
VGER

LAST REVISED 6/18/81

INDEX

TRANSITIONS
TIMER 1
FLAG 2
LIMITS 3
DESTINATION 5
INTERCEPT 6
USERS INTERRUPT HOOK 7
A TO B CALCULATION 8
GO & WAIT 9

COORDINATES
RECTANGULAR COORDINATE SYSTEM 10
POLAR COORDINATE SYSTEM 12

WRITING
PATTERNS
ANIMATION TYPES
WRITE OPTIONS
STRING POSTING

UTILITIES
USER VERBS
SYSTEM HELPER VERBS
USER SUBROUTINES
QUEUES
VECTOR RETURN STACK
ERROR MESSAGES
INTERRUPTS

CONSTANTS

EXAMPLE

VECTOR CONSTANTS
PORT CONSTANTS

T ASK EXAMPLE

13
14
16
17

18
21
22
24
25
26
27

28
30

31

TIMER

Returns to task when timer decrements to zero
16 bit timer with each tic = 1/60th of a second.
Retains overflow time base when timer expires.

TIMER-ON
Turn on timer check

TIMER-OFF
Turn off timer check

TIMER! n ---
Store timer value n into VECTOR.

TIMER!-ON n ---
Turn on timer check
Store timer value n into VECTOR.

TIMER? --- n
Returns boolean n, true if timer went to zero

FLAG

Returns to task when contents of flag address is non zero.
When flag is detected flag byte is zeroed.

FLAG-ON
Turn on flag check.

FLAG-OFF
Turn off flag check

FLAG! n ---
Store flag address n into vector

FLAG I-ON n ---
Turn on flag check
Store flag address n into vector

FLAG? --- n
Returns boOlean n, true if flag was set

Page 2

LIMITS

Returns to task when vector hits limit.
Normal limit - object coordinate set to limit

Timebase is lost
Limit with Back Out - object is vectored back away from

limit and Timebase is retained.

~
Turn on limit check

LIMITBOUT-ON

LI t.A,-1' ')(- 0 I\J
LI1MII 'f-oA.J
L-l 1M IT V:'1- f) V

1Urn on limit che~h backout when li~t att~\~ed.
/'f\.\l~t L-j ~ ~ + (!) I\J -+O~ 11\~ S

LIMIT-OFF --- , t ~
Turn off 1 imi t check I-ltI\ I)t' - .

'-'V{\'+ y -
LIMHX! n ___ &-1 W\"+-~y-

Store limit value n for high X into vector

LIMLX! n ---
Store limit value n for low X into vector

LIMHY! n ---
Store limit value n for high Y into vector

LIMLY! n ---
Store limit value n for low Y into vector

LIMHXLXHYLY! abc d

Page 3

Store Limit value a for high X, b for low X, c for high Y
and d for low Y into vector.

LIMIT? --- n
Return boolean n, true if any limit attained.

LIMITX? -- n
Return boolean n, true if high X or low X limit attained.

LIMITY? --- n
Returns boolean n, true if high Y or low Y limit attained.

LIMITHX? --- n
Returns boOlean n, true if high X limit attained.

LIMITLX? --- n
Returns boolean n, true if low X limit attained.

LIMITHY? --- n
Returns boolean n, true if high Y limit attained.

LIMIlLY? -- n
Returns boolean n, true if low Y limit attained.

Page 4

LIMITS CONT.

LIMITHX@ n --- p
Read fran vector n and leave limit high X p

LIMITLX@ n --- p
Read fran vector n and leave limit low X p

LIMITHY@ n --- p
Read fran vector n and leave limit high Y p

LIMITLY@ n --- p
Read fran vector n and leave limit low Y p

Page 5

DESTINATION

Returns to task when coordinates crosses destination value.
Does not affect the position of the write.

DESTX-ON
Turn on destination X check

DESTX-OfF
Turn off destination X check

DE STY-ON
Turn on destination Y check

DE STY-OfF
Turn off destination Y check

DESTX! n ---
Store destination X coordinate n into vector

DESTY! n ---
Store destination Y coordinate n into vector

DESTX!-ON n ---
Turn on destination X check
Store destination X coordinate n into vector

DESTY!-ON n ---
Turn on destination Y check
Store destination Y coordinate n into vector

DE STX ? --- n
Returns boOlean n, true if object crossed destination X

DESTY? --- n
Returns boolean n, true if object crossed destination X

DES!? --- n
Returns boOlean n, true if object crossed destination X or Y

DESTX@ n --- p
Read from vector n and leave destination X p

DESTY@ n--- p
Read from vector n and leave destination Y p

Page 6

INTERCEPT

Return to task when intercept is detected during a write.

INTERCEPT-ON
Turn on Intercept check

INTERCEPT-OFF
Turn off intercept check

INTERCEPT? --- n
Returns boolean n, true if intercept was detected

Page 7

USERS INTERUPT HOOK

User can put in a routine to run at vector management interrupt
level.
Registers input and output from Hook routine.

If used with wait only necessary to return IY.

HOCK-ON
Turn on hook check

HOCK-OFF
TUrn off hook check

HOCK! n ---
Store address of hook routine n into vector

HOOK I-ON n ---
Turn on hook check
Store address of hook routine n into vector

A to B CALCULATION

A->DEST n ---
Calculate the deltas less than n to travel from X Y

coordinate to X Y destination.
Use DESTX! DESTY!
Delta maximum n is represented by a hex word with the top

byte the whole number and the bottom byte the fraction.
Deltas can range from n to n/2
Stores new deltas into vector
Stores timer value into vector
Turns on timer check
Use TIMER? to determine if destination is reached

A->B P q n ---
Calculates the deltas less than n, to travel from X Y

coordinate to p,q destination
Delta maximum n is represented by a hex word with the top
byte the whole number and the bottom byte the fraction.

Deltas can range from n to n/2.
Stores new deltas into vector
Stores timer value into vector
Turns on timer check
Use TIMER? to determine if destination is reached

Page 8

GO

Page 9

GO AND WAIT

Leave task and stay in vector management at interrupt level
until a state transition.
When a state transition is detected task interpreter
continues at the following task verb.

Start execution with vectoring and writing.

WAIT
Turn off vectoring and writing process
Start execution

Page 10

RECTANGULAR COORDINATE SYSTEM

The coordinate system is zero, centered with the positive x and
positive y quadrant in the upper right corner of the screen.

X!

Y!

n!

X Range is -160 to 159 or in hex -AO to 9F
Y Range is -100 to 99 or in hex -64 to 63

n ---
Store X coordinate n into vector

n --
Store Y coordinate n into vector

n m ---
Store X coordinate n and Y coordinate m into vector

X@ n --- p
Read from. vector n and leave X coordinate p

Y@ n --- p
Read from vector n and leave Y coordinate p

GETX n ---
Read X coordinate from vector n and store into vector

GETY n ---
Read Y coordinate from vector n and store into vector

GETXY n ---
Read X Y coordinate from vector n and store into vector

ZEROXY
Zero X Y coordinates of vector

Velocity and acceleration must be entered as a hex word with the
top byte the whole number and the bottom byte the faction.

DX! n ---
Store X delta n into vector

DYI n ---
Store Y delta n into vector

DXDYI n ---
Store X delta and Y delta n into vector

GETDXDY n ---
Read delta X and Y from vector n and store into vector.

Page 11

RECTANGULAR COORDINATE SYSTEM cont.

AX! n ---
Store X acceleration n into vector

AY! n ---
Store Y acceleration n into vector

AXAY! n ---
Store X acceleration and Y acceleration n into vector

DX@ n --- p
Read from vector n and leave delta x p

DY@ n --- p
Read from vector n and leave delta y p

AX@ n --- p
Read from vector n and leave acceleration y p

AY@ n --- p
Read from vector n and leave acceleration y p

GETDXDYAXAY n ---
Read delta x delta y acceleration x acceleration y from vector
n and store into vector.

ZERODXDYAXAY
Zero delta X, delta Y, acceleration X, and acceleration Y
of vector

Page 12

POLAR COORDINATE SYSTEM

GET COS s a --- d
Calculates delta d from speed s and angle a.

ANGLE
Calculates deltas and accelerations for X and Y using polar
velocity, polar acceleration and angle.

TURN d t ---
Creates a turn from the current angle to the current angle +d
in time t. t is rounded off to the nearest power of 2.

Uses rectangular acceleration and it's own timer.

RADIUSTURN d r --- t
Creates a turn of angle difference d for a constant
radius r.

Computes turn time t and calls turn.
t is returned. Speed is in VPLRVEL.
Radius r is unsigned 8 bits (# of pixels)

Angles are represented by a value from 0 to 255. Angle 0 is the
direction of no y and positive x. Angle 64 is go degrees clockwise.
Angles incremet in a clockwise direction.

ANGLE! n ---
Store polar angle n into vector.

ANGLE@ v --- n
Read angle n from vecotr V.

Polar velocity and acceleration must be entered as a hex word
with the top byte the whole number and the bottom byte
the fraction.

POLARVEL! n ---
Store polar velocity n into vector.

POLARACC! n ---
Store polar acceleration n into vector.

POLARVEL@ v --- n
Read polar velocity n fram vector v.

POLARACC@ v --- n
Read polar acceleration n fram vector v.

Page 13

PATTERNS

PATTERN! n ---
Store pattern address n into the current vector
All patterns must have a 4 byte header

X offset B,
Y offset B,
X byte size B,
Y line size B,

Followed by pattern source

If xpand is used the last 3 pixels of the pattern have to be 0 for
flush. Non expanded patterns are automatically flushed.

Pattern creation helpers are provided.

PATTERN --- n
Sets base to decimal, makes name n a data statement

Marks stack sets base

Store bytes on stack from - in RAM as pattern, resets base

QUAD PAT
Specifies base 4 to be used between - and ~
Does not change current base

BINPAT
Specifies base 2 to be used between - and ~

, Does not change current base

Example: Base 4 pattern
PATTERN DEMO-PAT-QUAD 0 B, 0 B, 2 B, 2 B, QUADPAT

- 3321 1233"
- 3321 1233 ~

Each number represents a pixel with base 4

Base 2 PATTERN
PATTERN DEMO-PAT-BIN 0 B, 0 B, 2 B, 2 B, BINPAT

- 11111001 01101111"
- 11111001 ·01101111"

BASE 16 PATTERN
PATTERN DEMO-PAT-HEX 0 B, 0 B, 2 B, 2 B, HEX

F9 B, 6F Bt

F9 Bt 6F B,

All of the above examples represent the same pattern.

PDUMP n ---
Dump pattern n in Pattern Base,(ie Quadpat or
Binpat) Assunes pattern has a header of
x offset Bt Y offset B, x byte size Bt y 11nesize S,

Page 14

ANIMATION TYPES

VGER supports animation, rotation and perspecti've alone or in
combinations. All patterns are assumed to have a header of x offset B,
y offset B, x byte size B, y line size B, •

PERROTANM-OFF
Turn off all animation types

ROT I-ON n s ---
Turn on rotation
Store rotation table address n into current vector
Store rotation shift amount s into vector, shift value takes

maximum angle (256) and shifts it down until it equals the
number of rotation patterns.
128 patterns = 1
64 patterns = 2
32 patterns = 3
16 patterns = 4
8 patterns = 5
4 patterns = 6

Rotation Options
Flip .emr
Flop~
Flip-Flop ~
No e'M./t L-
Rotation uses angle to determine rotation table index.

Example:
DATA ROT-TBL (Rotation table)
(Flip Flop Options) (Pattern address)

Wl)"".L I B, ROT-PAT-1
FUfJ-Fl..JJf B, ROT-PAT-2

rto f B, ROT-PAT-1
~~IP B, ROT-PAT-2

ROT-TBL 6 ROTI-ON

ANIM!-ON n ---
TUrn on animaton
Store animation table address n into current vector.

Example:
DATA ANIM-TBL (animation table)
(timer in 1/60ths) (patterns)

5 B, PAT-1 ,
10 B, PAT-2 ,
o B, ANIM-TBL ,

(0 timer signifies a jump to the next word to start table over)

ANIM-TBL ANIMI .. ON

ANIMATION TYPES cont.

PER!-ON n ---
Turn on perspective
Store perspective table address n into current vector

PE RINX ! n ---
Store perspective table index number n into vector.
Used as an index into the perspective table.

Example:
DATA PER-TBL

PAT-1 ,
PAT-2 ,
PAT-3 ,

PER-TBL PER!-ON

(perspective table)

Page 15

You can use the animation types in combination by specifying more
than one and then building proper tables.

Example
DATA ANIM-TBL-1

5 B, PAT-1 ,
10 B, PAT-2 ,
o B, ANIM-TBL-1 ,

DATA ANIM-TBL-2
etc.

DATA ANIM-TBL-3
etc.

DATA ANIM-TBL-4
etc.

DATA ROT-ANIM-TBL
NofMfU., 1 B,'~ ANIM-TBL-1 ,

~LJP-PLDI ,B,~~ ANIM-TBL-2
PLOP ,B, (A" ANIM-TBL-3
1=-1..1 fJ ,B, "., ANIM-TBL-4

ANIM-TBL-1 ANIMI-ON
ROT-ANIM-TBL 6 ROTI-ON

This will rotate and animate. We can continue this with
perspective also by including ROT-ANIM-TBL as an entry in a
perspective table.

WRITE OPTIONS

XPAND! n ---
Store xpand color mask n into vector
Xpand mask bits
Bits 0,1 off color
Bits 2,3 on color
Bits 4,5,6,7, not used

XPAND-ON
Turn on magic pattern xpand

XPAND -OFF)(---
Turn off magie'pattern xpand

XPAND1-ON n ---
Store xpand color mask n into vector
Turn on magic pattern expand

OR-ON
Turn on magic or write

XOR-ON
Turn on magic xor write

PLOP-ON
Turn on magic plop write
Turns off XOR and OR

FLIP-ON
Turn on magic pattern flip

FLIP-OFF
Turn off magic pattern flip

FLOP-ON
TUrn on magic pattern flop

FLOP-OFF

Turn off magic pattern flop

FLIPFLOP-ON
Turn on magic pattern flip and flop

FLIPFLOP-OFF
TUrn off magic pattern flip and flop

AREAFILL-ON

Page 16

Fills the area defined by a pattern using only the first byte of
the pattern.

AREAFILL-OFF
Turns off the areafill function.

MAGIC! n -
Load vector magic whith value n.
(NOTE: used in place of above magic options)

Page 11

STRING POSTING

STRING
Writes string to screen with software
WI ~! I =Jl:;ll:ii' ;lifM!ll::libl!l!iel!!leIi:tJri:IIEF:lsiI'iWI'P1d
Set X with XI
Set Y with YI
Set magic with magic commands (automatically sets magic
Set xpand colors and options with XPANDl

xpand)

Xpand bits
Bit 1 = blow 4 (blow up string * 4)
Bit 6 = blow 2 (blow up string * 2)
Bit 5 = small font (small font only)
Bit 4 = not used
Bit 2,3 = xpand color on
Bit 0,1 = xpand color off

Set string address with PATTERNl
1st byte at string address is the string count followed
by the ASCII string.

To set string address you can use ,"
Example:

DATA STRING-1 ," HI THERE"
Then in the task STRING-1 PATTERN!

To save RAM a vector of length SLENGTH can be used to display strings.
Normal font has both upper and lower case.

BIN->ASC I mas ---
Takes double precision binary number with least significant
word I and most significant word m converts it to an ASCII
string of length s and stores it at address a. 1st character
of string at address a is a sign of the number followed by
the ASCII string.

Length byte must be added by the user.
If the double precision H m and I is larger than size swill
allow, all 9's are returned.

OSUPR s ---
Suppress leading a's of string address s with blanks.

Assumes 1st byte at string address s is the string count
followed by the ASCII string. If string is alIa's, the
last a will be left.

Page 18

USER VERBS

1S'IWRITE
Use when introducing an object to the screen - guarantees screen

write with no erase

ACTIVE? n --- p
Returns boolean p
True if vector n is active in the system

BIT m n --- p
Checks Bit m at address n
Returns boolean p true if bit on.

BREAK
Runs in Background allows user to return control to the terminal

by pressing a terminal key.

ERASE
Erase vector pattern from the screen through interrupt. Returns
when erase accomplished.

EX n ---
Execute verb at address n (ie.' VERB EX)

FILL n a 1 ---
Fill memoy with constant n starting at address a fpr byte
length 1

IMMI n ---
Loads vector n as current vector

INVERT-OFF
Turn off Invert feature

INVERT-ON
INVERTS entire screen
(ie. for cocktail) coordinates all remain the same

NDUP n ---

PUP

Duplicate top n elements of the stack

Power up routine.
does a MAP
intializes the system ques and interupts
sets horizontal color boundry at 28h
sets vertical blank at c8h
sets colors

RANDOM -- p
Returns a 16 bit random # p
2 array RND# is the seed

RES m n -- p
Reset bit m at address n

USER VERBS cont.

REVDLIM
Reverse X delta if X limit attained
Reverse Y delta if Y limit attained
Does nothing if no limit attained

REVDX
Reverse X delta of vector

REVDY
Reverse Y delta of vector

RND n --- p
Returns a random # p within the range n-1 and 0
2 array RND# is the seed

SCRERASE
Fill screen memory area with zero's 4000H to 7FFF

SELF --- n
Returns current vector address n

SET m n ---
Set bit m at address n

SHUTUP
Turns off sounds

SLEEP

Page 19

Puts current vector to sleep taking him out of the system until
woken up by another vector. (~e WAKEUP)

SLEEP? v --- f
Returns flag f as true if vector V is asleep

SPARKLES - OFF
Turns off card rack sparkle and stars.

SYNC
Stops TASK execution
Allows all other tasks to execute before resuming execution

SWAN n ---
Swap nibbles in low byte of n

;TASK:
Demarcates the following routine to be a vector task.

TASK-MASTER
Activates multi tasking background and starts interrupts

(also defined as TT)

USER VERBS cont.

TIMEBMAX! n ---
Store maximum timebase into current vector m.
Maximum timebase that vector is allowed to vector itself.
If 0 it assumes no maximum.

TIME-BARS
Turns on diagnostic time bars to the right of the
horizontal color boundry.

PUP sets horizontal color boundry to the far right
side of the screen.

Red - background
Green - vector management
Blue - screen update 1
White - screen update 2
Yellow - idle time
Black - changing processes
Rainbow of small colors - ERROR (see ERROR MESSAGES)

TIMEBSCALE! n
Stores timebase scale factor n into vector.

Page 20

Examble: If timebase scale = 2 then object updated once every~
2 timebases, timer would decrement once for every 2 timebases.

If 0 it defaults to 1

TIMEBSCALE@ --- n
Leaves timebase scale n of current vector.

IT

1:~e~iab»rAjJl I'is~~~-:rl\JTeeeu(ff.s {II- s PC - M I9-s Te ~
VDUMP n ---

Dump contents of vector n

WAKEUP n ---
Wakes vector n, putting him back into the system to resume
execution following where he was put to sleep.

WRITE
Writes vector pattern to the screen through interrupt.
Returns when write accomplished.

XADJ c --- p
Adjust 0 centered x coordinate c to upper left centered
value p. (Note; vector contains upper left
center value, VGER interface expects 0 center.
X! adjusts autanatically.)

YADJ c --- p
Adjust 0 centered y coordinate c to upper left centered
value P.(Notej vector contains upper left center
value. VGER interface expects 0 center
YI adjusts autanattcally)

ZEROTIMEB
Gives start over timebase for current vector.

Page 21

SYSTEM HELPER VERBS

(STKH
Does (STK HEX

(STKD
Does <STK DECIMAL

STK>
Does STK> DECIMAL

XDI
Does DI and resets interrupt mode to 0 for disks.

DED
Does XDI DECIMAL EDIT

• HOPS
Gives message ".HOPS? Y or Nil and waits for KEYBOARD entry.
If y does .HOU .OPS
Else does nothing

• COPS
Does .CEN .OPS

.NLOPS
Does CR CR CR CR PAGE PAGE

.NOPS .NLIST

DV= --- vvvv
Creates a double precision VARIABLE with name vvvv

NC= --- vvvv
Does 1+DUP C= vvvv

. Use for table creation

SC= --- vvvv
Does DUP C= vvvv
Use for table creation

write

USER SUBROUTINES

Subroutines that end in RET.

write pattern with pattern board
does not flush if expand set

in- IX= pattern address (no header on pattern)
B= xpand color
C= magic with shift
D= Y size
E= X size
HL= absolute screen address

out - nothing
(A,B,C,D,E,H,L,IX altered)

relabs relative X Y to magic absolute address conversion
does not invert

in- DE=X
HL= Y

out- A: shift
HL= absolute magic screen address

(A,D,E,H,L altered)

bwrite write blow up pattern to screen
does immediate software write from background

in- B= Blow up + Expand
Bit 7 = blow up *4
Bit 6 = blow up *2
Bits 4,5 = not used
Bits 2,3= expand color on
Bits 0,1 = expand color off

C= Magic + shift
D= Y size
E= X size
HL: Screen addr
IX= Pattern addr

out- BC= same
E= blow up factor

(A,D,E,H,L,IX,IY altered)

Page 22

USER SUBROUTINES cont.

COMPHL
2's compliment register set HL
saves psw
(H,L altered)

COMPDE
2's compliment register set DE
saves psw
(D,E altered)

COMPBC
2's compliment register set BC
saves psw
(B,C altered)

INDEXW
Index into a word table
(in- HL: table address A:index value)
(out- DE: indexed value HL: address of indexed value

A: index value)
(D,E,H,L altered)

divd16/8
Divides 16 bit dividend by an 8 bit divisor.
Returns 16 bit quotient.
(IN-HL : signed dividend, C: unsigned divisor)
(OUT-HL : signed quotient)
(A,B,H,L altered)

divd16/16
Divides 16 bit dividend by a 16 bit divisor.
Returns 16 bit unsigned.
(IN- A:C : dividend, DE = divisor)
(OUT A:C quotient)
(A,B,C,H,L altered)

mult8*8
Unsigned 8 bit multiply
(IN H = operand 1, E : operand 2)
(OUT HL = product)
(B,D,H,L altered)

Page 23

labs

Page 24

QUEUES

QUEUE n --- vvvv
Defines queue vvvv with n entries.

EMPTY-QUEUE vvvv ---
Empties queue vvvv. Must also be used after a queue definition

and before its use in order to initialize pointers.

QUEUE-IN d vvvv --- f
Puts data d into queue vvvv and returns flag f as true if the
queue did not have enough room.

QUEUE-OUT vvvv --- d f 1
Gets data d from queue vvvv if it exists. If the queue is

empty only flag f (set to true) is returned otherwise data
d and flag f (set to false) are returned.

QDUMP ; ---
Dump contents of all VGER queues

Page 25

VECTOR RETURN STACK

Each vector can have its own return stack (ie.8 -0 DO LOOP) First
create a RAM area for the stack. The stack RAM can be attached to the
end of a vector. (Note: CAUTION - there is no stack checking so if you
overflow you can get into trouble.)

RSTACKI-ON s v ---
Loads vector return stack address s into vector v

(Note: do before ;TASK:)

RSTACK-OFF v ---
Turn off vector return stack option for vector v (Note: do
before ;TASK:)

ERROR MESSAGES

ERROR? --- n
Returns error number n
Use when diagnostic colors go to rainbow

Error Messages
1. Playaction management queue overflow
2. Vector management queue overflow
3. Screen update queue 1 overflow
4. Screen update queue 2 overflow

User can add error messages.

error# is byte variable containing error message numbers.
error-addr is a variable containing the address of error
handler routine initialized at diagnostic rainbow loop.

When error detected load error number in error# and jump
to the contents of error-addr.

Page 26

Page 27

INTERRUPTS

Look at PUP in Edible VGER to see how interrupts are set up.

There are 3 interrupts

line 50 BAKI (background)
line 100 SUI1 (screen update 1)
line 200 SUI2 (screen update 2)

To set up your own interrupt routine (ie. guarantee coin and 10
check) do so by loading your interrupt into one of the V variables
(see PUP). Your routine must then jump to the appropriate VGER
Interrupt routine.

Example:

SUBR MY-INTR

SUI2 JMP,

MY-INTR SUI1V!

This sets up user interrupt routine at line 200 without destroying
VGER.

To change interrupt lines change L variables (see PUP)

Example:

20 SUI2L B!

Changes background interrupt routine to line 20 from
VGER default of 50.

NOTE: Interrupt varables always contain line # and vector address
for the interrupt following there own.

VECTOR CONSTANTS

Task Header Block
(W) TPAPC (playaction program counter)

(old playaction program counter)
(task status)

(W) TOPAPC
(B) TSTAT

Bits:

(B) TPRI
(W) TVMR
(W) TSUR
(B) TSUCNT
(B) TTIMm
(B) TSCALE
(W) TTIMER
(B) TVMROPT

Bits:

(B) TVMROPT2
Bits:

(B) TCHGSTAT
Bits:

(B) TCHGSTAT2
Bits:

(W) TFLAGADR
(W) THOOKADR
(W) TRSTACK

TLENGTH

o = TBNEWTASK (New task)
1 = TBACT (Vector active)
3 = TBSLEEP (Vector asleep)
4 = TSSTACK (user supplied return stack)

(task priority)
(vector management routine)
(screen update routine)
(screen update count)
(time base)
(time base scaler)
(timer)
(vmr options)

o = TBINTCPT-CHK (Intercept check)
1 = TBFLAG-CHK (Flag check)
2 = TBLIMIT-CHK (Limit check)
3 = TBDEST-CHK (Destination check)
4 = TBANGVECT (Angle vector)
5 = TBNOVECT (No vector)
6 = TBHOOK (Hook check)
7 = TBTlMER-CHK (Timer check)

(vmr option~~2)
o = TBLIMBOUT~mit with back out)
1 = TBDESTX-CHK (Destination x check)
2 = TBDESTY-CHK (Desti ation y check)

(state trans feedback
o = -rBLIMIT (Limit attained)
1 =lffiINTCPT (Intercept detected)
2 = 1BDEST (Destination reached)
3 = "YBTlMEDOUT (Timer went to 0)
4 = 1BFLAG (Flag detected)

(state trans feedback # 2)
o =~BLIMHY (Limit Y high attained)
1 = ~LIMLY (Limit Y low attained)
2 = 113LIMHX (Limit X high attained)
3 = lBLIMLX (Limit X low attained)
4 = TBDESTX (Destination X reached)
5 = TBDESTY (Destination Y reached)

(flag address)
(vrnr hook address)

(return stack address)
(length of task header)

Page 28

\

.-
Tf? '-I fN\-K - clft(
rB l-I "" Y - uf'r

Motion Information Block
(B) VMAGIC (magic register)

Bits: 0 = Shift amount
1 = Shift amount

(B) VXPAND
(W) VX
(W) VY
(W) VPAT

SLENGTH
VOMAGIC
VOXPAND
VLOGICSTAT

(B)
(B)
(B)

Bits:

2 = MRAREAFILL (Area fill)
3 = MREXP (Expand)
4 = MROR (OR)
5 = MRXOR (XOR)
6 = MRFLOP (FLOP)
7 = MRFLIP (FLIP)

(xpand color use bottom nibble)
(x pixel value)
(y pixel value)
(pattern for write)
(length of string header)
(erase magic register)
(erase xpand color use bottom nibble)
(vector logic status byte)

o = VBSUPDATE (Do screen update),r(
1 = VBNOWRITE (No write)
2 = VBNOEARSE (No erase)
3 = VBNOSU (No screen update)

(B) VLOGICSTAT2 (vector logic status byte #2)
Bits: 0 = VBANIM-CHK (Animation check)

1 = VBANIM (Animation)

(B) VTBMAX
(W) VDX
(W) VAX
(W) VLIMLX
(W) VLIMHX
(W) VDY
(W) YAY
(W) VLIMLY
(W) VLIMHY
(W) VOPAT
(W) VSCRADR
(W) VOSCRADR
(W) VDESTX
(W) VDESTY
(W) VPRATBL
(B) VANIMTlMER
(B) VANIMINX
(B) VROTINXSHF
(B) VPERINX
(W) VPLRVEL
(W) VPLRACC
(B) VANGLE
(B) VPLRTIMER

VLENGTH

2 = VBROT (Rotation)
3 = VBPERS (Perspective)

(max time base)
(x speed)
(x acceleration)
(x limit low)
(x limit high)
(y speed)
(y acceleration)
(y limit low)
(y limit high)
(old pattern for erase)
(screen address for write)
(screen address for erase)
(destination x)
(destination y)
(per rot anm table)
(animation timer)
(animation index #)
(rotation inc shift amount)
(perspective index #)
(polar velocity)
(polar acceleration)
(polar angle)
(polar angle timer)
(length of motion vector)

Page 29

PORTS:

INFBK
INMOD
INLIN
MAGIC
XPAND
INCPT
VERBL
HORCB

PORT EQUATES

(Interupt feed back port)
(Interupt mode port)
(Interupt line port)
(Magic port)
(Expand color mask port)
(Intercept port)
(Vertical blanking line port)
(Horizontal color boundry port)

Page 30

<STK
RAMMARK
VLENGTH R= DEMOVECT
RAMLEN C= DEMO-RAM-LENGTH
VARHERE C= DEMO-RAM-START

TASK EXAMPLE

ZERO-DEMO-RAM 0 DEMO-RAM-START DEMO-RAM-LENGTH FILL

PATTERN DEMO-PAT 0 B, 0 B, 2 B, 2 B, QUADPAT
- 3322 1133 ,..
- 3322 1133 ,..

HEX (set base to hex)

DEMOPA ;TASK:
DEMO-PAT PATTERN! (set pattern)
ZEROXY (set coordinates at 0 center of screen)
XOR-ON (set magic for XOR)
1STWRITE (start writing with no erase)
100 DX! (set X delta to 1 pixel 160th of a sec.)
50 RND (get Random # between 0 and 49)
TIMER I-ON (store random # in timer and turn it on)

Page 31

WAIT (start up timer and wait until it goes to 0)
BEGIN (start of loop)
50 TlMER!-ON (store 50 into timer and turn it on)
GO (start up timer, vectoring and writing)

(return when timer goes to 0)
REVDX (reverse delta x)
o END (go back to begin)

TEST PUP (power up)
BREAK (key board break)
SCRERASE (erase screen)
ZERO-DEMO-RAM (zero demo ram area)
TIME-BARS (turns on diagnostic time bars)
DEMOVECT DEMOPA (load vector in background que with taskDEMOPA)
TT ; (start up system)

STK> ;S

(The above task will 1st wait a random period of time 0 -> 50/60
of a second then move, after each 50/60 of a second it will
reverse direction.)

