
~~ Advanced
A __ -.. Personal Computer

TM

CP/M-86 User/Programmer's Guide

NEe
NEe Information Systems,'nc.

819-000100-4001 Rev.01
8-83

Contents
Page

Chapter 1 Introduction
ASSEMBLER OPERATION ... 1-1
OPTIONAL RUNTIME PARAMETERS 1-3
ABORTING ASM-86 .. 1-4

Chapter 2 Elements of ASM-86 Assembly Language
ASM-86 CHARACTER SET ... 2-1
TOKENS AND SEPARATORS 2-1
DELIMITERS .. 2-1
CONST ANTS .. 2-3

Numeric Constants .. 2-3
Character Strings .. 2-4
Identifiers .. 2-4
Keywords .. 2-5
Symbols and Their Attributes 2-6

OPERATORS .. 2-8
Operator Examples .. 2-12
Operator Precedence ... 2-15

EXPRESSIONS ... 2-16
STATEMENTS ... 2-17

Chapter 3 Assembler Directives
INTRODUCTION .. 3-1
SEGMENT START DIRECTIVES 3-1

The CSEG Directive ... 3-2
The DSEG Directive ... 3-2
The SSEG Directive ... 3-3
The ESEG Directive ... 3-3

THE ORG DIRECTIVE ... 3-3
THE IF AND ENDIF DIRECTIVES 3-4
THE INCLUDE DIRECTIVE .. 3-4
THE END DIRECTIVE ... 3-5
THE EQU DIRECTIVE ... 3-5

iii

Contents (cont'd)

Chapter 3 Assembler Directives (cont'd)
Page

THE DB DIRECTIVE ... 3-5
THE DW DIRECTIVE ... 3-6
THE DD DIRECTIVE ... 3-6
THE RS DIRECTIVE .. 3-7
THE RB DIRECTIVE ... 3-7
THE RW DIRECTIVE ... 3-7
THE TITLE DIRECTIVE .. 3-8
THE PAGESIZE DIRECTIVE 1 •••••••••••••••• 3-8
THE PAGEWIDTH DIRECTIVE .. 0 0" .. 0 0 03-8
THE EJECT DIRECTIVE 0 . 0 0 .. 0 ... 0 0 0 .. 0 .. 0 0 . 0 0 0 .. 0 .. 0 .. 0 0 3-8
THE SIMFORM DIRECTIVE 000 .. 0 .. 0 .. 0 .. 0 .. 0 0 . 0.0. 0 0 0 0 o •• 0 .. 3-9
THE NOLIST AND LIST DIRECTIVE ... 0 0 0 .0 0 0 . 0 0 . 000 . 0 0 .. 0 0 0 .. 0 .. 3-9

Chapter 4 The ASM-86 Instruction Set

INTRODUCTION 0 .. 0 0 0 0 4-1
DATA TRANSFER INSTRUCTIONS 4-3
ARITHMETIC, LOGICAL, AND SHIFT INSTRUCTIONS 0 4-5
STRING INSTRUCTIONS ... 4-11
CONTROL TRANSFER INSTRUCTIONS 0., 0 4-13
PROCESSOR CONTROL INSTRUCTIONS 0 0 0 4-17

Chapter 5 Codemacro Facilities

INTRODUCTION TO CODEMACROS 5-1
SPECIFIERS ... 5-3
MODIFIERS 0 0 0 5-4
RANGE SPECIFIERS ... 5-4
CODEMACRO DIRECTIVES 0 0 5-5

SEGFIX ... 5-5
NOSEGFIX 0 0 05-6
MODRM .. 0 5-6
RELB and REL W 0 .. 0 5-7
DB., DW and DD 0 0 0 5-8
DBIT 0 5-8

Chapter 6 DDT-86

DDT-86 OPERATION 0 6-1
Invoking DDT-86 .. 6-1
DDT-86 Command Conventions 0 0 0 6-1
Specifying a 20-Bit Address 0 0 6-3

IV Terminating DDT -86 0 6-3

Contents (cont'd)
Chapter 6 DDT-86 (cont'd) Page
DDT-86 OPERATION WITH INTERRUPTS 6-3
DDT-86 COMMANDS ... 6-4

The A (Assemble) Command 6-4
The D (Display) Command 6-4
The E (Load for Execution) Command 6-5
The F (Fill) Command ... 6-6
The G (Go) Command ... 6-6
The H (Hexadecimal Math) Command 6-7
The I (Input Command Tail) Command 6-7
The L (List) Command ... 6-8
The M (Move) Command 6-8
The R (Read) Command .. 6-9
The S (Set) Command .. 6-9
The T (Trace) Command 6-10
The U (Untrace) Command 6-11
The V (Value) Command 6-11
The W (Write) Command 6-11
The X (Examine CPU State) Command 6-12

DEFAULT SEGMENT VALUES 6-13
ASSEMBLY LANGUAGE SYNTAX FOR A AND L COMMANDS 6-15
DDT-86 SAMPLE SESSION 6-17

Appendix A ASM-86 Invocation

Appendix B Mnemonic Differences from the Intel Assembly

Appendix C ASM-86 Files

Appendix D Reserved Words

Appendix E ASM-86 Instruction Summary

Appendix F Sample Program

Appendix G Codemacro Definition Syntax

Appendix H ASM-86 Error Messages

Appendix I DDT -86 Error Messages

v

Illustrations
Page

Figure Title

1-1 ASM-86 Source and Object Files 1-1

VI

Tables

Table Title
Page

1-1 Runtime Parameter Summary 1-3
1-2 Runtime Parameter Examples 1-4
2-1 Separators and Delimiters 2-2
2-2 Radix Indicators for 'Constants 2-3
2-3 String Constant Examples 2-4
2-4 Register Keywords. .. 2-6
2-5 ASM-86 Operators ... 2-9
2-6 Precedence of Operations in AS M -86 2-15
4-1 Operand Type Symbols 4-1
4-2 Flag Register Symbols .. 4-3
4-3 Data Transfer Instructions 4-3
4-4 Effects of Arithmetic Instructions on Flags .. 4-5
4-5 Arithmetic Instructions .. 4-6
4-6 Logic and Shift Instructions 4-8
4-7 String Instructions .. 4-12
4-8 Prefix Instructions .. 4-13
4-9 Control Transfer Instructions 4-13
4-10 Processor Control Instructions 4-18
5-1 Code macro Operand Specifiers 5-3
5-2 Codemacro Operand Modifiers 5-4
6-1 DDT-86 Command Summary 6-2
6-2 Flag Name Abbreviations 6-13
6-3 DDT-86 Default Segment Values 6-15
A-I Parameter Types and Devices A-I
A-2 Parameter Types .. A-2
A-3 Device Types ... A-3
A-4 Invocation Examples .. A-3
B-1 Mnemonic Differences .. B-1
C-l Hexadecimal Record Contents C-l
C-2 Hexadecimal Record Formats C-2
C-3 Segment Record Types .. C-2
D-l Reserved Words .. D-l
E-l ASM-86 Instruction Summary E-l
H -1 AS M -86 Diagnostic Error Messages H-l
I-I DDT-86 Error Messages I-I

Vll

Chapter 1

Introduction
ASSEMBLER OPERATION

ASM-86 processes an 8086 assembly language source file in three passes and
produces three output files, including an 8086 machine language file in hexadecimal
format. This object file may be in either Intel or Digital Research hex format, both
of which are described in Appendix C. ASM-86 typically produces three output files
from one input source file as shown in Figure 1-1.

I LIST FILE ~ L

I SOURCE: ASM-86 I HEX FILE I r I

--I SYMBOL FILE l
filename.A86 - contains source
filename.LST - contains listing
filename.H86 - contains assembled program in hexadecimal format
filename.SYM - contains all user-defined symbols

Figure 1-1 ASM-86 Source and Object Files

Figure 1-1 also lists ASM -86 filename extensions. ASM -86 accepts a source file with
any three letter extension. However, if the extension is omitted from the command
line entry, ASM-86 looks for the specified file name with the extension .A86 in the
directory. If the file has an extension other than .A86 or has no extension at all,
ASM -86 returns an error message.

The other extensions listed in Figure 1-1 identify ASM -86 output files. The. LST file
contains the assembly language listing with any error messages. The .H86 file
contains the machine language program in either Digital Research or Intel hexa
decimal format. The .SYM file lists any user-defined symbols.

1-1

Introduction

1-2

To invoke ASM-86, enter a command using the following form:

ASM86 source filename {$ optional parameters}

Specifications for the optional parameters, which generally affect the assembly
output, are described in the next section. The source file is specified using the
following form:

{d: }filename. {filetype}

where

d:

filename

file type

is a valid drive letter specifying the source file's location. Not
needed if source is on current drive.

is a valid CP/M filename of 1 to 8 characters.

is a valid file extension of 1 to 3 characters, usually A86.

The following are examples of valid ASM-86 commands:

A>ASM86 B:BIOS88

A)ASM86 BIOS88.A86 $FI AA HB PB SB

A>ASM86 D:TEST

Once invoked, ASM-86 responds with the message:

CP/M 8086 ASSEMBLER VER X.x

where x.x is the ASM-86Nersion number. ASM-86 then attempts to open the source
file. If the file does not exist on the designated drive, or does not have the correct
extension as described above, the assembler displays the message:

NO FILE

If an invalid parameter is given in the optional parameter list, ASM-86 aborts and
displays the message:

PARAMETER ERROR

After opening the source file, the assembler creates the output files. Usually these
files are located on the current drive, but they may be redirected using the optional

parameters, or by a drive specification in the source file name. In -the latter case,
ASM-86 directs the output files to the drive specified in the source file name.

During assembly, ASM-86 aborts if an error condition such as a full disk or symbol
table overflow is detected. When ASM-86 detects an error in the source file, it places
an error message line in the listing file in front of the line containing the error.

Each error message has a number and gives a brief explanation of the error.
Appendix H lists ASM-86 error messages. When the assembly is complete, ASM-86
displays the message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

The system also prints a message indicating the percentage of symbol table space
that was used in the assembly.

OPTIONAL RUNTIME PARAMETERS

The dollar sign character ($) introduces an optional string of runtime parameters in
the command line. A parameter is a single letter that must be followed by another
single letter argument indicating the device name specification. The parameters are
shown in Table 1-1.

Table 1-1 Runtime Parameter Summary

PARAMETER TO SPECIFY VALID ARGUMENTS

A source file device A ... H, X, Y, Z
H hex output file device A ... H, X, Y, Z
P list file device A ... H,X, Y,Z
S symbol file device A ... H, X, Y,Z
F format of hex output file I,D

All parameters are optional, and can be entered in the command line in any order.
Enter the dollar sign only once at the beginning of the parameter string. Spaces may
separate parameters, but are not required. No space is permitted, however, between
a parameter and its device name.

A device name must follow parameters A, H, P and S. Use the following device
names:

A, B, C, D or X, Y, Z

Introduction

1-3

Introduction

1-4

Device names A through D respectively specify floppy diskette drives A through D.
Device names E and F specify the two partitions in hard disk unit O. Devices G and
H specify the two partitions in hard disk unit I. X specifies the user console (CON:),
Y specifies the line printer (LST:), and Z suppresses output (NUL:).

If output is directed to the console, it may be temporarily stopped at any time by
pressing CTRL-S. Restart the output by pressing CTRL-S a second time or by
pressing any other character.

The F parameter requires either an I or a D argument. When I is specified, ASM-86
produces an object file in Intel hex format. A D argument requests Digital Research
hex format. Appendix C discusses these formats in detail. If the F parameter is not
entered in the command line, ASM-86 produces Digital Research hex format.

The following table gives examples of valid ASM-86 command line entries.

Table 1-2 Runtime Parameter Examples

COMMAND LINE RESULT

ASM8610 Assemble file 10.A86, produce 10.HEX, 10.LST
and 10.SYM, all on the default drive.

ASM86 10.ASM $ AD SZ Assemble file 10.ASM on device D, produce
10.LST and 10.HEX, no symbol file.

ASM86 10 $ PY SX Assemble file 10.A86, produce 10.HEX, route list-
ing directly to printer, output symbols on
console.

ASM86 10 $ FD Produce Digital Research hex format.

ASM86 10 $ FI Produce Intel hex format.

ABORTING ASM-86

You may abort ASM-86 execution at any time by pressing any key on the APC
keyboard. When a key is pressed, ASM-86 responds with the question:

USER BREAK. OK(Y/N)?

Enter Y to abort the assembly and return to the operating system. Enter N to
continue the assembly.

Chapter 2

Elements of ASM-86 Assembly
Language
ASM-86 CHARACTER SET

ASM-86 recognizes a subset of the ASCII character set. The valid characters are the
alphanumerics, special characters, and non printing characters shown below:

A B C D E F GH I J K LMNO P Q R S T U VWX Y Z
a b c d e f g h 1 J k I m n 0 p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9

+ - * / () [] @ $, -

space, tab, carriage return, and line feed

Lowercase letters are treated as uppercase except within strings. Only alpha
numerics, special characters, and spaces may appear within a string.

TOKENS AND SEPARATORS

A token is the smallest meaningful un:t of an ASM-86 source program, much as a
word is the smallest meaningful unit of an English composition. Adjacent tokens
are commonly separated by a blank character or space. Any sequence of spaces may
appear wherever a single space is allowed. ASM-86 recognizes horizontal tabs as
separators and interprets them as spaces. Tabs are expanded to spaces in the list file.
The tab stops are at each eighth column.

DELIMITERS

Delimiters mark the end of a token and add special meaning to the instruction, as
opposed to separators, which merely mark the end of a token. When a delimiter is
present, separators need not be used. However, separators entered after delimiters
can make your program easier to read.

Table 2-1 describes ASM-86 separators and delimiters. Some delimiters are also
operators and are explained in greater detail later in the chapter.

2-1

Elements of ASM,86 Assembly Language

Table 2-1 Separators and Delimiters

CHARACTER NAME USE

20H space separator

09H tab legal in source files, expanded in
list files

CR carriage return terminates source lines

LF line feed legal after CR; if within source
lines, it is interpreted as a space

, semicolon starts comment field
-

colon identifies a label, used in segment
override specification

period forms variables from numbers

$ dollar sign notation for "present value of
location pointer"

+ plus arithmetic operator for addition

- minus arithmetic operator for subtrac-
tion

* asterisk arithmetic operator for multipli-
cation

/ slash arithmetic operator for division

@ at sign legal in identifiers

- underscore legal in identifiers

2-2

Elements of ASM~86 Assembly Language

Table 2-1 Separators and Delimiters (coot'd)

CHARACTER NAME USE

! exclamation logically terminates a statement,
point thus allowing multiple statements

on a single source line

, apostrophe delimits string constants

CONSTANTS

A constant is a value known at assembly time that does not change while the
assembled program is executed. A constant may be either an integer or a character
string.

Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the
radix of the constant, is identified by a radix indicator that follows the numeric
constant. The radix indicators are shown in Table 2-2.

Table 2-2 Radix Indicators for Constants

INDICATOR CONST ANT TYPE BASE

B binary 2
0 octal 8
Q octal 8
D decimal 10
H hexadecimal 16

ASM-86 assumes that any numeric constant not terminated with a radix indicator is
a decimal constant. Radix indicators may be represented in either uppercase or
lowercase.

A constant is thus a sequence of digits followed by an optional radix indicator,
where the digits are in the range allowed for the radix. Binary constants must be
composed of Os and Is. Octal digits range from 0 to 7; decimal digits range from 0 to
9. Hexadecimal constants contain decimal digits as well as the hexadecimal digits A
(lOD), B (lID), C (l2D), D (l3D), E (l4D), and F (lSD). Note that the leading

2-3

Elements of ASM,86 Assembly Language

2-4

character of a hexadecimal constant must be either a decimal digit so that ASM-86
cannot confuse a hex constant with an identifier, or leading 0 to prevent this
problem. The following are valid numeric constants:

1234
1234H
33770

Character Strings

1234D
OFFEH
OFE3H

1100B
33770
1234d

1111000011110000B
13772Q
Offffh

ASM-86 treats an ASCII character string delimited by apostrophes as a string
constant. All instructions accept only one- or two-character constants as valid
arguments. Instructions treat a one-character string as an 8-bit number. A two
character string is treated as a 16-bit number with the val ue of the second character
in the low-order byte, and the value of the first character in the high-order byte.

The numeric value of a character is its ASCII code. ASM-86 does not translate case
within character strings, so both uppercase and lowercase letters can be used. Note
that only alphanumerics, special characters, and spaces are allowed within strings.

A DB assembler directive is the only ASM-86 statement that may contain strings
longer than two characters. The string may not exceed 255 bytes. To include an
apostrophe to be printed within the string, enter it twice. ASM-86 interprets the two
keystrokes (") as a single apostrophe. Table 2-3 shows valid strings and how they
appear after processing.

Table 2-3 String Constant Examples

ENTERED AS: INTERPRETED AS

'a' a
'Ab"Cd' Ab'Cd
'I like CP 1M' I like CP/M
1111 ,

'ONL Y UPPER CASE' ONL Y UPPER CASE
'only lower case' only lower case

ASM-86 flags an incomplete string, a string without a terminating quotation mark,
as an error.

IDENTIFIERS

Identifiers are character sequences that have a special, symbolic meaning to the
assembler. All identifiers in ASM-86 must obey the following rules:

Elements of ASM,86 Assembly Language

• The first character must be alphabetic (A, ... Z, a, ... z).

• Any subsequent characters can be either alphabetical or numeric (0, 1, 9).
ASM-86 ignores the special characters @ and -, but they are still legal. For
example, a_b becomes abo

• Identifiers may be any length up to the limit of the physical line.

Two types of identifiers can be used. Keywords have predefined meanings to the
assembler. Symbols are defined by the user. The following are all valid identifiers:

NO LIST
WORD
AH
ThircLstreet
How_are_yolLtoday
variable@number@1234567890

Keywords

A keyword is an identifier that has a predefined meaning to the assembler. Key
words are reserved; the user cannot define an identifier identical to a keyword. For a
complete list of keywords, see Appendix D.

ASM-86 recognizes five types of keywords: instructions, directives, operators,
registers, and predefined numbers. 8086 instruction mnemonic keywords and the
actions they initiate are defined in Chapter 4. Directives are discussed in Chapter 3.
Operators are described later in this chapter. Table 2-4 lists the ASM-86 keywords
that identify 8086 registers.

Three keywords are predefined numbers: BYTE, WORD, and DWORD. The
values of these numbers are 1, 2 and 4, respectively. In addition, a Type attribute is
associated with each of these numbers. The Type attribute of the keyword is equal
to the keyword's numeric value. The next section provides a complete discussion of
Type attributes.

2-5

Elements of ASM~86 Assembly Language

2-6

Table 2-4 Register Keywords

REGISTER NUMERIC
SYMBOL SIZE VALUE MEANING

AH 1 byte 100 B Accumulator-High-Byte
BH 1 " 111 B Base-Re gister-High-Byte
CH 1 " 101 B Count-Register-High-Byte
DH 1 " 110 B Data-Register-High-Byte

AL 1 " 000 B Accumulator-Low-Byte
BL 1 " 011 B Base-Re gister-Low-Byte
CL 1 " 001 B Count-Register-Low-Byte
DL 1 " 010 B Data-Register-Low-Byte

AX 2 bytes 000 B Accumulator (full word)
BX 2 " 011 B Base-Register "
CX 2 " 001 B Count-Register "
DX 2 " 010 B Data-Register "

BP 2 " 101 B Base Pointer
SP 2 " 100 B Stack Pointer
SI 2 " 110 B Source Index
DI 2 " 111 B Destination Index

CS 2 " 01 B Code-Se gment -Re gister
DS 2 " 11 B Data-Segment-Register
SS 2 " 10 B Stack-Segment-Register
ES 2 " 00 B Extra-Segment-Register

Symbols and Their Attributes

A symbol is a user-defined identifier with attributes that specify what kind of
information the symbol represents. Symbols fall into three categories:

• variables
• labels
• numbers

Variables identify data stored at a particular location in memory. All variables have
the following three attributes:

Elements of ASM~86 Assembly Language

• Segment - tells which segment was being assembled when the variable was
defined.

• Offset - tells how many bytes there are from the beginning of the segment
to the location of this variable.

• Type - tells how many bytes of data are manipulated when this variable is
referenced.

A Segment may be a code-segment, a data-segment, a stack-segment or an extra
segment depending on its contents and the register that contains its starting address
(see Chapter 3). A segment may start at any address divisible by 16. ASM-86 uses
this boundary value as the Segment portion of the variable's definition.

The Offset of a variable may be any number between 0 and OFFFFH (65535D). A
variable must have one of the following Type attributes:

• BYTE
• WORD
• DWORD

BYTE specifies a one-byte variable, WORD a two-byte variable, and DWORD a
four-byte variable. The DB, DW, and DD directives respectively define variables as
these three types (see Chapter 3). For example, a variable is defined when it appears
as the name for a storage directive:

VARIABLE DB 0

A variable may also be defined as the name in an EQU directive referencing another
label, as shown below.

VARIABLE EQU ANOTHER--VARIABLE

Labels identify locations in memory that contain instruction statements. They are
referenced with jumps or calls. All labels have two attributes:

• Segment
• Offset

2-7

Elements of ASM~86 Assembly Language

2-8

Label segment and offset attributes are essentially the same as variable segment and
offset attributes. Generally, a label is defined when it precedes an instruction. A
colon (:) separates the label from the instruction, as shown in the following example.

LABEL: ADD AX,BX

A label may also appear as the name in an EQU directive referencing another label,
as shown in the following example.

LABEL EQU ANOTHEILLABEL

Numbers may also be defined as symbols. A number symbol is treated as if you had
explicitly coded the number it represents. For example:

Number_five EQU 5
MOV AL, Number_five

is equivalent to:

MOV AL,5

The following section describes operators and their effects on numbers and number
symbols.

OPERATORS
ASM-86 operators fall into the following categories:

• arithmetic
• logical
• relational
• segment override
• variable manipulators and creators.

Table 2-5 defines ASM-86 operators. In this table, a and b represent two elements of
the expression. The validity column defines the type of operands the operator can
manipulate, with the bar character (I) indicating alternatives.

Elements of ASM,86 Assembly Language

Table 2-5 ASM-86 Operators

SYNTAX RESULT VALIDITY

Logical Operators

aXORb Bit-by-bit logical EXCLUSIVE a, b = number
OR of a and b

aORb Bit-by-bit logical OR of a a, b = number
andb

aANDb Bit-by-bit logical AND of a a, b = number
and b

NOTa Logical inverse of a: all O's a = 16-bit number
become l's, l's become O's

Relational Operators

aEQb OFFFFH if a = b, a,b =
otherwise O. unsigned number

aLT b OFFFFH if a < b, a,b =
otherwise O. unsigned number

a LEb OFFFFH if a <=b, a,b =
otherwise O. unsigned number

aGTb OFFFFH if a > b, a,b =
otherwise O. unsigned number

aGEb OFFFFH if a > = b, a,b =
otherwise O. unsigned number

aNEb OFFFFH if a<>b, a,b =
otherwise O. unsigned number

2-9

Elements of ASM~86 Assembly Language

Table 2-5 ASM-86 Operators (cont'd)

SYNTAX RESULT VALIDITY

Arithmetic Operators

a+b Arithmetic sum of a and b a = variable,
label or number
b = number

a-b Arithmetic difference of a = variable,
a and b label or number

b = number

a*b Unsigned multiplication a, b = number
of a and b

alb Unsigned division of a a, b, = number
and b

aMODb Remainder of a I b a, b, = number

aSHLb Value that results from a, b, =, number
shifting a to left by an amount b

aSHRb Value that results from a, b, = number
shifting a to the right by an amount b

+a a a = number

-a O-a a = number

Segment Override

seg reg: Overrides assembler's choice < seg reg >=
addr exp of segment register CS, DS, SS

or ES

2-10

Elements of ASM,86 Assembly Language

Table 2-5 ASM-86 Operators (cont'd)

SYNTAX RESULT VALIDITY

Variable Manipulators, Creators

SEGa Number whose value is the a = label I
segment value of the variable variable
or label a

OFFSET a Number whose value is the a = label I
offset value of the variable variable
or label a

TYPE a Number - If the variable a a = label I
is of type BYTE, WORD variable
or DWORD, the value of the number
will be 1,2 or 4, respectively.

LENGTH a Number whose value is the a = label I
LENGTH attribute of the variable variable
a - The length attribute is the
number of bytes associated with
the variable.

LAST a If LENGTH a > 0, then LAST a = a = label I
LENGTH a-I. If LENGTH a = variable
0, then LAST a = O.

aPTRb Virtual variable or label a = BYTE I
with type of a and WORD, I DWORD
attributes of b b = <addr exp>

.a Variable with an offset a = number
attribute of a. Segment attribute
is current segment.

2-11

Elements of ASM,86 Assembly Language

2-12

Table 2-5 ASM-86 Operators (cont'd)

SYNTAX RESULT VALIDITY

Arithmetic Operators

$ Label with offset equal to no argument
current value of location
counter; segment attribute
is current segment.

Operator Examples

Logical operators perform the Boolean logic operations AND, OR, XOR, and
NOT, accepting only numbers as operands. For example:

OOFC
0080
0000 B180
0002 B003

MASK
SIGNBIT

EQU
EQU
MOV
MOV

OFCH
80H
CL,MASK AND SIGNBIT
AL,NOTMASK

Relational operators treat all operands as unsigned numbers. The relational opera
tors are EQ (equal), LT (less than), LE (less than or equal), GT (greater than), GE
(greater than or equal), and NE (not equal). Each operator compares two operands
and returns all ones (OFFFFH) if the specified relation is true and all zeros if it is
not. For example:

OOOA
0019

0004 B8FFFF
0007 B80000

LIMITI
LIMIT2

EQU
EQU

MOV
MOV

10
25

AX,LIMIT 1 L T LIMIT2
AX,LIMIT 1 GT LIMIT2

Addition and subtraction operators compute the arithmetic sum and difference of
two operands. The first operand may be a variable, label, or number, but the second
operand must be a number. When a number is added to a variable or label, the result
is a variable or label whose offset is the numeric value of the second operand plus the

Elements of ASM,86 Assembly Language

offset of the first operand. Subtraction from a variable or label returns a variable or
label whose offset is that of first operand decremented by the number specified in
the second operand. For example:

0002
0005
OOOA FF

OOOB 2EAOOBOO
OOOF 2E8AOEOFOO
0014 B303

COUNT
DISP1
FLAG

EQU
EQU
DB

MOV
MOV
MOV

2
5
OFFH

AL,FLAG+1
CL,FLAG+DISP1
BL,DISP1-COUNT

The multiplication and division operators *, I, MOD, SHL, and SHR accept only
numbers as operands. The operators, * and I, treat all operators as unsigned
numbers. For example:

0016 BE5500
0019 B310
0050
001B B8AOOO

MOV
MOV

BUFFERSIZE
MOV

SI,256/3
BL,64/4
EQU 80
AX,BUFFERSIZE * 2

U nary operators accept both signed and unsigned operators as shown below:

001E B123
0020 B007
0022 B2F4

MOV
MOV
MOV

CL,+35
AL,2--5
DL,-12

When manipulating variables, the assembler decides which segment register to use.
You may override the assembler's choice by specifying a different register with the
segment override operator. The syntax for the override operator is as follows:

segment register:address expression

where the segment register is CS, DS, SS, or ES. For example:

0024 3688B472D
0028 268BOE5BOO

MOV
MOV

AX,SS:WORDBUFFER[BX]
CX,ES:ARRA Y

2-13

Elements of ASM,86 Assembly Language

2-14

A variable manipulator creates a number equal to one attribute of its variable
operand. SEG extracts the variable's segment value, OFFSET its offset value,
TYPE its type value (1, 2, or4), and LENGTH the number of bytes associated with
the variable. LAST compares the variable's LENGTH with 0 and if greater, then
decrements LENGTH by one. If LENGTH equals 0, LAST leaves it unchanged.
Variable manipulators accept only variables as operators. For example:

002D 000000000000
0033 0102030405

0038 B80500
0038 B80400
003E B80100
0041 B80200

WORD BUFFER
BUFFER

DW
DB

MOV
MOV
MOV
MOV

0,0,0
1,2,3,4,5

AX,LENGTH BUFFER
AX,LAST BUFFER
AX,TYPE BUFFER
AX,TYPE WORDBUFFER

The PTR operator creates a virtual variable or label, that is, one valid only during
the execution of the instruction. PTR makes no changes to either of its operands.
The temporary symbol has the same Type attribute as the left operator, and all
other attributes of the right operator as shown below.

0044 C60705
0047 8A07
0049 FF04

MOV
MOV
INC

BYTE PTR [BX], 5
AL,BYTE PTR [BX]
WORD PTR [SI]

The Period operator (.) creates a variable in the current data segment. The new
variable has a segment attribute equal to the current data segment and an offset
attribute equal to its operand. Its operand must be a number. For example:

0048 A10000
004E 268B1E0040

MOV
MOV

AX, .0
BX, ES: .4000H

The Dollar sign operator ($) creates a label with an offset attribute equal to the
current value of the location counter. The label's segment value is the same as the
current code segment. This operator takes no operand. For example:

0053 E9FDFF
0056 EBFE
0058 E9FD2F

JMP
JMPS
JMP

$
$
$+3000H

Elements of ASM~86 Assembly Language

Operator Precedence

Expressions combine variables, labels or numbers with operators. ASM-86 allows
several kinds of expressions (discussed in the next section). If more than one
operator appears in an expression, the operations they perform occur in a specific
order of precedence.

In general, ASM-86 evaluates expressions left to right, but operators with higher
precedence are evaluated before operators with lower precedence. When two opera
tors have equal precedence, the leftmost is evaluated first. Table 2-6 presents
ASM-86 operators in order of increasing precedence.

Parentheses can override normal rules of precedence. The part of an expression
enclosed in parentheses is evaluated first. If parentheses are nested, the innermost
expressions are evaluated first. However, only five levels of nested parentheses are
legal. For example:

15/3 + 18/9 = 5 + 2 = 7
15/(3 + 18/9) = 15/(3 + 2) = 15/5 =3

Table 2-6 Precedence of Operations in ASM-86

ORDER OPERATOR TYPE OPERATORS

1 Logical XOR, OR

2 Logical AND

3 Logical NOT

4 Relational EQ, LT, LE, GT,
GE,NE

5 Addition/subtraction + -,

6 Multi plication/ division *, /, MOD, SHL,
SHR

7 Unary + -,

8 Segment override < segment override>:

2-15

Elements of ASM,86 Assembly Language

2-16

Table 2-6 Precedence of Operations in ASM-86 (cont'd)

ORDER OPERATOR TYPE OPERATORS

9 Variable manipulators, SEG, OFFSET, PTR,
creators TYPE, LENGTH, LAST

10 Parentheses/brackets (), []

11 Period and Dollar ., $

EXPRESSIONS

ASM-86 allows address, numeric, and bracketed expressions. An address expres
sion evaluates to a memory address and has three components:

• a segment value
• an offset value
• a type

Both variables and labels are address expressions. An address expression is not a
number, but its components are. Numbers may be combined with operators such as
PTR to make an address expression.

A numeric expression evaluates to a number. It does not contain any variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes. The base registers
are BX and BP, and the index registers are DI and SI. A bracketed expression may
consist of a base register, an index register, or both a base register and an index
register.

Use the + operator between a base register and an index register to specify both
base- and index-register addressing. For example:

MOV variable[bx],O
MOV AX,[BX+DI]
MOV AX,[SI]

Elements of ASM,86 Assembly Language

STATEMENTS

Just as tokens in the ASM-86 assembly language correspond to words in English, so
are statements analogous to sentences. A statement tells ASM-86 what action to
perform. Two types of statements are used: instructions and directives. Instructions
are translated by the assembler into 8086 machine language instructions. Directives
are not translated into machine code but instead direct the assembler to perform
certain clerical functions.

Terminate each assembly language statement with a carriage return (CR) and line
feed (LF), or with an exclamation point (!), which ASM-86 treats as an end-of-line.
Multiple assembly language statements can be written on the same physical line if
separated by exclamation points.

The AS instruction set is defined in Chapter 4. The following is the syntax for an
instruction statement.

{label:} {prefix} mnemonic {operand(s)} {;comment}

where the fields are defined as follows:

label:

prefix

mnemonic

operand(s)

comment

A symbol followed by":" defines a label at the current
value of the location counter in the current segment. This
field is optional.

Certain machine instructions such as LOCK and REP
may prefix other instructions. This field is optional.

A symbol defined as a machine instruction, either by the
assembler or by an EQU directive. This field is optional
unless preceded by a prefix instruction. If it is omitted, no
operands may be present, although the other fields may
appear. ASM-86 mnemonics are defined in Chapter 4.

An instruction mnemonic may require other symbols to
represent operands to the instruction. Instructions may
have zero, one or two operands.

Any semicolon (;) appearing outside a character string
begins a comment. A comment is ended by a carriage
return. An exclamation point in a comment is ignored
and is not treated as a delimiter. Comments improve the
readability of programs. This field is optional.

2-17

Elements of ASM~86 Assembly Language

2-18

ASM-86 directives are described in Chapter 3. The following is the syntax for a
directive statement:

{name} directive operand(s) {;comment}

where the fields are defined as follows:

name

directive

operand(s)

comment

Unlike the label field of an instruction, the name field of a
directive is never terminated with a colon. Directive
names are legal for only DB, DW, DD, RS and EQU. For
DB, DW, DD and RS the name is optional; for EQU it is
required.

One of the directive keywords defined in Chapter 3.

Analogous to the operands to the instruction mnemon
ics. Some directives, such as DB, DW, and DD, allow any
operand while others have special requirements.

Exactly as defined for instruction statements.

Chapter 3

Assembler Directives
INTRODUCTION

Directive statements cause ASM-86 to perform housekeeping functions such as
assigning portions of code to logical segments, requesting conditional assembly,
defining data items, and specifying listing file format. General syntax for directive
statements appears in Chapter 2.

In the sections that follow, the specific syntax for each directive statement is given·
under the heading and before the explanation. These syntax lines use special
symbols to represent possible arguments and other alternatives. Brackets, { },
enclose optional arguments. Angle brackets, < >, enclose descriptions of user
supplied arguments. Do not include these symbols when coding a directive.

SEGMENT START DIRECTIVES

At runtime, every 8086 memory reference must have a 16-bit segment base value
and a 16-bit offset value. These are combined to produce the 20-bit effective address
needed by the CPU to physically address the location. The 16-bit segment base
value or boundary is contained in one of the segment registers CS, DS, SS, or ES.
The offset value gives the offset of the memory reference from the segment bound
ary. A 16-byte physical segment is the smallest relocatable unit of memory.

ASM-86 predefines four logical segments: the Code Segment, Data Segment, Stack
Segment, and Extra Segment, which are respectively addressed by the CS, DS, SS,
and ES registers. Future versions of ASM-86 will support additional segments such
as multiple data or code segments. All ASM-86 statements must be assigned to one
of the four currently supported segments so that they can be referenced by the CPU.
A segment directive statement, CSEG, DSEG, SSEG, or ESEG, specifies that the
statements following it belong to a specific segment. The statements are then
addressed by the corresponding segment register. ASM-86 assigns statements to the
specified segment until it encounters another segment directive.

3-1

Assembler Directives

3-2

Instruction statements must be assigned to the Code Segment. Directive statements
may be assigned to any segment. ASM-86 uses these assignments to change from
one segment register to another. For example, when an instruction accesses a
memory variable, ASM-86 must know which segment contains the variable so it can
generate a segment override prefix byte if necessary.

The CSEG Directive

CSEG
CSEG
CSEG

<numeric expression>

$

This directive tells the assembler that the following statements belong in the Code
Segment. All instruction statements must be assigned to the Code Segment. All
directive statements are legal within the Code Segment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is
not known at assembly time; the code generated is relocatable. Use the third form to
continue the Code Segment after it has been interrupted by a DSEG, SSEG, or
ESEG directive. The continuing Code Segment starts with the same attributes, such
as location and instruction pointer, as the previous Code Segment.

The DSEG Directive

DSEG
DSEG
DSEG

<numeric expression>

$

This directive specifies that the following statements belong to the Data Segment.
The Data Segment primarily contains the data allocation directives DB, DW, DD
and RS, but all other directive statements are also legal. Instruction statements are
illegal in the Data Segment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is
not known at assembly time; the code generated is relocatable. Use the third form to
continue the Data Segment after it has been interrupted by a CSEG, SSEG, or
ESEG directive. The continuing Data Segment starts with the same attributes as the
previous Data Segment.

The SSEG Directive

SSEG
SSEG
SSEG

<.numeric expression>

$

The SSEG directive indicates the beginning of source lines for the Stack Segment.
Use the Stack Segment for all stack operations. All directive statements are legal in
the Stack Segment, but instruction statements are illegal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is
not known at assembly time; the code generated is relocatable. Use the third form to
continue the Stack Segment after it has been interrupted by a CSEG, DSEG, or
ESEG directive. The continuing Stack Segment starts with the same attributes as
the previous Stack Segment.

The ESEG Directive

ESEG
ESEG
ESEG

<.numeric expression>

$

This directive initiates the Extra Segment. All directive statements are legal in the
Extra Segment, but instruction statements are illegal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is
not known at assembly time; the code generated is relocatable. Use the third form to
continue the Extra Segment after it has been interrupted by a DSEG, SSEG, or
CSEG directive. The continuing Extra Segment starts with the same attributes as
the previous Extra Segment.

THE ORG DIRECTIVE

ORG <.numeric expression>

The ORG directive sets the offset of the location counter in the current segment to
the value specified in the numeric expression. Define all elements of the expression
before the ORG directive to avoid ambiguity in forward references.

Assembler Directives

3-3

Assembler Directives

3-4

In most segments, an ORG directive is unnecessary. If no ORG is included before
the first instruction or data byte in a segment, assembly begins at location zero
relative to the beginning of the segment. A segment can have any number of ORG
directives.

THE IF AND END IF DIRECTIVES

IF <numeric expression>
<Source line 1>
<Source line 2>

<Source line n>
ENDIF

The IF and ENDIF directives allow a group of source lines to be conditionally
included or excluded from the assembly. Use conditional directives to assemble
several different versions of a single source program.

When the assembler finds an IF directive, it evaluates the numeric expression
following the IF keyword. If the expression evaluates to a nonzero value, then
<Source line 1> through <Source line n> are assembled. If the expression evaluates
to zero, then the lines are not assembled. All elements in the numeric expression
must be defined before they appear in the IF directive. IF directives can be nested to
five levels.

THE IFLIST AND NOIFLIST DIRECTIVES

The IFLIST directive tells ASM -86 to list the lines in false IF blocks. This is the
default condition. The NOIFLIST directive suppresses listing the lines when an IF
directive evaluates to zero.

THE INCLUDE DIRECTIVE

INCLUDE <.filename>

This directive includes another ASM-86 file in the source text. For example, the
directive:

INCLUDE EQUALS.A86

instructs the assembler to insert into the source text the file named EQUALS.A86.
Use INCLUDE when the source program resides in several different files.
INCLUDE directives may not be nested; a source file called by an INCLUDE
directive may not contain another INCLUDE statement. If <filename> does not

contain a file type, the file type is assumed to be .A86. If no drive name is specified
with <filename>, ASM-86 assumes the drive containing the source file.

THE END DIRECTIVE

END

An END directive marks the end of a source file. Any subsequent lines are ignored
by the assembler. END is optional. If not present, ASM-86 processes the source
until it finds an end-of-file character (I AH).

THE EQU DIRECTIVE

symbol
symbol
symbol
symbol

EQU
EQU
EQU
EQU

<numeric expression>
<address expression>
<register>
<instruction mnemonic>

The EQU (equate) directive assigns values and attributes to user-defined symbols.
The required symbol name may not be terminated with a colon. The symbol cannot
be redefined by a subsequent EQU or another directive. Any elements used in
numeric or address expressions must be defined before the EQU directive appears.

The first form assigns a numeric value to the symbol; the second assigns a memory
address. The third form assigns a new name to an 8086 register. The fourth form
defines a new instruction subset. The following are examples of these four forms:

0005
0033
0001

005D 8BC3

FIVE
NEXT
COUNTER
MOVVV

EQU
EQU
EQU
EQU

2*2 + I
BUFFER
CX
MOV

MOVVV AX,BX

An error is reported if an invalid numeric quantity appears in an EQU directive.
Forward references in EQU directives are flagged as errors.

THE DB DIRECTIVE

{symbol} DB <numeric expression> { , <numeric expression> .. }
{symbol} DB <string constant> {<string constant> ... }

Assembler Directives

3-5

Assembler Directives

3-6

The DB directive defines initialized storage areas in byte format. Numeric expres
sions are evaluated to 8-bit values and sequentially placed in the hex output file.
String constants are placed in the output file according to the rules defined in
Chapter 2. A DB directive is the only ASM-86 statement that accepts a string
constant longer than two bytes. There is no translation from lowercase to uppercase
within strings. Multiple expressions or constants, separated by commas, may be
added to the definition, but may not exceed the physical line length.

Use an optional symbol to reference the defined data area throughout the program.
The symbol has four attributes: the Segment and Offset att~ibutes determine the
symbol's memory reference, the Type attribute specifies single bytes, and Length
tells the number of bytes (allocation units) reserved.

The following statements show DB directives with symbols:

005F

006B
006C

43502F4D2073
797374656DOO
El
0102030405

0071 B90COO

THE DW DIRECTIVE

TEXT

AA
X

DB

DB
DB

'CP/M system',O

'a' + 80H
1,2,3,4,5

MOV CX, LENGTH TEXT

{symbol} D W <numeric expression> { , <numeric expression> .. }
{symbol} DW <string constant> { , <string constant> ... }

The DW directive initializes two-byte words of storage. String constants longer
than two characters are illegal. Otherwise, DW uses the same procedure to initialize
storage as DB. The following are examples of DW statements:

0074
0076
007C

0000
63C166C169Cl
010002000300
040005000600

THE DD DIRECTIVE

CNTR
JMPTAB

DW
DW
DW

o
SUBR1,SUBR2,SUBR3
1,2,3,4,5,6

{symbol} D D <numeric expression> { , <numeric expression> .. }

The DD directive initializes four bytes of storage. The Offset attribute of the
address expression is stored in the two lower bytes, the Segment attribute in the two
upper bytes. Otherwise, DD follows the same procedure as DB. The following are
examples of DD statements:

1234 CSEG 1234H

0000 6CC134126FC1 LONG_JMPTAB DD
3412

0008 72C1341275C1 DD
3412

THE RS DIRECTIVE

{symbol} RS <Jzumeric expression>

ROUT1,ROUT2

ROUT3,ROUT4

The RS directive allocates storage in memory but does not initialize it. The numeric
expression gives the number of bytes to be reserved. An RS statement does not give
a byte attribute to the optional symbol. The following example shows the RS
statement:

0010
0060
4060

THE RB DIRECTIVE

BUF

{symbol} RB <Jzumeric expression>

RS
RS
RS

80
4000H
1

The RB directive allocates byte storage in memory without any initialization. This
directive is identical to the RS directive except that it does give the byte attribute.

THE RW DIRECTIVE

{symbol} R W <Jzumeric expression>

Assembler Directives

3-7

Assembler Directives

3-8

The R W directive allocates two-byte word storage in memory but does not initialize
it. The numeric expression gives the number of words to be reserved. The following
example shows the RW statement:

4061
4161
C161

THE TITLE DIRECTIVE

TITLE <String constant>

BUFF RW
RW
RW

128
4000H
1

ASM -86 prints the string constant defined by a TITLE directive statement at the top
of each printout page in the listing file. The title character string should not exceed
30 characters. The following example shows the TITLE statement:

TITLE 'CP/M monitor'

THE PAGESIZE DIRECTIVE

PAGESIZE <numeric expression>

The PAGESIZE directive defines the number of lines to be included on each
printout page. The default page size is 66.

THE PAGEWIDTH DIRECTIVE

P AGEWIDTH <numeric expression>

The PAGEWIDTH directive defines the number of columns printed across the
page when the listing file is output. The default page width is 120 columns unless the
listing is routed directly to the terminal; then the default page width is 79 columns.

THE EJECT DIRECTIVE

EJECT

The EJECT directive performs a page eject during printout. The EJECT directive
itself is printed on the first line of the next page.

THE SIMFORM DIRECTIVE

SIMFORM

The SIMFORM directive replaces a form feed (FF) character in the print file with
the correct number of line feeds (LF). Use this directive when printing on a printer
that is unable to interpret the form feed character.

THE NOLIST AND LIST DIRECTIVE

NOLIST
LIST

The NO LIST directive blocks the printout of lines following the directive. Restart
the listing with a LIST directive.

}\sse~bler l)irectives

3-9

Chapter 4

The ASM-86 Instruction Set
INTRODUCTION

The ASM-86 instruction set includes all 8086 machine instructions. The general
, syntax for instruction statements is given in Chapter 2. The following sections
define the specific syntax and required operand types for each instruction, without
reference to labels or comments. The instruction definitions are presente4~in tables
for easy reference. For a more detailed description of each instruction, see Intel's
MCS-86 Assembly Language Reference Manual. For descriptions of the instruction
bit patterns and operations, see Intel's MCS-86 User's Manual.

The instruction definition tables present ASM-86 instruction statements as combi
nations of mnemonics and operands. A mnemonic is a symbolic representation for
an instruction, and its operands are the required parameters. Instructions can take
zero, one, or two operands. When two operands are specified, the left operand is the
instruction's destination operand and the two operands are separated by a comma.

The instruction definition tables organize ASM-86 instructions into functional
groups. Within each table, the instructions are listed alphabetically. Table 4-1
shows the symbols used in the instruction definition tables to define operand types.

Table 4-1 Operand Type Symbols

SYMBOL OPERAND TYPE

numb any NUMERIC expression

numb8 any NUMERIC expression which evaluates to an 8-bit
number

aee accumulator register, AX or AL

reg any general purpose register, not segment register

4-1

The ASM~86 Instruction Set

4-2

Table 4-1 Operand Type Symbols (cont'd)

SYMBOL OPERAND TYPE

regJ6 a 16-bit general purpose register, not segment register

segreg any segment register: CS, DS, SS, or ES

mem any ADDRESS expression, with or without base-
and/or index-addressing modes, such as:

variable
variable+3
variable[bx]
variable[SI]
variable[BX +SI]
[BX]
[BP+DI]

simpmem any ADDRESS expression WITHOUT base- and
index- addressing modes, such as:

variable
variable+4

memlreg any expression symbolized by "reg" or "mem"

memlreg16 any expression symbolized by "mem reg", but must be
16 bits

label any ADDRESS expression which evaluates to a label

lab8 any "label" which is within ± 128 bytes distance from
the instruction

The 8086 CPU has nine single-bit flag registers which reflect the state of the CPU.
The user cannot access these registers directly, but can test them to determine the
effects of an executed instruction on an operand or register. The effects of instruc
tions on flag registers are also described in the instruction definition tables, using
the symbols shown in Table 4-2 to represent the nine flag registers.

The ASM~86 Instruction Set

Table 4-2 Flag Register Symbols

AF A uxiliary-Carry-Flag

CF Carry-Flag

DF Direction-Flag

IF Interrupt-Enable-Flag

OF Overflow-Flag

PF Parity-Flag

SF Sign-Flag

TF Trap-Flag

ZF Zero-Flag

DATA TRANSFER INSTRUCTIONS

There are four classes of data transfer operations: general purpose, accumulator
specific, address-object and flag. Only SAHF and POPF affect flag settings. Note in
Table 4-3 that if acc= AL, a byte is transferred, but if acc= AX, a word is transferred.

Table 4-3 Data Transfer Instructions

SYNTAX RESULT

IN acc, numb8j numb 16 Transfer data from input port given by numb8
or numb16 (0-255) to accumulator.

IN acc,DX Transfer data from input port given by DX
register (O-OFFFFH) to accumulator.

LAHF Transfer flags to the AH register.

4-3

The ASM~86 Instruction Set

Table 4-3 Data Transfer Instructions (cont'd)

SYNTAX RESULT

LDS reg16, mem Transfer the segment part of the memory
address (DWORD variable) to the DS seg-
ment register, transfer the offset part to a
general purpose 16-bit register.

LEA reg16,mem Transfer the offset of the memory address to a
(l6-bit) register.

LES reg16,mem Transfer the segment part of the memory
address to the ES segment register, transfer
the offset part to a 16-bit general purpose
register.

MOV reg, meml reg Move memory or register to register.

MOV meml reg, reg Move register to memory or register.

MOV meml reg, numb Move immediate data to memory or register.

MOV segreg, meml reg 16 Move memory or register to segment register.

MOV meml reg 16, segreg Move segment register to memory or register.

OUT numb8j numb 16, ace Transfer data from accumulator to output
port (0-255) given by numb8 or numb16.

OUT DX,acc Transfer data from accumulator to output
port (O-FFFFH) given by DX register.

POP memlreg16 Move top stack element to memory or register.

POP segreg Move top stack element to segment register;
note that CS segment register not allowed.

POPF Transfer top stack element to flags.

4-4

The ASM~86 Instruction Set

Table 4-3 Data Transfer Instructions (cont'd)

SYNTAX RESULT

PUSH memlreg16 Move memory or register to top stack element.

PUSH segreg Move segment register to top stack element.

PUSHF Transfer flags to top stack element.

SAHF Transfer the AH register to flags.

XCHG reg, meml reg Exchange register and memory or register.

XCHG meml reg, reg Exchange memory or register and register.

XLAT memlreg Perform table lookup translation. The table is
given by "mem reg", which is always BX.
Replaces AL with AL offset from BX.

ARITHMETIC, LOGICAL, AND SHIFT INSTRUCTIONS

The 8086 CPU performs the four basic mathematical operations in several different
ways. It supports both 8-bit and 16-bit operations as well as signed and unsigned
arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic operations to reflect the
result of the operation. Table 4-4 summarizes the effects of arithmetic instructions
on flag bits. Table 4-5 defines arithmetic instructions. Table 4-6 defines logical and
shift instructions.

Table 4-4 Effects of Arithmetic Instructions on Flags

FLAG EFFECT

CF is set if the operation resulted in a carry out of (from addition)
or a borrow into (from subtraction) the high-order bit of the
result; otherwise CF is cleared.

4-5

The ASM,86 Instruction Set

Table 4-4 Effects of Arithmetic Instructions on Flags (cont'd)

FLAG EFFECT

AF is set if the operation resulted in a carry out of (from addition)
or a borrow into (from subtraction) the low-order four bits of
the result; otherwise AF is cleared.

ZF is set if the result of the operation is zero; otherwise ZF is
cleared.

SF is set if the result is negative.

PF is set if the modulo 2 sum of the low-order eight bits of the
result of the operation is 0 (even parity); otherwise PF is
cleared (odd parity).

OF is set if the operation resulted in an overflow; the size of the
result exceeded the capacity of its destination.

Table 4-5 Arithmetic Instructions

SYNTAX RESULT

AAA Adjust unpacked BCD (ASCII) for addition -
adjusts AL.

AAD Adjust unpacked BCD(ASCII) for division -
adjusts AL.

AAM Adjust unpacked BCD (ASCII) for multiplication
- adjusts AX.

AAS Adjust unpacked BCD (ASCII) for subtraction
-adjusts AL.

ADC reg, meml reg Add (with carry) memory or register to register.

ADC meml reg, reg Add (with carry) register to memory or register.

4-6

The ASM~86 Instruction Set

Table 4-5 Arithmetic Instructions (cont'd)

SYNTAX RESULT

ADC meml reg,numb Add (with carry) immediate data to memory or
register.

ADD reg, meml reg Add memory or register to register.

ADD meml reg, reg Add register to memory or register.

ADD meml reg,numb Add immediate data to memory or register.

CBW Convert byte in AL to word in AH by sign exten-
sion.

CWD Convert word in AX to double word in DX/ AX
by sign extension.

CMP reg, meml reg Compare register with memory or register.

CMP meml reg, reg Compare memory or register with register.

CMP meml reg, numb Compare data constant with memory or register.

DAA Perform decimal adjustment for addition -
adjusts AL.

DAS
Perform decimal adjustment for subtraction -
adjusts AL.

DEC memlreg Subtract 1 from memory or register.

INC memlreg Add 1 to memory or register.

DIV memlreg Divide (unsigned) accumulator (AX or AL) by
memory or register. If byte results, AL = quo-
tient, AH = remainder. If word results, AX =
quotient, DX = remainder.

IDIV memlreg Divide (signed) accumulator (AX or AL) by
memory or register - quotient and remainder
stored as in D IV.

4-7

The ASM ~86 Instruction Set

IMUL

MUL

NEG

SBB

SBB

SBB

SUB

SUB

SUB

AND

AND

AND

4-8

Table 4-5 Arithmetic Instructions (cont'd)

SYNTAX

memlreg

memlreg

memlreg

reg, meml reg

meml reg, reg

meml reg, numb

reg, meml reg

meml reg, reg

meml reg, numb

RESULT

Multiply (signed) memory or register by accumu
lator (AX or AL) - if byte, results in AH, AL. If
word, results in DX, AX,

Multiply (unsigned) memory or register by accu
mulator (AX or AL) - results stored as in IMUL.

Two's complement memory or register.

Subtract (with borrow) memory or register from
register.

Subtract (with borrow) register from memory or
register.

Subtract (with borrow) immediate data from
memory or register.

Subtract memory or register from register.

Subtract register from memory or register.

Subtract data constant from memory or register.

Table 4-6 Logic and Shift Instructions

SYNTAX RESULT

·reg,memj reg Perform bitwise logical "and" of a register and
memory register.

:meml reg, reg Perform bitwise logical "and" of memory register
and register.

lmeml reg, numb Perform bitwise logical "and" of memory register
and data constant.

The ASM,86 Instruction Set

Table 4-6 Logic and Shift Instructions (cont'd)

SYNTAX RESULT

NOT memlreg Form ones complement of memory or register.

OR reg, metnl reg Perform bitwise logical "or" of a register and
memory register.

OR meml reg, reg Perform bitwise logical "or" of memory register
and register.

OR meml reg, numb Perform bitwise logical "or" of memory register
and data constant.

RCL memlreg,l Rotate memory or register 1 bit left through carry
flag.

RCL memlreg,CL Rotate memory or register left through carry flag,
number of bits given by CL register.

RCR memlreg,l Rotate memory or register 1 bit right through
carry flag.

RCR memlreg,CL Rotate memory or register right through carry
flag, number of bits given by CL register.

ROL memlreg,l Rotate memory or register 1 bit left.

ROL memlreg,CL Rotate memory or register left, number of bits
given by CL register.

ROR memlreg,l Rotate memory or register 1 bit right.

ROR memlreg,CL Rotate memory or register right, number of bits
given by CL register.

SAL memlreg,l Shift memory or register 1 bit left, shift in low-
order zero bits.

4-9

The ASM,86 Instruction Set

Table 4-6 Logic and Shift Instructions (cont'd)

SYNTAX RESULT

SAL meml reg, CL Shift memory or register left, number of bits
given by CL register, shift in low-order zero bits.

SAR :memlreg,l Shift memory or register 1 bit right, shift in high-
order bits equal to the original high-order bit.

SAR . meml reg, CL Shift memory or register right, number of bits
given by CL register, shift in high-order bits equal
to the original high-order bit.

SHL .memlregl Shift memory or register 1 bit left, shift in low-
order zero bits. Note that SHL is a different
mnemonic for SAL.

SHL memlreg,CL Shift memory or register left, number of bits
given by CL register, shift in low-order zero bits.
Note that SHL is a different mnemonic for SAL.

SHR memlreg,l Shift memory or register 1 bit right, shift in high-
order zero bits.

SHR memlreg,CL Shift memory or register right, number of bits
given by CL register, shift in high-order zero bits.

TEST reg,me11ll reg Perform bitwise logical "and" of a register and
memory or register. Set condition flags but do not
change destination.

TEST meml reg, reg Perform bitwise logical "and" of memory register
and register. Set condition flags but do not
change destination.

TEST meml reg, numb Perform bitwise logical" and" test of memory reg-
ister and data constant. Set condition flags but do
not change destination.

4-10

The ASM,86 Instruction Set

Table 4-6 Logic and Shift Instructions (cont'd)

SYNTAX RESULT

XOR reg, meml reg Perform bitwise logical" exclusive or" of a register
and memory or register.

XOR meml reg, reg Perform bitwise logical" exclusive or" of memory
register and register.

XOR meml reg,numb Perform bitwise logical" exclusive or" of memory
register and data constant.

STRING INSTRUCTIONS

String instructions take one or two operands. The operands specify only the
operand type, determining whether the operation is on bytes or words. If there are
two operands, the source operand is addressed by the SI register and the destination
operand is addressed by the DI register. The DI and SI registers are always used for
addressing. Note that for string operations, destination operands addressed by DI
must always reside in the Extra Segment (ES).

4-11

The ASM-86 Instruction Set

Table 4-7 String Instructions

SYNTAX

CMPS meml reg,meml reg

CMPSB meml reg,memj reg

CMPSW meml reg, meml reg

LODS memlreg

LODSB memlreg

LODSW memlreg

MOVS meml reg,meml reg

MOVSB meml reg,meml reg

MOVSW meml reg,meml reg

SCAS memlreg

SCASB memlreg

SCASW memlreg

STOS memlreg

STOSB memlreg

STOSW memlreg

4-12

RESULT

Compare byte or word of string.

Compare string in byte form.

Compare string in word form.

Transfer a byte or word from the
source operand to the accumulator.

Transfer in byte form.

Transfer in word form.

Move 1 byte (or word) from source to
destination.

Move 1 byte.

Move 1 word.

Subtract destination operand from
accumulator (AX or AL), affect flags,
but do not return result.

Subtract destination operand from
accumulator in byte form.

Subtract destination operand from
accumulator in word form.

Transfer a byte or word from accumu
lator to the destination operand.

Transfer from accumulator to the des
tination operand in byte form.

Transfer from the accumulator to the
destination operand in word form.

The ASM-86 Instruction Set

Table 4-8 defines prefixes for string instructions. A prefix repeats the string instruc
tion the number of times contained in the CX register, which is decremented by 1 for
each iteration. Prefix mnemonics precede the string instruction mnemonic in the
statement line as shown in Chapter 2.

Table 4-8 Prefix Instructions

SYNTAX RESULT

REP Repeat until CX register is zero.

REPZ Repeat until CX register is zero and zero flag (ZF) is not
zero.

REPE Same as "REPZ"

REPNZ Repeat until CX register is zero and zero flag (ZF) is zero.

REPNE Same as "REPNZ"

CONTROL TRANSFER INSTRUCTIONS

All of the following classes of control transfer instructions cause program execution
to cOQtinue at some new location in memory, possibly in a new code segment. The
transfer may be absolute or depend on a certain condition.

• calls, jumps, and returns
• conditional jumps
• iterational control
• interrupts

Table 4-9 defines control transfer instructions. In the definitions of conditional
jumps, above and below refer to the relationship between unsigned values, and
greater than and less than refer to the relationship between signed values.

Table 4-9 Control Transfer Instructions

SYNTAX RESULT

CALL label Push the offset address of the next instruction on
the stack, jump to the target label.

4-13

The ASM-86 Instruction Set

Table 4-9 Control Transfer Instructions (cont'd)

SYNTAX RESULT

CALL memlreg16 Push the offset address of the next instruction on
the stack, jump to location indicated by contents
of specified memory or register.

CALLF label Push CS segment register on the stack, push the
offset address of the next instruction on the stack
(after CS), jump to the target label.

CALLF mem Push CS register on the stack, push the offset
address of the next instruction on the stack,jump
to location indicated by contents of specified
double word in memory.

INT numb8 Push the flag registers (as in PUSHF), clear TF
and IF flags, transfer control with an indirect call
through anyone of the 256 interrupt-vector ele-
ments. This instruction uses three levels of stack.

INTO If 0 F (the overflow flag) is set, push the flag
registers (as in PUSHF), clear TF and IF flags,
transfer control with an indirect call through
interrupt-vector element 4 (location 10H). If the
OF flag is cleared, no operation takes place.

IRET Transfer control to the return address saved by a
previous interrupt operation, restore saved flag
registers, CS, and IP. This instruction pops three
levels of stack.

JA lab8 Jump if "not below or equal" or "above" «CF or
ZF) = 0).

JAE lab8 Jump if"not below" or "above or equal" (CF = 0).

JB lab8 Jump if "below" or "not above or equal" (CF = 1).

4-14

The ASM-86 Instruction Set

Table 4-9 Control Transfer Instructions (cont'd)

SYNTAX RESULT

JBE lab8 Jump if "below or equal" or "not above" «CF or
ZF) = 1).

JC lab8 Same as "JB"

JCXZ lab8 Jump to target label if CX register is zero.

JE lab8 Jump if "equal" or "zero" (ZF = 1).

JG lab8 Jump if "not less or equal" or "greater" «(SF xor
OF) or ZF) =0).

JGE lab8 Jump if "not less" or "greater or equal" «SF xor
OF) = 0).

JL lab8 Jump if "less" or "not greater or equal" «SF xor
OF) = 1).

JLE lab8 Jump if "less or equal" or "not greater" «(SF xor
OF) or ZF) = 1).

JMP label Jump to the target label.

JMP memlreg16 Jump to location indicated by contents of speci-
fied memory or register.

JMPF label Jump to the target label possibly in another code
segment.

JMPS lab8 Jump to the target label within ±128 bytes from
instruction.

JNA lab8 Same as "JBE"

JNAE lab8 Same as "JB"

4-15

The ASM-86 Instruction Set

Table 4-9 Control Transfer Instructions (cont'd)

SYNTAX RESULT

JNB lab8 Same as "JAE"

JNBE lab8 Same as "JA"

JNC lab8 Same as "JNB"

JNE lab8 Jump if "not equal" or "not zero" (ZF = 0).

JNG lab8 Same as "JLE"

JNGE lab8 Same as "JL"

JNL lab8 Same as "JGE"

JNLE lab8 Same as "JG"

JNO lab8 Jump if "not overflow" (OF = 0).

JNP lab 8 Jump if "not parity" or "parity odd".

JNS lab8 Jump if "not sign".

JNZ lab8 Same as "JNE"

JO lab 8 Jump if "overflow" (OF = 1).

JP lab8 Jump if "parity" or "parity even" (PF = 1).

JPE lab8 Same as "JP"

JPO lab8 Same as "JNP"

JS lab8 Jump if "sign" (SF = 1).

JZ lab8 Same as "JE"

4-16

The ASM-86 Instruction Set

Table 4-9 Control Transfer Instructions (cont'd)

SYNTAX RESULT

LOOP lab8 Decrement CX register by one, jump to target
label if CX is not zero.

LOOPE lab8 Decrement CX register by one, jump to target
label if CX is not zero and the ZF flag is set.
"Loop while zero" or "loop while equal".

LOOPNE lab8 Decrement CX register by one, jump to target
label if CX is not zero and ZF flag is cleared.
"Loop while not zero" or "loop while not equal".

LOOPNZ lab8 Same as "LOOPNE"

LOOPZ lab8 Same as "LOOPE"

RET Return to the return address pushed by a previous
CALL instruction, increment stack pointer by 2.

RET numb Return to the address pushed by a previous
CALL, increment stack pointer by 2+numb.

RETF Return to the address pushed by a previous
CALLF instruction, increment stack pointer by 4.

RETF numb Return to the address pushed by a previous
CALLF instruction, increment stack pointer by
4+numb.

PROCESSOR CONTROL INSTRUCTIONS

Processor control instructions manipulate the flag registers. Moreover, some of
these instructions can synchronize the 8086 CPU with external hardware.

4-17

1 'he ASM-86 instruction Set

SYNTAX

CLC

CLD

CLI

CMC

Table 4-10 Processor Control Instructions

RESULT

Clear CF flag.

Clear DF flag, causing string instructions to
auto-increment the operand points.

Clear IF flag, disabling maskable external inter
rupts.

Complement CF flag.

ESC numb8, memj reg Do no operation other than compute the effective
address and place it on the address bus (ESC is
used by the 8087 numeric co-processor), numb8
must be in the range 0-63.

LOCK

HLT

STC

STD

STI

WAIT

4-18

PREFIX instruction, cause the 8086 processor to
assert the buslock signal for the duration of the
operation caused by the following instruction.
The LOCK prefix instruction may precede any
other instruction. Buslock prevents co-processors
from gaining the bus; this is useful for shared
resource semaphores.

Cause 8086 processor to enter halt state until an
interrupt is recognized.

Set CF flag.

Set DF flag, causing string instructions to auto
decrement the operand pointers.

Set IF flag, enabling maskable external interrupts.

Cause the 8086 processor to enter a wait state if
the signal on its "TEST" pin is not asserted.

Chapter 5

Codemacro Facilities
INTRODUCTION TO CODEMACROS

ASM-86 does not support traditional assembly language macros, but it does allow
you to define your own instructions by using the CodeMacro Directive. Like
traditional macros, code macros are assembled wherever they appear in assembly
language code, but there the similarity ends. Traditional macros contain assembly
language instructions; a codemacro contains only codemacro directives. Macros
are usually defined in the user's symbol table; ASM-86 codemacros are defined in
the assembler's symbol table. A macro simplifies using the same block of instruc
tions over and over again throughout a program; a codemacro sends a bit stream to
the output file and in effect adds a new instruction to the assembler.

Because ASM-86 treats a code macro as an instruction, you can invoke codemacros
by using them as instructions in your program. The example below shows how
MAC, an instruction defined by a codemacro, can be invoked.

XCHG
MAC
MUL

BX,WO RD3
PAR1,PAR2
AX,WORD4

Note that MAC accepts two operands. When MAC was defined, these two oper
ands were also classified as to type, size, and so on by defining MAC's formal
parameters. The names of the formal parameters, however, are not fixed. They
merely indicate where and how the actual operands are to be used. The actual names
or values of operands are supplied when the codemacro is invoked.

5-1

Codemacro Facilities

5-2

The definition of a codemacro starts with a line specifying its name and its formal
parameters, if any. .

CodeMacro <Jzame> {<formal parameter list>}

The optional <formal parameter list> is defined as follows:

<formal name>:<.specifier letter>{<modifier letter>{<.range>}

As stated above, the formal name is not fixed, but merely acts as a place holder. If a
formal parameter list is present, the specifier letter is required and the modifier
letter is optional. The following are possible specifier letters:

A, C, D, E, M, R, S, X

The following are possible modifier letters:

b, d, w, sb

The assembler ignores case except within strings, but for clarity, this section shows
specifiers in uppercase and modifiers in lowercase. The following sections describe
specifiers, modifiers, and the optional range in detail.

The body of the codemacro describes the bit pattern and formal parameters. Only
the following directives are legal within codemacros:

SEGFIX
NOSEGFIX
MODRM
RELB
RELW
DB
DW
DD
DBIT

These directives are unique to codemacros, and those which appear to duplicate
ASM-86 directives (DB, DW, and DD) have different meanings in codemacro
context. These directives are discussed in detail in later sections. The definition of
each codemacro ends with the line:

EndM

CodeMacro, EndM, and the codemacro directives are all reserved words.
Codemacro definition syntax is defined in Backus-Naur-like form in Appendix H.

The following examples are typical codemacro definitions.

CodeMacro AAA
DB 37H

EndM

CodeMacro DIV divisor:Eb
SEG FIX divisor
DB 6FH
MODRM divisor

EndM

CodeMacro ESC opcode:Db(O,63),src:Eb
SEGFIX src

EndM

SPECIFIERS

DBIT 5 (lBH),3(opcode(3»
MODRM opcode,src

Every formal parameter must have a specifier letter that indicates what type of
operand is needed to match the formal parameter. Table 5-1 defines the eight
possible specifier letters.

Table 5-1 Codemacro Operand Specifiers

LETTER OPERAND TYPE

A Accumulator register, AX or AL.

C Code, a label expression only.

D Data, a number to be used as an immediate value.

E Effective address, either an M (memory address) or an R
(register).

Codemacro Facilities

5-3

Codemacro Facilities

5-4

Table 5-1 Codemacro Operand Specifiers (cont'd)

LETTER OPERAND TYPE

M Memory address. This can be either a variable or a brack-
eted register expression.

R A general register only.

S Segment register only.

X A direct memory reference.

MODIFIERS

The optional modifier letter is a further requirement on the operand. The meaning
of the modifier letter depends on the type of the operand. For variables, the
following modifiers are used depending on the operand: "b" for byte, "w" for word,
"d"for double-word and "sb" for signed byte. For numbers, the modifier depends
on the size of the number: "b" for -256 to 255 and "w" for other numbers. Table 5-2
summarizes codemacro modifiers.

Table 5-2 Codemacro Operand Modifiers

VARIABLES NUMBERS

Modifier Type Modifier Size

b byte b -256 to 255
w word w Any other number
d dword
sb signed

byte

RANGE SPECIFIERS

The optional range is specified within parentheses by either one expression or two
expressions separated by a comma. The following are valid formats:

(numberb)
(register)
(numberb,numberb)
(numberb,register)
(register ,numberb)
(register ,register)

where numberb is an 8-bit number, not an address. The following example specifies
that the input port must be identified by the DX register:

CodeMacro IN dst:Aw,port:Rw(DX)

The next example specifies that the CL register is to contain the "count" of rotation:

CodeMacro ROR dst:Ew,count:Rb(CL)

The next example specifies that the" opcode" is to be immediate data, and may range
from ° to 63 inclusive:

CodeMacro ESC opcode:Db(O,63),adds:Eb

CODEMACRO DIRECTIVES

Codemacro directives define the bit pattern as well as make further requirements on
how the operand is to be treated. Directives are reserved words, and those that
appear to duplicate assembly language instructions have different meanings within
a codemacro definition. Only the nine directives defined here are legal within
codemacro definitions.

SEGFIX

If SEG FIX is present, it instructs the assembler to determine whether a segment
override prefix byte is needed to access a given memory location. If so, the segment
override prefix is output as the first byte of the instruction. Ifnot, no action is taken.
SEGFIX takes the form:

SEGFIX <[ormal name>

where <[ormal name> is the name of a formal parameter which represents the
memory address. Because it represents a memory address, the formal parameter
must have one of the specifiers E, M, or X.

Codemacro Facilities

5-5

Codemacro Facilities

5-6

NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES register for that
operand. This applies only to the destination operand of these instructions: CMPS,
MOVS, SCAS, STOS. The following is the form of NOSEGFIX:

NOSEGFIX segreg, <lorm name>

where segreg is one of the segment registers ES, CS, SS, or DS and <lorm name> is
the name of the memory-address formal parameter, which must have a specifier E,
M, or X. No code is generated from this directive, but an error check is performed.
The following is an example of the use of NOSEGFIX:

CodeMacro MOVS si _ptr:Ew,dLptr:Ew
NOSEG FIX ES,dLptr
SEG FIX sLptr
DB OA5H

EndM

MODRM

This directive instructs the assembler to generate the ModRM byte, which follows
the opcode byte in many of the 8086's instructions. The ModRM byte contains
either the indexing type or the register number to be used in the instruction. It also
specifies which register is to be used, or gives more information to specify an
instruction.

The ModRM byte carries the information in three fields. The mod field occupies the
two most significant bits of the byte, and combines with the register memory field to
form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It specifies either a
register number or three more bits of opcode information. The meaning of the reg
field is determined by the opcode byte.

The register memory field occupies the last three bits of the byte. It specifies a
register as the location of an operand, or forms a part of the address-mode in
combination with the mod field described above.

For further information of the 8086's instructions and their bit patterns, see Intel's
8086 Assembly Language Programing Manual and the Intel 8086 Family User's
Manual.

The following forms of MODRM are used:

MODRM <form name>,<jorm name>
MODRM NUMBER7,</orm name>

where NUMBER7 is a value 0 to 7 inclusive and <form name> is the name of a
formal parameter.

The following examples show the use of MODRM:

CodeMacro RCR dst:Ew,count:Rb(CL)
SEGFIX dst
DB OD3H
MODRM 3,dst

EndM

CodeMacro OR dst:Rw,src:Ew
SEGFIX src
DB OBH
MODRM dst,src

EndM

RELB and REL W

These directives, used in IP-relative branch instructions, instruct the assembler to
generate displacement between the end of the instruction and the label that is
supplied as an operand. RELB generates one byte and REL W two bytes of dis
placement. The directives take the following forms:

RELB <form name>
REL W <jorm name>

where <jorm name> is the name of a formal parameter with a "c" (code) specifier.
F or example:

CodeMacro LOOP place:Cb
DB OE2H
RELB place

EndM

Codemacro Facilities

5-7

Codemacro Facilities

5-8

DB, DWand DD

These directives differ from those which occur outside of codemacros. Use the
following forms of these directives:

DB <lorm name> I NUMBERB
DW <lorm name> I NUMBERW
DD <lorm name>

where NUMBERB is a single-byte number, NUMBER W is a two-byte number, and
form name is a name of a formal parameter. For example:

DBIT

CodeMacro XOR dst:Ew,src:Db
SEGFIX dst
DB 81H
MODRM 6,dst
DW src

EndM

This directive manipulates bits in combinations ofa byte or less. The directive takes
the following form:

DBIT <field description>{'<lield description>}

where a field description has two forms:

<number><combination>
<number>(<lorm name>(<.rshift»)

where number ranges from 1 to 16 and specifies the number of bits to be set. The
combination parameter specifies the desired bit combination. The total of all the
numbers listed in the field descriptions must not exceed 16. The second form shown
above containsform name, a formal parameter name that instructs the assembler to
put a certain number in the specified position. This number normally refers to the
register specified in the first line of the codemacro. The numbers used in this special
case for each register follow.

AL: 0
CL: 1
DL: 2
BL: 3
AH: 4
CH: 5
DH: 6
BH: 7
AX: 0
CX: 1
DX: 2
BX: 3
SP: 4
BP: 5
SI: 6
DI: 7
ES: 0
CS: 1
SS: 2
DS: 3

The parameter rshift, which is contained in the innermost parentheses, specifies a
number of right shifts. For example, "0" specifies no shift, "1" shifts right one bit, "2"
shifts right two bits, and so on. The definition below uses this form.

CodeMacro DEC dst:Rw
DBIT 5(9H),3(dst(0))

EndM

The first five bits of the byte have the value 9H. If the remaining bits are zero, the
hex value of the byte will be 48H. If the following instruction is assembled:

DEC DX

and DX has a value of2H, then 48H + 2H = 4AH, which is the final value of the byte
for execution. If this sequence had been present in the definition:

DBIT 5(9H),3(dst(l))

then the register number would have been shifted right once and the result would
had been 48H + I H = 49H, which is erroneous.

Codemacro Facilities

5-9

Chapter 6

DDT-86
DDT-86 OPERATION

The DDT-86 program allows the user to test and debug programs interactively in a
CP/M-86 environment. To use DDT-86, you should be familiar with the 8086
processor, ASM-86, and the CP/M-86 operating system as described in the CP/M-
86 System Reference Guide for the APC.

Invoking D DT86

Invoke DDT -86 by entering one of the following commands.

DDT86
D DT86 filespec

The first command loads and executes DDT -86. After displaying its sign-on mes
sage and prompt character (-), DDT -86 is ready to accept operator commands. The
second command is similar to the first, except that after DDT -86 is loaded, the file
specified by filespec is also loaded. If the filetype is omitted from the filespec,
".CMD" is assumed. Note that DDT-86 cannot load a file with a filetype of .H86.

The second form of the invoking command is equivalent to the following sequence.

A>DDT86
DDT86 x.x

-Efilename

At this point, the loaded program is ready for execution.

DDT -86 Command Conventions

When DDT-86 is ready to accept a command, it displays a hyphen(-) as the prompt.
In response, you can enter a command line or press CTRL .. C to end the debugging
session. A command line can have up to 64 characters, and is terminated when you
press RETURN. When entering the command, use standard CP/M-86 line-editing
functions (CTRL,.. X, CTRL-H, CTRL-R, and so forth) to correct typing errors.
DDT-86 does not process the command line until RETURN is pressed.

6-1

DDT~86

6-2

The first character of each command line determines the command action. Table
6-1 summarizes the DDT -86 commands, which are defined individually later in the
chapter.

Table 6-1 DDT-86 Command Summary

COMMAND ACTION

A Enter assembly language statements.

D Display memory in hexadecimal and ASCII.

E Load program for execution.

F Fill memory block with a constant.

G Begin execution with optional breakpoints.

H Perform hexadecimal arithmetic.

I Set up file control block and command tail.

L List memory using 8086 mnemonics.

M Move memory block.

R Read disk file into memory.

S Set memory to new values.

T Trace program execution.

U Perform un traced program monitoring.

V Show memory layout of disk file read.

W Write contents of memory block to disk.
"-

X Examine and modify CPU state.

The command character can be followed by one or more arguments, consisting of
hexadecimal values, file names, or other information, depending on the command.
Arguments are separated from each other by commas or spaces. No spaces are
allowed between the command character and the first argument.

Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands. Because the
8086 can address up to one megabyte of memory, addresses must be 20-bit values.
Enter a 20-bit address as follows:

ssss:oooo

where ssss represents an optional 16-bit segment number and 0000 is a 16-bit offset.
DDT -86 combines these values to produce a 20-bit effective address as follows:

ssssO

+ 0000

eeeee

The optional value ssss may be a 16-bit hexadecimal value or the name of a segment
register. If you specify a segment register name, the value of ssss represents the
contents of that register in the user's CPU state, as indicated by the X command. If
omitted, a default value appropriate to the command being executed is used, as
described later in this chapter.

Terminating DDT -86

Terminate DDT-86 by pressing CTRI.7 cin response to the hyphen prompt. This
returns control to the CCP. Note that CP/M-86 does not have the SAVE facility
found in CP/M for 8-bit machines. Therefore, when using DDT-86 to patch a file,
write the file to disk with the W command before exiting DDT -86.

DDT-86 OPERATION WITH INTERRUPTS

DDT -86 operates with interrupts disabled while a single instruction is being traced.
It preserves the interrupt state of the program being executed under DDT-86. When
DDT-86 has control of the CPU (either when it is initially invoked or when it
regains control from the program being tested), the condition of the interrupt flag is
the same as it was when DDT-86 was invoked. While the program being tested has
control of the CPU, the user's CPU state, which can be displayed with the X
command, determines the state of the interrupt flag.

6-3

6-4

DDT-86 COMMANDS

This section defines DDT-86 commands and their arguments. DDT-86 commands
give you control of program execution and allow you to display and modify system
memory and the CPU state.

The A (Assemble) Command

The A command assembles 8086 mnemonics directly into memory. The following is
the form of the A command:

As

where s is the 20-bit address where assembly is to start. DDT -86 responds to the A
command by displaying the address of the memory location where assembly is to
begin. At this point, enter assembly language statements as described in the
Assembly Language Syntax section later in this chapter. When you enter a
statement, DDT-86 converts it to binary, places the value(s) in memory, and
displays the address of the next available memory location. This process continues
until you enter a blank line or a line containing only a period.

DDT-86 responds to invalid statements by displaying a question mark (?) and
redisplaying the current assembly address.

The D (Display) Command

The D command displays the contents of memory as 8-bit or 16-bit hexadecimal
values in ASCII. The following are the forms of the D command:

D
Ds
Ds,f
DW
DWs
DWs,f

where s is the 20-bit address where the display is to start, and f is the 16-bit offset
within the segment specified by s where the display is to finish.

Memory is displayed on one or more display lines. Each display line shows the
values of up to 16 memory locations. For the first three forms, the display line
appears as follows:

ssss:oooo bb bb ... bb cc ... c

where ssss is the segment being displayed and 0000 is the offset within segment ssss.
The bb's represent the contents of the memory locations in hexadecimal, and the c's
represent the contents of memory in ASCII. Any nongraphic ASCII characters are
represented by periods.

In response to the first form shown above, DDT-86 displays memory from the
current display address for 12 display lines. The response to the second form is
similar to the first, except that the display address is first set to the 20-bit address s.
The third form displays the memory block between locations s and! The next three
forms are analogous to the first three, except that the contents of memory are
displayed as l6-bit values, rather than 8-bit values, as shown below.

ssss:OOOO wwww wwww ... wwwwcccc ... cc

During a long display, you can abort the D command by typing any character at the
console.

The E (Load for Execution) Command

The E command loads a file into memory so that a subsequent G, T or U command
can begin program execution. The E command takes the form:

Efilename

where filename is the name of the file to be loaded. If no filetype is specified, ". CMD"
is assumed. The contents of the user segment registers and IP register are altered
according to the information in the header of the file loaded.

An E command releases all blocks of memory allocated by any previous E or R
commands or by programs executed under DDT-86. Therefore, only one file at a
time may be loaded for execution.

When the load is complete, DDT -86 displays the starting and ending addresses of
each segment in the file loaded. Use the V command to redisplay this information at
a later time.

DDT~86

6-5

6-6

If the file does not exist or cannot be successfully loaded in the available memory,
DDT-86 issues an error message.

The F (Fill) Command

The F command fills an area of memory with a byte or word constant. The
following are the forms of the F command:

Fs,f,b
FWs,f,w

where s is a 20-bit starting address of the block to be filled, andfis a 16-bit offset of
the final byte of the block within the segment specified in s.

In response to the first form, DDT -86 stores the 8-bit value b in locations s through
f. In the second form, the 16-bit value w is stored in locations s throughfin standard
form, low 8 bits first followed by high 8 bits.

If s is greater thanf or if the value b is greater than 255, DDT -86 responds with a
question mark. DDT -86 issues an error message if the value stored in memory
cannot be read back successfully, indicating faulty or nonexistent RAM at the
location indicated.

The G (Go) Command

The G command transfers control to the program being tested, and optionally sets
one or two breakpoints. The following are the forms of the G command:

G
G,bl
G,bl,b2
Gs
GS,bl
Gs,bl,b2

where s is a 20-bit address where program execution is to start, and bl and b2 are
20-bit breakpoint addresses. If no segment value is supplied for any of these three
addresses, the segment value defaults to the contents of the CS register.

In the first three forms, no starting address is specified; instead, DDT -86 derives the
20-bit address from the CS and IP registers. The first form transfers control to the
program being tested without setting any breakpoints. The next two forms respec-

tively set one and two breakpoints before passing control to the user's program. The
next three forms are analogous to the first three, except that the CS and IP registers
are first set to s.

Once control has been transferred to the program under test, it executes in realtime
until a breakpoint is encountered. At this point, DDT-86 regains control, clears all
breakpoints, and indicates the address at which execution of the program under test
was interrupted as follows:

*ssss:oooo

where ssss corresponds to the CS and 0000 corresponds to the IP where the break
occurred. When a breakpoint returns control to DDT-86, the instruction at the
breakpoint address has not yet been executed.

The H (Hexadecimal Math) Command

The H command computes the sum and difference of two l6-bit values. The
following is the form of the H command:

Ha,b

where a and b are the values whose sum and difference are to be computed. DDT -86
displays the sum (ssss) and the difference (dddd) truncated to 16 bits on the next line
as shown below:

ssss dddd

The I (Input Command Tail) Command

The I command prepares a file control block and command tail buffer in DDT-86's
base page, and copies this information into the base page of the last file loaded with
the E command. The following is the form of the I command:

Icommandtail

where the commandtail parameter is a character string that usually contains one or
more filenames. The first filename is parsed into the default file control block at
005CH. The optional second filename (if specified) is parsed into the second part of
the default file control block beginning at 006CH. The characters in the command
tail parameter are also copied into the default command buffer at 0080H. The
length of commandtail is stored at 0080H, followed by the character string
terminated with a binary zero.

6-7

6-8

If a file has been loaded with the E command, DDT-86 copies the file control block
and command buffer from the base page ofDDT-86 to the base page of the program
loaded. The location of DDT- 86's base page can be obtained from the SS register in
the user's CPU state when DDT-86 is invoked. The location of the base page ofa
program loaded with the E command is the value displayed for DS upon comple
tion of the program load.

The L (List) Command

The L command lists the contents of memory in assembly language. The following
forms of the L command are used:

L
Ls
Ls,j

where s is the 20-bit address at which the list is to start, andjis a 16-bit offset within
the segment specified in s where the list is to finish.

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s, then lists twelve lines of code. The
last form lists disassembled code from s throughf In all three cases, the list address
is set to the next unlisted location in preparation for a subsequent L command.
When DDT-86 regains control from a program being tested (see G, T and U
commands), the list address is set to the current value of the CS and IP registers.

To abort long displays, press any key during the list process. Press CTRL-S to halt
the display temporarily.

The syntax of the assembly language statements produced by the L command is
described later in the chapter.

The M (Move) Command

The M command moves a block of data values from one area of memory to another.
The following is the form of the M command:

Ms,f,d

where s is the 20-bit starting address of the block to be moved,jis the offset of the
final byte to be moved within the segment described by s, and dis the 20-bit ~ddress

of the first byte of the area to receive the data. If the segment is not specified in d, the
value equals that used for s. Note that if the value of dis between s andj, part of the
block being moved will be overwritten before it is moved, because data is
transferred starting from location s.

The R (Read) Command

The R command reads a file into a contiguous block of memory. The following is
the form of the R command:

Rfilename

where filename is the name and type of the file to be read.

DDT-86 reads the file into memory and displays the starting and ending addresses
of the block of memory occupied by the file. Note that a V command can redisplay
this information at a later time. The default display pointer (for subsequent D
commands) is set to the start of the block occupied by the file.

The R command does not free any memory previously allocated by another R or E
command. Therefore, a number of files can be read into memory without overlap
ping. The number offiles that can be loaded is limited to seven, which is the number
of memory allocations allowed by the BDOS, minus one for DDT-86 itself.

If the file does not exist or there is not enough memory to load the file, DDT-86
issues an error message.

The S (Set) Command

The S command can change the contents of bytes or words of memory. The
following forms of the S command are used:

Ss
SWs

where s is the 20-bit address at which the change is to occur.

DDT -86 displays the memory address and its current contents on the following line.
In response to the first form, the display appears as follows:

ssss:oooo bb

6-9

6-10

In response to the second form, the display appears as follows:

ssss:oooo wwww

In the above examples, bb and wwww are the contents of memory in byte and word
formats, respectively.

In response to one of the above displays, you can choose to alter the memory
location or to leave it unchanged. If you enter a valid hexadecimal value, the
contents of the byte (or word) in memory is replaced with the value. If no value is
entered, the contents of memory are unaffected and the contents of the next address
are displayed. In either case, DDT-86 continues to display successive memory
addresses and values until either a period or an invalid value is entered.

DDT-86 issues an error message if the value stored in memory cannot be read back
successfully, indicating faulty or nonexistent RAM at the location indicated.

The T (Trace) Command

The T command traces program execution for 1 to OFFFFH program steps. The
following forms of the T command are used:

T
Tn
TS
TSn

where n is the number of instructions to execute before returning control to the
console.

Before an instruction is executed, DDT-86 displays the current CPU state and the
disassembled instruction. In the first two forms, the segment registers are not
displayed, allowing the entire CPU state to be displayed on one line. The next two
forms are analogous to the first two, except that all the registers are displayed,
forcing the disassembled instruction to be displayed on the next line, as in the X
command.

In all of the forms, control transfers to the program under test at the address
indicated by the CS and IP registers. If n is not specified, one instruction is executed.
Otherwise DDT -86 executes n instructions, displaying the CPU state before each
step. To abort a long trace before n steps have been executed, press any key.

After a T command, the list address used in the L command is set to tile address of
the next instruction to be executed.

Note that DDT-86 does not trace through a BDOS interrupt instruction, since
DDT-86 itself makes BDOS calls and the BDOS is not reentrant. Instead, the entire
sequence of instructions from the BDOS interrupt through the return from BDOS is
treated as one traced instruction.

The U (U ntrace) Command

The U command is identical to the T command except that the CPU state is
displayed only before the first instruction is executed, rather than before every step.
The following forms of the U command are used:

U
Un
US
USn

where n is the number of instructions to execute before returning control to the
console. To abort the U command before n steps have been executed, press any key.

The V (Value) Command

The V command displays information about the last file loaded with the E or R
commands. The following is the form of the V command:

V

If the last file was loaded with the E command, the V command displays the starting
and ending addresses of each of the segments contained in the file. If the last file was
read with the R command, the V command displays the starting and ending
addresses of the block of memory where the file was read. If neither the R nor E
commands have been used, DDT-86 responds to the V command with a question
mark (?).

The W (Write) Command

The W command writes the contents of a contiguous block of memory to disk. The
foHowing forms of the W command are used:

Wfilename
W filename,s,f

6-11

6-12

where filename is the filename and filetype of the disk file to receive the data, and s
andfare the 20-bit first and last addresses of the block to be written. If the segment
is not specified in/, DDT-86 uses the same value used for s.

If the first form is used, DDT-86 assumes the s andfvalues from the last file read
with an R command. If no file was read with an R command, DDT -86 responds
with a question mark (?). This form is useful for writing out files after patches have
been installed, assuming the overall length of the file is unchanged.

In the second form, where s andfare specified as 20-bit addresses, the low four bits
of s are assumed to be O. Thus the block being written must always start on a
paragraph boundary.

If the file with the name specified in the W command already exists, DDT-86 deletes
it before writing a new file.

The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU state of the
program under test. The following forms of the X command are used:

X
Xr
Xf

where ris the name of one of the 8086 CPU registers andfis the abbreviation of one
of the CPU flags. The first form displays the CPU state in the format:

AX BX ex
--------- xxxx xxxx xxx x
<instruction>

SS ES IP
xxxx xxxx xxxx

The nine hyphens at the beginning of the line indicate the state of the nine CPU
flags. Each position can be either a hyphen, indicating that the corresponding flag is
not set (0), or a one-character abbreviation of the flag name, indicating that the flag
is set (1). The abbreviations of the flag names are shown in Table 6-2. The value for
instruction is the disassembled instruction at the next location to be executed,
indicated by the CS and IP registers.

Table 6-2 Flag Name Abbreviations

CHARACTER NAME

0 Overflow
D Direction
I Interrupt Enable
T Trap
S Sign
Z Zero
A Auxiliary Carry
P Parity
C Carry

The second form allows you to alter the registers in the CPU state of the program
being tested. The r following the X is the name of one of the 16-bit CPU registers.
DDT -86 responds by displaying the name of the register followed by its current
value. If RETURN is pressed, the value of the register is not changed. If a valid value
is typed, the contents of the register are changed to that value. In either case, the
next register is then displayed. This process continues until a period or an invalid
value is entered, or the last register is displayed.

The third form allows you to alter one of the flags in the CPU state of the program
being tested. DDT -86 responds by displaying the name of the flag followed by its
current state. If RETURN is pressed, the state of the flag is not changed. If a valid
value is typed, the state of the flag is changed to that value. Only one flag may be
examined or altered with each X/command. Set or reset flags by entering a value of
1 or O.

DEFAULT SEGMENT VALUES

DDT -86 has an internal mechanism that keeps track of the current segment value,
making segment specification an optional part of a DDT-86 command. DDT-86
divides the command set into two types of commands, according to which segment
a command defaults to if no segment value is specified in the command line.

The first type of command pertains to the code segment: A (Assemble), L (List
Mnemonics) and W (Write). These commands use the internal type-l segment value
if no segment value is specified in the command.

6-13

6-14

When invoked, DDT-86 sets the type-l segment to 0, and changes it when one of the
following actions is taken.

• When a file is loaded by an E command, DDT-86 sets the type-l segment
value to the value of the CS register.

• When a file is read-by an R command, DDT-86 sets the type-l segment
value to the base segment where the file was read.

• When an X command changes the value of the CS register, DDT-86 changes
the type-l segment value to the new value of the CS register.

• When DDT-86 regains control from a user program after a G, T or U
command, it sets the type-l segment value to the value of the CS register.

• When a segment value is specified explicitly in an A or L command,
DDT-86 sets the type-I-segment value to the segment value specified.

The second type of command pertains to the data segment: D (Display), F (Fill), M
(Move) and S (Set). These commands use the internal type-2 segment value if no
segment value is specified in the command.

When invoked, DDT-86 sets the type-2 segment value to 0, and changes it when one
of the following actions is taken.

• When a file is loaded by an E command, DDT-86 sets the type-2 segment
value to the value of the DS register.

• When a file is read by an R command, DDT -86 sets the type-2 segment value
to the base segment where the file was read.

• When an X command changes the value of the DS register, DDT-86
changes the type-2 segment value to the new value of the DS register.

• When DDT-86 regains control from a user program after a G, T or U
command, it sets the type-2 segment value to the value of the DS register.

• When a segment value is specified explicitly in a D, F, M or S command,
DDT-86 sets the type-2 segment value to the segment value specified.

When evaluating programs that use identical values in the CS and DS registers, all
DDT-86 commands default to the same segment value unless explicitly overridden.

Note that the G (Go) command does not fall into either group, since it defaults to
the CS register.

Table 6-3 summarizes DDT-86's default segment values.

Table 6-3 DDT-86 Default Segment Values

COMMAND TYPE-l TYPE-2

A x
D x
E c c
F x
G c c
H
I
L x
M x
R c c
S x
T c c.
U c c
V
W x
X c c

x - use this segment default if none specified;
change default if specified explicitly

c -change this segment default

ASSEMBLY LANGUAGE SYNTAX FOR A AND L COMMANDS

In general, the syntax of the assembly language statements used in the A and L
commands is standard 8086 assembly language. Several minor exceptions are listed
below.

• DDT-86 assumes that all numeric values entered are hexadecimal.

• Up to three prefixes (LOCK, repeat, segment override) may appear in one
statement, but they all must precede the opcode of the statement. Alter
nately, a prefix may be entered on a line by itself.

6-15

6-16

• _The distinction between byte and word string instructions is made as
follows:

byte

LODSB
STOSB
SCASB
MOVSB
CMPSB

word

LODSW
STOSW
SCASW
MOVSW
CMPSW

• The mnemonics for near and far control transfer instructions are as follows:

short

JMPS

normal

JMP
CALL
RET

far

JMPF
CALLF
RETF

• If the operand of a CALLF or JMPF instruction is a 20-bit absolute
address, it is entered in the following form:

ssss:oooo

where ssss is the segment and 0000 is the offset of the address.

• Operands that could refer to either a byte or word are ambiguous, and must
be preceded either by the prefix BYTE or WORD. These prefixes may be
abbreviated to BY and WOo For example.:

INC
NOT

BYTE [BP]
WORD [1234]

Failure to supply a prefix when needed results in an error message.

• Operands which address memory directly are enclosed in square brackets to
distinguish them from immediate values. For example:

ADD
ADD

AX,5
AX,[5]

;add 5 to register AX
;add the contents of location 5 to AX

• The following are forms of register indirect memory operands:
[pointer register]
[index register]
[pointer register + index register]

where the pointer registers are BX and BP, and the index registers are SI and
DI. Any of these forms can be preceded by a numeric offset, as in the
following examples.

ADD BX,[BP+SI]
ADD BX,3[BP+SI]
ADD BX,lD47[BP+SI]

DDT-86 SAMPLE SESSION

In the following sample session, a simple sort program is interactively debugged.
Comments that explain the steps involved are in italics.

Source file of program to test.

A>type sort.a86

simple sort program

sort:
mov si,O ;initialize index
mov bx,offset nlist ;bx = base of list
mov sw,O ;c1ear switch flag

comp:
mov al,[bx+si] ;get byte from lis t
cmp al,l[bx+si] ;compare with next byte
Jna mCl ;don't switch if in order
xchg ai, 1 [bx+si] ;do first part of switch
mov [bx+si],al ;do second part
mov sw,l ;set switch flag

inci:
Inc Sl ;increment index
cmp si,count ;end of list?
Jnz camp ;no, keep going
test sw,l ;done - any switches?
Jnz sort ;yes, sort some more

6-17

6-18

done:
jmp done ;get here when list ordered

dseg
org 100h ;leaye space for base page

nlist db 3,8,4,6,31,6,4,1
count equ offset $ - offset nlist
sw db 0

end

Assemble program.

A>asm86 sort

CP/M 8086 ASSEMBLER VER 1.1
END OF PASS I
END OF PASS 2
END OF ASSEMBLY. NUMBER OF ERRORS: 0

Type listing file generated by ASM-86

A>type sort.lst
CP/M ASM86 1.1 SOURCE: SORT.A86

simple sort program

sort:
0000 BEOOOO moy si,O
0003 BBOOOI moy bx,offset nlist
0006 C606080 I 00 moy sw,O

comp:
OOOB 8AOO moy al,[bx+si]
OOOD 3A4001 cmp al,l[bx+si]
0010 760A jna InCI
0012 864001 xchg al,l[bx+si]
0015 8800 moy [bx+si],al
0017 C606080101 moy sw,1

inci:
OOIC 46 inc si
OOID 83FE08 cmp si,count

;initialize index
;bx = base of list
;clear switch flag

;get byte from list
;compare with next byte
;don't switch if in order
;do first part of switch
;do second part
;set switch flag

;increment index
;end of list?

0020 75E9 jnz comp ;no, keep going
0022 F60608010l test sw,l ;done - any switches?
0027 75D7 jnz sort ;yes, sort some more

done:
0029 E9FDFF jmp done ;get here when list ordered

dseg
org lOOh ;leave space for base page

0100 030804061F06 nlist db 3,8,4,6,31,6,4,1
0401

0008 count equ offset $ - offset nlist
0108 00 sw db 0

end

END OF ASSEMBLY. NUMBER OF ERRORS: 0

Type symbol table file generated by ASM-86.

A>type sort. sym
0000 VARIABLES
0100 NLIST 0108 SW

0000 NUMBERS
0008 COUNT

0000 LABELS
OOOB COMP 0029 DONE

Type hex file generated by ASM-86.

A>type sort.h86
:0400000300000000F9

001C INCI 0000 SORT

: 1 B000081 BEOOOOBBOOO 1 C606080 1 008A003A400 17 60A86400 18800C606080 16C
: 11001B81014683FE0875E9F60608010175D7E9FDFFEE
:09010082030804061 F0604010035
: 0000000 1 FF

Generate CMD file from H86 file.

A>gencmd sort

BYTES READ 0039
RECORDS WRITTEN 04

DDT,86

6-19

6-20

Invoke DDT-86 and load SORT. CMD.

A>ddt86 sort
DDT86 1.0

START END
CS 047D:0000 047D:002F
DS 0480 :0000 0480 :010F

Display initial register values .

..,x
AX BX CX DX SP BP SI DI CS DS SS ES IP

--------- 0000 0000 0000 0000 119E 0000 0000 0000 047D 0480 0491 0480 0000
MaV SI,OOOO

Disassemble the beginning of the code segment .

.,1
047D:0000 MaV
047D:0003 MaV
047D:0006 MaV
047D:000B MaV
047D:000D CMP
047D:0010 JBE
047D:0012 XCHG
047D:0015 MaV
047D:0017 MaV
047D:00IC INC
047D:001D CMP
047D:0020 JNZ

SI,OOOO
BX,0100
BYTE [0108],00
AL,[BX+SI]
AL,OI[BX+SI]
OOIC
AL,Ol[BX+SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0008
OOOB

Display the start of the data segment .

.,dIOO,IOf
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00

Disassemble the rest of the code.

-1
047D:0022 TEST
047D:0027 JNZ
047D:0029 JMP
047D:002C ADD
047D:002E ADD
047D:0030 DAS

BYTE [0108],01
0000
0029
[BX+SI],AL
[BX+SI],AL

047D:0031 ADD
047D:0033 ??=
047D:0034 POP
047D:0035 ADD
047D:0037 ADD
047D:0039 ??=

[BX+SI],AL
6C
ES
[BX],CL
[BX+SI],AX
6F

Execute program from IP (=0) setting breakpoint at 29H.
-g,29
*047D:0029

Breakpoint encountered. Display sorted list.
-dl00,10f
0480:0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Doesn't look good. Reloadfile.

-esort
START END

CS 047D:0000 047D:002F
DS 0480 :0000 0480 :010F

Trace 3 instructions.

-t3
AX BX CX DX SP BP SI DI IP

-----Z-P- 0000 0100 0000 0000 119E 0000 0008 0000 0000 MOV SI,OOOO
-----Z-P- 0000 0100 0000 0000 119E 0000 0000 0000 0003 MOV BX,0100
-----Z-P- 0000 0100 0000 0000 119E 0000 0000 0000 0006 MOV BYTE [0108],00
*047D:000B

Trace some more.

-t3
AX BX CX DX SP BP SI DI IP

-------Z-P 0000 0100 0000 0000 119E 0000 0000 0000 OOOB MOV AL, [BX + SI]
-------z-P 0003 0100 0000 0000 119E 0000 0000 0000 DODD CMP AL, 01 [BX + SI]
----S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C
*047D:001C

Display unsorted list.

-dl00,lOf
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00

DDT~86

6-21

DDT~86

6-22

Display next instructions to be executed.

-1
047D:001C INC
047D:001D CMP
047D:0020 JNZ
047D:0022 TEST
047D:0027 JNZ
047D:0029 JMP
047D:002C ADD
047D:002E ADD
047D:0030 DAS

SI
SI,0008
OOOB
BYTE [0108],01
0000
0029
[BX+SI],AL
[BX+SI],AL

047D:0031 ADD [BX +SI],AL
04iD:0033??= 6C
047D:0034 POP ES

Trace some more.

-t3
AX BX CX DX SP BPSI DI IP

----S-A-C 0003 0100 0000 0000 119E 0000 0000 000000IC INC SI
----------C 0003 0100 0000 0000 119E 0000 0001 0000 001D CMP SI,0008
---S-APC 0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ OOOB
*047D:000B

Display instructions from current IP.

-1
047D:000B MOV
047D:OOOD CMP
047D:00IO JBE
047D:0012 XCHG
047D:0015 MOV
047D:0017 MOV
047D:001C INC
047D:001D . CMP
D47D:0020 JNZ'
047D:0022 TEST
047D:0027 JNZ
047D:0029 JMP

AL,[BX+SI]
AL,Ol[BX+SI]
001C
AL,O l[BX +SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0008
OOOB
BYTE [0108],01
0000
0029

-t3
AX BX CX DX SP BP SI DI IP

----S-APC 0003 0100 0000 0000 119E 0000 0001 0000 OOOB
----S-APC 0008 0100 0000 0000 119E 0000 0001 0000 OOOD

0008 0100 0000 0000 119E 0000 0001 0000 0010
*047D:0012

-1
047D:0012 XCHG
047D:0015 MOV
047D:0017 MOV
047D:001C INC
047D:001D CMP
047D:0020 JNZ
047D:0022 TEST
047D:0027 JNZ
047D:0029 JMP
047D:002C ADD
047D:002E ADD
047D:0030 DAS

AL,Ol[BX+SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0008
OOOB
BYTE [0108],01
0000
0029
[BX+SI],AL
[BX+SI],AL

Go until switch has been performed.

-g,20
*047D:0020

Display list.

-d 1 00.1 Of

MOV AL,[BX+SI]
CMP AL,O 1 [BX +SI]
JBE 001C

0480:0100 03 04 08 06 IF 06 04 01 01 00 00 00 00 00 00 00

Looks like 4 and 8 were switched okay. (And toggle is true.)

-t

AX BX CX DX SP BP SI DI IP
----S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ OOOB
*047D:000B

DDT~86

6-23

DDT-86

6-24

Display next instructions.

-1
047D:000B
047D:000D
047D:0010
047D:0012
047D:0015
047D:0017
047D:001C
047D:001D
C47D:0020
047D:0022
047D:0027
047D:0029

MOV
CMP
JBE
XCHG
MOV
MOV
INC
CMP
JNZ
TEST
JNZ
JMP

AL,[BX+SI]
AL,Ol[BX+SI]
001C
AL,O 1 [BX +S I]
[BX+SI],AL
BYTE [0108],01
SI
SI,0008
OOOB
BYTE [0108],01
0000
0029

Since switch worked, reload and check boundary conditions.

-esort
START END

CS 047D:0000 047D:002F
DS 0480:0000 0480:01 OF

Make it quicker by setting list length to 3. (Could also have used s47d=le.)

-aId
047D:001D cmp si,3
047D:0020

Display unsorted list.

-d100
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00
0480:0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0480:0120 00 00 00 00 00 00 00 00 00 00 00 00 00 20 20 20

Set breakpoint when first 3 elements of list should be sorted.

-g,29
*047D:0029

See if list is sorted.

-d100,10f
0480:0100 03 04 06 08 IF 06 04 0100 00 00 00 00 00 00 00

Interesting. The fourth element seems to have been sorted in.
-esort

START END
CS 047D:0000 047D:002F
DS 0480 :0000 0480 :010F

Let's try again with some tracing.

-aId
047D:001D cmp si,3
047D:0020 .

-,t9

AX BX CX DX SP BP SI DI IP
-----Z-P-
-----Z-P-
-----Z-P-
-----Z-P-
-----Z-P-
----S-A-C
----S-A-C
----------C
----S-A-C

0006 0100 0000 0000 119E 0000 0003 0000 0000 Mav
0006 0100 0000 0000 119E 0000 0000 0000 0003 Mav
0006 0100 0000 0000 119E 0000 0000 0000 0006 Mav
0006 0100 0000 0000 119E 0000 0000 0000 OOOB Mav
0003 0100 0000 0000 119E 0000 0000 0000 OOOD CMP
0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE
0003 0100 0000 0000 119E 0000 0000 0000 001C INC
0003 0100 0000 0000 119E 0000 000 1 0000 00 1 D CMP
0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ

*047D:000B

-1

047D:000B MOV
047D:000D CMP
047D:0010 JBE
047D:0012 XCHG
047D:0015 MOV
047D:0017 MOV
047D:001C INC
047D:001D CMP
047D:0020 JNZ
047D:0022 TEST
047D:0027 JNZ
047D:0029 JMP

AL,[BX+SI]
AL,Ol[BX+SI]
001C
AL,Ol[BX+SI]
[BX+SI],AL
BYTE [0108],01
SI
Sl,0003
OOOB
BYTE [0108],01
0000
0029

SI,OOOO
BX,OIOO
BYTE [0108],00
AL,[BX+SI]
AL,O 1 [BX +SI]
001C
SI
SI,0003
OOOB

6-25

6-26

-t3

AX BX CX DX SP BP SI DI IP
----S-A-C 0003010000000000 119EOOOO 00010000 OOOB MOV
----S-A-C 0008010000000000 119EOOOO 00010000 OOOD CMP
--------- 0008010000000000 119E 00000001 00000010 JBE
*047D:0012

-1

047D:0012 XCHG
047D:0015 MOV
047D:0017 MOV
047D:00IC INC
047D:00ID CMP
047D:0020 JNZ
047D:0022 TEST

-t3

AL,OI[BX+SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0003
OOOB
BYTE [0108],01

AX BX CX DX SP BP SI DI IP
--------- 0008010000000000 119EOOOO 000100000012 XCHG
--------- 0004 0100 0000 0000 119 E 0000 0001 0000 0015 M 0 V
--------- 0004 0100 0000 0000 119 E 0000 0001 0000 0017 M 0 V
*047D:00IC

-dIOO,IO f

AL,[BX+SI]
AL,OI[BX+SI]
001C

AL,OI[BX+SI]
[BX+SI],AL
BYTE [0108],01

0480:0100 03 04 08 06 IF 06 04 01 01 00 00 00 00 00 00 00

So jar, so good.

- t3

AX BX CX DX SP BP SI DI IP
--------- 0004 0100 0000 0000 119 E 0000 0001 0000 001 C IN C S I
--------- 0004010000000000 119EOOOO 0002 0000 001D CMP SI,0003
--S-APC 0004010000000000 119EOOOO 0002 0000 0020 JNZ OOOB
*047D:000B

-I

047D:000B MOV AL,[BX+SI]
047D:000D CMP AL,OI[BX+SI]

047D:00I0 JBE
047D:0012 XCHG
047D:0015 MOV
047D:0017 MOV
047D:00IC INC
047D:00ID CMP
047D:0020 JNZ
047D:0022 TEST
047D:0027 JNZ
047D:0029 JMP

-t3

001C
AL,O 1 [BX +SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0003
OOOB
BYTE [0108],01
0000

, 0029

AX BX CX DX SP BP SI DI IP
----S-APC 0004010000000000 119E 000000020000 OOOB MOV AL,[BX +SI]
----S-APC 0008010000000000 119E000000020000000D CMP AL,OI[BX+SI]
--------- 0008010000000000 119E 0000 0002 0000 0010 JBE 001 C
*047D:0012

Sure enough, it's comparing the third andfourth elements of the list. Reload program.

-esort

START END
CS 047D:0000 047D:002F
DS 0480 :00000480 :010F

-1

047D:0000 MOV
047D:0003 MOV
047D:0006 MOV
047D:000B MOV
047D:000D CMP
047D:00I0 JBE
047D:0012 XCHG
047D:0015 MOV
047D:0017 MOV
047D:00IC INC
047D:00ID CMP
047D:0020 JNZ

SI,OOOO
BX,0100
BYTE [0108],00
AL,[BX+SI]
AL,OI[BX+SI]
001C
AL,OI[BX+SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0008
OOOB

6-27

6-28

Patch length.

-aId

047D:00ID cmp si,7
047D:0020

Try it out.

-g,29
*047D:0029

See if list is sorted.

-d 1 00,1 Of
0480:0100 01 03 04 04 06 06 08 IF 00 00 00 00 00 00 00 00

Looks better. Install patch in disk file. To do this, must read CMD file including
header, so we can use R command.

-rsort.cmd

START
2000:0000

END
2000:01FF

First 80h bytes contain header, so code starts at 80h.

-180

2000:0080
2000:0083
2000:0086
2000:008B
2000:008D
2000:0090
2000:0092
2000:0095
2000:0097
2000:009C
2000:009D
2000:00AO

MOV
MOV
MOV
MOV
CMP
JBE
XCHG
MOV
MOV
INC
CMP
JNZ

SI,OOOO
BX,0100
BYTE [0108],00
AL,[BX+SI]
AL,OI[BX+SI]
009C
AL,OI[BX+SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0008
008B

Install patch.

"'a9d

2000:009D
2000:00AO

cmp si,7

Write file back to disk. (Length of file assumed to be unchanged since no length
specified).

-wsort.cmd

Reload file.

-esort

START END
CS 047D:OOOO 047D:002F
DS 0480 :00000480 :010F

Verify that patch was installed.

-1

047D:0000 MOV
047D:0003 MOV
047D:0006 MOV
047D:000B MOV
047D:000D CMP
047D:00IO JBE
047D:0012 XCHG
047D:0015 MOV
047D:0017 MOV
047D:00IC INC
047D:00ID CMP
047D:0020 JNZ

Run it.

-g,29
*047D:0029

SI,OOOO
BX,OlOO
BYTE [0108],00
AL,[BX+SI]
AL,Ol[BX+SI]
001C
AL,Ol[BX+SI]
[BX+SI],AL
BYTE [0108],01
SI
SI,0007
OOOB

, 6-29

DDT~86

Still looks good. Ship it!

-dl00,10f
0480:010001 030404060608 IF 0000000000000000

A>

6-30

Appendix A

ASM-86 Invocation
Command:

ASM86

Syntax:

ASM86 filename {$ parameters}

where filename

parameters

Parameters:

is the 8086 assembly source file. Drive
and extension are optional. The default
file extension is .A86.

are a one-letter type followed by a
one-letter device from the table below.

form: $ T d where T = type and d = device

Table A-I Parameter Types and Devices

DEVICES PARAMETERS

A H P S F

A-H x x x x

X x x x x

y x x x x

x = valid, d = default

A-I

ASM,86 Invocation

Table A-I Parameter Types and Devices (cont'd)

DEVICES PARAMETERS

A H P S

Z x x x x

I

D

x = valid, d = default

Valid Parameters

Except for the F type, the default device is the current default drive.

A-2

A

H

P

S

F

Table A-2 Parameter Types

controls location of ASSEMBLER source file

controls location of HEX file

controls location of PRINT file

controls location of SYMBOL file

controls type of hex output FORMAT

F

x

d

A-H

x

Y

z

I

D

ASM8610

Table A-3 Device Types

Drives A - H

console device

printer device

byte bucket

Intel hex format

Digital Research hex format

Table A-4 Invocation Examples

Assemble file 10.A86, produce
10.HEX 10.LST and 10.SYM.

ASM86 10.ASM $ AD SZ Assemble file 10.ASM on device D,
produce 10.LST and 10.HEX, no
symbol file.

ASM86 10 $ PY SX

ASM86 10 $ FD

ASM86 10 $ FI

Assemble file 10.A86, produce
10.HEX, route listing directly to
printer, output symbols on console.

Produce Digital Research hex format.

Produce Intel hex format.

ASM~86 Invocation

A-3

Appendix B

Mnemonic Differences from
the Intel Assembler

The CP/M 8086 assembler uses the same instruction mnemonics as the INTEL 8086
assembler except for explicitly specifying far and short jumps, calls and returns. The
following table shows the four differences.

Table B-1 Mnemonic Differences

MNEMONIC FUNCTION CP/M INTEL

Intra segment short jump: JMPS JMP

Inter segment jum p: JMPF JMP

Inter segment return: RETF RET

Inter segment call: CALLF CALL

B-1

Appendix C

ASM-86 Files

ASM-86 HEXADECIMAL OUTPUT FORMAT

ASM-86 produces machine code in either Intel or Digital Research hexadecimal
format. The Intel format is identical to the format defined by Intel for the 8086. The
Digital Research format is nearly identical to the Intel format, but adds segment
information to hexadecimal records. Output of either format can be input to
GENCMD, but the Digital Research format automatically provides segment iden
tification. A segment is the smallest unit of a program that can be relocated.

Table C-l defines the sequence and contents of bytes in a hexadecimal record. Each
hexadecimal record has one of the four formats shown in Table C-2. An example of
a hexadecimal record is shown below.

Byte number = > 0 1 2 3 4 5 6 7 8 9 n

Contents = >: I I a a a a t t d d d c c CR LF

Table C-l Hexadecimal Record Contents

BYTE CONTENTS SYMBOL

0 record mark
1-2 record length I I
3-6 load address aaaa
7-8 record type t t
9-(n-l) data bytes d d d
n-(n+l) check sum c c
n+2 carriage return CR
n+3 line feed LF

C-l

ASM,86 Hexadecimal Output Format

C-2

Table C-2 Hexadecimal Record Formats

RECORD TYPE CONTENT FORMAT

00 Data record : 11 aaaa DT <data ... > cc

01 End-of-file :00000001 FF

Extended address
02 mark :02 0000 ST ssss cc

03 Start address :04 0000 03 ssss iiii cc

11 => record length - number of data bytes
cc => check sum - sum of all record bytes
aaaa => 16 bit address
ssss => 16 bit segment value
llll => offset value of start address
DT => data record type
ST => segment address record type

It is in the definition of record types 00 and 02 that Digital Research's hexadecimal
format differs from Intel's. Intel defines one value each for the data record type and
the segment address type. Digital Research identifies each record with the segment
that contains it, as shown in Table C-3.

Table C-3 Segment Record Types

INTEL'S DIGITAL'S
SYMBOL VALUE VALUE MEANING

DT 00 for data belonging to all 8086 segments

81H for data belonging to the CODE segment

82H for data belonging to the DATA segment

83H for data belonging to the STACK segment

84H for data belonging to the EXTRA segment

ASM~86 Hexadecimal Output Format

Table C-3 Segment Record Types (cont'd)

INTEL'S DIGITAL'S
SYMBOL VALUE VALUE MEANING

ST 02 for all segment address records

85H for a CODE absolute segment address

86H for a DATA segment address

87H for a STACK segment address

88H for a EXTRA segment address

ASM-86 SYMBOL FILE FORMAT

The .SYM file produced by ASM-86 has the following characteristics.

• There is a form feed at the start of the file.

• Symbols are alphabetized within groups.

• Tabs are expanded if symbols are sent to the printer ($SY).

INCLUDE FILES

INCLUDE files have the following characteristics.

• The filetype defaults to .A86 if no extension is specified.

• The filetype may have fewer than three characters.

• The system defaults to the same drive as the source file when $A is used in
the command.

• ASM-86 aborts if the file is not found.

ASM-86 List File Format

The .LST file produced by ASM-86 has the following characteristics.

• There is a form feed at the start of the file.

• There is no form feed at end of file.

• There is no <cr> <If> at the top of each page.

• An absolute address field is given for relative instructions.

• No spaces are placed between hex bytes. This allows more space for
comments.

• Errors are printed when NOLIST is active.

C-3

Appendix D

Reserved Words
Table D-l Reserved Words

Predefined Numbers

BYTE WORD DWORD

Operators

EQ GE GT LE LT

NE OR AND MOD NOT

PTR SEG SHL SHR XOR

LAST TYPE LENGTH OFFSET

Assembler Directives

DB DD DW IF RS

RB RW END ENDM EQU

ORG CSEG DSEG ESEG SSEG

EJECT ENDIF TITLE LIST NO LIST

INCLUDE SIMFORM PAGESIZE CODEMACRO PAGEWIDTH

Codemacro Directives

DB DD DW DB IT RELB

RELW MODRM SEGFIX NOSEGFIX

D-l

Reserved Words

Table D-l Reserved Words (cont'd)

8086 Registers

AH AL AX BH BL

BP BX CH CL CS

CX DH DI DL DS

DX ES SI SP SS

Instruction Mnemonics - See Appendix E.

, D-2

Appendix E

ASM-86 Instruction Summary
Table E-l ASM-86 Instruction Summary

MNEMONIC DESCRIPTION

AAA ASCII Adjust for Addition
AAD ASCII Adjust for Division
AAM ASCII Adjust for Multiplication
AAS ASCII Adjust for Subtraction
ADC Add with Carry
ADD Add
AND And
CALL Call (intra segment)
CALLF Call (inter segment)
CBW Convert Byte to Word
CLC Clear Carry
CLD Clear Direction
CLI Clear Interrupt
CMC Complement Carry
CMP Compare
CMPS Compare Byte or Word (of string)
CMPSB Compare String in Byte Form
CMPSW Compare String in Word Form
CWD Convert Word to Double Word
DAA Decimal Adjust for Addition
DAS Decimal Adjust for Subtraction
DEC Decrement
DIV Divide
ESC Escape
HLT Halt
IDIV Integer Divide
IMUL Integer Multiply
IN Input Byte or Word
INC Increment
INT Interrupt

E-I

ASM~86 Instruction Summary

Table E-l ASM-86 Instruction Summary (cont'd)

MNEMONIC DESCRIPTION

INTO Interrupt on Overflow
IRET Interrupt Return
JA Jump on Above
JAE Jump on Above or Equal
JB Jump on Below
JBE Jump on Below or Equal
JC Jump on Carry
JCXZ Jump on CX Zero
JE Jump on Equal
JG Jump on Greater
JGE Jump on Greater or Equal
JL Jump on Less
JLE Jump on Less or Equal
JMP Jump (intra segment)
JMPF Jump (inter segment)
JMPS Jump (8 bit displacement)
JNA Jump on Not Above
JNAE Jump on Not Above or Equal
JNB Jump on Not Below
JNBE Jump on Not Below or Equal
JNC Jump on Not Carry
JNE Jump on Not Equal
JNG Jump on Not Greater
JNGE Jump on Not Greater or Equal
JNL Jump on Not Less
JNLE Jump on Not Less or Equal
JNO Jump on Not Overflow
JNP Jump on Not Parity
JNS Jump on Not Sign
JNZ Jump on Not Zero
JO Jump on Overflow
JP Jump on Parity
JPE Jump on Parity Even
JPO Jump on Parity Odd
JS Jump on Sign
JZ Jump on Zero
LAHF Load AH with Flags

E-2

ASM~86 Instruction Summary

Table E-l ASM-86 Instruction Summary (cont'd)

MNEMONIC DESCRIPTION

LDS Load Pointer into DS
LEA Load Effective Address
LES Load Pointer into ES
LOCK Lock Bus
LODS Load Byte or Word (of string)
LODSB Load String in Byte Form
LODSW Load String in Word Form
LOOP Loop
LOOPE Loop While Equal
LOOPNE Loop While Not Equal
LOOPNZ Loop While Not Zero
LOOPZ Loop While Zero
MOV Move
MOVS Move Byte or Word (of string)
MOVSB Move String in Byte Form
MOVSW Move String in Word Form
MUL Multiply
NEG Negate
NOT Not
OR Or
OUT Output Bye or Word
POP Pop
POPF Pop Flags
PUSH Push
PUSHF Push Flags
RCL Rotate through Carry Left
RCR Rotate through Carry Right
REP Repeat
RET Return (intra segment)
RETF Return (inter segment)
ROL Rotate Left
ROR Rotate Right
SAHF Store AH into Flags
SAL Shift Arithmetic Left
SAR Shift Arithmetic Right

E-3

ASM-86 Instruction Summary

Table E-l ASM-86 Instruction Summary (cont'd)

MNEMONIC DESCRIPTION

SBB Subtract with Borrow
SCAS Scan Byte or Word (of string)
SCASB Scan String in Byte Form
SCASW Scan String in Word Form
SHL Shift Left
SHR Shift Right
STC Set Carry
STD Set Direction
STI Set Interrupt
STOS Store Byte or Word (of string)
STOSB Store String in Byte Form
STOSW Store String in Word Form
SUB Subtract
TEST Test
WAIT Wait
XCHG Exchange
XLAT Translate
XOR Exclusive Or

£-4

Appendix F

Sample Program
Listing F -1 Sample Program APPF .A86

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Output

title 'Terminal Input/Output'
pagesize 50
pagewidth 79
simform
~****** Terminal I/O subroutines********

The following subroutines
are included:

CONSTAT - console status
CONIN - console input
CONOUT - console output

PAGEl

Each routine requires CONSOLE NUMBER
in the B L - register

* Jump table: *

CSEG start of code segment

F-l

Sample Program

0000 E90600
0003 E91900
0006 E92BOO

jmp constat
jmp conin
jmp conout

* I/O port numbers *

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Output PAGE 2

0010
0011
0011
0001
0002

0012
0013
0013
0004
0008

0009 53E83FOO

OOOD 52

F-2

Terminal 1:
instat 1 equ 10h ; input status port
indatal equ Ilh ; input port
outdatal equ Ilh ; output port
readyinmask 1 equ 01h ; input ready mask
readyoutmask 1 equ 02h ; output ready mask

Terminal 2:

instat2 equ 12h ; input status port
indata2 equ 13h ; input port
outdata2 equ 13h ; output port
readyinmask2 equ 04h ; input ready mask
readyoutmask2 equ 08h ; output ready mask

* CONSTAT *

Entry: BL -reg = terminal no
Exit: AL - reg = 0 if not ready

Offh if ready
constat:

push bx ! call okterminal
constatl:

push dx

OOOE B600 mov dh,O ; read status port
00108A17 mov dl,instatustab [BX]
0012 EC In al,dx
0013 224706 and al,readyinmasktab [bx]
0016 7402 JZ constatout
0018 BOFF mov al,Offb

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Output PAGE 3

constatout:
001 A 5A5BOACOC3

001F 53E82900
0023 E8E7FF
002674FB
0028 52
0029 B600
002B 8A5702
002E EC
002F 247F
00315A5BC3

comn:
coninl:

pop dx ! pop bx ! or al,al ! ret

* CONIN *

Entry: BL - reg = terminal no
Exit: AL - reg = read character

push bx ! call okterminal !
call constat 1 ; test status
jz coninl
push dx ; read character
mov dh,O
mov dl,indatatab [BX]
In al,dx
and al,7fh ; strip parity bit
pop dx ! pop bx ! ret

* CON OUT *

Entry: BL - reg = terminal no
AL - reg = character to print

Sample Program

F-3

Sample Program

003453E81400
0038 52
0039 50
003A B600
003C8A17

003E EC

conout:

conout1:

push bx ! call okterminal
push dx
push ax
mov dh,O ; test status
mov dl,instatustab [BX]

in al,dx

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Output PAGE 4

F-4

003F 224708
004274FA
004458
00458A5704
0048 EE
00495A5BC3

004C OADB
004E 740A
005080FB03
0053 7305
0055 FECB
0057 B700
0059 C3

005A 5B5BC3

and al,readyoutmasktab[BX]
jz conout1
pop ax ; write byte
mov dl,outdatatab [BX]
out dX,al
pop dx! pop bx ! ret

++++++++++++++
+ OKTERMINAL +
++++++++++++++

Entry: BL - reg = terminal no

okterminal:
or bl,bl
JZ error
cmp bl,length instatustab + 1
Jae error
dec bl
mov bh,O
ret

error: pop bx ! pop bx ! ret ; do nothing

;************** end of code segment ***************

* Data segment *

0000 1012
0002 1113
0004 1113
00060104
00080208

dseg

* Data for each terminal *

instatustab db
indatatab db
outdatatab db
readyinmasktab db
readyoutmasktab db
,

instat 1 ,instat2
indata 1 ,indata2
outdatal,outdata2
readyinmask 1 ,readyinmask2
readyoutmaskl,readyoutmask2

;***************end of file**********************
end

END OF ASSEMBLY. NUMBER OF ERRORS: 0

Sample Program

F-5

Appendix G

Codemacro Definition Syntax

<codemacro> : : = CODEMACRO <name> [<formal$list>]
[<listofmacro$directives>]
ENDM

<name> : : = IDENTIFIER

<formal$list> : : = <parameter$descr>[{, <parameter$descr>}]

<parameter$descr> : : = <form$name>:<specifier$letter>
<modifier$letter>[(<range»]

<specifier$letter> : : = A I C I DIE I M I R I S I X

<modifier$letter> : : = b I wid I sb

<range> : : = <single$range>1 <double$range>

<single$range> : : = REGISTER I NUMBERB

<double$range> : : = NUMBERB, NUMBERB I NUMBERB, REGISTER I
REGISTER, NUMBERB I REGISTER, REGISTER

<listofmacro$directives> : : = <macro$directive>
{ <macro$directive>}

<macro$directive> : : = <db> I <dw> I <dd> I <segfix> I
<ncsegfix> I <modrm> I <relb> I
<relw> I <dbit>

<db> : : = DB NUMBERB I DB <form$name>

G-I

Codemacro Definition Syntax

0-2

<dw> : : = DW NUMBERW I DW <form$name>

<dd> : : = DD <form$name>

<segfix> : : = SEG FIX <form$name>

<nosegfix> : : = NOSEGFIX <form$name>

<modrm> : : = MODRM NUMBER7, <form$name> I
MODRM <form$name>, <form$name>

<relb> : : = RELB <form$name>

<relw> : : = REL W <;form$name>

<dbit> : : = DBIT <field$descr>{, <field$descr>}

<field$descr> : : = NUMBERI5 (NUMBERB) I
NUMBERI5 (<form$name> (NUMBERB»

<form$name> : : = IDENTIFIER

NUMBERB is 8 - bits
NUMBER W is 16 - bits
NUMBER7 are the values 0, I, ... , 7
NUMBERI5 are the values 0, I, ... , 15

Appendix H

ASM-86 Error
Messages

ASM-86 produces two types of error messages: fatal errors and diagnostics. Fatal
errors occur when ASM-86 is unable to continue assembling. Diagnostic messages
report problems with the syntax and semantics of the program being assembled.
The following messages indicate fatal errors encountered by ASM-86 during
assembly:

NO FILE
DISK FULL
DIRECTORY FULL
DISK READ ERROR
CANNOT CLOSE
SYMBOL TABLE OVERFLOW
PARAMETER ERROR

ASM-86 reports semantic and syntax errors by placing a numbered ASCII message
in front of the erroneous source line. If there is more than one error in the line, only
the first one is reported. Table H-l summarizes ASM-86 diagnostic error messages.

Table H-l ASM-86 Diagnostic Error Messages

NUMBER MEANING

0 ILLEGAL FIRST ITEM
1 MISSING PSEUDO INSTRUCTION
2 ILLEGAL PSEUDO INSTRUCTION
3 DOUaLE DEFINED VARIABLE
4 DOUBLE DEFINED LABEL

H-l

ASM,86 Error Messages

Table H-l ASM-86 Diagnostic Error Messages (cont'd)

NUMBER MEANING

5 UNDEFINED INSTRUCTION
6 GARBAGE AT END OF LINE - IGNORED
7 OPERAND (S) MISMATCH INSTRUCTION
8 ILLEGAL INSTRUCTION OPERANDS
9 MISSING INSTRUCTION

10 UNDEFINED ELEMENT OF EXPRESSION
11 ILLEGAL PSEUDO OPERAND
12 NESTED "IF" ILLEGAL - "IF" IGNORED
13 ILLEGAL "IF" OPERAND - "IF" IGNORED
14 NO MATCHING "IF" FOR "ENDIF"
15 SYMBOL ILLEGALLY FORWARD REFERENCED-

NEGLECTED
16 DOUBLE DEFINED SYMBOL - TREATED AS

UNDEFINED
17 INSTRUCTION NOT IN CODE SEGMENT
18 FILE NAME SYNTAX ERROR
19 NESTED INCLUDE NOT ALLOWED
20 ILLEGAL EXPRESSION ELEMENT
21 MISSING TYPE INFORMATION IN OPERAND (S)
22 LABEL OUT OF RANGE
23 MISSING SEGMENT INFORMATION IN OPERAND
24 ERROR IN CODEMACRO BUILDING

H-2

Appendix I

DDT -86 Error Messages
Table 1-1 DDT-86 Error Messages

ERROR MESSAGE MEANING

AMBIGUOUS OPERAND An attempt was made to assemble a
command with an ambiguous oper-
and. Precede the operand with the
prefix "BYTE" or "WORD".

CANNOT CLOSE The disk file written by a W com-
mand cannot be closed.

DISK READ ERROR The disk file specified in an R com-
mand could not be read properly.

DISK WRITE ERROR A disk write operation could not be
successfully performed during a W
command, probably due to a full
disk.

INSUFFICIENT MEMORY There is not enough memory to load
the file specified in an R or E com-
mand.

MEMORY REQUEST DENIED A request for memory during an R
command could not be fulfilled. Up
to eight blocks of memory may be
allocated at a given time.

I-I

DDT,86 Error Messages

Table 1-1 DDT-86 Error Messages (cont'd)

ERROR MESSAGE MEANING

NO FILE The file specified in an R or E com-
mand could not be found on the disk.

NO SPACE There is no space in the directory for
the file being written by a W com-
mand.

VERIFY ERROR AT s:o The value placed in memory by a Fill,
Set, Move, or Assemble command
could not be read back correctly,
indicating bad RAM or attempting to
write to ROM or nonexistent memory
at the indicated location.

1-2

Index

A
A86 Filename 1-1
AAA 4-6, E-l
AAD 4-6, E-l
AAM 4-6, E-l
above 4-13
ace 4-1
ADC 4-6, E-l
ADD 4-7, E-l
Addition, 2-12, 2-15
Address Conventions in

ASM-86 2-16
Address Expression 2-16
AF 4-3,4-6
AH 2-5, 5-9, D-2
AL 2-6, 5-3, 5-9, D-2
Allocate Storage 3-6
AND 2-12,4-8, D-l, E-l
Apostrophe 2-3
Arithmetic Instructions 4-6
Arithmetic Operators 2-8, 2-10
ASCII 2-4,6-5
ASM-86 1-2

Aborting 1-2
Commands 1-4
Error Messages 1-2, H-l
Instruction Summary E-l
Invoking A-I

Asterisk 2-2, 2-13
At Sign 2-2
AX 2-6, 5-3, 5-9, D-2

B
Bar Character 2-8
below 4-13

BH 2-5, 5-9, 0-2
Binary constants 2-3
BL 2-6, 5-9, 0-2
Boolean Logic 2-12
BP 2-6, 5-9, 0-2
Bracketed Expression 2-16, 3-1
Buslock 4-17
BX 2-6, 5-9, 0-2
BYTE 2-7,6-16, D-l, 1-1
Bytes 2-4, 5-9,6-16, C-l

C
CALL 4-13,6-16, E-l
CALLF 4-14,6-16, B-1, E-l
CBW 4-7, E-l
CF 4-3,4-5
CH 2-5,5-9, 0-2
Character Set 2-1
Character String 2-1, 2-4
CL 2-6,5-9, 0-2
CLC 4-18, E-l
CLD 4-18, E-l
CLI 4-18, E-l
CMC 4-18, E-l
CMD 6-1,6-5
CMP 4-7,E-l
CMPS 4-12,5-6, E-l
CMPSB 4-12,6-16, E-l
CMPSW 4-12,6-16, E-l
COOE C-3
Code Segment 3-1
CODEMACRO 5-1,0-1, G-l

Index

Index-l

Index

Codemacro 5-1
Definition Syntax G-l
Directives 5-5
Modifiers 5-4
Range Specifiers 5-4
Specifiers 5-3

Colon 2-2, C-l
Comma 4-1
Comments 2-17
CON: 1-4
Conditional Assembly 3-4
Console Output 1-4
Constants 2-3
Control Transfer Instructions 4-12
CPU 6-3,6-12
CR 2-2, 2-17, C-l
Creation of Output Files 1-3
CS 2-6, 2-13, 3-1, 5-9, 6-6, 6-13, D-2
CSEG 3-1, D-l
CTRL C 6-1
CTRL H 6-1
CTRL R 6-1
CTRL S 1-4, 6-1
CWD 4-7, E-l
CX 2-6,4-13, 5-9, D-2

D
DAA 4-7, E-l
DAS 4-7, E-l
DATA C-3
Data Segment 3-1
Data Transfer Instructions 4-3
DB 2-4, 3-5, 5-2, 5-8, D-l
DBIT 5-2, 5-8, D-l
DD 3-5,5-2, 5-8, D-l
DDT-86 Commands 6-1

A (Assemble) 6-2,6-4,6-13,1-2
Conventions 6-1
D (Display) 6-2, 6-4

Index-2

E (Load for Execution) 6-2, 6-4,
6-11, 6-14, I-I

F (Fill) 6-2, 6-6, 6-14, 1-2
G (Go) 6-2,6-6,6-14
H (Hexadecimal Math) 6-2, 6-7,

6-15
I (Input Command Tail) 6-2, 6-7
L (List) 6-2,6-8,6-13
M (Move) 6-2, 6-8, 1-2
R (Read) 6-2, 6-5, 6-9, 6-11

6-13, I-I
S (Set) 6-2, 6-9, 1-2
Sample Session 6-17
Summary 6-2
T (Trace) 6-2,6-10,6-14
U (Untrace) 6-2,6-11,6-14
V (Value) 6-2,6-11
W (Write) 6-2,6-11,6-13, I-I
X (Examine CPU) 6-2,6-12, 6-14

DDT-86, Error Messages 6-10, 1-1
DDT-86, Invoking 6-1
DDT-86, Terminating 6-3
DEC 4-7,5-9, E-l
Decimal Constants 2-3
Default Segment Values 6-13
Defined Data Area 3-5
Delimiters 2-1
DF 4-3
DH 2-5, 5-9, D-2
DI 2-6, 4-11, 5-9, D-2
Directives 2-5, 3-1
Directive Statement 2-17, 3-1
Diagnostic Errors H-l
DIV 4-7, E-l
Division 2-15
DL 2-6, 5-9, D-2
Dollar Sign Operator 1-2,2-2,2-14,

2-16,3-2, A-I, G-l, I-I
DS 2-6,2-13,3-1,5-9,6-14, D-2
DSEG 3-1, D-l
DT C-2

DX 2-6,5-9, D-2
DW 3-6, 5-2, 5-8, 6-4, D-l
DWORD 2-7, D-l

E
Effective Address 3-1
EJECT 3-8, D-l
END 3-5, D-l
ENDM D-l
End-of-line 2-17
ENDIF 3-4, D-l
EQ 2-12, D-l
EQU 1-1,2-7,3-5, D-l
Error Messages 1-1, D-l, H-l, 1-1
ES 2-6,2-13,3-1,4-11,5-6,5-9, D-2
ESC 4-18, E-l
ESEG 3-1, D-l
Exclamation Point 2-3,2-17,3-1,4-11
Expressions 2-16
EXTRA C-3
Extra Segment 3-1

F
Fatal Errors H-l
Filename Extensions 1-1,3-4,6-9
Filetype 1-2
Flag Bits 4-2
Flag Registers 4-3
Formal Parameters 5-1
Form Name 5-8

G
GE 2-12, D-l
GENCMD C-l
grea ter than 4-13
GT 2-12, D-l

H
H86 Filename 1-1,6-1
Hexadecimal Format 1-1,6-15, C-l

Hexadecimal Digits 2-3
Hexadecimal Record C-l
HLT 4-18, E-l
Hyphen 6-1,6-12

I
Identifiers 2-4
IDIV 4-7,E-l
IF 3-4,4-3, D-l
IF LIST 3-4
IMUL 4-8, E-l
IN 4-3, E-l
INC 4-7,6-16, E-l
INCLUDE 3-4, C-3, D-l
Initialized Storage 3-6
Instructions 2-5
Instruction Statement 2-17,4-1,5-1
INT 4-14, E-l
Interrupts 4-13, 6-3
INTO 4-14, E-2
Invoking ASM-86 1-1, A-I
IP 5-7,6-6
IRET 4-14, E-2
Iterational Control 4-13

J
JA 4-14, E-2
JAE 4-14, E-2
JB 4-14, E-2
JBE 4-15, E-2
JC 4-15, E-2
JCXZ 4-15, E-2
JE 4-15, E-2
JG 4-15, E-2
JGE 4-15, E-2
JL 4-15, E-2
JLE 4-15, E-2
JMP 2-14, 4-15, 6-16, E-2
JMPF 4-15, 6-16, B-1, E-2
JMPS 2-14,4-15,6-16, B-1, E-2

Index

Index-3

Index

JNA 4-15, E-2
JNAE 4-15, E-2
JNB 4-16, E-2
JNBE 4-16, E-2
JNC 4-16, E-2
JNE 4-16, E-2
JNG 4-16, E-2
JNGE 4-16, E-2
JNL 4-16, E-2
JNLE 4-16, E-2
JNO 4-16, E-2
JNP 4-16, E-2
JNS 4-16, E-2
JNZ 4-16, E-2
JO 4-16, E-2
JP 4-16, E-2
JPE 4-16, E-2
JPO 4-16, E-2
Jump 4-13
JS 4-16, E-2
JZ 4-16, E-2

K
Keywords 2-5,2-17,4-1, B-1, D-l

L
Labels 2-7,2-17,4-2
LAHF 4-3, E-2
LAST 2-14, D-l
LDS 4-4, E-3
LE 2-12, D-l
LEA 4-4, E-3
LENGTH 2-14,3-7, D-l
LES 4-4, E-3
less than 4-13
LF 2-2,2-17,C-l
LIST 3-9, D-l
Location Counter 3-3
LOCK 4-18,6-15, E-3
LODS 4-12, E-3

Index-4

LODSB 4-12, 6-16, E-3
LODSW 4-12, 6-16, E-3
Logical Operators 2-8, 2-15
LOOP 4-17,5-7, E-3
LOOPE 4-17, E-3
LOOPNE 4-17, E-3
LOOPNZ 4-17, E-3
LOOPZ 4-17, E-3
LST Filename 1-1, C-3
LST: 1-4
LT 2-12, D-l

M
Macro 5-1
MAC 5-1
MCS-86 Assembly Language Reference
Manual 4-1,5-6
MCS-86 User's Manual 4-1, 5-6
mem 4-2
Minus Sign 2-2
Mnemonic Keywords 2-5,2-17,4-1, B-1
MOD 2-12, D-l
MODRM 5-2, 5-6, D-l
MOV 2-8, 4-4, E-3
MOVS 4-12, 5-6, E-3
MOVSB 4-12, 6-16, E-3
MOVSW 4-12, 6-16, E-3
MUL 4-8,5-1, E-3
Multiplication 2-15

N
Name Field 2-18
NE 2-12, D-l
NEG 4-8, E-3
NOIFLIST 3-4
NOLIST 2-5, 3-9, D-l
NO FILE 1-2
NOSEGFIX 5-2,5-6, D-l
NOT 2-12,4-9,6-16, D-l, E-3
NUL:1-4

numb 4-1, 5-8
Number Symbols 2-8
Numeric Constants 2-3
Numeric Expression 2-16, 3-4

o
Octal Constants 2-3
OF 4-3,4-6
OFFSET 2-14, D-l
Offset 2-7, 3-6
Offset Value 3-1
Operand Types 2-17, 4-1, 5-1
Opera tor Precedence 2-15
Opera tors 2-5, 2-8
Optional Runtime Parameters 1-3
OR 2-12,4-9, D-l, E-3
Order of Operations 2-15
ORG 3-3, D-l
OUT 4-4, E-3
Output Files 1-1

P
PAGESIZE 3-8, D-l
PAGEWIDTH 3-8, D-l
Parameter, Definition 1-3, 4-1, 5-1
PARAMETER ERROR 1-2
Parentheses 2-16
Period 2-2, 2-14, 2-16
PF 4-3,4-6
Plus Sign 2-2
POP 4-4, E-3
POPF 4-4, E-3
Predefined Numbers 2-5
Prefix Instructions 2-17, 4-12
Printer Output 1-4
Processor Control Instructions 4-17
PTR Operator 2-14, D-l
PUSH 4-5, E-3
PUSHF 4-5, E-3

Q
Question Mark 6-4

R
Radix Indicators 2-3
RAM 6-6,1-1
RB 3-7, D-l
RCL 4-9, E-3
RCR 4-9, E-3
Registers 2-5
Relational Operators 2-8, 2-12, 2-15
RELB 5-2, 5-7, D-l
RELW 5-2,5-7, D-l
REP 4-13, E-3
REPE 4-13
Repeat 6-15
REPNE 4-13
REPNZ 4-13
REPZ 4-13
RET 4-17,6-16, E-3
RETF 4-17,6-16, B-1, E-3
Return 4-13,6-1,6-13
ROL 4-9, E-3
ROM 1-2
ROR 4-9, E-3
RS 3-7, D-l
rshift 5-9
Runtime Options, Parameters 1-3
RW 3-7, D-l

S
SAHF 4-5, E-3
SAL 4-9, E-3
Sample Program F-l
SAR 4-10, E-3
sb 5-2
SBB 4-8, E-4
SCAS 4-12,5-6, E-4

Index

Index-5

Index

SCASB 4-12,6-16, E-4
SCASW 4-12,6-16, E-4
SEG 2-14, D-l
SEGFIX 5-2,5-5, D-l
Segment 2-7
Segment Base Values 3-1
Segment Override Operator
2-8, 2-15, 6-15
Segment Start Directives 3-1, 3-6
segreg 4-2, 5-6
Semicolon 2-2
Separa tors 2-1
SF 4-3,4-6
Shift Instructions 4-8
SHL 2-13,4-10, D-l, E-4
SHR 2-13, 4-10, D-l
SI 2-6,4-11, 5-9, D-2, E-4
SIMFORM 3-9, D-l
simpmem 4-2
Slash 2-2, 2-13
Source File 1-1, 6-17
Source Line 3-4
SP 2-6,5-9, D-2
SS 2-6,2-13,3-1,5-9, D-2
SSEG 3-1, D-l
STACK C-3
Stack Segment 3-1
Statements 2-7
STC 4-18, E-4
STD 4-18, E-4
STI 4-18, E-4
STOS 4-12, 5-6, E-4
STOSB 4-12,6-16, E-4
STOSW 4-12,6-16, E-4
String Constant 2-4, 3-5
String Instructions 4-4, 4-11
SUB 4-8, E-4
Subtraction 2-12, 2-15
SW 6-9
SYM Filename 1-1, C-3
Symbols 1-1, 2-6, 5-1, C-l

Index-6

Syntax

T

ASM-86 Operators 2-9, A-I
Assembly Language 2-1,2-4,5-1,6-15
Codemacro Definition G-l
Control Transfer Instructions 4-13
Data Transfer Instructions 4-3
Directive Statement 2-18
Instruction Statement 2-17
Logic and Shift Instructions 4-9
String Instructions 4-12

\
\

TEST t10, E-4
TF 4-3
Tokens 2-1
Type 2-7, 3-6
TYPE 2-14, D-l

U
Unary Operators 2-13,2-15
User-Defined Symbols 1-1

V
Variable Creators, Manipulators
2-8, 2-11, 2-16
Variables 2-6, 2-13

w
WAIT 4-18, E-4
WORD 2-5,6-16,1-1

X
XCHG 4-5,5-1, E-4
XLA T 4-5, E-4
XOR 2-12,4-11, D-l, E-4

y

Z
ZF 4-3,4-6,4-13

I
I
I
I
I
I
I
I

I
I~
l
:s
~ o
c;

\ ! rn
tIS
u s:

NEe ~~ Advanced
A.--"Personal Computer

TM
NEe Information Systems,/nc.

USER'S COMMENTS FORM

Document: CP/M-86 User/Programmer's Guide

Document No.: 819-000100-4001 Rev. 01

Please suggest improvements to this manual.

Please list any errors in this manual. Specify by page.

From:
Name __ ___

Title __ _

Company __ ___

Address __ __

Dealer Name ___ __

Date: __________________ _

Sea! or tape a/l edges fOI mailing·do not lise staples.

FOLD HERE

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 386 LEXINGTON, MA

POSTAGE WiLL BE PAID BY ADDRESSEE

NEe Information Systems, Inc.
Dept: Publications -APC
5 Militia Drive
Lexington, MA 02173

FOLD HERE

Seal or tape all edges for malling·do not use staples.

NO POSTAGE'
NECrSSARY

IF MAILED
IN THE

UNITFD STATES

