
~~ Advanced
Ar-L Personal Computer

TM

CP/M-86 System Reference Guide

NEe
NEe Information Svstems,lnc.

819-000102-2001 REV. 01
8-83

Important Notice

(1) All rights reserved. This manual is protected by copyright. No part of this manual may be
reproduced in any form whatsoever without the written permission of the copyright owner.

(2) The policy of NEe being that of continuous product improvement, the contents of this manual
are subject to change, from time to time, without notice.

(3) All efforts have been made to ensure that the contents of this manual are correct; however, should
any errors be detected, NEC would greatly appreciate being informed.

(4) NEC can assume no responsibility for errors in this manual or their consequences.

©Copyright 1983 by NEC Corporation.

Contents
Page

PREFACE.. lX

Chapter 1 CP/M-86 System Overview

CP/M-86 GENERAL CHARACTERISTICS. 1-1
CP/M-80 AND CP/M-86 DIFFERENCES............................ 1-4

Relocatable Groups. .. 1-4
Memory Models. 1-4
Disk Definition Tables ... 1-5
Bootstrap Operation 1-5
BDOS Calls. .. 1-5
Addressing ... 1-5
Program Termination. 1-6

Chapter 2 Command Setup and Execution Under CP/M -86

CCP BUILT-IN AND TRANSIENT COMMANDS.................... 2-1
TRANSIENT PROGRAM EXECUTION MODELS 2-2

The 8080 Memory Model. 2-3
The Small Memory Model 2-5
The Compact Memory Model 2-6
Base Page Initialization. .. 2-7

TRANSIENT PROGRAM LOAD. .. 2-9
TRANSIENT PROGRAM EXIT. .. 2-9

Chapter 3 Command (CMD) File Generation

INTEL 8086 HEX FILE FORMAT.................................. 3-1
OPERATION OF GENCMD 3-3
COMMAND FILE FORMAT 3-6

iii

iv

Contents (cont' d)
Page

Chapter 4 Basic Disk Operating System (BDOS) Functions

BDOS PARAMETERS... 4-1
BDOS FUNCTION CODES : .. 4-2

Simple BDOS Calls .. 4-4
BDOS File Operations ... 4-10
BDOS Memory Management and Program Functions. 4-32

Chapter 5 Basic 1/0 System (BIOS) Organization

ORGANIZATION OF THE BIOS................................... 5-2
THE BIOS JUMP VECTOR. .. 5-3
BIOS SUBROUTINES .. 5-3
STANDARD BIOS SUBROUTINE ENTRY POINTS.................. 5-5

System Initialization Subroutines 5-5
Simple Character 1/0 Subroutines. .. 5-6
10BYTE Function. .. 5-8
Disk 1/0 Subroutines .. 5-10
Other Functions .. 5-18

Chapter 6 Advanced BIOS Functions

CRT ESCAPE SEQUENCE FUNCTIONS............................ 6-1
Format and Definitions. .. 6-1
APC Escape Code Sequences. .. 6-4

ASCII CONTROL CODES. .. 6-9
EXTENDED FUNCTION CALLS 6-9

Get Time and Date .. 6-10
Set Time and Date. .. 6-11
Play Music .. 6-11
Sound Beep. .. 6-15
Report Cursor Position. .. 6-17
Auto Power Off ... 6-17
Initialize Keyboard FIFO Buffer .. 6-18
Direct CRT 1/0 ... 6-18
Write CMOS .. 6-26
Read CMOS .. 6-26
Initialize RS 232C ... 6-27

Contents (cont' d)
Page

Chapter 7 Disk Definition Tables

DISK PARAMETER TABLE FORMAT 7-1
DISK DEFINITION TABLES 7-7
PHYSICAL AND LOGICAL STRUCTURES
FOR FLOPPY DISKETTES .. 7-11

Chapter 8 CP /M-86 Bootstrap and Adaptation Procedures

THE COLD START LOAD OPERATION.. 8-2
ORGANIZATION OF CPM.SYS. 8-4

Chapter 9 GSX-86: Graphics for the APC

WHAT IS GSX-86... 9-1
GSX-86 and Application Programs. .. 9-1
GSX-86 and Graphics Products... 9-2

USING GSX-86 .. 9-2
Setting Up GSX-86 .. 9-2
Updating the Assignment Table. .. 9-3
Device Drivers 9-4
Invoking GSX-86 .. 9-6
Warm Starts and Cold Starts. .. 9-6

OVERVIEW OF GRAPHICS SYSTEM EXTENSION STRUCTURE 9-6
GSX-86 Architecture. .. 9-6
Memory Management .. 9-7

THE GRAPHICS DEVICE OPERATING SYSTEM (GDOS) 9-8
Virtual Device Interface (VDI). .. 9-9
Normalized Device Coordinates 9-10
G DOS Opcodes .. 9-11

THE GRAPHICS INPUT/OUTPUT SYSTEM (GIOS) 9-44
Creating a GIOS File ... 9-44

v

vi

Contents (cont' d)

Appendix A Escape Sequences

Appendix B Soft Key Table Memory Format

Appendix C Auxiliary Character Generator RAM Format

Appendix D Memory Map

Appendix E Keyboard Structures

Appendix F CP/M-86 Control Characters

Appendix G CP/M-86 Error Messages

Appendix H CBIOS Error Messages

Appendix I Blocking and Deblocking Algorithms

Appendix J Physical Format of Hard Disks

Appendix K GSX-86 Device Specific Information

Illustrations

Figure

2-1
2-2
2-3
2-4
3-1
4-1
4-2
4-3
5-1
5-2
6-1
6-2
6-3
6-4
6-5
6-6
8-1
8-2
9-1
C-l
C-2
E-l
E-2
E-3
J-l
J-2
J-3

Title Page

CP/M-86 8080 Memory Model... 2-4
CP/M-86 Small Memory Model. 2-5
CP/M-86 Compact Memory Model..... 2-6
CP/M-86 Base Page Values. 2-8
CMD File Header Format.. 3-6
Example Memory Allocation 4-33
Example Memory Region 4-34
Example Memory Regions 4-34
APC CBIOS Function Calls. 5-1
General CP/M-86 Organization. 5-2
Escape Code Sequence Example. .. 6-3
Display Request Block. .. 6-19
DMA Transfer .. 6-20
Attribute Date Byte Format 6-22
Roll Down Screen .. 6-24
Roll Up Screen .. 6-25
LOADER Organization. .. 8-3
CPM.SYS File Organization. .. 8-5
GSX-86 Memory Map .. 9-8
Sample Bit Pattern of Graphic Character. .. C-2
Sample Data in Auxiliary CG RAM C-2
APC Keyboard .. E-6
APC G RPH 1 Characters. .. E-7
APC G RPH2 Characters. .. E-8
5Y/' Hard Disk Physical Format (DKM220). J-2
Error Map. J-4
Error Map and Track Reallocation. J-5

vii

Tables
Table Title Page

1-1 CP/M-86 Terms.. 1-3
2-1 CP/M-86 Memory Models. 2-2
3-1 Intel Hex Field Definitions .. 3-2
3-2 Group Descriptors .. 3-7
4-1 BDOS Parameter Summary..... 4-1
4-2 CP IM-86 BDOS Functions. .. 4-3
4-3 Line Editing Controls. .. 4-9
4-4 Function 33 (Read Random) Error Codes 4-25
4-5 Function 34 (Write Random) Error Codes 4-27
5-1 BIOS Jump Vector. 5-4
5-2 CP/M-86 Logical Device Characteristics 5-6
5-3 IOBYTE Field Definitions 5-9
6-1 ASCII Control Codes. .. 6-9
6-2 Extended Function Calls 6-10
6-3 Melody Data Control Commands 6-12
6-4 Note Values ... 6-13
6-5 Duration Values ... 6-14
6-6 Short Sound Control Commands. .. 6-15
6-7 Beep Sound Parameters .. 6-16
6-8 Direct CRT 1/0 Function Calls 6-18
7-1 Disk Parameter Header Elements. .. 7-2
7-2 DPH Values for the APC 7-2
7-3 Disk Parameter Block Fields. .. 7-4
7-4 BSH and BLM Values for Selected BLS .. 7-5
7-5 Maximum EXM Values. • 7-5
7-6 BLS and Number of Directory Entries 7-6
7-7 DPH Values for the APC 7-7
7-8 Physical and Logical Addressing for Floppy Diskettes. 7-8
9-1 Device Drivers Supplied with GSX-86. .. 9-5
9-2 GDOS Opcodes ... 9-12
E-l Code Table ... E-2
E-2 ASCII Special Characters. .. E-3
E-3 APC Special Characters. .. E-4
E-4 Quick Reference Guide for ASCII Special

Characterl APC Special Character Association. E-5

viii

Preface

The CPIM-86 Operating System Guide for the APC presents the system program
ming aspects of CP/M-86, a single-user operating system for the Jl PD8086 16-bit
microprocessor, used by NEC for the Advanced Personal Computer (APC). The
discussion assumes that the reader is familiar with CP/M, the Digital Research 8-bit
operating system. To clarify specific differences with CP/M-86, this document
refers to the 8-bit version of CP/M as CP/M-80. Elements common to both systems
are simply called CP/M features.

This Operating System Guide presents an overview of the CP/M-86 programming
interface conventions. It also describes procedures for adapting CP /M-86 to a
custom hardware environment.

Chapter 1 gives an overview of CP/M-86 and summarizes how it differs from
CP/M-80. Chapter 2 describes the general execution environment while Chapter 3
tells how to generate command files. Chapter 4 defines the programming interfaces
to the Basic Disk Operating System (BDOS). Chapters 5 and 6 define the standard
and customized features of the Basic Input/ Output System (BIOS). (Chapter 5
includes CP/M-86 disk operations for both floppy diskette and hard disk media.)
Chapter 7 discusses alteration of the BIOS to support custom disk configurations.
Chapter 8 describes the loading operation and the organization of the CP /M-86
system file. Chapter 9 describes GSX-86, the graphics extension for the APC.

ix

Chapter 1

CP IM-86 System Overview
CP/M-86 GENERAL CHARACTERISTICS

CP/M-86 consists of all the facilities of CP/M-80 with additional features to
account for increased processor address space of up to one megabyte (1,048,576) of
main memory. CP/M-86 maintains file compatibility with all previous versions of
CP/M. It uses the file structure of CP/M Version 2, allowing as many as sixteen
drives with up tb eight megabytes on each drive. CP/M-80 and CP/M-86 programs
may exchange files without any modification to the file formats.

CP/M-86 resides in the file CPM.SYS, which is loaded into memory by a cold start
loader during system initialization. The cold start loader resides on the first two
tracks of the system disk. CPM.SYS contains three program modules: the Console
Command Processor (CCP), the Basic Disk Operating System (BDOS), and the
Basic Input/Output System (BIOS). The BIOS distributed on the CP/M system
diskette has been configured for the APC and is called the Customized BIOS, or
CBIOS. It is made up of three parts: the standard BIOS, the APC escape sequence
functions, and the extended BIOS. The CCP and BDOS portions occupy approxi
mately 10K bytes, and the BIOS is approximately 22 bytes. The operating system
executes in memory above the reserved interrupt locations. The remainder of the
address space may be partitioned into eight non-contiguous regions, as defined in a
BIOS table. Unlike CP/M-80, CP/M-86 does not allow the CCP area to be used as a
data area subsequent to transient program load. All CP/M-86 modules remain in
memory at all times and are not reloaded at a warm start.

Like CP/M-80, CP/M-86 loads and executes memory image files from disk.
Memory image files are preceded by a header record, defined in Chapter 3, which
provides information required for proper program loading and execution. Memory
image files under CP/M-86 are identified by the CMD file type exte.nsion.

1-1

CP/M-86 System Overview

1-2

Unlike CP/M-80, CP/M-86 does not use absolute locations for system entry or
default variables. The BDOS entry takes place through a reserved software inter
rupt. Entry to the BIOS is provided by a new BDOS call. Entry to the extended
BIOS is made directly through an interrupt vector. Two variables maintained in low
memory under CP/M-80, the default disk number and I/O Byte, are placed in the
CCP and BIOS respectively in CP/M-86. Dependence on absolute addresses is
minimized in CP/M-86 by maintaining inital base page values, such as the default
File Control Block and default command buffer, in the transient program data
area.

Utility programs such as ED, PIP, STAT, and SUBMIT operate in the same manner
under CP/M-86 and CP/M-80. DDT-86 allows interactive debugging of 8086
machine code. ASM-86 allows assembly language programming and development
for the 8086 using Intel-like mnemonics.

CP/M-86 includes two utilities that replace equivalent CP/M-80 utilities .

• GENCMD (Generate CMD file) replaces the LOAD program ofCP/M-80.
It converts the hex files produced by ASM-86 or Intel utilities into memory
image format suitable for execution under CP/M-86 .

• LDCOPY (Loader Copy) replaces the SYSGEN utility used under
CP/M-80. It is used to copy the cold start loader from a system disk for
replication.

Several terms used throughout this manual are defined in Table 1-1.

A group consists of segments that are loaded into memory as a single unit. Since a
group may consist of more than 64 bytes, it is the responsibility of the application
program to manage segment registers when accessing code or data beyond the first
64K segment.

CP/M-86 supports eight program groups: the code, data, stack, and extra groups,
and four auxiliary groups. When a code, data, stack, or extra group is loaded,
CP/M-86 sets the respective segment register (CS, DS, SS or ES) to the base of the
group. CP/M-86 can also load four auxiliary groups. A transient program manages
the location of the auxiliary groups using values stored by CP/M-86 in the user's
base page.

CPIM-86 System Overview

Table 1-1 CP/M-86 Terms

TERM MEANING

Nibble 4-bit half-byte

Byte 8-bit value

Word 16-bit value

Double Word 32-bit value

Paragraph 16 contiguous bytes

Paragraph Boundary An address evenly divisible by 16 (low
order nibble 0)

Segment Up to 64K contiguous bytes

Segment Register One of CS, OS, ES, or SS

Offset 16-bit displacement from a segment reg-
ister

Group A segment-register-rela tive reloca table
program unit

Address The effective memory address derived
from the combination of a segment reg-
ister value plus an offset value

1-3

CPIM-86 System Overview

1-4

CP/M-80 AND CP/M-86 DIFFERENCES

The structure of CP/M-86 is as close to CP/M-80 as possible. This provides a
familiar programming environment which allows application programs to be
transported to the 8086 processor with minimal effort. This section points out
specific differences between CP/M-80 and CP/M-86 to reduce your time in scan
ning the manual if you are already familiar with CP /M-80. The terms and concepts
presented in this section are explained in detail throughout the manual, so refer to
the Table of Contents for the relevant chapters which provide specific definitions
and information.

Relocatable Groups

The fundamental difference between CP/M-80 and CP/M-86 is found in the
management of the various relocatable groups. Although CP/M-80 references
absolute memory locations by necessity, CP /M-86 takes advantage of the static
relocation inherent in the 8086 processor. The operating system itself is loaded
directly above the interrupt locations, at location 0400H, and relocatable transient
programs load in the best fit memory region. However, you can load CP /M-86 into
any portion of memory without changing the operating system (thus, there is no
MOVCPM utility with CP /M-86), and transient programs will load and run in any
non-reserved region.

Memory Models

CP/M-86 is constructed as an 8080 Model. This means that all the segment registers
are placed at the base of CP/M-86, and the CBIOS is identical in most respects to
that of CP IM-80 (with changes in instruction mnemonics, of course). In fact, the
only additions are found in the SETDMAB, GETSEGB, SETIOB, and GETIOB
entry points in the BIOS, the additions for hard disk I/O, and the custom APC
features in the extended functions. The warm start subroutine is simpler since you
are not required to reload the CCP and BDOS under CP/M-86. If you implement
the IOBYTE facility, you have to define the variable in your BIOS. Taking these
changes into account, you need only perform a simple translation of your CP/M-80
BIOS into 8086 code to implement the 8086 BIOS.

Disk Definition Tables

The disk definition tables included with CP /M-86 for the APC have been deve
loped, configured, and included in the CBIOS. Therefore, there is no need to
generate your own disk definition tables using GENDEF.

Bootstrap Operation

CP/M-86 resides on the first two tracks of the double-sided, double-density system
distribution diskette. It is loaded by a single step bootstrap loader operation.

CPIM-86 System Overview

BDOS Calls

To make a BDOS system call, use the reserved software interrupt #224. The jump to
the BDOS at location 0005H found in CP/M-80 is not present in CP/M-86.
However, the address field at offset 0006 is present so that programs which "size"
available memory using this word value will operate without change. CP IM-80
BDOS functions use certain 8080 registers for entry parameters and returned
values. CP/M-86 BDOS functions use a table of corresponding 8086 registers. For
example, the 8086 registers CH and CL correspond to the 8080 registers Band C.
Look through the list of BDOS function numbers in Table 4-2. You'll find that
functions 0, 27, and 31 have changed slightly. Several new functions have been
added, but they do not affect existing programs.

Addressing

A major difference between the two CP 1M operating systems is their approach to
addressing. In CP/M-80, all addresses sent to the BDOS are 16-bit values in the
range OOOOH to OFFFFH. In CP/M-86, the addresses are 16-bit offsets from the DS
(Data Segment) register, which is set to the base of your data area. If you translate
an existing CP/M-80 program to the CP/M-86 environment, the data segment is
fewer than 64K bytes. Therefore, the DS register does not have to be changed
following intialload, and all CP IM-80 addresses become simple DS-relative offsets
in CP/M-86.

Program Termination

Under CP/M-80, programs terminate in one of three ways:

• return directly to the CCP;

• call BDOS function 0;

• transfer control to absolute location OOOOH.

CP/M-86, however, supports only the first two methods of program termination.
Consequently, the automatic disk system reset that follows ajump to OOOOH is not
performed. Instead, disk system reset is accomplished by entering a CONTROL-C
at the CCP level.

Many new facilities in CP IM-86 simplify programming and expand application
programming capability. CP/M-86 was designed to make it easy to get started. If
you are converting from CP 1M -80 to CP 1M -86, there are no major changes beyond
the translation to 8086 machine code.

1-5

Chapter 2

Command Setup and
Execution Under CP 1M -86
This chapter discusses the operation of the Console Command Processor, the
format of transient programs, CP/M-86 memory models, and memory image
formats.

CCP BUILT-IN AND TRANSIENT COMMANDS

The operation of the CP/M-86 Console Command Processor (CCP) is similar to
that of CP/M-80's CCP. At initial cold start, it prints the CP/M sign-on message,
automatically logs in Drive A, and issues the standard prompt at the console.
CP /M-86 then waits for input command lines from the console.

The command line may include one of the built-in commands: DIR, ERA, REN,
TYPE, or USER. (Note that SAVE is not supported under CP/M-86 since the
equivalent function is performed by DDT-86.) See the CPIM-86 User's Guide for
the APC for more information about these programs.

The command line may also begin with the name of a transient program with the
assumed file type CMD, denoting a commandfile. The CMD file type differentiates
transient command files used under CP/M-86 from COM files, which operate
under CP /M-80.

The CCP allows multiple programs to reside in memory, providing facilities for
background tasks. A transient program may load additional programs for execu
tion under its own control.

2-1

Command Setup and Execution Under CP / M-86

2-2

For example, a background printer spooler could first be loaded, followed by an
execution ofDDT-S6. DDT-S6 may, in turn, load a test program for a debugging
session and transfer control to the test program between breakpoints. CP/M-S6
keeps track of the order in which programs are loaded and, upon encountering a
CONTROL-C, discontinues execution of the program most recently activated at
the CCP level. In this example, a CONTROL-C at the DDT-86 command level
aborts DDT-S6 and its test program. A second CONTROL-C at the CCP level
aborts the background printer spooler. A third CONTROL-C resets the disk
system.

Note that program abort due to CONTROL-C does not reset the disk system, as is
the case in CP/M-SO. A disk reset does not occur unless the CONTROL-C occurs at
the CCP command input level with no programs residing in memory.

When CP/M-S6 receives a request to load a transient program from the CCP or
another transient program, it checks the program's memory requirements. If suffi
cient memory is available, CP /M-86 assigns the required amount of memory to the
program and loads it. Once loaded, the program can request additional memory
from the BDOS for buffer space. When the program is terminated, CP/M-S6 frees
both the program memory area and any additional buffer space.

TRANSIENT PROGRAM EXECUTION MODELS

The initial values of the segment registers are determined by the memory model used
by the transient program and described in the CMD file header. The three memory
models are summarized in Table 2-1.

Table 2-1 CP/M-86 Memory Models

MODEL GROUP RELATIONSHIPS

8080 Model Code and data groups overlap

Small Model Independent code and data groups

Compact Model Three or more independent groups

Command Setup and Execution Under CPIM-86

The 8080 Model supports programs which are directly translated from CP IM-80
when code and data areas are intermixed. The 8080 model consists of one group
which contains all the code, data, and stack areas. Segment registers are initialized
to the starting address of the region containing this group. The segment registers
can, however, be managed by the application program during execution so that
multiple segments within the code group can be addressed.

The Small Model is similar to that defined by Intel, where the program consists of
independent code and data groups. The Small Model is suitable for use by programs
taken from CP IM-80 where code and data are easily separated. The code and data
groups often consist of, but are not restricted to, single 64K byte segments.

The Compact Model occurs when any of the extra, stack, or auxiliary groups is
present in a program. Each group may consist of one or more segments, but if any
group exceeds one segment in size, or if auxiliary groups are present, then the
application program must manage its own segment registers during execution in
order to address all code and data areas.

In all three models, local stacks are required in user programs that make BDOS calls
since the BDOS may change information in the system stack.

The three models differ primarily in the manner in which segment registers are~
initialized upon transient program loading. The operating system program load
function determines the memory model used by a transient program by examining
the program group usage, as described in the following sections of this chapter.

The 8080 Memory Model

The 8080 Model is assumed when the transient program contains only a code group.
In this case, the CS, DS, and ES registers are initialized to the beginning of the code
group, while the SS and SP registers remain set to a 96-byte stack area in the CCP.
The Instruction Pointer Register (IP) is set to 100H, as in CP IM-80, thus allowing
base page values at the beginning of the code group. Following program load, the
8080 Model appears as shown in Figure 2-1, where low addresses are at the top of
the diagram.

2-3

Command Setup and Execution Under CPIM-86

2-4

SS:

SS + SP:

CS DS ES:
DS+OOOOH:

CS+OIOOH:

CCP

CCP Stack

base
page

IP = OIOOH
code

data

~
~

Figure 2-1 CP 1M -86 8080 Memory Model

The intermixed code and data regions are indistinguishable. The base page values,
described below, are identical to CP/M-80. This allows simple translation from
8080,8085, or Z80 code into the 8086 environment. The following ASM-86 example
shows how to code an 8080 Model transient program.

cseg
org 100h

(code)
endcs equ $

dseg
org offset endcs

(data)
end

Command Setup and Execution Under CPIM-86

The Small Memory Model

The Small Model is assumed when the transient program contains both code and
data groups. (In ASM-86, all code is generated following a CSEG directive, while
data is defined following a DSEG directive. The origin of the data segment is
independent of the code segment.) In this model, register CS is set to the beginning
of the code group, registers DS and ES to the start of the data group, and registers
SS and SP to the CCP's stack area, as shown in Figure 2-2.

SS:
CCP

SS + SP: CCP Stack

CS: IP = OOOOH
code

DS ES: base
page

DS+OI00H:
data

Figure 2-2 CP/M-86 Small Memory Model

The machine code begins at CS+OOOOH, the base page values begin at DS+OOOOH,
and the data area starts at DS+OI00H. The following ASM-86 example shows how
to code a Small Model transient program.

cseg

(code)
dseg
org 100h

(data)
end

2-5

Command Setup and Execution Under CPIM-86

2-6

The Compact Memory Model

The Compact Memory Model is assumed when code and data groups are present,
along with one or more of the stack, extra, or auxiliary groups. In this case, the CS,
DS, and ES registers are set to the base addresses of their respective areas. Figure
2-3 shows the initial configuration of segment registers in the Compact Model. The
segment register values can be changed during program execution by loading from
the initial values placed in base page by the CCP, thus allowing access to the entire
memory space.

SS:
CCP

SS + SP: CCP Stack

CS: IP = OOOOH
code

DS: base
page

DS+OI00H:
data

ES:
data

Figure 2-3 CP/M-86 Compact Memory Model

Local stacks are required in programs that make BDOS calls since the BDOS may
change information in the system stack. If the transient program intends to use the
stack group as a stack area, registers SS and SP must be set upon entry. The SS and
SP registers remain set to the CCP area, even if a stack group is defined. Although it
may appear that the SS and SP registers should be set to address the stack group,
there are two reasons this cannot be done. First, the transient program may be using
the stack group as a data area. In that case, the Far Call instruction used by the CCP
to transfer control to the transient program could write over data in the stack area.
Second, the SS register would logically be set to the base of the group, while the SP
register would be set to the offset of the end of the group. However, if the stack
group exceeds 64K, the address range from the base to the end of the group could
exceed a 16-bit offset value.

Command Setup and Execution Under CPIM-86

The following ASM-86 example shows how to code a Compact Model transient
program.

cseg

(code)
dseg
org 100h

(data)
eseg

(more data)
sseg

(stack area)
end

Base Page Initialization

As in CP/M-80, the CP/M-86 base page contains default values and locations
initialized by the CCP and used by the transient program. The base page occupies
the regions from offset OOOOH through OOFFH relative to the DS register. The
values in the base page for CP/M-86 include those of CP/M-80 and appear in the
same relative positions, as shown in Figure 2-4.

Each byte is indexed by 0, I, and 2, corresponding to the standard Intel storage
convention of low, middle, and high-order (most significant) byte. In Figure 2-4,
"xxx" marks unused bytes. LC is the last code group location (24 bits, where the 4
high-order bits equal zero).

In the 8080 Model, the low order bytes of LC (LCO and LC 1) never exceed OFFFFH
and the high order byte (LC2) is always zero. BC is the base paragraph address of
the code group (16-bits). LD and BD provide the last position and paragraph base
of the data group. The last position is one byte less than the group length. Note that
bytes LDO and LD 1 appear in the same relative positions of the base page in both
CP /M-80 and CP /M-86, thus easing the program translation task. The M80 byte is
equal to 1 for the 8080 Model. LE and BE provide the length and paragraph base of
the optional extra group, while LS and BS give the optional stack group length and
base. The bytes marked LX and BX correspond to a set of four optional, independ
ent groups which may be required for programs that execute using the Compact
Model. The initial values for these descriptors are derived from the header record in
the memory image file, described in Chapter 3.

2-7

Command Setup and Execution Under CPIM-86

2-8

DS + 0000:

DS + 0003:

DS + 0006:

DS + 0009:

DS + OOOC:

DS + OOOF:

DS + 0012:

DS + 0015:

DS + 0018:

DS + 001B:

DS + OOIE:

DS + 0021:

DS + 0024:

DS + 0027:

DS + 002A:

DS + 002D:

DS + 0030:

DS + 005B:

DS + 005C:

DS + 0080:

DS + 0100:

LCO

BCO

LDO

BDO

LEO

BEO

LSO

BSO

LXO

BXO

LXO

BXO

LXO

BXO

LXO

BXO

LCI

BCl

LDI

BDI

LEI

BEl

LSI

BSI

LXI

BXl

LXI

BXI

LXI

BXl

LXI

BXI

Not
Currently

Used

Default FCB

Default Buffer

Begin User Data

Figure 2-4 CP/M-86 Base Page Values

LC2

M80

LD2

xxx

LE2

xxx

LS2

xxx

LX2

xxx

LX2

xxx

LX2

xxx

LX2

xxx

Command Setup and Execution Under CPIM-86

TRANSIENT PROGRAM LOAD

Like CP/M-80, the CCP in CP/M-86 parses up to two file names following the
command and places the properly fomatted File Control Blocks (FCBs) at loca
tions 005CH and 006CH in the base page relative to the DS register. Under
CP/M-80, the default DMA address is initialized to 0080H in the base page.
However, due to the segmented memory of the 8086 processor, the DMA address is
divided into two parts: the DMA segment address the DMA offset. Therefore,
under CP/M-86, the default DMA base is initialized to the value of DS, and the
default DMA offset is initialized to 0080H. Thus, CP /M-80 and CP /M-86 operate
in the same way: both assume the default DMA buffer occupies the second half of
the base page.

TRANSIENT PROGRAM EXIT

The CCP transfers control to the transient program through an 8086 "Far Call".
The transient program may exit in one of three ways.

• It can use the 96-byte CCP stack and return directly to the CCP upon
program termination by executing a "Far Return". If BDOS calls are to be
made, the transient program requires its own stack.

• Program termination can occur when BDOS function 0 is executed. Func
tion 0 can terminate a program without removing the program from
memory or changing the memory allocation state (see Chapter 4).

• The operator can terminate program execution by pressing CONTROL-C
during line edited input. This has the same effect as the program executing
BDOS function O. No disk reset occurs and the CCP and BDOS modules are
not reloaded from disk upon program termination.

2-9

Chapter 3

Command (CMD) File
Generation
The GENCMD utility program provided with CP/M-86 produces CMD memory
image files suitable for execution under CP/M-86.

INTEL 8086 HEX FILE FORMAT

GENCMD input is in Intel hex format produced by either the Digital Research
ASM-86 assembler (see the CPIM-86 Programmer's Guide for the APC) or the
standard Intel OH86 utility program (see Intel document #9800639-03, MCS-86
Software Development Utilities Operatinglnstructionsfor ISIS-II Users). The CMD
file produced by GENCMD contains a header record which defines the memory
model and memory size requirements for loading and executing the CMD file.

An Intel hex file consists of the traditional sequence of ASCII records in the
following format:

where the beginning of the record is marked by an ASCII colon, and each subse
quent digit position contains an ASCII hexadecimal digit in the range 0-9 or A-F.
The fields are defined in Table 3-1.

3-1

Command (CMD) File Generation

Table 3-1 Intel Hex Field Definitions

FIELD CONTENTS

11 Record Length OO-FFH (0-255 in decimal)

aaaa Load Address

It Record Type:
00 data record, loaded starting at offset

aaaa from current base paragraph

01 end of file
(cc = FF)

02 extended address
(aaaa is paragraph base for subsequent records)

03 start address is aaaa
(ignored, IP set according to memory model in use)

The following are output from ASM-86 only:

81 Same as 00, data belongs to code segment

82 Same as 00, data belongs to data segment

83 Same as 00, data belongs to stack segment

84 Same as 00, data belongs to extra segment

85 Paragraph address for absolute code segment

86 Paragraph address for absolute data segment

87 Paragraph address for absolute stack segment

88 Paragraph address for absolute extra segment

d Data Byte

cc Check Sum (OO-sum of previous digits, FF for end of file)

All characters preceding the colon for each record are ignored.

3-2

Command (CMD) File Generation

OPERATION OF GENCMD

The GENCMD utility is invoked at the CCP level by the following command.

GENCMD filename parameter-list

wherefilename corresponds to the hex input file with an assumed (and unspecified)
file type ofH86. GENCMD accepts optional parameters to specifically identify the
8080 Memory Model and to describe the memory requirements of each segment
group. The GENCMD parameters are listed following the filename. The list con
sists of a sequence of keywords and associated values. The keywords are:

8080
CODE
DATA
EXTRA
STACK
Xl
X2
X3
X4

The 8080 keyword forces a single code group so that the BDOS load function sets up
the 8080 Memory Model for execution. This model allows intermixed code and data
within a single segment. This form of the command is shown below.

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option and define specific
memory requirements for each segment group corresponding one-to-one with the
segment groups defined in Chapter 2.

For each segment group keyword, the corresponding values are enclosed in square
brackets and separated by commas. Each value is a hexadecimal number represent
ing a paragraph address or segment length in paragraph units (denoted by hhhh
below). Each value is prefixed by a single letter, which defines its meaning.

Ahhhh
Bhhhh
Mhhhh
Xhhhh

Load the group at absolute location hhhh.
The group starts at hhhh in the hex file.
The group requires a minimum of (hhhh * 16) bytes.
The group can address a maximum of (hhhh * 16) bytes.

3-3

Command (CMD) File Generation

3-4

Generally, the CMD file header values are derived directly from the hex file and the
parameters shown above need not be included. The following situations, however,
require the use of GENCMD parameters.

• Use the 8080 keyword whenever ASM-86 is used to convert 8080 programs
that have code and data intermixed within a single 64K segment, regardless
of the use of the CSEG and DSEG directives in the source program.

• Use an absolute address (A value) for any group which must be located at an
absolute location. Normally, this value is not specified since CP/M-86
cannot generally ensure that the required memory region is available (in
which case the CMD file cannot be loaded). "

• Use the B value when GENCMD processes a hex file produced by Intel's
OH86 or a similar utility program that contains more than one group. The
output from OH86 consists of a sequence of data records with no informa
tion to identify code, data, extra, stack, or auxiliary groups. The B value
marks the beginning address of the group named by the keyword, causing
GENCMD to load data following this address to the named group (see the
examples that follow). The B value is normally used to mark the boundary
between code and data segments when no segment information is included
in the hex file. Files produced by ASM -86 do not require the B value since
segment information is included in the hex file.

• The minimum memory value (M value) is included only when the hex
records do not define the minimum memory requirements for the named
group. Generally, the code group size is determined precisely by the data
records loaded into the area. That is, the total space required for the group is
defined by the range between the lowest and highest data byte addresses.
The data group, however, may contain un initialized storage at the end of
the group and thus no data records are present in the hex file which define
the highest referenced data item. The highest address in the data group
should be defined within the source program by including "DBO" as the last
data item. Alternatively, the M value can be included to allocate the
additional space at the end of the group. The stack, extra, and auxiliary
group sizes must be defined using the M value unless the highest addresses
within the groups are implicitly defined by data records in the hex file.

Command (CMD) File Generation

• The maximum memory size (X value) is generally used when additional free
memory may be needed for such purposes as 1/0 buffers or symbol tables.
If the data area size is fixed, the X parameter need not be included. In this
case, the X value is assumed to be the same as the M value. The value
XFFFF allocates the largest memory region available but if it is used, the
transient program must know that a three-byte length field is produced in
the base page for this group where the high order byte may be non-zero.
Programs converted directly from CP/M-SO, or programs that use a two
byte pointer to address buffers, should restrict this value to XFFF or less,
producing a maximum allocation length of OFFFOH bytes.

For example, the following GENCMD command line transforms the file X.HS6
into the file X.CMD with the proper header record.

gencmd x code[a40] data[m30,xfff]

In this case, the code group is forced to paragraph address 40H or, equivalently,
byte address 400H. The data group requires a minimum of300H bytes, but can use
up to OFFFOH bytes, if available.

As another example, assume a file Y .H86 exists on Drive B and consists of Intel hex
records with no interspersed segment information. The command

gencmd b:y data[b30,m20] extra[b50] stack[m40] xl[m40]

produces the file Y.CMD on Drive B by selecting records beginning at address
OOOOH for the code segment, and records beginning at address 300H for the data
segment. The extra segment is filled from records beginning at 500H, while the stack
and auxiliary segment #1 are uninitialized areas requiring a minimum of 400H bytes
each. In this example, the data area requires a minimum of200H bytes. Note again
that the B value need not be included if the Digital Research ASM-86 assembler is
used.

3-5

Command (CMD) File Generation

3-6

COMMAND FILE FORMAT
The CMD file produced by GENCMD consists of a 128-byte header record fol
lowed immediately by the memory image. Under normal circumstances, the format
of the header record is of no consequence to a programmer. For completeness,
however, the fields of this record are shown in Figure 3-1.

<---------------------- 128 Bytes ---------------------->

GD#I\ GD#2\GD#3JGD#41 GD#5-GD#8 ...

Code,
Data,

Extra,
Stack,

Auxiliary

Figure 3-1 CMD File Header Format

In Figure 3-1, GD#1 through GD#8 represent Group Descriptors. Each Group
Descriptor corresponds to an independently loaded program unit and has the
following fields:

8-bit 16-bit 16-bit 16-bit 16-bit
G-Form G-Length A-Base G-Min G-Max

where G-Form describes the group format, or equals zero if no more descriptors
follow. If G-Form is non-zero, then the 8-bit value is parsed as two fields, as follows.

G-Form:
4-bit 4-bit

x x x x G-Type

The G-Type field determines the Group Descriptor type. The valid Group Descrip
tors have a G-Type in the range I through 9, as shown in Table 3-2.

Command (CMD) File Generation

Table 3-2 Group Descriptors

G-TYPE GROUP-TYPE

1 Code Group
2 Data Group
3 Extra Group
4 Stack Group
5 Auxiliary Group # 1
6 Auxiliary Group #2
7 Auxiliary Group #3
8 Auxiliary Group #4
9 Shared Code Group

10 - 14 Unused, but Reserved
15 Escape Code for Additional Types

All remaining values in the Group Descriptor are given in increments of 16-byte
paragraph units with an assumed low-order 0 nibble to complete the 20-bit address.
G-Length gives the number of paragraphs in the group. Given a G-Iength of0080H,
for example, the size of the group is 00800H (or 2048D) bytes. A-Base defines the
minimum and maximum size of the memory area to allocate to the group. G-Type 9
marks a "pure" code group for use under future versions of CP/M-86. Presently a
Shared Code Group is treated as a non-shared Program Code Group under
CP/M-86.

The memory model described by a header record is implicitly determined by the
group descriptors. The 8080 Memory Model is assumed when only a code group is
present, since no independent data group is named. The Small Memory Model is
implied when both a code and data group are present, but no additional group
descriptors occur. Otherwise, the Compact Memory Model is assumed when the
CMD file is loaded.

3-7

Chapter 4

Basic Disk Operating System
(BDOS) Functions
This chapter presents the interface conventions which allow transient program
access to CP 1M -86 BOOS functions. The BOOS calls correspond closely to CP IM-
80 Version 2 in order to simplify translation of existing CP/M-80 programs for
operation under CP IM-86. BOOS entry and exit conditions are described first,
followed by the individual BOOS function calls.

BDOS PARAMETERS

Entry to the BOOS is accomplished through the 8086 software interrupt #224,
which is reserved by Intel Corporation for use by CP/M-86. The function code is
passed in register CL, with byte parameters in OL and word parameters in ox.
Single byte values are returned in AL, word values in both AX and BX, and
double-word values in ES and BX. All segment registers, except ES, are saved upon
entry and restored upon exit from the BOOS (corresponding to PL/M-86 conven
tions). Table 4-1 summarizes input and output parameter passing.

Table 4-1 BDOS Parameter Summary

BOOS ENTRY REGISTERS BOOS RETURN REGISTERS

CL Function Code Byte value returned in AL
DL Byte Parameter Word value returned in both AX and BX
DX Word Parameter Double-word value returned with
DS Data Segment offset in BX and

segment in ES

4-1

Basic Disk Operating System (BDOS) Functions

4-2

The CP/M -80 BDOS requires an "information address" as input to various func
tions. This address usually provides buffer or File Control Block information used
in the system call. In CP/M-86, however, the information address is derived from
the current DS register combined with the offset in the DX register. That is, the DX
register in CP/M-86 performs the same function as the DE pair in CP/M-80,
assuming that DS is properly set. This poses no particular problem for programs
which use only a single data segment, as is the case for programs converted from
CP/M-80. However, when the data group exceeds a single segment, you must
ensure that the DS register is set to the segment containing the data area related to
the call. Zero values are returned for function calls which are out of range.

BDOS FUNCTION CODES

Table 4-2 lists the CP /M-86 BDOS function calls. The individual BDOS functions
are described in the following three sections of this chapter. The function calls are
grouped into simple functions, file operations, and memory management and
program loading functions.

Basic Disk Operating System (BDOS) Functions

Table 4-2 CP/M-86 BDOS Functions

F# RESULT F# RESULT

0* System Reset 24 Return Login Vector
1 Console Input 25 Return Current Disk
2 Console Output 26 Set DMA Address
3 Reader Input 27* Get Addr(Alloc)
4 Punch Output 28 W rite Protect Disk
5 List Output 29 Get Addr(R/O Vector)
6* Direct Console I/O 30 Set File Attributes
7# Get I/O Byte 31* Get Addr(Disk Parms)
8# Set I/O Byte 32 Set/ Get User Code
9# Print String 33 Read Random

10 Read Console Buffer 34 Write Random
11 Get Console Buffer 35 Compute File Size
12 Return Version Number 36 Set Random Record
13 Reset Disk System 37* Reset Drive
14 Select Disk 40 Write Random with Zero Fill
15 Open File 47* Chain to Program
16 Close File 49* Get System Data Area Address
17 Search for First 50* Direct BIOS Call
18 Search for Next 51* Set DMA Segment Base
19 Delete File 52* Get DMA Segment Base
20 Read Sequential 53* Get Max Memory Available
21 Write Sequential 54* Get Max Mem at Abs Location
22 Make File 55* Get Memory Region
23 Rename File 56* Get Absolute Memory Region

57* Free Memory Region
58* Free All Memory
59* Program Load

* - Function differs from the CP/M-80 Version 2 function or IS new in
CP/M-86.

- Call is not fully implemented for the APC CBIOS dynamically (see Chapter
5).

4-3

Basic Disk Operating System (BDOS) Functions

4-4

Simple BDOS Calls

BDOS functions 0 through 12 perform such simple operations as system reset and
single character 1/0.

SYSTEM RESET

ENTRY

CL: OOH

DL: Abort
Code

RETURN

FUNCTION 0

SYSTEM RESET

The System Reset function returns control to the CP 1M operating system at the
CCP command level. The abort code passed in DL has two possible values. IfDL is
OOH, the currently active program is terminated and control is returned to the CCP.
If DL is 01H, the program remains in memory and the memory allocation is
unchanged.

CONSOLE INPUT

ENTRY RETURN

CL: OlH FUNCTION 1 AL: ASCII Character

CONSOLE INPUT

The Console Input function reads the next character from the logical console device
(CONSOLE) into register AL. Graphic characters and the carriage return, line feed,
and backspace (CONTROL-H) are echoed to the console. Tab characters
(CONTROL-I) are expanded in columns of eight characters. The BDOS does not
return to the calling program until a character has been typed, thus suspending
execution if a character is not ready.

NOTE

The status of the GRAPH1, GRAPH2, CAPS
and AL T keys is not returned by the BDOS
call. To access these values, you must call the
CBIOS directly.

Basic Disk Operating System (BDOS) Functions

CONSOLE OUTPUT

ENTRY

CL: 02H

DL: ASCII
Character

RETURN

FUNCTION 2

CONSOLE OUTPUT

The Console Output function sends the ASCII character in DL to the logical
console. Tab characters expand in columns of eight characters. This function also
makes a check for start/stop scroll (CONTROL-S).

READER INPUT

ENTRY RETURN

CL: 03H FUNCTION 3 AL: ASCII Charactel

READER INPUT

The Reader input function reads the next character from the logical reader
(READER) into register AL. Control does not return to the calling program until a
character has been read.

PUNCH OUTPUT

ENTRY

CL: 04H

DL: ASCII
Character

RETURN

FUNCTION 4

PUNCH OUTPUT

The Punch Output function sends the ASCII character in register DL to the logical
·punch device (PUNCH).

4-5

Basic Disk Operating System (BDOS) Functions

4-6

LIST OUTPUT

ENTRY

CL: 05H

DL: ASCII
Character

RETURN

FUNCTION 5

LIST OUTPUT

The List Output function sends the ASCII character in register DL to the logical list
device (LIST).

DIRECT CONSOLE I/O

ENTRY

CL: 06H

DL: OFFH (input)
or

OFEH (status)
or

char (output)

FUNCTION 6

DIRECT CONSOLE
I/O

RETURN

AL: char
or

status
or

(no value)

The Direct Console I/O function performs one of three functions, depending on the
value in register DL. It reads a character from the console, writes a character to the
console, or returns the console status.

Direct Console 1/0 is supported under CP/M-86 for those specialized applications
where unadorned console input and output are required. Use of this function
should, in general, be avoided since it bypasses all of CP/M-86's normal control
character functions (e.g., CONTROL-S and CONTROL-P). Programs which
perform direct I/O through the BIOS under previous releases of CP/M-80,
however, should be changed to use Direct Console I/O under the BDOS so that
they can be fully supported under future releases of CP/M.

Basic Disk Operating System (BDOS) Functions

Upon entry to function 6, register D L contains either (1) hexadecimal FF, denoting
a CONSOLE input status request, (2) hexadecimal FE, denoting a CONSOLE
status request, or (3) an ASCII character to be output to CONSOLE, where
CONSOLE is the logical console device.

• If the input value is FF, function· 6 directly calls the BIOS console input
function. If a character is ready, it is returned in AL; otherwise a zero is
returned in AL.

• If the input value is FE, function 6 returns zero in register AL ifno character
is ready, and FF in register AL otherwise.

• If the input value in DL is not FE or FF, function 6 sends the ASCII
character in DL to the console.

Do not use function 6 (with FE of FF) in combination with either function 1 or
function 2. Function 1 should be used in conjunction with function 2. Function 6
must be used independently.

GET I/O BYTE

ENTRY RETURN

CL: 07H FUNCTION 7 AL: I/O Byte Value

GET I/O BYTE

The Get I/O Byte function returns the current value of 10BYTE in register AL.
When the 10BYTE facility is implemented in the BIOS, IOBYTE contains the
current assignments for the logical devices CONSOLE, READER, PUNCH, and
LIST.

NOTE

CBIOS supports this call dynamically for the
LIST device only (see Chapter 5). However,
the call may be used in programs that operate
with standard CP/M calls to the BIOS.

4-7

Basic Disk Operating System (BDOS) Functions

4-8

SET I/O BYTE

ENTRY

CL: 08H

DL: I/O Byte
Value

RETURN

FUNCTION 8

SET I/O BYTE

The Set I/O Byte function changes the system 10BYTE value to the value given in
register DL. This function allows transient program access to the 10BYTE in order
to modify the current assignments for the logical devices CONSOLE, READER,
PUNCH, and LIST.

PRINT STRING

ENTRY

CL: 09H

NOTE

CBIOS supports this call dynamically for the
LIST device only (see Chapter 5). However, it
may be used in programs that operate with
standard CP/M calls to the BIOS.

FUNCTION 9

DX: String
Offset

PRINT STRING

RETURN

The Print String function sends the character string stored in memory at the
location addressed by register DX to the logical console device (CONSOLE), until a
"$" is encountered in the string. Tabs are expanded as in function 2, and checks are
made for start/stop scroll and printer echo.

READ CONSOLE BUFFER

ENTRY

CL: OAH

DX: Buffer
Offset

FUNCTION 10

READ CONSOLE BUFFER

RETURN

Console Characters
in Buffer

Basic Disk Operating System (BDOS) Functions

The Read Console Buffer function reads a line of edited console input from the
logical console device (CONSOLE) into a buffer addressed by register DX. Console
input terminates when the input buffer is filled, or when either a return
(CONTROL-M) or line feed (CONTROL-J) character is entered. The input buffer
addressed by DX takes the following form.

DX: +0+1 +2+3+4+5+6+7+8 ... +n

Imxlncl ell c21 c31 c41c51c61 c71· . ·1 ?? I
where mx is the maximum number of characters which the buffer will hold, and nc is
the number of characters placed in the buffer. The characters entered by the
operator follow the nc value. The value mx must be set prior to making a function 10
call and may range from 1 to 255. Setting mx to zero is equivalent to setting mx to
one. The value nc is returned to the calling program and may range from 0 to mx. If
nc is less than mx, then uninitialized positions follow the last character, denoted by
"??" in the diagram. A terminating return or line feed character is not placed in the
buffer and not included in the count nco

The line editing control functions supported during console input under function 1 0
are summarized in Table 4-3.

Table 4-3 Line Editing Controls

KEYSTROKE RESULT

DEL Removes and echoes the last character
CONTROL-C Reboots when at the beginning of line
CONTROL-E Causes physical end of line
CONTROL-H Backspaces one character position
CONTROL-J Terminates input line (line feed)
CONTROL-M Terminates input line (return)
CONTROL-R Retypes the current line after new line
CONTROL-U Removes current line after new line
CONTROL-X Backspaces to beginning of current line

Certain functions which return the carriage to the leftmost ~OSlt10n (e.g.,
CONTROL-X) do so only to the column position where the prompt ended. This
convention makes operator data input and line correction more legible.

4-9

Basic Disk Operating System (BDOS) Functions

4-10

GET CONSOLE STATUS

ENTRY RETURN

CL: OBH FUNCTION 11 AL: Console Status

GET CONSOLE STATUS

The Get Console Status function checks to see if a character has been typed at the
logical console device (CONSOLE). If a character is ready, the value 01H is
returned in register AL. Otherwise the value OOH is returned.

RETURN VERSION NUMBER

ENTRY RETURN

CL: OCH FUNCTION 12 BX: Version Number

RETURN VERSION NUMBER

The Return Version Number function provides information which allows version
independent programming. A two-byte value is returned designating the CP/M
version number, as follows.

BDOS File Operations

BH

00
00
00
00
01

BL

00
20

2l-2F
22

Version

CP/M < 2.0
CP/M 2.0
CP/M> 2.0
CP/M-86
MP/M

Functions 13 through 52 are related to disk file operations under CP/M-86. In
many of these operations, DX provides the DS-relative offset to a File Control
Block (FCB). The FCB data area consists of a sequence of 33 bytes for sequential
access, or 36 bytes for random access. The default FCB normally located at offset
005CH from register DS can be used for random access files, since bytes 007DH,
007EH, and 007FH are available for this purpose.

Basic Disk Operating System (BDOS) Functions

FILE CONTROL BLOCK FORMAT

The format of the File Control Block (FCB) is

dr fl f2 / / f8 t 1 t2 t3 ex s I s2 rc dO / / dn cr rO r1 r2

10010 11021 ... 1081091101111121131141151161 ... 1311321331341351

where:

dr Drive code (0-16)
o = use default drive for file
1 = auto disk select Drive A
2 = auto disk select Drive B

16 = auto disk select drive P

fl ... f8 File name in ASCII uppercase, with high bit = 0

tl,t2,t3 File type in ASCII uppercase, with high bit = 0
tl',t2' and t3' denote the high bit of these positions

tl' = 1 - Read/Only file,
t2' = 1 - SYS file, no DIR list

ex Current extent number, normally set to 00 by the user, but in the
range 0-31 during file I/O

s 1 Reserved for internal system use

s2 Reserved for internal system use; set to 0 on call to OPEN, MAKE,
SEARCH

rc Record count for extent 'ex', takes values 0 - 128

dO ... dn Filled in by CP/M, reserved for system use

cr Current record to read or write in a sequential file operation,
normally set to 0 by the user

rO,rl,r2 Optional random record number in the range 0 - 65535, with over
flow to r2
rO,rl constitute a 16-bit value with low byte rO and high byte rl

Users of earlier versions of CP/M should note that both CP 1M Version 2 and
CP IM-86 perform directory operations in a reserved area of memory that does not
affect write buffer content, except in the case of Search for First (function 17) and
Search for Next (function 18) where the directory record is copied to the current
DMA address.

4-11

Basic Disk Operating System (BDOS) Functions

4-12

NOTE

Although CP/M-86 supports up to 16 logical
drives, labelled A through P, the APC is cur
rently configured for up to only four diskette
drives, A through D and up to four hard disk
drives, E through H. This must be taken into
account throughout this manual for all refer
ences up to 16 disk drives.

BDOS FILE PROCESSING ERRORS

There are three error situations that the BDOS may encounter during file process
ing initiated as a result of a BDOS file 1/0 function call. When one of these
conditions is detected, the BDOS issues the following message to the console.

BDOS ERR ON x: error

where x is the name of the drive selected when the error condition was detected and
error is one of the following three messages.

BAD SECTOR
SELECT
RIO

These error situations are trapped by the BDOS, temporarily halting the transient
program when the error is detected. No indication of the error situation is returned
to the transient program.

The "BAD SECTOR" error is issued as the result of an error condition returned to
the BDOS from the BIOS module. The BDOS makes BIOS sector read and write
commands as part of the execution of BDOS file-related system calls. If the BIOS
read or write routine detects a hardware error, it returns an error code to the BDOS
resulting in this error message. The operator may respond to this error in two ways:

• CONTROL-C terminates the executing program.

• RETURN instructs CP 1M -86 to ignore the error and allow the program to
continue execution.

Basic Disk Operating System (BDOS) Functions

The "SELECT" error is also issued as the result of an error condition returned to the
BDOS from the BIOS module. The BDOS makes a BIOS disk select call prior to
issuing any BIOS read or write to a particular drive. If the selected drive is not
supported in the BIOS module, it returns an error code to the BDOS resulting in this
error message. CP/M-86 terminates the currently running program and returns to
the command level of the CCP following any input from the console.

The "R/O" message occurs when the BDOS receives a command to write to a drive
that is in read/only status. Drives may be placed in read/only status explicitly by a
STAT command or BDOS function call, or implicitly if the BDOS detects that a
diskette medium has been changed and a warm start has not been performed. The
ability to detect changed media is optionally included in the BIOS, and exists only if
a checksum vector is included for the selected drive. When any character is pressed
on the keyboard, the transient program is aborted and control returns to the CCP.

RESET DISK SYSTEM

ENTRY RETURN

CL: ODH FUNCTION 13

RESET DISK SYSTEM

The Reset Disk function programmatically restores the file system to a reset state
where all drives are set to read/write (see functions 28 and 29) and Drive A is
selected as the default. This function can be used, for example, by an application
program which requires diskette changes during operation. Function 37 (Reset
Drive) can also be used for this purpose.

4-13

Basic Disk Operating System (BDOS) Functions

4-14

SELECT DISK

ENTRY

CL: OEH

D L: Selected
Disk

RETURN

FUNCTION 14

SELECT DISK

The Select Disk function designates the disk drive named in register DL as the
default disk for subsequent file operations. DL is 0 for Drive A, 1 for Drive B, and
so on through 15 for Drive P in a full sixteen-drive system. (Recall, however that the
APC currently supports only Drives A through D for diskettes and Drives E
through H for hard disk.) The function logs in the designated drive if the drive is
currently in the reset state. Logging in a drive places it in "online" status. This
activates the drive's directory until the next cold start, warm start, disk system reset,
or drive reset operation. FCBs which specify drive code zero (dr = OOH) automati
cally reference the currently selected default drive. Drive code values from 1 to 15,
however, ignore the selected default drive and directly reference Drives A through
P.

OPEN FILE

ENTRY

CL: OFH

DX: FCB
Offset

RETURN

FUNCTION 15 AL: Return Code

OPEN FILE

The Open File function activates an FCB specifying a file which exists in the disk
directory for the currently active user number. The BDOS scans the disk directory
of the drive specified by byte 0 of the FCB addressed by register DX for a match in
positions 1 through 12 of the FCB. An ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no question marks are
included and byte "ex" of the FCB is set to zero before the Open File call is made.

If a directory element is matched, the relevant directory information is copied into
bytes dO through dn of the FCB, thus allowing access to the file through subsequent
read and write operations. An existing file must not be accessed until a successful
open operation is completed. Further, an FCB not activated by either an Open File
or Make File function must not be used in BDOS read or write commands.

Basic Disk Operating System (BDOS) Functions

The Open File function returns a code, called a directory code, with a value of 0
through 3 if the open was successful, or OFFH (255 decimal) if the file could not be
found. If question marks occur in the FCB, the first matching FCB is activated. The
current record (" cr") must be zeroed by the program if the file is to be accessed
sequentially from the first record.

CLOSE FILE

ENTRY

CL: 10H

DX: FCB
Offset

RETURN

FUNCTION 16 AL: Return Code

CLOSE FILE

The Close File function is the inverse of the Open File function in its operation.
Given that the FCB addressed by DX has been previously activated through an
Open File or Make File function (function 15 or 22), the Close File function
permanently records the new FCB in the referenced disk directory. The FCB
matching process for the close is identical to the open function. The directory code
returned for a successful Close File function is 0, 1, 2, or 3, while OFFH (255
decimal) is returned if the file name could not be found in the directory. A file need
not be closed if only read operations have taken place. If write operations have
occurred, however, the Close File function is necessary to permanently record the
new directory information.

SEARCH FOR FIRST

ENTRY

CL: IlH

DX: FCB
Offset

FUNCTION 17

SEARCH FOR FIRST

RETURN

AL: Return
Code

The Search for First function scans the directory for a match with the file given by
the FCB addressed by DX. The value OFFH (255 decimal) is returned if the file is
not found; otherwise 0, 1, 2, or 3 is returned indicating the file is present. If the file is
found, the buffer at the current DMA address is filled with the record containing the
directory entry, and its relative starting position is calculated as AL * 32 (i.e., rotate
the AL register left 5 bits). Although it is not normally required for application
programs, the directory information can be extracted from the buffer at this
position.

4-15

Basic Disk Operating System (BDOS) Functions

4-16

An ASCII question mark (3FH) in any position from "fl" through "ex" matches the
corresponding field of any directory entry on the default or auto-selected disk drive.
If the "dr" field contains an ASCII question mark, then the auto disk select function
is disabled, the default disk is searched, and the search function returns any
matched entry, allocated or free, belonging to any user number. This latter function
is not normally used by application programs, but does allow complete flexibility to
scan all current directory values. If the "dr" field is not a question mark, the "s2" byte
is automatically zeroed.

SEARCH FOR NEXT

ENTRY

CL: 12H FUNCTION 18

SEARCH FOR NEXT

RETURN

AL: Function
Code

The Search for Next function is similar to the Search for First function, except that
the directory scan continues from the last matched entry. Function 18 returns the
value OFFH in AL when no more directory items match, and any other value when a
match is found. In terms of execution sequence, a Search for Next call must follow
either a Search for First or Search for Next call with no other intervening BDOS
disk-related function calls.

DELETE FILE

ENTRY

CL: 13H

DX: FCB
Offset

RETURN

FUNCTION 19 AL: Return Code

DELETE FILE

The Delete File function removes files which match the FCB addressed by DX. The
file name and type may contain ambiguous references (i.e, question marks in
various positions), but the drive select code cannot be ambiguous, as in the Search
for First and Search for Next functions. Function 19 returns OFFH (255 decimal) if
the referenced file or files cannot be found. Otherwise, it returns zero.

Basic Disk Operating System (BDOS) Functions

READ SEQUENTIAL

ENTRY

CL: 14H

DX: FCB
Offset

RETURN

FUNCTION 20 AL: Return Code

READ SEQUENTIAL

Given that the FCB addressed by DX has been activated through an Open File or
Make File function (function 15 or 22), the Read Sequential function reads the next
128-byte record from the file into memory at the current DMA address. The record
is read from position" cr" of the extent, and the" cr" field is automatically incre
mented to the next record position. If the "Cf" field overflows, the next logical extent
is automatically opened and the "cr" field is reset to zero in preparation for the next
read operation. The "cr" field must be set to zero by the user following the open call
if the intent is to read sequentially from the beginning of the file. The value OOH is
returned in register AL if the read operation was successful. A value of 01 H is
returned if no data exists at the next record position of the file. The no data situation
is encountered at the end of a file. However, it can also occur if an attempt is made to
read a data block which has not been previously written, or an extent which has not
been created. These situations are usually restricted to files created or appended by-
use of the BDOS Write Random function (function 34).

WRITE SEQUENTIAL

ENTRY

CL: ISH

DX: FCB
Offset

RETURN

FUNCTION 21 AL: Return Code

WRITE SEQUENTIAL

Given that the FCB addressed by DX has been activated through an Open File or
Make File function (function 15 or 22), the Write Sequential function writes the
128-byte data record at the current DMA address to the file named by the FeB. The
record is placed at position "cr" of the file, and the "cr" field is automatically
incremented to the next record position. If the" cr" field overflows, the next logical
extent is automatically opened and the" cr" field is reset to zero in preparation for
the next write operation. Write operations can take place into an existing file, in
which case newly written records overlay those which already exist in the file. The
"cr" field must be set to zero by the user following an open or make call if the intent is

4-17

Basic Disk Operating System (BDOS) Functions

4-18

to write sequentially from the beginning of the file. Register AL is set to OOH if the
write operation is successful. An unsuccessful write returns one of the following
values in AL.

01 No available directory space - The write command attempted to create
a new extent that required a new directory entry and no available
directory entries existed on the selected disk drive.

02 No available data block - The write command attempted to allocate a
new data block to the file and no unallocated data blocks existed on the
selected disk drive.

MAKE FILE

ENTRY

CL: 16H

DX: FCB
Offset

RETURN

FUNCTION 22 AL: Return Code

MAKE FILE

The Make File function is similar to the Open File function except that the FCB
must name a file which does not exist in the currently referenced disk directory (Le.,
the one named explicitly by a non-zero "dr" code, or the default disk if"dr" is zero).
The BDOS creates the file and initializes both the directory and main memory value
to an empty file. The programmer must ensure that no duplicate file names occur.
(A preceding delete operation is sufficient if there is any possibility of duplication.)
Register AL returns 0, 1, 2, or 3 if the operation was successful and OFFH (255
decimal) if no more directory space is available. Since the Make File function
activates the FCB, a subsequent Open File function is not necessary.

RENAME FILE

ENTRY

CL: 17H

DX: FCB
Offset

RETURN

FUNCTION 23 AL: Return Code

RENAME FILE

Basic Disk Operating System (BDOS) Functions

The Rename File function changes all directory entries of the file specified by the file
name in the first 16 bytes of the FCB addressed by D X to the file name in the second
16 bytes. It is the user's responsibility to insure that the file names specified are
valid, unambiguous, CP/M file names. The drive code "dr" at position 0 is used to
select the drive, while the drive code for the new file name at position 16 of the FCB
is ignored. Register AL returns a value of zero if the rename was successful and
OFFH (255 decimal) if the first file name could not be found in the directory scan.

RETURN LOGIN VECTOR

ENTRY

CL: 18H

BX: Login
Vector

FUNCTION 24

RETURN LOGIN
VECTOR

RETURN

BX: Login Vector

The Return Login Vector function returns the login status for up to 16 disk drives in
a login vector. The login vector is a 16-bit value in register BX. The least significant
bit corresponds to the first drive, labelled A, and the high order bit corresponds to
the sixteenth drive, labelled P. (The APC currently supports 8 drives). A "0" bit
indicates that the drive is not online. A "1" bit marks a drive that is actively online
due to an explicit disk drive selection or an implicit drive select caused by a file
operation which specified a non-zero "dr" field.

RETURN CURRENT DISK

ENTRY

CL: 19H FUNCTION 25

. RETURN CURRENT
DISK

RETURN

AL: Current Disk

The Return Current Disk function returns the currently selected default disk
number in register AL. The disk numbers range from 0 through 15, corresponding
to Drives A through P. Drives A through H (0 through 7) are currently supported
on the APC.

4-19

Basic Disk Operating System (BDOS) Functions

4-20

SET DMA ADDRESS

ENTRY

CL: IAH

DX: DMA
Offset

FUNCTION 26

SET DMA
ADDRESS

RETURN

DMA is an acronym for Direct Memory Address, which is often used in connection
with disk controllers that directly access the memory of the mainframe computer to
transfer data to and from the disk subsystem. Although many computer systems use
non-DMA access (i.e., the data is transferred through programmed I/O opera
tions), the DMA address, has, in CP/M, come to mean the address at which the
128-byte data record resides before a disk write and after a disk read.

In the CP/M-86 environment, the Set DMA Address function specifies the offset of
the read or write buffer from the current DMA base. Therefore, to specify the DMA
address, both a function 26 call and a function 51 (Set DMA Base) call are required.
The DMA address is the value specified by DX plus the DMA base value, until it is
changed by a subsequent Set DMA Address or Set DMA Base function.

GET ALLOCATION ADDRESS

ENTRY RETURN

CL: IBH FUNCTION 27 BX: ALLOC Offset

GET ADDR(ALLOC) ES: Segment base

An allocation vector is maintained in main memory for each online disk drive.
Various system programs use the information provided by the allocation vector to
determine the amount of remaining storage (see the STAT program in the CP / M-86
User's Guide for the APC). The Get Allocation Address function returns the
segment base and the offset address of the allocation vector for the currently
selected drive. The allocation information may, however, be invalid if the selected
disk has been marked read/only.

Basic Disk Operating System (BDOS) Functions

WRITE PROTECT DISK

ENTRY RETURN
III

CL:lCH FUNCTION 28

WRITE PROTECT DISK

The Write Protect Disk function provides temporary write protection for the
currently selected disk. Any attempt to write the disk before the next cold start,
warm start, disk system reset, or drive reset operation produces the following
message: "BDOS Err on d: RIO".

ENTRY

CL: lDH FUNCTION 29

GET READIONLY
VECTOR

RETURN •
BX: RIO Vector Value

The Get ReadlOnly Vector function returns a 16-bit vector in register BX which
indicates drives which have the temporary readlonly (RIO) bit set. Like function
24, the least significant bit corresponds to Drive A, while the most significant bit
corresponds to Drive P. The RIO bit is set either by an explicit call to function 28, or
by the automatic software mechanisms within CP/M-86 which detect changed disk
media.

SET FILE ATTRIBUTES

ENTRY

CL: lEH

DX: FCB
Offset

III

FUNCTION 30

SET FILE
ATTRIBUTES

RETURN

AL: Return Code

The Set File Attributes function programmatically manipulates permanent indica
tors attached to files. In particular, the RIO, System, and Archive attributes (tl', t2',
and t3') can be set or reset. The DX pair addresses an FCB containing a file name

4-21

Basic Disk Operating System (BDOS) Functions

4-22

with the appropriate attributes set or reset. It is the user's responsibility to insure
that the file name is not ambiguous. Function 30 searches the default disk drive
directory area for directory entries belonging to the current user number that match
the FCB-specified name and type fields. All matching directory entries are updated
to contain the selected indicators. Indicators fl' though f4' are not presently used,
but may be useful for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators f5' through f8'
are reserved for future system expansion. The currently assigned attributes are
defined as follows.

t1': The R/O attribute indicates whether or not the file is in read/only
status. The BDOS will not issue write commands to files in R/O status.

t2': The System attribute is referenced by the CP/M DIR utility. If the
attribute is set, DIR will not display the file in a directory display. The
DIRS command, however, will display the file.

t3': The Archive attribute is reserved but not actually used by CP /M-86. If
it is set, it indicates that the file has been written to back-up storage by
a user-written archive program. To implement this facility, the archive
program sets this attribute when it copies a file to back-up storage.
Any programs updating or creating files must reset the attribute.
Further, the archive program backs up only those files that have the
Archive attribute reset. Thus, an automatic back-up facility restricted
to modified files can be easily implemented.

Register AL returns OFFH (255 decimal) if the referenced file could not be found,
otherwise zero is returned.

GET DISK PARAMETER BLOCK ADDRESS

ENTRY

CL: 1FH FUNCTION 31

GET ADDR
(DISK PARMS)

RETURN

BX: DPB Offset

ES: Segment Base

Basic Disk Operating System (BDOS) Functions

The Get Disk Parameter Block Address function returns the offset and the segment
base of the BIOS resident disk parameter block of the currently selected drive in BX
and ES. This control block can be used for two purposes. First, the disk parameter
values can be extracted for display and/or space computation. Second, transient
programs can dynamically change the values of current disk parameters when the
disk environment changes, if required. Normally, application programs do not
require this facility. (See Chapter 7 for a definition of the BIOS disk parameter
block.)

SET/GET USER CODE

ENTRY

CL: 20H

DL: OFFH (get)
or

User Code
(set)

FUNCTION 32

SET/GET
USER CODE

RETURN

AL: Current User Code
or

(no value)

The Set/Get User Code function performs one of two operations, depending on the
value in register DL when the function is called. It either returns the number of the
currently active user, or it sets a new current user .

• The Get function is performed when register DL is set to OFFH. The
function returns the value of the currently active user (0 - 15) in register AL.

e The Set function is performed when register DL is set to the currently active
user number (0 - 15). The function changes the current user number to the
value in DL (modulo 16). No value is returned.

4-23

Basic Disk Operating System (BDOS) Functions

4-24

READ RANDOM

ENTRY

CL: 2lH

DX: FCB
Offset

RETURN

FUNCTION 33 AL: Return Code

READ RANDOM

The Read Random function reads a record at a particular record number. The
record number is selected by the 24-bit value constructed from the three-byte field
(rO, rl, r2) in the FCB at byte positions 33, 34, and 35. The sequence of 24 bits is
stored with least significant byte first (rO), middle byte next (rl), and high byte last
(r2). CPIM does not reference byte r2, except in computing the size of a file
(function 35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

The rO, rl byte pair is treated as a double-byte, or "word" value, which contains the
number of the record to read. This value ranges from 0 to 65535, providing access to
any particular record of any size file. In order to access a file using the Read
Random function, the base extent (extent 0) must first be opened. Although the base
extent mayor may not contain allocated data, this ensures that the FCB is properly
initialized for subsequent random access operations. The selected record number is
then stored into the random record field (rO, r 1), and the BDOS is called to read the
record. Register AL returns either an error code (see Table 4-4) or the value 00
indicating the operation was successful. In the latter case, the buffer at the current
DMA address contains the randomly accessed record. Unlike the sequential read
operation, the Random Read function does not advance the record number. Thus,
subsequent random read operations continue to read the same record.

Each random read operation automatically sets the logical extent and current
record values. Thus, the file can be sequentially read or written starting from the
current randomly accessed position. Note, however, that as a program switches
from random mode to sequential, the last randomly read record is reread. Similarly,
the last record is rewritten as a program switches from a random to sequential write
operation. To obtain the effect of a sequential 1/0 operation, advance the random
record position following each random read or write.

Basic Disk Operating System (BDOS) Functions

Table 4-4 Function 33 (Read Random) Error Codes

CODE

01

02

03

04

05

06

MEANING

Reading unwritten data - Random read operation
accesses a data block which has not been previously
written.

(not returned by the Random Read command)

Cannot close current extent - The BDOS cannot close
the current extent prior to moving to the new extent
containing the record specified by bytes rO, r I of the FCB.
This error can be caused by an overwritten FCB or a read
random operation on an FCB that has not been opened.

Seek to unwritten extent - Random read operation
accesses an extent that has not been created. This error
situation is equivalent to error 0 I.

(not returned by the Random Read command)

Random record number out of range - Byte r2 of the
FCB is non-zero.

Normally, non-zero return codes can be treated as missing data. Zero return codes
indicate that the operation completed successfully.

WRITE RANDOM

ENTRY

CL: 22H

DX: FCB
Offset

RETURN

FUNCTION 34 AL: Return Code

WRITE RANDOM

4-25

Basic Disk Operating System (BDOS) Functions

4-26

The Write Random function writes data to the disk from the current DMA address.
If the disk extent or data block which is the target of the write has not yet been
allocated, the allocation is performed before the write operation continues. As in
the Read Random function, the random record number is not changed as a result of
the write. The logical extent number and current record position of the file control
block are set to correspond to the random record which is being written. Sequential
read or write operations can follow a random write. However, the currently
addressed record is rewritten as the sequential operation begins. To get the effect of
a sequential write operation, advance the random record position following each
write. Reading or writing the last record of an extent in random mode does not
cause an automatic extent switch as it does in sequential mode.

To access a file using the Write Random function, the base extent (extent 0) must
first be opened. This ensures that the FCB is properly initialized for subsequent
random access operations. If the file is empty, a Make File function must be issued
for the base extent. Although the base extent mayor may not contain allocated
data, this ensures that the file is properly recorded in the directory and is visible in
DIR requests.

A Write Random call returns a value in register AL indicating an error, as listed in
Table 4-5, or the value 00 indicating the operation was successful.

COMPUTE FILE SIZE

ENTRY

CL: 23H

DX: FCB
Offset

FUNCTION 35

COMPUTE FILE
SIZE

RETURN

Random Record
Field Set

When computing the size of a file, the DX register addresses an FCB in random
mode format (bytes rO, rl, and r2 are present). The FCB contains an unambiguous
file name which is used in the directory scan. Upon return, the random record bytes
contain the virtual file size which is, in effect, the record address of the record
following the end of the file. If, following a call to function 35, the high record byte
r2 is 01, then the file contains the maximum record count 65536. Otherwise, bytes rO
and rl constitute a 16-bit value (rO is the least significant byte) which is the file size.

Basic Disk Operating System (BDOS) Functions

Table 4-5 Function 34 (Write Random) Error Codes

CODE

01

02

03

04

05

06

MEANING

(not returned by the Random Write command)

No a vaiia ble data block - The Write Random command
attempts to allocate a new data block to the file and no
unallocated data blocks exist on the selected disk drive.

Cannot close current extent - The BOOS cannot close
the current extent prior to moving to the new extent
containing the record specified by bytes rO, r 1 of the FCB.
This error can be caused by an overwritten FCB or a write
random operation on an FCB that has not been opened.

(not returned by the Random Write command)

No available directory space - The write command
attempts to create a new extent that requires a new
directory entry and no available directory entries exist on
the selected disk drive.

Random record number out of range - Byte r2 of the
FCB is non-zero.

The virtual size of a file corresponds to the physical size only when the file is written
sequentially. If a file is created in random mode and "holes" exist in the allocation,
then the file may in fact contain fewer records than the size indicates. For example,
if a single record with record number 65535 (CP/M's maximum record number) is
written to a file using the Write Random function, then the virtual size of the file is
65536 records, although only one block of data is actually allocated.

To append data to the end of an existing file, call function 35 to set the random
record position to the end of file. Then, perform a sequence of random writes
starting at the preset record address.

4-27

Basic Disk Operating System (EDOS) Functions

4-28

SET RANDOM RECORD

ENTRY

CL: 24H

DX: FCB
Offset

FUNCTION 36

SET RANDOM
RECORD

RETURN

Random Record
Field Set

The Set Random Record function returns the random record position of the next
record to be accessed from a file which has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it can be used to create a table of key field values and the corresponding record
addresses. It is often necessary to first read and scan a sequential file to extract the
positions of various "key" fields. As each key is encountered, function 36 is called to
compute the random record position for the data corresponding to this key. If the
data unit size is 128 bytes, the resulting record position minus one is placed into a
table with the key for later retrieval. After scanning the entire file and tabularizing
the keys and their record numbers, programs can move instantly to a particular
keyed record by performing a random read using the saved random record number.
The scheme is easily generalized when variable record lengths are involved since the
program need only store the buffer-relative byte position along with the key and
record number in order to find the exact starting position of the keyed data at a later
time.

A second use of function 36 occurs when switching from sequential read (or write)
to random read (or write). A file is sequentially accessed to a particular point,
function 36 is called to set the record number, and subsequent random read (write)
operations continue from the next record in the file.

Basic Disk Operating System (BDOS) Functions

RESET DRIVE

ENTRY

CL: 25H

DX: Drive
Vector

RETURN

FUNCTION 37 AL: OOH

RESET DRIVE

The Reset Drive function programmatically restores specified drives to the reset
state. A reset drive is not logged in and is in read/write status. The parameter in
register DX is a 16-bit vector of drives to be reset, where the least significant bit
corresponds to the first drive, A, and the high order bit corresponds to the sixteenth
drive, P. (The APC is configured for drives A - H only.) Bit values of "1" indicate
that the specified drive is to be reset. Register AL returns OOH when the operation is
complete.

WRITE RANDOM WITH ZERO FILL

ENTRY

CL: 28H

DX: FCB
Offset

FUNCTION 40

WRITE RANDOM
WITH ZERO FILL

RETURN

AL: Return Code

The Write Random With Zero Fill function writes data to disk from the current
DMA address (like function 34) and also initializes a previously unallocated data
block to zero-filled records before the block is written. If this function has been used
to create a file, records accessed by a read random operation that contain all zeros
identify unwritten random records. Unwritten random records in allocated data
blocks of files created using the Write Random function contain uninitialized data.

4-29

Basic Disk Operating System (BDOS) Functions

4-30

CHAIN TO PROGRAM
ENTRY RETURN

CL: 2FH FUNCTION 47

DMA buffer:
Command Line CHAIN TO PROGRAM

The Chain to Program function provides a means of chaining from one program to
the next without operator intervention. Although there is no passed parameter for
this call, the calling process must place a command line terminated by a null byte in
the default DMA buffer.

Under CP 1M -86 the Chain to Program function releases the memory of the calling
function before executing the command. The command line is parsed and placed in
the Base Page of the new program. The Console Command Processor (CCP) then
executes the command line.

GET SYSTEM DATA AREA ADDRESS

ENTRY

CL: 031H FUNCTION 49

GETSYSDAT
ADDRESS

RETURN

BX: SYSDAT Address
Offset

ES: SYSDA T Address
Segment

The GET SYSDA T function returns the address of the System Data Area. The
system data area includes the following information.

dmaad equ word ptr 0 ;user DMA address
dmabase equ word ptr 2 ;user DMA base
curdsk equ byte ptr 4 ;current user disk
usr code equ byte ptr 5 ;current user number
control_p_flag equ byte ptr 22 ;listing toggle ...

;set by ctrl-p
console _ width equ byte ptr 64
printer _ width equ byte ptr 65
console_column equ byte ptr 66
printer _column equ byte ptr 67

Basic Disk Operating System (BDOS) Functions

where:

dmaad = current user DMA address
dmabase= current user DMA base
curdsk = current user disk, 0-15 (A-P)
usrcode = current user area, 0-15
control_pJlag, 0 means do not echo console output to the printer. FF

means echo to the printer.

DIRECT BIOS CALL

ENTRY RETURN

CL: 32H FUNCTION 50 AH: Keyboard Input
Status

DX: BIOS
Descriptor
Offset

DIRECT BIOS CALL or
(no value)

The Direct BIOS Call function provides a direct BIOS call and transfers control
through the BDOS to the BIOS. The DX register addresses a five-byte memory area
containing the BIOS call parameters:

8-bit 16-bit 16-bit

Func value (CX) value (DX)]

where Func is a BIOS function number (see Table 5-1), and value (CX) and value
(DX) are the 16-bit values which would normally be passed directly in the CX and
DX registers with the BIOS call. The ex and DX values are loaded into the 8086
registers before the BIOS call is initiated.

NOTE

If the eON IN BIOS subroutine is called by this
function, the keyboard input status signal is
returned in register AH, indicating which latch
key (GRPH1, GRPH2, ALT, etc.) is pressed.
(See Appendix E, Keyboard Input Status.)

4-31

Basic Disk Operating System (BDOS) Functions

4-32

SET DMA BASE

ENTRY

CL: 33H

DX: Base
Address

RETURN

FUNCTION 51

SET DMA BASE

The Set DMA Base function sets the base register for subsequent DMA transfers.
The word parameter in DX is a paragraph address and is used with the DMA offset
to specify the address of a 128-byte buffer area for the disk read and write functions.
Note that upon initial program loading, the default DMA base is set to the address
of the user's data segment (the initial value of DS) and the DMA offset is set to
0080H, which provides access to the default buffer in the base page.

GET DMA BASE

ENTRY RETURN

CL: 34H FUNCTION 52 BX: DMA Offset

GET DMA BASE ES: DMA Segment

The Get DMA Base function returns the current DMA Base Segment address in ES,
and the current DMA Offset in BX.

BDOS Memory Management and Program Functions

Memory is allocated in two distinct ways under CP IM-86. The first is through a
static allocation map, located within the BIOS, that defines the physical memory
which is available on the host system. In this way, it is possible to operate CP/M-86
in a memory configuration which is a mixture of up to eight non-contiguous areas of
RAM or ROM along with reserved, missing, or faulty memory regions. In a simple
RAM-based system with contiguous memory, the static map defines a single region,
usually started at the end of the BIOS and extending up to the end of available
memory.

Basic Disk Operating System (BDOS) Functions

Once memory is physically mapped in this manner, CP/M-86 performs the second
level of dynamic allocation to support transient program loading and execution.
CP IM-86 allows a dynamic allocation of memory into eight regions. A request for
allocation takes place either implicitly through a program load operation, or
explicitly through the BDOS calls given in this section. Programs themselves are
loaded in two ways: through a command entered at the CCP level, or through the
BDOS Program Load operation (function 59). Multiple programs can be loaded at
the CCP level, as long as each program executes a System Reset (function 0) and
remains in memory (DL = OIH). Multiple programs of this type receive control by
intercepting interrupts, and thus under normal circumstances there is only one
transient program in memory at any given time. If, however, multiple programs are
present in memory, then CONTROL-C characters entered by the operator delete
these programs in the order opposite that in which they were loaded no matter
which program is actively reading the console.

Any program loaded through a CCP command can, itself, load additional pro
grams and allocate data areas. For example, suppose four regions of memory are
allocated in the following order.

(I) A program is loaded at the CCP level through an operator command.
The CMD file header is read, the entire memory image consisting of
the program and its data is loaded in region A, and execution begins.

(2) This program, in turn, calls the BDOS Program Load function to load
another program into region B, and transfers control to the loaded
program.

(3) The region B program then allocates an additional region, C, followed
by a region D. The order of allocation is shown in Figure 4-1.

Region A

Region B

Region C

Region D

Figure 4-1 Example Memory Allocation

4-33

Basic Disk Operating System (BDOS) Functions

4-34

There is a hierarchical ownership of these regions. The program in A controls all
memory from A through D. The program in B also controls regions B through D.
The program in A can release regions B through D, if required, and reload yet
another program. (DDT-86, for example, operates in this manner by executing
function 57, the Free Memory call, to release the memory used by the current
program before loading another test program.) Further, the program in Bean
release regions C and D if required by the application. However, if either A or B
terminates by a System Reset (BDOS function 0 with DL = OOH), then all four
regions A through D are released.

A transient program may release a portion of a region, allowing the released portion
to be assigned on the next allocation request. The released portion must, however,
be at the beginning or end of the region. Suppose, for example, the program in
region B in the previous example receives 800H paragraphs at paragraph location
100H following its first allocation request, as shown in Figure 4-2.

Length =

8000H

!-IOOOH:

Figure 4-2 Example Memory Region

Region C

Suppose further that region D is then allocated. The last 200H paragraphs in region
C can be returned without affecting region D by releasing the 200H paragraphs
beginning at paragraph base 700H, resulting in the memory arrangement shown in
Figure 4-3.

Length =

6000H

Length =

2000H

:----1000 H:

1 __ 7000H:

Figure 4-3 Example Memory Regions

Region C

111111/11/1
1111111/1/1

Basic Disk Operating System (BDOS) Functions

The region beginning at paragraph address 700H is now available for allocation in
the next request. Note that a memory request will fail if eight memory regions have
already been allocated. Normally, if all program units can reside in a contiguous
region, the system allocates only one region.

MEMORY CONTROL BLOCKS (MCB)

Memory management functions (functions 53-57) reference a Memory Control
Block (MCB), defined in the calling programs, which takes the form:

16-bit 16-bit 8-bit

MCB: M-Base M-Length M-Ext

where M-Base and M-Length are either input or output values expressed in 16-byte
paragraph units, and M-Ext is a returned byte value, as defined specifically with
each function code. An error condition is normally flagged with a OFFH returned
value in order to match the file error conventions of CP/M-80.

GET MAXIMUM MEMORY

ENTRY

CL: 35H

DX: Offset
ofMCB

FUNCTION 53

GET MAX MEM

RETURN

AL: Return Code

The Get Maximum Memory function finds the largest available memory region
which is less than or equal to M-Length paragraphs. If successful, M-Base is set to
the base paragraph address of the available area and M-Length to the paragraph
length. Register AL returns the value OFFH if no memory is available, and OOH if
the request was successful. M-Ext is set to 1 if there is additional memory for
allocation, and 0 if no additional memory is available.

4-35

Basic Disk Operating System (BDOS) Functions

4-36

GET ABSOLUTE MAXIMUM MEMORY

ENTRY.

CL: 36H

DX: Offset
ofMCB

FUNCTION 54

GET ABS MAX

RETURN

AL: Return Code

The Get Absolute Maximum Memory function finds the largest possible region at
the absolute paragraph boundary given by M-Base, for a maximum of M-Length
paragraphs. If successful, M-Length is set to the actual length. If no memory is
available at the absolute address, AL returns the value OFFH.

ALLOCATE MEMORY

ENTRY

CL: 37H

DX: Offset
ofMCB

RETURN

FUNCTION 55 AL: Return Code

ALLOC MEM

The Allocate Memory function allocates a memory area according to the MCB
addressed by DX. The allocation request size is obtained from M-Length. Function
55 returns the base paragraph address of the allocated region in the user's MCB.
Register AL contains OOH if the request was successful and OFFH if the memory
could not be allocated.

ALLOCATE ABSOLUTE MEMORY

ENTRY

CL: 38H

DX: Offset
ofMCB

FUNCTION 56

ALLOC ABS MEM

RETURN

AL: Return Code

The Allocate Absolute Memory function allocates a memory area according to the
MCB addressed by DX. The allocation request size is obtained from M-Length, and
the absolute base address from M-Base. Register AL contains OOH if the request was
successful and OFFH if the memory could not be allocated.

Basic Disk Operating System (BDOS) Functions

FREE MEMORY

ENTRY

CL: 39H

DX: Offset
ofMCB

RETURN

FUNCTION 57

FREE MEM

The Free Memory function releases memory areas allocated to the program. The
value of the M-Ext field controls the operation of this function. If M-Ext is OFFH,
all memory areas allocated by the calling program are released. Otherwise, M-Ext
should be set to OOH. This releases the memory area oflength M-Length at location
M-Base given in the MCB addressed by DX. As previously explained, either an
entire allocated region or the end of a region must be released. The middle section of
a region cannot be returned under CP IM-86.

FREE ALL MEMORY

ENTRY RETURN

CL: 3AH FUNCTION 58

FREE ALL MEM

The Free All Memory function releases all memory in the CP 1M -86 environment. It
is normally used only by the CCP during initialization.

4-37

Basic Disk Operating System (BDOS) Functions

4-38

PROGRAM LOAD

ENTRY RETURN

CL: 3BH FUNCTION 59

DX: Offset
ofFCB

PROGRAM LOAD

AX: Return Code/
Base Page Addr

BX: Base Page Addr

The Program Load function-loads a CMD file. Register DX contains the DS
relative offset of a successfully opened FCB which names the input CMD file. AX
returns the value OFFH if the program load was unsuccessful. Otherwise, AX and
BX both contain the paragraph address of the base page belonging to the loaded
program. The base address and segment length of each segment are stored in the
base page.

NOTE

Upon program load at the CCP level, the
DMA base address is initialized to the base
page of the loaded program and the DMA
offset adddress is initialized to 0080H. This is a
function of the CCP. Function 59 does not
establish a default DMA address. It is the
responsibiiity of the program which executes
function 59 to also execute function 51 to set
the DMA base, and function 26 to set the
DMA offset before passing control to the
loaded program.

Chapter 5

Basic 1/0 System
(BIOS) Organization
The version of CP /M-86 you have purchased is set up for operation with the NEC
APC. All hardware dependencies are concentrated in subroutines which are collec
tively referred to as the Basic Input/Output System, or BIOS. NEC has modified
these subroutines to tailor CP/M-86 to fit the APC operating environment. The
BIOS has been customized, and so is referred to as the CBIOS.

The BIOS consists of three sections: standard BIOS functions, escape sequence
functions, and extended functions. The latter two sections of the BIOS contain
APC-specific modifications to CP /M-86 that are referred to collectively as
advanced BIOS functions. They are described in Chapter 6. Standard BIOS func
tions, for both floppy diskette and hard disk systems, are discussed in this chapter.
In both chapters, entry points and variables are defined as necessary and BIOS
tables are referenced. The discussion of Disk Definition Tables is treated separately
in Chapter 7 of this manual. Listings are supplied on the distribution diskette.

The relationship among applications programs, the BDOS, and the BIOS is shown
in Figure 5-1.

Figure 5-1 APC CBIOS Function Calls

EXTENDED
FUNCTION CALLS

5-1

Basic I/O System (BIOS) Functions

5-2

ORGANIZATION OF THE BIOS

The BIOS portion of CP IM-86 resides in the topmost part of the operating system
(highest addresses), and takes the general form shown in Figure 5-2.

CS, DS, ES, SS:

Console
Command
Processor

and
Basic
Disk

Operating
System

CS + 2500H: BIOS Jump Vector

CS + 253FH:
BIOS Entry Points

BIOS: Disk
Parameter

Tables

U nini tialized
Scratch RAM

Figure 5-2 General CP/M-86 Organization

In order to implement CP IM-86 on the APC hardware, NEC has modified the
standard BIOS distributed by Digital Research, Inc. to create a BIOS which
performs the functions listed in Chapters 5 and 6. The cold start loader that loads
the CPM.syS into memory contains a simplified form of the BIOS, called the
LDBIOS (Loader BIOS). It loads CPM.SYS into memory at the location defined in
the CPM.SYS header (absolute address 0400H).

Basic I/O System (BIOS) Functions

THE BIOS JUMP VECTOR

Entry to the BIOS is through ajump vector located at offset 2500H from the base of
the operating system. The jump vector is a sequence of 31 three-byte jump instruc
tions which transfer program control to the individual BIOS entry points. Although
some nonessential BIOS subroutines may contain a single return (RET) instruction,
the corresponding jump vector element must be present in the location shown in
Table 5-1.

Parameters for the individual subroutines in the BIOS are passed in the ex and DX
registers, when required. ex holds the first parameter; DX is used for a second
argument. Return values are passed in the registers according to type.

• Byte values are returned in AL.

• Word values (16 bits) are returned in BX.

Specific parameters and returned values are described with each subroutine.

BIOS SUBROUTINES

There are three major divisions in the BIOS jump table: system (re)initialization
subroutines, simple character I/O subroutines, and disk I/O subroutines. The
BIOS subroutines for disk I/O differ for floppy and hard disks. However, the same
jump vector is used for entry to the subroutine for both types of disk. The system
distinguishes between the media based on the value of the currently selected drive
specifier. Drives A through D identify floppy disk drives. Drives E and F corre
spond to hard disk unit #0, while Drives G and H correspond to hard disk unit # 1.
The system supports a maximum of four floppy diskette drives and two hard disk
units (four logical hard disk drives).

5-3

Basic I/O System (BIOS) Functions

Table 5-1 BIOS Jump Vector

OFFSET FROM SUGGESTED BIOS
BEGINNING INSTRUCTION F# DESCRIPTION

OF BIOS

2500H JMP INIT* 0 Arrive Here from Cold Boot
2503H JMPWBOOT 1 Arrive Here for Warm Start
2506H JMPCONST 2 Check for Console Character Ready
2509H JMP CONIN 3 Read Console Character In
250CH JMPCONOUT 4 Write Console Character Out
250FH JMP LIST 5 Write Listing Character Out
2512H JMPPUNCH 6 Write Character to Punch Device
2515H JMPREADER 7 Read Reader Device
2518H JMPHOME* 8 Move to Track 00
251BH JMP SELDSK* 9 Select Disk Drive
251EH JMP SETTRK* 10 Set Track Number
2521H JMP SETSEC* 11 Set Sector Number
2524H JMPSETDMA* 12 Set DMA Offset Address
2527H JMPREAD* 13 Read Selected Sector
251AH JMPWRITE* 14 Write Selected Sector
252DH JMP LISTST 15 Return List Status
2530H JMPSECTRAN 16 Sector Translate
2533H JMP SETDMAB" 17 Set DMA Segment Address
2536H JMPGETSEGB 18 Get MEM DESC Table Offset
2539H JMPGETIOB 19 Get I/O Mapping Byte
253CH JMPSETIOB 20 Set I/O Mapping Byte
253FH JMPNULL 21 Undefined
2542H JMPNULL 22 Undefined
2545H JMPNULL 23 Undefined
2548H JMPNULL 24 Undefined
254BH JMPNULL 25 Undefined
254EH JMPNULL 26 Undefined
255EH JMPNULL 26 Undefined
2551H JMPNULL 27 Undefined
2554H JMPNULL 28 Undefined
2557H JMPNULL 29 Undefined
255AH JMP FUNC_50 High-Level-Language

Interface Call

* Subroutine differs for floppy and hard disk media.

5-4

Basic I/O System (BIOS) Functions

STANDARD BIOS SUBROUTINE ENTRY POINTS

This section describes the standard BIOS subroutines: system initialization subrou
tines, simple character 1/0 subroutines, and disk 1/0 subroutines.

System Initialization Subroutines

ARRIVE HERE FROM COLD BOOT

ENTRY.
FUNCTION 0

INIT

RETURN

This subroutine is called directly by the CP/M-86 loader after the CPM.SYS file has
been read into memory. The procedure performs any hardware initialization not
performed by the bootstrap loader (see below for a discussion of hard <;lisk initiali
zation), sets initial values for BIOS variables (including IOBYTE), prints sign-on
messages, and initializes the interrupt vector to point to the BDOS offset (OB06H)
and base.

For hard disk systems, this subroutine initializes hard disk processing. It first
checks the DMA controller to determine whether the hard disk adapter is installed.
lfit exists, the routine waits to allow the hard disk units to warm up. The procedure
then generates the system unit table (SYSUNITID), sets the number of hard disk
drives, reads the error map from the hard disk, and initializes the values for BIOS
variables.

When the routine is complete, it jumps to the CCP offset (OlH). All segment
registers are initialized at this time to contain the base of the operating system.

ARRIVE HERE FOR WARM START

ENTRY.
FUNCTION 1

WBOOT

RETURN

This subroutine is called whenever a program terminates by performing a BDOS
function 0 call. Some reinitialization of the hardware or software may occur here.
When this routine completes, it jumps directly to the warm start entry point of the
CCP (06H).

5-5

Basic I/O System (BIOS) Functions

5-6

Simple Character 1/0 Subroutines
This section describes how simple character inputloutput operations are performed
with CP/M-86 using BIOS functions 2 through 7. It also describes the operation of
the IOBYTE and the functions (9 and 20) that set and read this field.

SIMPLE PERIPHERAL DEVICES

All simple character 1/0 operations are assumed to be performed in ASCII, upper
and lower case, with high order (parity) bit set to zero. An end-of-file condition for
an input device is given by an ASCII CONTROL-Z (lAH). Peripheral devices are
seen by CP/M-86 as "logical" devices, and are assigned to physical devices within
the BIOS. Device characteristics are defined in Table 5-2.

Table 5-2 CP IM-86 Logical Device Characteristics

DEVICE
NAME CHARACTERISTICS

CONSOLE The principal interactive console which communicates with
the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT with a keyboard, or Teletype.

LIST The principal listing device, ifit exists on the system, which is
usually a hard-copy device such as a printer or Teletype.

PUNCH The principal tape punching device, if it exists. Any RS 232C
device, such as a modem, can also be used.

READER The principal tape reading device, such as a simple optical
reader or Teletype. Any RS 232C device, such as a modem,
can also be used.

Note that a single peripheral can be assigned as the LIST, PUNCH, and READER
device simultaneously. If no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS gives an appropriate error message so that the system
does not "hang" if the device is accessed by PIP or some other transient program.
Alternately, the PUNCH and LIST subroutines can simply return, and the
READER subroutine can return with a lAH (CONTROL-Z) in register AL to
indicate immediate end-of-file.

Basic I/O System (BIOS) Functions

CHECK FOR CONSOLE CHARACTER READY

ENTRY

FUNCTION 2
CONST

RETURN

AL: Return Code

This function reads the status of the currently assigned console device and returns
OFFH in register AL if a character is ready to be read, and OOH in register AL if no
console character is ready.

READ CONSOLE CHARACTER IN

ENTRY

FUNCTION 3
CONIN

RETURN

AL: Character

This function reads the next console character into register AL. If no console
character is ready, the function waits until a character is typed before returning.

WRITE CONSOLE CHARACTER OUT

ENTRY

CL: ASCII
Character

FUNCTION 4
CONOUT

RETURN

This function sends the ASCII character in register CL to the console output device.

WRITE LISTING CHARACTER OUT

ENTRY

CL: ASCII
Character

FUNCTION 5
LIST

RETURN

This function sends the ASCII character in register CL to the currently assigned list
device.

5-7

Basic I/O System (BIOS) Functions

5-8

WRITE CHARACTER TO PUNCH DEVICE

ENTRY

CL: ASCII
Character

FUNCTION 6
PUNCH

RETURN

This function sends the ASCII character in register CL to the currently assigned
punch device with RS 232C interface.

READ READER DEVICE

ENTRY

FUNCTION 7
READER

RETURN

AL: Character

This function reads the next character from the currently assigned reader device
into register AL. An end-of-file condition is reported by returning an ASCII
CONTROL-Z (lAH).

IOBYTE Function

The IOBYTE function creates a mapping oflogical to physical devices which can be
altered during CP IM-86 processing. The definition of the IOBYTE function
corresponds to the Intel standard as follows: a single location in the BIOS is
maintained, called IOBTYE, which defines the logical to physical device mapping
which is in effect at a particular time. The mapping is performed by splitting the
IOBYTE into four distinct fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below.

most significant least significant

IOBTYE LIST PUNCH READER CONSOLE

bits 6, 7 bits 4, 5 bits 2, 3 bits 0, 1

The value assigned in each field can be in the range 0-3, defining the assigned source
or destination of each logical device. The values which can be assigned to each field
are given in Table 5-3.

Basic I/O System (BIOS) Functions

Two CP/M-86 utilities use the IOBYTE:

• PIP allows access to the physical devices;

• ST A T allows logical-physical assignments to be made and displayed.

Table 5-3 IOBYTE Field Defintions

CONSOLE field (bits 0, 1)

o - console is assigned to the console printer (TTY:)
I - console is assigned to the CRT device (CRT:)
2 - batch mode; use the READER as the CONSOLE input, and the LIST

device as the CONSOLE output (BAT:)
3 - user-defined console device (UCI:)

READER field (bits 2, 3)

0- READER is the Teletype device (TTY:)
1 - READER is the high-speed reader device (RDR:)
2 - user-defined reader # 1 (UR 1:)
3 - user-defined reader #2 (UR2:)

PUNCH field (bits 4, 5)

0- PUNCH is the Teletype device (TTY:)
1 - PUNCH is the high speed punch device (PUN:)
2 - user-defined punch # 1 (UP 1:)
3 - user-defined punch #2 (UP2:)

LIST field (bits 6, 7)

0- LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - user-defined list device (UL1:)

NOTE

The implementation of the IOBYTE is
not fully supported by the NEC BIOS.
IOBYTE has been implemented on the
APC only for assigning the LIST device
to either LPT: or UL1: as follows.

LPT: = Parallel centronix interface
UL 1: = Serial RS 232C interface

(standard on APC)

5-9

Basic I/O System (BIOS) Functions

5-10

GET I/O MAPPING BYTE

ENTRY

FUNCTION 19
GETIOB

RETURN

AL: IOBYTE

This function returns the current value of the logical to physical input/output
device byte (IOBYTE) in AL. This eight-bit value is used to associate physical
devices with CP/M-86's four logical devices.

SET I/O MAPPING BYTE

ENTRY

CL: 10BYTE FUNCTION 20
SETIOB

RETURN

This function uses the value in CL to set the value of the IOBYTE stored in the
BIOS.

Disk I/O Subroutines
This section describes the disk I/O subroutines, functions 8 through 18.

Disk I/O is always performed through a sequence of calls to the various disk access
subroutines. The subroutine sets up the disk number to access, the cylinder (for
hard disk), track, and sector on the disk, and the direct memory access (DMA)
offset and segment addresses involved in the I/O operation. After all these parame
ters have been set, the subroutine makes a call to the READ or WRITE function.
The READ or WRITE function, in turn, calls either the R_ W _COMMON (for
diskette) or R_ W _COMMONHD (for hard disk) routine to perform the actual
I/O operation. Note that there is often a single call to SELDSK to select a disk
drive, followed by a number of read or write operations to the selected disk before
selecting another drive for subsequent operations. Similarly, there may be a call to
set the DMA segment base and a call to set the DMA offset followed by several calls
which read or write from the selected DMA address before the DMA address is
changed. The track and sector subroutines are always called before the READ or
WRITE operations are performed.

Basic 110 System (BIOS) Functions

The READ and WRITE subroutines perform 24 retries before reporting an error
condition to the BDOS.

MOVE TO TRACK 00

ENTRY

FUNCTION 8
HOME

RETURN

This function returns the disk head of the currently selected drive to the track 00
position. In the APC CBIOS, this subroutine does not actually perform the track 00
seek. Instead the call is translated into a call to function 10 with a parameter of 00.

The drive must have been previously selected by the SELDSK function (function 9).
Before accessing the disk, the routine initializes the sector blockingl deblocking
flags.

If a "not ready" condition is detected, one of the following error messages is
displayed:

FDC HIW ERROR
HDC H/W ERROR

to identify the disk that the controller is unable to access. The system waits for
operator input (R to retry, I to ignore) to continue.

5-11

Basic I/O System (BIOS) Functions

5-12

SELECT DISK DRIVE

ENTRY

CL: Disk Drive
OOH-OFFH

FUNCTION 9
SELDSK

RETURN

BX:DPH
Address

This function selects the disk drive given by register CL for further operations.
Register CL can contain a value ranging from 0 for Drive A to 15 for Drive P.
Recall, however, that the APC is configured to support diskette drives A-D (OH-
3H) and hard disk drives E-H (4H-7H) only. SELDSK returns the base address of
the selected drive's Disk Parameter Header (DPH) in BX.

On entry to SELDSK it is possible to determine whether it is the first time the
specified disk has been selected. Register DL, bit 0 (least significant bit) is zero if the
drive has not been previously selected. This information can be used to set up a
dynamic disk definition table.

This routine does not change the contents of the header and associated tables. For
hard disk the routine checks SYSUNITID for the hard disk unit number. For both
diskette and hard disk, if the call attempts to select a nonexistent drive, SELDSK
returns OOH in BX as an error indicator.

Although this operation must return the header address on each call, it is advisable
to postpone the actual physical disk select operation until an I/O function (seek,
read, or write) is performed. This is due to the fact that disk select operations may
take place without a subsequent disk operation and thus disk access may be
substantially slower.

Basic I/O System (BIOS) Functions

SET TRACK NUMBER

ENTRY

cx: Track Number FUNCTION 10
SETTRK

RETURN

This function sets a track number. Register CX contains the track number for
subsequent disk accesses on the currently selected drive. Programs can seek the
selected track at this time, or delay the seek until the next read or write actually
occurs. Register CX can take values in the range 0-76 (for floppy diskettes) and
0-720 (for hard disk) corresponding to valid track numbers. A call to this function
with the value 00 in CX is equivalent to a call to function 8.

SET SECTOR NUMBER

ENTRY

CX: Sector Number FUNCTION 11
SETSEC

RETURN

This function sets a sector number. Register CX contains the translated sector
number (see function 16) for subsequent disk accesses on the currently selected
drive. Programs can send this information to the controller at this point, or delay
sector selection until a read or write operation occurs. The BIOS uses a combination
of track number and sector number to determine the physical location of data on a
diskette.

• For single-sided, single-density diskettes (lD), there are 26 sectors (num
bered 1-26) per track, and one track per cylinder.

• For double-sided, double-density diskettes (2D), there are 26 sectors
(numbered 1-26) per track, and two tracks (numbered 0 and 1) per cylinder.
Track 1, sector 1 refers to cylinder 0, sector 52.

• For hard disks, there are 64 logical sectors (numbered 1-64) per track, and 8
tracks per cylinder.

See Chapter 7 for more complete addressing information.

5-13

Basic I/O System (BIOS) Functions

5-14

SET DMA OFFSET ADDRESS

ENTRY

CX: DMA Offset FUNCTION 12
SETDMA

RETURN

This function sets the DMA Offset Address. Register CX contains the DMA (Direct
Memory Address) offset for subsequent READ or WRITE operations. For exam
ple, if CX is 80H when SETDMA is called, all subsequent READ operations read
their data into 80H through OFFH offset from the current DMA segment base, and
all subsequent WRITE operations get their data from that address, until the next
calls to SETDMA and SETDMAB occur. This data is then transferred to the DMA
buffer addressed by the SETDMA and SETDMAB commands.

READ SELECTED SECTOR

ENTRY

FUNCTION 13
READ

RETURN

AL: Return Code
OH,OFFH

Assuming the drive has been selected, the track has been set, the sector has been set,
and the DMA offset and segment base have been specified, the READ subroutine
attempts to read based on these parameters by calling R_ W _COMMON for
diskette I/O or R_ W _COMMONHD for hard disk I/O. It returns zero in register
AL if the read is successful. If the read is not successful, it returns OFFH in register
AL.

This routine first calculates the physical sector address from the logical track
address given by the BDOS. It then determines whether the requested record
already exists in the work buffer. If the record is not in the buffer, the routine calls
the appropriate routine to read from the disk medium to a buffer. R_ W _COM
MON reads 128 bytes from a single density diskette, and 256 bytes from double
density diskette. R_ W _COMMONHD reads 8K bytes (multisector read) from the
disk to the work buffer. Finally, the requested record is moved from the work buffer
to the user-specified DMA address.

Basic I/O System (BIOS) Functions

If an error occurs, the CBIOS attempts 16 retries to see if the error is recoverable.
When an error is reported, the BDOS prints the message "BDOS ERR ON x: BAD
SECTOR", where x is the drive specifier. The operator then has the option of
pressing RETURN to ignore the error, or CONTROL-C to abort.

Refer to Appendix I for information about blocking and deblocking.

WRITE SELECTED SECTOR

ENTRY

FUNCTION 14
WRITE

RETURN

AL: Return Code
OH,OFFH

This function writes the data from the currently selected DMA base and offset
address to the currently selected drive, cylinder (hard disk only), track, and sector.
This routine actually writes the data to a buffer at a fixed location and calls
R_ W _COMMON or R_ W _COMMONHD to perform the physical write.

The error codes given for Read Selected Sector (function 13) are also returned in
register AL for this function, with error recovery attempts as described for that
function.

Refer to Appendix I for information about blocking and deblocking.

RETURN LIST STATUS

ENTRY

FUNCTION 15
LISTST

RETURN

AL: Return Code
OH,OFFH

This function returns the ready status of the list device. The value returned in AL is
00 if the list device is not ready to accept a character, and OFFH if a character is sent
to the printer.

5-15

Basic I/O System (BIOS) Functions

5-16

SECTOR TRANSLATE

ENTRY

CX: Logical Sector
Number

DX: Translate Table
Offset

FUNCTION 16
SECTRAN

RETURN

This function performs logical to physical sector translation to improve the overall
response of CP/M-86. The CP/M-86 operation system is shipped with a "skew
factor" of 6 for single-sided single-density diskettes and 3 for double-sided double
density diskettes. This skew factor allows enough time between sectors for most
programs to load their buffers without missing the next sector. In general, SEC
TRAN receives a logical sector number in CX. This logical sector number may
range from 0 to n - I, where n is the number of sectors.

SECTRAN also receives a translate table offset in DX. The sector number is used as
an index into the translate table, with the resulting physical sector number in BX.
The CBIOS for the APe includes correct tables for the skew factors in use.

SET DMA BASE ADDRESS

ENTRY •
CX: DMA Base FUNCTION 17

SETDMAB

RETURN .,

This function sets the DMA base address. Register CX contains the segment base
for subsequent DMA read or write operations. The BIOS uses the 128-byte buffer at
the memory address determined by the DMA base and the DMA offset during read
and write operations.

Basic I/O System (BIOS) Functions

GET MEM DESC TABLE OFFSET

ENTRY

FUNCTION 18
GETSEGB

RETURN

BX: MR T Address

This function returns the address of the Memory Region Table (MRT) in BX. The
returned value is the offset of the table relative to the start of the operating system.
The table defines the location and extent of physical memory which is available for
transient programs.

Memory areas reserved for interrupt vectors and the CP 1M -86 operating system are
not included in the MRT. The Memory Region Table takes the following form.

MRT:
0:
1:

n:

8-bit
R-Cnt

R-Base I R-Length 1
R-Base I R-Length 1

R-Base R-Length
16-bit 16-bit

R-Cnt is the number of Memory Region Descriptors (equal to n + 1 in the diagram
above), and R-Base and R-Length give the paragraph base and length of each
physically contiguous area of memory. Again, the reserved interrupt locations,
normally 0-3FFH, and the CP/M-86 operating system are not included in this map,
because the map contains regions available to transient programs. If all memory is
contiguous, the R-Cnt field is 1 and n is 0, with only a single Memory Region
Descriptor which defines the region.

Chapter 7 describes the layout and construction of the disk parameter tables
referenced by the various subroutines in the BIOS.

5-17

Basic I/O System (BIOS) Functions

5-18

Other Functions
NULL Each of the remaining functions, 21 - 27, executes a simple

return without an operation.

This function is a high-level language interface to the BDOS
function 50 call. To use this function, the high level language
program must first set up the parameter values used by BDOS
function 50 in a five-byte memory area starting at location
40:250B. (See BDOS function 50 for a description of the
parameter area.) The calling program then issues a Far Call to
BDOS function 50.

Chapter 6

Advanced BIOS Functions
The CP/M-86 operating system distributed with the APC contains a customized
BIOS, called the CBIOS, with features specific to the APC. CRT control codes, or
escape sequence functions, reside in the BIOS and are called by BDOS functions.
Extended functions also reside in the BIOS and are called directly by application
programs using program interrupt #220. The relationship among applicant pro
grams, the BDOS, and CBIOS is shown in Figure 5-1.

CRT ESCAPE SEQUENCE FUNCTIONS

The CONOUT (Write Console Character Out) routine in the BIOS recognizes CRT
escape code sequences and performs the appropriate action in response to the codes
received. Any of the following standard functions can be used to effect the APC
console escape sequences.

• BDOS function 2 (Console Output)

• BDOS function 6 (Direct Console I/O)

• BDOS function 50 (Direct BIOS call)

Format and Definitions

Escape sequences consist of three kinds of fields: a sequence introducer that
identifies the instruction as an escape sequence, one or more parameters, and a final
character. For example, the following escape sequence moves the cursor up two
lines.

ESC[2A

The general format for the above escape sequence

ESC[PnA

presents the basic elements of all APC escape sequences.

6-1

Advanced BIOS Functions

6-2

• The Control Sequence Introducer (CSI) signals an escape sequence com
mand to the system. In the APC environment, the CSI is the ESC character
(lBH or 27 decimal). The ESC is usually followed by a square bracket (D.
(The use of a bracket or other character depends on the particular escape
sequence.)

A t the CP 1M -86" A>" prompt, pressing the ESC key causes the characters
""[" to appear on the display screen. Therefore, escape sequences that are
introduced by ESC followed by a square bracket appear on the display
screen as "11[[".

• A parameter is a string of zero or more decimal characters which represent
a single value. Leading zeros are ignored. The decimal characters have a
range of 0 (30H) to 9 (39H). Two types of parameters are used in escape
sequences .

• Numeric parameters represent numbers. Unless otherwise specified, any
numeric value may be used. Numeric parameters are designated Pn in
this document.

• Selective parameters, designated in this document by Ps, are those that
select a subfunction from a specified list of subfunctions.

You must replace Pn and Ps, as well as certain command-specific parame
ters, with the appropriate values in the command.

A parameter string is a list of parameters, separated by semicolons (3BH).

Default is a function-dependent value that is assumed when no value is
explicitly specified for a parameter.

• The Final Character is a character whose bit combination terminates an
escape or control sequence. There is a different character for each escape
sequence. In the example above, "A" is the Final Character. The Final
Character must be entered exactly as it appears in the command format. Be
careful to use uppercase or lowercase correctly.

As another example, the following escape sequence format is used to set character
attributes.

ESC[Ps; ... ;Psm

To select the attributes "over line" (3), "under line" (4), and "blink" (5), you would
enter the values that correspond to the following sequence. Note that lowercase "m"
is the Final Character.

ESC[2; 3; 4m

Advanced BIOS Functions

delimiter delimiter , ~ , t
ESC [2 3 4 m IB 5B 32 3B 33 3B 34 6D

I
t t +

Selective
Parameters

t t •
Selective

Parameters

Parameter Parameter
String String

CSI Final CSI Final
Character Character

Figure 6-1 Escape Code Sequence Example

At the "A>" prompt, this command would appear as follows.

A A> [[2; 3; 4m

6-3

Advanced BIOS Functions f..;;([>sh

t.Yt ['> S X

6-4

APC Escape Code Sequences
c'~ (tS\ (l

CURSOR UP

ESC[PnA default value: 1

This sequence moves the active position up without altering the column position.
The number of lines moved is determined by the parameter. A parameter value of 0
or 1 moves the active position up one line. A parameter value of n moves the active
position up n lines. If an attempt is made to move the cursor above the first
character of the first display line, the cursor stops at the top margin.

CURSOR DOWN

ESC[PnB default value: 1

This sequence moves the active position down without altering the column position.
The number oflines moved is determined by the parameter. A parameter value of 0
or 1 moves the active position down one line. A parameter value of n moves the
active position down n lines. If an attempt is made to move the cursor below the
bottom margin, the screen rolls up the required number of lines.

CURSOR FORWARD

ESC[PnC default value: 1

This sequence moves the active position to the right. The distance moved is
determined by the parameter. A parameter value of 0 or 1 moves the active position
one position to the right. A parameter value of n moves the active position n
positions to the right. If an attempt is made to move the cursor to the right of the
right margin, the cursor moves to the first column of the next line. If this would take
the cursor below the bottom margin, the screen rolls up one line and the cursor is
positioned on the first character of the bottom line.

CURSOR BACKWARD

ESC[PnD default value: 1

This sequence moves the active position to the left. The distance moved is deter
mined by the parameter. A parameter value of 0 or 1 moves the active position one
position to the left. A parameter value of n moves the active position n positions to
the left. If an attempt is made to move the cursor to the left of the left margin, the
cursor moves to the last column in the previous row. If this would place the cursor
above the home position, the cursor does not move.

(-, I \

_ \.\\\, 1.-

Advanced BIOS Functions

CURSOR POSITION

There are two ways to move the cursor to a specified position. The standard escape
sequence uses one of the following two formats.

ESC[PI;PcH or
ESC[PI;Pcf default value: 1

These sequences move the cursor to the position specified by the parameters.

PI = line number

A parameter value of 0 or 1 moves the active cursor position to the first
line in the display. A parameter value of n moves the the active position
to the nth line in the display. If n is greaer than 25, the system treats n as
25.

Pc = column number

A parameter value of 0 or 1 moves the active cursor position to the first
column in the display. A parameter value of n moves the active
position to the nth column. If n is greater than SO, the system treats n as
SO.

As an alternative to the standard escape sequence for cursor position, the following
cursor position escape sequence can be used in programs where the ADM-3A Mode
is more appropriate.

ESC = Ic

This sequence moves the cursor position to the position specified by the parameters.

I = line number

The line number is a binary value in the range 20H (first line) - 3SH
(25th line).
If I > 3SH, the system treats I as 3SH.
If 1< 20H, the system treats I as 20H.

c = column number

The column number is a binary value in the range 20H (first column)-
6FH (SOth column)
If c > 6FH, the system treats c as 6FH.
If c < 20H, the system treats cas 20H.

Note that the line and the column numbers are hex offsets rather than the actual line
and column numbers used in the standard cursor position escape sequence. 6-5

Advanced BIOS Functions

6-6

SELECT CHARACTER ATTRIBUTES

ESC[Ps; . .. ;Psm

This escape sequence sets character attributes. Once the sequence is executed, all
following characters transmitted are rendered according to the parameter(s) until
the next occurence of this escape sequence.

Parameter

o
1
2
3
4
5
6
7

8-15
16
17
18
19
20
21
22
23

Meaning

Attributes off (default: green color, color monitor)
Attributes off (default: green color)
Vertical line
Over Line
Under Line
Blink
Not used
Reverse
Not used
Secret
Red color/Highlight*
Blue color
Purple color
Green color (default)
Yellow color
Bright blue color
White color

Color Parameters

* Highlight attribute is available for monochrome CRT only.

NOTES

• The color and secret parameters are mutu
ally exclusive. If neither color nor secret is
specified, the green color default is used.

• The attributes off parameter (Ps = 0 or 1)
cannot be specified with other parameters.
If it is, the attributes off parameter is
ignored.

Advanced BIOS Functions

ERASE WITHIN DISPLAY

ESC[PsJ default value: 0

This sequence erases some or all of the characters in the display according to the
parameter.

Parameter

o

1

2

Meaning

Erase from the active position to the end of the
screen, inclusive.

Erase from the start of the screen to the active posi
tion, inclusive.

Erase all of the display. All lines are erased and the
cursor remains at its current position.

ERASE WITHIN LINE

ESC[PsK default value: 0

Erases some or all characters in the active line according to the parameter.

Parameter

o

1

2

Meaning

Erase from the active position to the end of the line,
inclusive.

Erase from the start of the screen to the active posi
tion, inclusive.

Erase all of the line.

6-7

Advanced BIOS Functions

6-8

AUXILIARY CHARACTER SET

ESC(l

This function is used to access the auxiliary character codes (20H - FDH) created by
the CHR utility. The one character immediately following the escape sequence is
treated as the auxiliary character code. In Direct Console 1/0 (BDOS function 6)
the available auxiliary character codes have a range of OOH to FFH.

SETA MODE

NOTE

The character immediately following ESC is
the open parentheses character, (, not the
square bracket.

ESC[>Psh

This sets the mode specified by the parameter. Only the values listed below may be
used. All other parameters values are ignored.

Parameter

I
2
5
7

RESET A MODE

ESC[>Psl

Mode

Disable system status display
Disable key click
Disable cursor display
Disable keyboard input

This escape sequence resets the mode specified by the parameter. Only the values
listed below may be used. All other parameter values are ignored. The final
character is the lowercase letter 1, not the number one.

Parameter

I
2
5
7

Mode

Enable system status display
Enable key click
Enable cursor display
Enable keyboard input

Advanced BIOS Functions

ASCII CONTROL CODES

Table 6-1 summarizes the ASCII control codes which are available for the
CONOUT routine in the BIOS.

Table 6-1 ASCII Control Codes

CONTROL HEX
CHARACTER CODE ACTION TAKEN

BEL 07H Sound bell tone
BS 08H Cursor backward

LF OAH Cursor down

VT OBH Cursor up
FF OCH Cursor forward
CR ODH Cursor to left margin

SUB lAH Erase screen

ESC IBH Introduce an escape sequence
RS lEH Cursor home

~

EXTENDED FUNCTION CALLS

Entry to the extended BIOS is accomplished through the 8086 software interrupt
#220. The extended function code is passed in register CL. Registers DX, DS, and
AX contain additional parameters as necessary. The status of the GRAPH1,
GRAPH2, CAPS, and AL T keys are returned in register AH for direct CBIOS calls.
All registers are automatically saved upon entry and restored upon exit from the
CBIOS. Table 6-2 lists the extended function calls.

6-9

Advanced BIOS Functions

6-10

Table 6-2 Extended Function Calls

F# RESULT

0 Get Time and Date
1 Set Time and Date
2 Play Music
3 Sound Beep
4 Report Cursor Position (With ESC)
5 Automatic Power Off (APO)
6 Initialize Keyboard FIFO Buffer
7 Direct CRT I/O (DMA Transfer)
8 Write CMOS
9 Read CMOS

10 Initialize RS 232C

Each of the extended CBIOS functions is described in detail in the following section
of this chapter.

Get Time And Date

ENTRY

CL: OOH

DS:DX: Data
Buffer Address

EXT FUNCO
GET

TIME AND DATE

RETURN

Buffer: Time and Date

The Get Time and Date function returns the system time and date. Registers DS and
DX hold the address of the I/O data buffer in which the data is to be stored. The
system fills the data buffer at the indicated address in the following format.

Year
Month IDay of Week*

Day
Hour

Minute
Second

<----------1 byte--------->

* - Month and Day of Week are each half byte values.

Advanced BIOS Functions

Year = 00-99 BCD
Month = 1-12 Hex
Day of Week = 1-7 Hex
(I-Sun, 2-Mon, etc.)

Set Time And Date

ENTRY

CL: 01H

DS:DX Data
Buffer Address

Day = 1-31
Hour = 0-23
Minute = 0-59
Second = 0-59

BCD
BCD
BCD
BCD

RETURN

EXT FUNC 1
SET

TIME AND DATE

The Set Time and Date function sets the system time and date. The buffer addressed
by registers DS and DX must contain the time and date. The I/O data buffer format
is the same as that used by extended function 0, Get Time and Date.

Play Music

ENTRY

CL: 02H

AX: Buffer
length

DS:DX: Data
Buffer Address

RETURN

EXT FUNC 2

PLAY MUSIC

The Play Music function plays music on the APC. The I/O buffer addressed by
registers DS and DX consists of melody data. Register AX is set to the I/O buffer
length in bytes. Melody data consists of two types of information: control com
mands and scale data. Control Commands set the loudness and speed. Scale data
refer to notes, duration, and accent.

Control data is written in the following format.

[M[n]] [T[n]]

6-11

Advanced BIOS Functions

6-12

Table 6-3 lists the acceptable values for n. Both the loudness and speed commands
are optional, as indicated by the square brackets. The values are effective until new
ones are specified.

Table 6-3 Melody Data Control Commands

COMMAND FUNCTION

Mn Loudness
n = 1 piano

2 medium (default)
3 forte

Tn Speed
n=l 1.00 sec for quarter note

2 0.87 sec (default)
3 0.56 sec
4 0.38 sec

Scale data set the note values, duration, and accent. The allowable values for these
variables are defined in the following tables.

Advanced BIOS Functions

Table 6-4 Note Values

NOTE FUNCTION

-C
-C#
-D
-D#
-E
-F
-F# low octave
-G
-G#
-A
-A#
-B

C
C#
D
D#
E
F middle octave
G
G#
A
A#
B ~~

+C
+C#
+D high octave
+D#
+E

N rest

6-13

Advanced BIOS Functions

6-14

Table 6-5 Duration Values

DURATION FUNCTION (FOR REST NOTE)

0 0 whole ~

1 J. dotted 1/2 -...
2 d 1/2 ---
3 J. dotted 1/4 ~.
4 J 1/4 ~
5 P. dotted 1/8 i.
6 J) 1/8 7
7 ~~. dotted 1/16 7.
8 ~ 1/16 1
9 ~ 1/32

..
1

The format of the scale data command follows.

[S] note [duration]

The accent command is indicated by the value S in the scale data command. Both
accent and duration are optional. The accent applies only to the note value it
preceeds. The duration is effective until the next duration is specified.

The complete melody data format, then, is:

[control data] [scale data] ...

The control data is effective until the next control data is specified.

An example of melody data follows.

M2 TI +A3 SG#l SE5-A#O T3-F4 S-D#2 ...

'? Y ~ Y.,;>J C(C/ Y
control scale control scale
da~ d~a da~ da~

Advanced BIOS Functions

Sound Beep

ENTRY

CL: 03H

AX: Buffer
length

DS:DX: Data
Buffer Address

RETURN

EXT FUNC 3

SOUND BEEP

The Sound Beep function sounds the beep tone on the APC. The 110 buffer
addressed by registers DS and DX contains beep data. Register AX is set to the 1/0
buffer length in bytes. Beep data consists of control commands and parameters.
Control commands set the loudness and type of sound. The parameters control
frequency and tone period.

Control data is written in the following format.

The loudness parameter,n, is optional. Table 6-6 lists the values for n. Control data
is effective until the next control data is specified. Band P are mutually exclusive
commands. They cannot be specified together.

Table 6-6 Short Sound Control Commands

COMMAND FUNCTION

Bn B = Rectangular wave sound (beep)

Pn P = Piano sound

n = Loudness
1 piano
2 medium (default)
3 forte

6-15

Advanced BIOS Functions

6-16

The parameter format is a frequency value followed, optionally, by a number
specifying the tone period.

trl [n]

The short sound parameters and their corresponding values are defined in Table 6-7.

Table 6-7 Beep Sound Parameters

PARAMETER VALUE MEANING

Frequency H 710 Hz
I 1202 Hz
J 2038 Hz
K 3406 Hz

Tone period
n 1 20 msec (min)

2 2xl0 msec
3 3xlO msec

N Nxl0 msec

65535 65535xl0 msec

The complete format of the beep command follows.

[control data] [sound parameter] . ..

Both parts of the command are optional, as shown in the following example.

I P2 K8 Bl H3 ...

Advanced BIOS Functions

Report Cursor Position

ENTRY

CL: 04H

DS:DX: Data
Buffer Address

EXT FUNC 4

REPORT
CURSOR POSITION

RETURN

Buffer: Cursor
Position

The Report Cursor Position function gets the current active position on the console
screen. Registers DS and DX point to the address of the I/O buffer in which the data
is to be stored. The system returns the column and line numbers of the current
position prefixed by the escape (ESC) code in the following format.

E
S [PI , Pc R
C

~8 bytes

All characters are returned as ASCII code values. PI is the line number (01-25). Pc is
the column number (01-80).

Auto Power Off

ENTRY RETURN

CL: 05H EXT FUNC 5

APO

The Auto Power Off function turns off the power of the machine. When the function
is called, the system waits approximately five seconds before turning off the power.
To turn the system back on, remove any diskettes in the drives, turn the power
switch off, then turn it back on.

6-17

Advanced BIOS Functions

6-18

Initialize Keyboard FIFO Buffer

ENTRY RETURN

CL: 06H EXT FUNC 6

INIT KB
FIFO BUFFER

The Initialize Keyboard FIFO Buffer function initializes the KB FIFO buffer. This
function does not pass any parameters.

Direct CRT va

ENTRY

CL: 07H

DS:DX: Display
Request Block
Address

RETURN
II

EXT FUNC 7

DIRECT CRT I/O

The extended BIOS routines allow the assembly language programmer to perform
high speed block level I/O operations to the console through the DMA. Five
different operations may be performed through this function. They are identified by
the command number passed in the display request block. The extended function
commands are listed in Table 6-8 and described in detail in this section.

Table 6-8 Direct CRT va Function Calls

CMD# FUNCTION

0 Display video memory format data on CRT

1 Display string data on CRT

2 Report cursor position by binary value

3 Roll down screen

4 Roll up screen

Advanced BIOS Functions

DISPLAY REQUEST BLOCK

The display request block used in the Direct CRT I/O function contains control
data for the DMA exchange. It includes the command number, cursor position from
which the data is to be displayed, the number of characters to display, and the
addresses of the display data and attribute data buffers. Registers DS and DX are set
to the address of the display request block prior to issuing the function call. Figure
6-2 shows the format of the display request block.

CMD#

LA CA

NOC

display data offset

----------- 2 words (word boundary)

buffer
address base

attribute data offset

----------- 2 words (word boundary)

buffer
address base

Figure 6-2 Display Request Block

CMD#:

LA,CA:

NOC:

o -4 (command number)

Display/cursor position

LA (Line address) = 0-24 binary, 1 byte

CA (Column address) = 0-79 binary, 1 byte

Number of characters to be displayed
0-2000 binary, 1 word

6-19

Advanced BIOS Functions

6-20

dis pIa y data
buffer address:

attribute data
buffer address:

Starting address of display data buffer (offset, base
address; 2 words)

Starting address of attribute data buffer (offset, base
address; 2 words)

Figure 6-3 shows how the DMA transfer function works.
DISPL.A Y REQCEST BLOCK

--1
DISPLAY

DATA

VIDEO MEMORY

~
Il...

I ,

I "
I ",

\
\
\ --------------- \

ARI,A \"

;~ "
"

~
LA I CA

NOL

-r---.

-
,'----------

DMA TRANSHR

--- 1111 I 41 I 00 I 42 I

DISPL\ Y DATA

[I'IDIO MIMORY H)RMA'I)

j
I',

~-----------,~--------------~

l
-- -----.~--------~ ,'L--

I -- I I
\

A TfRIBUTE t- - - - - - - - - - - - - - -
DMA TRANSII R \T1RIHI'TID.YIA

DATA
AREA

\r-_
i

-------------,-~--------------~

__ 1 ____ ->----1 __ I

Figure 6-3 DMA Transfer

The display request block contains the addresses of the display data area and the
attribute data area. On the video memory, each display character consists of two
bytes of display data and one corresponding byte of attribute data. The first byte of
the display data for each character identifies whether the following character code is
a normal character or an auxiliary character. The second byte of the display data is a
character code. The attribute data is a color code.

FIRST BYTE SECOND BYTE

OOH= Normal OOH through FFH
Display Data 89H = Auxiliary

Attribute Data OOH = through FFH N/A

Advanced BIOS Functions

Note that the actual character data and attribute data are physically separated in
video memory.

With CMD#O, both normal and auxiliary character codes may be used in the video
memory format. With CMD#I, only normal character codes may be used.

In the BIOS Direct CRT I/O function, the available graphic codes have the
following ranges:

OOH - FFH: Normal character code
OOH - FFH: Auxiliary character code

In the BDOS Direct Console I/O function, the available codes have the following
ranges:

20H - 7EH: ASCII graphic code for normal character code
20H - FDH: Auxiliary character code with ESC sequence

VIDEO MEMORY FORMAT

Video memory format is the format of the display data area in the video memory.
Each display data item consists of 2 bytes:

display
data 1

first I
byte I

I

second
byte

display
data 2

first I

byte I
I

second
byte

display
data 3

first
byte

first byte = OOH (normal character code)

I second
I byte
I

89H (auxiliary character code specifier)

second byte = OOH - FFH (character code)

STRING DATA FORMAT

...

In the string data format, each display data item must be a normal character code.
Display data items are one byte long.

6-21

Advanced BIOS Functions

6-22

ATTRIBUTE DATA FORMAT

The attribute data items occur in one-to-one correspondence with the display data
items. That is, there is one attribute data item for each display data item. Each
attribute data item is one byte in length, with each of the eight low-order bits set to 0
or 1 to indicate no color or a color value. The attributes are assigned to bits as
follows.

M
S
B
7 6 5 3 2 1

L
S
B
o

* - Highlight is available for monochrome monitor only.

Figure 6-4 Attribute Data Byte Format

Under line
Over line
Vertical line
Blink
Reverse
Red/Highlight *
Blue
Green

Colors may be used individually or in combination to generate secondary colors.
For example, the following attribute data byte displays data with blink and purple
color attributes.

01101000 (68H)

~LBlink LRed}
Blue Purple

Advanced BIOS Functions

DIRECT CRT I/O COMMANDS

CMD# 0 - Display Video Memory Format Data on CRT

This function displays the data, starting from the positions specified by LA and CA
for the length in NOC, on the CRT. The display data must be in video memory
format.

The contents of the display request block for this command follow.

CMD#

LA

CA

NOC

o

Range is 0-24, binary. Values greater than 24 are converted to 24.

Range is 0-79, binary. Values greater than 79 are converted to 79.

If the number of data items to be displayed exceeds the display
area on the CRT, the overflow data is ignored. If NOC is 0, the
cursor is positioned at LA,CA and no other action is taken.

display The starting address should be located at an even memory address
data buffer (DMA controller's restriction). If the base address is 0, no display
address da ta is transferred.

attribute If the base address IS 0, attribute data is not transferred.
data buffer
address

If the base addresses of both display data and attribute data are 0, the effect is the
same as setting NOC to O. The cursor is positioned at LA,CA and no data is
transferred.

After data is transferred, the cursor is positioned at the next cursor position. If the
cursor is positioned on the last screen position (25,80) when the call is issued, the
command is executed, the screen rolls up one line, and the cursor is positioned on the
first column of the bottom line.

6-23

Advanced BIOS Functions

6-24

CMD# 1 - Display String Data on CRT

This command, like CMD# 0, displays the data addressed by LA and CA for the
length in NOC on the CRT. The display data must be in string data format with each
item consisting of one byte of normal character code data.

The contents of the display request block are the same for this command as for
CMD# 0, except that CMD # is 1.

CMD# 2 - Report Cursor Position

This command returns the current cursor position in fields LA and CA in the display
request block. The function uses only the display request block fields listed below.
The contents of the remainder of the area are ignored.

CMD# 2

LA Range is 0-24, binary.

CA Range is 0-79, binary.

CMD# 3 - Roll Down Screen

This command enables the programmer to roll down the contents of video memory
a maximum of 25 lines on the screen, as shown in Figure 6-5. The function uses only
the display request block fields listed below. The contents of the remainder of the
area are ignored.

CMD# 3

LA Number of lines to roll down (1-25, binary)

VIDLO MEMORY

DISPLA YLD SCREEN

29 0 CURSOR

NI:W

Figure 6-5 Roll Down Screen

Advanced BIOS Functions

CMD# 4 - Roll Up Screen

This command enables the programmer to roll up the specified number of lines on
the screen, as shown in Figure 6-6. The function uses only the display request block
fields listed below. The contents of the remainder of the area are ignored.

CMD#

LA

4

Number of lines to roll up
If the number of lines to roll up exceeds the number of lines that
have been written, the next line is erased.

YJ[)IO ""1.l\10R~

OlD
ROil 1'1'

_

_ 6 -----

27

50 ______ -4---'---'---'--' ~

'" I \\

Figure 6-6 Roll Up Screen

6-25

Advanced BIOS Functions

6-26

Write CMOS

ENTRY

CL: 08H

DS:DX: Data
Buffer Address

RETURN

EXT FUNC 8

WRITE CMOS

The Write CMOS function writes up to 512 bytes to CMOS RAM (battery back-up
memory). The data to be written is stored in an I/O buffer addressed by registers DS
and DX. The format of the buffer follows.

Address in CM OS
User buffer size
Offset of buffer
Base address of buffer

<------ 1 word ------>

Address in CMOS = Relative address in CMOS for data
Displacement from start of CMOS
Range is 0 - 511

User buffer size = Number of bytes to be written
Range is 1 - 512 bytes

Read CMOS

ENTRY

CL: 09H

DS:DX: Data
Buffer Address

RETURN

EXT FUNC 9 Data Buffer

READ CMOS

The Read CMOS function reads data in CMOS RAM (battery back-up memory)
into the buffer addressed by registers DS and DX. The system fills the data buffer in
the format defined in function 8, Write CMOS.

Advanced BIOS Functions

Initialize RS 232C

ENTRY

CL: OAH

DX: Baud Rate
and Mode

EXT FUNC 10
INITIALIZE

RS 232C

RETURN

The Initialize RS 232C function is used in asynchronous mode only to set the baud
rate (DH) and mode (DL). (In synchronous mode, an external clock determines the
baud rate.) The register values are set as follows.

DH = Baud Rate

0= 150 BPS
1 = 200 BPS
2 = 300 BPS
3 = 600 BPS
4 = 1200 BPS
5 = 2400 BPS
6 = 4800 BPS
7 = 9600 BPS

6-27

Advanced BIOS Functions

6-28

DL = Asynchronous mode byte for J1. PD8251

7 6 5 4 3 2 1 o

I S2 lSI I EP I PEN I L2 I LI I B2 I B 1 I
baud rate

~----------------~~
~--------------------~~

'*t baud rate L...-:..

length of character

010 1
o 0 1 1

5 bit 6 bit 7 bit 8 bit

parity enable/disable
'--_________ -<{ 1 = enable

0= disable

parity check
{ 1 = even

~----------------~ 0= odd

length of stop bit

1 1
o 1

1 bit 2 bit

NOTE

Typically, when communication software is
operating, the system timer is off and the key
board repeat feature does not operate.

Chapter 7

BIOS Disk Definition Tables
CP/M-86, like CP/M-80, is a table-driven operating system with a separate field
configurable Basic I/O System (BIOS). By altering specific subroutines in the BIOS
presented in the previous chapters, NEC has customized CP/M-86 for operation on
the APC.

The purpose of this chapter is to present the organization and construction of tables
within the BIOS that define the characteristics of the disk system used with CP/M-
86. The APC is configured to operate with single-sided, single-density (lD) and
double-sided, double density (2D) diskettes, and with hard disks.

DISK PARAMETER TABLE FORMAT

In general, each disk drive has an associated 16-byte disk parameter header which
contains information about the disk drive and also provides a scratchpad area for
certain BDOS operations. The format of the disk parameter header for each drive is
shown below.

Disk Parameter Header

XLT 0000 0000 0000 DIRBUF DPB CSV ALV

16b 16b 16b 16b 16b 16b 16b 16b

Each element is a word (16-bit) value. The meaning of each Disk Parameter Header
(DPH) element is given in Table 7-1.

7-1

BIOS Disk Definition Tables

7-2

Table 7-1 Disk Parameter Header Elements

ELEMENT DESCRIPTION

XLT Offset of the logical-to-physical translation vector, ifused for this
particular drive, or the value OOOOH if no sector translation takes
place (i.e., the physical and logical sector numbers are the same).
Disk drives with identical sector skew factors share the same
translate tables.

0000 Scratchpad values for use within the BDOS (initial value is
unimportant).

DIRBUF Offset of a 128-byte scratchpad area for directory operations
within BDOS. All DPHs address the same scratchpad area.

DPB Offset of a disk parameter block for this drive. Drives with
identical disk characteristics address the same disk parameter
block.

CSV Offset of a scratchpad area used for software check for changed
disketts. This offset is different for each DPH and is used for
floppy diskettes only.

ALV Offset of a scratchpad area used by the BDOS to keep disk storage
allocation information. This offset is different for each DPH.

Table 7-2 lists the DPH values for the APC.

DIRBUF

CSV

ALV

Table 7-2 DPH Values For The APe

FO-ID FD-2D

128 bytes 128 bytes

16 bytes 64 bytes
x 4 drives x 4 drives

31 bytes 62 bytes
x 4 drives x 4 drives

HARD DISK

128 bytes

a

71 bytes
x 4 drives

CPMSPT= 64
SECMSK = 63

BIOS Disk Definition Tables

Given n disk drives, the DPHs are arranged in a table whose first row of 16 bytes
corresponds to Drive 0, and whose last row corresponds to drive n-1. The table
appears as follows.

DPBASE

00 XLTOO 0000 0000 0000 DIRBUF DBPOO CSVOO ALVOO

01 XLT01 0000 0000 0000 DIRBUF DBP 01 CSV01 ALV01

(and so forth through)

The label DPBASE defines the offset of the DPH table relative to the beginning of
the operating system.

A responsibility of the SELDSK subroutine, defined in Chapter 5, is to return the
offset of the DPH from the beginning of the operating system for the selected drive.
The following sequence of operations returns the table offset, with a value ofOOOOH
returned if the selected drive does not exist.

NDISKS EQU 8 ;NUMBER OF DISK DRIVES

SELDSK:
;SELECT DISK N GIVEN BY CL
MOV BX,OOOOH ;READY FOR ERR
CMP CL,NDISKS ;N BEYOND MAX DISKS?
JNB RETURN ;RETURN IF SO

;0 <= N < NDISKS
MOV CH,O ;DOUBLE (N)
MOV BX,CX ;BX = N
MOV CL,4 ;READY FOR * 16
SHL BX,CL ;N = N * 16
MOV CX,OFFSET DPBASE
ADD BX,CX ;DPBASE + N * 16

RETURN: RET ;BX - .DPH (N)

7-3

BIOS Disk Definition Tables

7-4

The translation vectors (XLT 00 through XL Tn-I) are located elsewhere in the
BIOS, and simply correspond one-far-one with the logical sector numbers zero
through the sector count minus one. The Disk Parameter Block (DPB) for each
drive is more complex. ~A1 particular DPB, which is addressed by one or more DPHs,
takes the following general form.

SPT I BSH I BLM I EXM I DSM I DRM I ALO I ALl I CKS I OFF

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

Each field is a byte or word value, as shown by the "8b" or "16b" indicator below the
field. The fields are defined in Table 7-3.

Table 7-3 Disk Parameter Block Fields

FIELD DEFINITION

SPT Total number of sectors per track

BSH Data allocation block shift factor, determined by the data
block allocation size

BLM Block mask, determined by the data block allocation size

EXM Extent mask, determined by the data block allocation size
and the number of disk blocks

DSM Used to determine the total storage capacity of the disk
drive

DRM Used to determine the total number of directory entries
which can be stored on the drive

ALO,ALI Used to determine reserved directory blocks

CKS Size of the directory check vector

OFF Number of reserved tracks at the beginning of the (logical)
disk

BIOS Disk Definition Tables

The values of BSH and BLM determine (implicitly) the data allocation size BLS,
which is not an entry in the disk parameter block. Given that you have selected a
value for BLS, the values of BSH and BLM are shown in Table 7-4, where all values
are in decimal.

Table 7-4 BSH and BLM Values for Selected BLS

BLS BSH BLM

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

The value of EXM depends on both the value of BLS and whether the DSM value is
less than 256 or greater than 255, as shown in Table 7-5.

Table 7-5 Maximum EXM Values

BLS DSM < 256 DSM > 255

1,024 ° N/A
2,048 I ° 4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by this particular
drive, measured in BLS units. The product BLS x (DSM+I) is the total number of
bytes held by the drive and, of course, must be within the capacity of the physical
disk, not counting the reserved operating system tracks.

The DRM entry is one less than the total number of directory entries, which can take
on a 16-bit value.

The values of ALO and ALl are determined by DRM. The two values ALO and ALl
can together be considered a string of 16-bits, as shown below.

ALO ALl

15

7-5

BIOS Disk Definition Tables

7-6

Position 00 corresponds to the high order bit of the byte labeled ALO, and 15
corresponds to the low order bit of the byte labeled ALl. Each bit position reserves a
data block for a number of directory entries, thus allowing a total of 16 data blocks
to be assigned for directory entries. The bits are assigned starting at 00 and filled to
the right until position 15. Each directory entry occupies 32 bytes, as shown in Table
7-6.

Table 7-6 BLS and Number of Directory Entries

BLS Directory Entries

1,024 32 times # bits
2,048 64 times # bits
4,096 128 times # bits
8,192 256 times # bits

16,384 512 times # bits

Thus, if DRM is 127 (128 directory entries), and BLS is 1024, there are 32 directory
entries per block, requiring four reserved blocks. In this case, the four high order bits
of ALO are set, resulting in the values ALO = OFOH and ALl = OOH.

The CKS value is determined as follows .

• If the disk drive medium is removable, CKS = (DRM+I)/4, where DRM is
the last directory entry number .

• If the medium is fixed, CKS=O, and no directory records need to be checked.

The OFF field determines the number of tracks which are skipped at the beginning
of the physical disk. This value is automatically added whenever SETTRK is called,
and can be used as a mechanism for skipping reserved operating system tracks, or
for partitioning a large disk into smaller segmented sections.

NOTES

• Several D PH's can address the same D PB if
their drive characteristics are identical.

• The DPB can be dynamically changed when a
new drive is addressed by changing the pointer
in the DPH. The BDOS copies the DPB values
to a local area whenever the SELDSK function
is invoked.

BIOS Disk Definition Tables

Returning to the DPH description, note that the two address values CSVand ALV
remain. Both addresses reference an area of uninitialized memory following the
BIOS. The areas must be unique for each drive. The size of each area is determined
by the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is sufficient to hold the
directory check information for a drive. If CKS = (DRM+I)/4, (DRM+I)/4 bytes
must be reserved for directory check use. If CKS is 0, no storage is reserved.

The size of the area addressed by ALV is determined by the maximum number of
data blocks allowed for a particular disk, and is computed as (DSM/8)+ 1.

Table 7-7 lists the DPS values for single-density diskettes, double-density diskettes,
and hard disks for the APC.

Table 7-7 DPB Values For The APe

FD-1D FD-2D HARD DISK

SPT 26 52 64

BSH 3 4 6

BLM 7 15 63

EXM 0 0 3

DSM 242 493 562
256 x 26 x 8 x 86.5

(-1)
8192

DRM 63 255 511

ALO 192 240 192
ALl 0 0 0

CKS 16 64 0

OFF 2 2 0

7-7

BIOS Disk Definition Tables

7-8

PHYSICAL AND LOGICAL STRUCTURES FOR FLOPPY DISKETTES

Table 7-7 Physical and Logical Addressing
for Floppy Diskettes

LOGICAL ADDRESS

PHYSICAL ADDRESS SECTOR #

CYLINDER # HEAD# SECTOR # TRACK # FDI (SKEW 6) FD2 (SKEW 3)

n 0 I 0 I (1,2)
n 0 2 0 14 (19,20)
n 0 3 0 10 (37,38)

4 23 (3, 4)
5 6 (21,22)
6 19 (39,40)
7 2 (5,6)
8 15 (23,24)
9 II (41,42)

10 24 (7, 8)
II 7 (25,26)
12 20 (43,44)
13 3 (9,10)
14 16 (27,28)
15 12 (45,46)
16 25 (II ,12)
17 8 (29,30)
18 21 (47,48)
19 4 (13,14)
20 17 (31,32)
21 13 (49,50)
22 26 (15,16)
23 9 (33,34)
24 22 (51,52)
25 5 (17,18)

0 26 0 18 (35,36)

1 1 I (1,2)
1 2 1 (19,20)
1 3 I (37,38)

4 (3, 4)
5 (21,22)
6 (39,40)
7 none (5,6)
8
9

10
II
12
13
14
15

n 1 26 1 18 (35,36)

For hard disk, no translation is necessary.

Chapter 8

CP/M-86 Bootstrap and
Adaptation Procedures
This chapter describes the components of the NEC CP/M-86 system distribution
diskette, the operation of each component, and the procedures followed in modify
ing CP/M-86 for the APC hardware environment. NEC used these procedures to
adapt the standard CP/M-86 distributed by Digital Research, Inc. to make available
to you the unique features of the APC. There is no need for you to modify the
operating system in any way for normal use on your APC. This chapter is included
primarily for informational purposes.

CAUTION

The procedures outlined in this chapter should
be used only by system programmers who need
to reconfigure the operating system for systems
development purposes. °Do not attempt the
procedures unless it is your intent to modify the
CBIOS. If the procedures are not understood
and followed exactly, you may lose the entire
CP/M-86 operating system.

CP/M-86 is customized for the APC and distributed on two double-sided, double
density IBM-compatible eight-inch diskettes using a file format which is compatible
with all previous CP/M-80 operating systems. The principal components of the
distribution system are found on the CP/M-86 System Diskette. They are:

• 86/12 Bootstrap ROM (BOOT ROM)

• Cold Start Loader (LOADER)

• CP/M-86 System (CPM.SYS)

All the hardware and firmware necessary for running the APC are available in the
BOOT ROM.

8-1

CPIM-86 Bootstrap and Adaptation Procedures

8-2

THE COLD START LOAD OPERATION

The LOADER program is a simple version of CP/M-86 that contains sufficient file
processing capability to read CPM.SYS from the system diskette to memory. When
LOADER completes its operation, the CPM.SYS program receives control and
proceeds to process operator input commands.

Both the LOADER and CPM.SYS files are preceded by the standard CMD header
record. The 128-byte LOADER header record contains the following single group
descriptor.

G-Form G-Length A-Base G-Min G-Max

1 xxxxxxxxx 0400 xxxxxxx xxxxxxx

8b 16b 16b 16b 16b

• G-Form = 1 denotes a code group

• "x" fields are ignored

• A-Base defines the paragraph address where the BOOT ROM begins filling
memory. A-Base is the word value which is offset three bytes from the
beginning of the header.

NOTE

Since only a code group is present, an 8080
Memory Model is assumed. Further, although
the A-Base defines the base paragraph address
for LOADER (byte address 04000H) the
LOADER can, in fact, be loaded and executed
at any paragraph boundary that does not over
lap CP/M-86 or the BOOT ROM.

The LOADER itself consists of three parts:

• Load CPM program (LDCPM)

• Loader Basic Disk System (LDBDOS)

• Loader Basic I/O System (LDBIOS)

CPIM-86 Bootstrap and Adaptation Procedures

The standard LDBIOS has been field-altered for the APC hardware using the same
entry points described in Chapter 5 for BIOS modification. The organization of
LOADER is shown in Figure 8-1.

GD#l]OV III I I IIII I II

CS DS ES SS OOOOH: JMP 1200H I
(LDCPM)

I JMPF CPM

0400H:

(LDBDOS)

1200H: JMP INIT

.......

JMP SETIOB

INIT: .. JMP 0003H

(LDBIOS)

1700H:

Figure 8-1 LOADER Organization

Byte offsets from the base registers are shown at the left of the diagram. GD#1 is the
Group Descriptor for the LOADER code group described above, followed imme
diately by a "0" group terminator. The entire LOADER program is read by the
BOOT ROM, excluding the header record, starting at byte location 04000H as given
by the A-Field. Upon completion of the read, the BOOT ROM passes control to
location 04000H where the LOADER program begins execution. The JMP 1200H
instruction at the base of LDCPM transfers control to the beginning of the LDBIOS
where control then transfers to the INIT subroutine. The subroutine starting at
INIT performs device initialization, prints a sign-on message, and transfers back to
the LDCPM program at byte offset 0003H. The LDCPM module opens the
CPM.SYS file, loads the CP/M-86 system into memory and transfers control to
CP/M-86 through the JMPF CPM instruction at the end of LDCPM execution,
thus completing the cold start sequence.

8-3

CP/M-86 Bootstrap and Adaptation Procedures

8-4

The command LDCOPY copies LOADER.CMD to the system tracks. These steps
produce a diskette with a LOADER program which incorporates the custom
LDBIOS capable of reading the CPM.SYS file into memory. For standardization,
LOADER executes at location 4000H. LOADER is statically relocatable, however,
and its operating address is determined only by the value of A- Base in the header
record.

You must, of course, perform the same function as the BOOT ROM to get
LOADER into memory. The APC controller provides a power-on "boot" operation
that reads the first disk sector into memory. This one-sector program, in turn, reads
the LOADER from the remaining sectors and transfers to LOADER upon
completion.

ORGANIZATION OF CPM.SYS

The CPM.SYS file, read by the LOADER program, consists of the CCP, BDOS,
and BIOS in CMD file format, with a 128-byte header record similar to the
LOADER program.

G-Form G-Length A-Base G-Min G-Max

1 xxxxxxxxx 040 xxxxxxx xxxxxxx

8b 16b 16b 16b 16b

A-Base load address is paragraph 040H, or byte address 0400H, immediately
following the 8086 interrupt locations. The entire CPM.SYS file appears on disk as
shown in Figure 8-2.

CPIM-86 Bootstrap and Adaptation Procedures

(0040:0) CS DS ES SS OOOOH:

(0040:) 2500H:

(0040:) 2AOOH:

Figure 8-2 CPM.SYS File Organization

G D# 1\ 0 V I I I I I I I I I I I I

(CCP and BDOS)

JMP INIT

JMP SETIOB

(BIOS)

INIT: .. JMP OOOOH

GD#1 is the Group Descriptor containing the A-Base value followed by a "0"
terminator. The BIOS contains an "INCLUDE" statement that reads the appropri
ate file containing the disk definition tables.

The CPM.SYS file is read by the LOADER program beginning at the address given
by A-Base (byte address 0400H), and control is passed to the INIT entry point at
offset address 2500H. Any additional initialization, n,ot performed by LOADER,
takes place in the INIT subroutine. On completion, INIT executes a JMP OOOOH to
begin execution of the CCP. The actual load address of CPM.SYS is determined
entirely by the address given in the A-Base field which can be changed if you wish to
execute CP/M-86 in another region of memory. Note that the region occupied by
the operating system must be excluded from the BIOS memory region table.

8-5

Chapter 9

GSX-86: Graphics For
The APe
This chapter describes the features and operating procedures of GSX-86, the
Graphics System Extension of the CPM-86 Operating System. It explains what
GSX-86 does and how you can use its graphics functions. Later sections of the
chapter describe the GSX-86 system's architecture.

WHAT IS GSX-86

GSX-86 incorporates graphics capability into the CP/M-86 operating system and
provides a host-independent and device-independent interface for application pro
grams. Graphics primitives are provided for implementing graphics applications
with reduced programming effort. OSX-86 enhances program portability by allow
ing an application to run on any CP/M-86 system with the GSX-86 option.

GSX-86 And Application Programs

GSX-86 defines a standard interface to graphics peripherals from an application
program. Application programs written in assembly language (or a high-level
language that supports the GSX-86 calling conventions) can call GSX-86 with
appropriate calls to the Graphics Devices Operating System (ODOS). You can
compile/assemble and link programs containing GSX-86 calls in the normal
manner.

GSX-86 translates GDOS calls to fit the peculiarities of each graphics device
(printer, plotter, CRT, and so on). Since graphics devices are mechanically and
electronically different, GSX-86 requires a special program (called a device driver)
to run each device. Application programs can use the device drivers that are
included as part of GSX-86 on the CP/M-86 system distribution diskette (see Table
9-1). Alternatively, you can create customized device drivers using the procedures
described later in this chapter.

9-1

GSX-86: Graphics for the APC

9-2

GSX-86 And Graphics Products

GSX-86 also supports high-level-language graphics interfaces to commercially
available software, including the following products.

• GSS-KERNEL is a utility library that allows a program to do complex
graphic functions with only a few commands. It supports popular high-level
languages such as BASIC, PASCAL, FORTRAN, and PLII with standard
procedure calls.

• GSS-PLOT is a high-level programming tool that can be used to produce
graphs and plots with just a few calls from a high-level language.

• GSS-GRAPH allows a system user to graph and plot data by making simple
menu selections.

• GSS-DRA W provides an advanced capability. It uses simple symbols to
create more complex graphics.

USING GSX-86

The following files are required to run GSX-86.

• ASSIGN.SYS

• GRAPHICS.CMD

• One device driver file for each graphics device in use.

ASSIGN.SYS is the Assignment Table file. It is a simple text file that consists of the
file names of all device drivers and an associated logical device number for each
device driver.

GRAPHICS.CMD is the file that contains GSX-86 for the APC.

. The device drivers provide the interface between GSX-86 and specific pieces of
hardware. Each device driver is contained in its own file. Standard device drivers are
included on the CP/M-86 system distribution diskette. They are described in The
CPIM-86 System User's Guide for the APC and in Table 9-1 of this manual.

Setting Up GSX-86

In order to use GSX-86, you must ensure that the required device drivers are present
on the disk specified in the GRAPHICS command, that the Assignment Table
contains the names of all device drivers and their corresponding logical device
numbers, and that GRAPHICS.CMD is available to the system.

GSX-86: Graphics for the APe

Updating The Assignment Table

The Assignment Table (ASSIGN.SYS) on the distribution diskette is configured to
operate with the APC only. To use any other graphics device, you must update the
table. The Assignment Table consists entirely of text and can be created and
modified with any text editor (ED, for example). It must reside in a file called
ASSIGN.SYS on the drive specified in the GRAPHICS command (or the current
default drive if no drive was specified in the GRAPHICS command). For each
device driver, there is an entry containing the driver number (workstation ID) and
the name of the file containing the associated graphics device driver.

The following is a sample Assignment Table. It shows the complete contents of
ASSIGN.SYS on the distribution diskette.

1 DDNECAPC ; NEC APC DRIVER

The syntax for entries in the Assignment Table is:

where:

DD [d:]filename [;comments]

DD = logical driver number
d = optional drive specifier
filename = device driver file
comments = optional text string

The logical device number may be one or two digits. The following convention for
assigning logical device numbers to graphics devices assures the maximum degree of
device independence within programs.

1-10 CRT
11-20 Plotter
21-30 Printer
31-40 Other devices

The first string of alphanumeric characters is the filename of the device driver. It
may be preceded by a drive specifier. If the filetype extension is not specified, ".SYS"
is assumed.

Comments are optional. A comment must be separated from the filename by a
semicolon.

9-3

GSX-86: Graphics for the APe

9-4

The following examples demonstrate valid Assignment Table entry formats.

11 A: D D PLOT ;plotter
1 B:CRTDRV ;system console

21 A:PRINTR ;printer
2 E:DRIVER.ABC

14 DRIVER2.SYS

The largest device driver must be listed first in the Assignment Table. This is the
default driver. Its size determines the amount of space the system allocates for device
drivers. If there is enough space for the largest driver, the system will always have
enough room for any other driver that GSX-86 uses.

Device Drivers

Table 9-1 lists the standard device drivers that are included on the CP/M-86 system
distribution diskette. DDNECAPC.SYS is the only device driver in ASSIGN.SYS.
You can use a text editor (such as ED) or a word processor to update the Assignment
Table with any of the device drivers listed in the table or your custom device drivers.

GSX-86: Graphics for the APe

Table 9-1 Device Drivers Supplied With GSX-86

FILENAME DEVICE

DDNECAPC.SYS NEC Advanced Personal Computer

DDGN2A.SYS Lear Siegler ADM5

DDGN2B.SYS ADDS Viewpoint

DDGN2C.SYS Televideo 910

DDGN2D.SYS Datamedia Colorscan-l0

DDVRET.SYS VT100

DDMX80.SYS Epson MX-80 with Graftrax Plus

DD7220.SYS Hewlett-Packard 7220 Graphics Plotter

DD7470.SYS Hewlett-Packard 7470 Graphics Plotter

DDHI3M.SYS Houston Instruments Hiplot DMP-3/4-443
Multipen Plotter

DDHI7M.SYS Houston Instruments Hiplot DMP-6/7
Multipen Plotter

DDIDS.SYS Integral Data Systems Monochrome Printers:
Micro Prism 480
Prism 80
Prism 132

DDISC.SYS Integral Data Systems Color Printers:
Prism 80
Prism 132

DDOKID.SYS Okidata Microline 92 Printer

DDPMPV.SYS Printronix MVP Printer

DDPRTX.SYS Printronix P300, P600 Printers

DDSTRB.SYS Strobe Model 100 Graphics Plotter

Before using GSX-86, ensure that every device to be used during the graphics session
has an entry in the Assignment Table.

9-5

GSX-86: Graphics for the APe

9-6

Invoking GSX-86

To invoke GSX-86, enter the command

GRAPHICS [:d]

where d is the specifier of the drive that holds both ASSIGN.SYS and the device
driver(s).

To disable GSX-86, enter the following command.

GRAPHICS NO

This frees the memory space used by GSX-86 and the device driver.

Warm Starts And Cold Starts

If the system hangs when GRAPHICS is enabled, a warm start does not disturb the
graphics mode initialization. However, a cold start (rebooting the hardware) dis
ables GSX-86.

For more information on the operation of GRAPHICS and a complete listing of
GSX-86 command and error messages, see The CPIM-86 System User's Guide for
the APC.

OVERVIEW OF GRAPHICS SYSTEM EXTENSION STRUCTURE

This section introduces the GSX-86 architecture, its components, and their func
tions. Each part of GSX-86 is described in detail later in this chapter. This section
also describes the memory management techniques used by GSX-86.

GSX-86 Architecture

GSX-86 is an integral part of the operating system. Application programs interface
to GSX-86 through a standard calling sequence similar to the BDOS conventions.
Drivers for specific graphics devices translate the standard GSX-86 calls to the
unique characteristics of the device. In this way, GSX-86 provides device
independence since the peculiarities of the graphics device are not visible to the
application program.

GSX-86 consists of two components:

• Graphics Device Operating System (GDOS)

• Graphics Input/Output System (GIOS).

GSX-86: Graphics for the APe

The GDOS contains the basic host-independent and device-independent graphics
functions that can be called by an application program. GDOS provides a standard
interface to graphics that is constant regardless of specific devices or host hardware,
just as the BDOS standardizes disk interfaces. Application programs access the
GDOS in much the same way that they access the BDOS.

The GDOS performs coordinate scaling so that a program can specify points in a
normalized coordinate space. It uses device-specific information to translate the
normalized coordinates into the corresponding values for each graphics device.

Multiple graphics devices can be supported under GSX-86 within a single applica
tion. By referring to devices with a workstation identification number, an application
program can send graphics information to anyone of several devices.

The Graphics Input/Output System (GIOS) is similar to the BIOS. It contains the
device-specific code required to interface specific graphics devices to the GDOS.
The GIOS consists of a set of device drivers that communicate directly with the
graphics devices. GSX-86 requires a unique device driver for each different graphics
device on a system. The term GIOS refers to the functional layer in GSX-86 that
holds the collection of available device drivers. The particular driver that is loaded
into memory when required by an application is called a GIOS file. Although a
single program can use several graphics devices, GDOS loads only one GIOS file at
a time.

The GIOS performs the graphics primitives of GSX-86, consistent with the inherent
capabilities of a graphics device. In some cases, a device driver emulates standard
GDOS capabilities which are not provided by the graphics device hardware. For
example, some devices require that dashed lines be simulated by a series of short
vectors generated in the device driver.

Memory Management

The default device driver and GDOS are loaded directly above CPM-86 after the
GRAPHICS command has been executed. The application program is loaded in the
normal manner, starting at the top of the user area.

9-7

GSX-86: Graphics for the APe

9-8

INTERRUPT VECTORS

CP/M-86

GDOS

GIOS

AVAILABLE
MEMORY

GSX-86

Figure 9-1 GSX-86 Memory Map

The memory required by the GDOS is less than 3K bytes. This is allocated when the
GRAPHICS command is executed. Space for the default device driver, the first
driver in the Assignment Table, is also allocated at this time. The GDOS dynami
cally loads a specific device driver when requested by the application program,
overlaying the previous driver. This technique minimizes memory size requirements
since only one driver is resident in memory at anyone time. In order to ensure that
the GSX-86 loader allocates sufficient memory space for all subsequent drivers, the
default driver must be the largest driver. (Use STAT to determine the file sizes.) Ifan
attempt is made to load a driver larger than the default driver, GSX-86 returns an
error to the caller, and does not load the new driver.

THE GRAPHICS DEVICE OPERATING SYSTEM (GDOS)

This section describes the Graphics Device Operating System (GDOS) in detail,
including GDOS functions, the GDOS calling sequence, and how device drivers are
loaded.

GDOS performs three functions during the execution of a graphics application
proglam:

• responds to graphics interrupt requests,

• loads device drivers as required,

• converts normalized coordinates to device coordinates.

GSX-86: Graphics for the APe

Virtual Device Interface (VOl)

GSX-86 uses a standard method to access graphics capabilities. It is called the
Virtual Device Interface (VDI) since it makes all graphics devices appear "virtually"
identical. The implementation of the VDI employs the conventional BDOS calling
sequence. The application program calls GDOS via interrupt #224 with function
code 0473H in register CX. Registers DS and DX contain the segment base and
offset, respectively, of the parameter list (PB). The parameter list consists of five
double-word addresses, the addresses of five arrays, as follows.

PB
PB+4
PB+8
PB+12
PB+16

adQress of input control array
address of input parameter array
address of input point coordinate array
address of output parameter array
address of output point coordinate array

The specific graphics function to be performed by GDOS is indicated by an
operation code in the input control array.

All data passed to the device driver are assumed to be two-byte integers.

The GDOS preserves the BP (base pointer) and DS (data segment) registers. All
other registers are subject to change when returned from GDOS.

INPUT CONTROL ARRAY

The control array contains the following values when the function is called.

control (1)
control (2)

control (4)
control (6-n)

Opcode
Number of vertices in input coordinate point array
(ptsin)
Length of input parameter array
Opcode-dependent (intin)

INPUT PARAMETER ARRAY

The input parameter array contains the following values when the function is called.

intin Array of input parameters. Length of array is
opcode-dependent and specified in control (4).

9-9

GSX-86: Graphics for the APC

9-10

INPUT POINT COORDINATE ARRAY

The input point coordinate array contains the following values when the function is
called.

ptsin Array of input coordinates. Each point is specified
by an X,Y coordinate pair given in Normalized
Device Coordinates (0-32,767 with length
control(2) * 2).

OUTPUT CONTROL ARRAY

The output control array contains the following values when the function is
completed.

control (3)
control (5)
control (6-n)

Number of vertices in output point array (ptsout)
Length of input parameter array
Opcode-dependent

OUTPUT PARAMETER ARRAY

The output parameter array contains the following values when the function is
called.

intout Array of output parameters. Length of array is opcode
dependent.

OUTPUT POINT COORDINATE ARRAY

The output point coordinate array contains the following values when the function
is called.

ptsout Array of output coordinates. Each point is specified by an
X, Y coordinate pair given in Normalized Device Coordi
nates (0-32,767) and must be greater than the largest possi
ble value of control (5) * 2.

Normalized Device Coordinates

The application program passes all graphics coordinates to G DOS as Normalized
Device Coordinates (NDC) in a range from 0 to 32,767 along each axis. These units
are mapped to the actual device units (e.g. rasters for CRTs or steps for plotters/
printers) using information passed from the device driver when the workstation was
opened by GSX-86 so that all coordinates passed to the device driver are in device
units.

GSX-86: Graphics for the APe

The full scale NDC space is always mapped to the full dimensions of the graphics
device in each axis. This assures that all graphics information will appear on the
display surface regardless of the dimensions of the device.

Both input and output coordinates are converted by GSX-86. Therefore, both the
calling routine and the device driver must ensure that the input vertex count
(contrl(2)) and output vertex count (contrl(3)) are set. The calling routine must set
contrl(2) to 0 if no X,Y coordinates are being passed to GSX-86. Similarly, the
device driver must set contrl(3) to 0 if no X,Y coordinates are being returned
through GSX-86.

Since 0-32767 maps to the full extent on each axis, coordinate values are scaled
differently on the X and Y axes of devices that do not have a square display.

Each time an application program opens a workstation, GDOS determines
whether the required device driver is resident in memory. If not, G DOS loads
the driver from disk and then services the graphics request.

Device driver I/O (i.e., communication between the device driver and the device via
the system hardware ports) is done through CP/M-86 BDOS calls. CRT devices are
assumed to be the console device. Plotters are assumed to be connected as the
Auxiliary Input/Output device. Printers are assumed to be connected as the list
device.

GDOS Opcodes

Table 9-2 lists the GSX-86 opcodes and indicates whether each is required for CRT
devices and plotters/printers. Each operation is described in detail in the following
sections of this chapter. These opcodes must be present and perform as specified.
When creating device drivers, you should implement all opcodes. Full implementa
tion of opcodes results in better quality graphics.

In addition to required opcodes, you may be able to use other, non-required
opcodes with a particular device. To determine if a non-required opcode is available
in a particular driver, you may use one of two methods. You can check the
information about available features returned from the OPEN WORKSTATION
opcode, or you can check the selected value returned from an opcode against the
requested value. If the two values do n9t match, then either opcode is not available
or the requested value is not available and a best fit value was selected.

9-11

GSX-86: Graphics for the APe

Table 9-2 GDOS Opcodes

9-12

OPCODE DESCRIPTION

I Open workstation
2 Close workstation
3 Clear workstation
4 Update workstation
5 Escape

Jd Definition
I Inquire addressable character cells
2 Enter graphics mode
3 Exit graphics mode
4 Cursor up
5 Cursor down
6 Cursor right
7 Cursor left
8 Home cursor
9 Erase to end of screen
10 Erase to end of line
II Direct cursor address
12 Output cursor addressable text
13 Reverse video on
14 Reverse video off
15 Inquire current cursor address
16 Inquire tablet status
17 Hard copy
18 Place cursor at location
19 Remove cursor

6 Polyline
7 Polymarker
8 Text
9 Filled area

10 Cell array
II Generalized drawing primitive
12 Set character height
13 Set character up vector
14 Set color representation
15 Set polyline linetype
16 Set polyline linewidth
17 Set polyline color index
18 Set polymarker type
19 Set polymarker scale
20 Set poly marker color index
21 Set text font
22 Set text color index
23 Set fill interior style
24 Set fill style index
25 Set fill color index
26 Inquire color representation
27 Inquire cell array
28 Input locator
29 Input valuator
30 Input choice
31 Input string
32 Set writing mode
33 Set input mode

Y - Required for CRTs, printers, and plotters
C - Required for CRTs only

REQUIRED

Y
Y
y
Y

y
C
C
C
C
C
C
C
C
C
C
C

C

Y
Y
y
Y
Y

Y

Y
Y

y
Y

Y

y

y
y

Y

GSX-86: Graphics for the APe

OPEN WORKSTATION

The Open Workstation operation causes a graphics device to become the current
device for the application program. The device is initialized with the parameters in
the input array and information about the device is returned to GDOS.

Input

Output

contrl(l)
contrl(2)
contrl(4)
intin
intin(1)

intin(2)
intin(3)
intin(4)
intin(5)
intin(6)
intin(7)
intin(8)
intin(9)
intin(10)

contrl(3)
contrl(5)
intout(1)

intout(2)

intout(3)

Opcode = 1
o
Length of intin = 10
Initial defaults
Workstation identifier (i.e. device driver
ID) This value is used to determine which
device driver to dynamically load into
memory.
Linetype
Polyline color index
Marker type
Polymarker color index
Text font
Text color index
Fill interior style
Fill style index
Fill color index

Number of output vertices = 6
Length of intout = 45
Maximum addressable width of screen/
plotter in rasters/steps assuming a 0 start
point (e.g. a resolution of 640 implies an
addressab Ie area of 0-639, so intou t(1)= 639).

Maximum addressable height of screen/
plotter in rasters/steps assuming a 0 start
point (e.g. a resolution of 480 implies an
addressable area of 0-479, so intout(2)=479).

Device Coordinate units flag
0= Device capable of prod ucing precisely

scaled image (typically plotters and
printers)

1 = Device not capable of precisely scaled
image (CRTs)

9-13

GSX-86: Graphics for the APe

9-14

intout(4)

intout(5)

intout(6)

intout(7)
intout(8)
intout(9)
intout(lO)
intout(11)
intout(l2)
intout(l3)
intout(l4)

Width of one pixel (plotter step ...) in
micrometers
Height of one pixel (plotter step ...) in
micrometers
Number of character heights
(0 = continuous scaling)
Number of linetypes
Number of line widths
Number of marker types
N umber of marker sizes
Number of fonts
Number of patterns
Number of hatch styles
Number of pre-defined colors (must be at
least 2 even for monochrome device). This
is the number of colors that can be dis
played on the device simultaneously.

intout(l5) -- Number of Generalized Dra wing
Primitives (GDPs)

intout(l6)-intout(25) List of GDPs (up to 10 allowed)

intout(26)-intout(35)
-1 -- GDP does not exist
Attribute set associated with
each GDP
-1 -- GDP does not exist
o -- polyline
1 -- polymarker
2 -- text
3 -- fill area
4 -- none

intout(36) -- Color capability flag
o -- no
1 -- yes

intout(37) -- Text rotation capability flag
o -- no
1 -- yes

intout(38) -- Fill area capability flag
o -- no
1 -- yes

intout(39) -- Pixel operation capability flag
o -- no
1 -- yes

intout(40) --

intout(41)
intout(42)
intout(43)
intout(44)
intout(45)

ptsout(1)
ptsout(2)
ptsout(3)
ptsout(4)
ptsout(5)
ptsout(6)
ptsout(7)
ptsout(8)
ptsout(9)
ptsout(lO)
ptsout(ll)
ptsout(l2)

GSX-86: Graphics for the APe

Number of available colors (total number
of colors in color palette)
o -- continuous device
2 -- monochrome (black and white)

>2 -- number of colors available
Number of locator devices available
Number of valuator devices available
Number of choice devices available
Number of string devices available
Workstation type
o -- Output only
1 -- Input only
2 -- Input/Output
3 -- Device independent segment storage
4 -- GKS Metafile output
o
Minimum character height in device units
o
Maximum character height in device units
Minimum line width in device units
o
Maximum line width in device units
o
o
Minimum marker height in device units
o
Maximum marker height in device units

9-15

GSX-86: Graphics for the APe

9-16

The default color table should be set up differently for a monochrome and a color
device.

Monochrome
Index Color
0 Black
1 White

Color
Index Color
0 Black
1 Red
2 Green
3 Blue
4 Cyan
5 Yellow
6 Magenta
7 White
8-n White

Other default values that should be set by the driver during initialization are:

Character height = minimum character height

Character up vector = 90 degrees counterclockwise from the right hori
zontal (0 degrees rotation)

Line width = 1 device unit (raster, plotter step)

Marker height = minimum marker height

. Writing mode = replace

Input mode = request for all input classes (locator, valuator, choice, string)

GSX-86: Graphics for the APe

CLOSE WORKSTATION

The Close Workstation operation terminates the graphics device properly and
prevents any further output to the device.

Input

Output

contrl(l)
contrl(2)

contrl(3)

CLEAR WORKSTATION

Opcode = 2
o

o

The Clear Workstation operation causes CRT screen to be erased and hardcopy
devices to perform a top-of-form operation. On plotters without paper advance, the
operator is prompted to load a new page.

Input

Output

contrl(l)
contrl(2)

contrl(3)

UPDATE WORKSTATION

Opcode = 3
o

o

The Update Workstation operation causes all pending graphics commands which
are queued to be executed immediately.

Input

Output

contrl(l)
contrl(2)

contr1(3)

Opcode = 4
o

o

9-17

GSX-86: Graphics for the APe

9-18

ESCAPE

The Escape operation allows the special capabilities of a graphics device to be
accessed from the application program. Some escape functions are predefined
above, but others can be defined for your particular devices. The parameters passed
are dependent on the function being performed.

Input contrl(l)
contrl(2)
contrl(4)
contrl(6)

Opcode = 5
-- Number of input vertices
-- Number of input parameters
-- Function ID
1 = INQUIRE ADDRESSABLE CHARAC-

TER CELLS
2 = ENTER GRAPHICS MODE
3 = EXIT GRAPHICS MODE
4 = CURSOR UP
5 = CURSOR DOWN
6 = CURSOR RIGHT
7 = CURSOR LEFT
8 = HOME CURSOR
9 = ERASE TO END OF SCREEN

10 = ERASE TO END OF LINE
11 = DIRECT CURSOR ADDRESS
12 = OUTPUT CURSOR ADDRESSABLE

TEXT
13 = REVERSE VIDEO ON
14 = REVERSE VIDEO OFF
15 = INQUIRE CURRENT CURSOR

ADDRESS
16 = INQUIRE TABLET STATUS
17 = HARDCOPY
18 = PLACE CURSOR AT LOCATION
19 = REMOVE CURSOR
20-50 = Unused but reserved for expansion
51-100 = Unused and available for use

intin Function-dependent information (described
on following pages)

ptsin Array of input coordinates for escape
function

GSX-86: Graphics for the APe

Output contrl(3)
contrl(5)

intout
ptsout

Number of output vertices
Number of output parameters

Array of output parameters
Array of output coordinates

The operation of each function identifier (contrl(6) values 1-19) is described in the
following sections.

Inquire Addressable Character Cells

This operation returns information to the calling program about the number of
vertical (rows) and horizontal (columns) positions where the alpha cursor can be
positioned on the screen.

Input

Output

Enter Graphics Mode

contrl(2)
contrl(6)

contrl(3)
intout(1)

intout(2)

o
Function ID = 1

o
Number of addressable rows on the screen,
typicall y 24 (-1 indicates cursor address
ing not possible).
Number of addressable columns on the
screen, typically 80 (-1 indicates cursor
addressing not possible).

This operation causes the graphics device to enter the graphics mode, if it is different
than the alpha mode. It is used to explicitly exit alpha cursor addressing mode and to
perform the transition from alpha to graphic mode properly.

Input

Output

contrl(2)
contrl(6)

contrl(3)

o
Function ID = 2

o

9-19

GSX-86: Graphics for the APC

9-20

Exit Graphics Mode

The Exit Graphics operation causes the graphics device to exit the graphics mode, if
it is different than the alpha mode. It is used to explicitly enter the alpha cursor
addressing mode and to perform the transition from graphics to alpha mode
properIy.

Input

Output

Cursor Up

contrl(2)
contrl(6)

contrI(3)

o
Function ID = 3

o

This operation moves the alpha cursor up one row without altering the horizontal
position. If the cursor is already at the top margin, no action is taken.

Input

Output

Cursor Down

contrl(2)
contrl(6)

contrl(3)

o
Function ID = 4

o

This operation moves the alpha cursor down one row without altering the hor
izontal position. If the cursor is already at the bottom margin, no action is taken.

Input

Output

Cursor Right

contrI(2)
contrI(6)

contrI(3)

o
Function ID = 5

o

The Cursor Right operation moves the alpha cursor right one column without
altering the vertical position. If the cursor is already at the right margin, no action is
taken.

Input

Output

contrl(2)
contrl(6)

contrI(3)

o
Function ID = 6

o

GSX-86: Graphics for the APC

Cursor Left

The Cursor Left operation moves the alpha cursor one column to the left without
altering the vertical position. If the cursor is already at the left margin, no action is
taken.

Input

Output

Home Cursor

contrl(2)
contrl(6)

contrl(3)

o
Function ID = 7

o

This operation moves the alpha cursor to the home position (usually the upper left
corner of a CRT display).

Input

Output

Erase to End of Screen

contrl(2)
contrl(6)

contrl(3)

o
Function ID = 8

o

This operation erases the display surface from the current alpha cursor position to
the end of the screen. The current alpha cursor location does not change.

Input

Output

Erase to End of Line

contrl(2)
contrl(6)

contrl(3)

o
Function ID = 9

o

This operation erases the display surface from the current alpha cursor position to
the end of the current line. The current alpha cursor location does not change.

Input

Output

contrl(2)
contrl(6)

contrl(3)

o
Function ID = 10

o

9-21

GSX-86: Graphics for the APC

9-22

Direct Cursor Address

The Direct Cursor Address operation moves the alpha cursor directly to the
specified row and column address anywhere on the display surface.

Input

Output

contrl(2)
contrl(6)
intin(l)
intin(2)

contrl(3)

Output Cursor Addressable Text

o
Function ID = 11
Row number (l - number of rows)
Column number (1 - number of columns)

o

This operation displays a string of text starting at the current cursor position. Alpha
text characteristics are determined by the attributes currently in effect (for example,
reverse video).

Input

Output

Reverse Video On

contrl(2)
contrl(4)
contrl(6)
intin

contrl(3)

o
Number of characters in character string
Function ID = 12
Text string in ASCII Decimal Equivalent

o

This operation causes all subsequent text to be displayed in reverse video format;
that is, characters are dark on a light background.

Input

Output

Reverse Video Off

contrl(2)
contrl(6)

contrl(3)

o
Function ID = 13

o

This operation causes all subsequent text to be displayed in normal video format;
that is, characters are light on a dark background.

Input

Output

contrl(2)
contrl(6)

contrl(3)

o
Function ID = 14

o

GSX-86: Graphics for the APC

Inquire Current Cursor Address

This operation returns the current position of the alpha cursor in row, column
coordinates.

Input contr1(2) 0
contrl(6) Function ID = 15

Output contrl(3) 0
intout(l) Row number (l - number of rows)
intout(2) Column number (l - number of columns)

Inquire Tablet Status

This operation indicates whether a graphics tablet is connected to the workstation.

Input

Output

Hardcopy

contrl(2)
contrl(6)

contrl(3)
intout(l)

o
Function ID = 16

o
Tablet status
o = tablet not available
1 = tablet available

This operation causes the device to generate hardcopy. This function is device
specific and can entail copying the screen to a printer or other attached hardcopy
device.

Input

Output

contrl(2)
contrl(6)

contr1(3)

o
Function ID = 17

o

9-23

GSX-86: Graphics for the APe

9-24

Place Cursor At Location

This operation places the cursor/marker at the specified location. The cursor is
device-dependent and can be an underbar, block, and so on.

Input

Output

Remove Cursor

contr1(2)
contr1(6)
ptsin(l)
ptsin(2)

contr1(3)

2
Function ID = 18
X-coordinate of location to place cursor
Y -coordinate of location to place cursor

o

This operation makes the cursor invisible on the screen.

Input

Output

POLYLINE

contrl(2)
contr1(6)

contr1(3)

o
Function ID = 19

o

This operation displays a polyline on the graphics device. The starting point for the
polyline is the first point in the input array. Lines are drawn between subsequent
points in the array. Lines must exhibit the current line attributes: color, linetype, line
width.

Input

Output

contrl(l)
contr1(2)
ptsin

contr1(3)

Opcode = 6
Number of vertices (X,Y pairs) in polyline
Array of coordinates of polyline in device
units (rasters, plotter steps, etc.)
ptsin(l) -- X-coordinate of first point
ptsin(2) -- Y-coordinate of first point
ptsin(3) -- X-coordinate of second point
ptsin(4) -- Y-coordinate of second point

ptsin(2n-l) -- X-coordinate of last point
ptsin(2n) -- Y-coordinate of last point

o

GSX-86: Graphics for the APe

POLYMARKER

This operation draws markers at the points specified in the input array. Be sure to
specify the solid linestyle before dra wing markers, and restore the previous linestyle
when done. Also, make sure the markers exhibit the current marker attributes:
color, scale, type.

Input

Output

TEXT

contrI(l)
contrl(2)
ptsin

contrI(3) --

Ope ode = 7
N umber of markers
Array of coordinates in device units (n)
(rasters, plotter steps, etc.)
ptsin(1) X-coordinate of first marker
ptsin(2) Y -coordinate of first marker
ptsin(3) X-coordinate of second

marker
ptsin(4) Y -coordina te of second

marker

ptsin(2n-l) -- X-coordinate of
marker

ptsin(2n) -- Y -coordinate of
marker

0

last

last

This operation writes text to the display surface starting at the position specified by
the input parameters. Note that the X,Y position specified is the lower left corner of
the character itself, not the character cell. The text must exhibit the current text
attributes: color, height, character up vector, font.

Input

Output

contrI(l)
contrI(2)
contrI(4)
intin

ptsin(l)

ptsin(2)

contrI(3)

Ope ode = 8
Number of vertices =
Number of characters in text string
Character string in ASCII Decimal Equiv
alent
X-coordinate of start point of text in
device units
Y-coordinate of start point of text in
device units

o

9-25

GSX-86: Graphics for the APe

9-26

FILLED AREA

This operation fills a polygon specified by the input array with the current fill color.
The correct color, fill interior style (Hollow, Solid, Pattern or Hatch) and fill style
index must be in effect before doing the fill.

If the device cannot do area fill, it must at least outline the polygon in the current fill
color. The device driver must insure that the fill area is closed by connecting the first
point to the last point.

Input

Output

GELLARRAY

contrI(l)
contrI(2)
ptsin

contrI(3)

Opcode = 9
Number of vertices in polygon
Array of coordinates of polygon in device
units
ptsin(1) -- X-coordinate of first point
ptsin(2) -- Y -coordinate of first point
ptsin(3) -- X-coordinate of second point
ptsin(4) -- Y -coordinate of second point

ptsin(2n -1)
ptsin(2n)

o

X-coordinate of last point
Y-coordinate of last point

The Cell Array operation causes the device to draw a rectangular array which is
defined by the input parameter X, Y coordinates and the color index array.

The extents of the cell are defined by the lower left-hand and the upper right-hand X,
Y coordinates. Within the rectangle defined by those points, the color index array
specifies colors for individual components of the cell.

Each row of the color index array should be expanded to fill the entire width of the
rectangle specified if necessary, via pixel replication. Each row of the color index
array should also be replicated the appropriate number of times to fill the entire
height of the rectangular area.

If the device cannot do cell arrays it must at least outline the area in the current line
color.

GSX-86: Graphics for the APe

Input

Output

contr1(I)
contr1(2)
contr1(4)
contr1(6)
contr1(7)

contr1(8)
contr1(9)

intin(I)
ptsin(l)

ptsin(2)

ptsin(3)

ptsin(4)

contr1(3)

Opcode = 10
2
Length of color index array
Length of each row in color index array
Number of elements used in each row of
color index array
Number of rows in color index array
Pixel operation to be performed
I -- Replace
2 -- Overstrike
3 -- Complement (xor)
4 -- Erase
Color index array (stored one row at time)
X-coordinate oflower left corner in device
units
Y -coordinate oflower left corner in device
units
X -coordina te of upper righ t corner in device
units
Y -coordina te of upper right corner in device
units

o

GENERALIZED DRAWING PRIMITIVE (GDP)

The Generalized Drawing Primitive (GDP) operation allows you to take advantage
of the intrinsic dra wing ca pabili ties of your graphics device. Special elements such as
arcs and circles can be accessed through this mechanism. Several primitive identifi
ers are predefined and others are available for expansion.

The control and data arrays are dependent on the nature of the primitive.

In some GDPs (Are, Circle, Pie Slice) redundant but consistent information is
provided. Use only the necessary information for a particular device. Note that all
angle specifications assume that 0 degrees is 90 degrees to the right of vertical, with
values increasing in the counterclockwise direction.

9-27

GSX-86: Graphics for the APe

Input

9-28

contrl(l)
contrl(2)
contrl(4)
contrl(6)

ptsin

intin

BAR

Opcode = 11
Number of vertices in ptsin
Length of input array intin
Primitive ID
1 -- BAR uses fill area attributes (interior

style, fill style, fill color)
2 -- ARC uses line attributes (color, line

type, width)
3 -- PIE SLICE uses fill area attributes

(interior style, fill style, fill color)
4 -- CIRCLE uses fill area attributes

(interior style, fill style, fill color)
5 -- PRINT GRAPHIC CHARACTERS
6 -- 7 are unused but reserved for future

expansion
8 -- 10 are unused and available for use
Array of coordinates of GDP in device
units
ptsin(l)
ptsin(2)
ptsin(3)

ptsin(4)

-- X-coordinate of first point
-- Y-coordinate of first point
-- X-coordina te of second

point
-- Y -coordina te of second

point

ptsin(2n-l) -- X-coordinate of last point
ptsin(2n) -- Y-coordinate of last point

Data record

contrl(2)
contrl(6)
ptsin(l)

ptsin(2)

ptsin(3)

ptsin(4)

-- Number of vertices = 2
-- 1
-- X-coordinate of lower left-

hand corner of bar
-- Y -coordina te of lower left

hand corner of bar
-- X-coordinate of upper right

hand corner of bar
-- Y-coordinate of upper right

hand corner of bar

ARC AND PIE SLICE
contrl(2)
contrl(6)
intin(1)

intin(2)

ptsin(l)

ptsin(2)

ptsin(3)

ptsin(4)

ptsin(5)

ptsin(6)

ptsin(7)
ptsin(8)

CIRCLE contrl(2)
contrl(6)
ptsin(l)

ptsin(2)

ptsin(3)

ptsin(4)

ptsin(5)
ptsin(6)

GSX-86: Graphics for the APe

-- Number of vertices = 4
-- 2 (ARC) or 3 (PIE SLICE)
-- Start angle in tenths of

degrees (0-3600)
-- End angle in tenths of

degrees (0-3600)
-- X-coordinate of center point

of arc
-- Y -coordinate of center point

of arc
-- X-coordinate of start point

of arc on circumference
-- Y -coordinate of start point

of arc on circumference
-- X-coordinate of end point

of arc on circumference
-- Y-coordinate of end point

of arc on circumference
-- Radius
-- 0
-- Number of points = 3
-- 4
-- X-coordinate of center point

of circle
-- Y -coordinate of center point

of circle
-- X-coordinate of center point

on circumference
-- Y -coordinate of center point

on circumference
-- Radius
-- 0

9-29

GSX-86: Graphics for the APe

9-30

Output

PRINT GRAPHIC CHARACTERS
for graphics on printer (Diablo, Epson,
and so on)
contr1(2) -- Number of points = I
contr1(4) -- Number of characters to

contr1(6)
intin
ptsin(l)

ptsin(2)

contr1(3) -- 0

output
-- 5
-- Graphic characters to output
-- X-coordinate of start point

of characters
-- Y -coordinate of start point

of characters

SET CHARACTER HEIGHT

This operation sets the current text character height in Device Units. The specified
height is the height of the character itself rather than the character cell. The driver
returns the size of both the character and character cell selected. This is a best fit
match to the requested character size.

Input

Output

contr1(l)
contr1(2)
ptsin(l)
ptsin(2)

contr1(3)
ptsout(l)

ptsout(2)

ptsout(3)
ptsout(4)

Opcode = 12
Number of vertices = 1
o
Requested character height in device units
(rasters, plotter steps)

Number of vertices = 2
Actual character width selected in device
units
Actual character height selected in device
units
Character cell width in device units
Character cell height in device units

GSX-86: Graphics for the APe

SET CHARACTER UP TO VECTOR

This operation requests an angle of rotation specified in tenths of degrees for the
Character Up Vector operation which specifies the baseline for subsequent text. The
driver returns the actual up direction which is a best fit match to the requested value.

For convenience, redundant but consistent information is provided on input. Use
only that information pertinent to a given device. The angle specification assumes
that 0 degrees is 90 degrees to the right of vertical (East on a compass), with angles
increasing in the counterclockwise direction.

Input

Output

contrl(l)
contrl(2)
intin(1)

intin(2)
intin(3)

contrl(3)
intout(1)

SET COLOR REPRESENTATION

Opcode = 13
o
Requested angle of rotation of character
baseline (in tenths of degrees 0 - 3600)
Run of angle = cos (angle) * 100 (0-100)
Rise of angle = sin (angle) * 100 (0-100)

o
Angle of rotation of character baseline
selected (in tenths of degrees 0-3600)

This operation associates a color index with the color specified in RGB units. At
least two color indices are required (black and white for monochrome).

Input

Output

contrl(l)
contrl(2)
intin(1)
intin(2)

intin(3)
intin(4)

contrl(3)

Opcode = 14
o
Color index
Red color intensity (in tenths of percent
0-1000)
Green color intensity
Blue color intensity

o

9-31

GSX-86: Graphics for the APe

9-32

SET POLYLINE LINETYPE

This operation sets the linetype for subsequent polyline operations. The total
number oflinestyles available is device-dependent; however 5linestyles are required
- one solid plus four dash styles.

If the requested linestyle is out of range then linestyle 1 (solid) should be used.

Input

Output

contr1(I)
contrl(2)
intin(l)

contr1(3)
intout(l)

SET POLYLINE WIDTH

Opcode = 15
o
Requested linestyle

o
Linestyle selected

This operation sets the width oflines for subsequent polyline operations. The width
is specified in Device Coordinates (DC).

Input

Output

contr1(I)
contrl(2)
ptsin(l)
ptsin(2)

contr1(3)
ptsout(l)
ptsout(2)

SET POLYLINE COLOR INDEX

Opcode = 16
Number of input vertices = 1
Requested line width in device units
o

Number of output vertices = 1
Selected line width in device units
o

This operation sets the color index for subsequent polyline operations. The color
signified by the index is determined by the Set Color Representation operation. At

. least two color indices are required. Color indices range from 0 to a device
dependent maximum.

Input

Output

contr1(l)
contr1(2)
intin(1)

contr1(3)
intout(l)

Opcode = 17
o
Requested color index

o
Selected color index

GSX-86: Graphics for the APe

SET POL YMARKER TYPE

This operation sets the marker type for subsequent polymarker operations. The
total number of markers available is device-dependent; however 5 marker types are
required as shown below.

1 - .
2-+
3-*
4 - 0
5 - X

If the requested marker type is out of range, type 3 (*) should be used.

Input

Output

contrl(l)
contrl(2)
intin(l)

contrl(3)
intout(1)

SET POLYMARKER SCALE

Opcode = 18
o
Requested polymarker type

o
Selected polymarker type

This operation requests a polymarker height for subsequent polymarker operations.
The driver returns the actual height selected, which is a best fit to the requested
height.

Input

Output

contrl(l)
contrl(2)
ptsin(1)
ptsin(2)

contrl(3)
ptsout(1)
ptsout(2)

Opcode = 19
Number of input vertices =
o
Requested polymarker height in device
units

Number of output vertices =
o
Selected polymarker height in device units

9-33

GSX-86: Graphics for the APe

9-34

SET POL YMARKER COLOR INDEX

This operation sets the color index for subsequent polymarker operations. The
value of the index is specified by the Color operation. At least two color indices are
required.

Input

Output

SET TEXT FONT

contrl(l)
contrl(2)
intin(I)

contrl(3)
intout(l)

Opcode = 20
o
Requested polymarker color index

o
Selected polymarker color index

This operation selects a character font for subsequent text operations. Fonts are
device-dependent and are specified from 1 to a device-dependent maximum.

Input

Output

contrl(l)
contrl(2)
intin(1)

contrl(3)
intout(l)

SET TEXT COLOR INDEX

Opcode = 21
o
Requested hardware text font number

o
Selected hardware text font

This operation sets the color index for subsequent text operations. At least two color
indices are required. Color indices range from 0 to a device-dependent maximum.

Input

Output

contrl(l)
contrl(2)
intin(1)

contrl(3)
intout(l)

Opcode = 22
o
Requested text color index

o
Selected text color index

GSX-86: Graphics for the APe

SET FILL INTERIOR STYLE

This operation sets the fill interior style to be used in subsequent polygon fill
operations. If the requested style is not available, then Hollow should be used. The
style actually used is returned to the calling program.

Input

Output

contrl(l)
contrl(2)
intin(l)

contrl(3)
intout(l)

SET FILL STYLE INDEX

Opcode = 23
o
Requested fill interior style
o - Hollow
1 - Solid
2 - Pattern
3 - Hatch

o
Selected fill interior style

Select a fill style based on the fill interior style. This index has no effect if the interior
style is either Hollow or Solid. Indices go from 1 to a device-dependent maximum. If
the requested index is not available, index 1 should be used. The index references a
Hatch style if the fill interior style is Hatch, or it references a Pattern (stars, dots, and
so on) if the interior fill style is Pattern. For consistency, the hatch styles should be
implemented in the following order.

1 -- vertical lines
2 -- horizontal lines
3 -- +450 lines
4 -- -450 lines

>4 -- device-dependent

Input

Output

contrl(1)
contrl(2)
intin(1)

contrl(3)
intout(l)

Opcode = 24
o
Requested fill style index for Pattern or
Hatch fill

o
Selected fill style index for Pattern or
Hatch fill

9-35

GSX-86: Graphics for the APe

9-36

SET FILL COLOR INDEX

This operation sets the color index for subsequent polygon fill operations. The
actual RG B value of the color index is determined by the Set Color Representation
operation. At least two color indices are required. Color indices range from 0 to a
device-dependent maximum.

Input

Output

contrl(l)
contrl(2)
intin(1)

contrl(3)
intout(1)

Opcode = 25
o
Requested fill color index

o
Selected fill color index

INQUIRE COLOR REPRESENTATION

This operation returns the requested or the actual value of the specified color index
in RGB units.

The device driver must maintain tables of the color values that were set (requested)
and the color values that were realized. On devices that have a continuous color
range, one of these tables may not be necessary.

Input

Output

contrl(1)
contrl(2)
intin(1)
intin(2)

contrl(3)
intout(1)
intout(2)
intout(3)
intout(4)

Opcode = 26
o
Requested color index
Set or realized flag
0= set (return color values requested)
1 = realized (return color values realized

on device)

o
Color index
Red intensity (in tenths of percent 0-1000)
Green intensity
Blue intensity

GSX-86: Graphics for the APe

INQUIRE CELL ARRAY

This operation returns the cell array definition of the specified cell. Color indices are
returned one row at a time, starting from the top of the rectangular area and
proceeding downward.

Input

Output

contrl(1)
contrl(2)
contrl(4)
contrl(6)
contrl(7)
ptsin(l)

ptsin(2)

ptsin(3)

ptsin(4)

contrl(3)
contrl(8)

contrl(9)
contrl(lO)

intout

Opcode = 27
2
Length of color index array
Length of each row in color index array
Number of rows in color index array
X-coordinate of lower left corner in
device units
Y -coordinate of lower left corner in
device units
X-coordinate of upper right corner 10

device units
Y -coordina te of upper right corner in
device units

o
Number of elements used in each row of
color index array
Number of rows used in color index array
Invalid value flag
o -- no errors
1 -- color value could not be determined

for some pixel
Color index array (stored one row at a
time)
-1 -- indicates that a color index could not

be determined for that particular
pixel

9-37

GSX-86: Graphics for the APe

9-38

INPUT LOCATOR

This operation returns the position in Device Coordinates of the specified locator
device.

For REQUEST MODE Input:

Input

Output

contrl(l)
contrl(2)
intin(l)

ptsin(l)

ptsin(2)

contrl(3)
contrl(5)

intout(l)

Opcode = 28
Number of input vertices =
Locator device number

1 = default locator device
2 = crosshairs
3 = graphics tablet
4 = joystick
5 = lightpen
6 = plotter
7 = mouse
8 = trackball

>8 = workstation-dependent
Initial X-coordinate of locator in device
units
Initial Y-coordinate of locator in device
units

Number of output vertices = 1
Length of intout array (status)
0= request unsuccessful

>0 = request successful
Locator terminator
For keyboard terminated locator input,
this is the ASCII Decimal Equivalent
(ADE) of the key struck to terminate
input. For non-keyboard terminated input
(tablet, mouse, etc.), valid locator termi
nators begin with SPACE (ADE 32) and
increase from there. For instance, if the
puck on a tablet has 4 buttons, the first
button should generate SPACE as a ter
minator, the second a ! (ADE 33), the
third a " (ADE 34), and the fourth a #
(ADE 35).

ptsout(l)

ptsout(2)

For SAMPLE MODE Input:

Input

Output

contrl(1)
contrl(2)
intin(1)

contrl(3)

contrl(5)

ptsout(1)

ptsout(2)

GSX-86: Graphics for the APe

Final X-coordinate of locator in device
units
Final Y -coordina te of locator in device
units

Opcode = 28
Number of input vertices = 0
Locator device number

1 = default locator device
2 = crosshairs
3 = graphics tablet
4 = joystick
5 = lightpen
6 = plotter
7 = mouse
8 = trackball

>8 = workstation-dependent

Number of output vertices
1 = sample successful
0= sample unsuccessful

Length of intout array (status)
0= sample unsuccessful

>0 = sample successful
Current X-coordinate oflocator in device
units
Current Y -coordinate of locator in device
units

9-39

GSX-86: Graphics for the APe

INPUT VALUATOR

This operation returns the current value of the valuator device.

9-40

For REQUEST MODE Input:

Input

Output

contrI(l)
contr1(2)
intin(l)

intin(2)

contrI(3)
contrI(5)

intout(1)

For SAMPLE MODE Input:

Input

Output

c~ntrIC 1)
contr1(2)
intin(1)

contrI(3)
contr1(5)

intout(l)

Opcode = 29
o
Valuator device number
1 -- default valuator device
initial value

o
Length of intout array (status)
o = request unsuccessful

>0 = request successful
Output value

Opcode = 29
o
Valuator device number
1 -- default valuator device

o
Length of intout array (status)
0= sample unsuccessful

>0 = sample successfu;
Current valuator value if sample successful

GSX-86: Graphics for the APe

INPUT CHOICE

This operation returns the choice status of the specified choice device. The range of
choice numbers is device-dependent.

For REQUEST MODE Input:

Input

Output

contr1(1)
contr1(2)
intin(1)

intin(2)

contr1(3)
contr1(5)

intout(1)

For SAMPLE MODE Input:

Input

Output

contr1(l)
contr1(2)
intin(l)

contr1(3)
contr1(5)

intout(l)

Opcode = 30
o
Choice device number

1 = default choice device
2 = function key

>2 = workstation-dependent
Initial choice number

o
Length of intout array (status)
o = request unsuccessful
> = request successful

Choice number (for example, number of
function key pressed)

Opcode = 30
o
Choice device number

o

1 = default choice device
2 = function key
> = workstation-dependent

Length of intout array (status)
o = sample unsuccessful

>0 = sample successful
Choice number if sample successful

9-41

GSX-86: Graphics for the APe

9-42

INPUT STRING

This operation returns a string from the specified device. The default device is the
keyboard.

For REQUEST MODE Input:

Input

Output

contrl(l)
contrl(2)
intin(l)

intin(2)
intin(3)

contrl(3)
contrl(5)

intout

For SAMPLE MODE Input:

Input

Output

contrl(l)
contrl(2)
intin(1)

intin(2)
intin(3)

contrl(3)
contrl(5)

intout

Opcode = 31
o
String device number
1 = default string device (keyboard)
Maxim urn string length
Echo mode
0= do not echo input characters
1 = echo input characters

o
Length of output string
o = request unsuccessful

>0 = request successful
Output string

Opcode = 31
o
String device number
1 = default string device (keyboard)
Maxim urn string length
Echo mode
o = do not echo input characters
1 = echo input characters
o
Length of output string
o = sam pIe unsuccessful

>0 = sample successful
Output string if sample successful

GSX-86: Graphics for the APe

SET WRITING MODE

This operation affects the way pixels from lines, filled areas, text, and so on are
placed on the display.

Input

Output

SET INPUT MODE

contrl(l)
contrl(2)
intin(1)

contrl(3)
intout

Opcode = 32
o
Requested writing mode
1 = replace
2 = overstrike
3 = complement (xor)
4 = erase
o
Selected writing mode

This operation sets the input mode for the specified logical input device (locator,
valuator, choice, string) to either request or sample. In request mode the driver waits
until an input event occurs before returning. In sample mode, the driver returns the
current status/location of the input device without waiting.

Input

Output

contrl(l)
contrl(2)
intin(1)

intin(2)

contrl(3)
intout

Opcode = 33
o
Logical input device
1 = locator
2 = valuator
3 = choice
4 = string
Requested input mode
1 = request
2 = sample
o
Selected input mode

9-43

GSX-86: Graphics for the APe

9-44

THE GRAPHICS INPUT/OUTPUT SYSTEM (GIOS)

The GIOS contains the device-dependent code in the GSX-86 system. Its is analo
gous the CP/M-86 BIOS but pertains to graphics devices only. The GIOS contains a
GIOS file, or device driver, for each of the graphics devices on the system. Each
GIOS file contains code to communicate with a single specific graphics device. A
major difference between the GIOS and the BIOS is that while all device drivers
contained within the BIOS are resident in memory at the same time, only one
graphics device driver is resident at a given time. The active device must be changed
by a request from the application program.

Creating A GIOS File

GSX-86 is distributed with a number of device drivers for popular graphics devices.
The device drivers are listed in Table 9-1. If your devices are included in the table,
you need only to edit the Assignment Table file to ensure that it reflects the logical
device numbering assignments you prefer. However, if your device is not supported,
you must create a driver program for it. You can write a driver in any language, but
at least part of it is usually implemented in assembler due to the low-level hardware
interface required.

Device driver files must be in standard CMD format so they can be loaded by the
GDOS. The driver must provide the functions listed as required in the VDI specifi
cation and must observe the VDI parameter passing conventions. If the graphics
device itself does not support all the GDOS operations directly, the driver must
emulate the capability in software. For example, if a plotter cannot produce a
dashed line, the driver must emulate it by converting a single dashed line into a series
of short vectors and transmitting them to the plotter.

The CP/M-86 Program Development Aids diskette contains a listing of the device
driver for the APC. Use this as a model if you develop your own device driver.

Device drivers are invoked with a "CALLF" from GSX-86, and should return with a
"RETF". The driver must switch to its own stack for internal use, except for an
allowed overhead for a few pushes to save the caller's context. The following entry
procedure is recommended.

CGroup

Driver_Code

Group Driver_Code

CSeg
Public Driver

Driver: Mov Ax, Sp
Mov Bx, Ss

; Save caller's stack pointers

; Note that Mov Ss, xxx Mov Sp, xxx is not interruptable on 8086.

Mov Ss, Stack Base ; Switch to driver's stack
Mov Sp, Offset Top_Stack

Push Bx ; Push caller's stack pointer
Push Ax
Push Bp ; Save caller's frame
Push Ds ; Save parameter pointer
Push Dx
Pushf ; Save caller's direction flag

; Invoke the driver. Ds:Dx points to the parameter block. It returns with
; a Retf.

CalIf

Popf
Pop
Pop
Pop
Pop
Pop
Mov
Mov
Retf

DcLDriver

Dx
Ds
Bp
Ax
Bx
Ss, Bx
Sp, Ax

Stack Base Dw Seg Top _ Stack

DcLDriver_Code CSeg

; Invoke the driver with Ds:Dx

; Restore caller's direction flag
; Restore caller's Ds:Dx

; Restore caller's stack frame
; Restore caller's Ss:Sp
; via
; Bx
; and Ax

Extrn DcLDriver :Far

Stack SSeg
Rs 16 ; This module pushes 8 words

; Top_Stack is defined in the last module linked in.

Extrn Top_Stack :Byte

End

GSX-86: Graphics for the APe

9-45

GSX-86: Graphics for the APe

9-46

Sufficient stack space must be available for GSX-86 operations. This includes a
buffer area for points passed to GSX-86 and some fixed overhead space. To
determine the amount of stack space required to run a given application, make the
following calculation:

OPEN WORKSTATION call = approximately 400 bytes
All other calls = ptsin size + 64

where ptsin is the point array passed to the device driver from the
application program (two words per point)

The stack requirement is the largest of the two resulting values. This stack space
must be available in the application program.

After coding and assembling or compiling the source code, link it with any required
external subroutines and run-time support libraries to produce a load module.
Then, use the RENAME (REN) command to rename the CMD file to a file with the
SYS extention. To make the driver known to GSX-86, include its name in the
Assignment Table and associate it with a device.

Graphics programs can be debugged like any other application using DDT-86 or
another debugger. The default device driver and GDOS are loaded directly above
CPM-86 after the GRAPHICS command has been executed. The applications
program is loaded in the normal manner, starting at the top of the user area.

Appendix A

Escape Sequences
This appendix summarizes the escape sequences for the APC under CP IM-86. The
following symbols are used in the escape sequence descriptions:

Pn = Decimal parameter expressed in ASCII digits

Ps = Selective parameter that can take on only the specific values listed

Multiple parameters are separated by ASCII semicolon characters
(3BH).

1. ANSI-Compatible Escape Sequences

Cursor Movement Commands:
Cursor up
Cursor down
Cursor forward (right)
Cursor backward (left)
Direct cursor addressing
where P 1 = line number

Pc = column number

ESC[PnA
ESC[PnB
ESC[PnC
ESC[PnD
ESC[PI;PcH or ESC[PI;Pcf

A-I

Escape Sequences

A-2

Erasing

Character Attribute Selection:

PsVALUE

o
1
2
3
4
5
6
7
8-15
16
17
18
19
20
21
22
23

ESC[Ps;Ps; ... ;Psm

MEANING

Attributes off
Attributes off
Vertical line
Overline
Underline
Blink
Not used
Reverse
Not used
Secret
Red color IHighlight
Blue color
Purple color
Green color
Yellow color
Light blue color
White color

From cursor to end of line ESC[K or ESC[OK
From beginning of line to cursor ESC[1 K
Entire line containing cursor ESC[2K
From cursor to end of screen ESC[J or ESC[OJ
From beginning of screen to cursor ESC[lJ
Entire screen ESC[2J

Auxiliary character set ESC(1
The one character following the
escape sequence is treated as the
auxiliary character code, as defined
by the CHR utility.

Set a Mode
Disable system status display
Disable key click
Disable cursor display
Disable keyboard input

Reset a Mode
Enable system status display
Enable key click
Enable cursor display
Enable keyboard input

(The final character in the Reset a Mode
escape sequence is the alphabetic charac
ter lowercase 1, not the number one.)

2. ADM-3A-Compatible Escape Sequences

Direct cursor addressing

ESC[> Ih
ESC[>2h
ESC[>5h
ESC[>7h

ESC[> 11
ESC[>21
ESC[>51
ESC[>71

ESC=]c

where:] = line number, binary 20H-38H
c = column number, binary 20H-6FH

Escape Sequences

A-3

Appendix B

Soft Key Table
Memory Format
Assembly language programs can access the soft key table in the operating system.
Soft key tables are created using the KEY utility. (See CPIM-86 System User's Guide
for the APe.) This appendix includes a description of the soft key table address and
format, as well as an explanation of how to load it.

SOFT KEY TABLE ADDRESS AND FORMAT

Soft key table address pointer:

40 :2560H I + offset ---------

soft key
table

325
bytes

325
bytes

I / base

(
(I

<-----------16 bytes -----------> I
I
I
I

1

character string .0
character string :0
character string 10

j ---------------
reserved for system - 96 bytes

f
character string '0
character string .0

------------- ---l

reserved for system - 96 bytes

address

address

corresponding
to:

PFI key
PF2
PF3

PF16

shift+PFI key
shift+PF2

shift+PFl6

Table size = 704 bytes

B-1

Soft Key Memory Format

B-2

The characters strings in the soft key table format correspond to the PF keys
available. You may set character strings for each of the 32 PF keys using the format
described below.

Character code = OOH - FFH

Number of characters = 1 - 15

Stopper code = OOH

The CONIN routine in the BIOS recognizes the end of the character string by the
code OOH.

LOADING THE SOFT KEY TABLE

Use the following procedure to load the soft key table file (file type KEY) generated
by the KEY utility.

1. Open the KEY file.

2. Read the KEY file. (See file format below.)

3. Transfer the data to the soft key table in two moves. Load the first 256 bytes
starting at 40:5500H. Load the next 256 bytes starting at 352 + the start
address of the soft key table.

Soft Key Memory Format

KEY FILE FORMAT

FFI L1H1

Header (128 bytes)

Character string

l 16x16 bytes
PFI I
PF16

Character string
FNC+PFI I

1 16x16 bytes

FNC+PFI6

<-------- 16 bytes ------>

The last six function keys on the keyboard, unshifted and shifted, produce the
following predefined escape sequences.

ESCOO
ESCOP
ESCOQ
ESCOR
ESCOS
ESCOT

ESCOU
ESCOV
ESCOW
ESCOX
ESCOY
ESCOZ

These sequences do not actually perform any function. They must be implemented
by an application program, which establishes an action or series of operations for
each escape sequence.

B-3

Appendix C

Auxiliary Character
Generator RAM Format
Assembly language programs can access the auxiliary character generator RAM.
The auxiliary character generator files are created using the CHR utility. (See
CPIM-86 System User's Guide for the APC.) This appendix includes a description of
the auxiliary character generator (CG) RAM address and format, and an explana
tion of how to load it.

AUXILIARY CHARACTER RAM ADDRESS AND FORMAT

D8000H

D9FEOH
...

I I
1<----- 32 bytes ----->f
I I
I I
I I
I I
I I

character 0

character 1

character 2

character 255

Corresponding
Auxiliary

Character Code

OOH

01 H

02H

FFH

The top address of the auxiliary CG RAM is D8000H. Each character is made up of
a 32-byte bit pattern. The high order byte of every word is all zeros. You must
transfer in words, not bytes, to the auxiliary CG RAM. This is a hardware
restriction.

C-I

Auxiliary Character Generator RAM Format

C-2

Figure C-l is an example of the bit pattern of a graphic character.

1 234 5 6 7 8 9 ABC D E F
o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0 0 0 o A 0 0 0:0
0 0 070,,"0 0 1 0
0 oro 0 0"1 O'
0 o ~ 0 0 o) O·
0 0 0,,"0/0 O.
0 0 0 o " v 0 0 o.

1 1 1 :
0 0 0 0 0 0 o.
0 0 0 o /1\... 0 0 o.
0 0 0/0,,\ 0 0:
0 o ./ 0 o "0 0 1

0 Vo 0 0 o "" O'
0 0 0 0 0 o'
0 0 0 0 0 O'
0 0 0 0 0 0 1 0
J-- 0 0 0 0 H I 0

0 0 0 0
0 0 0 0

I

I
I
\
\

\
\

I

.f ,
0 0 0 0
0 0 0 0

Figure C-l Sample Bit Pattern of Graphic Character

0 0
0 0

0 0
0 0

08H, OOH
14H, OOh
22H,
22H,
14H,
08H,
FFH,
08H,
08H,
14H.
24H,
42H,
42H,
42H,
42H,
C3H,00H

Figure C-2 demonstrates how the bit pattern in Figure C-l would be stored in
auxiliary CG RAM.

RELATIVE
ADDRESS

o
2
4
6
8
A
C
E

IO

12
14
16
18
lA
lC
IE

DATA

08 1 00
14 1 00
22 i 00
22 I 00
14 00
08 I 00
FF : 00
08 I 00
08 i 00
14 • 00
24 1 00
42 -'- 00
42 00
42 00
42 I 00

- 20- - - - • 1 I 1 •
C3-,- 00

•
I ... Ie .1
• I I

BYTE BYTE

Figure C-2 Sample Data in Auxiliary CG RAM

Auxiliary Character Generator RAM Format

LOADING THE AUXILIARY CHARACTER FILE

Use the following procedure ~o load the auxiliary CO RAM with data from the file
(file type CHR) generated by the CHR utility.

1. Open the CHR file.

2. Read the CHR file into the temporary user buffer that is automatically
created by the CHR utility. (See file format below.)

3. Transfer the data (8K bytes) in the user buffer to the auxiliary CO RAM,
starting at D8000H, by word.

CHR TYPE FILE FORMAT

Header (128 bytes)
reserved

for future use

character character character character
0 I 2 3

4 5 6 7

8 9 10 11

C-3

Appendix D

Memory Map
Absolute Address:

OH Interrupt Vector

lK bytes

400H
CP/M-86

CCP

BDOS

9.5K bytes

2900H
BIOS

(for future expansion)

8000H
User Area

32K bytes ____ 1 ____ _

96K bytes

128K
bytes

D-l

Appendix E

Keyboard Structures
This appendix gives character code and keyboard information for the APC. The
characters that can be generated and their associated codes are shown in Table E-l.
The meanings of the ASCII special characters are given in Table E-2. Table E-3lists
the APC special characters that differ in representation from the ASCII standard,
but the generated code is the same. A quick reference quide for easy association of
the ASCII special characters and the APC special characters is provided in Table
E-4. The APC keyboard layout is given in Figure E-l. The APC GRPHI characters
are shown in Figure E-2, the GRPH2 characters in Figure E-3.

KEY INPUT STATUS

The status of the keyboard signal is returned in register AH in response to a CONIN
BIOS call (function 3) through a Direct BIOS call (BDOS function 50). Each bit
refers to one keyboard mode, as follows.

M
S
B

7

CAPS
LOCK

6 5 4

SHIFT ALT

3 2

IG~PH GRPH
1

1

CTRL

L
S
B

Obit

FNC

E-l

Keyboard Structures

Table E-l Code Table

SECOND FIRST HEX DIGIT
HEX

DIGIT 0 2 3 4 5 6 7 8 9 A B C D E F

0 NUL DLE SP 0 @ P P 00 a
00 16 32 48 64 80 96 112

176 192

3 SOH DCI ! A Q a q V 01 17 33 49 65 81 97 113
177 193 209

STX DC2 2 B R b r 2 02 18 34 50 66 82 98 114

ETX DC3 # 3 C S c s 3 03 19 35 51 67 83 99 115

EOT DC4 $ 4 D T d t 4 04 20 36 52 68 84 100 116

ENQ NAK % 5 E U e u 5 05 21 37 53 69 85 101 117

ACK SYN & 6 F V v 6 06 22 38 54 70 86 102 118

7 BEL ETB 7 G W g W
07 23 39 55 71 87 103 119

199 215

BS CAN (8 H X h x (J + 8 08 24 40 5n 72 88 104 120
184 200

9 HT EM) 9 I Y i y
185t/;

V 09 25 41 57 73 89 105 121
201

LF SUB J Z j z n 7r A 10 26 42 58 74 90 106 122
186 202

B VT ESC + K [k {
II 27 43 59 75 91 107 123

C FF FS < L '\
12 28 44 60 76 92 108 124

D CR GS M] m }
13 29 45 61 77 93 109 125

E SO RS > N 1\ n
14 30 46 62 78 94 110 126

SI US / ? 0 0 F 15 31 47 63 79 95 III

ASCII Character
or ..

Graphics Character .. Decimal Code

E-2

Keyboard Structures

Table E-2 ASCII Special Characters

CODE MEANING

NUL Null
SOH Start of Heading
STX Start Text
ETX End Text
EaT End of Transmission
ENQ Enquiry
ACK Acknowledge
BEL Bell
BS Backspace
HT Horizontal Tab
LF Line Feed
VT Vertical Tab
FF Form Feed
CR Carriage Return
SO Shift Out
SI Shift In
DLE Data Link Escape
DCI Device Control I
DC2 Device Control 2
DC3 Device Control 3
DC4 Device Control 4
NAK Negative Acknowledge
SYN Synchronous Idle
ETB End Transmission Block
CAN Cancel
EM End of Medi urn
SUB Substitute
ESC Escape
FS Form Separator
GS Group Separator
RS Record Separator
US Unit Separator
SP Space
DEL Delete

NOTE: These codes are not displayed on the APC as shown. Some of these codes
are not used by the APC, but the unused codes can still be transmitted for
use by other devices.

E-3

Keyboard Structures

E-4

Table E-3 APC Special Characters

SECOND FIRST
HEX HEX

DIGIT DIGIT

0 1

0 E3
00 16

1 ~
01 17

2 ~ -
02 18

3 CD -
03 19

4 Z -i-
04 20

5 [1J X
05 21

6 OK CD
06 22

7 ~ 0
07 23

8 1- • 08 24

9 .. -09 25

A 0
10 26

B ... OJ
II 27

C h] 0
12 28

D .. [2J
13 29

E -* 0
14 30

F rn c::J
15 31

APC -G-
Character Decimal

Code

NOTE: Only characters that are not associated with a specific APC function are
displayed on the screen.

Table E-4 Quick Reference Guide for ASCII Special Character/ APC Special
Character Association

ASCII APC
SPECIAL SPECIAL

CHARACTER CHARACTER

NUL
SOH ~
STX ~
ETX m
EaT z
ENQ @1
ACK OK

BEL cC
BS ...
HT ..
LF 0
VT ...
FF c;:::J

CR ..
SO 1:
SI W
DLE !=:=l
DCI
DC2 -
DC3 -
DC4
NAK X
SYN CD
ETB 0
CAN • EM -SUB
ESC rn
FS EJ
GS [£J

RS 0

US c:1
SP
DEL

NOTE: Characters associated with a specific APC function are not displayed.

Keyboard Structures

E-5

Keyboard Structures

Figure E-l APe Keyboard

@] OK -t -+ 0 • ~ +-08 09 OA

•
6 6

II 12 IA

D
IE

88

NOTE: Characters associated with a specific APC function are not displayed.

A. UNSHIFTED (SHIFT KEY UP)

E-6

Graphics
Character

Hex Code

B. SHIFTED (SHIFT KEY DOWN)

NOTES: I GRPH I CHARACTERS ARE PRODUCED WHEN THE
GRPH I KEY IS PRESSED.

2 GRAPHICS SYMBOLS ASSOCIATED WITH A SPECIFIC
APC FUNCTION ARE NOT DISPLA YED ON THE SCREEN.
INSTEAD, THE FUNCTION IS PERFORMED.

3 THE ALPHANUMERIC SYMBOLS ASSOCIATED WITH
THE GRAPHIC SYMBOLS ARE THE HEXADECIMAL (HEX)
CODES GENERATED BY PRESSING THE KEYS.

Figure E-2 APC GRPHI Characters

Keyboard Structures

£-7

Keyboard Structures

GRPH2
Character

Hex
Code

A. lJNSHIFTED (SHII·T KEY UP)

B. SIlII·IED (SIIII·' KI·.Y DOWN)

Character
on Key Cap

NOTE: GRPH2 CHARACTERS ARE PRODUCED WHEN THE GRPH2
KEY IS PRESSED

Figure E-3 APC GRPH2 Characters

E-8

Appendix F

CP IM-86 Control Characters
The following table describes the CP/M-86 control characters and any keys on the
APC keyboard that perform the same function.

KEYSTROKE

CTRL-C

CTRL-E

CTRL-H

CTRL-I

CTRL-J

CTRL-M

CTRL-P

CTRL-R

ACTION

Aborts the program currently running. Same as pressing
SHIFT and STOP.

Moves the cursor to the beginning of the following line
without erasing your previous input.

Moves the cursor left one character position and deletes
the character. Same as pressing BACK SPACE.

Moves the cursor to the next tab stop, where tab stops are
automatically placed at each eighth column. Same as
pressing TAB.

Moves the cursor to the left of the current line and sends
the command line to CP/M-86. Same as pressing
RETURN.

Moves the cursor to the left of the current line and sends
the command line to CP/M-86. Same as pressing
RETURN.

Echoes all console activity at the printer. PrelfSing again
ends printer echo. Same as pressing PRINT.

Types a # at the current cursor location, moves the cursor
to the next line, and retypes any partial command typed
so far.

F-I

CP/ M-86 Control Characters

CTRL-S

CTRL-U

CTRL-X

CTRL-Z

F-2

Temporarily stops console listing. Pressing again resumes
the listing. Same as pressing STOP.

Discards all characters in the command typed so far,
types a # at the current cursor location, and moves the
cursor to the next command line.

Discards all characters in the command line typed so far
and moves the cursor back to the beginning of the current
line. Same as pressing DEL.

Separates fields or strings.

Appendix G

CP 1M -86 Error Messages
MESSAGE

Ambiguous operand

Bad Directory on d:

MEANING AND SUGGESTED CORRECTION

DDT-86. An attempt was made to assemble a command
with an ambiguous operand. Precede the operand with
the prefix "BYTE" or "WORD".

Space Allocation Conflict:
User n d:filename.typ

BDOS err on d:

ST AT has detected a space allocation conflict in which
one data block is assigned to more than one file. One or
more filenames might be listed. Each of the files listed
contains a data block already allocated to another file on
the disk. You can correct the problem by erasing the files
listed. After erasing the conflicting file orfiles, press tC to
regenerate the allocation vector. If you do not, the error
might repeat itself.

CP IM-86 replaces d: with the drive specifier of the drive
where the error occurred. This message appears when
CP/M-86 finds no disk in the drive, when the disk is
improperly formatted, when the drive latch is open, or
when power to the drive is off. Check for one of these
situations and retry.

G-l

CP/ M-86 Error Messages

BDOS err on d: bad sector

BDOS err on d: RO

Cannot close

Command name?

G-2

This could indicate a hardware problem or a worn or
improperly formatted disk. Press CTRL-C to terminate
the program and return to CP/M-86, or press the enter
key to ignore the error.

BDOS err on d: select

CP/M-86 has received a request specifying a nonexistent
drive, or a disk in a drive is improperly formatted. CP/M-
86 terminates the current program as soon as you press
any key.

Drive has been assigned Read-Only status with a STAT
command, or the disk in the drive has been changed
without being initialized with a CTRL-C. CP/M-86 ter
minates the current program as soon as you press any
key.

ASM-86. An output file cannot be closed. This is a fatal
error that terminates ASM-86 execution. The user should
take appropriate action after checking to see if the correct
disk is in the drive and that the disk is not write protected.

DDT -86. The disk file written by a W command cannot
be closed. This is a fatal error that terminates DDT-86
execution. The user should take appropriate action after
checking to see if the correct disk is in the drive and that
the disk is not write protected.

If CP/M-86 cannot find the command you specified, it
returns the command name you entered followed by a
question mark. Check that you have typed the command
name correctly, or that the command you requested
exists as a CMD file on the default or specified disk.

CP/ M-86 Error Messages

DESTINATION IS RIO, DELETE (YIN)?

Directory full

Disk full

Disk read error

Disk write error

PIP. The destination file specified in a PIP command
already exists and has the Read-Only attribute. If you
type Y, the destination file is deleted before the file copy is
done.

ASM-86. There is not enough directory space for the
output files. You should either erase some unnecessary
files or get another disk with more directory space and
execute ASM-86 again.

ASM-86. There is not enough disk space for the output
files (LST, H86 and SYM). You should either erase some
unnecessary files or get another disk with more space and
execute ASM-86 again.

ASM-86. A source or include file could not be read
properly. This is usually the result of an unexpected end
of file. Correct the problem in your source file.

DDT -86. The disk file specified in an R command could
not be read properly. This is usually the result of an
unexpected end of file. Correct the problem in your file.

DDT -86. A disk write operation could not be successfully
performed during a W command, probably due to a full
disk. You should either erase some unnecessary files or
get another disk with more space and execute ASM-86
again.

G-3

CP/ M-86 Error Messages

G-4

Double defined variable

Double defined label

ASM-86. An identifier used as the name of a variable is
used elsewhere in the program as the name of a variable
or label. Example:

x DB 5

x DB 123H

ASM-86. An identifier used as a label is used elsewhere in
the program as a label or variable name. Example:

LAB3: MOV BX,5

LAB3: CALL MOVE

Double defined symbol - treated as undefined

ASM-86. The identifier used as the name of an EQU
directive is used as a name elsewhere in the program.

ERROR: BAD PARAMETER

PIP. An illegal parameter was entered in a PIP command.
Retype the entry correctly.

ERROR: CLOSE FILE - {filespec}

PIP. An output file cannot be closed. The user should
take appropriate action after checking to see if the correct
disk is in the drive and that the disk is not write protected.

ERROR: DISK READ - {filespec}

PIP. The input disk file specified in a PIP command
cannot be read properly. This is usually the result of an
unexpected end of file. Correct the problem in your file.

CP/ M-86 Error Messages

ERROR: DISK WRITE - {filespec}

PIP. A disk write operation cannot be successfully per
formed during a PIP command, probably due to a full
disk. You should either erase some unnecessary files or
get another disk with more space and execute PIP again.

ERROR: FILE NOT FOUND - {filespec}

PIP. An input file that you have specified does not exist.

ERROR: HEX RECORD CHECKSUM - {filespec}

PIP. A hex record checksum was encountered during the
transfer of a hex file. The hex file with the checksum error
should be corrected, probably by recreating the hex file.

Error in codemacro building

ASM-86. Either a codemacro contains invalid state
ments, or a codemacro directive was encountered outside
a codemacro.

ERROR: INVALID DESTINATION

PIP. The destination specified in your PIP command is
illegal. You have probably specified an input device as a
destination.

ERROR: INVALID FORMAT

PIP. The format of your PIP command is illegal. See the
description of the PIP command.

ERROR: INVALID HEX DIGIT - {filespec}

PIP. An invalid hex digit has been encountered while
reading a hex file. The hex file with the invalid hex digit
should be corrected, probably by recreating the hex file.

ERROR: INVALID SEPARATOR

PIP. You used an invalid character for a separator
between two input filenames.

G-5

CPIM-86 Error Messages

G-6

ERROR: INVALID SOURCE

PIP. The source specified in your PIP command is illegal.
You have probably specified an output device as a source.

ERROR: INVALID USER NUMBER

PIP. You have specified a User Number greater than 15.
User Numbers are in the range 0 to 15.

ERROR: NO DIRECTORY SPACE - {filespec}

PIP. There is not enough directory space for the output
file. You should either erase some unnecessary files or get
another disk with more directory space and execute PIP
again.

ERROR: QUIT NOT FOUND

PIP. The string argument to a Q parameter was not found
in your input file.

ERROR: START NOT FOUND

PIP. The string argument to an S parameter cannot be
found in the source file.

ERROR: UNEXPECTED END OF HEX FILE - {filespec}

PIP. An end of file was encountered prior to a termina
tion hex record. The hex file without a termination record
should be corrected, probably by recreating the hex file.

ERROR: USER ABORTED

PIP. The user has aborted a PIP operation by pressing a
key.

ERROR: VERIFY - {filespec}

PIP. When copying with the V option, PIP found a
difference when rereading the data just written and com
paring it to the data in its memory buffer. Usually this
indicates a failure of either the destination disk or drive.

CP/ M-86 Error Messages

File exists

File name syntax error

File not found

You have asked CP 1M -86 to create a new file using a file
specification that is already assigned to another file.
Either delete the existing file or use another file specifi
cation.

ASM-86. The filename in an INCLUDE directive is
improperly formed. Example:

INCLUDE FILE.A86X

CP/M-86 could not find the specified file. Check that you
have entered the correct drive specification and that you
have the correct disk in the drive.

Garbage at end of line - ignored

ASM-86. Additional items were encountered on a line
when ASM-86 was expecting an end of line. Examples:

NOLIST 4
MOV AX,4 RET

Illegal expression element

Illegal first item

ASM-86. An expression is improperly formed. Examples:

X DB 12X
DW (4 *)

ASM-86. The first item on a source line is not a valid
identifier, directive or mnemonic. Example:

1234H

G-7

CP/ M-86 Error Messages

G-8

Illegal "IF" operand - "IF" ignored

Illegal pseudo instruction

Illegal pseudo operand

ASM-86. Either the expression in an IF statement is not
numeric, or it contains a forward reference.

ASM-86. Either a required identifier in front of a pseudo
instruction is missing, or an identifier appears before a
pseudo instrucion that doesn't allow an identifier.

ASM-86. The operand in a directive is invalid. Examples:

x EQU OAGH

TITLE UNQUOTED STRING

Instruction not in code segment

ASM-86. An instruction appears in a segment other than
a CSEG.

Is this what you want to do (YIN)?

Insufficient memory

Invalid Assignment

COPYDISK. If the displayed COPYDISK function is
what you want performed, type Y.

DDT-86. There is not enough memory to load the file
specified in an R or E command.

ST AT. An invalid device was specified in a STAT device
assignment. Use the STAT val: command to display the
valid assignments for each of the four logical STAT
devices: CON:, RDR:, PUN: and LST:.

CP/ M-86 Error Messages

Label out of range

Memory request denied

Missing instruction

ASM-86. The label referred to in a call, jump or loop
instruction is out of range. The label can be defined in a
segment other than the segment containing the instruc
tion. In the case of short instructions (JMPS, conditional
jumps and loops), the label is more than 128 bytes from
the location of the following instruction.

DDT -86. A request for memory during an R command
could not be fulfilled. Up to eight blocks of memory can
be allocated at a given time.

ASM-86. A prefix on a source line is not followed by an
instruction. Example:

REPNZ

Missing pseudo instruction

ASM-86. The first item on a source line is a valid identi
fier and the second item is not a valid directive that can be
preceded by an identifier. Example:

THIS IS A MISTAKE

Missing segment information in operand

ASM-86. The operand in a CALLF or JMPF instruction
(or an expression in a DD directive) does not contain
segment information. The required segment information
can be supplied by including a numeric field in the seg
ment directive as follows:

CSEG 1000H
X:

JMPF X
DD X

G-9

CP/ M-86 Error Messages

G-IO

Missing type information in operand(s)

ASM-86. Neither instruction operand contains sufficient
type information. Example:

MOV [BX],lO

Nested "IF" illegal - "IF" ignored

ASM-86. The maximum nesting level for IF statements
has been exceeded.

Nested INCLUDE not allowed

No file

ASM-86. An INCLUDE directive was encountered
within a file already being included.

CP/M-86 cannot find the specified file, or no files exist.

ASM-86. The indicated source or include file cannot be
found on the indicated drive.

DDT-86. The file specified in an R or E command cannot
be found on the disk.

No matching "IF" for "ENDIF"

No space

ASM-86. An ENDIF statement was encountered without
a matching IF statement.

DDT-86. There is no space in the directory for the file
being written by a W command.

Operand(s) mismatch instruction

ASM-86. Either an instruction has the wrong number of
operands, or the types of the operands do not match.
Examples:

MOV CX,1,2
X DB 0

MOV AX,X

CPIM-86 Error Messages

Parameter error

ASM-86. A parameter in the command tail of the
ASM-86 command was specified incorrectly. Example:

ASM86 TEST $S;

Symbol illegally forward referenced - neglected

Symbol table overflow

ASM-86. The indicated symbol was illegally forward ref
erenced in an ORG, RS, EQU or IF statement.

ASM-86. There is not enough memory for the symbol
table. Either reduce the length and! or number of sym
bols, or reassemble on a system with more memory
available.

Undefined element of expression

Undefined instruction

ASM-86. An identifier used as an operand is not defined
or has been illegally forward referenced. Examples:

JMP X
A EQU B
B EQU 5

MOV AL,B

ASM-86. The item following a label on a source line is not
a valid instruction. Example:

DONE: BAD INSTR

Use: [size] [ro] [rw] [sys] or [dir]

Use: STATd:=RO

ST AT. This message results from an invalid set file
attributes command. These are the only options valid in a
STAT filespec [option] command.

STAT. An invalid STAT drive command was given. The
only valid drive assignment in STAT is STAT d:=RO.

G-ll

CP/ M-86 Error Messages

Too Many Files

Verify error at s:o

G-12

STAT. A STAT wildcard command matched more files
in the directory than STAT can sort. STAT can sort a
maximum of 512 files.

DDT-86. The value placed in memory by a Fill, Set,
Move, or Assemble command cannot be read back cor
rectly, indicating bad user memory, an attempt to write to
ROM, or nonexistent memory at the indicated location.

Appendix H

CBIOS Error Messages
The BIOS may encounter two error situations during disk handling. When the disk
controller detects an error, the BIOS issues one of the following messages to the
CRT.

1. *** FDD ON x : NOT READY ***

x = drive name of selected drive (A-D)

This error message is issued for floppy diskette drives only. It indicates that
the diskette is not set on the selected drive.

To correct the error, insert the diskette in the selected drive and press any
character. The BIOS retries the action.

2. FDC H/W ERROR
HDC H/W ERROR
STATUS 0 = xxH STATUS 1 = xxH STATUS 2 = xxH

xx = contents of each status register in the FDC or HDC

The first message appears for floppy diskette hardware errors. The second
form is for hard disk hardware errors.

Enter one of the following in response to the error message:

R - to retry the same I/O
I - to ignore the I/O

If any other key is pressed, the BIOS returns the same error message.

H-l

CBIOS Error Messages

H-2

When a write-protected diskette is selected, the following message is displayed.

*** This floppy on x : is the write protected floppy ***

x = drive name of selected drive (A-D)

This is not an error, but is a warning not to attempt to write to the disk. If a
write operation is attempted to a write-protected diskette, the FDC H/W
error message is returned.

Appendix I

Blocking and Deblocking
Algorithms
Upon each call to the BIOS WRITE entry point, the CP/M-86 BDOS includes
information that allows effective sector blocking and deblocking where the host disk
subsystem has a sector size which is a multiple of the basic 128-byte unit. This
appendix presents a general-purpose algorithm that is included in the CBIOS and
that uses the BDOS information to perform the operations automatically.

Upon each call to WRITE, the BDOS provides the following information in register
CL:

0= normal sector write
1 = write to directory sector
2 = write to the first sector

of a new data block

Condition 0 occurs whenever the next write operation is into a previously written
area, such as a random mode record update, when the write is to other than the first
sector of an unallocated block, or when the write is not into the directory area.
Condition 1 occurs when a write into the directory area is performed. Condition 2
occurs when the first record (only) of a newly allocated data block is written. In most
cases, application programs read or write mUltiple 128-byte sectors in sequence, and
thus there is little overhead involved in either operation when blocking and deblock
ing records since pre-read operations can be avoided when writing records.

This appendix briefly describes the blocking and deblocking algorithm (the file is
included on your CP/M-86 system diskette). Generally, the algorithms map all
CP 1M sector read operations onto the host disk through an intermediate buffer
which is the size of the host disk sector. Throughout the program, values and
variables which relate to the CP 1M sector involved in a seek operation are prefixed
by "sek", while those related to the host disk system are prefixed by "hst".

1-1

Blocking and Deblocking

1-2

The SELDSK entry point clears the host buffer flag whenever a new disk is logged
in. Note that although the SELDSK entry point computes and returns the Disk
Parameter Header address, it does not physically select the host disk at this point (it
is selected later at READHST or WRITEHST). Further, SETTRK, SETSEC, and
SETDMA simply store the values, but do not take any other action at this point.
SECTRAN performs-a trivial function of returning the physical sector number.

The principal entry points are READ and WRITE. These subroutines take the place
of your previous READ and WRITE operations.

For hard disk, the READ and WRITE operations actually move data from or to a
work buffer. The work buffer is located on the hard disk adapter board starting at
location 9CaaaH. This buffer is used by the CBIOS only and is not accessible to the
user for either programs or data.

The actual physical read or write takes place at either WRITEHST or READHST,
where all values have been prepared: hstdsk is the host disk number, hsttrk is the host
track number, and hstsec is the host sector number (which may require translation
to a physical sector number). You must insert code at this point which performs the
full host sector read into, or write out of, the buffer at hstbuj of length hstsiz. All
other mapping functions are performed by the algorithms.

See the listing of the CBIOS on the CP /M-86 Program Development Aids diskette
for the sector blocking/deblocking algorithm for the APC.

Appendix J

Physical Format Of Hard Disks
CP/M-86 restricts the maximum size of a disk to 8MB. The APC hard disk units
have a 10MB capacity. Therefore, to maintain compatibility with CP/M-86, the
APC CBIOS views each physical hard disk unit as two logical disk drives. This
structure provides additional benefits.

• The drives may be initialized independently.

• Free space is allocated independently for the two drives.

• The system can physically copy from one drive to the other.

The system supports up to two physical hard disk units, labelled 0 and 1. The drives
are labelled E and F (unit 0), G and H (unit 1).

PHYSICAL FORMAT

Each drive is organized in the following format, as shown in Figure J-1.

• 89.5 cylinders

• 562 allocation blocks

• 4.60MB disk space

• 24 tracks free space (for track reallocation)

The disk space is organized as follows:

• 256 bytes/sector

• 26 sectors/track (0-25)

• 8 tracks/cylinder (0-7)

• 181 cylinders/unit (0-180)

J-l

Physical Format of Hard Disks

J-2

Figure J-l 5 1/4" Hard Disk Physical Format (DKM220)

Loader (for future use)
. Error Map

(Sectors 0, 12)

Cylinder 0
--1-- J-D- 1

-· r-ec...Lt-o-ry-A---IIr"ea-f,---:---~--r-1 --+--r---I - - - - - -1 --

Drive
E or G

Drive
For H

86
~

89

---r - - _ ... _.J I
I ,
1
I
I
, 4.60

Data A~ea Mbytes

JI --t--L -,--- _____ 1_
- - -1- - - -1- - -1- - - (Realloca'ti~~ Areas)

1 . I ,

Free Space I r---+---i---r--+---+- --- -- --
Directory Area 1

---+--+--~--+----!-- - i - - -- I

176

177
178
179

180

1 I I
1 I I
I I I
1 I I

I l :
I I

I
I
1

Data Area
1
I
I

I I I

I I l
1 ,

--~- --r-- .J_ --1' -- -I- --r - - .,---
I I 1 I I
1 ! I I ! 1

Free Space (Reallocation Area) 1

I I ' ; ,
Maintenance Area (l Cylinder)

o 1213 1 4 1 5' 6 I I I I I
7

4.60
Mbytes

Physical Format of Hard Disks

CYLINDER, HEAD, AND SECTOR ADDRESSES

Each track consists of ID sections (cylinder, head, and sector addressing fields)
followed by data areas, in the following format.

ID
SECTION

Sector Address
Head Address

Cylinder Address

In the ID section of a bad track, the cylinder, head, and sector addresses are all FFH.

A track with an ID section not equal to FFH but with its most significant bit set to 1
is defined as a permanent bad track. A permanent bad track is a bad track which has
already been detected upon the shipment from the factory and has been identified by
the manufacturer by setting on the LSB in the head address in the ID section. (The
shipment of a hard disk having a bad track is permissible where the number of bad
tracks detected is less than the number specified by the manufacturer.)

J-3

Physical Format of Hard Disks

J-4

ERROR MAP

The error map (cylinder 0, sectors 0 and 12) is used to reallocate the next normal
track in place of a bad track. Sector 0 is the error map. Sector 12 is the back-up error
map.

The map is formatted as shown in Figure J-2. Each bit corresponds to a track on the
disk.

o 5 6 7 8 188 255
I I I I
I I I I

EIRIMIAIP 6.
I I I I
I I I I

Figure J-2 Error Map

NOC
C IC I C' I I I I I I I I I I I I I I I I I

: # : # I ERROR BIT MAP
o III 2: I : I : : : I

I ,

,
/

/
/

~

t ~ t t : t : t I t , I I I

O~ 1 2 :3 : 4 : 5

MSB

............

: t :6

1 = bad track

.............

: t
:7

LSB

o = normal track

L Number of Cylinders

C#O - C#180: Cylinder No. 0-180
to - t7: Track No. 0-7

To reduce seek time, the system uses the track that immediately follows the bad
track for the reallocation. Figure J-3 demonstrates track reallocation.

UNU:EDI

Physical Format of Hard Disks

Figure J-3 Error Map And Track Reallocation

Error Map

Cylinder #1
00000000
M L
S S
B B

Track I ,

Cylinder #2
00000100

Cylinder #3
01000000

0: 1 '2 I 3 456 7

Cylinder (1.0) I (1.1) I (1.2) , (1.3) I (1.4) I (1.5) I (1.6) I (1.7) I

_...! __ J~OL,_ Q.·~-U~L+ ~.~ ~ l!.4] L~·~_:J.l.:?L.:-~.7]--:
(2.0)! (2.1) I (2.2) I (2.3) I (2.4) I (FFF,FF), (2.6) I (2.7) I

2 [2.0] I [2.1] J [2.2] I [2.3] I [2.4]' ,[2.5] I [2.6] ,

--- (3.0) j(FFF,FF): (3.2) T (3.3) 1 (3.4) i (3.5)-; (3.6) 1
1
- (3.7)-;

_~ _ ~.7]-+ ____ :J.3.0]_:_[~IL t-[3.~ _[~31-+ [3.4] +.l3.5~i

4 I I I , I, I I I
I I I' I I I

Note:

(i, j)
[c, t]

(i, j) - i cylinder, j track
physical id written by HDFORMAT.
(FFFH, FFH) or (i, 80 - 87H) is a bad track

[c, t] - c cylinder, t track
logical id used by CBIOS

J-5

Appendix K

GSX-86 Device Specific
Information
This Appendix contains information about each of the device drivers which is
supplied with GSX-86.

NEC ADVANCED PERSONAL COMPUTER

FILENAME DDNECAPC.SYS

DEVICE INDEX The device index is 1 in ASSIGN.SYS on the distri
bution diskette. You can use the driver with this
number or change the assignment.

MAXIMUM BAUD RATE NI A

COMMUNICATIONS NI A

GRAPHIC INPUT The cursor is moved by pressing one of the four
cursor movement keys on the keyboard. When the
cursor is at the desired location, the point can be
selected by pressing any alphanumeric key (other
than RETURN).

TEXT The APC has 16 character sizes. Text can be rotated
in 45-degree increments. Two fonts, straight and
slanted, are available.

MARKERS 1
2 +
3 *
4 0
5 X

K-I

GSX-86 Device Specific Information

K-2

LINESTYLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

The NEC APC has seven hardware linestyles. Line
style 1 is solid, and linestyles 2 - 7 are combinations
of dashed and dotted lines.

The APC comes in both monochrome and color
models. For the color terminal, areas may be filled
with any of eight color indices. Color indices are
mapped to one or eight colors, which may be rede
fined. The default association of color indices is:

Index Color

0 Black
1 Red
2 Green
3 Blue
4 Cyan
5 Yellow
6 Magenta
7 White

The available GDPs and their identifiers are:

1 - Bars
2 - Circles (both hollow and fill styles)

In addition to the required escape functions, the
following optional escape functions are available on
the APC.

13 Reverse Video On
14 Reverse Video Off
16 Inquire Tablet Status
18 Place cursor at location
19 Remove cursor

SUMMARY

GSX-86 Device Specific Information

The functions available through GIOS in the APC
are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
28
31
32
33

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text font
Set text color index
Set fill interior style
Set fill style index
Set fill color index
Inquire color representation
Input locator
Input string
Set writing mode - replace, xor
Set input mode - request

K-3

GSX-86 Device Specific Information

K-4

LEAR SIEGLER ADM5 WITH DIGITAL ENGINEERING
RETRO-GRAPHICS (GEN.II)

FILENAME DDGN2A.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud for all graphics

COMMUNICATIONS Standard serial communications (RS-232C). The
LSI ADM5 with Retro-Graphics uses XON-XOFF
flagging to avoid losing data at high baud rates.

GRAPHIC INPUT (GIN) When GIN is invoked on the ADM5 Retro-Graphics
terminal, a crosshair cursor appears on the screen.
The crosshair can be moved by pressing one of the
four cursor movement keys on the keyboard. When
the cursor is at the desired location, the point can be
selected by pressing any alphanumeric key (other
than RETURN). This causes the coordinates of the
point to be transmitted back to the user program.

TEXT The ADM5 Retro-Graphics terminal has continu
ous scaling character sizes. Text can be rotated in
90-degree increments. One font, standard ASCII
vector characters, is available.

MARKERS

LINESTYLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

GSX-86 Device Specific Information

1
2 +
3 *
4 0
5 X

The ADM5 Retro-Graphics terminal has eight
hardware linestyles. Linestyle 1 is solid, and line
styles 2 - 8 are combinations of dashed and dotted
lines.

The ADM5 Retro-Graphics terminal is a mono
chrome device. Only the colors black (color index 0)
and white (color index 1) are supported. These indi
ces can be remapped to a color other than the
default, but only white or black.

The available G DPs and their identifiers are:

1 - Bars
2 - Arcs
3 - Pie Slices
4 - Circles

The required escape functions are available on the
ADM5 Retro-Graphics terminal.

K-5

GSX-86 Device Specific Information

SUMMARY

K-6

The functions available through GIOS in the LSI
ADM5 with the Digital Engineering GEN.II Retro
Graphics terminal enhancement are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
20
22
23
24
25
26
27
28
31
32
33

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill interior style
Set fill style index
Set fill color index
Inquire color repres~ntation
Inquire cell array
Input locator
Input string
Set writing mode - replace, xor
Set input mode - request

GSX-86 Device Specific Information

ADDS VIEWPOINT WITH DIGITAL ENGINEERING
RETRO-GRAPHICS (GEN. II)

FILENAME DDGN2B.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud for all graphics

COMMUNICATIONS Standard serial communications (RS-232C). The
ADDS VIEWPOINT with Retro-Graphics uses
XON-XOFF flagging to avoid losing data at high
baud rates.

GRAPHIC INPUT (GIN) When GIN is invoked on the VIEWPOINT Retro
Graphics terminal, a crosshair cursor appears on the
screen. The crosshair can be moved by pressing one
of the four cursor movement keys on the keyboard
while simultaneously pressing the SHIFT. When the
cursor is at the desired location, the point can be
selected by pressing any alphanumeric key (other
than RETURN). This causes the coordinates of the
point to be transmitted back to the user program.

TEXT The VIEWPOINT Retro-Graphics terminal has
continuous scaling character sizes. Text can be
rotated in 90-degree increments. One font, standard
ASCII vector characters, is available.

K-7

GSX-86 Device Specific Information

K-8

MARKERS

LINESTYLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

1
2 +
3 *
4 0
5 X

The VIEWPOINT Retro-Graphics terminal has
eight hardware linestyles. Linestyle 1 is solid, and
linestyles 2 - 8 are combinations of dashed and dot
ted lines.

The VIEWPOINT Retro-Graphics terminal is a
monochrome device. Only the colors black (color
index 0) and white (color index 1) are supported.
These indices can be remapped to a color other than
the default, but only black or white.

The available GDPs and their identifiers are:

1 - Bars
2 - Arcs
3 - Pie Slices
4 - Circles

In addition to the required escape functions, the
following optional escape functions are available on
the VIEWPOINT Retro-Graphics terminal.

18 Place cursor at location
19 Remove cursor

SUMMARY

GSX-86 Device Specific Information

The functions available through GIOS in the ADDS
VIEWPOINT with the Digital Engineering GEN.II
Retro-Graphics terminal enhancement are:

Opcode
, 1
,2

3
4
5
6
7
8
9

10
11
12
13
14
'15
17
18
20
22
23
24
25
26
27
28
31
32
33

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Poly marker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill interior style
Set fill style index
Set fill color index
Inquire color representation
Inquire cell array
Input locator
Input string
Set writing mode - replace, xor
Set input mode - request

K-9

GSX-86 Device Specific Information

K-I0

TELEVIDEO 910 WITH DIGITAL ENGINEERING
RETRO-GRAPHICS (GEN. II)

FILENAME DDGN2C.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud for all graphics

COMMUNICATIONS Standard serial communications (RS-232C). The
TELEVIDEO 910 with Retro-Graphics uses XON
XOFF flagging to avoid losing data at high baud
rates.

GRAPHIC INPUT (GIN) When GIN is invoked on the 910 Retro-Graphics
terminal, a crosshair cursor appears on the screen.
The crosshair can be moved by pressing one of the
four cursor movement keys on the keyboard. When
the cursor is at the desired location, the point can be
selected by pressing any alphanumeric key (other
than RETURN). This causes the coordinates of the
point to be transmitted back to the user program.

TEXT The 910 Retro-Graphics terminal has continuous
scaling character sizes. Text can be rotated in 90-
degree increments. One font, standard ASCII vector
characters, is available.

MARKERS

LINESTYLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (G D PS)

ESCAPES

GSX-86 Device Specific Information

1
2 +
3 *
4 0
5 X

The 910 Retro-Graphics terminal has eight hard
ware linestyles. Linestyle 1 is solid, and linestyles 2 -8
are combinations of dashed and dotted lines.

The 910 Retro-Graphics terminal is a monochrome
device. Only the colors black (color index 0) and
white (color index 1) are supported. These indices
can be remapped to a color other than the default,
but only to black or white.

The available GDPs and their identifiers are:

1 - Bars
2 - Arcs
3 - Pie Slices
4 - Circles

In addition to the required escape functions, the
following optional escape functions are available on
the 910 Retro-Graphics terminal.

18 Place cursor at location
19 Remove cursor

K-ll

GSX-86 Device Specific Information

SUMMARY

K-12

The functions available through GIOS in the TELE
VIDEO 910 with the Digital Engineering GEN.II
Retro-Graphics terminal enhancement are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
20
22
23
24
25
26
27
28
31
32
33

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill interior style
Set fill style index
Set fill color index
Inquire color representation
Inquire cell array
Input locator
Input string
Set writing mode - replace, xor
Set input mode - request

GSX-86 Device Specific Information

DATAMEDIA COLORSCAN-IO WITH DIGITAL ENGINEERING RETRO
GRAPHICS (GEN.II)

FILENAME DDGN2D.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud for all graphics

COMMUNICATIONS Standard serial communications (RS-232C). The
COLORSCAN-IO uses XON-XOFF flagging to
avoid losing data at high baud rates.

GRAPHIC INPUT (GIN) When GIN is invoked on the COLORSCAN-IO
Retro-Graphics terminal, a crosshair cursor appears
on the screen. The crosshair can be moved by press
ing one of the four cursor movement keys. When the
cursor is at the desired location, the point can be
selected by pressing any alphanumeric key (other
than RETURN). This causes the coordinates of the
point to be transmitted back to the user program.

TEXT The COLORSCAN Retro-Graphics terminal has
continuous scaling character sizes. Text can be
rotated in 90-degree increments. One font, standard
ASCII vector characters, is available.

K-13

GSX-86 Device Specific Information

K-14

MARKERS

LINESTYLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

1
2 +
3 *
4 0
5 X

The COLORSCAN-I0 with Retro-Graphics has
eight hardware linestyles. Linestyle 1 is solid and
linestyles 2 - 8 are combinations of dashed and dot
ted lines.

The COLORSCAN-I0 with Retro-Graphics is a
color terminal. Areas may be filled with any of 7
color indices. Color indices are mapped to one of 7
colors which can be redefined. The default associa
tion of color indices is:

Index Color

0 Black
1 Red
2 Green
3 Blue
4 Cyan
5 Yellow
6 Magenta

The available GDPs and their identifiers are:

1 - Bars
2 - Arcs
3 - Pie Slices
4 - Circles

In addition to the required escape functions, the
following optional escape functions are available on
the COLORSCAN-I0 terminal.

13 Reverse Video On
14 Reverse Video Off

SUMMARY

GSX-86 Device Specific Information

The functions available through GIOS in the DATA
MEDIA COLORSCAN-IO with the Digital Engi
neering Retro-Graphics G EN. II terminal enhance
ment are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
20
22
23
24
25
26
27
28
31
32

33

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Fill area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill interior style
Set fill style index
Set fill color index
Inquire color representation
Inquire cell array
Input locator
Input string
Set writing mode - replace,
xor, erase
Set input mode - request

K-15

GSX-86 Device Specific Information

K-16

VT100 WITH DIGITAL ENGINEERING RETRO-GRAPHICS

FILENAME DDVRET,SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS,file, which associates a device
index with a GIOS, module (device driver).

MAXIMUM BAUD RATE 9600 baud for all graphics

COMMUNICATIONS Standard serial communications (RS-232C). The
VT100 uses XON/XOFF flagging to avoid losing
data at high baud rates.

GRAPHIC INPUT (GIN) When GIN is invoked on the VT100 Retro-Graphics
terminal, a crosshair cursor appears on the screen.
The crosshair can be moved by pressing one of the
four cursor movement keys (up, down, left, right) on
the top row of keys on the keyboard. When the
cursor is at the desired location, the point can be
selected by pressing any alphanumeric key (other
than RETURN). This ,causes the coordinates of the
point to be transmitted back to the user program.
The terminal must be set up so that GIN is termi
nated by CR only. This can be done by setting the
two trailer codes in Retro-Graphics set-up mode to
OD hex and FF hex respectively. Refer to the instruc
tions in the User Manual for Retro-Graphics Model
VT640, "Set Up Procedures," for a further discussion
of trailer characters.

TEXT The VT100 has four character sizes. It cannot rotate
text.

MARKERS

LINESTYLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

GSX-86 Device Specific Information

1
2 +
3 *
4 0
5 X

The VT100 has five hardware linestyles. Linestyle 1
is solid, and linestyles 2 - 5 are combinations of
dashed and dotted lines.

The VT100 is a monochrome terminal with only two
levels of gray scale/intensity (black and white).
Color specifications are mapped to an appropriate
gray scale/intensity. All colors other than black are
mapped to white.

The default association of color indices with gray
scale/monochrome intensity is:

o 0% Intensity - Black
1 100% Intensity - White

No GDPs are available on the VT100.

In addition to the required escape functions, the
following optional escape functions are available on
this terminal.

13 Reverse video on
14 Reverse video off

K-17

GSX-86 Device Specific Information

SUMMARY

K-18

The functions available In the VT100 Retro
Graphics GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

10
12
14
15
17
18
20
22
25
26
28
31
32

33

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation
Input locator
Input string
Set writing mode - replace,
xor, erase
Set input mode - request

GSX-86 Device Specific Information

EPSON MX-80 PRINTER WITH GRAFTRAX PLUS

FILENAME DDMX80.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICA TIONS Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) The device does not support graphic input.

TEXT The printer supports 12 character sizes. Text can be
rotated in 90-degree increments.

MARKERS 1
2 +
3 *
4 0
5 X

LINESTYLE The printer has five hardware linestyles. Linestyle 1
is solid and linestyles 2 - 5 are combinations of
dashed and dotted lines.

COLOR The MX-80 printer supports one color. All color
indices are mapped to index 1 and are displayed.

K-19

GSX-86 Device Specific Information

K-20

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

SUMMARY

The available GDPs and their identifiers are:

1 - Bars

The required escape function is available on the
MX-80 printer.

The functions available in the MX-80 printer GIOS
are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
19
20
22
23
24
25

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text color index
Set fill interior style
Set fill style pattern
Set fill color index

GSX-86 Device Specific Information

HEWLETT-PACKARD 7220 GRAPHICS PLOTTER

FILENAME DD7220.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 2400 baud

COMMUNICATIONS Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) The pen holder is used to indicate what point is to be
input. The pen holder is moved by pressing the
position keys on the front panel. When the cursor is
at the desired location, the point can be selected by
pressing ENTER. This causes the coordinates of the
point to be transmitted back to the user program.

TEXT The HP 7220 has continuous scaling of character
sizes. Text can be rotated in one-degree increments.

MARKERS I
2 +
3 *
4 0
5 X

LINESTYLE The 7220 plotter has seven hardware linestyles.
Linestyle I is solid, and linestyles 2 - 7 are combina
tions of dashed and dotted lines.

COLOR The 7220 has eight pens. The index parameters in
the routines that set a color index correspond
directly to a plotter pen number (i.e. index 0 corres
ponds to pen I, index I to pen 2, ... index 7 to pen 8).
Indices greater than 7 are mapped to pen 8. Indices
less than 0 are mapped to pen I.

K-21

GSX-86 Device Specific Information

K-22

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

SUMMARY

No GDPs are available on the HP7220.

The required escape function is available on this
device.

The functions available in the HP7220 GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

10
12
13
14
15
17
18
20
22
25
26
28
33

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation
Input locator
Set input mode - request

GSX-86 Device Specific Information

HEWLETT-PACKARD 7470A GRAPHICS PLOTTER

FILENAME DD7470.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICATIONS Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) The pen holder is used to indicate what point is to be
input. The pen holder is moved by pressing the
position keys on the front panel. When the cursor is
at the desired location, the point can be selected by
pressing ENTER. This causes the coordinates of the
point to be transmitted back to the user program.

TEXT The HP 7470A has continuous scaling of character
sizes. Text can be rotated in one-degree increments.

MARKERS 1
2 +
3 *
4 0
5 X

K-23

GSX-86 Device Specific In/ormation

K-24

LINESTYLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (G D PS)

ESCAPES

The 7470A plotter has seven hardware linestyles.
Linestyle 1 is solid, and linestyles 2 - 7 are combina
tions of dashed and dotted lines.

Colors are referred into the 7470A by the number of
the pen and not by the pen holder. This gives the
flexibility of more than.two colors on the plotter. By
default, index 1 is held in pen holder 1 and index 2 is
held in pen holder 2. If the user is using more than
these two colors, then a prompt will be generated,
telling the user to insert the desired color in a pen
station and then enter the pen station. So, the index
parameter in the routines that refer to a color index
corresponds to a pen number not a pen holder (i.e.
index 1 corresponds to pen 1, index 2 to pen 2, index
3 to pen 3 ...). There is no limit to the number of pen
indices available on the plotter.

No GDPs are available on the HP7470A.

The required escape function is available on this
device.

SUMMARY

GSX-86 Device Specific Information

The functions available in the HP7470A GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

10
12
13
14
15
17
18
19
20
21
22
25
26
28
33

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text font
Set text color index
Set fill color index
Inquire color representation
Input locator
Set input mode - request

K-25

GSX-86 Device Specific Information

K-26

HOUSTON INSTRUMENTS HIPLOT DMP-3/4-443 MULTIPEN PLOTTER

FILENAME DDHI3M.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICATIONS Standard serial communications (RS-232C). The
Clear to Send (CTS) signal must be functional at the
host and carried through to pin 5 at the plotter
connector. Also pin 9 must be jumpered to pin 7 at
the plotter connector to enable HIPLOT mode 2
communications. The Input/Output uses this form
of handshaking communications since, at high baud
rates, the plotter cannot plot data as fast as it
receives data from the computer. Also note that to
set the baud rate at the plotter end, pin 6 must be
wired to one of the following pins:

GRAPHIC INPUT (GIN)

TEXT

Pin
14
15
16
17
18
19

Baud Rate
9600
4800
2400
1200
600
300

The plotter does not support GIN.

The DMP-3/4-443 has five character sizes. Text can
be rotated in 90-degree increments.

MARKERS

LINESTYLE

COLOR

GENERALIZED
DRAWING
PRIMITIVES (G D PS)

ESCAPES

GSX-86 Device Specific Information

1 +
2 X
3 0
4 0
5 ~
6 X

The DMP-3/4-443 Multipen plotter has nine hard
ware linestyles. Linestyle 1 is solid, and linestyles 2 -9
are combinations of dashed and dotted lines.

TheDMP-3/4-443 has six pens. The index parame
ter in the routines that set a color index corresponds
directly to a plotter pen number (i.e., index 0 corres
ponds to pen 1, index 1 to pen 2, ... index 5 to pen 6).
Indices greater than 5 are mapped to pen 6. Indices
less than 0 are mapped to pen 1.

No GDPs are available on the DMP-3/4-443.

The required escape function is available on this
device.

K-27

GSX-86 Device Specific Information

SUMMARY

K-28

The functions available in the DMP-3/4 GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

10
12
13
14
15
17
18
19
20
22
25
26

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation

GSX-86 Device Specific Information

HOUSTON INSTRUMENTS HIPLOT DMP-6/7 MULTIPEN PLOTTER

FILENAME DDHI7M.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN .SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICATIONS Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) The device does not support GIN.

TEXT The DMP-6/7 has nine character sizes. Text can be
rotated in 90-degree increments.

MARKERS 1 +
2 X
3 D
4 0
5 ~
6 X

LINESTYLE The DMP-6/7 Multipen plotter has nine hardware
linestyles. Linestyle 1 is solid and linestyles 2 - 9 are
combinations of dashed and dotted lines.

COLOR The DMP-6/7 has eight pens. The index parameter
in the routines that set a color index correspond
directly to a plotter pen number (i.e., index 0 corres
ponds to pen 1, index 1 to pen 2, ... index 7 to pen 8).
Indices greater than 7 are mapped to pen 8. Indices
less than 0 are mapped to pen 1.

K-29

GSX-86 Device Specific Information

K-30

GENERALIZED
DRAWING
PRIMITIVES (G D PS)

ESCAPES

SUMMARY

The GDPs available on the DMP-6/7 are:

2 - Arcs

The required escape function is available on this
device.

The functions available in the DMP-6/7 GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
19
20
22
25
26

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation

GSX-86 Device Specific Information

INTEGRAL DATA SYSTEMS MONOCHROME PRINTERS:
MICRO PRISM MODEL 480
PRISM 80
PRISM 132

FILENAME DDIDS.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICATIONS Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) The printers do not support graphic input.

TEXT The IDS printers support 12 character sizes. Text
can be rotated in 90-degree increments.

MARKERS 1
2 +
3 *
4 0
5 X

LINESTYLE The IDS printers have five hardware linestyles.
Linestyle 1 is solid and line styles 2 - 5 are combina
tions of dashed and dotted lines.

COLOR The IDS printers support two colors. The colors
cannot be redefined. Both colors are displayed as
black.

K-31

GSX-86 Device Specific Information

K-32

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

SUMMARY

The GDPs available on this device are:

1 - Bars

The required escape function is available on this
device.

The functions available in the GIOS for the IDS
printers are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
20
22
23
24
25
26

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill interior style
Set fill style pattern
Set fill color index
Inquire color representation

GSX-86 Device Specific Information

INTEGRAL DATA SYSTEMS PRINTERS WITH COLOR OPTION:
PRISM 80
PRISM 132

FILENAME DDIDSC.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICA TIONS Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) The printers do not support graphic input.

TEXT The IDS printers support 12 character sizes. Text
can be rotated in 90-degree increments.

MARKERS 1
2 +
3 *
4 0
5 X

LINESTYLE The IDS printers have five hardware linestyles.
Linestyle 1 is solid, and linestyles 2 - 5 are combina
tions of dashed and dotted lines.

COLOR The IDS printers with the color option support eight
colors. It is assumed that the process ribbon is being
used to allow color mixing. The printer does not
allow the colors to be redefined. The association of
color indices with the displayed color is as follows:

o Background color - not displayed
1 Red
2 Green
3 Blue
4 Orange
5 Yellow
6 Violet
7 Black

K-33

GSX-86 Device Specific Information

K-34

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

SUMMARY

The GDPs available on this device are:

1 - Bars

The required escape function is available on this
device.

The functions available in the GIOS for the IDS
printers are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
20
22
23
24
25
26

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill interior style
Set fill style pattern
Set fill color index
Inquire color representation

GSX-86 Device Specific Information

OKIDATA MICROLINE 92 PRINTER

FILENAME DDOKID.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICATIONS Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) The device does not support graphic input.

TEXT The printer supports 12 character sizes. Text can be
rotated in 90-degree increments.

MARKERS 1
2 +
3 *
4 0
5 X

LINESTYLE The printer has five hardware linestyles. Linestyle 1
is solid, and linestyles 2 - 5 are combinations of
dashed and dotted lines.

COLOR The Microline 92 printer supports one color. All
color indices are mapped to index 1 and are dis
played.

K-35

GSX-86 Device Specific Information

K-36

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

SUMMARY

The available GDPs and their identifiers are:

1 - Bars

The required escape function is available on the
Microline 92 printer.

The functions available in the Microline 92 printer
GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
15
17
18
19
20
22
23
24
25

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text color index
Set fill interior style
Set fill style pattern
Set fill color index

GSX-86 Device Specific Information

PRINTRONIX MPV PRINTER

FILENAME DDPMPV.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICATIONS Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) The device does not support graphic input.

TEXT The printer supports 12 character sizes. Text can be
rotated in 90-degree increments.

MARKERS 1
2 +
3 *
4 0
5 X

LINESTYLE The printer has five hardware linestyles. Linestyle 1
is solid, and linestyles 2 - 5 are combinations of
dashed and dotted lines.

K-37

GSX-86 Device Specific Information

K-38

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

SUMMARY

The MPV printer supports one color. All color indi
ces are mapped to index 1 and are displayed.

The available GDPs and their identifiers are:

1 - Bars

The required escape function is available on the
MPV printer.

The functions available in the MPV printer GIOS
are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
15
17
18
19
20
22
23
24
25

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text color index
Set fill interior style
Set fill style pattern
Set fill color index

GSX-86 Device Specific Information

PRINTRONIX P300 AND P600 PRINTERS

FILENAME

DEVICE INDEX

DDPRTX.SYS

The actual device index for these devices is deter
mined in the ASSIGN.SYS file, which associates a
device index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICATIONS

GRAPHIC INPUT (GIN)

TEXT

MARKERS

LINESTYLE

COLOR

Standard serial communications (RS-232C).

The devices do not support graphic input.

The printers support 12 character sizes. Text can be
rotated in 90-degree increments.

1
2 +
3 *
4 0
5 X

The printers have five hardware linestyles. Linestyle
1 is solid, and linestyles 2 - 5 are combinations of
dashed and dotted lines.

The P300 and P600 printers support one color. All
color indices are mapped to index 1 and are
displayed.

K-39

GSX-86 Device Specific Information

K-40

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

SUMMARY

The available GDPs and their identifiers are:

1 - Bars

The required escape function is available on the
P300 and P600 printers.

The functions available in the P300 and P600 print
ers GIOS are:

Opcode

1
2
3
4
5
6
7
8
9

10
11
12
13
15
17
18
19
20
22
23
24
25

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Generalized Drawing Primitives
Set character height
Set character up vector
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text color index
Set fill interior style
Set fill style pattern
Set fill color index

GSX-86 Device Specific Information

STROBE MODEL 100 GRAPHICS PLOTTER

FILENAME DDSTRB.SYS

DEVICE INDEX The actual device index for this device is determined
in the ASSIGN.SYS file, which associates a device
index with a GIOS module (device driver).

MAXIMUM BAUD RATE 9600 baud

COMMUNICATIONS Standard serial communications (RS-232C).

GRAPHIC INPUT (GIN) No graphic input is available.

TEXT The STROBE 100 has continuous scaling of charac
ter sizes. Text can be rotated in 90-degree increments.
Lowercase characters are mapped to upper-case.

MARKERS 1
2 X
3 +
4 0
5 D
6 ~
7 '1
8 0
9 0

LINESTYLE The STROBE 100 plotter has five software emulated
linestyles. Linestyle 1 is solid, and linestyles 2 -5 are
combinations of dashed and dotted lines.

K-41

GSX-86 Device Specific Information

K-42

COLOR

GENERALIZED
DRAWING
PRIMITIVES (GDPS)

ESCAPES

Colors are referred to on the STROBE Model 100 by
the number of the pen and not by the pen holder.
This gives the flexibility of more than one color on
the plotter. By default, the pen holder is assumed to
be empty when the plotter is initialized, so you are
prompted to insert pen 1 into the pen holder. If you
wish to use any other color, a prompt is generated
telling you to insert the desired color in the pen
holder and then press RETURN to continue. The
index parameter in the routines that refer to a color
index corresponds to a pen number not to the pen
holder (i.e., index 1 corresponds to pen 1, index 2 to
pen 2, index 3 to pen 3 ...). There is no limit to the
number of pen indices available on the plotter.

No GDPs are available on the STROBE Model 100.

The required escape function is available on this
device.

SUMMARY

GSX-86 Device Specific Information

The functions available in the STROBE 100 GIOS
are:

Opcode

1
2
3
4
5
6
7
8
9

10
12
13
14
15
17
18
19
20
22
25
26

Definition

Open workstation
Close workstation
Clear workstation
Update workstation
Escape
Polyline
Polymarker
Text
Filled area
Cell array
Set character height
Set character up vector
Set color representation
Set polyline linetype
Set polyline color index
Set polymarker type
Set polymarker scale
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation

K-43

Index

8080 Keyword 3-3,3-4
8080 Memory Model 1-4, 2-2, 2-3, 3-3,

3-6

A
Absolute Address 3-3, 3-4
Accent command 6-11
Address 1-3, 3-4
Address Space 1-1
Addressing 1-5
ADDS Viewpoint 9-5, K-6
ADM-3A Mode Cursor Position Escape

Sequence 6-5, A-3
Advanced BIOS Functions 5-1
Allocation Vector 4-20
ALT 4-4,4-31,6-9
Arc 9-27
ASCII Control Codes 6-9
ASCII Records 3-1
ASM-86 1-2, 2-7, 3-1, 3-4
ASSIGN.SYS 9-2, 9-3
Assignment Table 9-3, 9-8, 9-44
Asynchronous Mode Byte 6-27
Attribute Data 6-6, 6-19, 6-22, A-2
Attributes Off 6-6, A-2
Auto Power Off 6-17
Auxiliary Character Generator C-l
A uxiliary Character Set 6-8
Auxiliary Group 1-2, 2-3

B
Background Tasks 2-1
BAD SECTOR Error 4-12,5-15
Bar 9-27

Base Page 1-2,2-3,2-4,2-5,2-7
Base Page Initialization 1-2, 2-7
Basic Disk Operating System (BDOS)

1-1, 1-4, 1-5,2-6,3-3,4-1,5-1,6-1,8-4,
D-l

Basic 1/0 System (BIOS) 1-1, 1-2, 1-4,
4-12,4-13,4-30,4-32,5-1,6-1, 7-1, 8-4
D-l

Baud Rate 6-27
BDOS Error 4-12,4-21
BDOS File Operations

Close File 4-3,4-15
Chain to Program 4-3,4-30
Compute File Size 4-3, 4-26
Delete File 4-3,4-16
Direct BIOS call 4-3,4-31,5-18,6-1
Get Addr (Alloc) 4-3,4-20
Get Addr (Disk Parms) 4-3,4-22
Get Addr (RIO Vector) 4-3,4-21
Get DMA Segment Base 4-3, 4-32
Get System Data Area Address 4-3,

4-30
Make File 4-3,4-14,4-17,4-18
Open File 4-3,4-14,4-15,4-17,4-18
Read Random 4-3,4-24,4-26
Read Sequential 4-3,4-17
Rename File 4-3,4-18
Reset Disk System 4-3,4-13
Reset Drive 4-3,4-13,4-29
Return Current Disk 4-3,4-19,4-21
Return Login Vector 4-3,4-19
Return Version Number 4-3,4-10
Search for First 4-3,4-11,4-15,4-16
Search for Next 4-3,4-11,4-16

Index-l

Index

Select Disk 4-3, 4-14
Set DMA Address 4-3, 4-20, 4-38
Set DMA Segment Base 4-3, 4-20,

4-32,4-38
Set File Attributes 4-3, 4-21
Set Random Record 4-3, 4-28
Set/Get User Code 4-3,4-23
Write Protect Disk 4-3, 4-21
Write Random 4-3,4-17,4-25,4-27,

4-29
Write Random with Zero Fill 4-3,

4-29
Write Sequential 4-3,4-17

BDOS Memory Management Operations
Free All Memory 4-3, 4-37
Free Memory Region 4-3, 4-37
Get Absolute Memory Region 4-3,

4-36
Get Max Mem at Abs Location 4-3,

4-35
Get Max Memory Region 4-3,4-36
Get-Memory Region 4-3,4-36
Program Load 4-3, 4-38

BDOS Simple Functions 4-2
Console Input 4-3, 4-4
Console Output 4-3,4-5, 6-1
Direct Console I/O 4..,3, 4-6, 6-1, 6-8
Get Console Buffer 4-3, 4-10
Get I/O Byte 4-3, 4-7
List Output 4-3, 4-6
Print String 4-3, 4-8
Punch Output 4-3, 4-5
Read Console Buffer 4-3,4-8
Reader Input 4-3,4-5
Return Version Number 4-3,4-10
Set I/O Byte 4-3, 4-8
System Reset 4-3, 4-4, 5-5

Beep Sound Parameters 6-15
Beginning Address (B) 3-3, 3-4
BIOS Functions 4-31, 5-1
BIOS Jump Vector 5-2

Index-2

Blink Attribute 6-6, 6-22, A-2
Blocking 1-1
BOOT ROM 8-1,8-2,8-3,8-4
Bootstrap 1-4, 5-5, 8-1
Built-in Command 2-1

DIR 2-1
ERA 2-1
REN 2-1
TYPE 2-1
USER 2-1

Byte 1-3

C
CAPS Key 4-4, 6-9
CBIOS Error Messages 4-1
Cell Array 9-12, 9-26
CHR Utility 6-8, C-l
Circle 9-27
Clear Workstation 9-12, 9-17
Close File 4-3,4-15
Close Workstation 9-12, 9-17
CMD File Format 3-6, 7-2
CMD File Type 1-1,2-1,4-38
Code Group 1-2, 2-3
Cold Start 2-1,4-14

. Cold Start Loader 1-1, 5.;.2, 8-1, 8-2
Color Attribute 6-6, A-2
COM File Type 2-1
Command File 2-1, 3-6
Compact Memory Model 2-2, 2-3, 2-6,

3-6
Compute File Size 4-3, 4-26
CONIN 4-31, 5-2, 5-7, B-2
CONOUT 5-2,5-7,6-1,6-9
CONSOLE 4-4, 5-6, 5-8, 5-9
Console Command Processor (CCP)

1-1,1-5,2-1,2-6,2-7,2-9,3-3,4-4,4-33,
4-37,4-38, 5-2, 5-5, 8-4, D-l

Console Input 4-3, 4-4
Console Output 4-3, 4-4
Control Characters F-l
CONST 5-2,5-7

CONTROL-C 1-5,2-2,2-9,4-9,4-12,
4-33, F-l

CONTROL-E 4-9, F-l
CONTROL-H 4-9, F-l
CONTROL-J 4-9, F-l
CONTROL-M 4-9, F-l
CONTROL-R 4-9, F-l
CONTROL-U 4-9, F-2
CONTROL-X 4-9, F-2
CONTROL-Z 5-6, 5-8, F-2
Control Sequence Introducer (CSI) 6-1
Coordinate Scaling 9-7
CPM.SYS 1-1, 5-2, 5-5, 8-1, 8-2, 8-4
CRT Control Codes 6-1
CSV 7-1
Cursor Backward 6-4, A-I
Cursor Down (CBIOS) 6-4, A-I
Cursor Down (GDOS) 9-12, 9-20
Cursor Forward 6-4, A-I
Cursor Left 9-12, 9-21
Cursor Position 6-4, A-I
Cursor Right 9-12, 9-20
Cursor Up (CBIOS) 6-4, A-I
Cursor Up (GDOS) 9-12,9-20
Customized BIOS (CBIOS) 1-1, 1-4,

4-4, 4-7, 4-8, 5-1, 6-1, 8-1
Cylinder 5-10, 5-13, 5-15

D
Data Group 1-2, 2-3
Data Segment 1-5
Datamedia Colorscan-l0 9-5, K-13
DDNECAPC.SYS 9-5, K-l
DDGN2A.SYS 9-5, K-4
DDGN2B.SYS 9-5, K-6
DDGN2C.SYS 9-5, K-I0
DDGN2D.SYS 9-5, K-13
DDVRET.SYS 9-5, K-16
DDMX80.SYS 9-5, K-19
DD7220.SYS 9-5, K-21
DD7470.SYS 9-5, K-23
DDHI3M.SYS 9-5, K-26

DDHI7M.SYS 9-5, K-29
DDIDS.SYS 9-5, K-31
DDISC.SYS 9-5, K-33
DDOKID.SYS 9-5, K-35
DDPMPV.SYS 9-5, K-37
DDPRTX.SYS 9-5, K-39
DDSTRB.SYS 9-5, K-41
DDT-86 1-2, 2-1, 2-2,4-32, 9-46
Deblocking 1-1
Default disk number 1-2
DEL 4-9
Delete File 4-3,4-16
Device Driver 9-1,9-2,9-3,9-4,9-7,

9-44
DIR 2-1
DIRBUF 7-1
Direct BIOS Call 4-3, 4-31, 5-18, 6-1
Direct Console 1/0 4-3,4-6, 6-1, 6-8
Direct CRT I/O 6-18,6-23
Direct Cursor Address 9-12, 9-22
Directory Code 4-15
Directory Entries 4-15,4-21, 7-6
Disk Definition Tables 1-4, 5-1, 5-12,

7-1
Disk Directory 4-14,4-18,4-19, 7-1
Disk drive specifiers 5-3
Disk Parameter Block (DPB) 4-23, 7-2
Disk Parameter Header (D PH) 5-12,

7-1
Disk Parameter Table 5-17, 6-7
Disk Reset 2-2, 2-9,4-14
Display Data 6-19
Display Request Block 6-19
Display String Data on CRT 6-18, 6-24
Display Video Memory Format on CRT

6-18,6-24
DMA 4-20
DMA Address 2-9,4-15,4-20,4-26,

4-29, 4-30, 4-38, 5-10, 5-14
DMA Buffer 4-15,4-17,4-26,5-11
DMA Controller 5-5

Index

Index-3

Index

DMA Transfer 4-32, 6-19
Double Word 1-3
DPB 7-1
DPBASE 7-3
Duration Value 6-14

E
ED 1-2,9-3
End of File 5-6, 5-8
Enter Graphics Mode 9-12, 9-19
Epson MX-80 with Graftrax Plus 9-5,

K-19
ERA 2-1
Erase to End of Line 9-12, 9-21
Erase to End of Screen 9-12, 9-21
Erase Within Display 6-7
Erase Within Line 6-7
Error Map 5-5, J-2, J-4
Error Messages G-l
ESC 6-2,6-3,6-4,6-5,6-6,6-7,6-8,6-17
Escape Opcode 9-12, 9-17

Index-4

Cursor Down 9-12,9-20
Cursor Left 9-12, 9-21
Cursor Right 9-12, 9-20
Cursor Up 9-12, 9-20
Direct Cursor Address 9-12, 9-22
Enter Graphics Mode 9-12,9-19
Erase to End of Line 9-12, 9-21
Erase to End of Screen 9-12,9-21
Exit Graphics Mode 9-12, 9-20
Hard Copy 9-12,9-23
Home Cursor 9-12, 9-21
Inquire Addressable Character Cells

9-12,9-19
Inquire Current Cursor Address

9-12, 9-23
Inquire Tablet Status 9-12, 9-23
Output Cursor Addressable Text

9-12,9-22
Place Cursor at Location 9-12, 9-24
Remove Cursor 9-12, 9-24
Reverse Video Off 9-12,9-22

Reverse Video On 9-12,9-22
Escape Sequence Functions 1-1 5-1

6-1, A-I ' ,
Format 6-1
Definition 6-1
Escape Code Sequences 6-4, A-I
Auxiliary Character Set 6-8
Cursor Backward 6-4
Cursor Down 6-4
Cursor Forward 6-4
Cursor Position 6-5
Cursor Up 6-4
Erase Within Display 6-7
Erase Within Line 6-7
Reset a Mode 6-6
Select Character Attributes 6-6
Set a Mode 6-8

Exit Graphics Mode 9-12,9-20
Extended BIOS Functions 1-1 1-4 5-1

6-1, 6-9 ' , ,
Automatic Power Off 6-17
Direct CRT I/O 6-18,6-23
Get Time and Date 6-10
Initialize Keyboard FIFO Buffer

6-18
Initialize RS 232C 6-10, 6-27
Play Music 6-11
Read CMOS 6-10,6-26
Report Cursor Position 6-17
Set Time and Date 6-11
Sound Beep 6-15
Write CMOS 6-10,6-26

Extra Group 1-2, 2-3

F
Far Call 2-6, 2-9, 5-18, 9-44
Far Return 2-9
FDC Messages H-l
File Control Block (FCB) 1-2,2-9,4-2,

4-10, 4-14, 4-37
Filled Area 9-12, 9-26

Final Character 6-1
Free All Memory 4-3, 4-36
Free Memory Region 4-3, 4-37
Frequency Data 6-16
FUNCT...50 5-2,5-18

G
GENCMD 1-2, 3-1, 3-3
GENCMD Keyword 3-3

8080 3-3
CODE 3-3
DATA 3-3
EXTRA 3-3
STACK 3-3
Xl 3-3
X2 3-3
X3 3-3
X4 3-3

GENDEF 1-4
Generalized Drawing Primitive 9-12,

9-27
Get Absolute Memory Region 4-3,4-36
Get Allocation Vector Address 4-3,

4-20
Get Console Status 4-3,4-10
Get Disk Parameter Block Address 4-3,

4-22
Get DMA Segment Base 4-3, 4-32
Get I/O Byte 4-3,4-7
Get Maximum Memory at Absolute

Location 4-3,4-35
Get Maximum Memory Available 4-3,

4-36
Get Memory Region 4-3,4-36
Get Read/Only Vector Address 4-3,

4-21
Get Time and Date 6-10
GETIOB 1-4, 5-4, 5-13
GETSEGB 1-4, 5-4, 5-13
GRAPHI Key 4-4,4-31,6-9
GRAPH2 Key 4-4,4-31,6-9
GRAPHICS Command 9-6

GRAPHICS.CMD 9-2
Graphics Devices Operating System

(GDOS) 9-1, 9-6, 9-8
Calling Sequence 9-9
Cell Array 9-12, 9-26
Clear Workstation 9-12,9-17
Close Workstation 9-12, 9-17
Escape 9-12, 9-17
Filled Area 9-12,9-26
Generalized Drawing Primitive 9-12,

9-27
Input choice 9-12,9-41
Input Locator 9-12,9-38
Input String 9-12, 9-42
Input Valuator 9-12, 9-40
Inquire Cell Array 9-12, 9-37
Inquire Color Representation 9-12,

9-36
Open Workstation 9-11,9-12,9-13,

9-46
Polyline 9-12, 9-24
Polymarker 9-12, 9-25
Set Character Height 9-12,9-30
Set Character Up Vector 9-12,9-31
Set Color Representation 9-12, 9-31
Set Fill Color Index 9-12, 9-36
Set Fill Interior Style 9-12, 9-35
Set Fill Style Index 9-12, 9-35
Set Input Mode 9-12,9-43
Set Polyline Color Index 9-12, 9-32
Set Polyline Linetype 9-12, 9-32
Set Polyline Linewidth 9-12, 9-32
Set Poly marker Color Index 9-12,

9-33
Set Polymarker Scale 9-12, 9-33
Set Polymarker Type 9-12,9-33
Set Text Color Index 9-12, 9-34
Set Text Font 9-12, 9-34
Set Writing Mode 9-12, 9-43
Text 9-12, 9-25
Update Workstation 9-12,9-17

Index

Index-5

Index

Graphics Extension 9-1
Graphics Input/Output System (GIOS)

9-6,9-44
Graphics Products 9-2
Group 1-2, 1-3
Group Descriptor 3-6, 7-2, 7-3, 7-5
GSS-DRA W 9-2
GSS-GRAPH 9-2
GSS-KERNEL 9-2
GSX-PLOT 9-2
GSX-86 9-1, G-I

H

Architecture 9-6
Creating GIOS File 9-44
GDOS 9-8
GIOS 9-44
Invoking 9-6
Memory Management 9-7
Virtual Device Interface (VDI) 9-9
Warm and Cold Starts 9-6

H86 File Type 3-3
Hard Copy 9-12, 9-23
Hard Disk 1-4,4-12,5-1,5-3,5-5,5-12,

5-13, 5-14, 5-15, 7-1, J-l
Header Record I-I, 2-7, 3-1, 3-6
Hewlett-Packard 7220 Graphics Plotter

9-5, K-21
Hewlett-Packard 7470 Graphics Plotter

9-5, K-23
Hex File 3-1
Highlight Attribute 6-6, 6-22
HOME 5-2,5-11
Home Cursor 9-12, 9-21
Houston Instruments Hiplot

DMP-3/4-443 Multipen Plotter
9-5, K-26

Houston Instruments Hiplot DMP-6/7
MUltipen Plotter 9-5, K-29

I
IN IT 5-2, 5-5, 8-3, 8-5

Index-6

Initialize Keyboard FIFO Buffer 6-18
Initialize RS 232C 6-10, 6-27
Input Choice 9-12, 9-41
Input Control Array 9-9
Input Locator 9-12, 9-38
Input Parameter Array 9-9
Input Point Coordinate Array 9-10
Input String 9-12,9-42
Input Valuator 9-12, 9-40
Inquire Addressable Character Cells

9-12, 9-19
Inquire Cell Array 9-12, 9-37
Inquire Color Representation 9-12,

9-36
Inquire Current Cursor Address 9-12,

9-23
Inquire Tablet Status 9-12,9-23
Instruction Pointer Register (lP) 2-3
Integral Data Systems Color Printers

9-5, K-33
Integral Data Systems Monochrome

Printers 9-5, K-31
Intel Hex File 1-2, 1-4, 3-1
Intel Utilities 3-1, 3-4
Interrupt Vector D-l
IOBYTE 1-2, 1-4,4-8, 5-8

J
JMPFCPM 8-3
Jump Vector 5-2, 5-3

K
KEY B-1
Keyboard 4-3, E-l

L
LDBDOS 8-2
LDBIOS 5-2, 8-2, 8-3, 8-4
LDCOPY 1-2,8-4
LDCPM 8-2
Lear Siegler ADM5 9-5, K-4
Line Editing Control 4-9

LIST Device 4-8, 5-6, 5-8, 5-9
LIST Function 5-2, 5-7
LIST Output 4-3, 4-6
LISTST 5-15
LOAD Program 1-2
LOADER 8-1,8-2
LOADER.CMD 8-4
Logical Disk Drive 4-12, 5-3
Logical Diskette Structure 6-11
Logical to Physical Sector Translation

5-16, 7-2, 7-8
Login 2-1, 4-14
Login Vector 4-19
Loudness 6-12

M
Make File 4-3, 4-14, 4-17, 4-18
Maximum Memory Size 3-3, 3-5
Melody Data 6-11
Memory Allocation 2-2, 2-9, 4-4, 4-32
Memory Control Block (MCB) 4-35
Memory Image File, Header Record

1-1, 3-1, 3-6
Memory Map D-l
Memory Model 1-4, 2-1, 3-1, 3-3, 3-7,

7-2
Memory Region Table (MRT) 5-17
Memory Regions 4-32, 7-5
Minimum Memory Value 3-3,3-4
MOVCPM 1-4

N
NEC Advanced Personal Computer

9-5, K-l
Nibble 1-3, 3-7
Normalized Device Coordinates (NDC)

9-7,9-10
Note Value 6-13
NULL 5-2,5-18

o
Offset 1-3, 1-5

Okidata Microline 92 Printer 9-5 K-35
Online Status 4-14 '
Open File 4-3,4-14,4-15,4-17,4-18
Open Parentheses 6-8
Open Workstation 9-11, 9-12, 9-13,

9-46
Output Cursor Addressable Text 9-12,

9-22
Over Line Attribute 6-6, 6-22, A-2

p
Paragraph 1-3
Paragraph Boundary 1-3
Parity Check 6-28
Peripheral Devices 5-6
Physical Diskette Structure 7-8
Pie Slice 9-27
PIP 1-2, 5-6, 5-9
Place Cursor at Location 9-12, 9-24
Play Music 6-11
Polyline 9-12, 9-24
Polymarker 9-12, 9-25
Print String 4-3, 4-8
Printronix MVP Printer 9-5, K-37
Printronix P300, P600 Printers 9-5,

K-39
Program Group 1-2, 2-3
Program Interrupt 6-1, 9-9
Program Load 2-3,4-3,4-33,4-38
Program Termination 1-5,2-9
PUNCH 4-8, 5-6, 5-8, 5-9
Punch Output 4-3, 4-5

R
lLW_COMMON 5-10,5-14
R_W_COMMONHD 5-10,5-14
RIO Error 4-12,4-13,4-21
READ 5-10,5-14,1-2
Read CMOS 6-10,6-26
Read Console Buffer 4-3, 4-8
Read Random 4-3,4-24,4-26

Index

Index-7

Index

Read Sequential 4-3,4-17
Read/Only Vector 4-21
READER 4-8, 5-6, 5-8, 5-9
Reader Input 4-3, 4-5
Relocatable Group 1-4
Remove Cursor 9-12,9-24
REN 2-1
Rename File 4-3,4-18
Report Cursor Position 6-17
Report Cursor Position by Binary Value

6-18, 6-24
Reserved Software Interrupt 1-1, 1-5
Reset a Mode 6-8, A-3
Reset Disk System 4-3,4-13
Reset Drive 4-3, 4-13, 4-29
Reset State 4-13, 4-14, 4-29
Return Current Disk 4-3,4-19
Return Login Vector 4-3,4-19,4-21
Return Version Number 4-3,4-10
Reverse Attribute 6-6, 6-22, A-2
Reverse Video Off 9-12, 9-22
Reverse Video On 9-12,9-22
Roll Down Screen 6-18, 6-24
Roll Up Screen 6-18, 6-25

S
SAVE 2-1
Scale Data 6-11
Search for First 4-3,4-11,4-15,4-16
Search for Next 4-3,4-11,4-16
SECTRAN 5-2, 5-16
Secret Attribute 6-6, A-2
Sector 5-10,5-13,5-15
Segment 1-3
Segment Register 1-2, 1-3, 2-3,4-1
Segment Register Initialization 2-3, 7-3
SELDSK 5-10, 5-11, 5-12, 1-2
Select Character Attributes 6-6
Select Disk 4-3, 4-14
SELECT Error 4-12
Sequence Introducer 6-1
Set a Mode 6-8, A-3

Index-8

Set Character Height 9-12, 9-30
Set Character Up Vector 9-12, 9-31
Set Color Representation 9:-12, 9-31
Set DMA Address 4-3, 4-20, 4-38
Set DMA Segment Base 4-3,4-20,4-32,

4-38
Set File Attributes 4-3, 4-21
Set Fill Color Index 9-12, 9-36
Set Fill Interior Style 9-12, 9-35
Set Fill Style Index 9-12, 9-35
Set I/O Byte 4-3, 4-8
Set Polyline Color Index 9-12, 9-32
Set Polyline Linetype 9-12, 9-32
Set Polyline Linewidth 9-12, 9-32
Set Polymarker Color Index 9-12, 9-33
Set Polymarker Scale 9-12, 9-33
Set Polymarker Type 9-12, 9-33
Set Random Record 4-3, 4-28
Set Text Color Index 9-12, 9-34
Set Text Font 9-12, 9-34
Set Time and Date 6-11
Set Writing Mode 9-12, 9-43
Set/Get User Code 4-3, 4-23
SETDMA 5-2,5-14
SETDMAB 1-4, 5-2, 5-14, 5-16
SETIOB 1-4, 5-2, 5-10, 8-3, 8-5
SETSEC 5-13
SETTRK 5-13
Skew Factor 5-16, 7-2, 7-8
Small Memory Model 2-2, 2-3, 2-5, 3-6
Soft Key Table B-1
Software Interrupt #224 1-5,4-1,6-9
Sound Beep 6-15
Stack Group 1-2, 2-3
STAT 1-2,4-20,5-9,9-8
Static Allocation Map 4-32
Stop Bit 6-28
Strobe Model 100 Graphics Plotter 9-5,

K-41
String Data Format 6-21
SUBMIT 1-2

SYSGEN 1-2
Synchronous Mode 6-27
System Reset 1-5, 2-9, 4-3, 4-4, 4-14,

4-21, 5-5
System Unit Table 5-5
SYSUNITID 5-5,5-12

T
Tabs 4-5, 4-9
Televideo 900 9-5, K-I0
Text 9-12, 9-25
Text Editor 9-3
Tone Period 6-16
Track 5-10, 5-13, 5-15
Track Reallocation 1-5
Transient Program 1-2, 1-4,2-1,4-1,

4-23, 4-30, 4-32, 5-6
Transient Program Load 1-1, 2-9
Translating Programs 1-4, 2-1, 2-7, 4-1
TYPE 2-1

U
Under Line Attribute 6-6, 6-22, A-2
Update Workstation 9-12,9-17
USER 2-1

V
Vertical Line Attribute 6-6, 6-22, A-2
Video Memory Format 6-21
Virtual Device Interface (VDI) 9-9,

9-44
Virtual File Size 4-26
VT100 9-5, K-16

W
Warm Start 1-1, 1-4,4-14,4-21, 5-5
WBOOT 5-2,5-5,5-15
Word 1-3
Workstation ID 9-3,9-7
WRITE 5-10, 5-14, 1-1, 1-2
Write CMOS 6-10,6-26

Write Protect Disk 4-3, 4-21
Write Random 4-3,4-17,4-25,4-27,

4-29
Write Random with Zero Fill 4-3, 4-29
Write Sequential 4-3,4-17

X
XLT 7-1

Index

Index-9

I
I
I
I
I
I
I
I

I
I~ :.c

I~ -;

\ ~
~
~

.!:!
0..

~ Advanced
A'--~Personal Computer

TM

["ft~\,

NEe Information Systems, Inc.

USER'S COMMENTS FORM

Document: CP/M-86 System Reference Guide

Document No.: 819-000102-200 1 REV. 01

Please suggest improvements to this manual.

Please list any errors in this manual. Specify by page.

From:
Name __ _

Title _______________________________________ ~ __________ _

Company __ _

Address ___ ____

DealerName __ _____

Date: _________________ _

Seal or tape all edges for mailing-do not use staples.

FOLD HERE

"""
BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 386 LEXINGTON, MA

POSTAGE WILL BE PAID BY ADDRESSEE

NEe Information Systems, Inc.
Dept: Publications -APC
5 Militia Drive
Lexington, MA 02173

FOLD HERE

Seal or tape all edges for mailing-do not use staples.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITFD STATES

