
Writing Loadable
Kernel Servers

NeXT Developer's Library

NeXTstep
Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts
A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.

Reference, Volumes 1 and 2
Detailed, comprehensive descriptions of the NeXTstep Application Kit software.

Sound, Music, and Signal Processing
Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts
An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference
Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

~ NeXT Development Tools
A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

~ NeXT Operating System Software
A description of NeXT's operating system, Mach. In addition, other low-level
software is discussed.

~ Writing Loadable Kernel Servers
How to write loadable kernel servers, such as device drivers and network protocols.

~ NeXT Technical Summaries
Brief summaries of reference information related to NeXTstep, sound, music, and
Mach, plus a glossary and indexes.

~ Supplemental Documentation
Information about PostScript, RTF, and other file formats useful to application
developers.

Writing Loadable Kernel Servers

We at NeXT Computer have tried to make the information contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©1990 by NeXT Computer, Inc. All Rights Reserved.
[1386]

The NeXT logo and NeXTstep are registered trademarks of NeXT Computer, Inc., in the U.S. and other countries. NeXT,
NeXTcube, NeXTstation, NetInfo, NeXTbus, and Workspace Manager are trademarks of NeXT Computer, Inc. PostScript is a
registered trademark of Adobe Systems Incorporated. UNIX is a registered trademark of AT&T. NFS is a registered trademark of
Sun Mlcrosystems; Inc. All other trademarks mentioned belong to their respective owners.

Notice to U.S. Government End Users:

Restricted Rights Legends

For civilian agencies: This software is licensed only with "Restricted Rights" and use, reproduction, or disclosure is subject to
restrictions set forth in subparagraph (a) through (d) of the Commercial Computer Software-Restricted Rights clause at
52.227 -19 of the Federal Acquisition Regulations.

Unpublished-rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Manual written by Kathy Walrath
Edited by Caroline Rose and Helen Casabona
Book design by Eddie Lee
Illustrations by Jeff Yaksick and Don Donoughe
Production by Adrienne Wong, Jennifer Yu, and Katherine Arthurs
Publications management by Cathy Novak

Reorder Product #N6007B

Contents

1-1
1-1
1-1
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-4
1-4
1-6
1-6
1-7
1-8

2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-7
2-8
2-8
2-8
2-9
2-10
2-11

Introduction

Chapter 1: Overview
Before You Start

Get the Documentation You Need
Get the Hardware You Need
Choose an Interface for Your Server

Software Support
The NeXTbus Probe
The Mach Interface Generator (MiG)
The Kernel-Server Utility (kl_util)
The Kernel-Server Log Command (kIJog)
The Kernel Debugger (KGDB)

Concepts
Loadable Kernel Servers
The Kernel-Server Loader
The Hardware

NeXTbus Address Space
The NeXTbus Interface Chip (NBIC)

Chapter 2: Designing Kernel Servers
Rules of Thumb
Testing Your Hardware
Building In Debugging Code

Displaying Debugging Information
kern _ serv JogO
printfO

Checking Assumptions
ASSERTO
probeJbO

Kernel-Server Loader Requirements
The Instance Variable
Writing Routines for kern Joader to Call

Writing an Interrupt Handler
Considerations for Message-Based Kernel Servers
Considerations for UNIX-Based Kernel Servers

UNIX Entry Points
Character Device Entry Points
Block Device Entry Points

Inserting UNIX Servers into Device Switch Tables
Functions Supplied by NeXT

2-12 Communicating with the Hardware
2-12 Mapping from Physical to Virtual Memory Addresses
2-13 NeXTbus Byte Ordering
2-13 CPU Board NBIC Registers
2-14 NBIC Control Register
2-14 NeXTbus Board Registers
2-15 Identification Bytes (NBIC ID Register)
2-17 Interrupt Byte
2-18 Interrupt Mask Byte
2-18 Workaround for Intercepted NeXTbus Addresses

3-1 Chapter 3: Testing and Debugging Kernel Servers
3-1 Booting the Computer
3-1 Generating Interrupts
3-1 Generating a Non-Maskable Interrupt (NMI)
3-1 Resetting the CPU
3-2 The System Console
3-2 The NMI Mini-Monitor Window
3-2 The Panic Window
3-3 The ROM Monitor Window
3-3 The NeXTbus Probe
3-4 Other Tools

4-1 Chapter 4: Network-Related Kernel Servers
4-1 Overview
4-2 Network Objects
4-2 Network Buffers (netbufs)
4-3 Network Interfaces (netifs)
4-3 Functions You Should Implement
4-4 Callback Function
4-5 Initialization Function
4-5 Input Function
4-7 Output Function
4-8 Getbuf Function
4-9 Control Function
4-11 Notes for Specific Interfaces
4-11 Ethernet Interfaces
4-11 TCP /IP Interfaces

5-1 Chapter 5: C Functions
5-1 General Functions
5-51 Network Functions

A-I Appendix A: The Kernel-Server Loader
A-I Starting kernJoader
A-2 Creating the Relocatable Object File
A-4 Command Scripts

B-1 Appendix B: The Kernel-Server Utility

C-l Appendix C: The Kernel-Server Log Command

D-l Appendix D: The Kernel Debugger
D-2 Setting Up the Hardware
D-2 Setting Up the Files
D-2 Files Needed by the Slave Computer
D-2 Files Needed by the Master Computer
D-3 Starting Up KGDB
D-5 Debugging with KGDB
D-5 Ending the Debugging Session

E-l Appendix E: The ROM Monitor and NMI Mini-Monitor
E-I ROM Monitor Commands
E-l Open Address Register
E-2 Open Data Register
E-2 Open Processor Register
E-3 Open System Register
E-3 Examine Memory Locations
E-4 Open Function Code
E-5 Set Input Radix
E-5 NMI Mini-Monitor Commands
E-5 Set or Examine Any Kernel Flag

F-l Appendix F: Summary of Kernel Functions
F-l General Functions
F-I Time Functions
F-I Memory Functions
F-2 Critical Section and Synchronization Functions
F-2 General Task and Thread Functions
F-2 Port and Message Functions
F-3 Hardware Interface Functions
F-3 Logging and Debugging Functions
F-4 Miscellaneous Functions
F-4 Network Functions
FA Netif Functions
F-5 Netbuf Functions
F-6 Miscellaneous Functions

Index

Introduction

This manual describes how to write loadable kernel servers for NeXT™ computers. It's part
of a collection of manuals called the NeXT Developer's Library; the illustration on the first
page of this manual shows the complete set of manuals in this Library.

This manual describes how to write loadable kernel servers for NeXT computers. Loadable
kernel servers are the only way for third-party developers to add functionality (such as
device drivers) to the NeXT Mach kernel.

To write a loadable kernel server, you must be able to program in C. Depending on the kind
of loadable kernel server you're writing, you probably don't need to be familiar with
UNIX@ internals, but a general background in writing interrupt-driven device drivers or
networking protocols is useful.

Some topics aren't covered here in detail; instead, you're referred to a generally available
book on the subject, or to an on-line source of the information. For example, Egan and
Teixeira's Writing a UNIX Device Driver describes writing UNIX-style drivers and gives
general driver-writing tips; those subjects aren't described in detail in this manual.

A version of this manual is stored on-line in the NeXT Digital Library (which is described
in the user's manual NeXT Applications). The Digital Library also contains Release Notes
that provide last-minute information about the latest release of the software.

How This Manual is Organized

The first four chapters of this manual describe different aspects of developing loadable
kernel servers, with Chapter 4 concentrating on network-related kernel servers. Chapter 5
provides detailed descriptions of each C function you can use inside a loadable kernel
server; these functions are summarized in Appendix F. Appendices A through E explain
how to use several programs, such as the KGDB kernel debugger.

lntro-l

Conventions

Intro-2

Syntax Notation

Where this manual shows the syntax of a function, command, or other programming
element, the use of bold, italic, square brackets [], and ellipsis has special significance, as
described here.

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic
denotes words that represent something else or can be varied. For example, the syntax

print expression

means that you follow the word print with an expression.

Square brackets [] mean that the enclosed syntax is optional, except when they're bold [],
in which case they're to be taken literally. The exceptions are few and will be clear from
the context. For example,

pointer [filename]

means that you type a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Ellipsis (...) indicates that the previous syntax element may be repeated. For example:

Syntax

pointer ...

pointer [, pointer] ...

pointer [filename ...]

pointer [,filename] ...

Allows

One or more pointers

One or more pointers separated by commas

A pointer optionally followed by one or more file names

A pointer optionally followed by a comma and one or more
file names separated by commas

Special Characters

In general, notation like

Alternate-x

represents the character you get when you hold down the Alternate key while typing x.
Because the modifier keys Alternate, Command, and Control interpret the case of letters
differently, their notation is somewhat different:

Notation

Alternate-x

Alternate-X

Alternate-Shift -x

Command-d

Command-Shift-D

Control-X

Notes and Warnings

Meaning

Hold down Alternate while typing lowercase x.

Hold down Alternate while typing uppercase X (with either
Shift or Alpha Lock).

Same as Alternate-x.

Hold down Command while typing lowercase d; if Alpha
Lock is on, pressing the D key will still produce lowercase
d when Command is down.

Hold down Command and Shift while pressing the D key.
Alpha Lock won't work for producing uppercase D in this
case.

Hold down Control while pressing the X key, with or
without Shift or Alpha Lock (case doesn't matter with
Control).

Note: Paragraphs like this contain incidental information that may be of interest to curious
readers but can safely be skipped.

Warning: Paragraphs like this are extremely important to read.

Intro-3

Intro-4

Chapter 1
Overview

This manual describes how to write loadable kernel servers for NeXT computers. A
loadable kernel server is any code that's added to the kernel after the system has been
booted. Currently, the only types of loadable kernel servers that third party developers can
write are network protocols, packet sniffers, and device drivers for NeXTbus ™ boards.

Note: It currently isn't possible for third parties to write drivers for anyon-board interfaces,
such as SCSI.

Before You Start

Decide whether you really need to write a loadable kernel server. For a NeXTbus board
where response time isn't crucial, you can avoid writing a server by writing a user-level
program that calls the slot driver. The slot driver is a sample server in the NeXTbus
Development Kit (NeXT product number N7002).

Note: You can't currently use DMA (direct memory access) in a user-written driver. This
is because all the CPU board DMA channels are used by existing drivers, and DMA isn't
currently supported with NeXTbus boards. Instead, you must use programmed (direct) I/O.

Get the Documentation You Need

Depending on the type of server you're writing, you'll need some or all of the
documentation listed in this section. You'll also need the server examples that are under
IN extLibrary lDocumentation/NextDev IExamples/Server V sHandler and in the
NeXTbus Development Kit.

You'll definitely need the manuals NeXT Operating System Software and NeXT
Development Tools, which are part of the NeXT Developer's Library.

You might need to have the Network and System Administration manual on hand, especially
when you're setting up your computers. This manual comes with every NeXT computer.

Before You Start 1-1

If you're writing a driver for a N eXTbus board, you'll need the hardware specifications and
installation guide. These are all part of the NeXTbus Development Kit.

• NeXTbus Inteiface Chip Specification
• NeXTbus Specification
• NeXTbus Development Kit Installation Guide

The following book has good information for any driver writer. It also has specific
information on UNIX drivers.

Egan, Janet I., and Teixeira, Thomas J., Writing a UNIX Device Driver. New York:
John Wiley & Sons, Inc., 1988.

If you're writing a server with a UNIX-style interface, you might need the following book's
information on the UNIX 4.3BSD operating system.

Leffler, Samuel J., McKusick, Marshall Kirk, Karels, Michael J., and Quarterman, John
S., The Design and Implementation of the 4.3BSD UNIX Operating System. New York:
Addison-Wesley Publishing Company, 1988.

Get the Hardware You Need

To write a server, you'll need the following equipment:

Two NeXT computers: a development computer and a test computer. (The server
you're creating will run on the test computer.)

• Either a working network connection for both computers or a cable to connect their
serial ports. If you don't have a network, and the computers have two different CPUs
(one is an 68040 and one is an 68030), then the serial cable must be customized. The
network connection and cable are described in detail in Appendix D, "The Kernel
Debugger."

• A NeXTbus Interface Chip (NBIC) on the CPU board of the test computer (only if
you're writing a driver for a NeXTbus device). The NBIC is already installed in every
NeXTcube™ computer and 68040 Upgrade Board.

• The hardware (if any) your server will control, installed in or connected to the test
machine.

The test computer should use as little disk space as possible; the more disk space it uses,
the more time it will take to reboot after a system panic. You can avoid using local disk
space by making this computer a NetBoot client. See Appendix D for more information on
setting up the two computers.

1-2 Chapter 1: Overview

Choose an Interface for Your Server

Before you can start writing your server, you have to decide whether it needs a
message-based interface or a UNIX-style interface.

We recommend that you use the Mach Interface Generator (MiG) to write a message-based
interface. One advantage of using a message-based interface is that your server isn't loaded
until the moment it's needed. Message-based servers, besides having more intuitive
interfaces than UNIX-style servers, also have the advantage of MiG's network
independence. For example, a graphics device with a message-based server could easily be
accessed from any computer on the network.

However, some servers require other interfaces. For example, servers that interact with the
UNIX file system-such as disk drivers-need to supply a UNIX-style interface with
UNIX entry points (xxx openO, xxx closeO, and so on). - -

If you write a UNIX-style server, you must call NeXT Technical Support to receive the
device major number you must use. Getting the major number from NeXT will help ensure
that your server works with other NeXT-supplied and third-party servers.

Software Support

Several software programs can help you write and debug your server:

• The NeXTbus Probe, an application in the NeXTbus Development Kit, lets you access
registers on NeXTbus boards.

• The Mach Interface Generator (MiG) helps generate your server's message-based
interface.

• The kernel-server utility (kl_ ntH) lets you load and unload your server from the kernel.

The kernel-server log command (kl_log) lets you obtain messages logged by your
server.

• The kernel debugger (KGDB) helps you debug your server.

The NeXTbus Probe

The NeXTbus Probe is a NeXTstep@ application that lets you read and write to any address
on a NeXTbus board. It's useful in all phases of driver writing. When you first start, it can
help you verify the address of each register. As you write your server, you can test
sequences of reads and writes with the NeXTbus Probe before you put the code into your
server. Later, the NeXTbus Probe can help you when you're testing or debugging your
server.

Software Support 1-3

The Mach Interface Generator (MiG)

If you use MiG to write your server's interface, you don't have to use UNIX system calls
as entry points. Instead, you can create an intuitive network-independent interface for your
server. MiG also helps by creating the header file that user programs must include to send
messages to your server. MiG is described in the Operating System Software manual.

The Kernel-Server Utility (kl_util)

You can use the kl_util command in a shell window to load and unload your server. You
can also use kl_util to get the status of the kernel server loader (kernJoader), shut down
kernJoader, and allocate or deallocate resources for a server within kernJoader. See
Appendix B, "The Kernel-Server Utility," for instructions on using kl_util.

The Kernel-Server Log Command (kl_Iog)

By using the klJog command in a shell window, you can get the messages that your server
logs with the kern_servJogO function. You can also specify how important a message
must be to be kept. See Appendix C, "The Kernel-Server Log Command," for instructions
on using kUog.

The Kernel Debugger (KGDB)

Concepts

KGDB is a superset ofGDB, the GNU source-level debugger. KGDB includes the standard
GDB commands, plus a few that are designed specifically for debugging kernels. You load
the server you're debugging into the test computer's kernel and then use KGDB on the
development computer to watch the server's behavior. See Appendix D for instructions.

This section introduces the concepts you'll need to understand before you write your server.

Loadable Kernel Servers

A kernel server is a thread that runs in the address space of the Mach kernel and implements
a server interface. Examples of kernel servers are the MIDI and Sound/DSP device drivers,
as well as the Mach system call interface itself. PostScript ®, the Network Name Server

1-4 Chapter 1: Overview

(nmserver), and the Pasteboard Server are examples of Mach servers not running within
the kernel.

In general, a server should run in the kernel if it needs to respond quickly to hardware
interrupts. If quick response time isn't necessary, the server can run outside of the kernel.

A loadable kernel server is a server that's loaded into the kernel after the system has been
booted. This allows you to change the server without recompiling the kernel. A loadable
kernel server can also be unloaded when it's no longer required, thus saving memory and
other resources. Being able to unload and reload a server also speeds up development time
because you don't have to reboot every time you change the server. The MIDI driver is an
example of a loadable kernel server.

Loadable kernel servers have three states:

• Allocated. The kernel-server 10ader,(kernJoader) has allocated space and resources
for the loadable kernel server and is listening for messages to its ports. However, the
server isn't currently loaded into the kernel.

• Loaded. The loadable kernel server is running. It runs as a thread in a non-kernel task,
but with the kernel's address map.

• Unallocated. kernJoader has no space or other resources allocated for the loadable
kernel server.

Loadable kernel servers can be built with or without Mach messages. A kernel server that's
based on messages has the advantage that it isn't loaded until it's needed. This works
because kern Joader, when it allocates resources for a kernel server, creates the kernel
server's ports and advertises them with the Network Name Server. When a message is
received on one of these advertised ports, kern Joader loads the allocated server into the
kernel and forwards the advertised ports along with the received message to the now loaded
and running kernel server.

Loadable kernel servers that don't use messages must be loaded into the system as soon as
they're allocated in kernJoader. Like other loadable kernel servers, though, they can be
allocated at any time and unloaded when they're no longer needed. Since newly loaded,
non-mess age-based kernel servers aren't known to the kernel, they must add their entry
points to the system. For example, a UNIX-style server must insert pointers to its entry
points into device switch tables.

A kernel server doesn't have to use messages if it's accessed only by table lookups. For
example, UNIX-style device drivers and networking protocols can be implemented without
messages.

Concepts 1-5

,:"

The Kernel-Server Loader

The kernel-server loader, kern Joader, is responsible for initializing and loading loadable
kernel servers. When started, kern_loader reads a configuration file and allocates the listed
kernel servers. Each server gives kern Joader its name and the names of its ports to be
advertised with the Network Name Server. Also specified are initialization and shutdown
sequences and the mapping of advertised ports to message-handler routines within the
server. The initialization sequence can include information on whether the server should
be wired down (made memory-resident in kernel virtual memory), and whether the kernel
server should be loaded into the kernel immediately or wait for a received message.

Besides allocating kernel servers when kernJoader starts, you can use the kernel-server
utility, kl_util, to allocate them while kern Joader is running. See Appendix B for more
information on using kl_util for run-time control of kern_loader.

When kern Joader allocates a server, it allocates memory within the Mach kernel and
relocates the file against the running kernel's symbol table at the allocated address. The
result is a loadable object file containing code and data that kern_loader can directly copy
into the kernel virtual address space. KGDB uses this loadable object file when you debug
your server.

kern_loader receives messages on behalf of all allocated, but unloaded, kernel servers.
When the first message is received for one of these servers, the server is loaded into the
kernel. During the loading process, kern Joader not only loads the server but also
initializes it. Initialization includes setting up port mappings and calling any server routines
that were specified to be in the initialization sequence. The kernel server is also wired down
if requested.

Once the kernel server is loaded and running, kernJoader doesn't interact with it unless
some extraordinary condition arises. This may be due to a user request (for example, using
kl_ util to unload the server) or termination or reconfiguration of kern_loader.

When shutting down a running kernel server, kern _loader calls the routines in the server's
shutdown sequence.

See Appendix A, "The Kernel-Server Loader," for more information on using kern_loader,
including how to specify the configuration information for your server.

The Hardware

NeXTcube computers and the original NeXT Computer have four slots: slots 0, 2,4, and
6. As Figure 1-1 shows, when you look at the back of the cube the slots are numbered (from
left to right) 6, 2, 0, 4. The CPU board is always in slot 0. The remaining slots are available
for other NeXTbus boards. All the boards plug into and communicate over the NeXTbus.

Note: NeXTstation TM computers don't have a NeXTbus or any expansion slots.

1-6 Chapter 1." Overview

Figure 1-1. Slot Order

Before your server can talk to any NeXTbus boards, you must have a NeXTbus Interface
Chip (NBIC) on your CPU board. See the NeXTbus Development Kit Installation Guide
for instructions if you need to install an NBIC onto a 68030 board.

NeXTbus Address Space

Each NeXTbus board has access to two sections of the NeXTbus physical address space:
its slot's board address space and its slot's slot address space. Each slot's board address
space is 256 megabytes, from OxsOOOOOOO to Oxsfffffff, where s is the slot number; each
slot's slot address space is 16 megabytes at addresses OxfsOOOOOO to Oxfsffffff. Every
register that your server must read or write will appear in either the board or the slot address
space; the specification for your hardware should tell you exactly which physical address
you must use.

Warning: Don't use addresses Oxs200cOOO to Oxs200cfff, where s is 2, 4, or 6. Because these
addresses are intercepted by logic on the CPU board, writing to them can cause errors. If
your server needs to access information at these addresses, your board must be configured
to accept addresses for the next higher slot; Chapter 2, "Designing Kernel Servers,"
describes how to do this.

Figure 1-2 shows the NeXTbus physical address space. As the figure shows, the NeXTbus
architecture allows for up to 15 slots, each with up to 272 megabytes of physical address
space.

Concepts 1-7

··········-·····-·····~-------------I

OxfOOOOOOO
256MB

,
256MB

256MB

256MB

: 16 MB : Reserved
Oxffffffff 1-------------1

: 16 MB :
" 1-------------1
... : 16 MB :
" 1--- .. ---------1
.. : 16 MB : " 1--- .. -- .. _ .. _---,

... : 16 MB :
" 1-------------1
.. : 16 MB :
" 1-------------1

256MB .. : 16 MB :
" 1-------------1
.. : 16 MB :

256 MB
\ 1--- .. _ .. _------1
.. : 16 MB :

" 1--- .. ---- .. _ .. --1

256MB .. : 16 MB :
\ 1--"' .. "'--------1
.. : 16 MB :

256MB
" 1-------_ __ .. ,
.. : 16 MB :

256MB
.. 1-------------1
.. : 16 MB : Slot 3
" 1-------------1

256MB

.. : 16 MB : Slot 2 " 1- .. -----------1
..: 16 MB : Slot 1
" 1--- .. ---- .. ----1

256MB
" 16 MB 'Slot 0 OxfOOOOOOO ': ••••••••••••• :

Slot Address Space
256 MB

256 MB Slot 3
Ox30000000

256 MB Slot 2
Ox20000000

256 MB Slot 1
Ox10000000

256 MB Slot 0
OxOOOOOOOO

Board Address Space

Figure 1-2. NeXTbus Address Space

To access a hardware address, your server must first map the physical address into a virtual
one. Chapter 2 describes how to perform this mapping.

The NeXT bus Interface Chip (NBIC)

The NBIC is a chip that allows boards to talk to the NeXTbus. The CPU board talks to the
NeXTbus with an NBIC. NeXTbus boards can also use the NBIC to talk to the NeXTbus,
but they don't have to. Whether or not your NeXTbus board uses an NBIC, your board must
still conform to the NeXTbus Specification, which includes having six bytes of ID and
interrupt control information. These six bytes are discussed in Chapter 2, along with more
information on the NBIC.

1-8 Chapter 1,' Overview

Chapter 2
Designing Kernel Servers

This chapter provides the basic information required to design your loadable kernel
server.

Rules of Thumb

You should start by designing your server's interface. When you're ready to start coding,
use a skeleton or sample server as the framework, and then add functionality a little at a
time. You may want to put all the major interface routines in place, but just have each one
print a message that says it's been called. This approach will make debugging your server
much easier than if you implement large amounts of code at once.

When you write the code for your server, follow these rules:

• Don't use register. It's easier and often better to let the compiler decide what to put
into registers.

• Use volatile for variables that refer to hardware addresses or that can be modified by
interrupt routines or other threads.

• Beware of hardware registers that have side effects when accessed, or that contain
different information when you read them than when you write to them.

• Define the C preprocessor macros KERNEL, KERNEL_FEATURES, and MACH
every time you compile your server. For example:

cc -g -DKERNEL -DKERNEL_FEATURES -DMACH -c myserver.c

• Until you've finished debugging your server, compile with debugging information (.g)
so you can easily use the kernel debugger. You might also want to define the DEBUG
C preprocessor macro if you use ASSERTO (described later).

• Don't compile with optimization (·0) until you've finished debugging your server.
Optimization can make variables seem to have the wrong data when you check their
values in the kernel debugger.

• Don't declare large variables in functions. Instead, if you need a large variable, declare
a pointer to it and then dynamically allocate space with kallocO or kgetO. (Automatic
variables are allocated on the kernel stack. Since the kernel stack is only 4 KB, large

Rules afThumb 2-1

variables can easily cause stack overflow, causing system panics for which the kernel
debugger can't find a cause.)

• Don't recursively call functions. (Like large variables, recursion can cause stack
overflow.)

Testing Your Hardware

The main tool for software-based testing of NeXTbus boards is the NeXTbus Probe. When
you first start, try reading from and/or writing to every register on the board. This will help
you verify the address and format of each register.

Before you access the NeXTbus board with your server, you can use the NeXTbus Probe
to manually enter the actions that you think your server will have to take. Once you've
made sure the actions work, you can put the code to do them into your server.

For non-NeXTbus drivers, use the ROM monitor to read and write physical addresses. It's
described in Appendix E, "The ROM Monitor and NMI Mini-Monitor."

Building In Debugging Code

This section discusses routines that can help you debug in two ways: by displaying
information while your server runs and by checking assumptions in your server. The
routines and macros discussed in this section are explained further in Chapter 5, "C
Functions."

Displaying Debugging Information

To display debugging information while your server runs, you have two choices:
kern serv logO and the kernel printfO routine. You should use kern serv logO instead - - - -
of printfO whenever possible, since printfO slows the system and affects the timing of
your server. You should use printfO only for unusual events that you need to see as soon
as they occur and for events that are likely to result in a system panic.

kern _serv _logO

kern _serv _logO logs a message that a user process can later pick up and print out. The
main advantages of kern _ serv _logO are its quickness and reliability, even when called
from an interrupt handler. However, if the system panics before the user process can pick
up a log message, that message will be lost.

2-2 Chapter 2: Designing Kernel Servers

J ..•. '.
"

You supply to kern_serv_logO the string to be logged and the priority at which the string
should be logged. Higher numbers correspond to higher priorities, but the exact
interpretation of priority numbers is up to you.

Messages logged using kern serv logO can be obtained using either the kernel-server log - -
command, klJog, or any other user-level program that calls the functions
kern_loader _log_leveIO and kern Joader _getJogO. By default, logging is off; you must
reset the log level before you can obtain any log messages. kl_Iog is described in
Appendix D, "The Kernel-Server Log Command"; kern Joader _logJevelO and
kern loader get logO are described in the Operating System Software manual. - --

printfO

The kernel printfO routine has the advantage that you can easily view its output. All you
have to do is keep the console window open. However, printfO uses a lot of system
resources, greatly slowing the system; nothing except hardware interrupt handling can
happen during a call to printfO. And although printfO doesn't sleep, it's unreliable when
called from an interrupt handler because messages can be garbled.

The kernel printfO routine is best used when you have a short message that you want to see
as soon as it happens. You can see printfO messages not only in the console window, but
also in /usr/adm/messages and from a msg command in the NMI mini-monitor or Panic
window. Your message is guaranteed to make it to the msg buffer (although it might be
garbled) even if the kernel panics.

Checking Assumptions

To check assumptions in your server, you can use ASSERTO and probe _ rbO.

ASSERTO

ASSERTO evaluates the expression you pass it. If the expression's result is 0, ASSERTO
prints a message describing the line and file that the assertion failed on, and then calls
panicO.

Note: ASSERTO doesn't do anything unless your server is compiled with the DEBUG C
preprocessor macro defined.

Building In Debugging Code 2-3

probe]bO

Use probeJbO whenever you need to make sure that an address is valid. For example, to
check whether a NeXTbus board is in a certain slot, you can call probeJbO, passing the
virtual address of one of the board's registers.

Kernel-Server Loader Requirements

Your server must supply an instance variable to the kernel-server loader, kern Joader. You
can also supply routines that kern_loader will call under certain circumstances, such as
server initialization or shutdown.

You inform kern Joader of the instance variable's name and of any routines to be called
when you compile your server. This information goes into sections of your server's object
file. See Appendix A, "The Kernel-Server Loader," for information on specifying
information during compile time. The following sections first describe how to declare the
instance variable in your code and then describe the types of routines you can write for
kern loader to call.

The Instance Variable

Your server's instance variable is an ordinary C variable oftype kern_server_t (defined in
the header file kernserv/kern _server _ types. h) that kern Joader uses to keep track of your
server.

You can make the instance variable contain other information as well. Do this by defining
a structure that begins with a field of type kern_server _ t, followed by fields of your choice.
For example, you might declare your instance variable in a header file as follows:

#import <kernserv/kern_server_types.h>

typedef struct my_instance_var
{

kern_server_t kern_server;
struct my_dev;

int fieldl;
int field2;

dev[MAX_MINEl
my_instance_var_t;

2-4 Chapter 2: Designing Kernel Servers

1* generic instance info *1
1* per-device info *1

Writing Routines for kern_loader to Call

Your server can supply the following kinds of routines to kern_loader:

Kind of Routine

Initialization
Shutdown
Port server
Port death

Called When

Your server is loaded
Your server is unloaded
Your server receives a message on a certain port
A port for which your server has send rights dies

Some servers might not require all or any of these routines. However, a server that doesn't
start until it receives a message must supply kern Joader with the names of all ports that
the server might receive its first message on.

Initialization routines can't be debugged with KGDB. (You can't set a breakpoint in your
server until it's fully loaded, and initialization routines are executed before then.) One way
to get around this debugging problem is to have a message-based interface for initialization
until your server is debugged. You can write a simple port server (without using MiG, if
your server doesn't use any other messages) that will initialize the server whenever it
receives a message. You have to write a simple program that sends this message, and you
have to specify to kern Joader that your server starts up as soon as it's loaded. After
you've finished debugging the initialization sequence, you can move it into the initialization
routines called by kern_loader.

Shutdown routines are often used to free kernel resources. When the server is unloaded, no
other part of the kernel can contain a reference to any code or data contained within the
loadable server. If the kernel tries to reference any code or data in an unloaded server, the
system panics.

Writing an Interrupt Handler

If your server must directly detect interrupts, you must provide an interrupt handler.

For NeXTbus drivers, this interrupt handler might be called whenever any NeXTbus board
interrupts, not just when a board controlled by your server interrupts. This means that your
interrupt handler must check whether your server's hardware generated the interrupt. If it
did, your server must handle the interrupt, stop the hardware from generating this interrupt,
and return true. If your server's hardware did not generate the interrupt, your interrupt
handler must do nothing and return false.

To stop NeXTbus hardware from generating an interrupt, write a 1 to bit 7 of the Interrupt
Mask byte. This byte is discussed later in this chapter.

Warning: Your interrupt handler (and any routine it might call) must not sleep.

Writing an Interrupt Handler 2-5

Because interrupt handlers can't sleep, they can't allocate memory except by using kgetO,
which isn't guaranteed to succeed. They also can't perform any I/O unless it's guaranteed
not to block.

Because interrupt handlers execute on behalf of the hardware, they have no knowledge of
which user process they're working for. Thus, they can't access anything to do with a user
process.

You install interrupt handlers using install_polled JntrO, and remove them using
uninstall_polled _ intrO.

Below is an example of an interrupt handler.

#define SLOT INTR BIT Ox80 - -
#define SLOTCOUNT 4

/* In the following macro, slotid is half the slot #. */

#define nbic regs (slotid) (caddr_t) (OxfOffffe8 I ((slotid) «25)

sp = &my_var[slotid];
sp->nbic_addr=(unsigned char *)map_addr(nbic regs (slotid), 24);

int my_intr(void)

int slotid;

volatile unsigned char *intr_reg, *mask_reg;

/*
* Figure out if we really handle this interrupt.

* Interrupts at level 5 are polled, so we have to

* check the interrupt byte associated with the

* hardware slots we control. slotid 1 corresponds

* to hardware slot 2, slotid 2 to hardware slot 4,

* and slotid 3 to hardware slot 6.

*/
for (slotid = 1; slotid < SLOTCOUNT; slotid++)

if (my_var[slotid] . is_ours) {

intr_reg = my_var[slotid] .nbic_addr;

if (*intr_reg & SLOT_INTR_BIT)

break;

/* If we couldn't handle the interrupt, leave now. */

if (slotid == SLOTCOUNT)
return FALSE; /* Poll code should try next handler */

2-6 Chapter 2: Designing Kernel Servers

/*
* At this point some device-dependent code is necessary to

* reset the interrupt condition so that the device does

* not continue to try to interrupt the CPU. Here we

* disable the interrupt by clearing the mask bit.

*/
mask_reg = intr_reg + 4;

mask_reg = 0; / Mask it off. */

/* Handle the interrupt. */

/* Schedule a routine to react to the interrupt.*/

kern_serv_ca1lout(&instance,

return TRUE;

(void (*) (void *))my_func,

(void *) sp) ;

/* We fielded the interrupt, so no

other driver should be polled. */

Considerations for Message-Based Kernel Servers

A message-based loadable kernel server can have one of two interfaces: a server interface
or a handler interface. MiG automatically produces server interfaces; you have to do some
additional hand coding to tum the MiG-generated server interface into a handler interface.
Handler interfaces have a performance advantage because you can allocate only as much
space as you need for the reply message.

Server and handler interfaces both take two parameters, the first of which is an incoming
message. The second argument for a server interface is the outgoing message; for a handler
interface, it's an integer or pointer to data.

To convert a server to a handler, you need to make three files:

• A header file to define the handler routine and the data type that helps do
server-to-handler translation

• A handler code file that mimics (and includes) the xxxServer file produced by MiG

• An implementation file that contains the code that does the real work

For an example of converting servers to handlers, see the files under
INextLibrarylDocumentation/NextDev/Examples/ServerVsHandler.

Considerations for Message-Based Kernel Servers 2-7

Warning: If you're using MiG, don't name any of your files xxx.h, where the MiG subsystem name is
xxx. (MiG will overwrite it.)

A message-based server that receives out-of-line data can't directly access the data. The
data is inaccessible because it appears in the server's task's address map, but your server
uses the kernel's address map instead of its own task's map. To read or write out-of-line
data, you can call vrn _ writeO to copy all or part of the data into the kernel map.

Considerations for UNIX -Based Kernel Servers

To use UNIX-based servers, you must provide the proper entry points and insert your server
into the appropriate device switch tables. This section lists the entry points you need, but
doesn't cover most entry points in detail. If an entry point is not sufficiently covered here,
see Egan and Teixeira's Writing a UNIX Device Driver.

UNIX Entry Points

This section shows all the entry points that a character or block driver can provide.

Character Device Entry Points

/* from <sys/conf.h> */

struct cdevsw

int (*d_open) () ;

int (*d_ close) () ;

int (*d_ read) ();

int (*d_write) ();

int (*d_ ioctl) () ;

int (*d _stop) () ;

int (*d_ reset) () ;

int (*d_ select) () ;

int (*d_mmap) () ;

int (*d_getc) () ;

int (*d_putc) ();

} ;

extern struct cdevsw cdevsw[];

2-8 Chapter 2: Designing Kernel Servers

Description

A pointer to the server routine that handles an openO system call.

A pointer to the server routine that handles a c1oseO system call.

A pointer to the server routine that handles a readO system call.

A pointer to the server routine that handles a writeO system call.

A pointer to the server routine that handles an ioctlO system call.

Not supported for user-written servers.

Not used.

A pointer to the server routine that handles a selectO system call. If your
device is ready for reading or writing, this routine should return true. If
your device is always ready for reading and writing, you can specify
seltrueO in the cdevsw table, which will make the kernel return true
without calling your server.

A pointer to the server routine that handles memory mapping of device
space to user space. This routine must return the page number of the
passed offset. It's typically found in frame buffers.

Not supported for user-written servers; used for console devices.

Not supported for user-written servers; used for console devices.

Block Device Entry Points

/* from <sys/conf.h> */

struct bdevsw

int (*d open) () ; -

int (*d_close) ();
int (*d strategy) () ; -
int (*d_dump) () ;
int (*d_psize) () ;
int d flags;

} ;

extern struct bdevsw bdevsw[];

Considerations/or UNIX-Based Kernel Servers 2-9

Description

A pointer to the server routine that handles an openO system call.

A pointer to the server routine that handles a c1oseO system call.

A pointer to the server routine that eventually handles readO and writeO
system calls.

A pointer to the server routine that dumps physical memory to the swap
device when the system is going down. Used only for devices that can
be used for swapping.

A pointer to the server routine that returns the size of the swap partition
for swap devices. Used only for devices that can be used for swapping.

Contains flags that give more information about the device to the kernel.
The only defined flag is B_TAPE, which tells the kernel that it can't
reorder I/O to this server.

Inserting UNIX Servers into Device Switch Tables

If your server is entered through UNIX system calls, you must insert it into the appropriate
device switch tables during your server's initialization. While debugging, you should do
this through a message-based interface. Later, you can transfer this to an initialization
routine called by kern_loader.

Below is an example of a server inserting itself into switch tables. Since the example is
taken from a block driver, the server inserts itself into both the bdevsw and cdevsw tables.
Character drivers have to insert themselves only into the cdevsw table.

Note: In the following example, MY _BLOCK_MAJOR and MY _RAW _MAJOR are
device major numbers, which you must obtain from NeXT Technical Support.

/*

* Example of a driver inserting itself into the block and character
* device switch tables.
*/

#import <sys/conf.h>

extern int nulldev();
extern int nodev();
extern int seltrue();
#define nullstr 0

2-10 Chapter 2: Designing Kernel Servers

struct bdevsw mY_bdevsw =
int (*myopen) () ,

int (*myclose) () ,
int (*mystrategy) () ,

nodev,
nodev,
o };

struct cdevsw my_cdevsw

int (*myopen) (),

int (*myclose) () ,
int (*myread) () ,
int (*mywrite) () ,
int (*myioctl) (),
nodev,
nulldev,
seltrue,
nodev,
nodev,
nodev };

struct bdevsw my_saved_bdevsw;
struct cdevsw my_saved_cdevsw;

/* Save whatever entries were in the tables for our major numbers. */
my_saved_bdevsw bdevsw[MY_BLOCK_MAJOR);

my_saved_cdevsw

/* Put my entries in the switch tables. */
bdevsw[MY_BLOCK_MAJOR)= my_bdevsw;

my_cdevsw;

Functions Supplied by NeXT

Your loadable kernel server can't use user-level functions; every function it uses must be
defined in the kernel. Included in the kernel are all the functions and macros listed in
Chapter 5, "C Functions," and almost all Mach Kernel Functions, which are listed in the
Operating System Software manual. (The only Mach Kernel Function that doesn't work is
mach_errorO, since it prints to stderr, which the Mach kernel doesn't have access to.)

Note: You can't use C Thread, Network Name Server, Bootstrap Server, or Kernel-Server
Loader functions or macros in your server, since they're not part of the Mach kernel.

Warning: Loadable kernel servers run outside of the kernel task, even though they use the kernel
address map. Be sure to specify the correct task and map when you use routines that
reference threads and virtual memory maps.

Functions Supplied by NeXT 2-11

Communicating with the Hardware

This section discusses how to read and write hardware registers, especially those required
on NeXTbus boards. Remember, you should test every NeXTbus hardware access with the
NeXTbus Probe before you put the code to do it in your server.

NeXTbus boards can transfer data in up to three sizes: bytes (8 bits), halfwords (16 bits),
and words (32 bits). You usually store bytes in unsigned char structures, halfwords in
unsigned short structures, and words in unsigned int structures.

Warning: 68040-based systems don't allow you to read or write using a larger data structure than the
device width. For example, you can't write a 32-bit quantity into an 8-bit register; you must
use an 8-bit quantity such as an unsigned char.

Burst transfers (transfers of 16 bytes with one instruction) are turned off by default for
addresses that are mapped using map _ addrO. (This is a side effect of map _addrO making
the memory non-cacheable, as is desirable when dealing with devices.) To perform a burst
read or write on an address mapped with map_addrO, you must write assembly code that
calls the 68040's MOVE16 instruction. Because MOVE16 reads or writes the bytes in
32-bit chunks, your hardware must be 32 bits wide. Note that the 68030 doesn't have a
MOVE16 instruction and doesn't support burst writes. You can also enable burst transfers
while using the NeXTbus Probe by turning "Cache Inhibit" off.

For more information on the NeXTbus, see the NeXTbus Specification. For information on
the NeXTbus Interface Chip (NBIC), see the NeXTbus Inteiface Chip Specification.

Mapping from Physical to Virtual Memory Addresses

Use the routine map addrO to tum a physical address into a virtual memory address that
your server can use. For example, to set a flag on a 32-bit register at address OxlOO in a
NeXTbus board's slot address space (physical address OxfsOOOlOO), you would use the
following code:

#define REG ADDR Oxf0000100
volatile unsigned int *reg;

reg = (unsigned int *)map_addr(REG~DDR
*reg 1= FLAG;

(slot_number « 24), 4);

For a description of the physical address space, see the "NeXTbus Address Space" section
in Chapter 1, "Overview."

2-12 Chapter 2: Designing Kernel Servers

NeXTbus Byte Ordering

Depending on your hardware, bytes might be swapped within a word. For example, if you
read a word on your NeXTbus board that contains "Ox12345678", your server might see
"Ox78563412".

You can determine whether byte order is an issue for your server by consulting the
designers of and documentation for your board, and by testing reads and writes using the
NeXTbus Probe. The NeXTbus Probe does not change byte ordering, so if the reads and
writes work with the NeXTbus Probe, they should work the same way in your server.

The code below is an example of reversing byte order. In this example, we want to check
whether bit 7 in a word is 1 by ORing the word with Ox00000080. However, on a board
that swaps bytes, we have to switch the first and fourth bytes (Ox80 and OxOO), producing
Ox80000000.

volatile unsigned int *my_register;

int reg_size = 4; /* # of bytes in the space to be mapped */

my_register = (unsigned int *)map_addr((MY_ADDR (slot_num« 24)),

reg_size);

if (probe_rb(my_register))
/* Make sure the Valid field is set */

if (! (*my_register & Ox80000000)) /* byte-reversed 00000080 */

return FALSE;

CPU Board NBIC Registers

There's only one NBIC register on the CPU board that you might need to write to. This
register, the NBIC Control register, has three defined bits. The only bit you might need to
modify, however, is the Store Forward bit.

Communicating with the Hardware 2-13

NBIC Control Register

31 282726 o

IIIII

I
I L... ---------- Read Modify Cycle Collision

(RMCOL)

'--__________ Store Forward
(STFWO)

'--___________ Ignore Slot 10 0
(IGNSIOO)

Figure 2-1. NBIC Control Register

The CPU board's NBIC Control register is at address Ox02020000.

Bit 28, Ignore Slot ID 0 (IGNSIDO), controls how much NeXTbus address space a board
uses. It's set to 1 during initialization so that the CPU board takes up two slots worth of
addresses.

Bit 27 is the Store Forward (STFWD) control bit. At power up, it's enabled (set to 1).
When enabled, Store Forward causes the CPU board's NBIC to immediately acknowledge
writes, without waiting for the other NeXTbus board to write the data. This is called a store
and forward write transaction. It speeds up transaction time, since the CPU doesn't have to
wait for your board to write data. The disadvantage of store and forward write is that you
won't receive any notification of write errors. Thus, unless your hardware is completely
reliable, store and forward write can be dangerous.

Bit 26 is the Read Modify Cycle Collision (RMCOL) bit. It's not appropriate to access this
register on the CPU board.

NeXT bus Board Registers

On every NeXTbus board, six bytes of identification and interrupt information are at
addresses Oxfsffffe8 to Oxfsfffffc, where s is the board's slot number.

2-14 Chapter 2: Designing Kernel Servers

One Slot
Address
Space

(16 MB)

Oxfsfffffc

OxfsfffffB

Oxfsfffff4

OxfsfffffO

Oxfsffffec

OxfsffffeB

Address

3 2 o
- -- - -- - - - -1- - - - - - - - - - -1-- - - - - - - - - - - - - - - - - - --

ID LSB : : I

---------~----------~-----------I----------, , , , , ,
----------:-----------:----------~----------, , , , , ,
---------~----------~----------~----------
10MSB : : :
----------:-----------:----------~----------

MASK : : :
---------~----------~----------~----------

INT: : :
----- ______ I ______ ----~----- ______ I ______ ----

7 o

7 o

Interrupt
(Read Only)

Mask
(Read/Write)

Figure 2-2. Sample NeXTbus Slot Address Space

If your NeXTbus board uses an NBIC, then addresses OxfsfffffO through Oxfsfffffc
correspond to the NBIC ID register, address Oxfsffffec is the Interrupt register, and
Oxfsffffe8 is the Interrupt Mask register.

Identification Bytes (NBIC ID Register)

31 30 16 15 o

V Manufacturer's 10 Number Board 10 Number

'------------------ VALID bit

Figure 2-3. NBIC ID Register

These bytes give information that identifies the type of NeXTbus board. Your server should
read them during its initialization to see whether it should take control of this board.

The four Identification bytes are read-only bytes that contain a board ID number, a
manufacturer's ID number, and a VALID bit. Unless the VALID bit is 1, none of the
identification and interrupt information is valid. When the VALID bit is 1, the ID numbers
are valid and your server can use them to identify the board.

Communicating with the Hardware 2-15

Since ellch byte is mapped to a separate 32-bit word, your server has to read four separate
words (or bytes, if your hardware supports byte-wide reads) to get all the identification
information. Figure 2-4 shows the Identification byte locations in the NeXTbus slot address
space.

NBIC 10 Register

3130 1615 0

Ivl Mfg 10 Board 10

IByte 0 1 Byte 1 1 Byte 21 Byte 31

NextBus Slot Space for One Board

(5 = Slot Number)

I 10 Register LSB ••••• L..-----.;...=.;.;;..;.;.-"-----t... Oxfsfffffc

L..-____________ -.. ••••• Oxfsfffff8

L..-_______________ ~ ••••• Oxfsfffff4

10 Register MSB ••••• L..--------.....;...-----------t... OxfsfffffO

Figure 2-4. Identification Bytes in the NeXTbus Slot Space

If your server can't perform byte reads, you have to find the correct byte in each word or
halfword. If your server doesn't have to reverse the byte order, you can simply address the
last byte of the word as an unsigned char. If you do have to reverse the byte order, you
must right-shift each word or halfword to move the byte you want to read from the most
significant to the least significant byte.

The following example shows how to read the Identification bytes.

volatile unsigned int *id_start;

int id_size = 16; /* # of bytes in the space to be mapped */

id_start={unsigned int *)map_addr{ {OxfOfffffO I (slotid« 25)),
id_size) ;

if (ids_ok {id_start, MY_MFG_ID, MY_BRD_ID))

my_var[slotidl.present = TRUE;

#define HI_BYTE(n) ({n) » 8)

#define LO_BYTE(n) ({n) & Oxff)

2-16 Chapter 2: Designing Kernel Servers

1*
* Check the ID on the remote board to see if it matches ours. The

* ID fields are spread out over four words from OxFsFFFFFO through

* OxFsFFFFFC, with the valid data appearing in bits 0 through 7.

*1
boolean t

ids_ok(volatile unsigned int *id_begin, int board_id, int mfg_id)

volatile unsigned int *current_word = id_begin;

1* Make sure the Valid field is set *1
if (! (*current_word & Ox00000080))

return FALSE;

1* test high byte of mfg ID, ignoring the Valid field *1
if (((*current_word) & Ox7f) != HI_BYTE (mfg_id)

return FALSE;

++current_word; 1* Move to next word *1
1* test low byte of the mfg ID *1
if ((*current_word) != LO_BYTE(mfg_id)

return FALSE;

++current_word; 1* Move to next word *1
1* test high byte of the board ID *1
if ((*current_word) != HI_BYTE (board_id)

return FALSE;

++current_word; 1* Move to next word *1
1* test low byte of the board ID *1
if ((*current_word) != LO_BYTE(board_id)

return FALSE;

return TRUE;

Interrupt Byte

7 o

Figure 2-5. NBIC Interrupt Register

This byte contains a bit that shows whether the board wants to interrupt the CPU. Your
server's interrupt handler can read this bit to determine whether it needs to handle an
interrupt.

Communicating with the Hardware 2-17

The Interrupt byte is a read-only byte at address Oxfsffffe8, where s is the slot ID. This byte
has only one significant bit, bit 7. Bit 7 is 1 when the board wants to interrupt, and 0 when
it doesn't.

Note: The value of bit 7 doesn't depend on whether interrupts are enabled or disabled.
Even if interrupts are disabled, and thus this board can't interrupt the CPU, bit 7 will be 1
if the board wants to interrupt.

Interrupt Mask Byte

7 o

Figure 2-6. NBIC Interrupt Mask Register

Use this byte to enable and disable interrupts.

The Interrupt Mask byte is a read/write byte at address Oxfsffffec, where s is the slot ID. As
in the Interrupt byte, bit 7 is the only meaningful bit. When bit 7 is 1 (the default), the board
can interrupt. If your server writes a 0 to bit 7, the board stops interrupting and can't
interrupt again until the server writes a 1 to it.

After your server handles an interrupt, you might want to disable interrupts for a while so
that the hardware won't keep interrupting the CPU.

Workaround for Intercepted NeXTbus Addresses

If your server needs to access the addresses that are intercepted by the CPU board
(Oxs200cOOO to Oxs200cfff, where s is 2, 4, or 6), the NBIC on your board must be
configured to accept the addresses for the next higher slot (3,5, or 7).

You can't directly configure the NBIC from your server; it must be done locally on your
board. Specifically, the board must set the IGNSIDO bit (bit 28) of its own NBIC Control
register to 1. Then, in your server, you can address both the slot and board address spaces
of the board with the next higher slot number.

2-18 Chapter 2: Designing Kernel Servers

Chapter 3
Testing and Debugging Kernel Servers

As for any driver, testing and debugging are the hardest parts of writing a kernel server.
Most of the tools described in this chapter are mentioned in other places, but they're
gathered together here to review the methods you can use.

Booting the Computer

When you boot the computer your server is running on, use the -p option. This option
makes the Panic window stay up when the kernel panics, forcing the system not to reboot
until you want it to. How to use the Panic window is described later in this chapter.

Generating Interrupts

At times, your system might freeze due to bugs in your server or mistakes while running
KGDB. If this happens and you don't see a Panic window, first try to generate a
non-maskable interrupt (NMI) , as described below. If this doesn't work, then as a last resort
you can reset the CPU.

Generating a Non-Maskable Interrupt (NMI)

To generate an NMI, use Command-Command-EJ. (Hold down both Command keys and
press the key at the upper left of the numeric keypad.) The NMI mini-monitor window
appears.

Resetting the CPU

Warning: Use this only as a last resort! Resetting the CPU can damage the file system.

To reset the CPU, hold down the Command and Alternate keys at the lower left of the
keyboard, and press the * key on the upper right of the numeric keypad. This causes the
machine to reboot immediately. Rebooting will take longer than usual because the file
system will be checked.

Booting the Computer 3-1

The System Console

You can view the output of printfO statements in your server by keeping the system console
window open. To oRen a console window, choose the Console command from the

TM
Workspace Manager's Tools menu.

Another way to use the console is to log in with the user name console (without a
password). This will make the whole screen act like a UNIX terminal that receives all
console messages. After you log in, you can enter commands at the shell prompt.

Logging in as console is useful when the only thing you want to run is your server, so you
don't need the overhead of a windowing environment. This is often true for the slave
computer when you're debugging your server with KGDB.

The NMI Mini-Monitor Window

The NMI mini-monitor window is useful for looking at the output of kernel printfO calls
and for getting a prompt on the master when you're running KGDB. See Appendix D, "The
Kernel Debugger," for instructions on getting a prompt on the master.

To view the output of kernel printfO calls, use the msg command. You can limit the
number of messages you see by putting =n after the command, where n is the number of
messages you want to see. For example:

nmi> msg=3

For more information on the NMI mini-monitor window, see the Network and System
Administration manual.

The Panic Window

The Panic window is similar to the NMI mini-monitor window, but it comes up only as the
result of a kernel panic. In this window you can use the gdb and msg commands, just as in
the NMI mini-monitor window.

Because the system brings up this window instead of crashing completely, you can run
KGDB on the panicked system, even if the hardware wasn't set up before the panic. All
you have to do is connect the master system and the panicked system (either through the
network or with a serial cable), start KGDB as usual on the master system (including
entering the kattach command), and if necessary enter gdb at the panicked system's
prompt to get a KGDB prompt on the master. From KGDB, you can do a backtrace to see
what routine caused the panic.

3-2 Chapter 3: Testing and Debugging Kernel Servers

After you're done using KGDB, enter continue at the Panic window. This will give the
system a chance to shut down cleanly if it can.

The ROM Monitor Window

The ROM monitor lets you examine and change the contents of hardware addresses on the
CPU board. You should use the NeXTbus Probe to look at addresses that aren't on the CPU
board.

To be able to access hardware addresses, you must get into the ROM monitor just after the
system is powered on, before it has booted. Otherwise, you'll access virtual addresses, not
physical addresses. To enter the ROM monitor, do the following:

1. If your computer is on, press the Power key to tum it off.

Locate the EJ key on the numeric keypad. (You'll need to press it along with a Command
key soon after you tum the power back on.)

2. Tum the computer back on by pressing the Power key.

3. Within three seconds of the appearance of the message "Loading from disk" or
"Loading from network," hold down the Command key and press the EJ key on the
numeric keypad.

You should now be in the ROM monitor. You can use the e command to look at addresses
on the CPU board.

For more information on using the ROM monitor, see Appendix E, "The ROM Monitor and
NMI Mini-Monitor."

The NeXTbus Probe

With the NeXTbus Probe (an application in the NeXTbus Development Kit), you can read
or write registers while you're testing or debugging a NeXTbus driver. You can use the
repeat and auto-increment features to clear areas of memory on the board or for other
repetitive tasks.

The NeXTbus Probe lets you choose the board or slot address space that you want to look
at. For this reason, you should specify an offset into this address space, not the whole
address.

The ROM Monitor Window 3-3

Other Tools

KGDB, the kernel debugger, is an important debugging tool. You can use it not only during
the normal debugging cycle, but also later on to examine kernel panics caused by your
server. Appendix D gives detailed instructions on how to start and use KGDB.

kl_log is useful for getting log messages from your server. If you wish, you can instead
write a program that calls kernJoaderJogJevelO and kernJoader_get_logO.
Appendix C, "The Kernel-Server Log Command," describes how to use kl_log.

vm _stat(l) is useful for seeing how many pages are wired down. It can help you find out
whether your server is growing too large.

3-4 Chapter 3: Testing and Debugging Kernel Servers

Overview

Chapter 4
Network-Related Kernel Servers

Network-related kernel servers, also known as network modules, need special functions and
interfaces in addition to the ones available to allioadable kernel servers. This chapter
discusses how to write network modules. The special functions that network modules can
use are described in detail in Chapter 5, "C Functions," under the section "Network
Functions."

The NeXT Mach kernel contains support for linking in the following types of network
modules:

• Network device drivers. A network device driver sends and receives packets to and
from some network media.

• Protocol handlers. On input, a protocol handler receives packets from network device
drivers and forwards the data to the interested programs. On output, the protocol
handler takes data from programs, puts the data into packets, and sends these packets
to the appropriate network device driver.

• Packet sniffers. A packet sniffer merely examines input packets for diagnostic
purposes.

If you're familiar with UNIX 4.3BSD networking primitives, you'll find many similarities
to what's described in this chapter. The biggest difference is that a common programming
interface like the socket mechanism isn't defined. While sockets work well for TCP lIP, they
don't generalize well to other protocols.

If you're writing a protocol handler and want to open it up to programmers, you must define
your own interface for communication between user programs and your protocol handler.

This chapter first gives an overview of NeXT networking support, and then discusses the
objects you'll use in your network module. The next section has details on the routines that
you should implement. The chapter ends with notes on implementing specific interfaces.

Here's a simplified view of what happens when a network packet is received by a NeXT
computer:

1. The packet is received by the appropriate network device driver, which puts the packet
into a data structure called a netbuJ(netbufs are discussed below).

Overview 4-1

2. The driver calls the dispatcher (by calling iChandleJnput()).

3. The dispatcher polls all registered packet sniffers and protocol handlers until it finds a
protocol handler that accepts the packet.

4. If the protocol handler is an IP (Internet Protocol) handler, it sends the packet up to the
kernel by calling inet_queueO.

When a packet is sent out onto the network, the following events happen:

1. The protocol handler's output function is called. One of the arguments is a netbuf
containing the packet to be sent. (This netbuf must have been previously allocated by
the network device driver; how netbufs are allocated is described later in this chapter.)

2. The protocol handler calls the appropriate network device driver's output function,
passing it the netbuf containing the packet.

3. The device driver puts the packet out onto the network.

Note that there's one extra step in the case of the input packet: A dispatcher is called. This
happens because a network device driver doesn't know what its associated protocol handler
is, but the protocol handler knows which driver to call. The dispatcher doesn't query the
modules in any particular order, except that it queries all packet sniffers before querying any
protocol handlers.

Network Objects

The NeXT kernel has two abstractions especially for network modules:

• Network buffers, known as netbufs
• Network interfaces, known as netifs

Each of these abstractions is discussed below. The associated C functions are described in
detail in Chapter 5.

Network Buffers (netbufs)

The NeXT kernel uses netbufs for dealing with network packet buffers. Netbufs are an
interface to an abstract sequence of bytes that can be read and written. The sequence has
an original starting point and ending point, but these can be changed. An input network
packet typically has its starting point advanced as the various headers are pulled off.
Similarly, an output packet has its starting point retreated as headers are inserted.

4-2 Chapter 4: Network-Related Kernel Servers

Operating beyond the range of the original starting and ending points isn't currently caught
as an error. This means that an outgoing netbuf should be copied into a larger netbuf if the
information being added to its top requires more bytes than are available between the
current ending point and the original starting point.

Network Interfaces (netifs)

Netifs are used to handle the installation and usage of network modules. Remember that a
network module is one of three things: a network device driver, a protocol handler, or a
packet sniffer.

Each network module initializes and installs its netif (thus registering itself) by calling
if_attachO. A network device driver should immediately register itself by calling
if _ attachO at load time. Protocol handlers and packet sniffers, on the other hand, don't
have to register themselves until their services are required. They determine whether to
register themselves in a callback function that they supply as an argument to the function
if registervirtual(). This callback function is called once for each network device driver;
it should call if _ attach() if the module isn't already registered and it wants to receive input
packets from the specified driver.

Functions You Should Implement

Besides a callback function, your network module needs to supply certain functions so that
other modules can call it. When your network module calls if _ attach(), you must specify
the locations of five functions:

• An initialization function. This should do any initialization that's required to change
the module's state to "on."

• An input function. This function should receive packets from lower layers and either
consume them or pass them on to other modules.

• An output function. This should send packets from higher layers.

• A getbuf function. This function should provide netbufs for higher layers to use in
impending sends.

• A control function. Use this function to provide any necessary operations the above
functions don't do.

Note: You should specify null to if _ attach() for any unimplemented function.

These five functions, along with the callback function, are described in more detail below.

Functions You Should Implement 4-3

Callback Function

typedef void (*iLattach_func_t)(void *private, netiLt realif)

A callback function is required in protocol handlers and packet sniffers, but isn't
appropriate in network device drivers. Its purpose is to determine whether it's interested in
the device driver and, if necessary, to register its module (using if _ attach()). The callback
function is called once for each current and future network device driver, so it can keep
information about more than one network device driver.

The callback function is specified in the network module's call to if registervirtualO. The
private argument is the data that was specified in the call to ifJegistervirtualO. realifis a
pointer to the network device driver for which this function is being called. The following
code is an example of a typical callback function for a protocol handler.

static void myhandler_attach(void *private, netif t rifp)

netif t ifp;
const char *name;

int unit;

void *ifprivate;

if (strcmp (if_type (rifp), IFTYPE_ETHERNET) ! = 0) {

return;

ifprivate = (void *)kalloc(sizeof(myhandler_private_t));
name = MYNAME;

unit = MYUNIT;

ifp = if_attach (NULL, myhandler_input, myhandler_output,
myhandler getbuf, myhandler_control, name, unit, IFTYPE_IP,

MYMTU, IFF_BROADCAST, NETIFCLASS_VIRTUAL, ifprivate);

(myhandler_private t *)if_private(ifp)->rifp = rifp;

if_control (rifp, IFCONTROL_GETADDR, MYHANDLER_ADDRP(ifp));

if (verbose) {

printf("IP protocol enabled for interface %s%d, type

\"%s\"\n", name, unit, MYDRIVER_TYPE);

return;

void myhandler_config(void)

if_registervirtual(myhandler_attach, NULL);

4-4 Chapter 4: Network-Related Kernel Servers

Initialization Function

typedef int (*iCiniCfunc_t)(netiCt netij);

An initialization function is not required but is often found in network device drivers. It
takes a pointer to its module's netif structure and performs any necessary initialization. For
example, a network device driver should perform any steps necessary to have its hardware
ready to run. You can determine what the integer return value (if any) should be.

int mydriver_init(netif_t netif)

unsigned unit = if_unit(netif);

register struct mydriver_data_t *is

if (is->is_flags & HW_RUNNING)

return;

is->is_flags 1= HW_RUNNING;

&mydriver_data[unit];

/* Initialize software structures and the hardware. */

/* ... * /
return;

Input Function

typedef int (*iCinputjunc_t)(netiCt netif, netiCt realnetif, netbuCt packet,
void *extra);

An input function is required in protocol handlers and packet sniffers, but not in network
device drivers. It takes a pointer to its module's netif (netij), a pointer to the calling network
device driver (realnetij), the input packet, and optional extra data. This function should
examine the input packet and decide if it wants the packet. If so, this function should return
zero and take responsibility for freeing the packet. Otherwise, this function should return
EAFNOSUPPORT to allow other modules to receive the packet. Packet sniffers should
always return EAFNOSUPPORT.

For example, an IP handler getting packets from an Ethernet device would check if an
Ethernet packet's protocol number is the value for IP. If so, the IP handler should handle
the packet and return zero.

Since this function might be called at interrupt priority, it should only queue packets.
Another thread should pull the packets off of the queue and process them.

Functions You Should Implement 4-5

The following code is a typical input function of a protocol handler.

static int venip_input(netif_t ifp, netif t rifp, netbuf t nb,

void *extra)

short etype;

short offset;
short size;

trailer data t trailer_data;

/* Do we want packets from this driver? */

if ((myhandler-private_t *)if-private(ifp)->rifp != rifp) {
return (EAFNOSUPPORT);

/*
* Check fields in the packet to see whether they match

* the protocol we understand.

*/
nb_read(nb, MYTYPEOFFSET, sizeof(etype), &etype);
etype = htons(etype);

/*
* Handle ethernet trailer protocol.

*/
if (etype >= ETHERTYPE TRAIL &&

etype < ETHERTYPE TRAIL + ETHERTYPE_NTRAILER)
offset = (etype - ETHERTYPE_TRAIL) * 512;

if (offset == 0 I I (ETHERHDRSIZE + offset +
sizeof(trailer_data) >=
nb_size(nb))) {

return (EAFNOSUPPORT);

nb_read (nb, ETHERHDRSIZE + offset, siz·eof (trailer_data) ,

&trailer_data);

etype = htons(trailer_data.etype);

if (etype != ETHERTYPE IP &&

etype != ETHERTYPE_ARP) {

return (EAFNOSUPPORT);

size = htons(trailer_data.length);
if (ETHERHDRSIZE + offset + size> nb_size(nb))

return (EAFNOSUPPORT);

/*
* trailer_fix() is a private function that converts trailer
* packet to regular ethernet packet.

*/
trailer_fix (nb, offset, size - sizeof(trailer_data));

4-6 Chapter 4: Network-Related Kernel Servers

switch (etype) {
case ETHERTYPE IP:

nb_shrink_top(nb, ETHERHDRSIZE);
if_ipackets_set(ifp, if_ipackets(ifp) + 1);
inet_queue(ifp, nb);
break;
/* Put other cases here as necessary. */

default:
/*

* Do not free buf: let others handle it
*/

return (EAFNOSUPPORT);

return (0);

Output Function

typedef int (*iCoutpuCfunc_t)(netiCt netif, netbuCt packet, void *address);

All network modules except packet sniffers must have an output function. This function
takes a pointer to the module's netif, a pointer to a packet, and an address. How this
function works depends on whether it's part of a protocol handler or of a network device
driver.

If this function is part of a protocol handler, it should assume the packet and address are
strictly protocol-level entities, containing no device-dependent information. The function
should add network device information to the packet and call the network device driver's
output routine. The netbuf that holds the packet should have been returned by this module's
getbuf function, as described below.

If this function is part of a network device driver, it should assume the packet and address
are device-level entities. The function should simply deliver the packet to the given
device-level address. Its return value should be zero if no error occurred; otherwise, return
an error number from the header file sys/errno.h.

static int venip_output(netif_t ifp, netbuf_t nb, void *addr)

struct sockaddr *dst = (struct sockaddr *)addr;

struct ether_header eh;
struct in_addr idst;
int off;
int usetrailers;
netif_t rifp VENIP_RIF(ifp);
int error;

Functions You Should Implement 4-7

switch (dst->sa_family)

case AF UNSPEC:

bcopy(dst->sa_data, &eh, sizeof(eh));

break;

case AF INET:
idst = ((struct sockaddr in *)dst)->sin_addr;

1* ... *1
1*

* Resolve the en address using arp. Return 0 if the address

* wasn't resolved.

*1
1*
* XXX: trailers not supported for output

*1
eh.ether_type

break;

htons(ETHERTYPE IP);

default:

nb_free (nb) ;

return (EAFNOSUPPORT);

nb_grow_top(nb, ETHERHDRSIZE);

nb_write(nb, ETYPEOFFSET, sizeof(eh.ether_type),

(void *)&eh.ether_type);

error = if_output(rifp, nb, (void *)&eh.ether_dhost);

if (error == 0) {

if_opackets set (ifp, if_opackets(ifp) + 1);

else {

if_oerrors set(ifp, if_oerrors(ifp) + 1);

return (error);

Getbuf Function

typedef netbuCt (*iCgetbufjunc_t)(netiCt netif);

A getbuf function is required in all modules except packet sniffers. This function returns a
netbuf to be used for an impending output call. Only network device drivers should allocate
these netbufs. Protocol handlers should instead call the appropriate network device driver's
getbuf function to do the allocation. After allocation from the network device driver and
before returning the result, the protocol handler should leave enough room at the top of the
netbuf for its own output function to later insert a header.

A getbuffunction doesn't always have to return a buffer. For example, you might want to
limit the number of buffers your module can allocate (say, 200KB worth) so that it won't
use up too much wired-down kernel memory. When a getbuf function fails to return a
buffer, it should return null.

4-8 Chapter 4: Network-Related Kernel Servers

In a protocol handler:

static netbuf t venip_getbuf(netif_t ifp)

netif t rifp VENIP_RIF(ifp);
netbuf t nb;

nb = if_getbuf(rifp);
if (nb == NULL) {

return(NULL);

nb shrink_top(nb, ETHERHDRSIZE);
return(nb);

In a driver:

static netbuf t engetbuf(struct ifnet *ifp)

if (numbufs == MAXALLOC)
return(NULL);

else {
numbufs++;

return(nb_alloc(HDR_SIZE + ETHERMTU));

Control Function

typedef int (*iCcontroCfunc_t)(netiCt netif, const char *command, void *data)

The control function isn't required, but it's useful in all three kinds of network modules.
This function performs arbitrary operations, with the character string command used to
select between these operations. There are five standard operations that you can choose to
implement, although you can also define your own. The command strings corresponding
to the standard operations are listed in the table below; constants for the strings (such as
IFCONTROL_SET _FLAGS for "setflags") are declared in the header file net/netif.h.

Functions You Should Implement 4-9

Command

"setflags"

Operation

Request to have interface flags turned on or off.

"setaddr" Set the address on the interface.

"getaddr" Get the address of the interface.

"autoaddr" Automatically set the address of the interface.

"unix-ioctl"

static int

Perform a UNIX ioctlO command. This is only for compatibility;
ioctiO isn't a recommended interface for network drivers. The
argument is of type if_ioctl_t *, where the if_ioctl_t structure contains
the UNIX ioctl request (for example, SIOCSIFADDR) in the
ioctl command field and the ioctl data in the ioctl data field.

venip control (netif_t ifp, const char *command, void *data)

netif_t rifp = VENIP_RIF(ifp);

unsigned ioctl_command;

void *ioctl_data;

int s;

struct sockaddr in *sin = (struct sockaddr_in *)data;

if (strcmp(command, IFCONTROL_AUTOADDR) == 0)

/*
* Automatically set the address
*/

if (sin->sin_family != AF_INET)

return (EAFNOSUPPORT);

/* ... */
else if (strcmp(command, IFCONTROL_SETADDR) 0) {

/*
* Manually set address

*/
if (sin->sin_family != AF_INET)

return (EAFNOSUPPORT);

if flags_set (ifp, if_flags (ifp) I IFF_UP);

if_init (rifp) ;
VENIP_PRIVATE(ifp)->vp_ipaddr sin->sin_addr;

/* */
else

/*
* Let lower layer handle
*/

return (if_control (rifp, command, data));

return (0);

4-10 Chapter 4: Network-Related Kernel Servers

Notes for Specific Interfaces

Ethernet Interfaces

Network device drivers that implement the lO-megabit-per-second Ethernet protocol
should register their type as IFTYPE_ETHERNET (defined in the header file
net/etherdefs.h). One 10Mb Ethernet network device driver comes standard with the
NeXT operating system. The type of the address passed to the Ethernet driver's output
function for output should be a six-byte character array (which you cast to void *).

TCP/IP Interfaces

IP protocol handlers can hand over their input packets to the kernel for processing by calling
inet queueO.

IP protocol handlers should specify their type as "Internet Protocol" when they call
if_attachO. The NeXT operating system comes with two TCP/IP modules-one for
delivery over Ethernet, and one for delivery over loop back. The type of address used by IP
protocol handlers should be struct sockaddr _in, which is defined in the header file
netinet/in.h.

Notes/or Specific/nterfaces 4-11

4-12

Chapter 5
C Functions

This chapter gives detailed descriptions of the C functions provided by the NeXT Mach
operating system for loadable kernel servers. Also included here are some macros that
behave like functions. For this chapter, the functions and macros are divided into two
groups: general functions and network functions.

Network functions are those that are specifically for network-related kernel servers. All the
other functions are under the "General Functions" section.

Within each section, functions are subgrouped with other functions that perform related
tasks. These subgroups are described in alphabetical order by the name of the first function
listed in the subgroup. Functions within subgroups are also listed alphabetically, with a
pointer to the subgroup's description.

For convenience, these functions are summarized in Appendix F, "Summary of Kernel
Functions." The summary lists functions by the same subgroups used in this chapter and
combines several related subgroups under a heading such as "Time Functions" or "Memory
Functions." For each function, the appendix shows the calling sequence.

General Functions

ASSERTO

SUMMARY

SYNOPSIS

Panic if an assumption isn't true

void ASSERT(int expression)

ARGUMENTS

expression: A C expression that's 0 when the assumption isn't true.

DESCRIPTION

ASSERTO is a macro that works only if you specify the DEBUG C preprocessor macro
when you compile your server. If expression is 0, ASSERTO calls panicO after
printing the line and file that the assertion failed in.

ASSERT() 5-1

You might want to redefine panicO so that ASSERTO calls kern _ serv _panicO when
possible. For example:

#define panic(s) (curipl() == 0 ? \

kern_serv_panic((kern_serv_bootstrap_port(&instance), s) \
: printf("Can't panic: %s\n", s))

EXAMPLE

In your makefile:

CFLAGS -DDEBUG

In your server:

ASSERT(ptr != NULL);

SEE ALSO

panicO, kern serv panicO

SUMMARY Arrange for a thread to sleep on an event

SYNOPSIS

void assert_wait(int event, boolean_t interruptible)

ARGUMENTS

event: An integer that identifies the event. Typically, this is the address of a structure.

interruptible: Used by clear _ waitO. If interruptible is false and the interrupt_only
argument to a later call to clear waitO is true, then this thread won't be waked up
by that call to clear _ waitO.

DESCRIPTION

Use this routine before calling thread_blockO. This routine sets up the event that the
thread wants to wait for, but the thread doesn't start sleeping until it executes
thread _ blockO.

EXAMPLE

extern hz;

assert_wait (0, FALSE);

thread_set_timeout(hz*2);
thread_block() ;

5-2 Chapter 5: C Functions

SEE ALSO

clear _ waitO, thread _ blockO, biowaitO

bcopyO

SUMMARY Copy data into a buffer

SYNOPSIS

void bcopy(void *from, void *to, int length)

ARGUMENTS

from: Start of buffer to be copied from.

to: Start of buffer to be copied to.

length: Number of bytes to copy.

DESCRIPTION

Like the C library bcopyO routine, this routine copies bytes from one buffer to another
buffer in the same virtual space. bcopyO cannot be used to copy data between user
space and kernel space. The caller of this routine must have already checked the access
rights to this memory and wired it down.

Important: Use bytecopyO instead of bcopyO if you're copying to or from hardware
device space that's only 8 or 16 bits wide. (bcopyO often uses 32-bit accesses for
efficiency, but the 68040 processor doesn't allow 32-bit accesses to 8- or 16-bit
hardware.)

SEE ALSO

bytecopyO, strcpyO, copyinO, copyoutO

biodoneO

SUMMARY Wake up the routine doing a biowaitO on a buffer

SYNOPSIS

#import <sys/buf.h>

void biodone(struct buf *bp)

ARGUMENTS

bp: The address of a buf structure.

beapy() 5-3

DESCRIPTION

This routine marks the buffer as done and wakes up any threads waiting for it. If the
B_DONE flag is already set, biodoneO panics. Otherwise, if B_CALL is set,
biodoneO clears it and calls the routine pointed to by *bp->b_iodone. Next, if
B_ASYNC is set, biodoneO releases the buffer pointed to by bp; if B_ASYNC isn't
set, biodoneO clears the B_ WANTED flag and wakes up all threads that had called
biowaitO on bp.

EXAMPLE

one_thread (void)

struct buf mybuf;

biowait (&mybuf);

other_thread(struct buf *bp)

biodone(bp)

SEE ALSO

biowaitO

biowaitO

SUMMARY

SYNOPSIS

Wait until a routine calls biodoneO on a buffer

#import <syslbuf.h>

void biowait(struct buf *bp)

ARGUMENTS

bp: The address of a buf structure.

DESCRIPTION

If the B_DONE flag in the buffer pointed to by bp is already set, this routine won't
sleep. Otherwise, this routine sleeps until another thread calls biodoneO on bp.

5-4 Chapter 5: C Functions

EXAMPLE

one_thread (void)

struct buf mybuf;

biowait (&mybuf);

other_thread(struct buf *bp)

biodone(bp)

SEE ALSO

biodoneO, assert_ waitO

bytecopyO

SUMMARY Copy bytes into a buffer

SYNOPSIS

void bytecopy(void *from, void *to, int length)

ARGUMENTS

from: Start of buffer to be copied from.

to: Start of buffer to be copied to.

length: Number of bytes to copy.

DESCRIPTION

This function is like bcopyO, except that it uses only 8-bit instructions to copy data.
bytecopyO, like bcopyO and the C library bcopyO routine, copies bytes from one
buffer to another buffer in the same virtual space. bytecopyO cannot be used to copy
data between user space and kernel space. The caller of this routine must have already
checked the access rights to this memory and wired it down.

Note: This function is less efficient than bcopyO, so you should use bcopyO unless
you're copying to or from hardware device space that's only 8 or 16 bits wide.

SEE ALSO

bcopyO, strcpyO, copyinO, copyoutO

bytecopy() 5-5

bzeroO

SUMMARY

SYNOPSIS

Zero out a region of memory

void bzero(void *address, int length)

ARGUMENTS

address: The address of the first byte of the region of memory.

length: The number of bytes to write zeros to.

DESCRIPTION

This acts the same as the bzeroO C library function.

SEE ALSO

bzeroO UNIX manual page

clear _ waitO

SUMMARY

SYNOPSIS

Stop a thread from waiting for an event

#import <sys/sched _prim.h>

void c1ear_wait(thread_t thread, int result, boolean_t interrupt_only)

ARGUMENTS

thread: The thread to wake up.

result: The wakeup result the thread should see.

interrupt_only: If true, don't wake up the thread unless assert _ waitO was called with
interruptible set to true.

DESCRIPTION

Use this routine to wake up a thread that's waiting for an event (as the result of
assert _ waitO and thread _ blockO), whether or not the event has happened. If
interrupt_only is false or if assert _ waitO was called with interruptible set to false, then
the thread is guaranteed to wake up. The thread will receive result when it calls
thread_wait JesultO.

5-6 Chapter 5: C Functions

EXAMPLE

void

extern

char
thread t

new_thread(void);

hz;
data;

threadl;

threadl = (thread_t)current_thread();

kernel_thread(current_task(), new_thread);
assert_wait (&data, FALSE);

thread_block();

printf("Wait result: %d\n",

thread_wait_result());

void new_thread()

clear_wait (threadl, THREAD_AWAKENED, FALSE);

/* new thread */

SEE ALSO

assert_waitO, thread_blockO, thread_waitJesultO, thread_wakeupO,
us _ untimeoutO

copyinO

SUMMARY Copy bytes from user to kernel space

SYNOPSIS

int copyin(void *from, void *to, int length)

ARGUMENTS

from: The start of the region in user space.

to: The start of the region in kernel space.

length: The number of bytes to copy from user to kernel space.

DESCRIPTION

Returns 0 if successful, -1 otherwise.

SEE ALSO

bcopyO, copyoutO

copyin() 5-7

copyoutO

SUMMARY

SYNOPSIS

Copy bytes from kernel to user space

int copyout(void *from, void *to, int length)

ARGUMENTS

from: The start of the region in kernel space.

to: The start of the region in user space.

length: The, number of bytes to copy from kernel to user space.

DESCRIPTION

The same as copyinO, except the direction of the copy is reversed.

SEE ALSO

bcopyO, copyinO

curiplO

SUMMARY

SYNOPSIS

int curiplO

DESCRIPTION

Get the current interrupt level

This function returns the CPU interrupt level, which is a number between 0 and 7.

EXAMPLE

#define panic (s) (curipl () == 0 ? \

kern_serv_panic((kern_serv_bootstrap_port(&instance), s) \

: printf("Can't panic: %s\n", s))

SEE ALSO

spinO, splxO

5-8 Chapter 5: C Functions

current _ taskO

SUMMARY Get the current task

SYNOPSIS

task_t current _ taskO

DESCRIPTION

This macro returns the task structure for the current task. Use current_taskO
whenever you need to refer to the task in which your kernel server executes. Don't use
this to refer to memory unless you specifically want the task's native memory map, and
not the kernel map that your server uses.

EXAMPLE

kernel_thread(current_task(), new_thread);

SEE ALSO

kernel_thread 0

DELAYO

SUMMARY Busy-wait for a certain number of microseconds

SYNOPSIS

#import <nextimachparam.h>

void DELAY(unsigned int usecs)

ARGUMENTS

usecs: The number of microseconds to delay for.

DESCRIPTION

This macro makes the processor loop for the number of microseconds specified in the
argument. Interrupts are not disabled by this routine, so surround DELAYO with
spInO and splxO if interrupts need to be disabled. Because the microsecond resolution
clock is used to count the spin interval, the delay is independent of CPU instruction
clock speed.

This macro doesn't sleep, so it's safe to use in interrupt handlers. It's often used to wait
for the hardware.

current_taskO 5-9

EXAMPLE

/* set the hardware register for at least 100 microseconds */

hardware_register 1;

DELAY (100) ;

hardware_register 0;

SEE ALSO

us_timeoutO, us_abstimeoutO, us_untimeoutO, microtimeO, microbootO, spinO,
splxO

install polled intrO - -

SUMMARY Install an interrupt handler for a polled device

SYNOPSIS

#import <next/cpu.h>
#import <next/autoconf.h>

int install_polled _intr(int which, int (*my _intr)())

ARGUMENTS

which: Specifies the device and interrupt level. For devices attached through the
NeXTbus interface, this should be the constant CBUS.

my _intr: The routine in your server that handles this interrupt.

DESCRIPTION

This function installs an interrupt handler; you can later remove this interrupt handler
by calling uninstall_polled _intrO.

This routine returns 0 if the call is successful, or -1 if the interrupt level specified by
which isn't capable of interrupt polling.

EXAMPLE

device_interruptI)

if (interrupt_is_for_us) {

/* -process interrupt- */

return (1); /* say interrupt was for us */

else
return (0); /* it must be for someone else */

5-10 Chapter 5: C Functions

device_initialize() {

install_polled_intr(I_BUS, device_interrupt);

SEE ALSO

uninstall_polled _ intrO

kallocO

SUMMARY Allocate wired-down kernel memory

SYNOPSIS

void *kalloc(int size)

ARGUMENTS

size: The size in bytes to be allocated.

DESCRIPTION

This routine is guaranteed to return wired-down memory of the requested size. You
can't call kallocO from an interrupt handler because it might sleep.

Memory returned isn't guaranteed to be aligned in any way unless size is a mUltiple of
the page size (in which case the memory is page-aligned). If you need to ensure
alignment, you should allocate twice what you need and align the address you start with
to the boundary you want. Memory isn't guaranteed to be contained on the same
physical page unless you allocate in multiples of the page size and keep track of the
page location of addresses you use. The page size is dynamic, and there's currently no
way to get its value from inside the kernel; however, on 680xO-based machines, 8192
is guaranteed to be an integer multiple of the page size in bytes.

EXAMPLE

kfree(arg, sizeof (my_data_t));

SEE ALSO

kfreeO, kgetO

kalloc() 5-11

kernel_ threadO

SUMMARY Start a new kernel thread in the specified task

SYNOPSIS

thread_t kernel_thread(task_t task, void (*start)())

ARGUMENTS

task: For loadable kernel servers, this must be current_taskO.

start: The first routine to be called by the new thread.

DESCRIPTION

This routine can sleep, so don't call it from an interrupt handler. The new thread uses
the kernel's address map, but the loadable kernel server's task.

EXAMPLE

void new_thread(void);

kernel_thread(current_task(), new_thread);

void new_thread()

/* Do something, then (if necessary) shut down */

thread_terminate((thread_t)thread_self());

thread_halt_self();

/* new thread */

SEE ALSO

current _ taskO

kern _ serv _bootstrap _portO

SUMMARY Get the port used to initialize your server

SYNOPSIS

#import <mach _ types.h>
#import <kernserv/kern _server _ types.h>

port_t kern serv bootstrap port(kem_server_t *ksp) - - -

5-12 Chapter 5: C Functions

ARGUMENTS

ksp: The address of the first field (which must be of type kern_server_t) in the server's
instance variable.

DESCRIPTION

This routine returns the port that the kernel uses to initialize (or "bootstrap") your
server when it's loading it. Normally, the only reason to use this port is as an argument
to kern _ serv _panicO.

EXAMPLE

bootstrap-port=kern_serv_bootstrap_port(&instance);

kern_serv-panic(bootstrap_port, "Couldn't send message");

SEE ALSO

kern _serv yanicO, kern _ serv _local yortO, kern_serv _notify_portO,
kern _ serv yort _ setO

kern _ serv _ calloutO

SUMMARY Run a function in the server's main thread

SYNOPSIS

kern_return_t kern_serv_callout(kern_servect *ksp, void (*June)(void *), void *arg)

ARGUMENTS

ksp: The address of the first field (which must be of type kern_server _ t) in the server's
instance variable.

June: The kernel server function to be called.

arg: The argument to be passed to June.

DESCRIPTION

This function provides a way for interrupt handlers to call functions in the same kernel
server that may sleep or deal with a user context. The function June is called with
argument arg at some point in the future.

EXAMPLE

void mydriver_func(mydriver_data_t data)

kern serv callout ((kern_server_t *)&instance, mydriver_func,

(void *) arg) ;

RETURN

KERN_SUCCESS: The callout was scheduled successfully.

KERN_RESOURCE_SHORTAGE: The callout couldn't be scheduled.

kern _ serv _local yortO

SUMMARY Determine which port the kernel just received a message on

SYNOPSIS

#import <mach _ types.h>
#import <kernserv/kern _server _ types.h>

poret kern _ serv Jocal_port(kern_servect * ksp)

ARGUMENTS

ksp: The address of the first field (which must be of type kern_server_t) in the server's
instance variable.

DESCRIPTION

This function returns the port on which the kernel just received a message in your
server's behalf. The only time this function is useful is when your server was just
loaded as the result of a message to one of its ports.

EXAMPLE

port=kern serv_local_port(&instance);
if (port==debug_port)

debug=TRUE;

SEE ALSO

kern _serv _notify _portO, kern _ serv yort _ setO

5-14 Chapter 5: C Functions

kern _ serv _logO

SUMMARY Put a message in the kernel server's error log

SYNOPSIS

#import <mach _ types.h>
#import <kernserv/kern _server _ types.h>

void kern serv log(kern_server_t *ksp, int log level, char *format, argl, ... , argS) - - -

ARGUMENTS

ksp: The address of the first field (which must be oftype kern_server _t) in the server's
instance variable.

log_level: A number indicating the urgency of this log entry. Higher numbers indicate
greater urgency, but the particular range of numbers used in a kernel server is up to
the writer of that kernel server.

format: A string containing formatting information. See printfO.

argl, ... , argS: Arguments to be printed. (If you don't specify all five arguments, the
compiler will display a warning, but the call will still succeed.) See printfO.

DESCRIPTION

This function puts a message in the error log. The message can be retrieved by a user
process that calls kernJoader_get_logO or by the command kl_log.

EXAMPLE

kern_serv_log{&instance, 5, "Reset value of timeout to %d\n", time,
0,0,0,0);

SEE ALSO

logO, printfO

kern serv notifyO - -

SUMMARY Ask to receive notification messages about a certain port

SYNOPSIS

#import <mach _ types.h>
#import <kernserv Ikern _server _ types.h>

kern_return_t kern _serv _ notify(kern_servect * ksp, poret reply yort, port_t
request yort)

ARGUMENTS

ksp: The address of the first field (which must be of type kern_server _ t) in the server's
instance variable.

reply yort: The port that should receive the notification messages. This should
normally be the value returned by kern _serv _notify yortO.

request yort: The port we want to be notified about.

DESCRIPTION

This function requests that notification messages about request yort be sent to
reply yort. The types of notification messages are defined in the header file
sys/notify.h.

EXAMPLE

notify_port=kern_serv_notify_port(&instance) ;

kern_serv_notify(&instance, notify_port, bootstrap_port);

RETURN

KERN_SUCCESS: The call succeeded.

KERN_FAILURE: The same reply yort, request yort pair has already been entered.

SEE ALSO

kern _ serv _notify yortO

kern _ serv _notify yortO

SUMMARY

SYNOPSIS

Get the notification port of this server

#import <mach_types.h>
#import <kernserv/kern_server _ types.h>

port_t kern _ serv _notify _port(kern_servect *ksp)

ARGUMENTS

ksp: The address ofthe first field (which must be of type kern_server _t) in the server's
instance variable.

DESCRIPTION

This routine returns this server's notification port, which can be used in calls to
kern _ serv _ notifyO.

5-16 Chapter 5: C Functions

EXAMPLE

notify_port=kern_serv_notify_port(&instance);

kern_serv_notify(&instance, notify_port, bootstrap_port);

SEE ALSO

kern _ serv _ notifyO

kern _ serv yanicO

SUMMARY Unload this server without panicking the system

SYNOPSIS

#import <mach _ types.h>
#import <kernserv/kern _server _ types.h>

kern_return_t kern _ serv _panic(porct * bootstrap yort, panic_msg_t message)

ARGUMENTS

bootstrap yort: This server's bootstrap port, which is returned by
kern _ serv _bootstrap_portO.

message: A string to be added to the panic message that's logged.

DESCRIPTION

This routine unloads the server after logging a message in the kernel server loader's log.
The message is logged at the priority LOG_WARNING and contains the name of the
server that called this routine, followed by message.

EXAMPLE

kern_serv_panic(bootstrap_port,
nmy_server_main: received bad return from msg_receive n);

RETURN

KERN_SUCCESS: The server will be unloaded.

SEE ALSO

ASSERTO, panicO, kern_serv_bootstrapyortO

kern _serv yanicO 5-17

kern serv port goneO - - -

SUMMARY Notify the kernel that a port will be deleted

SYNOPSIS

#import <mach _ types.h>
#import <kernserv/kern _server _ types.h>

ARGUMENTS

ksp: The address of the first field (which must be of type kern_server_t) in the server's
instance variable.

port: The port that will be deleted.

DESCRIPTION

Use this function to make sure that the kernel won't send any more messages to a
certain port.

EXAMPLE

/*
* Deallocate transmit port.
*/

kern_serv_port_gone(&instance, my_dev->xmit_port);
(void)port_deallocate((task_t)task_self(), my_dev->xmit_port);

my_dev->xmit_port PORT_NULL;

SEE ALSO

kern _ serv _port _procO, kern _ serv _port_servO

kern _ serv yort _procO

SUMMARY Set which function is a port's handler

SYNOPSIS

#import <mach _types.h>
#import <kernserv/kern _server _ types.h>

kern_return_t kern _serv J>ort_proc(kern_servect *ksp, port_all_t port,
port_map_proc_tfunction, int arg)

5-18 Chapter 5: C Functions

ARGUMENTS

ksp: The address of the first field (which must be of type kern_server_t) in the server's
instance variable.

port: The port that the function should be associated with.

function: The function that handles messages sent to port.

arg: An integer to be passed in the call to function whenever port receives a message.

DESCRIPTION

Use this function to register a message-receiving function in a handler-style (not
server-style) loadable kernel server. This function provides the functionality of the
HMAP load command to your server.

EXAMPLE

/* Create the port. */

r = port allocate ((task_t)task_self(), &port_name);

if (r != KERN_SUCCESS)

kern_serv_panic(&instance, "couldn't allocate a port");

else printf("Created port %d\n", port_name);

/* Specify which function is its handler. */

r = kern_serv_port-proc(&instance, port_name,

(port_map_proc_t)myhandler, 0);

if (r != KERN_SUCCESS) {

kern_serv_panic("port_allocate failed (%d)\n", r);

exit (1);

/* .. * /

kern serv_port_gone(&instance, port_name);

port_deallocate((task_t)task_self(), port_name);

port_name PORT_NULL;

RETURN

KERN_SUCCESS: The call succeeded.

KERN_RESOURCE_SHORTAGE: No more port to function mappings are available
for your loadable kernel server.

KERN_NOT_RECEIVER: You don't have receive rights for port.

KERN_INVALID_ARGUMENT: port isn't a valid port.

SEE ALSO

kern _ serv _port _goneO, kern _ serv yort _servO

kern_servyortyrocO 5-19

kern _ serv _port_servO

SUMMARY Set which function is a port's message server

SYNOPSIS

#import <mach _ types.h>
#import <kernserv/kern _server _ types.h>

kernJeturn_t kern_serv _port_serv(kern_servect *ksp, port_all_t port,
porcmap_proc_tfunction, int arg)

ARGUMENTS

ksp: The address of the first field (which must be of type kern_server _t) in the server's
instance variable.

port: The port that the function should be associated with.

function: The function that handles messages sent to port.

arg: An integer to be passed in the call to function whenever port r~ceives a message.

DESCRIPTION

This function is just like kern _ serv _port _procO except that it registers a function with
a server-style, as opposed to a handler-style, interface. This routine performs the same
function as the SMAP load command.

EXAMPLE

/* Create the port. */

r = port allocate((task_t)task self(), &port name);
if (r != KERN_SUCCESS)

kern_serv_panic(&instance, "couldn't allocate a port");
else printf("Created port %d\n", port_name);

/* Specify which function is its server. */

r = kern serv_port serv(&instance, port_name,
(port_map_proc_t)myserv, 0);

if (r != KERN_SUCCESS) {
kern_serv_panic("port_allocate failed (%d)\n", r);
exit (1) ;

/* .. * /

kern serv_port gone (&instance, port_name);
port_deallocate((task_t)task_self(), port_name);
port_name PORT_NULL;

RETURN

KERN_SUCCESS: The call succeeded.

5-20 Chapter 5: C Functions

KERN_RESOURCE_SHORTAGE: No more port to function mappings are available
for your loadable kernel server.

KERN_NOT_RECEIVER: You don't have receive rights for port.

KERN_INVALID_ARGUMENT: port isn't a valid port.

SEE ALSO

kern _serv _port _goneO, kern _ serv yort _procO

kern _ serv _port _ setO

SUMMARY Get the port set

SYNOPSIS

#import <mach _types.h>
#import <kernserv/kern _server _ types.h>

porCset_name_t kern serv port set(kern_server_t *ksp) - - -

ARGUMENTS

ksp: The address of the first field (which must be of type kern_server _t) in the server's
instance variable.

DESCRIPTION

This function returns the name of the port set on which messages to the kernel server
arrive. The kernel listens to this port set on behalf of your kernel server. Usually, this
function is used after you've temporarily removed a port from the port set, and you need
the name ofthe port set as a parameter to port_set_addO so you can put the port back
into the port set.

EXAMPLE

/* Don't accept any more requests until we get rid of the old ones. */

port_set remove((task_t)task_self(), dev->xmit_port);

... /* Get rid of some old requests. */

/* Re-enable listening on the port. */

port set_add((task_t)task_self, kern serv_port set (&instance) ,

dev->xmit_port);

SEE ALSO

kern _ serv _port _goneO, kern _ serv _port _procO, kern _ serv _port_servO

kern serv unwire rangeO - - -

SUMMARY

SYNOPSIS

Unwire the specified range of memory in the kernel map

#import <mach _ types.h>
#import <kernserv/kern _server _ types.h>

kern_return_t kern serv unwire range(kern_servect *ksp, vm_address_t address, - - -
vm_size_t size)

ARGUMENTS

ksp: The address of the first field (which must be of type kern_server _t) in the server's
instance variable.

address: A virtual address in the kernel map.

size: The size in bytes to be wired down.

DESCRIPTION

This routine makes a region of kernel memory subject to swapping. Usually, you'd call
it when you're preparing to deallocate the memory with vm_deallocateO.

RETURN

KERN_SUCCESS: The call succeeded.

KERN_INVALID_ARGUMENT: The range of memory wasn't wired down.

SEE ALSO

kallocO, kfreeO, kgetO, kern _ serv _wire _ rangeO

kern serv wire rangeO - - -

SUMMARY

SYNOPSIS

Wire down the specified range of memory in the kernel map

#import <mach _ types.h>
#import <kernserv/kern _server _ types.h>

kern_return_t kern _ serv _wire _range(kern_servect * ksp, vm_address_t address,
vm_size_t size)

ARGUMENTS

ksp: The address of the first field (which must be oftype kern_server _t) in the server's
instance variable.

5-22 Chapter 5: C Functions

address: A virtual address in the kernel map.

size: The size in bytes to be wired down.

DESCRIPTION

This routine wires down a range of kernel memory. Usually you'd call it after you've
copied out-of-line data into the kernel map.

RETURN

KERN_SUCCESS: The call succeeded.

SEE ALSO

kaliocO, kgetO, kern _ serv _unwire JangeO

kfreeO

SUMMARY Free memory that was allocated using kaliocO or kgetO

SYNOPSIS

void kfree(void *address, int size)

ARGUMENTS

address: The memory to be freed.

size: The size in bytes to be freed.

DESCRIPTION

The memory freed will be available for subsequent kaliocO and kgetO calls only if the
size they specify is the same as size.

EXAMPLE

kfree(arg, sizeof (my_data_t));

SEE ALSO

kaliocO, kgetO

kfree() 5-23

kgetO

SUMMARY Try to quickly allocate wired-down kernel memory

SYNOPSIS

void *kget(int size)

ARGUMENTS

size: The size in bytes to be allocated. This size, rounded up to the nearest power of 2,
must be less than the page size (default 8192 bytes) or the kernel will panic.

DESCRIPTION

Use this routine in interrupt handlers to try to get kernel memory. If no memory of the
appropriate size can be allocated without blocking, kgetO returns O. Otherwise, it
returns the address of the chunk of memory.

EXAMPLE

my_data t *arg;

arg = (my_data_t *)kget(sizeof (my_data_t));
if (arg != 0)
{

kfree(arg, sizeof (my_data_t));

SEE ALSO

kallocO, kfreeO

lock _ allocO, lock _ freeO

SUMMARY Create or destroy a lock

SYNOPSIS

lock_t lock _ allocO
void lock Jree(lock_t lock)

ARGUMENTS

lock: The lock to be freed.

DESCRIPTION

lock allocO returns a pointer to a new lock. Before you use the lock, you should
initialize it by calling lock initO.

5-24 Chapter 5: C Functions

lock_freeO frees the lock structure pointed to by lock.

See lock_doneO for information on using locks.

SEE ALSO

lock _ doneO, lock _initO, lock JeadO, lock _ writeO, simple_lock _ alIocO,
simple lock freeO

lock_doneO

SUMMARY Release a read or write lock

SYNOPSIS

void lock _ done(lock_t lock)

ARGUMENTS

lock: A pointer to the lock that the reader or writer wants to release.

DESCRIPTION

The lock _ xxxO routines provide reader/writer synchronization. Any number of readers
can read, as long as no one has a lock for writing. A writer can get a lock only if no
there are no existing reader or writer locks. Once a writer tries to get a lock, no more
readers can get the lock, and the writer gets the lock as soon as the last reader releases
its lock. The writer sleeps or busy-waits until it can get a lock; you determine which it
does when you initialize the lock.

Use the lock _ doneO routine to relinquish a read or write lock.

EXAMPLE

lock_write(lockl);

/* write to the protected data */

lock_done(lockl);

SEE ALSO

lock_alIocO, lock_freeO, lock_initO, lockJeadO, lock_writeO,
simple_lock _ unlockO

lock _ free 0 -7 See lock _ allocO

lock_doneO 5-25

SUMMARY

SYNOPSIS

Initialize a lock

void lock)nit(1ock_t lock, boolean_t can_sleep)

ARGUMENTS

lock: A pointer to the lock that the reader or writer wants to initialize.

can _sleep: If true, threads waiting to acquire a lock can sleep. If false, threads will
busy-wait while trying to acquire a lock. This should be usually be true.

DESCRIPTION

Use this routine to initialize a lock when you first create it. See lock doneO for a
description of how locking works. Use lock _ allocO to create the lock.

EXAMPLE

lock t lockl = lock_alloc();

lock_init(lockl, TRUE);

/*. . . * /

lock_free(lockl);

SEE ALSO

lock_allocO, lock_doneO, lock_freeO, lockJeadO, lock_writeO,
simple_lock _ initO

SUMMARY

SYNOPSIS

Get a lock for reading

void lock Jead(lock_t lock)

ARGUMENTS

lock: A pointer to the lock that the reader wants to get.

DESCRIPTION

Use this routine to get a lock for reading some data. If a writer holds or is waiting for
a lock, you won't get the lock until the writer is done. Otherwise, you'll get the lock,
even if other readers have it locked.

5-26 Chapter 5: C Functions

EXAMPLE

lock t lockl = lock_alloc();

lock_init(lockl, TRUE);

lock read(lockl);

if (DONE_READING)
lock_done(lcokl);

SEE ALSO

lock_alIocO, lock_doneO, lock_freeO, lock_initO, lock_writeO, simple_lock

lock _ writeO

SUMMARY Get a lock for writing

SYNOPSIS

void lock _ write(lock_t lock)

ARGUMENTS

lock: A pointer to the lock that the writer wants to get.

DESCRIPTION

Use this routine to get a lock for writing some data. If another writer has or is waiting
for a lock, you won't get the lock until the writer is done. If any readers have locks,
you won't get the lock until every reader releases its lock.

EXAMPLE

lockl = lock_alloc();

lock_init(lockl, TRUE);

lock_write(lockl);

if (DONE_WRITING)

lock_done(lockl);

SEE ALSO

lock_alIocO, lock_doneO, lock_freeO, lockJnitO, lockJeadO, simple_lock

lock_writeO 5-27

logO

SUMMARY

SYNOPSIS

Write a message in the system log buffer

#import <sys/syslog.h>

int log(int level, char *format, arg, ...)

ARGUMENTS

level: The priority of the information. These priorities are defined in the header file
sys/syslog.h.

format: A string containing formatting information. See printfO.

arg, ... : Arguments to be printed. See printfO.

DESCRIPTION

Prints the time of day and who sent the message (for loadable kernel servers, it's usually
sent by Mach). This routine doesn't sleep, so it can be called by interrupt routines. If
no process is currently reading the system log, logO also writes to the console. This
function always returns zero.

EXAMPLE

log (LOG_INFO, "My driver: device %8 attached\n", device_type);

SEE ALSO

kern _serv JogO; printfO; UNIX manual pages for syslog, openlog, closelog,
setlogmask, and syslogd

map addrO

SUMMARY

SYNOPSIS

Convert a physical address to a virtual address

caddct map addr(caddct address, int size}

ARGUMENTS

address: The physical address.

size: The number of bytes to map.

5-28 Chapter 5: C Functions

DESCRIPTION

This function returns a virtual address that corresponds to address. At least size bytes
of hardware addresses are mapped into virtual memory. (Currently, map _ addrO maps
in multiples of the page size, nominally 8192 bytes.)

If you aren't sure whether a hardware address is implemented, you should use
map _ addrO to get a virtual address for it, and then call probe JbO on the virtual
address.

EXAMPLE

volatile unsigned int *my_reg;

my_reg = (unsigned int *)map_addr(REG_ADDRESS, 4);
if (probe_rb (my_reg))

*my_reg 1= A_FLAG;
else

printf("Hardware at physical address Ox%x caused bus error\n",
REG_ADDRESS) ;

SEE ALSO

probeJbO

microbootO

SUMMARY

SYNOPSIS

Return the amount of time since the system booted

#import <sys/time.h>

void microboot(struct timeval *tvp)

ARGUMENTS

tvp: Pointer to a timeval structure.

DESCRIPTION

This routine returns the best possible estimate of the time since system boot, to
microsecond resolution.

microboot() 5-29

EXAMPLE

/* Detect when system has been booted for over one hour. */
struct timeval tv;

microboot (&tv) ;
if (tv.tv_sec > 1*60*60)

printf("System has been booted for over an hour\n");

else
printf("System has not been booted for an hour yet\n");

SEE ALSO

us_timeoutO, us_abstimeoutO, us_untimeoutO, microtimeO, DELAYO

microtimeO

SUMMARY Return the current time

SYNOPSIS

#import <sys/time.h>

void microtime(struct timeval *tvp)

ARGUMENTS

tvp: Pointer to a timeval structure.

DESCRIPTION

This routine returns in *tvp the best possible estimate of the current time, to
microsecond resolution. The time returned is the same as what gettimeofdayO returns:
the number of seconds and microseconds since January 1, 1970.

EXAMPLE

struct timeva1 tv;

microtime(&tv);
printf ("current time: %d secs, %d usecs\n",

tv.tv_sec, tv.tv_usec);

SEE ALSO

us_timeoutO, us_abstimeoutO, us_untimeoutO, microbootO, DELAYO,
gettimeofday(2)

5-30 Chapter 5: C Functions

panicO

SUMMARY Hang the system and bring up the Panic window

SYNOPSIS

void panic(char * string)

ARGUMENTS

string: The message to be printed to the console, message log, and
lusr/adm/messages.

DESCRIPTION

Calling panicO brings up the Panic window (similar to the NMI mini-monitor window)
and either hangs or reboots the system, depending on whether you booted with the -p
option. See Chapter 3 for information on the Panic window~

Instead of using panicO you should use kern serv panicO when possible, since it
doesn't cause the whole system to panic. However, kern_serv _panicO can't be called
when the interrupt level is greater than O.

EXAMPLE

if (curipl() == 0)
kern_serv_panic(bootstrap_port, "Couldn't get resource");

else
panic ("mydriver: Couldn't get resource");

SEE ALSO

ASSERTO, kern _serv _panicO

printfO

SUMMARY Display a message on the console

SYNOPSIS

int printf(char *format [, argl, ...])

ARGUMENTS

format: The format string. It's just like the C library printfO routine's format string,
exceptthatonly %s, %c, %x (==%X), %d (==%D==%u), and %0 (==%0) are
recognized.

argl, ... : Arguments to be formatted according to the format string.

panicO 5-31

DESCRIPTION

This routine is a scaled-down version of the C library printfO routine. Output goes not
only to the console, but also to the message buffer and to /usr/adm/messages. Since
printfO disables interrupts while printing messages, all system activities are suspendeq
while it writes to the console.

Although printfO is safe to call in interrupt handlers, its output isn't guaranteed to print
on the console. The message buffer, however, should be up-to-date. You can read the
message buffer using the msg command in the NMI mini-monitor.

printfO always returns zero.

SEE ALSO

sprintfO, kern _serv JogO, logO

probe rbO

SUMMARY Check whether an address exists

SYNOPSIS

int probeJb(void *address)

ARGUMENTS

address: A virtual address that refers to a physical address.

DESCRIPTION

This routine returns 1 if address refers to a valid hardware address, 0 otherwise.

EXAMPLE

volatile unsigned int *my_reg;

my_reg = (unsigned int *)map_addr(REG_ADDRESS, 4);

if (probe_rb (my_reg))

else

*my_reg 1= A_FLAG;

printf("Hardware at physical address Ox%x caused bus error\n",

REG_ADDRESS) ;

SEE ALSO

map_addrO

5-32 Chapter 5: C Functions

simple _lockO

SUMMARY Get a simple lock

SYNOPSIS

void simple Jock(simple_lock_t lock)

ARGUMENTS

lock: A pointer to the simple lock.

DESCRIPTION

Simple locks are simple spin-loops that implement exclusive locks. They're designed
to be used when you're going to hold the lock for only a short time and/or when you
can't sleep.

If the someone else already has the lock, this routine will busy-wait until it gets the
lock.

EXAMPLE

slack;

slack = simple lock_alloc();

simple_lock in it (slock) ;

/* */

/* Set a lock before manipulating a data structure */

simple lock(slock);

mydriver->datal = VALUE;

simple_unlock (slock) ;

/* . . . * /
simple_lock free(lockl);

SEE ALSO

simple Jock _ aliocO, simple Jock JreeO, simple_lock JnitO, simple _ unlockO,
lock JeadO, lock _ writeO

simple _lock() 5-33

simple_lock _ allocO, simple _lock _ freeO

SUMMARY Allocate or free a simple lock

SYNOPSIS

simple_lock_t simple Jock _ allocO
void simple Jock Jree(simple_lock_t lock)

ARGUMENTS

lock: The simple lock to be freed.

DESCRIPTION

simple Jock _ allocO returns a pointer to a new simple lock. Before you use the simple
lock, you should initialize it by calling simple Jock _initO.

simpleJock_freeO frees the structure pointed to by lock.

See simple _lockO for information on how to use simple locks.

EXAMPLE

simple_lock t slock;

slock = simple lock_alloc();
simple_lock_init(slock) ;

/* . . . * /
simple_lock_free(lockl) ;

SEE ALSO

simple JockO, simple Jock _initO, simple _ unlockO, lock _ allocO, lock _free °

5-34 Chapter 5: C Functions

simple lock initO - -

SUMMARY

SYNOPSIS

Initialize a simple lock

void simple_lock _init(simple_lock_t lock)

ARGUMENTS

lock: A pointer to the simple lock to be initialized.

DESCRIPTION

Use this routine to initialize a new simple lock. You should use simple_lock_allocO
to create the lock.

EXAMPLE

simple_lock t slock;

slock = simple lock_alloc();
simple_lock_init(slock);

/* . . . * /
simple_lock_free(lockl);

SEE ALSO

simple _lockO, simple Jock _allocO, simple_lock _freeO, simple _ unlockO,
lock_initO

simple _ unlockO

SUMMARY Release a simple lock

SYNOPSIS

void simple _ unlock(simple_lock_t lock)

ARGUMENTS

lock: A pointer to the simple lock to be released.

spinO

EXAMPLE

slock = simple_lock_alloc();

simple_lock_init(slock);

1* * 1

1* Set a lock before manipulating a data structure *1
simple_lock(slock);

mydriver->datal = VALUE;
simple_unlock(slock);

1* . . . *1
simple_lock_free(lockl);

SEE ALSO

simple JockO, simple Jock _ allocO, simple Jock JreeO, simple Jock _initO,
lock_don eO

SUMMARY Set the CPU interrupt level to n

SYNOPSIS

int splOO, spllO, sp120, sp130, sp140, splSO, sp160, spl70

DESCRIPTION

The spinO macros set the hardware interrupt level of the CPU to level n. This means
that devices whose hardware interrupt level is greater than n will be serviced
immediately on an interrupt. Devices with interrupt levels equal to or less than n will
not be serviced until the CPU interrupt level drops below the device interrupt level.

Because the NMI and power fail interrupts are always serviced, spl60 has the same
effect as spl70 on NeXT computers. splOO sets the CPU interrupt level to the lowest
level, enabling all interrupts. The table below shows the interrupts that occur at each
hardware interrupt level.

The spinO routines return an integer suitable for use with the splxO routine to reset the
CPU interrupt level.

5-36 Chapter 5: C Functions

Interrupt Level

7

6

5

4

3

2

1

EXAMPLE

Interrupts at This Level

NMI (non-maskable interrupt) key sequence
Power fail interrupt (non-maskable)

System timer timeout interrupt
All DMA completion interrupts (except video out)

RS-422 (serial) device interrupt
NeXTbus interrupts

DSP device interrupt

Disk device interrupt
SCSI device interrupt
Laser printer device interrupt
Ethernet transmit/receive device interrupts (not DMA)
Sound out underrun or sound in overrun
Video out DMA completion interrupt
Monitor control interrupt
Keyboard/mouse event
Power on switch
Network device interrupts

Network-related software interrupts
Software interrupt 1

Software clock interrupts (timeouts)
Software interrupt 0

#define spl_NB() spI5() 1* NeXTbus interrupt level *1
int s;

1* Lock out all NeXTbus interrupts. *1
1* Do something that requires that we not be interrupted. *1
splx(s); 1* Return to the previous interrupt level *1

SEE ALSO

curiplO, splxO

spinO 5-37

splxO

SUMMARY Reset the CPU interrupt level

SYNOPSIS

splx(int priority)

ARGUMENTS

priority: The value returned from the previous call to spinO.

DESCRIPTION

This macro returns the hardware priority interrupt: level to the level that it was before
issuing the last spinO command. You must set priority to the value returned from the
previous call to spinO; setting it to anything else doesn't work.

EXAMPLE

#define spl_NB() spI5() /* NeXTbus interrupt level */

int s;

/* Lock out all NeXTbus interrupts. */

/* Do something that requires that we not be interrupted. */
splx(s); /* Return to the previous interrupt level */

SEE ALSO

curiplO, spinO

sprintfO

SUMMARY Put characters into a string

SYNOPSIS

int sprintf(char *string, char *format [, argl, ... J)

ARGUMENTS

string: The string that you want to put the characters in.

format: The format string. It's just like the C library printfO routine's format string,
except that only %s, %c, %x (==%X), %d (==%D==%u), and %0 (==%0) are
recognized.

arg 1, ... : Arguments to be formatted according to the format string.

5-38 Chapter 5: C Functions

DESCRIPTION

This works like the C library routine sprintfO, except that it handles only the formats
allowed by the kernel printfO routine.

SEE ALSO

printfO, strcatO, strcpyO

strcatO

SUMMARY

SYNOPSIS

Concatenate two strings

char *strcat(char *stringl, char *string2)

ARGUMENTS

stringl: The string to add the second string to. It must have enough space for string2
plus a null character.

string2: The string to copy to the end of stringl.

DESCRIPTION

This acts the same as the strcatO C library function. It returns a pointer to stringl.

SEE ALSO

sprintfO, strcpyO, strlenO

strcmpO

SUMMARY

SYNOPSIS

Compare two strings

int strcmp(char *stringl, char *string2)

ARGUMENTS

stringl: The string to be compared to string2.

string2: The string being compared against.

strcat() 5-39

DESCRIPTION

This acts the same as the strcmpO C library function. It returns an integer greater than,
equal to, or less than 0, depending on whether string1 is lexicographically greater than,
equal to, or less than string2.

SEE ALSO

strlenO

strcpyO

SUMMARY

SYNOPSIS

Copy one string to another

char *strcpy(char *to, char *from)

ARGUMENTS

to: The string to copy from to. It must have enough space to hold all offrom, including
the null character.

from: The string to copy to to.

DESCRIPTION

This acts the same as the strcpyO C library function. It returns a pointer to to.

SEE ALSO

sprintfO, strcatO, strlenO

strlenO

SUMMARY Get the length of a string

SYNOPSIS

int strlen(char *string)

ARGUMENTS

string: The string you want the length of.

DESCRIPTION

This acts the same as the strlenO C library function. It returns the number of non-null
characters in string.

5-40 Chapter 5: C Functions

SEE ALSO

strcmpO

suserO

SUMMARY

SYNOPSIS

int suserO

DESCRIPTION

Check whether the user is the superuser

This routine is valid only for UNIX-style servers because message-based servers don't
have access to user process information. If the user is the superuser, this returns 1 and
sets a flag bit indicating that the process has used superuser privileges. Otherwise, it
returns 0 and sets u.u error to EPERM.

thread _ blockO

SUMMARY

SYNOPSIS

Put the current thread to sleep.

void thread _ blockO

DESCRIPTION

This routine blocks the current thread from execution. You must call assert_waitO
before calling thread_blockO. This thread can be waked up by a timeout (set using
thread_set _ timeoutO), by a call to clear _ waitO, or by a call to thread _ wakeupO.

EXAMPLE

extern hz;

splx (s) ;
assert_wait (0, FALSE);

thread_set_timeout(hz/2);

thread_block () ;

SEE ALSO

assert_waitO, clear_waitO, thread_set_timeoutO, thread_wakeupO

suser() 5-41

thread_halt _ self 0

SUMMARY

SYNOPSIS

Stop the current thread

void thread_halt _ self 0

DESCRIPTION

This makes the current thread stop running. You must first call thread _ terminateO on
the current thread.

EXAMPLE

thread_terminate((thread_t)thread_self()) ;

threa,d_halt_self () ;

SEE ALSO

thread _ terminateO

thread_set _ timeoutO

SUMMARY

SYNOPSIS

Set a timer before calling thread _ blockO

void thread_set_timeout(int ticks)

ARGUMENTS

ticks: The number of ticks to wait for. n*hz = n seconds' worth of ticks.

DESCRIPTION

This routine sets a timer for the current thread. If you use it, you must call it between
assert_waitO and thread_blockO. Use the external variable hz (ticks per second) to
convert from seconds into ticks. The thread will be waked up in ticks/hz seconds with
a value of THREAD_TIMED_OUT as its wait result (obtained by calling
thread _ waitJesult()).

5-42 Chapter 5: C Functions

EXAMPLE

splx (s) ;

assert_wait (0, FALSE);

thread_set_timeout(hz*2);

thread_block();

SEE ALSO

thread _ blockO, thread_wait JesultO, us _ timeoutO, us _ abs _ timeoutO

thread sleepO

SUMMARY Sleep until the specified event occurs

SYNOPSIS

void thread_sleep(int event, simple_lock_t lock, boolean_t interruptible)

ARGUMENTS

event: The event to wait for. This should be a unique integer, such as the address of a
buffer.

lock: The simple lock to unlock before calling thread_blockO.

interruptible: Used by clear _ waitO. If interruptible is false and the interrupt_only
argument to a later call to clear waitO is true, then this thread won't be waked up
by that call to clear _ waitO.

DESCRIPTION

This is a convenient way to sleep without manually calling assert _ waitO. This routine
causes the current thread to wait until the specified event occurs. The specified lock is
unlocked before releasing the CPU.

This routine is equivalent to:

assert_wait (event, interruptible);

simple_unlock(lock);

thread_block();

/* assert event */

/* release the lock */

/* block ourselves */

thread_sleep() 5-43

EXAMPLE

extern void thread_wakeup();

struct timeval tv = {I, OJ;

s = splmine();

simple_lock(data.slock);

if (SOME_CONDITION) {

/* wait */

us_timeout (thread_wakeup, (int)&data, &tv,

CALLOUT_PRI_SOFTINTO);
thread_sleep((int)&data, data.slock, TRUE);

simple_unlock(data.slock);

splx(s);

SEE ALSO

assert_waitO, simple_unlockO, thread_blockO, thread_wakeupO

thread_wait _ resultO

SUMMARY

SYNOPSIS

Get the wait result of the current thread

#import <mach _ types.h>
#import <kernlsched _prim.h>

int thread_wait JesultO

DESCRIPTION

A thread that wakes up for any reason has a result in its thread structure;
thread_wait JesultO returns this result. Possible return values are defined in the
header file kern/sched_prim.h as THREAD_AWAKENED,
THREAD_TIMED_OUT, THREAD_INTERRUPTED,
THREAD_SHOVLD_TERMINATE, and THREAD_RESTART.

EXAMPLE

assert_wait (&data, FALSE);

thread_block();

printf("Wait result: %d\n",

thread_wait_result());

SEE ALSO

thread _set_timeoutO, thread _ wakeupO

5-44 Chapter 5: C Functions

thread _ wakeupO

SUMMARY Wake up all threads that are waiting for the specified event

SYNOPSIS

void thread wakeup(int event)

ARGUMENTS

event: The event that was specified in the matching assert _ waitO or thread _ sleepO
call.

DESCRIPTION

The threads that this macro wakes up have THREAD_AWAKENED in their wait result
(obtainable by calling thread_ waitJesult()).

Warning: This function must be called at an interrupt level of IPLSCHED or below. You can use
curiplO to determine what the interrupt level is.

EXAMPLE

extern void thread_wakeup();
struct timeval tv = {I, OJ; /* I-second timeout */

s = splmine();

simple_lock (data.slock) ;
if (SOME_CONDITION) {

/* wait */

us_timeout (thread_wakeup, (int)&data, &tv,

CALLOUT_PRI_SOFTINTO);

thread_sleep((int)&data, data.slock, TRUE);

simple_unlock(data.slock);

splx(s);

In an interrupt handler for a NeXTbus driver:

if ((sp->flags & SERVER_THREAD_PAUSED) != 0)

kern_serv_callout(&instance, thread_wakeup,
(void *)&sp->server_thread);

SEE ALSO

assert _ waitO, thread _ sleepO

thread _ wakeup() 5 -45

uninstall yolled JntrO

SUMMARY

SYNOPSIS

Remove an interrupt handler for a polled device

#import <next/cpu.h>
#import <next/autoconf.h>

int uninstall_polled Jntr(int which, int (*my _intr)())

ARGUMENTS

which: Specifies the device and interrupt level. For devices attached through the
NeXTbus interface, this should be the constant CBUS.

my _intr: The routine in your server that handles this interrupt.

DESCRIPTION

This function removes my _intr from the list of functions that are called when an
interrupt occurs at interrupt level which.

This routine returns 0 if the call is successful. It returns -1 if the interrupt level
specified by which isn't capable of interrupt polling, or if my _intr isn't found.

EXAMPLE

device_cleanup ()

/* ... */

uninstall_polled_intr(I_BUS, device_interrupt);

/* . . . * /

SEE ALSO

install_polled JntrO

us _ abstimeoutO

SUMMARY

SYNOPSIS

Start a microsecond-accurate timeout in absolute time

#import <sys/time.h>
#import <sys/callout.h>

void us_abstimeout(int (*junction)O, vm_address_t arg, struct timeval *tvp, int
priority)

5-46 Chapter 5: C Functions

ARGUMENTS

function: The function to be called.

arg: A single argument that will be passed to function.

tvp: Pointer to a timeval structure containing the time, in seconds and microseconds
relative to system boot time, when function is to be called.

priority: Priority thatfunction is executed at. This should almost always be the value
CALLOUT _PRCSOFTINTO. Other values may not be supported by future
releases.

DESCRIPTION

This routine is used to schedule the execution of a function at a specific time in the
future. A single argument may be specified to be passed to the function when it's
called. The execution time is specified relative to the system boot time. Although the
timeval structure allows microsecond resolution to be specified, the time is rounded up
to the system clock tick interval so that multiple requests will be batched together (thus
reducing overhead).

In any event, it's unrealistic to expect microsecond execution accuracy, because of the
interference from interrupt latency: The priority argument specifies how the function
will be executed. The value CALLOUT _PRCSOFfINTO means that the routine will
be run from a software interrupt rather than at the interrupt level of the system clock.
This prevents the function from delaying interrupts at or below the system clock level.
The function will be executed only once per call to us_abstimeoutO.

Use us _ untimeoutO to unschedule the execution of the function before it has been run.

EXAMPLE

hour after_boot (void *arg);

printf("%s", arg);

/* schedule execution one hour after boot */
struct timeval tv;

tv. tv_sec = 1*60*60;

tv.tv_usec = 0;

us_abstimeout(hour_after_boot, "arg", &tv, CALLOUT_PRI_SOFTINTO);

SEE ALSO

us_timeoutO, us_untimeoutO, microtimeO, microbootO, DELAYO

us _ abstimeout() 5-47

us _ timeoutO

SUMMARY

SYNOPSIS

Start a microsecond-accurate timeout

#import <sys/time.h>
#import <sys/callout.h>

void us_timeout(int (*junction)O, vm_address_t arg, struct timeval *tvp, int priority)

ARGUMENTS

junction: The function to be called.

arg: A single argument that will be passed to function.

tvp: Pointer to a timeval structure containing the time, in seconds and microseconds,
from the time us _ timeoutO is called to the time junction is to be called.

priority: Priority that the function is executed at. This should almost always be the
value CALLOUT_PRCSOFTINTO. Other values might not be supported by
future releases.

DESCRIPTION

Use this routine to schedule the execution of a function at a specific time in the future.
A single argument may be specified to be passed to the function when it's called. The
execution time is specified relative to the current time. Although the timeval structure
allows microsecond resolution to be specified, the time is rounded up to the system
clock tick interval so that multiple requests will be batched together (thus reducing
overhead).

In any event, it's unrealistic to expect microsecond execution accuracy, because of the
interference from interrupt latency. The priority argument specifies how the function
will be executed. The value CALLOUT_PRCSOFTINTO means that the routine will
be run from a software interrupt rather than at the interrupt level of the system clock.
This prevents the function from delaying interrupts at or below the system clock level.
The function will be executed only once per call to us_timeoutO.

Use us _ untimeoutO to unschedule the execution of the function before it has been run.

5-48 Chapter 5: C Functions

EXAMPLE

void every second (void *arg);

struct timeval tv;

printf ("arg = %d\n", (int) arg);

/* Reschedule execution for one second from now. */

tv. tv_sec = 1;

tv.tv_usec = 0;
us_timeout (every second, (int) arg + 1, &tv, CALLOUT_PRI SOFTINTO);

/* Schedule initial execution in one second. */

struct timeval tv = (1, OJ;

us_timeout (every_second, 0, &tv, CALLOUT PRI SOFTINTO);

SEE ALSO

US abstimeoutO, us_untimeoutO, microtimeO, microbootO, DELAYO

us _ untimeoutO

SUMMARY Unschedule a timeout

SYNOPSIS

#import <sys/callout.h>

boolean_t us_untimeout(int (*junction)O, vm_address_t arg)

ARGUMENTS

junction: The function that was to be called.

arg: A single argument that was to be passed to the function.

DESCRIPTION

This routine is used to unschedule a call to a function previously arranged by
us timeoutO or us abstimeoutO. Only one instance of the junction, arg pair is - -
removed, so it may be necessary to call us untimeoutO multiple times. The routine
has no effect if the junction, arg pair, isn't found or if the function is already being
executed. us _ untimeoutO returns true if the timeout was found and unscheduled,
otherwise it returns false.

us _ untimeout() 5 -49

EXAMPLE

hour after boot (void *arg);

/* schedule execution one hour after boot */
struct timeval tv;

tv.tv_sec = 1*60*60;
tv.tv_usec = 0;
us abstimeout(hour after_boot, "arg" , &tv, CALLOUT_PRI SOFTINTO);

if (WE CHANGED_OUR_MIND)
us untimeout(hour after_boot, "arg");

SEE ALSO

us_timeoutO, us_abstimeoutO, microtimeO, microbootO, DELAYO

5-50 Chapter 5: C Functions

Network Functions

htonlO, htonsO, ntohlO, ntohsO

SUMMARY

SYNOPSIS

Convert values between host and network byte order

#include <netinet/in.h>

u_Iong htonl(u_long hostlong)
u_short htons(u_short hostshort)
u_Iong ntohl(u_long netlong)
u_short ntohs(u_short netshort)

DESCRIPTION

These functions and macros simulate the C library functions of the same name. See the
UNIX manual page for byteorder for more information.

if_attachO

SUMMARY

SYNOPSIS

Initialize and install a new netif

#include <net/netif.h>

netiCt iCattach(iCinitjunc_t initJune, iCinpucfunc_t inputJune,
iCoutputjunc_t outputJunc, iCgetbuCfunc_t getbufJune,
iCcontroljunc_t eontrolJune, const char *name, unsigned int unit,
const char *type, unsigned int mtu, unsigned intflags, netiCc1ass_t class,
void *private)

ARGUMENTS

init June: This module's initialization function.

inputJune: This module's input function.

outputJune: This module's output function.

getbufJune: This module's buffer allocation function.

eontrolJune: This module's control function.

name: A constant string that names module (for example,"en").

unit: The unit number of this module (for example, 0).

type: A constant string that describes the type of this module (for example, "10MB
Ethernet").

if_attachO 5-51

mtu: The maximum transfer unit (for example, 1500 for Ethernet). This is the
maximum amount of data your module can send or receive. Note that
protocol-level modules must return the minimum of either the protocol limit or the
network device driver's limit (minus header information).

flags: Initial flags for the interface. Possible values are:
IFF_UP: If true, this interface is working
IFF_BROADCAST: If true, this interface supports broadcast
IFF _LOOPBACK: If true, this interface is local only
IFF _POINTTOPOINT: If true, this is a point-to-point interface

class: The class of this interface. Possible values are:

NETIFCLASS_REAL: Network driver
NETIFCLASS_ VIRTUAL: Protocol handler
NETIFCLASS_SNIFFER: Packet sniffer

private: Private data, which can be retrieved using if _privateO.

DESCRIPTION

Initializes a new netif and installs it, returning the resulting netif. Network device
drivers should call this directly, but protocol handlers and packet sniffers should go
indirectly through the if _ registervirtualO function.

The first five arguments are the functions that are associated with netifs. These
functions are described in Chapter 4, "Network-Related Kernel Servers."

This function doesn't check any of its arguments, so it always succeeds.

EXAMPLE

ifp = if_attach(NULL, myhandler_input, myhandler_output,
myhandler_getbuf, myhandler_control, name, unit, IFTYPE IP,

MYMTU, IFF_BROADCAST, NETIFCLASS_VIRTUAL, ifprivate);

SEE ALSO

if_flagsO, if_outputO, if_initO, if_controIO, if_ioctlO, if_getbufO,
if_handle _ inputO

5-52 Chapter 5: C Functions

SUMMARY Get or set the number of collisions

SYNOPSIS

#include <net/netif.h>

unsigned int if _ collisions(netiCt netif)
void if_collisions _ set(netiCt netif, unsigned int collisions)

ARGUMENTS

netif: The module to get or set collision data for.

collisions: The new number of collisions.

DESCRIPTION

if _ collisionsO gets and if_collisions _ setO sets the number of collisions encountered.
Only the module corresponding to netifshould call if_collisions_setO.

EXAMPLE

printf("Number of collisions encountered so far: %d\n",
if_collisions(netif));

if controlO, if getbufO, if initO, if ioctlO, if outputO - - - - -

SUMMARY

SYNOPSIS

Call one of the functions associated with a netif

#include <net/netif.h>

int if_control(netiCt netif, const char *command, void *data)
netbuCt if _getbuf(netiCt netif)
int if_init(netiCt netif)
int if_ioctl(netiCt netif, unsigned int command, void *data)
int if_output(netiCt netif, netbuCt packet, void *address)

ARGUMENTS

netif: The module whose routine should be called.

packet: The packet to be output.

address: The address to be specified in the call to netif's output function.

command: The control command to be executed.

data: Data specific to the control command.

iLcollisions() 5-53

DESCRIPTION

if _ eontrolO calls netif's control routine, if _getbufO calls netif's buffer allocation
routine, if _initO calls netif's initialization routine, and if _ outputO calls netif's output
routine.

We recommend that you don't use if_ioetIO; it's provided only for compatibility with
UNIX code that operates using ioetl. if ioetlO calls netif's control routine.

Except for if _getbufO, these functions return ENXIO if the corresponding function
isn't implemented in netif; otherwise they return the value returned by the call to the
corresponding function. if _getbufO returns NULL if the corresponding function isn't
implemented.

EXAMPLE

nb = if_getbuf(ifp)i
if (nb == NULL)

return ENOBUFSi

SEE ALSO

if_attaehO

SUMMARY

SYNOPSIS

Get or set the flags associated with a netif

#include <net/netif.h>

unsigned int if _ flags(netiCt netif)
void if flags set(netiCt netif, unsigned intflags) - -

ARGUMENTS

netif: The module to get or set flags for.

flags: The new flags.

DESCRIPTION

if_flagsO gets and if_flags_setO sets the flags associated with netif. Only the module
corresponding to netif should use if_flags _ setO.

5-54 Chapter 5: C Functions

Possible flag values are:

IFF_UP: If true, this interface is working
IFF_BROADCAST:
IFF _LOOPBACK:

If true, this interface supports broadcast
If true, this interface is local only

IFF _POINTTOPOINT: If true, this is a point-to-point interface

EXAMPLE

if_flags set(ifp, if_flags (ifp)

SEE ALSO

if_attach 0

if_handle _ inputO

SUMMARY

SYNOPSIS

Dispatch an input packet to a protocol handler

#include <net/netif.h>

int if_handle _input(netiCt netif, netbuCt packet, void *extra)

ARGUMENTS

netif: This module, which must be a network device driver.

packet: The input packet.

extra: Any extra data that might be needed by the protocol handler.

DESCRIPTION

Call this in a network device driver to have an input packet dispatched to a protocol
handler. This routine calls one or more protocol handlers' input routines, passing along
the packet and extra arguments.

This function returns EAFNOSUPPORT if no protocol handler accepts the packet.

EXAMPLE

if (nb == 0) {
printf ("Error: buffer is null\n");
goto resetup;

else {
if_handle_input(netif, nb, NULL);

if_handle _input() 5 -55

if _ierrorsO, if Jerrors _setO, if _ oerrorsO, if _ oerrors _setO

SUMMARY Get or set the number of input or output errors

SYNOPSIS

#include <net/netif.h>

unsigned int if ierrors(netiCt netij)
void if}errors_set(netiCt netif, unsigned int ierrors)
unsigned int if _ oerrors(netiCt netij)
void if oerrors set(netiCt netif, unsigned int oerrors) - -

ARGUMENTS

netif: The module for which to access the number of errors.

ierrors: The number of input errors.

oerrors: The number of output errors.

DESCRIPTION

if _ ierrorsO gets and if _ ierrors _ setO sets the number of input errors encountered.
Only the module corresponding to netifshould call ifjerrors_setO.

if _ oerrorsO and if _ oerrors _ setO get and set the number of output errors encountered.
Again, only the netirs module should call if _ oerrors _ setO.

EXAMPLE

error = if_output (lowernetif, nb, (void *)addr);

if (error == 0)
if_opackets_set(netif, if_opackets(netif) + 1);

else

if_oerrors_set(netif, if_oerrors(netif) + 1);

return (error);

if ipacketsO, if ipackets setO, if opacketsO, if opackets setO - - - - - -

SUMMARY Get or set the number of packets received or sent

SYNOPSIS

#include <net/netif.h>

unsigned int if ipackets(netiCt netij)
void if}packets_set(netiCt netif, unsigned int ipackets)
unsigned int if _ opackets(netiCt netij)
void if opackets set(netiCt netif, unsigned int opackets) - -

5-56 Chapter 5: C Functions

ARGUMENTS

netif: The module whose packet information is to be accessed.

ipackets: The number of input packets handled by this module since it was loaded.

opackets: The number of packets sent to a lower level by this module since it was
loaded.

DESCRIPTION

if_ipacketsO gets and if_ipackets_setO sets the number of input packets handled.
Only the module specified by netifshould call if_ipackets_setO.

Similary, if _ opacketsO gets and if _ opackets _setO sets the number of output packets
sent. Only netif's module should call if_opackets_setO.

EXAMPLE

error = if_output (lowernetif, nb, (void *) addr);
if (error == 0) {

if_opackets_set(netif, if_opackets(netif) + 1);

else {

if_oerrors_set(netif, if_oerrors(netif) + 1);

return (error);

if _ mtuO, if _ nameO, if yrivateO, if _ typeO, if _unit °
SUMMARY Get information about a netif

SYNOPSIS

#include <net/netif.h>

unsigned int if _ mtu(netiCt netif)
const char *if name(netiCt netif)
void *if private(netiCt netif)
const char *if _ type(netiCt netif)
unsigned int if _ unit(netiCt netif)

ARGUMENTS

netif: The netif whose data is being requested.

iLmtu() 5-57

DESCRIPTION

These functions return the following information about netif:

if_mtuO:
if_nameO:
if j>rivateO:
if typeO:
if_unitO:

Its maximum transfer unit (for example, 1500 for Ethernet)
Its name (for example,"en")
Its private data
Its type string (for example, "10MB Ethernet")
Its unit number (for example, 0)

See Chapter 4 for more information on the information that's associated with a netif.
Only the module specified by netifshould call if_privateO.

EXAMPLE

((venip_private t *)if_private(netif»->lowernetif realnetif;

SEE ALSO

if _ flagsO, if_flags _setO, if _ attachO

if _registervirtualO

SUMMARY

SYNOPSIS

Register a callback function

#include <net/netif.h>

void ifJegistervirtual(iCattachjunc_t attachJunc, void *private)

ARGUMENTS

attach Junc: The callback function.

private: Data to be passed to the callback function.

DESCRIPTION

For use by protocol handlers and packet sniffers. This function registers a callback
function and data to be passed to it. See Chapter 4 for more information on
implementing a callback function.

EXAMPLE

if_registervirtual(myhandler_attach, NULL);

5-58 Chapter 5: C Functions

iDet _ queueO

SUMMARY Give an IP input packet to the kernel for processing

SYNOPSIS

#include <net/netif.h>
#include <net/netbuf.h>

void inet queue(netiCt netij, netbuCt netbuj)

ARGUMENTS

netif: The protocol handler.

netbuf: The packet to hand over.

DESCRIPTION

IP protocol handlers wishing to hand over their input packets to the kernel for
processing should call this function.

You can safely call this function from an interrupt handler, since it doesn't block.

EXAMPLE

nb shrink top (netbuf, HDRSIZE);

if_ipackets_set(netif, if_ipackets(netif) + 1);

inet_queue(netif, netbuf);

Db _ allocO, Db _ alloc _ wrapperO

SUMMARY Allocate a netbuf or a netbuf wrapper

SYNOPSIS

#include <net/netbuf.h>

netbuCt nb_alloc(unsigned int size)
netbuCt nb alloc wrapper(void *data, unsigned int size, voidfreefunc(void *), void - -

*freefunc _ arg)

ARGUMENTS

size: The size of the data to be stored.

data: The data to be stored.

freefunc: The function to be called when the netbuf is freed.

freefunc _ arg: The argument to be passed to freefunc.

inet3ueue() 5-59

DESCRIPTION

nb _ aliocO allocates a netbuf containing size bytes. It returns the netbuf.

nb _ alloc _ wrapperO allocates only a wrapper for a netbuf. Use this function when you
have already allocated space for the packet. The returned netbuf's original start of data
is data, and its bottom pointer is initialized to data + size -1. If nb _freeO is called on
the returned netbuf, freefunc will be called with the parameter freefunc _ arg. freefunc
can't be null.

Note: Don't call either nb _ aliocO or nb _ alloc _ wrapperO from an interrupt handler.
(Both functions can sleep.)

nb _ aliocO and nb _ alloc _ wrapperO return a null pointer if they fail.

EXAMPLE

nb = nb_alloc_wrapper((void *)buf, HDR_SIZE + MYMTU,

mydriver_buf_put, (void *)buf);

SEE ALSO

nb _freeO, nb _free _ wrapperO

nb _freeO, nb _free _ wrapperO

SUMMARY

SYNOPSIS

Free a netbuf or only its wrapper

#include <net/netbuf.h>

void nb free(netbuf t nb) - -
void nb_free_wrapper(netbuCt nb)

ARGUMENTS

nb: The netbuf to be freed (or whose wrapper is to be freed).

DESCRIPTION

nb_freeO frees the netbuf nb. nb_free_wrapperO frees only the wrapper of nb,
leaving its data area intact.

EXAMPLE

nb free_wrapper(nb);

5-60 Chapter 5: C Functions

SEE ALSO

nb _ allocO, nb _ alloc _ wrapperO

nb _grow _ botO, nb _shrink _ botO, nb _grow _ topO, nb _shrink _ topO

SUMMARY Change the size of a netbuf

SYNOPSIS

#include <netlnetbuf.h>

int nb_grow_bot(netbuCt nb, unsigned int size)
int nb shrink bot(netbuCt nb, unsigned int size) - -
int nb_grow_top(netbuCt nb, unsigned int size)
int nb_shrink_top(netbuCt nb, unsigned int size)

ARGUMENTS

nb: The netbuf to be affected.

size: The number of bytes to add or delete from the top or bottom pointer.

DESCRIPTION

nb _grow _ botO moves the bottom pointer down. After this call, the data is assumed to
end size bytes after where it used to end (the data area has effectively grown).

nb shrink botO moves the bottom pointer up, effectively shrinking the data area. - -
After this call, the data is assumed to end size bytes before where it used to end.

nb _grow _ topO moves the top pointer up, enlarging the data area. After this call, the
data is assumed to start size bytes before where it used to start.

nb shrink topO moves the top pointer down, shrinking the data area. After this call, - -
the data is assumed to start size bytes beyond where it used to start.

These functions perform no error checking, so they always succeed and return zero.

Warning: Writing to space outside of the original starting and ending points will cause serious
errors, since the extra memory doesn't belong to the netbuf's data section.

EXAMPLE

nb_shrink_top(netbuf, HDRSIZE);
if_ipackets_set(netif, if_ipackets(netif) + 1);
inet_queue(netif, netbuf);

SEE ALSO

nb_sizeO

nb mapO

SUMMARY Get a pointer to the data stored in a netbuf

SYNOPSIS

#include <net/netbuf.h>

char *nb _ map(netbuCt nb)

ARGUMENTS

nb: The netbuf whose data we want.

DESCRIPTION

Returns a pointer to the data stored in nb. The pointer is valid only until another nb _ *0
routine is called on nb.

This function returns a null pointer if it fails.

EXAMPLE

char *map nb_map(nb);

SEE ALSO

nbJeadO, nb_writeO, nb_sizeO

nb_readO, nb_writeO

SUMMARY

SYNOPSIS

Access data in a netbuf

#include <net/netbuf.h>

int nb Jead(netbuCt nb, unsigned int offset, unsigned int size, void *target)
int nb_write(netbuCt nb, unsigned int offset, unsigned int size, void *source)

ARGUMENTS

nb: The netbuf whose data we want to read or write.

offset: The offset of the start of data from the beginning of the netbuf.

size: The number of bytes to be read or written.

target: The place to put the data.

source: The place to read the data from.

5-62 Chapter 5: C Functions

DESCRIPTION

nb readO reads data from nb into target. It starts at offset offset from the starting point
in the data and reads size bytes into target.

nb writeO writes data into nb. It starts writing at offset offset from the starting point
in the data and writes size bytes from source.

nb _ readO and nb _ writeO return zero if the call was successful; otherwise, they return
a nonzero value.

EXAMPLE

char buf[MAXTRAILERBUF];

/*
* Save copy of data.
*/

nb_read(nb, HDRSIZE, offset, &buf);

SEE ALSO

nb mapO

nb_sizeO

SUMMARY Get the size of the data stored in a netbuf

SYNOPSIS

#include <net/netbuf.h>

unsigned int nb_size(netbuCt nb)

ARGUMENTS

nb: The netbuf to get the size of.

DESCRIPTION

Returns the size (in bytes) of the data stored by nb.

EXAMPLE

if (HDRSIZE + offset + size> nb_size(nb))
return (EAFNOSUPPORT);

SEE ALSO

nb_grow_botO, nb_shrink_botO, nb_grow_topO, nb_shrink_topO, nb_mapO

5-64

Appendix A
The Kernel-Server Loader

The kernel-server loader kern loader is the server task that adds loadable kernel servers to
the kernel. kernJoader works by listening to the ports of known loadable kernel servers.
When it intercepts a request for a loadable kernel server, it loads the server and initializes
it to respond to this request and subsequent requests.

kern _loader also listens on its own port for requests made through Mach functions called
kernel-server loader functions. These functions can be used to add and delete known
servers, to load servers into the kernel and unload running servers from the kernel, and to
get status information. You can use kl_util to communicate with kernJoader (see
Appendix B, "The Kernel-Server Utility"), or you can write your own program using the
kernel-server loader functions. These functions are documented in the Operating System
Software manual.

When invoked, kern_loader reads its configuration file, lete/kern_loader.eonf. This file
contains a list of relocatable object files, one for each kernel server that is to be prepared for
loading into the kernel. Here's a sample kernJoader.eonffile:

/usr/lib/kern_loader/Midi/midi_reloc
/usr/lib/kern_loader/NextDimension/NextDimension_reloc

Starting kern_loader

The kern Joader daemon is called automatically during system startup. If it's killed, you
can't normally restart it because the Bootstrap Server won't let any process except
mach _init register the "servecloader" service. However, if you change a couple of lines
in the Bootstrap Server's configuration file and then reboot, the Bootstrap Server will let
you reinvoke kern_loader. Specifically, you should change the following lines in
lete/bootstrap.eonf:

services NetMessage;

server "/usr/etc/kern_loader -n" services server_loader;

to the following:

services NetMessage server_loader;

server "/usr/etc/kern_loader -n";

Starting kern_loader A-J

After you make that change to /etc/bootstrap.conf and reboot, you can reinvoke
kern Joader at any time, as follows:

/usr/etc/kern _loader [-d] [-n] [-v] [relocatable ...]

The command-line options are:

-d

-n

-v

relocatable ."

Don't detach from the invoking terminal; stay in the foreground.

Don't fork another process to be kern_loader. This is necessary in
the Bootstrap Server's configuration file because the Bootstrap
Server keeps track of all its servers.

Display debugging information.

The name of one or more relocatable object files to be read (before
those listed in /etc/kern _loader.conf').

Creating the Relocatable Object File

Your server's relocatable object file must contain certain information: the name of your
server, which routines to call to initialize the server, the names of message handling
routines, the name of your server's instance variable, and so on. You put this information
into the relocatable object file by using kl_ld to link your server.

The syntax for using kl Jd follows:

klJd -n server_name -i instance _var -I load Jmds Jile [-u unload _ cmds Jile]
[-d loadable _ name] -0 output Jile input Jile ...

where:

-n server name

-i instance var

Specifies the name ofthe kernel server. This name is used in calls to
the kernel-server loader functions (such as
kernJoader_load_server()) and in the kl_util and kl_log
command lines.

Specifies the name of the kernel server's instance variable. This
variable's structure must start with a field of type kern_server_t
(defined in the header file kernserv/kern_ server _ types.h).

A-2 AppendixA: The Kernel-Server Loader

-I load _ cmds ..file Specifies the name of the script that contains commands that
kern Joader must execute when it loads your server. This file is
read into the relocatable object file when you create it. If you want
to change the load commands, you must recreate the relocatable
object file.

-u unload _ cmds ..file Specifies the name of the script that contains commands that
kern Joader must execute when it unloads your server. Like load
commands, unload commands are read into the relocatable object
file when you create it. Thus, you must recreate the relocatable
object file if you want to change the unload commands.

-d loadable name Specifies the pathname of the loadable object file that kern_loader
creates from the relocatable object file. This pathname can be either
absolute or relative to the directory containing the relocatable object
file. Use this option to make kern_loader put the loadable object
file in a place where the kernel debugger, KGDB, can easily find and
use it.

-0 output ..file

input ..file ...

Specifies the name of the relocatable object file that is created.
kern Joader wi11later relocate this file against the kernel.

The object files to be linked into the relocatable object file.

The following example shows a makefile that creates a relocatable object file.

Note: On the last line of the command for the "$(NAMELreloc" target, "$@" refers to
"$(NAMELre1oc" .

NAME=slot

OFILES= slot server.o slot handler.o

CFLAGS= -g -DKERNEL -DKERNEL FEATURES -DMACH

$ (NAME) reloc: $ (OFILES) Load_Commands Unload_Commands

.c.o:

kl_ld -n $(NAME) -i instance -1 Load Commands \

-u Unload Commands -0 $@ $ (OFILES)

$(CC) $ (CFLAGS) -c $*.c -0 $*.0

Creating the Relocatable Object File A-3

Command Scripts

The load commands script can have the commands described in this section. The script
must have at least one of the following commands: HMAP, SMAP, or START.

ADVERTISE

CALL

HMAP

Specifies the name of a port that is to be allocated and advertised with
the Network Name Server. When kernJoader receives messages on
any advertised port, the kernel server will be loaded into the kernel and
initialized. As part of the initialization sequence, receive rights for the
advertised port are forwarded to the kernel server. The message will then
be forwarded by kern Joader to the loaded kernel server.

Syntax: ADVERTISE port

Specifies the name of a function to be called with the specified integer
argument as part of the server initialization sequence. If the script has
mUltiple CALL commands, they'll be executed in order.

Syntax: CALL function integer

Specifies the mapping of a port to a message handling routine in the
kernel server. When kern_loader receives a message on this port, it
calls the routine with the integer argument you specify. This routine
must have a handler interface, as opposed to a server interface (see
Chapter 2, "Designing Kernel Servers"). To advertise this port with the
Network Name Server, use the ADVERTISE command, above.

Syntax: HMAP port_name handler Joutine integer

PORT_DEATH Specifies a function in the kernel server to be called when a port death
message is received on its behalf.

SMAP

START

Syntax: PORT_DEATH function_name

Specifies the mapping of a port to a message handling routine within the
kernel server. When kern Joader receives a message on this port, it
calls the routine with the integer argument you specify. This routine
must have a server interface, as opposed to a handler interface (see
Chapter 2). To advertise this port with the Network Name Server, use
the ADVERTISE command, above.

Syntax: SMAP port_name server Joutine integer

Causes the kernel server to be started immediately, rather than waiting
for a message to be received on one of its advertised ports. This is most
appropriate for kernel servers that don't listen on any ports, or are wired
into kernel data structures for non-server-style access.

Syntax: START

A-4 Appendix A: The Kernel-Server Loader

WIRE Causes the text and data of the loaded kernel server to be wired down
(memory-resident), making the kernel server immune from unexpected
page faults. You must use WIRE if any part of your kernel server can be
called from an interrupt handler. If you use WIRE, your kernel server is
wired down before any other load commands are executed.

Syntax: WIRE

Here's an example of a load commands script.

CALL slot init a

PORT DEATH slotyort_death

Associate ports with proc/arg
SMAP slota slot_msg a
SMAP slot2 slot_msg 1

SMAP slot4 slot_msg 2
SMAP slot6 slot_msg 3

Server contains interrupt handler code, and so must be wired down
WIRE

Start this server up immediately
START

The unload commands script can have only CALL commands:

CALL Specifies the name of a function to be called as part of server shutdown.
The function will be passed the specified integer.

Syntax: CALL function integer

Here's an example of an unload commands script.

Termination

CALL slot signoff a

Command Scripts A-5

A-6

Appendix B
The Kernel-Server Utility

The kernel-server utility lusr/etc/kl_utillets you communicate with the kernel-server
loader. Various options allow you to query the kernel loader for the status of all registered
kernel servers, load a kernel server into the kernel, and remove one or more kernel servers
from the kernel.

The command-line options to kl_util are as follows:

-a server Jeloc yle _name ...
Causes kern_loader to allocate resources for the specified kernel server or
servers. Each added server will have kernel space allocated for it and will be
initialized to load at that location when referenced.

-A Causes kern_loader to shut down; all existing kernel servers are unloaded and
deallocated, and the running kern _loader task exits.

-d server name ...
Causes kern _loader to deallocate the specified kernel server or servers; all
physical and virtual resources associated with the kernel server are freed.

-I server name ...
Causes kern_loader to load the specified kernel server or servers into the
kernel. If you don't use this option, loading is normally done either when the
kernel server is allocated (if START is specified in the load commands) or
when it receives its first message.

-L Causes kl_ util not to terminate at the end of its operation, so that further
kern_loader activity can be monitored. As long as kl_ util is running, anything
logged by kern Joader is displayed.

-r Causes kern Joader to deallocate all its servers and set itself up from scratch
by rereading its configuration file. This is similar to specifying the -A option
and then restarting kern _loader, except that kern Joader never actually exits.

The Kernel-Server Utility B-1

-s [server_name ...]
Causes kern Joader to return information about the status of registered kernel
servers. If a server name isn't specified, a list of all known servers is displayed.
If a server name is specified, detailed information about that server is
displayed.

The following example shows the status of the MIDI driver:

/usr/etc/kl_util -s midi
SERVER: midi

RELOCATABLE: /usr/lib/kern_loader/Midi/midi reloc

STATUS: Allocated at address OxlOe3aOOO for Ox8000 bytes

PORTS: midiO(advertised) midil(advertised)

The information returned includes the name of each registered kernel server, a
status of either loaded (indicating that the kernel server is loaded and running
in the kernel) or allocated (indicating that the kernel server space has been
allocated in the kernel, and that the relocatable object file has been relocated at
the allocated address but has not yet been loaded into the kernel). The output
also includes the name of each of the kernel server's ports.

-u server name ...
Causes kern Joader to unload the specified kernel server or servers. (Loaded
kernel servers remain in the kernel until they're explicitly unloaded.)
Unloading the server causes any wired pages to be unwired; thus, this can be
used as a mechanism to free up resources in the system when the server is no
longer needed.

B-2 Appendix B: The Kernel-Server Utility

I:
I

Appendix C
The Kernel-Server Log Command

You can use the kernel-server log command, klJog, to see log messages from a loadable
kernel server. If you wish, you can instead write your own program that calls the
kernJoader_logJevelO and kernJoader_getJogO functions to get log messages.
kern Joader JogJevelO and kern Joader _get JogO are discussed in the Operating
System Software manual.

You must be superuser to call klJog. It has the following syntax:

lusr/etc/kl_log [-I log_level] server_name

where:

server name Specifies the loadable kernel server for which you're getting or setting
log information. This server must be loaded already.

Specifies the priority of messages that should be kept. By default, the
log level is zero, and no log messages are printed. By setting log_level
to a positive value, you ensure that log messages from the server that
have a priority equal to or greater than log_level will be printed to
stdout.

You might use kl_Iog as follows:

slave# k1_1og -1 1 mydriver&

slave# kl_log -1 0 mydriver

slave# jobs

[1] + Running

slave# kill %1

slave#

k1_1og -1 1 mydriver

Before you stop collecting messages from a kernel server, you should shut off logging by
setting its log level to zero. If you don't set the log level to zero, log messages will
accumulate even though no process is collecting the messages.

The Kernel-Server Log Command C-J

C-2

Appendix D
The Kernel Debugger

This appendix describes how to debug your server using the kernel debugger, KGDB.
KGDB is a superset of GDB; it has all the GDB commands, plus a few that are designed
specifically for debugging kernels.

With KGDB, you can debug every function in your server that's called after your server is
loaded. However, you can't debug functions that are called when kern Joader is
initializing your server.

Besides any hardware needed for your server, KGDB also requires:

• Two NeXT computers: the test computer (on which your server will run) and another
computer.

• Either working network connections for both machines or an RS-422 cable to connect
the two computers. If you have a network, then the test computer must have a
legitimate hostname that the other machine can find with NetInfo TM. If you don't have
a network, then you must use the Macintosh®-to-ImageWriter® II cable, null-modem
style DIN-8 to DIN-8 (Businessland® order # 200-66696). Make sure the cable has
identical round interfaces on both ends, and make sure that it's null-modem style (not
straight through).

Warning: If you don't have a network and your computers have different CPU chips (one has a 68030
and the other has a 68040), you must use a custom serial cable. The zs UNIX manual page
describes this cable.

KGDB runs on one computer (the master), debugging the kernel on the test computer (the
slave). Keep in mind that no one can depend on the slave computer working all the time,
since you'll need to reboot it often. For example, you should not use the slave as an NFS®
server. Remember, too, that the operating system for the slave computer will often be
halted, so you should copy any files you might need from the slave onto another computer.

Once you have the hardware, follow these steps to debug your kernel (as described in detail
below):

1. Set up the hardware.
2. Put the appropriate files where KGDB can find them.
3. Start up and initialize KGDB.
4. Debug with KGDB.

The Kernel Debugger D-1

Setting Up the Hardware

Set up the computers as you normally would, connecting them to the network if you have
one. You'll need access to both keyboards, so put the computers close together.

If you're connecting these computers with a serial cable, first make sure there's no gettyO
running on either computer's serial port A. Next, plug the RS-422 cable into serial port A
of both computers.

Once you've set up the hardware, boot both systems. Use the -p option to the boot
command on the slave computer so the Panic window will stay up.

Setting Up the Files

First you must decide how you're going to keep your server files in synch between the
master and slave computers. There are two considerations here: keeping the files in synch
and keeping disk space on the slave to a minimum (to avoid long disk checks after panics).

You can either make the slave the NetBoot client of the master, or use NFS to mount the
directory containing the relocatable object file on the slave computer. Using NFS and
NetBoot is covered in the Network and System Administration manual.

If you can't use a network, you must use a removable disk to copy the appropriate files from
the development computer to the slave computer (and, if you're using a third machine for
development, to the master computer). You must copy the files over whenever they change.

Files Needed by the Slave Computer

The slave computer needs only whatever files are required by kern_loader. Usually, this
is just your server's relocatable object file. You must create the relocatable object file by
compiling with the -g option so that it contains debugging information. Avoid using the -0
option, since optimization can make variable values appear incorrect.

Files Needed by the Master Computer

The master computer needs access to the following:

• The directory that contains the source files for your server.

D-2 Appendix D: The Kernel Debugger

• Your server's loadable object file. This file is produced by kern Joader on the slave
computer when your server is allocated. See Appendix A, "The Kernel-Server Loader,"
for information on how to specify the location of this loadable object file.

• A file that contains the same version of the kernel as the one that the slave is running.
If the master and the slave are running the same version of the kernel, then you can use
the Imach file on the master. You can check the version by searching for "mk-" in
lusr/adm/messages.

Before you go on to the next step, write down the full pathnames for the master computer's
server source directory and loadable object file. You'll need to supply these pathnames to
KGDB later.

Starting Up KGDB

On the master computer:

1. Become root in a Shell or Terminal window.

master> su
Password:

2. Change to the directory containing the kernel file that's the same version as the one
running on the slave.

master:l# cd /

3. Start KGDB.

master:2# kgdb mach

You'll see some messages, ending with something like:

(no debugging symbols found) ... done.
Type "help" for a list of commands.
(gdb)

4. Unless the slave computer was booted with the -p option, set a breakpoint for panicO.
Setting this breakpoint ensures that you'll be able to use KGDB 's backtrace command
to see what caused the panic.

(gdb) break panic
Breakpoint 1 at Ox4009da8
(gdb)

Starting Up KGDB D-3

5. Establish the master computer's control over the slave, using the kattach command. If
your computers are connected over the network, then enter "kattach hostname", where
hostname is the name of the slave machine. If your computers are connected with a
serial cable, then enter "kattach /dev/ttya".

(gdb) kattach slave
Attaching to running kernel
Connecting to slave ...

Because the slave's kernel is running, you won't see another "(gdb)" prompt until the
slave's kernel hits a breakpoint or you enter the NMI mini-monitor on the slave (and, for
serial connections, enter the gdb command).

On the slave computer:

6. Load the server, if it isn't already running.

7. Ifthe loadable object file isn't currently accessible to the master computer, copy it over
to the master computer.

8. Wait for a few seconds after the kattach command. Then get into the NMI
mini-monitor by pressing Command-Command-EJ (hold down both Command keys
and press the key at the upper left of the numeric keypad). If your systems are
connected by a serial cable, you must also enter gdb at the NMI mini-monitor window.

nmi> gdb (only for systems connected with a serial cable)

The slave computer is now frozen because its kernel is stopped.

On the master computer:

9. Now that you have the "(gdb)" prompt back, you can bring the symbol information
from your loadable file into KGDB. The amount of time KGDB takes to read the
symbol information depends on the size and complexity of your file. You must use the
add-file command, followed by the full pathname of the loadable file, followed by O.
For example:

Program received signal 5, Trace/BPT trap
Ox4053ad6 in kdbg_connect ()
(gdb) add-file /me/Drivers/slot_loadable 0
add symbol table from filename "/me/Drivers/slot loadable" at
text addr = OxO
(y or n) y

Reading symbol data from /me/Drivers/slot loadable ... done.
(gdb)

If you had any trouble adding your server to KGDB, make sure kl_util-s servername on
the slave shows your server as "Loaded." If not, load it.

D-4 Appendix D.' The Kernel Debugger

10. Finally, tell KGDB where your source files are with the dir or idir command. For
example:

(gdb) dir /me/Drivers/slotSrc
Source directories searched: /me/Drivers/slotSrc
(gdb)

Debugging with KGDB

You're now ready to set breakpoints and debug your code. When you're ready to continue
running the kernel, use the cont (continue) command in KGDB. If it won't continue, make
sure your server is loaded, not just allocated, on the slave computer.

Warning: Never use the run command in KGDB. It causes unpredictable behavior.

If you want to get a "(gdb)" prompt on the master, you must stop the slave's kernel by
generating an NMI (press Command-Command-EJ) and entering gdb at the "nmi>" prompt
in the NMI mini-monitor. Even if your machines are connected over a network, and thus
you didn't have to enter gdb in step 8 above, you need to use the gdb command from now
on.

When you change or reload your server, you don't have to exit KGDB. Instead, just use
add-file (see step 9, above) to load the new loadable object file into KGDB. If the source
has changed, make sure that the new source files are in the master's source directory.

Ending the Debugging Session

To remove KGDB from a running kernel, follow the steps below. You can't use the GDB
quit command because the kernel on the slave computer needs to recover from whatever
state KGDB has left it in.

1. If you don't have a "(gdb)" prompt on the master computer, get one by generating an
NMI at the slave computer (press Command-Command-EJ) and entering gdb at the
"nmi>" prompt.

At the master computer:

2. Delete all the breakpoints you've set.

(gdb) delete
Delete all breakpoints? (y or n) y
(gdb)

Debugging with KGDB D-5

3. Continue the kernel's execution, then stop KGDB by typing Control-Z.

(gdb) cont
Continuing.

<Control-Z>
Stopped.

master:3#

4. Kill the KGDB process.

master:3# jobs
[1] +Stopped /me/Apps/kgdb mach

master:4# kill %1
master:5#

D-6 Appendix D: The Kernel Debugger

Appendix E
The ROM Monitor and NMI Mini-Monitor

Most of the commands in the ROM monitor and NMI mini-monitor are discussed in the
Network and System Administration manual; some other useful commands are covered in
other chapters of this manual. However, a few commands are of interest to only a few
hardware or device driver developers. These rarely used commands are described in this
appendix.

See Chapter 3, "Testing and Debugging Kernel Servers"; Appendix D, "The Kernel
Debugger"; and the Network and System Administration manual for more information on
using the ROM monitor and NMI mini-monitor.

ROM Monitor Commands

Most ROM monitor commands display the current value of a register or parameter and
prompt for a new value with a question mark. To enter a new value, type the value and press
the Return key. To leave the current value unchanged and skip to the next one (if any), just
press the Return key. Type a period to exit the command and leave the current value
unchanged.

Numeric values are usually in hexadecimal (base 16) notation if they represent a memory
address or data value. The R (radix) command can be used to change the input base/radix.

The values of registers' bit fields are displayed symbolically between angle brackets < > in
addition to the numeric value (for example, "2700<trace=0,s,ipl=7>"). For more
information on 68040 registers, see Motorola's MC68040 User's Manual.

Open Address Register

The command

a [n]

accesses the contents of address registers aO through a7 of the 680xO processor.

ROM Monitor Commands E-1

Example:

NeXT> a

aO: 000012347 5678

a1: 000000007

a2: 000000017

NeXT> aO

aO: 000012347 5678

NeXT>

Open Data Register

The command

d [n]

Change aO from Oxl234 to Ox5678
Don't change al
Type a period to exit

Change aO from Oxl234 to Ox5678

accesses the contents of data registers dO through d7 of the 680xO processor.

Example:

NeXT> d

dO: 000012347 5678

d1: 000000007

d2: 000000017

NeXT> dO

dO: 000012347 5678

NeXT>

Open Processor Register

The command

r [regname]

Change dO from Oxl234 to Ox5678
Don't change dl
Type a period to exit

Change dO from Oxl234 to Ox5678

accesses the contents of the 680xO processor registers. Possible values for regname are:

E-2 Appendix E: The ROM Monitor and NMI Mini-Monitor

pc
sr
usp
isp
msp
vbr
sfc
dfc
cacr
caar

Program counter
Status register
User stack pointer
Interrupt stack pointer
Master stack pointer
Vector base register
Source function code
Destination function code
Cache control register
Cache address register (68030 only)

If you don't specify regname, all the processor registers are opened in the order they're
listed above.

Open System Register

The command

s [systemreg]

accesses the contents of the system registers. Possible values for systemreg are:

intrstat
intrmask
scrl
scr2

Interrupt status register
Interrupt mask register
System control register #1
System control register #2

If you don't specify systemreg, all of the system registers are opened in the order they're
listed above.

Examine Memory Locations

The command

e [/wb] [addrlist] [format]

lets you examine particular locations in memory.

ROM Monitor Commands E-3

[lwb] Specify I, w, or b to select long, word, or byte length. The default is
long.

[addrlist] This argument specifies the starting address or list of addresses to
cyclically examine. If you don't specify a value for addrlist, the
command uses the most recent value of addrlist.

[format] This argument controls how the value is displayed. It can be any of the
standard format types supported by the C language printfO library
routine. The default, %x, displays a number in hexadecimal.

Example 1:

NeXT> e 4000000

4000000: O? 12345678

4000004: O? .

Example 2:

Examine the long at memory location Ox4000000
See that its value is OxO; deposit the value Ox12345678
Type a period to exit

NeXT> e 4000000 4000000 Repeatedly examine memory location Ox4000000
4000000: O? 12345678 See that its value is OxO; deposit the value Ox12345678
4000000: 12345678? . See that its value is Ox12345678; type a period to exit

Open Function Code

The command

S [fcode]

lets you inspect or modify the 680xO function code (address space) used with the e
(examine) command. The default code is 5 (supervisor data space).

Possible values for fcode are:

o Undefined, reserved
1 User data space (UD)
2 User program space (UP)
3 Undefined, reserved
4 Undefined, reserved
5 Supervisor data space (SD)
6 Supervisor program space (SP)
7 CPU space

E-4 Appendix E: The ROM Monitor and NMI Mini-Monitor

Example:

NeXT> S

Function code 5 (SO)

NeXT> S 6

Function code 6 (SP)

Set Input Radix

The command

R [radix]

Current function code is 5

Change function code to 6

lets you set the input radix. The default value for the input radix is 16. Any numbers you
type in are interpreted in the base of the input radix (for example, input radix 16 means
numbers are interpreted as base 16). If you don't specify radix, the current default input
radix is displayed.

NMI Mini-Monitor Commands

The following NMI mini-monitor command lets you set kernel flags. However, this feature
isn't currently useful for developers outside of NeXT.

Set or Examine Any Kernel Flag

The command

flag= [value]

lets you examine or modify internal system flags (most internal system flags are of interest
only to system developers at NeXT).

Example:

nmi> debug=

kernel flags debug OxO
nmi> debug=2

kernel flag = Ox2

The debug flag has the value 0

Change the value of the debug flag to 2

NMI Mini-Monitor Commands E-5

E-6

Appendix F
Summary of Kernel Functions

General Functions

This section contains a summary of the general-purpose kernel functions, which are
described in detail in Chapter 5, "C Functions."

Time Functions

Busy-wait for a certain amount of time:

void DELAY(unsigned int usecs)

Get the current time:

void
void

microboot(struct timeval *tvp)
microtime(struct timeval *tvp)

Schedule or un schedule a function to be called later:

void
void
boolean_t

us _ abstimeout(int (*function)(), vm_address_t arg, struct timeval *tvp, int priority)
us_timeout(int (*function)(), vm_address_t arg, struct timeval *tvp, int priority)
us _ untimeout(int (*function)0, vm_address_t arg)

Memory Functions

Make addresses pageable or memory-resident:

kern _ serv _unwire Jange(kem_servect *ksp, vm_address_t address,
vm_size_t size)

kern_serv_wireJange(kem_server_t *ksp, vm_address_t address, vm_size_t size)

Copy or initialize data:

void bcopy(void *from, void *to, int length)
void bzero(void *address, int length)
int copyin(void *from, void *to, int length)
int copyout(void *from, void *to, int length)

Allocate or free memory:

void * kalloc(int size)
void kfree(void *address, int size)
void * kget(int size)

General Functions F-J

Critical Section and Synchronization Functions

Use read and write locks:

lock_t
void
void
void
void
void

lock _ allocO
lockJree(lock_t lock)
lock _ done(locLt lock)
lock _init(lock_t lock, boolean_t can_sleep)
lock Jead(lock_t lock)
lock _ write(lock_t lock)

Use simple, non-sleeping locks:

void simple_lock(simple_lock_t lock)
simple_lock_t simple Jock _ allocO
void simpleJock_free(simple_lock_t lock)
void simple Jock Jnit(simple_lock_t lock)
void simple _ unlock(simple_lock_t lock)

Cause a thread to sleep or wakeup:

void
void
void
void
void
void
void
void

assert _ wait(int event, boolean_t interruptible)
biodone(struct buf *bp)
biowait(struct buf *bp)
c1ear_wait(thread_t thread, int result, boolean_t interrupt_only)
thread _ blockO
thread _set _ timeout(int ticks)
thread _sleep(int event, simple_lock_t lock, boolean_t interruptible)
thread _ wakeup(int event)

General Task and Thread Functions

Get information about this thread or task:

Create or kill a thread:

current _ taskO
thread_wait JesultO

kerneUhread(tasLt task, void (*start)())
thread_halt _ self 0

Port and Message Functions

Request notification messages, such as port death notification:

kern_return_t kern _serv _ notify(kern_servect *ksp, poret reply yort, poret request yort)

F-2 Appendix F: Summary of Kernel Functions

Get or set information about this server's ports:

porct kern _ serv _bootstrap _port(kern_servect * ksp)
porCt kern _ serv Jocal_port(kern_server_t * ksp)
port_t kern _serv _notify _port(kern_servect *ksp)
void kern _serv _port_gone(kern_servect *ksp, porCname_t port)
kern_return_t kern _serv _port _proc(kern_servect * ksp, porcall_t port, port_map_proc_tfunction,

int arg)
kern_return_t kern _serv _port _ serv(kern_servect * ksp, port_all_t port, porCmap _proc_t function,

int arg)
porCseCname_t kern _ serv _port _ set(kern_servect * ksp)

Hardware Interface Functions

Set up or remove an interrupt handler:

int install_polled _intr(int which, int (*my _intr)())
int uninstall_polled _intr(int which, int (*my _intr)())

Get or test a virtual address that corresponds to a hardware address:

caddr_t map_addr(caddct address, int size)
int probe rb(void *address)

Change or determine the processor level:

int
int

curiplO
splOO, spIlO, sp120, sp130, sp140, sp150, sp160, spl70
splx(int priority)

Logging and Debugging Functions

Kill the loadable kernel server:

ASSERT(int expression) void
kern_return_t
void

kern _serv _panic(porCt *bootstrap yort, panic_msg_t message)
panic(char *string)

Log a message:

void
int
int

kern _serv _log(kern_servect *ksp, int log_level, char *format, argl, ... , arg5)
log(int level, char *format, arg, ...)
printf(char *format [, argl, ... J)

General Functions F-3

Miscellaneous Functions

Modify or inspect a string:

int sprintf(char *string, char *format [, argl, ... J)
char * strcat(char *stringl, char *string2)
int strcmp(char * stringl, char * string2)
char * strcpy(char *to, char *from)
int strlen(char *string)

In a UNIX-style server, determine whether the user has root privileges:

int suserO

Call a function from the main thread:

kern_serv_callout(kern_servect *ksp, void (*func)(void *), void *arg)

Network Functions

This section contains a summary of the network -specific kernel functions, which are
described in detail in Chapter 5, "C Functions." A general discussion of networking drivers
and protocols is in Chapter 4, "Network-Related Kernel Servers."

Netif Functions

To use these functions, you need to include the header file <net/netif.h>.

Initialize and install a new netif:

netiCt

void

if_attach(iUnitjunc_t initJunc, iUnputjunc_t inputJunc,
iCoutputjunc_t outputJunc, iCgetbuCfunc_t getbufJunc,
iCcontroCfunc_t controlJunc, const char *name, unsigned int unit,
const char *type, unsigned int mtu, unsigned intflags,
netiCclass_t class, void *private)

ifJegistervirtual(iCattach_func_t attachJunc, void *private)

Get or set data for a netif:

unsigned int
void
unsigned int
void
unsigned int
void
unsigned int
void
unsigned int
void
unsigned int

if _ collisions(netiCt netif)
if_ collisions_set(netiCt netif, unsigned int collisions)
if _ flags(netiU netif)
if_flags_set(netiCt neti/, unsigned intflags)
if)errors(netiCt netif)
if_ierrors_set(netiCt neti/, unsigned int ierrors)
if _ oerrors(netiCt netif)
if _ oerrors _ set(netiCt neti/, unsigned int oerrors)
if _ipackets(netiCt netif)
if_ipackets_set(netiCt neti/, unsigned int ipackets)
if _ opackets(netiU netif)

F-4 Appendix F: Summary of Kernel Functions

void
unsigned int
const char *
void *
const char *
unsigned int

Call a netif's function:

int
netbuCt
int
int
int

if_opackets_set(netiCt netif, unsigned int opackets)
if _ rntu(netiCt netif)
if _ narne(netiCt netif)
if _private(netiCt netif)
if _ type(netiCt netif)
if _ unit(netiU netif)

if_control(netiCt netij, const char *command, void *data)
if _getbuf(netiCt netif)
if_init(netiCt netif)
if)octl(netiCt netij, unsigned int command, void *data)
if _ output(netiCt netif, netbuCt packet, void *address)

Dispatch a packet to a protocol handler:

int if_handle)nput(netiCt netif, netbuCtpacket, void *extra)

N etbuf Functions

You must include <net/netbuf.h> when you use these functions.

Allocate or free a netbuf or its wrapper:

netbuCt nb _ alloc(unsigned int size)
netbuCt nb_alloc_wrapper(void *data, unsigned int size, voidfreefunc(void *),

void *freefunc_arg)
void nb_free(netbuCt nb)
void nb Jree _ wrapper(netbuCt nb)

Change the size of a netbuf:

int
int
int
int

nb~row_bot(netbuCt nb, unsigned int size)
nb_shrink_bot(netbuCt nb, unsigned int size)
nb_grow_top(netbuCt nb, unsigned int size)
nb_shrink_top(netbuCt nb, unsigned int size)

Access the data in a netbuf:

char * nb_rnap(netbuCt nb)
int
int
unsigned int

nbJead(netbuCt nb, unsigned int offset, unsigned int size, void *target)
nb_write(netbuCt nb, unsigned int offset, unsigned int size, void *source)
nb_size(netbuU nb)

Network Functions F-5

Miscellaneous Functions

For the host-network conversion functions, you need to include <netinet/in.h>. For
inet_queueO, you must include both <net/netif.h> and <net/netbuf.h>.

Convert values between host and network byte order:

u_long htonl(u_long hostlong)
u_short htons(u_short hostshort)
u_long ntohl(u_long netlong)
u_short ntohs(u_short netshort)

Give an IP input packet to the kernel for processing:

void inet_queue(netiCt netif, netbuCt netbuj)

F-6 Appendix F: Summary of Kernel Functions

Index

a ROM monitor command E-l
address register E-l
ASSERTO 2-3,5-1
assert _ waitO 5-2

bcopyO 5-3
biodoneO 5-3
biowaitO 5-4
block device entry points 2-9
board address space 1-7
byte ordering 2-13
bytecopyO 5-5
bzeroO 5-6

C functions See functions
callback function in network module 4-4
character device entry points 2-8
clear _ waitO 5-6
command scripts A-4
commands

NMI commands E-5
ROM monitor commands E-l
See also specific command

console user name 3-2
control function in network module 4-9
copyinO 5-7
copyoutO 5-8
curiplO 5-8
current_task() 5-9

d ROM monitor command E-2
data register E-2
debugging

the kernel D-l
kernel servers 2-2,3-1

DELAYO 5-9
device entry points 2-8

e ROM monitor command E-3
Ethernet interfaces 4-11

flag-setting NMI command E-5

functions
kernel functions 2-11, 5-1, F-l
kernel-server loader functions A-I
netbuf functions 5-59
netif functions 5-51
network functions 5-51, F-4
in network module 4-3

getbuf function 4-8

hardware 1-6
board testing 2-2
communicating with 2-12
requirements for server writing 1-2
setup for kernel debugging D-2

htonlO 5-51
btonsO 5-51

ID register 2-15
Identification bytes 2-15
if_attachO 5-51
if_collisionsO 5-53
if_collisions_setO 5-53
if_controlO 5-53
if_tlagsO 5-54
if_tlags_setO 5-54
if_getbufO 5-53
if_handle _inputO 5-55
if_ierrorsO 5-56
iCierrors _setO 5-56
iCinitO 5-53
iCioctlO 5-53
iOpacketsO 5-56
iCipackets_setO 5-56
if_mtuO 5-57
if_oameO 5-57
if_oerrorsO 5-56
if_oerrors_setO 5-56
if _ opacketsO 5-56
if_opackets_setO 5-56
if_outputO 5-53
if_privateO 5-57
ifJegistervirtualO 5-58
if_typeO 5-57
iCuoitO 5-57

Index-I

inet_queueO 5-59
initialization function in network module 4-5
input function in network module 4-5
input radix, ROM monitor B-5
install_polled_intrO 5-10
interrupt

generating 3-1
handler 2-5
mask register 2-18
non-maskable 3-1
register 2-17

kallocO 5-11
kern loader 1-6

functions A-I
requirements 2-4

kern _serv _bootstrap J)ortO 5-12
kern_serv_calloutO 5-13
kern_serv_local_portO 5-14
kern_serv_logO 2-2,5-15
kern_serv_notifyO 5-15
kern_serv _notify J)ortO 5-16
kern _serv _panicO 5-17
kern _ serv _port _goneO 5-18
kern_servJ)ort_procO 5-18
kern_servJ)ort_servO 5-20
kern_servJ)ort_setO 5-21
kern _ serv _unwire JangeO 5-22
kern_serv_wireJangeO 5-22
kernel

debugger D-l
flag B-5
functions 2-11,5-1
functions summary F-l

kernel server 1-4
debugging 3-1
designing 2-1
interface 1-3
log command C~ 1
message-based 2-7
network-related 4-1
UNIX-based 2-8
utility B-1

kernel-server loader 1-6, A-I
functions A-I
requirements 2-4

kernel_threadO 5-12
kfreeO 5-23
KGDB D-l

starting up D-3
stopping D-5

kgetO 5-24
kl Id command A-2
kl Jog command C-l

Index-2

kl util command B-1

load commands script A-4
loadable kernel server 1-4
lock_allocO 5-24
lock_doneO 5-25
lockJreeO 5-24
lock)nitO 5-26
lockJeadO 5-26
lock_writeO 5-27
logO 5-28

Mach
Interface Generator 1-4
kernel See kernel

map_addrO 2-12,5-28
master computer D-l
memory

examining in ROM monitor B-3
See also virtual memory

message-based server 2-7
microbootO 5-29
microtimeO 5-30
MiG 1-4
msg NMI command 3-2

nb _ allocO 5-59
nb_alloc_wrapperO 5-59
nbJreeO 5-60
nb Jree _ wrapperO 5-60
nb _grow _ botO 5-61
nb_grow_topO 5-61
nb _ mapO 5-62
nb JeadO 5-62
nb_shrink_botO 5-61
nb_shrink_topO 5-61
nb _sizeO 5-63
nb _ writeO 5-62
NBIC 1-8

registers on CPU board 2-13
registers on NeXTbus board 2-14

netbuf 4-2
functions 5-59
functions summary F-5

netif 4-3
functions 5-51
functions summary F-4

network
buffers 4-2
device driver 4-1
functions 5-51
functions summary F-4
interface 4-3
module 4-1

network -related server 4-1
NeXTbus

address space 1-7
byte ordering 2-13
intercepted addresses 2-18
Interface Chip See NBIC
Probe 1-3,3-3

NMI 3-1
NMI mini-monitor E-l

commands E-l, E-5
window 3-2

non-maskable interrupt 3-1
ntohlO 5-51
ntohsO 5-51

object file A-2
output function in network module 4-7

packet sniffer 4-1
Panic window 3-2
panicO 5-31
printfO 2-3, 3-2, 5-31
probeJbO 2-4,5-32
process

register E-2
protocol handler 4-1

R ROM monitor command E-5
r ROM monitor command E-2
registers

68040 E-l
on CPU board 2-13
on NeXTbus board 2-14

relocatable object file A-2
resetting the CPU 3-1
ROM monitor E-l

commands E-l
window 3-3

S ROM monitor command E-4
s ROM monitor command E-3
server See kernel server
simpleJockO 5-33
simple Jock _ allocO 5-34
simple_lock_freeO 5-34
simple_lock_initO 5-35
simple_unlockO 5-35
slave computer D-1
slot address space 1-7
slots 1-6
spInO 5-36
splxO 5-38
sprintfO 5-38
strcatO 5-39

strcmpO 5-39
strcpyO 5-40
strlenO 5-40
suserO 5-41
switch tables 2-10
system console 3-2
system register E-3

TCP/IP interfaces 4-11
thread _ blockO 5-41
thread_halt_selfO 5-42
thread_set_timeoutO 5-42
thread _ sleepO 5-43
thread_wait JesultO 5-44
thread _ wakeupO 5-45

uninstall_polled _intrO 5-46
UNIX

entry points 2-8
UNIX-based server 2-8
us_abstimeoutO 5-46
us_timeoutO 5-48
us_untimeoutO 5-49

virtual memory 2-12

Index-3

Index-4

NeXT Computer, Inc.
900 Chesapeake Drive
Redwood City, CA 94063

Printed in U.S.A
1386.00
12/90

Text printed on
recycled paper

