setjmp or when the last sUCh call is in a function
which has since returned.

.... 1 Printed 6 1985

SINH(3M) SINH(3M)

NAME
sinh, cosh, tanh ~ hyperbolic functions

SYNOPSIS
'include <math.h>

double sinh (x)
double x • I

double cosh (x)
double x • ,

double tanh (x)
double x • ,

DESCRIPTION
SiE..!2, ~sh, ann !2.E..!:: return, respectively, the hyberbolic
sine, cosine, and tangent of their argument.

DIAGNOSTICS
Sinh and cosh return HUGE when the correct value would over~

flOW ann set errno to ERANGE.

These error~handling procedures may be changed with the
function matherr(3M).

SEE ALSO
matherr(3M) .

«- 1 - Printed 6 1985

SLEEP(3C) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
Sleep suspenrls the current process from execution for the
number of seconds specified by the argument. The actual
suspension time-IDay be less than that requested for two rea~
sons: (1) scheduled wakeups occur at fixed 1-seconrl inter~

vals, (on the second, according to an internal clock) and
(2) any caught sigl'lal will terminate ~eep following execu
tion of the signal catching routine. ,The suspension time
may be longer than requested by an arbitrary amount, due to
the scheduling of other activity in the system. The value
returned by sleep is the "unslept" amount (the requested
time minus the time actually slept) in case the caller had
an alarm set to go off earlier than the end of the requested
~eep time or in case there is premature arousal due ~,to

another caught signal.

The routine is implemented by setting an alarm signal and
pausing until it (or some other signal) occurs. The previ~
ous state of the alarm signal is saved and restored. The
calling program may have set up an alarm signal before cal
ling ~eep. If the ~eep time exceeds the time before the
alarm signal, the process sleeps only until the alarm signal
would have occurred and the caller's alarm catch routine is
executed just before the sleep routine returns. If the
~~E time is less than the time before the calling
program's alarm, the prior alarm time is reset to go off at
the same time it would have without the intervening sleeQ.

SEE ALSO
alarm(2), pause(2), signal(2).

~ 1 .,.. Printed 6 1985

SPUTL(3X) SPUTL(3X)

NAME
sputl, sgetl access long integer data in a machine
independent fashion.

SYNOPSIS
void sputl (value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION
Sputl takes the 4 bytes of the long integer value and places
them in memory. starting at the address-pointed to by
buffer. The ordering of the bytes is the same across all
machines.

Sgetl retrieves the 4 bytes in memory, starting at the
address pointed to by buffer, and returns the long integer
value in the byte ordering of the host machine.

Use of sput! and sgetl in combination provides a machine
independent way of storing long numeric data in a file in
binary form without conversion to characters.

A program that uses these functions must be loaded with the
object file access routine library libld.a.

SEE ALSO
ar(4).

.... 1 Printed 6 1985

SSIGNAL(3C) SSIGNAL(3C)

NAME
ssignal, gsignal ~ software signals

SYNOPSIS
'include <signal.h)

int (*ssignal (sig, action»()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION

NOTES

Ssignal and gsignal implement a software facility similar to
signal(2). -Thrs-racility is used by the Standard C Library
to enable users to indicate the disposition of error condi~
tions; it is also made available to users for their own pur~

po se s .

Software signals made available to users are associated with
integers in the inclusive range 1 through 15. A call to
ssignal associates a procedure, ~tion, with the software
signal, ~~; the software signal, sig, is raised by a call
to gsignal. RaiSing a software signal causes the action
established for that signal to be taken.

The first argument to ssignal is a number identifying the
type of signal for which an action is to be established. The
second argument defines the action; it is either the name of
a user~definerl action function or one of the manifest con~
stants SIG OFL (default) or SIG IGN (ignore). Ssignal
returns the action previously established for thatsignal
type; if no acti£E has been established or the signal number
(~~) is illegal, ssignal returns SIG DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for si~,

then that action is reset to SIG DFL and the ~.!..2..!2
function is entered with argument ~~. Gsignal returns
the value returned to it by the action function.

If the action for sig is SIG IGN, gsignal returns the
value 1-a~akes nO-other action.

If the action for sig is SIG_DFL, gsignal returns the
value 0 and takes no other action.

If sig has an illegal value
speCified for sig, gsignal
takes no other action.

or no action was ever
returns the value 0 and

There are some additional signals with numbers outside the

•
..,. 1 c.- P r i n t e d~ 6 1 9 8 5

SSIGNAL(3C) SSIGNAL(3C)

range 1 through 15 which are used by the Standard C Library
to indicate error conditions. Thus, some signal numbers
outside the range 1 through 15 are legal, although their use
may interfere with the operation of the Standard C Library.

.... 2 .,. Printed 6 1985

STDIO(3S) STD10(3S)

NAME
stnio ~ stanrlarn buffered input/output package

SYNOPSIS
'include <stdio.h)

FILE 'stdin. 'stdout. 'stderr;

DESCRIPTION
The functions described in the entries of sub-class 33 of
this manual constitute an efficient, user-level I/O buffer
ing scheme. The input/output function may be grouped into
the following categories: file access, file status, input,
output, miscellaneous. For lists of the functions in each
category, refer to the "Libraries" section of the Program
mi~~ Guin~. The in-line macros ge!£(3S) and ~~(3S) hannle
characters quickly. The macros getchar and ~tchar, and the
higher-level routines fget£, fgets, fprintf, fputc, fputs,
.!!:;:~~ , f s c ~.f ' !.:!.!: i t e, get s, ~ e t w, .E r in t f, ~, E.~!~, and
~anf all use ~~ ann putc; they can be f~eelY intermixen.

A file with associated buffering is called a stream ann is
declaren to be a painter to a defined type FILE. Fopen(33)
creates certain nescriptive data for a stream and returns a
pOinter to designate the stream in all further transactions.
Normally, there are three open streams with constant
pointers declared in the <stdio.h) header file and associ
ated with the stannard open files:

std.in
stdout
stderr

stannarn input file
standard output file
standard error file.

A constant NULL (0) designates a nonexistent pOinter.

An integer constant EOF (~1) is returned upon end-of-file or
error by most integer functions that deal with streams (see
the individual descriptions for details).

Any program that uses this package must include the header
file of pertinent macro definitions, as follows:

'include <stdio.h)

The functions anrl constants mentioned in the entries of
sub-class 33 of this manual are declared in that header file
and need no further declaration. The constants and the fol~

lowing functions are implemented as macros: getc, getchar,
putc, putchar, feof, ferror, clearerr, and fTTeno.----Rede-
ClaratTOn-or-these-names-TS perilous. ------

The (std10.h) file is illustrated in the "Libraries" section
of the Programming Guide.

..,.. 1 Printed 6 1985

STD10(3S)

SEE ALSO
open(2), close(2), lseek(2), pipe(2), reari(2),
ctermid(3S), cuserid(3S), fclose(3S), ferror(3S),
fr e ad(3S), fseek(3S), getc(3S), gets(3S),
printf(3S), putc(3S), puts(3S), scanf(3S),
system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS

STDIO(3S)

wr i t e (2) ,
fopen(3S) ,
popen(3S) ,

setbuf(3S) ,

Invalid stream pOinters cause serious errors, possibly
including program termination. Individual function descrip~
tions describe the possible error conditions.

.,.. 2 - Printed 6 1985

5TOIPC<3C) STDIPC(3C)

NAME
stdipc - standard interprocess communication package

SYNOPSIS
'include <sys/types.h>
Hinclude <sys/ipc.h>

key_t ftokCpath, id)
char *pathi
char id;

DESCRIPTION
All interprocess communication facilities require the user
to supply a key to be used by the msgget(2), semget(2), and
shmgetC?) system calis to obtain interprocess -Communication
irientifiers. One method for forming a key is to use the
ftok subroutine described below. Another way to compose
keys is to include the project ID in the most significant
byte and to use the remaining portion as a sequence number.
There are many other ways to form keys, but it is necessary
for each system to define standards for forming them. If a
standard is not adhered to, unrelated processes may inter~

fere with each other's operation. Therefore, it is strongly
suggested that the most significant byte of a key in some
sense refer to a project so that keys do not conflict across
a given system.

Ftok returns a key based on path and id that is usable in
subsequent msgget, ~~!.!:.t and shmget system calls. Path
must be the pathname of an existing file that is accessIbTe
to the process. 10 is a character that uniquely identifies
a project. Ftok returns the same key for linked files when
called with the same ~; it returns different keys when
called with the same filename but different ~s.

SEE ALSO
intro(2) t msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key t) ~1 if path does not exist or if it is
no~accessible to-the proceSS:-

WARNING
If the file whose path is passed to ftok is removed when
keys still refer ~he file, future-caIls to ftok with the
same path and id will return an error. If the same file is
recreaterl, ftok is likely to return a different key than it
did the original time it was called.

..,.. 1 ..,... Printed 6 1985

STIHE(2) STIME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION
Stime sets the system's idea of the time and date. Tp
points to the value of time as measured in seconds from
00:00:00 GMT January 1, 1970.

Stime fails if the effective user ID of the calling process
is not superuser. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Oth~

erwise, a value of ~1 is returned and errno is set to indi
cate the error.

SEE ALSO
time(2) .

.... 1 .,.. Printed 6 1985

!\1AING(3C) STRING{3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen.
strchr, strrchr, strpbrk, strspn, strcspn, strtok ~ string
operations

SYNOPSIS
'include (string.h)

char Istrcat (s1, s2)
char Is1, Is2;

char Istrncat (s1, s2, n)
char Is1, Is2;
in t n;

int strcmp (s1, s2)
char Is1, Is2;

int strncmp (s1, 52, n)
char Is1, 152;
in t n;

char Istrcpy (s1, s2)
char Is1, Is2;

char Istrncpy (s1, s2, n)
char 151, Is2;
in t n;

int strlen (s)
char .5;

char 'strchr (s, c)
char .5, c;

char 'strrchr (s, c)
char .s, c;

char 'strpbrk (s1, s2)
char .s1, Is2;

in t s t r s pn (s 1, s &»

char .s1, .s2;

int strcspn (s1, s2)
char 's1, 's2;

char .strtok (51, 52)
char 151, '52;

DESCRIPTION
The arguments s1, 52, and s point to strings (arrays of
characters terminated by-a null character). The functions
strcat, strncat, ~trcpy, and strncpy all alter!l_ These

Printed 6 1985

STRING(3C) STRING(3C)

NOTE

functions rio not check for overflow of the array pOinted to
by ~.

St~~ appends a copy of string s2 to the end of string s1.
Strncat appends at-most n characters. Each function returns
a-pointer to the null~terminated result.

~mp performs a lexicographical comparison of its argu~

ments and returns an integer less than, equal to, or greater
than 0, when ~ is less than, equal to, or greater than ~,

respectively. Strncmp makes the same comparison but looks
at a maximum of n characters.

Strcpy copies string s2 to string ~, stopping after the
nu~character has ~een copied. Strncpy copies exactly ~
characters, truncating s2 or adding null characters to ~ if
necessary. The result is not null~terminated if the length
of ~ is ~ or more. Each function returns ~.

~~~~ returns the number of characters in ~,not including 
the terminating null character. 

Strchr (strrchr) returns a pointer to the first (last) 
occurrence of character c in string s, or a NULL pointer if 
c does not occur in the sIring. The- null character ter
minating a string is considered to be part of the string. 

St~£rk returns a pointer to the first occurrence in string 
s1 of any character from string ~, or a NULL pOinter if no 
cnaracter from s2 exists in s1. 

Strspn (strcspn) returns the length of the initial segment 
or-string-~hich consists entirely of characters from (not 
from) str ing ~. 

Strtok considers the string 51 to consist of a sequence of 
zero or more text tokens separated by spans of one or more 
characters from the separator string s2. The first call 
( wit h poi n t e r ·s 1 s p e c i fie d) ret urn sap 0 in t e r tot he fir s t 
character of the-rirst token, and writes a null character 
into s1 immediately following the returned token. The func~ 

tion keeps track of its position in the string between 
separate calls, so that on subsequent calls (which must be 
made with a NULL pointer as the first argument) it works 
through the string s1 immediately following that token. 
This can be continued until no tokens remain. The separator 
string s2 may be different from call to call. When no token 
remains-rn ~, a NULL pOinter is returned. 

For user convenience, all these functions are declared in 
the optional <string.h> header file. 

oro 2 - Printed 6 1985 



/ 

STRING(3C) STPING(3C) 

BUGS 
St~~~E ann strncmp use native character comparison, which is 
signerl on PDP-11s, unsigned on other machines. 

Character movement is performed differently in 
implementations; therefore, overlapping moves 
unexpected results. 

- ? 

different 
may yield 



!T~10L.(3C) STRTOL(3C) 

NAME 
strtol, atol, atoi ~ convert string to integer 

SYNOPSIS 
long strtol (str, ptr, base) 
char *str; 
char **ptr; 
int base; 

long atol (str) 
char *str; 

in t a to i (s t r ) 
char *str; 

DESCRIPTION 
St!..!.ol returns as a long integer the value represented by 
the character string str. The string is scanned up to the 
first character inconsistent with the base. Leading white~ 

space characters (blanks ann tabs) are ignored. 

If the value of ptr is not (char **)NULL, a pOinter to the 
character termi~ting the scan is returned in *~. If no 
integer can be formed, zero is returned. 

If base is positive (and not greater than 36), it is used as 
the~se for conversion. After an optional leading sign, 
leaning zeros are ignored; a leading Ox or OX is ignored if 
base is 16. 

If base is zero, the string itself determines the base. 
After--an optional leading sign, a leading zero indicates 
octal conversion and a leading Ox or OX indicates hexade~ 

cimal conversion; otherwise, decimal conversion is used. 

Truncation from long to int can take place upon assignment 
or by an explicit cast. 

Atol( str) is equivalent to strtol(~, (char **)NULL, 10). 

Atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 
10). --

SEE ALSO 
atof(3C), scanf(3S). 

BUGS 
Overflow conditions are ignoren. 

Printed 6 1985 



5WAS(3C) SWAB(3C) 

NAME 
swab ~ swap bytes 

SYNOPSIS 
void swab (from, to, nbytes) 
char 'from, 'to; 
int nbytes; 

DESCRIPTION 
Sw~ copies nbytes bytes pointed to by from to the array 
pointerl to by to, exchanging adjacent even and odd bytes. 
It is useful for carrying binary data between PDP~11s and 
other macr.ines. Nbytes should be even and non~negative. If 
nbytes is odd and positive, ~~ uses nbytes~1 instead. If 
nbyt!~ is negative, swab does nothing. 

Printed 6 1985 



SYNC(2) SYNC(2) 

NAME 
sync ~ uprlate super~block 

SYNOPSIS 
void sync ( ) 

DESCRIPTION 
S y 22.9. c a use sal 1 i n for mat ion i n m em 0 r y t hat s h 0 u 1 d b eon dis k 
to be written out. This includes modified super-blocks, 
modified inodes, and delayed block I/O. 

It should be used by programs which examine a file system, 
for example fsc~(1H) and ~(1M). It is mandatory before a 
boot. 

The writing, although scheduled, is not necessarily complete 
upon return from sy~. 

SEE ALSO 
Administrator's Manual. 

Printed 6 1985 



/ 

~YSTEM(3S) SYSTEM(3S) 

NAME 
system - issue a shell commanrl 

SYNOPSIS 
'include <stdio.h> 

int system (string) 
char .string; 

DESCRIPTION 

FILES 

System causes ~!£ing to be given to sh(1) as input, as 
the string had been typed as a command at a terminal. 
current process waits until the shell has completed, 
returns the exit status of the shell. 

I bini sh 

if 
The 

then 

SEE ALSO 
she 1), exec(2). 

DIAGNOSTICS 
System forks to create a child process that in turn performs 
-;x;c(2 ) 0 n .I bin Ish i nor d e r toe x e cut est r i n g • T f the for k 
or~xec fails:-System returns ~1 and setS-ermo. 

..,. 1 ..,.. Printed 6 1985 



TERMCAP(3X) TERMCAP(3X) 

NAME· 
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal 
indepenrlent operation routines 

SYNOPSIS 
char PC; 
char *BC; 
char * UP; 
short ospeed; 

tgetent(bp, name) 
char *bp, *name; 

tgetnum(irl) 
char *irl; 

tgetflag(irl) 
char *in; 

char * 
tgetstr(irl, area) 
char *irl t *area; 

char * 
tgoto(cm, destcol, rlestlinp.) 
char *cm; 

tputs(cp, affcnt, outc) 
register char *cp; 
int affcnt; 
int *oute) (); 

DESCRIPTION 
These functions extract and use capabilities from the termi~ 

nal capability data base termcap(S). Note that these are 
low~level routines. 

Tgetent extracts the entry for terminal name into the buffer 
at bp. Bp should be a character bufrer-of size 1024 and 
mustbe retained :through all subsequent calls to tgetnum, 
tgetflag, and tgetstr. Tgetent returns -1 if it cannot open 
the termcap file, 0 if the terminal name given does not have 
an entry, and 1 if successful. It looks in the environment 
for a TERMCAP variable. If a variable is found whose value 
does not begin with a slash and the terminal type ~ is 
the same as the environment string TERM, the TERMCAP string 
is userl instead of rearling the termcap file. If the value 
does begin with a slash, the string is used as a pathname 
rather than letc/termcap. This can speed up entry into pro
grams that call tgetent. It can also help debug new termi~ 

nal descriptions or be used to make one for your terminal if 
you can't write the file letc/termcap. 

Printed 6 198'5 



TERMCAP(3X) TERMCAP(3X) 

FILES 

Tget~lJm gets the numeric valuE=> of capability .!..9., returni~g 

:'-;-if;. s not g i v en for the t e r min a 1 . T g e t f 1 a g ret urn s 1 i f 
the specified capability is present in the terminal's entry, 
o if it is not. Tgetstr gets the string value of capability 
id, placing it in the buffer at area, advancing the area 
pointer. It rlecodes the abbreviations for this fTelrl 
described i~ termcap(5), except for cursor addressing anrl 
padrling information. 

Tgoto returns a cursor addressing string decoded from ~ to 
go to column destcol in line destline. It uses the external 
variables UP (from the up capability) and Be (if bc is given 
rather than bs) if necessary to avoid placing \n, AD or A@ 
in the returned string. (Programs that call tgoto should be 
sure to turn off the XTABS bit(s), since tgotO-m8y now out
put a tab. Note that programs using termcap should in gen
eral turn off XTABS anyway since some terminals use 
control-I for other functions, such as nondestructive 
space.) If a S sequence is given which i.s not understOod, 
then tgot,£ returns OOPS. 

Tputs decodes the leading padding information of the string 
~; affcnt gives the number of lines affected by the opera~ 
tion, or 1 if this is not applicable; outc is a routi.ne that 
is called with each character in turn:--The external vari
able ~pee~ should contain the output speed of the terminal 
as encorled bv sttv (2). The external variable PC should con~ 
tain a pan character-to be used (from the pc capability) if 
a n u 11 (A@) is ina p pr 0 pr i ate. 

/usr/lib/libtermcap.a 
/etc/termcap 

-ltermcap library 
data base 

SEE ALSO 
ex(1), termcap(5) 

.,.. 2 4"" Printed 6 1985 



TIME(2) 

NAME 
time - get time 

SYNOPSIS 
long time ((long *) 0) 

long time (tloc) 
long *tloc; 

DESCRIPTION 

TIME(2) 

Time returns the value of time in seconos since 00:00:00 
GMT, January 1,1970. 

If tloc (taken as an integer) is non-zero, the return value 
is also stored in the location to which !!££ pOints. 

Time fails if tloc points to an illegal address. [EFAULT] 

RETURN VALUE 
Upon successful completion, time returns the value of 
Otherwise, a value of -1 is returned and ~~ is 
indicate the error. 

SEE ALSO 
stime(2) . 

time. 
set to 

Printed 6 1985 



TMPFILE(3S) TMPFILE(3S) 

NAME 
tmpfile ~ create a temporary file 

SYNOPSIS 
'include (stdio.h) 

FILE *tmpfi 1 e () 

DESCRIPTION 
Tmpfile creates a temporary file ann returns a corresponding 
FILE--Pointer. The file is automatically oeleted when the 
process using it terminates. The file is openeo for upoate. 

SEE ALSO 
create?), unlink(2), fopen(3S), mktemp(3C), tmpnam(3S). 

.... 1 ..,.. Printed 6 1985 



TMPNAM(3S) TMPNAH(3S) 

NAME 
tmpnam, temp~am - create a name for a temporary file 

SYNOPSIS 
'include <stdio.h> 

char *tmpnam (5) 
char *5; 

char *tempnam (dir, pfx) 
char *dir, *pfx; 

DESCRIPTION 

NOTES 

These functions generate filenames that can safely be used 
for a temporary file. 

Tmpnam always generates a filename using the pathname 
defined as P tmpdir in the (stdio.h> header file. If s is 
NULL, tmpnam le-aves-its result in an i.nternal static area 
and retUrnS-a pointer to that area. The next call to tmpnam 
will destroy the contents of the area. If s is not NULL, it 
is assumed to be the address of an array of at least 
L tmpnam bytes, where L tmpnam is a constant defined in 
<stdio.h>; tmpnam places its result in that array and 
returns s. 

Tempnam allows the user to control the choice of a direc~ 

torY:--The argument dir pOints to the pathname of the direc .... 
tory in which the file-iS to be created. If dir is NULL or 
pOints to a string which is not a pathname for-an appropri~ 
ate directory, the pathname defined as P tmpdir in the 
<stdio.h> header file is used. If that pathname is not 
accessible, /tmp will be used as a last resort. This entire 
sequence ean be upstaged by providing an environment vari
able TMPDIR in the user's environment, whose value is a 
pathname for the desired temporary-file directory. 

Many applications prefer that names of temporary files con
tain favorite initial letter sequences. Use the ~ argu .... 
ment for this. This argument may be NULL or point to a 
string of up to 5 characters to be used as the first few 
characters of the name of the temporary file. 

Tempnam uses malloc(3C) to get space for the constructed 
filename and returns a pointer to this area. Thus, any 
pointer value returned from tempnam may serve as an argument 
to free (see malloc( 3C» • If tempnam cannot return the 
expected result for any reason (i.e., malloe failed or 
attempts to find an appropriate directory were unsuccess
ful), a NULL pOinter will be returned. 

These functions generate a different filename each time they 
are cal~ed. 

.... 1 .... Printed 6 1985 



TMPNAM(3S) TMPNAM(3S) 

Files create~ using t~ese functions anrl either fopen(2) or 
creat(2) are temporary only in the sense that they reside in 
acj"ir e c tor yin ten rl e d for t e m po r a r y use and the i rna m e s are 
uni.que. It is the user's responsibility to use ~link(2) to 
remove the file when its use is enden. 

SEE ALSO 

BUGS 

creat(2), unlink(2), fopen(3S), malloc(3C), 
tmpfile(3S) • 

mktemp(3C) , 

If callen more than 17,576 times in a single process, tmpnam 
ann ~~pna~ will start recycling previously used names. 
Between the time a filename is created ann the file is 
opened, it is possible for some other process to create a 
file with the same name. This can never happen if that 
other process is using tmpnam, tempnam, or mktemp(3C) and 
the filenames are ·chosen carefully to avoin duplication by 
other means. 

.,. 2 .,. Pri:ited 6 1985 



NAME 

TRIO(3M) 

sin, cos, tan, asin, acos, atan, atan2 ~ trigonometric func~ 

tions 

SYNOPSIS 
linc1ude <math.h> 

double sin ( x) 
double x • t 

double cos ( x) 
double x • , 

double tan ( x) 
double x • , 

double asin ( x) 
double x • 

t 

double acos ( x) 
double x • , 

double atan ( x) 
double x • • 

double atan2 ( y , x) 
double x , v · . , 

DESCRIPTION 
Sin, cos, ann tan return, respectively, the sine, cosine, 
anrl tangent of~heir argument, which is in radians. 

Asin returns the arcsine of !, in the range ~J/2 to J/2. 

Acos returns the arccosine of !, in the range 0 to J. 

Atan returns the arctangent of !, in the range -J/2 to J/2. 

Atan2 returns the arctangent of y/x, in the range -J to J, 
using the signs·of both argumenIs-to determine the quadrant 
of the return value. 

DIAGNOSTICS 
Sin, cos, and tan lose accuracy when their argument is far 
from -zero. For arguments sufficiently large, these func
tions return 0 when there would otherwise be a complete loss 
of significance. In this case a message indicating TLOSS 
error is printed on the standard error output. For less 
extreme arguments, a PLOSS error is generated but no message 
is printed. In both cases, errno is set to .ERANGE. 

Tan returns HUGE for an argument which is near an odd multi
ple of J/2 when the correct value would overflow; it sets 
errno to ERANGE. 

oro 1 - Printed 6 1985 



TRIG(3M) TRIG(3M) 

Arguments of magniturle greater than 1.0 cause aSi,!? and acos 
to return n anrl to set errno to EDOM. In addition, a mes
sage indicating DOl1AIN error is printed on the standarrl 
error output. 

'These error~handling procedures may be changed with the 
function matherr(3M). 

SEE ALSO 
mat her r ( 3 t~) • 

..,.. 2 ..,.. Printed 6 , 98'5 



TSEARCH(3C) TSEAPCH(3C) 

NAME 
tsearch, trielete, tWalk - manage binary search trees 

SYNOPSIS 
'include <searoh.h) 

char *tsearch «char *) key, (char II) rootp, compar) 
int (*compar)( ); 

char *tdelete «char *) key, (char **) rootp, compar) 
int (*compar)( ); 

void twalk «char *) root, action) 
void (Iaction)( ); 

DESCRIPTION 
Tse~rch is a binary tree search routine generalized from 
Knuth (6.2.2) Algorithm T. It returns a pOinter into a tree 
indicating where data may be found. If the data does not 
occur, it is added at an appropriate point in the tree. Key 
pOints to the data to be sought in the tree. Rootp pOints 
to a variable that points to the root of the tree. A NULL 
pointer value for the variable denotes an empty tree; in 
this case, the variable is set to point to the data at the 
root of the new tree. Compar is the name of the comparison 
function. It is called with two arguments that pOint to the 
elements being compared. If the first argument is to be 
considererl less than, equal to, or greater than the second 
argument, the function must return an integer less than, 
equal to, or greater than zero, respectively. 

Td~~ rleletes a node from a binary search tree. It is 
generalized from Knuth (6.2.2) algorithm D. The arguments 
are the same as for tsearch. The variable pointed to by 
!£otp will be chang;~if the deleted node was the root of 
the tree. Tdelete returns a pOinter to the parent of the 
deleted node-or-a-NULL pointer if the node is not found. 

Tw~~ traverses a binary search tree. Root is the root of 
the tree to be traversed. Any node in a tree may be userl as 
the root for a walk below that node. Action is the name of 
a routine to be invoked at each node. This routine is, in 
turn, called with three arguments. The first argument is 
the address of the node being visited. The second argument 
is a value from an enumeration data type typedef enum 
preorrler, postorder, enrlorder, leaf} VISIT; As defined in 
the <searoh:h> header file, the value of this data type 
depends on whether this is the first, second, or third time 
that the node has been visited (during a depth~first, left
to-right traversal of the tree), or whether the node is a 
leaf. The third argument is the level of the node in the 
tree; the root is level zero. 

~ 1 - Printed 6 1985 



TSEARCH(SC) TSEARCH(3C) 

NOTES 
The pOinters to the key and the root of the tree should be 
of type pointer~to~element and cast to type pointer~to~ 
character. 
The comparison function need not compare every byte; there~ 

fore, arbitrary data may be contained in the elements in 
adrlition to the values being compared. 
Although declared as type pointer-to-character, the value 
returnerl should be cast into type pOinter-to-element. on 
entry. 

SEE ALSO 

BUGS 

bsearch(3C), hsearch(3C), Isearch(3C). 

Tsea~t fails if the calling function alters the pointer to 
the root. 

WARNING 
The root argument to twalk is one level of indirection less 
than the rootp argume~to tsearch and tdelete. 

DIAGNOSTICS 
A NULL pOinter is returned by tsearch if there is not enough 
space available to create a new node. 
A NULL pointer is returned by tsearch and tdelete if rootp 
is NULL 

- 2 - Printed 6 198~ 



TTYNAME(3C) TTYNAME(3C) 

NAME 
ttyname, isatty - find name of a terminal 

SYNOPSIS 
char *ttyname (fildes) 
int filrles; 

int isatty (fildes) 
tnt fildes; 

DESCRIPTION 

FILES 

Ttyname returns a pointer to a string containing the null
terminated pathname of the terminal device associated with 
file descriptor fildes. 

Isattv returns 1 if fildes is associated with a terminal 
-----~ ------device; otherwise, it returns O. 

/dev/* 

DIAGNOSTICS 

BUGS 

Ttl~ returns a NULL pOinter if fildes does not describe a 
terminal device in directory /dev. 

The return value pOints to static data whose content is 
overwritten by each call. 

Printeo 6 , 985 



TTYSLOT(3C) TTYSLOT(3C) 

NAME 
ttyslot - finn the slot in the utmp file of the current user 

SYNOPSIS 
int ttyslot ( ) 

DESCRIPTION 

FILES 

Ttyslot returns the index of the current user's entry in the 
/etc/utmp file. This is accomplished by scanning the file 
/etc/inittab for the name of the terminal device associated 
wit h the s tan d a l~ -j i n put, the s tan dar d 0 U t put, 0 r the err 0 r 
output (0, 1, or 2). 

/etc/inittab 
/etc/utmp 

SEE ALSO 
getut(3C), ttyname(3C). 

DIAGNOSTICS 
A value of 0 is returned if an error is encountered while 
searching for the terminal name or if none of the above file 
descriptors is associated with a terminal device. 

oro 1 .... Printed 6 1985 



ULIMIT(2) ULIMIT(2) 

NAME 
ulimit - get and set user limits 

SYNOPSIS 
long ulimit (cmd, newlimit) 
int cmd; 
long newlimit; 

DESCRIPTION 
This function provides for control over process limits. The 
cmd values available are: 

Get the process's file size limit. The limit is in 
units of 512~byte blocks and is inherited by child 
processes. Files of any size can be re 



UNGETC(3S) UNGETC(3S) 

NAME 
ungetc - pus~ character back into input stream 

SYNOPSIS 
'include <stdio.h) 

int ungetc (0, stream) 
char c; 
FILE ·stream; 

DESCRIPTION 
Ungetc inserts the character c into the buffer associated 
wit h --ani n put s t r e am • T hat c h a r act e r, c, will b ere t 1..1 r ned 
by the next getc calIon that stream. Ungetc returns c and 
leaves the f~stream unchanged. 

One character of pushback is guaranteed provided something 
has been read from the stream and the stream is actually 
buffered. 

Tf ~ equals EOF, ung~~ does nothing to the buffer and 
returns EOF. 

~eek(3S) erases all memory of inserted characters. 

SEE ALSO 
fseek(3S), getc(3S), setbuf(3S). 

DIAGNOSTICS 
For ungetc to perform correctly, a read statement must have 
been---performed prior to the call of the ungetc function. 
Ungetc returns EOF if it can't insert the character. If 
Stream is stdin, ungetc allows exactly one character to be 
pushed back onto-the-buffer without a previous read state
men t. 

... 1 .,.. Printed 6 1985 



INTRO(4) INTRO(4) 

NAME 
intro - introduction to file formats 

DESCRIPTION 
This section outlines the heaner files and file formats used 
by C struct declarations for the file formats are given 
where applicable. Usually, these structures can be found in 
the directories /usr/include or /usr/include/sys. 

.... 1 .... Printed 6 1985 



/ 

A.OUT(4) A.OUT(4) 

NAME 
a.out - common assembler and link editor output 

DESCRIPTION 
A.out is the output file from the assembler ~(1) and the 
link editor Id(1). A.out can be executed on the target 
machine if there were no errors in assembling or linking ann 
no unresolved external references. 

The object file format supports user~defined sections and 
contains extensive information for symbolic software te5t~ 
ing. A common object file consists of a file header, an 
optional aout header, a table of section headers, relocation 
in for mat ion, ( 0 p t ion a 1) lin e n urn be r s, and a s ym b 0 I tab 1 e • 
The order is given below. 

File heaner. 
Optional aout header. 
Section 1 header. 

Section n header. 
Sec tion 1 data. 

Section n data. 
Section 1 relocation. 

Section n relocation. 
Section 1 line numbers. 

Section n line numbers. 
Symbol table. 
String table. 

The last four sections (relocation, line numbers, symbol 
table, and string table) may be missing if the program was 
linked with the -s option of ld(1) or if the symbol table 
and relocation bits were removed by strip(1). Also note 
that if the program was linked without the -r option, the 
relocation information will be absent. The string table 
exists only if necessary. 

When an a.out file is loaded into memory for execution, 
three logical segments are set up: the text segment, the 
data segment (initialized data followed by uninitialized 
data, the latter actually being initialized to all O's), and 
a stack. The text segment begins at location 0 in the core 
image; the header is not loaded. If the magic number (the 
first field in the optional aout header) is 407 (octal), it 
indicates that the text segment is not to be write-protected 
or sharen, so the data segment will be contiguous with the 
text segment. If the magic number is 410 (octal), the data 
segment begins at the next segment boundary following the 
text segment, and the text segment is not writable by the 
program. If other processes are executing the same a.out 

..,. 1 .... Printed 6 1985 



A.OUT(4) A.OUT(4) 

file, they will share a single text segment. 

On the 3B?OS, the stack begins at the end of the text and 
data sections and grows towards higher addresses. On the 
M68000 family of processors and the VAX, the stack begins at 
the end of memory and grows toward lower addresses. The 
stack is automatically extended as required. The data seg~ 

ment is extended only as requested by the ~(2) and sbrk(2) 
system calls. 

The value of a word in the text or data portions that is not 
a reference to an undefined external symbol is exactly the 
value that will appear in memory when the file is executed. 
If a word in the text involves a reference to an undefined 
external symbol, the storage class of the symbol~table entry 
for t hat wo r d will be mar ked a san .... ext ern a 1 s ym b 0 1 ' " and 
the section number will be set to O. When the file is pro~ 

cessed by the link editor and the external symbol becomes 
defined, the value of the symbol will be added to the word 
in the file. 

See aouthdr(4), filehdr(4), linenum(4), scnhdr(4), reloc(4), 
and syms(4) for descriptions of the individuals parts. 
Every-Section created by as(1) contains a multiple-of~four 
number of bvtes; directives to Id(1) can create a section 

. --with an odd number of bytes. 

SEE ALSO 
as(1), cc(1), Id(1), aouthdr(4), filehdr(4), Idfcn(4), line .... 
num(4), reloc(4), scnhdr(4), syms(4). 

Printed 6 1985 



ACCT(~) ACCT(~) 

NAME 
acct ... per-process accounting file format 

SYNOPSIS 
linclude <sys/acct.h) 

DESCRIPTION 
Files produced ~s a result of calling ~~(2) have records 
in the form defined by <sys/acct.h), whose contents are: 

typedef ushort comp t; 1* IIfloating point" *1 
1* 13~bit fraction, 3~bit exponent *1 

struct acct 

char ac_flag; 1* Accounting fl ag *1 
char ac st at; 1* Exit status *1 
ushort ac_uid; 
ushort ac gid; -d ev t ac tty; 
time t ac-btime o 1* Beginning time *1 - - , 
camp t ac utime; 1* acctng user time in - - clock ticks *1 
camp t ac stime; 1* ac c tng system time in clock tic ks -comp_ t ac_etime; 1* acctng elapsed ti me in clock ticks 
camp t ac mem; 1* memory usage in clicks *1 - -comp_ t ac io ; 1* char s trnsfrd by readlwrite *1 -camp t ac rw; 1* number of block readslwrites *1 - -char ac comm[8J; 1* command name *1 -} ; 

extern struct acct acctbuf; 
extern st r uc t inode *acctp; 1* inod e of accounting fi 1 e 

"define AFORK 01 1* has executed fork, but no ex ec 
#define ASU 02 1* used super user privileges II 
Iidefine ACCTF 0300 1* record type: 00 = acc t II 

In ~fla~, the AFORK flag is turned on by each !£rk(2) and 
turned off by an exec(2). The ac comm field is inherited 
from the parent procesS-and is reset by any exec. Each time 
the system charges the process with a clock tick, it also 
adds to ~~ the current process size, computed as fol
lows: 

(data size) + (text size) 
processes using text) 

/ (number of in.".core 

The value of ae mem/(ae stime+ae utime) can be viewed as an 
approximation of the mean process size, as modified by 
text-sharing. 

Printed 6 1985 

II 

*1 
*/ 

'III 



ACCT(4) ACCT(4) 

SEE 

BUGS 

The structure tacct.h, which resirles with the source files 
of the accounting commanrls, represents the total accounting 
format userl by the various accounting commands: 

1* 
* 
*1 

total accounting C for acct period), also for day 

struct tacct 
uirl t 
char 
float 
float 
float 
float 
long 
unsigned short 
unsigneri short 
unsigned short 

} ; 

ALSO 
aect( 111) , aecteom(1), 

ta ui d ; -ta name[8]; 
ta:cpu[2]; 
ta kcore[2]; -ta con[2]; -ta du; -ta _pc; 
ta se ; -ta de; -ta fe e ; -

acct(2) • 

1ft 
1ft 
1ft 
1ft 
1ft 
1ft 
1* 
1* 
1ft 
1ft 

userid ftl 
login name ftl 
cum. cpu tim e, pin p C min s) * I 
cum kcore-minutes, p/np *1 
cum. connect time, p/np, mins 
cum. disk usage ftl 
count of processes *1 
count of login sessions *1 
count of disk samples *1 
fee for special services *1 

The ac mem value for a short-lived command gives little 
information about the actual size of the command, because 
ac mem may be incremented while a different command (e.g., 
the shell) is being executed by the process. 

.... 2 .,. Printed 6 1985 



AOUTHDR(4) AOUTHDR(4) 

NAME 
aout~rlr ~ optional aout header 

SYNOPSIS 
'include <aouthdr.h> 

DESCRIPTION 
An object file may contain an optional header, following the 
file header described in filehdr(4). Object files that have 
been completely linked by ld(1) contain this header; others 
do not. The format of theoptional header is: 

typedef struct aouthdr 
short magic; 
short vstamp; 
long tsize; 
long d size; 
long b si ze ; 
long en tr y ; 
long text _star t; 
long da ta start; 

} AOUTHDR; 

SEE ALSO 
a .out(4), filehdr(4). 

1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

magic number *1 
version stamp *1 
text size in bytes, padded (.text) *1 
initialized data (.data) *1 
uninitialized data (.bss) *1 
entry pOint *1 ---
base of text used for this file *1 
base of data used for this file *1 

Printed 6 1985 



A~(4) AR(4) 

NAME 
ar ~ common archive file format 

DESCRIPTION 
The archive commanrl ar is used to combine several files into 
one. Archives are used mainly as libraries to be searched 
by the link editor Id(1). 

Each archive begins with the archive magic string. 

'define 
'define 

ARMAG 
SARMAG 

"!<arch)\n" 
8 

1* magic string *1 
1* length of magic string */ 

Each archive which contains common object files (see 
a.out(4)) includes an archive symbol table. This symbol 
table is used by the link editor Id(1) to determine which 
archive members must be loaded during the link edit process. 
The archive symbol table (if it exists) is always the first 
file in the archive (but is never listed) and is automati~ 
cally created and/or updated by ~. 

Following the archive magic string are the archive file 
members. Each file member is preceded by a file member 
header which is of the following format: 

'define ARFMAG "'\n" 

struct ar hdr 
{ 

} ; 

char ar name[16J; 
char ar-date[12J; 
char ar-uid[6J; 
char ar-g1d[6J; 
char ar-mode[8J; 
char ar:size[10J; 
c h a r a r _ fm a g [ 2 J ; 

/* header trailer string *1 

1* file member header *1 

1* 'I' terminated file member name *1 
/* file member date *1 
1* file member user identification *1 
1* file member group identification *1 
/* file member mode *1 
/* file member size *1 
1* header trailer string *1 

All information in the file member headers is in printable 
ASCII. The numeric information contained in the headers is 
stored as decimal numbers (except for ar mode which is in 
octal). Thus, if the archive contains printable files, the 
archive itself is printable. 

The ar name filed is blank~padded and slash (I) terminated. 
The ar date field is the modification date of the file at 
the time of its insertion into the archive. Common format 
archives can be moved from system to system as long as the 
portable archive command ~(1) is used. 

Each archive file member begins on an even byte boundary; a 
newline is inserted between files if necessary. Neverthe
less, the size given reflects the actual size of the file 

Printed 6 1985 



AR(4) AR(4) 

exclusive of padding. 

Notice there is no provision for empty areas in an archive 
fi 1 e . 

If the archive symbol table exists, the first file 
archive has a zero length name (i.e., ar name[O] 
The contents of this file are as follows: -

The number of symbols. Length: 4 bytes. 

in the 
= 'I'). 

The array of offsets into the archive file. 
bytes * "the number of symbols". 

Length: 

~ The name string table. Length: ar size ~ (4 bytes * 
(" the number of symbols" +1)). The number of symbols 
and the array of offsets are managed with sgetl and 
sputl. The string table contains exactly as-many null 
termInated strings as there are elements in the offsets 
array. Each offset from the array is associated with 
the corresponding name from the string table (in order). 
The names in the string table are all the defined global 
symbols found in the common object files in the archive. 
Each offset is the location of the archive header for 
the associated symbol. 

SEE ALSO 
ar(1), ld(1), strip(1), sputl(3X), a.out(4). 

WARNINGS 
~rip(1) will remove all archive symbol 
header. The archive symbol entries must 
s option of the ar(1) command before the 
with the link editor Id(1). 

entries from the 
be restored via the 
archive can be used 

Printed 6 1985 



CHECKLIST(4) CHECKLIST(4) 

NAME 
checklist ~ list of file systems processed by fsck 

DESCRIPTION 
Checklist resides in directory letc and contains a list of 
at most 15 special fil~names. Each special filename is con
tained on a separate line and corresponds to a file system. 
If no file~system argument is provided to fsck(1M), each 
file liste~in /etc/checklist is automatica~ read and 
checked for inconsistencies. 

SEE ALSO 
fsck(1M). 

Printed 6 1985 



CORE(4) CORE(4) 

NAME 
core - format of core image file 

DESCRIPTION 
The system writes out a core image of a terminated process 
when any of various errors occur. Signal(2) describes rea~ 
sons for errors. The most common errors are memory viola~ 

tions, illegal instructions, bus errors, and user-generated 
quit signals. The core image is called core and is written 
in the working directory of the process (provided it can be; 
normal access controls apply). A process with an effective 
user ID different from the real user ID will not produce a 
core image. 

The first section of the core image is a copy of the 
system's per-user data for the process, including the regis~ 
ters as they were at the time of the fault. The size of 
this section depends on the parameter usize, which is 
defined in /usr/include/sys/param.h. The remainder 
represents the actual contents of the user's core area when 
the core image was written. If the text segment is read
only and shared, or separated from data space, it is not 
dumped. 

The format of the information in the first section is 
described by the user structure of the system, defined in 
/usr/include/sys/user.h. The locations of the registers are 
outlined in /usr/include/sys/reg.h. 

SEE ALSO 
crash( 1M), sdb( 1), setuid(2), signal(2). 

Pr in ted 6 1985 



CPIO(4) CPIO(4) 

NAME 
cpio ~ format of cpio archive 

DESCRIPTION 
When the .0 option of cpio(1) is not used, the 
structure is: 

struct { 
short 

ushort 

short 

h magic, 
h_dev; 
h_ ino , 
h mode, 
h-uid, 
h-gid; 
h:nlink, 
h rd ev , 
h=mtime[2], 
h namesize, 
h-filesize[2]; 

file header 

char h=name[h_namesize rounded to word]; 
} Hd r ; 

When the.o option is used, the header information is 
described by: 

sscanf( Chdr, "%60%60%60%60%60%60%60%60% 11lo%60%11lo%s", 
&Hdr.h magic, &Hdr.h dev, &Hdr.h ino, &Hdr.h mode, 
&Hdr.h-uid, &Hdr.h gid, &Hdr.h nlink, &Hdr.h-rdev, 
&LongtTme, &Hdr.h_namesize,&LOngfile,Hdr.h_name); 

Longtime and Longfile are equivalent to Hdr.h mtime and 
Hdr:~lesize, respectively. The contents or-e~file are 
recorded in an element of the array of varying length struc~ 
tures, archive, together with other items describing the 
file. Every instance of h magic contains the constant 
070707 (octal). The items h dev through h mtime have mean~ 
ings explained in stat(2). The lengt~-f--the null
terminated pathname ~ame, including the null byte, is 
given by h namesize. 

The last record of the archive always contains the name 
TRAILER!!!. Special files, directories, and the trailer are 
recorded with h filesize equal to zero. 

SEE ALSO 
cpio(1), find(1), stat(2). 

- 1 - Printed 6 1985 



DIR(4) DIR(4) 

NAME 
dir - format of directories 

SYNOPSIS 
'include <sys/dir.h> 

DESCRIPTION 
A directory behaves exactly like an ordinary file, except 
that no user may write into a directory. The fact that a 
file is a rlirectory is indicated by a bit in the flag word 
of its inode entry (see ~(4». The structure of a direc
tory entry as given in the include file is: 

lIifnrlef DIRSIZ 
IIdefine DIRSIZ 14 
II en d i f 
struct d i r ec t 
{ 

ino t rl ino· 
char 

- , 
d_name[DIRSIZ]; 

} ; 

By convention, the first two entries in each directory are 
for anrl The first is an entry for the directory 
itself. The seconrl is for the parent directory. The mean
ing of •• is morlified for the root directory of the master 
file system; because there is no parent, has the same 
meaning as •. 

SEE ALSO 
fs(4). 

Pr in ted 6 1 985 



ERRFILE(4) ERRFILE(4) 

NAME 
errfile ~ error~log file format 

DESCRIPTION 
When hardware errors are detected by the system, an error 
record is generated and passed to the error-logging daemon 
for recording in the error log for later analysis. The 
default error log is lusr/adm/errfile. 

The format of an error record depends on the type of error 
that was encountered. Every record, however, has a header 
with the following format: 

s t r u c t err hd r { 
short 
short 
time t 

} ; 

e_type; 
e_len; 
e_time; 

1* record type *1 
1* bytes in record (inc hdr) *1 
1* time of day *1 

The permissible record types are as follows: 

IIdefine E GOTS 010, 1* star t for the UNIX/TSII -IIdefine E GORT 01 1 1* start for the UNIX/FTII -II d e fi n e E STOP 012 1* stop *1 -IIdefine E TCHG 013 1* time change II -IIdefine E CCHG 014 II configuration change II -IIdefine E BLK 020 II block device error *1 -ildefine E STRAY 03() II stray interrupt II -IIdefine E - PRTY 031 II memory parity II 

Some records in the error file are of an administrative 
nature. These include the startup record that is entered 
into the file when logging is activated, the stop record 
that is written if the daemon is terminated "gracefully", 
and the time-change record that is used to account for 
changes in the system's time-of-day_ These records have the 
following formats: 

struct estart { 
short 
struct utsname 

} ; 

IIdefine eend errhdr 

struct etimchg 
time t 

} ; 

e_cpu; II CPU type II 
e_name;/1 system names II 

II record header II 

e_ntime;/1 new time II 

oro 1 .,.. Printed 6 1985 



ERRFILE(4) ERRFILE(4) 

SEE 

Stray interrupts cause a record with the following format to 
be loggerl: 

struct estray 
uint 1* stray loc or device addr *1 

} ; 

Generation of memory subsystem errors is not supported in 
tr.is release. 

Error records for block devices have the following format: 

struct eblock 
d ev t e_dev; 1* "true" major + minor d ev 
physadr e_regloc; 1* controller address *1 
short e bacty; 1* other block liD activity -struct iostat { 

long io_ops; 1* number readlwrites *1 
long io misc; 1* number "other" operations 
ushort io_unlog; 1* number unlogged errors *1 

e stats; 
short e_bflags; 1* read/write, error, etc *1 
short e cyloff; 1* logical dey star t cyl *1 -darldr t e_bnum; 1* logical block number *1 
ushort e bytes; 1* number bytes to transfer 
padrlr t e_memadd; 1* buffer memory address *1 
ushort e_rtry; 1* number retries *1 

no 

*/ 

. * I 

*1 

short e_nreg; 1* number d ev ic e registers *1 
} ; 

The following values are used in the e bflags word: 

IIdefine E WRITE 0 - 1* wr i te operation *1 
/ldefine E REA D 1 1* read operation *1 -#define E NOlO 02 /* no liD pending */ -#define E PHYS 04 1* physical lID *1 -IIdefine E FORMAT 010 /* Formatting Disk*1 -IIdefine E ERROR 020 1* IIO fa i 1 ed *1 -

ALSO 
errd emon( 1 M) • 

..,.. 2 .... Printed 6 1985 

*1 



FILEHDR(4) FILEHDR(4) 

NAME 
filehrlr - file hearler for common object files 

SYNOPSIS 
linclude <filehdr.h> 

DESCRIPTION 

SEE 

Every common object file begins with a 20~byte header. The 
following C struct declaration is used: 

struct filehdr 
{ 

unsigned short f magic 1* magic number *1 -unsigned short f nscns 1* number of sections *1 -long f timdat ; 1* time & date stamp *1 
long f _sym pt r ; 1* fi 1 e ptr to sym ta b *1 
long f nsyms . 1* iI symtab entries *1 , 
unsigned short f_opthdr ; 1* sizeof(opt hdr) *1 
unsigned short f fl ags 1* fl ags *1 -

F symptr is the byte offset into the file 
bol table can be found. Its value can be 
in fseek(3S) to position an 1/0 stream to 
See ~thdr(4) for the structure of 
header. The valid magic number is: 

at which the sym
used as the offset 
the symbol table. 
the optional aout 

#define MC68MAGIC 0520 1* magic number *1 

The value in f timdat is obtained from the ~(2) 
call. Flag b~currently defined are: 

system 

IIdefine F PELFLG 00001 1* relocation entries stripped *1 -ildefine F EXEC 00002 II fi 1 e is ex ec utabl e *1 
#define F LNNO 00004 II line numbers stripped II 
#define F LSYMS 00010 II local·symbols stripped *1 
Iidefine F MINMAL 00020 - 1* minimal obj ec t fi1 e *1 
IIdefine F UPDATE 00040 1* - upd ate fi 1 e, ogen produced *1 
IIdefine F SWABD 00100 1* fi 1 e is II pr e~swabbed" *1 -IIdefine F AP16WR 00200 1* 16..,..bit DEC host *1 -IIdefine F AR32WR 00400 1* 32.,.bit DEC host *1 -IIdefine F AR32W 01000 1* non..,..DEC host *1 -#define F PATCH 02000 1* "patch" list in opt hdr *1 -

ALSO 
time(2) , fseek(3S) , a.out(4), aouthdr(4) • 

Printed 6 1985 



FS'~) FS(4) 

NAME 
file system - format of system volume 

SYNOPSIS 
'include <sys/filsys.h> 
Uinclude <sys/types.h> 
#include <sys/param.h> 

DESCRIPTION 
Every file system storage volume has a common format for 
certain vital information. Every such volume is nivined 
into a certain number of 512-byte long sectors. Sector 0 is 
unused ann is available to contain a bootstrap program or 
other information. 

Sector 1 is the superblock. The format of a superblock is: 

II 
I Structure of the superblock 
II 

struct filsys 

} ; 

ushort 
dadnr t 
short 
darldr t 
short 
ino t 
char 
char 
char 
char 
time t 
short 
dad d r t 
inc t 
char 
char 
long 
long 
long 

s isize; 
s_fsize; 

II si ze in blocks of i~list II 

s nfree; 
s=free[NICFPEEJ; 

II 
II 
II 
II s ninode; 

s:inode[NICINODJ; II 
s_flock; II 
s_ilock; II 
s_fmod; II 
s_ronly; II 
s time; II 
s:dinfo[4J; II 
s_tfree; 
s tinone; 

II 
II 
II 
II 

size in blocks of entire volump 
n urn b e r 0 fad d res s e sin s fr e e -¥ 

free block list II 
number of inodes in s inode *1 
free inode list II 
lock during free list manipulat 
lock during i~list manipulation 
superblock modified flag *1 
mounted read-only flag II 
last superblock update II 
device information II 
total free blocks*1 
total free inodes II 
file system name II 
file system pack name II 

s - fn am e [ 6 J ; 
s=fpack[6]; 
s_fill[13]; 
s_magic; 
s_type; 

II ADJUST size of filsys to 512 *1 
II magic number to indicate new fi 
II type of new file system II 

#define FsMAGIC Oxfd187e20 II s magic number II 
II 512-byte block II 
II 1024-.byte block II 

#define Fs1b 1 
#define Fs2b 2 

S type indicates the file system type. Currently, two types 
of file systems are supported: the original 512~byte 

oriented ann the new improved 1024-byte oriented. S magic 
is used to distinguish the original 512-byte oriented file 
systems from the newer file systems. If this field is not 
equal to the magic number, FsMAGIC. the type is assumed to 
be Fs1b, otherwise the ~type field is used. In the 

Printed 6 1985 



FS(4) FS(4) 

following description, a block is then determined by the 
type. For the original 512~byte oriented file system, a 
block is 512 bytes. For the 1024~byte oriented file system, 
a block is 1024 bytes or two sectors. The operating system 
takes care of all conversions from logical block numbers to 
physical sector numbers. 

S isize is the address of the first data block after the i~ 

list; the i-list starts just after the super-block, namely 
in block 2; thus the i-list is s isize~2 blocks long. 
S fsize is the first block not potentially available for 
allocation to a file. These numbers are used by the system 
to check for bad block numbers; if an "impossible" block 
number is allocated from the free list or is freed, a diag~ 

nostic is written on the on~line console. Moreover, the 
free array is cleared, so as to prevent further allocation 
from a presumably corrupted free list. 

The free list for each volume is maintained as follows. The 
s fr e ear ray con t a ins, in s fr e e [ 1 ], ••• , s fr e e [s n f r e e ~ 1 J , 
up to 49 numbers of free blocks. S free[~-rs the block 
number of the head of a chain of blocks constituting the 
free list. The first long in each free~chain block is the 
number (up to 50) of free .... block· numbers listed in the next 
50 longs of this chain member. The first of these 50 blocks 
is the link to the next member of the chain. To allocate a 
block: decrement 5 nfree, and the new block is 
s free[s nfreeJ. If the new block number is 0, there are no 
blocks left:-go give an error. If s nfree became 0, read in 
the block named by the new block number, replace s nfree by 
its first word, and copy the block numbers in the next 50 
longs into the s free array. To free a block, check if 
s nfree is 50; if so, copy s nfree and the s free array into 

.it, write it out, and set s nfree to O. In any event set 
s free[s nfree] to the freed block's number and increment 
s nfree. 

S tfree is the total free blocks available in the file sys~ 

tern • 

S ninode is the number of free i-numbers in the s inode 
array. To allocate an inode: if s ninode is greater than 0, 
decrement it and return s inode[s ninode]. If it was 0, 
read the i~list and place the numbers of all free inodes (up 
to 100) into the s inode array, then try again. To free an 
inode, provided s ninode is less than 100, place its number 
into s inode[s ninode] and increment s ninode. If s ninode 
is already 100, do not bother to enter the freed inOde into 
any table. This list of inodes is only to speed up the 
allocation process; the information as to whether the inode 
is really free or not is maintained in the inode itself. 

S tinode is the total free inodes available in the file sys~ 
tem. 

Printed 6 1985 



J 

FS(4) 

FILES 

FS(4) 

~ flock and s ilock are flags maintained in the core copy of 
the file system while it is mounted and their values on disk 
are immaterial. The value of s fmod on disk is likewise 
immaterial; it is used as a flag to indicate that the 
super~block has changed and should be ·copied to the disk 
during the next periodic update of file system information. 

~-!£nly is a read~only flag to indicate write~protection. 

S time is the last time the super~block of the file system 
was--Changed, and is the number of seconds that have elapsed 
since 00:00 Jan. 1, 1970 (GMT), During a reboot, the s tim! 
of the super~block for the root file system is used to set 
the system's idea of the time, 

S fname is the name of the file system and 
name of the pack. 

s fpack is the 

T-numbers begin at 1, and the storage for inodes begins in 
block 2. Also, inodes are 64 bytes long. Inode 1 is 
reserved for future use. Inode 2 is reserved for the root 
directory of the file system, but no other i~number has a 
built-in meaning. Each inode represents one file. For the 
format of an inode and its flags, see inode(4), 

/usr/include/sys/filsys.h 
/usr/include/sys/stat.h 

SEE ALSO 
fsck(1M), fsdb(1M), mkfs(1M), inode(4). 

- 3 - Printed 6 1985 



FSPEC(~) FSPEC(~) 

NAME 
fspec - format specification in text files 

DESCRIPTION 
It is sometimes convenient to maintain text files on the 
UNIX System with non-standard tabs, (i.e., tabs which are 
not set at every eighth column). Such files must generally 
be converted to a standard format, frequently by replacing 
all tabs with the appropriate number of spaces, before they 
can be processed. by UNIX System commands. A format specifi
cation occurring in the first line of a text file specifies 
how tabs are to be expanded in the remainder of the file. 

A format specification consists of a sequence of parameters 
separated by blanks and surrounded by the brackets <: and 
:>. Each parameter consists of a keyletter, possibly fol~ 

lowed immediately by a value. The following parameters are 
recognized: 

ttabs The t parameter specifies the tab settings for 
the file. The value of tabs must be one of the 
following: 

1. a list of column numbers separated by com
mas, indicating tabs set at the specified 
columns; 

2. a ~ followed immediately by an integer n, 
indicating tabs at intervals of ~ columns; 

3. a ~ followed by the name of a "canned" tab 
specification. 

Standard tabs are specified by 
equivalently, t1.9.11,25.etc. The 
which are recognized are defined by 
command. 

t-8, or 
canned tabs 

the tabs(1) 

ssize The s parameter specifies a maximum line size. 
The value of size must be an integer. Size 
checking is performed after tabs have been 
expanded, but before the margin is prepended. 

mmargin The m parameter specifies a number of spaces to 
be prepended to each line. The value of margin 
must be an integer. 

d The d parameter takes no value. Its presence 
indicates that the line containing the format 
specification is to be deleted from the converted 
file. 

e The e parameter takes no value. Its presence 
indicates that the current format is to prevail 

Printed 6 1985 



/ 

FSPEC(4) 

only until another format 
encountered in the file. 

FSPEC(4) 

specification is 

Default values, which are assumed for parameters not sup
plied, are t-8 ann mO. If the s parameter is not specified, 
no size checking is performed. If the first line of a file 
does not contain a format specification, the above defaults 
are assumed for the entire file. The following is an exam
ple of a line containing a format specification: 

* <:t5,10,15 s72:> * 

If a format specification can be disguised as a comment, it 
is not necessary to corle the d parameter. 

SEE ALSO 
ed(1), newform(1), tabs(1). 

oro 2 - Printed 6 1985 



GETTYDEFS(4) GETTYDEFS(4) 

NAME 
gettvdefs - speed and terminal settings used by getty 

DESCRIPTION 
The /etc/gettydefs file contains information used by 
getty(1M) to set up the speed and terminal settings for a 
Tine: It supplies information on what the login prompt 
should look like. It also supplies the speed to try next if 
the user indicates the current speed is not correct by typ
ing a <~eak> character. 

Each entry in /etc/gettydefs has the following format: 

label# initial-flags # final~flags # login~prompt #next
label 

Each entry is followed by a blank line. Lines that begin 
with # are ignored and may be used to comment the file. The 
format fields can contain quoted characters of the form \b, 
\n, \0, etc., as well as \nnn, where nnn is the octal value 
of the desired character. The fields are: 
1 ab el 

initial..,.flags 

This is the string against which getty(1M) 
tries to match its second argument. It is 
often the speed at which the terminal is sup..,. 
posed to run, e.g., 1200, but it needn't be. 
If getty(1H) is called without a second argu
ment, then the first entry of /etc/gettydefs 
is used, thus making the first entry of 
/etc/gettydefs the default entry. The first 
entry is also used if getty(1M) can't find 
the specified label. If /etc/gettydefs 
itself is missing, there is one entry built 
into the command which will bring up a termi
nal at 300 baud. 

These flags are the initial ioctl(2) settings 
to which the terminal is to be set if a ter
minal type is not specified to getty(1M). 
Getty(1M) understands the symbolic names 
specified in /usr/1nclude/sys/termio.h (see 
termio(7). Normally only the speed flag is 
required in the initial-flags field. 
Getty(1M) automatically sets the terminal to 
raw input mode and takes care of most of the 
other flags. The initial-flag settings 
remain in effect until getty'"[1M) executes 
10gin(1). 

These flags take the same values as the 
initial-flags and are set just before 
getty(1M) executes 10gin(1). The speed flag 
is again required. The composite flag SANE 
takes care of most of the other flags that 

..,.. 1 ..,.. Printed 6 1985 



J 

GETTYDEFS(4) GETTYDEFS(4) 

FILES 

nextor-label 

need to be set so that the processor and ter~ 

minal communicate in a rational fashion. The 
other two commonly specified final~flags are 
TAB3 (tabs are sent to the terminal as 
spaces) and HUPCL (the line is hung up on the 
final close). 

This entire field is printed as the login~ 

prompt. White~space characters (space:-tab, 
and new-line) are included in this field, 
unlike the other fields in which white space 
is ignored. 

This field indicates the next entry label in ---the table that getty(1M) should use if the 
user types a <break> or the input cannot be 
read. Usually, a series of speeds are linked 
together in a closed set. No matter where 
the set is entered, the correct speed can be 
obtained. For example, 2400 is linked to 
1200, which in turn is linked to 300, which 
finally is linked to 2400. 

After making or modifying /etc/gettydefs, it is strongly 
recommended that the file be run through getty(1M) with the 
check option to be sure there are no errors. 

/ etc/ gettyd e fs 

SEE ALSO 
getty(1M), termio(7), login(1), ioctl(2). 

.,.. 2 .,. Printed 6 1985 



QPS'~) GPS(4) 

NAME 
gps - graphical primitive string, format of graphical files 

DESCRIPTION 
GPS is a format used to store graphical nata. Several rou~ 

tines have been nevelopen to edit and display GPS files on 
various devices. Also, higher level graphics programs such 
as £lot (in ~~(1G)) ann vtoc (in to£(1G)) produce GPS for~ 
mat output files. 

A GPS is composen of five types of graphical nata or primi
tives. 

GPS PRIMITIVES 
lines The lines primitive has a variable number of 

points from which zero or more connected line seg~ 
ments are produced. The first point given pro
duces a move to that location. (A move is a relo
cation or-the graphic cursor withOut drawing.) 
Successive pOints produce line segments from the 
previous point. Parameters are available to set 
~lor, weight, and style (see below). 

arc The arc primitive has a variable number of points 
to which a curve is fit. The first point produces 
a ~ to that point. If only two points are 
included, a line connecting the pOints will 
result. If three pOints are included, a circular 
arc through the pOints is drawn. If more than 
three points are included, lines connect the 
points. (In the future, a spline will be fit to 
the pOints if they number greater than three.) 
Parameters are available to set col~, weight, ann 
style. 

text The text primitive draws characters. It requires 
a single pOint which locates the center of the 
first character to be drawn. Parameters are 
color, ~, textsize, and textangle. 

hardware The hardware primitive draws hardware characters 
or gives control commands to a hardware device. A 
single pOint locates the beginning location of the 
hardware string. 

comment A comment is an integer string that is included in 
a GPS file but causes nothing to be displayed. 
All GPS files begin with a comment of zero length. 

GPS PARAMETERS 
color Color is an integer value set for ~,lines, and 

text primitives. 

..... 1 ... Printed 6 1985 



/ 

GPS(4) 

weight Weight is an integer value set for ~~ 
primitives to indicate line thickness. 
o is narrow weight, 1 is bold weight, 
medium weight. 

GPS(4) 

ann lines 
The value 

and 2 is 

style Style is an integer value set for lines and arc 
primitives to give one of the five different line 
styles that can be drawn on Tektronix 4010 series 
storage tubes. They are: 

o so 1 i d 
1 dotted 
2 dot dashed 
3 dashed 
4 long dashed 

font An integer value set for ~!! primitives to desig~ 
nate the text font to be used in drawing a charac
ter string. (Currently font is expressed as a 4~ 

bit weight value followed by a 4-bit style value.) 

textsize Textsize is an integer value used in text primi
tives to express the size of the characters to be 
drawn. Textsize represents the height of charac
ters in absolute universe~units and is stored at 
one~fifth this value in the size-orientation (so) 
word (see below). --

textangle Textangle is a signed integer value used in text 
primitives to express rotation of the character 
string arounn the beginning pOint. Textangle is 
expressed in degrees from the positive x-axis and 
can be a positive or negative value. It is storeo 
in the size~orientation (so) word as a value 
256/360 of its absolute valu;: 

ORGANIZATION 
GPS primitives are organized internally as follows: 

lines 
arc 
text 
hardware 
oommen t 

ow 

cw poin~ sw 
cw .l?0ints sw 
cw Eoin t sw so [string] 
cw poin t [string] 
cw [string] 

Cw is the control word and begins all primitives. 
It consists of 4 bits that contain a primitive
type corle and 12 bits that contain the word-count 
for that primitive. 

pointea) Point(s) is one or more pairs of integer coordi
nates. Text and hardware primitives only require 
a single pOint. point(~) are values within a 
Cartesian plane or universe having 64K (-32K to 
+32K) points on each axis. 

- 2 - Printed 6 1985 



GPS(4) 

sw 

so 

string 

GPS(4) 

Sw is the style~word and is used in li~~, ~S' 
ann text primitives. The first 8 bits contain 
color information. In arc and lines the last 8 ----- --- -----bits are divided as 4 bits weight and 4 bits 
style. In the text primitive the last 8 bits of 
sw contain the rent. 

So is the size~orientation word used in text prim~ 
Ttives. The first 8 bits contain text-STZe (see 
textsize) and the remaining 8 bits contain text 
rotation (see textangle). 

String is a null-terminated character string. If 
the string does not end on a word boundary, an 
arlditional null is added to the GPS file to assure 
word~boundary alignment. 

SEE ALSO 
graphics(1G). 



/ 

O~OUP(~) O~OUP'~) 

NAHE 
group ~ group file 

DESCRIPTION 

FILES 

Group contai~s tr.e following information for each group: 

group name 
e~crypted password 
numerical group ID 
comma~separated list of all users allowed in the group 

This is an ASCII file. The fields are separated by 
each group is separaterl from the next by a new~line. 
password field is null, no password is demanded. 

colons; 
If the 

This file resides in directory /etc. Because of the 
encrypted passwords, it can and does have general read per
mission and can be used, for example, to map numerical group 
IDs to names. 

/etc/group 

SEE ALSO 
newgrp( 1), passwd( 1), crypt(3C), passwd(4). 

..,. 1 ..,. Printed 6 1985 



INITTAB(4) INITT18(4) 

NAHE 
inittab - script for the init process 

DESCRIPTION 
The /etc/inittab file supplies the script for init(1H) to 
perform as a general process dispatcher. The process that 
constitutes the majoritv of init's process dispatching 
activities is the line process--;etclgetty, which initiates 
individual terminal lines. Other- processes typically 
dispatched by init are daemons and the shell. 

NOTE: Within this section, the term init always refers to 
the program oescr-ibed in .i1:!.2J:.( 1H) • 

T~e initt~ file is composed of entries that are position
dependent ano have the following format: 

id:rstate:action:process 

Each entry is delimited by a new-line; however, a backslash 
(\) preceding a new-line indicates a continuation of the 
entry. Up to 512 characters per entry are permitted. Com
ments may be inserted in the process field using the sh(1) 
convention for comments. Comments for lines that spawn 
gettys are displayed by the who(1) command. It is expected 
tha~they will contain some infOrmation about the line such 
as the location. There are no limits (other than maximum 
entry size) imposeo on the number of entries within the 
inl~~~ file. The entry fields are: 

id 

rstate 

This field is 1 to 4 characters used to uniquely 
identify an entry. 

This field defines the run-level in which this 
entry is to be processed. iUn=Ievels effectively 
correspond to a configuration-of processes in the 
svstem. That is, each process spawned by init is 
a~signed a run-level or run-levels in which~ is 
allowed to-eiist-.--The run-levels are represented 
by a number ·ranging fromo-through 6. As an exam
ple, if the system is in run-level 1, only those 
entries having a 1 in the rstate field will be 
processed. When init is requested to change ~~
levels, all processes which do not have an entry 
in the rstate field for the target run-level will 
be sent the warning signal (SIGTERM)-and allowed a 
20-second grace period before being forcibly ter
minated by a kill signal (SIGKILL). The rstate 
field can define multiple run-levels for a process 
by selecting more than one-run-level in any combi
nation from 0-6. If no run-level is specified, 
action will be taken on this proc~ for all run-

- 1 - Printed 6 1985 



INITTAB(4) 

action 

/ 

INITTAB(4) 

levels, 0-6. There are three other values, a, b, 
anrl-c~ w~icr. can appear in the rstate field, even 
tho u g ~ the y are not t rue r un=IeV e 1 s • En t r i e s 
w~ich have these characters i~--the--rstate field 
are processed only when the telinit (see init(1M)) 
process requests them to be run (regardlessof the 
current ~-~vel of the system). They differ 
from run-levels in that the system is only in 
these states for as long as it takes to execute 
all the entries associated with the states. A 
process started by an a, b, or c command is not 
killed when init changes levels. They are only 
killed if therr-line in /etc/inittab is marked off 
in the action fip.ld, their line is deleted 
entirely -rrom-/etc/inittab, or init goes into the 
SINGLE USER state. ------ ---
Key words in this field tell init how to treat the 
process specified in the Erocess field. The 
actions recognized by init are as follows: 

respawn 

wait 

onoe 

boot 

If the process does not exist, init 
is to start the process, not wait 
for its termination (continue scan
ning the inittab file), and, when it 
dies, restart the process. If the 
process currently exists ~ is to 
do nothing ano continue scanning the 
inittab file. 

When init enters the run-level that 
matches-the entry's rstat;:-rt is to 
start the process and wait for its 
termination. All subsequent reads 
of the inittab file while init is in 
the same run-level will cause init 
to ignore this entry. 
When init enters a run-level that 
matches the entry's rstate, it is to 
start the process, not wait for its 
termination ano, when it dies, not 
restart the process. If a new run
level is entered when the process-Ts 
still running, the program will not 
be restarted. 

The entry is to be processed only at 
init's boot-time read of the inittab 
file. Init is to start the proc~ 
not wait for its termination, and, 
when it dies, not restart the 

- 2 - Printed 6 1985 



INITTAB(4) 

bootwait 

power fail 

power wa i t 

off 

ondemand 

1n1tdefault 

INITTAB(4) 

process. In order for this instruc
tion to be meaningful, either the 
rstate should be the default or it ---must match init's run-level at boot --- --- -----time. This action is useful for an 
initialization function following a 
hardware reboot of the system. 

The entry is to be processed only at 
init's boot-time read of the inittab 
file. Init is to start the process, 
wait for its termination, and, when 
it dies, not restart the process. 

Init is to execute the process asso
ciated with this entry only when it 
receives a powerfail signal (SIGPWR; 
see signal(2)). 

Init is to execute the process asso
ciated with this entry only when it 
receives a power fail signal (~IGPWR) 
and is to wait until the process 
terminates before continuing any 
processing of inittab. 

If the process associated with this 
entry is currently running, init is 
to send the warning signal (SIGTERM) 
and wait 20 seconds before forcibly 
terminating the process via the kill 
signal ($IGKILL). If the process is 
nonexistent, init is to ignore the 
entry. 

This instruction is really a synonym 
for the respawn action. It is func
tionally identical to respawn but is 
given a different keyword in order 
to divorce its association with 
run-levels. This is used only with 
the a, b, or c values described in 
the rstate field. 

An entry with this action is scanned 
only when init is initially invoked. 
~ uses this entry, if it exists, 
to determine which run-level' to 
enter initially. It does this by 
taking the highest ~-l!!~l speci
fied in the rstate field and using 
that as its initial state. If the 

- 3 - Printed 6 1985 



INITTAB(4) INITTAB(4) 

FILES 

sysinit 

rst~~ field is empty, this is 
interpreted as 0123456 and init will 
enter run-level 6. If the initde
fault entrY-rs-s, ~l! will start in 
the SINGLE USER state. If init 
doesn't-rind an-rnitdefault entry-rD 
/etc/1n1ttab, it will request an 
initial run-level from the user at 
reboot time. 

Entries of this type are executed 
before init tries to access the con
sole. It is expected that this 
entry will be only used to initial
ize devices on which init might try 
to ask the run-level question. 
These entries are ---executed and 
waited for before continuing. 

This is a sh command to be executed. The entire 
process fiP.ld is prefixed with exec and passed to 
a forked sh as sh -c 'exec com~t. For thi s 
reason, any legal ~ syntax can appear in the the 
process field. Comments can be inserted with the 
; 'comment syntax. 

/etc/inittab 

SEE ALSO 
getty(1H), init(1M), sh(1), who(1), exec(2), open(2), sig
nal(?) • 

- 4 - Printed 6 198') 



INOOE(4) INODE(4) 

NAME 
inode ~ format of an inode 

SYNOPSIS 
'include <sys/types.h) 
'include <sys/ino.h) 

DESCRIPTION 

FILES 

An inode for a plain file or directory in a file system has 
the following structure defined by <sys/ino.h). 

1* Inode structure as it appears on a disk block. *1 
struct dinode 
{ 

ushort di mod e; 1* mod e and type of fi 1 e *1 
short di _nlink; 1* number of links to fi 1 e 
ushort di _uid; 1* owner's user id *1 
ushort di gid-- , 1* owner's group id *1 
off t di _si ze; 1* number of bytes in fi 1 e 
char di_addr[40]; 1* disk block addresses *1 
time t di _atime; 1* time 1 ast accessed *1 -time t di mtime; 1* time 1 ast modified *1 -time t di _ctime; 1* time created *1 

} : 
1* 
* the 40 address bytes: 
* 39 used; 13 addresses 
* of 3 bytes each. 
*1 

*1 

*1 

For the meaning of the defined types off t and time t, see 
~~(5). 

lusr/include/sys/ino.h 

SEE ALSO 
stat(2), fs(4), types(5). 

Printed 6 1985 



/ 

ISSUE(4) ISSUE(4) 

NAME 
issue - issue identification file 

DESCRIPTION 

FILES 

The file Jete/issue contains the issue or project identifi
cation to be printed as a login prompt. This is an ASCII 
file which is read by getty(1M) and then written to any ter
minal spawned or respawned from the lines file. 

/etc/issue 

SEE ALSO 
getty(1H), login(1). 

..,.. 1 ..,.. Printed 6 1985 



LINENUM(l4) LINENUM(4) 

NAME 
linenum - line number entries in a common object file 

SYNOPSIS 
'include <linenum.h> 

DESCRIPTION 
The C compiler generates an entry in the object file for 
each C source line on which a breakpoint is possible (when 
invoked with the _g option; see cc(1)). Users can then 
reference line numbers when using-the appropriate software 
test system (see sdb(1)). The structure of these line 
number entries appears below. 

struct lineno 
{ 

union 
{ 

long 
long 

unsigned short 

l_symndx; 
l_paddr ; 
1 ad d r 
1 lnno 

Numbering starts with one for each function. The initial 
line number entry for a function has l-lnno equal to zero, 
and the symbol table index of the function's entry is in 
1 symnrlx. Otherwise, 1 lnno is non~zero, and 1 Eaodr is the 
physical address of the-cod; for the referenced line. Thus 
the overall structure is the following: 

1 arlrlr 1 lnno ---
function sym tab inn ex 0 
physical add ress line 
physical address line 

function symtab ind ex 0 
physical address line 
physical address line 

SEE ALSO 
cc(1), s o b(1), a.out(4). 

..,. 1 or Printed 6 1985 



LD'CN'~) LDFCN(~) 

NAME 
ldfcn - common object file access routines 

SYNOPSIS 
'include <stdio.h) 
Hinclude <filehdr.h) 
Dinclude <ldfcn.h) 

DESCRIPTION 
The common object file access routines are a collection of 
functions for reading an object file that is in common 
object file form. Although the calling program must know 
the detailed structure of the parts of the object file that 
it processes, the routines effectively insulate the calling 
program from knowledge of the overall structure of the 
object file. 

The interface between the calling program and the object 
file access routines is based on the defined type LDFILE 
(defined as struct ldfile), which is declared in the header 
file <ldfcn.h). The primary purpose of this structure is to 
provide uniform access to both simple object files and 
object files that are members of an archive file. 

The function Idopen(3X) allocates and initializes the LDFILE 
structure and returns a pOinter to the structure to the cal
ling program. The fields of the LDFILE structure may be 
accessed individually through macros defined in (ldfcn.h> 
and contain the following information: 

LDFILE *ldptr; 

TYPE(ldptr) The file magic number, used to 
between archive members and 
files. 

distinguish 
simple object 

IOPTR(ldptr) The file pOinter returned by fopen(3S) and 
used by the standard input/output functions. 

OFFSET(ldptr) The file address of the beginning of the 
object file; the offset is non~zero if the 
object file is a member of an archive file. 

HEADER(ldptr) The file header structure of the object file. 

The object file access functions may be divided into four 
categories: 

(1) functions that open or close an object file 

ldopen(3X) and ldaopen 
open a common object file 

ldclose(3X) and ldaclose 

Printed 6 1985 



LDFCN(4) LDFCN(4) 

close a common object file 

(2) functions tr.at read header or symbol table infor~ 
mation 

Idahread(3X) 
read the archive header of a member of an 
archive file 

Idfhread(3X) 
read the file header of a common object file 

Idshread(3X) and ldnshread 
read a section header of a common object file 

Idtbread(3X) 
read a symbol table entry of a common object 
file 

Idgetname(3X) 
retrieve a symbol name from a symbol table 
entry or from the string table 

(3) functions that position an object file at (seek 
to) the start of the section, relocation, or line 
number information for a particular section. 

ldohseek(3X) 
seek to the optional file header of a common 
object file 

Idsseek(3X) and ldnsseek 
seek to a section of a common object file 

lrlrseek(3X) and ldnrseek 
seek to the relocation information for a sec~ 
tion of a common object file 

Idlseek(3X) and ldnlseek 
seek to the line number information for a 
section of a common object file 

Idtbseek(3X) 
seek to the symbol table of a common object 
file 

(4) the function Idtbindex(3X) which returns the index 
of a particular common object file symbol table entry 

These functions are described in detail in the manual pages 
identified for each function. 

All the functions except ldopen, ldaopen, and ldtbindex 
return either SUCCESS or FAILURE, which are constants 
defined in <ldfcn.h). Ldopen and ldaopen both return 
pOinters to a LDFILE structure. 

MACROS 
Additional access to an object file is provided through a 
set of macro'S defined in (ldfcn.h). These macros parallel 
the standard input/output file reading and manipulating 
functions, translating a reference of the LDFILE structure 

- 2 - Printed 6 1985 



LDFCN(4) LDFCN(4) 

into a reference to its file descriptor field. 

The following macros are provided: 

GETC(lrlptr) 
FGETC (lrl ptr) 
GETW(ldptr) 
UNGETC(c, ldptr) 
FGETS(s, n, Idptr) 
FREAD«char *) ptr, sizeof (*ptr), nitems, ldptr) 
FSEEK(ldptr, offset, ptrname) 
FTELL(ldptr) 
REWIND(ldptr) 
FEOF(lrlptr) 
FEFROP(ldptr) 
FILE NO (ld ptr) 
SETBUF(lrlptr, buf) 
STROFFSET(ldptr) 

The STROFFSET macro calculates the address of the string 
table in a object file. See the manual entries for the 
corresponding standard input/output library functions for 
details on the use of these macros. (The functions are 
identified as 3S in Section 3 of this manual.) 

The program must be loaded with the object file access rou
tine library libld.a. 

WARNINGS 

SEE 

The macro FSEEK defined in the header file <ldfcn.h> 
translates into a call to the standard input/output function 
~eek(3S). FSEEK should not be used to seek from the end of 
an archive file since the end of an archive file may not be 
the same as the end of one of its object file members. 

ALSO 
fopen(3S) , 
I d fh rea rl ( 3 X ) , 
Idohseek(3X) , 
Idshread(3X) , 
Co~ Object 

fseek(3S), Idahread(3X), Idclose(3X), 
Idgetname(3X), Idlread(3X), Idlseek(3X), 
Idopen(3X), Idrseek(3X), Idlseek(3X), 

Idtbindex(3X), Idtbread(3X), Idtbseek(3X). 
K!l~ Format, by I. S. Law. 

Printed 6 1985 



MASTER(4) MASTER(4) 

NAME 
master - master device information table 

DESCRIPTION 
This file is used by the config(1M) program to obtain device 
information that enables it to generate the configuration 
files. The file consists of 3 or 4 parts, each separaterl by 
a line with a dollar sign ($) in column 1. Part 1 contains 
device information; part 2 contains names of devices that 
have aliases; part 3 contains tunable parameter information. 
Part 4 is optional anrl contains information related to con
figuring the M68000 family systems only. Any line with an 
asterisk (*) in column 1 is treated as a comment. 

Part 1 contains lines consisting of at least 10 fields and 
at most 13 fields. The fields are delimited by tabs and/or 
blanks. 

Field 1: 

Field 2: 

Field 3: 

Field 4: 

Field 5: 

Field 6: 

Field 7: 

Field 8: 

Field 9: 

Field 10: 

rlevice name (8 chars. maximum). 

interrupt vector size (decimal, in bytes). 

device mask (octal)-each "on" bit 
cates that the hanrller exists: 
initialization handler 000040 
failure handler 000020 open 
000010 close handler .000004 read 
000002 write handler 000001 
handler 

indi-
000100 
power

handler 
handler 

ioctl 

device type inrlicator (octal): 000200 
allow only one of these devices 000100 
suppress count field in the conf.c file 
000040 suppress interrupt vector 000020 
required device 000010 block device 
000004 character d~vice 000002 interrupt 
driven device other than block or char. 
device 

·handler prefix (4 chars. maximum). 

device address size (decimal). 

major device number for block-type device. 

major device number for character-type 
device. 

maximum number of devices per controller 
(decimal). 

maximum bus request level (1 through 7). 

- 1 - Printed 6 1985 



MASTER(4) MASTER(4) 

Fields 11-13: optional configuration table structure 
declarations (8 chars. maximum) 

Part 2 contains lines with 2 fields each: 

Field 1: 

Field 2: 

alias name of device (8 chars. maximum). 

reference name of device (8 chars. max
imum; specified in part 1). 

Part 3 contains lines with 2 or 3 fields each: 

Field 1: 

Field 2: 

Field 3: 

parameter name (as it 
appears in description 
file; 30 chars. max
imum) 

parameter name (as it 
appears in the conf.c 
file; 30 chars. max
imum) 

default parameter 
value (30 chars. max
imum; parameter 
specification is 
required if this field 
is omitted) 

Part 4 contains M68000-specific lines exactly like those for 
the M68000-specific portion of the dflle. See config (1M) 
for a description of these lines. 

Devices that are not interrupt-driven have an interrupt vec
tor size of zero. The 040 bit in Field 4 causes config(1M) 
to record the interrupt vectors although the m68kvec.s file 
will show no interrupt vector assignment at those locations 
(interrupts here will be treated as strays). 

SEE ALSO 
config(1M). 

- 2 - Printed 6 1985 



MNTTAB(4) MNTTAB(4) 

NAME 
mnttab ~ mounted file system table 

SYNOPSIS 
'include <mnttab.h> 

DESCRIPTION 
Mnttab resides in directory /etc and contains 
devices, mounted by the mount(1M) command, in 
structure as defined by <mnttab.h>: 

st r uc t 

} ; 

mnttab 
char 
char 
short 
time t 

mt dev[10]; 
mt:filsys[ 1 0]; 
mt_ro_flg; 
mt_time; 

a table of 
the following 

Each entry is 26 bytes in length; the first 10 bytes are the 
null-padded name of the place where the ~ecial fil! is 
mounted; the next 10 bytes represent the null-padded root 
name of the mounted special file; the remaining 6 bytes con~ 
tain the mounted special file's read/write permissions and 
the date on which it was mounted. 

The maximum number of entries in mnttab is based on the sys~ 

tern parameter NMOUNT located in /usr/src/uts/cf/conf.c, 
which defines the number of allowable mounted special files. 

SEE ALSO 
mount( 1M), setmnt( 1M). 

.,. 1 .,. Printed 6 1985 



PASSWD(4) PASSWD(4) 

NAME 
passwd - password file 

DESCRIPTION 
Fasswd contains the following information for each user: 

login name 
encrypted password 
numerical user ID 
numerical group ID 
GCeS job number, box number, optional GCeS user ID 
initial working directory 
program to use as Shell 

This is an ASCII file. Each field within each user's entry 
is separated from the next by a colon. The GCeS field is 
used only when communicating with that system, and in other 
installations can contain any desired information. Each 
user entry is separated from the next by a new-line. If the 
pas s wo r d fie 1 dis null, no pas s wo r dis d em an rl e d; i f the 
Shell field is null, the Shell itself is used. 

This file resides in directory letc. Because of the 
encrypted passwords, it can and does have general read per~ 

mission and can be used, for example, to map numerical user 
IDs to names. 

The encrypted password consists of 13 characters chosen from 
a 64-character alphabet (., 1,0-9, A-Z, a~z). If the pass~ 

word is null, the encrypted password is also null. Password 
a gin g i s e f f e c ted f.o rap art i cuI a r use r i f the e ncr y pte d 
password in the password file is followed by a comma and a 
non~null string of characters from the above alphabet. Such 
a string must be introduced in the first instance by the 
superuser. 

The first character of the password age, e.g., M, denotes 
the maximum number of weeks for which a password is valid. 
A user who attempts to login after the password has expired 
will be forced to supply a new one. The next character, 
e.g., ~, denotes the minimum period (in weeks) which must 
expire before the password may be changed. The remaining 
characters define the week (counted from the beginning of 
1970) when the password was last changed. A null string is 
equivalent to zero. M and m have numerical values in the 
range 0~63 that correspond to the 64~character alphabet 
shown above (i.e., 1= 1 week; z = 63 weeks). If m = M = () 
(derived from the string or •• ) the passwo;d m~st be 
changed the next time the user logs in (and the"'''' age" will 
disappear from the user's entry in the password file). If m 
> M (signified, e.g., by the string ./), only the superuser 
will be able to change the password. 

Printed 61985 



PASSWD(4) PASSWD(4) 

FILES 
/ etc / pas s wei 

SEE ALSO 
login(1), passwd(l), a641(3C), crypt(3C), getpwent(3C) , 
group(4) • 

.... 2 or- Printed 61985 



P1.0T ~~ ) P1.01(4) 

NAME 
plot ~ graphics interface 

DESCRIPTION 
Files of this format are produced by routines described in 
~(3X) and are interpreted for various devices by commanrls. 
described in tplot(1G). A graphics file is a stream of 
plotting instructions. Each instruction consists of an 
ASCII letter usually followed by bytes of binary informa~ 

tion. The instructions are executed in order. A pOint is 
designated by 4 bytes representing the x and y values; each 
value is a signed integer. The last designated point in an 
1, mt n t or p instruction becomes the "current point" for 
the next instruction. 

Each of the following descriptions begins with the name of 
the corresponding routine in plot(3X). 

m move: The next 4 bytes give a new current point. 

n cont: Draw a line from the current point to the point 
given by the next 4 bytes. See tplot(1G). 

p point: Plot the point given by the next 4 bytes. 

1 line: Draw a line from the pOint given by the next 4 
bytes to the point given by the following 4 bytes. 

label: Place the following ASCII string so 
first character falls on the current point. 
is terminated by a new-line. 

e erase: Start another frame of output. 

that its 
The string 

f linemod: Take the following string, up to a new-line, as 
the style for drawing further lines. The styles are 
"dotted", "'solid" t "'longdashed", "shortrlashed" t 

and "dotdashed". This instruction is effective only 
for the -T4014 and -Tver options of tplot(1G) (Tektronix 
4014 terminal and Versatec plotter). 

s space: The next 4 bytes give the lower left corner of 
the plotting area; the following 4 give the upper right 
corner. The plot will be magnified or reduced to fit the 
device as closely as possible. 

Space settings that exactly fill the plotting area with 
unity scaling appear below for devices supported by the 
filters of tplot(1G). The upper limit is just outside the 
plotting area. In every case the plotting area is taken to 
be square; points outside may be displayable on devices 
whose face is not square. 

.... 1 - Printed 61985 



PLOT(4) PLOT (4 ) 

DAST 300 space(O, 0, 4096, 4096); 
DASI 300s space(O, 0, 4096, 4096); 
DASI 450 space(O, o , 4096, 4096); 
Tektronix 4014 space(O, o , 3120, 3120); 
Versatec plotter space(O, 0, 2048, 2048); 

SEE ALSO 
graph(lG), tplot(1G), plot(3X) , gps(4) , term(5). 

.,... 2 ..,.. Printed 6 1985 



PNCH(4) PN C H (4 ) 

NAME 
pnch ~ file format for card images 

DESCRIPTION 
The PNCH format is a convenient representation for files 
consisting of card images in an arbitrary code. 

A PNCH file is a simple concatenation of card records. A 
card record consists of a single control byte followed by a 
variable number of data bytes. The control byte specifies 
the number (which must lie in the range O~80) of data bytes 
that follow. The data bytes are 8~bit codes that constitute 
the card image. If there are fewer than 80 data bytes, it 
is understood that the remainder of the card image consists 
of trailing blanks. 

SEE ALSO 
send(1C) . 

.,.. 1 .,.. Printed 6 1985 



PROFILE(4) PROFILE(4) 

NAME 
profiie - setting up an environment at login time 

DESCRIPTION 
If a user's login directory contains a file named .profile, 
that file will be executed (via the shell's exec .profile) 
before the user's session begins; .profiles are handy for 
setting exporterl environment variables and terminal modes. 
If the file Jete/profile exists, it will be executed for 
every user before the .profile. The following example is 
typical (except for the comments): 

# Make some environment variables global 
export MAIL PATH TERM 
# Set file creation mask 
umask 22 
# Tell me when new mail comes in 
MAIL=lusr/mail/myname 
n Adrl my Ibin directory to the shell search sequence 
PATH=$PATH:$HOME/bin 
# Set terminal type 
echo "terminal: \c" 
read TERM 
case $TERM in 

300) stty cr2 nlO tabs; tabs; ; 
300s) st ty cr2 nlO tabs; tabs; ; 
450) st t y cr2 nlO tabs; tabs; ; 
hp) st t y crO nlO tab s; tabs; ; 
745l735) st ty cr1 nl1 ~ ta b s ; TERM=745;; 
43) st t y cr1 nlO ~tabs;; 
4014ltek) st ty crO nlO ..... tabs ff 1 ; TERM=4014; echo "\33;";; 
*) echo 

esac 

FILES 
$HOME/.profile 
letc/profile 

SEE ALSO 

"$TERM unknown";; 

env(1), login(1), mail(1), sh(1), 
environ(5), term(5). 

stty(1), su(1), 

• 
Printed 61985 



RELOC(4) RELOC(4) 

NAME 
reloc - relocation information for a common object file 

SYNOPSIS 
'include <reloc.h> 

DESCRIPTION 
Object. files have one relocation entry for each relocatable 
reference in the text or data. If relocation information is 
present, it will be in the following format. 

struct 
{ 

1* 

r eloc 

long 
long 
short 

* All generics 

r_varldr ; 
r_symndx 
r_type ; 

1* (virtual) adrlress of reference *1 
1* index into symbol table *1 
1* relocation type *1 

* reloc. already performed to symbol in the same section 
*1 

ildefine R ASS o 

1* 
* DEC Processors VAX 11/780 and VAX 11/750 

* 
*/ 

ildefine R RELBYTE 017 
#define P-PELWORD 020 
#define R RELLONG 021 
#define R PCRBYTE 022 
fldefine R PCPWORD 023 
ildefine R PCRLONG 024 

1* 
* Motorola 68000 uses R_RELBYTE, R_RELWORD, R_RELLONG, 
* R PCRBYTE, and R_PCRWORD as for DEC machines above. 
*1 -

As the link editor reads each input section and performs 
relocation, the relocation entries are read. They direct how 
references found within the input section are treated. 

P ABS 

R RELBYTE 

R RELWORD 

The reference is absolute, and no relocation 
is necessary. The entry will be ignored. 

A direct 8~bit reference to a symbol's vir
tual address. 

A direct 16~bit reference to a symbol's vir
tual address. 

.... 1 - Printed 6 1985 



RELOC(4) 

R PCRBYTE 

R PCPWORD 

R PCRLONG 

RELOC(4) 

A direct 32~bit reference to a symbol's vir~ 

tual address. 

A "PC~relative" 8-bit reference to a 
symbol's virtual address. 

A "PC-reI ati ve' , 16."..bit reference to a 
symbol's virtual address. 

A "PC..,..relative' , 32~bit reference to a 
symbol's virtual address. 

On the VAX processors, relocation of a symbol index of ~1 

indicates that the relative difference between the current 
segment's start address and the program's load address is 
added to the relocatable address. 

Other relocation types will be defined as they are needed. 

Relocation entries are generated automatically by the assem
bler and automatically utilized by the link editor. A link 
editor option exists for removing the relocation entries 
from an object file. 

SEE ALSO 
1 d ( 1 ), s t rip ( 1 ), a. 0 u t ( 4 ), s ym s ( 4 ) • 

.,. 2 .,. Printed 61985 



SCNH~R(4) SCNHDR(4) 

NAME 
scnhdr ~ section header for a common object file 

SYNOPSIS 
'include <scnhdr.h> 

DESCRIPTION 
Every common object file has a table of section headers to 
specify the layout of the nata within the file. Each sec~ 

tion within an object file has its own header. The C struc~ 
ture appears below. 

struct scnhdr 
{ 

char 
long 
long 
long 
long 
long 
long 
unsignen short 
unsigned short 
long 

s_name[SYMNMLEN]; 1* section name *1 
s_paddr; 1* physical address *1 
s_vaddr; 1* virtual address *1 
s_size; 1* section size *1 
s_scnptr; 1* file ptr to raw data *1 
s_relptr; 1* file ptr to relocation *1 
s_lnnoptr; 1* file ptr to line numbers *1 
s_nreloc; 1* # reloc entries *1 
s_nlnno; 1* # line number entries *1 
s_flags; 1* flags *1 

File pOinters are byte offsets into the file; they can be 
usen as the offset in a call to fseek(3S). If a section is 
initialized, the file contains the actual bytes. An unini
tialized section is somewhat different. It has a size, sym~ 

boIs defined in it, and symbols that refer to it, but it can 
have no relocation entries, line numbers, or data. Conse
quently, an uninitialized section has no raw data in the 
object file, and the values for s scnptr, ~~~ptr, 

s lnnoptr, ~~!££, and ~lnn£ are zerO:------

SEE ALSO 
Id(1), fseek(3S), a.out(4). 

Printen 6 1985 



SYMS(~) SYMS (~) 

NAME 
syms - common object file symbol table fo~mat 

SYNOPSIS 
'include <syms.h) 

DESCRIPTION 
Common object files contain information to support symbolic 
software testing (see sdb( 1). Line number entries, line..,.. 
~(4), and extensive symbolic information permit testing at 
the C source level. Every object file's symbol table is 
organized as shown below. 

Filename 1. 
Function 1. 

Local symbols for function 1. 
Function 2 

Local symbols for function 2. 

Static externs for file 1. 

Filename 2. 
Func tion 1. 

Local symbols for function 1. 
Function 2. 

Local symbols for function 2. 

Static externs for file 2. 

Defined global" symbols. 
Undefined global symbols. 

The entry for a symbol is a fixed~length structure. The 
members of the structure hold the name (null padded), its 
value, and other information. The C structure is given 
below. 

#define SYMNMLEN 8 
#define FILNMLEN 14 

struct syment 
{ 

union II ways to get a" symbol namell 
{ 

n; 

char 
struct 
{ 

long 
long 

} n n; 
char 

long 

n name[SYMNMLENJ ;/1 names less than 8 chars. II 
- - 1* names 8 char or morell 

n zeroes; 
:n:offset; 

1* == OL when in string table*1 
1* location of name in table II 

l_n_nptr[2J;I* allows overlaying II 

n val ue 1* value of symbol II 

.... 1 .... Printed 6 1985 



S YM S (4 ) 

iJdefine 
/ldefine 
fldefine 
/ldefine 

SYMS(4) 

short n_scnum; 1* section number *1 
unsigned short n type ;1* type and derived type *1 

1* storage class */ char 
char 

n name 
n zeroes 
n offset 
n_nptr 

n sclass 
n numaux 

n. n name 

1* number of aux entries *1 

n. n n. n zeroes - - - ---n. n n. n offset 
=n .=n=nptr [1 ] 

Meaningful values and explanations for them are given in 
both syms.h and Co~ Object File Format. Anyone who needs 
to interpret the entries should seek more information in 
these sources. Some symbols require more information than a 
single entry; they are followed by auxiliary entries that 
are the same size as a symbol entry.--The-format follows. 

union auxent 
{ 

struct. 
{ 

} 

struct 
{ 

struct 
{ 

long 
union 
{ 

struct 
{ 

x tagndx; 

unsigned short x_lnno; 
unsigned short x_size; 

} x lnsz; 
long x_fsize; 

} x_misc; 
union 
{ 

struct 
{ 

} 

struct 
{ 

long 
long 
x_ fc n ; 

x_lnnoptr; 
x_endndx; 

unsigned short x_dimen[DTMNUM]; 
x_ ar y; 
x_fcnary; 

unsigned short x_tvndx; 
x_sym; 

char x fname[FILNMLEN]; 
x_file; -

long x scnlen; 
unsigned short x nreloc; 
unsigned short x:nlinno; 

- 2 - Printed 6 1985 



S YM S (4 ) 

} ; 

st r uc t 
{ 

} 

unsigned short 
unsigned short 
x_ tv; 

x tvlen; 
x=tvran[2J; 

Indexes of symbol table entries begin at zero. 

SEE ALSO 
sdb( 1), a.out(4), linenum(4). 
Common Object Fil! Format by I. S. Law. 

WARNING 

SYMS(4) 

In machines in which longs are equivalent to ints (M68000 
and VAX), the longs are converted to ints in the compiler to 
minimize the complexity of the compiler code generator. 
Thus, the information about which symbols are declared as 
longs and which as ints cannot be detArmined from the symbol 
table. 

Printed 6 198'3 



UTMP(4) UTMP(4) 

NAME 
utmp, wtmp ~ utmp and wtmp entry formats 

SYNOPSIS 
linclude <sys/types.h) 
linclude <utmp.h) 

DESCRIPTION 

FILES 

These files hold user ano accounting information for com~ 

manrls such as who(l), write(1), and login(1). They have the 
following structure, as defined by <utmp:h): 

IIdefine 
IIdefine 
IIdefine 

UTMP FILE 
WTMP FILE 
ut name 

"/etc/utmp" 
"/etc/wtmp" 
ut user 

struct utmp 
char 
char 
char 
short 
short 
struct 

ut user[8J; 
ut-id[4J; 
ut:line[12J; 
ut_pirl; 
ut_type; 
exit status 

1* User login name *1 
1* letc/inittab id (usually lin 
1* device name (console, lnxx) , 
1* process irl *1 
1* type of entry II 

short 
short 

ut_exit; 

e_termination; 
e_exit; 

II Process termination status *, 
1* Process exit status *1 

time t 
} ; 

1* Definitions for ut_type II 
#define EMPTY 0 
#define RUN LVL 1 
#define BOOT TIME 
#rlefine OLD TIME 
II d e fin e NEW T I1~ E 
#define INIT PROCESS 
#define LOGIN PROCESS 
#define USER PROCESS 
IIdefine DEAD PROCESS 
#rlefine ACCOUNTING 
#r!efine UTMAXTYPE 

2 

3 
4 
5 
6 
7 
8 
9 
ACCOUNTING 

1* The exit status of a process 
* marked as DEAD PROCESS. II 

1* time entry was-marie *1 

1* Process spawned by "init" II 
1* A "getty" process waiting for lOf 
1* A user process *1 

1* Largest legal value of ut_type *. 

1* Special strings or formats used in the "ut line" fielr! when *1 
1* accounting for something other than a process. *1 
1* No string for the ut line field can be more than 11 chars + *1 
1* a NULL in length. *7 
fldefine RUNLVL MSG "run..,..level %c" 
#define BOOT MSG "system boot" 
fldefine OT IME MSG "old time" 
#define NTIME MSG "new time" 

lusr/include/utmp.h 

1 ~ Printed 6 1985 



UTMP(4) 

/etc/utmp 
/etc/wtmp 

SEE ALSO 
login(1), who(1), write(1), getut(3C). 

UTMP(4) 

Printed 6 1985 



.. 
INTRO(S) INTRO(S) 

NAME 
intro - introrluction to miscellaneous facilities 

DESCRIPtION 
This section rlescribes facilities such as formatting docu-
mentation and setting the terminal environment. It also 
contains descriptions of various character set tables, flag 
values, anrl user-accessible data types. 

..,. 1 ..,.. Pr in ted 6 198'3 



ASCII(S) ASCII(5) 

NAME 
a sc i i .,.. map of ASCII character se t 

SYNOPSIS 
oat /usr/pub/ascii 

DESCRIPTION 
Ascii is a map of the ASCII character set, giving both octal 
and hexadecimal equivalents of e ac h character, to be printed 
as needed. It contains: 

000 nul 001 soh 1002 stx 003 etx 004 eot 1005 enq 1006 ao k 1007 bel 
010 bs 011 ht '012 nl 013 vt 014 np 1015 or 1016 so 1017 si 
020 dIe 021 d01 022 d02 023 d03 024 dc4 1025 nak 1026 syn 1027 etb 
030 oan 031 em 032 sub 033 esc 034 fs 1035 gs 1036 rs 1037 us 
040 sp 041 042 H 043 II 044 $ :045 ~ 1046 & :047 , 
050 ( 051 ) 052 * 053 + 054 '055 or :056 1057 / , 
060 0 061 1 062 2 063 3 064 4 065 5 :066 6 :067 7 
070 8 071 9 072 073 074 < 075 = 1076 > 077 ? 
100 @ 101 A \102 B 103 C 104 D 105 E : 106 F 107 G 
11 0 H 111 I : 11 2 J 11 3 K 11 4 L 115 M : 11 6 N 11 7 0 

1120 P 121 Q : 122 R 123 S 124 T 125 U : 126 V 127 W 
1130 X 1 31 y 1132 Z 133 [ 134 \ 1 35 ] : 136 

,.. 
137 

\140 " 1 41 I 142 b 143 a c 144 d 1 45 e I 146 f 147 g 

1150 h 151 i : 152 j 153 k 154 I 155 m 1156 n 157 0 
1160 p 1 61 q 1162 r 163 s 164 t 165 u 1166 v 167 w 
1170 x 171 y 1172 z 173 { 174 175 } 1176 - 177 del 

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 aok 07 bel 
08 bs 09 ht Oa nl Ob vt 00 np Od or Oe so Of si 
10 dIe 1 1 d01 12 dc2 1 3 dc3 1 4 dc4 1 5 nak 16 syn 17 etb 
1 8 oan 1 9 em 1a sub 1 b eso 10 fs 1 d gs 1e rs 1f us 
20 sp 21 ! 22 tI 23 , 24 $ 25 % 26 & 27 , 
28 ( 29 ) .2a • 2b + 20 , 2d ..,. 2e . 2f / 
30 0 31 1 I 32 2 33 3 34 4 35 5 36 6 37 7 
38 8 39 9 3a 3b 30 < 3d = 3e > 3f ? 
40 @ 41 A 42 B 43 C 44 D 

, 45 E 46 F 47 G 
48 H 49 I 4a J 4b K 40 L 4d M 4e N I 4f 0 
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W I 

I 

58 X 59 y 5a Z 5b [ 50 \ 5d ] 5e 
,.. 

5f 
60 " 61 63 64 66 67 -a 62 b 0 d 65 e f g 
68 h 69 i 6a j 6b k 6c 1 6d m 6e n 6f 0 

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w 
78 x 79 y 7a z 7b { 70 7d } 7e - 7f del 

FILES 
/usr/pub/ascii 

.,.. 1 .,... Printed 61985 



~NVI~ON(5) ENVIRON(S) 

NAME 
environ ~ user environment 

DESCRIPTION 
An array of strings called the ...... environment" is made 
available by exec(2) when a process begins. By convention, 
these strings have the form name=value. The following names 
are used by various commands:--- -----

PATH The sequence of directory prefixes that commands such 
as sh(1), time(1), nice(1), and nohup(1) apply in 
searching for-a-file known by an incomplete pathname. 
The prefixes are separated by colons (:). Login(l) 
sets PATH::/bin:/usr/bin. 

HOME Name of the user's login directory, set by login(1) 
from the pa ssword fi 1 e pa sswd (4) • 

TERM The kind of terminal for which output is to be 
prepared. This information is used by commands such as 
mm(1), vi(1), and tplot(lG), which may exploit special 
capabilities of the~erminal. 

TZ Time zone information. The format is xxxnzzz where xxx 
is the standard local time zone abbreviation, n is the 
difference in hours from GMT, anrl zzz is the abbrevia~ 
tion for the daylight-saving local time zone, if any; 
for example, EST5EDT. 

Further names may be placed in the environment by the export 
command and name=value arguments in she 1), or by exec(2). 
It is unwise tOCOnflict with certain shell variables-that 
are frequently exported by .profile files, e.g., MAIL, PS1, 
PS2, IFS. 

SEE ALSO 
env( 1), login( 1), she 1), exec(2), getenv(3C), profile(4). 
term(S). 

..,.. 1 ... Pr in terl 6 1985 



FCNTL(5) FCNTL(S) 

NAME 
fcntl - file control options 

SYNOPSIS 
'include <fcntl.h> 

DESCRIPTION 
The fcntl(2) function provides for control over open files. 
This #include file describes requests and arguments to 
fcntl(2) ann op~(2). 

II Flag values accessible to open(2) ann fcntl(2) II 
II (The first three can only be set by open) II 
ildefine 0 RDONLY 0 -#define 0 WRONLY 1 -#define 0 RDWR 2 -#define 0 NDELAY 04 II Non..,..blocking I/O II -IIdefine 0 APPEND 010 II append (writes guaranteerl -
II Flag values accessible only to open(2) II 

at the end) II 

#define 0 CREAT 00400 II open with file create (uses third open a-
#define 0 TRUNe 01000 II open with truncation II 
IIdefine 0 EXCL 02000 II exclusive open II 

II fcntl(2) requests II 
#define F DUPFD 0 II Duplicate fi Id es II -IIdefine F GETFD 1 II Get fildes flags II -IIdefine F SETFD 2 II Set fi 1 des flags II -lidefine- F GETFL 3 II Get file flag s II -IIdefine F SETFL 4 II Set file fl ag s II 

SEE ALSO 
fcntl(2) , open(2) • 

• 
..... 1 .... Printed 6 1985 



GREEK(5) GREEK(S) 

NAME 
greek ~ graphics for the extended TTY~37 type~box 

SYNOPSIS 
cat /usr/pub/greek [ greek ~Tterminal ] 

DESCRIPTION 

FILES 

Greek ~ives the mapping from ASCII to the "shift~out" 
graphics in effect between SO and 51 on TELETYPE(Reg.) Model 
37 terminals equipped with a 128~character type~box. These 
are the default greek characters produced by nroff. The 
filters of greek(1) attempt to print them on various other 
terminals. T~e file contains: 

al pha A A beta B B gamma \ \ 
GAHHA G G delta D D DELTA W VI 
epsilon S S zeta Q Q eta N N 
THETA 0 T theta T 0 lambrla L L 
LAHBDA E E mu M M nu @ @ 

xi X X pi J J PI P P 
rho K K si gm a Y Y SIGMA R R 
tau I I phi U U PH I F F 
psi V V PSI H H omega C C 
OMEGA Z Z nabla [ [ no t 
partial ] ] integral 

/usr/pub/greek 

SEE ALSO 
300(1), 4014(1), 450(1), greek( 1), hp(1), tc(1), nroff( 1). 

Printed 6 1985 



MANeS) MAN(S) 

NAME 
man - macros for formatting entries in this manual 

SYNOPSIS 
nroff -man files 

troff -man [ -rs 1 ] fi I es 

DESCRIPTION 
These troff(1) macros are used to layout the format of the 
entrieS--or this manual. A skeleton entry may be founo in 
the file /usr/man/u man/manO/skeleton. These macros are 
used by the ~(1) command. 

The default page size is 8.5"x11", with a 6.5"x10" text 
area; the -rs1 option reduces these dimensions to 6"x9" ann 
4.75"x8.375", respectively; this option, whi'~h is not effec
tive in nroff(1), also reduces the default type size from 
10-point to 9-point and the vertical line spacing from 12-
point to 10-point. The -rV2 option may be used to set cer
tain parameters to values appropriate for certain Versatec 
printers: it sets the line length to 82 characters and the 
page length to 84 lines, and it inhibits unnerlining; this 
option should not be confused with the .-Tvp option of the 
man(1) command, which is available at some UNIX System 
Site s .. 

Any text argument below may be one to six" words". Double 
quotes--("") must be used to include blanks in a "word". 
If text is empty, the special treatment is applied to the 
nex~ne that contains text to be printed. For example, .I 
may be used to italicize a whole line, or ~SM followed by .B 
to make small bold text. By default, hyphenation is turned 
off for nroff but remains on for troff. ---
Type font and size are reset to default values before each 
paragraph and after processing font-setting and size-setting 
macros, e.g., .I, .RB, .SH. Tab stops are neither used nor 
set by any macro except .DT and .TH. 

Default units for indents (in) are ens. When a macro is 
given without the in argument, the previous indent is used. 
The "remembered" in7f'ent is set to its default value by the 
.TH,.P,.SH,and .SS macros. This value is 7.2 ens in !££ff 
ann 5 ens in nroff; both are equal to 0.5 inches in the 
default page-size. This means that within each subheading 
section (SYNOPSIS, DESCRIPTION, etc.) the default left mar
gin is 0.5 inches to the right of the page offset (i.e., 
normal left margin) of the page. If the entire page width 
is needed (e.g., to format a large table) t use .1n alone on 
a line to override the default indented margin. 

- 1 - Printed 61985 



• MAN(S) MAN(S) 

Each macro description below i~cludes the effect on indenta
tion, as applicable. 

.TH t s c n 

.SH text 

. ss text 

• B text 
.I te!..!: 
• SM text 

.RI a b 

.P 

• HP in 

.TP in 

.IP t in 

.RS in 

Set the title and entry heading; t is the 
title, S is the section number, c is extra com
mentary: e.g., "local", n is new manual name. 
Invokps .DT (see below). 
Place subhead text, e.g., SYNOPSIS, here. The 
text lines that-follow the heading are block
style paragraphs; the whole block is indented 
0.5 inc he S • 

Place sub-subhead ~!, e.g., Options, here • 
The text lines that follow the heading are 
block-style paragraphs; the whole block is 
indented 0.5 inches. 
Make text bolrl • 
Make text italic • 
Make text 1 point smaller than default point 
size. 
Concatenate roman a with italic b, anrl alter
nate these two fonts for up to-six arguments. 
~imilar macros alternate between any two of 
roman, i.talic, and bold: 

.IR .RB .BR .IB .B1 
Skip one vertical space anrl begin a paragraph 
with normal font, point size, anrl indent (0.5 
inches). .PP has the same effect as .P • 
Skip one vertical space and begin a paragraph 
with a hanging indent. The first line of the 
paragraph will be indented the default 0.5 
inches from the page offset. The other lines 
will be indented the additional number of ens 
specified by in. 
Skip one vertical space and begin indented 
paragraph with hanging tag. The next line that 
contains text to be printed is taken as the 
tag. The indentation from the beginning of the 
tag to the beginning of the paragraph is speci
fied by the in argument. If the tag does not 
fit, i.t is printed on a separate line. Format 
within the paragraph can be controlled by USing 
the nroff commanrls .• br anrl .nf (refer to the 
Document Processing Guide). 
Same as .TP in with tag t; often used to get an 
indented paragraph without a tag. 
Increase indentation relative to the current 
margin. If given without an argument, the text 
following the macro will be indented 0.5 
inches. The .RS macro does not cause a verti
cal space to be inserted before the following 
output. Use .sp on the line before the .RS 
line to obtain this space. If an in argument 

- 2 - Printed 6 1985 



MAN(5) 

.RE k 

• PM m 

• DT 

• PD v 

MAN(5) 

is given, the .RS macro will inrlent the follow
ing output in units from the current left mar
gin. 
Return to the kth relative inrlent level (ini
tially, ~=1; ~;o is equivalent to ~=1); if ~ is 
omitted, return to the most recent lower inrlent 
level •• RS/.RE pairs can be nested • 
Produces proprietary markings; where ~ may be P 
for PRIVATE, N for NOTICE, BP for BELL LABORA
TORIES PROPRIETARY, or BR for BELL LABORATORIES 
RESTRICTED. 
Restore default tab settings (every 7.2 ens in 
troff, 5 ens in nroff) • 
Set the interparagraph rlistance to ~ vertical 
spaces. If v is omitted, set the interpara
graph rlistance-to the default value (O.4v in 
troff, 1v in nroff). 

The following strings are definerl: 

\*R 

\-S 
\-(Tm 

"(Reg.)" in nroff(1), "Registered" 
in troff( 1). 
Change to rlefault type size. 
Trademark indicator. 

symbol 

The following ~~ £~giste~ are given rlefault values by 
.TH: 

IN 

LL 
PD 

WARNINGS 

Left margin indent relative 
(default is 7.2 ens in troff, 5 
Line length inclurling IN. 
Current interparagraph distance. 

to subheads 
ens in 12roff). 

In arldition to the macros, strings, and number register~ 

mentionerl above, there are defined a number of internal mac
ros, strings, and number registers. Except for names prede
fined by troff and number registers d, m, and y, all such 
internal name~re of the form XA, where X is one of ), ], 
anrl }, and ~ stands for any alp~numeric ~haracter. 

If a manual entry needs to be preprocessed by ~(1), ~(1) 
(or neqn), and/or tbl( 1), it must begin with a. special line 
(described in man(1TT: causing the man command to invoke the 
appropriate preprocessor(s). 

The programs that prepare the Table of Contents ano the Per
muted Index for the User's Manual and Administrator's Manual 
assume the NAME section of each entry consists of a single 
linp. of input that has the following format: 

name[, name, name ••• J \- explanatory text 

- 3 - Printed 61985 



MAN(S) HANeS) 

FILES 

To eliminate ambiguity, the macro package increases the 
inter-word spaces in the SYNOPSIS section of each entry. 

The macro package itself uses only the roman font (so that 
one can replace, for example, the bold font by the 
constant-width font-see cw(1». Of course, if the input 
text of an entry contains requests for other fonts (e.g., 
.I, .RS, \fI), the corresponding fonts must be mounted. If 
a single word or short phrase needs to be italicized or 
emboldened, the following usage can be placed within a line, 
rather than creating a separate .B or .I line: \fItext\fR. 

Nroff and troff formatting commands and macros are described 
in the Document Processing Guide. 

/usr/lib/tmac/tmac.an 
/usr/lib/macros!cmp.[nt].[dt].an 
/usr/lib/macros/ucmp.[nt].an 
/usr/man![ua] man/manO/skeleton 

SEE ALSO 

BUGS 

mane 1), nroff( 1), troff( 1) • 

When using the macros to alternate fonts (e.g., .RB, 
quotation marks must be used to maintain spacing. For 
pIe, .IR filename produces filename as one word. .IR 
" name produces it as two words. 

• I R ) , 
exam
"fi 1 e 

- 4 - Printed 6 1985 



MM{S) HMCS) 

NAME 
mm ~ the MM macro package for formatting documents 

SYNOPSIS 
mm [ options ] [ files ] 

nroff ..,.mm [ options ] fi 1 es ] 

nroff -em [ options J [ fi 1 es ] 

mmt [ options ] [ fi 1 es ] 

troff ..,.mm [ options J [ fi 1 es ] 

troff ..,.em [ options ] [ files ] 

DESCRIPTION 

FILES 

This package provides a formatting capability for a wide 
variety of documents. The manner in which a document is 
typed and edited is essentially independent of whether the 
document is to be eventually formatted at a terminal or pho~ 
totypeset. See the references below for further details. 

The ..,.mm option causes nroff(1) and troff(1) to use the non~ 

compacted version of the macro package:-while the -em option 
results in the use of the compacted version, thus speeding 
up the process of loading the macro package. 

lusr/lib/tmac/tmac.m 

lusr/lib/macros/mm[ntJ 

lusr/lib/macros/cmp.[ntJ.[dtJ.m 

lusr/lib/macros/ucmp.[ntJ.m 

pOinter to the non~ 

compacted version of the 
package 
non-compacted version of 
the package 
compacted version of the 
package 
initializers for the com
pacted version of the 
package 

SEE ALSO 
mm(1), mmt(1), nroff(1), troff(1). 

Document Processing Quirle. 
M M.,.. M e m 0 ran d urn Mac r 0 s by D. W. Sm i t han d J. R. Mas hey. 
TYp~-oocumen~with ~ by D. W. Smith and E. M. Piskorik • 

.. 
... 1 .... Pr in ted 6 198'5 



MOSO(S) MOSD(S) 

NAME 
mosd ~ the OSDD arlapter macro package for formatting docu~ 

men t s 

SYNOPSIS 
osdd [ options] [ files] 

mm -mo~d [ options] [ files] 

nroff -mm -mosd [ options] [ files] 

nroff -om ..,.mosd [ options] [ files] 

mmt -mosd [ options] [ files] 

troff -mm -mosd [ options fi 1 e s ] 

troff -om ..,.mosd [ options ] [ files ] 

DESCRIPTION 
The OSDD adaptAr macro package is a tool used in conjunction 
with the mm(1) macro package to prepare Operations Systems 
Deliverable-oocumentation. Many of the OSDD Standards are 
different than the default format provided by rom(1). The 
OSDD adapter package sets the appropriate mm(1) options for 
automatic production of the OSDD Standards. The OSDD 
adapter package also generates the correct OSDD page headers 
and footers, heading styles, Table of Contents format, etc. 

OSDD document (input) files are prepared with the mm(1) mac~ 
rose Additional information which must be given at the 
beginning of the document file is specified by the following 
string definitions: 

.ds H1 document-number 

.ds H? section~number 

.ds H3 issue~number 

.ds H4 date 

.ds H5 rating 

The document-number should be of the standard 10~character ----format. The words ...... Section" and ...... Issue" should not be 
included in the string definitions; they will be supplied 
automatically when the document is printed. For example, 

.ds H1 OPA-1P135-01 

.ds H2 4 
• d s H3 2 

automatically produces 
OPA ..... 1P135-01 
Section 4 
Issue 2 

as the document page header. Quotation marks are not used 
in string definitions. 

... 1 ..... Printed 6 198'5 



MOSD(S) MOSD(S) 

If certain information is not to be included 
header, the string is defined as null; e.g., 

in a page 

• d s H2 
means that there is no section~number. 

The OSDD Standards require that the 
numbered beginning with Page'. By 
of text will be numbered Page~. If 

Table of Contents be 
rlefault-,-the first page 
the Table of Contents 

has more than one page, for example ~, either ~rP~+l must be 
included as a command line option or .nr P n must be 
included in the document file. For example, if the Table of 
Contents is four pages, use -rPS on the command line or 
.nr P 4 in the document file. 

The OSDD Standards require that certain information such as 
the document rating appear on the Document Index or on the 
Table of Contents page if there is no index. Bydefault, it 
TS---assumed---that an index has been prepared separately. If 
there is no index, the following must be included in the 
document file: 

• n r Di 0 
This will ensure that the necessary information is included 
on the Table £i Contents page. 

The OSDD Standards require that all numbered figures be 
placed at the end of the document. The .Fg macro is used to 
produce full page figures. This macro produces a blank page 
with the appropriate header, footer, and figure caption. 
Insertion of the actual figure on the page is a manual 
operation. The macro usage is 

.Fg page~count "figure caption" 
where page-count is the number of pages required for a 
multi-page figure (default 1 page). 

Figure captions are produced by the .Fg macro using the 
.BS/.BE macros; therefore, the .BS/.BE macros are not avail~ 
able for users. The .Fg macro cannot be used within the 
document unless the final .Fg in a series of figures is fol~ 
lowed by a .SK macro to force out the last figure page. 

The Table of Contents for OSDD documents (see Figure 4 in 
Section 4.-'-of the OSDD Standards) is produced with: 

• Tc 
System Type 
System Name 
Document Type 
• Td 

The .Tc/.Td macros are used instead of the 
~ (1) • 

.TC macro from 

By default, the adapter package causes the NOTICE disclosute 
statement to be printed. The .PM macro may be used to 
suppress the NOTICE or to replace it with the PRIVATE dis~ 
closure statement as follows: 

~ 2 .... Printed 6 1985 



/ 

/ 

MOSD(5) MOSD(5) 

FILES 

.PM 

.PM P 
• PM N 

none pr in ted 
PRIVATE printeo 
NOTICE printed (default) 

The .P macro is used for paragraphs. The Np register is set 
automatically to indicate the paragraph numbering style'. It 
is very important that the .P macro be used correctly. All 
paragraphs (including those immediately following a .H 
macro) must use a .P macro. Unless there is a .P macro, 
there will not be a number generated for the paragraph. 
Similarly, the .P macro should not be used for text which is 
not a paragraph. The .SP macro may be appropriate for these 
cases, e.g., for ...... paragraphs" within a list item. 

The page header format is produced automatically in accor~ 

dance with the OSDD Standards. The OSDD Adapter macro pack~ 

age uses the .TP macro for this purpose. Therefore the .TP 
macro normally available in ~(1) is not available for 
us er s • 

lusr/lib/tmac/tmac.osd 

SEE ALSO 
mm(1), mmt(1), nroff(1), troff(1), mm(5). 
MM~Memorandum Macros by D. W. Smith and J. R. Mashey. 
Q.E.erations Systems Deliverable Documentation Standards, June 
1980, • 

_ J _ Printpn f\ 1QAC::; 



MPTX(S) 

NAME 
mptx - the macro package for formatting a permuted index 

SYNOPSIS 
nroff comptx options ] fi 1 e s ] 

troff comptx options] [ files 

DESCRIPTION 

FILES 

This package provides a rlefinition for the .xx macro used 
for formatt,ing a permuted inrlex as produced by .E.!..!( 1). This 
package does not provide any other formatting capabilities 
such as headers and footers. If these or other capabilities 
are required, the mptx macro package may be used in conjunc~ 
tion with the mm(~acro package. In this case, the -mptx 
option must be invoked ~ter the -mm call. For example: 

nroff -cm -mptx file 
or 

mm .... mptx fi~ 

lusr/lib/tmac/tmac.ptx 

lusr/lib/macros/ptx 

pointer to the non-compacted ver~ 

sion of the package 
non~compacted version of the pack~ 

age 

SEE ALSO 
mm(1), nroff(1), ptx(1), troff(1), mm(5). 

Printed 6 1985 



/ 

MV(S) 

NAME 

MV(~) 

mv - a troff macro package for typesetting viewgraphs and 
slirles 

SYNOPSIS 
mvt [ -a ] [ options] [ files] 

troff [ -a ] [ -rX1 ] -my [ options] [ files] 

DESCRIPTION 
viewgraphs ann projec

A few macros (briefly 
the formatting tasks 
All the facilities of 

are available for more 

This package makes it easy to typeset 
tion slides in a variety of sizes. 
rlescribed below) accomplish most of 
neerlerl in making transparencies. 
i:.roff(1), cw(l), eqn(1), ann tbl(1) 
difficult tasks. -- --

The output can be previewed on most terminals (in particu
lar, the Tekt~onix 4014) and on the Versatec printer. For 
these two rlevices, specify the -rX1 option (this option is 
automatically specifien by the mvt commanrl when that commanrl 
is invoken with the -T4014 or -Tvp options; see mmt(1)). To 
preview output on other terminals, specify the -a option. 

The available macros are: 

.VS en] [i] [n] Foil-start macro; foil size is to be 
7"x7"; ~ is the foil number, ! is the 
foil identification, ~ is the date; the 
foil-start macro resets all parameters 
(e.g., indent, pOint size) to initial 
default values, except for the values 
of ! and ~ arguments inherited from a 
previous foil-start macro; it also 
invokes the .A macro (see below). 

The naming convention for this ann the 
following 8 macros is that the first 
character of the name (V or S) rlistin
guishes between viewgraphs anrl slides, 
while the seconrl character indicates 
whether the foil is square (S), small 
wide (w), small high (h), big wide (W), 
or big high (H). Slides are narrower 
than the corresponding viewgraphs: the 
ratio of the longer dimension to the 
shorter one is larger for slirles than 
for viewgraphs. As a result, slide 
foils can be userl for viewgraphs, but 
not vice versa; on the other hand, 
viewgraphs can accommorlate a bit more 
text. 

- 1 - Printed 6 1985 



MV(S) 

• Vw [n] [i] [ d ] 

• Vh en] [i] [,9.] 

• VW [n] [i ] [.9.] 

• VH En] [i] Ed] 

• Sw [n] [i] [ d ] 

• Sh En] [i] [,9.] 

• SW [nJ [iJ [E.J 

• SH [n] [i] Ed] 

• A [x] 

• B [m [s] ] 

.C [m [s] ] 

• D [m [s] ] 

.I [in] [a [x] ] 

HV(S) 

Same as .VS, except that foil size is 
7" wide x 5" high • 
Same as .VS, except that foil size is 
5 ' , x7 ' , • 
Same as .VS, except that foil size is 
7"x5.4" • 
Same as .VS, except that foil size is 
7 ' , x9 ' , • 
Same as .VS, except that foil sizp. is 
7 ' , x5 ' , • 
Same as .VS, except that foil size is 
5 ' , x 7 ' , • 
Same as .VS, except that foil size is 
7"x5.4" • 
Same as .VS, except that foil size is 
7"x9" • 
Place text that follows at the first 
indentation level (left margin); the 
presence of x suppresses the 1/2 line 
spacing from the preceding text • 
Place text that follows at the second 
indentation level; text is preceded by 
a mark; m is the mark (default is a 
large bullet); s is the increment or 
decrement to the pOint sizp. of the mark 
with respect to the erevailing point 
size (default is 0); if s is 100, it 
causes the pOint size of the mark to be 
the same as that of the default mark. ----Same as .B, but for the third indenta-
tion level; default mark is a dash • 
Same as .B, but for the fourth indenta
tion level; default mark is a small 
bullet. 
String is printed as an over-sizp., cen
teredtitle. 
Change the current text indent (does 
not affect titles); in is the indent 
(in inches unless dimensioned, default 
is 0); if in is Signed, it is an incre
ment or decrement; the presence of a 
invokes the • A macro (see below) and 
passes x (if any) to it. 
Set the point size and line length; £ 
is the point size (default is previ
ous"); if .E is 100, the point size 
reverts to the initial default for the 
current foil-start macro; if ~ is 
signed, it is an increment or decrement 
(default is 18 for .VS, .VH, and .SH, 
and 14 for the other foil-start mac
ros); 1 is the line length (in inches 

- 2 - Pr in ted t6 198'5 



MV(S) 

• OF n f [n f ••• ] 

.DV [a] [b] [c] [d] 

.U strl [str~] 

MV(5) 

unless dimensioned; default is 4.2" 
for .Vh, 3.8" for .Sh, 5" for .SH, 
and 6" for the other foil-start mac
r 0 s) • 
Define font positions; may not appear 
within a foil's input text (i.e., it 
may only appear after all the input 
text for a foil, but before the next 
foil-start macro); n is the position of 
font f; up to 4 ,"" n f" pairs may be 
specified; the first font named becomes 
the prevailing font; the initial set
ting is (H is a synonym for G): 

.DF 1 H 2 I 3 B 4 S 
Alter the vertical spacing between 
indentation levels; a is the spacing 
for .A, b is for .B, c is for .. C, and Ii 
is for :D; all non-null arguments must 
be dimensioned; null arguments leave 
the corresponding spacing unaffected; 
initial setting is: 

.DV .5v .5v .5v Ov 
Underline strl and concatenate str2 (if 
any) to it:--

The last 4 macros in the above list do not cause a break; 
the .I macro causes a break only if it is invoked with more 
than one argument; all the other macros cause a break. 

The macro package also recognizes the following upper-case 
synonyms for the corresponding lower-case troff requests: 

.AD .BR .CE .FI .HY .NA .NF .NH---.NX .SO .SP 
.TA .TI 

The Tm string produces the trademark symbol. 

The input tilde (-) character is translated into a blank on 
output. 

See the references cited below for further details. 

FILES 
lusr/lib/tmac/tmac.v 
lusr/lib/macros/vmca 

SEE ALSO 

BUGS 

cw(1), eqn(1), mmt(l), tbl(l), troff(1). 
Document Processing Guide. 

A Macro Package for View-Graphs and Slides by T. A. Dolotta 
and D. W. Smith.---

- 3 - Printed 6 1985 



MV(S) MV(5) 

The .VW and .SW foils are meant to be 9" wide by 7" high, 
but because the typesetter paper is generally only 8" wirle, 
they are printed 7" wide by 5.4" higt and have to be 
enlarged by a factor of 9/7 before use as viewgraphs; this 
makes them less useful. 

- 4 - Printed 6 1985 



., 
REGEXP(S) R!IJ!XP(5) 

NAME 
regexp - regular expression compile ann match routines 

SYNOPSIS 
Idefine INIT <declarations> 
'define GETC() <getc code> 
'define PEEKC() <peekc code> 
#define UNGETC(c) <ungetc code> 
'define RETURN(pointer) <return corle> 
'define ERROR(val) <error code> 

'include <regexp.h> 

char *compile(instring, expbuf, endbuf, eof) 
char *instring, *expbuf, *endbuf 

int step(string, expbuf) 
char *string, *expbuf; 

DESCRIPTION 
This page describes general purpose regular expression 
matching routines in the form of ed( 1), defined in 
lusr/include/regexp.h. Programs such as ed(1), sed(1), 
g rep ( 1 ), b s ( 1 ), and e x p r ( 1 ), w h i c h per for m ~ g u 1 a r ;Xp res -
sion matching, use thiS-source file. Therefore, only the 
regexp file need be changed to maintain regular expression 
compatibility. 

The interface to this file is unpleasantly complex. Pro
grams that include this file must have the following 5 mac
ros declared before the linclude (regexp.h> statement. 
These macros are used by the compile routine. 

GETC() 

PEEKC() 

UNGETC(c) 

Return the value of the next character 
in the regular expression pattern. Suc
cessive calls to GETC() should return 
successive characters of the regular 
ex pr e s s ion. 

Return the next character in the regular 
expression. Successive calls to PEEKC() 
should return the same character (which 
should also be the next character 
returned by GETC(». 

Cause the argument ~ to be returned by 
the n ext call to GET C() ( and PEE K C ( ) ) • 
No more that one character of pushback 
is ever needed and this character is 
guaranteed to be the last character read 
by GETC(). The value of the maCro 
UNGETC(c) is always ignored. 

- 1 - Printed 6 1985 



REGEXP(S) 

RETURN(poi~ter) 

ERROR(val) 

ERROR 
1 1 
1 6 
25 
36 
41 
42 
43 
44 
45 
46 
49 
50 

REGEXP(S) 

This macro is used on normal exit of the 
compile routi~e. The value of the argu
ment poi~ter is a pointer to tr.e charac
ter after the last character of the com
piled regular expression. This is use
ful to programs which have memory allo
cation to manage. 

This is the abnormal return from the 
compile routine. The argument val is an 
error number (see table below for- mean
ings). This call should never return. 

MEANING 
Range endpoint too large. 
Bad number. 
"\digit" out of range. 
Illegal or missing delimiter. 
No remembered search string. 
\( \) imbalance. 
Too many \(. 
More than 2 numbers given in \{ \}. 
} expected after \. 
First number exceeds second in \{ \}. 
[ ] imbalance. 
Regular expression overflow. 

The syntax of the compile routine is as follows: 

compile(instring, expbuf, endbuf, eof) 

The first parameter instring is never used explicitly by the 
compile routine but is useful for programs that pass down 
different pointers to input characters. It is sometimes 
used in the. INIT declaration (see below). Programs which 
call functions to input characters or have characters in an 
external array can pass down a value of «char *) 0) for 
this parameter. 

The parameter eXEbuf is a character pointer. It paints to 
the place where the compiled regular expression will be 
placed. 

The parameter endbuf is one more than the highest address 
where the compiled regular expression may be placed. If the 
compiled expression cannot fit in (endbuf-expbuf) bytes, a 
call to ERROR(50) is made. 

The parameter eof is the character that marks the end of the 
regular expression. For example, in ~(1), this character 
is usually a I. 

- 2 - Printed 6 1985 



REGEXP(S) REGEXP(S) 

Each program that includes this file must have a 'define 
statement for INIT. This definition will be placed right 
after the declaration for the function compile and the open
ing curly brace ({). It is used for dependent declarations 
and initializations. Most often it is used to set a regis
ter variable to point the beginning of the regular expres
sion so that this register variable can be used in the 
declarations for GETC(), PEEKC() and UNGETC(). Otherwise it 
can be used to declare external variables that might be used 
by GETC(), PEEKC() and UNGETC(). See the example below of 
the declarations taken from grep(1). 

There are other functions in this file which perform actual 
regular expression matching, one of which is the function 
step. The call to step is as follows: 

step(string, expbuf) 

The first parameter to step is a pointer to a string of 
characters to be checked for a match. This string should be 
null terminated. 

The second parameter expbuf is the compiled regular expres
sion which was obtained by a call of the function compile. 

The function ~E returns one, if the given string matches 
the regular expression, and zero, if the expressions do not 
match. If there is a match, two external character pOinters 
are set as a side effect to the call to step. The variable 
set in step is 10c1. This is a pOinter to-the first charac
ter tha~atche~the regular expression. The variable 10c2, 
which is set by the function advance, points to the charac
ter after the last character that matches the regular 
expression. Thus, if the regular expression matches the 
entire line, 10c1 will point to the first character of 
string and ~c2 will point to the null at the end of ~ring. 

Step uses the external variable circf which is set by com
pile if the regular expression-begins with~. If thiS-is 
set, step will only try to match the regular expression to 
the beginning of the string. If more than one regular 
expression is to be compiled before the first is executed 
the value of circf should be saved for each compiled expres
sion and circf should be set to that saved value before each 
call to s t e p • 

The function adv~~ is called from step with the same argu
ments as step. The purpose of step is to step through the 
string argument and call advance;-. ste£ continues until 
advance returns a one indicating a match or until the end of 
stri~& is reached. If one wants to constrain string to the 
beginning of the line in all cases, step need not be called; 

- 3 - Printed 61985 



REGEXP(S) REGEXP(S) 

simply call advanc~. 

When advance encounters a I or \{ \} sequpnce in the regular 
expression, it will advance its pOinter to the string to be 
matchen as far as possible and will recursively call itself 
trying to match the rest of the string to the rest of the 
regular expression. As long as there is no match, advance 
will back up along the string until it finds a match-or 
reaches the pOint in the string that initially matched the' 
or \{ \}. It is sometimes desirable to stop this backing up 
before the initial point in ~he string is reached. If the 
external character pOinter locs is equal to the point in the 
string at sometime during t~acking up process, advance 
will break out of the loop that backs up and will return 
zero. This is used by ~(1) and sed(1) for substitutions 
done globally (not just the first occurrence, but the whole 
line); for example, expressions like s/y'llg no not loop 
forever. 

The routines ecmp and getrange are trivial and are called by 
the routines previously mentioned. 

EXAMPLES 

FILES 

The following is an example of how the regular expression 
macros a~n calls look from ~~(1): 

#define INIT register char *sp = instring; 
#define GETC() (*sp++) 
#define PEEKC() (*sp) 
#define UNGETC(c) (--sp) 
#define RETURN(c) return; 
#nefine ERROR(c) regerr() 

#include <regexp.h) 

compile(*argv, expbuf, &expbuf[ESIZE], '\0'); 

if(step(linebuf, expbuf» 
succeed(); 

lusr/include/regexp.h 

SEE ALSO 

BUGS 

ed(1), grep(1), sed(1). 

The routine ecmp is equivalent to the Standard 1/0 routine 
strncmp and should be replaced by that routine. 

- 4 - Printed ~ 1985 



TERM(S) TERM'S) 

NAME 
term ~ conventional names for terminals 

DESCRIPTION 
The names in this file are used by certain commanrls (e.g., 
nroff, mm (1), mane 1), tabs( 1» and are maintained as part of 
~-sheIl environment (see sh(1), profile(4), and 
environ(5» in the variable $TERM:--

1520 
155 
1 620 
1620..,..12 
165 
2621 
2631 
2631..,..c 
2631"""e 
2640 
2645 
300 
3°0..,.12 
3005 
382 
300s .... 12 
3045 
33 
37 
40..,.2 
40.,..4 
4540 
3270 
4000a 
4014 
43 
450 
450 .... 12 
735 
745 
dumb 

sync 

hp 
lp 
tn1200 
tn300 
tvi950 

Datamedia 1520 
Motorola EXORterm 155 
Diablo 1620 and others using the HyType II printer 
same, in 12 .... pitch mode 
Motorola EXORset 165 
Hewlett~Packard HP2621 series 
Hewlett-Packard 2631 line printer 
Hewlett..,..Packard 2631 line printer - compressed mode 
Hewlett~Packard 2631 line printer .... expanded mode 
Hewlett..,.Packard HP2640 series 
Hewlett-Packard HP264n series (other than the 2640 series) 
DASI/DTC/GSI 300 and others using the HyType I printer 
same, in 12 .... pitch mode 
DASI/DTC/GSI 300s 
DTC 382 
same, in 12.,.pitch mode 
Datamedia 3045 
TELETYPE(Reg.) Terminal Model 33 KSR 
TELETYPE Terminal Model 37 KSR 
TELETYPE Terminal Model 40/2 
TELETYPE Terminal Model 40/4 
TELETYPE Terminal Model 4540 
IBH Model 3270 
Trendata 4000a 
Tektronix 4014 
TELETYPE Model 43 KSR 
DASI 450 (same as Diablo 1620) 
same, in 12-pitch mode 
Texas Instruments TI735 and TI725 
Texas Instruments TI745 
generic name for terminals that lack reverse 
line .... feed and other special escape sequences 
generic name for synchronous TELETYPE 
4540 .... compatible terminals 
Hewlett..,.Packard (same as 2645) 
generic name for a line printer 
General Electric TermiNet 1200 
General Electric TermiNet 300 
TeleVideo 950 

Local changes to this list are common. Refer to 
I@to/t@rmolp for info~~ation on terminals supported for your 
system. 

.... 1 .,.. Printed 6 1985 



TERM(S) TERM(5) 

Up to 8 characters, chosen from [~a~zO~9], make up a 
terminal name. Terminal sub~rnodels ann operational 
are nistinguished by suffixes beginning with a -. 
shouln be based on original vendors, rather than local 
tributors. A terminal acquiren from one vennor shouln 
have more than one distinct basic name. 

basic 
modes 
Names 
dis~ 

not 

Commanns whose behavior depends on the type of terminal 
should accept arguments of the form ~T~~/where ~~ is one 
of the names given above; if no such argument is present, 
such commands should obtain the terminal type from the 
environment variable $TERM, which, in turn, should contain 
term. 

SEE ALSO 

BUGS 

mm(1), nroff(1), tplot(1G), sh(1), stty(1), tabs(1), 
file(4), environ(5). 

pro-

Programs that should make use of this file do not adhere to 
the nomenclature in a consistent manner. 

Printed 6 1985 



" STAT(5) STATeS) 

NAME 
stat ~ data returned by stat system call 

SYNOPSIS 
'include <sys/types.h> 
ninclude <sys/stat.h> 

DESCRIPTION 

FILES 

The system calls ~~ and fstat return data whose structure 
is defined by this include file. The encoding of the field 
st mode is defined in this file also. 

1* 
* Structure of the result of stat 
*1 

struct 
{ 

} ; 

st at 

dey t 
ino t 
IJshort 
short 
IJshort 
ushort 
d ev t 
off t 
time t 
time t 
time t 

IIdefine S IFMT 
IIdefine S-IFDIR 
I1define S IFGHR 
IIdefine S IFBLK 
IIdefine S IFREG 
ildefine S IFIFO 
Hdefine S ISUID 
IIdefine S ISGID 
IIdefine S ISVTX 
IIdefine S IREAD 
IIdefine S IWRITE 
IIdefine S-IEXEG 

st dey; 
st=ino; 
st_mode; 
st_nlink; 
st_uid; 
st_gid; 
st_rdev; 
st_si ze; 
st atime; 
st mtime; 
st:ctime; 

0170000 1* type of file *1 
0040000 1* directory *1 
0020000 1* character special *1 
0060000 1* block special *1 
0100000 1* regular *1 
0010000 1* fifo 1/ 
04000 II set user id on execution */ 
02000 
01000 
00400 
00200 
00100 

II set group io on execution *1 
II save swapped text even after use *1 
II read permission, owner *1 
1* write permission, owner *1 
1* execute/search permission, owner II 

/usr/inclurle/sys/types.h 
lusr/inclurle/sys/stat.h 

SEE ALSO 
stat(2), types(5). 

Pr'inted 6 1985 



TYPES(S) TYPES(S) 

NAME 
types - primitive system data types 

SYNOPSIS 
'inolude <sys/types.h> 

DESCRIPTION 
The data types defined in the include file are used in sys~ 

tern code; some data of these types are accessible to uSer 
code: 

typedef 
typedef 
typedef 
typedef 
typedef 
typedef 
typedef 
typedef 
typedef 
typedef 
typedef 
typedef 
typedef 

struct { int 
long 
char * 

r[1]; } * physadr; 
daddr_t; 
caddr_t; 

unsigned 
unsigned 
ushort 

int uint; 

short 
long 
int 
short 
long 
long 
long 

short ushort; 
i no_ t; 
cnt t; 
time t; 
labeI_t[10]; 
d ev _ t ; 
off t; 
paddr_t; 
ke y _ t ; 

The form daddr t is used for disk addresses except in an 
inode on disk; see fs(4). Times are encoded in seconds 
since 00:00:00 GMT, January 1, 1970. The major and minor. 
parts of a device code specify kind and unit number of a 
device and are installation-dependent. Offsets are measured 
in bytes from the beginning of a file. The label t vari
ables are used to save the processor ·state while another 
process is running. 

SEE ALSO 
fs(4) • 

Printed 6 1985 



TERMCAP(S) TERMCAP(S) 

NAME 
termcap - terminal capability nata basp. 

SYNOPSIS 
letc/termcap 

DESCRIPTION 
Termcap is a data base which describes terminals. Each 
entry-In the file gives a sP.t of capabilities for a terminal 
and describes how operations are performed. Padning 
requirements and initialization sequences are included in 
termcap. The data base is used by programs such as vi(1). 

Entries in termcap consist of a number of ':' separated 
fields. The first entry for each terminal gives the names 
which are known for the terminal, separated by 'I' charac
ters. The first name is always 2 characters long and is 
usen by older systems which store the terminal type in a 
16-bit word in a systemwide data base. The second name is 
the most common abbreviation for the terminal and the last 
name should be a long name fully identifying the terminal. 
The second name should contain no blanks; the last name may 
well contain blanks for readability. 

Preparing Descriptions 

The most effective way to prepare a terminal description is 
to imitate the description of a similar terminal in termcap 
and build up a description gradually, using partial descrip
tions with ex to check that they are correct. Be aware that 
a very unusual terminal may expose deficiencies in the abil
ity of the termcap file to describe it or bugs in ex. To 
easily test a new-terminal description, set the environment 
variable TERMCAP to a pathname of a file containing the 
description being worked on; the editor will look there 
rather than in /etc/termcap. TERMCAP can also be set to the 
termcap entry itself to avoid reading the file when starting 
up theeditor. 

Similar Terminals 

If there are two very similar terminals, one can be defined 
as being just like the other with certain exceptions. The 
string capability to can be given with the name of the simi
lar terminal. This capability must be last and the combined 
1 eng tho f the two en t r i e s m us t not e x c e e'd-, 02 4. Sin c e t e r m-
ll£ routines search the entry from left to right, and since 
the tc capability is replaced by the corresponding entry, 
the capabilities given at the left override the ones in the 
similar terminal. A capability can be cancelled with xx@ 
where xx is the capability. For example, the entry 

- 1 - Pr in ted 6 198'5 



TERMCAP{S) TERHCAP(5) 

_hn:2621nl:ks@:ke@:tc=2621: 

defines a 2621nl that does not have the ks or ke capabili
ties, and hence does not turn on the function key labels 
when in visual mode. This is useful for different modes for 
a terminal, or for different user preferences. 

CAPABILITIES 
Capabilities in termcap are of three types: Boolean capabil
ities, which indicate that the terminal has some particular 
feature; numeric capabilities, which give the size of the 
terminal or the size of particular delays; and string capa
bilities, which give a sequence that can be used to perform 
particular terminal operations. 

Entries may be continued onto multiple lines by giving a \ 
as the last character of a line. Empty fiel0s may be 
included for readability (e.g., between the last field on a 
line a~d the first field on the next). 

List of Capabilities 

(p) indicates padding may be specified 
(p*) indicates that padding may be based on no. lines affected 

Name 
ae 
al 
am 
as 
bc 
bs 
bt 
bw 
ee 
cd 
ce 
ch 
cl 
cm 
co 
cr 
cs 
cv 
rJa 
dB 
db 
de 
dc 
dF 
dl 
dm 

Type 
str 
str 
bool 
str 
str 
bool 
str 
bool 
str 
str 
str 
str 
str 
str 
num 
str 
str 
str 
bool 
num 
bool 
num 
str 
num 
str 
str 

Pad? 
( P ) 
(p *) 

( P ) 

( P ) 

(P *) 
( P ) 
( P ) 
(P*) 
( P ) 

(p *) 
( p ) 
( P ) 

(p *) 

( p *) 

Description 
End alternate character set 
Add new blank line 
Terminal has automatic margins 
Start alternate character set 
Backspace character, if not AH 
Terminal can backspace with AH 
Back tab 
Backspace wraps from column 0 to last column 
Command character in prototype if terminal settab" 
Clear to end of display 
Clear to end of line 
Like cm but horizontal motion only, line stays sar 
Clear screen 
Cursor motion 
Number of columns in a line 
Carriage return, (default AM) 
Change scrolling region (vt100), like cm 
Like ch but vertical only. 
Display may be retained above 
Number of millisec of bs delay needed 
Display may be retained below 
Number of millisec of cr delay needed 
Delete character 
Number of millisec of ff delay needed 
Delete line 
Delete mode (enter) 

- 2 - Printed [) 1985 



TERMCAP(S) 

dN 
do 
dT 
ed 
ei 
eo 
ff 
hc 
hd 
ho 
hu 
hz 
ic 
if 
im 
in 
ip 
is 
kO-k9 
kb 
kd 
ke 
kh 
kl 
kn 
ko 
kr 
ks 
ku 
10-19 
Ii 
11 
rna 
mi 
ml 
ms· 
mu 
nc 
nd 
nl 
ns 
os 
pc 
pt 
se 
sf 
sg 
so 
sr 
ta 
tc 
te 

num 
str 
num 
str 
str 
str 
str 
bool 

. str 
str 
str 
str 
str 
str 
bool 
bool 
str 
str 
str 
str 
str 
str 
str 
str 
num 
str 
str 
str 
str 
str 
num 
str 
str 
bool 
str 
bool 
str 
bool 
str 
str 
bool 
bool 
str 
boo 1 
str 
str 
num 
str 
str 
str 
str 
str 

(p *) 

( p ) 

( p *) 

(pi) 

( p ) 

( p ) 
( p ) 

TERMCAP(S) 

Number of millisec of nl delay needed 
Down one line 
Number of millisec of tab delay needed 
End delete morle 
End insert mode; give :el=: if ie 
Can erase overstrikes with a blank 
Hardcopy terminal page eject (default ~L) 
Hardcopy terminal 
Half-line down (forward 1/2 linefeed) 
Home cursor (if no em) 
Half-line up (reverse 1/2 linefeed) 
Hazeltine; can't print -IS 
Insert character 
Name of file containing is 
Insert mode (enter); give :im=: if 1e 
Insert mode distinguishes nulls on display 
Insert pad after character inserted 
Terminal initialization string 
Sent by other function keys 0-9 
Sent by backspace key 
Sent by terminal down arrow key 
Out of keypad transmit mode 
Sent by home key 
Sent by terminal left arrow key 
Number of other keys 
Termcap entries for other non-function keys 
Sent by terminal right arrow key 
Put terminal in keypad transmit mode 
Sent by terminal up arrow key 
Labels on other function keys 
Number of lines on screen or page 
Last line, first column (if no em) 
Arrow key map, used by vi version 2 only 
Safe to move while in insert mode 
Memory lock on above cursor. 
Safe to move while in standout and underline mode 
Memory unlock (turn off memory lock). 
No correctly working carriage return (DM2500.H200, 
Non-destructive space (cursor right) 
Newline character (default \n) 
Terminal is a CRT but doesn't scroll. 
Terminal overstrikes 
Pad character (rather than null) 
Has hardware tabs (may need to be set with is) 
End stand out mode 
Scroll forwards 
Number of blank chars left by so or se 
Begin stand out mode 
Scroll reverse (backwards) 
Tab (other than ~I or with padding) 
Entry of similar terminal - must be last 
String to end programs that use om 

- 3 - Printed 61985 



TERMCAP(S) 

ti str 
uc str 
ue str 
ug num 
ul bool 
up str 
us str 
vb str 
ve str 
vs str 
xb bool 
xn bool 
xr bool 
xs bool 
xt bool 

A Sample Entry 

TERHCAP(S) 

String to begin programs that use em 
Underscore one char and move past it 
End underscore mode 
Number of blank chars left by us or ue 
Terminal unrle~lines even though it doesn't overst 
Upline (cursor up) 
Start underscore morle 
Visible bell (may not move cursor) 
Sequence to end open/visual mode 
Sequence to start open/visual mode 
Beehive (f1:escape, f2:ctrl C) 
A newline is ignored after a wrap (Concept) 
Return acts like ce \r \n (Delta Data) 
Standout not erased by writing over it (HP 264?) 
Tabs are destructive, magic so char (Teleray 106' 

The following entry, which describes the Concept-100, is 
among the more complex entries in the termcap file as of 
this writing. (This particular concept entry is outdated, 
and is used as an example only.) 

c1 Ic100Iconcept100:is=\EU\Ef\E7\E5\E8\EI\ENH\EK\E\200\Eo&\200:\ 
:al=3*\EAP:am:bs:cd=16*\EAC:ce=16\EAS:cl=2*AL:cm=\Ea%+ ~+ !c· 
:dc=16\E AA:dl=3*\E AB:ei=\E\200:eo:im:\E AP:in:ip=16*:li 12: 
:se=\Ed\Ee:so=\ED\EE:ta:8\t:ul:up:\E;:vb:\Ek\EK:xn: 

Capability Descriptions 

All capabilities have 2-letter codes. For instance, the 
fact that the Concept-100 has automatic margins (i.e., an 
automatic return and linefeed when the .end of a line is 
reached) is indicated by the capability am in the sample 
description above. Numeric capabilities are followed by the 
character 'B' and then the value. Thus, co, which indicates 
the number of columns the terminal has, gives the value '80' 
for the Concept-100. 

String-valued capabilities, such as ce (clear to end of line 
sequence), are given by the 2-character code, an ':', and a 
string ending at the next field separator (:). A delay in 
milliseconds may appear after the ':' in such a capability 
and padding characters are supplied by the editor after the 
remainder of the string is sent to provide this delay. The 
delay can be either an integer, e.g., '20', or an integer 
followed by an' *', i.e., "3*'. An" *' indicates that the 
padding required is proportional to the number of lines 
affected by the operation, and the amount given is the per
affected-unit padding required. When an '*' is specified, 
it is sometimes useful to give a delay of the form '3.5' to 
specify a delay per unit to tenths of milliseconds. 

- 4 - Printed 6 1985 



s 

• TERMCAP(S) TERMCAP(S) 

A number of escape sequences are provided in the string
valued capabilities for easy encoding of' characters there. 
A \E maps to an ESCAPE character, AX maps to a control-x for 
any appropriate x, and the sequences ,\n \r \t \b \f give a 
newline, return, tab, backspace and formfeed. Finally, 
characters may be given as 3 octal digits after a \, and the 
characters A and \ may be given as \A and \\. If it is 
necessary to place a colon C:) in a capability, it must be 
escaped in octal as \072. If it is necessary to place a 
null character in a string capability, it must be encoded as 
\200. The routines which deal with termcap use C strings, 
and strip the high bits of the output very late; therefore, 
a \200 comes out as a \000 would. 

Basic capabilities 

The number of columns on each line for the terminal is given 
by the eo numeric capability. If the terminal is a CRT, 
then the number of lines on the screen is given by the 11 
capability. If the terminal wraps around to the beginning 
of the next line when it reaches the right margin, its 
description should include the am capability. If the termi
nal can clear its screen, this is given by the el string 
capability. If the terminal can backspace, it should have 
the bs capability, unless a backspace is accomplished by a 
character other than AH, in which case the alternate charac
ter should be given as the be string capability. If it 
overstrikes Cratherthan clearing a position when a charac
ter is struck over), it should have the os capability. 

A very important point is that the local cursor motions 
encoded in termcap are undefined at the left and top edges 
of a CPT terminal. The editor will never attempt to back
space around the left edge, nor will it attempt to go up 
locally off the top. The editor assumes that feeding off 
the bottom of the screen will cause the screen to scroll up, 
and the am capability tells whether the cursor sticks at the 
right edge of the screen. If the terminal has switch
selectable automatic margins, the termcap file usually 
assumes that this is on, i.e., am. 

These capabilities suffice to describe hardcopy and glass
tty terminals. Thus, the model 33 teletype is described as 

t3133Itty33:co#72:os 

while the Lear Siegler ADM-3 is described as 

cl:adm3:3Ilsi adm3:am:bs:cl=A Z:li#24:co#80 

Cursor addreSsing 

- 5 - Printed 6 198? 



TERMCAP(S) TERMCAP(S) 

Cursor addressing in the terminal is described by the em 
string capability. It uses escapes like those in 
p r ~i ( 3 s), i. e ., S x • The s e sub s tit ute toe nco ri i n g s 0 f the 
curr'ent line or column position, while other characters are 
passed through unchanged. If the em string is'thought of as 
being a function, then its arguments are the line and column 
to which motion is desired. The S encodings have the fol
lowing meanings: 

%d 
%2 
%3 
% • 
%+x 
%>xy 
%r 
%i 
%% 
%n 
%B 
%D 

as in printf, 0 origin 
like %2d 
like %3d 
like %c 
adds! to value, then %. 
if value> x adds y, no output. 
reverses order of line and column, no output 
increments line/column (for 1 origin) 
gives a single % 
exclusive or row and column with 0140 (DM2500) 
BCD (16*(x/10» + (x%10), no output. 
Reverse coding (x-2*(x%16», no output. (Delta Da t a) • 

For example, to get to row 3 and column 12 the HP2645 needs 
to be sent \E&a12c03Y padded for 6 milliseconris. Note that 
the order of the rows and columns is inverted here, and that 
the row and column are printed as 2 digits'. Thus, its em 
capability is cm=6\E&%r%2c%2Y. The Microterm ACT-IV needs 
the current row and column sent, preceded by a AT, with the 
row and column simply encoded in binary, cm=AT%.S.. Termi
nals which use %. need to be able to backspace the cursor 

. (bs or be), and to move the cursor up one line on the screen 
(up is introduced below). This is necessary because it is 
not always safe to transmit \t, \n AD and \r, because the 
system may change or discard them. 

A final example is th~ LSI ADM-3a, which uses row and column 
offset by a blank character; thus, cm=\E=%+ %+ • 

Cursor motions 

If the terminal can move the cursor one position to the 
right, leaving the character at the current position 
unchanged, this sequence should be given as nd (non
destructive space). If it can move the cursor' up a line on 
the screen in the same column, this should be given as up. 
If the terminal has no cursor addressing capability, but can 
home the cursor (to the very upper left corner of screen), 
this can be given as ho; similarly, a fast way of getting to 
the lower left hand corner can be " given as 11; this may 
involve moving up with up from the home pOSition, but the 
editor will never do this itself (unless 11 does) because it 
makes no assumption about the effect of moving up from the 

- 6 - Printed 6 198'3 



TERMCAP(5) TERMCAP(5) 

home position. 

Area clears 

If the terminal can clear from the current position to the 
enn of the line, leaving the cursor where it is, this should 
be given as ce. If the terminal can clear from the current 
position to the end of the display~ then this should be 
given as cd. The editor only uses ad from the first column 
of a line. 

Insert/delete line 

If the terminal can open a new blank line before the line 
where the cursor is, this should be given as al; this is 
done only from the first position of a line. The cursor 
must then appear on the newly blank line. If the terminal 
can delete the line which the cursor is on, this should be 
given as dl; this is done only from the first position on 
the line to be deleted. If the terminal can scroll the 
screen backwards, this can be given as sb, although just al 
suffices. If the terminal can retain display memory above, 
the da capability should be given; if display memory can be 
retained below, db should be given. These capabilities let 
the editor understand that deleting a line on the screen may 
bring non-blank lines up from below or that scrolling back 
with sb may bring down non-blank lines. 

Insert/delete character 

Termcap can be used to describe two basic kinds of intelli
gent terminals with respect to insert/delete characters. 
The most common insert/delete character operations affect 
only the characters on the current line and shift characters 
off the end of the line rigidly. Other terminals, such as 
the Concept 100 and the Perkin Elmer Owl, make a distinction 
between typed and untyped blanks on the screen, shifting 
upon an insert or delete oniy to an untyped blank on the 
screen; the blank is either eliminated or expanden to 2 
untyped blanks. You can find out which kind of terminal you 
have by clearing the screen and then typing text separated 
by cursor motions. Type abc def using local cursor 
motions (not spaces) between the abc and the def. Then 
position the cursor before the abc and put the terminal in 
insert mode. If typing characters causes the rest of the 
line to shift rigidly and characters to falloff the end, 
then your terminal does not distinguish between blanks and 
untyped positions. If the abc shifts over to the def which 
then move together around the end of the current line and 
onto the next as you insert, you have the second type of 
terminal, and should give the capability in, which stands 
for insert null. If your terminal does something different 

- 7 - Printed 6 1985 



TERHCAP(S) TERHCAP(5)' 

" 

and u~usual then you may have to modify the editor to get it 
to use the insert mode your terminal defines. We have seen 
no terminals with an insert mode that does not fall into onp. 
of these two dlasses. 

The editor can handle both term{nals which have an insert 
mode, and terminals which sen~ a simple sequence to open a 
blank position on the current line. (Insert mode is prefer
able to the sequence to open a position on the screen if 
your terminal has both.) To specify 1m, give the sequence to 
get into insert mode or give an empty value if your terminal 
uses a sequence to insert a blank position. Give as e1 the 
sequence to leave insert morle If you gave 1m with an empty 
value, give e1 with an empty value also. Now give as ie any 
sequence needed to be sent just before sending the character 
to be inserted. Most terminals with a true insert mode will 
not give Ie; terminals which send a sequence to open a 
screen position should give it here. If post-insert padding 
is needed, give this as a number of milliseconds in Ip (a 
string option). Any other sequence which may need to be 
sent after an insert of a single character may also be given 
in ip. 

It is occasionally necessary to move around while in insert 
mode to delete characters on the same line (e.g., if there 
is a tab after the insertion position). If your terminal 
allows motion while in insert mode you can give the capabil
ity m1 to speed up inserting in this case. Omitting m1 will 
affect only speed. Some terminals (notably Datamedia's) 
must not have mi because of the way their insert mode works. 

Finally, you can specify delete mode by giving dm ann ed to 
enter and exit delete mode; give de to delete a single char
acter while in delete mode. 

Highlighting, underlining, and visible bells 
, , 

If your terminal has sequences to enter and exit standout 
mode these can be given as ~ci and ~e ~espectively. If there 
are several flavors of standout .mode(such as invers~ video, 
blinking, or underlining half bright is not usually an 
acceptable standoqt mode unless the ter~inal is in inverse 
video mode constantly) the Ptef~rred mode is inverse video 
by itself. If the code to change .into or out of standout 
mode le~ves 1 or~ven 2 blank spaces on the screen, as the 
TVI 912 and Teleray' 1061 do, then ug should be given to tell 
how many spaces are left. 

Codes to begin underlining and end underlining can be given 
as us and ue, respectively. If the terminal has a code to 
underline the current character and move the cursor one 
space to the right, such as the Microterm Mime, this can be 

- 8 - Printed ~ 1985 



TERMCAP(S) 

given as 
to the 
space. 

TERMCAP(S) 

uc. If the underline code does not move the cursor 
right, give the code followed by a nondestructive 

Many terminals, such as the HP 2621, automatically leave 
standout mode when they move to a new line or the cursor is 
addressed. Programs uSing standout mode should exit stan
dout mode before moving the cursor or sending a newline. 

If the terminal has a way of flashing the screen to indicate 
an error quietly (a bell replacement), this can be given as 
vb; it must not move the cursor. If the terminal should be 
placed in a different morle during open and visual modes of 
ex, this can be given as vs and ve, sent at the start and 
end of these modes, respectively. These can be used to 
change, e.g., from an underline to a block cursor and back. 

If the terminal needs to be in a special mode when running a 
program that addresses the cursor, the codes to enter and 
exit this mode can be given as ti and tea This need arises, 
for example, from terminals like the Concept-100 with more 
than one page of memory. If the terminal has only memory
relative cursor addressing and not screen relative cursor 
addressing, a 1-screen sized window must be fixed into the 
terminal for cursor addressing to work properly. 

If the terminal correctly generates underlined characters 
(with no special codes needed), even though it does not 
overstrike, you should give the capability u1. If over
strikes are erasable with a blank, this should be indicated 
by giving eo. 

Keypad 

If the terminal has a keypad that transmits codes when the 
keys are pressed. this information can be given. Note that 
it is not possible to handle terminals where the keypad only 
works in local (this applies, for example, to the unshifted 
HP 2621 keys). If the keypad can be set to transmit or not 
transmit, give these codes as ks and ke; otherwise, the 
keypad is a~sumed to always transmit. The codes sent by the 
left arrow, right arrow, up arrow, down arrow, and home keys 
can be given as kl, kr, ku, kd. and' ~h, respectively. If 
there are function keys such as fa, fl, ••• , f9, the codes 
they send can be given as kO. k' ••••• k9. If these keys 
have labels other than the default fO through f9, the labels 
can be given as 10. 11 ••••• 19. If there are other keys 
that transmit the same code as the terminal expects for the 
corresponding function, such as clear screen, the termcap 
2-letter codes can be given in the ko capability. For exam
ple, :ko=cl,ll,sf,sb: says that the terminal has clear, home 
down, scroll down, and scroll up keys that transmit the same 

- 9 - Printed 6 1985 



TERMCAP(S) TERHCAP(S) ~; 

NOTE 

thing as the 01, II, sf, and sb entries. 

The ma entry is also used to indicate arrow keys on termi
nals which have single character arrow keys. It is obsolete" 
but still in use in version 2 of 1l, which must be run on 
some minicomputers due to memory limitations. This field is 
red un ri ant wit h k 1, k r. k u • k d , and k h • I t con sis t s 0 f " 
groups of 2 cha~aoters.( In each group;'th~ first character 
.is what an arrow keY'sends,' th~' :,!s~cond ~oharacter is the 
corresponding vi: cromm~nd. These commands are hfor kl, j 
for kd, k for k'U':".l for kr; and H for kh~ ,For example, the 
Mime would be :ma: AKjA Zk AX1:, indicating arrow keys left 
(A H), down ("'K) , up"( .... .z) , and right (AX). (There is no home 
key on the Mime.) 

Mfsoellaneous 

If the terminal requires other than a null (zero) 
as a pad, this can be given as po. 

character 

If tabs on the terminal require padding, or if the terminal 
uses a character other than AI to tab, this can be given as 
ta. 

Hazeltine terminals, which don't allow '-, characters to be 
printed, should indicate hz. Datamedia terminals, which 
echo carriage-return linefeed for carriage return and then 
ignore a following linefeed, should indicate no. Early Con
cept terminals, which ignore a linefeed immediately after an 
am wrap, should indicate xn. If an erase-eol is required to 
get rid of standout (instead of merely writing on top of 
it), xs should be given. Teleray terminals, where tabs turn 
all characters moved over to blanks, should indicate xt. 
Other specific terminal problems may be corrected by adding 
more capabilities of the form x~. 

Other capabilities include is, an initialization string for 
the terminal, and if, the name of a file containing long 
initialization strings. These strings are expected to prop
erly clear and then set the tabs on the terminal, if the 
terminal has settable tabs. If both are given, is will be 
printed before if. This is useful where if is 
/usr/lib/tabset/std but is clears the tabs first. --- --- - ---
Termcap is based on software developed by The UniverSity of 
California, Berkeley, California, Computer Science Division, 
Department of Electrical Engineering and Computer Science. 

Termcap will be replaced by terminfo in the next release. 
Transition tools will be provided. 

- 10 - Printed 61985 



TERMC~P (5) TERMCAP(S) 

FItES 
letc/termcap file containing terminal descriptions 

SEE ALSO 
ex(l), termcap(3), vi(1) 

WARNI~GS AND BUGS 

( ~. - ,~. 

Ex allows only 256 characters for string capabilities, ann 
TIe routines in termca-p(3) do not check for overflow of this 
buffer. The totar-rength of a single entry (excluding only 
escaped new-lines) may not exceed 1,024. 

The ma, VS, and ve entries are specific to the vi program. 

Not all programs support all entries. 
that are not supported by any program. 

- 11 -

There are entries 

Printed 6 1985 



/ 

PERMUTED INDEX 

special functions of HP 2640 and 
Ihandle special functions of HP 
functions of DASI 300 and 300s1 

handle special functions of DASI 
DAST 300 and 300s1 300, 

special functions of DASI 300 and 
13tol, Itol3: convert between 

comparison diff3: 
4014 terminal 

4014: paginator for the Tektronix 
the DASI 450 terminal 

special functions of the DASI 
onyx: Onyx 
onyx: Onyx 

integer and base~64 ASCIII 

value 
abs: return integer 

fab s: floor', cei ling, remaind er, 
LP requests. 

utime: set file 
a file touch: update 

of a file 
machinel sputl, sgetl: 

sarlp: disk 
ldfcn: common object file 

copy file systems for optimal 
Isetutent, endutent, utmpname: 

access: determine 
acct: enable or disable process 

acctprc1, acctprc2: process 
runacct: run daily 

acctcon2: connect-time 
faccton, acctwtmp: overview of 

accounting and miscellaneous 
acct: per-process 

acctcom : search anrl print process 
acctmerg: merge or adrl total 

summary from per-process 
wtmpfix: manipulate connect 

turnacct: shell procedures for 
accounting 

format 
per-process accounting/ 

accounting file(s) 
connect~time accounting. 

accounting. acctcon1, 
acctwtmp: overview ofl 
overview ofl acctdisk, 

accounting files. 

2621-series terminals Ihanrlle ••••• 
2640 and 2621~series terminals •••• 
300, 300s: handle special .•....••• 
300 and 300s terminals 1300s: ••••• 
300s: handle special functions of • 
300s terminals 13005: handle ••.••• 
3~byte integers and longl ••.•••••• 
3~way differential file ••••••••••• 
4014: paginator for the Tektronix. 
4014 terminal ...•.....••..•.••.••• 
450: handle special functions of •• 
450 terminal 450: handle •••••••••• 
6810 special system service ••••••• 
6810 special system service .•••••• 
a64l, l64a: convert between long •• 
abort: generate an lOT fault •••••• 
abs: return integer absolute •••••• 
absolute value •••••••••••••••••••• 
absolute value functions Ifmod, ••• 
accept, reject: allowlprevent 
access and modification times ••••• 
access and modification times of •• 
access: determine accessibility ..• 
access long integer data in a ....• 
access profiler ••••••••••••••••••• 
access routines ••••••••••••••••••• 
access time. dcopy: •••••••.••.••.• 
access utmp file entry ••.•.••..••• 
accessibility of a file •.•••..•••• 
accounting .••••••••••••••••••.••.• 
accounting. 
accounting • •••••••••.•••••••••••.• 
accounting. acctcon1, ••••••••••••• 
accounting and miscellaneousl ••••• 
accounting commands. lof •••••.•••• 
accoun'ting 'fiTe format •••••••••• ' •• 
accounting file(s) •••••••••••••••• 
accounting files • ••••••••••••••••• 
accounting records. Icommand •.•••• 
accounting records. fwtmp, •••.•••• 
accounting. Istartup, ••••• ' •••••••• 
acct: enable or disable process ••• 
acct: per-process accounting file • 
acctcms: command summary from ••••• 
acctcom: search and print process. 
acetcon1, acctcon2: ••••.•••••••••• 
acetcon2: eonnect~time •••••••••••• 
aeetdisk, acctdusg, aecton, ••••••• 
acctdusg, accton, acctwtmp: ••••••• 
,acc tmerg: merge or add total •••••• 

hp(1) 
hp(1) 
300(1) 
300(1) 
300(1) 
300(1) 
13tol(3C) 
diff3(1) 
4014(1) 
4014(1) 
450(1) 
450(1) 
onyx (2) 
onyx (2) 
a641(3C) 
abort(3C) 
abs(3C) 
abs( 3C) 
floor(3M) 
accept( 1M) 
utime(2) 
touch( 1 ) 
access(2) 
sputl(3X) 
sadp(1) 
ld fcn(4) 
dcopy(1M) 
getut(3C) 
access(2) 
acct(2) 
acctprc( 1M) 
runacct(1M) 
acctcon( 1M) 
acct(1M) 
acct(1M) 
acct(4) 
acctcom( 1) 
acctmerg( 1M) 
acctcms(1M) 
fwtmp(1M) 
acctsh( 1M) 
acct(2) 
acct(4) 
acctcms( 1M) 
acctcom( 1 ) 
acctcon(1M) 
acctcon( 1M) 
acct(1M) 
acct(1M) 
acctmerg( 1M) 

• 



,1", 

Permuted Ino ex 

acctdisk, acctdusg, 
accounting. 

acctprc 1 , 
acctdisk, acctdusg, accton, 

functions sin, cos, tan, asin, 
killall: kill all 

sag: system 
sal, sa2, sadc: system 

sar: system 
report process data and system 

formatting/ mosd: the OSDD 
add user: 

acctmerg: merge or 

alarm: set a process's 
clock 

sbrk: change data segment space 
realloc, calloc: main memory 

accept, reject: 
fsba: file system block 

sort: sort 
link editor output 
aouthdr: optional 

introduction to commands and 
maintenance commands and 
maintainer for portable/ 

language bc: 
cpio: format of cpio 

for portable archives ar: 
ar: common 

archi ve header of a member of an 
archive file ldahread: read the 

tar: tape file 
library maintainer for portable 

cpio: copy file 
command xargs: construct 

'getopt: get option letter from 
echo: echo 

expr: ev al uate 
bc: arbitrary~precision 

number facts 
expr: evaluate arguments 

asa: interpret 
control characters 

ascii: map of 
set 

between long integer and base~64 

" number atof: convert 
: time/ ctime, local time, gmtime, 

accton, acctwtmp: overview of/ •••• 
acctprcl, acctprc2: process ••••••• 
acctprc2: process accounting •••••• 
acctwtmp: overview off •••••••••••• 
acos, atan, atan2: trigonometric •• 
active processes •••••••••••••••••• 
activity graph •••••••••••••••••••• 
activity report package ••••••••••• 
activity reporter ••••••••••••••••• 
activity timex: time a command; ••• 
adapter macro package for ••••••••• 
add a user to the system ••••••• ' ••• 
add total accoun ting fi les. • •••••• 
adduser: add a user to the system. 
alarm clock ••••••••••••••••••••••• 
alarm: set a process's alarm •••••• 
allocation brk, ••••••••••••••••••• 
allocator malloc, free, ••••••••••• 
allow/prevent LP requests ••••••••• 
analyzer •••••••••• ~ ••••••••••••••• 
and/or merge files •••••••••••••••• 
a.out: common assembler and ••••••• 
aout header ••••••••••••••••••••••• 
aouthdr: optional aout header ••••• 
application programs in tro: ••••••• 
application programs. /system ••••• 
ar: archive and library ••••••••••• 
ar: common archive file format •••• 
arbitrary-precision arithmetic •••• 
archive ••••••••••••••••••••••••••• 
archive and library maintainer •••• 
archive file format ••••••••••••••• 
archive file Idahread: read the ••• 
archi ve header of a member of an •• 
archiver •••••••••••••••••••••••••• 
archives ar: archive and •••••••••• 
archives in and out ••••••••••••••• 
argument list(s) and execute •••••• 
ar gumen t v ec tor ••••••••••••••••••• 
argumen ts ••••••••••••••••••••••••• 
arguments as an expression •••••••• 
ari thmetic language ••••••••••••••• 
arithmetic: provide drill in •••••• 
as an expression •••••••••••••••••• 
as.,. ,common assembler •••••••••••••• 
ASA carriage control characters ••• 
asa: interpret ASA carriage ••••••• 
ASCII character set ••••••••••••••• 
ascii: map of ASCII character ••••• 
ASCII string /164a: convert ••••••• 
ASCII string to floating~point •••• 
asctime, tzset: convert date and •• 

.,.. ii ~ 

acct(1M) 
acc tprc ( , M) 

acc tprc ( 1 M) 

acct(lH) 
tr ig (3M)' 
ki 11 all ( 1 M) 
sag(1) 
sar(1M) 
sar(1) 
timex (1 ) 
mosd(S) 
add user ( 1 M) 
acctmerg( 1M) 
adduser( 1M) 
alarm(2) 
alarm(2) 
brk(2) 
malloc (3C) 
accept( 1M) 
fsba(lM) 
sort( 1 ) 
a.out(4) 
aouthd r (4) 
aouthdr(4 ) 
intro( 1) 
intro( 1M) 
ar (1 ) 
ar(4) 
bc(1) 
cpio( 4) 
ar ( 1 ) 
ar(4 ) 
Id ahread (3X) 
ld ahread (3X) 
tar(1) 
ar(1) 
cpio( 1) 
xargs( 1 ) 
getopt( 3C) 
echo( 1 ) 
expr( 1) 
bc(l) 
arithmetic(6) 
expr(l) 
as(l) 
asa(l) 
asa ( 1 ) 
ascii(S) 
ascii (5) 
a64l(3C) 
atof( 3C) 
ctime( 3C) 



/ 

,: .. , 

.f! i 

;' 

,/ , 

trigonometric/ sin, cos, tan, 
hel p: 

as- common 
a.out: common 

assert: verify program 
setbuf: 

Ilist the spared sectors 
sin, cos, tan, asin, acos, 

sin, cos, tan, asin, acos, atan, 
floating-point number 

strtol, atol, 
integer strtol, 

wait: 
processing language 

ungetc: push character 

back: the game of 
finc: fast incremental 

daily/weekly UNIX file system 
frec: recover files from a 

spare: replace a 

termcap: terminal capability data 
convert between long integer and 
oriented (visual) display editor 

portions of pathnames 
arithmetic language 

system initialization/ brc, 

files 
cb: C program 

j 0, j 1, j 11, yO, Y 1, yn: 

fread, fwri te: 
bsearch: 

tsearch, tdelete, twalk: manage 

bj: the game of 
sync: update the super 

fsba: file system 
bcopy: interactive 

sum: print checksum and 
df: report number of free disk 

system initialization shell/ 
space allocation 

modest-sized programs 

strl io: stand ard 
setbuf: assign 

mknod: 
swab: swap 

permuted Ind ex 

asin, acos, atan, atan2: .••••••••• 
ask for help •••••••••••••••••••••• 
assembler ••••••••••••••••••.•••••• 
assembler and link editor output •• 
assert: verify program assertion •• 
assertion ••••••••••••••••••••••••• 
assign buffering to a stream •••••• 
associated with a slice ••••••••••• 
atan, atan2: trigonometric/ ••••••• 
atan?: trigonometric functions •••• 
atof: convert ASCII string to ••••• 
atoi: convert string to integer ••• 
atol, atoi: convert string to •.•••• 
await completion of process ••••••• 
awk: pattern scanning and ••••••••• 
back into input stream •••••••••••• 
back: the game of backgammon •••••• 
backgammon •••••••.••••••••••••••••• 
backup. • •••••••••••••••••••••••••• 
backup. filesave, tapesave: ••••••• 
backup tape ••••••••••••••••••••••• 
bad sector with a spare one ••••••• 
banner: make posters •••••••••••••• 
ba se •••••••••••••••••••••••••••••• 
base~64 ASCII string /164a: ••••••• 
based on ex vi: screen •••••••••••• 
basename, dirnarne: deliver •••••••• 
bc: arbitrary-precision ••••••••••• 
bcheckrc, rc, powerfail: •••••••••• 
bcopy: interactive block copy ••••• 
bdiff: file comparator for large •• 
beautifier •••••••••••••••••••••••• 
Bessel functions •••••••••••••••••• 
bfs: big file scanner ••••••••••••• 
binary input/output ••••••••••••••• 
binar y search ••••••••••••••••••••• 
binary search trees ••••••••••••••• 
bj: the game of black jack •••••••• 
black jack •••••••••••••••••••••••• 
bloc k ............................ . 
block analyzer •••••••••••••••••••• 
block copy •••••••••••••••••••••••• 
block count of a file ••••••••••••• 
blocks ........................... . 
brc, bcheckrc, rc, powerfail: ••••• 
brk, sbrk: change data segment •••• 
bs: a compiler/interpreter for •••• 
bsearch: binary search •••••••••••• 
buffered input/output package ••••• 
buffering to a stream ••••••••••••• 
build special file •••••••••••.•••• 
b yt e s ••••••••••••••••••••••••••••• 

~ iii .,. 

trig(3M) 
help(1) 
as ( 1 ) 
a.out(4) 
assert(3X) 
assert(3X) 
setbuf(3S) 
sparel i st (8) 
trig(3M) 
tr ig (3M) 
atof(3C) 
strtol( 3C) 
strtol( 3C) 
wait(1) 
awk( 1 ) 
ungetc(3S) 
back(6) 
back(6) 
finc( 1 M) 
filesave( 1M) 
frec( 1M) 
spare(8) 
banner ( 1 ) 
termcap(S) 
a641(3C) 
vi(1) 
basenarne( 1 ) 
bc(1) 
brc(1M) 
bcopy( 1M) 
bdiff(1) 
cb(1) 
bessel(3M) 
bfs( 1) 
fread(3S) 
bsearch( 3C) 
tsearch( 3C) 
bj(6) 
bj(6) 
sync(1) 
fsba(1M) 
bcopy( 1M) 
sum( 1) 
d f( 1M) 
brc(1M) 
brk(2) 
bs( 1 ) 
bsearch( 3C) 
stdio(3S) 
setbuf(3S) 
mknod ( 1 M) 
swab(3C) 



Permuted Inri ex 

cc..,. 
cflow: generate 

cpp: the 
cb: 

1 in t: a 
cxref: generate 

dc: rlesk 
cal: print 

cu: 
data returned by stat system 

malloc, free, realloc, 
intro: introduction to system 

link and unlink system 
an LP line printer lp, 

termcap: terminal 
asa: interpret ASA 

text erlitor (variant of ex for 

remainder, absolute valuel floor, 
floor, ceil, fmod, fabs: floor, 

pipe: create an interprocess 
ungetc: push 

neqn eqnchar: special 
cuserid: get 

getc, getchar, fgetc, getw: get 
putc, putchar, fputc, putw: put 

ascii: map of ASCII 
tr: translate 

interpret ASA carriage control 
iscntrl, isascii: classify 

_tolower, toascii: translate 
lastlogin, monacct, nulladm,l 

Idfsck: file system consistency 
checking procedure. 
text for troff cw, 

for nroff or troff eqn, neqn, 
lint: a C program 

grpck: password/group file 
checkall: faster file system 
copy file systems with label 
copy file systems with label 

processed by fsck 
formatted with the MM/ rom, osdd, 

file sum: print 

C compiler •••.••••••••••••••••.•••• 
C flow graph •••••••••••••••••••••• 
C language preprocessor ••••.•••.•• 
C program beauti fier •••••••••••••• 
C prog r am checker ••••••••••••••••• 
C program cross~reference ••••••••• 
cal: pr in t cal end ar ••••••••••••••• 
calculator •••••••••••••••••••••••• 
cal end ar ••••••••••••••••••••••.••• 
calendar: reminder service •••••••• 
call another UNIX SYSTEM V system • 
call stat: ....................... . 
calloc: main memory allocator ••••• 
calls and error numbers ••••••••••• 
calls. link, unlink: exercise ••••• 
cancel: send/cancel requests to ••• 
capability data base •••••••••••••• 
carriage control characters ••••••• 
casual users) edit: ••••••••••••••• 
cat: concatenate and print files •• 
cat: phototypesetter interface •••• 
cb: C program beautifier •••••••••• 
cc~ C compiler •••••••••••••••••••• 
cd: change working directory •••••• 
ceil, fmod, fabs: floor, ceiling, • 
ceiling, remainder, absolute/ ••••• 
cflow: generate C flow graph •••••• 
channel ••••••••••••••••••••••••••• 
character back into input stream •• 
character definitions for eqn and • 
character login name of the user •• 
character or word from stream ••••• 
character or word on a stream ••••• 
character 
characters 

set .................... . 

cc ( 1 ) 
cflow(1) 
c pp( 1 ) 
cb(1) 
lint(1) 
cxref(1) 
cal(1) 
dc(1) 
cal ( 1 ) 
calendar(1) 
cu( 1 C) 
stat(5) 
malloc (3C) 
intro(2) 
link(1M) 
lp( 1 ) 
termcap(5) 
asa ( 1 ) 
edit(1) 
cat(1) 
cat(7) 
cb(1) 
cc(1) 
cd ( 1 ) 
floor(3M) 
floor(3M) 
cflow( 1 ) 
pi pe (2) 
ungetc( 3S) 
eqnchar(S) 
cuserid(3S) 
getc(3S) 
putc(3S) 
ascii(S) 
tr ( 1 ) 

characters asa: ••••••••••••••••••• asa(1) 
characters /isprint, isgraph; ••••• ctype(3C) 
characters Itolower, _toupper, •••• conv(3C) 
chargefee, ckpacct, dodisk, •••.••• acctsh(1M) 
chdir: change working directory ••• chdir(2) 
check and interactive repair •••••• fsck(1M) 
checkall: faster file system •••••• checkall(1M) 
checkcw: prepare constant-width ••• cw(1) 
checkeq: format mathematical text. eqn(1) 
checker •••••••••••••••••••••.•••••• lint( 1) 
checkers. pwck, ••••••••••••••••••• pwck(1M) 
checking procedure ••••••••••.•••••• checkall(1M) 
checking. volcopy, labelit: •• ~ •••• volcopy(1M) 
checking. volcopy, labelit: ••••••• volcopy.1m.old 
checklist: list of file systems ••• checklist(~) 
checkrnm: print/check documents •••• mm(1) 
checksum and block count of a ••••• sum(1) 

.,.. iv --



/ (M' 

, -

/ 

chess: the game of 

chown , 
times: get process and 

terminate wait: wait for 

a file 
group 

for a command. 

monacct, nulladm,/ chargefee, 
isgraph, iscntrl, isascii: 

uuclean: uucp spool directory 
clri: 

inquiries ferror, feof, 
alarm: set a process's alarm 

crQn: 

ldclose, ldaclose: 
close: 

fclose, fflush: 

/idint, real, float, sngl, dble, 

common to two sorted files 
system: issue a shell 

test: condition evaluation 
time: time a 
nice: run a 

change root directory for a 
env: set environment for 

uux: unix to unix 
quits nohup: run a 

getopt: par se 
/shell, the standard/restricted 

system activity timex: time a 
per~process/ acctcms: 

argument list(s) and execute 
install: install 

mk: how to remake the system and 
programs intro: introduction to 

Ito system maintenance 
and miscellaneous accounting 

ar: 
as~ 

output a .out: 
ldclose, lrlaclose: close a 

/ section hearler of a 
linenum : line number entries in a 

permuted Inri ex 

che 58 •••••.••.•••.•••••••••••••••• 

chess: the game of chess •••••••••• 
chgrp: change owner or group •••••• 
child process times ••••••••••••••• 
child process to stop or •••••••••• 
cb.mod: change morie •••••••••••••••• 
chmod: change mode of file •••••••• 
chown: change owner and group of •• 
chown, chgrp: change owner or 
chroot: change root directory 
chroot: change root directory 
ckpacct, dodisk, lastlogin, ••••••• 
classify characters lisprint, ••••• 
clean-up •••••••••••••••••••••••••• 
clear i-node •••••••••••••••••••••• 
clearerr, fileno: stream status ••• 
clock ............................ . 
clock daemon •••••••••••••••••••••• 
clock: report CPU time used ••••••• 
close a common object file •••••••• 
close a file descriptor ••••••••••• 
close: close a file descriptor •••• 
close or flush a stream ••••••••••• 
c 1 r i: c 1 ear i..,.. nod e • ••••••••••••••• 
cmp: compare two files •••••.•••••• 
cmplx, dcmplx, ichar, char:1 •••••• 
col: filter reverse line-feeds •••• 
comm: select or reject lines •••••• 
command 
command 
command 

........................... ........................... 
command at low priority ••••••••••• 
command. chroot: •••••••••••••••••• 
command execution ••••••••••••••••• 
command execution ••••••••••••.•••• 
command immune to hangups and ••••• 
command opt ions ••••••••••••••••••• 
command programming language •••••• 
command; report process data and •• 
command summary from •••••••••••••• 
command xargs: construct •••••••••• 
command s. • •••••••••••••••••••••• -•• 
command s •••••••••••••••••••••••••• 
commanos and application •••.••••••• 
commands and appl tcation/ ••••••••• 
commands. lof accounting •••••••••• 
common archive file format •••••••• 
common assembler •••••••••••••••••• 
common assembler and link edi tor .. 
common object file · ............... 
common object file · ............... 
common object file · ............... 

- v .,. 

chess(6) 
chess(6) 
chown ( 1 ) 
times( 2) 
wait(2) 
chmod ( 1 ) 
chmori(2 ) 
chown( 2) 
chown( 1 ) 
chroot(lM) 
chroot(2) 
acctsh( 1M) 
ctype(3C) 
uucl ean ( 1 M) 
clri(lM) 
ferror(3S) 
alarm(2) 
cron(1M) 
clock( 3C) 
Idclose(3X) 
close(2) 
close(2) 
fclose(3S) 
clri(1M) 
cmp( 1 ) 
ftype(3F) 
col(1) 
cornm(1) 
system(3S) 
test(1) 
time(1) 
nice(1) 
chroot( 1M) 
env(1) 
uux(1C) 
nohup( 1) 
getopt ( 1 ) 
she 1) 
timex(1) 
acctcms( 1M) 
xargs( 1 ) 
install( 1M) 
mk(8) 
intro(l) 
intro( 1M) 
acct(lM) 
ar(4) 
as(l) 
a.out(4) 
lrl close (3X) 
Id shread (3X) 
linenum(4) 



P ermut en Inn ex 

nm: print name list of 
scnhdr: section hearler for a 

routines Id fcn: 
Idopen, lrlaopen: open a 

/line number entries of a 
read the file header of a 

seek to the symbol table of a 
indexed symbol table entry of a 

relocation information for a 
entries of a section of a 

to the optional file header of a 
to an indexed/namen section of a 
number entries of a section of a 

format syrns: 
of a symbol table entry of a 

filehdr: file hearler for 
Id: link ed i tor for 

size: print section sizes of 
comm: select or reject lines 

ipcs: report inter~process 
stdipc: standard interprocess 

diff: differential file 
bd iff: fi Ie 

cmp: 
diff3: 3~way differential file 

dircmp: directory 
regcmp: regular expression 
expression regcmp, regex: 

regexp: regular expression 
cc..... C 

yacc: yet another 
modest-sized programs bs: a 

erf, erfc: error function ann 
wait: await 

pack, pcat, unpack: 
table entry of a/ Idtbindex: 

cat: 
synchronous printer scat: 

test: 

system. Ipadmin: 
config: 

fwtmp, wtmpfix: manipulate 
an out~going terminal line 

acctcon1, acctcon2: 
fsck, dfsck: file system 

report and interactive status 
cw, checkcw: prepare 

mkfs: 
execute command xargs: 

remove nroff/troff,·tbl, and eqn 
Is : list 

common object file •••.•••.••••.••• nm( 1 ) 
common object file •••••••••.••.••• scnhdr(4) 
common object file access •.•.•.••• Idfcn(4) 
common object file for reading .••. Idopen(3X) 
common object file function ••.••.• Idlread(3X) 
common object file Idfhrearl: •••••. Idfhread(3X) 
common object file Idtbseek: ••...• Idtbseek(3X) 
common object file /read an •••.••• Idtbread(3X) 
common object file reloc: •••.••.•• reloc(4) 
common object file /relocation •••• Idrseek(3X) 
common object file /seek •••••••••• ldohseek(3X) 
common object file /seek ••••••.••• Idsseek(3X) 
common object file /seek to line •• Idlseek(3X) 
common object file symbol table ••• syms(4) 
common object file /the index ••••• ldtbindex(3X) 
common object files •••••••••••.••• filehdr(4) 
common object files ••••••••••••••• ld(1) 
common object files ••••••••••••••• size(1) 
common to two sorted files •••••••• comm(1) 
communication facilities status ••• ipcs(1) 
communication package •••••.••••••• stdipc(3C) 
comparator •••••••••••••••••••••••• diff(1) 
comparator for large files •••••••• bdiff(1) 
compare two files ••••••••••••••••• cmp(1) 
comparison •••••••••••••••••••••••• diff3( 1) 
comparison •••••••••••••••••••••••• dircmp(1) 
compile ••••••••••••••••••••••••••• regcmp(1) 
compile and execute a regular ••••• regcmp(3X) 
compile and match routines •••••••• regexp(5) 
compiler ••••••••••••••••••••••.••• cc(1) 
compiler~compiler ••••••••••••••••• yacc(1) 
compiler/interpreter for •••••••••• bs(1) 
complementary error function •••••• erf(3M) 
completion of process •••••••.••••• wait(1) 
compress and expand files ••••••••• pack(1) 
compute the index of a symbol ••••• Idtbindex(3X) 
concatenate and print files ••••••• cat(1) 
concatenate and print files on •••• scat(1) 
condition evaluation command ••.••• test(1) 
config: configure UNIX SYSTEM V ••• config.68(1M) 
configure the LP spooling ••••••••• lpadmin(1M) 
configure UNIX SYSTEM V ••••••••••• config.68(1M) 
connect accounting records •••••••• fwtmp(1M) 
connection dial: establish •••••••• dial(3C) 
connect-time accounting ••••••••••• acctcon(1M) 
consistency check and/ •••••••••••• fsck(1M) 
console rjestat: RJE status ••••••• rjestat(1C) 
constant-width text for troff ••••• cw(1) 
construct a file system ••••••••••• mkfs(1M) 
construct argument list(s) and •••• xargs(1) 
constructs deroff: •••••••••••••••• deroff(1) 
contents of directories ••••••••••• ls(1) 

.,.. vi ..,. • 



J 

csplit: 
fcntl: file 
vc: version 

asa: interpret ASA carriage 
ioctl: 

init, telinit: process 
msgctl: message 

semctl: semaphore 
shmctl: shared memory 

fcntl: file 
uucp status inquiry and job 

tty: 
term: 

units: 
dd: 

floating~point number atof: 
and long integers 13tol, Ito13: 

base.-64. ASCII/ a641, 164a: 
/gmtime, asctime, tzset: 

and VAX~11/780/ fscv: 
string ecvt, fcvt, gcvt: 

scanf, fscanf, sscanf: 
strtol, atol, atoi: 

bcopy: interactive block 
uucp, uulog, uuname: unix to unix 

do: convert and 
epio: 

access time. dcopy: 
checking. volcopy, labelit: 
checking. volcopy, labelit: 

cp, In, mv: 
UNIX System~to-UNIX System file 

core: format of 
mem, kmem: 

atan2: trigonometric/ sin, 
sinh, 

wc: word 
sum: print checksum and block 

files 
cpio: format of 

out 

clock: report 
craps: the game of 

crashes 
crash: what to do when the system 

rewrite an existing one 
file tmpnam, tempnam: 

Permuted Ind ex 

context 
control 
control 
control 
control 
control 

s pI it .................... . 
........................... ........................... 
characters ••••••••••••.••• 
d ev ice •••••.••••••••••.••. 
initialization • •••••••.••. 

control operations •••••••••••••••• 
control operations ••••.••••••••••• 
control operations ••••••••••••.••• 
control options ••••••••••••••••••• 
control uustat: •••••••••••••••.••• 
controlling terminal interface •..• 
conventional names for terminals •• 
conversion program •••••••••••••••• 
convert and copy a file ••••••••••• 
convert ASCII string to ••••••••••• 
convert between 3-byte integers ••• 
convert between long integer and •• 
convert date and time to string •.• 
convert files between M68000 •••••• 
convert floating~point number to •• 
convert formatted input ••••••••••• 
convert string to integer ••••••••• 
copy. . ..........•.•............... 
copy •••••••••••••••••••••••••••••• 
copy a file ••••••••••••••••••••••• 
copy file archives in and out ••••• 
copy file systems for optimal •..•. 
copy file systems with label •••••. 
copy file systems with label ..•.•. 
copy, link or move files •••••••••• 
copy uuto, uupick: public ••••••••• 
core: format of core image file .•• 
core image file ••••••••••••••••••• 
core memory •••.•••.•.•••.••••....• 
cos, tan, aSin, acos, atan, ••••••• 
cosh, tanh: hyperbolic functions •• 
coun t ............................ . 
count of a file ••••••••••••••••••• 
cp, In, mv: copy, link or move .•••• 
epio archive •••••••••••••••••••••• 
epio: copy file archives in and ••• 
epio: format of cpio archive •••••• 
epp: the C language preprocessor •• 
CPU time used •••••••••••••••.••••• 
craps ............................ . 
craps: the game of craps ••.••••••• 
crash: examine system images • ••••• 
crash: what to do when the system • 
crashes ••••••••••••••••••••••••••• 
creat: create a new file or ••••••• 
create a name for a temporary •..•. 

.... vii -

csplit(1) 
fcntl(2) 
ve ( 1 ) 
asa(1) 
ioc tl (2) 
init(1M) 
msgctl(2) 
semctl (2) 
shmctl(2) 
fcntl(S) 
uustat(1C) 
tty(7) 
term(S) 
units(1) 
dd ( 1 ) 
atof(3C) 
l3tol(3C) 
a641(3C) 
ctime(3C) 
fscv(1M) 
eevt(3C) 
scanf(3S) 
strtol(3C) 
bcopy( 1M) 
uucp( 1 C) 
dd(1) 
cpio(1) 
dcopy( 1M) 
volcopy(1M) 
volcopy.1m.old 
cp(1) 
uuto(1C) 
core(4) 
core(4) 
mem(7 ) 
trig(3M) 
sinh(3M) 
we(1) 
sum(1) 
ep( 1) 
epio( 4) 
epio(1) 
cpio( 4) 
epp( 1 ) 
elock(3C) 
craps(6) 
craps(6) 
crash ( 1 M) 
eras~.m68(8) 
erash.m68(8) 
ereat(2) 
tmpnam(3S) 

• 



Permuted Inri ex 

existing one creat: 
fork: 

tmpfile: 
pi pe: 

umask: set anri get file 

cxref: generate C program 
DES encryption 

terminal 
terminal 

asctime. tzset: convert date and/ 

ttt, 
uname: get name of 

uname: print name of 
the slot in the utmp file of the 

getcwd: get pathname of 
of the user 

each line of a file 
line of a file cut: 

constant~width text for troff 
cross-reference 

cron: clock 
errdemon: error~logging 

1 pd: 1 in e pr in te r 
terminate the error~logging 

runacct: run 
backup. filesave, tapesave: 

/300s: handle special functions of 
handle special functions of the 

prof: display profile 
time a command; report process 

termcap: terminal capability 
sputl, sgetl: access long integer 

plock: lock process, text, or 
call stat: 

brk, sbrk: change 
types: primitive system 

join: relational 
date: print and set the 
date: print and set the 

/gmtime, asctime, tzset: convert 

/ifix, idint, real, float, sngl, 

/real, float, sngl, dble, cmplx, 
optimal access time. 

fSdb, fsdb1b: file system 
sdb: symbolic 

create a.new file or rewrite an ••• creat(2) 
create a new process •••••••••••••• fork(2) 
create a temporary file ••••••••••• tmpfile(3S) 
create an interprocess channel •••• pipe(2) 
creation mask ••••••••••••••••••••• umask(2) 
cron: clock daemon •••••••••••••••• cron(1H) 
cross-reference ••••••••••••••••••• cxref(1) 
crypt, setkey, encrypt: generate •• crypt(3C) 
c s pI it: conte x t s pI it. • • • • • • • • • • •• c s pI i t ( 1 ) 
ct: spawn getty to a remote ••••••• ct(1C) 
ctermid: generate filename for •••• ctermid(3S) 
ctime, local time, gmtime, ••••••••• ctime( 3C) 
cu: call another UNIX SYSTEM V system cu(1~) 
cubic: tic-tac~toe •••••••••••••••• ttt(6) 
current operating system ••••••••••. uname(2) 
current UNIX System ••••••••••••••• uname(1) 
current user ttyslot: find •••••••• ttyslot(3C) 
current working directory • ~: ••••••• getcwd(3C) 
cuserid: get character login name. cuserid(3S) 
cut: cut out selected fields of ••• cut(1) 
cut out selected fields of each ••• cut(1) 
cw, checkcw: prepare •••••••••••••• cw(1) 
cxref: generate C program ••••••••• cxref(1) 
daemon ••••••••.•••••.•••.••...•••• cron(1M) 
daemon. ••••••••••••••••••••••••••• errd emon( 1 M) 
daemon •••••••••••••••••••••••••••• lpd( 1C) 
daemon. errstop: •••••••••••••••••• errstop(1M) 
daily accounting •••••••••••••••••• runacct(1M) 
daily/weekly UNIX file system ••••• filesave(1M) 
DASI 300 and 300s terminals ••••••• 300(1) 
DASI 450 terminal 450: •••••••••••• 450(1) 
data •••••••••••••••••••••••••••••• prof(1) 
data and system activity timex: ••• timex(1) 
data base ••••••••••••••• :......... termcap( 5) 
data in a machine independent/ •••• sputl(3X) 
data in memory •••••••••••••••••••• plock(2) 
data returned by stat system •••••• stat(5) 
data segment space allocation ••••• brk(2) 
data types •••••••••••••••••••••••• types(5) 
database operator ••••••••••••••••• join(1) 
date ••••••• ~ •••••••••••••••••••••• date(1) 
date ............................. . 
date and time to string ••••••••••• 
date: print and set the date •••••• 
date: print and set the date •••••• 
dble, cmplx, dcmplx, ichar, char:/ 
dc: desk calculator ••••••••••••••• 
dcmplx, ichar, char: explicit/ •••• 
dcopy: copy file systems for •••••• 
dd: convert and copy a file ••••••• 
debugger •••••••••••••••••••••••••• 
debugger •••••••••••••••••••••••••• 

..,. viii .,. 

date.1.old 
ctime( 3C) 
date ( 1 ) 
date .1.01d 
ftype( 3F) 
dc( 1 ) 
ftype(3F) 
dcopy( 1 M) 
dd(1) 
fsdb( 1M) 
sdb(1) 



) 

sysdef: system 
eqnchar: special char~cter 

basename, dirname: 
tail: 

mesg: permi t or 
and eqn constructs 

crypt, setkey, encrypt~ generate 
close: close a file 

dup: duplicate an open file 
dc: 

file access: 
fi Ie: 

ioctl: control 
master: master 

devnm : 

blocks. 
check and interactive/ fsck, 

terminal line connection 
comparator 
comparison 

sdiff: side~by~side 
diffmk: mark 

diff: 
diff3: 3 .... way 

files 

dir: format of 
Is: list contents of 

rm, rmdir: remove files or 
cd: change working 

chdir: change working 
chroot: change root 

mkdir: make a 
mvdir: move a 

uuclean: uucp spool 
dircmp: 

unl ink: remove 
chroot: change root 

get pathname of current working 
pwd: working 

ordinary file mknod: make a 
pathnames basename, 

pr in ter s enabl e t 

acct: enable or 
type, modes, speed, and line 

sadp: 
df: report number of free 

du: summarize 
mount, umount: mount and 

vi: screen oriented (visual) 

·Permuted Inri ex 

definition •••••••••••••••••••••••• 
defini tions for eqn and neqn •••••• 
deliver portions of pathnames ••••• 
deliver the last part of a file ••• 
deny messages ••••••••••••••••••••• 
deroff: remove nroff/troff, tbl, •• 
DES encryption •••••••••••••••••••• 
descriptor •••••••••••••••••••.•••• 
descriptor •••••••••••••••••••••••• 
desk calculator ••••••••••••••••••• 
determine accessibility of a •••••• 
determine file type ••••••••••••••• 
device •••••••••••••••••••••••••••• 
device information table •••••••••• 
device name • •••••••••••••••••••••• 
devnm: device name • ••••••••••••••• 
df: report number of free disk •••• 
dfsck: file system consistency ••.• 
dial: establish an out~going •••••• 
diff: differential file ••••••••••• 
diff3: 3~way differential file •••• 
difference program •••••••••••••••• 
differences between files ••••••••• 
differential file comparator •••••• 
differential file comparison •••••• 
diffmk: mark differences between •• 
dir: format of directories •••••••• 
dircmp: directory comparison •••••• 
directories •.••••••••••••••••••••• 
directories ••••••••••••••••••••••• 
directories ••••••••••••••••••••••• 
directory 
directory 
directory 
directory 

......................... 

......................... 
d ir ec tory. • ••••••••••••••••••••••• 
directory clean~up • ••••••••••••••• 
directory comparison •••••••••••••• 
directory entry •..•••••••.•••.•••• 
directory for a command • •••••••••• 
directory getcwd: ••••••••••••••••• 
directory name •••••••••••••••••••• 
directory, or a special or •••••••• 
dirname: deliver portions of •••••• 
disable: enable/disable LP •••••••• 
disable process accounting •••••••• 
discipline. /set terminal ••....•.. 
disk access profiler •••••••••••••• 
disk blocks • •••••••••••••••••••••• 
disk usage •••••••••••••••••••••••• 
dismount file system • ••••••••••••• 
display editor based on ex •••••••• 

.... ix ~ 

sysdef( 1M) 
eqnchar (5) 
basenam e ( 1 ) 
tail(1) 
mesg(1) 
deroff(1) 
crypt (3C) 
close(2) 
dupe 2) 
dc(1) 
access(2) 
fi 1 e( 1 ) 
ioctl(2) 
master .dec(4) 
devnm(1M) 
devnm( 1M) 
d f( 1 M) 

fsck(1M) 
dial(3C) 
diff(1) 
diff3(1) 
sdiff(1) 
diffmk( 1 ) 
d i ff( 1 ) 
diff3(1) 
d iffmk( 1 ) 
dire 4) 
dircmp(1) 
dir(4) 
Is(1) 
rm( 1) 
cd ( 1 ) 
chdir (2) 
chroot(2) 
mkrl ir ( 1 ) 
mvrlir( 1M) 
uuclean( 1M) 
dircmp(1) 
unlink(2) 
chroot( 1M) 
getcwd (3C) 
pwd (1 ) 
mknod (2) 
basename( 1 ) 
enable(1) 
acct(2) 
getty(1M) 
sadp(1) 
df( 1M) 
due 1 ) 
mount( 1M) 
vi(1) 



Permuterl Inri ex 

prof: 
hypot: Euclirlean 

/lcong48: generate uniformly 
mm, osdd, checkmm: print/check 

MH macro package for formatting 
macro package for formatting 

slides mmt, mvt: typeset 
nulladm,/ chargefee, ckpacct, 

whodo: who is 
reversi: a game of 

nranrl48, mranrl48, jrand48,/ 
aritr~etic: provide 

trace: event~tracing 

od: octal 
object file 

extract error records from 
fil e rlump: 
descriptor 

descriptor dup: 
echo: 

floating-point number to string 

end, etext, 
for casual users) 

ed, rerl: text 
ex: text 

sed: stream 
screen oriented (visual) display 

Id: link 
common assembler and link 

users) edit: text 
effective user, real group, anrl 

/getgid, getegid: get real user, 
fsplit: split f77, ratfor, or 

pattern grep, 
LP printers 

accounting acct: 
enable, disable: 

crypt, setkey, 
setkey, encrypt: generate DES 

makekey: generate 
in program 

getgrgid, getgrnam, setgrent, 
/getpwuid, getpwnam, setpwent, 

/getutline, pututline, setutent, 
nlist: get 

linenum: line number 
man, manprog: print 

man: macros for formatting 
/ldlitem: manipulate line number 

display profile data •••••••••••..• 
distance function ••••••••••••••••• 
distributeri pseuoo-randoml •••••••• 
documents formatted with the MM/ •• 
documents mm: the ••••••••••••••••• 
documents /the OSDD adapter ••••••• 
document·s, viewgraphs, and •••••••• 
dodisk, lastlogin, monacct, ••••••• 
dOing what •••••••••••••••••••••••• 
dramat i c rever sal s •••••••••••••••• 
drand48, erand48, lrand48, •••••••• 
drill in number facts ••••••••••••• 
d r i ver ........................... . 
du: summarize disk usage •• ' •••••••• 
dtm1p •••••••••••••••••••••••••••••• 
dump: dump selected parts of an ••• 
dump. errdead: •••••••••••••••••••• 
dump selected parts of an object •• 
dup: duplicate an open file ••••••• 
duplicate an open file •••••••••••• 
echo arguments •••••••••••••••••••• 
echo: echo arguments •••••••••••••• 
ecvt, fcvt, gcvt: convert ••••••••• 
ed, red: text editor •••••••••••••• 
edata: last locations in program •• 
edit: text editor (variant of ex •• 
editor 
edi tor 

............................ 

............................ 
editor •••••••••••••••••••••••••••• 
editor based on ex vi: •••••••••••• 
editor for common object files •••• 
editor output a.out: •••••••••••••• 
editor (variant of ex for casual .. 
effective group IDs Ireal user, ••• 
effective user, real group, and/ •• 
efl fi 1 es ••••••••••••••••••••••••• 
egrep, fgrep: search a file for a • 
enable, disable: enable/disable ••• 
enable or disable process ••••••••• 
enable/disable LP printers •••••••• 
encrypt: generate DES encryption •• 
encryption crypt, ••••••••••••••••• 
encryption key •••••••••••••.•..••• 
end, etext, edata: last locations. 
endgrent: obtain getgrent, •••••••• 
endpwent: get password file/ •••••• 
endutent, utmpname: access utmp/ •• 
entries from name list •••••••••••• 
entries in a common object file ••• 
entries in this manual ....••••.••• 
entries in this manual .•.....•.••• 
entries of a common object file/ •• 

prof(1) 
hypot(3M) 
drand48(3C) 
mm (1) 
mm(5) 
mosd( 5) 
mmt( 1 ) 
acctsh( 1M) 
whooo(1M) 
rever si (6) 
riranrl48(3C) 
arithmetic(6) 
trace(7) 
due 1 ) 
od ( 1 ) 
dump(1) 
errdearl( 1M) 
dump(1) 
dup(2 ) 
dup(2) 
echo( 1 ) 
echo( 1) 
ecvt(3C) 
ed (1 ) 
end(3C) 
ed i t( 1 ) 
ed (1 ) 
ex(1) 
sede,) 
vi(1) 
Id ( 1 ) 
a.out(4) 
edit(1) 
getuid(2) 
getuid (2) 
fspl i t( 1) 
grep(1) 
enable(1) 
acct(2) 
enable(1) 
crypt( 3C) 
crypt( 3C) 
makekey( 1) 
end(3C) 
getgrent(3C) 
getpwen t( 3C) 
getut(3C) 
nlist(3C) 
linenum(4 ) 
mane 1) 
man(5 ) 
Idlread(3X) 



/ 

Ilrlnlseek: seek to line number 
Ilrlnrseek: seek to relocation 
putpwent: write password file 

unlink: remove directory 
utmp, wtmp: utmp and wtmp 

endpwent: get password file 
Ithe inn ex of a symbol tabl e 

/read an indexed symbol table 
utmpname: access utmp file 

execution 

environ: user 
profile: setting up an 

execution env: set 
getenv: return value for 

sky: obtain 
special character definitions for 

. remove nroff/troff, tbl, and 
mathematical text for nroff orl 

definitions for eqn anrl neqn 
mrann48, jrand48,1 drand48, 

complementary error function 
complementary errorl erf, 

from dump. 
daemon. 

system error messages perror, 
error function err, erfc: 

error function and complementary 
sys errlist, sys nerr: system 

introduction to system calls and 
errdead: extract 

matherr: 
errfile: 

errdemon: 
errstop: terminate the 

err: 
process a report of logged 

spellin, hashcheck: find spelling 
logged errors. 

error~logging daemon. 
line connection dial: 

setmnt: 
program end, 

hypot: 
expression expr: 
test: condition 

trace: 
edit: text erlitor (variant of 

(visual) display editor based on 

Permuterl Inn ex 

entries of a section of a common/ • 
entries of a section of a commonl • 
en tr y ••••••••••••••••••••••••••••• 
en tr y •.•........••.•.••••••.•.•.•• 
en tr y formats ••••••••••••••••••••• 
entry Igetpwnam, setpwent, •••••••• 
entry of a common object file ••••• 
entry of a common object file ••••• 
entry Isetutent, ennutent, •••••••• 
env: set environment for command •• 
environ: user environment ••••••••• 
environment ••••••••••••••••••••••• 
environment at login time ••••••••• 
environment for command ••••••••••• 
env ironmen t 
ephemer ides 

name •••••••••••••••••• 

eqn ann neqn eqnchar: ••••••••••••• 
eqn constructs deroff: •••••••••••• 
eqn, neqn, checkeq: format •••••••• 
eqnchar: special character •••••••• 
erand48, lrand48, nrand48, •••••••• 
erf, erfc: error function and ••••• 
er fc: error fune tion and •••••••••• 
err: error~logging interface •••••• 
errdead: extract error records •••• 
errdemon: error~logging ••••••••••• 
errfile: error-log file format •••• 
errno, sys_errlist, sys_nerr: ••••• 
error function and complementary •• 
error function erf, erfc: ••••••••• 
error messages perror, errno, ••••• 
error numbers intro: •••••••••••••• 
error records from dump • •••••••••• 
error-handling function ••••••••••• 
error-log file format ••••••••••••• 
error-logging daemon • ••••••••••••• 
error-logging daemon • ••••••••••••• 
error-logging interface ••••••••••• 
errors. errpt: •••••••••••••••••••• 
errors spell, hashmake, ••••••••••• 
errpt: process a report of •••••••• 
errstop: terminate the •••••••••••• 
establish an out-going terminal ... 
establ ish moun t tab 1 e. • ••••.••••••• 
etext, edata: last locations in ••• 
Euclidean distance function ••••••• 
evaluate arguments 
evaluation command 

a s an •••••••••• 
................ 

event-tracing driver •••••••••••••• 
ex for casual users) •••••••••••••• 
ex: text editor ••••••••••••••••••• 
ex vi: screen oriented •••••••••••• 

~ xi ..,.. 

lrllseek(3X) 
ldrseek(3X) 
put pwen t( 3C) 
unlink(2) 
utmp( 4) 
getpwen t( 3C) 
ld tbind ex (3X) 
ld tbread (3X) 
getut(3C) 
env(1) 
environ(5) 
environ(S) 
profile(4) 
env(1) 
getenv(3C) 
sky(6 ) 
eqnchar (S) 
deroff( 1 ) 
eqn(1) 
eqnchar(S) 
dranrl48(3C) 
erf(3M) 
erf(3M) 
err(7 ) 
errdead(1M) 
errdemon( 1 M) 
errfile(4) 
perror(3C) 
erf(3M) 
erf(3M) 
perror(3C) 
intro(2) 
errrl earl ( 1 M) 
matherr(3M) 
errfile(4) 
errdemon( 1M) 
errstop( 1M) 
err(1) 
errpt( 1M) 
spell(1) 
errpt( 1M) 
err stope 1 M) 
dial(3C) 
setmnt( 1M) 
end(3C) 
hypot( 3M) 
ex pr ( 1 ) 
test(1) 
trace(1 ) 
edit(1) 
ex(1) 
vi(1) 



Permuted Inri ex 

crash: 
execlp, execvp: execute a file 

execute a file execl, execv, 
execl, execv, execle, execve, 

execle, execve, execlp, execvp: 
regcmp, regex: compile and 

construct argument list(s) and 
env: set environment for command 

uux: unix to unix command 
sleep: suspend 
sleep: suspend 

moni tor: prepare 
profi 1: 

execvp: execute a file execl, 
file execl, execv, execle, 

execv, execle, execve, execlp, 
system calls. link, unlink: 

create a new fi 1 e or- rewr i te an 

exit, 
exponential, logaritr~, power,/ 

pack, pcat, unpack: compress and 
exp, log, log10, pow, sqrt: 

expression 
expr: evaluate arguments as an 

regcmp: regular 
routines regexp: regular 

compile and execute a regular 
greek: graphics for the 

dump. errdead: 
fs pI it: s pI it 

absolute/ floor, ceil, fInod, 
factor: 

true, 
data in a machine independent 

finc: 
procedure. checkall: 

abort: generate an lOT 
stream 

floating~point number to/ ecvt, 
fopen, freopen, 

status inquiries ferror, 
stream status inquiries 

statistics for a file system. 
fclose, 

word from stream getc, getchar, 
stream gets, 

pattern-grep, egrep, 
chmod: change mode of 

examine system images ••••••••••••• 
execl, execv, execle, execve, ••••• 
execle, execve, execlp, execvp: ••• 
execlp, execvp: execute a file •••• 
execute a file execl, execv, •••••• 
execute a regular expression •••••• 
execute command xargs: •••••••••••• 
~xecution ••••••••••••••••••••••••• 
execution ......................... 
execution for an interval ••••••••• 
execution for interval •••••••••••• 
execution profile ••••••••••••••••• 
execution time profile •••••••••••• 
execv, execle, execve, execlp, •••• 
execve, execlp, execvp: execute a • 
execvp: execute a file execl, ••••• 
exercise link and unlink •••••••••• 
existing one creat: ••••••••••••••• 
exit, _exit: terminate process •••• 
_exit: terminate process •••••••••• 
exp, log, log10, pow, sqrt: ••••••• 
expand files •••••••••••••••••••••• 
exponen tial, logar i thm, power ,/ ••• 
expr: evaluate arguments as an •••• 
expression •••••••••••••••••••••••• 
expression compile •••••••••••••••• 
expression compile and match •••••• 
expression regcmp, regex: ••••••••• 
extended TTY-37 type-box •••••••••• 
extract error records from •••••••• 
f77, ratfor, or efl files ••••••••• 
fabs: floor, ceiling, remainder, •• 
factor a number ••••••••••••••••••• 
factor: factor a number ••••••••••• 
false: provide truth values ••••••• 
fashion. /access long integer ••••• 
fa st incremen tal backup. • ••••••••• 
faster file system checking ••••••• 
fa ul t ............................ . 
fclose, fflush: close or flush a •• 
fcntl: file control ••••••••••••••• 
fcntl: file control options ••••••• 
fcvt, gcvt: convert ••••••••••••••• 
fdopen: open a stream ••••••••••••• 
feof, clearerr, fileno: stream •••• 
ferror, feof, clearerr, fileno: ••• 
ff: list file names and ••••••••••• 
fflush: close or flush a stream ••• 
fgetc, getw: get character or ••••• 
fgets: get a string from a •••••••• 
fgrep: search a file for a •••••••• 
fi 1 e ............................. . 

- xii - • 

crash( 1M) 
ex ec (2) 
ex ec (?) 
exec(2) 
exec(2) 
regcmp(3X) 
xargs( 1 ) 
env(1) 
uux ( 1 C) 
sleep(1) 
sleep(3C) 
monitor(3C) 
profil (2) 
exec(2) 
exec(2) 
exec(2) 
link(1M) 
creat(2) 
exit(2) 
exit(2) 
exp(3M) 
pack(1) 
exp( 3M) 
expr(1) 
expr( 1) 
regcmp(1) 
regexp(5 ) 
regcmp(3X) 
greek(5) 
errd ead ( 1 M) 
fsplit(1) 
floor(3M) 
factor( 1 ) 
factor( 1 ) 
true(1) 
sputl(3X) 
finc(1M) 
checkall ( 1 M) 
abort(3C) 
fclose(3S) 
fcntl(2) 
fcntl(S) 
ecvt(3C) 
fopen(3S) 
ferror(3S) 
ferror(3S) 
ff(1M) 
fclose (3S) 
getc(3S) 
gets(3S) 
grep(1) 
chmod (2) 



core: format of core image 
dd: convert and copy a 

group: group 
issue: issue identification 

link: link to a 
mknod: build special 

null: the null 
passwd: password 
read: read from 

tail: deliver the last part of a 
tmpfile: create a temporary 

uniq: report repeated lines in a 
write: write on a 

determine accessibility of a 
times utime: set 

ldfcn: common object 
tar: tape 

cpio: copy 
pwc~, grpck: password/group 
change owner and group of a 

diff: differential 
bdi ff: 

diff3: 3~way differential 
fcntl: 
fcntl: 

public UNIX System~to-UNIX System 
umask: set and get 

selec ted fi elds of each line of a 
close: close a 

dup: duplicate an open 

dump selected parts of an object 
putpwent: write password 

setpwent, endpwent: get password 
endutent, utmpname: access utmp 

execve, execlp, execvp: execute a 
grep, egrep, fgrep: search a 

ldaopen: open a common object 
acct: per~process accounting 

ar: common archive 
errfile: error-log 

intro: introduction to 
number entries of a common object 

files filehdr: 
fi 1 e ld fhread: read the 

ldohseek: seek to the optional 
split: split a 

header of a member of an archive 
ldaclose: close a common object 
file header of a common object 

retrieve symbol name for object 
symbol table of a common object 

. Permuted ~ 

file 
file 
file 
file 
file 

· ............................ . · ............................ . · ............................ . 
· ............................ . 
· ............................ . 

fi 1 e • • •••• ~ ••••••••••••••••••••••• 
file 
file 
file 
file 
'file 
file 
file 
file 

· ............................ . · ............................ . · ............................ . 
· ............................ . · ............................ . 

access: •••••••••••••••••••••• 
file access and modification •••••• 
file access routines •••••••••••••• 
file archiver ••••••••••••••••••••• 
file archives in and out •••••••••• 
file checkers • •••••••••••••••••••• 
fi I echo wn: ••••••••••••••••••••••• 
fi Ie compar ator ••••••••••••••••••• 
file comparator for large files ••• 
fi Ie compar i son ••••••••••••••••••• 
file control •••••••••••••••••••••• 
file control options •••••••••••••• 
file copy uuto, uupick: ••••••••••• 
file creation mask •••••••••••••••• 
file cut: cut out ••••••••••••••••• 
file descriptor 
file descriptor ••••••••••••••• ~ ••• 
file: determine file type ••••••••• 
fi led ump: •••••••••••••••••••••••• 
file entry •••••••••••••••••.•••••. 
file entry /getpwuid, getpwnam, ••• 
file entry /pututline, setutent, •• 
file execl, execv, execle, •••••••• 
file for a pattern •••••••••••••••• 
file for reading ldopen, •••••••••• 
file format ....................... . 
fi 1 e format ••••••••••••••••••••••• 
fi I e format ••••••••••••••••••••••• 
file formats ••••.•••••••••••••••••• 
file function /manipulate line •••• 
file header for common object ••••• 
file header of a common object •••• 
file header of a common object/ ••• 
file into pieces •••••••••••••••••• 
file ldahread: read the archive ••• 
file ldclose, ••••••••••••••••••••• 
file ldfhread: read the ••••••••••• 
fi I e I d g e tn am e : ••••••••••••••••••• 
file ldtbseek: seek to the •••••••• 

- xiii -

core(4) 
dd ( 1 ) 
group (4) 

issue(4) 
link(2) 
mknod (1 M) 
null(7) 
pa sswd (4) 
read(2) 
tail(1) 
tmpfile(3S) 
uniq( 1) 
write(2) 
access(2) 
utime(2) 
Idfcn(4) 
tar(1) 
c pio ( 1 ) 
pwck( 1H) 
chown( 2) 
diff(1) 
bdiff(1) 
diff3(1) 
fcntl (2) 
fcntl (5) 
uuto(1C) 
umask(2 ) 
cut ( 1 ) 
close(2) 
dupe 2) 
fi lee 1 ) 
dump( 1 ) 
putpwent(3C) 
getpwent(3C) 
getut(3C) 
exec(2) 
grep(1) 
ldopen( 3X) 
acct(4) 
ar(4) 
errfile(4 ) 
intro(4) 
Id lread (3X) 
filehdr( 4) 
Id fhread (3X) 
Idohseek(3X) 
split(1) 
ld ahrean (3X) 
ldclose( 3X) 
Id fhread (3X) 
ldgetname( 3X) 
ld tbseek( 3X) 

• 



Permuted Ind ex 

number entries i~ a common object 
or a special or ordinary 

a file system. ff: list 
change the format of a text 

print name list of common object 
/find the slot in the utmp 

creat: create a new 
lseek: move read/wri te 

rewind, ftell: reposition a 
table entry of a common object 

section header of a common object 
information for a common object 

files or subsequent lines of one 
bfs: big 

header for a common object 
section of a common object 

of a section of a common object 
file header of a common object 

number information from an object 
checksum and block count of a 

syms: common object 
mkfs: construct a 

mount: mount a 
umount: unmount a 

tapesave: daily/weekly UNIX 
fsba: 

procedure. checkall: faster 
and interactive/ fsck, dfsck: 

fsdb, fsdb1b: 
names and statistics for a 

volume 
umouht: mount and dismount 

ustat: get 
mnttab: mounted 

access time. dcopy: copy 
checklist: list of 

volcopy, labelit:"copy 
volcopy, labelit: copy 

table entry of a common object 
create a name for a temporary 

of a section of a common object 
and mod i ficatioll times of a 

ftw: walk a 
file: determine 

umask: set 
obj ect files 

mktemp: make a unique 
ctermid: generate 

ferror, feof, clearerr, 
brliff: file comparator for large 

cat: concatenate and print 
cmp: compare two 

file linenum: line •••••••••••••••• 
file mknod: make a directory, ••••• 
file names and statistics for ••••• 
file newform: •.••••••••••••••••••• 
fi 1 e nm: •••...•••••••••••••••••••• 
file of the current user •••••••••• 
file or rewrite an existing one ••• 
file pointer •••••••••••••••••••••• 
file pointer in a stream fseek, ••• 
file /read an indexed symbol ....•• 
file /read an indexed/named ••••••• 
file reloc: relocation •••••••••••• 
file /same lines of several ••••••• 
file scanner •••••••••••••••••••••• 
file scnhdr: section •••••••••••••• 
file /seek to an indexed/named •••• 
file /seek to relocation entries •• 
file /seek to the optional •....... 
file /strip symbol and line ••••••• 
file sum: print .••.•...•..•.•••••. 
file symbol table format •••••••••• 
file system • •••••••••••••••••••••• 
file system •••••••• ~ •••••••••••••• 
file system ••••••••••••••••••••••• 
file system backup. filesave, ••••• 
file system block analyzer • ••••••• 
file system checking •••••••••••••• 
file system consistency check ••••• 
file system debugger • ••••••••••••• 
file system. ff: list file •••••••• 
file system: format of system ••••• 
file system. mount, ••••••••••••••• 
file system statistics •••••••••••• 
file system table ••••••••••••••••• 
file systems for optimal •••••••... 
file systems processed by fsck •••• 
file systems with label/ •••••••••• 
file systems with label/ •••••••••• 
file /the index of a symbol ••••••• 
file tmpnam, tempnam: ••••••••••••• 
file Ito line number entries •••••• 
file touch: update access ••••••••• 
file tree ••••••••••••••••••••••••• 
fil e type ••••••••••••••••••••••••• 
file~creation mode mask ••••••••••• 
filehdr: file header for common ••• 
fi 1 ename •••••••••••••••••••••••••• 
filename for terminal ••••.•••.•..• 
fileno: stream status inquiries ••• 
ri 1 e s ••••••••••••••••••••••••••••• 
files 
files 

co xiv .,. 

............................. ............................. 

linenum(4) 
mknod(2) 
ff(1M) 
newform( 1 ) 
nm(1) 
ttyslot(3C) 
creat(2) 
lseek(2) 
fseek(3S) 
ld tbread (3X) 
ld shread (3X) 
reloc(4) 
paste( 1) 
bfs( 1) 
scnhdr( 4) 
ld sseek( 3X) 
ldrseek(3X) 
Idohseek(3X) 
strip(1) 
sum(1) 
syms(4) 
mkfs(1M) 
mount(2) 
umount(2) 
filesave( 1M) 
fsba(1M) 
checkall( 1M) 
fsck( 1M) 
fsdb( 1M) 
ff(1M) 
fs(4) 
mount( 1M) 
ustat(2) 
mnttab(4) 
dcopy( 1M) 
checklist(4) 
volcopy(1M) 
volcopy.1m.old 
ld tbindex (3X) 
tmpnam(3S) 
ldlseek(3X) 
touch(1) 
ftw( 3C) 
file(1) 
umask( 1) 
fi lehdr(4) 
mktemp(3C) 
ctermid(3S) 
ferror(3S) 
bdiff( 1) 
cat(1) 
cmp( 1 ) 



j cp, In, mv: copy, link or move 
diffmk: mark differences between 

fi nd: fi nd 
intro: introduction to special 

Id: link editor for common object 
pr: print 

sort: sort and/or merge 
and print process accounting 

merge or add total accounting 
VAX~11/780/ fscv: convert 

reject lines common to two sorted 
file header for common object 

frec: recover 
format specification in text 

split f77, ratfor, or efl 
scat: concatenate and print 

rm, rmdir: remove 
/merge same lines of several 

pcat, unpack: compress and expand 
section sizes of common object 
daily/weekly UNIX file system/ 

greek: select terminal 
nl: line numbering 

col: 

find: 

hyphen: 
ttyname, i satty: 

object library lorder: 
hashmake, spellin, hashcheck: 

the current user ttyslot: 
tee: pi pe 

ichar,/ int, ifix, idint, ~eal, 
atof: convert ASCII string to 

ecvt, fcvt, gcvt: convert 
ldexp, modf: manipulate parts of 

ceiling, remainder, absolute/ 
floor, ceil, fmod, fabs: 

cflow: generate C 
fclose, fflush: close or 

remainder, absolute/ floor, ceil, 
stream 

acct: per~process accounting file 
ar: common archive file 
errfile: error-log file 

nroff or/ eqn, neqn, checkeq: 
newform: change the 

inode: 
core: 
cpio: 

Permuted Ind ex 

files 
files 
files 
files 
files 
files 

· ........................... . 
· ........................... . 
· ........................... . · ........................... . · ........................... . 
· ........................... . 

files ••••••••••••••••••••••••••••• 
file(s) acctcom: search ••••••••••• 
files. acctmerg: •••.•.•••••••••••• 
files between M68000 and •••••••••• 
files comm: select or ••••••••••••• 
files filehdr: •••••••••••••••••••• 
files from a backup tape •••••••••• 
files fspec: •••••••••••••••••••••• 
files fsplit: .•.•••••••••••••••••. 
files on synchronous printer •••••• 
files or directories •••••••••••••• 
files or subsequent lines of one/ • 
files pack, ••••••••••••••••••••••• 
fi 1 es si ze: pr in t ••.•••••••••••••• 
filesave, tapesave: ••••••••••••••• 
fil ter ........................... . 
fil ter ........................... . 
filter reverse line-feeds ••••••••• 
finc: fast incremental backup ••••• 
find files •••••••••••••••••••••••• 
find: find files •••••••••••••••••• 
find hyphenated words ••••••••••••• 
find name of a terminal ••••••••••• 
find ordering relation for an ••••• 
find spelling errors spell, ••••••• 
find the slot in the utmp file of • 
fitting ••••••••••••••••••••••••••• 
float, sngl, dble, cmplx, dcmplx, • 
floating-point number ••••••••••••• 
floating-point number to string ••• 
floating-point numbers frexp, ••••• 
floor, ceil, fmod, fabs: floor, ••• 
floor, ceiling, remainder,/ ••••••• 
flow graph •••••••••••••••••••••••• 
fl ush a stream •••••••••••••••••••• 
fmod, fabs: floor, ceiling, ••••••• 
fopen, freopen, fdopen: open a •••• 
fork: create a new process •••.•••• 
format ........................... . 
format 
format 

............................ ............................ 
format mathematical text for •••••• 
format of a text file ••••••••••••• 
format of an inode •••••••••••.•••• 
format of core image file ••••••••• 
format of cpio archive •••••••••••• 

.... xv ..,. 

cp(1) 
diffmk(1) 
fi nd ( 1 ) 
intro(7) 
Id(1) 
pr(1) 
sort(1) 
acctcom(1) 
acctmerg( 1M) 
fscv(1M) 
comm(1) 
filehdr(4) 
frec( 1M) 
fs pee (4) 
fspli t( 1) 
scat(1) 
rm( 1 ) 
paste( 1) 
pack(1) 
si ze ( 1 ) 
filesave( 1M) 
greek(1) 
nl(1) 
col(1) 
finc(1M) 
find(1) 
find(1) 
hyphen(1) 
tt yname( 3C) 

lorder( 1) 
spell(1) 
ttyslot(3C) 
tee(1) 
ftype(3F) 
atof( 3C) 
ecvt(3C) 
frexp(3C) 
floor(3M) 
floor(3M) 
cflow( 1) 
fclose( 3S) 
floor(3M) 
fopen(3S) 
fork(2 ) 
acct(4 ) 
ar(4) 
errfile(4 ) 
eqn(1) 
newform (1 ) 
inode(4) 
core(4) 
cpio( 4) 



Permuted Index ---

dir: 
file system: 
files fspec: 

common object file symbol table 
tbl: 

nroff: 
intro: introduction to file 

utmp, wtmp: utmp ann wtmp entry 
scanf, fscanf, sscanf: convert 

printf, fprintf, sprintf: print 
/checkmm: print/check documents 

mptx: the macro package for 
mm: the MM macro package for 

OSDD anapter macro package for 
manual man: macros for 

output printf, 
word on a stream putc t putchar, 

puts, 
input/output 
bac kup tape. 

df: report number of 
memory allocator malloc, 

fopen, 
parts of floating-point numbers 

frec: recover files 
gets, fgets: get a string 

ann line number information 
getopt: get option letter 

errdead: extract error records 
read: read 

ncheck: generate names 
nlist: get entries 

acctcms: command summary 
getw: get character or word 

getpw: get name 
analyzer. 

input scanf, 
list of file systems processed by 

consistency check and/ 
M68000 and VAX~11/780/ 

debugger. 
fsdb, 

a file pointer in a stream 
text files 
efl files 

in a stream fseek, rewind, 

gamma: log gamma 
hypot: Euclidean distance 

matherr: error~handling 
function erf, erfc: error 

function and complementary error 

format of directories •••.••••.•••• ~ir(4) 
format of system volume ••••••••••• fs(4) 
format specification in text •••••• fspec(4) 
fo rm a t s ym s : ••••.•••.•••••••••..•• s ym s ( 4 ) 
format tables for nroff or troff •• tbl(1) 
format text ••••••••••••••••••••••. nro ff( 1 ) 
formats ••••••••••••••••••••••••••• intro(4) 
formats •••••.••••••••••••••••••••• utmp(4) 
form at ted in put ••••••••••••••••••• sc an f( 3S) 
formatted output •••••••••••••••••• printf(3S) 
formatted with the MM macros •••••• mm(1) 
formatting a permuted index ••••••• mptx(S) 
formatting documents •••••••••••••• mm(S) 
formatting documents mosd: the •••• mosd(5) 
formatting entries in this •••••••• maneS) 
fprintf, sprintf: print formatted. printf(3S) 
fputc, putw: put character or ••••• putc(3S) 
fputs: put a string on a stream ••• puts(3S) 
fread, fwrite: binary ••••••••••••• fread(3S) 
frec: recover files from a •••.•••• frec(1M) 
free disk blocks •••••••••••••••••• df(1M) 
free, realloc, calloc: main ••••••• malloc(3C) 
freopen, fdopen: open a stream •••• fopen(3S) 
frexp, Idexp, modf: manipulate •••• frexp(3C) 
from a backup tape •••••••••••••••• frec(1M) 
from a stream ••••••••••••••••••••• gets(3S) 
from an object file /symbol ••••••• strip(1) 
from ar gumen t v ec tor •••••••••••••• getopt (3C) 
from dump ••••••••••••••••••••••••• errdeari( 1M) 
from file ••••••••••••••••••••••••• reari(2) 
from i-numbers •••••••••••••••••••• ncheck( 1M) 
from name list •••••••••••••••••••• nlist(3C) 
from per-process accounting/ •••••• acctcms(lM) 
from stream /getchar, fgetc, •••••• getc(3S) 
from UID •••••••••••••••••••••••••• getpw(3C) 
fsba: file system block ••••••••••• fsba(1M) 
fscanf, sscanf: convert formatted. scanf(3S) 
fsck checklist: ••••••••••••••••••• checklist(4) 
fsck, dfsck: file system •••••••••• fsck(lM) 
fscv: convert files between ••••••• fscv(lM) 
fsdb, fsdb1b: file system ••••••••• fsdb(1M) 
fsdblb: file system debugger •••••• fsdb(1M) 
fseek, rewind, ftell: reposition •• fseek(3S) 
fspec: format specification "in •••• fspec(4) 
fsplit: split f77, ratfor, or ••••• fsplit(1) 
ftell: reposition a file pointer •• fseek(3S) 
ftw: walk a file tree ••••••••••••• ftw(3C) 
function •••••••••••••••••••••••••• gamma(3M) 
function •••••••••••••••••••••••••• hypot(3M) 
function •••••••••••••••••••.•••••• matherr(3M) 
function and complementary error •• erf(3M) 
function erf, erfc: error ••••••••• erf(3H) 

- xvi ..,. 



entries of a common object file 
jO, j1, jn, yO, y1, yn: Bessel 

sinh, cosh, tanh: hyperbolic 
remainder, absolute value 
300, 300s: handle special 

2621~series/ hp: handle special 
terminal 450: handle special 

acos, atan, atan2: trigonometric 
logarithm, power, square root 

fread, 
connect accounting records. 

jotto: secret word 
moo: guessing 

back: the 
bj: the 

chess: the 
craps: the 
reversi: a 

wump: the 
intro: introduction to 

gamma: log 

number to string ecvt, fcvt, 
maze: 

abort: 
cflow: 

cross~reference cxref: 
crypt, setkey, encrypt: 

makekey: 
ctermid: 
ncheck: 

lexical tasks lex: 
/srand48, seed48, lcong48: 

rand, srand: simple random~number 
gets, fgets: 

ulimit: 
user cuserid: 

getc, getchar, fgetc, getw: 
nl i st : 

umask: set and 
ustat: 

getlog in: 
logname: 
msgget: 

getpw: 
system uname: 

vector getopt: 
/getpwnam, setpwent, enopwent: 

directory getcwd: 
times times: 

parentI getpid, getpgrp, getppid: 
getuio, geteuid, getgid, getegid: 

Permuted ~ 

function /manipulate line number •• 
func ti ons ••••••.••.••••.•.•..•.••• 
functions ......................... 
functions Ifabs: floor, ceiling, •• 
functions of DASI 300 and 300s/ •.• 
functions of HP 2640 and •••••.••.• 
functions of the DASr 450 ••••••••• 
functions sin, cos, tan, asin, •••• 
functions /sqrt: exponential, •..•• 
fwrite: binary input/output ••.•••• 
fwtmp, wtmpfix: manipulate •••••••• 
g arne •••••••••••••••••••••••••••••• 
g arne •••••••••••••••••••••••••••••• 
game of backgammon •••••••••••••••• 
game of black jack •••••••••••••••• 
game of chess ••••••••••••••••••••• 
game of craps ••••••••••••••••••••• 
game of dramatic reversals •••••••• 
game of hunt-the~wumpus ••••••••••• 
gam e s ••••••••••••••••••••••••••••• 
gamma function •••••••••••••••••••• 
gamma: log gamma function ••••••••• 
gcvt: convert floating,,-point •••••• 
generate a maze ••••••••••••••••••• 
generate an rOT fault ••••••••••••• 
generate C flow graph ••••••••••••• 
generate C program •••••••••••••••• 
generate DES encryption ••••••••••• 
generate encryption key ••••••••••• 
generate filename for terminal •••• 
generate names from i-numbers ••••• 
generate programs for Simple •••••• 
generate uniformly distributed/ ••• 
generator ••••••••••••••••••••••••• 
get a string from a stream •••.•••• 
get and set user limits ••••••••••• 
get character login name of the ••• 
get character or word from/ ••••••• 
get entries from name list •••••••• 
get file creation mask •••••••.•••• 
get file system statistics •••••••• 
get log in name •••••••••••••••••••• 
get log in name •••••••••••••••••••• 
get message queue ••••••••••.••••••• 
get name from UrD ••••••••••••••••• 
get name of current operating ••••• 
get option letter from argument ••• 
get password file entry ••••••••••• 
get pathname of current working ••• 
get process and child process ••••• 
get process, process group, and 
get real user, effective user,/ ••• 

oro xvii .,.. 

ld lread (3X) 
bessel(3M) 
sinh(3M) 
floor(3M) 
300(1) 
hp(1) 
450 ( 1 ) 
trig(3M) 
exp(3M) 
fread (3S) 
fwtmp( 1M) 
jotto(6) 
moo(6) 
back(6 ) 
bj(6) 
chess(6) 
craps(6) 
reversi (6) 
wump( 6) 
intro(6) 
gamma( 3M) 
gamma( 3M) 
ecvt(3C) 
maze(6) 
abort(3C) 
cflow( 1 ) 
cxref( 1 ) 
crypt(3C) 
rnakekey( 1 ) 
ctermid(3S) 
ncheck( 1M) 
lex (1 ) 

drand48(3C) 
rand(3C) 
gets(3S) 
ulimit(2) 
cuserid(3S) 
getc(3S) 
nlist(3C) 
umask(2) 
ustat(2) 
getlogin(3C) 
logname( 1 ) 
msgget(2) 
getpw(3C) 
uname(2) 
getopt(3C) 
getpwen t( 3C) 
getcwd (3C) 
times(2) 
getpid(2) 
getuid(2) 



Permuted Ind ex 

semget: 
shmget: 

tty: 
time: 

character or word from stream 
character or word from/ getc, 

working directory 
user,/ getuirl, geteuid, getgid, 

env ironment name 
real user, effective/ getuirl, 

effective user,/ getuirl, geteuid, 
setgrent, endgrent: obtain 
endgrent: obtain getgrent, 
obtain getgrent, getgrgid, 

argument vector 

process group, and/ getpid, 
process, process group, anrl/ 
group, and/ getpid, getpgrp, 

setpwel1t, endpwent: get passwordl 
password/ getpwent, getpwuid, 

endpwent: get password/ getpwent, 
stream 

and terminal settings userl by 
modes, speed, and line/ 

ct: spawn 
settings used by getty 

get real user, effective user,/ 
pututline, setutent, endutent,1 
setutent, endutent,/ getutent, 
endutent,/ getutent, getutid, 

stream getc, getchar, fgetc, 
date and time/ ctime, localtime, 

setjmp, longjmp: non~local 
cflow: generate C flow 

sag: system activity 
type-box greek: 
TTY-37 type-box 

for a pattern 
chown, chgrp: change owner or 

newgrp: log in to a new 
Ireal user, effective user, real 

Igetppid: get process, process 
group: 

setpgrp: set process 
setuid, setgid: "set user and 

id: print user and 

get set of semaphores ••••••••••••• 
get shared memory segment ••••••••• 
get the terminal's name ••••••••••• 
get time •••••••••••••••••••••••••• 
getc, getchar, fgetc, getw: get ••• 
getchar, fgetc, getw: get ••••••••• 
getcwd: get pathname of current ••• 
getegid: get real user, effective. 
getenv: return value for •••••••••• 
geteuid, getgid, getegid: get ••••• 
getgid, getegid: get real user, ••• 
getgrent, getgrgid, getgrnam, 
getgrgid, getgrnam, setgrent, ••••• 
getgrnam, setgrent, endgrent: ••••• 
getlogin: get login name •••••••••• 
getopt: get option letter from •••• 
getopt: parse command options ••••• 
getpass:"read a password •••••••••• 
getpgrp, getppid: get process, •••• 
getpid, getpgrp, getppid: get ••••• 
getppid: get process, process ••••• 
getpw: get name from UID •••••••••• 
getpwent, getpwuid, getpwnam, 
getpwnam, setpwent, endpwent: get. 
getpwuid, getpwnam, setpwent, ••••• 
gets, fgets: get a string from a •• 
getty gettydefs: speed •••••••••••• 
getty: set terminal type, ••••••••• 
getty to a remote terminal •..•••.• 
gettydefs: speed and terminal •••.• 
getuid, geteuid, getgid, getegid: • 
getutent, getutid, getutline, ••••• 
getutid, getutline, pututline, •••• 
getutline, pututline, setutent, ••• 
getw: get character or word from •• 
gmtime, asctime, tzset: convert ••• 
goto ......................... ' .... . 
gr aph ........••......••..•..•.•••• 
gr aph ..................••......... 
graphics for the extended TTY~37 •• 
greek: graphics for the extended •• 
greek: select terminal filter ••••• 
grep, egrep, fgrep: search a file • 
group ............................• 
group ............................ . 
group, and effective group IDs •••• 
group, and parent process IDs ••••• 
group file •••••••••••••••••••••••• 
group: group file ••••••••••••••••• 
group ID •••••••••••••••••••••••••• 
group IDs ••••••••••••••••••••••••• 
group IDs and names ••••••••••••••• 

_ xviii .... 

semget(2) 
shmget(2) 
tty(1) 
time( 2) 
getc(3S) 
getc(3S) 
getcwd (3C) 
getuid(2) 
getenv(3C) 
getuid(2) 
getuid(2) 
getgrent(3C) 
getgrent(3C) 
getgrent(3c) 
getlogin(3C) 
getopt (3C) 
getopt( 1) 
getpass(3C) 
getpirl(2) 
getpid(2) 
getpid(2) 
getpw(3C) 
getpwen t( 3C) 
getpwent(3C) 
getpwen t( 3C) 
gets(3S) 
gettydefs(4 ) 
getty(1M) 
ct(1C) 
gettydefs( 4) 
getuid(2) 
getut(3C) 
getut(3C) 
getut(3C) 
getc(3S) 
ctime(3C) 
setjmp( 3C) 
cflow( 1) 
sag(1) 
greek( 5) 
greek(5 ) 
greek(1) 
grep(1) 
chown( 1 ) 
newgrp( 1) 
getuid(2) 
getpid(2) 
group(4 ) 
groupe 4) 
setpgrp(2) 
se tuid (2) 
id(1) 

• 



user, real group, and effective 
chown: change owner' and 

send a signal to a process or a 
maintain, update, and regenerate 

checkers. pwck, 
ssignal, 
hangman: 

moo: 
300 and 300s/ 300, 300s: 

2640 and 2621~series/ hp: 
DASI 450 terminal 450: 

nohup: run a command immune to 
hcreate, hdestroy: manage 
spell, hashmake, spellin, 

find spelling errors spell, 
search tables hsearch, 

tables hsearch, hcreate, 
aouthdr: optional aout 

scnhdr: section 
filehdr: file 

ld fhread: read the file 
/seek to the optional file 

/read an indexed/named section 
file ldahread: read the archive 

hel p: ask for 

hp: handle special functions of 
HP 2640 and 2621~series/ 

manage hash search tables 
wump: the game of 
sinh, cosh, tanh: 

hyphen: find 
function 

setpgrp: set process group 
names 

semaphore set or sharerl memory 
issue: issue 

cmplx, dcmplx, ichar,/ int, ifix, 
io: print user and group 

process group, and parent process 
real group, and effective group 

setgid: set user and group 
dble, cmplx, dcmplx, ichar,/ int, 

core: format of core 
crash: examine system 

nohup: run a command 
, finc: fast 

long integer data in a machine 
/tgetstr, tgoto, tputs: terminal 

ptx: permuted 

Permuted Ind ex 

group IDs /real user, effective ••• getuid(2) 
group of a file ••••••••••••••••••• chown(2) 
group of processes kill: •••••••••• kill(2) 
groups of programs make: •••••••••• make(1) 
grpck: password/group file •••••••• pwck(1M) 
gsignal: software signals ••••••••• ssignal(3C) 
gue ss the word •••••••••••••••••••• hangman (6 ) 
g ue ssi ng game ••••••••••••••••••••• moo( 6 ) 
handle special functions of DASI •• 300(1) 
handle special functions of HP •••• hp(1) 
handle special functions of the ••• 450(1) 
hangman: guess the word ••••••••••• hangman(6) 
hangups and quits ••••••••••••••••• nohup(1) 
hash search tables hsearch, ••••••• hsearch(3C) 
hashcheck: find spelling errors ••• spell(1) 
hashmake, spellin, hashcheck: ••••• spell(1) 
hcreate, hdestroy: manage hash •••• hsearch(3C) 
hdestroy: manage hash search •••••• hsearch(3C) 
he ad er •••••••••••••••••••••••••••• ao ut hd r ( 4 ) 
header for a common object file 
header for common object files 
he ar:l er of a common object file 
header of a common object file 
header of a common object file 
header of a member of an archi ve 

... 

.. 

scnhdr( 4) 
filehdr( 4) 
Id fhread (3X) 
Idohseek( 3X) 
Id shr earl ( 3X ) 
Id ahread (3X) 

help •••••••••••••••••••••••••••••• help(1) 
help: ask for help •••••••••••••••• help(1) 
HP 2640 and 2621 orseries/ •••••••••• hp( 1) 
hp: handle special functions of ••• hp(1) 
hsearch, hcreate, hdestroy: .~ ••••• hsearch(3C) 
hunt~the~wumpus ••••••••••••••••••• wump(6) 
hyperbolic functions •••••••••••••• sinh(3M) 
hyphen: find hyphenated words ••••• hyphen(1) 
hyphenated words •••••••••••••••••• hyphen(1) 
hypot: Euclidean distance ••••••••• hypot(3M) 
10 •••••••••••••••••••••••••••••••• setpgrp(2) 
id: print user and group IDs and •• id(1) 
id Iremove a message queue, ••••••• ipcrm(1) 
identification file ••••••••••••••• issue(4) 

'idint, real, float, sngl, dble, ••• ftype(3F) 
IDs and names ••••••••••••••••••••• id(1) 
IDs /getppid: get process, •••••••• getpid(2) 
IDs /real user, effective user, ••• getuid(2) 
IDs setuid, ••••••••••••••••••••••• setuid(2) 
ifix, idint, real, float, sngl, ••• ftype(3F) 
image file •••••••••••••••••••••••• core(4) 
images •••••••••••••••••••••••••••• crash(1M) 
immune to hangups and quits ••••••• nohup(1) 
incremental backup •••••••••••••••• finc(1M) 
independent fashion. /access •••••• sputl(3X) 
independent operation routines •••• termcap(3) 
index ••••••••••••••••••••••••••••• ptx(1) 

or xix ..,. • 



Permuted Ind ex 

package for formatting a permuted 
a common/ ldtbindex: compute the 
common object/ Idtbread: read an 
a/ ldshread, ldnshread: read an 

ldsseek, ldnsseek: seek to an 
inittab: script for the 

initial ization. 
init, telinit: process control 

/rc, powerfail: system 
popen, pclose: 

process 
clri: clear 

inode: format of an 

fscanf, sscanf: convert formatted 
ungetc: push character back into 

fread, fwrite: binary 
strlio: standard buffered 

clearerr, fileno: stream status 
uustat: uucp status 

install: 

sngl, dble, cmplx, dcmplx,/ 
abs: return 

a641, 164a: convert between long 
sputl, sgetl: access long 

atol, atoi: convert string to 
/lto13: convert between 3-byte 

between 3-byte integers and long 
bcopy: 

system consistency check and 
rjestat: RJE status report and 

cat: phototypesetter 
err: error~logging 

termio: general terminal 
tty: controlling terminal 

characters asa: 
sno: SNOBOL 

pipe: create an 
facilities status ipcs: report 

package stdipc: standard 
sleep: suspend execution for an 

sleep: suspend execution for 
subroutines and libraries 
miscellaneous facilities 
and application programs 

formats 

files 
maintenance commands and/ 

calls and error numbers 
maintenance procedures 

index mptx: the macro •••••••••.••• 
index of a symbol table entry of •• 
i~dexed symbol table entry of a ••• 
indexed/named section header of ••• 
indexed/named section of a/ ••••••. 
init process •••••••.•••••••••••••• 
init, telinit: process control •••. 
initialization •••••••••••••••••.•• 
initialization shell scripts •••••• 
initiate pipe to/from a process ••• 
inittab: script for the init •••••• 
i~nod e • • •••••••••••••••••••••••••• 
inod e ...•.....•...•...•........... 
inode: format of an inode ••••••••• 
input scanf, 
in put stream 
input/output 
input/output 

· .................... . · .................... . · .................... . 
package •••••••••••••• 

inquiries ferror, feof, ••••••••••• 
inquiry and job control ••••••••••• 
install commands •••••••••••••••••• 
install: install commands ••••••••• 
int, ifix, idint, real, float, •••• 
integer absolute value •••••••••••• 
integer and base~64 ASCII string •• 
integer data in a machine/ •••••••• 
integer strtol, ••••••••••••••••••• 
integers and long integers •••••••• 
integers 13tol, ltol3: convert •••• 
interactive block copy •••••••••••• 
interactive repair. /file ••••••••• 
interactive status console •••••••• 
interface 
interface 
interface 

......................... 
interface ••••••••••••••••••••••••• 
interpret ASA carriage control •••• 
interpreter ••••••••••••••••••••••• 
interprocess channel •••••••••••••• 
inter-process communication ••••••• 
interprocess communication •••••••• 
interval •••••••••••••••••••••••••• 
interval •••••••••••••••••••••••••• 
in tro: introduction to ............ 
intro: introduction to ............ 
intro: introduction to commands ... 
intro: introduction to file ....... 
intro: introduction to games ...... 
intro: introduction to special .... 
intro: introduction to system 
intro: introduction to system ..... 
intro: introduction to system 

or- xx -

mptx(5 ) 
Id tbind ex (3X) 
In tbread (3X) 
ldshread(3X) 
Id sseek( 3X) 
inittab(4) 
init(1M) 
init(1M) 
brc(1M) 
popen(3S) 
inittab(4) 
clri( 111) 
inode(4) 
inode(4) 
scanf( 3S) 
ungetc(3S) 
fread (3S) 
stdio(3S) 
ferror(3S) 
uustat(1C) 
install( 1M) 
install( 1M) 
ft ype (3F) 
abs(3C) 
a641(3C) 
sputl(3X) 
strtol(3C) 
l3tol(3C) 
l3tol(3C) 
bcopy(1M) 
fsck( 1M) 
rjestat(1C) 
cat(1) 
err(1) 
termio(7) 
t t y( 1) 
asa ( 1 ) 
sno( 1 ) 
pi pe (2) 
i pcs( 1 ) 
stdipc(3C) 
sleep(1) 
sleep(3C) 
intro(3)' 
intro(S) 
intro(1) 
intro(4) 
intro(6) 
intro( 7) 
intro(1M) 
intro(2) 
intro(8 ) 



/ 

application programs intro: 
intro: 
intro: 

facilities iritro: 
intro: 

libraries intro: 
maintenance commands/ intro: 

maintenance procedures intro: 
error numbers intro: 

ncheck: generate names from 

abort: generate an 
semaphore set or shared memory/ 
communication facilities status 

/islower, isdigit, isxdigit, 
section header of a/ ldshread, 

indexed/named section/ ldsseek, 
file header of a common object/ 

object file for reading 
relocation entries of a section/ 
indexed/named section header off 

indexed/named section of a/ 
symbol table entry of a common/ 
table entry of a common object/ 

table of a common object file 
getopt: get option 

I ex ic al tasks 
lex: generate programs for simple 

introduction to subroutines and 
ordering relation for an object 

archi ves ar: archi ve and 
ulimit: get and set user 

line: read one 
establish an out-going terminal 

type, modes, speed, and 
o b j ec t fi leI in en um : 

/ldlinit, Idlitem: manipulate 
of a/ Idlseek, Idnlseek: seek to 
object/ strip: strip symbol and 

nl: 
cut out selected fields of each 

lpd: 
send/cancel requests to an LP 

lpr: 

lsearch: 
col: filter reverse 

common object file 
comm: select or reject 
uniq: report repeated 

of several files or subsequent 
subsequent/ paste: merge same 

Permuted Ind ex 

introduction to commands and ...... 
in trod uction to file formats ...... 
in trod uction to games ............. 
introduction to miscellaneous ..... 
introduction to special files ..... 
introduction to subroutines and ... 
in trod uc ti on to system ............ 
introduction to system ............ 
introduction to system calls and .. 
i~numbers ••••••••••••••••••••••••• 
ioctl: control device ••••••••••••• 
lOT fault ••••••••••••••••••• ~ .•••• 
ipcrm: remove a message queue, •••• 
ipcs: report inter~process •••••••• 
isalnum, isspace, ispunct,/ ••••••• 
ldnshread: read an indexed/named •• 
Idnsseek: seek to an ••••••••.••••• 
Idohseek: seek to the optional •••• 
Idopen, ldaopen: open a common •••• 
Idrseek, ldnrseek: seek to •••••••• 
ldshread, Idnshread: read an •••••• 
ldsseek, ldnsseek: seek to an ••••• 
ldtbindex: compute the index of a • 
Idtbread: read an indexed symbol •• 
ldtbseek: seek to the symbol •••••• 
letter from argument vector ••••••• 
lex: generate programs for. simple • 
1 ex i cal ta sks ••••••••••••••••••••• 
libraries intro: •••••••••••••••••• 
library lorder: find •••••••••••••• 
library maintainer for portable ••• 
1 im its. . ••.•.••.•.....•••..••.•.•.. 
line 
line connection dial: ••••••••••••• 
line discipline. /set terminal •••• 
line number entries in a common ••• 
line number entries of a common/ •• 
line number entries of a section •• 
line number information from an ••• 
line numbering filter ••••••••••••• 
line of a file cut: ••••••••••••••• 
line printer daemon ••••••••••••••• 
line printer lp, cancel: •••••••••• 
line printer spooler •••••••••••••• 
line: read one line ••••••••••••••• 
linear search and update •••••••••• 
1 ine~feed s •••••• ~ ••••••••••••••••• 
linenum: line number entries in a • 
lines common to two sorted files •• 
1 in e sin a fi Ie. • • • • • • • • • • • • • • • • •• 
lines of one file /same lines ••••• 
lines of several files or ••••••••• 

.,.. xxi or 

in tro( 1 ) 
intro(4) 
intro(6) 
intro(5) 
intro(7) 
intro(3) 
intro( 1M) 
intro(8) 
intro(2) 
ncheck( 1M) 
ioctl (2) 
abort(3C) 
ipcrm( 1) 
i pcs( 1 ) 
ctype(3t ion 
Id shr ead ( 3X) 
Id sseek( 3X) 
Idohseek( 3X) 
ldopen( 3X) 
Idrseek(3X) 
ld shread (3X) 
Idsseek(3X)
Id tbind ex (3X) 
Id tbread (3X) 
ld tbseek( 3X) 
getopt (3C) 
lex ( 1 ) 
lex ( 1 ) 
intro(3) 
lord er (1 ) 
ar ( 1 ) 
ulimit(2) 
line(1) 
dial(3C) 
getty(1M) 
linenum(4) 
ldlread(3X) 
ld lseek( 3X) 
strip(1) 
nl ( 1) -
cut( 1) 
lpd( 1C) 
lp( 1 ) 
1 pr ( 1 ) 
line(1) 
1 search( 3C) 
col(1) 
linenum(4) 
comm(1) 
uniq(1) 
paste(1) 
paste(1) 



Permuted Ind ex 

link, unlink: exercise 
files Id: 

a.out: common assembler and 

cp, Ih, mv: copy, 
link: 

and unlink system calls. 

nlist: get entries from name 
Is: 

for a file system. ff: 
nm: print name 

fsck checklist: 
associated with a/ sparelist: 

xargs: construct argument 
cp, 

tzset: convert date an~/ ctime, 
end, etext, edata: last 

memory plock: 
gamma: 

newgrp: 
exponential, logarithm,/ exp, 
logaritb~, power,/ exp, log, 

/log10, pow, sqrt: exponential, 
errpt: process a report of 

getlogin: get 
logname: get 

cuserid: get character 
logname: return 

passwd: change 

setting up an environment at 

user 
a641, 164a: convert between 

independent/ sputl, sgetl: access 
between 3~byte integers and 

setjmp, 
for an object library 

nice: run a command at 
to an LP line printer 

send/cancel requests to an 
enable, disable: enable/disable 
/lpshut, Iprnove: start/stop the 

accept, reject: allow/prevent 
Ipadmin: configure the 

Ipstat: print 
spooling system. 

request/ Ipsched, Ipshut, 

start/stop the LP request/ 

link and unlink system calls •••••• link(1M) 
link editor for common object ••••• Id(1) 
link editor output ••••••••••••.••• a.out(4) 
1 ink: 1 ink to a fi 1 e •••••••••••••• 1 ink ( 2 ) 
link or move files •••••••••••••••• cp(1) 
link to a file •••••••••••••••••••• link(2) 
link, unlink: exercise link •••.••• link(1M) 
lint: a C program checker ••••••••• lint(1) 
list •••••••••••••••••••••••••••••• nlist(3C) 
list contents of directories •••••• Is(1) 
list file names and statistics .••• ff(1M) 
list of common object file •••••••• nm(1) 
list of file systems processed by • checklist(4) 
list the spared sectors ••••••••••• sparelist(8) 
list(s) and execute command ••••••• xargs(1) 
In, mv: copy, link or move files •• cp(1) 
localtime, gmtime, asctime, ••••••• ctime(3C) 
locations in program •••••••••••••• end(3C) 
lock process, text, or data in •••• plock(2) 
log gamma function •••••••••••••••• gamma(3M) 
log in to a new group ••••••••••••• newgrp(1) 
log, log10, pow, sqrt: •••••••••••• exp(3M) 
log10, pow, sqrt: exponential, •••• exp(3M) 
logarithm, power, square root/ •••• exp(3M) 
logged errors ••••••••••••••••••••• errpt(1M) 
login name •••••••••••••••••••••••• getlogin(3C) 
log in name •••••••••••••••••••••••• logname( 1 ) 
login name of the user •••••••••••• cuserid(3S) 
login name of user ••••••.••••••••• logname(3X) 
login password •••••••••••••••••••• passwd(1) 
login: sign on •••••••••••••••••••• login(1) 
login time profile: ••••••••••••••• profile(4) 
logname: get login name ••••••••••• logname(1) 
logname: return login name of ••••• logname( 3X) 
long integer and base~64 ASCII/ ••• a641(3C) 
long integer data in a machine •••• sputl(3X) 
long integers /ltoI3: convert ••••• l3tol(3C) 
longjmp: non-local goto ••••••••••• setjmp(3C) 
lorder: find ordering relation •••• lorder(1) 
low priority •••••••••••••••••••••• nice(1) 
lp, cancel: send/cancel requests •• Ip(1) 
LP line printer lp, cancel: ••••••• Ip( 1 ) 
LP printers ••••••••••••••••••••••• enable(1) 
LP request scheduler and move/ •••• Ipsched(1M) 
LP requests ••••••••••••••••••••••• accept(1M) 
LP spooling system •••••••••••••••• Ipadmin(1M) 
LP status information ••••••••••••• lpstat(1) 
Ipadmin: configure the LP ••••••••• Ipadmin(1M) 
lpd: line printer daemon •••••••••• Ipd(1C) 
lpmove: start/stop the LP ••••••••• Ipsched(1M) 
lpr: line printer spooler ••••••••• Ipr(1) 
lpsched, lpshut, lpmove: •••••••••• Ipsched(1M) 

- xxii .,.. 



LP request scherluler/ Ipsched, 
information 

jrand48,/ drand48, erand48, 

update 
pointer 

integers and long/ 13tol, 

fscv: convert files between 
your processor/ pdp11, u3b, vax, 

/access long integer data in a 
documents mm: the MM 

mosd: the OSDD adapter 
permuted index mptx: the 

viewgraphs and/ mv: a ·troff 
m4: 

documents formatted with the MM 
thi s manual man: 

rmail: send mail to users or read 
or rea'; mail 

mail, rmail: send 
malloc, free, realloc, calloc: 

groups of programs make: 
ar: archive and library 

intro: introduction to system 
intro: introduction to system 

mkdir: 
ordinary file mknod: 

mktemp: 
regenerate groups of programs 

banner: 

main memory allocator 
entries in this manual 

onyx :' 
service 

one spare: 
spare: replace a bad 

sparelist: list the spared 
onyx: Onyx 6810 special system 

spared sectors associated with a 
replace a bad sector with a 

a spare one 
slice sparelist: list the 

sectors associated with a slice 
onyx: Onyx 6810 

adduser: add a user to the 
onyx: Onyx 6810 special 

checkcw: prepare constant-width 
plock: lock process, 

tgetstr, tgoto, tputs: terminal/ 
terminal/ tgeten t, tgetnum, 

Permute'; Inri ex 

lpshut, lpmove: start/stop the •••• lpsched(1H) 
1 ps tat: p r in t L Pst a t us. • • • • • • • • •• 1 ps tat ( 1 ) 
1 ran d 4 8, n ran d 48, m ran d 4 8 t •••••••• d r an rl4 8 ( 3 c) 
Is: list contents of directories •• Is(1) 
lsearch: linear search and •••••••• Isearch(3C) 
lseek: move read/write file ••••••• lseek(2) 
Itol3: convert between 3~byte ••••• l3tol(3C) 
m4: macro processor ••••••••••••••• m4(1) 
M68000 and VAX~11/780/ •••••••••••• fscv(1M) 
m68k: provide truth value about ••• machid(1) 
machine independent fashion ••••••• sputl(3X) 
macro package for formatting •••••• mm(5) 
macro package for formatting/ ••••• mosd(5) 
macro package for formatting a •••• mptx(5) 
macro package for typesetting ••••• mv(S) 
macro processor ••••••••••••••••••• m4(1) 
macros /checkmm: print/check •••••• mm(1) 
macro s for formatting en tr ie s in •• man (5) 
mail mail, •••••••••••••••••••••••• mail(1) 
mail, rmail: send mail to users ••• mail(1) 
mail to users or read mail •••••••• mail(1) 
main memory allocator ••••••••••••• malloc(3C) 
maintain, update, and regenerate •• make(1) 
maintainer for portable archives •• ar(1) 
maintenance commands and/ ••••••••• intro( 1M) 
maintenance procedures •••••••••••• intro(8} 
make a directory •••••••••••••••••• mkdir(1) 
make a directory, or a special or • mknod(2) 
make a unique filename •••••••••••• mktemp(3C) 
make: maintain, update, and ••••••• make(1) 
make posters •••••••••••••••••••••• banner(1) 
makekey: generate encryption key •• makekey(1) 
malloc, free, realloc, calloc: •••• malloc(3C) 
man: macros for formatting •••••••• maneS) 
Onyx 6810 special system service •• onyx(2) 
onyx: Onyx 6810 special system •••• onyx(2) 
replace a bad sector with a spare • spare(S) 
sector with a spare one ••••••••••• spare(8) 
sectors associated with a slice ••• sparelist(8) 
ser vic e ••••••••••••••••••••••••••• on yx (2 ) 
slice sparelist: list the ••••••••• sparelist(8) 
spare one spare: •••••••••••••••••• spare(8) 
spare: replace a bad sector with •• spare(8) 
spared sectors associated with a •• sparelist(8) 
sparelist: list the spared •••••••• sparelist(8) 

. special system service •••••••••••• onyx(2) 
system •••••••••••••••••••••••••••• adduser(1M) 
system service •••••••••••••••••••• onyx(2) 
text for troff cw, •••••••••••••••• cw(1) 
text, or data in memory ••••••••••• plock(?) 
tgetent, tgetnum t tgetflag, ••••••• termcap( 3) 
tgetflag, tgetstr, tgoto, tputs: •• termcap(3) 

xxiii ~ 



Permuted Inn ex 

tgoto, tputs: terminal/ tgetent, 
tgetent, tgetnum, tgetflag, 
tgetnum, tgetflag, tgetstr, 

ttt, cubic: 
stime: set 
time: get 

time: 
data and system activity timex: 

systems for optimal access 

profil: execution 
up an environment at login 

asctime, tzset: convert date ann 
clock: report CPU 

process times 
uprlate access and modification 
get process and child process 

set file access and modification 
process data and system/ 

for a temporary file 
Itolower, _ toupper, _ tolower, 

po pen , pclose: initiate pipe 
toupper, tolower, toupper, 

toascii: translate/-toupper, 
tsort: 

acctmerg: merge or add 
modification times of a file 
translate/ toupper, tolower, 
tolower, toascii: translate/ 

- /tgetflag, tgetstr, tgoto, 

ptrace: process 

tr: 
_toupper, tolower, toascii: 

ftw: walk a file 
twalk: manage binary search 

tan, asin, acos, atan, atan2: 
tbl: format tables for nroff or 
prepare constant~width text for 

typesetting viewgraphs and/ mv: a 
mathematical text for nroff or 

values 
pdp11, u3b, vax, m68k: provide 

true, false: provide 
binary search trees 

interface 

tgetnum, tgetflag ,tgetstr, ••••••• 
tgetstr, tgoto, tputs: terminal/ •• 
tgoto, tputs: terminal/ tgetent, •• 
tic-tac~toe •••••••••.••••••••••••• 
time 
time 
time 

.............................. 

.............................. 
a command •••••••••••••••••.•• 

time a command; report process •••• 
time. dcopy: copy file •••••••••••• 
time: get time •••••••••••••••••••• 
time profile •••••••••••••••••••••• 
time profile: setting ••••••••••••• 
time: time a command •••••••••••••• 
time to string Igmtime, ••••••••••• 
time used ••••••••••••••••••••••••• 
times: get process and child •••••• 
times of a file touch: •••••••••••• 
times times: •••••••••••••.•••••••• 
times utime: •••••••••••••••••••••• 
timex: time a command; report ••••• 
tmpfile: create a temporary file •• 
tmpnam, tempnam: create a name •••• 
toascii: translate characters ••••• 
to/from a process ••••••••••••••••• 
tolower, toascii: translate/ ••••• 

tolower, _toupper, _tolower, •••••• 
topolog ical sort •••••••••••••••••• 
total accounting files • ••••••••••• 
touch: update access and •••••••••• 
toupper, tolower, toascii: •••••• 

toupper, tolower, toupper, ••••••• 
tputs: terminal independentl •••••• 
tr: translate characters •••••••••• 
tr ace ............................ . 
trace: event-tracing rlriver ••••••• 
translate characters •••••••••••••• 
translate characters Itolower, •••• 
tr ee ............................. . 
tr ees tsearch, td elete, ••••••••••• 
trigonometric functions /cos, ••••• 
troff ............................ . 
troff cw, checkcw: •••••••••••.•••• 
troff macro package for ••••••••••• 
troff/neqn, checkeq: format •••••• 
troff: typeset text ••••••••••••••• 
true, false: provide truth •••••••• 
truth value about your processorl • 
truth values •••••••••••••••••••••• 
tsearch, tdelete, twalk: manage ••• 
tsort: topological sort ••••••••••• 
ttt, cubic: tic-tac-toe ••••••••••• 
tty: controlling terminal .••.••••• 

- xxiv.,.. .. 

termcap(3) 
termcap(3) 
termcap(3) 
ttt(6) 
stime(2) 
time(2) 
time(1) 
timex( 1) 
dcopy( 1M) 
time(2) 
profile 2) 
profi le(4) 
time( 1 ) 
ctime(3C) 
clock(3C) 
times(2) 
touch( 1) 
times(2) 
utime(2) 
timex(1) 
tmpfile(3S) 
tmpnam(3S) 
conv(3C) 
popen(3S) 
conv(3C) 
conv(3C) 
tsort(1) 
acctmerg( 1M) 
touch{ 1 ) 
conv(3C) 
conv(3C) 
termcap(3) 
tr(1) 
ptrace(2) 
trace(7) 
tr(1) 
conv(3C) 
ftw(3C) 
tsearch( 3C) 
trig(3M) 
tbl(1) 
ew(1) 
mv(5) 
eqn( 1 ) 
troff( 1) 
true( 1) 
mac hid (1) 
true (1 ) 
tsearch(3C) 
tsort( 1) 
ttt(6) 
tty(7) 



/ 

greek: graphics for the extended 
terminal 

utmp file of the current user 
/runacct, shutacct, startup, 

trees tsearch, tdelete, 
file: determine file 
getty: set terminal 

truth value about your processor 
graphics for the extended TTY~37 

types: primitive system data 
types 

and slides mmt, mvt: 
troff: 

mv: a troff macro package for 
/loealtime, gmtime, asctime, 

value about your/ pdp11, 
getpw: get name from 

mask 
mask 

file system. mount, 

operating system 
System 

input stream 
seed48, lcong48: generate 

file 
mktemp: make a 

config: configure 
cu: call another 

unlink system calls. link, 

unlink: exercise link and 
umount: 

files pack, peat, 
lsearch: linear search and 

times of a file touch: 
programs make: maintain, 

sync: 
sync: 

du: summarize disk 
lognmne: return login name of 

su: become super user or another 
write: write to another 

setuid, setgid: set 
id: print 

get character login name of the 
ano/ /getgid, getegid: get real 

environ: 
ulimit: get and set 

Permuted Ind ex 

tty: get the terminal's name •••.•• 
TTY~37 type~box ••••••••••••••.•••• 
ttyname, isatty: find name of a ••• 
ttyslot: find the slot in the ••••• 
turnacct: shell procedures fori ••• 
twalk: manage binary search ••.•..• 
type ............................. . 
type, modes, speed, and line/ ••••• 
type /u3b, vax, m68k: provide .•••• 
type-box greek: ••••••••••••••.•••• 
type s ............................ . 
types: primitive system data •••••• 
typeset documents, viewgraphs, •••• 
typeset text •••••••••••••••••••••• 
typesetting viewgraphs and/ ••••••• 
tzset: convert date and time to/ •• 
u3b, vax, m68k: provide truth ••••• 
UI D •••.••••••••••••••••••••••••••• 
ulimit: get and set user limits ••• 
umask: set and get file creation •• 
umask: set file-creation mode ••••• 
umount: mount and dismount •••••••• 
urnount: unmount a file system ••••• 
uname: get name of current •••••••• 
uname: print name of current UNIX. 
ungetc: push character back into 
uniformly distributed/ /srand48, •• 
uniq: report repeated lines in a •• 
un i qu e fi I en am e •••• .• • • • • • • • • • • • • •• 
units: conversion program ••••••••• 
UNIX SYSTEM V ••••••••••••••••••••• 
UNIX SYSTEM V system •••••••••••••• 
unlink: exercise link and ••••••••• 
unlink: remove directory entry •••• 
unlink system calls. link, •••••••• 
unmount a file system ••••••••••••• 
unpack: compress and expand ••••••• 
upd ate •••••••••••••••••••••••••••• 
update access and modification •••• 
update, and regenerate groups of •• 
update super-block •••••••••••••••• 
update the super block •••••••••••• 
usage ••••••••••••••••••••••••••••• 
user 
user 

.............................. .............................. 
user ............................. . 
user and group IDs ••••••••••••.••• 
user and group IDs and names •••••• 
user cuserid: ••••••••••••••••••••• 
user, effective user, real group, • 
user environment •••••••••••••••••• 
user limits ••••••••••••••••••••••• 

.... xxv 

-

tty( 1) 
greek(S) 
t t ynarne( 3C) 
ttyslot(3C) 
acctsh(1M) 
tsearch( 3C) 
file( 1) 
getty(1M) 
machid( 1) 
greek(S) 
types( S) 
types(S) 
mmt(1) 
troff( 1 ) 
mv(S) 
ctime( 3C) 
machid( 1) 
getpw(3C) 
ulimit(2) 
umask(2) 
umask(1) 
mount(1M) 
umount(2) 
uname(2) 
uname(1) 
ungetc(3S) 
drand48(3C) 
uniq( 1) 
mktemp( 3C) 
units(1) 
con fig. 68 (1M) 
cu(1C) 
link( 1M) 
unlink(2) 
link(1M) 
umount(2) 
pack(1) 
lsearch( 3C) 
touch( 1 ) 
make(1) 
sync(2) 
sync(1) 
du(1) 
logname(3X) 
su(1) 
write(1) 
setuid(2) 
id(1) 
cuserid(3S) 
getuid(2) 
environ(S) 
ulimit(2) 

• 



Permuten Ino ex 

/getegid: get real user, effective 
add user: add a 

in the utmp file of the current 
wall: write to all 

eo i tor (var ian t 0 f ex for casual 
mail, rmail: senn mail to 

statistics 
modification times 

utmp, wtmp: 
enoutent, utmpname: access 

ttyslot: fino the slot in the 
formats 

/pututline, setutent, endutent, 
clean .... up. 

uusub: monitor 
uuclean: 

control uustat: 
copy 

uucp, 
uucp, uulog, 

System .... to-UNIX System file/ uuto, 
job control 

System-to-UNTX System file copy 
execution 

abs: return integer absolute 
/u3b, vax, m68k: provide truth 

getenv: return 
ceiling, remainder, absolute 

true, false: provide truth 
edit: text editor 

about your processor/ pop11, u3b, 
/files between M68000 ann 

get option letter from argument 
assert: 

vpr: 
vc: 

display editor based on ex 
mmt, mvt: typeset documents, 

macro package for typesetting 
ex vi: screen oriented 

systems with label checking. 
systems with label checking. 

file system: format of system 

process 
terminate wait: 

stop or terminate 
ftw: 

user, real group, ann effective/ •• getuid(2) 
user to the system •••••••••••••••• adrluser(1M) 
user ttyslot: find the slot ••••.•• ttyslot(3C) 
users ••••••••••••••••••••••••••••• wall(1M) 
users) edit: text ••••••••••••••••• edit(1) 
users or read mail •••••••••••••••• mail(1) 
ustat: get file system •••••••••••• ustat(2) 
utime: set file access and •••••••• utime(2) 
utmp and wtmp entry formats ••••••• utmp(4) 
utmp file entry /setutent, •••••••• getut(3C) 
utmp file of the current user ••••• ttyslot(3C) 
utmp, wtmp: utmp ann wtmp entry ••• utmp(4) 
utmpname: access utmp file entry •• getut(3C) 
uuclean: uucp spool directory ••••• uuclean(1M) 
uucp network .••••••••••••••••••••• uusub(1M) 
uucp spool directory clean-up ••••• uuclean(1M) 
uucp status inquiry and job •••.••• uustat(1C) 
uucp, uulog, uuname: unix to unix. uucp(1C) 
uulog, uuname: unix to unix copy •• uucp(1C) 
uuname: unix to unix copy ••••••••• uucp( 1 C) 
uupick: public UNIX ••••••••••••••• uuto(1C) 
uustat: uucp status inquiry and ••• uustat(1C) 
uusub: monitor uucp network ••••••• uusub(1M) 
uuto, uupick: public UNIX ••••••••• uuto(1C) 
uux: unix to unix command ••••••••• uux(1C) 
value ••••••••••••••••••••••••••••• abs(3C) 
value about your processor type ••• machid(1) 
value for environment name •••••••• getenv(3C) 
value functions /fabs: floor, ••••• floor(3M) 
values •••••••••••••••••••••••••••• true(1) 
(variant of ex for casual users) •• edi t( 1) 
vax, m68k: provide truth value •••• machid(1) 
VAX~11/780 processors ••••••••••••• fscv(1M) 
vc: version control ••••••••••••••• vc(1) 
vector getopt: •••••••••••••••••••• getopt(3C) 
verify program assertion •••••••••• assert(3X) 
Versatec printer spooler •••••••••• vpr(1) 
version control ••••••••••••••••••• vc(1) 
vi: screen oriented (visual) •••••• vi(1) 
viewgraphs, and slides •••••••••••• mmt(1) 
viewgraphs and slides /a troff •••• mv(S) 
(visual) display editor based 'on •• vi(1) 
volcopy, labelit: copy file ••••••• volcopy(1M) 
vol copy , labelit: copy file ••••••• volcopy.1m.old 
volume •••••••••••••••••••••••••••• fs(4) 
vpr: Versatec printer spooler ••••• vpr( 1) 
wait: await completion of ••••••••• wait(1) 
wait for child process to stop or • wait(2) 
wait: wait for child process to ••• wait(2) 
walk a file tree •••••••••••••••••• ftw(3C) 
wall: write to all users •••••••••• wall(1M) 
wc: word count •••••••••••••••••••• we(1) 

- xxvi oro 



/ 

signal signal: specify 
signal signal: specify 

crashes crash: 
whodo: 

who: 

cd: change 
chdir: change 

getcwd: get pathname of current 
pwd: 

wri te: 
put pwen t: 

wall: 
wri te: 

open: open for rearl ing or 
utmp, wtmp: utmp and 

formats utmp, 
accounting records. fwtmp, 

hun t..,.. the.,.wum pus 
and execute commanrl 

jO, j1, jn, 
jO, j1, jn, yO, 

compiler..,..compiler 
jO, j1, jn, yO, y1, 

Permuted Ind ex 

what to do upon receipt of 
what to do upon receipt of 
what to do when the system 

a •••••• 
a •••••• 

who is doing what. • ••••••••••••••• 
who is on the system •••••••••••••• 
who: who is on the system ••••••••• 
whodo: who is doing what. .. ...... . 
working directory .•••.••••..•..••. 
working directory •••.•••.••.•.•..• 
wor ki ng d ir ec tory ••••••••••••••••• 
working directory name •••••••••••• 
write on a file ••••••••••••••••••• 
write password file entry •••••.••. 
write to all users • ••••••••••••••• 
write to another user ••••••••••••• 
~rite: write on a file •••••••••••• 
write: write to another user •••••• 
writing ••••••••••••••••••••••••••• 
wtmp entry formats •••••••••••••••• 
wtmp: utmp and wtmp entry ••••••••• 
wtmpfix: manipulate connect ••••••• 
wump: the game of ••••••••••••••••• 
xargs: construct argument list(s) • 
yO, yl, yn: Bessel functions •••••• 
y1, yn: Bessel functions •••••••••• 
yace: yet another ••••• ' •••••••••••• 
yn: Bessel functions •••••• ~ ••••••• 

or xxvii or 

signal(2) 
signal.2.olrl 
crash.rn68(8) 
whorlo(lM) 
who(l) 
who(l) 
whooo(1M) 
cd(l) 
chdir(2) 
getcwd (3C) 
pwri ( 1 ) 
write(2) 
putpwen t( 3C) 
wall(1M) 
write(1) 
write(2) 
write(1) 
open( 2) 
utmp(4) 
utmp(4 ) 
fwtmp( 1M) 
wump( 6) 
xargs(1) 
bessel(3M) 
bessel(3M) 
yacc(1) 
bessel(3M) 


