
Sound, Music, and
Signa/Processing:

Reference

NeXT Developer's Library

NeXTstep

Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts
A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.

~ ~ Reference, Volumes 1 and 2
Detailed, comprehensive descriptions of the NeXTstep Application Kit software.

Sound, Music, and Signal Processing

Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts
An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference
Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

~ NeXT Development Tools

A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

~ NeXT Operating System Software

A description of NeXT's operating system, Mach. In addition, other low-level
software is discussed.

~ Writing Loadable Kernel Servers

How to write loadable kernel servers, such as device drivers and network protocols.

~ NeXT Technical Summaries

Brief summaries of reference information related to NeXTstep, sound, music, and
Mach, plus a glossary and indexes.

~ Supplemental Documentation

Information about PostScript, RTF, and other file formats useful to application
developers.

Sound, Music, and Signal Processing:
Reference

We at NeXT Computer have tried to make the information contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©l990 by NeXT Computer, Inc. All Rights Reserved.
[2911.00]

The NeXT logo and NeXTstep are registered trademarks of NeXT Computer, Inc., in the U.S. and other countries. NeXT, Music
Kit, and Sound Kit are trademarks of NeXT Computer, Inc. UNIX is a registered trademark of AT&T. All other trademarks
mentioned belong to their respective owners.

Notice to U.S. Government End Users:

Restricted Rights Legends

For civilian agencies: This software is licensed only with "Restricted Rights" and use, reproduction, or disclosure is subject
to restrictions set forth in subparagraph (a) through (d) of the Commercial Computer Software-Restricted Rights clause at
52.227 -19 of the Federal Acquisition Regulations.

Unpublished-rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Manual written by Doug Fulton
Edited by Caroline Rose, Roy West, Helen Casabona, Kathy Walrath, and Gary Miller
Book design by Eddie Lee
Illustrations by Jeff Yaksick and Don Donoughe
Production by Adrienne Wong, Jennifer Yu, and Katherine Arthurs
Publications management by Cathy Novak

Reorder Product #N6007B

Contents

Introduction

1-1 Chapter 1: Header Files

2-1 Chapter 2: Class Specifications
2-5 Sound Kit Classes
2-47 Music Kit Classes

3-1 Chapter 3: C Functions
3-4 Music Kit Functions
3-28 Sound Functions
3-47 Sound/DSP Driver Functions
3-77 Array Processing Functions

4-1 Chapter 4: ScoreFile Language Reference
4-3 Program Structure
4-4 Header Statements
4-6 Body Statements
4-7 Header or Body Statements
4-11 Predeclared Variables, Constants, and Special Symbols
4-13 Operators

A-I Appendix A: Summary of ScoreFile Language Syntax
A-3 Program Structure
A-4 Header Statements
A-4 Body Statements
A-5 Header or Body Statements
A-7 Constants, Predeclared Variables, and Special Symbols
A -8 Operators

B-1 Appendix B: Music Tables
B-3 Pitches and Frequencies
B-6 Music Kit Parameters
B-12 WaveTable Database

C-l Appendix C: Details of the DSP
C-3 Memory Map
C-4 DSP D-15 Connector Pinouts
C-5 DSP56001 Instruction Set Summary

Index

Introduction

3 Conventions
3 Syntax Notation
4 Notes and Warnings

Intro-I

Intro-2

Introduction

This manual provides detailed descriptions of the Objective-C language classes, C
functions, data formats, and other programming elements that make up the sound, music,
and DSP software.

A version ofthis manual is stored on-line in the NeXT™ Digital Library (which is described
in the user's manual NeXT Applications). The Digital Library also contains Release Notes,
which provide last-minute information about the latest release of the software.

Conventions

Syntax Notation

Where this manual shows the syntax of a function, command, or other programming
element, the use of bold, italic, square brackets, and ellipsis has special significance, as
described here.

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic
denotes words that represent something else or can be varied. For example, the syntax

print expression

means that you follow the word print with an expression.

Square brackets [] mean that the enclosed syntax is optional, except when they're bold [],
in which case they're to be taken literally. The exceptions are few and will be clear from
the context. For example,

pointer [filename]

means that you type a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Intro-3

Ellipsis (...) indicates that the previous syntax element may be repeated. For example:

Syntax

pointer ...

pointer [, pointer] ...

pointer rJilename ...]

pointer [,filename] ...

Notes and Warnings

Allows

One or more pointers

One or more pointers separated by commas

A pointer optionally followed by one or more file names

A pointer optionally followed by a comma and one or more
file names separated by commas

Note: Paragraphs like this contain incidental information that may be of interest to curious
readers but can safely be skipped.

Warning: Paragraphs like this are extremely important to read.

Intro-4

Chapter 1
Header Files

All header files can be viewed on-line. They are located in lusr/include and its
subdirectories. Each of the kits and the common classes have subdirectories-appkit,
soundkit, musickit, and objc. Other subdirectories of interest include streams, sound,
dpsclient, dsp, sys, and servers.

Header Files 1-1

1-2

Chapter 2
Class Specifications

2-5 Sound Kit Classes
2-7 Sound
2-25 SoundMeter
2-31 SoundView

2-47 Music Kit Classes
2-49 Conductor
2-67 Envelope
2-75 FilePerformer
2-81 FileWriter
2-87 Instrument
2-93 Midi
2-101 Note
2-119 NoteFilter
2-123 N oteReceiver
2-131 NoteSender
2-139 Orchestra
2-159 Part
2-169 Partials
2-177 PartPerformer
2-183 PartRecorder
2-187 PatchTemplate
2-191 Performer
2-207 Samples
2-211 Score
2-221 ScorefilePerformer
2-225 Scorefile Writer
2-229 ScorePerformer
2-241 ScoreRecorder
2-245 SynthData
2-251 SynthInstrument
2-257 SynthPatch
2-265 TuningSystem
2-269 UnitGenerator
2-279 WaveTable
2-285 Add2UG
2-287 AllpasslUG
2-289 AsympUG
2-295 ConstantUG
2-297 DeiayUG
2-299 DswitchtUG

2-1

2-2

2-301 DswitchUG
2-303 InterpUG
2-305 Mulladd2UG
2-307 Mu12UG
2-309 OnepoleUG
2-311 OnezeroUG
2-313 OscgafUG,OscgafiUG
2-317 OscgUG
2-321 Out1aUG,Out1bUG
2-323 Out2sumUG
2-325 ScaleUG
2-327 Sclladd2UG
2-329 Scl2add2UG
2-331 SnoiseUG
2-333 UnoiseUG

Chapter 2
Class Specifications

This chapter provides protocol information about the classes defined in the Sound Kit ™ and
Music Kit TM. Each class is contained in a separate section wherein the class' instance
variables and methods are listed and described. Familiarity with the concepts introduced
in Volume 1 is assumed. A detailed explanation on how to read a class description is given
in Chapter 2 of the NeXTstep® Reference manual.

Class Specifications 2-3

2-4

Sound Kit Classes

The class specifications for the Sound Kit describe three classes:

Sound
SoundMeter
SoundView

The Sound class inherits from Object. SoundMeter and SoundView inherit from the
Application Kit's View class.

Sound Kit Classes 2-5

2-6

Sound

INHERITS FROM Object

DECLARED IN soundkit.h

CLASS DESCRIPTION

Sound objects represent and manage sounds. Designed primarily to provide recording,
playback, and editing of sampled sounds, a single Sound object can accommodate a
number of different sound formats, including nested or multiple sounds and DSP sound
synthesis program code.

The sound encapsulated in a Sound object can be recorded from CODEC microphone
input, read from a soundfile or from the application's Mach-O sound segment, retrieved
from the pasteboard, or created algorithmically. Whatever the source of sound,
playback is usually transparent. Conversion to the format and sampling rate expected
by the playback hardware is performed automatically for most Sounds; the Sound
formats and sampling rates are listed below.

Both playback and recording are performed by background threads, allowing your
application to proceed in parallel. Usually, an application expects a playback or
recording to be immediate. The latency between sending a play: or record: message
and the start of the playback or recording, while within the tolerance demanded by most
applications, can be further decreased by first reserving the sound facilities that you
wish to use. This is done by calling the SNDReserveO C function (described in
Chapter 3, "C Functions").

The Sound class provides an application-wide name table called the named Sound list
that lets you identify and locate sounds by a unique string name.

A Sound object can have a delegate, to which messages are sent when the object begins
or ends playback or recording. The following messages are sent to the Sound delegate:

Message

willPlay:
didPlay:
willRecord:
didRecord:
hadError:

Motivation

Sent just before the Sound begins playing
Sent when the Sound finishes playing
Sent before recording
Sent after recording
Sent if the playback or recording generates an error

The argument for a delegate method is, of course, the Sound object that caused it to be
sent.

A number of editing methods are provided, such as insertSample:at:, and
deleteSamplesAt:count:. As the names imply, the editing methods only apply to
Sound objects that contain sampled sound data (as opposed to DSP program code). The

Sound Kit Classes: Sound 2-7

isEditable method is provided as a test to detennine whether the object contains
editable data. Only if isEditable returns YES should an editing method be sent to the
object.

To minimize data movement (and thus save time), an edited Sound may become
fragmented; in other words, its sound data might become discontiguous in memory.
While playback of a fragmented Sound object is transparent, it does incur some
additional overhead. If you perfonn a number of edits-particularly near the beginning
of the sound data-you may want to return the Sound to its natural, contiguous state by
sending it the compactSamples message before you play it. However, a large Sound
may take a long time to compact, so a judicious and well-timed use of
compactS am pies is advised. A fragmented Sound is ascertained by invoking the
needsToCompact method; a return value of YES indicates that the receiver is
fragmented. Note that a fragmented Sound is automatically compacted before it's
copied to the pasteboard (through the writeToPasteboard method). Also, when you
write a Sound to a soundfile, the data in the file is compact regardless of the state of the
object.

A Sound object contains a SNDSoundStruct, the structure that describes and contains
sound data and that's used as the soundfile fonnat and the pasteboard sound type. The
Sound object's soundStruct instance variable is a pointer to the object's
SNDSoundStruct. Most of the methods defined in the Sound class are implemented so
that you needn't be aware of this level of detail. However, if you wish to directly
manipulate the sound data in a Sound object, you need to be familiar with the
SNDSoundStruct architecture. This is described in Volume 1, Chapter 2 and outlined
in the description of the SNDAllocO function in Chapter 3, "C Functions."

The fonnats and sampling rates supported by the Sound object are the same as those
defined for the SNDSoundStruct. The fonnats are represented as constants and fall into
three groups: sampled data, DSP program code, and other fonnats. The sampled data
fonnats describe the amplitude quantization of the sound data:

Sampled Data Formats

SND_FORMAT_MULAW _8
SND_FORMAT_MULAW _SQUELCH

SND_FORMAT_LINEAR_8
SND_FORMAT_LINEAR_16
SND_FORMAT_LINEAR_24
SND_FORMAT_LINEAR_32
SND_FORMAT_FLOAT
SND_FORMAT_DOUBLE
SND_FORMAT_DSP _DATA_8
SND_FORMAT_DSP _DATA_16
SND_FORMAT_DSP _DATA_24
SND_FORMAT_DSP _DATA_32

2-8 Chapter 2: Class Specifications

Quantization

8-bit mu-Iaw
8-bit mu-Iaw with run-length
encoding of silence
8-bit linear
16-bit linear
24-bit linear
32-bit linear
32-bit floating point
64-bit floating point
8-bit fixed point
16-bit fixed point
24-bit fixed point
32-bit fixed point

Sound data for a DSP program consists of commands and data that can be sent to the
DSP for sound synthesis. The C function SNDReadDSPfileO is provided to read a
DSP program from a file into a sound structure.

DSP Program Formats

SND_FORMAT_DSP _CORE

There are four other formats:

Other Formats

SND_FORMAT_DISPLAY
SND_FORMAT _INDIRECT
SND_FORMAT_NESTED
SND_FORMAT_UNSPECIFIED

Meaning

The core image for a DSP program

Meaning

U sed to represent reduced data for display
Fragmented sampled data
Multiple sound structures
Unknown format

The SND_FORMAT_DISPLAY format is used primarily by SoundView objects. You
can't play display data.

The data in both fragmented and nested sounds contain any number of sub-structures.
In a fragmented sound, the dataLocation field of the SNDSoundStruct points to a
contiguous block of ordered addresses (the address list is terminated by NULL) each
of which points to a SNDSoundStruct that contains one of the sound fragments. The
data in a nested sound contains any number of (possibly fragmented) sounds. Each
sound has its own SNDSoundStruct; the sound format, sampling rate, and number of
channels can vary from one sound to the next. When you playa nested sound, the
sounds are played back in order.

NeXT reserves the integer constants 0 through 255 to represent sound formats. You can
provide your own formats represented by positive integers greater than 255. For
example, you can create a format to identify data reduced models of a sound, or to store
graphic information used to display reduced sound data. Personalized formats are
particularly useful in a nested sound, wherein you can store original sound data using
one of the Sound Kit formats along with your own versions of the data. Non-Sound Kit
formats, as well as the SND _FORMAT_UNSPECIFIED format, are ignored during
playback.

A Sound's data format is returned by the dataFormat method. Note that for a
fragmented sound, the format ofthe actual data is returned (all the fragments have the
same format, sampling rate, and number of channels). In other words, dataFormat
never returns SND _FORMAT_INDIRECT.

The recording and playback hardware support three sampling rates, represented by the
following floating point constants:

Constant

SND_RATE_CODEC
SND_RATE_LOW
SND_RATE_HIGH

Sampling Rate (Hz)

8012.821 (CODEC input)
22050.0 (low sampling rate output)
44100.0 (high sampling rate output)

Sound Kit Classes; Sound 2-9

INSTANCE VARIABLES

Inherited/rom Object

Declared in Sound

soundStruct

soundStructSize

priority

delegate

status

name

METHOD TYPES

Creating and freeing a Sound object

Finding and naming the object

Reading and writing sound data

Modifying the object

2-10 Chapter 2: Class Specifications

Class

SNDSoundStruct
int
int
id
int
char

is a;

*soundStruct;
soundStructSize;
priority;
delegate;
status;
*name;

The object's sound data structure.

The length of soundStruct in bytes.

The object's recording and playback priority.

The target of notification messages.

What the object is currently doing.

The object's name.

- free
+ new
+ newFromMachO:
+ newFromPasteboard
+ newFromSoundfile:

+ addName:fromMachO:
+ addName:fromSoundfile:
+ addName:sound:
+ findSoundFor:
+ removeSoundForN ame:

- readSoundfile:
- writeSoundfile:
- writeToPasteboard

- convertToFormat:samplingRate:channelCount:
- setDataSize:dataFormat:samplingRate:

channelCount:infoSize:
- setDelegate:
- setName:

Querying the object - channelCount
- compatible With:
- data
- dataFormat
- dataSize
- delegate
- info
- infoSize
- isEditable
- isEmpty
-name
- needsCompacting
- sampleCount
- samplesProcessed
- samplingRate
- soundStruct
- soundStructSize
- status

Recording and playing the object - pause
- pause:

Editing the sound data

Archiving the object

Accessing the delegate

Accessing the sound hardware

-play
- play:
- record
- record:
- resume
- resume:
- stop
- stop:

- compactSamples
- copySamples:at:count:
- copySound:
- deleteSamples
- deleteSamplesAtcount:
- insertSamples:at:

- finishUnarchiving
-read:
- write:

- tellDelegate:

+ getVolume::
+ setVolume::
+ isMuted
+ setMute:

Sound Kit Classes: Sound 2-11

CLASS METHODS

addNarne:frornMachO:

+ addName:(char *)name fromMachO:(char *)sectionName

Creates a Sound object from section sectionName in the application's Mach-O sound
segment, assigns the name name to the object, and adds it to the named Sound list. The
sound data is copied into the new Sound. If name is already in use, or if the section
isn't found or its data can't be copied, the Sound isn't created and nil is returned.
Otherwise, the new Sound is returned.

addN arne :frornSoundfile:

+ addName:(char *)name fromSoundfile:(char *)filename

Creates a Sound object from the soundfile filename, assigns the name name to the
object, and adds it to the named Sound list. If name is already in use, or iffilename isn't
found or can't be read, the Sound isn't created and nil is returned. Otherwise, the new
Sound is returned.

addNarne:sound:

+ addName:(char *)name sound:aSound

Assigns the name name to the Sound aSound and adds it to the named Sound list.
Returns aSound, or nil if name is already in use.

findSoundFor:

+ findSoundFor:(char *)aName

Finds and returns the named Sound object. First the named Sound list is searched; if
the sound isn't found, then the method looks for aName.snd in the application's
Mach-O sound segment. Finally, aName.snd is searched for in the following
directories (in order):

~ILibrary /Sounds
ILocalLibrary /Sounds
!NextLibrary/Sounds

where"" represents the user's home directory. If the Sound eludes the search, nil is
returned.

getVolurne::

+ getVolume:(float *)left :(float *)right

Returns, by reference, the stereo output levels as floating-point numbers between 0.0
and 1.0.

2-12 Chapter 2: Class Specifications

isMuted

+ (BOOL)isMuted

Returns YES if the sound output level is currently muted.

new

+ new

Creates and returns an empty, unnamed Sound object.

newFromMachO:

+ newFromMachO:(char *)sectionName

Creates and returns an unnamed Sound object from section sectionName in the
application's Mach-O sound segment. The sound data is copied into the new Sound. If
the section isn't found or its data can't be copied, the Sound isn't created and nil is
returned.

newFromPasteboard

+ newFromPasteboard

Creates and returns an unnamed Sound object from the sound found on the pasteboard
(the pasteboard can have only one sound entry at a time). The sound data is copied into
the new Sound. If the Pasteboard doesn't currently contain a sound entry, the Sound
isn't created and nil is returned.

newFromSoundfile:

+ newFromSoundfile:(char *)filename

Creates and returns an unnamed Sound object from the soundfile filename. The file
name must be a complete UNIX path name that includes the ".snd" extension. If the
file isn't be found or can't be read, the Sound isn't created and nil is returned.

removeSoundFor Name:

+ removeSoundForName:(char *)name

Removes the named Sound from the named Sound list. If the Sound isn't found, returns
nil; otherwise returns the Sound.

setMute:

+ setMute:(BOOL)aFlag

Mutes and unmutes the sound output level as aFlag is YES or NO, respectively.

Sound Kit Classes: Sound 2-13

setVolume::
+ setVolume:(float)left :(float)right

Sets the stereo output levels. These affect the volume of the stereo signals sent to the
built-in speaker and headphone jacks. left and right must be floating-point numbers
between 0.0 (minimum) and 1.0 (maximum).

INSTANCE METHODS

channel Count

- (int)channeICount

Returns the number of channels in the receiver.

compactSamples

- (int)compactSamples

The receiver's sound is compacted into a contiguous block of data, undoing the
fragmentation that can occur during editing. If the receiver's data isn't fragmented (its
format isn't SND_FORMAT_INDIRECT), then this method does nothing.
Compacting a large sound can take a long time; keep in mind that when you copy a
Sound to the pasteboard, the object is automatically compacted before it's copied.
Also, the soundfile representation of a Sound contains contiguous data so there's no
need to compact a Sound before writing it to a soundfile simply to ensure that the file
representation will be compact. An error code is returned.

compatible With:

- (BOOL)compatibleWith:aSound

Returns YES if the format, sampling rate, and channel count of aSound's sound data is
the same as that of receiver's sound data. If one (or both) of the Sounds doesn't contain
a sound (its soundStruct is nil) then the objects are declared compatible and YES is
returned. Also, if one (or both) of the Sounds is fragmented (and so its format is
SND_FORMAT_INDIRECT), then this method retrieves and compares the formats of
the actual sound data.

convertToFormat:samplingRate:channeICount:

- (int)convertToFormat:(int)aFormat
samplingRate:(double)aRate
channeICount:(int)aChanneICount

Convert the receiver's sound to the given format, sampling rate, and number of
channels. An error code is returned.

2-14 Chapter 2: Class Specifications

copySamples:at:count:

- (int)copySamples:aSound
at:(int)startSample
count: (int)sampleCount

Replaces the receiver's sound data with a copy of a portion of aSound's data. The
copied portion starts at aSound's startSample'th sample (zero-based) and extends over
sampleCount samples. The receiver must be editable and the two Sounds must be
compatible. If the specified portion of aSound is fragmented, the receiver will be
fragmented. An error code is returned.

copySound:

- (int)copySound:aSound

Replaces the receiver's sound data with a copy of aSound's data. The receiver needn't
be editable, nor must the two Sounds be compatible. An error code is returned.

data

- (unsigned char *)data

Returns a pointer to the receiver's sound data. You can use the pointer to examine,
create, and modify the data. To intelligently manipulate the data, you need to be aware
of its size, format, sampling rate, and the number of channels that it contains (a query
method for each of these attributes is provided by the Sound class). The size of the data,
in particular, must be respected; it's set when the receiver is created or given a new
sound (through readSoundfile:, for example) and can't be changed directly. To resize
the data, you should invoke one of the editing methods such as insertSamples:at: or
deleteSamplesAt:count:. To start with a new, unfragmented sound with a determinate
length, invoke the setDataSize:dataFormat:samplingRate:channeICount:infoSize:
method. Manipulation of sound data that contains a DSP program
(SND_FORMAT_DSP _CORE and SND_FORMAT_MK_DSP _CORE formats) isn't
recommended. Keep in mind that the sound data in a fragmented sound is a pointer to
a NULL terminated list of pointers to SNDSoundStructs, one for each fragment. To
examine or manipulate the samples in a fragmented sound, you must understand the
SNDSoundStruct structure (documented under the SNDAllocO C function in Chapter
3, "C Functions").

dataFormat

- (int)dataFormat

Returns the format of the receiver's sound data. If the data is fragmented, the format
of the samples is returned (in other words, SND_FORMAT_INDIRECT is never
returned by this method).

Sound Kit Classes: Sound 2-15

dataSize

- (int)dataSize

Return the size (in bytes) of the receiver's sound data. If you modify the data (through
the pointer returned by the data method) you must be careful not to exceed its length.
If the sound is fragmented, the value returned by this method is the size of the receiver's
soundStruct and doesn't include the actual data itself.

delegate

- delegate

Returns the receiver's delegate.

deleteSamples

- (int)deleteSamples

Deletes all the samples in the receiver's sound data. The receiver must be editable. An
error code is returned.

deleteSamplesAt:count:

- (int)deleteSamplesAt:(int)startSample count:(int)sampleCount

Deletes a range of samples from the receiver: sampleC ount samples are deleted starting
with the startSample'th sample (zero-based). The receiver must be editable and may
become fragmented. An error code is returned.

finish U narchiving

- finish U narchiving

You never invoke this method. It's invoked automatically by the read: method to tie up
loose ends after unarchiving the receiver.

free

-free

Frees the receiver and deallocates its sound data. The receiver is removed from the
named Sound list and its name made eligible for reuse.

info

- (char *)info

Returns a pointer to the receiver's info string.

2-16 Chapter 2: Class Specifications

infoSize

- (int)infoSize

Returns the size (in bytes) of the receiver's info string.

insertSamples:at:

- (int)insertSamples:aSound at:(int)startSample

Pastes the sound data in aSound into the receiver, starting at the receivers
startS ample 'th sample (zero-based). The receiver doesn't lose any of its original sound
data-the samples greater than or equal to startSample are moved to accommodate the
inserted sound data. The receiver must be editable and the two Sounds must be
compatible (as determined by isCompatible:). If the method is successful, the receiver
is fragmented. An error code is returned.

isEditable

- (BOOL)isEditable

Returns YES if the receiver's format indicates that it can be edited, otherwise returns
NO. In general, an editable Sound contains sampled data; all Sound Kit-defined
formats are editable except SND_FORMAT_DSP _CORE,
SND_FORMAT_MK_DSP _CORE, and SND_FORMAT_UNSPECIFIED.

isEmpty

- (BOOL)isEmpty

Returns YES if the receiver doesn't contain any sound data, otherwise returns NO.
This always returns NO if the receiver isn't editable (as determined by sending it the
isEditable message).

name

- (const char *)name

Returns the receiver's name.

needsCompacting

- (BOOL)needsCompacting

Returns YES if the receiver's data is fragmented (its format is
SND_FORMAT_INDIRECT). Otherwise returns NO.

Sound Kit Classes: Sound 2-17

pause

- (int)pause

Pauses the receiver during recording or playback.

pause:

- pause:sender

Action method that pauses the receiver during recording or playback.

play

- (int)play

Initiates playback of the sound. The method returns immediately while the playback
continues asynchronously in the background. The playback ends when the receiver
receives the stop message, or when its data is exhausted.

When playback starts, wiliPlay: is sent to the receiver's delegate; when it stops,
didPlay: is sent. Returns the receiver.

An error code is returned.

play:

- play:sender

Action method that plays the receiver. Other than the argument and the return type, this
is the same as the play method.

read:

- read:(NXTypedStream *)stream

Reads archived sound data from stream into the receiver. Returns the receiver.

readSoundfile:

- (int)readSoundfile:(char *)jilename

Replaces the receiver's sound with that in the soundfilejilename. The file name is a
complete UNIX path name that must include the ".snd" extension. An error code is
returned.

2-18 Chapter 2: Class Specifications

record

- (int)record

Initiate recording of a sound into the receiver. To record from the CODEC microphone,
the receiver's format, sampling rate, and channel count must be
SND_FORMAT_MULAW_8, SND_RATE_CODEC, and 1, respectively. If this
information isn't set (if the receiver is a newly created object, for example), it defaults
to accommodate a CODEC recording. If the receiver's format is
SND_FORMAT_DSP _DATA_16, the recording is from the DSP.

The method returns immediately while the recording continues asynchronously in the
background. The recording stops when the receiver receives the stop message or when
the maximum recording time limit has elapsed (precisely ten minutes).

When the recording begins, willRecord: is sent to the receiver's delegate; when the
recording stops, didRecord: is sent. Returns the receiver.

An error code is returned.

record:

- record:sender

Action method that initiates a recording. Other than the argument and return type, this
is the same as the record method.

resume

- (int)resume

Resumes the paused receiver's activity.

resume:

- resume:sender

Action method that resumes the paused receiver.

sampleCount

- (int)sampleCount

Returns the number of sample frames, or channel count-independent samples, in the
receiver.

Sound Kit Classes: Sound 2-19

samplesProcessed
- (int)samplesProcessed

If the receiver is currently playing or recording, this returns the number of sample
frames that have been played or recorded so far. Otherwise, the number of sample
frames in the receiver is returned.

samplingRate
- (double)samplingRate

Returns the receiver's sampling rate.

setDataSize:dataFormat:samplingRate:channeICount:infoSize:

- (int)setDataSize:(int)newDataSize
dataFormat:(int)newDataFormat
samplingRate: (double)newSamplingRate
channeICount:(int)newChanneICount
infoSize:(int)newlnJoSize

Allocates new, unfragmented sound data for the receiver, as described by the
arguments. The receiver's previous data is freed. This method is useful for setting a
determinate data length prior to a recording or for creating a scratch pad for algorithmic
sound creation. An error code is returned.

setDelegate:

- setDelegate:anObject

Sets the receiver's delegate to anObject. The delegate may implement the following
methods:

• willPlay:
• didPlay:
• willRecord:
• didRecord:
• hadError:

Returns the receiver.

setName:

- setName:(const char *)theName

Sets the receiver's name to theName. If theName is already being used, then the
receiver's name isn't set and nil is returned; otherwise returns the receiver.

2-20 Chapter 2: Class Specifications

soundStruct

- (SNDSoundStruct *)soundStruct

Returns a pointer to the receiver's sound structure (its soundStruct variable). Use of
the pointer requires a knowledge of the SNDSoundStruct architecture.

soundStructSize

- (int)soundStructSize

Returns the size (in bytes) of the receiver's sound structure (its soundStruct variable).
Use of this value requires a knowledge of the SNDSoundStruct architecture.

status

- (int)status

Return the receiver's current status, one of the following integer constants:

• SK_STATVS_STOPPED
• SK_STATUS_RECORDING
• SK_STATUS_PLAYING

SK_STATVS_INITIALIZED
• SK_STATUS_RECORDING_PAUSED
• SK_STATUS_PLAYING_PAUSED
• SK_STATUS_RECORDING_PENDING
• SK_STATUS_PLAYING_PENDING
• SK_STATUS_FREED

stop

- (int)stop

Terminates the receiver's playback or recording. If the receiver was recording, the
didRecord: message is sent to the delegate; if playing, didPlay: is sent. Returns the
receiver.

An error code is returned.

stop:

- stop:sender

Action method that stops the receiver's playback or recording. Other than the argument
and the return type, this is the same as the stop method.

Sound Kit Classes: Sound 2-21

tellDelegate:

- tellDelegate:(SEL)theMessage

Sends theMessage to the receiver's delegate (only sent if the delegate implements
theMessage). You never invoke this method directly; it's invoked automatically as the
result of activities such as recording and playing. However, you can use it in designing
a subclass of Sound.

Returns the receiver.

write:

- write:(NXTypedStream *)stream

Archives the receiver by writing its data to stream, which must be open for writing.
Returns the receiver.

writeSoundfile:

- (int)writeSoundfile:(char *)filename

Writes the receiver's sound to the soundfile filename. The file name is a complete
UNIX path name that should include a ".snd" extension. An error code is returned.

writeToPasteboard

- (int)writeToPasteboard

Puts a copy of the receiver's sound on the pasteboard. If the receiver is fragmented, it's
compacted before the copy is created. An error code is returned.

METHODS IMPLEMENTED BY THE DELEGATE

didPlay:

- didPlay:sender

Sent to the delegate when the Sound stops playing.

didRecord:

- didRecord:sender

Sent to the delegate when the Sound stops recording.

2-22 Chapter 2: Class Specifications

hadError:

- hadError:sender

Sent to the delegate if an error occurs during recording or playback.

willPlay:

- willPlay:sender

Sent to the delegate when the Sound begins to play.

willRecord:

- willRecord:sender

Sent to the delegate when the Sound begins to record.

Sound Kit Classes: Sound 2-23

2-24

SoundMeter

INHERITS FROM View : Responder: Object

DECLARED IN soundkit.h

CLASS DESCRIPTION

A SoundMeter object, when associated with a Sound object, displays the level of sound
recording and playback.

Objects of this class, when attached to a sampled sound, can display the average output
level and peak hold in a bar-graph-style display.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Responder id nextResponder;

Inheritedfrom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Declared in SoundMeter id sound;
int currentS ample;
float current Value;
float currentPeak;
float minValue;
float maxValue;
float holdTime;
float backgroundGray;
float foregroundGray;
float peakGray;
struct {

unsigned int running: I;
unsigned int bezeled:l;

smFlags;

sound The object's Sound.

currentS ample The Sound sample currently being displayed.

currentValue The value of the current sample.

Sound Kit Classes: SoundMeter 2-25

currentPeak The current value of the peak bubble.

minValue The minimum sample value so far.

maxValue The maximum sample value so far.

holdTime The hold duration of the peak bubble.

backgroundGray The background color.

foregroundGray The foreground (average bar) color.

peakGray The peak bubble color.

smFlags.running Is the object currently running?

smFlags.bezeled Is the frame bezeled?

METHOD TYPES

Creating and freeing a +newFrame:

Modifying the object - setBezeled:
- setFloatValue:
- setHoldTime:
- setSound:

Querying the object - backgroundGray
- floatValue
- foregroundGray
-holdTime
- isBezeled
- isRunning
-maxValue
-minValue
-peakGray
-peakValue
- setBackgroundGray:
- setForegroundGray:
- setPeakGray:
- sound

Operating the object -run:
- stop:

Drawing the object - drawCurrentValue
- drawS elf: :

2-26 Chapter 2: Class Specifications

Archiving and unarchiving the object
-read:
- write:

CLASS METHODS

newFrame:

+ newFrame:(const NXRect *)frameRect

Creates and returns a new, initialized SoundMeter object.

INSTANCE METHODS

backgroundGray

- (float)backgroundGray

Returns the receiver's background color. The default is black.

drawCurrentValue

- drawCurrentValue

Draws the receiver's running bar and peak bubble. You never invoke this method
directly; it's invoked by drawSelf::, setFloatValue, and by the animation code while
the receiver is running. You can override this method in a subclass to change the look
of the running bar and peak bubble.

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws all the components of the receiver (frame, running bar, and peak bubble). You
never invoke this method directly; however, you can override it in a subclass to change
the way the receiver is displayed.

floatValue

- (float)floatValue

Returns the current running value.

foreground Gray

- (float)foregroundGray

Returns the receiver's foreground (average bar) color. The default is white.

Sound Kit Classes: SoundMeter 2-27

holdTime

- (tloat)holdTime

Returns the receiver's peak value hold time in seconds.

isBezeled

- (BOOL)isBezeled

Returns YES if the receiver has a bezel.

isRllnning

- (BOOL)isRunning

Returns YES if the receiver is currently running.

maxVallle

- (tloat)maxValue

Returns the maximum running value so far. You can invoke this method after you stop
this receiver to retrieve the overall maximum value for the previous performance. The
maximum value is cleared when you restart the receiver.

minVallle

- (tloat)minValue

Returns the minimum running value so far. You can invoke this method after you stop
this receiver to retrieve the overall minimum value for the previous performance. The
minimum value is cleared when you restart the receiver.

peakGray

- (tloat)peakGray

Returns the receiver's peak bubble color. The default is dark gray.

peakVallle

- (tloat)peakValue

Returns the current peak value.

read:

- read:(NXTypedStream *)aStream

Unarchives the receiver by reading it from aStream.

2-28 Chapter 2: Class Specifications

run:

- run:sender

Starts the receiver running. The receiver's Sound must either be playing or recording
in order for any meter activity to occur. Note that this method only affects the state of
the receiver-it doesn't trigger any activity in the Sound.

setBackgroundGray:

- setBackgroundGray:(float)aValue

Sets the receiver's background color.

setBezeled:

- setBezeled:(BOOL)aFlag

If aFlag is YES, a bezelled frame is drawn around the receiver. If aFlag is NO and the
receiver has a frame, the frame is removed.

setFloatValue:

- setFloatValue:(float)aValue

Sets the current running value to aValue. If aValue is greater than the current peak
value, or if the peak hold time has elapsed, then the peak value is set to a Value as well.
If autoDisplay is on, the view is updated. You never invoke this method directly; it's
invoked automatically when the receiver is running. However, you can reimplement
this method in a subclass of SoundMeter.

setForegroundGray:

- setForegroundGray:(float)aValue

Sets the receiver's foreground (average bar) color.

setHoldTime:

- setHoldTime:(float)seconds

Sets the receiver's peak value hold time in seconds. This is the amount of time the peak
bubble holds its value before decaying to the current average.

setPeakGray:

- setPeakGray:(float)aValue

Sets the receiver's peak bubble color.

Sound Kit Classes: SoundMeter 2-29

setSound:

- setSound:aSound

Sets the receiver's Sound object. aSound must contain sampled data
([aSound isEditable] must return TRUE).

sound

- sound

Returns the Sound object that the receiver is metering.

stop:

- stop:sender

Stops the receiver's metering activity and sets its display to a default (zero signal) state.
Note that this method only affects the state of the receiver-it doesn't trigger any
activity in the Sound.

write:

- write:(NXTypedStream *)aStream

Archives the receiver by writing it to aStream.

2-30 Chapter 2: Class Specifications

SoundView

INHERITS FROM View : Responder: Object

DECLARED IN soundkit.h

CLASS DESCRIPTION

A SoundView object creates a view in which it displays a Sound object's sound data.
A hairline cursor is provided for use in pointing and selecting. Only sampled sounds
can be displayed in a SoundView.

Sounds are displayed on a two-dimensional graph. The amplitudes of individual
samples are measured vertically and plotted against time, which proceeds left to right
along the horizontal axis. A SoundView is always scaled vertically so that the full
amplitude matches the height of the view with 0.0 amplitude in the center.

For most complete sounds, the length of the sound data in samples is greater than the
horizontal length of the view in display units. The SoundView employs a reduction
factor to determine the ratio of samples to display units and plots the minimum and
maximum amplitude values of the samples within that ratio. For example, a reduction
factor of 10.0 means that the minimum and maximum values among the first ten
samples are plotted in the first display unit, the minimum and maximum values of the
next ten samples are displayed in the second display unit and so on.

Lines are drawn between the chosen values to yield a more continuous shape. Two
drawing modes are provided:

• In SK_DISPLAY_ WAVE mode, the drawing is rendered in an oscilloscopic
fashion.

• In SK_DISPLAY _MINMAX mode, two lines are drawn, one to connect the
maximum values, and one to connect the minimum values.

As you zoom in (as the reduction factor decreases), the two drawing modes become
indistinguishable.

A mechanism is provided for selecting an area of the view. You can set the selected
area through the method setSelection:size: or the user can make the selection by
dragging the mouse. The playback, recording, and editing methods provided by
SoundView operate on the selection.

When a SoundView's sound data changes (due to editing or recording), the manner in
which the SoundView is redisplayed depends on its autoscale flag. With auto scaling
disabled, the SoundView's frame grows or shrinks (horizontally) to the new sound data
while the reduction factor is unchanged. If auto scaling is enabled, the reduction factor
is automatically recomputed to maintain a constant frame size. By default, auto scaling
is disabled; this is to accommodate the use of a SoundView object as the document of

Sound Kit Classes: SoundView 2-31

a ScrollingView, allowing the ScrollingView to pan along the data displayed in the
SoundView. As such, maintaining a constant reduction factor (or level of detail) across
a change is more useful than maintaining a constant SoundView frame size. Note,
however, that changing the reduction factor when auto scaling is disabled is useful for
zooming in and out.

In order to provide greater efficiency, a SoundView creates its own Sound object, stored
in its reduction instance variable, that contains only the samples from its sound
instance variable that are actually displayed. Methods to set and retrieve the reduction
are provided; however, you should only invoke these methods if you're creating an
advanced application or if you're designing a subclass of SoundView.

SoundView implements the Application Kit's delegate paradigm, allowing messages to
be sent to a delegate object when actions, such as playing, editing, or selecting a portion
of the SoundView, are performed.

INSTANCE VARIABLES

Inheritedfrom Object Class Isa;

Inheritedfrom Responder id nextResponder;

Inheritedfrom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _v Flags vFlags;

Declared in SoundView id sound;
id reduction;
id delegate;
NXRect selectionRect;
int displayMode;
float backgroundGray;
float foregroundGray;
float reductionFactor;
struct {

unsigned int disabled: 1 ;
unsigned int continuous:l;
unsigned int calcDrawInfo:l;
unsigned int selectionDirty: l;
unsigned int autoscale: l;
unsigned int bezeled:l;

svFlags;

sound The object's Sound.

reduction The data reduced version of the object's Sound.

2-32 Chapter 2: Class Specifications

delegate

selectionRect

displayMode

backgroundGray

foregroundGray

reductionFactor

svFlags.disa'Oled

svFlags.continuous

svFlags.calcDrawInfo

sv Flags. selectionDirty

sv Flags. auto scale

sv Flags. bezeled

METHOD TYPES

The object's delegate.

The object's current selection.

Display mode; SK_DISPLAY _MINMAX by
default.

Background color; NX_ WHITE by default.

Foreground color; NX_BLACK by default.

The ratio of sound samples to display units.

Does the object (not) respond to mouse events?

Does the object respond to mouse dragged
events?

Does drawing info need to be recalculated?

Has the object changed (but not been played)?

Does it rescale the display when the sound data
changes?

Does the object have a bezeled border?

Creating and freeing a SoundView - free
+ newFrame:

Modifying the object - scaleToFit
- setBackgroundGray:
- setBezeled:
- setContinuous:
- setDelegate:
- setDisplayMode:
- setEnabled:
- setForegroundGray:
- setReduction:
- setSound:
- sizeToFit

Sound Kit Classes: SoundView 2-33

Querying the object - backgroundGray
- delegate
- displayMode
- foreground Gray
- getSelection:size:
- isAutoScale
- isBezeled
- is Continuous
- isEnabled
- reduction
- reductionFactor
- sound

Selecting and editing the sound data
- copy:
- cut:
- delete:
- mouseDown:
- paste:
- selectAll:
- setSelection:size:

Modifying the display coordinates - setAutoscale:
- setReductionFactor:

Drawing the object - calcDrawInfo
- drawSelf::
- hide Cursor
- showCursor
- sizeTo::

Responding to events - acceptsFirstResponder
- becomeFirstResponder
- resignFirstResponder

Performing the sound data - play:
- record:
- soundBeingProcessed
- stop:

Archiving the object - read:
- write:

Accessing the delegate - didPlay:
- didRecord:
- hadError:
- tellDelegate:
- willPlay:
- willRecord:

2-34 Chapter 2: Class Specifications

CLASS METHODS

newFrame:

+ newFrame:(const NXRect *)aReet

Creates and returns a SoundView with the frame aReet. The new SoundView doesn't
contain any sound data.

INSTANCE METHODS

acceptsFirstResponder

- (BOOL)acceptsFirstResponder

If the receiver is enabled, this returns YES, allowing the view to become the first
responder. This method is automatically invoked by objects defined by the Application
Kit; you should never need to invoke it directly.

background Gray

- (float)backgroundGray

Returns the receiver's background gray value (NX_ WHITE by default).

becomeFirstResponder

- becomeFirstResponder

Promotes the receiver to first responder allowing user actions to be directed to the
receiver. Returns the receiver.

calcDrawlnfo

- calcDrawlnfo

Calculates the receiver's internal drawing information. This method is automatically
invoked when needed-when the receiver's sound data changes, for example. A
subclass should invoke this method from any method that changes the receiver. The
return value is ignored.

copy:

- copy:sender

Copies the current selection to the pasteboard. Returns the receiver.

Sound Kit Classes: SoundView 2-35

cut:

- cut:sender

Deletes the current selection from the receiver, copies it to the pasteboard, and sends
the soundChanged: message to the delegate. The insertion point is positioned to
where the selection used to start. The sound data becomes fragmented. Returns the
receiver.

delegate

- delegate

Returns the receiver's delegate object.

delete:

- delete:sender

Deletes the current selection from the receiver's Sound and sends the soundChanged:
message to the delegate. The deletion isn't placed on the pasteboard. The sound data
becomes fragmented. Returns the receiver.

didPlay:

- didPlay:sender

Used to redirect delegate messages from the receiver's Sound object; you never invoke
this method directly.

didRecord:

- didRecord:sender

Used to redirect delegate messages from the receiver's Sound object; you never invoke
this method directly.

displayMode

- (int)displayMode

Returns the receiver's display mode, one of SK_DISPLAY_ WAVE (oscilloscopic
display) or SK_DISPLAY _MINMAX (minimum maximum display; this is the
default).

2-36 Chapter 2: Class Specifications

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Displays the receiver's sound data. The selection is highlighted and the cursor is drawn
(if it isn't currently hidden).

The SoundView class implements this method as a subclass responsibility inherited
from View. You never send the drawSelf:: message directly to a SoundView object.
Instead, use one of the display methods defined in the View class.

foreground Gray

- (float)foregroundGray

Returns the receiver's foreground gray value (NX_BLACK by default).

free

- free

Frees the receiver but not its Sound object nor its delegate. The willFree: message is
sent to the delegate.

getS election: size:

- getSelection:(int *)jirstSample size:(int *)sampleCount

Returns the selection by reference. The index of the selection's first sample (counting
from 0) is returned injirstSample. The size of the selection in samples is returned in
sampleCount. The method itself returns the receiver.

hadError:

- hadError:sender

Used to redirect delegate messages from the receiver's Sound object; you never invoke
this method directly.

hideCursor

- hide Cursor

Hides the receiver's cursor. This is usually handled automatically. Returns the receiver.

isAutoScale

- (BOOL)isAutoScale

Returns YES if the receiver is in autoscaling mode, otherwise returns NO.

Sound Kit Classes: SoundView 2-37

isBezeled

- (BOOL)isBezeled

Returns YES if the display features a bezeled border, otherwise returns NO (the
default).

isContinuous

- (BOOL)isContinuous

Returns YES if the receiver responds to mouse dragged events (as set through
setContinuous:). The default is NO.

isEnabled

- (BOOL)isEnabled

Returns YES ifthe receiver is enabled, otherwise returns NO. The mouse has no effect
in a disabled SoundView. By default, a SoundView is enabled.

mouseDown:

- mouseDown:(NXEvent *)theEvent

Allows a selection to be defined by clicking and dragging the mouse. This method
takes control until a mouse-up occurs. While dragging, the selected region is
highlighted. On mouse up, the delegate is sent the selection Changed: message. If
isContinuous is YES, selection Changed: messages are also sent while the mouse is
being dragged. Returns the receiver.

paste:

- paste:sender

Replaces the current selection with a copy of the sound data currently on the
pasteboard. If there is no selection the pasteboard data is inserted at the cursor position.
The pasteboard data must be compatible with the receiver's data, as determined by the
Sound method compatible With:. If the paste is successful, the soundChanged:
message is sent to the delegate. The receiver's sound data becomes fragmented.
Returns the receiver.

play:

- play:sender

Play the current selection by invoking Sound's play: method. If there is no selection,
the receiver's entire Sound is played. The willPlay: message is sent to the delegate
before the selection is played; didPlay: is sent when the selection is done playing.
Returns the receiver.

2-38 Chapter 2: Class Specifications

read:

- read:(void *)stream

Unarchives the receiver by reading it from stream.

record:

- record:sender

Replaces the receiver's current selection with newly recorded material. If there is no
selection, the recording is injected at the insertion point. The willRecord: message is
sent to the delegate before the recording is started; didRecord: is sent after the
recording has completed. Currently, the recorded data is always taken from the
CODEC microphone input. Returns the receiver.

reduction

- reduction

Returns the receiver's display reduction Sound object. Provided for display
optimization, the object returned by this method shouldn't be treated like a "normal"
Sound-for example, it can't be played. The receiver owns the reduction object and
may free it at any time.

reductionFactor

- (float)reductionFactor

Returns the receiver's reduction factor, computed as

reductionFactor = sampleCount / displayUnits

resignFirstResponder

- resignFirstResponder

Resigns the position of first responder. Returns the receiver.

scaleToFit

- scale To Fit

Recomputes the receiver's reduction factor to fit the sound data (horizontally) within
the current frame. Invoked automatically when the receiver's data changes and the
receiver is in autoscale mode. If the receiver isn't in auto scale mode, sizeToFit is
invoked when the data changes. You never invoke this method directly; a subclass can
reimplement this method to provide specialized behavior.

Sound Kit Classes: SoundView 2-39

selectAIl:
- selectAll:sender

Creates a selection over the receiver's entire Sound. Returns the receiver.

setAutoscale:

- setAutoscale:(BOOL)aFlag

Sets the receiver's automatic scaling mode, used to determine how the receiver is
redisplayed when its data changes. With auto scaling enabled (aFlag is YES), the
receiver's reduction factor is recomputed so the sound data fits within the view frame.
If it's disabled (aFlag is NO), the frame is resized and the reduction factor is
unchanged. If the receiver is in a ScrollingView, autoScaling should be disabled
(auto scaling is disabled by default). Returns the receiver.

setBackgroundGray:
- setBackgroundGray:(float)aGray

Sets the receiver's background gray value to aGray; the default is NX_ WHITE.
Returns the receiver.

setBezeled:

- setBezeled:(BOOL)aFlag

If aFlag is YES, the display is given a bezeled border. By default, the border of a
SoundView display isn't bezeled. If autodisplaying is enabled, the Sound is
automatically redisplayed. Returns the receiver.

setContinuous:

- setContinuous:(BOOL)aFlag

Sets the state of continuous action messages. If aFlag is YES, selection Changed:
messages are sent to the delegate as the mouse is being dragged. If NO, the message is
sent only on mouse up. The default is NO. Returns the receiver.

setDelegate:

- setDelegate:anObject

Sets the receiver's delegate to anObject. The delegate is sent messages when the user
changes or acts on the selection. Returns the receiver.

2-40 Chapter 2: Class Specifications

setDisplayMode:

- setDisplayMode:(int)aMode

Sets the receiver's display mode, either SK_DISPLAY_ WAVE or
SK_DISPLAY _MINMAX (the default). If autodisplaying is enabled, the Sound is
automatically redisplayed.

setEnabled:

- setEnabled:(BOOL)aFlag

Enables or disables the receiver as aFlag is YES or NO. The mouse has no effect in a
disabled SoundView. By default, a SoundView is enabled. Returns the receiver.

setForegroundGray:

- setForegroundGray:(float)aGray

Sets the receiver's foreground gray value to aGray. The default is NX_BLACK.
Returns the receiver.

setReduction:

- setReduction:aDisplayReduction

Sets the receiver's display reduction Sound object to aDisplayReduction. An advanced
application can set the display reduction directly to optimize or eliminate the
recalculation of the display; this may be useful, for example, for repeated editing of
extremely large sounds. The number of samples in the reduction must be exactly
l/reductionFactor times the number of samples of the current sound. The receiver owns
the reduction and may free it at any time. Use of this method is optional; if the display
reduction isn't set through this method, it's calculated automatically.

If the size of aDisplayReduction (in samples) isn't correct, nil is returned; otherwise
returns the receiver.

Sound Kit Classes: SoundView 2-41

setReductionFactor:

- setReductionFactor:(tloat)reductionFactor

If the receiver is in auto scale mode, this does nothing and immediately returns the
receiver. (Keep in mind that in auto scaling mode, the reduction factor is automatically
recomputed when the sound data changes-see scaleToFit:.) With auto scaling
disabled, reductionFactor is used to recompute the size of the receiver's frame (in
display units) according to the formula

displayUnits = sampleCount / reductionFactor

Increasing the reduction factor zooms out, decreasing zooms in on the data.

If autodisplaying is enabled, the Sound is automatically redisplayed. Returns the
receiver.

setSelection:size:

- setSelection:(int)firstSample size:(int)sampleCount

Sets the selection to be sampleC ount samples wide, starting with sample firstSample
(samples are counted from 0). Returns the receiver.

setSound:

- setSound:aSound

Sets the receiver's Sound object to aSound. If auto scaling is enabled, the drawing
coordinate system is adjusted so aSound's data fits within the current frame.
Otherwise, the frame is resized to accommodate the length of the data. If
autodisplaying is enabled, the receiver is automatically redisplayed. Returns the
receiver.

showCursor

- showCursor

Displays the receiver's cursor. This is usually handled automatically. Returns the
receiver.

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Sets the width and height of the receiver's frame. If autodisplaying is enabled, the
receiver is automatically redisplayed. Returns the receiver.

2-42 Chapter 2: Class Specifications

sizeToFit

- sizeToFit

Resizes the receiver's frame (horizontally) to maintain a constant reduction factor. This
method is invoked automatically when the receiver's data changes and the receiver isn't
in autoscale mode. If the receiver is in autoscale mode, scaleToFit is invoked when the
data changes. You never invoke this method directly; a subclass can reimplement this
method to provide specialized behavior.

sound

- sound

Returns a pointer to the receiver's Sound object.

soundBeingProcessed

- soundBeingProcessed

Returns the id of the Sound object that's currently being played or recorded into. Note
that the actual Sound object that's being performed isn't necessarily the receiver's
sound (the object returned by the sound method); for efficiency, SoundView creates a
private performance Sound object. While this is generally an implementation detail,
this method is supplied in case the SoundView's delegate needs to know exactly which
object will be/was performed.

stop:

- stop:sender

Stops the receiver's current recording or playback. Returns the receiver.

tellDelegate:

- tellDelegate:(SEL)theMessage

Sends theMessage to the receiver's delegate with the receiver as the argument. If the
delegate doesn't respond to the message, then it isn't sent. You normally never invoke
this method; it's invoked automatically when an action, such as playing or editing, is
performed. However, you can invoke it in the design of a SoundView subclass. Returns
the receiver.

willPlay:

- willPlay:sender

Used to redirect delegate messages from the receiver's Sound object; you never invoke
this method directly.

Sound Kit Classes: SoundView 2-43

willRecord:

- willRecord:sender

Used to redirect delegate messages from the receiver's Sound object; you never invoke
this method directly.

write:

- write:(void *)stream

Archives the receiver by writing it to stream.

METHODS IMPLEMENTED BY THE DELEGATE

didPlay:

- didPlay:sender

Sent to the delegate just after the SoundView is played.

didRecord:

- didRecord:sender

Sent to the delegate just after the SoundView is recorded into.

hadError:

- hadError:sender

Sent to the delegate if an error is encountered during recording or playback of the
SoundView's data.

selection Changed:

- selectionChanged:sender

Sent to the delegate whenever the SoundView's selection changes.

soundDidChange:

- soundDidChange:sender

Sent to the delegate whenever the SoundView's sound data changes.

2-44 Chapter 2: Class Specifications

willFree:

- willFree:sender

Sent to the delegate when the SoundView is freed.

willPlay:

- willPlay:sender

Sent to the delegate just before the SoundView is played.

willRecord:

- willRecord:sender

Sent to the delegate just before the SoundView is recorded into.

Sound Kit Classes: SoundView 2-45

2-46

Music Kit Classes

The class specifications for the Music Kit describe the following classes:

Conductor
Envelope
FilePerformer
FileWriter
Instrument
Midi
Note
NoteFilter
NoteReceiver
NoteSender
Orchestra
Part
Partials
PartPerformer
PartRecorder
PatchTemplate
Performer
Samples
Score
ScorefilePerformer
Scorefile Writer
ScorePerformer
ScoreRecorder
SynthData
SynthInstrument
SynthPatch
TuningSystem
UnitGenerator
WaveTable
Add2UG
AllpasslUG
AsympUG
ConstantUG
DelayUG
DswitchtUG
DswitchUG
InterpUG
Mulladd2UG
Mul2UG
OnepoleUG
OnezeroUG
OscgafUG
OscgafiUG
OscgUG
OutlaUG

Music Kit Classes 2-47

Out 1 bUG
Out2sumUG
ScaleUG
Sc11add2UG
Sc12add2UG
SnoiseUG
UnoiseUG

2-48 Chapter 2: Class Specifications

Conductor

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

The Conductor class defines the mechanism that controls the timing of a Music Kit
performance. A Conductor's most important tasks are to schedule the sending of Notes
by Performers (and Midi), and to control the timing of Envelope objects during DSP
synthesis. Even in the absence of Performers and Envelopes, you may want to use a
Conductor to take advantage of the convenient scheduling mechanism that it provides.

The Message Request Queue

Each instance of Conductor contains a message request queue, a list of messages that
are to be sent to particular objects at specific times. To enqueue a message request with
a Conductor, you invoke the sel:to:atTime:argCount: or
sel:to:withDelay:argCount: method. Once you have made a message request through
one of these methods, you can't rescind the action; if you need more control over
message requests-for example, if you need to be able to reschedule or remove a
request-you should use the following C functions:

• MKNewMsgRequestO creates and returns a new message request structure.

• MKScheduleMsgRequestO places a previously created message request in a
Conductor's message request queue.

• MKRepositionMsgRequestO repositions a message request within a Conductor's
queue.

• MKCancelMsgRequestO removes a message request.

• MKRescheduleMsgRequestO is a convenience function that cancels a request
and then creates a new one.

For more information on these functions, see Chapter 3, "C Functions."

The Conductor class provides two special message request queues, one that contains
messages that are sent at the beginning of a performance and another for messages that
are sent after a performance ends. The class methods
beforePerrormanceSel:to:argCount: and afterPerformanceSel:to:argCount:
enqueue message requests in the before- and after-performance queues, respectively.

Music Kit Classes: Conductor 2-49

Controlling a Performance

A Music Kit performance starts when the Conductor class receives the
startPerformance message. At that time, the Conductor class sends the messages in
its before-performance queue and then the Conductor instances start processing their
individual message request queues . . i\s a message is sent, the request that prompted the
message is removed from its queue. The performance ends when the Conductor class
receives finishPerformance, at which time the after-performance messages are sent.
Any message requests that remain in the individual Conductors' message request
queues are removed. Note, however, that the before-performance queue isn't cleared.
If you invoke beforePerformanceSel:to:argCount: during a performance, the
message request will survive a subsequent finishPerformance and will affect the next
performance.

By default, if all the Conductors' queues become empty at the same time (not including
the before- and after-performance queues), finishPerformance is invoked
automatic all y. This is convenient if you're performing a Part or Score and you want the
performance to end when all the Notes have been played. However, for many
applications, such as those that create and perform Notes in response to a user's actions,
universally empty queues isn't necessarily an indication that the performance is over.
To allow a performance to continue even if all the queues are empty, send
setFinishWhenEmpty:NO to the Conductor class.

The rate at which a Conductor object processes its message request queue can be set
through either of two methods:

setTempo: sets the rate as beats per minute.
setBeatSize: sets the size of an individual beat, in seconds.

You can change a Conductor's tempo anytime, even during a performance. If your
application requires multiple simultaneous tempi, you need to create more than one
Conductor, one for each tempo. A Conductor's tempo is initialized to 60.0 beats per
minute.

Every Conductor instance has a notion of the current time measured in beats; this
notion is updated by the Conductor class only when a message from one of the request
queues is sent. If your application sends a message (or calls a C function) in response
to an asynchronous event, it must first update the Conductors' notions of time by
sending lockPerformance to the Conductor class. For example, if your application
sends a Note directly to an Instrument, you should send lockPerformance immediately
before the Note is sent. Every invocation of lockPerformance should be balanced by
an invocation of unlockPerformance.

Conductors and Performers

Conductors and Performers have a special relationship: Every Performer object is
controlled by an instance of Conductor, as set through Performer's setConductor:
method. While a Performer can be controlled by only one Conductor, a single
Conductor can control any number of Performers. As a Performer acquires successive

2-50 Chapter 2: Class Specifications

Notes, it enqueues, with its associated Conductor, requests for the Notes to be sent to
its connected Instruments. This enqueuing is performed automatically through a
mechanism defined by the Performer class. As a convenience, the Music Kit
automatically creates an instance of Conductor called the defaultConductor; if you
don't set a Performer's Conductor directly, it's controlled by the defaultConductor. You
can retrieve the defaultConductor (in order to set its tempo or to enqueue message
requests, for example) by sending the defaultConductor message to the Conductor
class.

Conductors and Envelopes

The Music Kit also creates an instance of Conductor called the clockConductor, which
you can retrieve through the dock Conductor class method. The clockConductor has
an unchangeable tempo of 60.0 beats per minute and it can't be paused (at least not by
itself; you can pause the clockConductor as you pause the entire performance through
the pause Performance class method). While the clockConductor can be used to
control Performers, its most important task is to control the timing of Envelope objects
during DSP synthesis. Envelope breakpoints are fed to the DSP through messages that
are enqueued automatically with the clockConductor.

The clockConductor's queue is treated like any other queue: You can enqueue message
requests with the clockConductor just as you would with any other Conductor. This
also means that the clockConductor's queue contributes to a determination of whether
all the queues are empty.

Fine-tuning a Performance

The responsiveness of a performance to the user's actions depends on whether the
Conductor class is clocked or unclocked, and upon the value of the performance's delta
time. By default, the Conductor class is clocked. This means that the messages in the
message request queues are sent at the times indicated by their time stamps. When the
Conductor class is clocked, a running Application object must be present.

If you don't need interactive control over a performance, you may find it beneficial to
set it to unclocked by sending setClocked:NO to the Conductor class. In an unclocked
performance, messages in the message request queues are sent one after another as
quickly as possible, leaving it to some other device-the DSP or a MIDI synthesizer
to handle the timing of the actual realization.

Setting the delta time further refines the responsiveness of a performance. Delta time
is set through the MKSetDeltaTO C function; the argument defines an imposed time
lag, in seconds, between the Conductor's notion of time and that of the DSP and MIDI
device drivers. It acts as a timing cushion that can help to maintain rhythmic integrity
by granting your application a sort of computational head start: As you set the delta
time to larger values, your application has more time to process Notes before they are
realized. However, this computational advantage is obtained at the expense of
degraded responsiveness. Choosing the proper delta time value depends on how
responsive your application needs to be. For example, if you are driving DSP synthesis

Music Kit Classes: Conductor 2-51

from MIDI input, a delta time of as much as 10 milliseconds (0.01 seconds) is generally
acceptable. If you are adjusting Note parameters by moving a Slider with the mouse,
a delta time of 100 milliseconds or more can be tolerated. Finding the right delta time
for your application is largely a matter of experimentation.

To enha...t1ce the efficiency of a performance, you can run it in its own thread.
done by sending useSeparateThread: YES to the Conductor class. Running a
performance in its own thread separates it from the main event queue, thus allowing
music to play with greater independence from your application's other computations.
However, this means that the synchronization between music and graphics (for
example) will be loosened.

In addition, you can set the Mach-scheduling priority of the performance thread
(whether or not it's separate) through the setThreadPriority: method. Performance
priority values are between 0.0 and 1.0, where 0.0 is unheightened (the default) and 1.0
is the maximum priority for a user process. Normally, Mach priorities degrade over
time; you can subvert this degradation by giving ownership of your application to root
and setting the application's protection to include the set user ID bit. In a Terminal
window, you would type the following:

su root

chown root yourAppHere

chmod u + s yourAppHere

INSTANCE VARIABLES

Inherited/rom Object

Declared in Conductor

time

nextMsgTime

beatSize

timeOffset

isPaused

delegate

2-52 Chapter 2.' Class Specifications

Class

double
double
double
double
BOOL
id

Current time in beats.

isa;

time;
nextMsgTime;
beatSize;
timeOffset;
isPaused;
delegate;

Time, in seconds, when the object is scheduled to
send its next message.

The duration of a single beat, in seconds.

Performance time offset, in seconds.

YES if this object is currently paused.

The object's delegate.

METHOD TYPES

Allocating and initializing a Conductor instance
+ alloc

Copying and freeing the object

Acquiring extant Conductors

Setting up a performance

Controlling a performance

Modifying a Conductor

Querying a Conductor

+ allocFromZone:
- init

-copy
- copyFromZone:

+ c1ockConductor
+ currentConductor
+ defaultConductor

+ setClocked:
+ useSeparateThread:
+ setTbreadPriority:
+ setFinishWhenEmpty:
+ isClocked
+ performance Thread
+ finish WhenEmpty

+ startPerformance
+ pausePerformance
+ resumePerformance
+ finishPerformance
+ lockPerformance
+ lockPerformanceNoBlock
+ unlockPerformance
+ inPerformance
+ isEmpty
+ isPaused
+ time

- setBeatSize:
- setTempo:
- setTimeOffset:
- pause
- pauseFor:
-resume
- setDelegate:

- beatSize
- tempo
- timeOffset
- isPaused
- delegate
- isCurrentConductor
- predictTime:
-time

Music Kit Classes: Conductor 2-53

Enqueueing message requests

Archiving

CLASS METHODS

afterPerforrnanceSel:to:argCount:

- sel:to:atTime:argCount:
- sel:to:withDelay:argCount:
- empty Queue
+ afterPerformanceSel:to:argCount:
+ beforePerformanceSel:to:argCount:

- finishUnarchiving:
-read
- write

+ (MKMsgStruct *)afterPerformanceSel:(SEL)aSelector
to:toObject
argCount:(int)argCount, ...

Enqueues a request for aSelector to be sent to toObject immediately after the current or
next performance ends. argC ount specifies the number of four-byte arguments to
aSelector followed by the arguments themselves separated by commas (two arguments,
maximum). The messages are sent in the order that the requests are enqueued. Returns
a pointer to a message request structure that can be passed to a C function such as
MKCancelMsgRequestO.

See also: + beforePerformanceSel:to:argCount:, - sel:to:atTime:argCount:,
- sel:to:withDelay:argCount:, MKNewMsgRequestO

alloc

+ alloc

Returns a new, initialized Conductor allocated in the default zone. If a performance is
in progress, does nothing and returns nil.

See also: + allocFromZone:, - init

allocFrornZone:

- allocFromZone:(NXZone *)zone

Returns a new, initialized Conductor allocated in zone. If a performance is in progress,
does nothing and returns nil.

See also: + alloc, - init

2-54 Chapter 2: Class Specifications

beforePerformanceSel:to:argCount:

+ (MKMsgStruct *)beforePerformanceSel:(SEL)aSelector
to:toObject
argCount: (int)argC ount, ...

Enqueues a request for aSelector to be sent to toObject at the beginning of the next
performance. argCount specifies the number of four-byte arguments to aSelector
followed by the arguments themselves separated by commas (two arguments,
maximum). The messages are sent in the order that the requests are enqueued. Returns
a pointer to a message request structure that can be passed to a C function such as
MKCancelMsgRequestO.

See also: + afterPerformanceSel:to:argCount:, - sel:to:atTime:argCount:,
- sel:to:withDelay:argCount:, MKNewMsgRequestO

clockConductor

+ clockConductor

Returns the clockConductor, the ever-present instance of Conductor that has an
immutable tempo of 60.0 beats per minute. You can't free this object.

currentConductor

+ currentConductor

Returns the Conductor instance that's currently sending a message, or nil if no message
is being sent.

default Conductor

+ defaultConductor

Returns the defaultConductor, the ever-present instance of Conductor that, by default,
is used to enqueue Note-sending messages generated by Performer objects. You can't
free this object.

finishPerformance

+ finishPerformance

Ends the performance; the after-performance messages are sent and all other enqueued
messages are removed (except from the before-performance queue). If
finishWhenEmpty is YES, this message is automatically sent when all message
queues are exhausted. Returns nil.

See also: + startPerformance, + pausePerformance, + resumePerformance

Music Kit Classes: Conductor 2-55

finish WhenEmpty

+ (BOOL)finishWhenEmpty

Returns YES if the performance will automatically finish when all Conductors'
message queues are empty, otherwise returns NO.

See also: + setFinishWhenEmpty:, + finishPerformance

inPerformance

+ (BOOL)inPerformance

Returns YES if a performance is currently taking place (even if it's paused), otherwise
returns NO.

See also: + startPerformance

isClocked

+ (BOOL)isClocked

Returns YES if the performance is clocked, NO if it isn't. In a clocked performance
(the default), messages from the message request queues are sent at the times indicated
by their timestamps. In an unclocked performance, the messages are sent one after
another as quickly as possible.

See also: + setClocked:, MKSetDeltaTO

isEmpty

+ (BOOL)isEmpty

Returns YES if a performance is in progress and all the Conductor instances' message
request queues are empty, otherwise returns NO.

See also: + setFinish WhenEmpty:

isPaused

+ (BOOL)isPaused

Returns YES if the performance is paused, otherwise returns NO.

See also: + pause, + resume, - pause, - resume

2-56 Chapter 2: Class Specifications

lockPerformance

+ lockPerformance

Waits for the availability of, and then acquires, the Music Kit performance lock. This
updates all Conductors' notions of the current time. Returns self.

In a separate-threaded performance, you should lock the Music Kit before sending a
message (or group of messages) to a Music Kit object. In a performance that isn't
separate-threaded, you only need to lock the performance if the message that you're
sending depends on the Conductors' notions of time being current. After you've
successfully locked the performance and have sent the desired messages, you must
invoke unlockPerformance. Note that acquisitions of the Music Kit lock can be
nested; if you send lockPerformance twice, you must send unlockPerformance twice
to release the lock.

See also: + unlockPerformance, + lockPerformanceNoBlock

lockPerformanceNoBlock

+ lockPerformanceNoBlock

This is the same as lockPerformance, except it doesn't wait for the Music Kit lock to
become available. Returns nil if the lock is thereby unsuccessful, otherwise returns
self.

See also: + lockPerformance, + unlockPerformance

pausePerformance

+ pausePerformance

Pauses the performance; all Conductor instances suspend their message-sending
activity until the Conductor class receives the resumePerformance message. You
can't pause an unclocked performance; returns nil in this case, otherwise returns self.
This message is ignored if a performance isn't in progress or if it's already paused.

See also: + resumePerformance, + isPaused, - pause, - resume

performance Thread
+ (cthread_t) performanceThread

Returns the separate thread in which the performance is running. If a performance isn't
in progress, or if it isn't in a separate thread, returns NO_CTHREAD.

See also: + useSeparateThread:

Music Kit Classes: Conductor 2-57

resumePerformance

+ resumePerformance

Resumes a performance, allowing it to continue from where it was paused. You can't
pause, and so can't resume, an unclocked performance; returns nil in this case.
Otherwise returns self, although the method does nothing if a performance isn't in
progress or if it isn't currently paused.

See also: + pausePerformance, + isPaused, - pause, - resume

setClocked:

+ setClocked:(BOOL)yesOrNo

If a performance is in progress, this does nothing and returns nil. Otherwise, it sets a
performance to be clocked or unclocked as yesOrNo is YES or NO and returns self.

In a clocked performance (the default), messages from the message request queues are
sent at the times indicated by their timestamps. In an unclocked performance, the
messages are sent one after another as quickly as possible. Note, however, that if the
performance is unclocked and isn't in a separate thread, a subsequent
startPerformance message won't return until the performance is over, thus disabling
the user interface for the duration of the performance.

See also: + isClocked, MKSetDeitaTO

setFinish WhenEmpty:

+ setFinish WhenEmpty: (BOOL)yesOrN 0

If yes Or No is YES, the performance is ended when all the Conductors' message request
queues are empty. If NO, the performance continues until the finishPerformance
message is sent to the Conductor class. By default, a performance finishes when the
queues are empty.

See also: + finish WhenEmpty, + finishPerformance

setThreadPriority:

+ setThreadPriority:(float)priority

Sets the Mach scheduling priority of the performance thread for all subsequent
performances. The priority change takes effect when the startPerformance method is
invoked; it reverts to its original level between performances. The value of priority is
limited to fall between 0.0 and 1.0, where 0.0 is normal priority and 1.0 is the
maximum.

See also: + useSeparateThread:

2-58 Chapter 2: Class Specifications

startPerformance

+ startPerformance

Starts a performance; the messages in the before-performance queue are sent and then
all Conductor instances begin processing their individual queues. If the performance
is clocked, isn't in a separate thread, and a running Application object isn't present, this
does nothing and returns nil. In all other cases, self is returned. Note, however, that if
the performance is unclocked, the method doesn't return until the performance is over.
If a performance is in progress, it isn't interrupted.

You can delay the begin time of individual Conductors through the setTimeOffset:
instance method.

See also: + finishWhenEmpty, + finishPerformance, - setTimeOffset:

time

+ (double)time

Returns the current performance time, in seconds. This doesn't include time that the
performance has been paused, nor does it include the performance's delta time. If a
performance isn't in progress, MK_NODVAL is returned (use MKIsNoDValO to
check for this value). Performance time is normally updated only when a Conductor
sends a message; however, you can force time to be updated by sending
lockPerformance to the Conductor class.

See also: + lockPerformance, MKIsNoDValO

unlockPerformance

+ unlock Performance

Releases the Music Kit's performance lock; as a convenience, this also sends
flushTimedMessages to the Orchestra class, causing any buffered synthesis
commands to be flushed to the DSP. Note that the Music Kit locks can be nested; if you
send lockPerformance twice, you must send unlock Performance twice before the
lock is released.

See also: + lockPerformance, + lockPerformanceNoBiock

Music Kit Classes: Conductor 2-59

useSeparateThread:

+ useSeparateThread:(BOOL)yesOrNo

If yesOrNo is YES, all subsequent performances will be run in a separate thread,
allowing more independence between the performance and the rest of your application.
If NO, the performance is run in the same thread that invokes startPerformance; this
is the default. Does nothing and returns nil if a performance is in progress, otherwise
returns self.

Keep in mind that when you run your performance in a separate thread, you must
bracket all messages to Music Kit objects (sent from your application) with
lockPerformance and unlockPerformance.

See also: + performance Thread

INSTANCE METHODS

beatSize

- (double) beatSize

Returns the size of the Conductor's beat in seconds. The default is 1.0.

See also: - setBeatSize:, - setTempo:, - tempo

copy

-copy

Returns a new Conductor created through [[Conductor alloc] init],

See also: + alloc, + allocFromZone:, - in it

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new Conductor created through [[Conductor allocFromZone:zone] init],

See also: + alloc, + allocFromZone:, - in it

2-60 Chapter 2: Class Specifications

delegate

- delegate

Returns the Conductor's delegate object, as set through the setDelegate: method. A
Conductor's delegate is alerted when the Conductor is paused and resumed.

See also: - setDelegate:

emptyQueue

- emptyQueue

Removes all message requests from the Conductor's message request queue. Returns
self.

finish U narchiving

init

- finishUnarchiving

You never invoke this method directly; to read an archived Conductor, call the
NXReadObjectO C function. This method is invoked by NXReadObjectO which
returns the value returned by this method, as follows: If the un archived Conductor was
the clockConductor (when it was archived), this method frees the unarchived object and
returns the current clockConductor. If a performance is in progress, the unarchived
object is freed and the defaultConductor is returned. If a performance isn't in progress
and the un archived object was the defaultConductor, the current defaultConductor
takes the new object's tempo and time offset, the unarchived object is freed, and the
defaultConductor is returned. Otherwise, the un archival is successful and nil is
returned.

- in it

Initializes a new Conductor object by setting its tempo to 60.0 beats per minute.
Returns self.

See also: + alloc, - copy

isCurrentConductor

- (BOOL)isCurrentConductor

Returns YES if the Conductor is currently sending a message from its message request
queue, otherwise returns NO.

Music Kit Classes: Conductor 2-61

is Paused

- (BOOL)isPaused

Returns YES if the receiver is paused, otherwise returns NO.

See also: - pause, - pauseFor:, - resume

pause

- pause

Pauses the performance of the Conductor and sends conductorDidPause: to its
delegate. Pausing a Conductor causes the object to stop sending messages in its
message request queue (message requests can still be enqueued). The suspension is
restricted to the present performance. You invoke resume to unpause a Conductor.

You can't pause the clockConductor through this method; returns nil in this case (and
the delegate message isn't sent). Otherwise returns the receiver. Note that you can
pause a Conductor object before a performance begins.

See also: - pauseFor:, - resume, - setTimeOffset:, + pausePerformance

pauseFor:

- pauseFor:(double)seconds

Pauses the performance of the Conductor, sends conductorDidPause: to its delegate,
and schedules a request for resume to be sent to the receiver in seconds seconds. If the
receiver is currently paused through a previous invocation of this method, the current
resume request supercedes the previous one. The effect is restricted to the present
performance.

You can't pause the clockConductor through this method; returns nil in this case (and
the delegate message isn't sent). Otherwise returns the receiver. Note that you can
invoke this method before a performance begins; the resume message is enqueued to
be sent seconds seconds after the performance starts.

See also: - pause, - resume, - setTimeOffset:, + pausePerformance

predictTime:

- (double)predictTime: (double)beatTime

Returns the time, in seconds, when beat beatTime should occur given the Conductor's
tempo. If beatTime is less than the Conductor's current time, 0.0 is returned.

See also: - time

2-62 Chapter 2: Class Specifications

read:

- read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived Conductor, call the
NXReadObjectO C function.

See also: - finishUnarchiving

resume

- resume

Resumes the Conductor's performance, sends conductorDidResume: to its delegate,
and returns self. If the receiver isn't currently paused, this has no effect.

A resumed Conductor's notion of time is frozen while it's paused. For example, if the
Conductor was paused 1 beat before it was scheduled to send its next message, the
message is sent 1 beat after the Conductor is resumed.

See also: - pause, - pauseFor:

sel:to:atTime:argCount:

- sel:(SEL)aSelector
to:toObject
atTime:(double)beats
argCount:(int)argCount, ...

Places, in the Conductor's message request queue, a request for aSelector to be sent to
toObject at time beats beats from the beginning of the receiver's performance. To
ensure that the Conductor's notion of time is up to date, you should send
lockPerformance before invoking this method. argCount specifies the number of
four-byte arguments to aSelector followed by the arguments themselves, separated by
commas (two arguments, maximum).

See also: - sel:to:withDelay:argCount:

Music Kit Classes: Conductor 2-63

sel:to:withDelay:argCount:

- sel:(SEL)aSelector
to:toObject
withDelay: (double)beats
argCount:(int)argCount, ...

Places, in the receiver's message request queue, a request for aSelector to be sent to
toObject at time beats beats from the receiver's notion of the current time. To ensure
that the receiver's notion of time is up to date, you should send lockPerformance
before invoking this method. argCount specifies the number of four-byte arguments to
aSelector followed by the arguments themselves, separated by commas (two
arguments, maximum).

See also: - sel:to:atT!me:argCount:

setBeatSize:
- (double)setBeatSize: (double)newBeatSize

Sets the Conductor's tempo by changing the size of a beat to newBeatSize, measured in
seconds. The default beat size is 1.0 (one second). Attempts to set the tempo ofthe
clockConductor are ignored. Returns the previous beat size.

See also: -beatSize, - setTempo:, - tempo

setDelegate:
- setDelegate:delegate

Sets the Conductor's delegate object to delegate and returns self. The delegate is sent
conductorDidPause: and conductorDidResume: as the Conductor is paused and
resumed, respectively.

See also: - delegate, - pause, - pauseFor:, - resume:

setTempo:
- (double)setTempo: (double)newTempo

Sets the Conductor's tempo to newTempo, measured in beats per minute. Attempts to
set the tempo of the clockConductor are ignored. Returns the Conductor's old tempo.

See also: - tempo, - setBeatSize:, - beatSize

2-64 Chapter 2: Class Specifications

setTimeOffset:

- (double)setTimeOffset:(double)newTimeOffset

Sets the Conductor's performance time offset to newTimeOffset seconds. Keep in mind
that since the offset is measured in seconds, it's not affected by the Conductor's tempo.
Attempts to set the offset of the clockConductor are ignored. Returns the old time
offset.

See also: - timeOffset, - pause, - pauseFor:

tempo

- (double)tempo

Returns the Conductor's tempo in beats per minute.

See also: - setTempo:, - setBeatSize:, - beatSize

time

- (double)time

Returns the number of beats that the Conductor has spent in active performance. This
excludes time that it or the entire performance has been paused and also excludes the
Conductor's performance time offset.

See also: - predictTime:

timeOffset

- (double)timeOffset

Returns the Conductor's performance time offset in seconds.

See also: - setTimeOffset:, - pause, - pauseFor:

write:

- write:(NXTypedStream *)stream

You never invoke this method directly; to archive a Conductor, call the
NXWriteObjectO C function. An archived Conductor remembers its tempo and time
offset when its unarchived.

See also: - read:, - finishUnarchiving

Music Kit Classes: Conductor 2-65

METHODS IMPLEMENTED BY THE DELEGATE

conductor DidPause:

- conductorDidPause:conductor

Sent to the delegate when conductor is paused through a pause or pauseFor: message.
Pausing an entire performance (through pausePerformance) doesn't cause this
message to be sent.

conductorDidResume:

- conductorDidResume:conductor

Sent to the delegate when conductor is resumed through a resume message; keep in
mind that pauseFor: automatically schedules a resume message. You should also note
that when this message isn't sent when a Conductor exhausts its time offset and so
begins its performance.

2-66 Chapter 2: Class Specifications

Envelope

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

An Envelope object represents a two-dimensional (Cartesian) coordinate system in
which you can order a series of breakpoints, each of which is located as a pair of x and
y values. An Envelope is defined (primarily) by two arrays: One contains a series of
increasing x values, the other contains the corresponding y values.

Envelopes are most often used to control musical attributes during DSP synthesis. This
is achieved by associating an Envelope with an AsympUG UnitGenerator (through
methods defined by the AsympUG class). The AsympUG produces a continuous signal
that follows the shape defined by connecting the Envelope's successive breakpoints
with asymptotic curves.

In addition to an Envelope's x and y arrays, you can also provide an array of smoothing
values. Smoothing is used by an AsympUG to define the slope of the segment into a
particular breakpoint (the smoothing value of the first breakpoint is ignored).
Smoothing values must be positive and are usually no greater than 1.0. A smoothing
of 1.0, the default, provides the gentlest slope possible: The full amount of time
between breakpoints is used to travel from one y value to the next. As you decrease the
smoothing for a breakpoint, the y value is attained in less time; a smoothing of 0.0
causes the AsympUG to generate the breakpoint's y value instantaneously and
constantly until the next breakpoint.

While you must always supply an array of y values when defining an Envelope, the
same isn't true for x and smoothing. Rather than provide an x array, you can specify a
sampling period that's used as an x increment: The x value of the first breakpoint is 0.0,
and successive x values are integer multiples of the sampling period value. Similarly,
you can supply a constant smoothing value rather than provide a smoothing array. In
the presence of both an x array and a sampling period, or both a smoothing array and a
default smoothing, the array takes precedence.

Envelopes are described as having three parts: attack, sustain, and release. You can set
the sustain portion of an Envelope by designating one of its breakpoints as the
stick point. Everything up to the stickpoint is the Envelope's attack; everything after the
stickpoint is its release. When the stickpoint is reached during DSP synthesis, its y
value is sustained until a noteOff arrives to signal the release.

An Envelope object can be set as the value of a Note's parameter through Note's
setPar:toEnvelope: method. Parameters that accept Envelope objects are usually
associated with other, constant-valued parameters that interpret the Envelope by scaling
and offsetting the Envelope's x and y values. For example, the MK_ampEnv
parameter takes an Envelope as its value; MK _ ampO and MK _ amp1 are

Music Kit Classes: Envelope 2-67

constant-valued parameters that scale and offset the y values in MK_ampEnv
according to the formula

(scale* y) + offset

where scale is calculated as MK_ampl- MK_ampO and offset is simply the value of
MK _ ampO. In other words, MK _ ampO defines the interpreted value when y is 0.0 and
MK_ampl is the interpreted value when y is 1.0. Similarly, the MK_ampAtt and
MK_ampRel parameters are scalers on the x values in the attack and in the release
portion ofthe Envelope, respectively (you can't offset x values).

While Envelope objects are most useful in DSP synthesis, they can also be used to
return a discrete value of y for a given x, as provided in the method lookup YFor X:. If
the x value doesn't correspond precisely to a breakpoint in the Envelope, the method
does a linear interpolation between the immediately surrounding breakpoints. When
used for discrete-value lookup, an Envelope's smoothing values and stickpoint are
ignored.

INSTANCE VARIABLES

Inherited/rom Object

Declared in Envelope

defaultSmoothing

samplingPeriod

xArray

yArray

smoothingArray

stickPoint

pointCount

2-68 Chapter 2: Class Specifications

Class

double
double
double
double
double
int
int

isa;

defaultSmoothing;
samplingPeriod;
*xArray;
*yArray;
*smoothingArray;
stickPoint;
pointCount;

Smoothing for all breakpoints (used in the
absence of the smoothing array).

Constant x-increment (used in the absence of the
x array).

Array of x values.

Arrays of y values

Array of smoothing values.

The object's stickpoint.

Number of breakpoints in the object.

METHOD TYPES

Copying, initializing, and freeing an Envelope
-copy

Defining and retrieving breakpoints

Attack, sustain, and release

Interpolating y values

Writing the Envelope

Archiving the Envelope

INSTANCE METHODS

attackDur

- (double)attackDur

- copyFromZone:
- init
-free

- setPointCountxArray:orSamplingPeriod:
y Array:smoothingArray:
orDefaultSmoothing:

- setPointCountxArray:y Array:
- getNth:x:y:smoothing:
- pointCount
- xArray
- samplingPeriod
- yArray
- smoothingArray
- defaultSmoothing

- setStickPoint:
- stickPoint
- attackDur
- releaseDur

- lookup YForX:

- writeScorefileStream:

- write:
- read:

Returns the duration of the attack portion of the Envelope. This the difference between
the x value of the first breakpoint and the x value of the stickpoint. If the Envelope
doesn't have a stickpoint (or ifthe stickpoint is out of bounds), the duration of the entire
Envelope is returned.

See also: - setStickPoint:, releaseDur

Music Kit Classes: Envelope 2-69

copy

-copy

Creates and returns a new Envelope object as a copy of the receiving Envelope.

See also: - copyFromZone:

copyFrornZone:
- copyFromZone:(NXZone *)zone

Same as copy, but the new Envelope is allocated in zone.

See also: - copy

defaultSrnoothing

- (double)defaultSmoothing

Returns the Envelope's default smoothing value, or MK_NODVAL if there's a
smoothing array (use MKIsNoDValO to check MK_NODVAL).

See also: - setPointCount: ... , - smoothingArray

free

-free

Frees the Envelope and its contents and removes its name (if any) from the Music Kit
name table.

getNth:x:y:srnoothing:

- (MKEnvStatus)getNth:(int)n
x:(double *)xPtr
y:(double *)yPtr
smoothing:(double *)smoothingPtr

Returns, by reference, the x, y, and smoothing values for the n'th breakpoint in the
Envelope counting from breakpoint O. The method's return value is a constant that
describes the position of the n'th breakpoint:

Position

last point in the Envelope
stickpoint
point out of bounds
any other point

2-70 Chapter 2: Class Specifications

Constant

MK_lastPoint
MK_stickPoint
MK_noMorePoints
MK_noEnvError

init

If the Envelope's y array is NULL, or its x array is NULL and its sampling period is
0.0, MK _ noMorePoints is returned.

See also: - setPointCount: ... , - pointCount, - xArray, - y Array,
- smoothingArray

-init

Initializes the Envelope by setting its default smoothing to 1.0, its sampling period to
1.0, and its stickpoint to MAXINT. You never invoke this method directly. A subclass
implementation should send [super init] before performing its own initialization.
Returns self.

lookupYForX:

- (double)Iookup YFor X: (double)xVal

Returns the y value that corresponds to xVal. If xVal doesn't fall precisely on one ofthe
Envelope's breakpoints, the return value is computed as a linear interpolation between
the y values of the nearest breakpoints on either side of xVal. If xVal is out of bounds,
this returns the first or last y value, depending on which boundary was exceeded. If the
Envelope's y array is NULL, this returns MK_NODVAL (use MKIsNoDValO to check
MK_NODVAL).

pointCount

- (int)pointCount

Returns the number of breakpoints in the Envelope.

See also: - setPointCount: ...

read:

- read:(NXTypedStrr/am *)stream

You never invoke this method directly; to read an archived Envelope, call the
NXReadObjectO C function.

See also: - write:

Music Kit Classes: Envelope 2-71

releaseDur
- (double)releaseDur

Returns the duration of the release portion of the Envelope. This is the difference
between the x value of the stickpoint and the x value of the final breakpoint. Returns
0.0 if the Envelope doesn't have a stickpoint, or if the stickpoint is out of bounds.

See also: - setStickPoint:, releaseDur

samplingPeriod
- (double)samplingPeriod

Returns the sampling period, or MK_NODVAL if there's an x array (use
MKIsNoDValO to check MK_NODVAL).

See also: - setPointCount: •.. , - xArray

setPointCount:xArray:orSamplingPeriod:yArray:smoothingArray:
orDefaultSmoothing:

- setPointCount:(int)count
xArray:(double *)xPtr
orSamplingPeriod:(double)period
yArray:(double *)yPtr
smoothingArray:(double *)smoothingPtr
orDefaultSmoothing: (double)smoothing

Fills the Envelope with data by copying the first count values from xPtr, yPtr, and
smoothingPtr. If xPtr is NULL, the Envelope's sampling period is set to period
(otherwise period is ignored). Similarly, smoothing is used as the Envelope's default
smoothing in the absence of smoothingPtr. IfyPtr is NULL, the Envelope's y array is
unchanged. Returns self.

See also: - setPointCount:xArray:yArray:, - pointCount, - xArray, - yArray,
- smoothingArray, - samplingPeriod, - defaultSmoothing

2-72 Chapter 2: Class Specifications

setPointCount:xArray:y Array:
- setPointCount:(int)count

xArray:(double *)xPtr
yArray:(double *)yPtr

This is a cover for the more complete setPointCount:xArray:orSamplingPeriod: ...
method. The Envelope's smoothing specification is unchanged (smoothing is
initialized to a constant 1.0). If xPtr or yPtr is NULL, the Envelope's x or y array is
unchanged, respectively. Returns self.

See also: - setPointCount:xArray:orSamplingPeriod: ••• , - pointCount, - xArray,
- yArray

setStickPoint:

- setStickPoint: (int) index

Sets the Envelope's stickpoint to the index'th breakpoint, counting from O. Returns
self, or nil if index is out of bounds.

See also: - stickPoint

smoothingArray

- (double *)smoothingArray

Returns a pointer to the Envelope's smoothing array, or NULL if none.

See also: - setPointCount: .•• , - defaultSmoothing

stickPoint

- (int)stickPoint

Returns the index of the stickpoint, or MAXINT if none.

See also: - setStickPoint:

writeScorefileStream:

- writeScorefileStream:(NXStream *)aStream

Writes the Envelope to the stream aStream in scorefile format. The stream must already
be open. The Envelope's breakpoints are written, in order, as (x, y, smoothing) with the
stickpoint followed by a vertical bar. For example, a simple three-breakpoint Envelope
describing an arch might look like this (the second breakpoint is the stickpoint):

(0.0, 0.0, 0.0) (0.3, 1.0, 0.05) I (0.5, 0.0, 0.2)

Returns nil if the Envelope's y array is NULL. Otherwise returns self.

Music Kit Classes: Envelope 2-73

xArray

- (double *)xArray

Returns a pointer to the Envelope's x array, or NULL if none.

See also: - setPointCount: ... , - samplingPeriod

yArray

- (double *)y Array

Returns a pointer to the Envelope's y array, or NULL if none.

See also: - setPointCount:,..

write:

- write:(NXTypedStream *)stream

You never invoke this method directly; to archive an Envelope, call the
NXWriteObjectO C function.

See also: - read

2-74 Chapter 2: Class Specifications

FilePerformer

INHERITS FROM Performer: Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A FilePerformer is an abstract class that provides methods for performing time-ordered
music data from a file or a stream. The Music Kit includes a single subclass,
ScorefilePerformer, that reads and performs data from a score file.

You establish a FilePerformer object's source of data through one of two methods (but
never both):

The setFile: method associates a FilePerformer with a file name. The object opens
and closes the file for you as a performance begins and ends. The file name is
remembered between performances.

• The setStream: method associates a FilePerformer with an NXStream. Opening
and closing the stream is the responsibility of your application. The
FilePerformer's stream pointer is set to NULL after each perfonnance so you must
send another setStream: message to replay the stream.

You can restrict the data that the FilePerformer will perform through the
setFirstTimeTag: and setLastTimeTag: methods. As a FilePerformer fashions Notes
from its source, it only performs those Notes that have time tags within the given range.

The FilePerformer class declares nextNote and performNote:, both of which are
invoked automatically during a performance, as subclass responsibilities:

A subclass implementation of nextNote reads data from the stream instance
variable and from it creates either a Note object or a time tag for the following Note
(regardless of how the source of data was declared-whether through setFile: or
setStream:-the stream variable is guaranteed to be open for reading while a
performance is in progress). It returns the Note that it creates, or, in the case of a
time tag, it sets the instance variable file Time to this value and returns nil (the
fileTime variable supercedes the nextPerform variable inherited from
Performer-FilePerformers never set nextPerform directly). When stream has
been wrung dry, nextNote should set fileTime to MK_ENDOFTIME; this will
cause the FilePerformer to be deactivated.

You implement performNote: to perform the Note that's passed as its argument
(this method supercedes the perform method declared as a subclass responsibility
by Performer-a subclass of FilePerformer needn't implement perform).
Typically, this means passing the Note as the argument to sendNote:, sent to the
FilePerformer's NoteSenders (creation of a FilePerformer's NoteSenders is left to
the subclass).

Music Kit Classes: FilePerformer 2-75

INSTANCE VARIABLES

Inheritedfrom Object Class is a;

Inherited from Performer id conductor;
}v1KPcrformerStatus "tf).tll c· ° ", .. n .. "o.3,

int perform Count;
double time Shift;
double duration;
double time;
double nextPerform;
id noteSenders;
id delegate;

Declared in FilePerformer char *filename;
double fileTime;
NXStream * stream;
double firstTimeTag;
double lastTimeTag;

filename The object's file name, if set

fileTime The current time in the file, in beats

stream The object's NXStream pointer

firstTimeTag The FilePerformer's least time tag value

lastTimeTag The FilePerformer's greatest time tag value

METHOD TYPES

Copying and Initializing a FilePerformer

Defining a subclass

Accessing the object's data

2-76 Chapter 2: Class Specifications

- copyFromZone:
- init

+ fileExtensions
- activateS elf
- initializeFile
- nextNote
- performNote:
- deactivateS elf
- finishFile

- setFile:
- setStream:
- file
- stream

Restricting the object's data - setFirstTimeTag:
- setLastTimeTag:
- firstTimeTag
- lastTimeTag

Archiving the object -read:
- write:

CLASS METHODS

fileExtensions

+ (char **)fiIeExtensions

You can implement this method in a subclass to return a NULL-terminated array of file
name extensions that your subclass recognizes. When a FilePerformer is activated,
these extensions are appended, one-by-one, to the given file name (as set through
setFile:) until a match is found. The unadorned file name taken literally as the
argument to setFile: is always searched for first. Files set through setStream: are
exempt from all this mucking around: The file name appendix is manipulated only if
the file is set through setFile:.

INSTANCE METHODS

activateS elf

- activateSelf

Prepares the FilePerformer for a performance by doing the following:

1. If the object's data source was set through setFile:, the file is located (see
fileExtensions) and the stream instance variable is opened to the file.

2. The initializeFile message is sent to self.

3. nextNote is invoked until it returns a Note with a time tag equal to or greater than
the FilePerformer's first time tag value.

If stream can't be opened, if initializeFile returns nil, or if an appropriate Note isn't
found, the FilePerformer is deactivated. You never invoke this method; it's invoked
automatically by the activate method inherited from Performer.

Music Kit Classes: FilePerformer 2-77

copyFrornZone

- copyFromZone:(NXZone *)zone

Creates and returns a FilePerformer as a copy of the receiving FilePerformer. The new
object copies the receiver's NoteSenders and file name, its stream variable is set to
NULL, and it's inactive.

deactivateSelf

file

- deactivateSelf

Deactivates the FilePerformer by invoking finishFile and setting stream to NULL.
You never invoke this method; it's invoked automatically when the FilePerformer
receives the deactivate message.

- (char *)file

Returns the FilePerformer's file name, as set through setFile:.

finishFile

- finishFile

You never invoke this method; it's invoked automatically by deactivateSelf. A
subclass can implement this method for post-performance operations. You shouldn't
close the stream pointer as part of this method. The default implementation does
nothing. The return value is ignored.

firstTirneTag

init

- (double)firstTimeTag

Returns the least time tag value that the FilePerformer considers for performance, as set
through setFirstTimeTag:.

- init

Initializes a recently allocated FilePerformer. A subclass implementation should send
[super init] before performing its own initialization. Returns self.

initializeFile

- initializeFile

Invoked automatically by activateS elf, a subclass can implement this method to
perform file initialization; the file is guaranteed to be open and accessible through the

2-78 Chapter 2: Class Specifications

stream instance variable. If nil is returned, the FilePerformer is deactivated. The
default implementation does nothing and returns self.

lastTimeTag

- (double)lastTimeTag

Returns the greatest time tag value that the FilePerformer considers for perfonnance,
as set through setLastTimeTag:.

nextNote

- nextNote

This is a subclass responsibility that's expected to read data from the stream instance
variable and from it fashion a Note object or a time tag value, as explained in detail in
the class description, above. You never invoke this method; it's invoked automatically
by the perform method.

perform

- perform

You never invoke this method, nor should you reimplement it in a subclass. It defines
a FilePerfonner's general perfonnance instructions, as required by the Perfonner class.
To wit: It invokes nextNote until that method returns nil and passes each Note returned
by nextNote as the argument in a performNote: message sent to self.

performNote:

-performNote:alVote

This is a subclass responsibility that's expected to perfonn its argument, alVote, as
explained in detail in the class description, above. You never invoke this method; it's
invoked automatically by the perform method. The return value is ignored.

read:

- read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived FilePerfonner, call the
NXReadObjectO C function.

setFile:

- setFile:(char *)alVame

Associates the FilePerfonner with the file named alVame. The file is opened when the
FilePerfonner is activated and closed when it's deactivated. While it's open, the file can
be read through the stream instance variable. If the FilePerformer is active, this does

Music Kit Classes: FilePerjormer 2-79

nothing and returns nil, otherwise returns self. Invoking this method invalidates a
previous invocation of setStream:. A FilePerformer remembers its file name between
performances (unlike its amnesia with regard to its stream).

- setFirstTimeTag: (double)aTimeTag

Sets the smallest time tag considered for performance to aTimeTag and returns self. If
the FilePerformer is active, does nothing and returns nil.

setLastTimeTag:

- setLastTimeTag:(double)aTimeTag

Sets the largest time tag considered for performance to aTimeTag and returns self. If
the FilePerformer is active, does nothing and returns nil.

setStream:

- setStream:(NXStream *)aStream

Sets the FilePerformer's stream pointer (the stream instance variable) to aStream,
which must already be open for reading. If the FilePerformer is active, this does
nothing and returns nil, otherwise returns self. Invoking this method invalidates a
previous invocation of setFile:. Keep in mind that the stream variable is set to NULL
after each performance; to perform the same stream twice, you must resend setStream:
before each performance.

stream
- (NXStream *)stream

Returns the FilePerformer's stream pointer. If you set the FilePerformer's file through
setStream:, the value returned here is the value passed as the argument to that method.
If you set the file through setFile:, this method returns a stream pointer to the file only
if the FilePerforiner is active.

write:
- write:(NXTypedStream *)stream

You never invoke this method directly; to archive a FilePerformer, you call the
NXWriteRootObjectO C function.

2-80 Chapter 2: Class Specifications

FileWriter

INHERITS FROM Instrument: Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A FileWriter is an Instrument that realizes Notes by writing them to a file on the disk.
An abstract class, FileWriter implements methods that locate, open, and close files; it's
left to the FileWriter subclass to define the format in which the Notes are written. This
task is met in the subclass' implementation of realizeNote:fromNoteFile Writer:. The
Music Kit's only FileWriter subclass, ScorefileWriter, writes Notes in scorefile format.

You identify a FileWriter's file either by the file's name or as an open NXStream. If the
file is identified by name (through the setFile: method) the FileWriter object opens and
closes the file for you: The file is opened for writing when the object first receives the
realizeNote:fromNoteReceiver: message and closed after the performance. A
File Writer remembers its file's name between performances, but the file is overwritten
each time it's opened.

The setStream: method sets the FileWriter's file to an NXStream. Opening and
closing the stream is the responsibility of the application. A File Writer forgets the
designated stream between performances; if you want to write to the same stream on
successive performances, you must send setStream: before each.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Instrument

Declared in FileWriter

timeUnit

filename

stream

timeShift

Class

id

MKTimeUnit
char
NXStream
double

is a;

noteFile Writers;

timeUnit;
* filename;
* stream;
timeShift;

Either MK_second or MK_beat; used to compute
a Note's time tag and duration.

The object's file name.

The object's stream pointer.

Optional time tag value offset.

Music Kit Classes: FileWriter 2-81

METHOD TYPES

Copying and initializing a FileWriter
- copyFromZone:
- init

Defining a subclass + fileExtension

Accessing the file - setFile:
- file
- setStream:
-stream

Initializing and finishing the file - initializeFile
- firstNote:
- afterPerformance
- finishFile

Interpreting time - setTimeShift:
- timeShift
- setTimeUnit:
- timeUnit

Archiving the object -read:
- write:

CLASS METHODS

fileExtension

+ (char *)fileExtension

Returns the file name extension that's used by the class. The value returned by this
method is automatically appended to the names of the files that are written by a
FileWriter (even if the name already contains an extension). The default
implementation returns NULL. A subclass may override this method to return its own
extension (the return value shouldn't include the initial ".").

INSTANCE METHODS

after Performance

- after Performance

You never invoke this method; it's invoked automatically just after a performance. It
closes the File Writer's stream variable (if the File Writer opened it itself in the
firstNote: method) and sets it to NULL.

2-82 Chapter 2: Class Specifications

copyFrornZone:

- copyFromZone:(NXZone)zone

Creates and returns a copy of the File Writer. The new object's file is undefined.

file

- (char *)file

Returns the FileWriter's file name, as set through setFile:.

finishFile

- finishFile

This can be overridden by a subclass to perform post-performance activities. However,
the implementation shouldn't close the File Writer's NXStream pointer. You never send
the finishFile message directly to a FileWriter; it's invoked automatically after each
performance. The return value is ignored.

firstNote:

in it

- firstNote:aNote

You never invoke this method; it's invoked automatically just before the FileWriter
writes its first Note. It opens the FileWriter's file (if set through setFile:) and then
sends initializeFile to self.

- init

Initializes the FileWriter.

initializeFile

- initializeFile

You never invoke this method directly; it's invoked automatically (from within the
firstNote: method) when the File Writer receives its first Note. A subclass can override
this method to perform file initialization, such as writing a header. When this method
is invoked, the file is guaranteed to be open for writing and can be accessed through the
stream instance variable. The return value is ignored.

read:

- read:(NXTypedStream *)stream

You never invoke this method directly;. to read an archived FileWriter, call the
NXReadObjectO C function.

Music Kit Classes: FileWriter 2-83

setFile:
- setFile:(char *)aName

Associates the FileWriter with the file aName. The file is opened when the first Note
is realized (written to the file) and closed at the end of the performance. If the
File Writer is already in a performance, this does nothing and returns nil; otherwise it
returns self.

setStream:

- setStream:(NXStream *)aStream

Sets the FileWriter's file as the stream aStream. You must open and close the stream
yourself. If the FileWriter is already in a performance, this does nothing and returns
nil; otherwise it returns self.

setTimeShift:
- setTimeShift:(double)timeShift

Sets the FileWriter's performance time offset, in seconds, to timeShift. The offset,
which can be negative, is added to the time tag value of each Note that's written by the
FileWriter.

setTimeUnit:

- setTimeUnit:(MKTimeUnit)aTimeU nit

Sets the unit in which the FileWriter measures time, thus affecting the time tag and
duration values of the Notes it writes. The argument can be MK_second for
measurement in seconds, or MK_beat for beats. The default is MK_second.

stream

- (NXStream *)stream

Returns the FileWriter's stream pointer, or NULL if it isn't set. The pointer is set to
NULL after each performance.

timeShift

- (double)timeShift

Returns the FileWriter's performance time offset, in seconds, as set through
setTimeShift:. The default is 0.0.

2-84 Chapter 2: Class Specifications

timeUnit

- (MKTimeUnit)timeUnit

Returns the unit in which the FileWriter measures time, either MK_second or
MK_beat. The default is MK_second.

write:

- write:(NXTypedStream *)stream

You never invoke this method directly; to archive a FileWriter, call the
NXWriteRootObjectO C function. A FileWriter archives its filename, timeUnit, and
timeShift instance variables (as well as the instance variables defined in Instrument).

Music Kit Classes: FileWriter 2-85

2-86

Instrument

INHERITS FROM Object

DECLARED IN musickit.hu

CLASS DESCRIPTION

Instrument is an abstract class that defines the general mechanism for receiving and
realizing Notes during a Music Kit performance. An Instrument receives Notes
through its NoteReceivers, auxiliary objects that are typically connected to a
Performer's NoteSenders. The manner in which an Instrument realizes Notes is defined
in its implementation of realizeNote:fromNoteReceiver:. This method is
automatically invoked by an Instrument's NoteReceivers, when such objects receive
receiveNote: messages.

An Instrument is considered to be in performance from the time that one of its
NoteReceivers invokes the realizeNote:fromNoteReceiver: method until the
Conductor class receives the finishPerformance message. There are two implications
regarding an Instrument's involvement in a performance:

• An Instrument's firstNote: and afterPerformance methods are invoked as the
Instrument begins and finishes its performance, respectively. These methods can
be implemented in a subclass to provide specialized initialization and
post-performance cleanup.

• Some Instrument methods can't be invoked during a performance. For example,
you can't add or remove NoteReceivers while the Instrument is performing.

Creating and adding NoteReceivers to an Instrument object is generally the obligation
of the Instrument subclass; most subclasses dispose of this duty in their in it methods.
However, instances of some subclasses are born with no NoteReceivers-they expect
these objects to be added by your application. You should visit the class description of
the Instrument subclass that you're using to determine just what sort of varmint you're
dealing with.

The Music Kit defines a number of Instrument subclasses. Notable among these are:
SynthInstrument, which synthesizes Notes on the DSP; PartRecorder adds Notes to a
designated Part; ScorefileWriter writes them to a scorefile; and NoteFilter, an abstract
class that acts as a Note conduit, altering the Notes that it receives before passing them
on to other Instruments. In addition, the Midi class can be used as an Instrument to
realize Notes on an external MIDI synthesizer.

Music Kit Classes: Instrument 2-87

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Declared in Instrument id noteReceivers;

noteReceivers The object's List of NoteReceivers.

METHOD TYPES

Creating and freeing an Instrument - copy
- copyFromZone:
- init
-free

Manipulating N oteReceivers - addN oteReceiver:
- noteReceiver
- noteReceivers
- isNoteReceiverPresent:
- removeN oteReceiver:
- removeN oteReceivers
- freeN oteReceivers

Performing - firstNote:
- afterPerformance
- inPerformance

Realizing Notes - realizeN ote:fromN oteReceiver:

Archiving - write:
- read:

INSTANCE METHODS

addNoteReceiver:

- addNoteReceiver:aNoteReceiver

Adds aNoteReceiver to the Instrument, first removing it from its current Instrument, if
any. If the receiving Instrument is in performance, this does nothing and returns nil,
otherwise returns aNoteReceiver.

See also: - removeNoteReceiver:, - noteReceivers, - isNoteReceiverPresent:

2-88 Chapter 2: Class Specifications

after Performance
- after Performance

You never invoke this method; it's automatically invoked when the performance is
finished. A subclass can implement this method to do post-performance cleanup. The
default implementation does nothing; the return value is ignored.

See also: - firstNote:, - inPerformance

copy
-copy

Creates and returns a new Instrument as a copy of the receiving Instrument. The new
object has its own NoteReceiver collection that contains copies of the Instrument's
NoteReceivers. The new NoteReceivers' connections (see the NoteReceiver class) are
copied from the NoteReceivers in the receiving Instrument.

See also: - copyFromZone:

copyFromZone:
- copyFromZone:(NXZone *)zone

This is the same as copy, but the new object is allocated from zone.

See also: - copy

flrstNote:

- firstNote:aNote

You never invoke this method; it's invoked just before the Instrument realizes its first
Note. A subclass can implement this method to perform pre-realization initialization.
The argument is the Note that the Instrument is about to realize; it's provided as a
convenience and can be ignored in a subclass implementation. The Instrument is
considered to be in performance after this method returns. The return value is ignored.

See also: - afterPerformance, - inPerformance

free
-free

Frees the Instrument and its NoteReceivers. If the Instrument is in performance, this
does nothing and returns self, otherwise returns nil.

See also: - freeNoteReceivers

Music Kit Classes: Instrument 2-89

freeN oteReceivers

- freeN oteReceivers

Disconnects, removes, and frees the Instrument's NoteReceivers. No checking is done
to determine if the Instrument is in performance. Returns self.

See also: - removeNoteReceivers:

inPerformance

init

- (BaaL)inPerformance

Returns YES if the Instrument is in performance. Otherwise returns NO. An
Instrument is considered to be in performance from the time that one of its
NoteReceivers invokes realizNote:fromNoteReceiver:, until the time that the
Conductor class receives finishPerformance.

See also: - firstNote:, - afterPerformance

- in it

Initializes an Instrument that was created through allocFromZone:. Returns self.

isN oteReceiver Present:

- (BOOL)isNoteReceiverPresent:aNoteReceiver

Returns YES if aNoteReceiver is in the Instrument's NoteReceiver List. Otherwise
returns NO.

See also: - noteReceiver, - noteReceivers

note Receiver

- noteReceiver

Returns the first NoteReceiver in the Instrument's NoteReceiver List. This is useful if
you want to send a Note directly to an Instrument, but you don't care which
NoteReceiver does the receiving:

[[anInstrument noteReceiver] receiveNote:aNote]

See also: - addNoteReceiver, - noteReceivers, - isNoteReceiverPresent

2-90 Chapter 2: Class Specifications

noteReceivers

- note Receivers

Creates and returns a List that contains the Instrument's NoteReceivers. It's the
sender's responsibility to free the List.

See also: - addNoteReceiver, - noteReceiver, - isNoteReceiverPresent

read:

- read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived Note, call the
NXReadObjectO C function.

See also: - write:

realizeNote:fromNoteReceiver:

- realizeNote:aNote fromNoteReceiver:aNoteReceiver

You implement this method in a subclass to define the manner in which the subclass
realizes Notes. aNote is the Note that's to be realized; aNoteReceiver is the
NoteReceiver that received it. The default implementation does nothing; the return
value is ignored.

You never invoke this method from your application; it should only be invoked by the
Instrument's NoteReceivers as they are sent receiveNote: messages. Keep in mind that
you can send receiveNote: directly to a NoteReceiver.

removeNoteReceiver:

- removeNoteReceiver:aNoteReceiver

Removes aNoteReceiver from the Instrument's NoteReceiver List, but neither
disconnects the NoteReceiver from its connected NoteSenders nor frees the
NoteReceiver. If the Instrument is in performance, this does nothing and returns nil;
otherwise returns aNoteReceiver.

See also: - removeNoteReceivers, - addNoteReceiver, - noteReceivers,
- isNoteReceiverPresent

Music Kit Classes: Instrument 2-91

removeNoteReceivers

- removeN oteReceivers

Removes all the Instrument's NoteReceivers but neither disconnects nor frees them.
RetlLTflS self.

See also: - removeNoteReceiver, - addNoteReceiver, - noteReceivers,
- isNoteReceiverPresent

write:

- write:(NXTypedStream *)stream

You never invoke this method directly; to archive an Instrument, call the
NXWriteRootObjectO C function. The Instrument's NoteReceivers are archived
through NXWriteObjectO.

See also: - read:

2-92 Chapter 2: Class Specifications

Midi

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A Midi object provides a simple interface to the MIDI device driver. The Midi class
also provides a mechanism that automatically converts MIDI messages into Note
objects and vice versa, allowing you to incorporate MIDI data into a Music Kit
application with a minimum of effort. A Midi object is specified as it corresponds
uniquely to a serial port; since there are only two serial ports, there can be but two
distinct Midi objects within your application.

The Midi class emulates Performer and Instrument in that it's instances contain
NoteSenders and NoteReceivers: As a Midi object receives messages from the MIDI
driver, it fashions Note objects and issues these Notes into a performance through its
NoteSenders. Analogously, a Midi object receives Notes through its NoteReceivers,
turns them into MIDI messages, and sends the messages to the MIDI driver.

A Midi object automatically creates 17 NoteSenders. The first (Note Sender 0)
corresponds to the channel used for MIDI System and Channel Mode Messages. The
other 16 (NoteS enders 1 through 16) correspond to the 16 MIDI Voice Channels. The
NoteSender through which a Midi object issues a particular Note corresponds to the
channel on which it was received. Alternatively, you can tell a Midi object to issue all
Notes through NoteSender 0 by sending it the setMergelnput:YES message. In this
case, each Note is given a MK_midiChan parameter that indicates the original channel.

NoteReceiver 0 is the analog of NoteSender 0 in merge-input mode: When it receives
a Note on NoteReceiver 0, a Midi object reads the Note's MK_midiChan parameter and
realizes the Note on that channel. The other 16 NoteReceivers correspond to the 16
MIDI Voice Channels.

Before a Midi object can receive or send MIDI messages, it must be opened and started:
open establishes communication between the object and the MIDI driver, run starts the
driver's clock ticking. Balancing these two methods are stop, which stops the driver's
clock, and close, which breaks communication between the object and the MIDI driver.
These methods change the state of the Midi object:

• MK_devOpen. The Midi object is open but not running.
• MK_devRunning. The object is open and running.
• MK_devStopped. The object has been running but is now stopped.
• MK_devClosed. The object is closed.

As you start, pause, resume, and stop a performance, you should similarly control your
Midi objects, as described by the following table:

Music Kit Classes: Midi 2-93

To the Conductor class

startPerformance
pausePerformance
resumePerformance
finishPerformance

To your Midi objects

run
stop
run
close

The MIDI driver has its own clock that's more reliable than the Conductor's clock. To
take advantage of this, the Conductor's clock is synched to the driver's clocked-this
is particularly beneficial when you're recording MIDI. However, if you're receiving
MIDI data and processing it in real time, it's better to decouple the Conductor from the
MIDI driver by sending setUseInputTimeStamps:NO to the Midi object.

As a Midi object initiates an outgoing MIDI message it gives the message a timestamp
that indicates when the message should be sent into the real world by the MIDI driver.
By sending setOutputTimed:NO to a Midi object, you can specify that the driver is to
ignore the timestamps and send all messages as soon as it receives them. This improves
real-time response, but at the expense of possible rhythmic unsteadiness.

MIDI to Note conversion

When a Midi object receives a MIDI message, it creates a Note object of a particular
note type and with particular parameters according to the following rules:

• If the message is a MIDI Note On with a Key Velocity greater than 0, a noteOn is
created and given key number (MK_keyNum) and velocity (MK_ velocity)
parameters that correspond to the message's Key Number and Key Velocity values.
The note tag is reckoned from the message's Channel Number and Key Number.

• A MIDI Note Off, or a Note On with ° Key Velocity prompts a noteOff. If the Note
Off contains a Release Key Velocity value greater than 0, the noteOff's
MKJelVelocity parameter will reflect this. The note tag is as with a noteOn.

A MIDI Channel Voice message other than Note On and Note Off prompts a
noteUpdate that contains one of MK_keyPressure, MK_afterTouch,
MK_controIChange, MK_pitchBend, or MK_programChange, depending on the
MIDI message. If it contains MK30ntrolChange, the Note will also contain a
MK_controlVal parameter. If MK_keyPressure, the Note is given a note tag.

• Notes created from any other message, such as Channel Mode and System
messages, are mutes. Its parameters are described below.

The parameters in a mute are devised as follows:

• MIDI Channel Mode messages dissolve into two parameters: MK_basicChan and
MK_chanMode. The former records the Basic Channel while the latter takes one
of the following values: MK_resetControllers, MK_IocaIControIModeOn,
MK_IocalControIModeOff, MK_allNotesOff, MK_omniModeOff,
MK_omniModeOn, MK_monoMode, and MK_polyMode.

2-94 Chapter 2: Class Specifications

Parameters that correspond to MIDI System Common messages are
MK_timeCodeQ (MIDI time code, quarter frame), MK_songPosition,
MK_songSelect, and MK_tuneRequest.

A MIDI System Real Time message heralds a MK_sysRealTime parameter; it's
possible values are MK_sysClock, MK_sysStart, MK_sysContinue, MK_sysStop,
MK_sysActiveSensing, and MK_sysReset.

The parameter MK_sysExclusive corresponds to a MIDI system exclusive
message. Its value is a C string, with each MIDI byte encoded as a pair of
hexadecimal digits delimited by a comma.

Note to MIDI conversion

• If two successive noteOns have the same note tag.and the same MK_keyNum
value, an intervening Note Off message is generated and sent.

If two successive noteOns have the same note tag but different MK_keyNum
values, the second Note On message is immediately followed by a Note Off with
the Key Number of the first Note On (in other words, the first Note On is silenced).

• If a note On has no MK_keyNum parameter, a value is generated from the MKjreq
parameter, if any, otherwise a default value of 64 is used.

• A noteDur is split into noteOn/noteOff pair and the separate Notes are processed.

• A noteOn or noteOff without a note tag, a noteOff with an inactive note tag, or an
MK_keyPressure note Update with an inactive or missing note tag is ignored.

• A noteOff with no MKjelVelocity parameter prompts a Note On with 0 Velocity.

INST ANCE VARIABLES

Inheritedfrom Object

Declared in Midi

noteS enders

note Receivers

deviceStatus

Class

id
id
MKDeviceStatus
char
BaaL
BaaL
double

lsa;

noteS enders;
noteReceivers;
deviceStatus;
*midiDev;
useInputTimeStamps;
outputlsTimed;
localDeltaT;

The object's collection of NoteSenders.

The object's collection of NoteReceivers

The object's status.

Music Kit Classes: Midi 2-95

midiDev Midi device port name.

useInputTimeStamps YES if Conductor is updated by the driver.

outputIsTimed YES if the driver's clock is used for output.

localDeltaT Offset added to MIDI output time stamps.

METHOD TYPES

Creating and freeing a Midi object - free
+ new

Querying the object

Modifying the object

Opening and running the object

CLASS METHODS

alloc
allocFrornZone:

+ newOnDevice:

- channelNoteReceiver:
- channelN oteSender:
- conductor
- deviceStatus
- localDeltaT
- note Receiver
- noteReceivers
- noteSender
- noteS enders
- outputIsTimed
- useInputTimeStamps

- acceptSys:
- ignoreSys:
- setLocalDeltaT:
- setMergeInput:
- setOutputTimed:
- setUseInputTimeStamps:

- abort
- close
-open
- openInputOnly
- openOutputOnly
-run
- stop

You never invoke these methods; Midi overrides them to generate errors.

2-96 Chapter 2: Class Specifications

new

+ new

If a Midi object for the device "midil" (the default MIDI device name) doesn't already
exist, this creates such an object. Otherwise, returns the existing object.

newOnDevice:

+ newOnDevice:(char *)devName

If a Midi object for the device devName doesn't already exist, this creates such an
object. Otherwise, returns the existing object. The argument must be either "midiO" or
"midi! ".

INSTANCE METHODS

abort

- abort

Immediately stops and closes the Midi object, sets its status to MK_devClosed, and
releases the device port. A more graceful approach is. to invoke stop and close.

acceptSys:

- acceptSys:(MKMidiParVal)param

Instructs the Midi object to accept incoming MIDI messages that set the parameter
MK_sysRealTime to the value specified in param, which must be one of MK_sysStop,
MK_sysStart, MK_sysContinue, MK_sysClock, or MK_sysActiveSensing.

channelN oteReceiver:

- channeINoteReceiver:(unsigned)n

Returns the NoteReceiver for MIDI channel n, as explained in the class description.

channelN oteSender:

- channeINoteSender:(unsigned)n

Returns the NoteSender for MIDI channel n, as explained in the class description.

close

- close

Waits for the Midi object's output queue to empty and then closes the Midi object, sets
its status to MK_devClosed, and releases the device port. Returns self.

Music Kit Classes: Midi 2-97

conductor

- conductor

Always returns the clockConductor.

deviceStatus

- (MKDeviceStatus)deviceStatus

Returns the Midi object's device status, as listed in the class description.

free

- free

Closes and frees the Midi object and frees its NoteSenders and NoteReceivers.

ignoreSys:

init

- ignoreSys:(MKMidiParVal)param

Instructs the Midi object to ignore messages that set the MK_sysRealTime parameter
to paramo The list of values that are ignored by default is given in acceptSys:.

You never invoke this method; Midi overrides it to generate an error.

localDeltaT

- (double)localDeltaT

Returns the Midi object's local delta time, in seconds, as set through setLocalDeltaT:.
The local delta time is added to the global delta time, as set through MKSetDeitaTO,
and the sum is added into each MIDI driver timestamp. This has no effect if the Midi
object isn't timed. The default is 0.0.

note Receiver

- note Receiver

Returns the Midi object's first NoteReceiver (NoteReceiver 0).

noteReceivers

- noteReceivers

Returns a List containing the Midi object's NoteReceivers.

2-98 Chapter 2: Class Specifications

noteSender

- noteSender

Returns the Midi object's first NoteSender (NoteSender 0).

noteS enders

- noteSenders

Returns a List containing the Midi object's NoteSenders.

open

-open

Opens the Midi object for two-way communication with the MIDI driver. The object's
status is set to MK_devOpen. If the object is open in only one direction, close is first
invoked. Returns self, or nil if the object can't be opened.

openlnputOnly

- openlnputOnly

Opens the Midi object for input from the MIDI driver. If the Midi object is open in both
directions or for output only, close is first invoked. Returns self, or nil if the object can't
be opened.

openOutputOnly

- openOutputOnly

Opens the Midi object for output to the MIDI driver. If the object is open in both
directions or for input only, close is first invoked. Returns self, or nil if the object can't
be opened.

outputlsTimed

- (BOOL)outputlsTimed

Returns YES if the messages sent by the Midi object to the MIDI driver are given
timestamps, otherwise returns NO. The default is YES.

run
-run

Opens the Midi object (if necessary), starts its clock, and sets the Midi object's status
to MK_devRunning. Returns self, or nil if it's closed and can't be opened.

Music Kit Classes: Midi 2-99

setLocalDeltaT:
- setLocalDeltaT:(double)seconds

Sets the Midi object's local delta time, in seconds, to seconds; the default is 0.0. The
local delta time is added to the global delta time, as set through MKSetDeltaTO, and
the sum is added into each timestamp before it's passed to the MIDI driver. This has
no effect if the Midi object isn't timed. Returns self.

setMergelnput:

- setMergelnput:(BOOL)yesOrNo

If yesOrNo is YES, each Note fashioned by the Midi object from a MIDI message is
given an MK_midiChan parameter with a value set to the channel on which the Note
was received. All Notes are then sent to the Midi object's NoteSender O. By default,
the input isn't merged.

setOutputTimed:

- setOutputTimed:(BOOL)yesOrNo

Establishes whether MIDI messages are sent to the MIDI driver with or without
timestamp values, as yesOrNo is YES or NO. If the Midi object is timed, messages are
stamped with the Conductor's notion of the current time plus the global and local delta
times. If it's untimed, the timestamps are always 0, indicating to the MIDI driver that
the messages should be sent immediately. The default is timed.

setUselnputTimeStamps:

- setUselnputTimeStamps:(BOOL)yesOrNo

If yesOrNo is YES the Conductor's clock is synched to the MIDI driver's clock as the
Midi object receives MIDI messages. If the Midi object isn't closed, this does nothing
and returns nil; otherwise returns self. The two clocks are synched by default.

stop

- stop

Stops the Midi object's clock and sets it's status to MK_devStopped. Returns self.

uselnputTimeStamps

- (BOOL)uselnputTimeStamps

Returns YES or NO as the Conductor's clock and the MIDI driver's clock are
synchronized, as set through setUselnputTimeStamps:. The default is YES.

2-100 Chapter 2: Class Specifications

Note

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

Note objects are containers of musical information. The amount and type of
information that a Note can hold is practically unlimited; however, you should keep in
mind that Notes haven't the ability to act on this information, but merely to store it. It's
left to other objects to read and process the information in a Note. Most of the other
Music Kit classes are designed around Note objects, treating them as common
currency. For example, Part objects store Notes, Performers acquire them and pass
them to Instruments, Instruments read the contents of Notes and apply the information
therein to particular styles of realization, and so on.

The information that comprises a Note defines the attributes of a particular musical
event. Typically, an object that uses Notes plucks from them just those bits of
information in which it's interested. Thus you can create Notes that are meaningful in
more than one application. For example, a Note object that's realized as synthesis on
the DSP would contain many particles of information that are used to drive the
synthesis machinery; however, this doesn't mean that the Note can't also contain
graphical information, such as how the Note would be rendered when drawn on the
screen. The objects that provide the DSP synthesis realization (SynthPatch objects, as
defined by the Music Kit) are designed to read just those bits of information that have
to do with synthesis, and ignore anything else the Note contains. Likewise, a notation
application would read the attributes that tell it how to render the Note graphically, and
ignore all else. Of course, some information, such as the pitch and duration of the Note,
would most likely be read and applied in both applications.

Most of the methods defined by the Note class are designed to let you set and retrieve
information in the form of parameters. A parameter consists of a tag, a name, a value,
and a data type:

• A parameter tag is a unique integer used to catalog the parameter within the Note;
the Music Kit defines a number of parameter tags such as MKjreq (for frequency)
and MK_amp (for amplitude).

• The parameter's name is used primarily to identify the parameter in a scorefile. The
names of the Music Kit parameters are the same as the tag constants, but without
the "MK_" prefix. You can also use a parameter's name to retrieve its tag by
passing the name to Note's parName: class method. (As explained in its
descriptions below, it's through this method that you create your own parameter
tags.)

Music Kit Classes: Note 2-101

• A parameter's value can be a double, int, string (char *), or an object (id). The
method you invoke to set a parameter value depends on the type of the value. To
set a double value, for example, you would invoke the setPar:toDouble: method.
Analogous methods exist for the other types. You can retrieve the value of a
double-, int-, or string-valued parameter as any of these three types, regardless of
the actual type of the value. For example, you can set the frequency of a Note as a
double, thus:

[aNote setPar:MK_freq toDouble:440.0]

and then retrieve it as an int:

int freq = [aNote parAsInt:MK_freq]

The type conversion is done automatically.

• Object-valued parameters are treated differently from the other value types. The
only Music Kit objects that are designed to be used as parameter values are
Envelopes and WaveTables (and the WaveTable descendants Partials and Samples).
Special methods are provided for setting and retrieving these objects. Other
objects, most specifically objects of your own classes, are set through the
setPar:toObject: method. While an instance of any class may be set as a
parameter's value through this method, you should note well that only those objects
that respond to the writeASCIIStream: and readASCIIstream: messages can be
written to and read from a scorefile. None of the Music Kit classes implement these
methods and so their instances can't be written to a scorefile as parameter values
(Envelopes and WaveTables are written and read through a different mechanism).

• The parameter's data type is set when the parameter's value is set; thus the data type
is either a double, int, string, Envelope, WaveTable, or (other) object. These are
represented by constants, as given in the description of parType:, the method that
retrieves a parameter's data type.

A parameter is said to be present within a Note once its value has been set. You can
determine whether a parameter is present in one of four ways:

• The easiest way is to invoke the boolean method isParPresent:, passing the
parameter tag as the argument. An equivalent C function, MKIsNoteParPresentO
is also provided for greater efficiency.

2-102 Chapter 2: Class Specifications

• At a lower lever, you can invoke the parVector: method to retrieve one of a Note's
"parameter bit vectors," integers that the Note uses internally to indicate which
parameters are present. You query a parameter bit vector by masking it with the
parameter's tag:

/* A Note may have more then one bit vector to accommodate all

* its parameters.
*/

int parVector = [aNote parVector: (MK_amp/32)];

/* If MK_amp is present, the predicate will be true. */

if (parVector & (1 « (MK_amp % 32)))

If you plan on retrieving the value of the parameter after you've checked for the
parameter's presence, then it's generally more efficient to go ahead and retrieve the
value and then determine if the parameter is actually set by comparing its value to
the appropriate parameter-not-set value, as given below:

Retrieval type

int

No-set value

MAXINT
double MK_NODVAL (but see below)
char *
id nil

Unfortunately, you can't use MK_NODVAL in a simple comparison
predicate. To check for this return value, you must call the in-line function
MKIsNoDVaIO; the function returns 0 if its argument is MK_NODVAL and
nonzero if not:

/* Retrieve the value of the amplitude parameter. */

double amp = [aNote parAsDouble:MK_amp];

/* Test for the parameter's existence. */

if (!MKIsNoDVal (amp))

... /* do something with the parameter */

If you're looking for and processing a large number of parameters in one block,
then you should make calls to the MKNextParameterO C function, which returns
the values of a Note's extant parameters only. See the function's description in
Chapter 2 for more details.

Music Kit Classes: Note 2·103

A Note has two special timing attributes: A Note's time tag corresponds, conceptually,
to the time during a performance that the Note is performed. Time tags are set through
the setTimeTag: method. The other timing attribute is the Note's duration, a value that
indicates how long the Note will endure once it has been struck. It's set through
setDur:. A single Note can have only one time tag and one duration. Keep in mind,
however, that not all Notes need a time tag ruid a duration. For eXrullple, if you realize
a Note by sending it directly to an Instrument, then the Note's time tag-indeed,
whether it even has a time tag-is of no consequence; the Note's performance time is
determined by when the Instrument receives it (although see the ScorefileWriter,
ScoreRecorder, and PartRecorder class descriptions for alternatives to this edict).
Similarly, a Note that merely initiates an event, relying on a subsequent Note to halt the
festivities (as described in the discussion of note types, below) doesn't need and
actually mustn't be given a duration value.

During a performance, time tag and duration values are measured in time units called
beats. The size of a beat is determined by the tempo of the Note's Conductor. However,
you never set a Note's Conductor directly; instead, it's identified as the Conductor of
the Performer (or Midi) that last performed the Note. Therefore, to determine its
Conductor, a Note must know its most recent Performer. To this end, the Note is
informed, whenever it's performed, of the Performer that's performing it; this
informing is done automatically by the Performer itself. If a Note hasn't been
performed by a Performer-if you've sent it directly to an Instrument, for example
then its Conductor is the defaultConductor, which has a default (but not immutable)
tempo of 60.0 beats per minute. Keep in mind that if you send a Note directly to an
Instrument, then the Note's time tag is (usually) ignored, as described above, but its
duration may be considered and employed by the Instrument.

A Note has a note type that casts it into one of five roles:

• A noteDur represents an entire musical note (a note with a duration).
• A noteOn establishes the beginning of a note.

A noteOff establishes the end of a note.
• A noteUpdate represents the middle of a note (it updates a sounding note).
• A mute makes no sound.

Only noteDurs may have duration values; the very act of setting a Note's duration
changes it to a noteDur.

You match the two Notes in a noteOn/noteOff pair by giving them the same note tag
value; a note tag is an integer that identifies two or more Notes as part of the same
musical event or phrase. In addition to coining noteOn/noteOff pairs, note tags are used
to associate a noteUpdate with a noteDur or noteOn that's in the process of being
performed. The C function MKNoteTagO is provided to generate note tag values that
are guaranteed to be unique across your entire application-you should never create a
new note tag except through this function.

2-104 Chapter 2: Class Specifications

Instead of or in addition to being actively realized, a Note object can be stored. In a
running application, Notes are stored within Part objects through the addToPart:
method. A Note can be added to only one Part at a time; adding it to a Part
automatically removes it from its previous Part. Within a Part object, Notes are sorted
according to their time tag values.

For long-term storage, Notes can be written to a scorefile. There are two "safe" ways
to write a scorefile: You can add a Note-filled Part to a Score and then write the Score
to a scorefile, or you can send Notes during a performance to a ScorefileWriter
Instrument. The former of these two methods is generally easier and more flexible
since it's done statically and allows random access to the Notes within a Part. The latter
allows Note objects to be reused since the file is written dynamically; it also lets you
record interactive performances.

You can also write individual Notes in scorefile format to an open stream by sending
writeScorefileStream: to the Notes. This can be convenient while debugging, but keep
in mind that the method is designed primarily for use by Score and ScorefileWriter
objects; if you write Notes directly to a stream that's open to a file, the file isn't
guaranteed to be recognized by methods that read scorefiles, such as Score's
readScorefile:.

INSTANCE VARIABLES

Inheritedfrom Object

Declared in Note

noteType

noteTag

performer

part

timeTag

Class

MKNoteType
int
id
id
double

The Note's note type.

The Note's note tag.

isa;

noteType;
noteTag;
performer;
part;
timeTag;

The Performer that most recently performed this
Note.

The Part that this Note is a member of.

The Note's time tag.

Music Kit Classes: Note 2-105

METHOD TYPES

Creating and freeing a Note

Storing the object

Querying the object

Modifying parameters

Querying parameters

Time tag and duration

2-106 Chapter 2: Class Specifications

-copy
- copyFromZone:
- init

~..,...~+'l.T~+""'T~---. ,.,..T
- Hl.lL'Y.lUl.1.1JU\.I.LQO_

- split::
-free

- addToPart:
- part
- removeFromPart
- writeScorefileStream:
- read:
- write:

- compare:
- conductor
- performer

- setPar:toDouble:
- setPar:tolnt:
- setPar:toString:
- setPar:toEnvelope:
- setPar:to Wave Table:
- setPar:toObject:
- copyParsFrom:
- removePar:

- parAsDouble:
- parAslnt:
- parAsString:
- parAsStringNoCopy:
- parAsEnvelope:
- parAsWaveTable:
- parAsObject:
- freq
-keyNum
- isParPresent:
- parType:
+ parName:
- parVector:
- parVectorCount

- setTimeTag:
- setDur:
- timeTag
-dur

Note type and note tag - setNoteType:
- setNoteTag:
- noteType
- noteTag

CLASS METHODS

parName:
+ (int)parName:(char *)aName

Returns the integer that identifies the parameter named aN ame. If the named parameter
doesn't have an identifier, one is created and thereafter associated with the parameter.

See also: - setPar:toDouble: (etc.), - isParPresent:

INSTANCE METHODS

addToPart:

- addToPart:aPart

Removes the Note from the Part that it's currently a member of and adds it to aPart.
Returns the Note's old Part, if any.

This method is equivalent to Part's addNote: method.

See also: -part, - removeFromPart

Music Kit Classes: Note 2-107

compare:
- (int)compare:aNote

Returns a value that indicates which of the receiving Note and the argument Note would
appear first if the two Notes were sorted into the same Part:

• -1 indicates that the receiving Note is first.
• 1 means that the argument, aNote, is first.
• 0 is returned if the receiving Note and aNote are the same object.

Keep in mind that the two Notes needn't actually be members of the same Part, nor
must they be members of Parts at all. Naturally, the comparison is judged first on the
relative values of the two Notes' time tags; changing one or both of the Notes' time tags
invalidates the result of a previous invocation of this method.

conductor
- conductor

Returns the Conductor of the Performer that most recently performed the Note. If the
Note hasn't been performed (by a Performer), then this returns the defaultConductor.
A Note's Conductor is used primarily by Instrument objects that split noteDurs into
noteOn/noteOff pairs; performance of the noteOff is scheduled with the Conductor
that's returned by this method.

See also: - performer

copy
-copy

Creates and returns a new Note object as a copy of the receiving Note. The receiving
Note's parameters, time tag, duration, note type, and note tag are copied into the new
Note. Object-valued parameters are shared by the two Notes. The new Note isn't a
member of a Part, regardless of the membership of the original Note. However, the new
Note's Performer is that of the original Note, even though the new Note hasn't actually
been performed. This imposture is necessary so that an Instrument can copy the Notes
that it receives (prior to altering them, for example) without sacrificing access to the
appropriate Conductor (more specifically, to the Conductor's tempo), which is retrieved
through the Note's Performer.

See also: - copyParsFrom:, - copyFromZone:, - split::

2-108 Chapter 2: Class Specifications

copyParsFrorn:
- copyParsFrom:aNote

Copies aNote's parameters into the receiving Note. Object-valued parameters are
shared by the two Notes. Returns self.

See also: - copy, - copyFromZone:, - split::

copyFrornZone:
- copyFromZone:(NXZone *)aZone

The same as copy, but the new Note is allocated in aZone.

See also: - copy, - copyParsFrom:, - split::

dur
- (double)dur

Returns the Note's duration, or MK_NODVAL if it isn't set (use the function
MKIsNoDValO to check for MK_NODVAL).

See also: - setDur:

free
- free

Removes the Note from its Part and then frees the Note (the Note's object-valued
parameters aren't freed).

freq

- (double)freq

This method returns the Note's frequency, measured in Hertz (or cycles-per-second). If
the frequency parameter MKjreq is present, its value is returned; otherwise, the
frequency is converted from the key number value given by the MK_keyNum
parameter. In the absence of both MKjreq and MK_keyNum, MK_NODVAL is
returned (use the function MKIsNoDValO to check for MK_NODVAL). The
correspondence between key numbers and frequencies is given in Appendix A, "Music
Tables."

Frequency and key number are the only two parameters whose values are retrieved
through specialized methods. All other parameter values should be retrieved through
one of the par AsType: methods.

See also: - keyNum, - setPar:toDouble:

Music Kit Classes: Note 2-109

init
- in it

Initializes a Note by setting its note type to MK_mute. Returns self.

See also: - initWiihTimeTag:

initWithTimeTag:

- init:(double)aTimeTag

The same as init, but also sets the Note's time tag to aTimeTag.

See also: - init

isPar Present:

- (BOOL)isParPresent:(int)parameterTag

Returns YES if the parameter identified by parameterTag is present in the Note (in
other words, if its value has been set), and NO if it isn't.

See also: - parVector:, MKIsNoteParPresentO, MKNextParameterO,
+ parName:, - parType:, - setPar:toDouble: (etc), - parAsDouble: (etc)

keyNum

- (int)keyNum

This method returns the key number of the Note. Key numbers are integers that
enumerate discrete pitches; they're provided primarily to accommodate MIDI. If the
MK_keyNum parameter is present, its value is returned; otherwise, the key number that
corresponds to the value of the MKjreq parameter, if present, is returned. In the
absence of both MK_keyNum and MKjreq, MAXINT is returned. The
correspondence between key numbers and frequencies is given in Appendix A, "Music
Tables."

Frequency and key number are the only two parameters whose values are retrieved
through specialized methods. All other parameter values should be retrieved through
one of the par AsType: methods.

See also: - freq, - setPar:tolnt:

2-110 Chapter 2: Class Specifications

noteTag

- (int)noteTag

Return the Note's note tag, or MAXINT if it isn't set.

See also: - setNoteTag:, MKNoteTagO

noteType

- (MKNoteType)noteType

Returns the Note's note type, one of MK_noteDur, MK_noteOn, MK_noteOff,
MK_noteUpdate, or MK_mute. The note type describes the character of the Note,
whether it represents an entire musical note (or event), the beginning, middle, or end of
a note, or no note (no sound). A newly created Note is a mute. A Note's note type can
be set through setNoteType:, although setDur: and setNoteTag: may also change it as
a side effect.

See also: - setNoteType:, - setDur:, - setNoteTag:

par AsDouble:

- (double)par AsDouble:(int)parameterTag

Returns a double value converted from the value of the parameter identified by
parameterTag. If the parameter isn't present or if its value is an object, returns
MK_NODVAL (use the function MKIsNoDValO to check for MK_NODVAL). You
should use the freq method if you want to retrieve the frequency of the Note.

See also: MKGetNoteParAsDoubleO, - setPar:toDouble: (etc), - parType:,
- isParPresent:

par AsEnvelope:

- parAsEnvelope:(int)parameterTag

Returns the Envelope value of parameterTag. If the parameter isn't present, or if its
value isn't an Envelope, returns nil.

See also: MKGetNoteParAsEnvelope(), - setPar:toDouble: (etc), - parType:,
- isParPresent:

Music Kit Classes: Note 2-111

parAsInt:

- (int)par Aslnt:(int)parameterTag

Returns an int value converted from the value of the parameter identified by
parameterTag. If the parameter isn't present, or if its value is an object, returns
MAXINT.

See also: MKGetNoteParAslntO, - setPar:toDouble: (etc), - parType:,
- isParPresent:

parAsObject:

- par AsObject:(int)parameterTag

Returns the object value ofthe parameter identified by parameterTag. If the parameter
isn't present, or if its value isn't an object, returns nil. This method can be used to
return Envelope and WaveTable objects in addition to non-Music Kit objects.

See also: MKGetNoteParAsObjectO, - setPar:toDouble: (etc), - parType:,
- isParPresent:

par AsString:

- (char *)par AsString:(int)parameterTag

Returns a string converted from a copy of the value of the parameter identified by
parameterTag. If the parameter isn't present, or if its value is an object, returns an
empty string.

See also: MKGetNoteParAsStringO, - setPar:toDouble: (etc), - parType:,
- isParPresent:

par AsStringNoCopy:

- (char *)parAsStringNoCopy:(int)parameterTag

Returns a string converted from the value of the parameter identified by parameterTag.
If the parameter was set as a string, then this returns a pointer to the actual string itself;
you should neither delete nor alter the value returned by this method. If the parameter
isn't present, or if its value is an object, returns an empty string.

See also: MKGetNoteParAsStringNoCopyO, - setPar:toDouble: (etc),
- parType:, - isParPresent:

2-112 Chapter 2: Class Specifications

parAsWaveTable:

- parAsWaveTable:(int)parameterTag

Returns the WaveTable value of the parameter identified by parameterTag. If the
parameter isn't present, or if it's value isn't a WaveTable, returns nil.

parType:

- (MKDataType)parType:(int)parameterTag

Returns the data type of the value of the parameter identified by parameterTag. The
data type is set when the parameter's value is set; the specific data type ofthe value, one
of the MKDataType constants listed below, depends on which method you used to set
it:

Method

setPar:tolnt:
setPar:toDouble
setPar:toString:
setPar:to Wave Table:
setPar:toEnvelope:
setPar:toObject:

Data type

MK_int
MK_double
MK_string
MK_ waveTable
MK_envelope
MK_object

If the parameter's value hasn't been set, MK_noType is returned.

See also: MKGetNoteParAsWaveTableO, - setPar:toDouble: (etc), - parType:,
- isParPresent:

parVector:

- (unsigned)parVector:(unsigned)index

Returns an integer bit vector that indicates the presence of the index'th set of
parameters. Each bit vector represents 32 parameters. For example, if index is 1, the
bits in the returned value indicate the presence of parameters a through 31, where 1
means the parameter is present and a means that it's absent. An index of 2 returns a
vector that represents parameters 32 through 63, and so on. To query for the presence
of a particular parameter, use the following predicate formula:

[aNote parVector: (parameterTag/32)] & (1«(parameterTag%32))

In this formula, parameterTag identifies the parameter that you're interested in. Keep
in mind that the parameter bit vectors only indicate the presence of a parameter, not its
value.

See also: - parVectorCount, - isParPresent:

Music Kit Classes: Note 2-113

par VectorCount

- (int)parVectorCount

Returns the number of parameter bit vectors that the Note is using to accommodate all
its parameters identifiers. Normally you only need to know this if you're iterating over
the parameter vectors.

See also: - parVector

part

- part

Returns the Part that contains the Note, or nil if none. By default, a Note isn't contained
in a Part.

See also: - addToPart:, - removeFromPart

performer

- performer

Returns the Performer that most recently performed the Note. This is provided,
primarily, as part of the implementation of the conductor method.

See also: - conductor

read:

- read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived Note, call the
NXReadObjectO C function.

See also: - write:

removeFromPart

- removeFromPart

Removes the Note from its Part. Returns the Part, or nil if none.

See also: - addToPart:, - part

2-114 Chapter 2: Class Specifications

removePar:
- removePar:(int)parameterTag

Removes the parameter identified by parameterTag from the Note; in other words, this
sets the parameter's value to indicate that the parameter isn't set. Ifthe parameter was
present, then the Note is returned; if not, nil is returned.

See also: + parName:, - isParPresent:, - setPar:toDouble: (etc)

setDur:

- (double)setDur:(double)value

Sets the Note's duration to value beats and sets its note type to MK_noteDur. If value
is negative the duration isn't set, the note type isn't changed, and MK_NODVAL is
returned (use the function MKIsNoDValO to check for MK_NODVAL); otherwise
returns value.

See also: - dur, - conductor

setNoteTag:
- setNoteTag:(int)newTag

Sets the Note's note tag to newTag; ifthe note type is MK_mute, it's changed to
MK_noteUpdate. Returns self.

Note tags are used to associate different Notes with each other, thus creating an
identifiable (by the note tag value) "Note stream." For example, you create a
noteOn/noteOff pair by giving the two Notes identical note tag values. Also, you can
associate any number of note Updates with a single noteDur, or with a noteOn/noteOff
pair, through similarly matching note tags. While note tag values are arbitrary, they
should be unique across an entire application; to ensure this, you should never create
noteTag values but through the MKNoteTagO C function.

See also: - noteTag, MKNoteTagO

Music Kit Classes: Note 2-115

setNoteType:
- setNoteType:(MKNoteType)newNoteType

Sets the Note's note type to newNoteType, one of:

MK_noteDur; represents an entire musical note.
MK_noteOn; represents the beginning of a note.
MK_noteOff; represents the end of a note.
MK_noteUpdate; represents the middle of a note.
MK_mute; makes no sound.

Returns self, or nil if newNoteType isn't a valid note type.

You should keep in mind that the setDur: method automatically sets a Note's note type
to MK_noteDur; setNoteTag: changes mutes into note Updates.

See also: - noteType, - setNoteTag:, - setDur:

setPar:toDouble:

- setPar:(int)parameterTag toDouble:(double)aDouble

Sets the value of the parameter identified by parameterTag to aDouble, and sets its data
type to MK_double. Returns self.

See also: + parName:, - parType:, - isParPresent:, - parAsDouble:

setPar:toEnvelope:
- setPar:(int)parameterTag toEnvelope:anEnvelope

Sets the value of the parameter identified by parameterTag to anEnvelope, and sets its
data type to MK_envelope. Returns self.

See also: + parName:, - parType:, - isParPresent:, - parAsEnvelope:

setPar:toInt:

- setPar:(int)parameterTag toInt:(int)anlnteger

Sets the value of the parameter identified by parameterTag to anlnteger, and sets its
data type to MK_int. Returns self.

See also: + parName:, - parType:, - isParPresent:, - parAsInteger:

2-116 Chapter 2: Class Specifications

setPar:toObject:
- setPar:(int)parameterTag toObject:anObject

Sets the value of the parameter identified by parameterTag to anObject, and sets its data
type to MK_object. Returns self.

While you can use this method to set the value of a parameter to any object, it's
designed, principally, to allow you to use an instance of one of your own classes as a
parameter value. If you want the object to be written to and read from a scorefile, it
must respond to the messages writeASCIIStream: and readASCIIStream:. While
response to these messages isn't a prerequisite for an object to be used as the argument
to this method, if you try to write a Note that contains a parameter that doesn't respond
to writeASCIIStream:, an error is generated.

If you're setting the value as an Envelope or WaveTable object, you should use the
setPar:toEnvelope: or setPar:toWaveTable: method, respectively.

See also: + parName:, - parType:, - isParPresent:, - parAsObject:

setPar:toString:

- setPar:(int)parameterTag toString:(char *)aString

Sets the value ofthe parameter identified by parameterTag to aString, and sets its data
type to MK_string. Returns self.

See also: + parName:, - parType:, - isParPresent:, - parAsString:

setPar:to WaveTable:

- setPar:(int)parameterTag to WaveTable:aWaveTable

Sets the value of the parameter identified by parameterTag to aWaveTable, and sets its
data type to MK_ wave Table. Returns self.

See also: + parName:, - parType:, - isParPresent:, - parAsWaveTable:

setTimeTag:
- (double)setTimeTag:(double)newTimeTag

Sets the Note's time tag to newTimeTag or 0.0, whichever is greater (a time tag can't be
negative). The old time tag value is returned; a return value of MK_ENDOFTIME
indicates that the time tag hadn't been set. Time tags are used to sort the Notes within
a Part; if you change the time tag of a Note that's been added to a Part, the Note is
automatically resorted.

See also: - timeTag, - addToPart:, -sort (Part)

Music Kit Classes: Note 2-117

split: :

- split:(id *)aNoteOn :(id *)aNoteOff

This method splits a noteDur into a noteOn/noteOff pair, as described below. The new
Notes are returned by reference in the arguments. The noteDur itself is left unchanged.
If the receiving Note isn't a noteDur, this does nothing and returns nil, otherwise it
returns self.

The receiving Note's MKjelVelocity parameter, if present, is copied into the noteOff.
All other parameters are copied into (or, in the case of object-valued parameters,
referenced by) the noteOn. The noteOn takes the receiving Note's time tag value; the
noteOff's time tag is that ofthe Note plus its duration. Ifthe receiving Note has a note
tag, it's copied into the note On and noteOff; otherwise a new note tag is generated for
them. The new Notes are added to the receiving Note's Part, if any.

Keep in mind that while this method replicates the noteDur within the noteOn/noteOff
pair, it doesn't replace the former with the latter. To do this, you must free the noteDur
yourself.

timeTag

- (double)timeTag

Returns the Note's time tag. If the time tag isn't set, MK_ENDOFTIME is returned.
Time tag values are used to sort the Notes within a Part.

See also: - setTimeTag:

writeScorefileStream:

- writeScorefileStream: (NXStream *)aStream

Writes the Note, in scorefile format, to the stream aStream. The stream must be open
for writing. You rarely invoke this method yourself; it's invoked from the scorefile
writing methods defined by Score and Scorefile Writer. Returns self.

write:

- write:(NXTypedStream *)stream

You never invoke this method directly; to archive a Note, call the
NXWriteRootObjectO C function. The Note's parameters, note type, note tag, and
time tag are archived directly. Its Performer and Part are archived through
NXWriteObjectReferenceO.

See also: - read:

2-118 Chapter 2: Class Specifications

NoteFilter

INHERITS FROM Instrument: Object

DECLARED IN musickit.h

CLASS DESCRIPTION

NoteFilter is an abstract class that combines the Note-receiving protocol it inherits from
Instrument with the Note-sending protocol defined by the Performer class. You
interpose a series of NoteFilter objects between a Performer and an Instrument to create
a Note processing pipeline.

Having created a set of NoteSenders and NoteReceivers, a NoteFilter object receives
Notes through its NoteReceivers, modifies them, and then sends them to its
NoteSenders. Each subclass provides a unique system for modifying Notes in its
implementation of realizeNote:fromNoteReceiver:, a subclass responsibility
inherited from Instrument and passed on to the NoteFilter subclasses. When designing
a NoteFilter subclass, you should keep in mind that the responsibility of sending Notes
to the NoteSenders falls to the subclass itself. A NoteFilter subclass implementation of
realizeNote:fromNoteReceiver: should include an invocation of NoteSender's
sendNote: method (or one of its sister methods; see the NoteSender class description).

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Instrument id noteReceivers;

Declared in NoteFilter id noteSenders;

noteSenders Collection of NoteSenders.

METHOD TYPES

Creating and freeing a NoteFilter - copy
- copyFromZone:
-free
- init

Modifying the object - addN oteSender:
- freeNoteSenders
- removeNoteSender:
- removeNoteSenders

Music Kit Classes: NoteFilter 2-119

Querying the object - isNoteSenderPresent:
- noteSender
- noteSenders

Archiving the object - read:
- write:

INSTANCE METHODS

addNoteSender:

- addNoteSender:aNoteSender

Removes aNoteSender from its present owner (if any) and adds it to the receiving
NoteFilter. If the NoteFilter is in performance, or if aNoteSender is already owned by
the NoteFilter, this does nothing and returns nil; otherwise returns aNoteSender.

copy
-copy

Creates and returns a NoteFilter as a copy of the receiving NoteFilter. The new object
contains copies of the receiving NoteFilter's NoteSenders and NoteReceivers.

copyFrornZone:
- copyFrornZone:(NXZone *)zone

Same as copy, but uses the specified zone.

free
-free

Frees the NoteFilter and its NoteSenders and NoteReceivers.

freeNoteSenders
- freeNoteSenders

Removes and frees the NoteFilter's NoteSenders. Returns self.

init

- init

Initializes a new NoteFilter. A subclass implementation should first send [super init].

2-120 Chapter 2: Class Specifications

isN oteSender Present:

- (BOOL)isNoteSenderPresent:aNoteSender

Returns YES if aNoteSender is one of the NoteFilter's NoteSenders. Otherwise returns
NO.

note Sender

- noteSender

Returns the NoteFilter's first NoteSender. This method should only by invoked if the
NoteFilter contains only one NoteSender or if you don't care which NoteSender you
get.

noteSenders

- noteSenders

Creates and returns a List of the NoteFilter's NoteSenders. It's the sender's
responsibility to free the List.

removeNoteSender:

- removeNoteSender:aNoteSender

Removes aNoteSender from the NoteFilter. If the NoteFilter is in a performance, this
does nothing and returns nil; otherwise it returns the argument.

removeNoteSenders

- removeNoteSenders

Removes all the NoteFilter's NoteSenders and returns self.

Music Kit Classes: NoteFilter 2-121

2-122

N oteReceiver

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

NoteReceiver is an auxiliary class that completes the implementation of Instrument.
Instances of NoteReceiver are owned by Instrument objects to provide the following:

It's part of the link between a Performer and an Instrument. NoteReceiver's
connect: method connects a NoteReceiver to a NoteSender, which is owned by a
Performer in much the same way that a NoteReceiver is owned by an Instrument.
When a N oteReceiver is connected to a N oteSender, their respective owners are
said to be connected. NoteSender defines an equivalent connect: method-it
doesn't matter which of the two objects is the receiver and which is the argument
when sending a connect: message.

• NoteReceiver's receiveNote: method defines the mechanism by which an
Instrument obtains Notes. When a NoteReceiver receives the receiveNote:
message, it forwards the argument (a Note object) to its owner by invoking the
Instrument method realizeNote:fromNoteReceiver:. The receiveNote: method
itself is sent when a connected NoteSender receives a sendNote: message from its
owner; you can also send receiveNote: (or one of its five sister methods) directly
to a NoteReceiver from your application. You can toggle a NoteReceiver's ability
to pass Notes to its owner through the squelch and un squelch methods; a
NoteReceive won't send realizeNote:fromNoteReceiver: messages while it's
squelched.

Unlike NoteSenders, which are generally expected to be created by the Performers that
own them, NoteReceivers can be created either by their owners or by your application.
For example, each Synthlnstrument object creates and adds to itself a single
NoteReceiver. ScorefileWriter objects, on the other hand, don't create any
NoteReceivers; it's left to your application to create and add them. A NoteReceiver is
created through the new class method and added to an Instrument through the latter's
addNoteReceiver: .

A NoteReceiver can be owned by only one Instrument at a time; however, it can be
connected to any number of NoteS enders. In addition, two different NoteReceivers can
be connected to the same NoteSender. Thus the connections between Performers and
Instruments can describe an arbitrarily complicated network. To retrieve the
NoteReceivers that are owned by a particular Instrument, you invoke the Instrument's
noteReceiver or noteReceivers method.

NoteReceivers are also created, owned, and used by Midi objects as part of their
assumption of the role of Instrument.

Music Kit Classes: NoteReceiver 2-123

INSTANCE VARIABLES

Inherited/rom Object

Declared in NoteReceiver

noteSenders

isSquelched

owner

METHOD TYPES

Creating a NoteReceiver

The object's owner

Connecting the object

Squelching the object

Receiving Notes

Archiving the object

2-124 Chapter 2: Class Specifications

Class

id
BaaL
id

is a;

noteSenders;
isSquelched;
owner;

List of connected NoteSenders.

YES if the NoteReceiver is squelched. No by
default.

Instrument (or Midi) that owns the NoteReceiver.

-copy
- copyFromZone:
- init
- free

- owner

- connect:
- disconnect:
- disconnect
- connections
- connectionCount
- is Connected:

- squelch
- unsquelch
- isSquelched

- receiveNote:
- receiveNote:atTime:
- receiveNote:withDelay:
- receiveAndFreeNote:
- receiveAndFreeNote:atTime:
- receiveAndFreeNote:withDelay:

- write:
- read:

INSTANCE METHODS

connect:

- connect:aNoteSender

Connects aNoteSender to the NoteReceiver; if the argument isn't a NoteSender, the
connection isn't made. Returns self.

See also: - disconnect:, - isConnected, - connections

connectionCount

- (unsigned int)connectionCount

Returns the number of NoteSenders that are connected to the NoteReceiver.

See also: - connect:, - disconnect:, - isConnected, - connections

connections

- connections

Creates and returns a List of the NoteSenders that are connected to the NoteReceiver.
It's the sender's responsibility to free the List.

See also: - connect:, - disconnect:, - isConnected

copy

-copy

Creates and returns an unowned NoteReceiver that's connected to the same
NoteSenders as the receiver of this message. If the receiving NoteReceiver is
squelched, so, too, shall be the copy.

See also: - copyFrornZone:

Music Kit Classes: NoteReceiver 2-125

copyFrornZone:

- copyFrornZone:(NXZone *)zone

This is the same as copy, but the new object is allocated from zone.

See also: - copy

disconnect

- disconnect

Severs the connections between the NoteReceiver and all the NoteSenders it's
connected to. Returns self.

See also: - disconnect:, - connect:, - isConnected:, - connections

disconnect:

- disconnect:aNoteSender

Severs the connection between the NoteReceiver and aNoteSender; if the NoteSender
isn't connected, this does nothing. Returns self.

See also: - disconnect, - connect:, - isConnected:, - connections

free

-free

init

Severs the connections between the NoteReceiver and all its connected NoteSenders
and then frees the NoteReceiver.

See also: - disconnect

- init

Initializes a NoteReceiver that was created through allocFrornZone:. Returns self.

isConnected:

- (BOOL)isConnected:aNoteSender

Returns YES if aNoteSender is connected to the NoteReceiver, otherwise returns NO.

See also: - connect, - disconnect, - connections, - connection Count

2-126 Chapter 2: Class Specifications

isSquelched

- (BOOL)isSquelched

Returns YES if the NoteReceiver is squelched, otherwise returns NO. A squelched
NoteReceiver won't invoke its owner's realizeNote:fromNoteReceiver: method.

See also: - squelch, - unsquelch

owner

- owner

Returns the Instrument (or Midi object) that owns the NoteReceiver.

See also: - addNoteReceiver: (Instrument, Midi)

read:
- read:(NXTypedStream *)stream

Unarchives the NoteReceiver by reading it from stream. You never invoke this method
directly; to read an archived NoteReceiver, call the NXReadObjectO C function.

See also: - write:

receiveAndFreeN ote:

- receiveAndFreeNote:aNote

Sends the message receiveNote:aNote to self and then frees aNote. Returns self.

See also: - receiveNote:, - receiveAndFreeNote:atTime:,
- receiveAndFreeNote:withDelay:

receiveAndFreeNote:atTime:

- receiveAndFreeNote:aNote atTime:(double)time

Enqueues, with the appropriate Conductor, a request for receiveAndFreeNote:aNote
to be sent to self at time beatsSinceStart, measured in beats from the beginning of the
Conductor's performance. See receiveNote:atTime: for a description of the
Conductor that's used. Returns self.

See also: - receiveNote:, - receiveAndFreeNote:,
- receiveAndFreeNote:withDelay:

Music Kit Classes: NoteReceiver 2-127

receiveAndFreeN ote:withDelay:

- receiveAndFreeNote:aN ote withDelay:(double)delayTime

Enqueues, with the appropriate Conductor, a request for receiveAndFreeNote:aNote
to be sent to self after delayBeats. See receiveNote:atTime: for a description ofthe
Conductor that's used. Returns self.

See also: - receiveNote:, - receiveAndFreeNote:, - receiveAndFreeNote:atTime:

receiveNote:

- receiveNote:aNote

Sends the message realizeNote:aNote fromNoteReceiver:self to the NoteReceiver's
owner. If the NoteReceiver is squelched, the message isn't sent. This method is
invoked automatically as the NoteReceiver's connected NoteSenders receive
sendNote: messages; you can also invoke this method directly. Returns self.

See also: - receiveAndFreeNote:, - receiveNote:withDelay:,
- receiveNote:atTime:

receiveNote:atTime:

- receiveNote:aNote atTime:(double)time

Enqueues, with the Conductor object described below, a request for receiveNote:aN ote
to be sent to self at time heatsSinceStart, measured in beats from the beginning of the
Conductor's performance. If beatsSinceStart has already passed, the enqueued
message is sent immediately. Returns self.

The request is enqueued with the object that's returned by [aNote conductor]. If the
Note was received from a NoteSender, this is the Conductor of the Performer that
originally sent aNote into the performance. If you invoke this method (or any of the
receiveNote: methods that enqueue a message request) directly, or if Midi is the
originator of the Note, then the default Conductor is used.

See also: - receiveNote:, - receiveNote:withDelay:

receiveNote:withDelay:

- receiveNote:aNote withDelay:(double)delayTime

Enqueues, with the appropriate Conductor, a request for receiveNote:aNote to be sent
to self after delayBeats. See receiveNote:atTime: for a description of the Conductor
that's used. Returns self.

See also: - receiveNote:, - receiveNote:atTime:

2-128 Chapter 2: Class Specifications

squelch

- squelch

Disables the NoteReceiver's ability to send realizeNote:fromNoteReceiver: messages
to its owner. Returns self.

See also: - isSquelched, - un squelch

unsquelch

- unsquelch

Enables the NoteReceiver's ability to send realizeNote:fromNoteReceiver: messages
to its owner, undoing the effect of a previous squelch message. Returns self.

See also: - isSquelched, - squelch

write:

- write:(NXTypedStream *)stream

Archives the NoteReceiver by writing it to stream. The NoteReceiver's connections
and owner are archived by reference. You never invoke this method directly; to archive
a NoteSender, call the NXWriteRootObjectO C function.

See also: - read:

Music Kit Classes: NoteReceiver 2-129

2-130

NoteSender

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

NoteSender is an auxiliary class that completes the implementation of Performer.
Instances are created and owned by Performer objects, normally when the Performer
itself is initialized. A NoteSender object performs two functions:

It's part of the link between a Performer and an Instrument. NoteSender's connect:
method connects a NoteSender to a NoteReceiver, which is owned by an
Instrument in much the same way that a NoteSender is owned by a Performer.
When a NoteSender is connected to a NoteReceiver, their respective owners are
said to be connected. NoteReceiver defines an equivalent connect: method-it
doesn't matter which ofthe two objects is the receiver and which is the argument
when sending a connect: message.

NoteSender's sendNote: method defines the mechanism by which a Performer
relays a Note to a set of Instruments. When a NoteSender receives a sendNote:
message, it sends receiveNote: to its connected NoteReceivers which, in turn, send
realizeNote:fromNoteReceiver: to their owners (Instrument objects). You can
toggle a NoteSender's ability to send Notes through the squelch and unsquelch
methods; a NoteSender won't send receiveNote: messages while it's squelched.

There's a fundamental difference between these two tasks in that while you connect
NoteSenders to NoteReceivers from your application, sending Notes is a Performer's
responsibility: Subclasses of Performer should invoke sendNote: as part of their
implementations of the perform method.

A NoteSender can be owned by only one Performer at a time; however, it can be
connected to any number of NoteReceivers. In addition, two different NoteSenders can
be connected to the same NoteReceiver. Thus the connections between Performers and
Instruments can describe an arbitrarily complicated network. To retrieve the
NoteSenders that are owned by a particular Performer-to connect them to
NoteReceivers, or to squelch and un squelch them-you invoke the Performer's
noteSender or noteSenders method.

NoteSenders are also owned and used by NoteFilter and Midi objects. Neither ofthese
classes inherits from Performer, but they both require the Note-sending mechanism that
NoteSenders provide.

Music Kit Classes: NoteSender 2-131

INSTANCE VARIABLES

Inheritedfrom Object

Declared in NoteSender

noteReceivers

connection Count

isSquelched

owner

METHOD TYPES

Creating a NoteSender

The object's owner

Connecting the object

Squelching the object

Sending Notes

Archiving the object

2-132 Chapter 2: Class Specifications

Class

id
int
BaaL
id

isa;

*noteReceivers;
connectionCount;
is Squelched;
owner;

List of connected NoteReceivers.

Number of connections.

YES if the NoteSender is squelched. NO by
default.

Performer (or NoteFilter or Midi) that owns the
NoteSender.

-copy
- copyFromZone:
- init
-free

- owner

- connect:
- disconnect:
- disconnect
- connections
- connection Count
- isConnected:

- squelch
- unsquelch
- isSquelched

- sendNote:
- sendNote:atTime:
- sendNote:withDelay:
- sendAndFreeNote:
- sendAndFreeNote:atTime:
- sendAndFreeNote:withDelay:

- write:
- read:

INSTANCE METHODS

connect:

- connect:aNoteReceiver

Connects aNoteReceiver to the NoteSender; if the argument isn't a NoteReceiver, the
connection isn't made. Returns self.

See also: - disconnect:, - isConnected, - connections

connection Count

- (unsigned int)connectionCount

Returns the number of NoteReceivers that are connected to the NoteSender.

See also: - connect:, - disconnect:, - isConnected, - connections

connections

- connections

Creates and returns a List of the NoteReceivers that are connected to the NoteSender.
It's the sender's responsibility to free the List.

See also: - connect:, - disconnect:, - isConnected

copy

-copy

Creates and returns an unowned NoteSender that's connected to the same
NoteReceivers as the receiver of this message. If the receiving NoteSender is
squelched, so, too, shall be the copy.

See also: - copyFromZone:

copyFrornZone:

- copyFromZone:(NXZone *)zone

This is the same as copy, but the new object is allocated from zone.

See also: - copy

Music Kit Classes: NoteSender 2-133

disconnect

- disconnect

Severs the connections between the NoteSender and all the NoteReceivers it's
connected to. Returns self.

See also: - disconnect:, - connect:, - isConnected:, - connections

disconnect:

- disconnect:aNoteReceiver

Severs the connection between the NoteSender and aNoteReceiver; if the NoteReceiver
isn't connected, does nothing. Returns self.

See also: - disconnect, - connect:, - isConnected:, - connections

free

-free

init

Severs the connections between the NoteSender and all its connected NoteReceivers,
and then frees the NoteSender. You can't free a NoteSender that's in the process of
sending a Note-specifically, an Instrument shouldn't invoke this method as part of its
realizeNote:fromNoteReceiver: method.

See also: - disconnect

- init

Initializes the NoteSender and returns self.

isConnected:

- (BOOL)isConnected:aNoteReceiver

Returns YES if aNoteReceiver is connected to the NoteSender, otherwise returns NO.

See also: - connect, - disconnect, - connections, - connection Count

isSqllelched

- (BOOL)isSquelched

Returns YES if the NoteSender is squelched (its Note-sending ability is disabled),
otherwise returns NO.

See also: - squelch, - unsquelch

2-134 Chapter 2: Class Specifications

owner

- owner

Returns the Performer (or NoteFilter or Midi object) that owns the NoteSender.

See also: - addNoteSender: (Performer, NoteFilter, Midi)

read:

- read:(NXTypedStream *)stream

Unarchives the NoteSender by reading it from stream. You never invoke this method
directly; to read an archived NoteSender, call the NXReadObjectO C function.

See also: - write:

sendAndFreeN ote:

- sendAndFreeNote:aNote

Sends the message sendNote:aNote to self and then frees aNote. Returns self.

See also: - sendNote:, - sendAndFreeNote:atTime:,
- sendAndFreeNote:withDelay:,

sendAndFreeN ote:atTime:

- sendAndFreeN ote:aN ote atTime: (double)beatsS inceStart

Enqueues, with the appropriate Conductor, a request for sendAndFreeNote:aNote to
be sent to self at time beatsSinceStart, measured in beats from the beginning of the
Conductor's performance. See sendNote:atTime: for a description of the Conductor
that's used. Returns self.

See also: - sendNote:, - sendAndFreeNote:, - sendAndFreeNote:withDelay:

sendAndFreeNote:withDelay:

- sendAndFreeNote:aNote withDelay:(double)delayBeats

Enqueues, with the appropriate Conductor, a request for sendAndFreeNote:aNote to
be sent to self after delayBeats. See sendNote:atTime: for a description of the
Conductor that's used. Returns self.

See also: - sendNote:, - sendAndFreeNote:, - sendAndFreeNote:atTime:

Music Kit Classes: NoteSender 2-135

sendNote:
- sendNote:aNote

Sends the message receiveNote:aNote to the NoteReceivers that are connected to the
NoteSender. Ifthe NoteSender is squelched, the messages aren't sent. Normally, this
method is only invoked by the NoteSender's owner. Returns self.

See also: - sendAndFreeNote:, - sendNote:withDelay:, - sendNote:atTime:

sendNote:atTime:

- sendNote:aNote atTime:(double)beatsSinceStart

Enqueues, with the Conductor object described below, a request for sendNote:aNote
to be sent to self at time beatsSinceStart, measured in beats from the beginning of the
Conductor's performance. If beatsSinceStart has already passed, the enqueued
message is sent immediately. Returns self.

The request is enqueued with the object returned by [aNote conductor]. Normally
if the owner is a Performer-this is the owner's Conductor. However, if the owner is a
NoteFilter, the request is enqueued with the Conductor of the Performer (or Midi) that
originally sent aNote into the performance (or the defaultConductor ifthe NoteFilter
itself created the Note).

See also: - sendNote:, - sendNote:withDelay:

sendNote:withDelay:

- sendNote:aNote withDelay:(double)deZayBeats

Enqueues, with the appropriate Conductor, a request for sendNote:aNote to be sent to
self after deZayBeats. See sendNote:atTime: for a description of the Conductor that's
used. Returns self.

See also: - sendNote:, - sendNote:atTime:

squelch

- squelch

Disables the NoteSender's ability to send receiveNote: to its NoteReceivers. Returns
self.

See also: - isSquelched, - unsquelch

2-136 Chapter 2: Class Specifications

unsquelcb

- unsquelch

Enables the NoteSender ability to send Notes, undoing the effect of a previous squelch
message. Returns self.

See also: - isSquelched, - squelch

write:

- write:(NXTypedStream *)stream

Archives the NoteSender by writing it to stream. The NoteSender's connections and
owner are archived by reference. You never invoke this method directly; to archive a
NoteSender, call the NXWriteRootObjectO C function.

See also: - read:

Music Kit Classes: NoteSender 2-137

2-138

Orchestra

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

The Orchestra class manages DSP resources used in music synthesis. Each instance of
Orchestra represents a single DSP that's identified by orchIndex, a zero-based integer
index. In the basic NeXT configuration, there's only one DSP so there's only one
Orchestra instance.

The methods defined by the Orchestra class let you manage a DSP by allocating
portions of its memory for specific synthesis modules and by setting its processing
characteristics. You can allocate entire SynthPatches or individual UnitGenerator and
SynthData objects through the methods defined here. Keep in mind, however, that
similar methods defined in other classes-specifically, the SynthPatch allocation
methods defined in SynthInstrument, and the UnitGenerator and SynthData allocation
methods defined in SynthPatch-are built upon and designed to usurp those defined by
Orchestra. You need to allocate synthesis objects directly only if you want to assemble
sound-making modules at a low level.

Before you can do anything with an Orchestra-particularly, before you can allocate
synthesis objects-you must create and open it. You create an Orchestra through the
new or newOnDSP: method (you don't use alloc and init). To open an Orchestra, you
send it the open message. Opening an Orchestra gains access to the DSP that it
represents, allowing you to allocate synthesis objects through methods such as
allocSynthPatch: and allocUnitGenerator:. To start the synthesis running, you send
run to the Orchestra. The stop method halts synthesis and close surrenders control of
the DSP. The state of an Orchestra object with respect to these methods is described as
its device status:

• MK_devOpen. The Orchestra object is open but not running.
• MK_devRunning. The object is open and running.
• MK_devStopped. The object has been running but is now stopped.
• MK_devClosed. The object is closed.

Note that these are the same methods and MKDeviceStatus values used to control and
describe the status of a Midi object.

As you start, pause, resume, and stop a performance, you should similarly control your
Orchestra objects, as described by the following table:

Music Kit Classes: Orchestra 2-139

When you send this to
the Conductor class

startPerformance
pausePerformance
resumePerformance
finishPerformance

Send this to your
Orchestra objects

run
stop
run
close

When the Orchestra is running, the allocated UnitGenerators produce a stream of
samples that, by default, are sent to the stereo digital to analog converter (DAC), which
converts the samples into an audio signal. Instead, you can cause the Orchestra to write
the samples to a soundfile by invoking the method setOutputSoundfile: (you must set
the soundfile before sending run to the Orchestra). You can also set the Orchestra to
write a soundfile that contains DSP commands by invoking the
setOutputCommandsFile: method. A DSP commands soundfile is usually much
smaller than the analogous sample data soundfile

Every command that's sent to the DSP is given a timestamp indicating when the
command should be executed. The manner ill which the DSP regards these timestamps
depends on whether its Orchestra is timed or untimed, as set through the setTimed:
method. In a timed Orchestra, commands are executed at the time indicated by its
timestamp. If the Orchestra is untimed, the DSP ignores the timestamps, executing
commands as soon as it receives them. By default, an Orchestra is timed.

The DSP is a separate real-time processor with its own clock and its own notion of the
current time. Since the DSP can be dedicated to a single task-in this case, generating
sound-its clock is generally more reliable than the main processor, which may be
controlling any number of other tasks. If your application is generating Notes without
user-interaction, then you should set the Music Kit performance to be unclocked,
through the Conductor's setClocked: method, and the Orchestra to be timed. This
allows the Music Kit to process Notes and send timestamped commands to the DSP as
quickly as possible, relying on the DSP's clock to synthesize the Notes at the correct
time. However, if your application must respond to user-initiated actions with as little
latency as possible, then the Conductor must be clocked. In this case, you can set the
Orchestra to be untimed. A clocked Conductor and an untimed Orchestra yields the
best possible response time, but at the expense of possible rhythmic irregularity.

If your application responds to user actions but can sustain some latency between an
action and its effect, then you may want to set the Conductor to be clocked and the DSP
to be timed and use the C function MKSetDeltaTO to set your application's delta time.
Delta time is an imposed latency that allows the Music Kit to run slightly ahead of the
DSP. Any rhythmic irregularities created by the Music Kit's dependence on the CPU's
clock are evened out by the utter dependability of the DSP's clock.

With regard to DSP resources, the Orchestra makes an educated estimate as to how
much of the DSP is needed to synthesize a Note-for various reasons, it can't know for
sure exactly how much it needs-and will deny allocation requests that exceed this
estimate. Such a denial may result in a smaller number of simultaneously synthesized
voices. You can adjust the Orchestra's DSP processing estimate, or headroom, by
invoking the setHeadroom: method. This takes an argument between -1.0 and 1.0; a

2-140 Chapter 2: Class Specifications

negative headroom allows a more liberal estimate of the DSP resources-resulting in
more simultaneous voices-but it runs the risk of causing the DSP to fall out of real
time. Conversely, a positive headroom is more conservative: You have a greater
assurance that the DSP won't fall out of real time but the number of simultaneous
voices is decreased. The default is a somewhat conservative 0.1. If you're writing
samples to a soundfile with the DAC disabled, headroom is ignored.

While the speed of the DSP makes real-time synthesis approachable, there's always a
sound output time delay that's equal to the size of the buffer used to collect samples
before they're shovelled to the DAC. To accommodate applications that require the
best possible response time (the time between the initiation of a sound and its actual
broadcast from the DAC), a smaller sample output buffer can be requested by sending
the setFastResponse: YES message to an Orchestra. However, the more frequent
attention demanded by the smaller buffer will detract from synthesis computation and,
again, fewer simultaneous voices may result. You can also improve response time by
using the high sampling rate (44100 samples per second) although this, too, attenuates
the synthesis power of the DSP. By default, the Orchestra's sampling rate is 22050
samples per second.

To avoid creating duplicate synthesis modules on the DSP, each instance of Orchestra
maintains a shared object table. Objects on the table are SynthPatches, SynthDatas, and
UnitGenerators and are indexed by some other object that represents the shared object.
For example, the OscgafUG UnitGenerator (a family of oscillators) lets you specify its
waveform-generating wave table as a Partials object (you can also set it as a Samples
object; for the purposes of this example we consider only the Partials case). When its
wave table is set through the setTable:length: method, the oscillator allocates a
SynthData object from the Orchestra to represent the DSP memory that will hold the
waveform data computed from the Partials. It also places the SynthData on the shared
object table using the Partials as an index by sending the message

[Orchestra installSharedSynthData:theSynthData for:thePartials);

If another oscillator's wave table is set as the same Partials object, the already allocated
SynthData can be returned by sending the message

id aSynthData = [Orchestra sharedObjectFor:thePartials);

The method instaIlSharedObject:for: is provided for installing SynthPatches and
UnitGenerators.

Music Kit Classes: Orchestra 2-141

INSTANCE VARIABLES

Inherited/rom Object

Declared in Orchestra

computeTime

samplingRate

stack

outputSoundfile

outputCommandsFile

xZero

yZero

xSink

ySink

sineROM

2-142 Chapter 2: Class Specifications

Class IS a;

double computeTime;
double samplingRate;
id stack;
char *outputSoundfile;
char *outputCommandsFile;
id xZero;
id yZero;
id xSink;
id ySink;
id sineROM;
id muLawROM;
MKDeviceStatus deviceStatus;
unsigned short orchIndex;
BOOL isTimed;
BOOL useDSP;
BOOL soundOut;
BOOL SSISoundOut;
BOOL isLoopOffChip;
BOOL fastResponse;
double 10calDeltaT;
short onChipPatchPoints;

Time in seconds to compute one sample.

Sampling rate.

List of UnitGenerators in order as they appear in
DSPmemory.

Soundfile name to which output samples are
written.

Soundfile name to which DSP commands are
written.

Special x memory patchpoint that always holds O.

Special y memory patchpoint that always holds O.

Special x memory patchpoint that's never read.

Special y memory patchpoint that's never read.

Special read-only SynthData that represents the
sine ROM.

muLawROM

deviceStatus

orchIndex

isTimed

useDSP

soundOut

SSISoundOut

isLoopOffChip

fastResponse

10calDeitaT

onChipPatchPoints

METHOD TYPES

Special read-only SynthData that represents the
mu-IawROM.

The object's status.

Index to the DSP that's managed by this instance.

YES if DSP commands are timed.

YES if running on a DSP.

YES if sound is being sent to the DAC.

YES if sound is being sent to the DSP port.

YES if the orchestra loop is running partially
off-chip.

YES if response latency should be minimized.

Offset in seconds added to output timestamps.

Number of on-chip patchpoints.

Creating and freeing an Orchestra - free

Modifying the object

+ free
+ new
+newOnDSP:

+ flushTimedMessages
- setOnChipMemoryConfigDebug:patchPoints:
- setOffChipMemoryConfigXArg:y Arg:
- setSamplingRate:
+ setSamplingRate:
- sharedObjectFor:
- trace:msg:

Music Kit Classes: Orchestra 2-143

Querying the object + DSPCount
- compute Time
- deviceStatus
- fastResponse
-headroom
- index
- isTimed
-localDeltaT
+ nthOrchestra:
- outputSoundfile
- outputCommandsFile
- simulatorFile
- samplingRate
- peekMemoryResources:
- segmentName:
- soundOut

Adjusting DSP computation and timing

Setting the output destination

Opening and running the DSP

2-144 Chapter 2: Class Specifications

- beginAtomicSection
- endAtomicSection
+ setFastResponse:
- setFastResponse:
+ setHeadroom:
- setHeadroom:
+ setLocalDeltaT:
- setLocalDeltaT:
+ setTimed:
- setTimed:

- setOutputSoundfile:
- setOutputCommandsFile:
- setSimulatorFile:
- setSoundOut:

- abort
+ abort
- close
+ close
- flushTimedMessages
-open
+ open
-run
+ run
+ stop
- stop

Allocating synthesis objects

Accessing the shared data table

CLASS METHODS

DSPCount

+ (unsigned short)DSPCount

- allocPatchpoint:
+ allocPatchpoint:
- allocSynthData:length:
+ allocSynthData:length:
- allocSynthPatch:
+ allocSynthPatch:
- allocSynthPatch:patchTemplate:
+ allocSynthPatch:patchTemplate:
- allocUnitGenerator:
+ allocUnitGenerator:
- allocUnitGenerator:after:
- allocUnitGenerator:before:
- allocUnitGenerator:between::
- dealloc:
+ dealloc:
-muLawROM
- segmentS ink:
- segmentZero:
- sineROM

- installSharedObjectfor:
- installSharedSynthData WithSegment:for:
- installSharedSynthData WithSegment

AndLength:for:
- sharedObjectFor: segment
- sharedObjectFor:segmentlength:

Returns the number of DSPs on your computer.

abort

+ abort

Sends abort to each of the Orchestra instances and sets each to MK_devClosed. If any
of the Orchestras responds to the abort message by returning nil, so, too, does this
method return nil. Otherwise returns the receiver.

allocPatchpoint:

+ allocPatchpoint:(MKOrchMemSegment)segment

Allocates a patchpoint in segment segment. Returns the patchpoint (a SynthData
object), or nil if the object couldn't be allocated.

Music Kit Classes: Orchestra 2-145

allocSynthData:length:

+ allocSynthData:(MKOrchMemSegment)segment length:(unsigned)size

Allocates a SynthData object. The allocation is on the first Orchestra that can
accommodate size words in segment segment. Returns the SynthData, or nil if the
object couldn't be allocated.

allocSynthPatch:

+ allocSynthPatch:aSynthPatchC lass

This is the same as allocSynthPatch:patchTemplate: but uses the default template.

allocSynthPatch:patchTemplate:

+ allocSynthPatch:aSynthPatchClass patchTemplate:p

Allocates a SynthPatch with a PatchTemplate of p on the first Orchestra with sufficient
resources. Returns the SynthPatch or nil if it couldn't be allocated.

alloc U nitGenerator:

+ allocUnitGenerator:classObj

Allocates a UnitGenerator of class classObj. The object is allocated on the first
Orchestra that can accomodate it. Returns the UnitGenerator, or nil if the object
couldn't be allocated.

close

+ close

Sends close to each of the Orchestra instances and sets each to MK_devClosed. If any
of the Orchestras responds to the close message by returning nil, so, too, does this
method return nil. Otherwise returns self.

dealloc:

+ dealloc:aSynthResource

Deallocates the argument, which must be a previously allocated SynthPatch,
UnitGenerator, or SynthData, by sending it the dealloc message.

flushTimedMessages

+ flushTimedMessages

Flushes all currently buffered DSP commands by invoking the flushTimedMessages
instance method for each Orchestra.

2-146 Chapter 2: Class Specifications

free

+ free

Frees all the existing Orchestra instances.

new

+ new

If an Orchestra object exists for the default DSP, returns that object. Otherwise, creates
and initializes a new Orchestra for the default DSP.

newOnDSP:

+ newOnDSP:(unsigned short)index

Creates and returns an Orchestra instance for the index'th DSP. If an Orchestra object
already exists for the specified DSP, the existing object is returned. Returns nil if index
is out of bounds or if the index'th DSP isn't available. .

nth Orchestra:

+ nthOrchestra:(unsigned short)index

Returns the Orchestra of the index'th DSP. If index is out of bounds, or if an Orchestra
hasn't been created for the specified DSP, nil is returned.

open

+ open

Sends open to each of the Orchestra instances and sets each to MK_devOpen. If any
of the Orchestras responds to the open message by returning nil, so, too, does this
method return nil. Otherwise returns self.

run

+ run

Sends run to each of the Orchestra instances and sets each to MK_devRunning. If any
of the Orchestras responds to the run message by returning nil, so, too, does this
method return nil. Otherwise returns self.

setFastResponse:

+ setFastResponse:(BOOL)yesOrNo

Sends setFastResponse:yesOrNo to all existing Orchestra objects and returns self.
This also sets the default used by subsequently created Orchestras.

Music Kit Classes: Orchestra 2-147

setHeadroom:
+ setHeadroom:(double)headroom

Sets the headroom of all Orchestra instances to headroom. Returns self.

setLocalDeltaT:

+ setLocalDeltaT: (double)val

Sets the local delta time for all Orchestras and changes the default, which is otherwise
0.0.

setSamplingRate:
+ setSamplingRate:(double)newSRate

Sets the sampling rate of all Orchestra instances by sending
setSamplingRate:newSRate to all closed 01',:;hestras. This method also changes the
default sampling rate; when a new Orchestra is subsequently created, it also gets set to
newSRate. Returns self.

setTimed:
+ setTimed:(BOOL)areOrchsTimed

Sends setTimed:areOrchsTimed to each Orchestra instance. If areOrchsTimed is YES,
the DSP processes the commands that it receives at the times specified by the
commands'timestamps. If it's NO, DSP commands are processed as quickly as
possible. By default, an Orchestra is timed; this method sets the default to
areOrchsTimed.

stop

+ stop

Sends stop to each of the Orchestra instances and sets each to MK_devStopped. If any
of the Orchestras responds to the run message by returning nil, so, too, does this
method return nil. Otherwise returns self.

INSTANCE METHODS

abort
- abort

This is the same as close, except it doesn't wait for enqueued DSP commands to be
executed. Returns nil if an error occurs, otherwise returns self.

2-148 Chapter 2: Class Specifications

allocPatchpoint:

- allocPatchpoint:(MKOrchMemSegment)segment

Allocates and returns a SynthData to be used as a patchpoint in the specified segment
(MK_xPatch or MK_yPatch). Returns nil if an illegal segment is requested.

allocSynthData:length:

- allocSynthData:(MKOrchMemSegment)segment length:(unsigned)size

Allocates and returns a new SynthData object with the specified length, or nil if the
Orchestra doesn't have sufficient resources, if size is 0, or if an illegal segment is
requested. segment should be MK_xData or MK_yData.

allocSynthPatch:

- allocSynthPatch:aSynthPatchC lass

Same as allocSynthPatch:patchTemplate: but uses the default template.

allocSynthPatch:patchTemplate:

- allocSynthPatch:aSynthPatchClass patchTemplate:p

Allocates and returns a SynthPatch for PatchTemplate p. The Orchestra first tries to
find an idle SynthPatch; failing that, it creates and returns a new one. If a new one can't
be built, this method returns nil.

allocU nitGenerator:

- allocUnitGenerator:class

Allocates and returns a UnitGenerator of the specified class, creating a new one if
necessary.

alloc U nitGenerator :after:

- allocUnitGenerator:class after:aUnitGeneratorlnstance

Allocates and returns a UnitGenerator of the specified class. The newly allocated
object will execute after aUnitGeneratorlnstance.

allocUnitGenerator:before:

- allocUnitGenerator:class before:aUnitGeneratorlnstance

Allocates and returns a UnitGenerator of the specified class. The newly allocated
object will execute before aUnitGeneratorlnstance.

Music Kit Classes: Orchestra 2-149

alloc U nitGenerator: between::

- allocUnitGenerator:class
between:aUnitGeneratorlnstance
:anotherU nitGeneratorI nstance

Allocates and returns a UnitGenerator of the specified class. The newly allocated
object will execute after aUnitGeneratorlnstance and before anotherUnitGenerator.

beginAtomicSection

- beginAtomicSection

Marks the beginning of a section of DSP commands that are sent as a unit; this method
should be balanced by endAtomicSection. Returns self. You should use this method
when you are sending a block of DSP commands that, if broken up, would leave the
DSP in an inconsistent state. Atomic sections are recursive: If you send
beginAtomicSection twice, you must send end Atomic Section twice.

close

- close

Severs communication with the DSP, allowing other processes to claim it. Before
closing, all enqueued DSP commands are executed. The SynthPatch-allocated
UnitGenerators and Synthlnstrument-allocated SynthPatches are freed. All
SynthPatches must be idle and non-SynthPatch-allocated UnitGenerators must be
deallocated before sending this message. Returns nil if an error occurs, otherwise
returns self.

computeTime

- (double)computeTime

Returns the compute time estimate currently used by the Orchestra, in
seconds-per-sample.

dealloc:

- dealloc:aSynthResource

Deallocates aSynthResource by sending it the dealloc message. aSynthResource may
be a UnitGenerator, a SynthData, or a SynthPatch.

2-150 Chapter 2: Class Specifications

deviceStatus

- (MKDeviceStatus)deviceStatus

Returns the Orchestra status, one of

MK_devClosed
MK_devOpen
MK_devRunning

• MK_devStopped

The Orchestra states are explained in the class description, above.

endAtomicSection

- endAtomicSection

Marks the end of a section of DSP commands that are sent as a unit, as begun by
beginAtomicSection. Returns self.

fastResponse

- (BOOL)fastResponse

Returns YES if the Orchestra is using small sound-out buffers to minimize response
latency. Otherwise returns NO.

flushTimedMessages

- flushTimedMessages

Sends buffered DSP commands to the DSP. This is usually done for you by the
Conductor; however, if your application sends messages directly to a SynthPatch or
UnitGenerator without the assistance of a Conductor, you must invoke this method
yourself (after sending the synthesis messages). Returns self.

free

- free

Frees the Orchestra and its UnitGenerators, clears all SynthPatch allocation lists, and
releases the DSP. All SynthPatches must be idle and non-SynthPatch-allocated
UnitGenerators must be deallocated before sending this message. Returns nil if an
error occurs, otherwise returns self.

headroom

- (double)headroom

Returns the Orchestra's headroom, as set through the setHeadroom: method.
Headroom should be a value between -.0 and 1.0. The default is 0.1.

Music Kit Classes: Orchestra 2-151

index

- (unsigned short)index

Returns the (zero-based) index of the DSP associated with the Orchestra.

installSharedObject:for:

- installSharedObject:aSynthObj for:aKeyObj

Places aSynthObj on the shared object table and sets its reference count to 1. aKeyObj
is used to index the shared object. Does nothing and returns nil if the aSynthObj is
already present in the table. Also returns nil if the Orchestra isn't open. Otherwise,
returns self.

This method differs from installSharedObjectWithSegmentAndLength:for: in that
the length and segment are wild cards.

installSharedSynthData WithSegment:for:

- installSharedSynthData WithSegment:aSynthDataObj for:aKeyObj

Places aSynthDataObj on the shared object table in the segment specified by
aSynthDataObj and sets its reference count to 1. Does nothing and returns nil if the
aSynthObj is already present in the table. Also returns nil if the Orchestra isn't open.
Otherwise, returns self.

This method differs from installSharedObjectWithSegmentAndLength:for: in that
the length is a wild card.

installSharedSynthData WithSegmentAndLength:for:

- installSharedSynthDataWithSegmentAndLength:aSynthDataObj for:aKeyObj

Places aSynthDataObj on the shared object table in the segment of aSynthDataObj with
the specified length and sets its reference count to 1. aKeyObj is used to index the
shared object. Does nothing and returns nil if the aSynthDataObj is already present in
the table. Also returns nil if the Orchestra isn't open. Otherwise, returns self.

isTimed

- (BOOL)isTimed

Returns YES if the Orchestra is timed, NO if it's untimed.

localDeltaT

- (double)localDeltaT

Returns the value set through setLocalDeltaT:.

2-152 Chapter 2: Class Specifications

muLawROM
-muLawROM

Returns a SynthData object representing the MuLawROM. You should never
deallocate this object.

open

-open

Opens the Orchestra's DSP and sets the Orchestra's status to MK_devOpen. Returns
nil if the DSP can't be opened, otherwise returns self.

outputCommandsFile

- (char *)outputCommandsFile

Returns a pointer to the name of the Orchestra's DSP commands format soundfile, or
NULL if none.

outputSoundfile
- (char *)outputSoundfile

Returns a pointer to the name of the Orchestra's output soundfile, or NULL if none.

peekMemoryResources:
- (MKOrchMemStruct *)peekMemoryResources:(MKOrchMemStruct *)peek

Returns the available resources in peek, which must be a pointer to a valid
MKOrchMemStuct. The returned value is the available memory for each segment;
however, xData, yData and pSubr compete for the same memory. You should interpret
the returned value with appropriate caution.

run
-run

Starts the clock on the Orchestra's DSP, thus allowing the processor to begin executing
commands, and sets the Orchestra's status to MK_devRunning. This opens the DSP if
it isn't already open. Returns nil if the DSP couldn't be opened or run, otherwise
returns self.

samplingRate

- (double)samplingRate

Returns the Orchestra's sampling rate. The default is 22050.0.

Music Kit Classes: Orchestra 2-153

segmentName:
- (char *)segmentName:(int)whichSegment

Returns a pointer to the name of the specified MKOrchMemSegment.

segmentSink:

- segmentSink:(MKOrchMemSegment)segment

Returns a special pre-allocated patchpoint (a SynthData) in the specified segment from
which, by convention, data is never read. It's commonly used as a place to send the
output of idle UnitGenerators. The patchpoint shouldn't be deallocated. The argument
must be either MK_xPatch or MK_yPatch.

segmentZero:

- segmentZero:(MKOrchMemSegment)segment

Returns a special pre-allocated patchpoint (a SynthData) in the specified segment that
always holds 0 and to which, by convention, nothing is ever written. The patchpoint
shouldn't be deallocated. The argument must be either MK_xPatch or MK_yPatch.

setFastResponse:

- setFastResponse:(BOOL)yesOrNo

Sets the size of the sound output buffer; two sizes are possible. If yesOrNo is YES, the
smaller size is used, thereby improving response time but somewhat decreasing the
DSP's synthesis power. If it's NO, the larger buffer is used. By default, an Orchestra
uses the larger buffer. Returns self.

setHeadroom:

- setHeadroom:(double)headroom

Sets the Orchestra's computation headroom, adjusting the tradeoff between processing
power and reliability. The argument should be in the range -.0 to 1.0. As you increase
an Orchestra's headroom, the risk of falling out of real time decreases, but synthesis
power is also weakened. The default, 0.1, is a conservative estimate and can be
decreased in many cases without heightening the risk of falling out of real time.

The effective sampling period-the amount of time the Orchestra thinks the DSP has
to produce a sample-is based on the formula

(1.0/samplingRate) * (1.0 - headroom).

Returns self.

2-154 Chapter 2: Class Specifications

setLocalDeltaT:

- setLocalDeltaT:(double)val

Sets the offset, in seconds, that's added to the timestamps of commands sent to the
Orchestra's DSP. The offset is added to the delta time that's set with MKSetDeltaTO.
This has no effect if the receiver isn't timed. Returns self.

setOffChipMemoryConfigXArg:y Arg:

- setOffChipMemoryConfigXArg: (float)xPercentage y Arg: (float)yPercentage

Reserves percentages of off-chip memory for X and Y memory arguments. The
arguments must be between 0.0 and 1.0. An argument of 0.0 causes the default
percentage to be used for that segment. If xPercentage + yPercentage is greater than
1.0, the settings are ignored and the method returns nil. The Orchestra must be closed
when you invoke this method: Returns nil if it's open, otherwise returns self.

setOnChipMemoryConfigDebug:patchPoints:

- setOnChipMemoryConfigDebug:(BOOL)debug/t patchPoints:(short)count

Sets configuration of on-chip memory. If debug/tis YES, a partition is reserved for the
DSP debugger; count is the number of on-chip patchpoint locations that are reserved.
By default, the debugger isn't used and 11 patchpoints are reserved. If count is 0, the
default is used. By implication, this also sets the number of UnitGenerator arguments
that can be set in L memory: As more patchpoints are requested, fewer UnitGenerator
arguments are possible. Attempts to set the patchpoint count, such that no room is left
for L arguments, are ignored. Returns self, or nil if the configuration is unsuccessful.

setOutputCommandsFile:

- setOutputCommandsFile:(char *)fileName

Sets the DSP commands format soundfile to which DSP commands are written. The
file can be played as a soundfile using any of the standard soundfile-playback functions,
utilities, or applications. The Orchestra must be closed when you invoke this method:
Returns nil if it's open, otherwise returns self.

Writing samples to a commands file (through setOutputCommandsFile:), a soundfile
(through setOutputSoundfile:), a simulator file (through setSimulatorFile:), and to
the DAC (through setSoundOut:) are mutually exclusive operations.

setOutputSoundfile:

- setOutputSoundfile:(char *)fileName

Sets the soundfile to which sound samples ·are written. The Orchestra must be closed
when you invoke this method: Returns nil if it's open, otherwise returns self.

Music Kit Classes: Orchestra 2-155

Writing samples to a commands file (through setOutputCommandsFile:), a soundfile
(through setOutputSoundfile:), a simulator file (through setSimulatorFile:), and to
the DAC (through setSoundOut:) are mutually exclusive operations.

setSamplingRate:
- setSamplingRate: (double)newSRate

Sets the Orchestra's sampling rate to newSRate, taken as samples per second. The
Orchestra must be closed when you invoke this method: Returns nil if it's open,
otherwise returns self.

setSimulatorFile:
- setSimulatorFile:(char *)fileName

Sets the name of a file to which simulator output is sent. The file is in a format that can
be passed directly to the Motorola Simulator. The Orchestra must be closed when you
invoke this method: Returns nil if it's open, otherwise returns self.

Writing samples to a commands file (through setOutputCommandsFile:), a soundfile
(through setOutputSoundfile:), a simulator file (through setSimulatorFile:), and to
the DAC (through setSoundOut:) are mutually exclusive operations.

setSoundOut:
- setSoundOut:(BOOL)yesOrNo

Sets whether the Orchestra sends its sound signal to the DAC, as yesOrNo is YES or
NO. All Orchestras send to the DAC by default. The Orchestra must be closed when
you invoke this method: Returns nil if it's open, otherwise returns self.

Writing samples to a commands file (through setOutputCommandsFile:), a soundfile
(through setOutputSoundfile:), a simulator file (through setSimulatorFile:), and to
the DAC (through setSoundOut:) are mutually exclusive operations.

setTimed:
- setTimed:(BOOL)isOrchTimed

If isOrchTimed is YES, the Orchestra's DSP executes the commands it receives
according to their timestamps. If it's NO, the DSP ignores the timestamps and
processes the commands immediately. By default, an Orchestra is timed.

sharedObjectFor:
- sharedObjectFor:aKeyObj

Returns, from the Orchestra's shared object table, the SynthData, UnitGenerator, or
SynthPatch object that's indexed by aKeyObj. If the object is found, aKeyObj's

2-156 Chapter 2: Class Specifications

reference count is incremented. If it isn't found, or if the Orchestra isn't open, returns
nil.

sharedObjectFor:segment:
- sharedObjectFor:aKeyObj segment: (MKOrchMemSegment)whichSegment

Returns, from the Orchestra's shared data table, the SynthData, UnitGenerator, or
SynthPatch object that's indexed by aKeyObj. The object must be allocated in the
specifed segment. If the object is found, aKeyObj's reference count is incremented. If
it isn't found, or if the Orchestra isn't open, returns nil.

sharedObjectFor:segment:length:

- sharedObjectFor:aKeyObj
segment:(MKOrchMemSegment)whichSegment
length:(int)length

Returns, from the Orchestra's shared data table, the SynthData, UnitGenerator, or
SynthPatch object that's indexed by aKeyObj. The object must be allocated in the
specifed segment and have a length of length. If the object is found, aKeyObj's
reference count is incremented. If it isn't found, or if the Orchestra isn't open, returns
nil.

simulator File

- (char *)simulatorFile

Returns a pointer to the name of the Orchestra's simulator file, or NULL if none.

sineR OM
-sineROM

Returns a SynthData object representing the SineROM. You should never deallocate
this object.

stop
- stop

Stops the clock on the Orchestra's DSP, thus halting execution of commands, and sets
the Orchestra's status to MK_devStopped. This opens the DSP if it isn't already open.
Returns nil if an error occurs, otherwise returns self.

Music Kit Classes: Orchestra 2-157

trace:msg:

- trace:(int)typeOfInfo msg:(char *)jmt, ...

Used to print debugging information. The arguments to the msg: keyword are like
those to printfO. If the typeOfInfo trace is set, prints to standard error.

2-158 Chapter 2: Class Specifications

Part

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A Part is a sorted collection of Notes that can be edited and performed. Parts are
typically grouped together in a Score.

A Note can belong to only one Part at a time, and a Part to only one Score. When you
add a Note to a Part, it's automatically removed from its old Part. Similarly, adding a
Part to a Score removes it from its previous Score.

You can add Notes to a Part either by invoking one of Part's addNote: methods, or by
"recording" them with a PartRecorder, a type of Instrument that realizes Notes by
adding copies of them to a specified Part. A Part is added to a Score through Part's
addToScore: method (or the equivalent Score method addPart:).

Within a Part, Notes are ordered by their time tag values, lowest to highest. To move a
Note within a Part, you simply change the Note's time tag (through Note's
setTimeTag: method). For efficiency, a Part sorts itself only when its Notes are
retrieved or when a Note is moved within the Part (or removed altogether). In other
words, adding a Note to a Part won't cause the Part to sort itself; but keep in mind that
since adding a Note to a Part automatically removes it from its current Part, the act will
cause the moved-from Part to sort itself. You can force a Part to sort itself by sending
it a sort message.

A Part can be a source of Notes in a performance through association with a
PartPerformer. During a performance, the PartPerformer reads the Notes in the Part,
performing them in order. While you shouldn't free a Part or any of its Notes while an
associated PartPerformer is active, you can add Notes to and remove Notes from the
Part at any time without affecting the PartPerformer's performance.

To each Part you can give an info Note, a sort of header for the Part that can contain any
amount and type of information. Info Notes are typically used to describe a
performance setup; for example, an info Note might contain, as a parameter, the name
ofthe SynthPatch subclass on which the Notes in the Part are meant to be synthesized.
Keep in mind that a Part's info Note, like any other Note, must be retrieved and its
parameters applied by some other object (or your application) for it to have an effect.
A few parameters defined by the Music Kit are designed specifically to be used in a
Part's info Note. These are listed in the description of the setInfo: method, below. The
info Note is stored separately from the Notes in the body of the Part; most of the
Note-accessing methods, such as empty, nth:, and next:, don't apply to the info Note.
The exceptions-the methods that do affect the info Note-are so noted in their
descriptions below.

Parts are commonly given string name identifiers, through the MKNameObjectO C
function. The most important use of a Part's name is to identify the Part in a scorefile.

Music Kit Classes: Part 2-159

INSTANCE VARIABLES

Inherited/rom Object

Declared in Part

score

notes

info

noteCount

isSorted

METHOD TYPES

Creating and freeing a Part

Storing the object

Adding Notes

Removing Notes

2-160 Chapter 2: Class Specifications

Class

id
id
id
int
BOOL

is a;

score;
notes;
info;
noteCount;
isSorted;

The Score the Part is a member of.

The Part's List of Notes.

The Part's info Note.

Number of Notes in the Part.

YES if the Part is currently sorted.

-copy
- copyFromZone:
- init
-free
- freeSelfOnly

- addToScore:
- score
- removeFromScore
- read:
- write:
- awake

- addNote:
- addN oteCopy:
- addNotes:timeShift:
- addN oteCopies:timeShift:
- note Count
- setInfo:

- removeNote:
- removeNotes:
- empty
- isEmpty
- freeNotes

Retrieving Notes - notes
- notesNoCopy
- atTime:
- atTime:nth:
- atOrAfterTime:
- atOrAfterTime:nth:
- firstTimeTag:lastTimeTag:
-nth:
- next:
- containsNote:
- info

Manipulating and Sorting Notes - combineNotes
- splitNotes
- shiftTime:
- sort
- isSorted

INSTANCE METHODS

addNote:

- addNote:aNote

Moves aNote from its present Part to the receiving Part. Returns aNote's old Part, or
nil if none.

See also: - addNoteCopy:, - addNotes:timeShift:, - removeNote:

addNoteCopy:

- addNoteCopy:aNote

Adds a copy of aNote to the Part. Returns the new Note.

See also: - addNote:, - addNoteCopies:timeShift:, - removeNote:

addNotes:timeShift:

- addNotes:aNoteList timeShift:(double)shift

Moves each Note in aNoteList from its present Part to the receiving Part, adding shift
to each Note's time tag in the process. The List argument is typically generated through
Part's notes or firstTimeTag:lastTimeTag: method. In this way, all or a portion of one
Part can be merged into another. Returns self, or nil if aNoteList is nil.

See also: - addNoteCopies:timeShift:, - shiftTime:

Music Kit Classes: Part 2-161

addNoteCopies:timeShift:

- addNoteCopies:aNoteList timeShift:(double)shift

Copies each Note in aNoteList into the Part, adding shift to each new Note's time tag
in the process (the Notes in the List are unaffected). The List argument is typically
generated through Part's notes or firstTimeTag:lastTimeTag: method. In this way, all
or a portion of one Part can be copied into another. Returns self, or nil if aNoteList is
nil.

See also: - addNotes:timeShift:, - shiftTime:

addToScore:

- addToScore:aScore

Moves the Part from its present Score, if any, to aScore. This is equivalent to Score's
addPart: method. Returns self.

See also: - removeFromScore, - score

atOr AfterTime:

- atOr AfterTime:(double)timeTag

Returns the first Note with a time tag equal to or greater than timeTag, or nil if none.

See also: - atTime:, - atOrAfterTime:nth:, ~ next:

atOr AfterTime:nth:

- atOrAfterTime:(double)timeTag nth:(unsigned)n

Returns the nth Note (zero-based) in the Part that has a time tag equal to or greater than
timeTag, or nil if none.

See also: - atTime:, - atOrAfterTime:, - next:

atTime:

- atTime:(double)timeTag

Returns the (first) Note in the Part that has a time tag of timeTag, or nil if none. Invokes
Note's compareNotes: method if the Part contains more than one such Note.

See also: - atOrAfterTime:, - atTime:nth:, - next:

2-162 Chapter 2: Class Specifications

atTirne:nth:

- atTime:(double)timeTag nth:(unsigned)n

Returns the nth Note (zero-based) in the Part that has a time tag of timeTag, or nil if
none.

See also: - atTime:, - atOrAfterTime:, - next:

combineNotes

- combineNotes

Creates and adds a single noteDur for each noteOn/noteOff pair in the Part. A
noteOn/noteOff pair is identified by pairing a noteOn with the earliest subsequent
noteOff that has a matching note tag. The parameters from the two Notes are merged
in the noteDur. If the noteOn and its noteOff have different values for the same
parameter, the value from the noteOn takes precedence. The noteDur's duration is the
time tag difference between the two original Notes. After the noteDur is created and
added to the Part, the noteOn and noteOff are removed and freed. Returns self.

See also: - splitNotes

containsNote:

- (BOOL)containsNote:aNote

Returns YES if the Part contains aNote, otherwise returns NO.

See also: - isEmpty, - noteCount

copy

-copy

Creates and returns a new Part as a copy of the receiving Part. The new Part contains
copies of the receiving Part's Notes (including the info Note) and is added to the same
Score as the receiving Part, but is left unnamed.

See also: - copyFromZone:

copyFrornZone:

- copyfromZone:(NXZone *)aZone

This is the same as copy, but the new Note is allocated in aZone.

See also: - copy

Music Kit Classes: Part 2-163

empty
-empty

Removes the Part's Notes but not its info Note. Returns self.

See also: - removeNote:, - freeNotes

firstTimeTag:lastTimeTag:
- firstTimeTag:(double)firstTimeTag lastTimeTag:(double)lastTimeTag

Creates and returns a List of the Part's Notes that have time tag values between
firstTimeTag and lastTimeTag, inclusive. The sender is responsible for freeing the List.
The object returned by this method is useful as the List argument in methods such as
addNotes: (sent to another Part), addNotes:timeShift:, and removeNotes:.

free
-free

Frees the Part, its Notes, and its info Note. Removes the Part's name from the Music
Kit name table. If the Part has an active PartPerformer associated with it, this method
does nothing.

See also: - freeSelfOnly, - freeNotes

freeNotes

- freeNotes

Removes and frees the Part's Notes and its info Note. If the Part has an active
PartPerformer associated with it, this does nothing and returns nil; otherwise returns
self.

See also: - empty, - removeNotes:

freeSelfOnly

- freeSelfOnly

Frees the Part but not its Notes. The Part is removed from its Score, if any. You can
free a Part while it's being performed by a PartPerformer-it's the Part's Notes, not the
Part itself, that's performed.

See also: - empty, - removeNotes:

2-164 Chapter 2: Class Specifications

info

- info

Returns the Part's info Note.

See also: - setlnfo:

isEmpty

- (BOOL)isEmpty

Returns YES ifthe Part contains no Notes (not including the info Note), otherwise
returns NO.

See also: - noteCount

isSorted

- (BOOL)isSorted

Returns YES if the Part's Notes are currently guaranteed to be in time tag order,
otherwise returns NO.

See also: - sort

next:

- next:aNote

Returns the Note immediately following aNote, or nil if aNote isn't a member of the
Part, or if it's the last Note in the Part.

See also: - nth:, - atTime:, - atOrAfterTime:

noteCount

- (unsigned)noteCount

Returns the number of Notes in the Part (not counting the info Note).

See also: - notes, - isEmpty

notes

- notes

Creates and returns a List of the Part's Notes. The Part is sorted before the List is
created. The sender is responsible for freeing the List.

See also: - notesNoCopy, - noteCount

Music Kit Classes: Part 2-165

notesNoCopy

- notesNoCopy

Returns the List object that contains the Part's Notes. The List isn't guaranteed to be
sorted.

See also: - notes, - noteCount

nth:

- nth:(unsigned)n

Returns the nth Note (O-based), or nil if n is out of bounds (negative or greater than the
Part's Note count).

See also: - notes, - noteCount, - atTime:

rernoveFrornScore

- removeFromScore

Removes the Part from its present Score. This is equivalent to Score's rernovePart:
method. Returns self, or nil if it isn't part of a Score.

See also: - addToScore:, - score

rernoveN ote:

- removeNote:aNote

Removes aNote from the Part. Returns the Note or nil if it isn't found.

See also: - removeNotes:, - empty, - addNote

rernoveNotes:

- removeNotes:aList

Removes all the Notes the Part has in common with aList. Returns self.

See also: - removeNote:, - empty, - addNote:, - firstTimeTag:lastTimeTag:

score

- score

Returns the Score the Part is a member of, or nil if none.

See also: - addToScore:, - removeFromScore

2-166 Chapter 2: Class Specifications

setInfo:

- setlnfo:aNote

Sets the Part's info Note to aNote and returns self. The info Note can be given
information (as parameters) that helps define how the Part should be interpreted; in
particular, special Music Kit parameters (more accurately, parameter tags) are designed
to be used in a Part info Note. Listed below, these parameters pertain to the manner in
which the Notes in the Part are synthesized, although as with any Note, the info Note's
parameters must be read and applied by some other object (or your application) in order
for them to have an effect. Keep in mind that the info Note is by no means restricted to
containing only these parameters.

Parameter Tag Expected Value Typical Use

MK_synthPatch SynthPatch subclass Argument to Synthlnstrument's
setSynthPatchClass: method.

MK_synthPatchCount integer Argument to Synthlnstrument's
setSynthPatchCount: method.

MK_midiChan integer Argument to Midi's
channelN oteReceiver: method.

MK_track integer Automatically set when a
midifile is read into a Score.

The info Note is stored separately from the Part's main body of Notes; methods such
as empty don't affect it.

See also: - info

shiftTime:

- shiftTime:(double)shift

Shifts the Part's contents by adding shift to each of the Notes' time tags. Returns self.

sort

- sort

Causes the Part to sort itself if it's currently unsorted. Normally, a Part sorts itself only
when Notes are accessed, moved, or removed. Returns self.

See also: - isSorted

Music Kit Classes: Part 2-167

splitNotes

- splitNotes

Splits the Part's noteDurs into noteOn/noteOff pairs. Each noteDur's note type is set
to noteOn and a noteOff is created (and added) to complement it. The original
parameters and note tag are divided between the two Notes as described in Note's
split:: method. Returns self.

See also: - combineNotes:, - split:: (Note)

2-168 Chapter 2: Class Specifications

Partials

INHERITS FROM WaveTable : Object

DECLARED IN musickit.h

CLASS DESCRIPTION

The Partials class lets you define a sound waveform by adding together a number of
sine wave components. Partials are used to provide musical timbres in DSP synthesis,
primarily by the SynthPatch classes that provide wave table synthesis-classes such as
Wave 1 vi and DBWavel vi. Partials' sister class, Samples, lets you define a waveform
as a series of sound samples, through association with a Sound object or soundfile.

Each of the sine waves in a Partials object is characterized by a frequency ratio, an
amplitude ratio, and an initial phase. The frequency ratios are taken as integer
multiples of a fundamental frequency-in other words, a ratio of 1.0 is the fundamental
frequency, 2.0 is twice the fundamental, 3.0 is three times the fundamental, and so on.
The fundamental frequency itself is defined in the frequency parameters of the Note
objects that use the Partials. The amplitude ratios are relative to each other: A sine
wave component with an amplitude ratio of 0.5 has half the amplitude of a component
with an amplitude ratio of 1.0. The initial phase determines the point in the sine curve
at which a particular component starts. Phase is specified in degrees; a phase of 360.0
is the same as a phase of 0.0. While phase information has been found to have little
significance in the perception of timbre, it can be important in other uses. For example,
if you're creating a waveform that's used as a sub-audio control signal-most notably
for vibrato-you will probably want to randomize or stagger the phases of the sine
waves.

All the component information for a Partials object is set through the
setPartiaICount:freqRatios:ampRatios:phases:orDefauItPhase: method. The first
argument, an int, is the number of sine waves in the object. The next three arguments
are pointers to arrays of doubles that provide corresponding lists of frequency,
amplitude, and phase information. The additional orDefaultPhase: keyword is
provided in recognition of phase's slim contribution to the scheme: Rather than create
and set an array of initial phases, you can pass NULL to phases: and set all the sine
wilve components to a common initial phase as the argument to orDefauItPhase:. The
following example demonstrates how to create a simple, three component Partials
object.

double freqs

double amps

id aPartials

{l.O, 2.0, 3.0 };

{1.0, 0.5, 0.25 };

[Partials new];

[aPartials setPartialCount:3 freqRatios:freqs

ampRatios:amps phases:NULL orDefaultPhase:O.O];

Music Kit Classes: Partials 2-169

The elements in the arrays are matched by index order: The first sine wave is defined
by the first element of freqs and the first element of amps; the second elements of the
arrays define the second sine wave; the third elements define the third sine wave. Since
the phase array is specified as NULL, all three sine waves are given an initial phase of
0.0.

In a scorefile, Partials are defined as curly-bracketed value pairs-or triplets if you want
to specify phase-and the entire Partials definition is enclosed in square brackets. If a
phase value is missing, the phase of the previous component is used; the default phase
is 0.0. You can define a Partials object in-line as the value of a parameter or, more
typically, in a global wave Table statement. The previous example could be defined in
a scorefile as

waveTable simpleSound = [{1.0, 1.0}{2.0, 0.5}{3.0, 0.25}];

where simpleSound is used to identify the object in subsequent Note statements:

partName (1.0) ... waveform:simpleSound ... ;

When this scorefile is read into an application, the Partials object will be given the
string name "simpleSound". The object itself can be retrieved by passing this string to
the MKGetNamedObjectO C function.

If you're creating a Partials object in an application and writing it to a scorefile, you
should always name the object through MKNameObjectO. This allows the object to
be defined once (albeit in-line, not in the header) in a waveTable statement and then
referred to by name in subsequent Notes. Without a name, a Partials object is defined
in-line in every Note statement that refers to it.

As a convenience, the Partials class lets you assign a range of fundamental frequencies
for which an object is valid. This can be useful in avoiding foldover, a bitter reality of
digitally-generated sounds that occurs when you try to create a frequency greater than
half the sampling rate. The setFreqRangeLow:high: method specifies the range.
freqWithinRange: returns YES or NO as the argument frequency is within the valid
range. However, keep in mind that it's the responsibility of the application or
SynthPatch to check the frequency range.

INSTANCE VARIABLES

Inherited/rom Object

Inherited/rom WaveTable

2-170 Chapter 2,' Class Specifications

Class

int
double
DSPDatum
double

isa;

length;
scaling;
*dataDSP;
*dataDouble;

Declared in Partials

ampRatios

freqRatios

phases

partialCount

defaultPhase

minFreq

maxFreq

METHOD TYPES

Creating and freeing a Partials

Defining the sine waves

Modifying the object

Querying the object

Computing the waveform

double
double
double
int
double
double
double

*ampRatios;
*freqRatios;
*phases;
partial Count;
defaultPhase;
minFreq;
maxFreq;

Array of amplitude ratios

Array of frequency ratios.

Arrays of initial phases.

Number of sine waves in the object.

Common phase, used in the absence of phases.

Optional frequency minimum.

Optional frequency maximum.

-copy

- setPartial CountfreqRatios: ampRatios :phases:
orDefaultPhase:

-free
- in it
- setFreqRangeLow:high:
- writeScorefileStream:

- ampRatios
- defaultPhase
- freqRatios
- freqWithinRange:
- getPartial:freqRatio:ampRatio:phase:
- highestFreqRatio
-maxFreq
- minFreq
- partial Count
- phases

- fillTableLength:scale:

Music Kit Classes: Partials 2-/71

INSTANCE METHODS

ampRatios

- (double *)ampRatios

Returns a pointer to the receiver's amplitude ratios array. You should neither free nor
alter the array.

copy

-copy

Creates and returns a Partials as a copy of the receiver. The returned object contains
copies of the receiver's arrays.

defaultPhase
- (double)defaultPhase

Returns the receiver's default phase.

flllTableLength:scale:

- fillTableLength: (int)aLength scale: (double)aScaUng

Computes the sampled waveform from the sine wave components.

This method is a subclass responsibility that's invoked automatically by the data
retrieval methods inherited from the WaveTable class-you needn't invoke this method
yourself. Returns the receiver, or nil if an error occurs.

free
-free

Frees the receiver and its arrays.

freqRatios

- (double *)freqRatios

Returns a pointer to the receiver's frequency ratios array. You should neither free nor
alter the array.

2-172 Chapter 2: Class Specifications

freq WithinRange:
- (BOOL)freqWithinRange:(double)Jreq

Returns YES ifJreq is within the range of fundamental frequencies ordinarily
associated with this timbre, as set by setFreqRangeLow:high:.

getPartial:freqRatio:ampRatio:phase:
- (int)getPartial:(int)n

freqRatio:(double *)jRatio
ampRatio: (double *)aRatio
phase:(double *)phase

Returns, by reference, the frequency ratio, amplitude ratio, and initial phase of the nth
sine wave component (counting from 0). The amplitude ratio value is scaled by the
current value of the scaling instance variable inherited from WaveTable.

If the nth sine wave is the last in the receiver, the method returns MK_IastValue. If n
is out of bounds, -1 is returned. Otherwise 0 is returned unless n is the last point, in
which case 2 is returned.

highestFreqRatio

init

- (double)highestFreqRatio

Returns the highest frequency ratio in the receiver. This can be useful in determining
if the receiver will generate a waveform that will fold over.

- init

Initializes the receiver. A subclass implementation should send [super init] before
performing its own initialization. The return value is ignored.

maxFreq

- (double)maxFreq

Returns the maximum fundamental frequency at which this timbre is ordinarily used.

minFreq

- (double)minFreq

Returns the minimum fundamental frequency at which this timbre is ordinarily used.

Music Kit Classes: Partials 2-173

partial Count
- (int)partiaICount

Returns the number of sine wave components.

phases

- (double *)phases

Returns a pointer to the receiver's phase array. You should neither free nor alter the
array.-

setFreqRangeLow:high:

- setFreqRangeLow: (double)freq 1
high:(double)freq2

Sets the frequency range associated with this timbre.

setPartiaICount:freqRatios:ampRatios:phases:orDefaultPhase:

- setPartiaICount:(int)count
freqRatios: (double *)freqRats
ampRatios:(double *)ampRats
phases:(double *)phases
orDefauItPhase:(double)defaultPhase

Defines the receiver's sine wave components. count is the number of sine waves
components;freqRats, ampRats, and phases are pointers to arrays that define the
frequency ratios, amplitude ratios, and initial phases, respectively, of the sine wave
components (the arrays are copied into the receiver). The elements of the arrays are
matched by index order: The nth sine wave is configured from the nth element in each
array.

If phases is NULL, the value of defaultPhase is used as the initial phase for all the
components. If freqRats or ampRats is NULL, the corresponding extant array, if any,
is unchanged.

Note that this method sets the length instance variable to 0, forcing a recompute in a
subsequent data array retrieval (through the dataDSP: ... and dataDouble: ••• methods)
as explained in the WaveTable class.

Returns the receiver.

2-174 Chapter 2: Class Specifications

writeScorefileStream:

- writeScorefileStream:(NXStream *)aStream

Writes the receiver in scorefile format on the specified stream. Returns nil if
amp Ratios or freqRatios is NULL, otherwise returns the receiver.

Music Kit Classes: Partials 2-175

2-176

PartPerformer

INHERITS FROM Performer: Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A PartPerformer object performs the Notes in a particular Part. The association
between a Part and a PartPerformer is made through PartPerformer's setPart: method.
While a single PartPerformer can only be associated with one Part, any number of
PartPerformers can be associated with the same Part.

When you activate a PartPerformer the object copies its Part's list of Notes, but it
doesn't copy the Notes themselves. When it's performed, the PartPerformer sequences
over its copy ofthe list, allowing you to edit the Part (by adding or removing Notes)
without disturbing the performance-changes made to a Part during a performance are
not seen by the PartPerformer. However, since only the list of Notes is copied but not
the Notes themselves, you should never free a Part's Notes during a performance, and
you should alter them with discretion (in particular, it's not a good idea to change a
Note's time tag while the Part that contains it is being performed).

A PartPerformer remembers its Part between performances, but it generates a new copy
of the Part's Note list each time it's activated. Thus, if you edit a Part during a
performance, you don't have to resend setPart: before the next performance to get the
PartPerformer to recognize the changes; the modifications will be seen when the
PartPerformer is reactivated.

In addition to the time shift and duration variables that it inherits from Performer, a
PartPerformer contains variables that define the first time tag and last time tag values
that it considers valid for a performance. Consider the following:

[aPartPerf setTimeShift:3.0];

[aPartPerf setFirstTimeTag:5.0];

The PartPerformer will perform, as its initial Note, the first Note that it finds in its Part
that has a time tag value greater than or equal to 5.0, and it performs it at beat 3.0 plus
the difference between 5.0 and the Note's actual time tag value.

A PartPerformer's duration and its last time tag value compete with each other; you
shouldn't set both variables. For example, the following:

[aPartPerf setDuration:4.0];

is equivalent to

[aPartPerf setLastTimeTag: [aPartPerf firstTimeTag] + 4.0];

Music Kit Classes: PartPerformer 2-177

A PartPerformer creates a single NoteSender through which it sends all its Notes. It
won't recognize any NoteSenders that you add from your application.

If you're performing a Score, you can use a ScorePerformer to automatically create
PartPerformers for you, one for each Part in the Score. In addition, if you design your
own subclass of PartPerformer, you can tell a ScorePerformer to create instances of
your subclass through ScorePerformer's setPartPerformerClass: method.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Performer

Declared in PartPerformer

nextNote

noteSender

part

firstTimeTag

lastTimeTag

METHOD TYPES

Class Isa;

id conductor;
MKPerformerStatus status;
int perform Count;
double time Shift;
double duration;
double time;
double nextPerform;
id noteS enders;

id nextNote;
id noteSender;
id part;
double firstTimeTag;
double lastTimeTag;

The next Note to perform.

The PartPerformer's only NoteSender.

The Part associated with this object.

Least time tag value considered for performance.

Greatest time tag value considered for
performance.

Initializing and freeing PartPerformer
- init
-free

Accessing the Part - setPart:
-part

2-178 Chapter 2: Class Specifications

Performing the object - activateSelf
- deactivateS elf
-perform

Accessing the timing variables - setFirstTimeTag:
- firstTimeTag
- setLastTimeTag:
- lastTimeTag

Archiving the object - write:
- read:
- awake

INSTANCE METHODS

activateS elf

- activateSelf

Prepares the PartPerformer for a performance by creating a copy of its Part's list of
Notes. It then zips through the Note list copy until a Note with a time tag greater than
or equal to the PartPerformer's first time tag value (as set through setFirstTimeTag:)
is found. The nextPerform instance variable is set such that the Note will be
performed at a time that reflects the difference between the Note's time tag and the
value of the PartPerformer's first time tag, plus the PartPerformer's performance time
offset (as set through the setTimeShift: method inherited from Performer).

You never invoke this method directly; it's invoked as part of the activate method
inherited from Performer. It returns nil (and the PartPerformer isn't activated) if the
Part hasn't been set, if the Part doesn't contain any Notes, or if none of its Notes has a
time tag between the PartPerformer's first time tag and last time tag values. Otherwise
it returns self.

See also: - activate (Performer)

awake

-awake

Prepares a recently unarchived PartPerformer for use by creating and adding a
N oteSender.

See also: - write:, - read:

Music Kit Classes: PartPerformer 2-179

deactivateS elf

- deactivateSelf

Frees the PartPerformer's Note list. You never invoke this method directly; it's invoked
as part of the deactivate method inherited from Performer.

See also: - deactivate (Performer)

firstTimeTag

- (double)firstTimeTag

Returns the PartPerformer's first time tag value, as set through setFirstTimeTag:.

See also: - setFirstTimeTag:, - setLastTimeTag:

free

-free

init

This invokes [super free] with an additional check: If the PartPerformer was created
by a ScorePerformer, it can't be freed through this method. It must be freed through a
message to the ScorePerformer.

See also: - free (ScorePerformer), - freePartPerformers (ScorePerformer)

-init

Initializes the PartPerformer by creating and adding its single NoteSender. A subclass
implementation should send [super init] before performing its own initialization.
Returns self.

lastTimeTag

- (double)lastTimeTag

Returns the PartPerformer's last time tag value, as set through setLastTimeTag:.

See also: - setFirstTimeTag:, - setLastTimeTag:

part

-part

Returns the PartPerformer's Part object, as set through setPart:.

See also: - setPart:

2-180 Chapter 2: Class Specifications

perform

-perform

Performs a single Note from the Note list by sending it to the PartPerformer's
NoteSender. You never invoke this method directly; it's automatically and sequentially
invoked during a performance. If the PartPerfonner's Note list is exhausted, or if the
next Note in the list has a time tag greater than the PartPerfonner's last time tag value,
the PartPerformer is deactivated. Keep in mind that a PartPerfonner reads one Note
ahead: It sends the Note read during the previous invocation of perform (or
activateS elf if this is the first invocation), retrieves the next Note, and schedules
another perform message based on the Note's time tag. A subclass implementation
should send [super perform]. The return value is ignored.

read:

- read:(NXTypedStream *)stream

Unarchives the PartPerfonner by reading it from stream. You never invoke this method
directly; to read an archived PartPerformer, call the NXReadObjectO C function.

See also: - write:, - awake

setFirstTimeTag:

- setFirstTimeTag:(double)firstTimeTag

Sets the least time tag value that the PartPerformer considers for performance. When
the PartPerformer is activated, it reads through its Note list, searching for the first Note
that has a time tag value greater than or equal to firstTimeTag. It begins performing
from that Note. Keep in mind that the difference between the Note's time tag value and
the value set here is made up as a (seeming) delay before the Note is performed.
However, this delay is added into the PartPerfonner's notion of the current time (as
returned by the time method, inherited from Performer). This is distinct from the real
delay incurred by setting the object's performance time offset (through Performer's
setTimeShift: method): The time offset isn't added into the PartPerformer's notion of
the current time.

If the PartPerformer is in a performance, this does nothing and returns nil. Otherwise,
it returns self.

See also: - firstTimeTag, - setLastTimeTag:, - setTimeShift: (Performer)

Music Kit Classes: PartPerformer 2-181

setLastTimeTag:

- setLastTimeTag: (double)lastTimeTag

Sets the greatest time tag value that the PartPerformer considers for performance.
When, during its sequence of perform invocations, the PartPerformer reads a Note
from its Note list that has a time tag value greater than lastTimeTag, the PartPerformer
is immediately deactivated.

This method performs the same function as the setDuration: method inherited from
Performer. You shouldn't invoke both.

If the PartPerformer is in a performance, this does nothing and returns nil. Otherwise,
it returns self.

See also: -lastTimeTag, - setFirstTimeTag:, - setDuration: (Performer)

setPart:

- setPart:aPart

Associates the PartPerformer with aPart. If the PartPerformer is active, this does
nothing and returns nil. Otherwise it returns self.

See also: - part

write:

- write:(NXTypedStream *)stream

Archives the PartPerformer by writing it to stream. You never invoke this method
directly; to archive a PartPerformer, call the NXWriteRootObjectO C function. In
addition to the archiving defined by the Performer class, the PartPerformer's first and
last time tag values are archived directly and its Part and ScorePerformer (if any) are
archived by reference.

See also: - read:, - awake

2-182 Chapter 2: Class Specifications

PartRecorder

INHERITS FROM Instrument: Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A PartRecorder is an Instrument that realizes Notes by adding copies of them to a Part.
A PartRecorder's Part is set through the setPart: method. If the Part already contains
Notes, the old Notes aren't removed or otherwise affected by recording into the Part
the recorded Notes are merged in.

Each PartRecorder contains a single NoteReceiver object. During a performance, a
PartPerformer receives Notes from its NoteReceiver, copies them, and then adds them
to its Part object. Each Note is given a new (but not necessarily different) timeTag; if
the Note is a noteDur, it's also given a new duration. The timeTag and duration are
computed either as beats or as seconds, depending on the value of the timeUnit
instance variable. If time Unit is set to MK_second, the default, the new values are in
seconds from the beginning of the performance. If it's set to MK_beat, they're
computed as beats.

You can create PartRecorders yourself, or you can use a ScoreRecorder object to create
a group of them for you.

INSTANCE VARIABLES

Inherited/rom Object

Inherited/rom Instrument

Declared in PartRecorder

timeUnit

noteReceiver

part

Class

id

MKTimeUnit
id
id

isa;

noteReceivers;

timeUnit;
noteReceiver;
part;

The unit in which the object measures time.

The object's single NoteReceiver.

The object's Part.

Music Kit Classes: PartRecorder 2-183

METHOD TYPES

Creating and freeing a PartRecorder
-copy

Modifying the object - init
- setPart:

Querying the object -part

Realizing Notes - realizeNote:fromNoteReceiver:

Accessing time - setTimeUnit:
- timeUnit

INSTANCE METHODS

copy

-copy

init

Creates and returns a new PartRecorder as a copy of the receiver. The new object has
its own NoteReceiver object but adds Notes to the same Part as the receiver.

- init

Initializes the receiver by creating and adding its single NoteReceiver. You never
invoke this method directly. A subclass implementation should send [super init]
before performing its own initialization. The return value is ignored.

part

-part

Returns the receiver's Part object.

realizeNote:fromNoteReceiver:

- realizeNote:aNote fromNoteReceiver:aNoteReceiver

Copies aNote, computes and sets the new Note's timeTag (and duration if it's a
noteDur), and then adds the new Note to the receiver's Part. aNoteReceiver is ignored.
Returns the receiver.

2-184 Chapter 2: Class Specifications

setPart:

- setPart:aPart

Sets aPart as the receiver's Part. Returns the receiver.

setTimeUnit:

- setTimeUnit:(MKTimeUnit)aTimeU nit

Sets the receiver's timeUnit instance variable to aTimeUnit, one of MK_second or
MK_beat. The default is MK_second.

timeUnit

- (MKTimeUnit)timeUnit

Returns the receiver's timeUnit, either MK_second or MK_beat.

Music Kit Classes: PartRecorder 2-185

2-186

Patch Template

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A PatchTemplate is a recipe for building a DSP synthesis patch. It contains
specifications for the UnitGenerator and SynthData objects that are needed and
instructions for connecting these objects together. Patch Template objects are created
as part of a SynthPatch subclass design. Keep in mind that while each subclass of
SynthPatch creates one or more PatchTemplates, you don't need to subclass
PatchTemplate itself.

PatchTemplate's addUnitGenerator:ordered: and addSynthData:length: methods
describe the objects that make up the SynthPatch. It's important to keep in mind that
these methods don't add actual objects to the PatchTemplate. Instead, they specify the
types of objects that will be created when the SynthPatch is constructed by the
Orchestra.

A PatchTemplate's UnitGenerators are specified by their class, given as the first
argument to the addUnitGenerator:ordered: method. The argument should be a
UnitGenerator leaf class, not a master class (leaf and master classes are explained in the
UnitGenerator class description).

The UnitGenerator is further described as being ordered or unordered, as the argument
to the ordered: keyword is YES or NO. Ordered UnitGenerators are executed (on the
DSP) in the order that they're added to the PatchTemplate; unordered UnitGenerators
are executed in an undetermined order. Usually, the order in which UnitGenerators are
executed is significant; for example, if the output of UnitGenerator A is read by
UnitGenerator B, then A must be executed before B if no delay is to be incurred. As a
convenience, the addUnitGenerator: method is provided to add UnitGenerators that
are automatically declared as ordered. The advantage of unordered UnitGenerators is
that their allocation is less constrained.

SynthDatas are specified by a DSP memory segment and a length. The memory
segment is given as the first argument to addSynthData:length:. This can be either
MK_xData, for x data memory, or MK_yData, for y data memory. Which memory
segment to specify depends on where the UnitGenerators that access it expect it to be.
The argument to the length: keyword specifies the size of the SynthData, or how much
DSP memory it represents, and is given as DSPDatum (24-bit) words.

A typical use of a SynthData is to create a location called a patchpoint that's written to
by one UnitGenerator and then read by another. A patchpoint, which is always 16
words long, is ordinarily the only way that two UnitGenerators can communicate. The
addPatchpoint: method is provided as a convenient way to add SynthDatas that are

Music Kit Classes: PatchTemplate 2-187

used as patchpoints. The argument to this method is either MK_xPatch or MK-sPatch,
for x and y patchpoint memory, respectively.

The object-adding methods each return a unique integer that identifies the added
UnitGenerator or SynthData.

Once you have added the requisite synthesis elements to a PatchTemplate, you can
specify how they are connected. This is done through invocations of the to:sel:arg:
method. The first argument is an integer that identifies a UnitGenerator (such as
returned by addUnitGenerator:), the last argument is an integer that identifies a
SynthData (or patchpoint). The argument to the sel: keyword is a selector that's
implemented by the UnitGenerator and that takes a SynthData object as its only
argument. Typical selectors are setlnput: (the UnitGenerator reads from the
SynthData) and setOutput: (it writes to the SynthData). Notice that you can't connect
a UnitGenerator directly to another UnitGenerator.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Declared in PatchTemplate (none)

METHOD TYPES

Creating a PutchTemplate object -copy
- init

Adding and connecting synthesis elements
- addPatchpoint:
- addSynthData:length:
- addUnitGenerator:
- addUnitGenerator:ordered:
- to:sel:arg:

Querying the object - synthElementCount

INSTANCE METHODS

addPatchpoint:

- (unsigned)addPatchpoint: (MKOrchMemSegment)segment

Adds a patchpoint (SynthData) specification to the receiver. segment is the DSP
memory segment from which the patchpoint is allocated. It can be either MK_xPatch
or MK-sPatch. RetUt"lls an integer that identifies the patchpoint specification.

2-188 Chapter 2: Class Specifications

addSynthData:length:
- (unsigned)addSynthData: (MKOrchMemSegment)segment length: (unsigned)len

Adds a SynthData specification to the receiver. The SynthData has a length of len
DSPDatum words and is allocated from the DSP segment segment, which should be
either MK_xData or MK_yData. Returns an integer that identifies the SynthData
specification.

add U nitGenerator:
- (unsigned)addUnitGenerator:aUGClass

Adds an ordered UnitGenerator specification to the receiver. Implemented as
[self addUnitGenerator:aUGClass ordered:YES]. Returns an integer that identifies
the UnitGenerator specification.

addU nitGenerator: ordered:
- (unsigned)addUnitGenerator:aUGClass ordered:(BOOL)isOrdered

Adds a UnitGenerator specification to the receiver. The UnitGenerator is an instance
of aUGClass, a UnitGenerator leaf class. If isOrdered is YES, then the order in which
the specification is added (in relation to the receiver's other UnitGenerators) is the order
in which the UnitGenerator, once created, is executed on the DSP.

copy
-copy

Creates and returns a PatchTemplate as a copy of the receiver.

synthElementCount

- (unsigned)synthElementCount

Returns the number of UnitGenerator and SynthData specifications (including
patchpoints) that have been added to the receiver.

to:sel:arg:
- to:(unsigned)anObjlnt

sel:(SEL)aSelector
arg:(unsigned)anArgI nt

Specifies a connection between the UnitGenerator identified by anObjlnt and the
SynthData identified by anArglnt. The means of the connection are specified in the
method aSelector, to which the UnitGenerator must respond. anObjlnt and anArglnt
are identifying integers returned by PatchTemplate's add methods. If either of these
arguments are invalid identifiers, the method returns nil, otherwise it returns the
receiver.

Music Kit Classes: PatchTemplate 2-189

2-190

Performer

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

The Performer class supplies a mechanism for automatically sending a series of Notes
into a Music Kit performance in a timely manner. The class itself is abstract; you create
a subclass of Performer to correspond to a unique sources of Notes. The Music Kit
includes subclasses that read Notes from a Part (PartPerformer) or a scorefile
(ScorefilePerformer)-the latter actually inherits from the FilePerformer class, a
subclass of Performer that defines methods for managing files. The Music Kit also
includes pseudo-Performers that fashion Notes from MIDI input (Midi), and that read
Notes from a Score (ScorePerformer, which creates a PartPerformer for each Part in the
Score). Using a Performer object is quite simple; creating your own subclass is a bit
more complicated and requires a firm understanding of how a Performer goes about its
business. These two topics are presented in turn below.

Using a Performer

To use a Performer, you need to do two things: connect it to an Instrument and tell it
to go. Every Performer contains some number of NoteSenders, auxiliary objects that
are created by the Performer to act as Note "spigots." Analogously, Instruments
contains NoteReceivers. To connect a Performer to an Instrument, you retrieve a
NoteSender and NoteReceiver from either, respectively, and connect these objects
through the connect: method as defined by both NoteSender and NoteReceiver. For
example, to connect a PartPerformer to a SynthInstrument (an Instrument that
synthesizes Notes on the DSP), you would do the following:

/* aPartPerformer and aSynthlns are assumed to exist. */

[[aPartPerformer noteSender] connect: [aSynthlns noteReceiver]];

The noteSender method returns one of a Performer's NoteSenders (the noteReceiver
method operates analogously for an Instrument with regard to its NoteReceivers). If
you're using instances of the Music Kit Performer subclasses, you should refer to their
descriptions to determine if they create more than one NoteSender. If it creates only
one, then the noteSender method is sufficient. If it creates more than one, you can
retrieve the entire set as a List through the noteSenders method, and then choose the
NoteSender that you want by plucking it from the List. A ScorefilePerformer, for
example, creates a NoteSender for each Part that's represented in its scorefile.

To make a Performer run, you send it the activate message. This prepares the object
for a performance, but it doesn't actually start performing Notes until you send
startPerformance to the Conductor class. If you invoke activate while a performance
is in progress (in other words, after you send startPerformance), the Performer will

Music Kit Classes: Performer 2-191

immediately start running. In addition, the Performer may require subclass-specific
preparation; for example, you have to set a PartPerformer's Part before you send it the
activate message.

While a Performer is running, you can pause and resume its activity through the pause,
pauseFor:, and resume methods. To completely stop a Performer you invoke
deactivate. In addition, all Performers are automatically deactivated when the
Conductor class receives the finishPerformance message. A Performer can be given
a delegate object that can be designed to respond to the messages
performerDidActivate:, performerDidPause:, performerDidResume:, and
performerDidDeactivate:. These messages are sent by the Performer at the obvious
junctures in its performance.

Every Performer object is associated with a Conductor. If you don't set a Performer's
Conductor explicitly (through setConductor:), it will be associated with the
defaultConductor. The rate at which a Performer performs its Notes is controlled by its
Conductor's tempo. In general, all the Performers you create can be associated with
the same Conductor. The only case in which a Performer demands its own Conductor
is if you want the Performer to proceed at a different tempo from its fellow Performers.

Creating a Performer Subclass

The design of a Performer subclass must address three tasks: acquiring a Note, sending
it into a performance, and scheduling the next Note.

Acquiring Notes

Each subclass of Performer defines a unique system for acquiring Notes. You can
design your own Performers that, for example, read Notes from a specialized data base
or create Notes algorithmically. Regardless of how a Performer acquires its Notes, it
does so as part of the implementation of its perform method.

The design and use of the perform method follows two principles:

• It should acquire one Note at a time.

• It's never invoked directly; instead, it's automatically invoked once for each Note.
This is part of the Performer's scheduling mechanism, as described below.

Sending Notes

To send a Note into a performance, a Performer relies on its NoteSender objects. A
Performer creates and adds some number of N oteSenders to itself, usually as part of its
init method. NoteSenders are created through the usual sequence of alloc and init
messages; they're added to a Performer through Performer's addNoteSender: method.
A Performer can add any number of NoteSenders to itself, although it's anticipated that
most Performers will only need one.

2-192 Chapter 2: Class Specifications

As part of its perform method, a Performer passes the Note it has acquired as the
argument in a sendNote: message, which it sends to its NoteSenders. Each NoteSender
then relays the Note to the NoteReceivers to which it's connected; each NoteReceiver
passes the Note to the Instrument that it (the NoteReceiver) belongs to. Thus, by
sending sendNote: to a NoteSender, a Performer communicates Notes to one or more
Instruments.

Keep in mind that the Performer class itself doesn't invoke sendNote: for you; you
must include the invocation as part of your subclass' implementation of the perform
method.

Scheduling Notes

As described above, every time a Performer receives the perform message it acquires
a Note and then sends it to its NoteSenders. The final obligation of the perform method
is to schedule its own next invocation. This is done by setting the value of the
nextPerform instance variable. The value of nextPerform is measured in beats
according to the tempo of the Conductor and, most important, it's taken as a time delay:
If you set nextPerform to 3.0, for example, the perform method will be invoked after
3.0 beats.

To get things started, a Performer's first perform message is automatically scheduled
to be sent just after the Performer is activated. You can delay this initial invocation by
setting the nextPerform variable from within the activateSelf method. The default
implementation of activateSelf does nothing; a subclass can implement it to provide
pre-performance initialization just such as this.

An important implication of this scheduling mechanism is that a Performer must be
able to determine when it wants to perform its next Note at the time that it acquires and
performs its current Note.

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Declared in Peiformer id conductor;
MKPerformerStatus status;
int perform Count;
double timeShift;
double duration;
double time;
double nextPerform;
id noteS enders;

conductor The Performer's Conductor.

status The object's performance status.

Music Kit Classes: Performer 2-193

perform Count

timeShift

duration

time

nextPerform

noteSenders

METHOD TYPES

Number of perform messages the object has
received.

Performance time offset in beats.

Maximum number of beats the object will spend
in performance.

The object's notion of the current time in beats.

Used to schedule invocations of perform.

The object's collection of NoteSenders.

Copying and initializing a Performer
-copy
- copyFromZone:
- init

Freeing a Performer and its contents
- free
- freeNoteSenders

Accessing NoteSenders - addNoteSender:
- rem oveN oteSender:
- removeNoteSenders
- isNoteSenderPresent:
- noteSender
- noteS enders

Accessing the Conductor - setConductor:
- conductor

Performance timing - setTimeShift:
- time Shift
- setDuration:
- duration
- time

2-194 Chapter 2: Class Specifications

Performing the object -perform
- perform Count
- activate
- activateSelf
- deactivate
- deactivateSelf
- pause
- pausePor:
- resume
- status
- inPerformance

Accessing the delegate - setDelegate:
- delegate

Archiving the object - write:
- read:
- awake

INSTANCE METHODS

activate

- activate

Primes the Performer for the next (or the current) performance. It does this by
performing the following duties:

• The nextPerform variable is to 0.0 and the performance count is cleared.

• The activateS elf method is invoked.

• The first perform invocation is scheduled to take place at the time indicated by
nextPerform (which may have been modified by activateSelf).

• The Performer's status is set to MK_active.

• The message performerDidActivate: is sent to the Performer's delegate.

Upon completing these rounds, self is returned. However, successful activation
depends on a number of conditions:

• If the Performer's status isn't MK_inactive (in other words, if it's already in
performance, whether or not its currently paused), self is returned with no further
ado.

Music Kit Classes: Performer 2-195

• If the Perfonner's perfonnance duration (as set through setDuration:) is less than
or equal to 0.0, nil is returned and the rest is for naught.

• Should activateS elf return nil, immediately thereafter so, too, will this.

• If, after activateSelf is invoked, the value of nextPerform is greater than the
Perfonner's duration, nil is returned and the Perfonner lies doggo.

Note that the perform invocation, the status change, and the delegate notification only
happen if the method is entirely successful.

See also: - activateSelf, - deactivate, - status, - inPerformance

activateSelf

- activateSelf

You never invoke this method directly; it's invoked automatically from the activate
method. A subclass can implement this method to perfonn pre-perfonnance activities.
In particular, if the subclass needs to alter the initial nextPerform value, it should be
done here. When activateSelf is invoked, the Perfonner's status is MK_inactive, thus
you can, for example, set its Conductor in the implementation of this method but you
can't, for another example, pause the Perfonner. If activateSelf returns nil, the
Perfonner isn't activated; the return value is otherwise insignificant. The default
implementation does nothing and returns self.

See also: - activate

addNoteSender:

- addNoteSender:aNoteSender

Removes aNoteSender from its current owner, if any, and adds it to the Perfonner. Both
Performers (the old owner and the receiver of this message) must be inactive. Returns
nil if either of the Performer is active, or if the NoteSender already belongs to the
receiving Perfonner, otherwise returns self.

See also: - noteS ender, - noteS enders, - removeNoteSender:, - inPerformance

awake

-awake

Prepares a recently unarchived Perfonner for use. The Perfonner's status is set to
MK_inactive.

See also: - write:, - read:

2-196 Chapter 2: Class Specifications

conductor

- conductor

Returns the Performer's Conductor, as set through setConductor:. The Conductor's
tempo influences the rate at which a Performer performs its Notes; in addition, you can
control the performance activities of a group of Performers by sending messages, such
as pause and resume, to their mutual Conductor. By default, the defaultConductor
controls all Performers.

See also: - setConductor:

copy

-copy

Creates and returns a new, inactive Performer as a copy of the receiving Performer. The
new object copies the time shift and duration values, and it adds to itself copies of the
NoteSenders. The new object's nextPerform variable is set to 0.0.

copy FrornZone:(NXZone)zone

- copy FromZone: (NXZone)zone

The same as copy but the new Performer is allocated in zone.

deactivate

- deactivate

Halts the Performer's performance. The Performer is removed from the performance,
its deactivateS elf method is invoked (and the return value ignored), its status is set to
MK_inactive, and the message performerDidDeactivate: is sent to the delegate. If the
object has scheduled a resume message through a previous invocation of pauseFor:,
that message is cancelled. Keep in mind that while you can send deactivate directly to
a Performer, the method is also invoked automatically when the Performer's duration
expires, if the entire performance is ended (through the Conductor class method
finishPerformance), or (for certain subclasses) when the Performer runs out of Notes.
Returns self.

See also: - deactivateS elf, - activate

Music Kit Classes: Performer 2-197

2-198

deactivateSelf

- deactivateS elf

You never invoke this method directly; it's invoked automatically from the deactivate
method. A subclass can implement this method to perform post-performance activities.
You should note that at the time that this method is invoked, the Performer's status will
not yet have been changed to MK_inactive. The default implementation does nothing;
the return value is ignored (by the deactivate method).

See also: - deactivate

delegate

- delegate

Returns the Performer's delegate object, as set through setDelegate:. The delegate is
sent messages as the Performer is activated, paused, resumed, and deactivated.

See also: - setDelegate:

duration

- (double)duration

Returns the Performer's performance time limit as set through setDuration:.

See also: - setDuration:, - setTimeShift:, - time

free

- free

Frees the Performer and its NoteSenders. The Performer must be inactive; this does
nothing and returns nil if the Performer is currently in performance (even if it's paused).

See also: - freeNoteSenders

freeN oteSenders

- freeNoteSenders

Disconnects and frees the Performer's NoteSenders and returns self. The Performer
must be inactive; this does nothing and returns nil if the Performer is currently in
performance (even if it's paused).

See also: - free, - addNoteSender:, - removeNoteSender:, - removeNoteSenders

init

- init

Initializes the Performer. This method is often subc1assed to create and add some
number of NoteSenders to the Performer. Such an implementation should send
[super init] before performing its own initialization. Returns self.

inPerforrnance

- (BOOL)inPerformance

Returns YES if the Performer is considered to be in performance, otherwise returns
NO. The determination is based on the Performer's status, where the MK_active and
MK_paused states indicate that the Performer is in performance, and MK_inactive
means that it isn't.

See also: - status

isN oteSender Present:

- (BOOL)isNoteSenderPresent:aNoteSender

Returns YES if aNoteSender is owned by the Performer, otherwise returns NO.

See also: - addNoteSender:, - removeNoteSender:, - noteS enders

noteSender

- note Sender

Returns one ofthe Performer's NoteSenders. This is convenient ifthe Performer owns
but a single NoteSender, or if you don't care which NoteSender you retrieve. Given a
stable set of NoteSenders, this method will always return the same one.

See also: - noteSenders, - addNoteSender:, - removeNoteSender:

noteSenders

- noteS enders

Creates and returns a List that contains the Performer's NoteSenders. It's the sender's
responsibility to free this List.

See also: - noteSender, - addNoteS~nder:, - removeNoteSender:

Music Kit Classes: Performer 2-199

pause
- pause

Suspends the Performer's performance for an indeterminate amount of time. To
unpause a Performer, send it the resume message. While it's paused, the Performer is
unable to receive perform messages; the perform message that's impending at the
time that pause is received is rescheduled when the Performer is resumed. This method
also sets the Performer's status to MK_paused and the performerDidPause: message
is sent to its delegate. The time a Performer spends paused isn't deducted from its
duration time limit. If the Performer is already paused, or if it isn't in a performance
(in other words, if its status isn't MK_active), none of the above obtains. Returns self.

See also: - pauseFor:, - resume, - setTimeShift:

pauseFor:

- pauseFor:(double)beats

Suspends the Performer's performance for beats beats. A resume message is
automatically sent to the Performer at the appointed time to rouse it from its slumber,
or you can unpause the Performer ahead of schedule by sending it resume directly (the
scheduled resume message won't be sent). While it's paused, the Performer is unable
to receive perform messages; the perform message that's impending at the time that
pauseFor: is received is rescheduled when the Performer is resumed. This method also
sets the Performer's status to MK_paused and the performerDidPause: message is
sent to its delegate.

You can send pauseFor: to a paused Performer and thereby reschedule the previously
requested resume message. The delegate message is suppressed in this case.

If beats is less than or equal to 0.0, the Performer isn't paused and nil is returned.
Similarly, if the Performer isn't in a performance it won't be paused, although in this
case and in all others, self is returned.

See also: - pause, - resume, - setTimeShift:

perform

- perform

This is the soul of a Performer; its design embodies the character of the particular
subclass that implements it. The Performer class itself declares this method as a
subclass responsibility. The guidelines for implementing this method take up the
greater share of the class description, above, and can be summarized as they fall into
three basic tasks:

• A Note is acquired.
• The NoteSender method sendNote: is invoked with this Note as an argument.
• The nextPerform instance variable is set.

2-200 Chapter 2: Class Specifications

You never invoke perform directly; it's invoked sequentially and automatically during
a performance. Note that the perform-message count (as retrieved through
performCount) is incremented before perform is delivered to the Performer. Thus, an
invocation of perform Count from within an implementation of perform will always
yield a value of lor greater. It's acceptable to send pause, pauseFor:, or deactivate
to self as part of the implementation of perform. The value returned by perform is
ignored.

See also: - activateSelf, - performCount

perform Count

- (int)performCount

Returns the number of perform messages the Performer has received in the current
performance, or how many it received in its previous performance if the Performer is
currently inactive.

See also: - perform, - perform Count

read:

- read:(NXTypedStream *)stream

Unarchives the Performer by reading it from stream. You never invoke this method
directly; to read an archived Performer, call the NXReadObjectO C function.

See also: - write:, - awake

removeNoteSender:

- removeNoteSender:aNoteSender

Removes aNoteSender from the Performer. If the Performer is currently in
performance, or if it doesn't own aNoteSender, the object isn't removed and nil is
returned. Otherwise returns self.

See also: - addNoteSender:, - removeNoteSenders, - isNoteSenderPresent:

removeNoteSenders

- removeNoteSenders

Removes the Performer's NoteSenders. If the Performer is in a performance, the
objects aren't removed. Returns self.

See also: - addNoteSender:, - removeNoteSender:

Music Kit Classes: Performer 2-201

resume
- resume

Resumes a paused Performer. The Performer's status is set to MK3ctive and the
performerDidResume: message is sent to its delegate. The perform message that
was impending when the Performer was paused (whether through pause or pauseFor:)
is rescheduled such that, to the Performer, time will have seemed to stand still while it
was paused. If the Performer isn't paused, this does nothing. Returns self.

See also: - pause, - pauseFor:

setConductor:
- setConductor:aConductor

Sets the Performer's Conductor. If aConductor is nil the Performer is associated with
the defaultConductor. The Conductor's tempo influences the rate at which a Performer
performs its Notes; in addition, you can control the performance activities of a group
of Performers by sending messages, such as pause and resume, to their mutual
Conductor. By default, the defaultConductor controls all Performers.

See also: - conductor

setDelegate:
- setDelegate:delegate

Sets the Performer's delegate and returns self. Delegate messages are sent when you
invoke the following Performer methods:

Method

activate
pause, pauseFor:
resume
deactivate

Delegate Message

performerDidActivate:
performerDidPause:
performerDidResume:
performerDidDeactivate:

As usual, a delegate message is sent only if the object responds to it.

See also: - delegate

setDuration:
- setDuration:(double)dur

Sets the Performer's duration to dur in beats. This value is the maximum amount of
time, in beats, that the Performer is allowed to perform. The Performer is deactivated
when, as part of its appointed duties in the perform method, it sets the nextPerform
variable such that the next invocation of perform would fall outside the duration time
limit. For example, if you set a Performer's duration to 10.0 and the Performer receives

2-202 Chapter 2: Class Specifications

the perform message five beats into the performance during which it sets nextPerform
to 6.0, the Performer will be deactivated as soon as that invocation of perform finishes
(even though it has five beats left in its duration).

The stopwatch on a Performer's duration time limit starts ticking when the Performer
actually starts performing-in other words, after its time shift, if any, has expired. Time
spent paused also doesn't count.

The Performer must be inactive. Returns nil if the Performer is currently in
performance (and doesn't set the duration), otherwise returns self.

See also: - duration, - setTimeShift:, - time Shift

setTimeShift:

- setTimeShift:(double)timeShift

Imposes an initial delay of timeShift beats on the Performer's performance. The
Performer must be inactive. If you pause a Performer before its time shift expires-in
other words, if you send pause or pauseFor: within timeShift beats of sending
startPerformance to the Conductor class-the balance of the time shift will be applied
after the Performer is resumed. Returns nil if the Performer is currently in
performance, otherwise returns self.

See also: - timeShift, - setDuration:, - duration

status

- (MKPerformerStatus)status

Returns the Performer's current performance status as one of the following integer
constants:

Constant

MK_active
MK_paused
MK_inactive

Meaning

In a performance (or activated in anticipation of a performance)
In a performance but currently paused
Not in a performance

You can't set a Performer's status directly; it's set as the Performer is created
(MK_inactive), activated (MK_active), paused (MK_paused), resumed (MK_active),
and deactivated (MK_inactive).

See also: - inPerformance

Music Kit Classes: Performer 2-203

time

- (double)time

Returns the amount of time the Performer has spent actually performing, in beats. This
value doesn't include the Performer's time shift, nor any time it has spent paused. In
addition, a Performer's time is updated only when it receives a perform message. If
the Performer is inactive, this returns MK_ENDOFTIME.

time Shift

- (double)timeShift

Returns the Performer's time shift value, as set through setTimeShift:.

See also: - setTimeShift:

write:

- write:(NXTypedStream *)stream

Archives the Performer by writing it to stream. You never invoke this method directly;
to archive a Performer, call the NXWriteRootObjectO C function. The Performer's
NoteSender List (but not the NoteSenders themselves), duration, and time shift are
archived directly. Its Conductor and delegate are archived by reference.

See also: - read:, - awake

METHODS IMPLEMENTED BY THE DELEGATE

performerDidActivate:

- performerDidActivate:sender

Sent to the delegate when sender is activated.

performerDidPause:

- performerDidPause:sender

Sent to the delegate when sender is paused.

performerDidResume:

- performerDidResume:sender

Sent to the delegate when sender is resumed.

2-204 Chapter 2: Class Specifications

performer DidDeactivate:
- performerDidDeactivate:sender

Sent to the delegate when sender is deactivated.

Music Kit Classes: Performer 2-205

2-206

Samples

INHERITS FROM WaveTable : Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A Samples object represents one complete cycle of a sound waveform as a series of
samples. The data for a Samples object is established through association with a Sound
object, defined by the Sound Kit. Two methods are provided to create this association:

setSound: takes a Sound object as an argument, copies it, and associates the
receiver with the copied Sound.

readSoundfile: takes the name of a soundfile, creates a Sound object for the data
contained therein, and associates the receiver with the newly created Sound.

The Sound object or soundfile must be one channel of 16-bit linear data
(SND_FORMAT_LINEAR_16). The sampling rate is ignored; Samples objects are
designed to be used as lookup tables for oscillator UnitGenerators in which use the
sampling rate of the original data is of no consequence.

You can create a Samples object from a scorefile by quoting the name of a soundfile
within curly brackets which are themselves enclosed by square brackets. The object
can be given a name in a waveTable statement:

waveTable mySamples = [{"samplesFile.snd" }];

A Samples object that's written to a scorefile is referred to by the name of the soundfile
from which it was created. If a Sound object is used, a soundfile is created and the
object is written to it, as explained in the method writeScorefileStream:. You should
always name your Samples objects by calling the MKNameObjectO C function.

Samples' sister class, Partials, lets you define a waveform by its sine wave components.

INSTANCE VARIABLES

Inheritedfrom Object Class IS a;

Inheritedfrom WaveTable int length;
double scaling;
DSPDatum *dataDSP;
double *dataDouble;

Declared in Samples id sound;
char *soundfile;

Music Kit Classes: Samples 2-207

sound

soundfile

METHOD TYPES

Creating and freeing a Samples

Modifying the object

Querying the object

Writing the object

INSTANCE METHODS

copy

-copy

The object's Sound object.

The name of the soundfile, if the Sound was set
through readSoundfile:.

-copy
-free

- fillTableLength:scale:
- init
- readSoundfile:
- setSound:

- sound
- soundfile

- writeScorefileStream:

Creates and returns a new Samples object as a copy of the receiver. The receiver's
Sound is copied into the new object.

fillTableLength:scale:

- fillTableLength:(int)aLength scale:(double)aScaling

Copies aLength samples from the receiver's Sound into the dataDSP array (inherited
from WaveTable) and scales the copied data by multiplying it by aScaling. If aScaling
is 0.0, the data is scaled to fit perfectly within the range -1.0 to 1.0.

The dataDouble array (also from WaveTable) is reset. You ordinarily don't invoke this
method; it's invoked from methods define<;l in WaveTable. Returns self or nil if there's
a problem.

free

-free

Frees the receiver and its Sound.

2-208 Chapter 2: Class Specifications

init

- in it

Sent automatically when the receiver is created, you can also invoke this method to
reset a Samples object. It sets the receiver's sound variable to nil and soundfile to
NULL. The receiver's previous Sound object, if any, is freed. A subclass
implementation should send [super init]. Returns the receiver.

readSoundfile:

- readSoundfile:(char *)aSoundfile

Creates a new Sound object, reads the data from aSoundfile into the object, and then
sends setSound: to the receiver with the new Sound as the argument. You shouldn't
free the Sound yourself; it's automatically freed when the receiver is freed, initialized,
or when a subsequent Sound is set. Returns nil if the setSound: message returns nil;
otherwise returns the receiver.

setSound:

- setSound:aSound

Sets the receiver's Sound to a copy of aSound (the receiver's current Sound is freed).
aSound must be one-channel, 16-bit linear data. You shouldn't free the Sound yourself;
it's automatically freed when the receiver is freed, initialized, or when a subsequent
Sound is set. Returns nil if aSound is in the wrong format, otherwise returns the
receiver.

sound

-sound

Returns the receiver's Sound object.

soundfile

- (char *)soundfile

Returns the name of the receiver's soundfile, or NULL if the receiver's Sound wasn't
set through readSoundfile:. The name isn't copied; you shouldn't alter the returned
string.

Music Kit Classes: Samples 2-209

writeScorefileStream:

- writeScorefileStream:(NXStream *)aStream

Writes the receiver in scorefile format to the stream aStream. If the Sound wasn't set
from a soundfile, a soundfile with the unique name "samplesNumber.snd" (where
Number is added only if needed) is created and the Sound is written to it. The object
remembers if its Sound has been written to a soundfile. If the receiver couldn't be
written to the stream, returns nil, otherwise returns the receiver.

2-210 Chapter 2: Class Specifications

Score

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A Score is a collection of Part objects. Scores can be read from and written to a
scorefile or Standard MIDI File, performed with a ScorePerformer, and can be used to
record Notes from a ScoreRecorder.

Each Score has an info Note (a mute) that defines, in its parameters, information that
can be useful in performing or otherwise interpreting the Score. Typical information
includes tempo, DSP headroom (see the Orchestra Class), and sampling rate (the
parameters MK_tempo, MK_headroom, and MK_samplingRate are provided to
accommodate this utility).

When you read a scorefile into a Score, a Part object is created and added to the Score
for each Part name in the file's part statement. ScoreFile print statements are printed
as the scorefile is read. You can set the stream on which these messages are printed by
invoking setScorefilePrintStream:.

Reading and Writing Standard MIDI Files

Reading and writing a Standard MIDI File is similar to receiving and sending MIDI
messages through a Midi object-in particular, Notes are translated into MIDI data
(and vice versa) according to the rules outlined in the Midi class description. In
addition, the way a Score object reads MIDI File data depends on the file's format
(familiarity with the Standard MIDI File specification is assumed in the following):

• When reading a format 0 MIDI File, a Part is created for each ofthe 16 MIDI
Channels. Each of these Parts is given an info Note that contains an MK_midiChan
parameter that specifies the channel number. An additional Part is created to store
the channel-less MIDI messages in the file (this is the first Part in the Score).

• When reading a format 1 MIDI File, a Part is created for each track in the file; each
of these Parts is given an info Note that contains an MK_track parameter and an
MK_midiChan parameter. The value of a Part's MK_track parameter-if not
specified in the file-is a monotonically increasing integer starting with track 1.
The MK_midiChan value is the channel of the first Note for that track. An
additional Part that corresponds to the tempo map track is added to the score (this
is the first Part in the Score).

• When reading a format 2 MIDI File, a Part is created for each sequence in the file;
each of these Parts is given an info Note that contains an MK_sequence parameter
and an MK_midiChan parameter. The value of a MK_sequence parameter is
similar to the format 1 MK_track parameter, except that the monotonically

Music Kit Classes: Score 2-211

increasing integer series starts with (sequence) O. The value of MK_midiChan is
the same as in format 1. No additional Part is added.

You can determine the format of a MIDI file that's read into a Score object by the
presence or absence of the MK_track and MK_sequence parameters in the info Notes
of the appropriate Parts.

For each Standard MIDI File meta-event, a parameter is created and added to a
particular Note in the Score (except for the Track Name event, as explained in the
following table). Such a Note is either the Score's info Note, aPart info Note, or a Note
that's created whole cloth to accommodate the parameter, depending on the meta-event
an~ the MIDI File format. The following table explains:

Meta-event Parameter

Sequence Number MK_sequence

Text Event

Cue Point MK_cuePoint

Copyright Notice MK30Pyright

Sequence Name MK_title

Track Name (none)

Marker

Note

Formats 0 and 1: Score info Note
Format 2: Info Note of the corresponding

Part

Format 0: New Note added to the first Part
Formats 1 and 2: New Note added to the

corresponding Part

See Text Event

See Text Event

Score info Note

Formats 0 and 1: Score info Note
Format 2: Interpreted as a Track Name event.

Format 0: Interpreted as a Sequence Name
event

Formats 1 and 2: Corresponding Part is
named through MKNameObjectO

Formats 0 and 1: New Note added to the first
Part

Format 2: New Note added to the
corresponding Part

Time Signature

Key Signature

Set Tempo

MK_timeSignature See Marker

End of Track

SMPTE Offset

MK_keySignature See Marker

See Marker

Formats 0 and 1: New Note added to the
corresponding Part (but see below)

Format 2: New Note added to the
corresponding Part (but see below)

MK_smpteOffset Formats 0 and 1: Score info Note
Format 2: Info Note of the corresponding

Part

The End of Track meta-event is translated only if it's preceded by a time delay.

2-212 Chapter 2: Class Specifications

When writing a Score as a Standard MIDI File, the Music Kit writes the file in level 1
format, following these conventions:

• The Parts are written as separate tracks, in the order they appear in the Score (the
track number encoded in the Part's info Note is ignored).

• If the Score info Note has a MK_title, MK_tempo, MK_copyright, MK_sequence,
or MK_smpteOffset parameter, the corresponding meta-event (as given in the
table, above) is written to the beginning of the file.

• The name of each Part, as determined by MKGetObjectNameO, is used as the
value of a Track Name meta-event.

• The time tag of the last Note in each Part is used as the value of an End of Track
meta-event.

INSTANCE VARIABLES

Inherited from Object

Declared in Score

parts

scorefilePrintStream

info

METHOD TYPES

Creating and freeing a Score

Modifying the object

Class

id
NXStream
id

isa;

parts;
*scorefilePrintStream;
info;

The object's List of Parts.

The stream used by scorefile print statements.

The object's info Note.

-copy
- copyFromZone:
- init
- free
- freeNotes
- freeSelfOnly

- addPart:
- empty
- freeParts
- freePartsOnly
- removePart:
- setInfo:
- setScorefilePrintStream:
- shiftTime:

Music Kit Classes: Score 2-213

Querying the object

Reading and writing files

INSTANCE METHODS

addPart:

- addPart:aPart

- info
- isPartPresent:
- midiPart:
- noteCount
- partCount
- parts
- scorefilePrintStream

- readScorefile:
- readScorefileStream:
- readMidifile:
- readMidifileStream:
- readScorefile:firstTimeTag:lastTimeTag:

timeShift:
- readScorefileStream:firstTimeTag:

lastTimeTag:timeShift:
- readMidifile:firstTimeTag:lastTimeTag:

timeShift:
- readMidifileStream:firstTimeTag:

lastTimeTag:timeShift:
- writeScorefile:
- writeScorefileStream:
- writeOptimizedScorefile:
- writeOptimizedScorefileStream:
- writeMidifile:
- writeMidifileStream:
- writeScorefile:firstTimeTag:lastTimeTag:

timeShift:
- writeScorefileStream:firstTimeTag:

lastTimeTag:timeShift:
- writeOptimizedScorefile:firstTimeTag:

lastTimeTag:timeShift:
- writeOptimizedScorefileStream:firstTimeTag:

lastTimeTag:timeShift:
- writeMidifile:firstTimeTag:lastTimeTag:

timeShift:
- writeMidifileStream:firstTimeTag:

lastTimeTag:timeShift:

Adds aPart to the Score. The Part is first removed from the Score that it's presently a
member of, if any. Returns aPart, or nil if it's already a member of the Score.

2-214 Chapter 2: Class Specifications

copy

-copy

Creates and returns a new Score as a copy of the receiving Score. The Score's Part,
Notes, and info Note are all copied.

copyFromZone:

- copyFromZone:(NXZone *)zone

Same as copy but uses the specified zone.

empty

-empty

Removes the Score's Parts but doesn't free them. Returns self.

free

-free

Frees the Score and its contents.

freeNotes

- freeNotes

Removes and frees the Score's Notes (including the info Note). Returns self.

freeParts

- freeParts

Removes and frees the Score's Parts and the Notes contained therein. Doesn't free the
Score's info Note. Parts that are currently being performed by a PartPerformer aren't
freed. Returns self.

freePartsOnly

- freePartsOnly

Removes and frees the Score's Parts but doesn't free the Notes contained therein. Parts
that are currently being performed by a PartPerformer aren't freed. Returns self.

freeSelfOnly

- freeSelfOnly

Frees the Score but not its Parts nor their Notes. The info Note isn't freed. Returns self.

Music Kit Classes: Score 2-215

info

-info

Returns the Score's info Note.

init

- init

Initializes a new Score.

isPartPresent:

- (BOOL)isPartPresent:aPart

Returns YES if aPart has been added to the Score, otherwise returns NO.

midiPart:

- midiPart:(int)aChan

Returns the first Part object in the Score that has an info Note specifying aChan as its
MK_midiChan parameter value.

noteCount

- (unsigned)noteCount

Returns the number of Notes in the Score (not counting the info Note).

partCount

- (unsigned)partCount

Returns the number of Parts contained in the Score.

parts

- parts

Creates and returns a List containing the Score's Parts. The Parts themselves aren't
copied. It is the sender's responsibility to free the List.

readMidifile:

- readMidifile:(char *)fileName

Reads the Standard MIDI FilefileName into the Score, creating a Part for each MIDI
Channel represented in the file and a Note for each MIDI message. Returns self, or nil
if the file couldn't be read.

2-216 Chapter 2: Class Specifications

readMidifile:firstTimeTag:lastTimeTag:timeShift:
- readMidifile:(char *)aFileName

firstTimeTag: (double)firstTimeTag
lastTimeTag:(double)lastTimeTag
timeShift: (double)timeShift

The same as readMidifile:, but only those Notes with time tags within the given
boundaries (inclusive) are retained. timeShift is added to each Note's time tag.

readMidifileStream:

- readMidifileStream:(NXStream *)aStream

Reads the Standard MIDI File on aStream, converting the messages therein into Note
objects. Returns self, or nil if the data couldn't be read.

readMidifileStream:firstTimeTag:lastTimeTag:timeShift:
- readMidifileStream:(NXStream *)aStream

firstTimeTag: (double)firstTimeTag
lastTimeTag: (double)lastTimeTag
timeShift:(double)timeShift

The same as readMidifileStream:, but only those Notes with time tags within the
given boundaries (inclusive) are retained. timeShift is added to each Note's time tag.

readScorefile:

- readScorefile:(char *)fileName

Reads the named scorefile (regular or optimized) and merges its contents with the
Score. Returns self, or nil if the file couldn't be read.

readScorefile:firstTimeTag:lastTimeTag:timeShift:

- readScorefile:(char *)fileName
firstTimeTag: (double)firstTimeTag
lastTimeTag:(double)lastTimeTag
timeShift:(double)timeShift

The same as readScorefile:, but only those Notes with time tags within the given
boundaries (inclusive) are retained. timeShift is added to each Note's time tag.

readScorefileStream:
- readScorefileStream:(NXStream *)stream

Reads the scorefile (regular or optimized) pointed to by stream into the Score. The
stream must be open for reading; the sender is responsible for closing the stream.
Returns self, or nil if the stream couldn't be read.

Music Kit Classes: Score 2-217

readScorefileStream:firstTimeTag:lastTimeTag:timeShift:
- readScorefileStream:(NXStream *)stream

firstTimeTag: (double)firstTimeTag
lastTimeTag: (double)lastTimeTag
timeShift: (double)timeShift

The same as readScorefileStream:, but only those Notes with time tags within the
given boundaries (inclusive) are retained. timeShift is added to each Note's time tag.

removePart:

- removePart:aPart

Removes aPart from the Score. Returns aPart, or nil if it isn't a member of the Score.

scorefilePrintStream

- (NXStream *)scorefilePrintStream

Returns the Score's ScoreFile print statement stream.

setlnfo:
- setlnfo:aNote

Sets the Score's info Note to a copy of aNote. The Score's previous info Note is
removed and freed.

setScorefilePrintStream:

- setScorefilePrintStream:(NXStream *)aStream

Sets the stream used by ScoreFile print statements to aStream. Returns self.

shiftTime:

- shiftTime:(double)shift

Shifts the time tags of all Score's Notes by shift beats. Returns self.

writeMidifile:

- writeMidifile:(char *)aFileName

Writes the Score's Notes as a level! Standard MIDI File named aFileName. Returns
self, or nil if the stream couldn't be written.

2-218 Chapter 2: Class Specifications

writeMidifile:firstTimeTag:lastTimeTag:timeShift:

- writeMidifile:(char *)aFileName
firstTimeTag:(double)firsttime tag
lastTimeTag:(double)lasttime tag
timeShift:(double)timeShift

Writes the Score's Notes, within the given time tag range and with the given timeShift,
as a level 1 Standard MIDI File named aFileName. Returns self, or nil if the file
couldn't be written.

writeMidifileStream:

- writeMidifileStream:(NXStream *)aStream

Writes the Score, as level 1 Standard MIDI File data, to aStream. Returns self, or nil
if the stream couldn't be written.

writeMidifileStream:firstTimeTag:lastTimeTag:timeShift:

- writeMidifileStream:(NXStream *)aStream
firstTimeTag:(double)firsttime tag
lastTimeTag: (double)lasttime tag
timeShift:(double)timeShift

Write the Score, as levell Standard MIDI File data, to aStream. Only the Notes within
the given time tag boundaries (inclusive) are written. The time tag are offset by the
value provided in timeShift. Returns self, or nil if the stream couldn't be written.

writeScorefile:

- writeScorefile:(char *)aFileName

Writes the Score as a regular scorefile named aFileName. Returns self, or nil if the file
couldn't be written.

writeScorefile:firstTimeTag:lastTimeTag:timeShift:

- writeScorefile:(char *)aFileName
firstTimeTag:(double)firsttime tag
lastTimeTag:(double)lasttime tag
timeShift:(double)timeShift

The same as writeScorefile:, but only those Notes with time tags in the specified range
(inclusive) are written to the file. The written Notes' time tags are shifted by timeShift
beats. Returns self, or nil ifthe file couldn't be written.

Music Kit Classes: Score 2-219

writeScorefileStream:
- writeScorefileStream:(NXStream *)aStream

Writes the Score as a regular scorefile to the stream pointed to by aStream. The stream
must be open for writing; the sender is responsible for closing the stream. Returns self,
or nil if the data couldn't be written.

writeScorefileStream:tirstTimeTag:lastTimeTag:timeShift:
- writeScorefileStream:(NXStream *)aStream

firstTimeTag: (double)firsttime tag
lastTimeTag:(double)lasttime tag
timeShift: (double)timeShift

The same as writeScorefileStream:, but only those Notes with time tags in the
specified range (inclusive) are written to the file. The written Notes' time tags are
shifted by timeShift beats. Returns self, or nil if the data couldn't be written.

writeOptimizedScoretile:
- writeOptimizedScorefile:(char *)aFileName

Same as writeScorefile:, but writes the file in optimized format.

writeOptimizedScoretile:tirstTimeTag:lastTimeTag:timeShift:
- writeOptimizedScorefile:(char *)aFileName

firstTimeTag:(double)firsttime tag
lastTimeTag: (double)lasttime tag
timeShift: (double)timeShift

Same as writeScorefile:firstTimeTag:lastTimeTag:timeShift:, but writes the file in
optimized format.

writeOptimizedScoretileStream:
- writeOptimizedScorefileStream:(NXStream *)aStream

Same as writeScorefileStream:, but writes the data in optimized format.

writeOptimizedScorefileStream:tirstTimeTag:timeShift:
- writeOptimizedScorefileStream:(NXStream *)aStream

firstTimeTag:(double)firsttime tag
lastTimeTag:(double)lasttime tag
timeShift: (double)timeShijt

Same as writeScorefileStream:firstTimeTag:lastTimeTag:timeShift:, but writes the
data in optimized format.

2-220 Chapter 2: Class Specifications

ScorefilePerformer

INHERITS FROM FilePerformer : Performer: Object

DECLARED IN musickit.h

CLASS DESCRIPTION

ScorefilePerformers are used to perform scorefiles. You can set a ScorefilePerformer's
file either by name or as a stream, as explained in the FilePerformer class. If you set
the file by name (through the setFile: method), the ScorefilePerformer searches for the
following, in order:

1. The file as given literally by name as the argument to setFile:.
2. An optimized scorefile created by appending ".playscore" to the given name.
3. An editable (regular) scorefile created by appending ".score" to the given name.

When a ScorefilePerformer is activated, it reads its file's header and creates and names
a NoteSender for each unique member of the part statement(s). The
ScorefilePerformer also fashions some number of info Notes from the file: It creates a
Score info Note that correponds to the file's info statement, and creates a Part info Note
for each Part info statement. The former is retrieved through the info method; the latter
are retrieved as they correspond to the object's NoteSenders, through
infoForNoteSender: .

During a performance, a ScorefilePerformer reads successive Note and time statements
from which it creates Note objects that it sends through its NoteSenders. As a Note
belongs to a particular Part (as designated in the scorefile), so is the Note sent through
the NoteSender that was created for that Part. When it reaches the end of the file, the
ScorefilePerformer deactivates itself.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Peiformer id conductor;
MKPerformerStatus status;
int perform Count;
double timeShift;
double duration;
double time;
double nextPerform;
id noteS enders;

Music Kit Classes: ScorefilePerformer 2-221

Inherited from FilePerformer

Declared in ScorefilePerformer

scorefilePrintStream

info

METHOD TYPES

Creating a ScorefilePerformer

Defining the class

Retrieving the info Notes

Manipulating the print stream

Performing the object

Archiving the object

CLASS METHODS

fileExtensions

+ (char **)fileExtension

char
double
NXStream
double
double

NXStream
id

*filename;
fileTime;
*stream;
firstTimeTag;
lastTimeTag;

* scorefilePrintS tream;
info;

The stream used for the scorefile's print
statements.

Score info Note for the file.

- copyFromZone:
- init
- free

+ fileExtensions

- info
- infoForNoteSender:

- setScorefilePrintStream:
- scorefilePrintStream

- initializeFile
- nextNote
-performNote:
- finishFile

- read:
- write:

You never need to invoke this method; it defines ScorefilePerformer's file name
extension list.

2-222 Chapter 2: Class Specifications

INSTANCE METHODS

copyFrornZone

- copyFrornZone:(NXZone *)zone

Creates and returns a ScorefilePerformer as a copy of the receiving ScorefilePerformer.
The new object contains a copy of the receiving object's info Note.

finishFiIe

- tinishFile

Defines ScorefilePerformer's post-performance operations. You never invoke this
method directly; it's invoked automatically at the end of a performance.

free

-free

Frees the ScorefilePerformer, its NoteSenders, and its info Note. If the
ScorefilePerformer is active, this does nothing and returns self. Otherwise, returns nil

info

- info

Returns the ScorefilePerformer's info Note, fashioned from the info statement in the
header of the scorefile.

infoFor NoteSender:

init

- infoForNoteSender:aNoteSender

Returns the info Note associated with the given NoteSender, fashioned from a Part info
statement in the ScorefilePerformer's scorefile. If aNoteSender isn't a contained in the
ScorefilePerformer, this returns nil.

- init

Initializes the ScorefilePerformer. A subclass implementation should send [super in it]
before performing its own initialization.

Music Kit Classes: ScorefilePeiformer 2-223

initializeFile
- initializeFile

Defines ScorefilePerformer's pre-performance operations. You never invoke this
method directly; it's invoked automatically at the beginning of a performance.

nextNote
- nextNote

Defines ScorefilePerformer's file-reading operations. You never invoke this method;
it's invoked automatically during a performance.

performNote:
-perfornnNote:alVote

Defines ScorefilePerformer's in-performance operations. You never invoke this
method; it's invoked automatically during a performance.

read:

- read:(NXTypedStream *)stream

You never invoke this method directly; to read an archived ScorefilePerformer, call the
NXReadObjectO C function.

setScorefilePrintStream:

- setScorefilePrintStreann:(NXStream *)aStream

Sets the stream to which scorefile print statements are printed as the
ScorefilePerformer reads its file. If you don't specify a stream, one to standard error is
opened and used.

scorefllePrintStream

- (NXStream *)scorefilePrintStreann

Sets the stream to which scorefile print statements, as set through
setScorefilePrintStreann:. If you don't specify a stream, one to standard error is
opened and used.

write:
- write:(NXTypedStream *)stream

You never invoke this method directly; to archive a ScorefilePerformer, you call the
NXWriteRootObjectO C function.

2-224 Chapter 2: Class Specifications

Scorefile Writer

INHERITS FROM FileWriter: Instrument: Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A ScorefileWriter is an Instrument that realizes Notes by writing them to a scorefile.
The name of the scorefile to which the Notes are written is set through methods
inherited from FileWriter.

Each of a ScorefileWriter's NoteReceivers corresponds to a Part that will appear in the
scorefile. Unlike most Instruments, the ScorefileWriter class doesn't add any
NoteReceivers to a newly created object, they must be added by invoking the
addNoteReceiver: method.

The names of the Parts represented in the scorefile are taken from the NoteReceivers
for which they were created. You can name a NoteReceiver by calling the
MKNameObjectO function.

The header of the scorefile always includes a part statement that names the Parts
represented in the Score, and a tagRange statement that states the range of note Tag
values used in the Note statements. A ScorefileWriter can be given an info Note that's
written as a Score info statement in the file; similarly, the ScorefileWriter's
NoteReceivers can each contain a Part info Note. These, too, are written to the
score file, each in a separate Part info statement.

You shouldn't change the name of a data object (such as an Envelope, WaveTable, or
NoteReceiver) during a performance involving a ScorefileWriter.

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Inherited/rom Instrument id noteReceivers;

Inherited/rom FileWriter MKTimeUnit timeUnit;
char *filename;
NXStream * stream;
double time Shift;

Declared in ScorefileWriter id info;

info The info Note to be written to the file.

Music Kit Classes: ScorefileWriter 2-225

METHOD TYPES

Creating a Scorefile Writer

Modifying the object

Querying the object

Performing

CLASS METHODS

fileExtension

+ (char *)fiIeExtension

-copy
- init

- setInfo:
- setInfo:forN oteReceiver:

+ fileExtension
- info
- infoForNoteReceiver:

- finishFile
- initializeFile
- realizeNote:fromNoteReceiver:

Returns "score", the default file extension for scorefiles. The string isn't copied.

INSTANCE METHODS

copy

-copy

Creates and returns a new ScorefileWriter as a copy of the receiver. The new object
copies the receivers N oteReceivers and info Notes.

finishFile

- finishFile

You never invoke this method; it's invoked automatically at the end of a performance.

info

- info

Returns the receiver's info Note, as set through setlnfo:.

2-226 Chapter 2: Class Specifications

infoFor N oteReceiver:

init

- infoForNoteReceiver:aNoteReceiver

Returns the info Note that's associated with a NoteReceiver (as set through
setInfo:for NoteReceiver:).

- init

Initializes the receiver. You never invoke this method directly. A subclass
implementation should send [super init] before performing its own initialization. The
return value is ignored.

initializeFile

- initialize File

Initializes the scorefile. You never invoke this method; it's invoked automatically just
before the receiver writes its first Note to the scorefile.

realizeN ote :fromN oteReceiver:

- realizeNote:aNote fromNoteReceiver:aNoteReceiver

Realizes aNote by writing it to the scorefile. The Note statement created from aNote is
assigned to the Part that corresponds to aNoteReceiver.

setlnfo:

- setInfo:aNote

Sets the receiver's info Note, freeing a previously set info Note, if any. The Note is
written, in the scorefile, as a Score info statement. Returns the receiver.

setlnfo: for N oteReceiver:

- setInfo:aPartInJo forNoteReceiver:aNoteReceiver

Sets aPartlnfo as the Note that's written as the info Note for the Part that corresponds
to the NoteReceiver aNoteReceiver. The Part's previously set info Note, if any, is freed.
If the receiver is in performance, or if aNoteReceiver doesn't belong to the receiver,
does nothing and returns nil, otherwise returns the receiver.

Music Kit Classes: ScorefileWriter 2-227

2-228

ScorePerformer

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A ScorePerformer performs a Score object by creating a group of PartPerformers, one
for each Part in the Score, and controlling the group's performance. A
ScorePerformer's Score is set and its PartPerformers are created when it receives the
setScore: message. If you add Parts to or remove Parts from the Score after sending
the setScore: message, the changes will not be seen by the ScorePerformer.

The ScorePerformer class doesn't inherit from Performer but many of its methods, such
as activate, pause, and resume, emulate Performer methods. When a ScorePerformer
receives such a message, it forwards the message to each of its PartPerformer objects,
which are true Performers.

A ScorePerformer also has a Performer-like status: It can be active, inactive, or paused.
The status of a ScorePerformer is, in general, the same as the status of all its
PartPerformers. For instance, when you send the activate message to a
ScorePerformer, its status becomes MK_active as does the status of all its
PartPerformers. However, you can access and control a PartPerformer independent of
the ScorePerformer that created it. Thus, an individual PartPerformer's status can be
different from that of the ScorePerformer.

By default, the PartPerformers that a ScorePerformer creates are direct instances of the
PartPerformer class. You can specify a different class through the
setPartPerformerClass: method; however, the class you set must inherit from
PartPerformer.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Declared in ScorePerformer MKPerformerStatus status;
id partPerformers;
id score;
double firstTimeTag;
double lastTimeTag;
double timeShift;
double duration;
id conductor;
id delegate;
id partPerformerClass;

Music Kit Classes: ScorePerformer 2-229

status

partPerformers

score

firstTimeTag

lastTimeTag

timeShift

duration

conductor

delegate

partPerformerClass

METHOD TYPES

The ScorePerformer's status.

The object's PartPerformer instances.

The Score with which the object is associated.

Smallest time tag value considered for
performance.

Greatest time tag value considered for
performance.

Performance time offset in beats.

Maximum performance duration in beats.

The object's Conductor.

The object's delegate.

The class the object uses to create its
PartPerformers.

Copying and initializing a ScorePerformer
-copy
- copyFrornZone:
- init

Freeing a ScorePerformer and its contents
-free
- freePartPerformers

Setting and retrieving the Score - setScore:
- score

Setting and retrieving the delegate' - setDelegate:
- delegate

Accessing the PartPerformers - setPartPerformerClass:
- partPerformerClass
- partPerformers
- noteS enders
- partPerformerForPart:
- removePartPerformers

2-230 Chapter 2: Class Specifications

Broadcasting to the PartPerformers - setConductor:
- setDuration:
- duration
- setFirstTimeTag:
- firstTimeTag
- setLastTimeTag:
- lastTimeTag
- setTimeShift:
- time Shift

Performing the object - activate
- activateSelf
- deactivate
- deactivateS elf
-pause
- resume
- status

Archiving the object - write:
-read:
- awake

INSTANCE METHODS

activate

- activate

Sends activateSelf to self and then sends the activate message to each of the
ScorePerformer's PartPerformers. The ScorePerformer's status is set to MK_active if
any of its PartPerformers could be activated (specifically, if anyone of the
PartPerformers returns non-nil when sent the activate message). If the
ScorePerformer's Score isn't set, if the Score doesn't contain any Parts, or if the
activateS elf message returns nil, this method returns nil (and the PartPerformers aren't
activated); otherwise returns self.

See also: - activateSelf, - deactivate

activateS elf

- activateSelf

You never invoke this method directly; it's invoked as part of the activate method. A
subclass implementation should send [super activateSelf]. If activateSelf returns nil,
the ScorePerformer isn't activated. The default implementation does nothing and
returns the ScorePerformer.

See also: - activate, - deactivate

Music Kit Classes: ScorePerformer 2-231

awake

-awake

Prepares a recently unarchived ScorePerformer for use.

See also: - write:, - read:

copy

-copy

Creates and returns a new ScorePerformer that's a copy of the receiving
ScorePerformer. The new object is associated with the same Score as the original, but
it contains its own PartPerformers. The new object is inactive regardless of the status
of the original.

See also: - copyFromZone:

copyFrornZone:

- copyFromZone:(NXZone)zone

The same as copy, but the new ScorePerformer is allocated in the specified zone.

See also: - copy

deactivate

- deactivate

Sends deactivateS elf to self, sets the ScorePerformer's status to MK_inactive, sends
deactivate to each of the PartPerformers, and then sends performer DidDeactivate: to
the delegate. Returns self.

See also: - deactivateSelf, - activate

deactivateSelf

- deactivateSelf

You never invoke this method directly; it's invoked as part of the deactivate method.
The default does nothing; a subclass can implement this method to perform
post-performance activites. The return value is ignored.

See also: - deactivate, - activate

2-232 Chapter 2: Class Specifications

delegate
- delegate

Returns the ScorePerformer's delegate object, as set through setDelegate:. The
delegate is sent messages as the ScorePerformer is activated, paused, resumed, and
deactivated.

See also: - setDelegate:

duration
- (double)duration

Returns the ScorePerformer's maximum performance duration in beats, as set through
setDuration:. By default, a ScorePerformer has an unlimited performance duration.

See also: - setDuration:, - setTimeShift:, - setFirstTimeTag:, - setLastTimeTag:

firstTimeTag

- (double)firstTimeTag

Returns the smallest time tag value considered for performance, as set through
setFirstTimeTag:. By default, the first time tag is 0.0.

See also: - setFirstTimeTag:, - setLastTimeTag:, - setDuration:, - setTimeShift:

free
-free

If the ScorePerformer is currently performing (it's status isn't MK_inactive), this
immediately returns nil. Otherwise frees the ScorePerformer and its PartPerformers.

See also: - freePartPerformers

freePartPerformers

in it

- freePartPerformers

Removes and frees the ScorePerformer's PartPerformers and sets the ScorePerformer's
Score to nil. Returns the ScorePerformer.

- init

Initializes the ScorePerformer and returns self.

Music Kit Classes: ScorePerformer 2-233

lastTimeTag

- (double)lastTimeTag

Returns the greatest time tag value considered for performance, as set through
setLastTimeTag:. By default, the greatest time tag is (virtually) infinity.

See also: - setFirstTimeTag:, - setLastTimeTag:, - setDuration:, - setTimeShift:

noteS enders

- noteSenders

Creates and returns a List containing the NoteSender objects that belong to the
ScorePerformer's PartPerformers. The List will be empty ifthe Score hasn't been set.
By default, each PartPerformer creates a single NoteSender, although you may change
this by subclassing PartPerformer and setting the new class through the
setPartPerformerClass: method. The sender is responsible for freeing the List that's
created by this method.

See also: - setScore:, - partPerformers, - setPartPerformerClass:

partPerformerForPart:

- partPerformerForPart:aPart

Returns the PartPerformer that's associated with aPart, where aPart must be a Part in
the ScorePerformer's Score; returns nil if the Part isn't found or if the Score isn't set.
Keep in mind that it's possible for a Part to have more than one PartPerformer; this
method returns only the PartPerformer that was created by the receiver of this message.

See also: - setScore:, - partPerformers

partPerformers

- partPerformers

Creates and returns a List containing the PartPerformers that were created by the
ScorePerformer. The List will be empty if the Score hasn't been set. The sender is
responsible for freeing the List.

See also: - setScore:, - partPerformerForPart:

pause

- pause

Suspends the ScorePerformer's performance: The pause message is sent to each of the
PartPerformers, the ScorePerformer's status is set to MK_paused, and
performerDidPause: is sent to the ScorePerformer's delegate. Returns self.

2-234 Chapter 2: Class Specifications

Note: No check is made to ensure that the ScorePerformer is currently active. Because
of this, a ScorePerformer will erroneously consider itself to be in a performance (but
paused) if you send it a pause message before you actually activate it. By the same
omission, the delegate message is sent every time you invoke this method, whereas the
correct behavior would see that the message is sent only ifthe ScorePerformer is active
when this method is invoked. The Performer class does perform a status check from
within its pause method, so this unfortunate exuberance isn't exhibited by the
ScorePerformer's PartPerformers.

See also: - resume

read:

- read:(NXTypedStream *)stream

Unarchives the ScorePerformer by reading it from stream. You never invoke this
method directly; to read an archived ScorePerformer, call the NXReadObjectO C
function.

See also: - write:

removePartPerformers

- removePartPerformers

Removes the ScorePerformer's PartPerformers (but doesn't free them) and sets the
ScorePerformer's Score to nil. Returns self.

See also: - partPerformers, - freePartPerformers

resume

- resume

Resumes the ScorePerformer's performance: The resume message is sent to each of
the PartPerformers, the ScorePerformer's status is set to MK_active, and
performerDidResume: is sent to the delegate. Returns self.

Note: No check is made to ensure that the ScorePerformer is currently paused.
Because of this, a ScorePerformer will erroneously consider itself to be in a
performance if you send it a resume message before you actually activate it. By the
same omission, the delegate message is sent every time you invoke this method,
whereas the correct behavior would see that the message is sent only if the
ScorePerformer is paused when this method is invoked. The Performer class does
perform a status check from within its resume method, so this unfortunate exuberance
isn't exhibited by the ScorePerformer's PartPerformers.

See also: - pause

Music Kit Classes: ScorePerformer 2-235

score
- score

Returns the ScorePerfornier's Score.

See also: - setScore:

setConductor:
- setConductor:aConductor

If the ScorePerformer's Score has been set, this sends the message
setConductor:aConductor to each of the ScorePerformer's PartPerformers.
Otherwise, aConductor is cached and the messages are sent when setScore: is invoked.
By default, the PartPerformers follow the baton of the defaultConductor; they continue
to do so if aConductor is nil. If the ScorePerformer is in a performance (if its status
isn't MK_inactive), this does nothing and returns nil. Otherwise, self is returned.

setDelegate:
- setDelegate:delegate

Sets the ScorePerformer's delegate and returns self. Delegate messages are sent when
you invoke the following ScorePerformer methods:

Method

activate
pause
resume
deactivate

Delegate Message

performerDidActivate:
performerDidPause:
performerDidResume:
performerDidDeactivate:

As usual, a delegate message is sent only if the object responds to it.

See also: - delegate

setDuration:
- setDuration: (double)aDuration

Sets the maximum number of beats that the ScorePerformer can spend in performance
to aDuration beats. This accomplished by sending setDuration:aDurationto each of
the ScorePerformer's PartPerformers. If the ScorePerformer's Score hasn't been set,
aDuration is cached and the PartPerformer messages are sent when setScore: is
invoked. If the ScorePerformer is in a performance (if its status isn't MK_inactive), this
does nothing and returns nil. Otherwise self is returned.

See also: - duration, - setTimeShift:, - setFirstTimeTag:, - setLastTimeTag:

2-236 Chapter 2: Class Specifications

setFirstTimeTag:

- setFirstTimeTag:(double)aTimeTag

Sets the smallest time tag value considered for performance by sending
setFirstTimeTag:aTimeTag to each of the ScorePerformer's PartPerformers. If the
ScorePerformer's Score hasn't been set, aTimeTag is cached and the messages are sent
when setScore: is invoked. If the ScorePerformer is in a performance (if its status isn't
MK_inactive), this does nothing and returns nil. Otherwise self is returned.

See also: - firstTimeTag, - setLastTimeTag:, - setTimeShift:, - setDuration:

setLastTimeTag:
- setLastTimeTag:(double)aTimeTag

Sets the greatest time tag value considered for performance by sending
setLastTimeTag:aTimeTag to each of the ScorePerformer's PartPerformers. If the
ScorePerformer's Score hasn't been set, aTimeTag is cached and the messages are sent
when setScore: is invoked. If the ScorePerformer is in a performance (if its status isn't
MK_inactive), this does nothing and returns nil. Otherwise self is returned.

See also: -lastTimeTag, - setFirstTimeTag:, - setTimeShift:, - setDuration:

setScore:

- setScore:aScore

Sets the ScorePerformer's Score to aScore and creates a PartPerformer object for each
ofthe Score's Parts. The PartPerformers are instances of the class set through
setPartPerformer:; by default, they're instances of the PartPerformer class. This
method also sets the ScorePerformer's Subsequent changes to aScore (by adding or
removing Parts) won't be seen by the ScorePerformer. The PartPerformers from a
previously set Score (if any) are removed and freed. Returns self.

setTimeShift:
- setTimeShift:(double)aTimeShijt

Sets the ScorePerformer's performance time offset by sending
setTimeShift:aTimeShijt to ea-.:h of its PartPerformers. If the ScorePerformer's Score
hasn't been set, aTimeTag is cached and the messages are sent when setScore: is
invoked. If the ScorePerformer is in a performance (if its status isn't MK_inactive), this
does nothing and returns nil. Otherwise self is returned.

See also: - timeShift, - setDuration:, -lastTimeTag, - setFirstTimeTag:

Music Kit Classes: ScorePerformer 2-237

status
- (MKPerformerStatus)status

Returns the ScorePerformer's current performance status as one of the following
integer constants:

Constant

MK_active
MK_paused
MK_inactive

Meaning

In a performance (or activated in anticipation of a performance)
In a performance but currently paused
Not in a performance

You can't set a ScorePerformer's status directly; it's set as the ScorePerformer is
created (MK_inactive), activated (MK_active), paused (MK_paused), resumed
(MK_active), and deactivated (MK_inactive).

timeShift
- (double)timeShift

Returns the ScorePerformer's performance time offset, as set through setTimeShift:.
By default, the offset is 0.0.

See also: - setTimeShift:, - setFirstTimeTag:, - setLastTimeTag:, - setDuration:

write:
- write:(NXTypedStream *)stream

Archives the ScorePerformer by writing it to stream. You never invoke this method
directly; to archive a NoteSender, call the NXWriteRootObjectO C function. The
ScorePerformer's PartPerformer List, PartPerformer class, first and last time tag
variables, duration, and time shift are archived directly. Its Score, Conductor, and
delegate are archived by reference.

See also: - read:

METHODS IMPLEMENTED BY THE DELEGATE

performer DidActivate:

- performerDidActivate:sender

Sent to the delegate when sender is activated.

2-238 Chapter 2: Class Specifications

performerDidPause:
- performerDidPause:sender

Sent to the delegate when sender is paused.

performerDidResume:
- performerDidResume:sender

Sent to the delegate when sender is resumed.

performer DidDeactivate:
- performerDidDeactivate:sender

Sent to the delegate when sender is deactivated.

Music Kit Classes: ScorePerformer 2-239

2-240

ScoreRecorder

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A ScoreRecorder is a pseudo-Instrument that adds Notes to the Parts in a given Score.
It does this by creating a PartRecorder, a true Instrument, for each of the Score's Part
objects. A ScoreRecorder's Score is set through the setScore: method. If you add Parts
to or remove Parts from the Score after sending the setScore: message, the changes will
not be seen by the ScoreRecorder.

A ScoreRecorder is said to be in performance from the time any of its PartRecorders
receives a Note until the performance is finished.

INSTANCE VARIABLES

Inherited/rom Object

Declared in ScoreRecorder

partRecorders

score

timeUnit

partRecorderClass

Class

id
id
MKTimeUnit
id

isa;

partRecorders;
score;
timeUnit;
partRecorderClass;

The object's Set of PartRecorders.

The object's Score.

Unit the object's PartRecorders use to measure
time; one of MK_second or MK_beat.

Class used to create PartRecorder objects (must
inherit from PartRecorder).

Music Kit Classes: ScoreRecorder 2-241

METHOD TYPES

Creating and freeing a ScoreRecorder
- copyFrornZone:
-free
- init

Modifying the object - freePartRecorders
- partRecorders
- removePartRecorders
- setPartRecorderClass:
- setScore:
- setTimeUnit:

Querying the object - noteReceivers
- partRecorderForPart:
- partRecorderClass
- score
- timeUnit

Performing the object - afterPerformance
- firstNote:
- inPerformance

INSTANCE METHODS

after Performance
- afterPerformance

You never invoke this method; it's invoked automatically at the end of the performance.

copy

-copy

Creates and returns a ScoreRecorder as a copy of the receiving ScoreRecorder. The
new object has the same Score as the original, but contains its own set of PartRecorders.

firstNote:
- tirstNote:aNote

You never invoke this method; it's invoked automatically when the first Note is received
by any of the ScoreRecorder's PartRecorders.

2-242 Chapter 2: Class Specifications

free

- free

Frees the ScoreRecorder and its PartRecorders. If you want to free the ScoreRecorder
only, send removePartRecorders to the object before invoking this method.

freePartRecorders

- freePartRecorders

Frees the ScoreRecorder's PartRecorders and sets its Score to nil. Returns self.

in Performance

- (BOOL)inPerformance

Returns YES if the ScoreRecorder is in performance, otherwise returns NO.

noteReceivers

- noteReceivers

Returns a List object that contains the ScoreRecorder's NoteReceivers (the
NoteReceivers of the ScoreRecorder's PartRecorders). It's the sender's responsibility
to free the List.

partRecorderForPart:

- partRecorderForPart:aPart

Returns the PartRecorder that corresponds to aPart, or nil if not found.

partRecorders

- partRecorders

Returns a List object that contains the ScoreRecorder's PartRecorders. It's the sender's
responsibility to free the List.

partRecorderClass

- partRecorderClass

Returns the class object that the ScoreRecorder uses to create its PartRecorder objects,
as set through setPartRecorderClass:. By default, the ScoreRecorder creates
instances directly from PartRecorder.

Music Kit Classes: ScoreRecorder 2-243

removePartRecorders
- removePartRecorders

Removes the ScoreRecorder's PartRecorders and sets its Score to nil. The
PartRecorder objects aren't freed. Returns self.

score
- score

Returns the ScoreRecorder's Score, as set through setScore:.

setPartRecorderClass:
- partRecorderClass:classObject

Sets the class object that the ScoreRecorder uses to create its PartRecorder objects. The
argument must inherit from PartRecorder. By default, the ScoreRecorder creates
instances directly from PartRecorder.

setScore:
- setScore:aScore

Removes and frees the ScoreRecorder's PartRecorders, sets its Score to aScore, and
creates and adds a PartRecorder for each Part in the Score. Subsequent changes to
aScore (adding or removing Parts) aren't seen by the ScoreRecorder. If the receiver is
in performance, this does nothing and returns nil, otherwise it returns self.

If you want to set the Score without freeing the current PartRecorders you should send
removePartRecorders before invoking this method; the PartRecorders are then
removed but not freed.

setTimeUnit:
- setTimeUnit:(MKTimeUnit)aTimeUnit

Sets the ScoreRecorder's time unit to aTimeUnit, one of MK_beat and MK_second,
and forwards the setTimeUnit:aTimeUnit message to the ScoreRecorder's
PartRecorders. If the ScoreRecorder is in performance, this does nothing and returns
nil. Otherwise returns self.

timeUnit
- (MKTimeUnit)timeUnit

Returns the ScoreRecorder's time unit, either MK_second or MK_beat.

2-244 Chapter 2: Class Specifications

SynthData

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

SynthData objects represent DSP memory that's used in music synthesis. For example,
you can use a SynthData object to load predefined data for wavetable synthesis or to
store DSP-computed data to create a digital delay. Perhaps the most common use of
SynthData is to create a location through which UnitGenerators can pass data. This
type of SynthData object is called a patchpoint. For example, in frequency modulation
an oscillator UnitGenerator writes its output to a patchpoint which can then be read by
another oscillator as its frequency input.

You never create SynthData objects directly in an application, they can only be created
by the Orchestra through its allocSynthData:length: or allocPatchpoint: methods. A
SynthData object is typically allocated and owned by a SynthPatch, an object that
configures a set of SynthData and UnitGenerator objects into a DSP software
instrument.

The methods setData: and setConstant: are used to download data to the DSP memory
that's represented by a SynthData object. The former downloads an array of values, the
latter fills the entire memory with a constant value. These methods are simple versions
of the more thorough methods setData:length:offset: and setConstant:length:offset:,
which allow you to load an arbitrary amount of data into any portion of the SynthData's
memory. The data in a SynthData object, like all DSP data used in music synthesis, is
24-bit fixed point words (data type DSPDatum). Similar methods are provided that let
you download arrays of 16-bit (short) data. You can declare a SynthData to be
read-only by sending it the message setReadOnly:YES. You can't change the data in
a read-only SynthData object.

An instance of SynthData knows the address of its DSP memory, but it doesn't contain
a copy of the data that it downloads.

DSP memory allocation and management is explained in the Orchestra class
description; many of the return types used here, such as DSPAddress and
DSPMemorySpace, are describd in Orchestra. In general, the design of the Orchestra
makes intimate knowledge of the details of the DSP unnecessary.

Music Kit Classes: SynthData 2-245

INSTANCE VARIABLES

Inherited/rom Object

Declared in SynthData

synthPatch

orchestra

length

orchAddr

readOnly

METHOD TYPES

Filling the SynthData

Dealloacating the object

Modifying the object

Querying the object

Unit Generator-compatibility

2-246 Chapter 2,' Class Specifications

Class

id
id
int
MKOrchAddrStruct
BOOL

isa;

synthPatch;
orchestra;
length;
orchAddr;
readOnly;

The SynthPatch that owns this object (if any).

The orchestra on which the object is allocated.

Length of allocated memory in words.

Structure that directly represents DSP memory.

YES if the object's data is read-only.

- setData:
- setData:length:offset:
- setToConstant:
- setToConstant:length:offset:
- setShortData:
- setShortData:length:offset:
- clear

- dealloc

- setReadOnly:

- address
- isAllocated
- isFreeable
-length
- memorySpace
- orchAddrPtr
- orchestra
- readOnly
- referenceCount
- synthPatch

- finish
- idle
- run

INSTANCE METHODS

address

- (DSPAddress)address

Returns the DSP address of the SynthData's memory block.

clear

- clear

Clears the SynthData's memory but doesn't deallocate it.

dealloc

- dealloc

If the SynthData isn't part of a SynthPatch, it's deallocated. If it's part of a SynthPatch
that can be freed, the entire SynthPatch is deallocated. Otherwise does nothing and
returns nil.

finish

- (double)finish

This does nothing and returns 0.0. It's provided for compatibility with UnitGenerator;
specifically, it allows a SynthPatch to send finish to all its SynthElement objects
without regard for their class.

idle
- idle

This does nothing and returns the SynthData. It's provided for compatibility with
UnitGenerator; specifically, it allows a SynthPatch to send idle to all its SynthElement
objects without regard for their class.

isAllocated

- (BOOL)isAllocated

Provided for compatibility with UnitGenerator. Always returns YES, since deallocated
SynthDatas are freed immediately.

Music Kit Classes: SynthData 2-247

isFreeable
- (BOOL)isFreeable

Invoked by the Orchestra to determine whether the SynthData may be freed. Returns
YES if it can, NO if it can't. (A SynthData can be freed if its a member of a Synthpatch
that can be freed.)

length
- (int)length

Returns the size (in words) of the SynthData's memory block.

memorySpace

- (DSPMemorySpace)memorySpace

Returns the DSP space in which the SynthData's memory block is allocated.

orchAddrPtr

- (MKOrchAddrStruct *)orchAddrPtr

Returns a pointer to the SynthData's address structure.

orchestra

- orchestra

Returns the SynthData's Orchestra object.

readOnly

- (BOOL)readOnly

Returns YES if the SynthData is read-only.

referenceCount

- (int)referenceCount

If the SynthData is installed in its Orchestra's shared object table, this returns the
number of objects that have allocated it. Otherwise returns 1.

2-248 Chapter 2: Class Specifications

run

-run

This does nothing and returns the SynthData. It's provided for compatibility with
UnitGenerator; specifically, it allows a SynthPatch to send run to all its SynthElement
objects without regard for their class.

setData:
- setData:(DSPDatum *)dataArray

Loads dataArray into the SynthData's memory. Implemented as (and returns the value
of)

[self setData:dataArray length:length offset:O];

where the second argument is the SynthData's allocated length.

setData:length:offset:

- setData:(DSPDatum *)dataArray
length:(int)len
offset: (int)off

Loads (at most) len words of data from dataArray into the SynthData's memory,
starting at location offwords from the beginning ofthe SynthData's memory block. If
off + len is greater than the SynthData's length (as returned by the length method), or
if the data couldn't otherwise be loaded, the error MK_synthDataLoadErr is generated
and nil is returned. Otherwise returns self.

setReadOnly:

- setReadOnly:(BOOL)readOnlyFlag

Sets the SynthData to read-only if readOnlyFlag is YES and read-write if it's NO. The
default access for a SynthData object is read-write. Returns the SynthData. The
Orchestra automatically creates some read-only SynthData objects (SineROM,
MuLawROM, and the zero and sink patchpoints) that ignore this method.

setShortData:

- setData:(char *)dataArray

Loads dataArray into the SynthData's memory. Implemented as (and returns the value
of)

[self setShortData:dataArray length:length offset:O];

where the second argument is the SynthData's allocated length.

Music Kit Classes: SynthData 2-249

setShortData:length:offset:

- setShortData:(short *)dataArray
length: (int)len
offset: (int)off

Loads (at most) len words of 16-bit data from dataArray into the SynthData's memory,
right-justified, starting at location offwords from the beginning of the SynthData's
memory block. The data in dataArray is If off + len is greater than the SynthData's
length (as returned by the length method), or if the data couldn't otherwise be loaded,
the error MK_synthDataLoadErr is generated and nil is returned. Otherwise returns
self.

setToConstant:

- setToConstant:(DSPDatum)value

Fills the SynthData's memory with the constant value. Implemented as (and returns the
value of)

[self setToConstant:value length:length offset:O];

where the second argument is the instance variable length.

setToConstant:length:offset:

- setToConstant:(DSPDatum)value
length: (int)len
offset: (int)off

Similar to setData:length:offset:, but loads the constant value rather than an array; see
setData:length:offset: for details.

synthPatch

- synthPatch

Returns the SynthPatch that the SynthData is part of, if any.

2-250 Chapter 2: Class Specifications

Synthlnstrument

INHERITS FROM Instrument: Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A SynthInstrument realizes Notes by synthesizing them on the DSP. It does this by
forwarding each Note it receives to a SynthPatch object, which translates the parameter
information in the Note into DSP instructions. A SynthInstrument can manage any
number of SynthPatch objects (limited by the speed and size of the DSP). However, all
of its SynthPatches are instances of the same SynthPatch subclass. You assign a
particular SynthPatch subclass to a SynthInstrument through the latter's
setSynthPatchClass: method. A SynthInstrument can't change its SynthPatch class
during a performance.

Each SynthPatch managed by the SynthInstrument corresponds to a particular note tag.
As the SynthInstrument receives Notes, it compares the Note's note tag to the note tags
of the SynthPatches that it's managing. If a SynthPatch already exists for the note tag,
the Note is forwarded to that object; otherwise, the SynthInstrument either asks the
Orchestra to allocate another SynthPatch, or it preempts an allocated SynthPatch to
accommodate the Note. Which action it takes depends on the SynthInstrument's
allocation mode and the available DSP resources (as explained later in this description).

Every SynthInstrument maintains an update state into which it merges parameters from
note tag-less noteUpdates. When a Note that signals a new SynthPatch arrives, the
parameters in the update state are merged with the new Note (the parameters ofthe new
Note take precendence if there's a conflict). Thus the update state defines a set of
"sticky" parameters for the SynthInstrument.

A SynthInstrument can either be in automatic allocation mode (MK_AUTOALLOC)
or manual mode (MK_MANUALALLOC). In automatic mode, SynthPatches are
allocated directly from the Orchestra as Notes are received by the SynthInstrument and
released when it's no longer needed. Automatic allocation is the default.

In manual mode, the SynthInstrument pre-allocates a fixed number of SynthPatch
objects through the setSynthPatchCount: method. If it receives more simultaneously
sounding Notes than it has SynthPatches, the SynthInstrument preempt its oldest
running SynthPatch (by sending it the preemptFor: message).

INSTANCE VARIABLES

Inherited from Object Class isa;

Inheritedfrom Instrument id noteReceivers;

Music Kit Classes: Synthlnstrument 2-251

Declared in Synthlnstrument

synthPatchClass

allocMode

taggedPatches

controllerTable

updates

retain Updates

orchestra

METHOD TYPES

id
unsigned short
id
id
id
BOOL
id

synthPatchClass;
allocMode;
taggedPatches;
controllerTable;
updates;
retainUpdates
orchestra

Class used to create SynthPatch instances.

The object's allocation mode; either
MK_MANUALALLOC or MK_AUTOALLOC.

HashTable of allocated SynthPatches.

Part of the update state that contains MIDI
controller values.

The rest of the update state.

Is the update state retained between
performances?

The Orchestra object from which SynthPatches
are allocated.

Creating and freeing a SynthInstrument
-copy
- copyFrornZone:
-free

Modifying the object - autoAlloc
- init
- mute:
- clearUpdates
- setRetainUpdates:
- setSynthPatchClass:
- setSynthPatchClass:orchestra:

Querying the object - activeSynthPatches:
- allocMode
- orchestra
- doesRetainUpdates
- getUpdates:controllerValues:
- synthPatchClass

2-252 Chapter 2: Class Specifications

Allocating SynthPatch objects - preemptSynthPatchFor:patches:
- setSynthPatchCount:
- setSynthPatchCountpatchTemplate:
- synthPatchCount
- synthPatchCountForPatchTemplate:

Performing the object - realizeN ote:fromN oteReceiver:
- abort

INSTANCE METHODS

abort
- abort

Sends the noteEnd message to all running (or finishing) SynthPatches managed by the
SynthInstrument. This causes all SynthPatches to immediately become available.

activeSynthPatches:

- activeSynthPatches:aTempiate

Returns the first in the sequence of the SynthInstrument's SynthPatches, created from
the specified PatchTemplate, that are currently sounding. If aTemplate is nil, the
default PatchTemplate is used. The sequence is ordered by the begin times of the
SynthPatches' current phrases, from the earliest to the latest. You step down the
sequence by sending next to the objects returned by this method. If there aren't any
active SynthPatches with the specified template, nil is returned.

allocMode

- (unsigned short)allocMode

Returns the SynthInstrument's allocation mode, one of MK_AUTOALLOC or
MK_MANUALALLOC.

autoAlloc

- autoAlloc

Sets the SynthInstrument's allocation mode to MK_AUTOALLOC and releases any
manually allocated SynthPatch objects. If the SynthInstrument is in performance and
isn't already in MK_AUTOALLOC mode, this does nothing and returns nil. Otherwise
returns the receiver.

Music Kit Classes: Synthlnstrument 2-253

clearUpdates

- clearUpdates

Clears the Synthlnstrument's update state.

copy

-copy

Creates and returns a new SynthInstrument as a copy of the receiver. The copy has the
same (NoteReceiver) connections but has no SynthPatches allocated.

doesRetainUpdates

- (BOOL)doesRetainUpdates

If the SynthInstrument retains its update state between preformances, this returns YES,
otherwise returns NO. By default, a SynthInstrument doesn't retain its update state.

free

-free

If the Synthlnstrument isn't in performance, this frees the SynthInstrument. Otherwise
does nothing and returns self.

getUpdates:controller Values:

init

- getUpdates:(Note **)aNoteUpdate controllerValues:(HashTable **)controllers

Returns the SynthInstrument's update state as it's split between the MIDI controller
value parameters (given in the controllers HashTable) and all other parameters (the
aNoteUpdate Note).

- init

Initializes the SynthInstrument.

mute:

- mute:aMute

You never invoke this method; it's invoked automatically when the SynthInstrument
receives a mute Note. Mutes aren't normally forwarded to SynthPatches since they
usually don't produce sound. The default implementation does nothing. A subclass
can implement this method to examine aMute and act accordingly.

2-254 Chapter 2: Class Specifications

orchestra

- orchestra

Returns the orchestra object from which SynthPatches are allocated, as set with
setSynthPatchClass:orchestra:. If this method returns the Orchestra class, then
SynthPatches are allocated from the first available Orchestra.

preemptSynthPatchFor:patches:

- preemptSynthPatchFor:aNote patches:jirstPatch

You never invoke this method. It's invoked automatically when the Synthlnstrument is
in manual mode and all SynthPatches are in use, or when it's in auto mode and the DSP
resources needed to build another SynthPatch aren't available. The return value is
taken as the SynthPatch to preempt in order to accommodate the latest request.
jirstPatch is the first in a sequence of ordered active SynthPatches, as returned by the
activeSynthPatches: method. The default implementation simply returns jirstPatch,
the SynthPatch with the oldest phrase. A subclass can reimplement this method to
provide a different scheme for determining which SynthPatch to preempt.

realizeNote:fromNoteReceiver:

- realizeNote:aNote fromNoteReceiver:aNoteReceiver

Synthesizes aNote.

setRetainUpdates:

- setRetainUpdates:(BOOL)yesOrNo

If yesOrNo is YES, the Synthlnstrument's update state is retained between
performances. Otherwise, it's cleared after each performance.

setSynthPatchClass:

- setSynthPatchClass:aSynthPatchC lass

Sets the Synthlnstrument's SynthPatch class to aSynthPatchClass. Returns nil if the
argument isn't a subclass of SynthPatch or the Synthlnstrument is in a performance (the
class isn't set in this case). Otherwise returns self.

setSynthPatchClass:orchestra:

- setSynthPatchClass:aSynthPatchClass orchestra:anOrchestra

Like setSynthPatchClass:, but also sets the Orchestra object from which SynthPatches
will be allocated. If anOrchestra is nil, SynthPatches are allocated on the first available
Orchestra.

Music Kit Classes: Synthlnstrument 2-255

setSynthPatchCount:

- (int)setSynthPatchCount:(int)voices

Attempts to allocate voices SynthPatch objects. Implemented as

[self setSynthPatchCount:voices template:nil];

Returns the number of objects that were actually allocated.

setSynthPatchCount:patchTemplate:

- (int)setSynthPatchCount:(int)voices patchTemplate:aTemplate

Attempts to allocate voices SynthPatch objects using the patch template aTemplate (the
Orchestra must be open). This puts the SynthInstrument in manual mode. If aTemplate
is nil, the value returned by the message

[synthPatchClass defaultPatchTemplate]

is used. Returns the number of objects that were allocated (it may be less than the
number requested). If the SynInstrument is in performance and it isn't already in
manual mode, this message is ignored and 0 is returned.

If you decrease the number of manually allocated SynthPatches during a performance,
the extra SynthPatches aren't deallocated until they become inactive. In other words,
reallocating downward won't interrupt active SynthPatches.

synthPatch Class

- synthPatchClass

Returns the SynthInstrument's SynthPatch class.

synthPatchCount

- (int)synthPatchCount

Returns the number of allocated SynthPatch objects created with the default
PatchTemplate.

synthPatchCountForPatchTemplate:

- (int)synthPatchCountForPatchTemplate:aTemplate

Returns the number of allocated SynthPatch objects created with the PatchTemplate
aTemplate.

2-256 Chapter 2: Class Specifications

SynthPatch

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

SynthPatch is an abstract class, each subclass of which defines a unique configuration
of UnitGenerator and SynthData objects that work as a sound synthesis module.
SynthPatch objects aren't created directly; rather, they're allocated through messages,
such as allocSynthPatch:, that you send to an Orchestra object. Once you've allocated
a SynthPatch, you feed it Notes through the noteOn:, noteUpdate:, and noteOff:
methods, where the type of the Note is assumed to correspond to the name of the
method. To halt a SynthPatch, you send it noteEnd. Alternatively, and more
commonly, you can create and use instances of SynthInstrument to allocate and
distribute Notes to SynthPatch objects for you.

The Music Kit includes a number of SynthPatch subclasses that you can use in your
application. The design of a SynthPatch subclass is examined in detail in Chapter 4 of
Concepts.

INSTANCE VARIABLES

Inherited/rom Object

Declared in SynthPatch

synthElements

synthInstrument

noteTag

status

patchTemplate

isAllocated

Class

id
id
int
MKSynthStatus
id
BaaL
id

isa;

synthElements;
synthInstrument;
noteTag;
status;
patchTemplate;
isAllocated;
orchestra;

List of UnitGenerator and SynthData objects.

The SynthInstrument object that owns the object,
if any.

The object's current note tag (used by its
SynthInstrument).

The object's status.

The object's PatchTemplate.

YES if the object is allocated.

Music Kit Classes: SynthPatch 2-257

orchestra Orchestra on which the object is allocated.

METHOD TYPES

Creating and freeing a SynthPatch - dealloc
- init

Defining a subclass

Performing the object

Querying the object

CLASS METHODS

defaultPatcbTemplate

+ defaultPatchTemplate

-free

+ defaultPatchTemplate
+ patchTemplateFor:
- controllerValues:
- noteOnSelf:
- noteOffSelf:
- noteUpdateSelf:
- noteEndSelf
- freeSelf
- phraseStatus
- synthElementAt:
- preemptFor:
-moved:

-noteOn:
-noteOff:
- note Update:
-noteEnd

- synthlnstrument
- isFreeable
-next
-noteTag
- patchTemplate
- status

Returns the default PatchTemplate for the class.

patcbTemplateFor:

+ patchTemplateFor:currentNote

Returns an appropriate PatchTemplate with which to create a SynthPatch instance that
will adequately synthesize currentNote. This method is invoked by Synthlnstrument
whenever it needs to allocate a new SynthPatch instance. It may also be sent by an

2-258 Chapter 2: Class Specifications

application to obtain the template to be used as the second argument to
SynthInstrument's setSynthPatchCount:patchTemplate: method, or to Orchestra's
allocSynthPatch:patchTemplate: method. Implementation of this method is a
subclass responsibility. If currentNote is nil, the default template should be returned.

INSTANCE METHODS

controller Values:

- controllerValues:controllers

You never invoke this method; it's sent by the SynthPatch's SynthInstrument when a
new Note stream begins, before the noteOn: message is sent. controllers is a
HashTable that describes the state of the MIDI controllers by mapping integer
controller numbers to integer controller values. A subclass can implement this method
to examine the argument and act accordingly. The default implementation does
nothing. The return value is ignored.

dealloc

- dealloc

You can use this method to deallocate a SynthPatch that you allocated directly from an
Orchestra. It sends noteEnd to the receiver, deallocates the SynthPatch, and returns
nil. If the SynthPatch is owned by a SynthInstrument, this does nothing and returns nil.

free

-free

You never invoke this method; only the Orchestra can free a SynthPatch. If a subclass
needs to do anything special when the receiver is freed, it should override freeSelf.

freeSelf

in it

- freeSelf

Sent just before the SynthPatch is freed by the Orchestra. A subclass can implement
this method to provide specialized behavior.

- init

You never invoke this method; it's sent by the Orchestra when a new SynthPatch has
just been allocated, but before its UnitGenerators are connected. A subclass may
override this method to provide additional initialization. A return of nil aborts the
creation and frees the new SynthPatch. The default implementation does nothing and
returns self.

Music Kit Classes: SynthPatch 2-259

isFreeable

- (BOOL)isFreeable

Returns YES if the SynthPatch may be freed; otherwise returns NO. A SynthPatch may
only be freed if it's idle and it isn't owned by a manually allocated Synthlnstrument.

moved:

- moved:aUG

Sent when the Orchestra moves a SynthPatch's UnitGenerator during DSP memory
compaction. aUG is the object that was moved. A subclass can override this method
to provide specialized behavior. The default implementation does nothing.

next

- next

This method is used in conjunction with a Synthlnstrument's
preemptSynthPatchFor:patches: method. It returns the next SynthPatch in a List of
active SynthPatches owned by the Synthlnstrument. The objects in the List are in the
order in which they began synthesizing their current phrases (oldest first).

noteEnd

- noteEnd

Causes the SynthPatch to become idle. The message noteEndSelf is sent to the
SynthPatch and its status is set to MK_idle. Returns self.

noteEndSelf

- noteEndSelf

You never invoke this method; it's invoke automatically by the noteEnd method. A
subclass may override this to do what it needs to do to ensure that the SynthPatch
produces no output. Usually, the subclass implementation sends the idle message to its
output UnitGenerator. The default implementation does nothing; the return value is
ignored.

note Off:

- (double)noteOff:aNote

Concludes a Note stream by sending noteOffSelf:aNote to the SynthPatch and setting
the SynthPatch's status to MK_finishing. Returns the value returned by noteOffSelf:.

2-260 Chapter 2: Class Specifications

noteOffSelf:

- (double)noteOffSelf:aN ote

You never invoke this method; it's invoked automatically by the note Off: method. A
subclass may provide an implementation that describes its response to a noteOff. The
return value is the amount of time to wait, in seconds, before the SynthPatch can be
released (in other words, before noteEnd can be sent). The default implementation
returns 0.0.

noteOn:

- noteOn:aNote

This starts or rearticulates a Note stream by sending noteOnSelf:aNote to the
SynthPatch. IfnoteOnSelf: returns self, the SynthPatch's status is set to MK_running
and self returned. If noteOnSelf: returns nil, noteEnd is sent to the SynthPatch and
nil is returned.

noteOnSelf:

- noteOnSelf:aNote

You never invoke this method; it's invoked automatically by the noteOn: method. A
subclass may provide an implementation that describes its response to a noteOn. The
method should return self, or nil if you want the SynthPatch to immediately become
idle. The default implementation returns self.

noteTag

- (int)noteTag

Returns the note tag associated with the Note stream the SynthPatch is currently
playing. A SynthPatch's note tag is used as an identifier by its Synthlnstrument.

noteUpdate:

- noteUpdate:aNote

Updates a Note stream by sending noteUpdateSelf:aNote to the SynthPatch. Returns
nil if the SynthPatch is idle, ot!:erwise returns self

note UpdateSelf:

- noteUpdateSelf:aNote

You never invoke this method; it's invoked automatically by the noteUpdate: method.
A subclass may provide an implementation that describes its response to a noteUpdate.
The return value is ignored.

Music Kit Classes: SynthPatch 2-261

orchestra
- orchestra

Returns the Orchestra object on which the SynthPatch is allocated. All the
UnitGenerator and SynthData objects in the SynthPatch are allocated on the same
Orchestra.

patchTemplate
- patch Template

Returns the PatchTemplate that was used to allocate the SynthPatch.

phraseStatus
- (MKPhraseStatus)phraseStatus

This is a convenience method for SynthPatch subclass implementors. The return value
gives a precise account of the current status of the SynthPatch with regard to the Note
stream. This method can only be invoked from within noteOnSelf:, noteOffSelf:,
noteUpdateSelf:, and noteEndSelf, and returns a value as follows:

noteOnSelf:: If the SynthPatch is beginning a new phrase and isn't being preempted,
MK_phraseOn is returned. If the SynthPatch is being preempted to begin a new phrase,
MK_phraseOnPreempt is returned. If the phrase is already in progress,
MK_phraseRearticulate is returned.

noteOffSelf:: Always returns MK_phraseOff.

noteUpdateSelf:: If the SynthPatch is finishing, MK_phraseOffUpdate is returned.
Otherwise, MK_phraseUpdate is returned.

noteEndSelf: Always returns MK_phraseEnd.

Called from outside a SynthPatch, MK_noPhraseActivity is returned.

preemptFor:
- preemptFor:aNote

Sent when the SyntPatch is running or finishing and is preempted by its
SynthInstrument. The default implementation does nothing and returns self. Normally,
a time equal to the value returned by MKPreemptDurationO is allowed to elapse
before the preempting Note begins. A subclass can specify that the new Note happen
immediately by returning nil.

2-262 Chapter 2: Class Specifications

status

- (int)status

Returns the status of the SynthPatch, one of MK_running, MK_finishing, and
MK_idle.

synthElementAt:

- synthElementAt: (unsigned)anI ndex

Returns the UnitGenerator or SynthData at the specified index or nil if anlndex is out
of bounds. anlndex is zero-based.

synthlnstrument

- synthInstrument

Returns the SynthInstrument that owns the SynthPatch, if any.

Music Kit Classes: SynthPatch 2-263

2-264

ThningSystem

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A TuningSystem object represents a musical tuning system by mapping the 128 key
numbers to the frequencies that you specify. The frequencies in a TuningSystem object
don't have to increase as the key numbers increase-you can even create a
TuningSystem that descends in pitch as the key numbers ascend the scale.

The TuningSystem class maintains a master system called the installed tuning system.
By default, the installed tuning system is set to 12-tone equal-temperament with A
above middle C set to 440 Hz. A key number that doesn't reference a TuningSystem
object takes its frequency value from the installed tuning system. The frequency value
of a pitch variable is also taken from the installed system. The difference between key
numbers and pitch variables is explained in Concepts. The entire map of key numbers,
pitch variables, and frequency values in the default 12-tone equal-tempered system is
given in Appendix B, "Music Tables."

You can install a tuning system by sending the install message to a TuningSystem
object. Keep in mind that this doesn't install the object itself, it simply copies its key
number-frequency map. Subsequent changes to the object won't affect the installed
tuning system (unless you again send the object the install message).

INSTANCE VARIABLES

Inherited/rom Object Class is a;

Declared in TuningSystem id frequencies;

frequencies Array of frequencies, indexed by key number.

METHOD TYPES

Creating and freeing a TuningSystem
-copy
- copyFrornZone:
- init
- initFromInstalledTuningSystem
- free

Music Kit Classes: TuningSystem 2-265

Tuning the object - setKeyNum:toFreq:
- setKeyNumAndOctaves:toFreq:
- setTo12ToneTempered
-:- transpose:

Querying the object - freqForKeyNum:

Tuning the installed tuning system - install

Querying the installed tuning system

Archiving a TuningSystem

CLASS METHODS

freqForKeyNum:

+ setKeyNum:toFreq:
+ setKeyNumAndOctaves:toFreq:
+ transpose:

+ freqForKeyNum:

-read:
- write:

+ (double)freqForKeyNum:(MKKeyNum)aKeyNum

Returns the installed frequency for the key number aKeyNum. If aKeyNum is out of
bounds, returns MK_NODVAL (use MKIsNoDValO to check for this value).

See also: + setKeyNum:toFreq:

setKeyNum:toFreq:

+ setKeyNum:(MKKeyNum)aKeyNum toFreq:(double)freq

Maps the aKeyNum key number to the frequency freq in the installed tuning system. If
aKeyNum is out of bounds, returns MK_NODVAL (use MKIsNoDValO to check for
this value); otherwise returns self.

See also: + setKeyNumAndOctaves:toFreq:, + freqForKeyNum:

setKeyNumAndOctaves:toFreq:

+ setKeyNumAndOctaves:(MKKeyNum)aKeyNum toFreq:(double)freq

Maps the aKeyNum key number to the frequency freq in the installed tuning system,
then tunes all octaves of aKeyNum to octaves of freq. If aKeyNum is out of bounds,
returns MK_NODVAL (use MKIsNoDValO to check for this value); otherwise returns
self.

See also: + setKeyNum:toFreq:, + freqForKeyNum:

2-266 Chapter 2: Class Specifications

transpose:

+ transpose:(double)semitones

Transposes the installed tuning system by semitones half-steps. (The half-step used
here is always 100 cents.) If semitones is positive, the transposition is up, if it's
negative, the transposition is down. You can transpose the tuning system by increments
smaller than a half-step by supplying a fractional argument. Returns self.

See also: + setKeyNurnAndOctaves:toFreq:, + freqForKeyNurn:

INSTANCE METHODS

copy

-copy

Creates and returns a new TuningSystem as a copy of the receiving TuningSystem.

See also: - copyFrornZone:

copyFrornZone:

- copyFrornZone:(NXZone *)zone

The same as copy, but the new object is allocated in the specified zone.

See also: - copy

free

-free

Frees the TuningSystem.

freqForKeyNurn:

init

- (double)freqForKeyNurn:(MKKeyNum)aKeyNum

Returns the TuningSystem's frequency for the key number aKeyNum. If aKeyNum is
out of bounds, returns MK_NODVAL (use MKIsNoDValO to check for this value).

See also: - setKeyNurn:toFreq:

- init

Initializes a newly allocated TuningSystem to a 12-tone equal-tempered scale.

Music Kit Classes: TuningSystem 2-267

initFromlnstalledTuningSystem

- initFromlnstalled1\mingSystem

Initializes a new TuningSystem object and tunes it to the installed tuning system.

install

- install

Uses the TuningSystem's key number-frequency map as the installed tuning system.
The TuningSystem object itself isn't installed, so subsequent changes to the object
won't affect the installed tuning system. Returns self.

setKey Num:toFreq:

- setKeyNum:(MKKeyNum)aKeyNum toFreq:(double)freq

Maps the TuningSystem's aKeyNum key number to freq. If aKeyNum is out of bounds,
returns MK_NODVAL (use MKlsNoDValO to check for this value); otherwise returns
self.

See also: - setKeyNumAndOctaves:toFreq:, - freqForKeyNum:

setKeyNumAndOctaves:toFreq:

- setKeyNumAndOctaves:(MKKeyNum)aKeyNum toFreq:(double)freq

Maps the TuningSystem's aKeyNum key number to the frequency freq, then tunes all
octaves of aKeyNum to octaves offreq. If aKeyNum is out of bounds, returns
MK_NODVAL (use MKIsNoDValO to check for this value); otherwise returns self.

See also: - setKeyNum:toFreq:, - freqForKeyNum:

setTo12ToneTempered

- setTo12ToneTempered

Sets the TuningSystem's tuning to 12-tone equal-tempered, with A above middle C
equal to 440 Hz. Returns self.

transpose:

- transpose:(double)semitones

Transposes the TuningSystem by semitones half-steps. (The half-step used here is
always 100 cents.) If semitones is positive, the transposition is up, if it's negative, the
transposition is down. You can transpose the object by increments smaller than a
half-step by supplying a fractional argument. Returns self.

2-268 Chapter 2: Class Specifications

UnitGenerator

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

UnitGenerators are the building blocks of DSP music synthesis. Each UnitGenerator
subclass represents a DSP program called a unit generator that provides a particular
synthesis operation, such as waveform generation, filtering, and mixing. Sound is
synthesized by downloading unit generators to the DSP, interconnecting them, and
making them run. You can allocate and use UnitGenerators directly in your
application, but they're most commonly allocated-and more easily controlled-as
part of the design of a SynthPatch subclass, as explained in the SynthPatch class
description.

To download a copy of a particular unit generator to the DSP, you send the
allocUnitGenerator: message to an open Orchestra object, passing the class of the
UnitGenerator that represents the unit generator. For example, to download a copy of
the unoise unit generator (which generates white noise), you allocate an instance ofthe
UnoiseUG class:

/* Create an Orchestra and a variable for the UnitGenerator. */

id anOrch = [[Orchestra alloc] init];

id aNoise;

/* Open the Orchestra; check for failure. */

if (! [anOrch open])

/* The UnitGenerator object is created at the same time that the

* unit generator program is download to the DSP.

*/
aNoise = [anOrch allocUnitGenerator: [UnoiseUGx class]];

Notice that the receiver of the class message in the final line of the example is
UnoiseUGx. The "x" is explained later in this class description.

To connect two UnitGenerators together, you allocate a patchpoint through which they
can communicate. A patchpoinL is a type of SynthData object that's designed to be used
for just this purpose, to communicate data from the output of one UnitGenerator to the
input of another. For example, to connect our UnoiseUGx object to a sound-output
UnitGenerator, such as OutlaUGx, a patchpoint must be allocated and then passed as
the argument in an invocation ofUnoiseUGx's setOutput: method and OutlaUGx's
setlnput: method. But in order to do this, you have to understand a little bit about DSP
memory spaces.

The DSP's memory is divided into three sections, P, X, and Y: P memory holds
program data; X and Y contain data. Unit generator programs are always downloaded

Music Kit Classes: UnitGenerator 2-269

to P memory; the memory represented by a SynthData object is allocated in either X or
Y, as the argument to Orchestra's allocSynthData: method is MK_xData or
MK_yData. In general, there's no difference between the two data memory spaces;
dividing data memory into two partitions allows the DSP to be used more efficiently.

Each of a UnitGenerator's inputs and outputs (or memory arguments) are represented
by either an "x" or a "y" at the end of its name, indicating the memory space from which
or to which the UnitGenerator reads or writes data. Thus, the UnoiseUGx object used
above writes its output data to X memory. Similarly, the Out 1 aUGx object reads from
X memory. Therefore, the patchpoint that connects them should be allocated in X
memory.

The UnoiseUGx and OutlaUGx object used in the example are called leaf classes.
They inherit from the master classes UnoiseUG and OutlaUG. For each master class,
a complete set of leaf classes are created such that every permutation of X and Y
memory is provided. For example, in addition to UnoiseUGx, there is also a
UnoiseUGy leaf class. Some UnitGenerators have more than one memory argument;
an OscgafiUG object (an oscillator), for example, has three inputs and one input. To
accommodate 4 memory arguments, 16 permutations of X and Y memory are possible,
so there are 16 leaf classes of the OscgafiUG master class. Both the master class and
the complete set of leaf classes are created automatically from a unit generator source
through the dspwrap utility.

You never create an instance of a master class; UnitGenerator objects are always
instances of leaf classes.

Most of the methods defined in the UnitGenerator class are subclass responsibilities or
are provided to help define the functionality of a subclass. The most important of these
are runSelf, idleSelf, and finishSelf. These methods implement the subclass-specific
behavior of the object in response to the run, finish, and idle messages, respectively.
In addition to implementing the subclass responsibility methods, you should also
provide methods for poking values into the memory arguments of the DSP unit
generator that the UnitGenerator represents. For example, an oscillator UnitGenerator
would provide a setFreq: method to set the frequency of the unit generator that's
running on the DSP.

The UnitGenerator master classes are listed and described in a separate section. The
descriptions include a list of the UnitGenerator's memory arguments and how they
correspond to the leaf class names. The unit generator programs provided by NeXT are
given as source code in /usr/lib/dsp/ugsrc.

INST ANCE VARIABLES

Inheritedfrom Object Class is a;

2-270 Chapter 2: Class Specifications

Declared in UnitGenerator

synthPatch

orchestra

isAllocated

args

status

relocation

METHOD TYPES

id
id
BOOL
MKUGArgStruct
MKSynthStatus
MKOrchMemStruct

synthPatch;
orchestra;
isAllocated;
*args;
status;
relocation;

The SynthPatch that owns this object, if any.

The Orchestra on which the object is allocated.

YES if allocated

The object's DSP memory arguments

The object's status

The object's relocation information

Designing a UnitGenerator subclass - setAddressArg:to:

Using a UnitGenerator

- setAddressArg:tolnt:
- setAddressArgToSink:
- setAddressArgToZero:
+ enableErrorChecking:
+ shouldOptimize:
- setDatumArg:to:
- setDatumArg:toLong:
- init
-moved
- runSelf
- finishSelf
- freeSelf
- idleS elf

-run
- finish
- idle
- dealloc

Music Kit Classes: UnitGenerator 2-271

Querying the object

CLASS METHODS

alloc

+ argCount
- argCount
+ argName:
+ argSpace:
+ classInfo
- classInfo
- isAllocated
- isFreeable
+ masterUGPtr
- orchestra
- referenceCount
- relocation
- resources
- runsAfter:
- status
- synthPatch

You never invoke this method; it's overridden to generate an error. To create a
UnitGenerator, you must allocate it through an Orchestra object.

allocFrornZone:

You never invoke this method; it's overridden to generate an error. To create a
UnitGenerator, you must allocate it through an Orchestra object.

argCount

+ (unsigned)argCount

Returns the number of memory arguments as declared by the UnitGenerator subclass'
DSP unit generator source code.

argNarne:

+ (char *)argName:(unsigned)argNum

Returns a pointer to the name of the UnitGenerator subclass' argNum'th memory
argument, as declared in the DSP unit generator source code.

2-272 Chapter 2: Class Specifications

argSpace:

+ (DSPMemorySpace)argSpace:(unsigned)argNum

Returns the memory space to or from which the address-valued argument argNum
reads or writes. If argNum isn't an address-valued argument, returns DSP _MS_N.

class Info

+ (MKLeafUGStruct *)classlnfo

Returns the leaf class structure defined by the UnitGenerator subclass. A subclass
responsibility, this method is automatically generated by dspwrap.

copy

You never invoke this method; it's overridden to generate an error. To create a
UnitGenerator, you must allocate it through an Orchestra object.

copyFromZone:

You never invoke this method; it's overridden to generate an error. To create a
UnitGenerator, you must allocate it through an Orchestra object.

enableErrorChecking:

+ enableErrorChecking:(BOOL)yesOrNo

Sets whether various error checks are done, such as verifying that UnitGenerator
arguments are correct. The default is NO. You should send
enableErrorChecking: YES only when you are debugging.

masterUGPtr

+ (MKMasterUGStruct *)masterUGPtr

Returns the master class structure defined by the UnitGenerator subclass. A subclass
responsibility, this method is automatically generated by dspwrap.

should Optimize:

+ (BOOL)shouldOptimize:(unsigned)arg

A subclass can override this method to reduce the command stream on an
argument-by-argument basis, returning YES if arg should be optimized, NO if it
shouldn't. The default implementation always returns NO.

Music Kit Classes: UnitGenerator 2-273

Optimization of an argument means that if the argument is set to the same value twice,
the second setting is suppressed. You should never optimize an argument that the unit
generator DSP code itself might change.

Argument optimization applies to the entire class-all instances of the UnitGenerator's
leaf classes inherit an argument's optimization. Optimization of an argument can't be
changed while the UnitGenerator is in use.

INSTANCE METHODS

argCount

- (unsigned)argCount

Returns the number of memory arguments defined by the UnitGenerator. The same
value is returned by the argCount class method.

classInfo

- (MKLeafUGStruct *)classlnfo

Returns a pointer to the UnitGenerator's leaf structure. The same structure pointer is
returned by the classlnfo class method.

dealloc

- dealloc

Deallocates the UnitGenerator and frees its SynthPatch, if any. Returns nil.

finish

- (double)finish

Finishes the UnitGenerator's activity by sending finish Self and then sets its status to
MK_finishing. You never subclass this method; finishSelfprovides subclass finishing
instructions. Returns the value of [self finish Self] , which is taken as the amount of
time, in seconds, before the UnitGenerator can be idled.

finishSelf

- (double)finishSelf

A subclass may override this method to provide instructions for finishing. Returns the
amount of time needed to finish; the default returns 0.0.

2-274 Chapter 2: Class Specifications

free

- free

Only the Orchestra may free a UnitGenerator. This method is overridden to do nothing.

freeSelf

- freeSelf

You never invoke this method directly, it's invoked automatically when a UnitGenerator
is freed by the Orchestra. A subclass may implement this method to provide
specialized behavior.

idle

- idle

Idles the UnitGenerator by sending [self idleSelf] and then sets its status to MK_idle.
You never subclass this method; idleS elf provides subclass idle instructions. When a
UnitGenerator is idle, it produces no output signal.

idleSelf

in it

- idleS elf

A subclass may override this method to provide instructions for idling. The default
does nothing and returns the receiver. Most UnitGenerator subclasses implement
idleS elf to patch their outputs to sink, a location that nobody reads. UnitGenerators that
have inputs, such as Out2sumUG, implement idleSelf to patch their inputs to zero, a
location that always holds the value 0.0.

- init

You never explicitly create a UnitGenerator. Therefore, you never invoke this method;
it's sent when the UnitGenerator is created by the Orchestra, after its DSP code is
loaded. If this method returns nil, the UnitGenerator is automatically freed by the
Orchestra. A subclass implementation should send [super init] before doing its own
initialization and should immediately return nil if [super in it] returns nil. The default
implementation returns self.

isAllocated

- (BOOL)isAllocated

Returns YES if the UnitGenerator has been allocated (by its Orchestra), NO if it hasn't.

Music Kit Classes: UnitGenerator 2-275

isFreeable
- (BOOL)isFreeable

Invoked by the Orchestra to detennine whether the UnitGenerator may be freed.
Returns YES if it can, NO if it can't. (A UnitGenerator can be freed if it isn't currently
allocated or if its SynthPatch can be freed.)

moved
-moved

You never invoke this method. It's automatically invoked by the Orchestra if the
UnitGenerator is moved during compaction. A subclass can override this method to
perform specialized behavior. The default does nothing; the return value is ignored.

orchestra

- orchestra

Returns the Orchestra object on which the UnitGenerator is allocated.

reference Count
- (int)referenceCount

If the UnitGenerator is installed in its Orchestra's shared object this table, returns the
number of objects that are using it. Otherwise returns 1 if it's allocated, 0 if not.

relocation

- (MKOrchMemStruct *)relocation

Returns a pointer to the structure that describes the UnitGenerator's location on the
DSP. You can access the fields of the structure without caching it, for example:

[aUnitGenerator relocation)->pLoop

returns the starting location of the receiver's pLoop code.

resources

- (MKOrchMemStruct *)resources

Return a pointer to the structure that describes the UnitGenerator's memory
requirements. Each field of the structure represents a particular Orchestra memory
segment; its value represents the number of words that the segment requires.

2-276 Chapter 2: Class Specifications

run

- run

Starts the UnitGenerator by sending [self runS elf] and then sets its status to
MK_running. You never subclass this method, you implement runSelf to provide
subclass instructions. A UnitGenerator must be sent run before it can be used.

runSelf

- runSelf

A subclass implementation of this method provides instructions for making the
UnitGenerator's DSP code run. You never invoke this method directly, it's invoked
automatically by the run method. The default does nothing and returns the receiver.

runsAfter:

- (BOOL)runsAfter:aUnitGenerator

Returns YES if the UnitGenerator is executed after aUnitGenerator. Execution order
is determined by comparing the objects' pLoop addresses.

setAddressArg:to:

- setAddressArg:(unsigned)argNum to:memoryObj

Sets the address-valued argument indexed by argNum to memoryObj. If argNum is out
of bounds, an error is generated and nil is returned. Otherwise returns self. This is
ordinarily only invoked in the implementation of a subclass.

setAddressArg:tolnt:

- setAddressArg:(unsigned)argNum toInt:(int)dspAddress

Sets the address-valued argument indexed by argNum to dspAddress in DSP memory.
If argNum is out of bounds, an error is generated and nil is returned. Otherwise returns
self. This is ordinarily only invoked in the implementation of a subclass.

setAddressArgToSink:

- setAddressArgToSink: (unsigned)argNum

Sets the address-valued argument indexed by argNum to the sink patchpoint. (The sink
patchpoint is a location which, by convention, is never read.) If argNum is out of
bounds, an error is generated and nil is returned. Otherwise returns self. This is
ordinarily only invoked in the implementation of a subclass.

Music Kit Classes: UnitGenerator 2-277

setAddressArgToZero:

- setAddressArgToZero: (unsigned)argN um

Sets the address-valued argument argNum to the zero patchpoint. (The zero patchpoint
is a location which, by convention, is never written.) If argNum is out of bounds, an
error is generated and nil is returned. Otherwise returns self. This is ordinarily only
invoked in the implementation of a subclass.

setDatumArg:to:

- setDatumArg:(unsigned)argNum to:(DSPDatum)val

Sets the datum-valued argument indexed by argNum to val. If argNum is an L-space
argument (two 24-bit words), its high-order word is set to val and its low-order word is
cleared. If argNum is out of bounds, an error is generated and nil is returned.
Otherwise returns self. This is ordinarily only invoked in the implementation of a
subclass.

setDatumArg :toLong:

- setDatumArg:(unsigned)argNum toLong:(DSPLongDatum *)val

Sets the datum-valued argument argNum to val. If argNum isn't an L-space argument
(it can't accommodate a 48-bit value) its value is set to the high 24-bits of val. If
argNum is out of bounds, an error is generated and nil is returned. Otherwise returns
self. This is ordinarily only invoked in the implementation of a subclass.

status

- (int)status

Returns the UnitGenerator's status, one of MK_idle, MK_running, and MK_finishing.
You never set the status directly. A newly allocated UnitGenerator is idle; its status
changes automatically as it receives the run, finish, and idle messages.

synthPatch

- synthPatch

Returns the UnitGenerator's SynthPatch, if any.

2-278 Chapter 2: Class Specifications

WaveTable

INHERITS FROM Object

DECLARED IN musickit.h

CLASS DESCRIPTION

A WaveTable represents a single period of a sound waveform as a series of samples.
WaveTable is an abstract class that's succeeded by two inheriting classes: Samples and
Partials. The Samples subclass lets you define a WaveTable through association with a
Sound object or soundfile; Partials lets you build a waveform by adding sine wave
components. If you're interested in using WaveTables to create a library of timbres you
should refer to the descriptions of the Samples and Partials subclasses. Detailed
familiarity with the WaveTable class, in this case, isn't necessary.

WaveTable objects are designed to be used as lookup tables for oscillator
UnitGenerators such as OscgafiUG. When it's instructed to run, the oscillator
downloads the WaveTable's data to a portion of memory on the DSP and then cycles
over the data to generate a timbre that's defined by the shape of the waveform that the
data represents. To assist this process, a Wave Table object maintains two separate
arrays of data pointed to by the dataDSP and dataDouble instance variables:

dataDSP contains values of type DSPDatum, the type used by the Music Kit to
represent the DSP's 24-bit fixed-point format. It's this array that's downloaded to
the DSP by an oscillator.

dataDouble contains doubles. It's provided as means for representing WaveTable
data on the host without the loss of precision implied by the DSPDatum type.

Subclasses of WaveTable are responsible for filling at least one of these arrays with
data; the values in both arrays are assumed to be within the range (-1.0,1.0). The
mechanism for filling the chosen array is defined by the subclass in its implementation
of fillTableLength:scale:. Which array to fill (or whether to fill both) is at the
discretion of the subclass designer. For example, the Partials subclass fills the
dataDouble array only; Samples, on the other hand, fills both arrays.

The fillTableLength:scale: method is never invoked directly; instead, it's invoked as
needed when a WaveTable object receives a request for its data. WaveTable defines two
fundamental methods, dataDSP and dataDouble, that return pointers to their
namesake arrays. Additional methods let you scale and size the data:

• dataDSPScale: lets you specify, as a double, the amplitude scaling factor of the
dataDSP array.

• dataDSPLength: lets you specify the length, in samples, of the dataDSP array.

dataDSPLength:scale: scales and sizes the dataDSP array.

Music Kit Classes: WaveTable 2-279

An analogous set of methods scales and sizes the dataDouble array. Conversion
between the dataDSP and dataDouble arrays is provided by these methods; for
example, if you invoke one of the dataDSP retrieval methods before the array has been
filled with data, the method automatically fills dataDSP with data converted from the
dataDouble array. If neither array has been filled, fillTableLength:scale: is invoked.

WaveTables are usually used as parameter values in Note objects as set through Note's
setPar:to WaveTable: method. The Music Kit defines a number of parameters that
take WaveTables as values.

INSTANCE VARIABLES

Inherited/rom Object

Declared in WaveTable

length

scaling

dataDSP

dataDouble

METHOD TYPES

Creating a WaveTable instance

Modifying the instance

Querying the instance

Computing the waveform

Retrieving data

2-280 Chapter 2: Class Specifications

Class

int
double
DSPDatum
double

isa;

length;
scaling;
*dataDSP;
*dataDouble;

Length of the data arrays, in elements (samples).

Amplitude scaling factor; 0.0 indicates
normalization.

Array of 24-bit fixed-point data.

Array of double-precision floating-point data.

-copy
- free

- init

-length
- scaling

- fillTableLength:scale:

-dataDSP
- dataDSPLength:
- dataDSPLength:scale:
- dataDSPScale:
- dataDouble
- dataDoubleLength:
- dataDoubleLength:scale:
- dataDoubleScale:

Archiving the instance

INSTANCE METHODS

copy

-copy

- read:
- write:

Creates and returns a new WaveTable as a copy of the receiver

dataDSP
- (DSPDatum *)dataDSP

Returns a pointer to the receiver's dataDSP array. Implemented as an invocation of
dataDSPLength:scale:, with the length and scaling instance variables as arguments.

dataDSPLength:

- (DSPDatum *)dataDSPLength:(int)aLength

Returns a pointer to the receiver's dataDSP array. Implemented as an invocation of
dataDSPLength:scale:, with aLength and the scaling instance variable as arguments.

dataDSPLength:scale:
- (DSPDatum *)dataDSPLength:(int)aLength scale:(double)aScaling

Returns a pointer to the receiver's dataDSP array, recomputing the data if necessary (as
defined in the class description). The array is sized and scaled according to the
arguments and the length and scaling instance variables are set to these values. If the
receiver can't fill the array, NULL is returned. You should neither modify nor free the
data returned by this method.

dataDSPScale:

- (DSPDatum *)dataDSPScale:(double)aScaling

Returns a pointer to the receiver's dataDSP array. Implemented as an invocation of
dataDSPLength:scale:, with the length instance variable and aScaling as arguments.

dataDouble
- (double *)dataDouble

Returns a pointer to the receiver's dataDouble array. Implemented as an invocation of
dataDoubleLength:scale:, with the length and scaling instance variables as
arguments.

Music Kit Classes: WaveTable 2-281

dataDoubleLength:
- (double *)dataDoubleLength:(int)aLength

Returns a pointer to the receiver's dataDouble array. Implemented as an invocation of
dataDoubleLength:scale:, with aLength and the scaling instance variable as
arguments.

dataDoubleLength:scale:
- (double *)dataDoubleLength:(int)aLength scale:(double)aScaling

Returns a pointer to the receiver's dataDouble array, recomputing the data if necessary
(as defined in the class description). The array is sized and scaled according to the
arguments and the length and scaling instance variables are set to these values. If the
array can't be filled, NULL is returned. You should neither modify nor free the data
returned by this method.

dataDoubleScale:

- (double *)dataDoubleScale:(double)aScaling

Returns a pointer to the receiver's dataDouble array. Implemented as an invocation of
dataDoubleLength:scale:, with the length instance variable and aScaUng as
arguments.

fillTableLength:scale:
- fillTableLength:(int)aLength scale:(double)aScaUng

Computes the receiver's data, sizing and scaling according to the arguments. This is a
subclass responsibility method; a subclass can implement the method to fill the
dataDSP array, the dataDouble array, or both. If only one of the arrays is computed
and filled, the other should be freed and its pointer set to NULL. If the data can't be
computed, both arrays should be freed and nil returned. Otherwise, the receiver should
be returned.

free

-free

init

Frees dataDSP and dataDouble, and then frees the receiver itself. This method also
removes the receiver's name, if any, from the Music Kit name table.

- init

Initializes the receiver. If you override this method in a subclass, you should include
[super in it] in the implementation. Returns the receiver.

2-282 Chapter 2: Class Specifications

length

- (int)length

Returns the length, in elements, of the data arrays (the two arrays should always contain
the same number of elements). A return value of 0 indicates that the arrays haven't
been filled, or that the data needs to be recomputed.

scaling

- (double)scaling

Returns the factor by which the values (sample amplitudes) in the data arrays are
scaled. A return value of 0.0, the default, indicates that the values are normalized, or
scaled to fit perfectly within the range -1.0 to 1.0.

Music Kit Classes: WaveTable 2-283

2-284

Add2UG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

Add2UG produces the sum of two input signals:

output = input1 + input2

MEMORY SPACES

Add2UGabc

a output
b input 1
c input 2

INSTANCE METHODS

setlnput1:

- setInput1:aPatchpoint

Sets the input 1 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setlnput2:

- setInput2:aPatchpoint

Sets the input 2 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

Music Kit Classes: Add2UG 2-285

2-286

AllpasslUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

Allpass 1 UG is a one-pole, one-zero filter. The value of the filter coefficient is set
directly. The filter's transfer function is given as

H(z) = bbO+ liz
1 + (bbO) Iz

where bbO is the filter coefficient. The Allpassl UG filter uses a one-sample delay in its
computation.

MEMORY SPACES

AllpasslUGab

a output
b input

INSTANCE METHODS

setlnput:

- setlnput:aPatchpoint

Sets the input patchpoint to aPatchpoint. Returns self, or nil if the argument isn't a
patchpoint.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns self, or nil if the argument isn't a
patchpoint.

Music Kit Classes: AUpassl UG 2-287

setBBO:
- setBBO:(double)bbO

Sets the filter coefficient to bbO. For stability, the coefficient should be within the
bounds

-1.0 < bbO < 1.0

Returns self.

clear

- clear

Sets the value of the delay memory to 0.0. Returns self.

2-288 Chapter 2: Class Specifications

AsympUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

AsympUG creates an exponential signal that approaches a limit (the "target") at a
particular rate, where the rate expresses the proportion of the remaining journey that's
taken with each step, where 0.0 is no progress and 1.0 is the whole thing:

output = previousOutput + (rate * (target - previousOutput))
previousOutput = output

Methods are provided that let you set the rate directly as it would be used in the formula
above. You can also set it indirectly as a time limit (referred to as "T60") that defines
the amount of time, in seconds, that it should take for the target to be perceptually
reached.

AsympUG objects are normally used to provide dynamic scaling of a musical attribute.
To this end, the output of an AsympUG is typically connected to the frequency or
amplitude input of an OscgafUG or OscgafiUG object. In addition, instances of
AsympUG are usually used in association with Envelope objects; the C function
MKUpdateAsympO is provided to take care of the rather messy business of setting
and managing an AsympUG's attributes according to a given Envelope and a set of
Note parameters. By using MKUpdateAsympO, you need only set the AsympUG's
output patchpoint; all other methods are invoked for you.

MEMORY SPACES

AsympUGa

a output

INSTANCE METHODS

abortEnvelope
- abortEnvelope

Disassociates the AsympUG from its Envelope. If the AsympUG is running, it stops
reading breakpoints, although it isn't otherwise interrupted (it continues to follow its
current trajectory). Returns self.

Music Kit Classes: AsympUG 2-289

envelope

- envelope

Returns the Envelope that's associated with the AsympUG, or nil if none.

envelopeStatus

- (MKEnvStatus)envelopeStatus

Returns the type of the most recently acquired Envelope breakpoint. There are three
types of breakpoints: the stickpoint (represented by MK_stickPoint), the final
breakpoint in the Envelope (MK_IastPoint), and all other breakpoints
(MK_noEnvError). Ifthe AsympUG's Envelope hasn't been set, MK_noMorePoints
is returned.

finishSelf

- (double)finishSelf

You never invoke this method; it's invoked automatically when the AsympUG receives
the finish message. However, its behavior bears description: If the object has yet to
see or is waiting at its Envelope's stickpoint, this causes it to head for the first
breakpoint after the stickpoint, and then on the end of the Envelope. If the AsympUG's
Envelope contains no stickpoint, this method is (virtually) ignored.

preemptEnvelope

- preemptEnvelope

Informs the AsympUG that its Envelope is being preempted. This sets the AsympUG's
target to the last breakpoint in the Envelope, and sets its T60 value to the global
"preempt duration," as set through the MKSetPreemptDurationO function (the
default preempt duration is 0.006 seconds). This method is invoked automatically by
a SynthInstrument object when it preempts a SynthPatch that contains AsympUG
objects.

2-290 Chapter 2: Class Specifications

resetEnvelope:yScale:yOffset:xScale:releaseXScale:funcPtr:transitionTime:
- resetEnvelope:envelope

yScale:(double)yScale Value
yOffset: (double)yOffsetValue
xScale:(double)attackXScale Value
releaseXScale:(double)releaseXScaleValue
funcPtr: (double(*)O)yScaleFunction
transitionTime:(double)transition

This method is the same as the setEnvelope: ... method but for this difference: If the
AsympUG is running, its target is set to the second breakpoint of the new Envelope and
T60 is set to transition seconds (the Envelope's first breakpoint is ignored). This
affords a more graceful transition into the new Envelope. You would normally call the
MKUpdateAsympO function rather than invoke this method directly.

setCurVal:

- setCurVal:(double)value

Sets the current value of the AsympUG to value, which is first converted to a long
(48-bit) DSP word. The new value replaces the previous output sample, as shown in
the computation in the class description above. The object is otherwise undisturbed in
executing its appointed task. Returns self.

setEnvelope:yScale:yOffset:xScale:releaseXScale:funcPtr:

- setEnvelope:envelope
yScale:(double)yScale Value
yOffset: (double)yOffsetValue
xScale:(double)attackXScale Value
releaseXScale:(double)releaseXScale Value
funcPtr:(double(*)O)additionalYFunction

Associates the AsympUG with the given Envelope. When the AsympUG is run, it
automatically schedules the breakpoints from its Envelope to be fed to itself through
message requests with the clockConductor. If this method is invoked while the
AsympUG is running, the object's current value is immediately set to the (scaled and
offset) y value of the first breakpoint in the new Envelope. A kinder interruption is
afforded by the resetEnvelope: ... method.

As breakpoints are delivered to an AsympUG, it's x, y, and smoothing values are used
to set the AsympUG's target and rate:

• The breakpoint's y value is scaled by yScaleValue and offset by yOffsetValue. If
you don't specify an additionalYFunction, this scaled and offset y value is set as
the AsympUG's target. Otherwise, this value is passed as a double to
additionalYFunction, an optional function of your own creation that you can
provide to perform additional manipulation of the y value. The function takes two

Music Kit Classes: AsympUG 2-291

arguments: the scaled and offset y value as mentioned above and the AsympUG's
id. The double value returned by additionalYFunction is set as the AsympUG's
target.

• The previous breakpoint's x value is subtracted from this breakpoint's x value and
the difference is scaled either by attackXScaleValue, if the Envelope's stickpoint
has not yet been met, or by releaseXScaleValue; it is then further scaled by the
breakpoint's smoothing value. This doubly scaled delta value is then set as the
AsympUG's T60 time limit.

Since a breakpoint dissolves into a target and a rate, and since these two values imply
a passage of time into the future, breakpoints must be fed to the AsympUG one
breakpoint in advance.

Normally, you would call the MKUpdateAsympO function rather than invoke this
method. The function provides a slightly easier interface to AsympUG management.

If envelope isn't an Envelope, nil is returned. In addition, if envelope is nil, the current
Envelope, if any, is aborted. Otherwise returns self.

setOutput:
- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns self, or nil if the argument isn't a
patchpoint.

setRate:
- setRate:(double)rate

Sets the rate at which the AsympUG approaches its target, where rate is the proportion
(on a scale between 0.0 and 1.0, but see below) of the remaining journey that's stepped
off at each sample. The T60 value (the amount of time it takes to virtually reach the
target) that corresponds to a particular rate depends on the sampling rate. If the
AsympUG is running, the new target is approached starting from the object's previous
sample. Returns self.

Note: While the scale is reckoned between 0.0 and 1.0, the actual maximum value to
which the rate can be set, for historical reasons, is 0.125. The maximum rate of 0.125
translates to a T60 of about 0.0014 seconds at the low sampling rate, or 0.0007 seconds
at the high sampling rate.

See also: - setT60:

2-292 Chapter 2: Class Specifications

setReleaseXScale:

- setReleaseXScale:(double)releaseXScaleValue

Resets the value by which the release time of the AsympUG's Envelope is scaled. This
only has an affect on subsequent breakpoints-you can't, for example, extend the life
of an AsympUG by increasing its release scale after the object has read (and is heading
for) its last breakpoint. Returns self.

setTargetVal:

- setTargetVal:(double)target

Sets the target to target, which should be between 0.0 and 1.0. If the AsympUG is
running, the new target is approached starting from the object's previous output
sample-in other words, the new target is absorbed into the equation given in the class
description above, without affecting the other factors. Returns self.

setT60:

- setT60:(double)seconds

Computes the AsympUG's rate such that the target is perceptually reached in seconds
seconds. Because of an idiosyncracy in the mechanism that sets the AsympUG's rate,
the smallest (fastest) T60 value that you can specify is about 0.0014 if you're running
at the low sampling rate and about 0.0007 at the high sampling rate. This restriction is
performed automatically; it isn't an error to request smaller T60 values. Returns self.

See also: - setRate:

set YScale:yOffset:

- setYScale:(double)yScale Value yOffset:(double)yOffsetValue

Resets the values by which the AsympUG scales and offsets its Envelope's y values. If
the object is running, its current value is immediately modified. Returns nil if the
AsympUG has no Envelope (and the current value isn't modified), otherwise returns
self.

Music Kit Classes: AsympUG 2-293

2-294

ConstantUG

INHERITS FROM U nitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

ConstantUG produces a constant value. Since you can set the value of a patchpoint
directly through the SynthData method setToConstant:, you rarely need instances of
this class. However, a ConstantUG object can be used to initialize, on each tick, a
constant-valued patchpoint that may have been written to during the previous tick. For
example, you can implement additive synthesis by creating a patch in which each
oscillator reads a patchpoint, adds its own signal into the value, and then writes the sum
back to the same patchpoint in preparation for the next oscillator. In this case, you
would use a ConstantUG to clear the patchpoint before the first oscillator reads it.

MEMORY SPACES

ConstantUGa

a output

INSTANCE METHODS

setConstant:
- setConstant:(double)value

Sets the constant value to a DSPDatum converted from value. Returns self.

setConstantDSPDatum:
- setConstantDSPDatum:(DSPDatum)va/ue

Sets the constant value to value. Returns self.

setOutput:
- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

Music Kit Classes: ConstantUG 2-295

2-296

DeiayUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

DeiayUG delays its input signal by some number of samples. It requires a SynthData
object to store the delayed signal. Each DeiayUG maintains a single pointer into the
delay memory. When the object is run, a tick's worth of samples are read and replaced
with an equal number of samples from the input signal. The pointer is then incremented
by a tick. When the pointer reaches the end of the delay memory, it automatically
jumps back to the beginning, even if it's in the middle of a tick-in other words, the
length of the delay memory needn't be a multiple of the tick size. The rate at which the
pointer is incremented can't be modified, nor can you offset the beginning of the delay
memory. However, you can reposition the pointer to any arbitrary sample in the delay
memory through the setPointer: method.

MEMORY SPACES

DelayUGabc

a output
b input
c delay memory

INSTANCE METHODS

adjustLength:

- adjustLength:(int)delayLength

Sets the number of delayed samples to delayLength. The argument must be no greater
than the length of the SynthData object that's used as the delay memory. Returns nil if
delayLength is too great or if the delay memory hasn't been set; otherwise returns self.

By default, the length of the delay is that of the SynthData that's used as the delay
memory. Decreasing the delay length of a running DeiayUG doesn't free (nor does it
clear) the fallow memory, which is always taken from the end of the SynthData. Keep
in mind that decreasing the length may cause the pointer to be considered out of
bounds; to avoid this, you should send a resetPointer (or setPointer:) message to the
DeiayUG just before you invoke this method.

Before increasing the length of the delay memory, you may want to clear the
recommissioned portion by sending a setToConstant:length:offset: message to the
SynthData.

Music Kit Classes: DelayUe 2-297

length
- (int)length

Returns the number of samples in the delay memory. Note that this is the length that's
currently being used; it isn't necessarily the same as the length of the SynthData that's
being used as the delay memory.

resetPointer
- resetPointer

Resets the pointer to the beginning of the delay memory. Returns nil if the SynthData
hasn't been set; otherwise returns self.

setDelayMemory:
- setDelayMemory:aSynthData

Sets the SynthData object used as the delay memory to aSynthData. The length of the
SynthData must be greater than or equal to the amount of delay (in samples) that's
desired. If aSynthData is nil, the delay memory is set to the sink location. Returns self.

setlnput:
- setlnput:aPatchpoint

Sets the input patchpoint to aPatchpoint. Returns nil if the argument isn't a patchpoint;
otherwise returns self.

setOutput:
- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil ifthe argument isn't a
patchpoint; otherwise returns self.

setPointer:
- setPointer:(int)n

Repositions the pointer to point to the n'th sample in the delay memory, counting from
sample O. Returns nil if n is greater than the current length of the delay, or if the delay
memory hasn't been set; otherwise returns self.

2-298 Chapter 2: Class Specifications

DswitchtUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

DswitchtUG reads a specified number of ticks from its first input signal and then
switches to read its second input signal. You can cause a DswitchtUG to switch
between its two inputs any number of times while it's running. The input signals can
be independently scaled. The input patchpoints must be allocated in the same memory
space.

A similar class, DswitchUG, switches on a sample boundary and doesn't allow scaling
on the second input.

MEMORY SPACES

DswitchtUGab
a output
b input! and input2

INSTANCE METHODS

setDelayTicks:

- setDelayTicks:(int)count

Immediately switches the DswitchtUG to its first input and causes it to switch to its
second input after count ticks have been read. If count is less than or equal to zero, the
switch to the second input is performed immediately. If the object is currently reading
from its first input because of a previous invocation of this method, the old count is
superceded by the new one. Returns self.

setlnput1:

- setlnput1:aPatchpoint

Sets the input I patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

Music Kit Classes: DswitchtUG 2-299

setlnput2:

- setlnput2:aPatchpoint

Sets the input 2 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setScale1:

- setScalel:(double)scale

Sets the factor by which the first input signal is scaled. Returns self.

setScale2:

- setScale2: (double)scale

Sets the factor by which the second input signal is scaled. Returns self.

2-300 Chapter 2: Class Specifications

DswitchUG

INHERITS FROM U nitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

DswitchUG reads a specified number of samples from its first input signal and then
switches to read its second input signal. You can cause a DswitchUG to switch between
its two inputs any number of times while it's running. A scaler on the first input signal
is provided. The input patchpoints must be allocated in the same memory space.

A similar class, DswitchtUG, allows scaling on both signals but restricts the timing of
the switch to a tick boundary.

MEMORY SPACES

DswitchUGab

a output
b inputl and input2

INSTANCE METHODS

setDelaySamples:

- setDelaySamples:(int)count

Immediately switches the DswitchUG to its first input and causes it to switch to its
second input after count samples have been read. If count is less than or equal to zero,
the switch to the second input is performed immediately. If the object is currently
reading from its first input because of a previous invocation of this method, the old
count is superceded by the new one. Returns self.

setlnput1:

- setlnput1:aPatchpoint

Sets the input 1 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

Music Kit Classes: DswitchUG 2-301

setlnput2:

- setlnput2:aPatchpoint

Sets the input 2 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setScalel:

- setScalel:(double)scale

Sets the factor by which the first input signal is scaled. Returns self.

2-302 Chapter 2: Class Specifications

InterpUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

InterpUG provides dynamic linear interpolation between two input signals, where the
interpolation is controlled by a third input signal:

output = inputl + «input2 - inputl) * input3)

When the value of input3 is 0.0, the output of InterpUG is exactly the signal found at
inputl. When input3 is 1.0, the output is exactly input2. An AsympUG is often used
to produce the control signal.

MEMORY SPACES

InterpUGabcd

a output
b inputl
c input2
d input3 (interpolation control)

INSTANCE METHODS

setlnput1:

- setlnput1:aPatchpoint

Sets the input 1 patchpoint to aPatchpoint. Returns nil ifthe argument isn't a
patchpoint; otherwise returns self.

setlnput2:
- setlnput2:aPatchpoint

Sets the input 2 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

Music Kit Classes: InterpUG 2-303

setlnput3:

- setlnput3:aPatchpoint

Sets the input 3 patchpoint to aPatchpoint. The signal from this input controls the
interpolation between the other two input signals. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

2-304 Chapter 2: Class Specifications

Mulladd2UG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

Mulladd2UG adds one signal to the product of two others:

output = input] + (input2 * input3)

MEMORY SPACES

Mulladd2UGabcd

a output
b inputl
c input2
d input3

INSTANCE METHODS

setInput1:
- setlnput1:aPatchpoint

Sets the input 1 patchpoint to aPatchpoint. Returns nil ifthe argument isn't a
patchpoint; otherwise returns self.

setInput2:
- setlnput2:aPatchpoint

Sets the input 2 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setInput3:
- setlnput3:aPatchpoint

Sets the input 3 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

Music Kit Classes: Mulladd2UG 2-305

setOutput:
- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

2-306 Chapter 2: Class Specifications

Mul2UG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

Mu12UG multiplies two signals:

output = input] * input2

MEMORY SPACES

Mul2UGabc

a output
b input 1
c input2

INSTANCE METHODS

setlnput1:

- setInput1:aPatchpoint

Sets the input 1 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setlnput2:

- setInput2:aPatchpoint

Sets the input 2 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setOutput:
- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

Music Kit Classes: Mul2UG 2-307

2-308

OnepoleUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

OnepoleUG is a one-pole filter that's implemented by subtracting the previous output
sample (initialized as 0.0) from the current input sample:

output = (bO * input) - (al * previousOutput)
previousOutput = output

Note that the two samples have their own scalers:

• bO, the filter's gain, scales the input sample. Effective gain values are between 0.0
and 1.0 (a negative gain is the same as its absolute value, but with a 180-degree
phase shift).

• aI, the filter's coefficient, scales the previous output sample. If al is less than 0.0,
the OnepoleUG is a low-pass filter; if it's greater than 0.0, the object is a high-pass
filter. For stability, the value of al should be between -1.0 and 1.0 (nonindusive).

Similar to the OnepoleUG is the OnezeroUG; it, too, is either a low-pass or a high-pass
filter, but the frequency roll-off is gentler than with a OnepoleUG. You should also note
that the high-pass/low-pass determination with regard to the sign of the coefficient is
switched in the OnezeroUG.

MEMORY SPACES

OnepoleUGab

a output
b input

INSTANCE METHODS

clear

- clear

Clears the filter by setting the delayed sample (the previous output sample) to 0.0.
Returns self.

Music Kit Classes: OnepoleUG 2-309

setAl:
- setAl:(double)value

Sets the filter's coefficient. If value is less than 0.0, the OnepoleUG is a low-pass filter;
if it's greater than 0.0, the object is a high-pass filter. For stability, the value should be
between -1.0 and 1.0. Returns self.

setBO:
- setBO:(double)value

Sets the filter's gain. Effective gain values are between 0.0 and 1.0 (a negative gain is
the same as its absolute value, but with a l80-degree phase shift). Returns self.

setBrightness:for Freq:

- setBrightness:(double)brightness forFreq:(double)frequency

This is a convenient method that adjusts the filter's gain and coefficient such that a
constant brightness value produces the same number and relative amplitudes of a tone's
harmonics regardless of the value of frequency. For example, in a musical phrase
during which the brightness of the synthesized notes shouldn't be perceived to change,
you would invoke this method once per note passing a constant brightness value (the
successive frequency values would, of course, be determined by the pitches of the
notes). Returns self.

setlnput:

- setlnput:aPatchpoint

Sets the input patchpoint to aPatchpoint. Returns nil if the argument isn't a patchpoint;
otherwise returns self.

setOutput:
- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

2-310 Chapter 2: Class Specifications

OnezeroUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

OnezeroUG is a one-zero filter that's implemented by adding the previous input sample
(initialized as 0.0) to the current input sample:

output = (bO * input) + (bi * previous!nput)
previousinput = input

Note that the two samples have their own scalers:

bO scales the input sample; this is the gain of the filter. Effective gain values are
between 0.0 and 1.0 (a negative gain is the same as its absolute value, but with a
180-degree phase shift).

• bi scales the previous input sample. This is the filter's coefficient: If bi is less than
0.0, the OnezeroUG is a high-pass filter; if it's greater than 0.0, the object is a
low-pass filter. For stability, the value of bi should be between -1.0 and 1.0
(noninclusive).

Similar to the OnezeroUG is the OnepoleUG; it, too, is either a low-pass or a high-pass
filter, but the frequency roll-off is steeper than with a OnezeroUG. You should also note
that the high-pass/low-pass determination with regard to the sign of the coefficient is
switched in the OnepoleUG.

MEMORY SPACES

OnezeroUGab

a output
b input

INSTANCE METHODS

clear
- clear

Clears the filter by setting the delayed sample (the previous input sample) to 0.0.
Returns self.

Music Kit Classes: OnezeroUG 2-311

setBO:

- setBO:(double)value

Sets the filter's gain. Effective gain values are between 0.0 and 1.0 (a negative gain is
the same as its absolute value, but with a ISO-degree phase shift). Returns self.

setBI:

- setBl:(double)value

Sets the filter's coefficient. If value is less than 0.0, the OnezeroUG is a high-pass filter;
if it's greater than 0.0, the object is a low-pass filter. For stability, the value should be
between -1.0 and 1.0. Returns self.

setInput:

- setInput:aPatchpoint

Sets the input patchpoint to aPatchpoint. Returns nil if the argument isn't a patchpoint;
otherwise returns self.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

2-312 Chapter 2: Class Specifications

OscgafUG,OscgafiUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

OscgafUG and OscgafiUG are oscillators that allow signal control of amplitude and
frequency. OscgafUG and OscgafiUG objects operate much like the simpler OscgUG
oscillator: They produce a signal that's created by looking up values in a wavetable.
You define the wavetable by associating an Oscgaf(i)UG with a WaveTable or, more
directly, with a SynthData object. Alternatively, you can use the DSP's sineROM, a
read-only section of Y memory that holds one period of a sine wave. Note well that
since the sineROM resides in Y memory, you must allocate an Oscgaf(i)UG that reads
Y memory for its wavetable input.

Amplitude control is straightforward: The values that are gotten out of the wavetable
are scaled by the signal that arrives through the amplitude input patchpoint. Typically,
the patchpoint is written to by an Envelope-handler UnitGenerator (the Music Kit
provides the AsympUG class for this task).

Frequency control is a bit more complicated. The signal that arrives at the frequency
input patchpoint is taken as the size of the steps, or "phase increment," with which the
Oscgaf(i)UG walks through its wavetable: The larger the increment, the higher the
frequency. The frequency input patchpoint, like that for amplitude, is often written to
by an AsympUG; it can also be written to by another oscillator to create frequency
modulation (fm). Since you can't set the frequency of an Oscgaf(i)UG directly, a handy
method, incAtFreq:, is provided to return the phase increment value that corresponds
to a given frequency. In addition, you can provide a ratio by which an Oscgaf(i)UG's
phase increment is scaled; this is particularly convenient if you're using, for example,
a single AsympUG to control the frequency of more than one oscillator, but you want
each oscillator to have its own frequency.

OscgafUG doesn't interpolate between the samples in its wavetable, thus the fidelity of
the waveform that it produces is somewhat crude. OscgafiUG provides interpolation,
and so produces a higher-fidelity signal, but it requires more DSP resources than does
an OscgafUG. Other than in the use of interpolation, the two oscillators are identical.

MEMORY SPACES

OscgafU Gabcd, OscgafiU Gabcd

a output
b amplitude input
c phase increment input (phase increment controls frequency)
d wavetable input

Music Kit Classes: OscgafUG, OscgafiUG 2-313

INSTANCE METHODS

incAtFreq:

- (double)incAtFreq: (double)frequency

Returns the increment that corresponds to frequency. The Oscgaf(i)UG's wavetable
must be set before you invoke this method; returns 0.0 if it isn't set. You would use the
value returned by this method to set the amplitude of the signal produced by the
UnitGenerator that writes to the phase increment patchpoint. If you're not interested in
frequency control-if you're using an Oscgaf(i)UG for amplitude control only-then
you would set the phase increment patchpoint to this value directly.

incRatio

- (double)incRatio

Returns the oscillator's phase increment ratio, as set through setIncRatio:. The default
is 1.0.

setAmplnput:

- setAmplnput:(double)aPatchpoint

Sets the amplitude input patchpoint to aPatchpoint. The values that are read from this
patchpoint are used to scale the values that are gotten from the oscillator's wavetable.
Returns nil if the argument isn't a patchpoint; otherwise returns self.

setlncInput:

- setlncInput:(double)aPatchpoint

Sets the phase increment input patchpoint to aPatchpoint. The values that are read from
this patchpoint are taken as the size of the steps with which the oscillator walks through
its wavetable. Returns nil ifthe argument isn't a patchpoint; otherwise returns self.

setlncRatio:

- setlncRatio: (double)factor

Sets the factor by which the Oscgaf(i)UG's phase increment is scaled. The default is
1.0. Returns self.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

2-314 Chapter 2: Class Specifications

setPhase:

- setPhase:(double)phase

Sets the Oscgaf(i)UG's initial phase to phase, specified as degrees. Returns self.

setTable:

- setTable:anObject

Sets the Oscgaf(i)UG's wavetable by invoking setTable:length: with a default value as
the second argument. Currently the default table length is 256 for a Partials object, and
the sample count (length) for a Samples or SynthData object. Returns the value
returned by setTable:length:.

setTable:defauItToSineROM:

- setTable:anObject defauItToSineROM:(BOOL)useSine

This is the same as setTable: but with an extra Boolean argument, useSine, that
indicates whether you want to use the DSP sineROM if the resources to accommodate
anObject aren't available (or if anObject is nil). Keep in mind that the sineROM is only
accessible to oscillators that read Y memory for their wavetable input. Returns self if
a wavetable is acquired (whether it's the sineROM or anObject); otherwise returns nil.

See also: - setTable:, - setTableToSineROM

setTable:length:

- setTable:anObject length:(int)sampleCount

Sets the Oscgaf(i)UG's wavetable to anObject-possibly allocating DSP memory to
accommodate the table, as described below-and sets the (maximum) length of the
wavetable to sampleCount, which must be a power of two. Returns nil if anObject is
nil, if sufficient DSP memory isn't available to allocate storage for the requested
wavetable, or if sampleCount isn't a power of two; otherwise returns self.

The anObject argument can either be a SynthData or a WaveTable object. If you use a
Wave Table, DSP memory is allocated for you and made available to all other oscillators
through Orchestra's shared object table. Thus, if you send setTable:length: to two
different oscillators specifying the same Wave Table and length in the two messages, the
first message will cause memory to be allocated while the second message will share
this memory. Sharing WaveTables between oscillators helps conserve DSP resources,
but you should be aware that the sharing mechanism makes it difficult to change the
data in a WaveTable and have it affect the oscillator(s) with which it's associated. The
most reliable way to change an oscillator's WaveTable is to create a new WaveTable
object and set it through this method.

In addition, if you set the wavetable as a WaveTable object, the length that you request
as sampleCount may not be the length of the wavetable memory that's actually

Music Kit Classes: OscgafUG,OscgafiUG 2-315

allocated. If sufficient resources aren't available, the requested length is repeatedly
halved until it fits, with a minimum table length of 64 samples. (Note that the
64-sample limit is an imposition only on this halving mechanism-you can pass as
sampleCount a value that's less than 64 without falling ill of the law.)

See also: - setTable:, - setTable:length:defauItToSineROM:, - tableLength

setTable:length:defaultToSineROM:

- setTable:anObject
length: (int)sampleCount
defaultToSineROM:(BOOL)useSine

This is the same as setTable:length: but with an extra Boolean argument, useSine, that
indicates whether you want to use the DSP sineROM if the resources to accommodate
anObject aren't available (or if anObject is nil). Keep in mind that the sineROM is only
accessible to oscillators that read Y memory for their wavetable input. Returns self if
a wavetable is acquired (whether it's the sineROM or anObject); otherwise returns nil.

See also: - setTable:length:, - setTableToSineROM

setTableToSineROM
- setTableToSineROM

Sets the Oscgaf(i)UG's wavetable to the DSP sineROM. Keep in mind that the
sineROM is only accessible to oscillators that read Y memory for their wavetable input.
Returns nil if the Oscgaf(i)UG doesn't fulfill this requirement; otherwise returns self.

tableLength
- (unsigned int)tableLength

Returns the length ofthe Oscgaf(i)UG's wavetable, in samples. The value returned by
this method may differ from the length that you requested in a previous invocation of
setTable:length:, as explained in that method's description.

See also: - setTable:length:

2-316 Chapter 2: Class Specifications

OscgUG

INHERITS FROM U nitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

OscgUG is a simple oscillator. It operates by producing, at its output, the samples that
it reads from a wavetable. You can define the wavetable by associating an OscgUG
with a WaveTable or, more directly, with a SynthData object. Alternatively, you can
use the DSP's sineROM, a read-only section of Y memory that holds one period of a
sine wave. Note well that since the sineROM resides in Y memory, you must allocate
an OscgUG that reads Y memory for its wavetable input.

The frequency, amplitude, and phase of the signal that an OscgUG produces are set
directly and can't be controlled by an Envelope. For Envelope control of frequency or
amplitude, you must use an OscgafUG or OscgafiUG object (the Music Kit doesn't
provide an oscillator with Envelope-controlled phase).

OscgUG doesn't interpolate between the samples in its wavetable, thus the fidelity of
the waveform that it produces is somewhat crude. Because of this, you rarely use
OscgUG objects as the primary oscillators in a patch; for example, you wouldn't use
such an object as a carrier in frequency modulation. However, an OscgUG can be used
to good effect as a controlling oscillator, such as a modulator. Interpolation is provided
by the OscgafiUG class of oscillators.

MEMORY SPACES

OscgUGab

a output
b wavetable input

INSTANCE METHODS

setAmp:

- setAmp:(double)amplitude

Sets the OscgUG's amplitude to amplitude and returns self. Amplitude values should
be between 0.0 and 1.0.

Music Kit Classes: OscgUG 2-317

setFreq:

- setFreq: (double)frequency

Sets the OscgUG's frequency to frequency and returns self. Frequency values are,
ostensibly, in the range 0.0 to half the sampling rate; to avoid foldover, however, you
shouldn't request a frequency that would cause the highest partial that's represented in
the wavetable to exceed half the sampling rate.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil ifthe argument isn't a
patchpoint; otherwise returns self.

setPhase:

- setPhase:(double)phase

Sets the OscgUG's phase to phase, specified as degrees. Returns self.

setTable:

- setTable:anObject

Sets the OscgUG's wavetable by invoking setTable:length: with a default value as the
second argument. Currently the default table length is 256 for a Partials object, and the
sample count (length) for a Samples or SynthData object. Returns the value returned
by setTable:length:.

setTable: defaultToSineR 0 M:

- setTable:anObject defaultToSineROM:(BOOL)useSine

This is the same as setTable: but with an extra Boolean argument, useSine, that
indicates whether you want to use the DSP sineROM if the resources to accommodate
anObject aren't available (or if anObject is nil). Keep in mind that the sineROM is only
accessible to oscillators that read Y memory for their wavetable input. Returns self if
a wavetable is acquired (whether it's the sineROM or anObject); otherwise returns nil.

See also: - setTable:, - setTableToSineROM

2-318 Chapter 2: Class Specifications

setTable:length:
- setTable:anObject length:(int)sampleCount

Sets the OscgUG's wavetable to anObject-possibly allocating DSP memory to
accommodate the table, as described below-and sets the (maximum) length of the
wavetable to sampleCount, which must be a power of two. Returns nil if anObject is
nil, if sufficient DSP memory isn't available to allocate storage for the requested
wavetable, or if sampleCount isn't a power of two; otherwise returns self.

The anObject argument can either be a SynthData or a WaveTable object. If you use a
WaveTable, DSP memory is allocated for you and made available to all other oscillators
through Orchestra's shared object table. Thus, if you send setTable:length: to two
different oscillators specifying the same WaveTable and length in the two messages, the
first message will cause memory to be allocated while the second message will share
this memory. Sharing WaveTables between oscillators helps conserve DSP resources,
but you should be aware that the sharing mechanism makes it difficult to change the
data in a WaveTable and have it affect the oscillator(s) with which it's associated. The
most reliable way to change an oscillator's WaveTable is to create a new WaveTable
object and set it through this method.

In addition, if you set the wavetable as a WaveTable object, the length that you request
as sampleCount may not be the length of the wavetable memory that's actually
allocated. If sufficient resources aren't available, the requested length is repeatedly
halved until it fits, with a minimum table length of 64 samples. (Note that the
64-sample limit is an imposition only on this halving mechanism-you can pass as
sampleCount a value that's less than 64 without falling ill of the law.)

See also: - setTable:, - setTable:length:defauItToSineROM:, - tableLength

setTable:length:defauItToSineROM:

- setTable:anObject
length: (int)sampleCount
defauItToSineROM:(BOOL)useSine

This is the same as setTable:length: but with an extra Boolean argument, useSine, that
indicates whether you want to use the DSP sineROM if the resources to accommodate
anObject aren't available (or if anObject is nil). Keep in mind that the sineROM is only
accessible to oscillators that read Y memory for their wavetable input. Returns self if
a wavetable is acquired (whether it's the sineROM or anObject); otherwise returns nil.

See also: - setTable:length:, - setTableToSineROM

Music Kit Classes: OscgUG 2-319

setTableToSineROM

- setTableToSineROM

Sets the OscgUG's wavetable to the DSP sineROM. Keep in mind that the sineROM
is only accessible to oscillators that read Y memory for their wavetable input. Returns
nil if the OscgUG doesn't fulfill this requirement; otherwise returns self.

tableLength

- (unsigned int)tableLength

Returns the length ofthe OscgUG's wavetable, in samples. The value retumed by this
method may differ from the length that you requested in a previous invocation of
setTable:length:, as explained in that method's description.

See also: - setTable:length:

2-320 Chapter 2: Class Specifications

OutlaUG, OutlbUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

OutlaUG and OutlbUG provide single-channel access to the DSP's stereo output
stream; the former writes its input signal to the left channel, and the latter writes to the
right. To write a stereo signal, you should use a single Out2sumUG object rather than
one of each of these.

Where the samples that are written to the DSP output stream are ultimately sent
whether to sound-out or to a soundfile-depends on the state of the Orchestra from
which the OutlaUG or Outl bUG object was allocated. By default, the Orchestra sends
the samples to sound-out.

If you're building a SynthPatch subclass, you should note that every SynthPatch object
should have its own signal-output UnitGenerator; in other words, you don't allocate
just one such object and then share it amongst the various SynthPatches. The output
signals produced by all the running OutlaUG's, OutlbUG's, and Out2sumUG's are
mixed (added) together into the DSP's output stream.

MEMORY SPACES

OutlaUGa
OutlbUGa
a input

INSTANCE METHODS

setlnput:

- setlnput:aPatchpoint

Sets the input patchpoint to aPatchpoint. Returns nil if the argument isn't a patchpoint;
otherwise returns self.

Music Kit Classes: Out1 aUG, Out1 bUG 2-321

setScale:

- setScale:(double)value

Sets the factor by which the input signal is scaled. By default, the scaler is set to a value
that's just a wee bit less than 1.0. Effective values are between 0.0 and 1.0 (negative
values are the same as their absolute values, but with a 180-degree phase shift). Returns
self.

2-322 Chapter 2: Class Specifications

Out2sumUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

Out2sumUG adds its input signal to the DSP's stereo output stream. The signal is
placed (or "imaged") between the two channels according to the value set through the
setBearing: or setBearing:scale: method. Alternatively, you can set the gain of either
channel independently, through the setRightScale: and setLeftScale: methods.

To write to just the left or to just the right channel of the stereo ouput stream, you should
use an OutlaUG or OutlbUG object. Where the samples that are written to the DSP
output stream are ultimately sent-whether to sound-out or to a soundfile-depends on
the state of the Orchestra from which the OutlaUG or OutlbUG object was allocated.
By default, the Orchestra sends the samples to sound-out.

If you're building SynthPatch subclasses, you should note that every SynthPatch object
should have its own signal-output UnitGenerator; in other words, you don't allocate
just one such object and then share it amongst the various SynthPatches. The output
signals produced by all the running OutlaUG's, OutlbUG's, and Out2sumUG's are
mixed (added) together into the DSP's output stream.

MEMORY SPACES

Out2sumUGa

a input

INSTANCE METHODS

setBearing:

- setBearing:(double)degrees

Distributes the input signal between the two output channels according to the value of
degrees: 0.0 degrees is center, -45.0 is hard left, 45.0 is hard right. Bearing is
"reflected" as degrees exceeds the boundaries; thus, for example, 50.0 degrees is the
same as 40.0, 60.0 is 30.0, 90.0 is 0.0, and so on. Returns self.

Music Kit Classes: Out2sumUG 2-323

setBearing:scale:
- setBearing:(double)degrees scale:(double)value

This is the same as setBearing:, but the input signal is scaled by value before being
distributed between the two output channels. The argument should be between 0.0 and
1.0. Returns self.

setlnput:
- setlnput:aPatchpoint

Sets the input patchpoint to aPatchpoint. Returns nil if the argument isn't a patchpoint;
otherwise returns self.

setLeftScale:
- setLeftScale:(double)value

Sets the factor by which the signal that's written to the left output channel is scaled. By
default, the scaler is set to a value that's just a tad less than 1.0. Effective values are
between 0.0 and 1.0 (a negative value is the same as its absolute value, but with a
l80-degree phase shift). Returns self.

setRightScale:
- setRightScale:(double)value

Sets the factor by which the signal that's written to the right output channel is scaled.
By default, the scaler is set to a value that lacks 1.0 by a speck. Effective values are
between 0.0 and 1.0 (a negative value is the same as its absolute value, but with a
l80-degree phase shift). Returns self.

2-324 Chapter 2: Class Specifications

ScaleUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

ScaieUG multiplies its input by a constant scaler:

output = input] * scaler

MEMORY SPACES

ScaleUGab

a output
b input

INSTANCE METHODS

setlnput:

- setInput:aPatchpoint

Sets the input patchpoint to aPatchpoint. Returns nil if the argument isn't a patchpoint;
otherwise returns self.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setScale:

- setScale:(double)value

Sets the constant scaler. Effective values are between 0.0 and 1.0 (a negative scaler is
the same as its absolute value, but with a I80-degree phase shift). Returns self.

Music Kit Classes: ScaieUG 2-325

2-326

Sclladd2UG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

Sell add2UG adds two input signals, the first of which is scaled:

output = (input] * scaler) + input2

MEMORY SPACES

Sclladd2U Gabc

a output
b input I (scaled input)
c input 2 (unsealed input)

INSTANCE METHODS

setlnput1:

- setInput1:aPatchpoint

Sets the input I patehpoint to aPatchpoint. Returns nil if the argument isn't a
patehpoint; otherwise returns self.

setlnput2:

- setInput2:aPatchpoint

Sets the input 2 patehpoint to aPatchpoint. Returns nil if the argument isn't a
patehpoint; otherwise returns self.

setOutput:

- setOutput:aPatchpoint

Sets the output patehpoint to aPatchpoint. Returns nil if the argument isn't a
patehpoint; otherwise returns self.

Music Kit Classes: Sclladd2UG 2-327

setScale:

- setScale:(double)value

Sets the constant scaler. Effective values are between 0.0 and 1.0 (a negative scaler is
the same as its absolute value, but with a I80-degree phase shift). Returns self.

2-328 Chapter 2: Class Specifications

Scl2add2UG

INHERITS FROM U nitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

Scl2add2UG adds two input signals, both of which are scaled:

output = (input] * scalerl) + (input2 * scaler2)

MEMORY SPACES

Sd2add2UGabc

a output
b input I
c input 2

INSTANCE METHODS

setlnput1:

- setInput1:aPatchpoint

Sets the input 1 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setlnput2:

- setInput2:aPatchpoint

Sets the input 2 patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

Music Kit Classes: Scl2add2UG 2-329

setScalel:
- setScalel:(double)value

Sets the scaler on the first input. Effective values are between 0.0 and 1.0 (a negative
scaler is the same as its absolute value, but with a 180-degree phase shift). Returns self.

setScale2:

- setScale2:(double)value

Sets the scaler on the second input. Effective values are between 0.0 and 1.0 (a negative
scaler is the same as its absolute value, but with a l80-degree phase shift). Returns self.

2-330 Chapter 2: Class Specifications

SnoiseUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

SnoiseUG produces a series of random values within the range

0.0 <=/< 1.0

A new random value is generated once per tick. A similar class, UnoiseUG, produces
a new random value every sample.

MEMORY SPACES

SnoiseUGa

a output

INSTANCE METHODS

anySeed

-anySeed

Sets the random number seed to a value that's guaranteed never to have been used in
previous invocations of this method. This is particularly useful if you're using more
than one SnoiseUG and you want to ensure that they all produce different signals.

setOutput:
- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setSeed:
- setSeed:(DSPDatum)seed

Sets the seed that's used to prime the random number generator. If you want to create
a unique series of random numbers, you should invoke the anySeed method instead of
this one. Returns self.

Music Kit Classes: SnoiseUG 2-331

2-332

UnoiseUG

INHERITS FROM UnitGenerator

DECLARED IN musickit/unitgenerators.h

CLASS DESCRIPTION

UnoiseUG produces a series of random values within the range

0.0 <=/< 1.0

A new random value is generated every sample. A similar class, SnoiseUG, produces
a new random value every tick.

MEMORY SPACES

UnoiseUGa

a output

INSTANCE METHODS

setOutput:

- setOutput:aPatchpoint

Sets the output patchpoint to aPatchpoint. Returns nil if the argument isn't a
patchpoint; otherwise returns self.

setSeed:

- setSeed:(DSPDatum)seed

Sets the seed that's used to prime the random number generator. To create a unique
series of random numbers, you should set the seed itself to a randomly generated
number. Returns self.

Music Kit Classes: UnoiseUG 2-333

2-334

Chapter 3
C Functions

3-4 Music Kit Functions

3-28 Sound Functions

3-47 Sound/DSP Driver Functions

3-77 Array Processing Functions
3-77 Function Protocol
3-79 Data Format and Range
3-79 Complex Vector Functions
3-79 Return Values

3-1

3-2

Chapter 3
C Functions

This chapter gives detailed descriptions of the C functions defined by the Music Kit, the
sound library, the sound/DSP driver, and the array processing library. Functions are listed
alphabetically within these topical categories.

For quick reference, the function protocols are given in NeXT Technical Summaries.

C Functions 3-3

Music Kit Functions

MKAdjustFreqWithPitchBendO ~ See MKKeyNumToFreqO

MKAmpToMidiO, MKAmpAttenuationToMidiO, MKMidiToAmpO,
MKMidiToAmpAttenuationO, MKMidiToAmp WithSensitivityO,
MKMidiToAmpAttenuation WithSensitivityO

SUMMARY Translate loudness from the Music Kit to MIDI

LIBRARY libmusickit

SYNOPSIS

#import <musickit/Note.h>

int MKAmpToMidi(double amp)
int MKAmpAttenuationToMidi(double amp)
double MKMidiToAmp(int midiValue)
double MKMidiToAmpAttenuation(int midiValue)
double MKMidiToAmpWithSensitivity(int midiValue, double sensitivity)
double MKMidiToAmpAttenuation WithSensitivity(int midiValue,

double sensitivity)

DESCRIPTION

These functions help you convert Music Kit amplitude values to MIDI values and vice
versa.

MKAmpToMidiO and MKMidiToAmpO are complementary functions that provide
a non-linear mapping of amplitude to MIDI values, as described below:

MKAmpToMidi(double amp) returns 64 + (64 * 10glO amp)

MKMidiToAmp(int midiValue) returns 1O.0(midiVa[ue-64)/64

This provides a scale in which an amp of 0.0 yields a MIDI value of 0, 1.0 produces 64,
and lO.O gives 127.

MKAmpAttenuationToMidiO and MKMidiToAmpAttenuationO are similarly
complementary, and the curve of the mapping is the same as in the foregoing, but the
scale is attenuated by a factor often: 0.0 maps to 0, 0.1 to 64, and 1.0 to 127.

3-4 Chapter 3: C Functions

MKMidiToAmp WithSensitivityO and
MKMidiToAmpAttenuation WithSensitivityO are modifications of the similarly
named MIDI-to-amp and MIDI-to-ampAttenuation functions in which an additional
sensitivity value, nominally in the range 0.0 to 1.0, is used to scale the product of the
conversion.

The multiplicity of conversion functions is provided in deference to the nature of MIDI
volume computation: Unlike DSP-bound amplitude values (specifically, the value of
the MK_amp parameter), effective MIDI volume is a combination of a number of
parameters, the primary ones being velocity, main volume control, and foot pedal
control. While the velocity value generated by a MIDI instrument is almost never at
the maximum, the other values often are. In general, you use MKAmpToMidiO and
MKMidiToAmpO (or MKMidiToAmpWithSensitivyO) to convert between
amplitude and velocity. The amp attenuation functions are used to generate a value
from, or apply a value to, one of the MIDI controller parameters.

MKAmpAttenuationToMidiO ~ See MKAmpToMidiO

MKCancelMsgRequestO ~ See MKNewMsgRequestO

MKClearTraceO ~ See MKSetTraceO

MKdBO

SUMMARY Convert decibels to amplitude

LIBRARY libmusickit

SYNOPSIS

#import <musickit/musickit.h>

double MKdB(double dB)

DESCRIPTION

MKdBO returns an amplitude value (within the range [0.0, 1.0]) converted from its
argument specified as decibels. The returned value can be used to set a UnitGenerator's
amplitude, for example. The value is converted using the following formula:

amplitude = 10.0 dB/20.0

MKdB() 3-5

MKErrorO, MKSetErrorProcO, MKSetErrorStreamO, MKErrorStreamO

SUMMARY Handle Music Kit errors

LIBRARY libmusickit

SYNOPSIS

#import <musickit/errors.h>

id MKError(char *msg)
void MKSetErrorProc(void (*errProc)(char *msg))
void MKSetErrorStream(NXStream *aStream)
NXStream *MKErrorStreamO

DESCRIPTION

These functions define the Music Kit's error handling mechanism. MKErrorO is used
to signal an error. It calls the current Music Kit error function, set through
MKSetErrorProcO, to which it passes the single argument msg. If the user hasn't
declared an error function, then msg is written to the Music Kit error stream, as set
through MKSetErrorStreamO. The default error stream is open to stderr.
MKErrorStreamO returns a pointer to the current Music Kit error stream. Note that
you shouldn't use stderr as the error stream if you're running a separate-threaded
performance.

A number of error codes represented by integer constants are provided by the Music
Kit and listed in lusr/include/musickit/errors.h. If the Music Kit itself generates an
error, the global system variable errno is set to one of these error codes. If you call
MKErrorO from your application, errno isn't set.

MKErrorStreamO ~ See MKErrorO

MKFinishPerformanceO ~ See MKGetTimeO

MKFreqToKeyNumO ~ See MKKeyNumToFreqO

MKGetDeltaTO ~ See MKGetTimeO

MKGetDeltaTTimeO ~ See MKGetTimeO

MKGetEnvelopeClassO ~ See MKSetNoteClassO

MKGetNamedObjectO ~ See MKNameObjectO

MKGetNoDValO ~ See MKIsNoDValO

3-6 Chapter 3: C Functions

MKGetNoteParAsDoubleO ---7 See MKSetNoteParToDoubleO

MKGetNotePar AslntO ---7 See MKSetNoteParToDoubleO

MKGetNoteParAsObjectO ---7 See MKSetNoteParToDoubleO

MKGetNoteParAsStringO ---7 See MKSetNoteParToDoubleO

MKGetNoteParAsStringNoCopyO ---7 See MKSetNoteParToDoubleO

MKGetNoteParAsWaveTableO ---7 See MKSetNoteParToDoubleO

MKGetObjectNameO ---7 See MKNameObjectO

MKGetPartClassO ---7 See MKSetNoteClassO

MKGetPartialsClassO ---7 See MKSetNoteClassO

MKGetPreemptDurationO ---7 See MKSetPreemptDurationO

MKGetSamplesClassO ---7 See MKSetNoteClassO

MKGetTimeO, MKGetDeltaTO, MKSetDeltaTO, MKGetDeltaTTimeO,
MKFinishPerformanceO, MKSetTimeO

SUMMARY Set and get Music Kit time values

LIBRARY libmusickit

SYNOPSIS

#import <musickit/musickit.h>

double MKGetTimeO
double MKGetDeltaTO
void MKSetDeltaT(double val)
double MKGetDeltaTTimeO
double MKSetTime(double newTime)
void MKFinishPerformanceO

DESCRIPTION

MKGetTimeO returns the current time, in seconds, during a Music Kit performance.

MKSetDeltaTO sets a performance's delta time in seconds. The delta time value is
added into the timestamps of DSP and MIDI messages, thus imposing a time lag
between the Music Kit and these devices. This lag is sometimes necessary to allow the

MKGetTime() 3-7

Music Kit sufficient compute time while maintaining rhythmic integrity. For an
application that requires real-time response, a delta time of as much as 10 milliseconds
(0.01 seconds) is tolerable. Delta time only affects devices that are timed. In addition,
in order for the delta time value to be valid, the performance and the devices must be
started at (virtually) the same time.

MKGetDeltaTO returns the delta time value.

MKGetDeltaTTimeO returns the sum of the values returned by MKGetTimeO and
MKGetDeltaTO.

MKSetTimeO and MKFinishPerformanceO are provided to set the performance time
and to end a performance, respectively. You only call these functions if you're running
a performance without the Conductor class. During a conducted performance,
MKSetTimeO has no effect and MKFinishPerformanceO is the same as sending
finishPerformance to the Conductor class.

MKlnitParameterlterationO ~ See MKIsNoteParPresentO

MKIsNoDValO, MKGetNoDValO

SUMMARY Test for no double value

LIBRARY libmusickit

SYNOPSIS

#import <musickit/noDVal.h>

int MKIsNoDVal(double value)
double MKGetNoDValO

DESCRIPTION

A number of Music Kit functions and methods query for and return double-valued
quantities, such as the values of parameters and time tags. By convention, the value
MK_NODVAL is returned ifthe queried-for value hasn't been set; however, you can't
test for this value directly. You must use the function MKIsNoDValO instead, passing
as the argument the value that you wish to test. The function returns nonzero if value
is equal to MK_NODVAL and 0 if it isn't.

MKGetNoDValO returns the no-double-value indicator. You use this function as the
return value for functions and methods of your own design in which you wish to
indicate that a double-valued quantity hasn't been set. For convenience,
MK_NODVAL is defined as this function.

3-8 Chapter 3: C Functions

MKIsN oteParPresentO, MKlnitParameterlterationO, MKNextParameterO

SUMMARY Query for a Note's parameters

LIBRARY libmusickit

SYNOPSIS

#import <musickit/Note.h>

BaaL MKIsNoteParPresent(Note *aNote, int par)
void *MKlnitParameterlteration(Note *aNote)
int MKNextParameter(Note *aNote, void *iterationState)

DESCRIPTION

MKIsNoteParPresentO returns YES or NO as the parameter par within the Note
aNote is or isn't present; a parameter is considered present only if it's been given a
value. The function is equivalent to Note's isParPresent: method. Unless the mere
existence of the parameter is significant, you would follow a call to
MKIsNoteParPresentO with a parameter value retrieval function, such as
MKGetNotePar AsDoubleO:

double freq;

1* Get the value of MK_freq only if the parameter has been set. *1
if (MKIsNoteParPresent(aNote, MK_freq))

freq = MKGetParAsDouble(aNote, MK_freq);

... 1* do something with freq *1

MKlnitParameterlterationO and MKNextParameterO work together to return, one
by one, the full complement of a Note's parameter identifiers.
MKlnitParameterlterationO primes its Note argument for successive calls to
MKNextParameterO, each of which retrieves the next parameter in the Note. When
all the parameters have been visited, MKNextParameterO returns the value
MK_noPar. The pointer returned by MKlnitParameterlterationO must be passed as
the iterationState argument to MKNextParameterO. Keep in mind that
MKNextParameterO returns parameter identifiers; you still must retrieve the value of
the parameter. An example for your delight:

MKIsNoteParPresent() 3-9

1* Initialize the iteration state for the desired Note. */
void *aState = MKInitParameterIteration(aNote);

int par;

1* Get the parameters until the Note is exhausted. */

while ((par = MKNextParameter(aNote, aState)) != MK_noPar)

/* Operate on the parameters of interest. *1
switch (par)
{

case MK_freq:

1* Get the value of MK_freq and apply it. */

break;

case MK_amp:

1* Get the value of MK_amp and apply it. *1

break;

default:

1* Ignore all other parameters. */
break;

In essence, the two examples do the same thing: They find and operate on parameters
of interest. Which methodology to adopt-whether to test for the existence of
particular parameters as in the first example, or to retrieve the identifiers of all present
parameters as in the second--depends on how "saturated" the Note is with interesting
parameters. If you only want a couple of parameters then it's generally more efficient
to call MKIsNoteParPresentO for each of them. However, if you're interested in
most---or what you assume to be most-of a Note's parameters (as is usually the case
for a reasonably sophisticated SynthPatch, for example), then it's probably faster to
iterate over all the parameters through MKNextParameterO.

SEE ALSO

MKGetNoteParAsDoubleO, MKGetNoteParAslntO, etc., MKIsNoDValO

MKIsTracedO ~ See MKSetTraceO

3-10 Chapter 3: C Functions

MKKeyNumToFreqO, MKFreqToKeyNumO, MKTransposeO,
MKAdjustFreq WithPitchBendO

SUMMARY Convert and adjust frequencies

LIBRARY libmusickit

SYNOPSIS

#import <musickit/ThningSystem.h>

double MKKeyNumToFreq(MKKeyNum keyNum)
double MKTranspose(double freq, double semitones)
MKKeyNum MKFreqToKeyNum(doublefreq, int *bendPtr, double sensitivity)
double MKAdjustFreq WithPitchBend(double freq, int pitchBend,

double sensitivity)

DESCRIPTION

MKKeyNumToFreqO returns the frequency that corresponds to the given key number,
based upon the mapping of key numbers to frequencies in the installed tuning system
(see the TuningSystem class description in Chapter 2 for more information on the
installed tuning system).

MKTransposeO returns the frequency that results from transposing freq by the
specified number of semitones. A negative semitones value transposes down; a
fractional value can be used to transpose by less than a semitone. The transposition
afforded by this function is always in twelve-tone equal-temperament, regardless of the
installed tuning system, as computed by the formula

result = freq * 2 semitones/12.0

MKFreqToKeyNumO returns the key number that most closely corresponds to the
given frequency. The amount of pitch bend needed to temper the pitch of the key
number in order to match the actual frequency is returned by reference in
bendPtr. This value is computed using the sensitivity argument as the number of
semitones by which the key number is tempered given a maximum pitch bend; in other
words, you supply the maximum pitch bend by passing in a sensitivity value, and the
function returns, in bendPtr, the amount of the bend that's needed. The value of
bendPtr is a 14-bit MIDI pitch bend number; you would use it to set the value of a
Note's MK_pitchBend parameter (assuming that you use sensitivity as value of the
Note's MK_pitchBendSensitivity parameter).

MKAdjustFreqWithPitchBendO returns the frequency that results whenfreq is
tempered by pitchBend worth of sensitivity semitones, where pitchBend is, again, a
14-bit MIDI pitch bend number.

RETURN

MKKeyNumToFreqO returns MK_NODVAL if keyNum is out of bounds (less than 0
or greater than 127). Use MKIsNoDValO to check for MK_NODVAL.

MKKeyNumToFreq() 3-11

MKMidiToAmpO --7 See MKAmpToMidiO

MKMidiToAmpAttenuationO --7 See MKAmpToMidiO

MKMidiToAmp WithSensitivityO --7 See MKAmpToMidiO

MKMidiToAmpAttenuation WithSensitivityO --7 See MKAmpToMidiO

MKNameObjectO,MKGetObjectNameO, MKRemoveObjectNameO,
MKGetNamedObjectO

SUMMARY Identify and return objects by name

LIBRARY libmusickit

SYNOPSIS

#import <musickit/musickit.h>

BaaL MKNameObject(char *name, id object)
const char *MKGetObjectName(id object)
id MKRemoveObjectName(id object)
id MKGetNamedObject(char *name)

DESCRIPTION

The Music Kit provides a global naming mechanism that lets you identify and locate
objects by name. While names are primarily used in reading and writing scorefiles, any
object-even a non-Music Kit object--can be named. Names needn't be unique; more
than one object can be given the same name. However, a single object can have but one
name at a time.

MKNameObjectO sets object's name to a copy of name and returns YES. If the object
already has a name, then this function does nothing and returns NO.

MKGetObjectNameO returns its argument's name, or NULL if it isn't named. The
returned value is read-only and shouldn't be freed by the caller.

MKRemoveObjectNameO removes its argument's name (if any) and returns nil.

MKGetNamedObjectO returns the first object in the name table that has the name
name.

3-12 Chapter 3: C Functions

MKNewMsgRequestO, MKScheduleMsgRequestO,
MKRepositionMsgRequestO, MKCancelMsgRequestO,
MKRescheduleMsgRequestO

SUMMARY Create and manipulate Conductor message requests

LIBRARY libmusickit

SYNOPSIS

#import <musickit/Conductor.h>

MKMsgStruct *MKNewMsgRequest(double timeOfMsg, SEL whichSelector,
id destinationObject, int argCount, ...)

void MKScheduleMsgRequest(MKMsgStruct *aMsgStructPtr, id conductor)
MKMsgStruct *MKRepositionMsgRequest(MKMsgStruct *aMsgStructPtr,

double newTimeOfMsg)
MKMsgStruct *MKCanceIMsgRequest(MKMsgStruct *aMsgStructPtr)
MKMsgStruct *MKRescheduleMsgRequest(MKMsgStruct *aMsgStructPtr,

id conductor, double newTimeOfMsg, SEL whichSelector, id destinationObject,
int argCount, ...)

DESCRIPTION

These functions let you enqueue message requests with a Conductor object. The
MKMsgStruct structure encapsulates a message request; it consists of a method
selector and its arguments, the recipient of the message, and the time that the message
should be sent. A selector can take a maximum of two 4-byte arguments. You should
never modify the fields of a MKMsgStruct structure directly.

MKNewMsgRequestO creates and returns a new MKMsgStruct. timeOfMsg is the
time in beats from the beginning of the performance that the message will be sent,
whichSelector is the selector, destinationObject is the recipient of the message, and
argCount is the number of arguments to the selector followed by the arguments
themselves separated by commas.

After you've created a message request structure, you schedule it with a Conductor by
calling MKScheduleMsgRequestO. The message is enqueued to be sent at the time
specified in the call to MKNewMsgRequestO, interpreted as beats in the Conductor's
tempo.

If you want to move a message request within a Conductor's queue you call the
MKRepositionMsgRequestO function. The specified MKMsgStruct is moved to the
time given by newTimeOfMsg. You should note well that the MKMsgStruct you pass
as the aMsgStructPtr argument is replaced with a new structure that's returned by the

MKNewMsgRequest() 3-13

function. So if you're in the mood to repeatedly reposition a MKMsgStruct-or if
you're planning on referencing the structure for any other reason-you should reset the
structure to the function's return value; for example:

1* Reposition and prime aMsgReq for additional functions calls. *1
aMsgReq = MKRepositionMsgRequest(aMsgReq, 3.0);

MKCancelMsgRequestO cancels the given message request and frees the structure
pointed to by aMsgStructPtr.

MKRescheduleMsgRequestO is a convenience function that cancels the structure
pointed to by aMsgStructPtr, and then creates and schedules a new request according
to the arguments. The new MKMsgStruct is returned.

RETURN

MKNewMsgRequestO and MKRescheduleMsgRequestO return NULL if argCount
is greater than 2. MKCancelMsgRequestO always returns NULL.

MKNextParameterO -t See MKIsNoteParPresentO

MKNoteTagO, MKNoteTagsO

SUMMARY Create note tags

LIBRARY libmusickit

SYNOPSIS

#import <musickit/Note.h>

unsigned int MKNoteTagO
unsigned int MKNoteTags(unsigned int n)

DESCRIPTION

Note tags are positive integers used to identify a series of Note objects as part of the
same musical event, gesture, or phrase. A common use of note tags is to create a
noteOn/noteOff pair by giving the two Notes the same note tag value.

MKN oteTagO returns a note tag value that's guaranteed to be unique across your entire
application. MKNoteTagsO returns the first of a block of n unique, contiguous note
tags.

You should never create note tag values except through these functions.

3-14 Chapter 3: C Functions

RETURN

Returns MAXINT (the maximum note tag value) if a sufficient number of note tags
aren't available, an unlikely occurrence.

MKNoteTagsO ~ See MKNoteTagO

MKRemoveObjectNameO ~ See MKNameObjectO

MKRepositionMsgRequestO ~ See MKNewMsgRequestO

MKRescbeduleMsgRequestO ~ See MKNewMsgRequestO

MKScbeduleMsgRequestO ~ See MKNewMsgRequestO

MKSetDeltaTO ~ See MKGetTimeO

MKSetEnvelopeClassO ~ See MKSetNoteClassO

MKSetErrorStreamO ~ See MKErrorO

MKSetNoteParToEnvelopeO ~ See MKSetNoteParToDoubleO

MKSetNoteParTolntO ~ See MKSetNoteParToDoubleO

MKSetNoteParToObjectO ~ See MKSetNoteParToDoubleO

MKSetNoteParToStringO ~ See MKSetNoteParToDoubleO

MKSetNoteParToWaveTableO ~ See MKSetNoteParToDoubleO

MKNoteTag() 3-15

MKSetNoteParToDoubleO, MKSetNoteParTolntO, MKSetN oteParToStringO,
MKSetNoteParToEnvelopeO, MKSetNoteParTo WaveTableO,
MKSetNoteParToObjectO, MKGetNotePar AsDoubleO,
MKGetNotePar AslntO, MKGetNotePar AsStringO,
MKGetNotePar AsStringNoCopyO, MKGetNotePar AsEnvelopeO,
MKGetNotePar AsWaveTableO, MKGetNotePar AsObjectO

SUMMARY Set and retrieve a Note's parameters

LIBRARY libmusickit

SYNOPSIS

#import <musickit/Note.h>

Note *MKSetNoteParToDouble(Note *aNote, int par, double value)
Note *MKSetNoteParToInt(Note *aNote, intpar, int value)
Note *MKSetNoteParToString(Note *aNote, int par, char *value)
Note *MKSetNoteParToEnvelope(Note *aNote, int par, Envelope *value)
Note *MKSetNoteParToWaveTable(Note *aNote, int par,WaveTable *value)
Note *MKSetNoteParToObject(Note *aNote, int par, Object *value)

double MKGetNotePar AsDouble(Note *aNote, int par)
int MKGetNoteParAsInt(Note *aNote, intpar)
char *MKGetNotePar AsString(Note *aNote, int par)
char *MKGetNoteParAsStringNoCopy(Note *aNote, int par)
Envelope *MKGetNoteParAsEnvelope(Note *aNote, int par)
WaveTable *MKGetNoteParAsWaveTable(Note *aNote, int par)
Object *MKGetNotePar AsObject(Note *aNote, int par)

DESCRIPTION

These functions set and retrieve the values of a Note's parameters, one parameter at a
time. They're equivalent to the similarly named Note methods; for example, the
function call

MKSetNoteParToDouble(aNote, MK_freq, 440.0)

is the same as the message:

[aNote setPar:MK_freq toDouble:440.0]

As ever, calling a function is somewhat faster than sending a message, thus you may
want to use these functions, rather than the corresponding methods, if you're examining
and manipulating barrels of parameters, or in situations where speed is crucial. See the
method descriptions in the Note class for more information (by implication) regarding
the operations of these functions.

3-16 Chapter 3: C Functions

RETURN

The MKSetParTo •.. O functions return aNote, or nil if either aNote is nil or par isn't a
valid parameter identifier.

The MKGetParAs ... O functions return the requested value, or nil if either aNote is nil
of par isn't a valid parameter identifier. If the parameter value hasn't been set, an
indicative value is returned:

Function No-set return value

MAXINT
MK_NODVAL (check with MKIsNoDVal())

MKGetNoteParAsIntO
MKGetNoteParAsDoubleO
MKGetNoteParAsStringO
MKGetNoteParAsStringNoCopyO ""
MKGetNoteParAsEnvelopeO
MKGetNoteParAs WaveTableO
MKGetNoteParAsObjectO

SEE ALSO

""

nil
nil
nil

MKIsNoteParPresentO, MKInitParameter lterationO, MKN extParameterO,
MKIsNoDValO

MKSetNoteClassO, MKSetPartClassO, MKSetEnvelopeClassO,
MKSetPartialsClassO, MKSetSamplesClassO, MKGetNoteClassO,
MKGetPartClassO, MKGetEnvelopeClassO, MKGetPartialsClassO,
MKGetSamplesClassO

SUMMARY Set and retrieve scorefile creation classes

LIBRARY libmusickit

SYNOPSIS

#import <musickit/Note.h>

BOOL MKSetNoteClass(Note *noteSubclass)
BOOL MKSetPartClass(Part *partSubclass)
BOOL MKSetEnvelopeClass(Envelope *envelopeSubclass)
BOOL MKSetPartialsClass(Partials *partialsSubclass)
BOOL MKSetSamplesClass(Samples * samplesSubclass)

Note *MKGetNoteClassO
Part *MKGetPartClassO
Envelope *MKGetEnvelopeClassO
Partials *MKGetPartialsClassO
Samples *MKGetSamplesClassO

MKSetNoteClass() 3-17

DESCRIPTION

When you read a scorefile into your application, some number of objects are
automatically created. Specifically, these objects are instances of Note, Part, Envelope,
Partials, and Samples. You can supply your own classes from which these instances are
created through these functions. The one restriction is that the class you set must be a
subclass of the original class; for example, the class you pass the argument to
MKSetNoteClassO must be a subclass of Note.

The MKGetClassClassO functions return the requested classes as set through the
functions above.

RETURN

MKSetClassClassO returns NO if the argument isn't a subclass of Class; otherwise it
returns YES.

MKSetPartClassO --7 See MKSetN oteClassO

MKSetPartialsClassO --7 See MKSetNoteClassO

MKSetPreemptDurationO, MKGetPreemptDurationO

SUMMARY

LIBRARY

SYNOPSIS

Set the SynthPatch preemption time

libmusickit

#import <musickitlmusickit.h>

void MKSetPreemptDuration(double seconds)
double MKGetPreemptDurationO

DESCRIPTION

During a performance, DSP resources can become scarce; it's sometimes necessary to
preempt active SynthPatches in order to synthesize new Notes. This preemption is
handled by SynthInstrument objects. Butrather than simply yank the rug from under
an active SynthPatch, a certain amount of time is given to allow the patch to "wind
down" before it's killed. By default, this grace period, or "preempt duration", is 0.006
seconds-not a lot of time but enough to avoid snapping the SynthPatch's envelopes.
You can set the preempt duration yourself through MKSetPreemptDurationO.
Preempt duration is global to an application; its current value is retrieved through
MKGetPreemptDurationO.

3-18 Chapter 3: C Functions

MKSetSamplesClassO -7 See MKSetNoteClassO

MKSetScorefileParseError AbortO

SUMMARY Set the scorefile error threshold

LIBRARY libmusickit

SYNOPSIS

#import <musickit/musickit.h>

void MKSetScorefileParseErrorAbort(int thresholdCount)

DESCRIPTION

As a scorefile is read into an application, errors sometimes occur: Time tags may be
out of order; undeclared or mistyped names may pop up in the middle of the file. The
Music Kit keeps a count of these errors for each file it reads. If the error count for a
particular file exceeds the threshold set as the thresholdCount argument to this function,
the scorefile parsing is aborted and the file is closed (if the Music Kit opened it itself).
The default limit is ten errors.

MKSetTimeO -7 See MKGetTimeO

MKSetTraceO, MKClearTraceO, MKIsTracedO

SUMMARY Trouble-shoot the Music Kit

LIBRARY libmusickit

SYNOPSIS

#import <musickit/errors.h>

unsigned int MKSetTrace(int traceCode)
unsigned int MKClearTrace(int traceCode)
BaaL MKIsTraced(int traceCode)

MKSetScorefileParseErrorAbortO 3-19

DESCRIPTION

To aid in debugging, the Music Kit is peppered with activity-tracing messages that print
to stderr if but asked. The trace messages are divided into eight categories, represented
by the following codes:

Code

MK_TRACEORCHALLOC
MK_TRACEPARS
MK_TRACEDSP
MK_TRACEMIDI
MK_TRACEPREEMPT
MK_SYNTHINS
MK_SYNTHPATCH
MK_UNITGENERATOR

Value

1
2
4
8
16
32
64
128

Meaning

DSP resource allocation
Application -defined parameters
DSP manipulation
MIDI manipulation
SynthPatch preemption
SynthInstrument machinations
SynthPatch library messages
UnitGenerator library messages

To enable a set of messages, you pass a trace code to the MKSetTraceO function. You
can enable more than one set with a single function call by bitwise-or'ing the codes.
Clearing a trace is done similarly by passing codes to MKClearTraceO. The
MKIsTracedO function returns YES or NO as the argument code is or isn't currently
traced. These functions should only be used while you're debugging and fine-tuning
your application.

You should note that the codes given above are #define' d as their corresponding values
and so can be used only when you call one of these functions within an application
they can't be used in a symbolic debugger such as gdb. For this reason, the integer
values themselves are also given; you must use the integer values to enable and disable
a set of trace messages from within a debugger.

MK TRACEORCHALLOC

The Orchestra allocation messages inform you of DSP resource allocation. The most
important of these have to do with SynthPatch, UnitGenerator, and SynthData
allocation. When a SynthPatch is allocated, one of the following messages is printed:

"allocSynthPatch returns SynthPatchClass_SynthPatchId"
"allocSynthPatch building SynthPatchClass_SynthPatchId ... "

"allocSynthPatch can't allocate SynthPatchClass"

The first of these signifies that an appropriate SynthPatch object was found. The second
means that a new object was created. The third denotes an inability to construct the
requested object because of insufficient DSP resources. As a SynthPatch's
UnitGenerators are connected, the following message is printed:

"allocSynthPatch connectsContents of SynthPatchClass_SynthPatchId"

3-20 Chapter 3: C Functions

When a SynthPatch is deallocated and when it's freed, respectively, the following are
printed:

"Returning SynthPatchClass_SynthPatchId to avail pool."

"Freeing SynthPatchClass_SynthPatchId"

A UnitGenerator can be allocated without reference to other UnitGenerators, or it can
be positioned before, after, or between other objects. First, an available object is
searched for:

"allocUnitGenerator looking for a UGClass."

"allocUnitGenerator looking for a UGClass before UGClass UGid"

"allocUnitGenerator looking for a UGClass after UGClass UGid"

"allocUnitGenerator looking for a UGClass after UGClass UGid

and before UGClass UGid"

If a new UnitGenerator is built, the addresses ("Reloc") and sizes ("Reso") of the
allocated DSP resources are given:

"Reloc: pLoop address, xArg address, yArg address, IArg address,

xData address, yData address, pSubr address"

"Reso: pLoop size, xArg size, yArg size, IArg size, xData size,

yData size, pSubr size, time orchestraLoopDuration"

As the UnitGenerator search (or allocation) succeeds or fails, one of the following is
printed:

"allocUnitGenerator returns UGClass UGid"

"Allocation failure: Can't allocate before specified ug."

"Allocation failure. DSP error."

"Allocation failure. Not enough computeTime."

"Allocation failure. Not enough memorySegment memory."

Allocating a SynthData generates the first and then either the second or third of these
messages:

"allocSynthData: looking in segment memorySegment for size size."

"allocSynthData returns memorySegment address of length size."

"Allocation failure: No more offchip data memory."

When you install shared data, the following is printed:

"Installing shared data keyObjectName in segment memorySegment."

MKSetTrace() 3-21

During allocation of UnitGenerators and SynthDatas, existing resources might be
compacted. Compaction can cause free UnitGenerators and unreferenced shared data
to be garbage collected, and active UnitGenerators to be relocated:

"Compacting stack."
"Copying arguments."

"Copying p memory."

"Garbage collecting freed unit generator UGClass_UGid"

"Moving UGClass_UGid."

"NewReloc: pLoop address, xArg address, yArg address, lArg
address."

"Garbage collecting unreferenced shared data."

"No unreferenced shared data found."

MK TRACEDSP

The DSP-trace messages give you details of how the DSP is being used. For example,
when a UnitGenerator is allocated, the following message is printed among the
search-build-return messages given above:

"Loading UGClass_UGid."

The most important of the DSP-trace messages reflect the setting of a UnitGenerator's
memory arguments. A memory argument takes either an address value or a data value.
When you set an address-valued argument, the following is printed:

"Setting argNum of UGClass_UGid to address Oxaddress."

A data-valued arguments is either a 24-bit or 48-bit word; separate functions (and cover
methods) are defined for setting the two sizes of arguments. The following messages
are printed as the "correct" function is used to set an argument's value:

"Setting argNum of UGClass UGid to datum value."

"Setting argNum of UGClass UGid to long:

hi wd value and low wd value."

A 24-bit argument that's set with the long-setting function and vice versa produce these
messages, respectively:

"Setting (L-just, O-filled) argNum of UGClass_UGid to datum
value."

"Setting argNum of UGClass_UGid to: value"

If an argument is declared as optimizable, the following is printed when the
optimization obtains:

"Optimizing away poke of argNum of UGClass UGid."

3-22 Chapter 3: C Functions

SynthData allocation doesn't actually involve the DSP; the address of the memory that
will be allocated on the DSP is computed, but the state of the DSP itself doesn't change
until data is loaded into the SynthData:

"Loading array into memory block SynthDataClass_SynthDataId."

"Loading constant value into memory block

SynthDataClass_SynthDataId."

Clearing a SynthData's memory produces the following:

"Clearing memory block SynthDataClass_SynthDataId."

DSP manipulations that are performed as an atomic unit are bracketed by the messages:

"«< Begin orchestra atomic unit "

"end orchestra atomic unit.»> "

MK TRACESYNTHINS

The SynthInstrument messages are printed when a SynthInstrument object receives
Notes, and as it finds or creates SynthPatches to realize these Notes.

If a received Note's note tag is active or inactive, or if its note type is mute, the
following are printed, respectively:

"Synthlnstrument receives note for active notetag stream noteTag

at time time."

"Synthlnstrument receives note for new notetag stream noteTag

at time time."

"Synthlnstrument receives mute Note at time time."

SynthPatch allocation is noted only if the SynthInstrument is in auto-allocation mode:

"Synthlnstrument creates patch synthPatchId at time time

for tag noteTag."

However, SynthPatch reuse and preemption produce the following messages,
respectively, regardless of the SynthInstrument's allocation mode:

"Synthlnstrument uses patch synthPatchId at time time

for tag noteTag."

"Synthlnstrument preempts patch synthPatchId at time time

for tag noteTag."

If a SynthPatch of the correct PatchTemplate isn't found and can't be allocated, an
alternative is used; barring that, the SynthInstrument omits the Note:

"No patch of requested template was available.

Using alternative template."
"Synthlnstrument omits note at time time for tag noteTag."

MKSetTrace() 3-23

MK TRACEPREEMPT

These are a subset of the SynthInstrument messages that deal with SynthPatch
<preemption and Note omission:

"SynthInstrument preempts patch synthPatchId at time time

for tag noteTag."

"SynthInstrument omits note at time time for tag noteTag.

MK TRACEMIDI

When MIDI messages are converted to Music Kit Notes (and the parameters therein),
the following messages appear if there's an error in the message stream:

"Two noteOns on same keyNum without intervening noteOff."
"NoteOff for multiply on keyNum." [sic]

The first of these indicates that two noteOns on the same channel and key number were
found without an intervening noteOff; the second is printed as the "missing" noteOffs
arrive.

The following are printed as ill-defined Note objects are converted to MIDI messages:

"NoteOn missing a noteTag at time time"

"NoteOff missing a note tag at time time"

"NoteOff for noteTag which is already off at time time"

QPolyKeyPressure with invalid noteTag

or missing keyNum: time time;"

MK TRACESYNTHPATCH and MK TRACEUNITGENERATOR

Currently, the SynthPatch library and UnitGenerator library messages refer only to
WaveTable allocation. You should always trace these two together as the messages are
virtually indistinguishable. If insufficient DSP memory is available to load a
WaveTable of the requested length, the following is printed:

"Insufficient wavetable memory at time time.

Using smaller table length newLength."

If the sine ROM, which resides in Y memory, is requested by a UnitGenerator's
X-space memory argument, the following appears:

"X-space oscgaf cannot use sine ROM at time time."

MK TRACEPARS

By tracing MK_TRACEPARS, you're informed when an application-defined
parameter is created:

"Adding new parameter parameterName"

3-24 Chapter 3: C Functions

RETURN

MKSetTraceO and MKClearTraceO return the value of the new (cumulative) trace
code.

MKTransposeO ~ See MKKeyNumToFreqO

MKSetUGAddressArgO, MKSetUGAddressArgTolntO,
MKSetUGDatumArg, MKSetUGDatumArgLongO

SUMMARY Set DSP unit generator arguments

LIBRARY libmusickit

SYNOPSIS

#import <musickit/U nitGenerator.h>

id MKSetUGAddressArg(UnitGenerator *ug, unsigned int argNum, SynthData *obj)
id MKSetUGAddressArgToInt(UnitGenerator *ug, unsigned int argNum,

DSPAddress address)
id MKSetUGDatumArg(UnitGenerator *ug, unsigned int argNum, DSPDatum value)
id MKSetUGDatumArgLong(UnitGenerator *ug, unsigned int argNum,

DSPLongDatum *value)

DESCRIPTION

These functions let you set the value of a DSP unit generator argument; they can only
be called as part of the implementation of a UnitGenerator subclass. The arguments to
all four functions are similar:

• ug is the UnitGenerator object that represents the DSP unit generator; because of
the nature of these functions, ug can only be self.

• argNum is the integer that identifies the unit generator argument you want to affect.

• The final argument is (or gives the address of) the value you want to set the unit
generator argument to.

MKSetUGAddressArgO and MKSetUGAddressArgToIntO are used to set
address-valued unit generator arguments. The former sets the argument to the DSP
address of obj, which must be a SynthData object. The latter function sets it directly as
the value of its address argument. The DSPAddress data type is defined as an int.

MKSetUGDatumArgO and MKSetUGDatumArgLongO set data-valued unit
generator arguments. The former takes a DSPDatum (int) directly and sets the unit
generator argument to the rightmost 24 bits of this value. The latter is used to set 48-bit

MKSetUGAddressArg() 3-25

DSP values; it takes, as the value argument, a pointer to a DSPLongDatum value.
DSPLongDatum is defined as a DSPFix48 structure:

typedef struct _DSPFix48 {

int high24; /* High order 24 bits, right justified */
int low24;

DSPFix48;
/* Low order 24 bits, right justified */

If the argument identified by argNum isn't allocated in the DSP's long memory, then
only the high24 field of the structure is taken as the value.

RETURN

If argNum is out of bounds, or if an address-setting function is used to set a data
argument (or vice versa), an error is generated and nil is returned; otherwise the ug
argument, which is always self, is returned.

MKUpdateAsympO

SUMMARY Apply an Envelope on the DSP

LIBRARY libmusickit

SYNOPSIS

#import <musickit/musickit.h>

void MKUpdateAsymp(AsympUG *asymp, Envelope *envelope, double valueAtO,
double valueAtl, double attackDur, double releaseDur, double portamentoTime,
MKPhraseStatus status)

DESCRIPTION

This is a fairly complicated function that, simply put, does the "right thing" in applying
an Envelope object to a DSP-synthesized musical attribute during a Music Kit
performance. It's typically used as part of the implementation of a SynthPatch
subclass.

The asymp argument is an AsympUG object that will handle the Envelope on the DSP;
envelope is the Envelope object itself. The arguments valueAtO, valueAtl, attackDur,
and releaseDur scale and stretch the Envelope; their values are expected to be taken
from an associated group of Note parameters. For example, to apply an Envelope to
the frequency of a synthesized Note, the values of these arguments would be retrieved
as follows:

3-26 Chapter 3: C Functions

Envelope *envelope = [aNote parAsEnvelope:MK_freqEnv];
double valueAtO = [aNote parAsDouble:MK_freqO];

double valueAtl = [aNote parAsDouble:MK_freql];

double attackDur = [aNote parAsDouble:MK_freqAtt];

double releaseDur = [aNote parAsDouble:MK_freqRel];

The portamentoTime argument is taken as the Note's MK_portamentoTime value. As
the name implies, it sets the portamento or "slur" between Notes and is only applied if
the Note to which the Envelope belongs is a note On that's interrupting an existing Note.

The final argument, status, is used to distinguish the phrase state of the SynthPatch at
the time that the Envelope is applied. You retrieve phrase status through SynthPatch's
phraseStatus method. The use of portamento, for example, is determined by the value
of this argument.

The asymp and status arguments are essential; the parameter-valued arguments aren't.
The function tries to be intelligent with regard to missing parameter-valued
arguments-you can even exclude the Envelope argument: If envelope is nil, the value
of valueAtl is applied such that the AsympUG will produce this value as a constant.

MKUpdateAsympO handles all the Envelope breakpoint scheduling for you. An
Envelope object isn't downloaded to the DSP as a whole but, instead, its breakpoints
are fed one-by-one to the DSP through message requests scheduled with a Conductor.
This function always uses the clockConductor for this task.

MKWritePitchNamesO

SUMMARY

LIBRARY

SYNOPSIS

Write pitches to a scorefile

libmusickit

#import <musickit/musickit.h>
#import <musickit/pitches.h>

void MKWritePitchNames(BOOL yesOrNo)

DESCRIPTION

This function sets the format by which frequency and key number parameter values are
written to a scorefile. If the argument is YES, the parameter values are written as pitch
name and key number constants such as "a4" and "a4k". If it's NO, frequencies are
written as fractional numbers and key numbers as integers.

MKWritePitchNames() 3-27

Sound Functions

SNDAcquireO, SNDResetO, SNDReleaseO, SNDBootDSPO, SNDRunDSPO

SUMMARY Access sound resources

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDAcquire(int soundResource, int priority, int preempt, int timeout,
SNDNegotiationFun negotiationFunction, void *arg, porCt *devicePort,
porCt *ownerPort)

int SNDReset(int soundResource, porCt *devicePort, porCt *ownerPort)
int SNDRelease(int soundResource, porCt *devicePort, porCt *ownerPort)
int SNDBootDSP(porCt *devicePort, port_t *ownerPort, SNDSoundStruct *dspCore)
int SNDRunDSP(SNDSoundStruct *dspCore, char *toDSP, int toCount, int toWidth,

int toBuJferSize, char **fromDSP, int *fromCount, intfromWidth,
int negotiationTimeout, intflushTimeout, int conversionTimeout)

DESCRIPTION

SNDAcquireO attempts to gain ownership of the sound resources specified in
soundResource, a value that's created by (bitwise) or'ing a combination of the
following resource codes:

Code

SND_ACCESS_OUT
SND_ACCESS_IN
SND_ACCESS_DSP

Resource

sound-out
sound-in
the DSP

Device and ownership ports to a successfully acquired device are returned in devicePort
and ownerPort, respectively. Acquiring a resource makes it active, such that other
acquisition requests may fail, even if the requests are in the same process. You can
grant a priority to the acquisition by setting the value of the priority argument to an
integer between 0 and 10. In a subsequent call to SNDAcquireO, the acquisition with
the higher priority wins. The function's preempt, timeout, negotiationFunction, and
arg arguments are currently unused.

SNDResetO and SNDReleaseO reset to a virgin state and release, respectively, the
specified resources. The resources must have been previously acquired through
SNDAcquireO; the device and owner port arguments are values returned by that
function.

3-28 Chapter 3: C Functions

SNDBootDSPO boots the DSP using the DSP bootstrap image specified in dspCore.
This allows you to load all internal RAM and all but the top six words of external RAM
on the DSP. The owner and device ports must have been previously acquired through
SNDAcquireO. The format of dspCore must SND_FORMAT_DSP core image should
be in loadable (".lod") form, such as is created through the SNDReadDSPfileO
function.

SNDRunDSPO is similar to DSPBootDSPO in that it loads and runs a program you
provide. However, SNDRunDSPO is designed to be used with DSP programs that
process sound data-you typically use this function to provide your own sound
conversion algorithms. The arguments are as follows:

• The DSP program is represented by dspCore; it should implement complex DMA
mode for its output, and it should be in loadable form.

toDSP is a pointer to the data that you wish to feed to the DSP.

toCount is the number of samples to process.

• toWidth is the size of a single unprocessed sample.

toBuJferSize is the total size, in bytes, of the toDSP data.

• fromDSP is a pointer to the address of the processed data. The memory to store the
data is allocated for you.

fromCount is returned by the function to give the number of samples that it actually
processed.

• fromWidth is the size, in bytes, of a single processed sample.

• The timeout arguments, negotiationTimeout,jlushTimeout, and conversionTimeout,
are ignored.

RETURN

If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as
described in SNDSoundErrorO, is returned.

ERRORS

If SNDAcquireO is unable to acquire anyone of the resources specified in
soundResource, none of the resources are acquired.

SNDAcquire() 3-29

SNDAllocO, SNDFreeO

SUMMARY Create and free a sound structure

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDAlloc(SNDSoundStruct **sound, int dataSize, int dataFormat,
int samplingRate, int channelCount, int inJoSize)

int SNDFree(SNDSoundStruct *sound)

DESCRIPTION

The SNDSoundStruct structure is the data format used by the sound software to
encapsulate a sound. It defines the soundfile format and the NeXT sound pasteboard
type, and it lies at the heart of every Sound object. SNDAllocO creates and returns, in
sound, a new SNDSoundStruct. The arguments to SNDAllocO correspond to the
SNDSoundStruct fields described below. SNDFreeO frees the SNDSoundStruct
pointed to by sound. You should always use SNDFreeO to free a sound structure.

The fields of the SNDSoundStruct structure list the attributes of the sound that the
structure represents. The sound data itself isn't contained in the structure, but is located
by a structure field. Nonetheless, it's often convenient to think of a SNDSoundStruct
as containing the sound data that it represents. By convention, the structure is referred
to as the sound's "header." It's defined as:

typedef struct

int magic; /* SND MAGIC ((int)Ox2e736e64) */

int dataLocation; /* Offset or pointer to the raw data */

int dataSize; /* Raw data size in bytes */

int dataFormat; /* The data format code */

int samplingRate; /* The sampling rate */

int channelCount; /* The number of channels */

char info [4] ; /* Textual information about the

SNDSoundStruct;

The magic field is a magic number that identifies a SNDSoundStruct. It's
automatically set when you allocate the structure.

sound */

The dataLocation field indicates the location of the actual sound data. Usually, the
data immediately follows the header. In this case, dataLocation is the offset from the
beginning of the structure to the first byte of the sound data-in other words, it's the
size ofthe sound's header. However, if you edit the sound through functions such as
SNDDeleteSamplesO or SNDlnsertSamplesO, the sound can become fragmented
such that the data no longer follows the header. In this case, dataLocation is a pointer
to a NULL-terminated block of addresses, each of which points to a separate
SNDSoundStruct. The collection of these SNDSoundStructs make up the fragmented
data.

3-30 Chapter 3: CFunctions

dataSize is the size, in bytes, of the memory allocated for the sound data. The data is
uninitialized.

dataFormat describes the sound data as one of the following codes:

Code

SND_FORMAT_MULAW _8
SND_FORMAT_LINEAR_8
SND_FORMAT_LINEAR_l6
SND_FORMAT~MPHASIZED

SND_FORMAT_COMPRESSED
SND_FORMAT_COMPRESSED_EMPHASIZED
SND_FORMAT_LINEAR_24
SND_FORMAT_LINEAR_32
SND_FORMAT_FLOAT
SND_FORMAT_DOUBLE
SND_FORMAT_DSP _DATA_8
SND_FORMAT_DSP _DATA_l6
SND_FORMAT_DSP _DATA_24
SND _FORMAT_DSP _DATA_32
SND_FORMAT_DSP_CORE
SND_FORMAT_DSP _COMMANDS
SND_FORMAT_DISPLAY
SND _FORMAT_INDIRECT
SND_FORMAT_UNSPECIFIED

Format

8-bit mu-law samples
8-bit linear samples
16-bit linear samples
16-bit linear with emphasis
16-bit linear with compression
A combination of the two above
24-bit linear samples
32-bit linear samples
floating-point samples
double-precision float samples
8-bit fixed-point samples
16-bit fixed-point samples
24-bit fixed-point samples
32-bit fixed-point samples
DSPprogram
Music Kit DSP commands
non-audio display data
fragmented sampled data
unspecified format

All but the last five formats identify different sizes and types of sampled data. The
others deserve special note:

• SND_FORMAT_DSP _CORE format contains data that represents a loadable DSP
core program. Sounds in this format are required by the SNDBootDSPO and
SNDRunDSPO functions. You create a SND_FORMAT_DSP _CORE sound by
reading a DSP load file (extension ".lod") with the SNDReadDSPfileO function.

• SND_FORMAT_DSP _COMMANDS is used to distinguish sounds that contain
DSP commands created by the Music Kit. Sounds in this format can only be
created through the Music Kit's Orchestra class, but can be played back through the
SNDStartPlayingO function.

SND_FORMAT_DISPLK: format is used by the Sound Kit's SoundView class.
Such sounds can't be played.

• SND_FORMAT_INDIRECT indicates data that has become fragmented due to
editing. Only sampled data can become fragmented. You never allocate a sound
with this format.

• SND_FORMAT_UNSPECIFIED is used for unrecognized formats.

SNDAlloc() 3-31

samplingRate is also given as a code and should be cast into an int. The NeXT sound
hardware supports the following sampling rates for recording and playback:

Code

SND_RATE_CODEC
SND_RATE_LOW
SND_RATE_HIGH

Sampling Rate (Hz)

8012.8210513
22050
44100

channelCount is the number of channels of sound. Playback of one- and two-channel
sounds is supported; a sound with more than two channels is unplayable.

info Size is the size of a variable-length string that can be used to textually describe the
sound. The size is extended to the next 4-byte boundary (the minimum size is 4 bytes).
You can't increase the length of the info string once its size has been set.

RETURN

If no error occurs, SND_ERR_NONE is returned. Otherwise, an error code, as
described in SNDSoundErrorO, is returned.

SNDBootDSPO ~ See SNDAcquireO

SNDBytesToSamplesO ~ See SNDSampleCountO

SNDCompactSamplesO ~ See SNDlnsertSamplesO

SNDCompressSoundO, SNDSetCompressionOptionsO,
SNDGetCompressionOptionsO

SUMMARY Compress or decompress a sound

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDCompressSound(SNDSoundStruct *fromSound,
SNDSoundStruct **toSound, BOOL bitFaithful, int compressionAmount)

int SNDSetCompressionOptions(SNDSoundStruct *sound, int bitFaithful,
int compressionAmount)

int SNDGetCompressionOptions(SNDSoundStruct *sound, int *bitFaithful,
int *compressionAmount)

3-32 Chapter 3: C Functions

DESCRIPTION

SNDCompressSoundO creates and returns, in toSound, a new SNDSoundStruct that
contains a compressed or decompressed version of the sound infromSound:

• IffromSound's format is SND_FORMAT_LINEAR_16 or
SND_FORMAT_EMPHASIZED, the sound returned in toSound is compressed.

• If its format is SND_FORMAT_COMPRESSED or
SND_FORMAT_COMPRESSED_EMPHASIZED, the sound is decompressed.

No other formats are allowed; in addition, the sound can't be more than two channels.

The function's bitFaithful and compressionAmount arguments are used only when
compressing:

• bitFaithful determines the fidelity with which a compressed sound can be restored
to its original state. If bitFaithful is TRUE, the sound returned in toSound can be
decompressed to exactly match the original sound data; if it's FALSE, some
degradation can be expected.

• The compressionAmount argument controls the amount of compression. Its value
ranges from 4 to 8 with higher numbers giving more compression but less fidelity.
Depending on the signal, a compressionAmount of 4 will compress the sound to
about half its original size; a value of 8 compresses to about one-sixth the size. For
bit-faithful compression, you should set compressionAmount to 4.

SNDSetCompressionOptionsO sets the bit-faithfulness and the compression amount
that SNDStartRecordingO uses during subsequent recordings into the sound sound.
These values are effective only if sound's format specifies compression. By default,
such a recording is bit-faithful with a compression amount of 4.

SNDGetCompressionOptionsO returns, in its arguments, pointers to the currently
established compression options.

RETURN

If no error occurs, SND_ERR_NONE is returned. Otherwise an error code, as
described in SNDSoundErrorO, is returned.

SEE ALSO

SNDStartRecordingO

SNDCompressSound() 3-33

SNDConvertSoundO, SNDMulawO, SNDiMulawO

SUMMARY

LIBRARY

SYNOPSIS

Convert a sound's attributes

#import <sound/sound.h>

int SNDConvertSound(SNDSoundStruct *JromSound, SNDSoundStruct **toSound)
unsigned char SNDMulaw(short linearValue)
short SNDiMulaw(unsigned char mulawValue)

DESCRIPTION

SNDConvertSoundO copies the sampled data fromJromSound into toSound,
converting the copied data to the format, channel count, and sampling rate specified by
toSound. Memory for the converted data is automatically allocated. Only the
conversions listed below are allowed:

• CODEC MuLaw to low sampling rate 16-bit linear; mono to stereo or the two
sounds must have identical channel counts.

• MuLaw to 16-bit linear (and vice versa); toSound's sampling rate and channel
count are taken fromJromSound.

• Mono to stereo; JromSound and toSound must have identical formats and sampling
rates.

• High sampling rate to low sampling rate; JromSound and toSound must both be
16-bit linear and have the same channel count.

SNDMulawO converts a value from 16-bit linear to mu-law: It takes a single linear
16-bit argument and returns the corresponding mu-law value. SNDiMulawO performs
the inverse operation: It takes a mu-law argument and returns the 16-bit linear value.

RETURN

If no error occurs, SNDConvertSoundO returns SND_ERR_NONE. Otherwise an
error code, as described in SNDSoundErrorO, is returned.

SEE ALSO

SNDAllocO, SNDSamplesToBytesO

SNDCopySamplesO ~ See SNDCopySoundO

3-34 Chapter 3: C Functions

SNDCopySoundO, SNDCopySamplesO

SUMMARY Copy all or part of a sound

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDCopySound(SNDSoundStruct **toSound, SNDSoundStruct *fromSouncf)
int SNDCopySamples(SNDSoundStruct **toSound, SNDSoundStruct *fromSound,

int startSample, int sampleCount)

DESCRIPTION

SNDCopySoundO creates and returns, in toSound, a new SNDSoundStruct that
contains a copy of the sound infromSound. This works for any type of sound, including
DSP sounds.

SNDCopySamplesO also creates a new SNDSoundStruct pointed to by toSound, but
copies only the specified offromSound, starting with the startSample sample (counting
from sample 0) and copying sampleCount samples. This function works only for
sampled sounds.

toSound should eventually be freed with SNDFreeO.

RETURN

Both functions return an error code as described in SNDSoundErrorO.

ERRORS

If an error occurs, the SNDSoundStruct isn't created.

SNDDeleteSamplesO ~ See SNDlnsertSamplesO

SNDFreeO ~ See SNDAllocO

SNDGetCompressionOptionsO ~ See SNDCompressSoundO

SNDCopySound() 3-35

SNDGetDataPointerO

SUMMARY Gain access to sampled sound data

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDGetDataPointer(SNDSoundStruct *sound, char **ptr, int *size, int *width)

DESCRIPTION

The SNDGetDataPointerO provides access to sound's sound data. A pointer to the
sound data is returned by reference in sound, the size of the data is returned in samples,
and the width (in bytes) of a single sample is returned in width. Note that size is the
total sample count-it isn't a count of the sample frames. The data itself should be
unfragmented, sampled data.

RETURN

If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as
described in SNDSoundErrorO, is returned.

SNDGetFilterO ~ See SNDSetVolumeO

SNDGetMuteO ~ See SNDSetVolumeO

SNDGetVolumeO ~ See SNDSetVolumeO

SNDiMulawO ~ See SNDConvertSoundO

3-36 Chapter 3: C Functions

SNDlnsertSamplesO, SNDDeleteSamplesO, SNDCompactSamplesO

SUMMARY Edit a sampled sound

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDlnsertSamples(SNDSoundStruct *toSound, SNDSoundStruct *JromSound,
int startSample)

int SNDDeleteSamples(SNDSoundStruct *sound, int startSample, int sampleCount)
int SNDCompactSamples(SNDSoundStruct **toSound,

SNDSoundStruct *JromSound)

DESCRIPTION

SNDlnsertSamplesO inserts a copy ofJromSound into toSound at position startSample
of toSound (counting from sample 0). This operation may fragment toSound.

SNDDeleteSamplesO deletes sampleCount samples from sound, starting at sample
startSample. The memory occupied by the deleted segment is freed. The sound may
become fragmented.

SNDCompactSamplesO creates and returns, in toSound, a new SNDSoundStruct that
contains a compacted version ofJromSound. Compaction eliminates the fragmentation
that can be caused by inserting and deleting samples.

These functions work only on sounds that contain sampled data.

RETURN

If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as
described in SNDSoundErrorO, is returned.

SNDModifyPriorityO --t See SNDStartPlayingO

SNDMulawO --t See SNDConvertSoundO

SNDPlaySoundfileO --t See SNDStartPlayingO

SNDReadO --t See SNDReadSoundfileO

SNDReadDSPfileO --t See SNDReadSoundfileO

SNDReadHeaderO --t See SNDReadSoundfileO

SNDlnsertSamples() 3-37

SNDReadSoundfileO, SNDReadO, SNDReadHeaderO, SNDReadDSPfileO

SUMMARY Read a sound from a file

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDReadSoundfile(char *path, SNDSoundStruct **sound)
int SNDRead(intfd, SNDSoundStruct **sound)
int SNDReadHeader(intfd, SNDSoundStruct **sound)
int SNDReadDSPfile(char *path, SNDSoundStruct **sound, char *info)

DESCRIPTION

Each of these functions creates and returns, by reference in the sound argument, a
SNDSoundStruct that contains the sound represented in a specified file.

SNDReadSoundfileO and SNDReadO read the entire contents of a soundfile. The
path argument to SNDReadSoundfileO is a pathname; the function opens and closes
the file automatically. SNDReadO takes a file descriptor fd that must be open for
reading.

SNDReadHeaderO reads only the header portion of the file descriptor fd. Storage for
the actual sound data isn't allocated. The dataLocation field of the new
SNDSoundStruct can be interpreted as the size of the header.

SNDReadDSPfileO creates a SNDSoundStruct for the given loadable DSP core file.
The file, which is opened and closed by the function, is specified as a pathname and
must have a" .lod" extension. The info argument is provided as a convenience, allowing
you to specify an information string that's written in sound's header. The DSP program
is executed by calling SNDBootDSPO or SNDRunDSPO.

For all three functions, sound should eventually be deallocated with SNDFreeO.

RETURN

If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as
described in SNDSoundErrorO, is returned.

ERRORS

If an error occurs, the SNDSoundStruct isn't created.

SEE ALSO

SNDFreeO

3-38 Chapter 3: C Functions

SNDReleaseO ~ See SNDAcquireO

SNDReserveO, SNDUnreserveO

SUMMARY Reserve sound resources for recording or playback

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDReserve(int soundResource, int priority)
int SNDUnreserve(int soundResource)

DESCRIPTION

SNDReserveO attempts to establish the exclusive use of the sound resources specified
in soundResource, a value that's created by (bitwise) or'ing a combination of the
following resource codes:

Code

SND_ACCESS_OUT
SND_ACCESS_IN
SND_ACCESS_DSP

Resource

sound out
sound in
the DSP

The priority argument sets the priority of the reservation (0 is the lowest priority). In
general, a process has exclusive access to the resources that it reserves. However,
another process can overrule a reservation by specifying a higher priority. Use of
SNDReserveO is optional; prioritized access to the appropriate resource is established
when either the SNDStartPlayingO or the SNDStartRecordingO function is called.
The process should eventually free its reserved resources by calling SNDUnreserveO.
Sound resources are automatically freed when the process terminates.

RETURN

If no error occurs, SND_ERR_NONE is returned. Otherwise, an error code, as
described in SNDSoundErrorO, is returned.

ERRORS

If SNDReserveO is unable to reserve anyone of the resources specified in
soundResource, it won't reserve any of them.

SNDResetO ~ See SNDAcquireO

SNDReserve() 3-39

SNDRunDSPO ~ See SNDAcquireO

SNDSampleCountO, SNDBytesToSamplesO, SNDSamplesToBytesO

SUMMARY Measure samples in a sound

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDSampleCount(SNDSoundStruct *sound)
int SNDBytesToSamples(int byteCount, int channelCount, int dataFormat)
int SNDSamplesToBytes(int sampleCount, int channelCount, int dataFormat)

DESCRIPTION

SNDSampieCountO returns the number of sample frames, or channel-independent
samples, in sound. The sound must contain sampled data.

SNDBytesToSampiesO returns the number of samples contained in byteCount bytes
of sound data with the given channel count and data format. SNDSampiesToBytesO
performs the inverse operation, returning the number of bytes needed to store
sampleCount samples. The value returned by SNDSampiesToBytesO is useful for
computing the dataSize argument to SNDAllocO.

RETURN

If sound doesn't contain sampled data (or if for any other reason the sample count can't
be determined), SNDSampieCountO returns -1. SNDBytesToSampiesO and
SNDSampiesToBytesO return 0 if dataFormat isn't a sampled sound format and -1 if
dataFormat isn't recognized.

SNDSamplesProcessedO ~ See SNDStartPlayingO

SNDSamplesToBytesO ~ See SNDSampleCountO

SNDSetCompressionOptionsO ~ See SNDCompressSoundO

SNDSetFilterO ~ See SNDSetVolumeO

SNDSetHostO ~ See SNDSetVolumeO

SNDSetMuteO ~ See SNDSetVolumeO

3-40 Chapter 3: C Functions

SNDSetVolumeO, SNDGetVolumeO, SNDSetMuteO, SNDGetMuteO,
SNDSetFilterO, SNDGetFilterO, SNDSetHostO

SUMMARY

LIBRARY

SYNOPSIS

Sound playback utilities

#import <sound/sound.h>

int SNDSetVolume(int left, int right)
int SNDGetVolume(int *left, int *right)
int SNDSetMute(int speakerOn)
int SNDGetMute(int *speakerOn)
int SNDSetFilter(intfilterOn)
int SNDSetFilter(int *filterOn)
int SNDSetHost(char *newHostname)

DESCRIPTION

SNDSetVolumeO sets the sound playback level for the left and right channels,
specified as an integer between 1 and 43 (inclusive). This only affects the signal to the
internal speaker and the stereo headphone jack; the line-out level is undisturbed.
SNDGetVolumeO returns, in its arguments, pointers to the playback levels of either
channel.

SNDSetMuteO mutes and unmutes the internal speaker and headphone level as
speakerOn is 0 and nonzero, respectively. SNDGetMuteO returns, in its argument, a
pointer to the mute status.

SNDSetFilterO turns the low-pass filter off or on as filterOn is 0 or nonzero,
respectively. SNDGetFilterO returns, in its argument, a pointer to the state of the filter.
The filter is automatically turned on while sounds whose format is
SND_FORMAT_EMPHASIZED or
SND _FORMAT_COMPRESSED _EMPHASIZED are being played.

SNDSetHostO gives you access to the named host for subsequent playbacks or
recordings. If newHostname is NULL or a zero-length string, the default (the local
host) is restored.

RETURN

If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as
described in SNDSoundErrorO, is returned.

SNDSetVolume() 3-41

SNDSoundErrorO

SUMMARY

LIBRARY

SYNOPSIS

Describe a sound error

#import <sound/sound.h>

char *SNDSoundError(int err)

DESCRIPTION

SNDSoundErrorO returns a pointer to a string that describes the given error code. The
following are defined as error codes:

Code

SND_ERR_NONE
SND_ERR_NOT_SOUND
SND_ERR_BAD_FORMAT
SND_ERR_BAD_RATE
SND_ERR_BAD_CHANNEL
SND_ERR_BAD_SIZE
SND~RR_BAD_FILENAME

SND_ERR_CANNOT_OPEN
SND_ERR_CANNOT_ WRITE
SND_ERR_CANNOT_READ
SND_ERR_CANNOT_ALLOC
SND_ERR_CANNOT_FREE
SND_ERR_CANNOT_COPY
SND_ERR_CANNOT_RESERVE
SND_ERR_NOT_RESERVED
SND_ERR_CANNOT_RECORD
SND_ERR_ALREADY_RECORDING
SND_ERR_NOT_RECORDING
SND_ERR_CANNOT_PLAY
SND_ERR_ALREADY _PLAYING
SND_ERR_NOT_IMPLEMENTED
SND_ERR_NOT_PLAYING
SND_ERR_CANNOT_FIND
SND_ERR_CANNOT_EDIT
SND_ERR_BAD_SPACE

SND_ERR_KERNEL
SND_ERR_BAD_CONFIGURATION
SND_ERR_CANNOT_CONFIGURE
SND_ERR_UNDERRUN
SND_ERR_ABORTED

3-42 Chapter 3: C Functions

String
""
"Not a sound"
"Bad data format"
"Bad sampling rate"
"bad channel count"
"bad size"
"Bad file name"
"Cannot open file"
"Cannot write file"
"Cannot read file"
"Cannot allocate memory"
"Cannot free memory"
"Cannot copy"
"Cannot reserve access"
"Access not reserved"
"Cannot record sound"
"Already recording sound"
"Not recording sound"
"Cannot play sound"
"Already playing sound"
"Not implemented"
"Not playing sound"
"Cannot find sound"
"Cannot edit sound"
"Bad memory space in DSP load
image"
"Mach kernel error"
"Bad configuration"
"Cannot configure"
"Data underrun"
"Aborted"

(continued)

Code

SND _ERR_BAD _TAG
SND _ERR_CANNOT _ACCESS
SND _ERR_TIMEOUT
SND_ERR_BUSY
SND_ERR_ CANNOT_ABORT
SND _ERR_INFO _TOO _BIG
SND_ERR_UNKNOWN

String

"Bad tag"
"Cannot access hardware resources"
"Timeout"
"Hardware resources already in use"
"Cannot abort operation"
"Information string too large"
"Unknown error"

SNDStartPlayingO, SNDPlaySoundfileO, SNDStartRecordingO,
SNDStartRecordingFileO, SNDWaitO, SNDStopO, SNDSamplesProcessedO,
SNDModifyPriorityO

SUMMARY Recording and playing a sound

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDStartPlaying(SNDSoundStruct *sound, int tag, int priority, int preempt,
SNDNotificationFun beginFun, SNDNotificationFun endFun)

int SNDPlaySoundfile(char *path, int priority)
int SNDStartRecording(SNDSoundStruct * sound, int tag, int priority, int preempt,

SNDNotificationFun beginFun, SNDNotificationFun endFun)
int SNDStartRecordingFile(char *fileName, SNDSoundStruct *sound, int tag,

int priority, int preempt, SNDNotificationFun beginFun,
SNDN otificationFun endFun)

int SNDStop(int tag)
int SNDWait(int tag)
int SNDSamplesProcessed(int tag)
int SNDModifyPriority(int tag, int newPriority)

DESCRIPTION

SNDStartPlayingO initiates the playback of sound. The function returns immediately
while the playback continues in a background thread. During playback, the sound is
played on the internal speaker and sent to the stereo line-out jacks.

The tag argument is an arbitrary positive integer that the caller supplies to identify the
playback session in subsequent calls to SNDWaitO, SNDStopO,
SNDSampiesProcessedO, and SNDModifyPriorityO. You should never set a sound's
tag to 0.

The value of priority establishes the sound's right to use the playback resources. The
lowest priority is 0, larger numbers signify higher priorities. Negative priorities are
reserved. A call to SNDStartPlayingO will interrupt a currently playing sound if the

SNDStartPlaying() 3-43

new sound has a higher priority. If the new sound has a lower priority, the old sound
continues and the new sound is put in a sound playback queue. Sounds in the queue are
sorted by priority.

A nonzero preempt flag is used for urgent sounds, such as system beeps. Preemption
allows a new sound to interrupt a sound that has the same (or lower) priority. However,
if the new sound can't interrupt, it isn't put in the queue.

beginFun and endFun are user-defined notification functions that are automatically
called when the sound begins playing and when it ends, respectively. A notification
function is defined as an integer function with three arguments:

typedefint (*SNDNotificationFun)(SNDSoundStruct *sound, int tag, int err);

The sound and tag arguments are taken directly from the SNDStartPlayingO call. The
err argument is one of the error codes listed in SNDSoundErrorO and is generated
automatically to inform the notification function of the state of the playback. The
return value is ignored. The value SND _NULL_FUN should be used to specify no
function as either beginFun or endFun.

SNDPlaySoundfileO plays the soundfile named path. As with SNDStartPlayingO,
the function returns immediately while playback continues in a background
thread. Playback interrupts a currently playing sound of the same or lower priority.

The arguments to SNDStartRecordingO are like those to SNDStartPlayingO. The
sound resource used for recording is implied by information in sound's header;
currently, two configurations are allowed:

• If the sound is one channel ofmulaw format (SND_FORMAT_MULAW) at the
CODEC sampling rate (SND_RATE_CODEC), then the recording is made from
the CODEC input (the microphone jack at the back of the monitor).

• If the format is one of the DSP data or compressed formats, the recording is made
from the DSP port. In the case of a compressed format, the sound is compressed
according to options set by SNDSetCompressionOptionsO.

Like playback, recording is performed in a background thread. The recording
completes when the storage allocated for the sound is filled with data.

SNDStartRecordingFileO is similar to SNDStartRecordingO, but the sound is
written directly to the filejileName. The sound argument is used for its size and format
information.

SNDStopO terminates the playback or recording session that has a tag of tag.

SNDWaitO returns only when the playback or recording with a tag of tag has
completed. Note that if you call this function from the main thread of an application
that has an asynchronous event-driven user interface, the interface will be effectively
frozen until this function returns.

3 -44 Chapter 3: C Functions

SNDSamplesProcessedO returns the number of samples that have been played or
recorded so far in the playback or recording with a tag of tag.

SNDModifyPriorityO resets the priority, as newPriority, of the playback or recording
that has a tag of tag.

For these last four functions, a tag of 0 acts as a wildcard, matching the tag of any
recording or playback that's currently in progress.

RETURN

If no error occurs, SND_ERR_NONE is returned. Otherwise, an error code, as
described in SNDSoundErrorO, is returned.

SNDStartRecordingO ~ See SNDStartPlayingO

SNDStartRecordingFileO ~ See SNDStartPlayingO

SNDStopO ~ See SNDStartPlayingO

SNDUnreserveO ~ See SNDReserveO

SNDWaitO ~ See SNDStartPlayingO

SNDWriteO ~ See SNDWriteSoundfileO

SNDWriteHeaderO ~ See SNDWriteSoundfileO

SNDWriteSoundfileO, SNDWriteO, SNDWriteHeaderO

SUMMARY Write a sound to a file

LIBRARY

SYNOPSIS

#import <sound/sound.h>

int SNDWriteSoundfile(char *path, SNDSoundStruct *sound)
int SNDWrite(intjd, SNDSoundStruct *sound)
int SNDWriteHeader(int jd, SNDSoundStruct * sound)

SNDWriteSoundfile() 3-45

DESCRIPTION

SNDWriteSoundfileO writes the specified sound structure as the soundfile. path is a
full pathname that should include the ".snd" extension (the convention for
soundfiles). The function automatically opens and closes the file.

SNDWriteO also writes a complete soundfile, but its argument is a file descriptor rather
than a pathname. The file must be open for writing.

With both SNDWriteSoundtileO and SNDWriteO, the actual sound data is written as
a contiguous block, even if sound is fragmented. However, sound itself isn't affected
if it's fragmented, it remains fragmented.

SNDWriteHeaderO is similar to SNDWriteO, but it only writes sound's header to the
file.

RETURN

If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as
described in SNDSoundErrorO, is returned.

3-46 Chapter 3: C Functions

Sound/DSP Driver Functions

These functions access the sound/DSP driver. For brevity, this driver is referred to as "the
sound driver" throughout the following.

snddriver _ dsp _ bootO, snddriver _ dsp _ resetO

SUMMARY Start the DSP

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kern_return_t snddriver dsp boot(porCt commandPort, int *boot/mage,
int imageSize, int priority)

kern_return_t snddriver _ dsp Jeset(porCt commandPort, int priority)

DESCRIPTION

snddriver _ dsp _ bootO enqueues a command to boot the DSP. The arguments are as
follows:

• commandPort is the DSP command port, as retrieved by
snddriver _get _ dsp _ cmd _portO.

• boot/mage is a pointer to a DSP program image that's downloaded to the DSP
(program memory location OxO) and immediately executed. The image is created
by reading a ".lod" file that's assembled from DSP56001 assembly code.

• imageSize is the size of the DSP boot image, in bytes. The image must not exceed
512 words (24-bit DSP words right-justified within 32-bit integers).

• priority is one of the three priority constants SNDDRIVER_LOW _PRIORITY,
SNDDRIVER_MED_PRIORITY, or SNDDRIVER_HIGH_PRIORITY. The
sound driver sorts the commands in its DSP command queue according to priority.

Booting the DSP clears neither external memory nor on-chip data memory.

snddriver _ dsp JesetO puts the DSP in its reset state. By this it's meant that the DSP's
execution is immediately halted and a bootstrap program is awaited. Booting the DSP
automatically resets it, thus you don't need to call this function before calling
snddriver _boot _ dspO.

RETURN

Returns an error code: 0 on success, nonzero on failure.

snddriver _ dsp _ dma _ readO ---t See snddriver _ dsp _ dma _ writeO

snddriver dsp dma writeO, snddriver dsp dma readO - - - - - -

SUMMARY Transfer data to and from the DSP via DMA

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kem_retum_t snddriver dsp dma write(porCt command Port, int elementCount, - - -
int dataFormat, pointect data)

kem_retum_t snddriver _ dsp _ dma Jead(porCt commandPort, int elementCount,
int dataFormat, pointect data)

DESCRIPTION

These functions enqueue commands that perform application-initiated DMA transfers
to and from the DSP. You must include complex DMA protocol to use these functions.
The arguments to the two functions are similar:

• commandPort is the DSP command port, as retrieved by
snddriver _get _ dsp _ cmd _portO.

elementCount is the number of data elements to send during each transfer.

• dataFormat is an integer constant that describes the size and packing of an
individual data element. These are

DSP_MODE8
DSP_MODEI6
DSP_MODE24
DSP_MODE32
DSP _MODE2416

1 byte per element
2 bytes per element
3 bytes per element
3 bytes per element, right-justified in 4
2 bytes per element, packed and right-justified in 4

data is a pointer to the data that you're transferring.

There are three rules regarding the size and alignment of a DMA transfer buffer:

• The size in bytes of a single DMA transfer buffer, reckoned as
elementCount * bytes-per-element, must be a multiple of 16. Note that
bytes-per-element isn't given directly as an argument.

• The data must be "quad-aligned"; in other words, the starting address (data) must
be a multiple of 16.

• All the data in a transfer buffer must lie on the same page of virtual memory.

3-48 Chapter 3: C Functions

If you're writing data, the snddriver _ dsp _ dma _ writeO function enqueues a command
to send the data to the DSP and then immediately returns.
snddriver _ dsp _ dma JeadO, on the other hand, waits until it has read the prescribed
amount of data and returns with data filled. DMA-transfer commands are always
enqueued with high priority.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

snddriver _ dsp JeadO, snddriver _ dsp _ writeO, snddriver _ dsp _protocolO

snddriver _ dsp _host _ cmdO

SUMMARY Enqueue a DSP command

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kern_return_t snddriver_dsp_host_cmd(port_t commandPort, u_int hostCommand,
u_int priority)

DESCRIPTION

snddriver_dsp_host_cmdO enqueues a command on the sound driver's DSP
command queue that interrupts the DSP and causes it to execute one of 32 interrupt
routines (or host commands). Its arguments are as follows:

• commandPort is the DSP command port, as retrieved by
snddriver Jet _ dsp _ cmd _portO.

• hostCommand is an integer that represents the host command you want to execute.
The first 22 host commands are already defined (or reserved). The host commands
provided by NeXT are represented by constants (prefix "DSP _he") that are
defined in lusr/include/nextdev/snd _ dsp.h. Creating your own host command
requires a familiarity with DSP programming that lies beyond the scope of this
description.

• priority is one of the three priority constants SNDDRIVER_LOW _PRIORITY,
SNDDRIVER_MED_PRIORITY, or SNDDRlVER_HIGH_PRIORITY. The
sound driver sorts the commands in its DSP command queue according to priority.

When the DSP receives a host command, it sets the HC flag in the Command Vector
Register. After executing the command, the DSP clears the flag. You should always

precede a call to snddriver _ dsp _host _ cmdO with a call to
snddriver _ dspcmd Je'L conditionO that waits for HC to clear in order to avoid
overwriting a previously requested, but as yet unexecuted, host command:

/* CVR_HC is defined in <nextdev/snd_dspreg.h> */

err = snddriver_dspcmd_req_condition(commandPort, CVR_HC, 0, ... J;
if (err != OJ

/* Now enqueue the host command request. */
err = snddriver_dsp_host_cmd(... J;
if (err != OJ

RETURN

Returns an error code: ° on success, nonzero on failure.

SEE ALSO

snddriver _ dspcmd _ req_ conditionO

snddriver _ dsp _protocolO

SUMMARY Set the sound driver's protocol vis-a-vis the DSP

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kernJeturn_t snddriver dsp protocol(port_t devicePort, poret ownerPort,
int protocol)

DESCRIPTION

snddriver dsp protocolO lets you establish the manner in which the sound driver
communicates with the DSP; specifically, it determines whether to create 0, 1, or 2
DSP-reply buffers and whether DSP interrupts are enabled. The existence of the
DSP-reply buffers determines whether you can use streams to transfer data.

The function's first two arguments are the sound driver device port and the DSP owner
port, as acquired through SNDAcquireO.

protocol is the heart of the matter: It's a code that represents the protocol that you wish
to establish. There are two ways to create the appropriate protocol: If you're using
streams to access the DSP, then you should pass the protocol variable that's modified
by calls to snddriver_stream_setupO, as explained (with an example) in the

3-50 Chapter 3: C Functions

description of that function. Alternatively--or in addition to the foregoing-you can
create a protocol code by or'ing the following DSP protocol constants:

• SNDDRIVER_DSP _PROTO_RAW represents the barest protocol. The sound
driver makes no assumptions about how the DSP is being used: No DSP-reply
buffers are created and the DSP can't interrupt the host. You can't use streams in
raw protocol; to transfer data, you use the snddriver _ dsp _ writeO and
snddriver dsp readO functions.

All the other protocols create at least one DSP-reply buffer and allow DSP interrupts,
thus allowing you to transfer data through a stream:

• SNDDRIVER_DSP _PROTO_DSPMSG ("DSP-message") creates a buffer that
can hold 512 DSP-reply messages. A message from the DSP (as it lies in the reply
buffer) is a 24-bit word right-justified in 32 bits. To receive the contents of this
buffer, you enqueue a request through snddriver_dsPJeCLmsgO.

• SNDDRIVER_DSP _PROTO_DSPERR ("DSP-error") creates an additional
512-message DSP-reply buffer that collects error messages sent from the DSP. An
error message is identified as having its MSB (bit 23) set. You can request the
contents of the error buffer through snddriver _ dsp Jeq_ errO.

SNDDRIVERJ)SP _PROTO_C_DMA ("complex DMA") implies DSP message
mode (a single DSP-reply buffer is created) and allows DSP-initiated DMA
transfers.

• SNDDRIVER_DSP _PROTO_HFABORT ("host flag abort") causes the driver to
take note if the DSP aborts. (The DSP indicates that it has aborted by setting HF2
andHF3.)

To get the documented behavior from these protocols, you must include
SNDDRIVER_DSP YROTO_RAW.

Note: A protocol of 0 produces Release 1.0 behavior; this is roughly equivalent to a
combination of DSP message, DSP error, and host flag abort modes.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

snddriver _stream _ setupO

snddriver dsp readO ~ See snddriver dsp writeO - - - -

snddriver dsp read dataO ~ See snddriver dsp writeO - - - - -

snddriver _ dsp yrotocolO 3-51

snddriver _ dsp _read _ messagesO ~ See snddriver _ dsp _ writeO

snddriver dsp resetO ~ See snddriver dsp bootO - - - -

snddriver _ dsp _set _ flagsO

SUMMARY Set the DSP host flags

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kem_retum_t snddriver _ dsp _set _ flags(porCt commandPort, u_int flagM ask,
u_intflagValue, u_int priority)

DESCRIPTION

snddriver _ dsp _set _ flagsO enqueues a command to modify one or both of the DSP
host interface flags HFO (host flag 0) and HFI (host flag 1).

TheflagMask argument defines which of the host flags you want to affect. The flags
are represented by the constants SNDDRIVER_ICR_HFO and
SNDDRIVER_ICR_HFI. You can set both flags at the same time by or'ing these two
constants. (ICR stands for "Interrupt Control Register"; this is the register to which the
host flags belong.)

flagValue is the value to which you're setting the flag(s). A host flag can be either on
or off, states that are also referred to as "set" and "cleared". To set a flag, you pass its
constant identifier; to clear it, you pass O. The following examples illustrate this
concept:

/* Set HFO (turn it on). */

snddriver_dsp_set flags(... , SNDDRIVER_ICR HFO,

SNDDRIVER_ICR_HFO, ...)

/* Clear HF1. */

snddriver_dsp_set flags(... , SNDDRIVER_ICR_HF1,O, ...)

/* Set both flags. */

snddriver_dsp_set_flags(... ,

SNDDRIVER_ICR_HFO I SNDDRIVER_ICR_HF1,

SNDDRIVER ICR HFO I SNDDRIVER_ICR_HF1, ...)

/* Set HFO and clear HF1. */

snddriver_dsp_set_flags(... ,

3-52 Chapter 3: C Functions

SNDDRIVER_ICR_HFO I SNDDRIVER_ICR_HF1,
SNDDRIVER_ICR_HFO, ...)

/* Clear both flags. */

snddriver_dsp_set_flags(... ,

SNDDRIVER_ICR_HFO I SNDDRIVER_ICR_HFl, 0, ...)

The other two arguments, commandPort and priority, are the DSP command port and
command-queue priority, respectively. The DSP command port is retrieved through
snddriver _ dsp _ cmd _portO; you set the priority to one of
SNDDRIVER_HIGH_PRIORITY, SNDDRIVER_MED _PRIORITY, or
SNDDRIVER_LOW _PRIORITY.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

snddriver _ dspcmd Je'L conditionO

snddriver dsp writeO, snddriver dsp readO, snddriver dsp read dataO, - - - - - - -
snddriver _ dsp _read _ messagesO

SUMMARY Transfer data to and from the DSP

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kern_return_t snddriver _ dsp _ write(porCt commandPort, void *buffer,
int elementCount, int elementSize, int priority)

kernJeturn_t snddriver dsp read(porCt commandPort, void *buffer,
int elementCount, int elementSize, int priority)

kern_return_t snddriver dsp read messages(porCt commandPort, void *buffer, - - -
int elementCount, int elementSize, int priority)

kern_return_t snddriver_dspJead_data(porct commandPort, void **buffer,
int elementCount, int elementSize, int priority)

DESCRIPTION

snddriver _ dsp _ write() enqueues a command to perform a one-shot,
application-initiated data transfer to the DSP; snddriver _ dsp JeadO brings data back
from the DSP in a like manner. You generally use these functions if you have a small
amount of data to transfer or if the transfers are infrequent enough that the overhead of
the obvious alternative-setting up a DMA stream-would be exorbitant.

The other two functions, snddriver _ dsp Jead _ messagesO and
snddriver _ dsp Jead _ dataO are auxiliary to snddriver _ dsp JeadO. When you call
snddriver dsp readO, it, in turn, calls one ofthe auxiliary functions; which of the two

functions it calls depends on the current DSP protocol, as described below. You can
call these functions yourself by-passing snddriver _ dsp JeadO, although you should
adhere to the same protocol rules that snddriver _ dsp JeadO obeys.

The arguments to all four functions are similar:

• commandPort is the DSP command port, as retrieved through
snddriver _get _ dsp _ cmd _portO.

• buffer, as used by snddriver _ dsp _ writeO, is a pointer to the data you want to send
to the DSP. For the snddriver _ dsp Jead ... O functions, it's a pointer to the location
where you want the retrieved data to be stored. Note that for
snddriver_dspJead_dataO, buffer is the address of a pointer; this allows the
function to allocate memory for the data if you haven't allocated it yourself.

• elementCount and elementSize are the number of data elements to transfer and the
size, in bytes, of a single element, respectively.

• priority is an integer used to sort the command on the DSP command queue. The
sound driver defines three priorities represented by the constants
SNDDRIVER_LOW _PRIORITY, SNDDRIVER_MED_PRIORITY, and
SNDDRIVER_HIGH_PRIORITY. You normally set all application-initiated data
transfers to low priority, thus reserving medium and high priority for operations
that need to jump to the head of the DSP command queue.

Of these functions, snddriver_dsp_writeO is most straightforward: When it's called,
a transfer-data-to-the-DSP command is sorted (by priority) into the DSP command
queue. If, when its turn comes, the command can't be executed, the driver simply
pushes it back on the queue and tries again. No other commands of equal or lower
priority can be executed while a frustrated write command is sitting on top of the queue.
Note, however, that higher priority commands will get through.

As mentioned earlier, snddriver _ dsp JeadO calls one of its two auxiliary functions as
determined by the current DSP protocol:

• If your application is in raw protocol, then snddriver _ dsp Jead _ dataO is used to
read data from the DSP transmit registers.

• IfDSP message protocol is included, snddriver_dsp_read_messagesO is used to
read data from the DSP-reply buffer.

The difference between the two mechanisms is generally transparent such that you can
call snddriver _read _ dataO without regard for the current protocol. However, the
manner in which either of the underlying functions handles incomplete reads can
influence the design of your application: If the read can't be completed (typically
because the DSP hasn't generated enough data), snddriver_dspJead_dataO blocks
the DSP command queue in the fashion of snddriver _ dsp _ writeO. In the same
situation, snddriver _ dsp Jead _ messagesO waits for more data without blocking the

3-54 Chapter 3: C Functions

command queue. Thus snddriver _ dsp Jead _ messagesO can safely be called from a
separate thread at any time. This isn't true of snddriver dsp read dataO; you should - - -
be scrupulous about ensuring that sufficient data has been processed by the DSP before
you attempt to read it through this function (or through snddriver _ dsp JeadO while
in raw protocol).

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

snddriver _ dsp _ dma JeadO, snddriver _ dsp _ dma _ writeO

snddriver _ dspcmd _ req_ condition

SUMMARY Request a DSP host interface register condition

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kernjeturn_t snddriver dspcmd req condition(porCt commandPort, - --
u_int registerMask, u_int conditionFlags, int priority, port_t replyPort)

DESCRIPTION

snddriver_dspcmdJeq_conditionO does two things: It causes the DSP command
queue to block until the specified host interface register condition is true, and it registers
a request for an asynchronous message to be sent to replyPort when the condition is
fulfilled. The function returns immediately.

You specify a condition through a combination of the registerMask and conditionFlags
arguments:

registerMask specifies the host interface registers (actually, the bits therein) that
you're interested in. It's created by or'ing the register-bit constants defined in
<nextdev/snd _ dspregs.h>. A subset of these are also defined as sound driver
constants in <sound/sounddriver.h>.

• conditionFlags encodes the states of the register bits that define a satisfied
condition. To specify that you want a register bit set, you or the register-bit
constant that represents it; if you want it clear, you exclude the constant. If you
want all the specified bits to be clear, set conditionFlags to o.

snddriver _ dspcmd Jeq_conditionO 3-55

In the following example, the command queue is blocked until HFO is set and HFI is
clear (both flags are in the Interrupt Control Register):

/* Block until HFO is set and HFl is clear. */
snddriver_dspcmd_req_condition(... ,

SNDDRIVER_ICR_HFO I SNDDRIVER_ICR_HF1,

SNDDRIVER_ICR_HF2, ...)

The condition request is sorted into the DSP command queue according to priority,
which must be one of SNDDRIVER_LOW _PRIORITY,
SNDDRIVER_MED_PRIORITY, or SNDDRIVER_HIGH_PRIORITY.

The message that's sent to the reply port when the condition is fulfilled contains the
value of the host interface register. By setting the registerMask argument to 0, you can
use the snddriver _ dspcmd Jeq_ conditionO function to simply poll for this value.

RETURN

Returns an error code: ° on success, nonzero on failure.

SEE ALSO

snddriver _ dsp _set _ flagsO

snddriver _ dspcmd _ reCL errO ~ See snddriver _ dspcmd _ req_ msgO

snddriver _ dspcmd _ reCL msgO, snddriver _ dspcmd _ req_ errO

SUMMARY Request the contents of the DSP-reply buffers

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kemJetum_t snddriver _ dspcmd Je<L msg(port_t commandPort, port_t replyPort)
kem_return_t snddriver _ dspcmd Je<L err(port_t command Port, port_t replyPort)

DESCRIPTION

The snddriver _ dspcmd _ re<L msgO and snddriver _ dspcmd _ req_ errO functions are
part of the mechanism by which your application retrieves messages from the sound
driver's DSP-reply buffers. They request that the contents of the appropriate buffer (as
described below) be sent in a Mach message to replyPort, a valid port that must already
be allocated. Simply requesting a message is only half of the story: You then have to

3·56 Chapter 3: C Functions

receive the message that's been sent, usually by sitting in a msgJeceiveO loop. You
typically process the Mach messages that these functions induce by passing the
messages to the snddriver _reply _ handlerO function.

The utility of these functions depends on your application's DSP protocol:

• You should never use these functions in raw protocol since the sound driver doesn't
create any DSP-reply buffers.

• By including DSP message protocol, a single DSP-reply buffer is created in which
both error and non-error messages are stored; thus ... retLmsgO is of use, but
... retLerrO isn't.

• DSP error protocol deems that two buffers be created, one for error messages and
the other for non-error messages. Both functions are useful in this protocol.

DSP protocol and how to set it is explained in the description of the
snddriver _ set_ dsp _protocolO function. For both functions, the commandPort
argument is the DSP command port as retrieved by
snddriver _get _ dsp _ cmd yortO.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

snddriver _set _ dsp _protocoIO, snddriver JeplL handlerO

snddriver _get_device _parmsO ~ See snddriver _set_device _parmsO

snddriver get dsp cmd portO - - - -

SUMMARY Get the DSP command port

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kern_return_t snddriver _get_ dsp _ cmd _port(porct devicePort, port_t ownerPort,
porCt *commandPort)

DESCRIPTION

snddriver _get _ dsp _ cmd _portO attempts to get the DSP command port, the port
through which the sound driver issues commands to the DSP. If it's successful, the port
is returned in the commandPort argument, which needn't have been previously
allocated.

The first two arguments, devicePort and ownerPort, are the sound driver device port and
the DSP owner port, as acquired through SNDAcquireO.

The DSP command port is required as an argument by almost all sound driver functions
that communicate with the DSP. The one notable exception, for which you don't have
to get the command port as it's gotten implicitly when needed, is if you send and
retrieve DSP data via streams after having booted the DSP through the SNDBootDSPO
sound library function. But even in this case getting the command port as a reflex to
getting the DSP owner port won't serve you ill.

RETURN

Returns an error code: 0 on success, nonzero on failure.

snddriver _get _ volumeO ----7 See snddriver _set_device _parmsO

snddriver _new_device _portO

SUMMARY Reallocate the sound driver device port

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kem_return_t snddriver new device port(port_t devicePort, port_t superuserPort, - - -
port_t *newDevicePort)

DESCRIPTION

This function deallocates the sound driver device port devicePort, as previously
acquired through SNDAcquireO, then allocates a new port to the device which it
returns as newDevicePort. When the old device port is deallocated, so, too, are all its
resource owner ports and sound streams; thus any currently operating sound driver
tasks, such as recording and playing sounds, are aborted. Because of the ruthlessness
of this act, you must be the UNIX® superuser to call this function, as verified by the
superuserPort argument, for which you should pass the return value of

3-58 Chapter 3: C Functions

host_priv _selfO. The new device port's registration with regard to the Network Name
Server is the same as that of the old; in other words, if the old port had been registered
(through netname_checkJn()), the new one will be registered automatically.

RETURN

Returns an error code: 0 on success, nonzero on failure.

snddriver _reply _ handlerO

SUMMARY Respond to asynchronous sound driver messages

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kern_return_t snddriver Jeply _ handler(msg_headect *reply,
snddrivechandlers_t * handlers)

DESCRIPTION

snddriver Jeply _ handlerO helps your application respond to asynchronous sound
driver messages. The function is designed around the snddriver _handlers structure,
which provides a correspondence between the sound driver messages and a list of C
functions that you provide. When you receive a message from the sound driver, you
pass the message and a snddriver _handlers structure to snddriver Jeply _ handlerO
which then executes the handler function that corresponds to the message.

The definition of the snddriver _handlers structure (typedef' d, for convenience, as
snddriver _handlers _ t) reveals the nature of the functions that you can register as reply
handlers:

typedef struct snddriver_handlers {
void

int

sndreply_tagged t

sndreply_tagged_t

sndreply_tagged_t
sndreply_tagged_t

sndreply_tagged_t

sndreply_tagged_t

sndreply_recorded_data t
sndreply_dsp_cond_true_t

sndreply_dsp_msg_t

sndreply_dsp_msg_t
} snddriver handlers_t;

*arg;

timeout;
started;

completed;
aborted;

paused;

resumed;

overflow;

recorded_data;

condition_true;
dsp_message;

dsp_error;

snddriver Jeply _ handlerO 3-59

The structure's arg field is a value that's passed to the reply handlers when they're
called by snddriver Jeply _ handlerO; you can set it to whatever value best suits your
application, but keep in mind that the value must fit within the size of a pointer (four
bytes). The timeout field is currently unused.

The final ten fields are the heart of the structure: Each corresponds to a particular sound
driver message. The first six of these correspond to messages that indicate a change in
the state of a stream ("stream-state" messages); in other words, the sound driver sends
a specific message when a stream starts processing data, when it completes its
processing, when it aborts, and so on. By setting a field to a particular function, you
register that function as the handler for the message to which the field corresponds. For
example, to establish a function named handleStreamStartO as the function that's
executed when your application receives a stream-started message from the sound
driver, you would do the following:

/* Create a snddriver_handlers t and register the

* function handleStreamStart() (which we'll assume already

* exists) to process stream-started messages.

*/
snddriver_handlers_t replyHandlers;

replyHandlers.started = handleStreamStart;

While this registers handleStreamStartO as the handler for stream-started messages,
you must also tell the sound driver that you actually want such messages sent to your
application. To do this, you set the msgStarted boolean argument to true when you call
snddriver _stream_start JeadingO or snddriver _stream_start _ writingO.
Analogous msg ... message flags exist for the other five stream-state messages.

When the sound driver sends a stream-state message to your application, it sends it to
the port that you specify as the last argument (replyPort) to
snddriver _stream_start JeadingO or snddriver _stream_start _ writingO. To
receive the message, you create a msg_ header _ t structure, set its local yort field to
the stream's reply port, and then wait for the message to arrive by sitting in a message
receive (msg receive()) loop. After so capturing the message, you then pass it, along
with your handler structure, to snddriver Jeply _ handlerO. This is demonstrated by
the example below.

Notice, from the definition of snddriver _handlers, that the six stream-state handlers
are all of type sndreply _tagged _ t. This type represents a two-argument function
protocol that's defined as

typedef void (*sndreply_tagged_t) (void *arg, int tag);

The functions that you register to handle the stream-state messages must adhere to this
protocol. The values of the arguments are set by snddriver _reply _ handlerO:

• arg is given the value of the arg field of the snddriver _handlers structure in which
the function is registered. As mentioned earlier, you can set the structure's arg field
to a (four-byte) value that suits the needs of your application.

3-60 Chapter 3: C Functions

tag is the region-identifying tag that you provide as an argument to
snddriver stream start writingO or snddriver stream start readingO. - - - - - -

The seventh of the ten snddriver handlers handler fields-recorded data-also
applies to streams. However, unlike the fist six, which are optional, recorded _data is
essential when you're reading data from a stream. Its importance arises from the way
that the sound driver handles read data: It keeps the data in the kernel's virtual memory
until you ask to bring it into your application. The only way to bring this data back is
to supply a recorded_data handler that does so. The following program excerpt, a
modified and distilled version of the example given in
IN extDeveloper/Examples/DSP ISoundDSPDriverl dsp _example _ 31, demonstrates a
typical way to achieve this effect. In the example, details such as acquiring the sound
driver and sound resource owner ports are omitted. The read stream shown here is
anonymous-the code can be used equally well for a stream that reads from sound-in
or from the DSP:

/* The code shown in the example requires the following header
files * /

#import <sound/sounddriver.h>
#import <mach.h>

/* Define a read stream tag, a read pointer, and a byte count
variable. */

#define READ TAG I
static short *readData;
static int readCount;

/* Create a recorded data handler; the function's protocol is
* explained following the example.
*/

static void read_completed(void *arg, int tag, void *kerneIData,

int size)

/* Make sure this is the read stream. */
if (tag == READ TAG)

main ()

readData = (short *)kerneIData;
readCount = size;

/* Define a read port, a reply port, and a reply structure. */
port t readPort, replyPort;
snddriver handlers_t replyHandlers;

/* Allocate a Mach message header. msg_header t and MSG SIZE MAX
* (and msg_receive, below) are defined in mach.h.

*/

snddriver Jep/y _ handler() 3 -61

/* Create an error-check variable. */
int err;

/* Allocate the reply port. */
err = port allocate(task_self(), &replyPort);
if (err != 0)

/ * Set the recorded data handler. '* /

replyHandlers.recorded_data = read_completed;

/* Set the amount of data you want to read; for the purposes of
* this example, an arbitrary amount is specified.
*/

readCount = 1024;

/* Here, a number of activities -- such as acquiring the sound
* driver port and sound resource owner port, setting up a read

* stream through snddriver_stream_setup(), and (possibly)
* booting the DSP and sending it data -- are omitted.
*/

/* Enqueue a read request. The six ° arguments are the message
* request flags.
*/

err snddriver stream start reading (readPort, 0, readCount,
READ TAG, 0,0,0,0,0,0, replyPort);

if (err != 0)

/* Sit in a message-receive loop. */
while(l)

/* Set up the reply message. This must be done inside the
* loop since msg_receive() may change the message header.
*/

replyMsg->msg_size = MSG_SIZE_MAX;
replyMsg->msg_local_port = replyPort;
err = msg_receive(replyMsg, MSG OPTION_NONE, 0);
if (err != 0)

/* Dispatch the message to the reply handlers.*/
err = snddriver reply_handler (replyMsg, &replyHandlers);
if (err != 0)

/* Provide a means to break out of the loop. */

3-62 Chapter 3: C Functions

As implied by the example, you don't need to tell the sound driver that you want a
data-recorded message to be sent to your application; the message is always sent
automatically. The example also illustrates the rule that the reply port used to receive
messages while in the msgJeceiveO loop is that which is specified as the final
argument to the snddriver _stream_start _ readingO function.

The data type of the recorded_data field dictates the protocol of the function that you
design to bring data back to the application. The type is sndreply_recorded_data_t:

typedef void (*sndreply_recorded_data_t) (void *arg, int tag,
void *kernelData, int size);

The first two arguments, arg and tag, are the same as in the snddreplL tagged _ t type.
kernelData is a pointer to the recorded data as it resides in the kernel; size is the size of
the recorded data in bytes.

The final three snddriver _handlers fields correspond to messages that are inspired by
the DSP:

• The condition_true handler is called when a requested DSP host interface register
condition comes true. (More accurately, the handler is called when the message
that indicates that the condition is true is passed to snddriver Jeply _ handlerO.)

• dsp _message handles general messages that the sound driver receives from the
DSP.

• dsp _error does the same for DSP error messages.

For each of these three handlers, there is a corresponding sound driver function that
enqueues a request for a condition, a DSP message, or a DSP error message,
respectively:

• snddriver _ dspcmd Jeq_ conditionO blocks the DSP command queue until the
state of the DSP host interface registers satisfies a requested condition.

• snddriver _ dspcmd Je'L msgO requests that the messages in the DSP-reply buffer
be sent to your application. You must include DSP-message protocol for this to
have an effect.

• snddriver _ dspcmd Je'L errO requests that the 512-byte DSP-reply error buffer
be sent in a message. You must include DSP-error protocol for this to have an
effect.

As with the snddriver_stream_start ..• O functions, the three DSP request functions
require that you provide a reply port as an argument. It's to this reply port that the
sound driver sends the requested DSP-inspired messages. A single call to one of these
functions causes a single reply message to be sent to your application. Thus, for each
call to snddriver _ dspcmd Je'L msgO, for example, your application will receive one
message from the sound driver.

snddriver Jeply _ handler() 3 -63

The condition_true handler is of type sndreply _ dsp _ cond _true _ t:

typedef void (*sndreply_dsp_cond_true_t) (void *arg, u int mask,

u_int flags, u_int registers);

arg is the value of the arg field. The next two arguments, mask andjlags, are given the
values that were passed to snddriver _ dspcmd Jeq_ conditionO (which also has mask
andjlags arguments). registers encodes the current status ofthe four DSP host interface
registers in a single 32-bit vector. See the description of
snddriver _ dspcmd Je<L conditionO for more information on how this works.

The dsp _message and dsp _error are of type sndreply _ dsp _ msg_ t:

typedef void (*sndreply_dsp_msg_t) (void *arg, int *data,

int size);

arg is the value of the arg field. data is a pointer to the contents of the appropriate
DSP-message buffer (regular or error, as the handler is dsp_message or dsp_error).
size is the size of the buffer contents, in bytes.

snddriver Jeply _ handlerO ignores messages for which you haven't created and
registered a handler function.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

snddriver _stream_start _ readingO, snddriver _stream_start _ writingO,
snddriver _ dspcmd Jeq_ conditionO, snddriver _ dspcmd Jeq_ msgO,
snddriver _ dspcmd Jeq_ errO

3-64 Chapter 3: C Functions

snddriver _set_device _parmsO, snddriver _get_device _parmsO,
snddriver set volumeO, snddriver get volumeO, snddriver set rampO - - - - - -

SUMMARY Set and get sound playback attributes

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kern_return_t snddriver _set_device _parms(porct devicePort, boolean_t speakerOn,
boolean_tjilterOn, boolean_t zero jill)

kern_return_t snddriver get device parms(porct devicePort, - - -
boolean_t *speakerOn, boolean_t *jilterOn, boolean_t *zerojill)

kern_return_t snddriver set volume(porCt devicePort, int leftVolume,
int rightVolume)

kern_return_t snddriver get volume(porCt devicePort, int *leftVolume,
int *rightVolume)

kern_return_t snddriver set ramp(porCt devicePort, int rampOn)

DESCRIPTION

These functions set and get attributes of the sound playback system. Each takes, as its
first argument, the sound driver device port as acquired through SNDAcquireO. You
needn't acquire ownership of sound-out to set the playback attributes.

snddriver _set_device _parmsO sets three attributes as specified by the values of its
boolean arguments:

• The internal speaker is turned on or off as speakerOn is true or false. Calling the
function with alternating true and false speakerOn values is equivalent to toggling
the Mute key (Command Mute) on the keyboard.

• Similarly, the value ofjilterOn turns the de-emphasis filter on or off. The filter can
be controlled from the keyboard by toggling the louder key while holding down the
Command key (this isn't marked on the keyboard). In addition, the de-emphasis
filter is automatically turned on when a de-emphasis format sound is played and
returned to its previous state when the sound is done playing.

• During playback, low sampling rate (22.05 kHz) sounds are converted to the high
sampling rate (44.1 kHz) as they are sent to the DAC (which converts data at 44.1
kHz only). To do this, the sound driver emits an extra sample for every existing
sample in the sound data. The value of zerojill determines whether these extra
samples are set to 0 (true) or if they're copies of the existing samples (false). In
almost all cases, copying the samples is preferable, since zerofilling results in a
decrease in power. Note that you can't toggle this attribute from the keyboard.
Also, keep in mind that CODEC rate sounds are converted to 22.05 kHz before
being sent to the DAC and so are also affected by the state of zero jill.

snddriver _set_device yarmsO 3 -65

snddriver _get_device _parmsO returns, by reference in its final three arguments, the
values of the attributes described above.

snddriver _set_ volumeO sets the volume of the internal speaker and similarly adjusts
the signal that's sent to the stereo headphone jack (the signal to the line-out jacks is
unaffected). The two channels of the stereo signal are set independent of each other,
specified as the values of leftSpeaker and rightSpeaker. The volume of the internal
speaker is the sum of these two values. Volume values are integers in the range 0 to 43,
inclusive, where 0 is inaudible and 43 is full blast. You can also adjust playback volume
by pressing the speaker-louder and speaker-softer keys on the keyboard. Each discrete
tap on a volume key increments or decrements both the left and the right volume
settings by 1.

snddriver _get _ volumeO returns the left and right playback volumes by reference in
leftVolume and rightVolume, respectively.

By default, sounds are ramped during playback: The first few samples are ramped up
from zero and the last samples are ramped down. This helps prevent clicks at the
beginnings and ends of sounds. snddriver set rampO enables or disables this feature
as its rampOn argument is nonzero or zero. You almost always want ramping enabled;
the one obvious case in which it's undesirable is if you're chaining a series of separate
sounds that are meant to be played seamlessly, one immediately after the other. In this
case, ramping will cause annoying amplitude dips at each seam.

RETURN

Returns an error code: 0 on success, nonzero on failure.

snddriver set dsp owner portO, snddriver set sndin owner portO, -- - - -- - -
snddriver _set _sndout _owner_portO

SUMMARY Acquire ownership of sound resources

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kern_return_t snddriver _set _ dsp _ owner.:...port(porCt devicePort, porCt ownerPort,
porCt *negotiationPort)

kern_return_t snddriver _set_sndin _owner _port(porct devicePort, port_t ownerPort,
porCt *negotiationPort)

kern_return_t snddriver _set _ sndout _owner _port(port_t devicePort,
porCt ownerPort, port_t *negotiationPort)

3-66 Chapter 3: C Functions

DESCRIPTION

These functions try to acquire ownership of the DSP, sound-in, or sound-out by setting
the resource's owner port to a port that you supply. They duplicate part of the
functionality provided by SNDAcquireO; the latter should, in most cases, be used to
the exclusion of these.

The arguments are the same for all three functions:

• devicePort is a valid port to the sound driver device, as acquired through
SNDAcquireO.

• ownerPort is the port that will become the owner port for the requested resource if
the function is successful. You must have already allocated ownerPort through the
function port allocateO.

• If the function successfully acquires ownership of the resource, then the port
pointed to by negotiationPort is registered as the negotiation port for the resource.
However, if the function isn't successful-most likely because ownership of the
resource has already been claimed-then the currently registered negotiation port
is returned in the negotiationPort argument. By convention you point
negotiationPort to ownerPort before calling these functions, thereby making the
owner port accessible to other tasks. Similarly, if your bid for ownership fails and
the current owner has followed this convention, then you can use the port returned
in negotiationPort as the owner port for the resource. Note, however, that if the
function call fails, there's no way to determine if the port pointed to by
negotiationPort is actually the owner port. If you want to acquire sole ownership
of a resource, set negotiationPort to something other than the ownerPort before
calling these functions. This will ensure that only the caller will have access to the
resource (assuming that the function is successful).

A single port can be used to claim ownership of more than one device. This is
sometimes necessary when setting up a multiple-device stream (as explained in
snddriver _stream _setup()). In the following example, the same port attempts to own
both the DSP and sound-out:

err port allocate(task_self(), &ownerPort)

/* Acquire ownership of the DSP. */
err=snddriver_set_dsp_owner_port(devPort, ownerPort, &negPort);

/* Acquire ownership of sound-out. */
err=snddriver_set sndout_owner_port(devPort,ownerPort,&negPort);

After you've claimed ownership of a resource, you should do something with it. With
sound-in you set up a stream port through which you read (record) data. This is done
by calling the snddriver _stream _setup 0 and snddriver _stream _startJeadingO
functions. Analogously, with sound-out you set up a stream through which you write
(playback) data through the snddriver_stream_start_writingO function.

If you claim ownership of the DSP you should also acquire the DSP command port by
calling snddriver get dsp cmd portO. Most of the functions that access the DSP - - - -
require the command port as an argument. You can also set up streams to the DSP as
you would to sound-in or sound-out. Successfully setting the DSP's owner port puts
the DSP in its reset state.

To relinquish ownership of a resource, you deallocate the owner port by calling
port deallocateO:

err = port_deallocate (task_self (), ownerPort);

Deallocating a resource's owner unregisters the resource's negotiation port. All ports
are automatically deallocated when your application exits.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

snddriver _stream _ setupO, snddriver _get _ dsp _ cmd _portO

snddriver set rampO ~ See snddriver set device parmsO - - - - -

snddriver set sndin owner portO ~ See snddriver set dsp owner portO
-- - - -- - -

snddriver _set _ sndout _ bufcountO, snddriver _set _ sndout _ bufsizeO,
snddriver _stream _ ndmaO

SUMMARY Configure stream transfer buffers

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kernJeturn_t snddriver _set _ sndout _ bufcount(port_t devicePort, port_t sndoutPort,
int count)

kern_return_t snddriver _set_sndout_ bufsize(porCt devicePort, port_t sndoutPort,
int size)

kern_return_t snddriver _stream _ ndma(port_t streamPort, int tag, int count)

3-68 Chapter 3: C Functions

DESCRIPTION

These functions let you control the number and size of the buffers that are used to
transfer data in a stream.

snddriver_set_sndout_bufcountO sets the number of buffers that are used when
playing back sounds; the count argument, which must be greater than 0, establishes the
buffer count. Four buffers are used in the default configuration.

snddriver _set_sndout_ bufsizeO sets the size of the sound-out buffers (in bytes) to the
value of the size argument. This function is needed only if you're using a linked stream
to sound-out (see the snddriver _stream _ setupO function for more on linked streams).
The value of size must be less than or equal to vrn _page_size, the size of a page of
virtual memory; the default is vrn _page_size. If you're writing directly to the
sound-out stream-in other words if the stream to sound-out is configured as
SNDDRIVER_STREAM_TO_SNDOUT_22 or SNDOUT_ 44-then the size of the
sound-out buffers is computed from the sampleCount argument to
snddriver _stream _setupO and the size set here is ignored.

For both of these functions, the devicePort and sndoutPort arguments are ports to the
sound driver device and to sound-out, respectively, as acquired through SNDAcquireO.

snddriver _stream _ ndmaO sets the number of DMA transfer buffers that are used to
transmit and receive data that's sent to the DSP. The DMA buffer count can be set on
a region-by-region basis; the stream and region therein to which a particular setting
applies are identified by the streamPort and tag arguments, respectively. This function
applies only to simple streams to or from the DSP; if you set up a linked stream to
sound-out, then the DMA buffer count to and from the DSP is the same as the sound-out
buffer count.

RETURN

Returns an error code: ° on success, nonzero on failure.

SEE ALSO

snddriver _stream _setupO, snddriver _stream _ndmaO

snddriver _set _ sndout _ bufsizeO ~ See snddriver _set _ sndout _ bufcountO

snddriver _set _ sndout _owner _portO ~ See snddriver _set _ dsp _ owner _portO

snddriver set volumeO ~ See snddriver set device parmsO - - - - -

snddriver _stream _ controlO, snddriver _stream _ nsamplesO

SUMMARY Control and query a stream

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kem_retum_t snddriver _stream _ control(porCt streamPort, int tag, int control)
kemJetum_t snddriver stream nsamples(port_t streamPort, int *byteCount) - -

DESCRIPTION

snddriver _stream _ controlO provides control over an active stream by allowing you
to apply a controlling operation to one or more of the stream's enqueued regions. The
stream and the regions therein are identified by the function's first two arguments:
streamPort is the stream's port, as created by snddriver stream setupO; tag is the - -
integer identifier that you gave the region (or regions) in a previous call to
snddriver stream start writingO or snddriver stream start readingO. A tag - - - - - -
value of 0 causes the controlling operation to be applied to all regions enqueued on the
stream. control specifies the controlling operation by the following constants:

• SNDDRIVER_PAUSE_STREAM causes the stream to pause. If data is currently
being read from or written to the specified region, the read or write is immediately
suspended. If the region isn't yet active, the pause takes effect when the region
comes to the top of the stream's queue (it's paused just before the first sample is
read or written).

• SNDDRIVER_RESUME_STREAM resumes a previously paused stream.

• SNDDRIVER_ABORT_STREAM terminates the stream's activity when the
specified region comes to the top of the queue; the queue is then cleared. If the
region is currently being acted upon, the stream is terminated immediately.

• SNDDRIVER_AWAIT_STREAM is used to retrieve a partially recorded region
from a stream that's reading data-normally, you can't retrieve such data until the
entire region has been filled. If the specified region is currently active, a
data-recorded message is sent to the reply port that you registered in
snddriver _stream _startJeadingO. You then pass the message to
snddriver Jeply _ handlerO which calls the recorded_data reply handler. The
unrecorded portion of the region continues. If the specified region isn't currently
active, this has no effect.

3-70 Chapter 3: C Functions

While you can use any of these four at the same time by or'ing them in control, the only
combination that's of use is SNDDRIVER_AWAIT_STREAM or'd with one ofthe
other three. For example, by setting tag to 0 and control to

you immediately pause the stream and can then bring back data from the current region.

You can request that a stream-paused, stream-resumed, or stream-aborted message be
sent to the reply port when you pause, resume, or abort a stream, respectively, by setting
the appropriate msg ... flag to true in your call to snddriver_stream_start_".O.

snddriver _stream _ nsamplesO returns the number of bytes (not samples, despite the
name of the function) that have been read from or written to a particular stream. The
steam is specified by streamPort. The byte count is returned by reference in the
byteCount argument.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

snddriver _stream _ setupO, snddriver _stream_start _ writingO,
snddriver _stream_start _ writingO, snddriver Jeply _ handlerO

snddriver _stream _ nsamplesO ~ See snddriver _stream _ controlO

snddriver stream setupO - -

SUMMARY Configure a sound stream

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kern_return_t snddriver _stream _setup(port_t devicePort, port_t ownerPort,
int dataPath, int sampleCount, int sampleSize, int lowWater, int highWater,
int *protocol, port_t *streamPort)

snddriver _stream _setup() 3 -71

DESCRIPTION

A stream, as it applies to the sound driver, is a path through which an indefinitely long
sequence of data passes. One end of a sound driver stream typically lies in your
application's memory, while at the other end is a sound device. For example, to record
a sound from the microphone you create a stream from sound-in to your application.
Analogously, a stream from your application to sound-out is required to play back
sound data. A single stream of data can pass through more than one sound device; for
example, you can send data from your application to the DSP from whence it issues
directly to sound-out. Thus you can DSP-process and play your sound data in one
motion, without incurring the overhead of bringing the processed data back into your
application.

The snddriver_stream_setupO function creates a port to a sound stream. The port,
returned in the streamPort argument, is used as an identifier in subsequent calls to
functions that write to, read from, and otherwise control the stream (as listed at the end
of this description).

The function's first two arguments are the usual capability ports: devicePort is a port
to the sound driver device, and ownerPort is the owner port for all resources that are
touched by the stream, as acquired through SNDAcquireO.

You establish the stream's course-the source and destination of its data-by setting
dataPath to one of constants listed below. There are two types of data paths: "simple"
and "linked." The simple data paths (listed below) connect your application to a sound
resource:

SNDDRIVER_STREAM_FROM_SNDIN; read samples from the CODEC
microphone.

• SNDDRIVER_STREAM_TO_SNDOUT_ 44; write samples to the stereo DAC at
the high sampling rate (44.1 kHz).

• SNDDRIVER_STREAM_TO_SNDOUT_22; write samples to the stereo DAC at
the low sampling rate (22.05 kHz).

SNDDRIVER_DMA_STREAM_TO_DSP; write data via DMA to the DSP.

SNDDRIVER_DMA_STREAM_FROM_DSP; read data via DMA from the DSP.

Four linked data paths connect the DSP directly to sound-out:

SNDDRIVER_STREAM_DSP _TO_SNDOUT_ 44 and ... SNDOUT_22;
DSP-processed samples are sent directly to sound-out at the low or high sampling
rate.

• SNDDRIVER_DMA_STREAM_THROUGH_DSP _TO_SNDOUT_ 44 and
... SNDOUT_22; data flows from your application to the DSP and thence directly
to sound-out at the high or low sampling rate.

3-72 Chapter 3: C Functions

Data is transferred through a stream in buffers. The sampleCount argument establishes
the length of a single transfer buffer in samples (or data elements); the size of a single
sample is set by the sampleSize argument. The maximum size for a transfer buffer (in
bytes) is that of a page of virtual memory, as given by the global read-only variable
vm _page_size. Typically, the transfer buffer size is set to this limit: If, for example,
the samples that you're sending through the stream are two bytes wide, then, to follow
this convention, you would set sampleCount to vm _page _size/2. If the stream uses
DMA, then the size of a transfer buffer (in bytes) must be a power of 2 greater than or
equal to 16.

For some applications-particularly those in which latency is an issue-setting the
number of transfer buffers that are used can be as important as setting the size of the
buffers. This is done through the snddriver_set_sndout_bufcountO and
snddriver _stream _ ndmaO functions.

The range of acceptable values for the sampleSize argument depends on the stream's
data path:

• If you're reading from sound-in into your application
(SNDDRIVER_STREAM_FROM_SNDIN), then sampleSize must be set to 1 to
accommodate the 8-bit mu-law samples generated by the CODEC microphone
input.

If you're writing from your application to sound-out
(SNDDRIVER_STREAM_TO_SNDOUT_ 44/22) or from the DSP to sound-out
(SNDDRIVER_STREAM_DSP _TO_SNDOUT_ 44/22), then sampleSize must be
2 since the DAC expects 16-bit interleaved-stereo samples. Note that while the
DAC processes data only at the high sampling rate, the sound driver performs the
conversion from low to high for you. This isn't true for playback of CODEC-rate
sounds for which you typically download a sampling-rate conversion program to
the DSP, and then create a stream that goes through the DSP and then directly to
sound-out. This is what the SNDStartPlayingO function does, for example.

In all the other paths, your application writes to or reads from the DSP. Here,
sampleSize can be 1, 2, or 4, according to the sample size expected by or produced
by your DSP program.

The lowWater and highWater arguments are memory threshold values, measured in
bytes, that are inspected by the sound driver. During an operation such as recording or
playback, successive pages of sound data are locked into physical memory (or "wired
down") during which time they're read from or written to. As a page is completed, it's
unwired. The driver tries to maintain at least lowWater bytes of wired-down memory;
if the amount drops below this threshold, the driver wires down pages until it reaches
the highWater mark.

If your stream touches the DSP, then you need to set the DSP protocol by passing the
appropriate value to snddriver _ dsp _protocoIO. The protocol argument found here
helps you create this value: The function or's the appropriate protocol constants, as
determined by the characteristics of the stream that you're setting up, into protocol and
returns the new value by reference. You then pass the variable to

snddriver _stream _setup() 3-73

snddriver _ dsp _protocoIO. You should initialize your protocol variable to
SNDDRIVER_DSP _PROTO_RAW before calling snddriver_stream_setupO, as
shown in the following example:

/* Initialize the protocol variable. */

int protocol SNDDRIVER_DSP_PROTO_RAW;

int err;

/* Set up a stream to the DSP. */

err = snddriver_stream_setup(... , SNDDRIVER_STREAM_TO_DSP,

.. , &protocol, ...);

if (err != 0)

/* Set up a stream from the DSP. */

err = snddriver stream_setup(... , SNDDRIVER_STREAM_FROM_DSP,

... , &protocol, ...);

if (err != 0)

/* Pass the protocol to the sound driver. */

err = snddriver dsp_protocol(... , protocol);

if (err != 0)

The protocol constants are described as part of the snddriver dsp protocolO
function.

Having created a stream, you can read from it, write to it, and control it by passing the
port returned in streamPort to the following functions:

snddriver _stream _start _ readingO and snddriver _stream_start _ writingO read
from and write to a stream, respectively. Streams from sound-in or from the DSP
can only be read; similarly, streams to sound-out or to the DSP can only be written.

• snddriver _stream _ controlO pauses, resumes, and aborts an active stream.

snddriver_stream_nsamplesO measures the amount of data that has passed
through the stream.

For sound-in and sound-out, streams are the only way to travel. This isn't true of the
DSP; the sound driver provides a one-shot, non-stream DSP read and write mechanism,
embodied in snddriver _ dsp JeadO, snddriver _ dsp _ dma JeadO, and analogous
... writeO functions, that can be more efficient for short data transfers.

RETURN

Returns an error code: 0 on success, nonzero on failure.

3-74 Chapter 3: C Functions

SEE ALSO

snddriver _stream_start JeadingO, snddriver _stream_start _ writingO,
snddriver _set _ sndout _ bufcountO, snddriver _stream _ ndmaO

snddriver stream start readingO --7 See snddriver stream start writingO - - - - - -

snddriver stream start writingO, snddriver stream start readingO - - - - - -

SUMMARY Send data to and retrieve data fom a stream

LIBRARY

SYNOPSIS

#import <sound/sounddriver.h>

kem_retum_t snddriver _stream _start_ writing(porCt streamPort, void *data,
int sample Count, int tag, boolean_t preempt, boolean_t deallocateWhenDone,
boolean_t msgStarted, boolean_t msgCompleted, boolean_t msgAborted,
boolean_t msgPaused, boolean_t msgResumed, boolean_t msgUnderrun,
porCt replyPort)

kem_retum_t snddriver stream start reading(porCt streamPort, char *filename, - - -
int sampleCount, int tag, boolean_t msgStarted, boolean_t msgCompleted,
boolean_t msgAborted, boolean_t msgPaused, boolean_t msgResumed,
boolean_t msgOverrun, porct replyPort)

DESCRIPTION

These two functions cause data to be written to or read from a sound stream identified
by streamPort, which must have been created by a previous call to
snddriver _stream _setupO. The two functions operate in much the same manner:
Each invocation enqueues a single region of data that's operated on (either read from
or written to) asynchronously by the sound driver. However, there's a fundamental
difference between the two functions in that .•. writingO enqueues a region that you
pass as the data argument, while ..• readingO stores the data it reads in a region that it
allocates itself. To bring the read data back into your application, you must create and
register a reply-handler function that transfers the data when the read is complete. The
mechanism for doing this is explained (and an example given) in the
snddriver Jeply _ handlerO function description. Note that the ... readingO argument
filename-which would imply that the read data is written to a file-is currently
unused. Also note that data is copy-on-write protected: Any changes that you make to
the data after the region has been passed to •.. writingO won't be seen by the driver.

sampleCount is the number of samples in the region that's being written or read. If
you're writing to the DSP, sampleCount must be a multiple of the sampleCount
argument to snddriver stream setupO. In all other cases, sampleCount can be any - -
value.

tag is an integer used to identify the region. While you can give each region a distinct
tag, you usually create a single tag value for each stream that you set up. For example,
if you have a stream that reads data from sound-in and another that writes to sound-out,
you would create two tag values, one for either stream, and then tag each region with
the value associated with its stream.

If the preempt flag (..• writingO only) is true, the sound driver starts writing data
immediately after the current transfer buffer has been completely processed. When it's
finished with the preempting region, the driver returns to its region queue, disregarding
the rest of the partially-processed preempted region.

If dealiocateWhenDone (••• writingO only) is true, the region's data is deallocated after
it's written.

The six msg ... flags register requests for stream-state messages to be sent
asynchronously to the port replyPort. The first flags, msgStarted and msgCompleted,
if true, cause messages to be sent just as the driver begins its first and just after it finishes
its last transfer of data from the region, respectively. The conditions referred to by the
next three arguments, msgAborted, msgPaused, and msgResumed, occur as a result of
calls to snddriver_stream_controIO. The msgUnderrun (for ... writing()) or
msgOverrun (for ... readingO) argument, if true, causes a message to be sent if the
driver can't transfer data quickly enough to keep up with real time. In general this is
only signficant if data is being read from sound-in or written to sound-out: Underrun
results in brief pauses in playback; overrun causes incoming samples to be lost. You
normally process the asynchronous messages that you receive by passing them to the
snddriver reply handlerO function. - -

A working example that shows a typical set up for reading and writing streams is given
in INextDeveloper/Examples/DSP/SoundDSPDriver/dsp _example _ 3/.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

snddriver Jeply _handler, snddriver _stream_setup

3-76 Chapter 3: C Functions

Array Processing Functions

The array processing functions let you manipulate arrays of data that have been downloaded
to the DSP. The functions were generated from DSP assembly language macros by the
dspwrap program. The macro source code files are provided in the directory
/usr/lib/dsp/apsrc; however, you don't need to be familiar with these files, nor with DSP
assembly language in order to use these functions.

Function Protocol

The array processing function protocol follows this format:

int DSPAPname(int inVector, int inSkip, int outVector, int outSkip, int count)

Every array processing function name begins with the "DSPAP" prefix; name is the
filename of the array processing macro from which the function was generated (without the
".asm" extension).

All arguments are type int. There are four categories of arguments:

DSP memory locations
• Vector-index increments

Operation counts
Immediate values used in computation

For example, the DSPAPvpvO function, which adds the elements oftwo input vectors and
writes the sums to an output vector ("vpv" stands for "vector plus vector"), presents a
typical use of arguments from the first three categories (because all arguments are ints, the
type isn't given in the example here, nor are they present in the function synopses below):

int DSPAPvpv(vectorlnA, inSkipA, vectorlnB, inSkipB, vectorOut, outSkip, count)

vectorlnA, vectorInB, and vectorOut are DSP memory locations. The values of these
arguments are taken as the addresses of the two input vectors and the output vector,
respectively. The data must have been previously downloaded through an array
processing system function such as DSPAPWriteFloatArrayO or
DSPAPWritelntArrayO.

inSkipA, inSkipB, and outSkip are index increments. They determine the number of
words by which the indices into the vectors are incremented before performing the next
addition; for operations on non-complex data, an index increment of 1 means that
contiguous elements are accessed (complex data operations are described below).
Usually, as exemplified here, each vector involved in an array processing operation has
its own index increment.

count is the number of operations that are performed; typically, this is the number of
elements in each vector.

Array Processing Functions 3-77

Arguments of the fourth type-immediate values-are used directly in a computation; in
other words, an immediate argument is considered as a numeric value and not as an address.
Only a handful of functions expect an immediate value as an argument. DSPAPvtilliO
(vector fill immediate), which fills an output vector with a constant value, is one ofthese:

int DSPAPvtilli(immediateValue, vectorOut, outSkip, count)

• immediate Value is the constant that's placed in each element of the output vector.

vectorOut, outSkip, and count are the expected and previously described DSP memory
location, index increment, and operation count arguments.

Keep in mind that immediateValue, like all array processing function arguments, must be
(or appear to be) an int. Using this function to fill a vector with an integer is
straightforward-you simply pass the integer value directly as the immediate Value
argument. However, to fill the vector with a fraction, you have to convert the value using
one of these convenient type-conversion macros:

• DSP _FlJOAT _ TO _INTO converts single-precision floating-point values.
DSP _DOUBLE_TO _INTO converts double-precision floating-point values.

For example:

/* Fill a vector with the constant 0.123. */

float myConst = 0.123;

DSPAPvfil1i(DSP_FLOAT_TO_INT(myConst), 0, 1, 100);

The type-conversion macros convert fractional floating-point data into the fractional
fixed-point numbers recognized by the DSP.

For every function that takes an immediate argument, there's also a version of the function
that lets you pass a constant by reference to a DSP address. For example, for DSPAPvtilliO,
there's DSPAPvtillO; in the latter, the constant value that's used to fill the vector is read
from the location indicated by the first argument. You would use the immediate version of
the function (DSPAPvtilli()) if the constant value is defined or generated on the host (as
shown in the example above), while you would use the address version (DSPAPvtill()) if
the constant is generated on the DSP, presumably as the result of a previous array
processing computation.

3-78 Chapter 3: C Functions

Data Format and Range

Most of the array processing functions operate equally well on vectors that contain
fractional numbers and those that contain integers. However, whenever multiplication is
involved in a function's operation, the participating vectors are assumed to contain
fractional numbers that lie within the range

-1.0 <= f < 1.0

Functions that operate on fractional data only are so noted in their descriptions.

Values on the DSP must be representable in 24 bits, as explained under "DSP System
Functions," earlier in this chapter. The intermediate results of an array processing function
are stored in a 56-bit accumulator, but the final result is reduced to 24 bits before it's written
to an output vector. Usually, overflow values are limited to the greatest positive or negative
value; however, some functions suppress this limiting and allow an overflow value to wrap
around: The appropriate 24-bits are plucked from the 56-bit accumulator as is with no
indication of whether the actual result exceeded 24 bits.

Complex Vector Functions

Some of the array processing functions operate on vectors of complex numbers, or numbers
that have a real and an imaginary part. With the exception of DSPAPfft2raO (radix 2 FFT),
all the complex number functions expect the real and imaginary parts to be interleaved:
Each pair of contiguous words in a complex vector represents a single complex number
where the first word is the real part and the second word is the imaginary part. Functions
are provided that help you create complex vectors in this format. (The complex number
format expected by DSPAPfft2raO is fully described in the function's description, below.)

Complex vector functions follow the same protocol as simple vector functions, as presented
at the beginning of this introduction. However, the index increment for a complex vector
deserves special attention: A complex vector element must be considered to be two words,
rather than one element, when computing the index increment. Thus to read or write
consecutive elements in a complex vector, for example, the increment must be set to 2.

Return Values

Every array processing function returns an int error code, where 0 indicates success and
nonzero means that the function failed. The error codes are listed with the DSP system
functions, earlier in this chapter, and in lusr/includel dspl dsp _ errno.h.

Array Processing Functions 3-79

DSPAPcvcombineO, DSPAPcvreaIO, DSPAPcvfillO, DSPAPcvfilliO

SUMMARY Create a vector of complex numbers

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPcvcombine(reaIIn, realSkip, imagIn, imagSkip, complexOut, outSkip,
count)

int DSPAPcvreal(realIn, realSkip, complexOut, outSkip, count)
int DSPAPcvfill(complexIn, complexOut, outSkip, count)
int DSPAPcvfilli(realImmediate, imagImmediate, complexOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

These functions help you create vectors of complex numbers in the format expected by
the complex vector functions. The complex number format is described in the section
"Complex Vector Functions," above.

DSPAPcvcombineO combines two simple vectors, realIn and imagIn, to create one
complex vector, complexOut. The realln vector supplies the real parts of the complex
numbers and imagIn supplies the imaginary parts.

DSPAPcvrealO takes a single input vector, realIn, that supplies the real parts of the
complex numbers written to complexOut. The imaginary part of each element in
complexOut is set to 0.0.

DSPAPcvfillO fills complexOut by iterating over the single (two word) complex
number stored in complexIn. DSPAPcvfilliO also fills complexOut through iterating
over a single complex number; however, the value is passed directly as reallmmediate
and imagImmediate, the real and imaginary parts of the number, respectively.

For all these functions, complexOut must accommodate count * 2 words of data.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

DSPAPvreaIO, DSPAPvimagO

DSPAPcvconjugateO ~ See DSPAPcvrnoveO

3-80 Chapter 3: C Functions

DSPAPcvfillO ~ See DSPAPcvcornbineO

DSPAPcvfilliO ~ See DSPAPcvcornbineO

DSPAPcvrnandelbrotO

SUMMARY Generate a Mandelbrot set

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproe.h>

int DSPAPevmandelbrot(complexln, inSkip, vectorOut, outSkip, count, limit)

All arguments are of type int.

DESCRIPTION

DSPAPevmandelbrotO generates a Mandelbrot set over the complex data in
complexln. The generated values, which are non-complex integers, are written to
vectorOut.

A Mandelbrot value is the number of iterations of the formula

z=z*z+c

required to reach

Iz I> 2

where z is a complex variable and e is a complex constant that's set to the initial value
ofz.

To make this easier in fixed-point format, DSPAPevmandelbrotO computes the
iterations of

w=2*w*w+d

required to reach

Iwl>2

where w is z/2 and d is e/2. Note, however, that the function assumes it's being given
a z/2 input vector; in other words, to get a true Mandelbrot set for a given complex
vector, you should divide the elements of the vector by 2 before calling this function.

DSPAPcvrnandelbrot() 3-81

The limit argument is the maximum number of iterations allowed. Keep in mind that
since the input vector is complex, inSkip must be 2 to read contiguous elements.

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPcvmcvO ~ See DSPAPcvpcvO

DSPAPcvmoveO, DSPAPcvnegateO, DSPAPcvconjugateO

SUMMARY

LIBRARY

SYNOPSIS

Create copies of complex-number vectors

libarrayproc.a

#import <dsp/arrayproc.h>

int DSPAPcvmove(complex!n, inSkip, complexOut, outSkip, count)
int DSPAPcvnegate(complex!n, inSkip, complexOut, outSkip, count)
int DSPAPcvconjugate(complex!n, inSkip, complexOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

Each of these functions places, in complexOut, a copy of the complex number vector
complex!n.

DSPAPcvmoveO creates a literal copy.

DSPAPcvnegateO creates a value-negated copy (both the real and the imaginary parts
are negated).

DSPAPcvconjugateO creates a conjugated copy. The conjugate of a complex number
is its reflection about the x-axis; in other words, the real part stays the same and the
imaginary part is negated.

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPcvnegateO ~ See DSPAPcvmoveO

3-82 Chapter 3: C Functions

DSPAPcvpcvO, DSPAPcvmcvO, DSPAPcvtcvO

SUMMARY

LIBRARY

Perform arithmetic operations on complex-number vectors

libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPcvpcv(complexInA, inSkipA, complexInB, inSkipB, complexSumOut,
outSkip, count)

int DSPAPcvmcv(complexMinuend, minuendSkip, complexSubtrahend,
subtrahendSkip, complexDifferenceOut, outSkip, count)

int DSPAPcvtcv(complexInA, inSkipA, complexInB, inSkipB, complexProductOut,
outSkip, count)

All arguments are of type int.

DESCRIPTION

These functions perform arithmetic operations on two complex input vectors and write
the results to an output vector.

DSPAPcvpcvO (complex vector plus complex vector) adds the values in complexInA
to the values in complexInB to produce the complex vector complexSumOut.

DSPAPcvmcvO (complex vector minus complex vector) subtracts the values in
complexSubtrahend from the values in complexMinuend to produce the complex vector
complexDifferenceOut.

DSPAPcvtcvO (complex vector times complex vector) multiplies the values in
complexInA by the values in camplexInB to produce the complex vector
camplexProductOut.

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPcvrealO ~ See DSPAPcvcombineO

DSPAPcvtcvO ~ See DSPAPcvpcvO

DSPAPcvpcv() 3-83

DSPAPfftr2aO, DSPAPvrnovebrO

SUMMARY Perfonn a radix 2 FFT

LIBRARY libarrayproc .a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPfTtr2a(count, complexVector, lookupTable)
int DSPAPvmovebr(vectorln, inSkip, vectorOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

DSPAPfTtr2aO perfonns a radix 2 Fast Fourier Transfonn on the complex data in
complex Vector. The transformed data is written in-place in complexVector and can be
unscrambled using DSPAPvmovebrO.

Unlike the other functions that operate on complex data, DSPAPfTtr2aO expects the
data to reside in separate DSP memory partitions: The real part is in x memory and the
imaginary part is in y memory. The real and imaginary vectors must be the same length
and must have corresponding addresses within their respective partitions. The
following example demonstrates how to establish the addresses for memory-partitioned
complex data:

/* DSPAPGetLowestAddressXY() returns the lowest address that's
* unused in both x and y memory.
*/

#define DATA ADR DSPAPGetLowestAddressXY()

/* DSPMapPMemX() returns the location in x memory that
* corresponds to its argument. DSPMapPMemY() does the same for
* y memory.
*/

#define REAL DATA DSPMapPMemX(DATA_ADR)
#define lMAG DATA DSPMapPMemY(DATA_ADR)

The lookup Table argument is the address of memory~partitioned sine and cosine tables
that are used in computing the FFT. The array processing system functions
DSPAPSinTableO and DSPAPCosTableO are provided to create the (fractional) data
for these tables, as shown in the following example. As with the two parts of complex
data, the two lookup tables are stored in parallel memory locations; the cosine table is
in x memory and the sine table is in y:

3-84 Chapter 3: C Functions

/* Define the locations for the sine and cosine lookup tables.
* COUNT is assumed to have been defined as the number of

* elements in the complex data (in other words, the number of
* points in the FFT) .

*/

#define LOOKUP ADR DATA ADR + COUNT

#define SIN_TABLE DSPMapPMemY(LOOKUP_ADR)

#define COS_TABLE DSPMapPMemX(LOOKUP_ADR)

/* Create the lookup table data. */
float *sinTab DSPAPSinTable(COUNT);

float *cosTab = DSPAPCosTable(COUNT);

The sine and cosine tables need only be half as long as the complex data that you're
transforming. In deference to their use in the FFT, DSPAPSinTableO and
DSPAPCosTableO return pointers to arrays of data that are half as long as the length
specified by the argument.

Writing the complex data and the lookup tables to the DSP is done in the normal
fashion through calls to the DSP array processing system functions. The two vectors
that make up the complex data must contain fractional numbers in the range -1.0 <= f
< 1.0:

/* Write the complex data. realPart and imagPart are assumed to

* be pointers to real and imaginary data on the host.

*/
DSPAPWriteFloatArray(realPart, REAL_DATA, 1, COUNT);

DSPAPWriteFloatArray(imagPart, IMAG_DATA, 1, COUNT);

/* Write the cosine and sine tables. Note that the lengths are

* half that of the complex data.

*/

DSPAPWriteFloatArray(cosTab, COS TABLE, 1, COUNT/2);

DSPAPWriteFloatArray(sinTab, SIN_TABLE, 1, COUNT/2);

/* Perform the FFT. */

DSPAPfftr2a(COUNT, DATA_ADR, LOOKUP ADR);

The data that's written by DSPAPfftr2aO is scrambled according to bit-reversed
indexing. DSPAPvmovebrO unscrambles FFT data as it writes it to vectorOut. When
used to unscramble transformed data, inS kip should be set to count/2.

DSPAPjftr2a() 3-85

You can also unscramble transformed data and read it back to the host at the same time
through this sequence of function calls:

/* Tell the monitor to unscramble the data as it's read. */

DSPSetDMAReadMReg(O);

/* Read the data; the index increment must be COUNT/2. */

DSPAPReadFloatArray(realData, REAL_DATA, COUNT/2, COUNT);

DSPAPReadFloatArray(imagData, IMAG_DATA, COUNT/2, COUNT);

/* Reset the monitor's indexing mode. */

DSPSetDMAReadMReg(-l) ;

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPmaxmagvO ~ See DSPAPmaxvO

DSPAPmaxvO, DSPAPminvO, DSPAPmaxmagvO, DSPAPminmagvO

SUMMARY Find minimum and maximum values in a vector

LIBRARY libarrayproc. a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPminv(vectorln, inSkip, minOut, count)
int DSPAPmaxv(vectorln, inSkip, maxOut, count)
int DSPAPminmagv(vectorln, inSkip, minMagOut, count)
int DSPAPmaxmagv(vectorIn, inSkip, maxMagOut, count)

All arguments are of type int.

DESCRIPTION

Each of these functions finds an extreme value among the elements of vectorln and
writes the value as a one-element vector:

• DSPAPminvO writes the least value to minOut.
DSPAPmaxvO writes the greatest value to maxOut.

• DSPAPminvmagO writes the least magnitude (absolute value) to minMagOut.
• DSPAPmaxmagvO writes the greatest magnitude to maxMagOut.

RETURN

Returns an error code: 0 on success, nonzero on failure.

3-86 Chapter 3: C Functions

DSPAPminvO ~ See DSPAPmaxvO

DSPAPminmagvO ~ See DSPAPmaxvO

DSPAPmtmO

SUMMARY Perform matrix multiplication

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPmtm(matrixlnA, matrixlnB, matrixOut, a2bI, b2, al)

All arguments are of type int.

DESCRIPTION

DSPAPmtmO (matrix times matrix) multiplies matrixlnA by matrixlnB and writes the
results to matrixOut. The input matrices are two-dimensional and are assumed to
contain fractional numbers in the range -1.0 <= f < 1.0. The sizes of their dimensions
are given in the final three arguments:

• a2bl is the number of columns in matrixlnA and the number of rows in matrixlnB.
To perform matrix multiplication, these two dimensions must be the same size.

• b2 is the number of columns in matrixlnB.

• al is the number of rows in matrixlnA.

The product of a matrix mUltiply is an al by b2 matrix of (fractional) values. The value
of an element at x, y in the output matrix is computed as:

a2bl
matrixOut[x][y] = L matrixlnA[x][k] * matrixlnB[k][y]

k=l

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPmtm() 3-87

DSPAPsurnvO, DSPAPsurnvnolirnO, DSPAPsurnvrnagO, DSPAPsurnvsqO,
DSPAPsurnvsquaresO

SUMMARY Add the elements in a vector

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPsumv(vectorln, inSkip, sumOut, count)
int DSPAPsumvnolim(vectorln, inSkip, sum Out, count)
int DSPAPsumvmag(vectorln, inSkip, sumOut, count)
int DSPAPsumvsq(vectorln, inSkip, sumOut, count)
int DSPAPsumvsquares(vectorln, inSkip, sumOut, count)

All arguments are of type int.

DESCRIPTION

These functions add up the values in vectorIn and write the resulting sums to sumOut.

DSPAPsumvO adds the vector elements as they are given. DSPAPsumvnolimO is
similar but doesn't limit the sum; overflow sums are allowed to wrap around.

DSPAPsumvmagO adds the magnitudes (absolute values) of the elements.

DSPAPsumvsqO and DSPAPsumvsquaresO add the squares and the signed squares,
respectively, of the elements. For both of these functions, the values in vectorln are
assumed to be fractional numbers in the range -1.0 <= f < 1.0.

RETURN

Returns an error code: a on success, nonzero on failure.

DSPAPsurnvmagO ~ See DSPAPsurnvO

DSPAPsurnvnolirnO ~ See DSPAPsurnvO

DSPAPsurnvsqO ~ See DSPAPsurnvO

DSPAPsurnvsquaresO ~ See DSPAPsurnvO

3-88 Chapter 3: C Functions

DSPAPvabsO

SUMMARY Compute the magnitude of a vector

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvabs(vectorln, inSkip, vectorOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

DSPAPvabsO computes the magnitude (absolute value) of each element in vectorln
and writes the results to vectorOut.

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPvaslO, DSPAPvasrO, DSPAPvlslO, DSPAPvlsrO

SUMMARY Bit-shift the elements in a vector

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvasl(vectorln, inSkip, vectorOut, outSkip, count)
int DSPAPvasr(vectorln, inSkip, vectorOut, outSkip, count)
int DSPAPvlsl(vectorln, inSkip, vectorOut, outSkip, count)
int DSPAPvlsr(vectorln, inSkip, vectorOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

These functions shift the bits ofthe elements in vectorIn and write the shifted values to
vectorOut.

DSPAPvaslO and DSPAPvasrO perform arithmetic left- and right-shifts, respectively.
In essence, this multiplies (left-shift) or divides (right-shift) the original value by 2,
with overflow values limited to the maximum or minimum value.

DSPAPvabs() 3-89

DSPAPvlslO and DSPAPvlsrO perform logical shifts. All 24 bits of the original
value-including the sign extension-are shifted, and the vacated bit is filled with O.
Overflow values aren't limited.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

DSPAPvtsO

DSPAPvasrO ~ See DSPAPvaslO

DSPAPvclearO ~ See DSPAPvtillO

DSPAPvtillO, DSPAPvtilliO, DSPAPvrampO, DSPAPvrampiO, DSPAPvrandO,
DSPAPvclearO

SUMMARY Fill a vector with values

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvfill(constantAddr, vectorOut, outSkip, count)
int DSPAPvfilli(constantlmmediate, vectorOut, outSkip, count)
int DSPAPvramp(ojfsetAddr, scaleAddr, vectorOut, outSkip, count)
int DSPAPvrampi(ojfsetlmmediate, scaielmmediate, vectorOut, outSkip, count)
int DSPAPvrand(seedAddr, vectorOut, outSkip, count)
int DSPAPvclear(vectorOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

These functions fill the vector vectorOut with constant or DSP-generated values.

DSPAPvfillO and DSPAPvfilliO fill the vector with a constant value. The former reads
the value from the location given as constantAddr; the latter takes the value directly as
constantlmmediate.

3-90 Chapter 3: C Functions

DSPAPvrampO fills the vector with a ramp: Successive elements are given an
incrementally increasing (or decreasing) value starting from an initial offset value

vectorOut[k] = offsetAddr[O] + (k * scaleAddr[O])

DSPAPvrampiO also fills the vector with a ramp, but it takes the offset and scale values
directly as given in offsetlmmediate and scalelmmediate.

DSPAPvrandO fills the vector with uniform pseudo-random numbers using the linear
congruential method for random number generation (from Volume II of The Art of
Computer Programming by Donald Knuth; the multiplier used is 5609937 and the
offset is 1).

DSPAPvclearO clears the vector by setting each element to O.

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPvfilliO ~ See DSPAPvfillO

DSPAPvirnagO ~ See DSPAPvrealO

DSPAPvlslO ~ See DSPAPvaslO

DSPAPvlsrO ~ See DSPAPvaslO

DSPAPvrnoveO, DSPAPvrnovebO

SUMMARY Copy a vector

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvmove(vectorln, inSkip, vectorOut, outSkip, count)
int DSPAPvmoveb(vectorln, inSkip, vectorOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

These functions copy the elements of vectorln into vectorOut; DSPAPvrnoveO starts
with the first element and works its way towards the last, while DSPAPvrnovebO starts
with the last element (of both vectors) and works towards the first. If the input and

DSPAPvmove() 3-91

output vectors don't overlap (and the index increments are equal), then the two
functions are, in essence, the same. For overlapping vectors, you should use
DSPAPvmoveO if vectorIn is greater than vectorOut and DSPAPvmovebO otherwise.
In general, this ensures that the data in vectorIn isn't overwritten before it's copied,
although the copied data may still overwrite the original if skipOut is greater than
skipIn.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

DSPAPvmovebrO (used for unscrambling FFT output)

DSPAPvrnovebO ~ See DSPAPvrnoveO

DSPAPvrnovebrO ~ See DSPAPfftr2aO

DSPAPvrnvO ~ See DSPAPvpvO

DSPAPvnegateO

SUMMARY Negate the elements in a vector

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvnegate(vectorIn, inSkip, vectorOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

DSPAPvnegateO negates the values in vectorIn-positive values become negative and
negative values become positive-and writes the results to vectorOut.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

DSPAPvtsO

3-92 Chapter 3: C Functions

DSPAPvpsO, DSPAPvpsiO, DSPAPvtsO, DSPAPvtsiO

SUMMARY Offset and scale a vector

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvps(vectorln, inSkip, offsetAddr, vectorOut, outSkip, count)
int DSPAPvpsi(vectorln, inSkip, offsetlmmediate, vectorOut, outSkip, count)
int DSPAPvts(vectorln, inSkip, scaleAddr, vectorOut, outSkip, count)
int DSPAPvtsi(vectorln, inSkip, scaleImmediate, vectorOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

These functions offset (add a constant value to) or scale (multiply by a constant value)
the values in vectorln, and they write the result to vectorOut.

DSPAPvpsO (vector plus scaler) and DSPAPvpsiO (vector plus scaler immediate)
offset the vector. The former takes as its offset the value at offsetAddr; the latter takes
its offset directly as offsetlmmediate.

DSPAPvtsO (vector times scaler) and DSPAPvtsiO (vector times scaler immediate)
scale the vector, using the value stored at scaleAddr and the value scalelmmediate,
respectively. For both of these functions, the scaling value and the values in vectorln
are assumed to be fractional numbers in the range -1.0 <= f < 1.0.

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

DSPAPvasIO, DSPAPvasrO, DSPAPvnegateO

DSPAPvpsiO ~ See DSPAPvpsO

DSPAPvps() 3-93

DSPAPvpvO, DSPAPvpvDolirnO, DSPAPvrnvO, DSPAPvtvO

SUMMARY Add, subtract, and multiply two vectors

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvpv(vectorlnA, inSkipA, vectorlnB, inSkipB, sumOut, outSkip, count)
int DSPAPvpvnolim(vectorlnA, inSkipA, vectorlnB, inSkipB, vectorOut, outSkip,

count)
int DSPAPvmv(vectorMinuend, minuendSkip, vectorSubtrahend, subtrahendSkip,

differenceOut, outSkip, count)
int DSPAPvtv(vectorlnA, inSkipA, vectorlnB, inSkipB, productOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

These functions add, subtract, and multiply two input vectors and write the results to
an output vector. In vector arithmetic, the value at index k in the output vector is created
by performing the specified operation on the values at index k in the input vectors (with
the prescribed index-incrementing of k for each vector).

DSPAPvpvO (vector plus vector) and DSPAPvpvnolimO (vector plus vector no
limiting) add vectorlnA to vectorInB and write the sum to sumOut:

sumOut[k] = vectorlnA[k] + vectorlnB[k]

The difference between the two functions is their treatment of overflow sums:
DSPAPvpvO limits an overflow sum to the minimum or maximum possible value,
while DSPAPvpvnolimO allows overflow sums to wrap around.

DSPAPvmvO (vector minus vector) subtracts vectorSubtrahend from vectorMinuend
and writes the difference to differenceOut:

differenceOut[k] = vectorMinuend[k] - vectorSubtrahend[k]

DSPAPvtvO (vector times vector) multiplies vectorInA by vectorlnB and writes the
product to productOut:

productOut[k] = vectorlnA[k] * vectorlnB[k]

RETURN

Returns an error code: 0 on success, nonzero on failure.

3-94 Chapter 3: C Functions

SEE ALSO

DSPAPvsquareO, DSPAPvasIO, DSPAPvasrO, DSPAPvuegateO, DSPAPvpsO,
DSPAPvtsO

DSPAPvpvnolimO ~ See DSPAPvpvO

DSPAPvrampO ~ See DSPAPvfillO

DSPAPvrampiO ~ See DSPAPvfillO

DSPAPvrandO ~ See DSPAPvfillO

DSPAPvreaIO, DSPAPvimagO

SUMMARY Retrieve data from a vector of complex numbers

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvreal(complexln, inSkip, realOut, outSkip, count)
int DSPAPvimag(complexln, inSkip, imagOut, outSkip, count)

All arguments are of type iut.

DESCRIPTION

DSPAPvrealO and DSPAPvimagO retrieve the real and imaginary parts, respectively,
of the values in a vector of complex numbers. For both functions, complexln should
point to the first word (the real part) of a two-word complex value. The retrieved data
is written as a non-complex vector, realOut or imagOut.

count is the number of complex values (two words each) that are read. To read
contiguous complex values, inSkip should be 2. Since realOut and imagOut are vectors
of simple (single-word) values, an outSkip of 1 writes contiguously.

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPvreai() 3-95

DSPAPvreverseO

SUMMARY Reverse the position of the elements in a vector

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvreverse(vectorln, vectorOut, count)

All arguments are of type int.

DESCRIPTION

DSPAPvreverseO reads the elements in vectorln and writes them, in reverse order, to
vectorOut. You can reverse a vector's elements in-place by passing the same location
for the two vector arguments.

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPvsquareO, DSPAPvssqO

SUMMARY Square the elements in a vector

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvsquare(vectorln, inSkip, vectorOut, outSkip, count)
int DSPAPvssq(vectorln, inSkip, vectorOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

DSPAPvsquareO squares each element in vectorln and writes the resulting products to
vectorOut. DSPAPvssqO does the same but maintains the signs of the original
elements. For both functions, the values in vectorln are assumed to be fractional
numbers in the range -1.0 <= f < 1.0.

RETURN

Returns an error code: 0 on success, nonzero on failure.

3-96 Chapter 3: C Functions

SEE ALSO

DSPAPvtvO

DSPAPvssqO ~ See DSPAPvsquareO

DSPAPvswapO

SUMMARY Swap the elements in two vectors

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvswap(veetorA, aSkip, veetorB, bSkip, count)

All arguments are of type int.

DESCRIPTION

DSPAPvswapO swaps the elements in veetorA and veetorB. Data may be lost if the
vectors overlap.

RETURN

Returns an error code: 0 on success, nonzero on failure.

DSPAPvtsO ~ See DSPAPvpsO

DSPAPvtsiO ~ See DSPAPvpsO

DSPAPvtsrnvO ~ See DSPAPvtvpsO

DSPAPvtspvO ~ See DSPAPvtvpsO

DSPAPvtvO ~ See DSPAPvpvO

DSPAPvtvrnvO ~ See DSPAPvtvpvO

DSPAPvtvrnvtvO ~ See DSPAPvtvpvO

DSPAPvswap() 3-97

DSPAPvtvpsO, DSPAPvtspvO, DSPAPvtsmvO

SUMMARY Perform arithmetic operations with two vectors and a constant

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvtvps(vectorInA, inSkipA, vectorInB, inSkipB, offsetAddr, vectorOut,
outSkip, count)

int DSPAPvtspv(vectorInA, inSkipA, vectorInB, inSkipB, scaleAddr, vectorOut,
outSkip, count)

int DSPAPvtsmv(vectorInA, inSkipA, vectorInB, inSkipB, scaleAddr, vectorOut,
outSkip, count)

All arguments are of type int.

DESCRIPTION

These functions perform compound arithmetic operations on two input vectors and a
constant value and write their results to vectorOut. The values in all the input vectors
are assumed to be fractional numbers in the range -1.0 <=/ < 1.0. The constant value
is given by reference; in other words, the constant value argument (either offsetAddr or
scaleAddr) is an address, not an immediate value.

DSPAPvtvpsO (vector times vector plus scaler) multiplies vectorInA by vectorInB and
adds the value at offsetAddr to the product:

vectorOut[k] = (vectorInA[k] * vectorInB[k]) + offsetAddr[O]

DSPAPvtspvO (vector times scaler plus vector) scales vectorInA by the value at
scaleAddr and adds vectorInB to the product:

vectorOut[k] = (vectorInA[k] * scaleAddr[O]) + vectorInB[k]

DSPAPvtsmvO (vector times scaler minus vector) scales vectorInA by the value at
scaleAddr and subtracts vectorInB from the product:

vectorOut[k] = (vectorIn[k] * scaleAddr[O]) - vectorInB[k]

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

DSPAPvtvpvO, DSPAPvtvmvO, DSPAPvtsO, DSPAPvpsO

3-98 Chapter 3: C Functions

DSPAPvtvpvO, DSPAPvtvrnvO, DSPAPvtvpvtvO, DSPAPvtvrnvtvO

SUMMARY Perform arithmetic operations on three and four vectors

LIBRARY libarrayproc.a

SYNOPSIS

#import <dsp/arrayproc.h>

int DSPAPvtvpv(vectorlnA, inSkipA, vectorlnB, inSkipB, vectorlnC, inSkipC,
vectorOut, outSkip, count)

int DSPAPvtvmv(vectorlnA, inSkipA, vectorlnB, inSkipB, vectorInC, inSkipC,
vectorOut, outSkip, count)

int DSPAPvtvpvtv(vectorlnA, inSkipA, vectorlnB, inSkipB, vectorlnC, inSkipC,
vectorlnD, inSkipD, vectorOut, outSkip, count)

int DSPAPvtvmvtv(vectorlnA, inSkipA, vectorlnB, inSkipB, vectorlnC, inSkipC,
vectorlnD, inSkipD, vectorOut, outSkip, count)

All arguments are of type int.

DESCRIPTION

These functions perform a variety of arithmetic operations on two or more input vectors
and write their results to vectorOut. The values in all the input vectors are assumed to
be fractional numbers in the range -1.0 <= f < 1.0.

DSPAPvtvpvO (vector times vector plus vector) adds a vector to the product of a vector
mUltiply:

vectorOut[k] = (vectorlnA[k] * vectorlnB[k]) + vectorlnC[k]

DSPAPvtvmvO (vector times vector minus vector) subtracts a vector from the product
of a vector multiply:

vectorOut[k] = (vectorlnA[k] * vectorlnB[k]) - vectorlnC[k]

DSPAPvtvpvtvO (vector times vector plus vector times vector) adds the products of
two vector multiplies:

vectorOut[k] = (vectorlnA[k] * vectorlnB[k]) + (vectorlnC[k] * vectorlnD[k])

DSPAPvtvmvtvO (vector times vector minus vector times vector) subtracts the product
of a vector multiply from the product of another vector multiply:

vectorOut[k] = (vectorlnA[k] * vectorlnB[k]) - (vectorInC[k] * vectorlnD[k])

DSPAPvtvpv() 3-99

RETURN

Returns an error code: 0 on success, nonzero on failure.

SEE ALSO

DSPAPvtvO, DSPAPvtvpsO, DSPAPvtspvO, DSPAPvtsmvO

DSPAPvtvpvtvO ~ See DSPAPvtvpvO

3-100 Chapter 3: C Functions

Chapter 4
ScoreFile Language Reference

4-3 Program Structure

4-4 Header Statements
4-4 Score Info Statements
4-5 part Statements
4-5 Part Info Statements
4-5 tagRange Statement

4-6 Body Statements
4-6 Note Statements
4-7 Time Statements

4-7 Header or Body Statements
4-7 Variable Declarations and Assignments
4-8 envelope Statements
4-9 waveTable Statements
4-9 object Statements
4-9 include Statements
4-10 print Statements
4-10 tune Statements
4-10 comment and endComment Statements

4-11 Predeclared Variables, Constants, and Special Symbols
4-11 Pitch Variables
4-11 Key Number Constants
4-12 MIDI Constants
4-12 Other Constants
4-12 Special Symbols

4-13 Operators
4-13 Decibel Computation Operator
4-13 Exponentiation Operator
4-14 Pitch Transposition Operator
4-14 Envelope Lookup Operator
4-14 String Concatenation Operator

4-1

4-2

Chapter 4
ScoreFile Language Reference

ScoreFile is a language designed to represent, create, and manipulate music data. The code
for a ScoreFile program is maintained in a file, called a scorejiie, on the disk. A scorefile
represents a Music Kit Score object and its contents in ASCII form. Scorefiles can be
created from a text editor or generated automatically by a Score or ScorefileWriter object.
A scorefile is interpreted when it's read by a Score object or performed by a
ScorefilePerformer object.

This chapter describes the syntax and conventions of the ScoreFile language. The
presentation in this chapter assumes a familiarity with Chapter 3 in the Concepts manual.
A concise outline of ScoreFile syntax can be found in Appendix C, "Summary of ScoreFile
Language Syntax."

Program Structure

A ScoreFile program is divided into two sections: the header and the body. The header
always precedes the body; the two sections are separated by a BEGIN statement. The end
of the scorefile can be marked by an optional END statement:

header
BEGIN;
body
[END;]

Either section can be empty. If the body is empty, the BEGIN statement can be omitted.

Both the header and the body are made up of ScoreFile statements. The header contains
statements that establish the context in which the body is interpreted. The following
statements can appear only in the header:

• Score info statements
• part statements
• Part info statements
• tagRange statements

The body consists of a time-ordered series of statements that represent Note objects. This
information is found only in the body:

• Time statements
• Note statements

Program Structure 4-3

A number of other statements can appear in either the header or the body:

• Variable declarations
• Assignment statements
• envelope statements

wave Table statements
• object statements
• include statements
• print statements
• tune statements

comment and end Comment statements

Header Statements

Score Info Statements

A scorefile can have a Score info statement that consists of the keyword info followed by
one or more parameters:

info parameter [,parameter] ... ;

The Score info statement represents a Score object's info Note; it can contain any amount
and type of information. Typically, the Score info statement contains one or more of the
following parameters:

Parameter

tempo
samplingRate
headroom

Meaning

The tempo that should be used when performing the Score
The performance sampling rate
The Orchestra's headroom setting; a value between -1.0 and 1.0

A scorefile can have more than one Score info statement; if a parameter conflicts with a
parameter set in a previous info statement, the subsequent setting takes precedence.
Parameters are similarly merged if a scorefile is read into a Score object that already has an
info Note (a Score object can have only one info Note). Parameter syntax is described in
the section "Note Statements," below.

The parameters in the info statement aren't explicitly used when the scorefile is read by a
Score or ScorefilePerformer. It's left to the application designer to provide an
implementation that acts on the info statement's parameters.

4-4 Chapter 4: ScoreFile Language Reference

part Statements

The names of all the Part objects that are represented in a scorefile must be declared in a
part statement in the header:

part partName [,partName] ... ;

partName is an identifier that must not have been previously declared. A scorefile can
contain more than one part statement. When the scorefile is read by an application, a Part
object is created and named for each partName in the file's part statements. If a name
conflict results from reading a score file into a Score, the Part represented in the score file is
merged into the similarly named Part in the Score.

Part Info Statements

Each Part represented in the scorefile can have a Part info statement that consists of the
Part's partName as it appears in the part statement followed by one or more parameters:

partName parameter [,parameter] ... ;

The Part info statement represents a Part object's info Note; it can contain any amount and
type of information. The following parameters are typically used in a part info statement:

Parameter

synthPatch
synthPatchCount
midiChan

Meaning

The name of the SynthPatch class used to realize the Part
The number of manually allocated SynthPatch objects
The MIDI channel on which the Part appears

Each Part represented in a score file can have only one Part info statement. Like the
scorefile's info statement, interpretation and use of a Part info's parameters is left to the
application designer.

tagRange Statement

The tagRange statement declares the range of noteTags used in the body of the scorefile:

tag Range anlnteger to aHigherlnteger ;

This is an optional statement that optimizes the noteTag renumbering that occurs when you
mix two or more scorefiles together or when you merge a scorefile into an existing Score
object.

It isn't an error to use a tag that's outside the range specified by a tagRange statement, but
the renumbering optimization applies only to tags that are within the declared range. A
scorefile can have more than one tagRange statement although each subsequent statement
cancels the previous one.

Header Statements 4-5

Body Statements

Note Statements

When a scorefile is read by an application, a single Note object is created for each note
statement in the file. Note statements take the following form:

partName , (typeAndTag) [,parameters] ;

partName is the name of the Part to which the Note belongs. It must be declared in a part
statement in the header.

typeAndTag provides note Type and noteTag information; its form depends on the noteType:

For a noteDur, it takes the form

(duration [note Tag])

duration is a double expression that specifies the duration of the Note in beats; tag is
an integer expression that assigns the Note's noteTag.

For a note On or noteOff, the note Tag is required:

(note On noteTag)
(note Off noteTag)

• The noteTag is optional for a noteUpdate:

(noteUpdate [noteTag])

A noteUpdate with a note Tag is applied to the specified noteTag stream. Without a noteTag,
it's applied to all noteTag streams that are currently being realized on the same Instrument
as the noteUpdate.

• Finally, a mute never takes a note Tag:

(mute)

parameters is a list of parameters separated by commas. A parameter takes the form:

parameterName : expression

parameterName is the name of the parameter. Its form is that of a Music Kit parameter
identifier minus the "MK_" prefix. For example, MKjreq becomes, in a scorefile, freq.
In a scorefile you can create your own parameters simply by including them in a note
statement. When the score file is read by an application, a parameter identifier is
automatically created and named for each of your invented parameters.

4-6 Chapter 4: ScoreFile Language Reference

expression is computed as the value assigned to the parameter. An expression can include
variable assignments:

parameterName : (variable = expression)

Time Statements

A time statement specifies the performance time in beats for all subsequent Note statements
until another time statement is encountered. A time statement takes the form:

t [+] expression;

The keyword t is a special symbol; its value is the current time, in beats, in the scorefile. At
the start of the scorefile, the value oft is 0.0. If expression is preceded by +, t is incremented
by the value of expression. Otherwise, t takes the value of expression directly. Time always
moves forward in a scorefile-the value of t must never decrease.

t can be used as a read-only variable in an expression.

Header or Body Statements

Variable Declarations and Assignments

Variable declaration is the same as in C:

• When you declare a variable you must specify its type.
• More than one variable of the same type can be declared in the same declaration.
• A variable's value may be set when it's declared.

The variable declaration statement takes the following form:

dataType identifier [= expression] [, identifier [= expression]] ... ;

Assignment is also like C:

identifier = expression

Variable assignments can be nested and can appear in parameter value expressions.

Header or Body Statements 4-7

ScoreFile provides seven data types:

double
int
string
env
wave
object
var

The double and int types are the same as in C; string takes a string value:

string = "text";

env, wave, and object take Envelope, WaveTable, and object values, respectively, as
described in the following sections. var is a wild card: A variable so declared
automatically matches the type of its assigned data. In general, var obviates the need for
the other six types; however, the others can be used for clarity, or to cast a value to a
particular type.

envelope Statements

You can create an Envelope in a scorefile by using an envelope statement:

envelope envelopeName = envelopeConstant ;

When the scorefile is read, an Envelope object is created and named for each envelope
statement in the file. envelopeName can be any previously undeclared identifier and can be
used as the value in a variable assignment (the variable's type must be env or var):

env = envelopeName ;

envelopeConstant contains a list of the Envelope's breakpoints. Each breakpoint is
described by its x, y, and (optional) smoothing values. Breakpoint descriptions are in
parentheses and the entire Envelope is delimited by brackets:

[(xValue ,yValue [, smoothing Value]) , ...]

A scorefile can contain any number of Envelopes.

4-8 Chapter 4: ScoreFile Language Reference

waveTable Statements

WaveTables are created with the wave Table statement:

waveTable waveTableName = waveTableConstant ;

Similar to the envelope statement, an object is created and named for each waveTable
statement in a scorefile when the file is read. The created object is either a Partials or a
Samples object, depending on the specification in waveTahleConstant. A Partials object is
described as a series frequency ratio, amplitude ratio, and (optional) phase values.

Each specification defines a single partial and is surrounded by braces; like an Envelope,
the entire object is delimited by brackets:

[{frequencyRatio , amplitudeRatio [,phase] } , ...]

A Samples object is defined by a soundfile:

[{ "soundfileName" }]

waveTableName can be used in a wave or var assignment.

object Statements

You can use an object statement to add your own objects to a scorefile:

object objectName = objectConstant ;

objectConstant contains, in brackets, the name of the object's class followed by a
description of the object:

[className objectDescription]

objectDescription can be any text except "]". className must implement the methods
readASCIIStream:, and writeASCIIStream: to define how to read and write the object
description.

include Statements

When an include statement is encountered, the specified file is immediately read and
interpreted:

include" score fileName" ;

Header or Body Statements 4-9

print Statements

A print statement is used to print information to a stream pointer (NXStream *):

print expression [, expression] ... ;

The information is displayed when the scorefile is interpreted. The
setScorefilePrintStream: method, defined by Score and ScorefilePerformer, lets you set
the stream to which a scorefile's messages are printed. By default, they're printed to
standard error.

tune Statements

The tune statement lets you create a tuning system other than the default twelve-tone
equal-temperament:

tune pitch Variable = expression;
tune expression ;

The first form of the statement tunes pitch Variable, a predeclared ScoreFile variable, to
expression, taken as a frequency in hertz. All pitch variables of the same pitch class as
pitch Variable are tuned to the appropriate octave transposition of expression. Pitch
variables are described in the next section, "Predeclared Variables, Constants, and Special
Symbols." The second form transposes all pitch variables by expression half-steps. A
negative value transposes down; a fractional value transposes by less than a half step.

comment and end Comment Statements

In addition to supporting the C and Objective-C language comment syntax, ScoreFile
supplies its own comment construction:

comment;
commentedCode
endComment;

4-10 Chapter 4: ScoreFile Language Reference

Predeclared Variables, Constants, and Special Symbols

Pitch Variables

ScoreFile reserves a number of words as predefined pitch variables. Pitch variables
represent the frequencies of pitches over a ten and a half octave range. A pitch variable
name takes the following form (spaces between components aren't allowed):

pitchLetter[sharpOrFlat] octave

pitchLetter is a lowercase letter from a to g.

sharpOrFlat is s for sharp and ffor flat. (Double sharps and double flats aren't supported.)

octave is 00 or an integer from 0 to 9. Octaves are placed such that c4 is middle C. cOO is
the lowest pitch, g9 is the highest.

A pitch variable can be assigned an arbitrary value in an assignment statement or
assignment expression. The value assigned to a pitch variable is taken as a frequency in
hertz:

pitchVariable = expression;

By assigning a value to a pitch variable, only the value of that pitch variable is changed; this
is different from using a pitch variable in a tune statement, where all pitch variables of the
same pitch class are affected.

Key Number Constants

Key numbers are similar in appearance to pitch variables, but have an appended k (again,
embedded spaces aren't allowed):

pitchLetter[sharpOrFlat]octavek

Unlike a pitch variable, which represents a frequency, a key number is an integer that
represents the ordinal number of a key on a MIDI synthesizer.

Predeclared Variables. Constants, and Special Symbols 4-11

MIDI Constants

A number of MIDI constants defined as values for MIDI parameters are provided by
ScoreFile:

resetControllers
localControlModeOn
localControlModeOff
allN otesOff
omniModeOff
omniModeOn

Other Constants

monoMode
polyMode
sysClock
sysStart
sysContinue
sysStop

sysActiveSensing
sysReset
sys UndefinedOxf9
sys UndefinedOxfd

ScoreFile also defines the integer constants YES (1) and NO (2).

Special Symbols

ScoreFile defines two special symbols, t and ran. These are read-only variables that should
never be assigned a value in an assignment statement. The t symbol was described in the
section "Time Statements," earlier in this chapter.

ran is a random number (a double) between 0 and 1. The seed for the random number
generator is randomly set to produce a different series of random numbers every time the
file is read.

4-12 Chapter 4: ScoreFile Language Reference

Operators

ScoreFile provides its own set of operators in addition to supporting a subset of C arithmetic
operators. The following table shows all the available operators in order of decreasing
priority. The operators unique to ScoreFile are discussed below.

Operator

()

dB
A _
,

*,/, %
+,-
@
&

=

Operation

Grouping
Unary minus
Decibel computation
Exponentiation, pitch transposition
Multiplication, division, modulus
Addition, subtraction
Envelope lookup
String concatenation
Assignment
Sequence separator

Decibel Computation Operator

The postfix decibel operator dB is used to specify an amplitude value in units of decibels:

expression dB

The computation used by the dB operator is:

lO(expression /20)

o dB is the maximum amplitude.

Exponentiation Operator

In ScoreFile, the expression

expression 1\ expression

calculates the left expression raised to the power of the right expression.

Operators 4-13

Pitch Transposition Operator

The pitch transposition operator'" is designed to transpose a pitch variable:

pitch Variable '" expression

The computed value is the frequency of pitch Variable raised or lowered by expression
half-steps (a negative value lowers the pitch). The pitch variable's value isn't affected.

Envelope Lookup Operator

The Envelope lookup operator @ retrieves a discrete value from an envelope:

envelopeName @xValue

The calculation returns the y value in envelopeName that corresponds to xValue. The
operation performs a linear interpolation between breakpoints, if necessary.

String Concatenation Operator

The string concatenation operation takes the form:

expression & expression

The two expressions are converted to text and concatenated to produce a new string,
regardless of the data types of the original expressions.

4-14 Chapter 4: ScoreFile Language Reference

Appendix A
Summary of ScoreFile Language Syntax

A-3 Program Structure

A-4 Header Statements

A-4 Body Statements

A-5 Header or Body Statements

A-7 Constants, Predeclared Variables, and Special Symbols

A-8 Operators

A-J

A-2

Appendix A
Summary of ScoreFile Language Syntax

This appendix gives a succinct summary of the syntax of the ScoreFile language. Chapter
4, "ScoreFile Language Reference," provides a general description and explanation of
ScoreFile syntax and ScoreFile program organization.

Program Structure

scorefile:
[header] [BEGIN; [body [END;]]]

header:
headerStatement ; [header]

headerStatement:
scorelnfoStatement
partDeclaration
partlnfoStatement
tagRangeDeclaration
headerOrBodyStatement

body:
bodyStatement ; [body]

bodyStatement:
timeStatement
noteStatement
headerOrBodyStatement

headerOrBodyStatement:
variableDeclaration
envelopeDeclaration
waveTableDeclaration
objectDeclaration
assignmentStatement
includeStatement
printStatement
tuneStatement
commentStatement
endC ommentStatement

Program Structure A-3

Header Statements

scorelnfoStatement:
info [,parameters]

partDeclaration:
part partList

partList:
partName [,partList]

partName:
identifier

partlnJoStatement:
partName [,parameters]

tagRangeDeclaration:
tag Range integer to integer

Body Statements

timeStatement:
t [+] expression

noteStatement:
partName , (typeAndTag) [, parameters]

typeAndTag:
duration [, noteTag]
noteOn , noteTag
note Off , noteTag
noteUpdate [,noteTag]
mute

duration:
expression

noteTag:
integerExpression

parameters:
parameter [,parameters]

parameter:
parameterName : parameterValue

A-4 AppendixA: Summary of Score File Language Syntax

parameterName:
identifier

parameter Value:
expression

Header or Body Statements

The large, bold brackets, braces, and parentheses in the components of the envelope,
waveTable, and object declarations below are to be typed where shown.

variableDeclaration:
dataType initVariableList

dataType:
double
int
string
var
obj
wave
env

initVariableList:
initVariable [, initVariableList]

initVariable:
identifier [= expression]

envelopeDeclaration:
envelope envelopeName = envelopeConstant

envelopeName:
identifier

envelopeConstant:
[envelopePointList]

envelopePointList:
envelopePoint [, envelopePointList]

envelopePoint:
(xValue, yValue [, smoothingValue])

waveTableDeclaration:
waveTable waveTableName = waveTableConstant

Header or Body Statements A-5

waveTableName:
identifier

waveTableC onstant:
[partialsList]
[{soundfileName }]

partialsList:
partial [, partialsList]

partial:
{frequencyRatio , amplitudeRatio [,phase] }

sound fileName:
fileName

fileName:
"fileName"

objectDeclaration:
object objectName = objectConstant

objectName:
identifier

objectConstant:
[className objectDescription]

objectDescription:
defined by className; can contain anything except]

assignmentStatement:
identifier = expression

includeStatement:
include fileName

printStatement:
print expressionList

expressionList:
expression [, expressionList]

tuneStatement:
tune pitchVariable = expression
tune expression

commentStatement:
comment

A -6 Appendix A: Summary of ScoreFile Language Syntax

endC ommentStatement:
end Comment

Constants, Predeclared Variables, and Special Symbols

midiC onstants:
channelM odeC onstant
systemRealTimeConstant

channelM odeC onstant:
resetControllers
localControlModeOn
localControlModeOff
allNotesOff
omniModeOff
omniModeOn
monoMode
polyMode

systemRealTimeC onstant:
sysClock
sysUndefinedOxf9
sysStart
sysContinue
sysStop
sysUndefinedOxfd
sysActiveSensing
sysReset

otherConstants:
keyNumber
NO (equal to 0)
YES (equal to 1)

predeclaredVariable:
pitch Variable

ScoreFile reserves more than 200 keywords for the representation of pitch names and key
numbers. Rather than list the entire set of these keywords, formulas are given here that
describe the form of the keyNumber and pitch Variable names.

keyNumber:
pitch Variable

pitch Variable:
pitchLetter [sharpOrFlat] octave

Constants, Predeclared Variables, and Special Symbols A-7

Operators

pitchLetter:
c
d
e
f
g
a
b

sharpOrFlat:
s
f

octave:
00
o
1
2
3
4
5
6
7
8
9

The ScoreFile special symbols are read-only variables that can manipulate their own value.
Special symbols should never be assigned a value in an assignment statement.

specialSymbols:
t
ran

Operators are shown in descending priority. Operators on the same line are of equal
priority; they're processed in the order that they occur in the scorefile.

operator:
groupingOperator
prejixOperator postjixOperator
arithmeticOperator
envelopeLookupOperator stringC oncatenationOperator
assignmentOperator
sequenceSeparator

A-8 Appendix A: Summary of ScoreFile Language Syntax

groupingOperator:
()

prejixOperator:

postjixOperator:
dB

arithmeticOperator:
A",

* / %
+-

envelopeLookupOperator:
@

stringConcatenationOperator:
&

assignmentOperator:

=

sequenceSeparator:

Operators A-9

A-lO

Appendix B
Music Tables

B-3 Pitches and Frequencies

B-6 Music Kit Parameters
B-6 Frequency Modulation Parameters
B-9 Wave Table Synthesis Parameters
B-l1 Pluck Parameters

B-12 WaveTable Database

B-1

B-2

Appendix B
Music Tables

Pitches and Frequencies

The following table shows the correspondence between pitch name variables, key numbers,
and the frequencies (in Hz) that they represent.

Key number constants, not explicitly listed here, are the same as pitch name variables, but
with an appended "k".

The rightmost column, "Upper Limit," shows the highest frequency (inclusive) that
corresponds to the key number. A key number's lowest frequency (non-inclusive) is the
upper limit of the previous key number.

Pitch Name Frequency Key # Upper Limit

COO 8.175625 0 8.418725
CsOO/DfOO 8.661875 1 8.919375
DOO 9.176875 2 9.449775
DsOO/EfOO 9.722812 3 10.011812
EOO/FfOO 10.300937 4 10.607137
FOO/EsOO 10.913438 5 11.237738
FsOO/GfOO 11.562188 6 11.905888
GOO 12.249688 7 12.613988
GsOO/AfOO 12.978438 8 13.364138
AOO 13.75 9 14.1587
AsOO(BfOO 14.5675 10 15.0007
BOO/CfO 15.434062 11 15.892562
CO(BsOO 16.35125 12 16.83745
CsO/DfO 17.32375 13 17.83865
DO 18.35375 14 18.89965
DsO/EfO 19.445625 15 20.023725
EO/FfO 20.601875 16 21.214275
FO/EsO 21.826875 17 22.475575
FsO/GfO 23.124375 18 23.811775
GO 24.499375 19 25.228075
GsO/AfO 25.956875 20 26.728375
AO 27.5 21 28.3174
AsO(BfO 29.135 22 30.0015
BO/Cfl 30.868125 23 31.785225
Cl(BsO 32.7025 24 33.6749
Csl/Dfl 34.6475 25 35.6775
Dl 36.7075 26 37.7993
Dsl/Efl 38.89125 27 40.04745
El/Ffl 41.20375 28 42.42875

(continued)

Pitches and Frequencies B-3

Pitch Name Frequency Key # Upper Limit

F1IEsl 43.65375 29 44.95125
Fsl/Gfl 46.24875 30 47.62375
G1 48.99875 31 50.45625
Gs1/Afl 51.91375 32 53.45685
Al 55.0 33 56.635
As1/Bfl 58.27 34 60.0031
Bl/Cf2 61.73625 35 63.57055
C2/Bs1 65.405 36 67.35
Cs2/Df2 69.295 37 71.3549
D2 73.415 38 75.5987
Ds21Ef2 77.7825 39 80.0949
E2/Ff2 82.4075 40 84.8574
F2IEs2 87.3075 41 89.9024
Fs2/Gf2 92.4975 42 95.2475
G2 97.9975 43 100.9125
Gs2/Af2 103.8275 44 106.9137
A2 110.0 45 113.2699
As2/Bf2 116.54 46 120.0062
B2/Cf3 123.4725 47 127.1412
C3/Bs2 130.81 48 134.7
Cs3/Df3 138.59 49 142.71
D3 146.83 50 151.1975
Ds3IEf3 155.565 51 160.19
E3/Ff3 164.815 52 169.715
F3IEs3 174.615 53 179.805
Fs3/Gf3 184.995 54 190.495
G3 195.995 55 201.825
Gs3/Af3 207.655 56 213.8275
A3 220.0 57 226.54
As3/Bf3 233.08 58 240.0125
B3/Cf4 246.945 59 254.2824
C4/Bs3 261.62 60 269.4
Cs4/Df4 277.18 61 285.42
D4 293.66 62 302.395
Ds4IEf4 311.13 63 320.38
E4/Ff4 329.63 64 339.43
F4IEs4 349.23 65 359.61
Fs4/Gf4 369.99 66 380.99
G4 391.99 67 403.65
Gs4/Af4 415.31 68 427.655
A4 440.0 69 453.08
As4/Bf4 466.16 70 480.025
B4/Cf5 493.89 71 508.565
C5/Bs4 523.24 72 538.8
Cs5/Df5 554.36 73 570.84
D5 587.32 74 604.79
Ds5IEf5 622.26 75 640.76
E5jFf5 659.26 76 678.86
F5/Es5 698.46 77 719.22
Fs5/Gf5 739.98 78 761.98
G5 783.98 79 807.3

(continued)

B-4 Appendix B: Music Tables

Pitch Name Frequency Key # Upper Limit
Gs5/Af5 830.62 80 855.31
A5 880.0 81 906.16
As5IBf5 932.32 82 960.05
B5/Cf6 987.78 83 1017.13
C6IBs5 1046.48 84 1077.6
Cs6/Df6 1108.72 85 1141.68
D6 1174.64 86 1209.58
Ds6/Ef6 1244.52 87 1281.52
E6/Ff6 1318.52 88 1357.72
F6/Es6 1396.92 89 1438.44
Fs6/Gf6 1479.96 90 1523.96
G6 1567.96 91 1614.6
Gs6/Af6 1661.24 92 1710.62
A6 1760.0 93 1812.32
As6IBf6 1864.64 94 1920.1
B6/Cf7 1975.56 95 2034.26
C7IBs6 2092.96 96 2155.1999
Cs7/Df7 2217.44 97 2283.36
D7 2349.28 98 2419.1599
Ds7/Ef7 2489.04 99 2563.04
E7/Ff7 2637.04 100 2715.44
F7/Es7 2793.84 101 2876.8799
Fs7/Gf7 2959.92 102 3047.92
G7 3135.92 103 3229.1999
Gs7/Af7 3322.48 104 3421.2399
A7 3520.0 105 3624.6399
As71Bf7 3729.28 106 3840.2
B7/CfS 3951.12 107 4068.52
C8IBs7 4185.92 108 4310.3999
Cs8/DfS 4434.88 109 4566.7199
D8 4698.56 110 4838.3199
Ds8/EfS 4978.08 111 5126.0799
E8/FfS 5274.08 112 5430.8799
F8/Es8 5587.68 113 5753.7599
Fs8/GfS 5919.84 114 6095.8399
G8 6271.84 115 6458.3999
Gs8/AfS 6644.96 116 6842.4799
A8 7040.0 117 7249.2799
As8IBfS 7458.56 118 7680.3999
B8/Cf9 7902.24 119 8137.0399
C9IBs8 8371.84 120 8620.8
Cs9/Df9 8869.76 121 9133.44
D9 9397.12 122 9676.64
Ds9/Ef9 9956.16 123 10252.1599
E9/Ff9 10548.16 124 10861.76
F9/Es9 11175.36 125 11507.52
Fs9/Gf9 11839.68 126 12191.6799
G9 12543.68 127 12543.68

Pitches and Frequencies B-5

Music Kit Parameters

This section lists and describes the parameters that are recognized by the Music Kit
SynthPatches. The following information is given for each parameter:

• Print name
• Typical value range
• Description of use

Keep in mind that a parameter's print name is used when the parameter is written to a
scorefile. In an application, a parameter is known as an integer identifier that's represented
as MKyrintName. For example, the parameter listed below as amp is identified in an
application as MK_amp.

As described in Chapter 3 of the Concepts manual, a constant-valued parameter can be
retrieved as any data type, regardless of how it was set. However, the Music Kit
SynthPatches always retrieve parameter values as specific types. The type by which a
particular parameter is retrieved is implied by the value range. For example, a value range
of [0.0, 1.0] implies that the parameter value is retrieved as a double; the range [0, 127]
means that the type is int.

The parameters are organized according to synthesis technique. Many of the parameters,
such as those that affect frequency, are common to more than one synthesis technique.
Thus, for completeness, the same parameter description may be given in more than one
section.

Frequency Modulation Parameters

There are nine subclasses of SynthPatch that perform frequency modulation (fm). The
simplest of these are single-modulator instruments:

SynthPatch

Fml
Fmli
Fmlv
Fmlvi

Description

Simple (one-modulator) fm
Simple fm with frequency interpolation
Simple fm with vibrato
Simple fm with interpolation and vibrato

There's also a simple fm that has access to the Music Kit WaveTable database for use in the
carrier oscillator:

SynthPatch

DBFmlvi

Description

Simple fm with interpolation, vibrato, and WaveTable database

The database contents are listed in "Wave Table Database," later in this appendix.

B-6 Appendix B: Music Tables

The rest of the fm SynthPatches use two modulators. All of these classes provide frequency
interpolation and vibrato:

SynthPatch

Fm2cvi
Fm2cnvi
Fm2pvi
Fm2pnvi

Description

Cascade fm
Cascade fm with random modulation (noise) on the modulators
Parallel fm
Parallel fm with noise

The parameters recognized by the fm SynthPatches are listed below; parameters that are
recognized by only a subset of the SynthPatches are so noted.

Name

amp

ampO

amp I

ampAtt

ampEnv

ampRel

bearing

bright

cRatio

c1Ratio

freq

freqO

freql

freqAtt

Value Range

[0.0, 1.0] or
[-00,0.0] dB

same as amp

same as amp

[0.0,00]

Envelope object

[0.0,00]

[-45.0,45.0]

[0.0, 1.0]

[0.0, ~ 10.0]

same as cRatio

[~15.0, ~11000.0]

or pitch variable

same as freq

same as freq

[0.0,00]

Description

Basic amplitude (but see ampl). The dB
(decibel) scaling is obtained through the MKdBO
C function; in a scorefile, with the dB postfix
operator.

Amplitude when ampEnv = 0.0.

Amplitude when ampEnv = 1.0; synonym for
amp.

ampEnv attack duration in seconds.

Amplitude envelope.

ampEnv release duration in seconds.

Stereophonic placement in degrees. 0.0 is center,
-45.0 is hard left, and 45.0 is hard right.

Modulation index scaler (defaults to 1.0).

Carrier frequency as a ratio of the fundamental.

Synonym for cRatio

Fundamental frequency (but see freql).

Frequency when freqEnv = 0.0.

Frequency when freqEnv = 1.0; synonym for
freq.

freqEnv attack duration in seconds.

(continued)

Music Kit Parameters B-7

Name

freqEnv

freqRel

keyNum

mlInd

mlIndO

mlIndl

mlIndAtt

mlIndEnv

mlIndRel

mlPhase

mlRatio

mlWaveform

m2Ind
through
m2Waveform

noiseAmp

noiseAmpO

noiseAmpl

noiseAmpAtt

noiseAmpEnv

noiseAmpRel

B-8 Appendix B,' Music Tables

Value Range

Envelope object

[0.0,00]

[0, 127] or
key number

[0_0, -10.0]

same as mlInd

same as mlInd

[0.0,00]

Envelope object

[0.0,00]

[-180.0, 180]

[0.0, -10.0]

WaveTable object

Description

Frequency envelope.

freqEnv release duration in seconds.

Specifies pitch as an index into the default
TuningSystem, an array of frequencies. Used
only in the absence of freq.

Index of modulator 1 (but see mlIndl).

Index of modulator 1 when mlIndEnv = 0.0.

Index of modulator 1 when mlIndEnv = 1.0;
synonym for mlInd.

mlIndEnv attack duration in seconds.

Index Envelope for modulator 1.

mlIndEnv release duration in seconds.

Initial phase of modulator 1.

Modulator 1 frequency as a ratio of the
fundamental.

Waveform of modulator 1.

Same as the similarly named parameters above, applied to modulator 2.
Used by the two-modulator SynthPatches only (Fm2cvi, Fm2cnvi,
Fm2pvi, and Fm2pnvi).

[0.0, 1.0] Amplitude of noise. This parameter and the
following noise parameters are used by Fm2cnvi
and Fm2pnvi only.

same as noiseAmp Amplitude of noise when noiseAmpEnv = 0.0.

same as noiseAmp Amplitude of noise when noiseAmpEnv = 1.0;
synonym for noiseAmp.

[0.0, 00] noiseAmpEnv attack duration in seconds.

Envelope object Noise amplitude Envelope.

[0.0, 00] noiseAmpEnv release duration in seconds.

(continued)

Name Value Range Description

phase [-180.0, 180] Initial phase of the carrier, in degrees.

portamento [0.0,00] Phrase rearticulation time in seconds. Resets the
x value of the second point of all Envelopes.

rvibAmp [0.0, 1.0] Random vibrato amplitude; unused by Fm1 and
Fm1i.

svibAmp [0.0, 1.0] Sinusoidal vibrato amplitude; see above.

svibFreq [0.0, ~ 15.0] Sinusoidal vibrato frequency; see above.

waveform Wave Table object Waveform of the carrier (sine wave by default).
or database string The database string is used only by DBFm1 vi.

waveLen power of2 waveform length (optimal value by default).

Wave Table Synthesis Parameters

There are seven subclasses of SynthPatch that implement wave table synthesis. The first
four use Wave Table objects that you supply:

SynthPatch

Wave 1
Wave1v
Wave1i
Wave1vi

Description

One WaveTable
One Wave Table with vibrato
One Wave Table with frequency interpolation
One Wave Table with vibrato and interpolation

The others have access to the Music Kit WaveTable database:

SynthPatch

DB Wave 1 v
DBWavelvi
DBWave2vi

Description

One database Wave Table with vibrato
One database WaveTable with vibrato and interpolation
Two database WaveTables with vibrato and interpolation

The wave table synthesis parameters are:

Name

amp

ampO

Value Range

[0.0, 1.0] or
[-00,0.0] dB

same as amp

Description

Basic amplitude (but see amp!). The dB
(decibel) scaling is obtained through the MKdBO
C function; in a scorefile, with the dB postfix
operator.

Amplitude when ampEnv = 0.0.

(continued)

Music Kit Parameters B-9

Name Value Range Description

amp 1 same as amp Amplitude when ampEnv = 1.0; synonym for
amp.

ampAtt [0.0,00] ampEnv attack duration in seconds.

ampEnv Envelope object Amplitude envelope.

ampRel [0.0,00] ampEnv release duration in seconds.

bearing [-45.0,45.0] Stereophonic placement in degrees. 0.0 is center,
-45.0 is hard left, and 45.0 is hard right.

freq [~15.0, ~11000.0] Fundamental frequency (but see freql).
or pitch variable

freqO same as freq Frequency when freqEnv = 0.0.

freq1 same as freq Frequency when freqEnv = 1.0; synonym for
freq.

freqAtt [0.0,00] freqEnv attack duration in seconds.

freqEnv Envelope object Frequency envelope.

freqRel [0.0,00] freqEnv release duration in seconds.

keyNum [0, 127] or Specifies pitch as an index into the default
key number TuningSystem, an array of frequencies. Used

only in the absence of freq.

phase [-180.0, 180] Initial phase of the first WaveTable, in degrees.

portamento [0.0,00] Phrase rearticulation time in seconds. Resets the
x value of the second point of all Envelopes.

rvibAmp [0.0, 1.0] Random vibrato amplitude; unused by Fm1 and
Fmli.

svibAmp [0.0, 1.0] Sinusoidal vibrato amplitude; see above.

svibFreq [0.0, ~ 15.0] Sinusoidal vibrato frequency; see above.

waveform WaveTable object First WaveTable (but see waveforml). The
or database string database string is used only by database

SynthPatches.

(continued)

B-JO Appendix B: Music Tables

Name Value Range Description

waveformO same as waveform WaveTable when waveformEnv = 0.0. Used by
DBWave2vi only.

waveform 1 same as waveform WaveTable when waveformEnv = 1.0; synonym
for waveform.

waveformEnv Envelope object Envelope that pans between the two Wave Tables.
Used by DBWave2vi only.

waveLen power of2 waveform length (optimal value by default).

Pluck Parameters

There's only one Pluck. An example of physical modeling synthesis, Pluck derives much
of its characteristic sound naturally, without requiring much attention. As such, it
recognizes fewer parameters than the other SynthPatches:

Name

amp

amp ReI

bearing

decay

freq

keyNum

10westFreq

pickNoise

sustain

Value Range

[0.0, 1.0] or
[-00,0.0] dB

[0.0,00]

[-45.0,45.0]

[0.0,00]

[~15.0, ~ 11000.0]
or pitch variable

[0, 127] or
key number

same as freq

[0.0, ~0.06]

[0.0, 1.0]

Description

Basic amplitude (but see ampl). The dB
(decibel) scaling is obtained through the MKdBO
C function; in a scorefile, with the dB postfix
operator.

noteOffrelease time in seconds (to -60 dB).

Stereophonic placement in degrees. 0.0 is center,
-45.0 is hard left, and 45.0 is hard right.

Initial decay in seconds (to -60 dB). 0.0 means
no decay.

Fundamental frequency.

Specifies pitch as an index into the default
TuningSystem, an array of frequencies. Used
only in the absence of freq.

Lowest frequency among subsequent
noteUpdates.

Duration of initial noise burst in seconds.

Level of sustain.

Music Kit Parameters B -11

WaveTable Database

The Music Kit provides a library of Wave Table objects that can be accessed by the DB
family of SynthPatches: DBFml vi, DBWavel v(i), and DBWave2vi. The entries in the
database are referred to by string names, both in an application and in a scorefile. The
precise WaveTable that's used depends on the frequency of the Note that's being
synthesized. By default, the value offreq (or its synonym freql) is used to determine the
Note's frequency; you can find an entry based on the value of freqO by preceding the
database string name with the character "0" (zero); for example, "OBA".

Name Description

"BA" Bass voice "ah"
"BE" Bass voice "eh"
"BO" Bass voice "oh"
"BU" Bass voice "00"

"TA" Tenor voice "ah"
"TE" Tenor voice "eh"
"TI" Tenor voice "ee"
"TO" Tenor voice "oh"
"TU" Tenor voice "00"

"SA" Soprano voice "ah"
"SE" Soprano voice "eh"
"sr' Soprano voice "ee"
"SO" Soprano voice "oh"
"SU" Soprano voice "00"

"VCA" Cello attack
"VCS" Cello sustain
"VNA" Violin attack
"VNS" Violin sustain
"TR" Trumpet
"BN" Bassoon
"AS" Alto saxophone
"ss" Soprano saxophone
"BC" Bass clarinet
"CL" Clarinet
"ER" English horn
"OB" Oboe
"PN" Piano
"TW" Triangle wave
"SW" Sawtooth wave
"IW" Impulse wave

B-12 Appendix B: Music Tables

Appendix C
Details of the DSP

C-3 Memory Map

C-4 DSP D-15 Connector Pinouts

C-5 DSP56001 Instruction Set Summary

C-J

C-2

Appendix C
Details of the DSP

Memory Map

The following table describes the memory map for the DSP private RAM (8K words).

Start

p:O
p:$2000
p:$AOOO

x:O
x:$100
x:$2000
x:$AOOO

y:O
y:$100
y:$2000
y:$AOOO

End

p:$lFF
p:$3FFF
p:$BFFF

x:$FF
x:$lFF
x:$3FFF
x:$AFFF

y:$FF
y:$lFF
y:$3FFF
y:$AFFF

Name

On-chip program RAM ('$' denotes hex)
Off-chip program RAM, image 1
Off-chip program RAM, image 2

On-chip data RAM, x bank
On-chip data ROM, x bank (Mu-Law, A-law tables)
Off-chip data RAM, x bank, image 1
Off-chip data RAM, x bank, image 2

On-chip data RAM, y bank
On-chip data ROM, y bank (Sine wave cycle)
Off-chip data RAM, y bank, image 1
Off-chip data RAM, y bank, image 2

Off-chip memory exists in two "images" for each space. In image 1, all three memory
spaces occupy the same physical memory (in other words, the XjY~, PS~, and DS~ pins of
the DSP56001 are not connected when address line A15 is low). In image 2, x and yare
split into separate 4K banks, and p overlays them both with an 8K image (that is, XjY ~ is
used as address line A12 and PS~ and DS~ are not connected when A15 is high). External
memory starts at 8K ($2000) instead of 512 ($200) because address line A13 in the DSP
must be high to enable external DSP RAM. (Note that there is another enable for this RAM
in the System Control Register 2.)

Memory Map C-3

DSP D-15 Connector Pinouts

The following describes the output pins of the DSP D-15 connector at the back of the cube.
The left column is the connector pin number, and the right column is the signal name as it
appears in the Motorola DSP56000/DSP56001 Digital Signal Processor User's Manual.

D-1S DSP

1 SCK
2 SRD
3 STD
4 SCLK
5 RXD
6 TXD
7 +12V,500mA
8 -12V,100mA
9 GND

10 GND
11 GND
12 SC2
13 SCI
14 SCO
15 GND

Figure C-l shows the circuit through which signals are sent from the DSP to the D-15
connector.

Vee

From DSP

+12V
500mA

-12V
100mA

Vee

Connector pins
1-6,12-14

"----~ Connector pin 7

L----------.,r&lIlt-----J(m7\'-------=~ Connector pin 8

Figure C-l. D-15 Connector

There's a series RF choke on each connector signal that doesn't affect its steady-state level.

C-4 Appendix C: Details of the DSP

DSP56001 Instruction Set Summary

The following notation is used in the summary:

Notation
,*,

[a,b]
<a,b>
<n>
#I<n>
A<n>
An
Xn
Rn
AnyEa
AnyXY
AnyIO
Creg
Dreg
Areg
AnyReg
cc

Denotes

Instructions that don't allow parallel data moves
One of a orb
Either a,b or b,a
A nonnegative integer
n-bit immediate value
n-bit absolute address
AO, AI, or A2 (similarly for Bn)
XO or Xl (similarly for Yn)
RO, RI, R2, R3, R4, RS, R6, or R7 (similarly for Nn, Mn)
Addressing modes (Rn)[-[Nn]], (Rn+Nn), -(Rn) (similarly for An)
[x,y]:AnyEa
[x,y]:«pp (x or y peripheral address, 6 bits, l's extended)
Registers Mn, SR, OMR, SP, SSH, SSL, LA, LC
Registers Xn, Y n, An, Bn, A, B
Registers Rn, Nn
Registers Dreg, Areg, Creg
CC(HS) CS(LO) EC EQ ES GE GT LC LE LS LT MI NE NR PL NN

left-justified moves: ---7 [A,B,Xn,Yn]
right-justified moves: ---7 [An,Bn,Rn,Nn]

DSP56001lnstruction Set Summary C-5

Arithmetic Instructions

ABS [A,B]
ADC [X,Y],[A,B]
ADD [X,Xn,Y,Yn,B,A],[A,B]
ADDL [B,A],[A,B]
ADDR [B,A],[A,B]
ASL [A,B]
ASR [A,B]
CLR [A,B]
CMP [Xn,Yn,B,A],[A,B]
CMPM [Xn,Yn,B,A],[A,B]
*DIV [Xn,Yn],[A,B]
MAC ±[Xn,Yn],[Xn,Yn],[A,B]
MACR ±[Xn,Yn],[Xn,Yn],[A,B]
MPY ±[Xn,Yn],[Xn,Yn],[A,B]
MPYR ±[Xn,Yn],[Xn,Yn],[A,B]
NEG [A,B]
*NORM [A,B]
RND [A,B]
SBC [X,Y],[A,B]
SUB [X,Xn,Y,Yn,B,A],[A,B]
SUBL [B,A],[A,B]
SUBR [B,A],[A,B]
*Tcc [Xn,Yn,B,A],[A,B]
TFR [Xn,Yn,B,A],[A,B]
TST [A,B]

Logical Instructions

AND [Xn,Yn],[A,B]
* ANDI #I8,[MR,CCR,OMR]
EOR [Xn,Yn],[A,B]
LSL [A,B]
LSR [A,B]
NOT [A,B]
OR [Xn,Yn],[A,B]
*ORI #I8,[MR,CCR,OMR]
ROL [A,B]
ROR [A,B]

Hit Manipulation Instructions

*BCLR #BS,AnyXY
*BSET #BS,AnyXY
*BCHG #BS,AnyXY
*BTST #BS,AnyXY
*JCLR #BS,[AnyXY,AnyIO],xxxx
*JSET #BS,[AnyXY,AnyIOJ,xxxx
*JSCLR #BS,[AnyXY,AnyIO],xxxx
*JSSET #BS,[AnyXY,AnyIO],xxxx

C-6 Appendix C: Details afthe DSP

Absolute Value
Add Long with Carry
Add
Shift Left then Add (D=2*D+S)
Shift Right then Add (D=D/2+S)
Arithmetic Shift Left (DI=DI *2)
Arithmetic Shift Right (DI=Dl/2)
Clear Accumulator
Compare (CCR=Sign(DI-S))
Compare magnitude (CCR=Sign(D-S))
Divide Iteration (DIS iteration)
Signed Multiply-Add (no Xl *XI, YI *YI)
Signed Multiply, Accumulate, and Round
Signed Multiply (no Xl *XI, YI *YI)
Signed Multiply-Round (no Xl *XI, YI *YI)
Negate Accumulator
Normalize Accumulator Iteration
Round Accumulator
Subtract Long with Carry (D = D - S - C)
Subtract (D = D - S)
Shift Left then Subtract (D = 2*D - S)
Shift Right then Subtract (D = D/2 - S)
Transfer Conditionally
Transfer Data ALU Register
Test Accumulator

Logical AND (DI=DI&S)
AND Immediate with Control Register
Logical Exclusive OR (DI=DI XOR S)
Logical Shift Accumulator Left (DI=Dl«l)
Logical Shift Accumulator Right (DI=DI»l)
Logical Complement on Accumulator (D l=-D 1)
Logical Inclusive OR (Dl=DlS)
OR Immediate with Control Register
Rotate Accumulator Left ([C,Dl] ROL)
Rotate Accumulator Right ([Dl,C] ROR)

Bit Test and Clear (C = Selected bit)
Bit Test and Set (C = Selected bit)
Bit Test and Change (C = Selected bit)
Bit Test on Memory (C = Selected bit)
Jump if Bit Clear
Jump if Bit Set
Jump to Subroutine if Bit Clear
Jump to Subroutine if Bit Set

Loop Instructions

*DO [[x,y]:[AnyEa,A12],AnyReg],L
*ENDDO

Move Instructions

*LUA (Rn)[±[Nn]],[Rn,Nn]
MOVE (NOP)
*MOVEC <AnyXY,Creg>
*MOVEC [#I16,#I8],Creg
*MOVEC <Creg,AnyReg>
*MOVEM <p:AnyEa,AnyReg>
*MOVEP <[AnyReg,AnyXY],AnyIO>
*MOVEP #I24,AnyIO

Program Control Instructions

*Jcc [A12,AnyEa]
*JMP [A12,AnyEa]
*JScc [A12,AnyEa]
*JSR [A12,AnyEa]
*NOP
*REP [AnyXY,#I12,AnyReg]
*RESET
RTI
RTS
*STOP
*SWI
*WAIT

Start Hardware Loop (L=Label after end)
Exit from Hardware Loop

Load Updated Register
Move Data
Move Control Register
Move Control Register
Move Control Register
Move Program Memory
Move Peripheral Data
Move Peripheral Data

Jump Conditionally
Jump
Jump to Subroutine Conditionally
Jump to Subroutine
No Operation
Repeat Next Instruction
Reset Peripherals
Return from Interrupt
Return from Subroutine
Stop Processing
Software Interrupt
Wait for Interrupt

DSP560011nstruction Set Summary C-7

C-8

Index

abort method 2-96,2-145,2-148,2-252
abortEnvelope method 2-289
acceptsFirstResponder method 2-35
acceptSys: method 2-97
activate method 2-195,2-231
activateS elf method 2-77, 2-179, 2-196, 2-231
activeSynthPatches: method 2-253
Add2UO class

specification 2-285
addName:fromMachO: 2-12
addName:fromSoundfile: 2-12
addName:sound: 2-12
addNote: method 2-161
addNoteCopies:timeShift: 2-162
addNoteCopy: method 2-161
addNoteReceiver: method 2-88
addNotes:timeShift: 2-161
addNoteSender: method 2-120,2-196
addPart: method 2-213
addPatchpoint: method 2-188
address method 2-247
addSynthData:length: 2-189
addToPart: method 2-107
addToScore: method 2-162
addUnitGenerator: method 2-189
addUnitGenerator:ordered: 2-189
adjustLength: method 2-297
afterPerformance method 2-82, 2-89, 2-242
afterPerformanceSel:to:argCount: 2-54
alloc method 2-54
allocFromZone: method 2-54
allocMode method 2-253
allocPatchpoint: method 2-145,2-149
allocSynthData:length: 2-145,2-149
allocSynthPatch: method 2-145, 2-149
allocSynthPatch:patchTemplate: 2-146, 2-149
allocUnitGenerator: method 2-146,2-149
allocUnitGenerator:after: 2-149
allocU nitGenerator: before: 2-149
alloc UnitGenerator: between:: 2-150
Allpass 1 UO class

specification 2-287
amp Ratios method 2-172
anySeed method 2-331
argCount method 2-272, 2-273

argName: met:lOd 2-272
argSpace: method 2-272
Array Processing

functions 3-79
AsympUO class

specification 2-289
atOrAfterTime: method 2-162
atOr AfterTime:nth: 2-162
attackDur method 2-69
atTime: method 2-162
atTime:nth: 2-163
autoAlloc method 2-253
awake method 2-179,2-196,2-232

background Gray method 2-27,2-35
beatSize method 2-60
becomeFirstResponder method 2-35
beforePerformanceSel:to:argCount: 2-55
BEGIN statement in ScoreFile 4-3
begin Atomic Section method 2-150

C functions 3-3, 3-5
Array Processing functions 3-79
DSP driver functions 3-49
Music Kit functions 3-5
sound functions 3-30

calcDrawInfo method 2-35
channelCount method 2-14
channelNoteReceiver: method 2-97
channelNoteSender: method 2-97
classInfo method 2-272,2-273
clear method 2-247,2-288, 2-309, 2-311
clock Conductor method 2-55
close method 2-97,2-146,2-150
combine Notes method 2-163
comment statement in ScoreFile 4-10
compactSamples method 2-14
compare: method 2-108
compatible With: method 2-14
computeTime method 2-150
Conductor class

specification 2-49
conductor method 2-97, 2-108, 2-197
conductorDidPause: method 2-66
conductorDidResume: method 2-66

Index-I

connect: method 2-125,2-133
connectionCount method 2-125,2-133
connections method 2-125,2-133
ConstantUG class

specification 2-295
containsNote: method 2-163
controllerValues: method 2-259
convertToFormat:samplingRate:channeICount:

2-14
copy method 2-60,2-70,2-78,2-83,2-89,2-108,

2-120,2-125,2-133,2-163,2-172,2-184,2-189,
2-197,2-208,2-213,2-222,2-226,2-232,2-242,
2-253, 2-267, 2-281

copy: method 2-35
copyFromZone: method 2-60,2-70, 2-83, 2-89,

2-109,2-126,2-133,2-163,2-197,2-214,2-232
copyParsFrom: method 2-109
copySamples:at:count: 2-15
copySound: method 2-15
currentConductor method 2-55
cut: method 2-36

data method 2-15
dataDouble method 2-281
dataDoubleLength: method 2-282
dataDoubJeLength:scale: 2-282
dataDoubleScale: method 2-282
dataDSP method 2-281
dataDSPLength: method 2-281
dataDSPLength:scale: 2-281
dataDSPScale: method 2-281
dataFormat method 2-15
dataSize method 2-16
dB operator in ScoreFi1e 4-13
deactivate method 2-197,2-198,2-232,2-233
deactivateS elf method 2-78,2-180, 2-198, 2-232
dealloc method 2-247,2-259,2-273
dealloc: method 2-146,2-150
decibel computation operator in ScoreFile 4-13
defaultConductor method 2-55
defaultPatchTemplate method 2-258
defaultPhase method 2-172
defaultSmoothing method 2-70
DelayUG class

specification 2-297
delegate method 2-16,2-36,2-61,2-198,2-233
delete: method 2-36
deleteSamples method 2-16
deleteSamplesAt:count: 2-16
deviceStatus method 2-98,2-151
didPlay: method 2-22, 2-36, 2-44
didRecord: method 2-22, 2-36, 2-44
disconnect method 2-126,2-134
disconnect: method 2-126, 2-134

Index-2

display Mode method 2-36
drawCurrentValue method 2-27
drawSelf:: 2-27,2-37
DSP

specifications C-3
DSP driver

functions 3-49
DSPAPcvcombineO 3-82
DSPAPcvconjugateO 3-84
DSPAPcvfillO 3-82
DSPAPcvfilliO 3-82
DSPAPcvmandelbrotO 3-83
DSPAPcvmcvO 3-85
DSPAPcvmoveO 3-84
DSPAPcvnegateO 3-84
DSPAPcvpcvO 3-85
DSPAPcvrealO 3-82
DSPAPcvtcvO 3-85
DSPAPfftr2aO 3-86
DSPAPmaxmagvO 3-88
DSPAPmaxvO 3-88
DSPAPminmagvO 3-88
DSPAPminvO 3-88
DSPAPmtmO 3-89
DSPAPsumvO 3-90
DSPAPsumvmagO 3-90
DSPAPsumvnolimO 3-90
DSPAPsumvsqO 3-90
DSPAPsumvsquaresO 3-90
DSPAPvabsO 3-91
DSPAPvaslO 3-91
DSPAPvasrO 3-91
DSPAPvcIearO 3-92
DSPAPvfillO 3-92
DSPAPvfilliO 3-92
DSPAPvimagO 3-97
DSPAPvlslO 3-91
DSPAPvlsrO 3-91
DSPAPvmoveO 3-93
DSPAPvmovebO 3-93
DSPAPvmovebrO 3-86
DSPAPvmvO 3-96
DSPAPvnegateO 3-94
DSPAPvpsO 3-95
DSPAPvpsiO 3-95
DSPAPvpvO 3-96
DSPAPvpvnolimO 3-96
DSPAPvrampO 3-92
DSPAPvrampiO 3-92
DSPAPvrandO 3-92
DSPAPvrealO 3-97
DSPAPvreverseO 3-98
DSPAPvsquareO 3-98
DSPAPvssq() 3-98

DSPAPvswapO 3-99
DSPAPvtsO 3-95
DSPAPvtsiO 3-95
DSPAPvtsmvO 3-100
DSPAPvtspvO 3-100
DSPAPvtvO 3-96
DSPAPvtvmvO 3-101
DSPAPvtvmvtvO 3-101
DSPAPvtvpsO 3-100
DSPAPvtvpvO 3-101
DSPAPvtvpvtvO 3-101
DSPCount method 2-145
dspwrap 3-79
DswitchtUG class

specification 2-299
DswitchUG class

specification 2-301
dur method 2-109
duration method 2-198,2-233

empty method 2-164,2-214
emptyQueue method 2-61
enableErrorChecking: method 2-272
END statement in ScoreFile 4-3
endAtomicSection method 2-151
end Comment statement in ScoreFile 4-10
Envelope class

specification 2-67
envelope lookup operator in ScoreFile 4-14
envelope method 2-290
envelope statement in ScoreFile 4-8
envelopeStatus method 2-290
exponentiation operator in ScoreFile 4-13

fastResponse method 2-151
file method 2-78, 2-83
fileExtension method 2-77,2-82,2-83,2-222,

2-226
FilePerformer class

specification 2-75
FileWriter class

specification 2-81
fiIlTableLength:scale: 2-172,2-208,2-282
findSoundFor: method 2-12
finish method 2-247,2-274
finishFile marker 2-83
finishFile method 2-78,2-222,2-226
finishPerformance method 2-55
finish Self method 2-274, 2-290
finishUnarchiving method 2-16,2-61
finishWhenEmpty method 2-56
firstNote: method 2-83, 2-89, 2-242
firstTimeTag method 2-78,2-180, 2-233
firstTimeTag:lastTimeTag: 2-164

floatValue method 2-27
flushTimedMessages method 2-146,2-151
foreground Gray method 2-27,2-37
free method 2-16,2-37,2-70,2-89,2-98,2-109,

2-120,2-126,2-134,2-146,2-151,2-164,2-172,
2-180,2-198,2-208,2-214,2-222,2-233,2-243,
2-253,2-259,2-267,2-274,2-282

freeNoteReceivers method 2-90
free Notes method 2-164,2-214
freeNoteSenders method 2-120,2-198
freePartPerformers method 2-233
freePartRecorders method 2-243
free Parts method 2-214
free Parts Only method 2-214
freeSelf method 2-259, 2-274
freeSelfOnly method 2-164,2-214
freq method 2-109
freqForKeyNum: method 2-266, 2-267
freqRatios method 2-172
freqWithinRange: method 2-173
functions See C functions

getNth:x:y:smoothing: 2-70
getPartial:freqRatio:ampRatio:phase: 2-173
getSelection:size: 2-37
getVolume:: 2-12

hadError: method 2-23,2-37,2--44
headroom method 2-151
hideCursor method 2-37
highestFreqRatio method 2-173
hold Time method 2-28

idle method 2-247,2-274
idleS elf method 2-274
ignoreSys: method 2-98
incAtFreq: method 2-314
include statement in ScoreFile 4-9
incRatio method 2-314
index method 2-152
info method 2-16,2-165,2-214,2-223,2-226
info statement in ScoreFile 4-4
infoForNoteReceiver: method 2-227
infoForNoteSender: method 2-223
info Size method 2-17
init method 2-61,2-71,2-78,2-83,2-90,2-110,

2-126,2-134,2-146,2-173,2-180,2-184,2-199,
2-209,2-215,2-223,2-227,2-233,2-253,2-260,
2-275,2-282

init: method 2-110
initializeFile method 2-79,2-84,2-223,2-227
inPerformance method 2-56,2-90,2-199,2-243
insertSamples:at: 2-17
install method 2-267

Index-3

installSharedObject:for: 2-152
installSharedSynthData WithSegment:for: 2-152
installSharedSynthData WithSegmentAnd

Length:for: 2-152
Instrument class

specification 2-87
InterpUG class

specification 2-303
isAllocated method 2-247,2-275
isAutoScale method 2-37
isBezeled method 2-28,2-38
isClocked method 2-56
isConnected: method 2-126,2-l34
isContinuous method 2-38
isCurrentConductor method 2-61
isDSPUsed method 2-152
isEditable method 2-17
isEmpty method 2-17,2-56,2-165
isEnabled method 2-38
isEqual: method 2-260
isFreeable method 2-248,2-260, 2-275
is Muted method 2-l3
isNoteReceiverPresent: method 2-90
isNoteSenderPresent: method 2-120,2-199
isPar Present: method 2-11 0
isPartPresent: method 2-215
isPaused method 2-56, 2-62
isRunning method 2-28
isSorted method 2-165
isSquelched method 2-127,2-134
isTimed method 2-152

key number constant in ScoreFile 4-11
keyNum method 2-110

lastTimeTag method 2-79,2-180,2-234
length method 2-248,2-283,2-298
localDeltaT method 2-98,2-153
lockPerformance method 2-57
lockPerformanceNoBlock method 2-57
lookupYForX: method 2-71

masterUGPtr method 2-272
maxFr~4 meIllod 2-173
max Value method 2-28
memorySpace method 2-248
Midi class

specification 2-93
MIDI constant in ScoreFi1e 4-12
midiPart: method 2-215
minFreq method 2-173
min Value method 2-28
MKAdjustFreqWithPitchBendO 3-12
MKAmpAttenuationToMidiO 3-5

Index-4

MKAmpToMidiO 3-5
MKCancelMsgRequestO 3-14
MKClearTraceO 3-20
MKdBO 3-6
MKErrorO 3-7
MKErrorStreamO 3-7
MKFinishPerformanceO 3-8
MKFreqToKeyNumO 3-12
MKGetDeltaTO 3-8
MKGetDeltaTTimeO 3-8
MKGetEnvelopeClassO 3-18
MKGetNamedObjectO 3-13
MKGetNoDValO 3-9
MKGetNoteClassO 3-18
MKGetNotePar AsDoubleO 3-17
MKGetNotePar AsEnvelopeO 3-17
MKGetNoteParAslntO 3-17
MKGetNoteParAsObjectO 3-17
MKGetNoteParAsStringO 3-17
MKGetNoteParAsStringNoCopyO 3-17
MKGetNotePar AsWaveTableO 3-17
MKGetObjectNameO 3-13
MKGetPartClassO 3-18
MKGetPartialsClassO 3-18
MKGetPreemptDurationO 3-19
MKGetTimeO 3-8
MKlnitParameterIterationO 3-10
MKIsNoDValO 3-9
MKIsNoteParPresentO 3-10
MKIsTracedO 3-20
MKKeyNumToFreqO 3-12
MKMidiToAmpO 3-5
MKMidiToAmpAttenuationO 3-5
MKMidiToAmpAttenuation WithSensitivityO

3-5
MKMidiToAmp WithSensitivityO 3-5
MKNameObjectO 3-13
MKNewMsgRequestO 3-14
MKNextParameterO 3-10
MKNoteTagO 3-15
MKNoteTagsO 3-15
MKRemoveObjectNameO 3-l3
MKRepositionMsgRequestO 3-14
MKRescheduleMsgRequestO 3-14
MKScheduleMsgRequestO 3-14
MKSetDeitaTO 3-8
MKSetEnvelopeClassO 3-18
MKSetErrorProcO 3-7
MKSetErrorStream{) 3-7
MKSetN oteClassO 3-18
MKSetNoteParToDoubleO 3-17
MKSetNoteParToEnvelopeO 3-17
MKSetNoteParTolntO 3-17
MKSetNoteParToObjectO 3-17

MKSetNoteParToStringO 3-17
MKSetNoteParToWaveTableO 3-17
MKSetPartClassO 3-18
MKSetPartialsClassO 3-18
MKSetPreemptDurationO 3-19
MKSetSamplesClassO 3-18
MKSetScorefileParseError AbortO 3-20
MKSetTimeO 3-8
MKSetTraceO 3-20
MKSetUGAddressArgO 3-26
MKSetUGAddressArgTolntO 3-26
MKSetUGDatumArgO 3-26
MKSetUGDatumArgLongO 3-26
MKTransposeO 3-12
MKUpdateAsympO 3-27
MKWritePitchNamesO 3-28
mouseDown: method 2-38
moved method 2-275
moved: method 2-260
Mulladd2UG class

specification 2-305
Mul2UG class

specification 2-307
muLawROM method 2-153
music

tables B-3
Music Kit

classes 2-47
functions 3-5
parameters B-6

mute: method 2-254

name method 2-17
needs Compacting method 2-17
new method 2-13,2-61,2-96,2-107,2-125,2-147
newFrame: method 2-27,2-35
newFromMachO: method 2-13
newFromPasteboard method 2-13
newFromSoundfile: method 2-13
newOnDevice: method 2-96
newOnDSP: method 2-147
newSetTimeTag: method 2-107
next method 2-260
next: method 2-165
nextNote method 2-79,2-223
Note class

specification 2-101
note statement in ScoreFile 4-6
noteCount method 2-165,2-215
noteEnd method 2-260
noteEndSelf method 2-261
NoteFilter class

specification 2-119
noteOff: method 2-261

noteOffSelf: method 2-261
noteOn: method 2-261
note On Self: method 2-261
NoteReceiver class

specification 2-123
note Receiver method 2-90, 2-98
note Receivers method 2-91,2-98,2-243
notes method 2-165
NoteSender class

specification 2-131
noteSender method 2-98,2-120,2-199
noteS enders method 2-98,2-121,2-199,2-234
notesNoCopy method 2-166
note Tag method 2-111, 2-262
noteType method 2-111
noteUpdate: method 2-262
noteUpdateSelf: method 2-262
nth: method 2-166
nthOrchestra: method 2-147

object statement in ScoreFile 4-9
OnepoleUG class

specification 2-309
OnezeroUG class

specification 2-311
open method 2-99,2-147,2-153
openlnputOnly method 2-99
openOutputOnly method 2-99
orchAddrPtr method 2-248
Orchestra class

specification 2-139
orchestra method 2-248,2-262,2-275
orchestraClass method 2-258,2-273
OscgafiUG class

specification 2-313
OscgafUG class

specification 2-313
OscgUG class

specification 2-317
OutlaUG class

specification 2-321
OutlbUG class

specification 2-321
Out2sumUG class

specification 2-323
outputIsTimed method 2-99
outputSoundfile method 2-153
owner method 2-127,2-135

par AsDouble: method 2-111
parAsEnvelope: method 2-111
parAslnt: method 2-112
parAsObject: method 2-112
parAs String: method 2-112

Index-5

par AsStringNoCopy: method 2-112
par As WaveTable: method 2-113
parName: method 2-107
Part class

specification 2-159
part info statement in ScoreFile 4-5
part method 2-114, 2-180, 2-184
part statement in ScoreFile 4-5
partCount method 2-215
partialCount method 2-174
Partials class

specification 2-169
PartPerformer class

specification 2-177
partPerformerForPart: method 2-234
partPerformers method 2-234
PartRecorder class

specification 2-183
partRecorderForPart: method 2-243
partRecorders method 2-243
parts method 2-215
parType: method 2-113
parVector: method 2-113
par VectorCount method 2-114
paste: method 2-38
PatchTemplate class

specification 2-187
patch Template method 2-262
patchTemplateFor: method 2-259
pause method 2-18,2-62,2-200,2-234
pause: method 2-18
pauseFor: method 2-62, 2-200
pause Performance method 2-57
peak Gray method 2-28
peakValue method 2-28
peekMemoryResources: method 2-153
perform method 2-79,2-181,2-200
performance Thread method 2-57
performCount method 2-201
Performer class

specification 2-191
performer method 2-114
performerDidActivate: method 2-204,2-238
performerDidDeactivate: method 2-239
performerDidPause: method 2-204,2-239
performerDidResume: method 2-204,2-205,

2-239
performNote: method 2-79,2-223
phases method 2-174
phraseStatus method 2-262
pitch transposition operator in ScoreFile 4-14
pitch variable in ScoreFile 4-11
play method 2-18
play: method 2-18,2-38

Index-6

point Count method 2-71
predictTime: method 2-62
preemptEnvelope method 2-290
preemptFor: method 2-262
preemptSynthPatchFor:patches: 2-254
print statement in ScoreFile 4-10

ran variable in ScoreFile 4-12
read: method 2-18,2-28,2-39,2-63,2-71,2-79,

2-84,2-91,2-114,2-127,2-135,2-181,2-201,
2-235

readMidifile: method 2-215
readMidifile:firstTimeTag:lastTimeTag:

timeShift: 2-216
readMidifileStream: method 2-216
readMidifileStream:firstTimeTag:lastTimeTag:

timeShift: 2-216
readOnly method 2-248
readScorefile: method 2-216
readScorefile:firstTimeTag:lastTimeTag:

timeShift: 2-216
readScorefileStream: method 2-217
readScorefileStream:firstTimeTag:lastTimeTag:

timeShift: 2-217
readSoundfile: method 2-18,2-209
realizeNote:fromNoteReceiver: 2-91,2-227,

2-254
realizeNote:fromNoteReceiver: method 2-184
receiveAndFreeNote: method 2-127
receiveAndFreeN ote: atTime: 2-127
receiveAndFreeNote:withDelay: 2-128
receiveNote: method 2-128
receiveNote:atTime: 2-128
receiveNote:withDelay: 2-128
record method 2-19
record: method 2-19,2-39
reduction method 2-39
reductionFactor method 2-39
reference Count method 2-248,2-275
releaseDur method 2-72
relocation method 2-276
removeFromPart method 2-114
removeFromScore method 2-166
removeNote: method 2-166
removeNoteReceiver: method 2-91
removeNoteReceivers method 2-92
removeNotes: method 2-166
removeNoteSender: method 2-121
removeNoteSenders method 2-121,2-201
removePar: method 2-115
removePart: method 2-217
removePartPerformers method 2-235
removePartRecorders method 2-243
removeSoundForName: method 2-13

resetEnvelope:yScale:yOffset:xScale:
releaseXScal:funcPtr:transitionTime: 2-291

resetPointer method 2-298
resignFirstResponder method 2-39
resources method 2-276
resume method 2-19,2-63,2-202,2-235
resume: method 2-19
resumePerformance method 2-58
run method 2-99,2-147,2-153,2-249,2-276
run: method 2-29
runsAfter: method 2-276
runSelf method 2-276

sample Count method 2-19
Samples class

specification 2-207
samplesProcessed method 2-20
samplingPeriod method 2-72
sampling Rate method 2-20,2-153
scaleToFit method 2-39
ScaieUG class

specification 2-325
scaling method 2-283
Sclladd2UG class

specification 2-327
Scl2add2UG class

specification 2-329
Score class

specification 2-211
score method 2-166,2-236,2-243
ScoreFile

language reference 4-3
language syntax summary A-3

ScorefilePerformer class
specification 2-221

scorefilePrintStream method 2-217, 2-224
Scorefile Writer class

specification 2-225
ScorePerformer class

specification 2-229
ScoreRecorder class

specification 2-241
segmentName: method 2-154
segmentSink: method 2-154
segmentZero: method 2-154
sel:to:atTime:argCount: 2-63
sel:to:withDelay:argCount: 2-64
selectAll: method 2-40
selection Changed: method 2-44
sendAndFreeNote: method 2-135
sendAndFreeNote:atTime: 2-135
sendAndFreeNote:withDelay: 2-135
sendNote: method 2-136
sendNote:atTime: 2-136

sendNote:withDelay: 2-136
setAl: method 2-310
setAddressArg:to: 2-276
setAddressArgToSink: method 2-277
setAddressArgToZero: method 2-277
setAmp: method 2-317
setAmplnput: method 2-314
setAutoscale: method 2-40
setBO: method 2-310,2-312
setBI: method 2-312
setBackgroundGray: method 2-29,2-40
setBBO: method 2-288
setBearing: method 2-323
setBearing:scale: 2-324
setBeatSize: method 2-64
setBezeled: method 2-29,2-40
setBrightness:forFreq: 2-310
setClocked: method 2-58
setConductor: method 2-202,2-236
setConstant: method 2-295
setConstantDSPDatum: method 2-295
setContinuous: method 2-40
setCurVal: method 2-291
setData: method 2-249
setData:length:offset: 2-249
setDataSize:dataFormat:samplingRate:

channeICount:infoSize: 2-20
setDatumArg:to: 2-277
setDatumArg:toLong: 2-277
setDelayMemory: method 2-298
setDelaySamples: method 2-301
setDelayTicks: method 2-299
setDelegate: method 2-20,2-40,2-64,2-202,2-236
setDisplayMode: method 2-41
setDur: method 2-115
setDuration: method 2-202,2-236
setEnabled: method 2-41
setEnvelope:yScale:yOffset:xScale:

releaseXScale:funcPtr: 2-291
setFastResponse: method 2-147, 2-154
setFile: method 2-80, 2-84
setFinishWhenEmpty: method 2-58
setFirstTimeTag: method 2-80,2-181,2-237
setFloatValue: method 2-29
setForegroundGray: method 2-29,2-41
setFreq: method 2-318
setFreqRangeLow:high: 2-174
setHeadroom: method 2-148,2-154
setHoldTime: method 2-29
setIncInput: method 2-314
setIncRatio: method 2-314
setInfo: method 2-167,2-217,2-227
setInfo:forNoteReceiver: 2-227

Index-7

setlnput: method 2-287,2-298,2-310,2-312,
2-321,2-324,2-325

setlnput1: method 2-285,2-299,2-301,2-303,
2-305,2-307,2-327,2-329

setlnput2: method 2-285,2-300,2-302,2-303,
2-305,2-307,2-327,2-329

setlnput3: method 2-304, 2-305
setKeyNum:toFreq: 2-266,2-268
setKeyNumAndOctaves:toFreq: 2-267,2-268
setLastTimeTag: method 2-80,2-182,2-237
setLeftScale: method 2-324
setLocalDeltaT: method 2-99,2-148,2-155
setMute: method 2-13
setName: method 2-20
setNoteTag: method 2-115
setNoteType: method 2-116
setOnChipMemoryConfigDebug:patchPoints:

2-155
setOutput: method 2-285,2-287,2-292,2-295,

2-298,2-300,2-302,2-304,2-306,2-307,2-310,
2-312,2-314,2-318,2-325,2-327,2-329,2-331,
2-333

setOutputSoundfile: method 2-155
setOutputTimed: method 2-100
setPar:toDouble: 2-116
setPar:toEnvelope: 2-116
setPar:tolnt: 2-116
setPar:toObject: 2-117
setPar:toString: 2-117
setPar:to WaveTable: 2-117
setPart: method 2-182,2-185
setPartiaICount:freqRatios:ampRatios:phases:

orDefaultPhase: 2-174
setPeakGray: method 2-29
setPhase: method 2-315,2-318
setPointCount:xArray:orSamplingPeriod:

y Array:smoothingArray:
orDefaultSmoothing: 2-72

setPointCount:xArray:y Array: 2-73
setPointer: method 2-298
setRate: method 2-292
setReadOnly: method 2-249
setReduction: method 2-41
iietRerluctionFadur; method 2-42
setReleaseXScale: method 2-293
setRightScale: method 2-324
setSamplingRate: method 2-148,2-155
setScale: method 2-322, 2-325
setScale1: method 2-300,2-302
setScale2: method 2-300
setScore: method 2-237,2-244
setScorefilePrintStream: method 2-217,2-224
setSeed: method 2-331,2-333
setSelection:size: 2-42

Index-8

setSound: method 2-30,2-42,2-209
setSoundOut: method 2-155
setStickPoint: method 2-73
setStream: method 2-80, 2-84
setSynthPatchClass: method 2-254
setSynthPatchCount: method 2-254
setSynthPatchCount:patchTemplate: 2-255
setT60: method 2-293
setTable: method 2-315,2-318
setTable:defauItToSineROM: 2-315,2-318
setTable:length: 2-315,2-319
setTable:length:defauItToSineROM: 2-316,

2-319
setTableToSineROM method 2-316,2-320
setTargetVal: method 2-293
setTempo: method 2-64
setThreadPriority: method 2-58
setTimed: method 2-148,2-156
setTimeOtTset: method 2-65
setTimeShift: method 2-84, 2-203, 2-237
setTimeTag: 2-117
setTimeUnit: method 2-84,2-185,2-244
setTo12ToneTempered method 2-268
setToConstant: method 2-249
setToConstant:length:offset: 2-250
setUselnputTimeStamps: method 2-100
setVolume:: 2-14
setYScale:yOffset: 2-293
sharedObjectFor: method 2-156
sharedObjectFor:segment: 2-156
sharedObjectFor:segment:length: 2-156
shiftTime: method 2-167,2-217
shouldOptimize: method 2-273
showCursor method 2-42
sineROM method 2-156
sizeTo:: 2-42
sizeToFit method 2-43
smoothingArray method 2-73
SNDAcquireO 3-30
SNDAllocO 3-32
SNDBootDSPO 3-30
SNDBytesToSamplesO 3-42
SNDCompactSamplesO 3-39
SNOCompressSoundO 3-34
SNDConvertSoundO 3-36
SNDCopySamplesO 3-37
SNDCopySoundO 3-37
SNDDeleteSamplesO 3-39
snddriver _ dsp _ bootO 3-49
snddriver _ dsp _ dma JeadO 3-50
snddriver _ dsp _ dma _ writeO 3-50
snddriver_dsp_host_cmdO 3-51
snddriver _ dsp _protocolO 3-52
snddriver_dsPJeadO 3-55

snddriver _ dsp Jead _ dataO 3-55
snddriver _ dsp Jead _ message sO 3-55
snddriver _ dsp _ resetO 3-49
snddriver_dsp_set_flagsO 3-54
snddriver _ dsp _ writeO 3-55
snddriver _ dspcmd Jeq_ condition 3-57
snddriver _ dspcmd Jeq_ errO 3-58
snddriver _ dspcmd Jeq_ msgO 3-58
snddriver _get_device _parmsO 3-67
snddriver _get_ dsp _ cmd _portO 3-59
snddriver _get _ volumeO 3-67
snddriver _new_device _portO 3-60
snddriver JeplL handlerO 3-61
snddriver _set_device _parmsO 3-67
snddriver _set _ dsp _owner_portO 3-68
snddriver _set JampO 3-67
snddriver _set _ sndin _owner_portO 3-68
snddriver _set _ sndout _ bufcountO 3-70
snddriver _set _ sndout _ bufsizeO 3-70
snddriver _set _ sndout _owner_portO 3-68
snddriver _set _ volumeO 3-67
snddriver _stream _ controlO 3-72
snddriver _stream _ ndmaO 3-70
snddriver _stream _ nsamplesO 3-72
snddriver _stream _setupO 3-73
snddriver _stream_start JeadingO 3 -77
snddriver _stream _start_ writingO 3-77
SNDFreeO 3-32
SNDGetCompressionOptionsO 3-34
SNDGetDataPointerO 3-38
SNDGetFilterO 3-43
SNDGetMuteO 3-43
SNDGetVolumeO 3-43
SNDiMulawO 3-36
SNDInsertSamplesO 3-39
SNDModifyPriorityO 3-45
SNDMulawO 3-36
SNDPlaySoundfileO 3-45
SNDReadO 3-40
SNDReadDSPfileO 3-40
SNDReadHeaderO 3-40
SNDReadSoundfileO 3-40
SNDReleaseO 3-30
SNDReserveO 3-41
SNDResetO 3-30
SNDRunDSPO 3-30
SNDSampleCountO 3-42
SNDSamplesProcessedO 3-45
SNDSamplesToBytes{) 3-42
SNDSetCompressionOptionsO 3-34
SNDSetFilterO 3-43
SNDSetHostO 3-43
SNDSetMuteO 3-43
SNDSetVolumeO 3-43

SNDSoundErrorO 3-44
SNDStartPlayingO 3-45
SNDStartRecordingO 3-45
SNDStartRecordingFileO 3-45
SNDStopO 3-45
SNDUnreserve{) 3-41
SNDWaitO 3-45
SNDWriteO 3-47
SNDWriteHeaderO 3-47
SNDWriteSoundfileO 3-47
SnoiseUG class

specification 2-331
sort method 2-167
sound

functions 3-30
Sound class

specification 2-7
sound driver

functions 3-49
Sound Kit

classes 2-5
sound method 2-30,2-43, 2-209
soundBeingProcessed method 2-43
soundDidChange

method 2-44
soundfile method 2-209
SoundMeter class

specification 2-25
soundStruct method 2-21
soundStructSize method 2-21
SoundView class

specification 2-31
special symbols in ScoreFi1e 4-12
split:: 2-118
splitNotes method 2-168
squelch method 2-129,2-136
startPerformance method 2-59
status method 2-21,2-203,2-238,2-263,2-277
stickPoint method 2-73
stop method 2-21,2-100,2-148,2-156
stop: method 2-21,2-30,2-43
stream method 2-80, 2-85
string concatenation operator in ScoreFi1e 4-14
SynthData class

specification 2-245
synthElementAt: method 2-263
synthElementCount method 2-189
Synthlnstrument class

specification 2-251
synthInstrument method 2-263
SynthPatch class

specification 2-257
synthPatch method 2-250,2-277
synthPatchClass method 2-255

Index-9

synthPatchCount method 2-255
synthPatchCountForPatchTemplate: 2-255

t variable in ScoreFile 4-7
tableLength method 2-316,2-320
tagRange statement in ScoreFile 4-5
teliDelegate: method 2-22, 2-43
tempo method 2-65
time method 2-59,2-65,2-204
time statement in ScoreFile 4-7
time Offset method 2-65
timeShift method 2-85,2-204,2-238
timeTag method 2-118
timeUnit method 2-85,2-185,2-244
to:sel:arg: 2-189
trace:msg: 2-157
transpose: method 2-267,2-268
tune statement in ScoreFile 4-10
TuningSystem class

specification 2-265

UnitGenerator class
specification 2-269

unlockPerformance method 2-59
UnoiseUG class

specification 2-333
unsquelch method 2-129,2-137
useDSP: method 2-157
useInputTimeStamps method 2-100
useSeparateThread: method 2-60

variable assignment in ScoreFile 4-7
variable declaration in ScoreFile 4-7

WaveTable
database B-12

WaveTable class
specification 2-279

waveTable statement in ScoreFile 4-9
willFree: method 2-45
willPlay: method 2-23,2-43,2-45
wiHRecord: method 2-23, 2-44, 2-45
write: method 2-22,2-30,2-44,2-65,2-74,2-80,

2-85,2-92,2-118,2-129,2-137,2-182,2-204,
2-238

writeMidifile: method 2-218
writeMidifile:firstTimeTag:lastTimeTag:

timeShift: 2-218
writeMidifileStream: method 2-218
writeMidifileStream:firstTimeTag:lastTimeTag:

timeShift: 2-218
writeOptimizedScorefile: method 2-219
writeOptimizedScorefile:firstTimeTag:

lastTimeTag:timeShift: 2-219

Index-l 0

writeOptimizedScorefileStream: method 2-219
writeOptimizedScorefileStream:firstTimeTag:

timeShift: 2-220
writeScorefile: method 2-218
writeScorefile:firstTimeTag:lastTimeTag:

timeShift: 2-219
writeScorefileStream: method 2-73,2-118,2-175,

2-210,2-219
writeScorefileStream:firstTimeTag:

lastTimeTag:timeShift: 2-219
writeSoundfile: method 2-22
writeToPasteboard method 2-22

xArray method 2-74

yArray method 2-74

NeXT Computer, Inc.
900 Chesapeake Drive
Redwood City, CA 94063

Printed in U.SA
2911 .00
12/90

Text printed on
recycled paper

