INTRODUCTION

The ND812 Computer, part number ND88=0397, manufactured by Nuclear Data
Incorporated, is a general purpose computer which may consist of the ND812 Processor,
ASR33 Teletype and a variety of peripheral equipment, such as high speed readers and
punches, line printers, plotters, magnetic tape and disk storage devices, and CRT's. The
ND812 is a 12-bit computer with 8K memory (basic), expandable to 16K in 4K increments.
Memory cycle time is 2 microseconds. Standard features of the ND812 are hardware multi-
ply and divide.

This publication consists of one volume covering operation and maintenance
information for the ND812 Computer System. The information contained in this volume
covers only the basic system consisting of the ND812 central processor unit. This publication
is presented with the assumption that the reader has had experience with small computers.

To effectively use the material in this manual for repair of the system, maintenance personnel
should have a fair working knowledge of machine language programming. (Refer to the
Principles of Programming the ND812 Computer in Assembly Language.)

This publication is divided into seven sections.

Section 1 Contains general information about the system, such as its purpose,
description and general specifications. |t also contains descriptions of
the various options and peripherals that are available to expand the
basic system,

Section 2 Covers instructions for site planning, unpacking and inspection, inter—-
connection cabling and other information required to effect installation
of a system.

Section 3 Describes the various controls and indicators of the system, and provides
manual operating instructions essential for preparation of the system in
performing a programmed function, for troubleshooting, and for maintenance

Section 4 Contains the theory of operation of the basic system,

Section 5 Covers preventive maintenance, and corrective maintenance.
Section 6 Provides a replaceable parts list.

Section 7 Confdinvs diagrams necessary for maintenance of the ND812,

Related Publications
Principles of Programming the ND812 Computer in Assembly Language, IM41-0000-00
ND812 Diagnostics, IM41-8001-01

ASR33 Teletype Instruction Manual
Applicable Peripheral and Interface Manuals

i/ii

SECTION

DESCRIPTION. . . . ¢ v o v ¢« v v 0 v o 4

— ol ok med aed ot o ot) Gmd vl wd o w—] —) —— oo —d ot ot o)] —d —

* o o L I * e o o & o * & »
COUOBRWWWWWWWWWWWWWWWWWWWWWN -~

.

. 3 .

.

.

VONGTOULUURWWW®WWWWNNN —

OO AhWN —

3
W N -

N

TABLE OF CONTENTS

TITLE

Purpose of Equipment, .,

Physical Description
Functional Description
Manual Start and Control

Clock Generation and Timing « . . .

BasicPhase
Execute Phase. .

Control Registers « « v v « & « « .
Instruction Decoder
Instruction Register « . .

Address Register,
Program Counter. o e
Memory Buffer Register.,

Memory Data Register
Accumulator Registers (J, K, R and S)
Multiplexers . . .

Bus and Memory Buffer Multiplexer. .

TS Multiplexer . . . &+« . . .

MS Multiplexer . + . o o o 0 o .,

Arithmetic Unit
Memory Unit « .« . .
Input/Output (I/O) Unit
Power Supply Unit,

General Specifications.
Effectivity v &« &« v v v o v v v ¢ o .

Ordering Additional Manuals . . .

INSTALLATION. o e e e

2,

1

Site Planning . . . « « « « . . .

iii

¢ o o . .
. o o
. s o s o e e o o .
. e & o o o [
. e o . * o
. e & o s e s o
. 0
. ¢ . ¢ o
® & o o 8 o o o .
o o . e o o o o
oooooooooo .
. e o e o . o
ooooooooooo
oooooooo . o 0
e o s o ¢ o . .
....... o o e
s ® o o o o ¢ o o
ooooooooooo
e & o o o .
e o o o e« o o 0
.
. . . .
a o & & o o e o e o @
. . . ¢« o s o
e o e o s o o s o
. . e & e o ¢ 9 e o o
. e o . . .
. . . . e o

PAGE

1-1

I
—

R
| R D |
QW W it

—
L
o O

1
1-6
1-6
1-6
1-6
1-6
1-7
1-7
1-7
1-7
1-7
1-8
1-8
1-9
1-9
1-9
1-10
1-10
1-12
1-12

2-1

2-1

SECTION TITLE

2.1.1 Space Requirements and Installation Constraints
2.1.2 PowerSource . . v v v s o 4 6 e o s s s o s s s e e
2,2 Unpacking and Inspection. .« o v o v v v v 0 v 4 . .
2.3 Interconnection Cabling« .. e e e e e e
2.4 Checkout. e e e e e e e e e e e e e .
Il OPERATION . & & v v v v v v v o o o o o v e e e e e .
3.1 Controlsand Indicators. « & ¢ & ¢« o ¢ & & v o o o . . .
3.1.1 ND812 Operator Control Panel v e
3.1.2 ASR33 Teletype . v v v ¢ v v v v v v v v v v v o . .
3.2 Manual Operation at the Operator Confrol Panel e e e
3.3 Binary Loader. e s s e o s w s e e
3.4 Manual Loadinge « ¢ v ¢ v 6 v o 6 v o o o o o 0 o s e
34,1 Auto=Start + v v vt b e e e e e e e e e e e e e . .
3.5 Operator or User Control e e e e e e e
3.6 Teletype/Auto Loader . . . o v .« . . e e e e e e .
3.7 Bootstrap Programs. . . . e e s e e e e e e
3.7.1 Teletype Bootstrap Loqdmg Procedure
3.7.2 High Speed Reader Bootstrap Loading Procedure
3.8 General Loading Procedures, « « « v ¢ v ¢ ¢« ¢« v« . . .
3.8.1 Loading Procedure using Teletype e e
3.8.2 Loading Procedure using High Speed Paper Tape Reader . ..
3.8.3 Loading Procedure using Magnetic Tape Cassefte,
3.9 Error Diagnostics v & v « v ¢ ¢« ¢ ¢« o o & e e e e e e
v THEORY OF OPERATION . . . & v v v v v v et e v o o o s
4.1 General oo o et e e e e e « o
4.1.1 Block Diagrom Descriptions . . « v v v ¢ ¢« ¢« « ¢ « & . .
4.1,2 Simplified Logic Tables. . .« . v « v ¢ v ¢ v ¢ ¢ v ¢ o
4,1.3 TimingDiagrams. . v v v 4 4 v 4 ¢ s o o o e 0 o 0 . .
4,1.4 Discrete Logic Elements . v v v v v v v v 4 4 . . .« e
4.2 Energizingthe ND812. v v v ¢ v v v v o
4.2,1 PowerSense . « ¢« ¢« v 4 4 4 v a . o s s s e e .
4,2.2 Manual StartandControl00 oL
4,2,2,1 SwitchRegister . « + v ¢ v v ¢ v ¢ ¢ ¢« « o o o o o« o o
4,2,2,2 GoControl Logic v v v v v ¢ o ¢ o o ¢ o o o o o o o s
4.2,2,2,1 Initialize Condition . . + . v v v v 4 v ¢ ¢« 4 o 4 . .
4.2,2.2.2 Run Condition + o . . . e e e e e e
4,2.2.3 Manual Load Address Register (AR) . .« . . « . « v v o . .
4.,2,2.4 Manual Load Memory Register (MR)
4,2,2,5 Single Step Operation . v v v ¢ v v v ¢« v o o o o o o
4,2,2,6 Single Instruction Operation '+ .+ « ¢ ¢ ¢ v ¢« v o v o .

SECTION

4.2,2,6,1 Done Latch. B T TP
4.2,2,7 Register SelectControl o« e e
4,2,2.8 StartControl © . & . . . 0 e e e e e e e e e e . .
4.3 Clock Generator And Timing Logic. «
4.3.1 16MHz Oscillator and Clock Generator, . « +
4.3.1.1 16MHz Oscillator e e e e e e e e
4,3.1.2 Clock Generator . . v v v v ¢ v v v v v v v e e e e
4.3.1.2.1 8MHz Countdown e e e e e e e e e e e e e e
4.3.1.2.2 4MHz Countdown . « v v v v v v v v v 4 o .« . . .0
4.3.2 Pulser v v v v it v i e e e e e . c h h e e e e e
4.3.2,1 PUPulses. o h e e e e e .

4,3.2,2 PulserControl, . . . « . v v v v v v . e v e e e e e
4.3.2.3 Pulserlogic . ¢« v ¢ v v v v v e e e e e e e e e e .
4.3.3 Major State Control Logic c e e o s e e
4.3.3.1 Control Register Clock/Enable Logic v « v v & v v o o . .
4.3.4 Control Registers , + . . « v « . . . e b e e e e e e
4.3.4.1 Instruction Decoders o « v v v 4 v v o v v 4 0 e . e e
4.3.4.1.1 Primary Decoder &« v v v v v v ¢ v v v v v 0 e e e
4.3.4.1.2 Operate Decoder v o v 4 . . e b e e s e s
4.3.4.2 Instruction Register ¢ o o 0 o o o o e
4.3.4.3 AddressRegister. c s s e s s e

4.3.4.4 Program Counter. « v v v v v 4 v 4 v e b b e e e e e
4.3.4.5 Memory BufferRegister. v v v v v v v v w ..
4.3.4.6 Memory Data Register e h e e s e e
4.3.4,7 OtherRegisters . . « « . « o v v . . s e e s . e
4.3.4.7.1 Overflow Register. 6 s s o s e s e e s s e
4.3.4.7.2 UpCounter v v v v v v o o o o o v o o o v v o u .
4.3.4.7.3 Flag Register c e e et e s e e e
4.3.4.8 Accumulator Registers (J, K, R and S)
4.3.4.8.1 Arithmetic Operations . . « + v v v v v v v v v o . .
4.3.4.8.2 JRegister o o v v ¢ 4 v e o 4 0 e e e e e e e e e
4.3.4.8.3 KRegister . . . v v v v v v v v v o e o 5 s e s e
4,3.4.8.4 RRegister . v v v v v v v v v v v o e e e e e e .
4.3.4.8.5 SRegister ¢ o s o s e o ¢ o o
4.3.4.9 Multiplexers o . .« v v v o 0 0 .. C v e e s s e e
4.3,4.9.1 Bus and Memory BuFFer Mulhplexer
4.3.4.9.2 TS Multiplexer e s e e e e e e e e e
4.3.4.9.3 MX multiplexer, e o b e s e e e e
4.3.4.10Adder . ¢ o s v b v e e e e e e e e e s e ee e
4,3.4.11Utility Gates . . . « e 6 o e e e s e e e e .
4,3.4.125tatus Register « v v v v v v b e e e e e e e e e e e
4.4 Processing Instructions « « ¢ v v v v 00 ...
4,4,1 Common BasicPhase ee .
4,4.1.1 Block Diagram Description v v v v v v o o v « o . o e e

PAGE

4-23
4-24
4-26
4-26
4-26
4-28
4-28
4-28
4-29
4-30
4-30
4-32
4-32
4-35
4-38
4-38

4-38

4-38
4-39
4-40
4-41
4-41
4-42
4-43
4-43
4-43
4-44
4-44
4-46
4-46
4-48
4-48
4-49
4-49
4-49
4-50
4-50
4-52
4-53
4-53
4-54
4-54
4-56
4-56

SEC

TION

TITLE

4.4.1.2 Fundamental Operations . ¢« v « o v o o ¢ o o « o o o &
4.4.1.3 Timing Diagram Description. e v e o s s e
4.4,2 Operatelnstructions . « o v v v ¢« v v ¢ ¢ o o o o o o &
4.4.2,1 Group 1 Operate Instructions « « .« o
4.4.2,1.1 Hardware Multiply (1000) . & ¢« v ¢ ¢ ¢ v 0 ¢« o o o &
4.4,2.1,2 Hardware Divide (1001) e e e e e e e .
4.4,2.1.3 Logical AND Subgroup . « v & v v v ¢ v v v v o 0
4,4,2,1.4 Load/Exchange Subgroup. e e e e e
4,4,2,1,5 Add/Subtract Subgroup. « « ¢+ v 4 4 v e e e e e
4,4,2,1,6 Shift/Rotate Subgroup « « v v v v v ¢ ¢ 4 0 e b 0 o W
4.4.2,1,7 Load/Read Subgroup. e e e e e e
4.4.2,2 Group 2 Operate Instructions + + « v « ¢ ¢« 4 4 o o o &
4,4.2.2.1 Register Modify Subgroup., « & v ¢« ¢ v ¢ v v 4 0 e .
4,4,2.2.2 Register Sign/Skip Subgroup . « v v v v 4 v v v v .
4,4,2.2,3 Register Zero/Skip Subgroup « « « « v o v 4
4,4,2,2.4 Status Modify Subgroup C e e e e e e e
4.4,2,2,5 Status Skip Subgroup. '+ v . 4 0. v e h e e e 0
4.4,2,2,6 CycleDelay Subgroup « v v v v v ¢ v v ¢ v o o & . .
4.,4,3 Single-Word Memory Reference Instructions
4.4.3.1 Instruction Format o &« & & & ¢ 4o 4 4 o o o o o o s o o
4,4.3.2 Address Permutations. « « + « + + . . e e e e e e e
4,433 Autoindexing « « o « o+ « o ¢ o s 4 4 o 0 e e s e 0 e .
4,4.3.4 Direct Addressing « ¢« v v v ¢ « & o o o o o o« o s o o o
4.4.3.4.1 ExecutePhase ¢ oo .. e e
4.,4.3.5 Indirect Addressing « « « « v 4 ¢ b e e e e e e e e . .
4,4,3,5.1 Primary Basic Phase

4.,4.3.5.2 Secondary Basic Phase e e e e e
4,4,3,5.3 Execute Phase 0. o . e
4.4.4 Two-Word Memory Reference Instructions e e
4,441 FieldChange & v ¢ ¢ ¢ ¢ v v v e v e v v W .
4.4,4,2 Direct Addressing v v « v o o o o o o o o o o o o o o o
4,4,4.2,1 Primary BasicPhase 0 0 00000 ..,
4.4.4,2,2 Secondary BasicPhaseo e
4.4,4,2.3 Execute Phase e e e e e e e e
4.4.4.3 Indirect Addressing e e e e e e e e e .
4,4.4,3.1 Primary BasicPhase0 0.,
4.4,4,3.2 Secondary BasicPhase o v 0000 0. .
4,4.4.3.3 Tertiary BasicPhase o oo v o 0 ...
4,4,4,3.4 ExecutePhase ¢ e s s e s e e
4.4.4.4 Accumulator Selection o . . o 00 00w . oL
4,4,5 Executelnstruction . . . v v v 4 e i e e 0 e 0w ..
4.4,5.1 Direct Addressing, Primary Basic Phase
4.4.5,2 Direct Addressing, Secondary Basic Phase.
4,4,5,3 Indirect Addressing '« ¢ +« & v v o 4 v 4 . e e e e e s

vi

PAGE

4-56

4-58

4-61

4-62

4-65

4-82

4-100
4-103
4-107
4-123
4-132
4-137
4-140
4-147
4-151
4-156
4-156
4-162
4-162
4-164
4-165
4-165
4-165
4-166
4-173
4-173
4-175
4-179
4-180
4-183
4-184
4-185
4-187
4-190
4-190
4-190
4-195
4-195
4-196
4-197
4-197
4-201
4-201
4-204

SECTION

TITLE

.1 Primary Basic Phase . . .

Tertiary Basic Phase . . .
emory Skip Subgroup . . .
emory to J Subgroup

* B .

AADNADNMRDNAN

JMP 6000 (TWJMP 0600)
JPS 6400 (TWJPS 0640).
Auto Indexing.

L ° . L] L] Ld

struction Format ,

#Ap#plhl;ﬁpp

In
.2 Block Diagram Description .
rimary Basic Phase

MP Auto-Indexed Function.
.1 Primary Basic Phase . . .
2 Secondary Basic Phase . .
Programmed Halt
Literal Instructions.
.1 Block Diagram Description .
Memory Unit v .« o o « &
Memory Options, . .

L] L] . e o
wuwwwwwwwwwwwwwwwwwwm—

bwcnmmwmmmm'mu-oxmlnmmmlnmmmmm»\uphqha###'#
L]

Read Operation

OJI\J—‘

Memory Cycle
General Description .

Memory Stack
Memory Control.

Read/Write Driver. . . .
X and Y Decoders. . . .

Inhibit Multiplexer . . .
Inhibit Drivers .
KMemory.,
8K Memory Stack
8K Sense Amplifiers
8K Inhibit Multiplexer, .
8K Inhibit Drivers, . . .
2K Memory ., .

.

3

oo

3

A##A##A##A###A#A#h#h##Ah#;ﬁ####h#-ﬁsh###

4
.
2
3
4
.5
.6
.7 Sense Amplifiers ., . . .
.8
9
8
1
.2
.3
4
1

Secondary Basic Phase . . .

1

2

3P

4 Secondary Basic Phase
.5 Execute Phase.
.6 J
.6
.6,

Write Operation,
KMemory., . « « « « « ¢ .

Core Selection . . . + . .

.2
.3
Memory Reference Instruction Subgroups
M
M

.1

.2 . .

.3 STJ 5400 (TWSTJ 0540, TWSTK 0550) . . . « « « v « « &
.4

)

Basic Theory of Core Memory Operation . + + . « o« . .

X and Y Read and Write SWItches e e e e e e e e e e

e @ o o o e o o o o s o . .

SECTION

TITLE

4,5.3.4 16KMemory . v v . v v v v 0 o c s s s e s e e
4.5.3.5 Memory Field Control Logic. c e e
4.5.3.5.1 Input Multiplexer c e e e e e e
4,5.3.5.2 JPSAddressRegister. . . v v v s v v v 4 4 4 4 . .
4.5.3.5.3 INT Address Register. e e e e e e e e e e
4.5.3.5.4 Comparator Multiplexer e e e
4.5,3.5,5 Comparator, + e e e e e e e e e e e e
4,5.3.5.6 EXTGates s v v « « « « . . ¢ e s e e e s e s s .
4.5.3.5.7 Status Register Loading Gates. . « « « v . . .
4,5.3.5.8 JPSFieldRegister. . . v + v v v v o « & e e e e e
4.5.3.5.9 INTFieldRegister. « v v v v ¢« ¢ v ¢ ¢ v o o o o o
4.5.3.5.10MFR Input Multiplexer. . « « « v v v ¢ v v v v o . .
4.5.3.5.11 Memory Field Register « . « v « v v
4.5.3.5.12 Output Multiplexer e e e e « .
4.5.3.5.13Control Logic, . . . e e e e e e e s e e e e e e
4.5.4 Memory Unit Detailed Theory of Operation « + « + + o 4 &
4.5.4.1 Memory Operation, e s e e e e s e e e
4.5,4.1.1 AccessingMemory Field@
4.5.4,1.2 Accessing Memory Field1 o« e e e
4.5.4.1.3 AccessingMemory Field2
4.5.4.1.4 AccessingMemory Field3
4.5.4.1.,5 Memory Electronics « e e e e e e e e
4.5.,4.2 Memory Field Control Logic, Detailed Descrup’rlon
4.5,4,2,1 Single Word Instruction . & « v v v ¢ v v v v o o ..
4.5.4.2,2 Two-Word Instruction with Field Chcmge Blt Unset .
4.5.4,2.3 Two~-Word Memory Reference Instruction with Field

Change BitSet . v v v v v v v ¢ ¢ ¢ v o o . . e
4.,5.4.2,4 Two-Word JMP Instruction with Field Change Bit Sef . .
4.5.4,2,5 Two-Word JPS Instruction with Field Change Bit Set .
4,.5,4.2,6 Interrupts o o v v v v 4 4 e b e 4 a0 e e s e e
4,5,4,2,7 Cycle Steal e e e e e e e e e
4,5.4.2,8 Front Panel Memory Field Control e e e e e e e e
4,5.4,2,9 LDREG (7720) Instruction. v v v v ¢ ¢ v v o o o v o«
4.5,4.2, 10LDJK (7721) Instruction & v & o ¢« o o« o o o o o o o
4.5 4.2, 1TRJIB(7722) Instruction . & o o« o ¢ ¢ ¢ o o « o o o ..
4,6 I/Olnterface., . .« v v ¢ v 4 4o v v s v o o o o o o o s
4,6,1 Modesof /O Operation v v v v v v v o s o o o o o o &
4,6.2 1/OBUS & v o o v o o o o 4 4 s e e e e e e e e e e
4,6.3 1/OController e e e e e e e e e e e
4,6.3.1 PIOInstructions. + « + v & v o o o o o o o o o o o o
4,6.3.2 Priority Interrupt Instructions
4.6.3.3 Powerfail Interrupt Instructions. < v v ¢« v o o o ¢« o o .
4.6.3.4 Types of Program Controlled I/O Instructions
4,6.3.4.1 Data Transfer Instructions. . . . « . « + v ¢ ¢ & « .« .

viii

SECTION TITLE PAGE

4.6.3.5 PIO Instruction Control Mechanism, , 4=321
4,6.3.6 PollingMechanism. . . . v v v v v v v v v v v v o u . 4-323
4,6.3.7 Trap~-Addressing Mechanism, e o .. 4-324
4.6.3.8 PIO Data Transfer Mechanism , e o o 0. o 4-326
4,6.3.8.1 WriteDataPath, « . . . v v v v v v v v v v v o . . 4329
4,6,3.8.2 Read DataPath v . . v v . v ... 4=329
4.6.4 Direct Memory Access Operation . . + . v v v o v . . . 4329
4.6.4.1 DMA Data Transfer Mechanism , 4-330
4,6.4.2 DMA Increment/Decrement Mechanism 4-332
4.6.5 Detailed Theory of /O Operation . + . +» o + 4 4-334
4.6.5.1 Interrupt Initiation. e e e s e e s s s . . 4-334
4.6.5.2 Interrupt Control Instructions + +« v o o o « . . e o e o. . 4-341
4.6.5.3 Powerfail Interrupt System 4-343
4.6.5.4 Program Controlled I/O Instructions + v v v v v o v o o . 4-346
4,6.5.5 Autoloader s o v v v v i e s e e e e e e e e e .. 4-354
4,6.6 Direct Memory Access, Cycle Steal 4-358
4,6.6.1 Single, Data-In Cycle Steal , e « « o« . 4-358
4,6.6.2 Single, Data=Out Cycle Steal, « . v v 4359
4.6.6.3 Single, Increment Cycle Steal, e .. . 4-364
4.6.6.4 Single, Decrement Cycle Steal 4=367
4.6.6.5 Multiple Cycle Steals « o v v v v v v o . . 4367
\Y MAINTENANCE. . . & & v v v e e e e e e e e e e e w o o0 5=
5.1 General & & v v v v v v v i e e e e e . e e eo. 5=
5.1.1 Maintenance Philosophy 5-1
5.1.2 Timing Diagrams. « v v ¢ & 4 o v v 4 v b e e 0 0 . . 5-2
5.1.3 Event Summaries. ¢ s s e b s e e e s .« o 52
5.1.4 Fundamental Operations . .« v v v v v v v ¢« 4 o v o o o 5=2
5.1.5 Localizing Malfunctions & v v v 4 v v ¢ 4 o v o o o & . 5-3
5.1.6 Equipment Required for Maintenance o 5-3
5.2 Preventive Maintenance . « e« s s e o . 5-3
5.3 Corrective Maintenance e s e e e e . 5-4
5.3.1 Performance Tests o v v &« v v 4 ¢ v v 0 v o v o v 0 5-4
5.3.1.1 Diagnostic Testss & v ¢ ¢« o o o o o o o o o s o o o o« 5-4
5.3.1.2 Power Supply Checks/Adjustments 5-4
5.3.1.3 Manual Memory Checkout/Adjustments 5-7
5.3.2 Memory Troubleshooting« v v v v v v 5-17
5.3.2,1 BitCheck. ¢ v ¢ « . v v v v o v .. e e e e e e e e . 5-17
5.3.2.2 Sense Circuits. o o o s s s s s e e s . . 5-18
5.3.2.3 When Nothing Works. e e e e e e .. 5-19
5.3.2.4 Front Panel Checkout v v . v v v v 5-20
5.3.3 Disassembly, . . .« . . . 0 0 e e e e e e e e oo. 5-21
5.3.3.1 Front Panel e e e e e e e e e e e e e e e 5-21

SEC

VI

\4

TION

5.3.3.2 BSBBoard,

REPLACEABLE PARTSLIST

6.1 General . « ¢ o
6.2 Parts Location,
DIAGRAMS. . bo ® e e e e e e o]
7.1 General “ o e

oooooooooo 3

s o e & . o e
e o o . o .

. . . s o o s o o

e o e o e & o o e

¢ e @ . e o o o

FIGURE

3~
3-2
3 "'\;

4=
4=
44
4-!
4-¢
4-]
4-

L

TN \lv‘viv—w-v

4-
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-1

LIST OF ILLUSTRATIONS

TITLE PAGE
ND8]2 Compufel' ooooooo e o o o o o e 2 o o e o o o o .]-2
ND812 Block Diagram . . &« & v v ¢« ¢ ¢ ¢ o o o o o e v e e . 14
ND8I2ZDIimensions & & v & o o o o o o o o o o o o o o o s o o 2-2
ND812 Operator Control Panel & v v ¢« v o v ¢« o ¢ o o & 3-2
ASR33 Telef)’pe Keybocrd. @ 4 e e s e e v o & o e o 3_8
Switch Register Status=Word Format « « « « v o o o & 3-11

Manual Load Address Register, Block Diagram 4=9

Manual Load Address Register, Timing Diagram 4-14
Manual Load Memory Register, Block Diagram. e v e o A=15
Manual Load Memory Register, Timing Diagram . . . + + « « . . . 4-19
Single-Step Operation, Timing Diagram 4-22
Single Instruction Operation, Timing Diagram « + « « « . . 4-22
Register Select Control, Block Diagram. « « . « « « . . 4-25
Basic Timing Pulses for the ND812, e e e e . . 4-28
Clock Generator and Timing Logic, Block Diagram. 4-31
Pulser and Pulser Control, Timing Diagram 4-34
Basic and Execute Phase Pulses, Timing Diagram o . 437
Up Counter, Timing Diagram . . e e e e e e e e e e e 4-45
ND812 Arithmetic Data Loop, Block D|ogrc1m e e e e e s e e e e 4-47
Typical TS Multiplexer, Add-Subtract Logic. . . . « « . o o« . . 4-51
Common Basic Phase, Timing Diagram . . . e e e e e e e e 4-57
Common Basic Phase, Simplified Block Dmgrom 4-57
Multiply Instruction, Flow Diagram Ce . 4-69
Typical Hardware Multiply Configuration o . .+ « .« « o . o . . 4-71
J to R Register Configuration, Block Diagream 4-72
K to S Register Configuration, Block Diagram 4-73
R-S Accumulator Shift Loop. . « . . v v . . 0 o 0 0o .. 4-74
Multiply Instruction, Timing Diagram. « + « « . .« . . 4-75

Xi

FIGURE

- 4-23
4-24
4-25
4-26
4-27
4-28
4-29

4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
' 4-46
4-47
4-48
4-49
4-50
4-51
' 4-52
4-53
4-54

4-55
4-56

4-57

TITLE PAGE
Divide Instruction, Flow Diagram . . « . ¢ ¢ ¢ ¢ v v v v + . . . 4-84
Divide Arithmetic Data Loop, Wait Path, Block Dlagrom 4-86
Divide Arithmetic Data Loop, Once Pci‘h Block Diagram 4-87
Hardware Divide Operation for ExamplesAand B . . . v 4-88
Divide Arithmetic Data Loop, Summation, Block Diagram 4-90

Divide Arithmetic Data Loop, S to K Register Data Path, Block Diagram 4-90
Divide Arithmetic Data Loop, J-Register Increment Data Path,

Block Diagram. v v o« & o o ¢ o ¢ o o o ¢ o v o o 0 e 0 v . . 4-91
Divide Instruction, Timing Diagram ¢ v v ¢ ¢« v v o o & 4-92
Logical AND Subgroup, Block Diagram. « « . . 4-101
Logical AND Subgroup, Timing Diagram « . v v . 4 . . 4-101
Load/Exchange Subgroup, Block Diagram e e e e e 4-103
Load/Exchange Subgroup, Timing Diagram e o o . 4-104
Add/Subtract Subgroup, Block Diagram., « « v « v v v ¢« 4-108
Add/Subtract Subgroup, Timing Diagram . . . v v v v 4 4 v 4 . . 4-108
Shift/Rotate Subgroup Control, Block Diagram. . . o « + + + o o . 4-124
Shift/Rotate Subgroup Counter and Clock Control, Block Diagram . . 4-125
Shift/Rotate Subgroup, Timing Diagram. « « v v v v + o « o o o+ . 4-126
Load/Read Subgroup, LJSW Instruction, Block Diagram 4-133
Load/Read Subgroup, LJST Instruction, Block Diagram 4-134
Load/Read Subgroup, RFOV Instruction, Block Diagram. 4-135
Load/Read Subgroup, Timing Diagram . v v v v v v v v v o o o & 4-135
Register Modify Subgroup, Block Diagram. « 4-141
Register Modify Subgroup, Timing Diagram e e e e .. 4-142
Register Sign/Skip Subgroup, Block Diagram. 4-148
Register Sign/Skip Subgroup, Timing Diagram . . « « . + v v o . . 4-148
Register Zero/Skip Subgroup, Block Diagram 4-152
Register Zero/Skip Subgroup, Timing Diagram . . . + « +« + « o . . 4-152
Status Modify Subgroup, Block Diagram. 4-157
Status Modify Subgroup, Timing Diagram e o v e o . 4-157
Status Skip Subgroup, Block Diagram. + « . « ¢« + v & ¢ v v . . . 4-159
Status Skip Subgroup, Timing Diagram 4-160
Single Word Memory Reference Instructions, Direct Addressing,

Execute Phase, Block Diagram. . . « « ¢ &« . v ¢ ¢ v v v v . . . 4-167
Single Word Memory Reference Instructions, Direct Addressing,

Execute Phase, TimingDiagram « . v v v ¢« o . 4-168
Single Word Memory Reference Instructions, Indirect Addressing,

Timing Diagram + & « . . . v e e e e e e e 4-177
Two Word Memory Reference lnstruchons, D|rect Addressmg,

Timing Diagram . . &« . . ¢ & ¢ v i e e e e e e e e e e e . . 4-188
Instruction Register, Simplified Schematic Diagram. 4-185
Two Word Memory Reference Instructions, Indirect Addressing,

Timing Diagram v v & v v v v e b e e e e e e e e e e 4-193
Execute Instruction, Direct Addressing, Timing Diagram. 4-200

Xii

FIGURE

4-61
" 4462
4463
464
465
4466
4467
4468
4469
4470
471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4-83

4485
4486

44
44
44
44
44

87
88
89
90
21
r92
:93
94
-95
96

+97

+98

199

<100
+101
<102
103
104

TITLE

Execute Instruction, Indirect Addressing, Timing Diagram
Memory Skip Subgroup, SMJ Instruction, Block Diagram.
Memory Skip Subgroup, 1SZ and DSZ Instructions, Block Diagram .
Memory Skip Subgroup, SMJ Instruction, Timing Diegram
Memory Skip Subgroup, ISZ and DSZ Instructions, Timing Diagram . .

Memory to J Subgroup, Block Diagram . . « & v & ¢ & o o o o .
Memory to J Subgroup, Timing Diagram. « « « . « + . .
JMP Instruction, Block Diagram . o + « &« + « . . e e e s e e e
JMP Instruction, Timing Diagram . & ¢« v 4 ¢ o o o o o o o o o &
JPS Instruction, Block Diagram + + « « ¢« o o o . .« o e
JPS Instruction, Timing Diagram. . « + « ¢« « &« ¢« « o o« & . o e s
Auto-Index Function, Block Diagram. . . « + + « ¢« « « ¢ v « .« &
Avuto-Index Function, Timing Diagram e e e e e
Literal Instructions, Block Diagram. . « « « ¢« ¢« ¢ ¢ o ¢ « ¢ o . &
Literal Instructions, Timing Diagram e e e e
Magnetization of Cores. o« o o o & ¢« ¢ o o ¢ 4 0 e 0 0 0. e . .
Core Sensing Process. & &« v ¢« ¢ ¢« o & & e 4 e & e e s s e e e
Write Operation. s s 6 s e e e s e « o e s e e e
4K Memory, Block Dlagram. e e e e e e e e e e e e e s e e
Core Mat Position « e e e s e e s e e s e
Typical Core Mat Layout . . . v « v v o v v o v o o v e e e
Select Wire InterconnectiononCore Mat « v v v v & v v v v o o &
Core Selection Circuit, Block Diagram e e e e e e e
8K Memory, Block Diagram « « « « v o ¢ o o o o . . .
Memory Field Control Logic, Block Dlagram e e e e e e e e e e
Data Flow For Fetch Cycle From Memory FieldBor2.
Data Flow For Store Cycle To Memory Field@of 2.,
Data Flow For Fetch Cycle From Memory Field Tor3.
Data Flow For Store Cycle To Memory Field lor3
Memory Electronics, Timing Diagram. « v v v v v v v v v v o o

Two Word JPS With Bit 9 Set, Direct Addressing, Timing chgrom . e

Interrupt Initiation, Timing Diagram « « ¢« ¢« « &
/O Bus, Simplified Schematic Diagram+ ¢ .
Rear View of ND812, Location of Connectors S26 and S27.
IOR and 1OT Terminator Boards « o« « « o o o o o o o o o & o o« &
PIO Instruction Coding. « « & « &« « o + e e e e e e e e e e
/O Controller, Block Diagram e e e e e
PCP Timing Diagram + + o« ¢ & v o o o o o o o o o ¢ s o o o o »
Typical Device Address Decoder.,« o v
Typical Interface For Interrupt Request and Skip Test «
Trap Address Generator . v v v v o ¢ o s o o & e e e e e e
Typical Interface For Input To J or K Accumulator . .« v . &
Typical Interface For Output From J or K Accumulator ., »
Typical DMA Data Transfer Interface.+ . « + « « . . .

xiii

FIGURE

. 4=105
4-106
4-107
4-108
4-109
4-110
4-11
4-112
4-113

5-1
5-2

5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11

7-1
7-2
7-3
7-4
7-5
7-6
7-7

7-9

7-10
7-11
7-12

TITLE
Typical DMA Timing Diagram . . . e e e e e e e s e e e
Typical DMA Increment/Decrement Interface e e e e e e e e e
Interrupt Initiation, Timing Diagram . . . C e e e e e e e e
Program Controlled 1/O Instructions, Timing Dlogrcm
Single, Data=In Cycle Steal, Timing Diagram
Single, Data=Out Cycle Steal, Timing Diagram
Single, Increment Cycle Steal, Timing Diagram
Single, Decrement Cycle Steal, Timing Diagram. e e
Multiple Cycle Steals, Timing Diagram, e .

ND812, Top View, Top Cover Removed, Voltage Test Points

and Ad;us’rmenfs. e e e e e e e e e s e e e e e e e e ..
ND812, Memory Compartment Side View, Top Cover Removed,

BSBBoard Removed . . . « . . . ¢ v v v v e e e
MTS Card on Cable Extender « e e e e e e . e e
Typical Read/Write Current Waveform « . . « v v v v o
Memory Waveforms . . . « + + « v ¢ o 4 o .
MTS Card Adjustments e+ s e 6 o s s e s e s 8 e o
Location of Sense Amplifiers, MISCard, « « ¢« ¢« ¢ « « « .
Read/Write Current Amplitude Vs, Temperature «
Front Panel, Partially Disassembled . &« & .+ & o o v v o o o .
ND812, Top and Front Partially Disassembled
ND812 With Front Panel and BSBBoard. « + « v « v ¢« ¢« ¢« « « . .
Logic Diagram General Notes., c s e e e e e e e e e
ND812 Central Processor, Logic Diagram
ND812 4K Memory, Logic Diagram . . + « v ¢ ¢« ¢« 4o « o o o « &
ND812 8K Memory, Logic Diagram « . « . +
8200 MSI Logic Diagram/Functional Description
9300 MSI Logic Diagram/Functional Description . «
9301 MSI Logic Diagram/Functional Description

9304 MSI Logic Diagram/Functional Description « v v & v &+ « + « .
9309 MSI Logic Diagram/Functional Description « v & « & & « & o .
9312 MSI Logic Diagram/Functional Description « . . + « «
9314 MSI Logic Diagram/Functional Description . . .+
9316 MSI Logic Diagram/Functional Description « . + . + « . + . .

Xiv

PAGE

4-332
4-333
4-340
4-350
4-362
4-363
4-365
4-368
4-370

4-6

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-2]
4-22
4-23
4-24
4-25
4-26
4-27

LIST OF TABLES

TITLE

Function of ND812 Operator Control Panel Controls and Indicators . .
Function of ASR33 Teletype Controls v v v v v v 4 4 o o o o o o &

Switch Register Status=Word Format. e e e e e e e e e e
Latch and Register Clearing, Fundamental Operation
GO Control, Fundamental Operation, « v ¢« v « « . . .

Manual Load Address Register, Fundamental Operation »
Manual Load Memory Register, Fundamental Operation

Done Latch, Fundamental Operation
Selectable Register Switch OQutputs
Latches and Registers Cleared by STARTKey. . « v v v ¢« v v « o .
Start Control, Fundamental Operation
Clock Generator, Fundamental Operation, v + v v v ¢« v o o o . .
Clock Control, Fundamental Operation. « « v v v ¢ o o« o o . . .
Pulser Control, Fundamental Operation. . . . v v v v v« « . . .
Major State Control, Fundamental Operation . v
Primary Decoder OQutputs v v & & ¢ v v v v v v v v v v v v v v W
Operate Decoder Outputs « v v v 4 4 v v 4 v e v v v e v o v W
Up Counter Preload Coder Vs, Number of Moves. e e
Bus and Memory Buffer Multiplexer Outputs
TS Multiplexer SelectionCodes e e e e
MX Multiplexer Selection Codes. v v v v v v v v v v v . “ e
Common Basic Phase, Event Summary
Common Basic Phase, Functional Operations,
Operate Instructions, Basic Phase, Event Summaryo .
Operate Instructions, Basic Phase, Fundamental Operations
Group 1 Operate Instructions by Subgroup. « . v v v & . v o . . .
Group 1 Operate Instructions, Bit Pattern Formats by Subgroup. . . .
Multiply Instruction, Event Summary
Multiply Instruction, Fundamental Operation
Divide Instruction, Event Summary. N

XV e -

TABL

- 4-28
4-29
4-30
4-31
4-32
4-33

4-85
4-36

4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54

4-56

462
4-63

Xvi

TITLE PAGE
Divide Instruction, Fundamental Operation. e e e . 494
Logical AND Subgroup, Event Summary. e o . . 4=101
‘Logical AND Subgroup, Fundamental Operations. 4-102
Load/Exchange Subgroup, Event Summary. 4-104
Load/Exchange Subgroup, Fundamental Operations. 4-105
Add/Subtract Subgroup, Event Summary. oo 0. . . 4-109
Add/Subtract Subgroup, Fundamental Operations. 4-114
Shift/Rotate Subgroup, Event Summary e e e e e s 4-127
Shift/Rotate Subgroup, Fundamental Operations « . . + « « « « . . 4-128
Load/Read Subgroup, Event Summary. .« + « + « « 4-133
Load/Read Subgroup, Fundamental Operations. « « « + « « « .+ . . 4-136
Group 2 Operate Instructions by Subgroup. e o+ . . 4-138
Group 2 Operate Instructions, Bit Pattern Formats by Subgroup e o o . 4-139
Register Modify Subgroup, Event Summary. . . « . .« 4-143
Register Modify Subgroup, Fundamental Operations. 4-144
Register Sign/Skip Subgroup, Event Summary 4-149
Register Sign/Skip Subgroup, Fundamental Operations 4-149
Register Zero/Skip Subgroup, Event Summary 4-153
Register Zero/ Skip Subgroup, Fundamental Operations 4-154
Status Modify Subgroup, Event Summary e e+« o 4-158
Status Modify Subgroup, Fundamental Operations 4-158
Status Skip Subgroup, Event Summary.« . . . o 4-160
Status Skip Subgroup, Fundamental Operations. 4-161
Single=-Word Memory Reference Instructions 4-163
Single=-Word Memory Reference Instruction Format and Bit Patterns . . 4-164
Single=Word Memory Reference Instructions, Operational Permutations 4-165
Single=Word Memory Reference Instructions, Direct Addressing,
Execute Phase, Event Summary. « « « « ¢ « v ¢ v o v 4 v 0 e . 4-169
Single-Word Memory Reference Instructions, Direct Addressing,
Execute Phase, Fundamental Operations « « « + « . . 4-169
Single=Word Memory Reference Instructions, Indirect Addressing,
Primary Basic Phase, Event Summary 4-174
Single=Word Memory Reference Instructions, Indirect Addressing,
Secondary Basic Phase, Event Summary0 . 0. . . 4-174
Single-Word Memory Reference Instructions, Indirect Addressmg,
Execute Phase, Event Summary., . o & ¢ ¢ ¢ v 4 0 0 0 0 v e . e 4-175
Single=Word Memory Reference Instruction, Indirect Addressing,
Primary Basic Phase, Fundamental Operations .« o 4176
Single=Word Memory Reference Instructions, Indirect Addressing,
Secondary Basic Phase, Fundamental Operations 4-178
Single-Word Memory Reference Instructions, Indirect Addressing,
Execute Phase, Fundamental Operations « . . « ¢« v ¢« « v v o o & 4-181
Two-Word Memory Reference Instructions e e e e e 4-182
Two-Word Memory Reference Instruction Format and Bl’r Patterns . , . 4-182

TABLE

4-64
4-65
4-66
4-67
4-68

4-69

4-70,

4-71
4-72
4-73
4-74
4-75

4-76

4-78
4-79
4-80

4-81
4-82

4-83
4-84

4-85

TITLE
Two-Word Memory Reference Instructions, Direct Addressing,
Primary Basic Phase, Event Summary e e e
Two-Word Memory Reference Instructions, Direct Addressing,
Secondary Basic Phase, Event Summary
Two-Word Memory Reference Instructions, Direct Addressmg,
Execute Phase, Event Summary. e s e e e e

Two-Word Memory Reference Instructions, Dlrecf Addressmg,

Primary Basic Phase, Fundamental Operations
Two=Word Memory Reference Instructions, Direct Addressing,
Secondary Basic Phase, Fundamental Operations e e
Two-Word Memory Reference Instructions, Direct Addressing, '
Execute Phase, Fundamental Operations « « v & ¢« v ¢ v o ¢« o . .
Two-Word Memory Reference Instructions, Indirect Addressing,
Primary Basic Phase, Event Summary ot e e e e e e .
Two-Word Memory Reference Insi’ruchons, Indlrecf Addressing,
Secondary Basic Phase, Event Summary e e o .
Two=-Word Memory Reference Instructions, Indirect Addressing,
Tertiary Basic Phase, Event Summary . + « & v v v v v v v 4 0 .
Two=-Word Memory Reference Instructions, Indlrec’r Addressing,
Execute Phase, Event Summary . . o s s e o v s e s e s
Two=Word Memory Reference Instruchons, lndlrecf Addressmg,
Synopsisof Events « & v v 4 ¢« 4 4 4 e e 4 0 e e e e
Two-Word Memory Reference Instructions, Indirect Addressmg,

Tertiary Basic Phase, Fundamental Operations. o o
Two=-Word Memory Reference Instructions, Accumulator

Selection, Fundamental Operations . . « & v v ¢« v v v v v v o
Execute Instruction, Direct Addressing, Primary Basic Phase,

Event Summary 6 v s s s e e e s e e s oas . s .
Execute Instruction, Direct Addressn ng, Secondary Basic Phase,

Event Summary oo 0 .
Execute Instruction, Direct Addressing, Primary Basic Phase,
Fundamental Operations e e e e e e
Execute Instruction, Direct Addressing, Secondary Basic Phase,
Fundamental Operations e e s e e e e e e e e

Execute Instruction, Direct Addressing, Synopsis of Events,
Execute Instruction, Indirect Addressing, Primary Basic Phase,

Event Summary v v s 0 e e e e e e e e e e e e .
Execute Instruction, Indirect Addressing, Secondary Basic Phase,
Event Summary . . v v v v v i b e e e e e e e e e e e i . o

Execute Instruction, Indirect Addressing, Tertiary Basic Phase,
Event Summary . .« . . ¢ v 0t e e e e et e e e e e e e e e
Execute Instruction, Indirect Addressing, Primary Basic Phase,
Fundamental Operations e e e e e e e v e e s 4 e

xvii T T

PAGE

4-184
4-184
4-185
4-185
4-186
4-187
4-191
4-191
4-192
4-192
4-194
4-196
4-198
4-199

4-199

TABLE

4-86

4-87

4-88
4-89

4=

70

4-91

4=
4-
4
4=
4
4-
4
4=
4~
4-
4-
4
4-

4-

4=
-~ 4=
4
4
4
4
4
4

4
4
44
4
44
44
4
4
4-
4
4
4

72
73
7z
5
y
77
78
P9
100
101
102
103
104

105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125

TITLE

Execute Instruction, Indirect Addressing, Secondary Basic Phase,
Fundamental Operations . « « « « « « « & e e e e e e e . .
Execute Instruction, Indirect Addressing, Tertiary Basic Phase,
Fundamental Operations , e s s s e s s s s s a4 s e
Multiphase Memory Reference Instructions. e s e e e e
Memory Skip Subgroup, Event Summary. o e o e
Memory Skip Subgroup, Fundamental Operations. « + . . .
Memory to J Subgroup, Event Summary « e e e s s
Memory to J Subgroup, Fundamental Operations «
STJ Instruction, Event Summary . . « « ¢« « ¢ ¢ ¢ ¢ « & « o s s e
STJ Instruction, Fundamental Operations . . . « ¢« &« o« ¢« o o & .
JMP Instruction, Event Summary. . . + . « . . e e s e s s e o e
JMP Instruction, Fundamental Operations. « « « ¢« « ¢« & o o o o &
JPS Instruction, Event Summary . . . « « « « + . . e e o o s s

JPS Instruction, Fundamental Operations « « « o« « ¢« ¢« ¢« o o o o &
Auto=Index Function, Primary Basic Phase, Event Summary. « o s o o
Auto-Index Function, Secondary Basic Phase, Event Summary

Auto-Index Function, Execute Phase, Event Summary. . . . e e s

Avuto-Index Function, Primary Basic Phase, Fundamental Operahons .
Auto-Index Function, Secondary Basic Phase, Fundamental Operations
JMP Instruction, Primary Basic Phase, Normal Addressing Vs.

JMP Auto-Index Function, « « « & v ¢ ¢« ¢« « & « & c e e e e e s
Literal Instructions. &« & & & « « « « o . e e e e e e e e e e e
Literal Instruction Format and Bit Patterns. « + «
Literal Instructions, Event Summary . + + ¢ ¢« ¢« v v ¢ ¢« ¢ o o 4 .
Literal Instructions, Fundamental Operations e e s
Control Logic Inputs From Processor « « o« o ¢« ¢

Control Logic Outputs To Data Handling Elements
Current Memory Field Selection, Fundamental Operafions.
Two-Word Instruction Memory Field Change, Fundamental Operations,
Two=Word JMP Instruction Memory Field Change,

Fundamental Operations c e b 0 e s e e e s « ..
Two=Word JPS Memory Field Control, Fundamental Operations. . . .
JPS Return, Fundamental Operations . & v v & v v ¢ ¢ o o ¢ o o &
Interrupt Initiation Memory Field Control, Fundamental Operations. .
Interrupt Return, Fundamental Operations. e e e
Cycle Steal Memory Field Selection, Fundamental Operations
Front Panel Memory Field Control, Fundamental Operations

LDREG Instruction, Fundamental Operations,« e e e
LDJK Instruction, Fundamental Operations . « « . « « « « . . . e
RJIB Instruction, Fundamental Operations. + . + « ¢ ¢« ¢« ¢ o« & « &
Data Signals From Computer To Peripherals v « . o o o . .
Data Signals From Peripherals To Computer .« « v o v o« o o . .

Control Signals From Computer To Peripherals . . . « «

Xvili

TITLE

Control Signals From Peripheral ToComputer. . » . v v . v o . . .

I/O Options Available For The ND812
I/O Instruction FOrmats. o« o v o o o o o o o« o « & & e
Interrupt and Power Fail Instruction Subgroups, Bit Patterns . . .
Interrupt Initiation, Fundamental Operations

IONH Instruction, Fundomental Operation

IONA Instruction, Fundamental Operation
IONB Instruction, Fundamental Operation

IONN Instruction, Fundamental Operation v + « v . v v o o o

IOFF Instruction, Fundamental Operation, . e e e e e e

Powerfail Interrupt System, Fundamental Operqhons e e e e e

PCP Generation, Fundamental Operations . o v v v & o o o &
Externally Generated Skip, Fundamental Operations
Possible PIOData Transfers o w & v v v v v v 0 v v v v v v
Input To K or J Register, Fundamental Operations

Output K or J Register, Fundamental Operations. . . . «

Autoloading, Fundamental Operations v o v v & o o o o o & .
Single, Data=In Cycle Steal, Fundamental Operation.
Single, Data=Out Cycle Steal, Fundamental Operation.
Single, Increment Cycle Steal, Fundamental Operation.
Single, Decrement Cycle Steal, Fundamental Operation , . . .

* o

Multiple Cycle Steals, Fundamental Operations
Test Equipment Required For Maintenance., “ e e
Visual Inspection Checklist , . ¢ e e e e e e e ..
ND812 Diagnostic Tests o o o o v v o « c s s s b e s e e .

Replaceable Parts List, ND812 Central Processor, Part Number 88-0397

Replaceable Parts List, ND812 4K Memory, Part Number 84-0096
Replaceable Parts List, ND812 8K Memory, Part Number 84-0097

Didgrcm Inde)(e o o @ ¢ o o o e o o e o o o o o o o o o .

Xix/xx

SECTION |
DESCRIPTION

1.1 PURPOSE OF EQUIPMENT

The ND812 Computer is a binary, parallel, synchronous computer specifically
designed to be used in dedicated computer-based systems. It can also be used as a general
purpose computer,

1.2 PHYSICAL DESCRIPTION

The ND812 (see Figure 1-1) is contained in an aluminum housing designed to fit
into a standard 19-inch rack with other equipment. The ND812 is supplied with aluminum
panels on all sides (except the operator console which is plastic) which can be easily removed
for maintenance purposes. The front panel contains clearly marked controls and indicators
~for manual operation. ‘

The computer is a solid state device employing medium scale integrated circuits
(MSI). As shown, all boards are easily accessible for maintenance. The ND812 is prewired
and mechanically designed to accommodate two 1/O control cards for optional or peripheral
equipment. Additional interfaces to other peripheral devices can be contained in a separate
1/O expansion cage.

1.3 FUNCTIONAL DESCRIPTION

To introduce the reader to the major functional units of the ND812 Computer
(see Figure 1-2), the following circuit grouping and discussions are presented as a guide:

1) Manual Start and Control (19)

2) Clock Generation and Timing (23, 24)

3) Control Registers (1, 2,3, 4, 6, 7, 18, 20 and 25)

4) Accumulator Registers J, K, R, and S (1, 2, 3, and 4)
5) Multiplexers (9, 15 and 17)

6) Arithmetic Unit (11)

7) Memory Unit (26)

8) 1/O Processor

9 Power Supply Unit

-1 -

Figure 1-1., ND812 Computer.

1.3.1 MANUAL START AND CONTROL

The ND812 system is comprised of its front panel and a Teletype (TTY) keyboard
(Type ASR-33 Automatic Send Receive Model) together with other peripheral equipment.
The Teletype provides a means of communicating with the ND812 in its automatic or run mode.
The front panel, on the other hand, provides communication with the ND812 in a manual
mode. Normally, the ND812 operates automatically through program control. It examines
successive locations in memory and performs indicated operations. However, manual operation
is necessary for many tasks. For example, the binary loader, which permits the ND812 to
load a program into core memory, must be manually loaded into the computer (if the hardware
auto-load interface (which reads in binary) is not used).

NOTE
"The Binary Loader"” is a program consiéting of 1768
instructions. (ND41-0005) B
The front panel provides means to store a program-(although the process is extremell
laborious), to initiate operation of the ND812, and to examine the contents of various memorgm
locations and other ND812 registers. It is also possible to chanthhe contents of memory .
The operator console is described in Section 3 of this manual.

Once a program is assembled into machine language (biinary format) it may be
either loaded through the binary loader from pre~punched paper thpe or cassette, or it
may be manually loaded through the front panel switch register. When the machine POWER
- switch is placed in the POWER ON position, a power ready condjtion is established and
the operator console is conditioned for manual operation. Thus, the operator, or field
service engineer may manually load his program instructions into kemory. Once a program
is loaded intfo memory, either manually or automatically through bne of the hardware loader
interfaces, or through program control by the Binary Loader, the ‘machine "run" condition
may be implemented by depressing the front panel START switch, if the starting address has
been initialized by a LOAD AR to establish a starting address.

rmlnat:w-.ﬂ»\- .

1.3.2 CLOCK GENERATION AND TIMING

Machine cycle timing is produced by a 16 MHz crystal-controlled oscillator, a
pulser, and logic circuits (Figure 1-2) which generate three discrete sets of timing pulses
for control of machine cycle timing. The combined operation of these units produces a
parallel train of continuous keying pulse units (PUO through PU7) that are segmented into
continuous groups of eight pulses. These PU pulses are used to generate eight basic phase
(BPO through BP7) and seven execute phase (EPO through EP6) pulses together with four
peripheral control pulses (PCPO* through PCP3*). Peripheral control pulses (PCPs) are only
generated when the instruction decoder senses an 1/Q instruction.

1-3

woiboig >oojg ZIGAN “Z-| 24nbiy

L1V 90

S S LLNDDN
—Iu (SLO1S — e Gmn e Sw— — —— ——— —— — Su—
wel | 3iil8) (ge) qu TOMLNOD SN8 OGNV ¥3X31dILINW LIMSIIBBMSAS (1| pgmedd)
(s357d Svm,eaua#.“l oS0 e egT e " . | I tingen| 8 [s»ounsTavw tnows
{S35d 3SVHI ILNOIX3U-AdI¢— d3 _ (o1 (€ on I S3Lvo le &qwﬁwﬂﬁ_m&
I [e8] | “OUINOD | | 2901 2907 21907 SRl TSI
(SISINd 3SvHd ISVE)L-OdBg—{_Nd.,) ONV LHVLS 103738 da1ans 153738 | ¢
(SNOLLONNS TTORD INHIVWISE4———— TN i SL oav XN LLXOp
L_ONIWLL NV NOLLY3N39 %0070 _ h | T T T _ N ragr
- —— | i
r Bl SNOILONNA 21901 | AII.II_I. SNLVLS
| | Q3T I04IND I SN 1S 1
1Nd1N0 YWQ 1 22] KITVNNYA OL “ er) bzl (21) {8 S i
(STYHIHJIYd OL) ¢—— + S31v9
; 1 WOl atdunwf f S0 S —
LLWOI POWOI | | | SL | ppovilens i) i
| | 2 ﬁ: o
|) W v 1
1 (12)) vivQ AdOWIW | & I 3
(SNOILONYLSNI 2ISVE GI 300030 |e y !
T | noionutsn | 1 | sueo tsug-8)| ‘ A i
| | VLV NOLLINH LSNI 0
I-— — * r
L | I
(SdWv1dd OL) < L 1 |
 ENPRUNEGHIPN (PRPR |
- Smm— AR e SEmmD SREE eE— owey ewee
S N r 1
LLY20Y LiS1-@PSL L b 1L XNDBXIN _ _
LLNZeN | (b1) oy () _ _ _
E2aNDOSN I L AR Suidov {1 oioon _ _ _. Liugoy LISPS _
- ————|——_—————— I - =
B R | L snawway T (U el L L
I SwInINa 3Lm . SNKIOH SNKTION i
—, %SOV - BIHNI 2 — — — G GE—— S — —— I"'Illd — —
T e e
300930 i [vwva ssawaav i . | 7 } l
“ x “ | :-es“os e] LWy EeY Lid Em_.l Ll LLrogr LLPEY |
(S52) ¥3151934 8y !) (9) (€))
] -{ 4315193y VivQ H3LSIO3Y | 5193 1 ¥3Nn0s HOLY INWNON HOLY INWNOOY _
l | 1| saine AHONIN NOILONN SN SRV s | 1 YN0 ¥3ddn
v W W ur uv 5d r] |
| : _ —' h > su3Lsiony :]
INOD
| —_— —_———— e | e | ———d I |
(92) I . T N
I SOINGHLTT3 |]l Su31S1934
| Ny HOLYINWNIN |
_ LINO ASOWEW oy _ . LLLNOBPLNO e e cme [e e v o | e emmn
avay - <
| X susesz| | 16cswogsw LLaAgoan] 18978 Sne AnS
| 1 l 1n0
I 300230 |
| : _

{SWV d'd NV STVH3HJIN3 O1)

1-4

NOTE

Signals followed by an * indicates that the signal is
active in its low-level state.

Fundamental pulses (PUs) are generated in continuous trains of 8 pulses. These
pulses are generated by a pulser that is automatically recycled at the end of a train. The PU
pulses are used to key logic that controls the generation of the basic phase and execute phase
pulses; they also synchronize various control functions within the processor.

Instructions that are processed by the ND812 are segmented by time periods called
phases. Operate instructions, for example, generally require only one phase for their
execution, although there are exceptions. Memory reference instructions, on the other hand,
may require two or more phases. There are two types of phases, the basic and execute. At
the end of any instruction, whether it requires one or more phases, a register called the done
latch is set. The done latch enables a new machine cycle for the execution of the next
instruction in the program. A machine cycle can consist of one or more phases, but always
begins with a basic phase. The execute phase is used only during the execution of a memory
reference instruction. When the basic phase for the new machine cycle has been entered, the
done latch is cleared, but is set again at the conclusion of the instruction. Thus a machine
cycle is defined as the period between the set condition of the done latch af the beginning of
the instruction, and the set condition of the done latch at the end of the instruction.

1.3.2.1 BASIC PHASE. When the ND812 is in the run state the processor is continuously
_recycling through the basic and execute phases of the fundamental machine cycle, or, in
the case of an 1 /O instruction, deferring a _mochine cycle to an 1/O cycle.

At the beginning of a machine cycle, the contents of the program counter (PC) are
transferred to the address register (AR). Later in the cycle the PC is incremented by one and
the result transferred back into the program counter. The contents of the address register is
the core location from which a 12 bit binary word is obtained. Memory can only contain a
binary word 12 bits long. This word may be an instruction, or half of a two word instruction;
an effective or intermediate (indirect) address; or data which may be formatted in any possible
combination of 12 bits. Then the memory is read and the contents of the core from the loca-
tion specified by the address appears at the read outputs of the memory and are set into the
memory buffer register. The Memory Buffer is then transferred to the memory data register.
Before the memory buffer transfer, the twelve bits of the instruction are transferred to the
instruction register and decoded.

1.3.2.2 EXECUTE PHASE. The execute phase is entered for all memory reference instructions
except JMP and XCT. For instructions that affect the contents of memory such as increment,
decrement, and load-store, the contents of the core location established by the address are
read into the memory buffer and the operation specified by the contents of the instruction
register is executed. During a store instruction, the contents of the J or K registers are
transferred into the memory data register and written into memory at the address specified.

1-5

1,3.3 CONTROL REGISTERS

The ND812 has two instruction decoders and four control registers. The control
registers store data during the execution of an instruction. These registers do not include
thHe core memory which stores the instructions and operands to be processed when a
machine cycle is executed The five control registers and instruction decoders are used
to store data which is processed during the execution of an instruction. These are:

a. Instruction Decoders (21, Figure 1-2)

b. Instruction Register (18)

c. Address Regjisfer 7
d. Program Counter (6)
e. Memory Buffer Register (25)

i f. Memory Data Register (20)

1,3.3.1 INSTRUCTION DECODER. The instruction decoder (21) receives its inputs
directly from the instruction register (IR). The instruction decoder receives the first four
bits of any instruction during the basic phase. It decodes these four bits to determine the
type and class of instruction. The four types of instructions that are decoded are the
memory reference instruction (MRI), the operate instruction (OPI), the literal instruction
(LIT), and the input-output (1/O) instruction. The operate instructions are further divided
nto two classes or groups of instructions, class 1 (OP1) and class 2 (OP2),

1.3.3.2 INSTRUCTION REGISTER. The IR (18) holds a 12-bit instruction word and receives
itls input from the memory buffer multiplexer (17). The data held in the IR is retained during
the time the instruction is processed because bits 5 through 11 of any instruction word are
used to obtain various functions of the logic during each machine cycle. The IR is cleared
at the beginning of each machine cycle. Two-word instructions are shifted 3 bits left during
the second basic phase.

—

.3.3.3 ADDRESS REGISTER. The AR receives its 12-bit inputs from the adder. The contents
of the AR specifies the memory location from which a word is fetched and restored during

each memory cycle. Any data loaded into the AR is retained until it is replaced by new

data. Twelve-bit AR data is outputted to the address decoders in the memory unit so that
when a word is fetched or is rewritten into memory it is always from or to the location
specified by the content of the AR. AR outputs are also supplied to the MX multiplexer so
that any current address may be summed with the relative address in an instruction word.

—

.3.3.4 PROGRAM COUNTER, ThePC is a 12-bit register that holds the location of the
next instruction that will be fetched from memory during program execution. The PC receives
its inputs from the adders. Outputs are provided to the MX multiplexer.

1.3.3.5 MEMORY BUFFER REGISTER. The MBR receives all data read from memory during
~amemory cycle. This is a word that can either be an instruction, an address, or pure data.

" This 24-bit register receives its inputs directly from the outputs of the memory sense amplifiers.
Any data read into the MBR is retained until it is cleared af the beginning of a phase. The
24-bit output of the MBR is supplied to the Bus and memory buffer multiplexer. Twelve bits
are switched to the MDR and, under appropriate circumstances, to the instruction register.

1.3.3.6 MEMORY DATA REGISTER, The memory data register holds all information that is
read from, or is writfen into memory, transferred as outputs to peripheral equipment, or
examined via the memory register display on the ND812 front panel. Any information read
info the memory data register is retained until replaced by new data. The 12-bit output of
the memory data register is also supplied to the TS multiplexer so that the contents of the
address register can be replaced when indirect addresses are specified by the instruction
currently being executed.

1.3.4 ACCUMULATOR REGISTERS (J, K, R, and S)

The accumulators consist of four 12-bit registers designated as the J, K, R, and
S registers. These registers are also referred to as the accumulators (J, K registers), and
sub~accumulators (R and S registers). The J and K registers are capable of direct storage
to, and loading from, memory. Their respective contents may be summed, subtracted,
ANDed, shifted, rotated, and exchanged. All arithmetic results appear in the J or K
registers, except in the case of multiplications where the product appears in the R and S
sub~accumulators. The sub-accumulators are not directly addressable (loaded from or
stored in memory), but can be loaded from, or to, or exchanged with the contents of the

- J and K registers.

The J and K registers are parallel-loaded with data from the adder bus. Each
register delivers its contents to the TS and MX multiplexers (? and 15). In addition to its
MX multiplexer outputs, the K register is connected (bit~parallel) to the S register and the
J register is connected (bit-parallel) to the R register.

1.3.5 MULTIPLEXERS

The ND812 has three multiplexers, each of which receives various source inputs.
These multiplexers are actually high-speed electronic switches and output any one of its
several inputs. The three multiplexers are the bus and memory buffer multiplexer, the
TS multiplexer, and the MX multiplexer. '

1.3.5.1 BUS AND MEMORY BUFFER MULTIPLEXER. The bus and memory buffer multiplexer
receives two inputs, one from the sum bus and the other from the MBR. Thus, during a
machine cycle, data from either source can be switched to the IR and to the memory data
register for subsequent processing. Information can be outputted to peripheral equipment
through the memory data register, and the IOM gates. The MDR contents is displayed at all
times on the front panel MR indicators.

1.3.5.2 TS MULTIPLEXER. The TS multiplexer receives four different inputs. Three of
these inputs are: The J register, the K register and the memory data register. The fourth
input is a partial word and consists of bits 6 through 11 of the IR, Any one of these four
data words can be switched as an output from the TS multiplexer by the TS select logic.
There are actually two output paths from the TS multiplexer which are supplies to the Add-
Sybtract gates. These gates select either the data word (Z) or its complement (Z*) for a
subsequent summing operation. When its output data is to be added to the output from the

X multiplexer, the data word selected by the gates (12) is the complement of the selected
input data word (Z*), because the Add-Subtract Gates invert their inputs. However,
subtraction requires the true (Z) of the data word taken from the TS multiplexer. The outputs
F:'rm these gates are supplied directly to the adders where the actual summing operation takes
I

place. During addition the output from the add-subfract gates is summed with the data from
the MX multiplexer resulting in simple binary addition. During subtraction the resulting
cd?mplement of the data word is taken and incremented by a count of 1 by the add-1 logic
resulting in a 2's complement addition (binary subtraction). When 2's complement addition
takes place, a carry input is propagated through the adder together with the complement to
provide the resultant subtraction.

13.5.3 MX MULTIPLEXER. The MX multiplexer receives eight 12-bit input data words
rom various sources. These sources include the following registers:

) e

K Register (1)

J Register (3)

S Register (2)

R Register (4)
Address Register (7)
Program Counter (6)
Status

Utility Gates (5)

>S@ "m0 0000

Depending on the state of the MX select logic (10), the data word contained in
any one of the registers listed in a through f cbove can be switched through the MX
multiplexer (9) for output to the adders (11). The status inputs are derived from several
registers including the overflow logic (14), the flag flip/flop, the current memory field,
the jump to subroutine memory field, and the interrupt memory field status. These data are
normally loaded into the J register where they are then transferred into the memory data
register through the buss and memory buffer register multiplexer (11) for storage somewhere
in memory (20) when a powerfail condition causes an interrupt. The utility gates (5) also
permit one of several inputs to be loaded into the MX Multiplexer. The utility gates accept
data from either the J or the K registers (1 and 3), data from a peripheral device (which is
transferring a word into one of the ND812 registers), or from the front panel switch register
switches, The output from the MX multiplexer is applied to the adders (11) and a summing
operation occurs whenever data is outputted from either the TS multiplexer or the MX
multiplexer. However, in the absence of a TS subtract or TS add function from the TS add
btrocf logic (10), the output from the TS multiplexer is all zeroes. Output from the MX

%)
_.‘.__e;

multiplexer, however, can be derived from any one of its eight input data words.,
1.3.6 ARITHMETIC UNIT

The arithmetic unit is a high-speed full-binary adder (11) operating in conjunction
with the add-subtract logic (13) and the TS multiplexer (15) output data which is summed
with the MX multiplexer (9) outputs. The adder features 12-bit ripple carry addition. The
adder output data is applied to the sum buss where it is made available to various registers.
The adder performs all summing operations through straight binary addition or through 2's
complement addition for subtraction. Hardware multiplication is carried out through
successive binary addition and hardware division is carried out through successive 2's
complement addition.

1.3.7 MEMORY UNIT

The memory unit (standard 8K configuration) consists of a 8K (4096 x 12 bit
locations) core stack and associated read/write electronics. Control registers external to
the memory include Memory Buffer Register, Memory Address Register, and Memory Data
Register.

The memory unit is organized around two 4K fields (4096 x 12 each) to simplify
programming. All locations within a memory field are directly accessible to the program or
programmer (and operations that involve data outside the current field can be implemented
through program control. Hardware return from the called field to the main field is standard
with the 8K or larger memory configurations. A two-word MRI permits selection of any
- memory field for the location of a word or the address of a JMP instruction. Additionally
a two=-word instruction can directly address any location within any field, but, a single
word instruction only directly addresses memory locations relative to the indicated
(current) value of the PC (128 locations). The single-word instruction can indirectly
address any location within the current field.

1.3.8 INPUT/QOUTPUT (I/O) UNIT

The 1/O unit interfaces with the central processor and the external interface
controller logic for all peripheral units. It consists of gating and control logic which
enables program-controlled data transfers to and from peripheral devices. In addition to
the data transfers, the 1/O unit also endbles hardware interrupts (excluding an internal
power~fail interrupt), a direct-memory access (DMA), and a real~time-clock (RTC) option
(when included).

When data is transmitted to an 1/O device by a program-controlled input/output
transfer, the J and K registers place data on the sum buss. This data appears on 12-parallel
lines (OUT 00 thru OUT 11%) through output gating and is available to all peripheral devices.
On interrupt operations, input EXT 00 thru EXT 11 data lines transfer a trap address on the
DMA (direct memory access) Controller. These lines transfer the desired memory address to

1-9

the AR. Peripheral control operations such as device select codes are outputted to the peri-
pheral device through a second group of 12 output lines (IOMs).

1.3.9 POWER SUPPLY UNIT

The power supply unit basically consists of a 115/230 vac power transformer,
bridge rectifier, *5 Vdc 10A regulator and 30 Vdc 4A regulator. The power supply unit
converts 115 Vac or 230 Vac into regulated +5 Vdc for operation of all ND812 computer
logic circuitry, and regulated 30 Vdc for operation of the Memory Unit.

| The power supply unit also includes power sense logic circuitry. The power sense
circuitry operates two latches in the power supply unit. In the event of internal or external
power failure, one latch provides a bad power signal to the computer timing circuits. The
other latch provides a delayed power on signal to various logic elements throughout the
ND812 computer to initially clear pertinent registers and latches when power is turned on.

1.4 GENERAL SPECIFICATIONS
TYPE

Digital stored-program general-purposé computer.

MEMORY

Magnetic core, 8192 words, 12 bits, 2 psec cycle time. Memory options:
Minimum 4K, expandable in the field to 16K in 4K increments.

ADDRESSING
Relative, indirect, and direct. Hardware multiple field control.

ARITHMETIC

! Parallel, binary, fixed point, 2's complement. Hardware multiply and divide are
sfandard features.

INSTRUCTIONS

Single and double word instructions which include 16 memory reference instructions,
three literals, and more than 50 arithmetic and register control instructions.

INPUT/OUTPUT

(1) Interrupt: Programmable 4-level priority interrupt. Trap to any core
location in first 4K of memory. :

1-10 - e

(2) Programmed 1/O transfer: Capability per single 1/0 instruction:
Transmit 12 or 24 bits

Receive 12 or 24 bits
Transmit 12 and receive 12 bits
Receive 12 and transmit 12 bits

1/O instruction includes four (4) microprogrammable pulses for multi~function
operation with a singl e instruction.

With single=word instructions there are 256 possible 1/O commands at 3 microseconds
per instruction. With two-word instructions there are 4096 possible 1/O commands at 5

microseconds per instruction.

Total of 78 control, data, and sense lines available on a single connector. Direct
Memory Access (DMA); 6 megabits per second/read, load, increment or decrement on DMA,
in a single cycle.

ACCUMULATORS
Dual accumulators with individual sub-accumulators.

CONTROL PANEL

Constant display of memory register. Switch-selected display of six other registers
and two busses when not in run state.

Front panel removable key lock. Power off, on, control off (panel lock).
Removable front panel for dedicated O .E.M. applications.

TIMING
16 MHz crystal controlled clock.

SOFTWARE

Includes Assembler, Editor,diagnostics, Utilities (Integer Arithmetic Package,
Floating=Point Package), and NUTRAN interpreter.

15 EFFECTIVITY

! This instruction manual is effective for ND812 Central Processors bearing serial
nu:;mbers 70-350 and above, and supercedes all previous editions. Changes to this instruction
manual are included in the front of the manual as applicable.

1.6 ORDERING ADDITIONAL MANUALS

: One manual is shipped with each ND812 Central Processor. Additional manuals
may be purchased through your nearest Nuclear Data representative (refer to rear cover of
this manual for addresses). Specify the equipment model number, serial number, and IM
nymber shown on the title page.

SECTION 11
INSTALLATION

2.1 SITE PLANNING
2,1.1 SPACE REQUIREMENTS AND INSTALLATION CONSTRAINTS

Normal heat generated by the ND812 will not hamper its operation. However,
it should not be located over, or in proximity to radiators or systems using vacuum tubes
since the high ambient heat of such devices may offect the operation. Do not cover the left
side ventilation inlet or the fans which are located on the right side of the ND812,

Figure 2-1 shows the overall dimensions of the ND812. The system should be
situated so that space is available for maintenance. If a Teletype is used. in the system, its
signal cable must not exceed 100 feet in length.

2.1.2 POWER SOURCE

The ND812 is powered by a power supply which requires a nominal 115/230
‘Vac 50-60 Hz source, free of excessive noise or fluctuations. A voltage stabilizing transformer
can be inserted between the AC source and the power supply where available power is subject
to large fluctuations. Noise produced by various types of electrical equipment can be eliminate
or greatly reduced by connecting a suitable filter between the AC source and the interfering
equipment.

2.2 UNPACKING AND INSPECTION

Carefully unpack the ND812 and ASR-33 Teletype, saving the shipping cartons
for possible reshipment. Check all items, such as program tapes and mounting hardware,
cited on the packing slip. Thoroughly inspect the units for damage in shipping. If damage
is apparent or parts missing, notify your nearest Nuclear Data Sales office or the Nuclear
Data home office and the discrepancy will be promptly adjusted.

2.3 INTERCONNECTION CABLING

The following procedure includes optional equipment interconnection cabling,
disregard devices that are not applicable. . (Refer to Volume Il for board and connector
locations.)

2-1

L[= T !
TOP
C]
fe 19.0" -l
——-*& 210" =']
7.:15' FRONT SIDE
— i

Figure 2~1. ND8I12 Dimensions

Be sure that the front panel POWER ON/POWER OFF/CONTROL OFF
switch is in the POWER OFF position.

Connect the gray ribbon cable and IC connector originating from the
ASR-33 Teletype to the TTY integrated circuit (IC) socket on the
teletype interface board using care that cable connector pins
correspond with receptacle pins.

NOTE

The IC connectors are not idiot proof and can easily be
reversed in the IC socket.

Connect the gray ribbon cable and IC connector originating from
the high speed punch to the I1C socket (labeled PUNCH) on the
high speed Punch/Reader interface board.

Connect the 86 pin multicolored (or white) ribbon cable and card

edge 1/O connector to the peripheral (CMTC, TCS, Disc) that is
to be interfaced to the ND812.

2-2

f. Connect the AC line cord to the 115-Vac source.

NOTE

Only the ASR=-33 Teletype should be powered through the
115-Vac outlet provided on the rear panel of the ND812,

2.4 CHECKOUT

There is no particular turn on sequence for the ND812 system, either the
peripherals or the central processor can be turned on first. However, no peripheral
should ever be turned on or off while the central processor is in the run state.

Upon completion of installation, refer to Section 3 and load the Binary Loader
program and run the diagnostic routine to ascertain that equipment is functioning properly .

2-3 . U

SECTION 111
OPERATION

3.1 CONTROLS AND INDICATORS
3.1.1 ND812 OPERATOR CONTROL PANEL

The ND812 Operator Control Panel, shown in Figure 3-1, contains control
switches and indicators that provide the means for local operator control of the system.
These controls and indicators are used in the normal operation of the computer and in the
step mode of operation for program debugging and troubleshooting of the system. The lower
set of indicators display the contents of the memory register continually. Upon selection, if
not in run, the upper set displays the contents of any one of the operational registers, S
(upper sub-accumulator), R (lower sub=accumulator), K (upper accumulator), J (lower
accumulator), address register, PC (program counter), status lines, and EXT lines. Data
entry into a memory is accomplished while the system is in a stop mode using the panel
switches. When the system is in a run mode, these switches may be sensed under software

control.

The function of each of the switches and indicators of the front panel is described
in Table 3~1.

3.1.2 ASR-33 TELETYPE

The ASR-33 Teletype, shown in Figure 3-2, provides for on line operator
communication with the software being executed by the computer. The function of the
Teletype keys is described in Toble 3-2.

3.2 MANUAL OPERATION AT THE OPERATOR CONTROL PANEL

The operator control panel (Figure 3-1) permits programmers and maintenance
personnel to control functions of the computer manually. Using the controls and indicators
for programming, data can be entered as an address, or as an operand, through the switch ,
register switches. Thus, any program can be manually loaded into the ND812. In addition
to the controls that permit loading of data, this panel has a number of switch controlled display
indicators that permit maintenance personnel to examine the content of various registers of the
ND812. Other display indicators indicate the current operating state of the ND812,

3-1

* |aupny |o4juody Jogosed(Z18AN

*|-€ 2nByy4

Table 3~1. Function of ND812 Operator Control Panel Controls And Indicators

Control

POWER/CONTROL
Key Switch

Start Switch

LOAD AR Switch

LOAD MR Switch

Function

Controls application of primary power. In the
POWER OFF position, all primary power is
removed from the processor. In the POWER ON
position, power is applied to all circuits and
manual program control switches are enabled. In
the CONTROL OFF position, power is maintained
but all front panel switches are disabled except the

. SWITCH REGISTER, which can be monitored
only by execution of a program.

When this switch is depressed, the interrupt is
turned off, the overflow bit is set to 0, the flag is
set to 0 and program execution is initiated at the
memory location specified by the Program
Counter. When the switch is released, the pro-
cessor enters the run state, the contents of the
Program Counter are transferred to the Address
Register, and the contents of the Address Register
are then used as the address of the first instruction
of the program.

Depressing this switch loads the contents of the
Switch Register into the Program Counter and
Address Register, and updates the Memory Regis-
ter and Memory Register indicator lamps to reflect
the contents of core at the address contained in
the Address Register. The Memory Field switches
are loaded into the Memory Field bits as an
extension of the Program Counter.

Depressing this switch loads the contents of the
Program Counter into the Address Register, initi-
ates a memory cycle that loads the contents of the
Switch Register into the Memory Address speci-
fied by the updated Memory Register and transfers
the Memory Register into core at the address in
the Address Register. The Program Counter is then
incremented by one. Memory Register indicator
lamps will then display the deposit, and the
Address Register indicator the deposit address. In
this way it is possible to load consecutive core
locations without continually resetting the Ad-
dress Register from the Switch Register.

3-3

Table 3-1. Function of ND812 Operator Control Panel Controls and Indicators (Cont'd)

Control Function

STOP Switch Depressing this switch causes the processor to stop
at the end of the current instruction. Program
Counter contains the address of the next instruc-
tion after program termination.

, SINGLE STEP When this switch is set up, the run mode is

Switch terminated and the timing circuits are disabled at

. the completion of one cycle (step) of the current
instruction. Depressing CONTINUE causes the
program to advance one additional cycle of the
current instruction. Interrupt circuitry is disabled
when a Single Step operation is performed.

SINGLE INSTRUCTION When this switch is set (up), execution is stopped
Switch at the end of each complete instruction. Depress-
ing CONTINUE executes the next instruction in
the logical sequence. DMA circuitry is disabled
when a Single Instruction operation is performed.

NEXT WORD Depressing this switch sets the contents of the

Switch address specified by the Program Counter into the
Address Register. The contents of the Program
Counter are incremented by one. Reloading the
Address Register generates a memory cycle which
updates the Memory Register to equal the con-
tents of memory at the address now contained in
the Address Register. In this way it is possible to
display the contents of consecutive memory loca-
tions without continually reloading the Address
Register from the Switch Register.

CONTINUE Switch Depressing and releasing this switch begins execu-
tion of the program at the address specified by the
Program Counter. Start clear is not generated.
NEXT WORD and CONTINUE switches are dis-
abled when the processor is in the run mode.

i SWITCH REGISTER These switches perm it manual loading of a 12-bit

Switches word into the registers. Words are arranged in an
octal format with bit O representing the most
significant_bit. Switches in the up position corre-
spond to binary ““1’s”, -down to “0's”’. The
contents of the Switch Register are loaded into the
Program Counter and Address Register by the
LOAD AR Switch, into the memory by the LOAD
MR Switch, or into the J Register during program
execution with a LJSW instruction.’

3-4

Table 3-1. Function of ND812 Operator Control Panel Controls and Indicators (Cont'd)

Control Function
MEMORY FIELD These switches determine the Memory Field to be
Switches loaded as an extension of the Program Counter

and Address Register. These switches affect only
the Hardware Loader and “LOAD AR" operation.
Each Memory Field is a 4K core memory and is
numbered from 0O through 3, and represents
4096, or 100005 memory locations

(0000:77774).
Memory Field Switch 0 Switch 1
0 off off
1 : off on
2 on off
3 on on
MEMORY FIELD These lamps indicate the Memory Field in which
Indicator Lamps the program is currently being executed. Lamps

are numbered in a form identical to the Memory
Field Switches.

Memory Field Lamp O Lamp 1

0 off off

1 off on

2 i on off

3 on on
MEMORY REGISTER These lamps indicate the 12-bit contents of the
Indicator Lamps Memory Register at the location specified by the

Address Register. A lamp "‘on’’ indicaes a *‘1”’ and
"off" indicates a 0", with 0" representing the
most significant bit.

RUN Indicator If this lamp is “‘on”, it indicates that a program is
Lamp in process.
INTERRUPT If this lamp is “‘on”, it indicates that one, or more,
INDICATOR Lamp of the priority interrupt levels is enabled.
SELECTED REGISTER These lamps indicate the contents of the register
Indicator Lamps selected by the SELECT REGISTER Switch.
OVERFLOW INDICATOR An overflow condition created. by either a J or K-
Lamp Register arithmetic operation causes the overflow
bit to be complemented. The overflow indicator
lamp will illuminate when the overflow bit is
non-zero.

Tabile 3-1. Function of ND812 Operator Control Panel Controls and Indicators (Cont'd)

: Control . Function
; SELECT REGISTER This switch selects the register to be displayed on
Switch the SELECTED REGISTER Indicator Lamps.

! Positions S, R, K, and J select the respective
registers. Position PC selects the Program Counter;
ADDRESS selects the Address Register; and
STATUS selects the circuitry and signals listed

below.
Logic
: Indicator Circuit
i Lamp Signal
Number Name Status

0 FLAG if this lamp is “on”’,
it indicates that the
flag is set.

1 ov If this lamp is ““on”’,
it indicates that the
overflow is set.

2 JPSMFO These lamps indicate

3 JPSMF1 the Memory Field in

! which is located the
i last JPS instruction
| which caused the
program to branch
to another memory
field.
Memory Field Lamp 3 Lamp 2
0 off off
1 on off
! 2 off on
. 3 on on
. 4 INTMFO These iamps indicate
i 5 INTMF1 the Memory Field in

which execution was
taking place at the
time the last inter-
rupt occurred.

Memory Field Lamp 5 Lamp 4

0 off off
1 on off
2 off on
3 on on

Table 3-1. Function of ND812 Operator Control Panel Controls and Indicators (Cont'd)

Control Function

6 IONN If this lamp is “on”’,
it indicates that the
lowest level priority
interrupt circuitry
is activated, as well
as the A, B, and high-
est level interrupt
circuitry.

7 IONB If this lamp is “'on”’,
it indicates that the
B level and highest
level priority inter-
rupt circuitry is
activated.

8 IONA If this iamp is "on”’,
it indicates that the
A level and highest
level priority inter-
rupt circuitry is
activated.

9 IONH If this lamp is "‘on"’,
it indicates that the
highest level priority
interrupt circuitry

is activated.
10 MFO These lamps indicate
1 MF1 the Memory Field in

which the program is
currently being
executed, (actual
extension of the Pro-
gram Counter and
Address Register).

Memory Field Lamp 10 Lamp 11
0 off off
1 on off
2 off on
3 on on

*paooghay adAiele] £e-¥SY "Z-€ 2inbid

HOO0O0OOOOOO O (=)
@O0@OO00OOOO®
@000 0LOOOE®

D00O00OOOOOD

Table 3-2,

" Control

REL. pushbutton
B. SP. pushbutton
OFF and ON

pushbuttons

START/STOP/FREE
switch

Keyboard

LINE/OFF/LOCAL
switch

Function of ASR33 Teletype Controls

Function

Disengages the punch mechanism allowing tape removal or tape
loading.

Backspaces the tape in the punch by one space, allowing manual
correction or rub out of the character just punched.

Control use of the tape punch with operation of the Teletype
keyboard printer.

Controls use of the tape reader with operation of the Teletype. in
the FREE (lowest) position the reader is disengaged and can be
loaded or unloaded. In the STOP (center) position the reader
mechanism is engaged but de-energized. In the START (highest)
position the reader is engaged and operated under program
control.

Provides a means for printing on paper; similar in operation to a
typewriter. Also perforates tapes when the punch ON button is
depressed, and supplies input data to the computer when the
LINE/OFF/LOCAL switch is in the LINE position. For a
complete description of the keyboard refer to ASR-33 manual.
(See Figure 3-2.)

Controls application of primary power in the Teletype and data
connection to the processor. In the LINE position the Teletype is
energized and connected as an 1/0 device of the computer. In the
OFF position the Teletype is de-energized. In the LOCAL
position the Teletype is energized for off-line operation, and
signal connections to the processor are broken. Both LINE and
LOCAL use of the Teletype require that the computer be
energized through the POWER switch, if the TTY is powered
through the utility outlets on the rear of the computer.

3-9

Two controls are extremely important to the maintenance technician. These permit
partial machine cycles to manually execute, or permit instructions to be processed one af a
time on command from the operator.

33 BINARY LOADER

One of the p0551b|e configurations (Figure 3-3) for the ND812 may include a
hlglh speed paper tape reader (HSR), a low speed teletype paper tape reader (TTY) and three
magnehc tape cassette reoders (Cass) .

Each paper tape confcnns only one program. Each cassette can contain many
progroms. Each program in a cassette is addressed by a unique 7-bit identifying tag word.

To instruct the ND812 s to the mode of loading used, a 12-bit status word is
entered into the switch register early in the loading procedure. The first two bits of the
status word (0, 1) indicate whlch device is to be used, |f the content of the first two bits is
01, the high speed reader is selected. If the content is 00 or 10, one of the cassettes will
be Used. If 11, a low speed reader is selected.

The remaining 10 bits are applicable only when a cassette program is selected for
loading into the ND812, Bits 2, 3 and 4 determine which of the three cassettes is selected.
If tﬁe content of bits 2, 3 and 4 is 001, cassette drive 1 is selected. If it is 010, drive 2 is
selécted, and if it is 100, drive 3 is selected. The remaining bits (5-11) name any one of
12%‘p055|b|e programs on the selected tape cassette. This tagword has an octal value ranging
from 0000 to 0177. The status word is manually loaded into the switch register and is held
there until required by the loader program. There are two loader programs, the bootstrap
and the binary loader.

The Binary Loader (ND41-0005) is a short program designed to load binary
formatted programs or data into the computer. The software loader used is the Binary Loader.
An joptional hardware method of loading binary formatted paper tapes is also available.

The Binary Loader reads binary formatted paper tape or cassefte stored program
records into the Memory Field specified by field change bits on the input source tape. Each
Memory Field consists of 4096 core locations and is defined as Memory Field 0 core locations
004 0000g through 009 77778 Memory Field 1 core locations 019 0000g through 01,
77773, Memory Field 2 core locations 102 00004 through 10, 7777g and Memory Field 3
core locations 1]2 00008 fhrough 1, 7777¢ he Binary Loader may reside in any Memory
Field, but unless the binary input tape has Fleld change bits it will only read into the field

in which it resides. Since the Binary Loader is itself a program, some means must be provided
to load it into memory. ThIS may be accomplished with a Bootstrap, or the Teletype/Auto
Loader. The Bootstrap is a very short program which may be manually loaded from the Switch
Register. When executed, the Bootstrap loads enough of the Binary Loader to allow the
Binary Loader to complete loading itself. The bootstrap is destroyed in the process so that if
it is necessary to reload the Binary Loader, the Bootstrap must first be reloaded.

PAPER TAPE MAGNETIC TAPE

-

CA
= A

CASSETTE
DRIVE 2

CASSETTE
DRIVE 3

\"—\r —A = A v o
DEVICE CASSETTE CASSETTE
ONLY TAGWORD
01=HSR
0000g-
00,10=CASSETTE Og-1777g
1=TTY

Figure 3-3. Switch Register Status-Word Format

3.4 MANUAL LOADING

In loading a program from the paper tape reader, the Binary Loader begins by
reading the leader. Actual loading of the processor begins when the Binary Loader detects
the first character different from 0200, (eight level punch only). For this reason, it is
essential that a program tape be placed in the reader with the leader at the read station.
Should the program tape be placed in the reader with blank tape at the read station, the
Binary Loader will begin loading zeros into memory beginning with location 0000g. The
actual leader of the program record will be interpreted as trailer.

3-11

! The loading process consists of assembling consecutive pairs of frames using levels

onel through six as upper and lower halves of 12-bit words. The assembled 12-bit words are
stored in memory in consecutive locations, beginning at address, as determined by the
presence, and interpretation of the origins, on the paper tape. An origin is a 12-bit word
punched in two frames of six bits each which is interpreted by the binary loader as an address
at which to begin storing programs. An origin is distinguished from program words on the
binary tape by the presence of the seven level punch. Field change characters, special
characters used to indicate the field in which a program is to be stored as it is loaded, cause
the storage to take place in memory fields specified by the field change characters. When a
binbry tape is created, the last two frames are written as o pseudo origin in such a way as to
make the sum of all the 12-bit words (including the last) on the tape equal to zero. The
binary loader keeps a running sum or checksum of the 12-bit words on the tape. When the
loader detects the trailer it halts. If the checksum is zero, the loading process is assumed

to be correct and K register equal to zero. If the K register is non-zero, the loading process
may be assumed to be in error.

3.4.1 AUTO-START

| There are three alternative methods of using the Binary Loader. In all cases the
format of the record being loaded remains the same. The differences lie in the manner of
entering the Binary Loader and exiting once the loading process has been completed. In all
three of the cases fo be described, location 7751, contains the exit address. That is, instead
of $topping when the loading process is complete,” the Binary Loader performs a jump fo the
address contained in location 7751g, provided the contents of location 7751, is not zero.
Thi!s feature will be described as the Auto-start feature of the Binary Loader.

! Manual Load with Auto-start is the simplest use of the Auto-start feature of the
Biniory Loader. The program record being loaded includes the necessary coding to cause
location 77514 to be set equal to some non-zero address. When the Binary Loader completes
the loading process, it will jump to this address with the checksum, (normally zero), in the
K register. The exit address should be the starting address of the program being loaded. The
program making use of the Auto-start feature should check the K register to determine if the
lodding process was correct and take appropriate action should the J register be non-zero.

Second use of the Auto-start involves performing a JPS to the Binary Loader from
a program outside the Binary Loader. The JPS is performed to location 77515, When the
lodding process is completed the Binary Loader will return to the calling location plus one
with the checksum in the K register, as though the Binary Loader were a sub=routine.

The third method of using the Auto-start feature is very similar to the second
method but rather than a JPS, the calling program performs a JMP to location 7752g. The
control word must have beén loaded into the J register by the calling program. It is necessary
that the calling program either set location 7751g to zero, thereby causing the Binary Loader
to stop at the end of the loading process (provided the program being loaded does not alter the

logation 7751g) or the calling program should set an appropriate exit address into location
7751
8.

3.5 OPERATOR OR USER CONTROL

The control word is the only control the user has over the loader. The bits of the
control word are interpreted by the loader as follows: BITS O and 1 determine the input device,
BITS 2, 3 and 4 determine the input cassette drive if the cassette was selected, and BITS 5
through 11 indicate the tagword when loading from magnetic tape cassette. Each one of
these three functions is described in detail below.

“Input Drive BITS 0 and 1 determine the device from which the record is to

Selection be read. If BIT 1 is "0", input is from cassette and BIT 0 is
ignored. 1f BIT 1is "1", input is from one of the paper tape
readers as controlled by BIT "0". When BIT 0 is "0", the input
is from the high speed reader and if BIT 0 is "1", the input is
from low speed or teletype reader.

Cassette Drive BITS 2, 3 and 4 permit the user to select one of the three cassette
Selection drives for input. No two of these bits should be on together as the
’ loader will try to read from two or more drives simultaneously .
BITS 2, 3 and 4 permit the user to select one of the three cassette
drives for input. No two of these bits should be on together as the
loader will try to read from two or more drives simultaneously .
BIT 2 set to "1" selects drive three, BIT 3 selects drive two, and
BIT 4 selects drive one.

Tagword Selection Any tagword from 0000g to 0177g may be selected by BITS 5

: through 11, Capacity to select a tagword allows the user to
select at random one of many records on a particular cassette
without the need to hunt manually for the record in question.
Starting with the beginning of the cassette, the Binary Loader
will search for the correct tagword by reading the first character
of each program record on the tape.

NOTE

Entering the Binary Loader under software control demands that
the J register be set to the desired control word by the software
performing the call to the Binary Loader (as described above).

3.6 TELETYPE/AUTO LOADER

The Teletype /Auto Loader is a hard-wired interface that allows loading of
finary format-fed paper tapes via Teletype Reader with a minimum of manual control
selections. The Binary Load (ND41-0005) is not required when using the Teletype/Auto
Loader for loading paper tapes via Teletype. However, the Binary Loader is required when
loading programs with the High Speed Reader or Tape Caossette.

3-13

The procedure for loading binary formatted paper tapes | mcludmg the Binary
Loqder) via Teletype is as follows:
a. Set Teletype LINE/OFF/LOCAL Switch in LINE position, and
START/STOP/FREE switch in FREE position.

b. Place paper tape in ASR-33 reader, and set START/STOP/FREE
switch in START position.

c. Simultaneously depress ND812 Computer LOAD ADDRESS and
NEXT WORD switches. The paper tape is read-in and will stop
on trailer. ,

3.7 BOOT STRAP PROGRAMS

There are two Bootstrap programs available for loading the Binary Loader into
the ND812 Computer; one is used for the Teletype, and the other is used for the High Speed
Reader. The Bootstrap program is toggled info the ND812 Computer via the SWITCH
REGISTER as described in the following paragraphs.

3.7.1 TELETYPE BOOTSTRAP LOADING PROCEDURE

| Normolly, programs are loaded into the ND812 Computer utilizing the Teletype/
AUJO Loader procedure described in Paragraph 3.6. The following Teletype Bootstrap pro-
cedure provides a method for loading the Binary Loader in case the Teletype/Auto Loader is
" in-operative.

! a. Set the ND812 Computer key switch in the POWER ON position.

: b. Set the SWITCH REGISTER 7762g, set both MEMORY FIELD switches
' in the DOWN position, and depress LOAD AR,

c. It is now necessary to load fourteen instructions from the SWITCH
REGISTER, each of which is followed by lifting the LOAD MR key.
i The address is automatically incremented each time the LOAD MR
| Key is depressed.

Address Instruction Address Instruction
7762 7404 7771 7404
7763 6101 7772 6101
7764 ’ 7403 7773 7403
7765 1146 7774 1122
7766 1501 7775 5700
7767 6105 7776 6114

7770 1101 7777 7745

d. Set the SWITCH REGISTER to 7773g and depress LOAD AR twice.

e. Place the Binary Loader Paper Tape (ND41-0005) into the ASR-33
reader on leader, not blank tape. Set Teletype LINE/OFF/LOCAL
switch to LINE, and START/STOP/FREE switch to START.

f. Depress ND812 Computer START Switch. The paper tape is read and
will stop on reaching trailer. Set the ND812 SELECT REGISTER
switch to J position and check SELECTED REGISTER indicator lamps
for zero. Repeat the above procedure from step b if J register is
is non-zero.

The Binary Loader is now in memory and may be used to load programs from either
paper tape or cassetfte.

3.7.2 HIGH SPEED READER BOOTSTRAP LOADING PROCEDURE

Normally, the Binary Loader is loaded into the N D812 Computer via the Teletype
as described in Paragraph 3.6. The following High Speed Reader Bootstrap procedure provides
an alternate method in case the Teletype is not available or inoperative.

a. Set the ND812 Computer key switch in the POWER ON position.

b. Set the SWITCH REGISTER to 77628, set both MEMORY FIELD switches
in the DOWN position, and depress LOAD AR,

c. It is now necessary to load fourteen instructions from the SWITCH
REGISTER, each of which is followed by lifting the LOAD MR key.
The address is automatically incremented each time the LOAD MR
key is depressed.

Address Instruction Address Instruction
7762 7424 7771 7424
7763 6101 7772 6101
7764 7423 7773 7423
7765 1146 7774 1122
7766 1501 7775 5700
7767 6105 7776 6114
7770 1101 7777 7745

d. Set ND812 SWITCH REGISTER to 7773g and depress LOAD AR.

e. Place the binary paper tape of Binary Loader (ND41-0005) into the high speed
reader with the leader at the read station,

3.8

- Ca
Re

3.

8.1

NOTE

It is extremely important that the leader is positioned at the
read station for a punched paper tape loading operation.
The leader, in most cases, is approximately six inches in
length and is set back approximately two feet from the
beginning of tape .

Depress START key. The paper tape will move through the reader a
short distance and then stop. At that moment depress STOP key.

Set ND812 SWITCH REGISTER to 7762g and depress LOAD AR.

Set ND812 SWITCH REGISTER to 74248 and raise LOAD MR.
Depress ND812 CONTINUE key. The paper tape is then completely
read and the reader will stop when tape trailer is sensed. Set the
ND812 SELECT REGISTER switch to J position and check SELECTED
REGISTER indicator lamps for zero. Repeat above procedure from
step b if J is non-zero.

GENERAL LOADING PROCEDURES

The following paragraphs provide procedures for loading programs into the ND812

mputer using the Teletype Low Speed Paper Tape Reader, or High Speed Paper Tape
ader, or Magnetic Tape Cassette.

LOADING PROCEDURE USING TELETYPE

Q

Depress ND812 Computer STOP switch.
Set Teletype START/FREE/STOP switch in FREE position. |

Place paper tape in ASR-33 reader, and set START/STOP/FREE
switch in START position.

Simultaneously depress ND812 Computer LOAD ADDRESS and
NEXT WORD switches. The paper tape is read-in and will

stop on trailer. Set ND812 Computer SELECT REGISTER switch
to K position, and check SELECTED REGISTER indicator lamps for
zero. Repeat the above procedure from step a if K register is
non-zero.

3.8.2

3.8.3

LOADING PROCEDURE USING HIGH SPEED PAPER TAPE READER,

NOTE

The Binary Loader (ND41-0005) must be loaded into the ND812
Computer before binary formatted programs can be loaded using
the High Speed Reader. Load the Binary Loader via Teletype per
paragraph 3.8.2. If the Teletype is not available, use the
bootstrap procedure described in paragraph 3.7.2.

Set the ND812 Computer SWITCH REGISTER to 7700g and depress
LOAD AR twice.

Set control word 37008 intfo ND812 SWITCH REGISTER.
Place the binary formatted program tape to be read into the
High Speed Reader with the leader at the read station.

Depress ND812 Computer start switch. The Binary Loader will
read the program tape info the computer, and the reader will
stop when tape trailer is sensed. Set the ND812 SELECT
REGISTER switch to K position, and check SELECTED REGISTER
lamps for zero. Repeat the above procedure from step a if K
register is non-zero.

LOADING PROCEDURE USING MAGNETIC TAPE CASSETTE

NOTE

The Binary Loader (ND41-0005) must be loaded into the
ND812 Computer before binary formatted programs can be
loaded from the Magnetic Tape Cassette. Load the Binary
Loader via Teletype per paragraph 3.8.2.

Set the ND812 Computer SWITCH REGISTER to 7700g and depress
LOAD AR twice.

Set Switch Register BITS 0 and 1 to "0", set BITS 2, 3 and 4 for
the desired cassette drive, set BITS 5 through 11 to desired tagword
(refer to paragraph 3.5).

Depress START on the computer,

The Binary Loader will read from the cassette and conduct a tagword
search. When the tagged record is reached, the Binary Loader will
read the record and stop at completion. If the content of the K
register is zero, the loading process was correct. If the content of the
K register is non-zero, re-start from Step a.

3-17

NOTE

If the Binary Loader proceeds to the end of tape without stopping,
the user has specified a tagword which does not exist on the
cassette. To recover from this condition, depress STOP and restart
from Step a, and ascertain that the tagword specified exists on

the cassette.

3.9 ERROR DIAGNOSTICS

‘ The checksum is stored in the J register at the completion of a hardware autoload
from ASR-33 or in the K register for the binary loader controlled program loading procedure.
A $ON—ZERO J or K register indicates an erroneous load. Refer to the appropriate section
of the OPERATIONAL PROCEDURE and re-load the program. If an error is encountered
under binary loader autostart, check the calling program and the exit address of the Binary
Loader.

: If a non-existent input device is specified, the Binary Loader will enter an endless
loop. The processor must be stopped with the front panel STOP switch and the loader restarted.
Failure to position a tape with leader over the read station will cause the leader

to stop on reaching the program's leader, if it is positioned on blank tape preceeding the
leader. The J register will be zero, but since the program was not read, it will not be loaded.
The user is particularly warned against placing blank tape at the read station when loading
ovérlays, as part of the background program is likely to be lost when the loader tries to load
“the blank tape.

SECTION 1V
THEORY OF OPERATION

4.1 GENERAL

The various functional units of the ND812 have been described in the overview
in Section |, Each of these functional units is further detailed in the following descriptions.
In some cases a functional unit may consist of a method of performing some function such
as the execution of an instruction, or the method employed in obtaining a run condition.

In other cases a functional unit may comprise a unique functioning logic group such as
the pulser control and pulser logic which is described under clock generation and timing.
Each of the following descriptions has a block diagram exp|0nahon, a fundamental oper-
atjon table, and timing diagrams.

4,1.1 BLOCK DIAGRAM DESCRIPTIONS

The block diagram descriptions present an overview at the functional level of
operation of a circuit or circuit group. Throughout these descriptions the ND812 logic
diagrams contained in Section VII of this manual are called out by sheet number and zone
location. References to these diagrams are simply identified by a number-letter-number
combination, 9B4, for example. The first number references the sheet number of the 28-
sheet logic diagram. If the first number is preceded by the letter M, the reference is to
the 6-sheet or the 10-sheet memory-control logic diagrams, 6M referring to the é-sheet
memory logic diagram and 10M referring to the 10-sheet memory logic diagram; thus, the
reference 10M7A4 refers to the 10-sheet memory logic diagram, the seventh sheet, zone
A4, The reference 18BI refers to the 28-sheet ND812 logic diagram, sheet 18, zone BI.

4,1.2 SIMPLIFIED LOGIC TABLES

The simplified logic is presented in the fundamental operation tables so that all
logical functions needed to assert a described function or operation can be easily traced
without having to search all the logic diagrams. They are work savers so that needless time
is not spent in searching for all the logical functions required to obtain a given operation.
For example, when an instruction is being processed, certain events occur in a precisely
ordered sequence during the basic phase and other events occur during the execute phase.
The simplified logic for the instruction indicates all the signals needed to obtain the end
function. For example, often when a basic phase is processed the content of the MX

4-1

mu‘fiplexer is transferred through the adders to the AR at period PUOB. The event is
symbolized in the following manner.

1. tPUOB—~>{PEA*~>1PEA/9BI
2. (tPEA) (TREGCLK)~>{CPA*/9B2 = MX—~ADDER—~AR

The symbological shorthand should be interpreted as follows: a high-level
PUOB signal produces a low-level PEA* signal, which in turn produces a high~level PEA
signal shown at 9B1 of the logic diagrams in Volume 1. The second line should be inter-
preted in a similar manner: the high-level PEA signal is ANDed with the next high-level
REGCLK signal to produce the low-level CPA* signal at 9B2. This results in the output
of the MX multiplexer being switched through the adders to the AR, That these signals
are required to obtain the specified logical function of switching MX multiplexer output
data into the AR can be confirmed simply by tracing through the logic. Notice that the
symbology does not indicate which MX multiplexer input is selected as the switched output.
This is because a different pulse is used to select the MX multiplexer input data although
both events may occur during the same time period, PUO, BPO, or EPO. However, this
event is also described symbologically (refer to Table 4-2). Notice also that no distinction
is made between levels and pulses. In the example, the REGCLK signal is the next register
clock pulse produced by the clock logic during the time signal PEA is high. The output,
low level signal CPA*, is shaped by the REGCLK signal because REGCLK has the shortest
dutation. Familiarity with the clock generator and timing circuits will eliminate any
confusion about pulse inputs to the various logic elements.

4,1.3 TIMING DIAGRAMS

The timing diagrams are idealized waveforms that illustrate the signals required,
during each discrete time period, to obtain the end function described in the narration or
in each of the simplified logic tables. Both the simplified logic tables and the timing
diggrams should be used when analyzing any of the logical functions that must be obtained
during a given operation or process. That the various waveforms are produced as the result
of a given operation can be verified by sampling signal outputs at the indicated logical
outputs,

4.1.4 DISCRETE LOGIC ELEMENTS

With the exception of discrete component circuits on the power supply and the
memory boards, the smallest complete logic element in the ND812 is an infegrated circuit
(IQ). Each of the various integrated circuits combines one or more logic functions in
replaceable dual in-line packages. These various logic functions include standard NAND,
NOR, and inverter gates, shift registers, binary to octal decoders, adders, multiplexers,
counters, latches, flip-flops, and one shots. Functional description for medium scale
integrated circuits (MSI" s) used in the ND812 Computer, are provided in Section VIl as a
reference. |t is assumed that the reader is conversant with all these various logic elements
and the purpose for which they are included to obtain various functions. It is further
assumed that the reader is familiar with binary arithmetic, 2's complement notation, and
fhjf machine language programming is no deep mystery. '

4-2 - S

4.2 ENERGIZING THE ND812

_ When the ND812 is turned on, the key-lock switch is placed in the POWER ON
or the CONTROL OFF position, When the switch is placed in the POWER ON position,
the ND812 power circuits are energized and the power sense circuits operate. When the
key-lock switch is placed in the CONTROL OFF position, those controls that permit
program modification from the front panel control switches are disabled by the removal of
a switch ground signal (KEY SW GND). As a condition of power application the power
sense logic operates two latches in the power supply circuits. One of these senses any
power loss whether they are caused by an external or intemal failure. The other latch
provides a delayed power-on signal to various logic elements throughout the ND812 to
obtain an initial register and latch clearing operation.

4.2.1 POWER SENSE

Table 4-1 lists the simplified logic for the power sense and power fail circuits.
When power is first turned on, +5-volt and +20-volt power (sheet 19) is applied to the
power sense circuit. The power sense transistor bias circuit, consisting of a 2.32K and
1K resistor, places a slightly positive voltage at the base of transistor Q6{19A6) with respect
to +5-volt level at the emitter, This bias condition assures that transistor Qé is cut off
and the input to the NAND gate 3A is a low=level signal. When a loss in power occurs,
the +20~-volt power source loses its voltage level before the +5-volt power source, and the
bias voltage at the base of transistor Qé becomes more negative than its emitter. Transistor
Q6 saturates and the signal at the input to NAND gate 3A becomes high-level.

Table 4~1, Latch and Register Clearing, Fundamental Operation

Ref. Period Simplified Logic Event

A. T'ON PWR SENSE

1. |BDPWR, 1BDPWR*/19A4 Power up condi-

2. {BDPWR + |RUN*->TPWRDY/19A4, |PWRDY tion delayed 1
(initial condition) second after turn-

3. 1GO—>IRUN™/19A4 on to stabilize

4. |BDPWR + JRUN*-1ENM1/19B4 logic.

5. TENM1-+{PWRDY/19A4, 1PWRDY*
(delayed — 1 second)

B. ANY PWR FAIL
1. |BDPWR*->1BDPWR/4A1 Power loss inhi-
2. (1BDPWR) (tGO*)-»IBLKMC*/4A1 = bits clock and halts
STOP~CLOCK GEN computer, Halt oc-
3. (1BDPWR) (TPRINT*)->|{RGPWR*/3A2 curs in less than 1
4. |\RGPWR*~>TRGO/3A2 microsecond.
5. (tCPPU) (1DONE) (tPU6B) (1GO)—
JFFCLK*->1FCCLK/3A2

6. (tFFCLK) (tRGO)~>{RGO"/3A3 =
CLR-GO (1GO, 1GO*/3A3)

4-3

Ref.

Table 4-1. Latch and Register Clearing, Fundamental Operation (Cont'd.)

Period

T'ON

T'ON
START,
LOAD
AR,
LOAD
MR,
NEXT
WORD
PU1

T'ON
START

T'ON
START

T'ON,
START

T'ON,
START

T'ON,
START

T'ON,
START

Simplified Logic

CLEAR LATCHES AND REGISTERS

1.
2.

JPWRDY *—>1PWRDY/3B2
tPWRDY—{STCLR*/3B2

CLR—CYCLE STEAL AND INTERRUPT REGS

oRwd=

o

JSTART*>1START/3A1

(#START) (1GO*)»>ISTCLR*/3B2

ISTCLR™ + PEXPMR™ + tPU1*->1STPU1/3A3
+STPU1—LSTPU1*/3A3

JSTPU1* = CLR-CYCLE STEAL REG
({CSP/4B1, $CSP*)

ISTPU1* = CLR—INTERRUPT REG
(JINTP/3B4, 1INTP*)

CLR-POWER INTERRUPT

1.
2.

JSTCLR*->1STCLR/3B3
(1STCLR) {(tPULSKP)>{RPRIN™ =
CLR—~POWER INTERRUPT LATCH
(1PRINT/3A1LPRINT™)

CLR—DOUBLE TIME PERIOD REG

1.
2.

JSTCLR*~>1STCLR/3B3
+STCLR—{RDBLE*/4A4 = CLR~
START DOUBLE and DOUBLE REGS
({STDBL/4A4, $1STDBL™) and
(\DBLE/4A4, tDBLE")

CLR—INSTRUCTION REG

1.
2.

ISTCLR*~>1STCLR/38B3
+STCLR—{MRI* = CLR~IR
(4100 - {111/1781,2, 3)

CLR—FLAG REG

1.
2.

VSTCLR*->1STCLR/383
1STCLR~}RFLAG” = CLR~FLAG REG
{(LFLAG/10B4, tFLAG")

CLR-PULSER

1.

ISTCLR*/5A1=CLR~>PULSER
({PUO -1 PUT)

CLR-EXECUTE PHASE

1.

V' STCLR*/3B3 = CLR—-EXECUTE PHASE
({EPH/5B2)

Event

The start-clear
signal is pro-
duced at turnon
and start.

Cycle steal and
interrupt regis-
ters closed.

Enables low power
condition to stop
ND812 when in run
state.

Clears PCP control
registers.

Instruction reg-
ister cleared.

Flag register
cleared.

Pulser cleared.

Execute phase
disabled.

Table 4-1, Latch and Register Clearing, Fundamental Operation (Cont'd.)

Ref.

Period

T'ON,
START

T'ON,
START

T'ON,
START

T'ON,
START

T'ON,
START,
DONE

T'ON,
START,
DONE

T'ON,
START,
DONE

T'ON,
START,
DONE

T'ON,
START,
DONE

T'ON,
START,
DONE

Simplified Logic

CLR—IND LATCH

1. I STCLR*/3B3 = CLR—INDIRECT LATCH
(JIND/6A2, tIND ™)

CLR—>OVERFLOW REG

1. fCLOV™ + {STCLR*~tROV/1184
2. tROV—>{ROV* = CLR OV
({OV/11B4, tOV™)

CLR—PRIORITY REG
1. ISTCLR™/3B3 = CLR—PRIORITY REG
(LION/11B3, LIONA, {IONB, {IONN)

CLR—INTERRUPT ENABLE LATCH

1. {STCLR* = CLR=INTERRUPT ENABLE
(VENINT/11B2, TENINT™)

ENABLE INSTRUCTION-CLEARED LATCHES

1. {STCLR*~>1STCLR/3B3
2. 1STCLR + (tDONE) (1PU7B)—>{STDN7"/3B3

ENABLE-J REG LATCH

1. {STDN7* = CLR—J, K LATCH
(tJCOM/3A4, LKCOM)

CLR->FIRST/LAST MEMORY LATCH

1. ISTDN7*=CLR FLMEM LATCH
(tFLMEM*, | FLMEM/384)

CLR—FIRST/LAST LOCATION LATCH

1. {STDN7* = CLR—FLLOC LATCH
(tFLLOC"/3B4, {FLLOC)

CLR—-EXECUTE LATCH

1. {STDN7* = CLR—XCTFF
(+XCTFF*/6A3, | XCTFF)

CLR~INDIRECT LATCH

1. ISTDN7" = CLR~INDFF
(tINDFF*/6A3, {INDFF)

Event

Indirect latch

Overflow reg-
ister cleared.

Priority struc-
ture disabled.

Interrupt enable
cleared.

All instruction-
cleared registers
and latches require
that the done latch
is set and pulse
PU7 has occurred.

Sets J register for
two-word data
transfer.

Clears first/last
memory latch.

Sets auto-index for
first location.

Clears execute
latch.

Clear indirect
latch.

Table 4-1. Latch and Register Clearing, Fundamental Operation (Cont'd.)

Ref. Period Simplified Logic - Event
V. T'ON, CLR—INDIRECT MEMORY LATCH
START, 1 |STDN7* = CLR-INDM Clear indirect
DONE {(1INDM*/6A3, L INDM) memory latch.
W. T'ON, CLR—+KOM REG
START, {1 |STDN7* = CLR—KOM REG Ciear KOO set reg-
DONE ({KOM/8B1) ister (multiply
logic).

X, T'ON, CLR->WAIT REG

START. 1, |STDN7* = CLR-WAIT REG Clear wait reg-
DONE (AWAIT*/88B3, {WAIT) ister (divide logic).

Y. T'ON, CLR—~>ONCE REG

START, 4 |STDN7* = CLR-ONCE REG Clear once register
DONE (1ONCE*/883, {ONCE) (divide logic).

: With a low-level input signal to NAND gate 3A (19A4), the BDPWR latch
pri;ovides the outputs listed in reference A of Table 4-1. These levels tend to make the
output of NAND gate 4B (19A4) and 3C (19A4) low level and high level, respectively.
However, the large capacitor connected to output of NAND gate 3C tends to keep its
output at a low level and thus, for approximately 1 second, the outputs listed in entry
A2 of Table 4-1 are obtained. When the capacitors in these NAND gates are charged
and discharged, the outputs listed in A5 of Table 4-1 are obtained. This is the normal
state of these latches.

At the outset of power turn on, the high-level PWRDY signal provides initial
latch and register clearing signals. These are listed in entries A and B, of Table 4~1.
THese same clearing signals are obtained when the ND812 is placed in its run state by
ngressing and releasing the START switch.

4.2,2 MANUAL START AND CONTROL

| The ND812 front panel is shown in Figure 3-1. Its controls and indicators
provide a means to manually load a program into core memory, examine the contents of
various locations in memory, alter memory contents, and to determine the current status of
a program. The ND812 can be started and stopped through its front panel control switches,
and, after stopping, can be restarted. Before beginning the descriptions in this paragraph,
the reader should study Section Il of this manual.

4,2.2.1 SWITCH REGISTER. The outputs of the switch register switches (2A2/2B2) are
applied directly to the utility gates (sheets 14, 15 and 16) and through the utility gates to

4-6

the MX multiplexer so that any setting of the switch register switches are applied directly
to the utility gates.

4,2,2,2 GO CONTROL LOGIC. The GO control logic permits the ND812 run con-
dition to be obtained. When manual operation such as loading registers or examining
registers is occurring, the GO condition is termporarily inhibited until the START switch
is operated, The GO control logic has two states, initialize and run. The initialize
condition is dependent on the operation of the power sense and power delay latches.

4.2.2.2.1 Initialize Condition. The GO control logic consists of the go and the start
pulser registers. (The start pulser register is described in subsequent paragraphs.) Oper-
ation of the ND812 is initialized when the power sense and power delay logic (19A4 and
Table 4~1) is exercised. When the front panel power switch is turned on the power sense
logic detects +20 Vdc power through transistor Q6 on the power supply and oscillator
board, When the +20 Vdc is sensed, the power sense latch is disabled. [f a low-power
condition exists, the bias voltage on the sensing transistor drops causing it to conduct and
set the bad power BDPWR latch. With the power sense latch in its unset condition the
power delay latch nomally provides a high-level PWRDY?* signal and a low-level PWRDY
signal. After about a one-second delay this circuit is set to its normal state. The delay
permits the power supply outputs to stabilize and the GO control register (3A3) to be
reset through logic by the temporarily highdevel PWRDY signal applied through the gate
logic. When the PWRDY latch is set to its normal operation the PWRDY signal becomes
low level together with all the other gated signals, and the GO control register is init-
ialized with the GO signal low-level and the GO* signal high level (Table 4-2),

Table 4-2, GO Control, Fundamental Operation

Ref. Period Simplified Logic Event

A. T'ON GO CONTROL, INITIALIZE~|GO/3A3,1GO*/3A3

1. |PWRDY*->tPWRDY/3B2 Occurs at turnon
2. "PWRDY-STCLR*/3B2 and start.

3. tPWRDY—+{RGO*/3A3

4. (J{RGO") (1CNTRP)—{GO/3A3, 1GO*

B. T'ON GO CONTROL, RUN->1GO/3A3,1GO*/3A3

+XLDPR*~>{EXLDPR/6B1 Occurs at start
(LEXLDPR) (1GO*)-tLDPR*/68B1 and continue.
+XLDMR*~>{EXLDMR/6B1

(VEXLDMR) (1GO*)>t*LDMR*/6B1
tEEXAM ™| EXEXAM/6B1

(LEXEXAM) (tGO*)->TEXAM*/6B1

(tLDPR*) (1LDMR™) (tEXAM*)~>

JEXPMR->1EXPMR */6B2

NoobswnN =

C. T'ON ENABLE TOGGLE MODE

1. (tEXPMR™) (1CNTRP) Occurs at start

(tALODT?) (tRGO™) >TOGGLE indRGO*/3A3 and continue.
2. ISTART*—>1STCNT/3A3
3. 1STCNT—-{CLKGO*+1G0/3A3,L{GO*

4-7

4.2,

re

se

| Table 4-2. GO Control, Fundamental Operation (Cont'd.)

Ref. Period Simplified Logic Event
D. PUO EXECUTE AND BASIC PHASES BLOCKED
1. 1GO + \RDBLE*~>TRDBLE/4B1 Occurs at PUO.
2. (tRDBLE) (1CSP*) (tSDCS*)~ during cycle steal,
{RCSFF*/4B2 interrupt, or
3. ({RCSFF*) (1CSP*) = CLR—-CYCLE when GO control
STEAL FF ({CSFF/4B2, 1CSFF*) logic is disabled.

H

. (1INTP*) (tRDBLE)->{RITFF*/4B4

. WRITFF*) (NINTP*) = CLR~INTFF

(LINTFF/4B4 t INTFF*)

(MINTFF*) (1CSFF*)>!INTCSF/4B4

JINTCSF—>TINTCS*/5B1

(FINTCS*) (1PUO) ({GO)~>1RBLK*/5B2

. (tGO*) (tPUOB)—>!SBLK*/5B1

. ({SBLK™) (tRBLK*) = SET-BLOCK
BPEP REGISTER (1BLKBEP/5B2)

[42]

SomNo

2.2.2 Run Condition. The GO control register is sef when the operator depresses and
eases the front panel START switch. When this switch is operated, the GO signal

becomes high level and the GO* signal becomes low-level. The high-level GO signal is
caupled to the power delay latch through the power sense gate so that when low power is

nsed, the power delay latch will be immediately reset and cause a halt in the operation

of| the clocking circuits at the conclusion of the instruction.

With the establishment of the run condition, a register clearing pulse is gen-

 erated through the start-clear logic (3A1 and 3A2) so that various registers are cleared

th

ia

(refer to Table 4~1). The run condition is disabled whenever the STOP switch, or certain
other halt conditions have been detected, but only after the current machine cycle has
been completed. After the ND812 has been set into operation and stopped, the CONT
switch should be depressed to obtain a new run condition. This prevents registers from
being cleared again by the START switch. A high-level GO*signal is required to enable

e front panel switch control logic; however, this signal is only present during the init-
lize state of the GO control register. The front panel switch control logic is also dis-

abled when the NEXT WORD, LOAD MR, and LOAD AR switches on the front panel are

in

their normally off positions. Depressing any of these switches after a go condition has

been established will have no effect because they are inhibited by the go-logic disabling
signal .

4/2,2,3 MANUAL LOAD ADDRESS REGISTER (AR). The LOAD AR switch (2A4) trans-

fe
gr
cl
to

rs the switch register settings into the AR, the PC, and the memory field register (para-
aph 4.5.3.5). To do this, power must be turned on. When power is sensed, the ND812
ock circuits are operating. The reader should refer to paragraph 4.2.1 and then return

| this paragraph.

Figure 4=1 is the manual load-address block diagram. When the front panel

L¢)AD AR switch is depressed, the load AR latch (3) provides a signal that enables the

4-8 -

front=-panel switch control logic. Prior to the application of PU timing pulses to the time
control logic (9), the front=panel switch control logic (5) enables the utility gates (4),
the MX multiplexer (7), and the adders (10). With the utility gates, the MX multiplexer
and adders enabled, front panel switch register data (signals SWO00 through SW11) are
applied through the utility gates (signals UOO through U11) to the MX multiplexer, and
from the enabled MX multiplexer (signals MX00 through MX11) to the adders. Because
there is no other input to the adders at this time, the adder outputs (signals BOO through
B11) are identical to the MX multiplexer inputs and are applied to both the AR (13) and
the PC(12). (These signals from the adder are also applied to the bus and memory buffer
multiplexer (4) which permits its outputs to come from either the adder bus of from the
memory buffer register.)

The logic signals developed by the front panel control logic (5) are also applied
to the time control logic (9) which develops its various enabling signals in synchronism
with applied PU pulses. At the occurrence of timing pulse PUO the output from the MX
multiplexer/adders (7 and 10) is enabled to the AR (13). At the occurrence of timing
pulse PUT, these same outputs are enabled to the PC (12) so that at the end of the first
two timing pulses, both the address register and the program counter are loaded. The AR
output signals (AOO through A11) are applied to the memory (1) for decoding when a read
signal is sensed.

——————— OUT
A00 MSOD-MS! 1
THRU —»] MR -MS MBR | MBOO-MBI1 | gpanix |PMROO-PMRI MDR MR
At (ouT) 2 Moo (IN)
1 4 8 - M1 1"
I_ READ BUS+MBR—»MDR WRITE _I
MR—=MBR ENABLE MBR MPLXR MDR —=MR
FooM TIME
—_—
LOAD AR PULSER CONTROL | MX+ADDERS—AR
LOAD FPSW CONTROL LOGIC
5 > AR CONTROL CONTROL 5
LATCH LOGIC | ENABLE MX
3
KEY - 2 MX+ADDERS —=PC PC
SWITCH
GND ENABLE "
= UG
SW0o U@e-Uut1 TO BUS
—_—) uTiLiTY Mx |Mxee-mxi1 | BRQ@-B11 R
oy GATES MPLXR [°] ADDERS —> 8 MeR
6 7 10
y
EVENT TABLE
PUO SWR—e UG —» MX AR
PUO MX+ADDER—AR ‘ﬂw—»;g
PU1 MX+ADDER —#PC 13
PU2 MR—s MBR ‘
PU3 MBR-+BUS+MBR~MDR
MPLXR
PUS MDR—»MR

Figure 4-1, Manual Load Add-ess Register, Block Diagram

4-9

| When pulse PU2 occurs, the location in memory whose address is specified by
the AR outputs sends its signals (MSOO through MS11) to the memory buffer register (2).
This sequence is enabled by memory control logic. Memory control logic also selects the
m¢mory buffer register outputs (signals MBOO through MB11) for input to the bus and memory
bqffer multiplexer (4), which in tum, applies its outputs (signals PMROO through PMR11)
to the memory data register (8). When pulse PU3 occurs, the outputs from the bus and
mémory buffer multiplexer are loaded into the memory data register.

When pulse PU5 occurs the outputs from the memory data register are applied
toi output 1/O lines and to the memory (1) where they are written back into the same location
in memory from which they were read. The read/write sequence permits the data at the
addressed memory location to be loaded into the memory data register for dlsplay by front
panel indicators.

Table 4-3 is fhe simplified logic for the manual load address sequence. This
table together with the logic and timing diagrams will aid in understanding the following
description.

When the LOAD AR switch on the front panel is depressed the XLDPR* signal
(2A4) latch provides a low-level XLDPR* signal (Figure 4-2, waveform A). Simultaneously
both the LDPR* and the EXPMR* go to their low=level state (waveforms B and C). The
switch control logic which permits these signals to be generated is enabled only in the
initialize state of the go control because of a high-level GO* signal (6B1).

| Ultimately these signals produce the high-level LDFPSW signal (6B3 and wave-
form D) which is applied to the utility gates and through them to the MX multiplexer,
This data is entered into the MX multiplexer through the SELU gate (8A3) and develops a
low=level SLUMX* (9A1) signal which sets MXEN* low and enters switch register data into
the MX multiplexers through the utility gates.

Multiplexer select logic (9B1) accepts the low=level SLUMX* signal and develops
a high-level MXSO signal (9B1 and waveforms E and F, Figure 4-2_ which selects the
":h’ry gates for output from the multiplexers (Table 4-2) and enables signals MX00 through
MS11 which are applied to the adders (sheets 14, 15 and 16). The outputs from the MX
mplhplexer are summed with the outputs from ’rhe TS multiplexer (sheet 13) when enabled;
however, because the add-subtract output gates are not enabled, the sum output when TS
data is not called for is the selected MX multiplexer output. The adder outputs (sheets
]),1-, 15 and 16) are applied parallel to the inputs of the address register, the program counter
and the J and K registers, The address register is enabled when pulse PEA* (wavefom I,
Figure 4-2) goes to its low-level state and the program register is enabled when pulse PEP*
(waveform K) goes to its low-level state. :

Because the go control logic has not been set to its run state, the pulser control
Idglc (3A4) is in its initialized state and configured for toggle operation. With the go
control logic in its initialized state pulse PU7B (waveform D, Figure 4~10) cannot recycle
fHe pulser so that only a single string of PU pulses is generated by the EXPMR* sngnal This
sﬁrmg of PU pulses permits other enabling signals to be generated,

4-10.. -

If the ND812 is in its run state when data is to be entered into the address
register through the switch register switches, the ND812 STOP switch must first be operated
to obtain the initialized condition of the go-control register. One of the important func-
tions obtained when the go-control logic is in its initialized state is that when the pulser
is operated, only a single machine cycle will be developed and the basic and execute
phases will be blocked so that BP and EP pulses cannot be generated. This is because the
low-level GO signal applied through the RBLK* NAND gate (5B2 and E8 and E?, Table
4-3) and the high-level GO* signal applied through the SBLK* NAND gate produce the
set condition of the BLKBEP flip-flop register. The high-level BLKBEP signal is inverted
and applied to the basic and execute phase NAND gates as an inhibiting signal.

Table 4-3, Manual Load Address Register, Fundamental Operation

Ref. Period

A. LOAD
AR

B. LOAD
AR

C. LOAD
AR

D. PUO
AR

Simplified Logic

SWR->MX

1. {XLDPR*>1EXLDPR/6B1

(PEXLDPR*) (tGO*)->! LDPR*/6A1
JLDPR* + 1LDMR*->t LDPRMR/6B2
JLDPR* + |LDMR™ + |EXAM*>TEXPMR~>
{EXPMR™/6B2

ILDPR*>tLDPR/6A2

(tLDPRMR) (tALODT*)~>{LDPSW*/6B2
JLDPSW*~>1LDFPSW/6B3

(tLDFPSW) (tSW00™ - tSW11¥) =
tU00-U11/14, 15, 16~MX

pwN

o NG

MX—>ADDERS

1. fLDPR—{SELUG*>1SELU~ISLUMX*/8A4

2. ISLUMX*>tMXEN—-{MXEN*/9A2

3. ISLUMX*>TMXS0 = U00-U11->
MX->ADDER

START—>PULSER

1. JEXPMR*/6B2 = DISABLE GO CONTROL
TOGGLE, 3A3

2. JEXPMR*/6B2 = 1CKST1*/3A4->1ST1/3A4 =
PULSER ON (Pulser Cycle off by PUOQ)

CLR—>LATCHES AND REGISTERS

1. JEXPMR*>1STPU1->{STPU1"/3A3

2. ({STPU1*) (TCNTRP)>CLR CYCLE
STEAL PERMIT

3. (LCSP, tCSP*/4B2)

4. ({STPU1") (tCNTRP)>CLR
INTERRUPT PERMIT

5. (LINTP, 1INTP*/4B4)

4-11

Event

Occurs when LOAD
AR switch is de-
pressed.

Occurs when LOAD
AR switch is de-
pressed,

AR switch is de-
pressed.

PULSER
AR switch.

Ref.

Table 4-3.

Period

PUO

PUO

PU1

PU2

PU3

PUS

Manual Load Address Register, Fundamental Operation (Cont'd,)

Simplified Logic

PULSER—1 CYCLE

1. PUO*>1RST1>{RST1*/3A4

2. (LRST1*) ({PU7B) + {GO + {DBLE™~
1SST1*/3A4

3. (SST1*) (L RST1*)>{ST1/3A4 =
PULSER—1 CYCLE

ADDER—AR

1. tPUOB—{PEA->1PEA/9B1
2. (1PEA) (fREGCLK)—~{CPA* =
‘ADDER—~>AR -

CLR-MBR
1. 1PUIB~IRMB"/18B1 = CLR-MBR

ADDER-PC

1. (1PU1B) (1EXPMR)—~IEXM1B*/9B2~
tMPEP /9B3—~{PEP*~1PEP/9B1

2. (1PEP) (tREGCLK)—>{CPP"/9B2 =
ADDER—PC

MR-MBR

1. (tADDFO*) (1M CRT)~>!MCIR"/8A4 =
MR-MBR

BMBMX->MDR

1. \PU3*~>1PEM/12B2

2. (1PEM) (1REGCLK)—~!CPM"/12B2 =
MBR-BUS + MBR MPLXER-MDR

3. tADDF1* = MBR~BMBMX

PUSB, MDR-MR

1. (TWAIT") (tRLOOP*)>{WTRL->TWTRL"/8B2

tWTRL*/8B2

2. (AWTRL"®) (1PUSB)—~>{PUSW"~>
tPUSW/8B3

3. (tPUSW) (1ADDFO") ~
IMCIW*/8B4 =BMBMX-MDR

- Event

Permits only 1

cycle to occur be-
cause GO control

is disabled.

Pulser zeroed by PUO.

Adder data uncon-
ditionally to AR at
this time.

Memory buffer reg-
ister cleared un-
conditionally at PU1.

Adder to pro-
gram counter.

Read memory
data occurs uncon-
ditionally at PU2.

Memory buffer to
memory data
register.

Write memory
data occurs at PUS
if multiply or
divide are not in
effect.

Table 4-3. Manual Load Address Register, Fundamental Operation (Cont'd.)

Ref, Period Simplified Logic Event
L. PUO EXECUTE AND BASIC PHASES BLOCKED
) 1. {GO + |RDBLE*~>tRDBLE/4B1 Occurs at PUO
2. (tRDBLE) (1CSP*) (1SDCS™)~ during cycle steal,
JRCSFF*/3B2 interrupt, or
3. ({RCSFF*) (1CSP™) = CLR—~CYCLE when GO control
STEAL FF ({CSFF/3B2, 1CSFF*) logic is disabled.

4. (1INTP*) (TRDBLE)~>{RITFF*/4B4
(LRITFF*) (1INTP*®) =
CLR~INTERRUPT FF ({INTFF/4B4,
HINTFF*)

(1INTFF) (TCSFF*)=LINTCSF/4B4
LINTCSF>HINTCS* /581

(MINTCS*) (1PUO) (GO)~tRBLK*/6B2
(1GO*) (tPUOB)—>{SBLK*/5B1
({SBLK*) (1RBLK*) = SET~
BLOCK BPEP

REGISTER (1BLKBEP/5B2)

o

cCox N

Pulses PEA* and PEP* (sheet 9) are generated through their respective control
|og|c circuits/pulse PEA* goes low when pulse PUOB (Figure 4-10) is generated and pulse
PEP* when signal EXPMR goes high level concurrently with pulse PUIB, With the occur-
rence of these pulses both the address register and program counter register are enabled,
however, this data is not strobed into these registers until the next REGCLK pulse occurs
_and pulses CPA* and CPP* (waveforms J and L, Figure 4-2 and 9B2) are generated,

With address register output signals AOO through A11 applied to the memory
(core) register address decoders (M2 and 10M3), the proper X-Y-select lines are selected
from the memory matrix and the data stored at the indicated address is read into the memory
buffer register (18A1, B1 and A2, B2) from the memory register when pulse MCIR* (8B4
and waveform M, Figure 4-2) occurs. This takes place when pulse PU2 (8B4) is generated
by the pulser (refer to time-state PU2, Table 4-3, 1). Pulse MCIR* commands the memory
control logic to read from memory.

Outputs MBOO through MB23 of the memory buffer register are applied to the bus
and memory buffer multiplexer (sheet 17) together with the bus (adder) outputs BOO through
B11. Because both signals ADDF1* (sheet 17) and RDB* (12B3) are high level at this time,
the memory buffer register (signals MBOO through MB11) is selected for output from the bus
and memory buffer multiplexer. Thus when pulse PU3 (12B2) occurs, the memory buffer
inputs are loaded into the memory data register (sheet 17) by signals PEM* and CPM*, the
former enabling the inputs (signals PMROO through PMR11) and the latter clocking them,
Thus, the content of the memory register is loaded into the memory data register,

When pulse PU5 occurs, pulse MCIW* (8B4 and waveform Q, Figure 4-2) goes
low level and the data contained in the memory data register is written back into the memory

4-13

XLOPR * “(3R3) I
LOPR * (6B1) l
EXFMR * 682) |

LDFPSW (6B3) l SELECTS SWITCH REG THRU UTILITY GATES

SLUMX * (8A4) ISETS MXS@ & ENABLES MX

MXS@ (9B1) ISELECTS UTILITY GATES INTO MX

STI (384) l ISE‘T BY EXPMR, CLEARED BY PUO*
PUB-PUT (5a1) Jel1]2]3|4[5|6]7|
PEA® (981) L_ﬁx-—- ADDRES REG

cPA * (9B1) ”GATED WITH REG CLK

PEP * (983) I lMx—-pc

CPP * (981) ”GATED WITH REG CLK

MCIR * (884) | IR ADS CORE INTO MB REGISTERS 12 BITS 4K
E ° E 24 BITS 8K

PMROO - PMR11—~MDR SELECTED FROM MOST OR LEAST MBR BITS BY ADDF1*

*
PEM (1283) | l MBR ——=MDR
* "
CPM {1283) LFaATED WITH REG CLK
MCIW *
(BB A) l IWFHTES MDR INTO CORE

Figure 4-2. Manual Load Address Register, Timing Diagram

4-14 .

register (core). The result of this operation is that the front panel MEMORY REGISTER
lamps indicate the content of the addressed memory data register.

| 4.2.2.4 MANUAL LOAD MEMORY REGISTER (MR). A word can be data or an instruction

or an address. |t is the information stored at a uniquely addressed location in core. The
LOAD MR switch on the front panel is used to load a word into memory at the location held
by the AR. When the LOAD MR switch is operated, the content of the PC is transferred info
the AR. The program counter is incremented and now contains the next address to be ac-
cessed after this operation is over, The address register contains the address currently
accessed,

Figure 4-3 is the manual load memory block diagram. Except for the events
that occur, this block diagram is identical to that for the manual load address, (Figure 4-2).
When the front panel LOAD MR switch is raised, the load memory register latch (3) is
set. Although this logic is similar to the load address register logic, a different sequence
of events is ordered,

MR - - PMROO-PMRI! | MDR | Mo@-M11 MR
2 oy (msee-msu_ | MBR [MBOQ-MBH f ..o R e
" 1 2 4 8 10
READ BUS B@Q-B11 WRITE
-L—MR-+MBR FROM ADDERS—J MDA MR ——]
ENABLE ADDER BUS
PUS FROM
TIME
SN
NTR
‘ LOAD CONTROL | cONTROL SORTEE 9
| LATCH | Losic ENABLE MX
3 5 POO—P11 PC
KEY
SW ENABLE 2
GND UG
SWOQ uTILITY . ~ _ TO
THRU — GATES Uo0- Ul M;?_)gm MXQQ-MX14 ADDERS | B22-811 Aauasﬂ a
swit 6 7 1" MPLXR
EVENTS
PU® SWR—= UG "
PUO PC—=MX__. _ n : ABQ =AM
PUD MX—~AR
PUI ADDERS—® +1=PC—e+ 13
PUI ADDERS—#PC .
TO MR
PU2 MR—=MBR , A80RESS
PU2 SWR —MX DECODER

PU3 MX—sBUS+MBR MPLXR
PU3 BUS+MBR MPLXR—+MDR
PUS MDR—=MR

Figure 4-3. Manual Load Memory Register, Block Diagram

4-15

| Prior to the application of PU timing pulses to the time control logic (9) the
front panel switch control, logic (5) enables the utility gates (6) so that switch register
ddta (signals SWOO through SW11) is ready to be switched through the MX multiplexer (7).

_ The logic signdls developed by the front panel switch control logic (5) are also
applied to the time con’rrol logic (9) which develops the various enabling signals in syn-
chronism with the applied PU pulses. When pulse PUO occurs, two events take placé simul-
taneously; the content of the PC (12) is switched through the MX mulfiplexer (7) and the
MX multiplexer outputs are applied through the adders (11) to the AR (13). Thus, signals
PQO through P11 are loaded into the address register through multiplexer signals, MX00
through MX11, and adder signals BOO through B11,

‘ When pulse PUT occurs two more events take place; a carry input is propagated
through the adders so that their content, which is still the output of the PC, is incremented
by 1 and the output of the adders is returned to the PC.

| When pulse PU2 occurs, the output of the MR (1) is loaded into the memory
buffer register (2) in a manner similar to that previously described for the manual load
address mode of operation.

When pulse PUB occurs, three events take place; the contents of the front panel
switch registers are switched through the MX multiplexer and adders (7 and 11), adder
oytputs are switched fhrough into the bus and memory buffer multiplexer (4), and the bus
and memory buffer multiplexer outputs are loaded into the memory data register (8). In
this manner, the content of the switch register (signals SWOO through SW11) are switched
~ through the utility gates (signals UOO through UT1) into the MX multiplexer and adders
‘and the adder output (signals BOO through B11) is switched through the bus and memory
buffer multiplexer into the memory data register (signals PMROO - PMR11),

When pulse PU5 occurs, the content of the memory data register (8) is loaded
into the memory (1) at the address specified by the AR (13) similar to that previously
described for the manual load address mode of operation. In this case however, the memory
data register (8) content was replaced by the content of the switch registers,

Table 4-4 is the simplified logic for the manual load memory sequence. This
table together with the logic diagrams will aid in understanding the following description,

When the LOAD MR switch is raised the XLDMR* signal (2A4) latch provides a low-level
XLDMR* signal (Figure 4-4, waveform A). This signal also enables the BLST1* one-shot
gdte (2B4) and produces an output from the one shot when the LOAD MR switch is released.
The J-K input of the pulser control register is enabled in a manner similar to that previously
déscribed for loading an dddress. Similarly, because the go-control logic has not been set
to| its run state, the pulser output produces a string of 8 pulses identical to that previously
described for loading an dddress. And, these signals, together with the signals enabled
when the LOAD MR switch is raised, permit other enabling signals to be generated.

Ref.

B-E

Table 4-4, Manual Load Memory Register, Fundamental Operation

Period

LOAD
MR

LOAD
MR

PUO

PU1

PU1B

pU1B

PU2

PU3

Simplified Logic

SWR—-MX

1. IXLDMR*>1EXLDMR/6B1
(1EXLDMR) (tGO*)>!LDMR*/6B1
JLDMR* + | LDPR*~>1L.DPRMR/6B2
JLDMR* + |LDPR" +
JEXAM*—>tEXPMR~{EXPMR*/682
JLDMR*~>1LDMR/6B2

JLDMR™ + JEXAM*>1EXMR/6B2
(*LDPRMR) (tALODT)| LDPSW*/6B2
ILDPSW*—~1LDFPSW/6B3
(1LDFPSW) (1SW00* - 1SW11%) =
+U00-U11/14, 15, 16-MX

pON

LN

Simplified Logic is Identical to C through F
of Table 4-3.

PC-MX~ADDER

1. (tEXMR) (1PU001)->|CSE LP->{SLPMX*/8B4
2. {SLPMX*->TMXEN/9A2 = ENABLE~MX
3. {SLPMX* + {EX1*~»tMXS1/9B1 = PC-MX

+ 1->ADDER

1. (1EXMR) (1PU1B)>{CINI*~
1+CIN/12B2 = + 1-ADDER

CLR—~MBR
1. 1PU1B—~{RMB*/18B1 = CLR—MBR

ADDERS—PC

1. (1PU1B) (tEXPMR)—{EXM1B*~
JPEP*~1PEP/9B1

2. (tPEP) (1REGCLK)-{CPP*/9B2 =
ADDER-PC

MR->MBR

1. (tADDFO*) (tMCRT)~>
{MCIR"/8B4 = MR—-MBR

SWR->MX-ADDER

1. \LDMR* + JCSRDB*>1SELU3/8A3

2. (1SELU3) (tPU3B)~>ISLUMX™/8A4

3. ISLUMX*>tMXEN->{MXEN*/9A2 =
ENABLE-MX

4. JSLUMX*—>1TMXS0/9B1 = U00-U11->MX

4-17

Event

Occurs when LOAD MR
switch is depressed.

Refer to Event
Column of Table 4-3.

Occurs when LOAD
MR switch is de-
pressed only.

Occurs only when
LOAD MR switch
is depressed.

Occurs uncondition-
ally during PU1.

Occurs only when
LOAD MR switch
is depressed.

Read occurs uncon-
ditionally during
PU2.

Occurs only when
LOAD MR switch
is depressed.

Table 4-4. Manual Load Memory Register, Fundamental Operation (Cont'd.)

Ref. Period Simplified Logic . Event

L. PU3B ADDERS—~BMBMX-MDR

1. {LDMR* + {INTFF* + {CSRDB*~ Occurs only when
1RDB3/12B2 LOAD MR switch

2. (tRDB3) (1PU3B)~|BMEM*/12B2 is depressed.

3. BMEM*~tRDB~{RDB"/12B3 =
ADDER—BMBMX ’

4. |BMEM* + {PU3*~1PEM/12B3

5. (1PEM) (tREGCLK)—~>{CPM*/12B3 =
BMBMX-MDR

M. PU5 MDR-MR

1. (TWAIT*) (tRLOOP*)}>{WTRL— Write operation
fWTRL*/8B2 occurs at PUS if

2. (hWTRL*) (1PUSB)—>lPUSW ™~ multiply or
TPUSW/8B3 " divide not in

3. (TPUSW) (TADDFO*) = MDR-MR effect.

A low-level XLDMR* signal (2A4) produces high-level LDFPSW (6B3) and
EXPMR (6B2). EXMR (6B2) and LDMR (6B2) signals (Figure 4-4, waveforms A through D)
and low-level EXPMR* and LDMR* signals. The high-level EXMR signal produces the
SLPMX* (waveform 1) signal when pulse PUOOT (combines PUO and PUT) is generated.
This signal selects the PC buses (P00~P11) for input to the MX multiplexer (14, 15 and
16) (8B3) and develops signal MXS1 (9B2) which selects input line 12 (Table 4-4).
Préwously, the low-level EXPMR* signal produced signal MXEN* (?A1) which enabled
fhe MX multiplexer (sheets 14, 15 and 16).

The MX multiplexer output signals (MX00 - MX11) are applied to the adders
(sheets 14, 15 and 16) when the low~-level SLPMX* signal is generated. During the same
hrhe interval, signals PEA* and CPA* (when the next REGCLK signal is produced) are
ge[nerai‘ed (9Bl) These signals enable the AR (waveforms G and H) which receives its
inputs (BOO - B11) directly from the adders (sheets 14, 15 and 16),

During the subsequent time interval a high-level CIN pulse (12A2) is generated
cf ‘rhe coincidence of the high-level EXMR signal and a PU1B pulse. This signal is a carry
input to the least significant bit (B11) of the adders (sheets 14, 15 and 16) that is propagated
down the adders to the mostsignificant bit (B0O) causing the output of the MX multiplexers
toibe incremented through the adders. Simultaneously pulses PEP* (9B3) and CPP* (wave-
fotms K and L, Figure 4-4) permit adder outputs to be loaded into the PC (9B3 sheets 14,
15.and 16). A high-level EXPMR and PU1B generates pulse PEP*, and PEP* and REGCLK
pulses generate CPP* pulse.

AR output signdls AOO through A1l are applied to the memory register address
decoders (sheet 3, 8K memory), the proper x- and 6-select lines are enabled in the memory

XLOMR*

LDMR+

(2A4)

(681)

LDFPSW * (6B82) I

EXPMR *

STI

PU'S

PEA™

CPA *

SLPMX *

CIN
PEP *

CPP *

MCIR *

PEM *

SLUMX *

CPM *

RDB *

MCIW *

(682)
(3a4) | I
]
(5a1) [7]9 ‘]Zl3l4l5l6|7|
. |

[
(98B1) ISET PROGRAM COUNTER INTO ADDRESS REGISTER
(982)

i

U
(8B4) l i l
(12A2) INCREMENTS THE ADDER
(983) | ISET ADDER +1 INTO PC
(981) ”
(884) READS CORE INTO MBR
(12B3) l
(8A4) |
(12B3)

U

(1283) I ISELECTS ADDER — MDR
(8B4)

I lWRITES MDR e MR

Figure 4-4. Manual Load Memory Register, Timing Diagram

4-19

address matrix and the data stored at the indicated address is read into the memory buffer

register (sheet 18) from the memory when pulse MCIR* (8B4 and waveforius M, Figure 4-4)
occurs. This takes place when pulse PU2 (8B4) is generated by the pulser (refer to time-

state PU2, Table 4-4).

Outputs MBOO through MB23 of the memory buffer register are applied to the bus
and memory buffer multiplexer (sheet 17) together with buss (adder) outputs BOO through B11,
waever, at this time signal ADDF1* is high level and sugnal RDB* (waveform R) is low
level (12B3) so that when pulse PU3B occurs the adder (bus) input (signals BOO through B11)
is selected for output from the memory buffer and bus multiplexer (Table 4-4), Also when
pulse PU3 occurs the low=level LDMR* signal (6B2) develops a low-level SLUMX* (8A4
and waveform P, Figure 4-4) which in turn produces high-level MXSO and MXEN signals.
The MXSO signal admits the content of the utility gates (switch register data) into the MX
multiplexer (Table 4-4 and sheets 14, 15 and 16). Also, low-level signal PU3* (12B2)
develops low-level PEM* and CPM* signals (12B3 and waveforms N and Q, Figure 4-4),
the latter produced when the next REGLCK signal is generated. These signals admit the
content of the bus and memory buffer multiplexer to the memory data register.

When pulse PU5 occurs a low-level MCIW* write pulse (12B3 and waveform S,

Figure 4-4) causes the content of the memory data register (signals MOO through M11) to be
written into memory. Pulse MCIW* is enabled through the memory control logic by the
high-level ADDFO signal. Asa result of this operation the front panel MEMORY REGISTER
lamps indicate that the content of the switch register settings has been loaded into the MDR
and written into MR,

! When successive locations in inemory are to be loaded, it is only necessary to
em’rer the data into the switch register and raise the LOAD MR switch.,

4.2,2,5 SINGLE STEP OPERATION. When the SINGLE STEP switch on the front panel
israised, ND812 timing will halt at the end of the current phase. With this switch in its
operate state (up), depressing the CONT switch will execute the next phase and each phase
fhrereaffer, each time the CONT switch is depressed.

Start and stop of ND812 timing is controlled through the go control register

(3A3 and Table 4-2) reset logic. When the SINGLE STEPswitch is raised, signal SS* (3A2)
islinverted to produce high level signal SS which is applied thro.gh AND logic together
with pulse PU6B (5B2) to the set input of the go control register. Thus, if an interrupt

or' DMA operation is not in progress, when pulse PU6B occurs, the go control logic will

be set to its initialize state. Because pulse PU6B occurs during each basic-phase and
execute-phase, go control logic will be set to its initialize state at the end of either cycle.
Ifithe SINGLE STEP switch is not held in its operate state when the CONT switch is oper-
ated, pulse PU6B will not be pennitted to enable the AND gate, and operation of the ND812
timing will not be halted. In single step, pulse PU7 is not permitted to recycle the pulser
co%ntrol register and thus timing pulses are inhibited,

Operation of timing and go control logic can be more readily understood by
re{Ferrmg to Figure 4-5, With the SINGLE STEP swn’rch held in its operate s’rofe, signals

4-20 . R

INTCS* and SS (waveforms A and B) are high level and permit pulse PU6B (waveform D)
to initialize the go control logic causing a low-level GO signal (waveform C). With GO
signal in its low=level state pulse PU7B, which is normally applied to the pulser control
register (3A4), is inhibited and pulse ST1 (waveform E) cannot go to its normal high-level
state, thus preventing the pulser from being recycled. However, pulse PU7B does enable
the major-state control logic (4A2) so that either pulse BPH (waveform F) goes to its low-
level state, and/or pulse EPH (waveform G) goes to its high-level state. Thus, when the
CONT switch is again depressed, the major=state control will produce pulses in the next
major state,

NOTE

Although both basic- and execute-phase pulses are
shown high level, indicating that this action occurs
in either state, they are actually of opposite polarity
and cannot occur as shown (refer to Figure 4-5).

4,2.2.6 SINGLE INSTRUCTION. When a single instruction is to be executed, the
SINGLE INSTR switch is raised. When this is done, the ND812 will halt after the current
instruction has been executed. With this switch in its operate state (up), depressing the

CONT switch will execute the next instruction and each instruction thereafter, each time
the CONT switch is depressed.

Start and stop of ND812 timing is controlled through the go control register
reset logic (3A3 and Table 4-2) in a manner similar to that used for single stop operation.
When the SINGLE INSTR switch is raised, signal SI* (3A2) is inverted to produce high-
level signal RGO which is applied to AND logic together with pulse FFCLK to the clear
input of the go control register. However, to get pulse FFCLK, the done latch must be
set, and pulse PU6B must occur. Other conditions that must be satisfied to get this pulse
are that the go control register must be in its run state and a clock pulse must be present.
Because the done latch must be set and pulse PU6B must be present, the go control register
cannot be initialized until the machine cycle has been completed. When interruption
occurs, pulse PU7 is not permitted to recycle the pulser control register as described for
the single-step operation. Hence, only single machine cycles are enabled.

Operation of timing and go control logic can be more readily understood by
referring to Figure 4-6. With the SINGLE INSTR switch raised, signals SI* and RGO*
(waveforms A and B) are low=level and high-level, respectively, and pemitting pulse
PU6B (waveform E) to initialize the go control logic causing a low-level GO signal when
the done latch is set (waveform D) and when pulse CPPU (not shown) are coincident. When
pulse CPPU occurs, pulse FFCLK (waveform F) is produced and the go control register is
changed from its run state to its initialized state (waveform G). With the signal GO now
in its low-level state, pulse PU7B, which is nomally applied to the pulser control register
(3A4) is inhibited so that pulse ST1 (waveforms H and) does not occur. This pulse was
previously described for the single step operation. When the CONT switch is depressed,
normal operation resumes, but if the SINGLE INSTR switch remains reaised at this time,
operation will again be halted after the next instruction has been executed.

4-21

A INTCS®

e2) [
: I\

¢. 6O —

(343) o —BPS or EPS———f

1011,213/4151617,

i Vb
n

*

See paragraph 4.4.1,2

Figure 4-5., Single-Step Operation, Timing Diagram

244 |
A SI*

RGC

3A3

«—BFs orEPs le——BPs - EPs >
c. PUs=T ™ T 1T T T 17 T 7T T T T T T 7T T T 717
BPs 1415161710,11213141516171011,213141516,7)
=1 S I O O T A T T O A R T TR N T T
D. DONE I'"'""} ‘_—

]
784 ! i

el M B

F. FFCLK
382 [

e |

G. GO

3A3
H. PUTB
1L sTI
. BP (
J s lo}1}2}3}4:5}s 7
482 4y oy g
K. EPs 011121314]51617
482 b e

Figure 4-6. Single Instruction Operation, Timing Diagram

4-22 -

4.,2.2.6.1 Done Latch. Termination of the current machine cycle is dependent on the
state of the done latch. At the conclusion of a given instruction, the done latch is set at
.the end of a basic phase (dashed line, waveform D, Figure 4-6), or at the end of the exe-
cute phase. Instructions that set the done latch at the conclusion of the basic phase are:

a halt instruction, an 1/O instruction, a literal instruction, a jump instruction, and the
group | and group |l operate instructions. However, for multiply and divide operation, the
basic phase is modified to provide sufficient time to complete the indicated operation. The
done latch is set either at the end of the basic phase by pulse BP6 when one of the above
listed instructions is processed, or by pulse EP6* when a two=- or three-phase memory ref-
erence instruction is processed.

Table 4-5. Done Latch, Fundamental Operation

Ref. Period Simplified Logic Event

SINGLE PHASE DONE

1. {TWHLT" +{1/0* + {ADL™ +
$SBL™ + LANL"™ + {OP2 +
JIMPIND*~1SDONE/7B4

2. (1SDONE) (1BP6)>{SDONE*/7B4 =
(tDONE/7B4, {DONE™)

A. BP6

Single-cycle done.

B. EP6 MULTI-PHASE DONE

1. |\SDONE™ + {EP6" = SET>DONE
(tDONE/784, DONE™)

Two-cycle done.

C. PB7 or RECYCLE, BASIC PHASE

EP7 1. LDONE* + | TW* + JIND* +
{XCT*~>1RBPH—|RBPH*/5B1
2. (LRBPH*) (tPU7) (+OSCPUL)
(1STCLR*) = RESET>MAJOR-STATE
REGISTER (VEPH/6B2, 1BPH)

Basic phase
enabled.

D. PU6 STOP, SINGLE INSTRUCTION

PU7

1. (tDONE) (tCPPU) (tPUBEB)
(tGO)=>{FFCLK™/3A2~
JFFCLK*~>tFFCLK/3A2
JRGPWR™ + {SI* + | STOP*>tRGO/3A2
(tRGO) (tFFCLK)~>{RGO"/3A3
4. ({RGO™) (1CNTRP)~INITIALIZE

GO ({GO/3A3, 1GO")

LN

RESET LATCHES AND REGISTERS

1. (tDONE) (tPU7B)->ISTDN7%/3B3
2. (tDONE) {tPUOB)~IMRI* = CLR—IR

4-23

Stop occurs at
period 6 when
done latch is set.

All latches and
registers set

during machine

cycle are cleared

at period 7.

(Table 4-2) In-
struction register
cleared at period BPO.

The done latch pemits the basic phase to be reentered when the ordinary two-
cycle memory reference instruction has its indirect bit set, when a two=word instruction is
being processed, and when an XCT instruction is being processed. All these instructions
cause the current machine cycle to be deferred to produce a multi-phase instruction. The
enabled done latch also permits various registers and latches to be reset (Table 4-5), The
done latch is cleared whenever pulse BP1 is generated.

4,2,2,7 REGISTER SELECT CONTROL. The status of any register whose output is applied
to the MX multiplexer can be examined when the ND812 is in a stopped condition. Logic
which permits these registers to be selected is enabled through the go control logic. These
registers include the status, S, R, K, J, AR, PC, and the EXT inputs. The EXT inputs
indicate any data on the EXT lines which are currently in transfer from an I/O device to

the ND812, If the ND812 is not in a stopped condition the SELECTED REGISTER indications
are meaningless. During troubleshocting and maintenance or software debug, the ability

to examine these registers under single~step and single instruction operation gives the field
service engineer a silent helper whose aid can be very helpful.

When the go control logic is in its initialized state after the stop switch has been
depressed, register select logic Figure 4-7, (4) provides meaningful data to the MX multi-
p!exer select logic via signals EMXS0*, EMXSI1*, and EMXS2*, These signals provide 8
combinations, one for each position of the front panel SELECT REGISTER switch. In fact,
when the register select logic (4) is enabled, signals EMXS0*, EMXS1*, and EMXS2*
p(:'oduce signals MXS0, MXS1 and MXS2 through the multiplexer select logic (5), thus,
depending on the position of the SELECT REGISTER switch, one of 8 inputs to the MX
multiplexer (6) is enabled.

; Outputs from the MX multiplexer (signals MX00 through MX11) are applied to
the adder (8). Under given conditions MX multiplexer data is summed with TS multiplexer
data or a carry input, but not in this case, because neither the TS multiplexer outputs, or
the carry input are enabled, Thus, the sum of MX multiplexer data, zero carry, and zero
TS multiplexer data results simply in MX multiplexer output data. Adder output data is
carried by signals BOO-B11 and is applied to the output gates (9), and to other registers
which are not enabled af this time. Output gates (9) are enabled by the output select
lagic (7) when the go control logic (1) is in its initialize state.

Utility gates (3) receive external input signals EXTOO0 through EXT11 and are
enabled through external select logic (2) when the go control logic is in its initialize
state.

: Under conditions when the SELECT REGISTER switch (2A3) is in the STATUS
position, +5 Vdc power is coupled through pullup resistors to three NAND gates. Also
included as inputs to these NAND gates, is externally produced 1/0O signal ALODT¥,
which when enabled is low-level, so that normally this input, applied through inverting
buffers, together with the resistive inputs, gives rise to high-level output signals EMXS0*,
EMXS1*, and EMXS2*, For various positions of the SELECT REGISTER switch, one or
miore of these signals becomes low level as shown in Table 4-6. These combinations of
low level signals are applied through inverting buffers (9A1, 9A2) to three NAND gates

4-24

GO *
CONTROL %0
LoGIC
1)) EMXSQ™ MPLXR
SELECT
REGISTER *
GND——»] SELECT | EMXS! LOGIC
LOGIC
R EMXS2*
(4) (5)
S | K a
AN / ————— — — ‘j
//
STATUS o
LOGIC AR —»)
(2)
EXTERNAL ADDRESS P
PC §——» MX
UTILITY J—% MPLXR
EXTOQ-EXT11 oATES UR@-UI1 K
R——
3) STATUS———»{___ (6)
Figure 4-7. Register Select Control,
Table 4-6.

— MXS1

MXS2

Selected Register

STATUS

S

R

K

J

AR
PC
EXT

QUTPUT
SELECT

MX@Q-MX114

LOGIC
(7

EMXS2*

- - -0 0 =0

Selectable Register Switch Outputs

EMXS1*

- QO a2 000

ADDERS
(8)

Beo-B1

Block Diagram

EMXSO0*

ouT
GATES

(9)

TO
Bl

——

which are enabled when the high~level CGO* signal applied through an OR gate (9A1)
is produced. This high-level signal is applied to the enabling NAND gates and to the MX

multiplexer enabling logic. If the go control logic (3A3) isin its run state these enabling

inputs are inhibited by the low=-level GO* signal.

4-25 ...

The EMXS signals produce corresponding, but oppositely~phased signals MXSO0,
MXS1, and MXS2 (9A2/9B2) which, in various combinations, select the MX multiplexer
signals listed in Table 4-18 for output to the adders as signals MX00 through MX11 (sheets
14, 15 and 16). Adder outputs BOO through B11 are applied to output NAND gates (1484,
15B4, and 16B4) which are enabled by output select logic (6B3) when high-level signal
OUTST is produced. This signal is enabled through NAND gate C11 by a high-level GO*
signal from the go-control logic when it is in its initialized state. The other enabling
signals applied to this NAND gate are high~level when the go control logic is in its
initialized state,

4,2.2,.8 STARTCONTROL. When the START switch is depressed certain latches and
registers are cleared. These latches and registers are listed in Table 4-7, the simplified
logic is shown in Table 4-8. The latches and registers listed in A through N are reset only
when the START switch is depressed, and under certain operating conditions. The latches
and registers listed in P through Y of Table 4-7 are reset at the end of each instruction and
when the START switch is depressed. They are also reset as the result of certain operating
conditions.

When the START switch is depressed a low-level START* signal is developed by
the start latch (2A3). This low-level signal is applied to the start-clear logic (sheet 3) to
develop the low=level STCLR*, STPU1*, and STDN7* pulses. The STCLR* pulse provides
the clearing signal for latches and registers listed as A through N in Table 4-2. The
STDN7* pulse provides the clearing signal for latches and registers listed as P through Y.
These latches and registers are also cleared at the end of each instruction when a high-level
DONE signal and pulse PU7B are coincident. (Table 4-8 is the start control simplified

, |oQic.)
4.3 CLOCK GENERATOR AND TIMING LOGIC

Clock generator and timing logic includes the oscillator, clock generator, pulser,
cn%d register clocking and enable logic. These circuits provide synchronization when the
processor is executing either a Memory Reference Instruction (MRI) or operate instruction.
Certain modifications of the machine cycle, however, occur when an I/O instruction is
being processed. When the instruction register decodes an 1/0 instruction, the nomal
mdchine cycle is interrupted and an input/output machine cycle is initiated. At the com-
pletion of an 1/O machine cycle a normal machine cycle is resumed unless the instruction
decoder again decodes an /O instruction.

4.3.1 16MHZ OSCILLATOR AND CLOCK GENERATOR

The basic timing source for the ND812 processor is a free-running 16 MHz
oscillator which supplies dn input to the clock generator. The 16 MHz input is counted
down to a 4 MHz output (CPPU) which is used as the clock pulse for the timer, The Clock
Generator also encodes the 4 MHz signal into a 2 MHz (or 0.5 microsecond) clock pulse
which is used for processing an 1/O instruction.

4-26

Table 4-7, Latches and Régisfers Cleared by START Key

Table 4-1
Simplified Logic ’ Diagram
Reference LATCH OR REGISTER Location

A Power Sense 1984
B GO Control 3A3
C Clear Latches and Registers 3B2
D Cycle Steal Register 4A2
D Interrupt Permit 4A4
E Power Interrupt Latch 3A2
F Double Register 4A4
G Instruction Register 17B1-1783
H Flag Register 10B4
| Pulser 5A1
J Major State Control 5B2
K Indirect Latch 6A2
L Overflow Register 11B4
M Priority Register 11B3
N Interrupt Latch 11B2
P Enable Instruction-Cleared Latches 3B3 -
Q Select J or K Latch 384
R First/Last Memory 3B4
S First/Last Locate 384
T Execute FF Latch 6A3
U Indirect Latch 6A2
U Indirect FF Latch 6A3
\ Indirect Memory Latch 6A3
w KOM Register 8B1
X Wait Register 882
Y Once Register 8B3

Table 4-8, Start Control, Fundamental Operation

Ref. Period Simplified Logic Event

A. START SET RUN STATE

1. {START*>1START/3A1 Run state set and

2. ISTART" + {CONT*>tSTCNT~ latches and re-
ICLKGO*/3A3 gisters cleared at

3. ({CLKGO™) {(1CNTRP) (1RGO™) start and con-
(tEXPMR™) = SET-GO CONTROL tinue.
(tGO/3A3, {GO™)

4. ISTART->1START/3A1

5. (tSTART) (1GO*)~>{STCLR"*~
tSTCLR-!STDN7*/3B3

4-27 . e

4.,3,1,1 16 MHZ OSCILLATOR. The 16 MHz Oscillator (19B2) consists of two cross-
coupled high-gain amplifiers. These amplifiers operate as a crystal-controlled astable
multivibrator which provides a 16 MHz output. Two output signals are provided to the
clock generator and timing circuits, 16MC and 16MCD, both of the same polarity, but
the 16MCD signal is delayed from the 16MC signal by about 25 nanoseconds (Figure 4-8,
waveforms A and B).

4.3.1,2 CLOCK GENERATOR, The clock generator (Table 4-9) is a divider that counts
down the 16 MHz clock pulses by a factor of 2 twice, i.e., once to 8 MHz and once to
4 MHz (waveforms C and D, Figure 4-8).

4,3.1.2,1 8 MHz Countdown. The 8 MHz countdown logic (Table 4-10) consists of a
half dual J/K integrated circuit (4A1) which is controlled through the power sense and go
control logic (Table 4-3). Actually, enabling signal BLKMC* is dependent on the level
of GO* and BDPWR signal becuase when the power sense latch is set (19A4 and Table 4-1)
the BDPWR signal level is high and the control gate is primed; when bad power is detected,
the clock is shut off after the go control logic is initialized.

A. 16MCD
(LD#-1)

B. 16MC
i {LD1-2)
|
I .
i —a| |e—625nsec)
i C. 8MC — —
! (M03-8) l I I I I l I I I l
| 125
. D, 4MC —'l nsec
(MO3-10) I
fe— 250 nsec —»
E CCLK* '
o | | |

—-[je— 35 nsec
1

I

—a] [@-~20nsec

I
i
[.]
G REGCLK : 1 I_I
!

_’I *— ~ 50 nsec

F CPPU*
(U30-64

Figure 4-8. Basic Timing Pulses for the ND812

4-28

Table 4-9. Clock Generator, Fundamental Operation

Ref. Period Simplified Logic _ Event
A. CLOCK
t16MC/19B3 ‘ Free-running
$16MCD/19B3 oscillator on.
B. LOW BLOCK 4MC
PWR 1. {BDPWR*>1BDPWR/4A1 Increase clock
(ANY) 2. (1BDPWR) (1GO*)~BLKMC*/4A2 rate on low

power sense.

C. PUG SET 4MC A
1. (+OP4567) (TPUB) (1CNTR™) Extends PUG for
(1 1415)—=1S4MC*/4A2 shift and rotate
2. 1S4MC*/4A2 = ENABLE RESET instruction.

3. ({BLKMCY) (1S4MC™) = CLR—~4MC
REGISTER ({14MC/4A2, +4MC*)

D. ENABLE 4MC
1. JOP4567 + |PUB + {CNTR™ + Enables normal
11415->1S4MC*/4A2 " clocking atend
2. |BDPWR + {GO*—>1BLKMC*/4A1 of shift and rotate
3. (1S4MC*) (1BLKMC*)>ENABLE~ instruction.
TOGGLE
E. 16:8 MC DIVIDE
(1BLKMC™) {(tOSCPUL) Generates 8MC
(t16MC) = 8MC pulse.
(18MC/4A2, 18MC™)
F. 8:4 MC DIVIDE
(T18MC) (1BLKMC™) ({8MC™) Generates 4MC
(116MC) = 4MC , pulse.

(t4MC/4A2, L4MC™)

4.3.1.2.2 4 MHz Countdown. The 4 MHz countdown logic is provided by the other half
of the J/K integrated circuit (4A2). This countdown logic is enabled by the output of the
8 MHz countdown and its control logic. This control logic inhibits output pulses from the

4 MHz countdown by forcing the 4MC to stay in the set state until CNTR* (shift counter
complete) goes low. A Group | operate instruction requires a shift or rotate of the contents
of the J or K register. This is done to extend period BPé of the basic phase to accommodate
a longer basic phase to accomplish a maximum shift of 15 during the occurrence of the
basic-phase time state when a Group | operate instruction hasa 4, 5, 6, or 7 in the second
octal character (bits 3 through 6 of the Group 2 instruction word).

4-29 .

Table 4-10, Clock Control, Fundamental Operation

Ref. Period Simplified Logic Event
A. ANY CLOCK CONTROL
1. (18MC) (tamcCD*) (116MCD)~ Controls generator
&CCLK*/4A3 of clock pulses.
2. {CCLK*->1CCLK/4A3
3. 1]/0 OSC + |SPDBL *~>1BLKCC*/4A3

4. (1CCLK) (t1DBLE™) (1BLKCC*)~>
{CPPU*~>tCPPU~{CPPUD ™~ .
tREGCLK/4A4

B. - PUB CLRiJK REGISTERS

1. {4mMC*-=14MCDD~!{4MCDD *~ Clears J and K
T4MCD/4A3 register.
(T4MCD) (1PU6)>|CLRKJ*~>
tCLRKJ/4A3

Inhibiting the 4 MHz countdown logic when a shift or rotate Group | operate
instruction has been called for, permits time period BP6 to be extended until the number
of shifts or rotates called for in the instruction have been completed. The clock pulses
used to count the shifts or rotates are derived from the unhibited 8 MHz divider. When
the required number of shift or rotate operations have occurred, the 4 MHz countdown
resumes normal operation.

4.3.2 PULSER

The pulser (Figure 4-9) consists of two 4-state shift registers and output gating
(sheet 5). Pulser operation is initiated by a 0,25 microsecond CPPU* clock pulse from the
clock generator, a master reset, and a pulser start signal. Clock pulses are fed into the
CP inputs of the pulser shi?Ff register (first stage) and clocked through the eight-stage
register at the 0.25 microsecond rate producing eight equal time periods (PU control pulses).
However, provisions are rﬁade to change the state of the last four pulser shift register
stages for certain operahng conditions. For example, when an overflow occurs, when the
reiteration loop is still active for MPY and DIV instructions, or when the operate instruc-
tions are coded for shift and rotate operations and the up-counter is preset to the number
of desired shifts. This feo%fure permits the processor to loop or hang-up in a time period
until the BPé shift or rotor%e operations are complete,

4.,3.2,1 PUPULSES. The PU pulses control the generation of the basic phase (BPO, BP1,
anld BP3 through BP7) and execute phase (EPO, 1, 3, 4, 5, and é) pulses used in the normal
machine cycle. This arrongemen’r makes it convemenf to discontinue nomal timing (when
the current instruction cycle is complete) if an interrupt request is received. The PU
qlses are also gated with|the I/O OSC signal from the instruction decoder to generate the
peripheral control pulses (PCPO, 1, 2 and 3). A major state control circuit together with
the pulser logic prevents the execute and basic phases of a machine cycle from being
active concurrently. This major state control logic is configured to ensure that pulse EPO
Fo!lows pulse BP7 if the decoded instruction is one which requires an execute phase.

4-30

S3snd
3SVHJ
31003X3

$3s7nd
3SVYHd
Ji1sve

woiBo1 yo0|g ‘01607 Bulwi] pup JoypisUBL) 3I0|D) *4-¢ 3INBi4

¥3sINd
< vl
(4553
DT
543
€d3 || 3SvHd
31N03X3
33 ~
L 23
H 9
[€ 8 31901 aNoJ
498 Z0Nd TOMLNOD lyvis
o o |
< Gas d
o bdg bng 1¥3S1Nd ﬁ mc-,%mu_
*—¢ga]] VM Nd
. J1Sve =5
DEmEE! : iNd o 3 >
od8 ons »Mddd] 019071 1] 21901 Qo1
43151934 X307 wp| 2/8 d LNO
TOHINOD OL ¢ H0SS3008d
310 939
T
108 LNO) zHwg)
ONIWIL eEDR 35S0
10D
%
6 b V
21907 21907
- N001D fe— oWl 21907
«1Sd0d ddd oWl 2/ 2081N09)
0/1

HOLYH3INIO ¥301D

aNOD
NNy

QONOD
14v1S

4-31

4.3 2,2 PULSER CONTROL., When ths START switch is operated, pulser control logic
is pmhahzed At first, assuming that the START switch has not been operated, application
of [power operates the power sense latch (Table 4-2 and 19A4) so that the initial low-level
PWRDY* signal resets the pulser control register (3A4 and Table 4-2) and signal ST1 is
low. The initialized low=level PU7B signal (3A4) produces a high level at the pulser
control clear input and the low level PWRDY™ signal produces a low-level at the register
redet input. With these input conditions in effect, the pulser control register output,

ST1 is a low-level signal which inhibits operation of the pulser (5AB1).

Pulser control is enabled when the go control logic (Table 4-2 and 3A3) is
set to its run state and is inhibited when certain manual operations are performed. When
the front panel START switch is depressed, the go logic is enabled and the GO signal goes
from its previous low level to its high level state. However, no change has occurred
except that the register is now primed and a start or continue can be accomplished. The
toggle configuration is enabled when the PWRDY™ signal goes high due to the enabling of
the go logic (3A3, 19A4, and Table 4-11). Whenever the LOAD AR, LOAD MR, or the
NEXT WORD front panel switches are operated a one-shot pulse generator (2A4) is enabled.
This pulsed output is applied to the enabling gates of the pulser control when any of these
switches are released simultaneously with the toggle input provided by the pulsed EXPMR*
signal which is produced by the externally pulsed memory register logic (6B1 and 6B2).
This circuit operates only when the ND812 is in its STOP state, or before the front panel
START switch has been operated, due to the inhibiting GO* signal at the inputs of the
externally pulsed memory register logic (6A1 and 6A2) and the toggle input of the pulser
control (3A3).

4,3.2,3 PULSER LOGIC. The pulser consists of two ganged 4-bit shift registers (5AB1).
" Initially a master reset occurs when the power sense logic is set and when the START switch
is operated, Operation of the shift register is dependent on the state of the ST1 signal and
the incoming CPPU* clock pulses. When the master reset occurs, all outputs from the
pulser are low-level, but the clock pulses have no effect because the ST1 signal is low-
level. The J/K* inputs of the pulser shift registers permit D type entry when both are
high-level at the same time. The output of a flip-flop follows the enabling input at the
occurrence of the next clock pulse; thus, the shift register J/K* inputs are held low-level
by signal ST1, and the first stage of the shift register which has been set to low level by
the master reset remains low. When signal ST1 becomes high level, the D entry is enabled
and the first clock pulse produces a high level PUO signal which resets ST1 and disables

D |type entry. With each subsequent clock pulse the last stage previously set to its high-level
output goes low, and the next stage goes high. Thus a series of high-level pulses (Figure
4410, waveforms F through M) occur oving down the output of the shift register to the
last stage.

Referring again to the pulser control logic (Table 4-11), it can be seen that the
set and reset inputs receive pulses PUO* and PU7B. These pulses enable the pulser control
to/continuously recycle the pulser. If the recycling action did not occur, only light PU
pulses could be generated, Recycling can be more easily understood by referring to the
waveforms in Figure 4-10,

I

4-32

Ref. Period

A. T'ON,
START

B. START

C. PUO

D. ALL

c
1.

Table 4-11, Pulser Control, Fundamental Operation

Simphfied Logic

LR~PULSER REGISTERS

ISTCLR* /5A1 = CLR—PULSER
{ 1PUO -1PU7)

START PULSER

. GO -»TCKSTI"/3A4

IPU7B + ;GO + | DBLE*~1SSTI*/3A4
({PWRDY ") (TPUO")-»|RSTI~
TRSTI"/3A4

(tSSTH”) (tRSTI") = TOGGLE~ENABLE
(1CKSTI™} (1BLST!™)~1STI/3A4 =
START->PULSER

CYCLE PULSER

(&3]

. {PUO" -t1RSTI ~{RSTI"/3A4

IPU7B + |GO + |DBLE“1SST1"/3A4
(1SSTI*) (i RSTI”) ~!STI/3A4 =
CONTROL-~OFF

(1PU7B) (1GO) (1DBLE™)—|SSTI*/3A4
(tPUO") (1PWRDY ‘) ~{RSTI »1RSTI"/3A4
{(1RSTI*) (}SSTI") = 1STI/3A4 =
CONTROL -ON

GENERATE PUs

1.

Lo~ dWN

(1STH (1CFPU*) = 1PUD/SA2,

IPUOY, LSTI

{1PUO) (TCPPU") = tPU1/5A2, LPUO
(TPUT) (1CPPU™) = 1PU2/5A2, |PU1
{(tPU2! {1CPPU) = 1PU3/EA2, |PU2
(tPU3) (1CPPUY) = tPU4/5B2, IPU3
(tPU4) {1CPPU) = tPUS/5B2, |PU4
(1PUS) (TCPPU) - 1PUG/5B2, |PUS
(1PUB) (1 CPPU") - TPUT/582, |PUS, 1STI
(tPU7} (1CPPU*Y 1PUT/5B2

Event

Refer to Table 4-1.

Enables pulser.

Pulser recycled
at period PUO.

All clocked events
depend on output
of PU pulses

When the pulser is enabled CPPU* clock pulses (A, Figure 4-10) are applied to
the clock input of the two shift registers, however, until signal ST1 goes to its high-level
state, these clock pulses have no effect (B, Figure 4-10). When ST1 is permitted to go
positive, the next clock pulse applied to the shift register input will cause the first stage
output to also go high and pulse PUO (F, Figure 4-10) is produced as an output. However,
because an inverted PUO pulse is fed back to the pulser control, the positive-going PUO
and RST1* (C, Figure 4-10) pulse produces a low~level ST1 signal (shown when CPPU*
pulse O is produced), This low-level ST1 signal resets the first stage of the shift register
when the next CPPU* pulse is procuded (1, waveform A, Figure 4-10). Signal PUO goes
to its low-level state and remains there until the ST1 signal again goes to its high-level

4-33 _

A_ABCO 1 234586701 234567071234
Sl RRRRRRRRRRRRERRRRRRRRNY
[T [
[B] [
MANUAL — —
L rOPERATION rRECYCLE RECYCLE
| o
1 .
¢ PUO* ! !
RST1* X | __I
f I
|
o Pu78 ' l l |
ESsTie
i L N
e [] [[

w1 rL M
e [mn M
- M M n
| s M M r
: _eus M M

L —Pus l ﬂ
M—LPYT l—l l—l

Figure 4-10, Pulser and Pulser Control, Timing Diagram

state. Subsequent input clock pulses perform the same action with respect to setting and
resetting each stage of the shift register until pulse PU7 (waveform M) is produced. When
pulse PU7 is produced, pulse PU7B (waveformD) is also produced and applied to the pulser
control (3A4), When the next CPPU* clock pulse is produced the cycle is repeated.

Sheet 5 of the logic drawings shows the pulse and major-state control logic. In
sdme cases, some of the PU, BP, and EP pulses are ORed to provide stretched timing
functions. The stretched PU pulses that are generated are derived from pulses PUO*, PUT*,
PU4*, PU5*, Pulses PUO and PUT are ORed to produce pulse PUOOT (5A2), and pulses
PU4* and PU5* are ORed to produce pulse PU45 (5A2). The stretched BP pulses that are
generated are derived from pulses BP4*, BP5*, BP6* and BP7*. Pulses BP4*, BP5*, and
BP6* are ORed to produce pulse BP456 (5A3) and pulses BP6* and BP7* are ORed to produce

tplse BP67 (5B3). Also pulses BP5* and BP6* are ORed to produce pulse BP56 (11A2).

4-34

The stretched EP pulses are produced when pulses EP4 and EP5 are ORed to produce pulse
EP45 (5A4).

4.3.3 MAJOR STATE CONTROL LOGIC

The machine cycle phase is controlled by the major state control logic (581
and 5B2) consisting of two dual J/K registers. One of these registers controls the generation
of the major state phases and the other blocks generation of both basic and execute phases.

Operation of the major-state control logic depends on the following conditions.
a. That an interrupt request has not been initiated during the last machine cycle.

b. That no external device has requested a cycle-steal for a transfer from or
tfo memory.

c. That the indirect bit (bit 42 = 0) has not been set if the previous instruction
was an MR,

d. That the previous instruction was not an execute (7000g) instruction.
e, That the previous instruction was not a two-word MRI,
f. The done latch is not set.

Four of the above instructions normally reset the basic phase because more than
~ one basic phase is required. :

The major state control is initialized through the start clear circuit when the
front panel START switch is operated (5B2 and Table 4-12). The phase blocking register
is initialized through the go-control logic (Table 4-8), the pulser, the interrupt, and the
DMA control logic circuits, These circuits are described in the 1/O Processor section of
this manual. However, to initialize the phase blocking register an interrupt or cycle-steal
request must not have been previously made, a go condition must exist, and pulse PUO
(Figure 4=9) must have been generated by the pulser.

When these conditions exist the major-state logic is initialized and either basic-
or execute-phase pulses can be generated, and, because the STCLR* signal applied from
the start-clear control (3B3) is normally high during the run condition, the major-state
control register is nomally held in its toggle enable configuration. Thus, when the J/K
register inputs are both in their high-level state, the major state control will change states
with the occurrence of each CPPU* clock pulse coincident with each PU7 pulse from the
pulser,

The establishment of the basic and execute phases are dependent on the state of
the done latch and various other previous conditions which may have been established

4-35 . —

Table 4-12, Major Stute Control, Fundamental Operation

Ref. Period Simplified Logic Event

A. START ENABLE MAJOR STATES

! INTER- 4 (4STCLR*) (1OSCPUL) = SET~BPH Start sets basic
: RUPT, (LEPH, 1BPH/5B2) phase interrupt or
CYCLE 5 (INTCSF*->tINTCS*/5B2 cycle steal blocks
STEAL 3 (1INTCS*) (tPUO) (1GO)->| RBLK */5B2 both phases.
4. |GO* + {PUOB~1SBLK*/5B1
5. ({RBLK*) (tSBLK*)~>{BLKBEP/5B2
8. PU7 SET-EXECUTE PHASE
NOT 1. {(tDONE™) (1TW™) (1IND™) Execute phase set
DONE (1XCT*)> :RBPH~TRBPH*/5B1 when done latch
2. (tOSCPULL) (1STCLR*) = TOGGLE~
ENABLE

3. (tRBPH™) (1PU7) = SET—EPH
(tEPH/5B2, |BPH)

C. PU7 SET—BASIC PHASE
DONE 1 |DONE* +{TW* + {IND + Basic phase set
I XCT*>tRBPH/5B1—-|RBPH*/6B1 when done latch
2. (+OSCPULL) (1STCLR) = TOGGLE~ is set at PU7.
ENABLE

3. ({RBPH™) (1PU7) = SET-BPH
{{EPH/5B2, iBPH)

" during execution of an instruction. For example, when the execute phase of an instruction
has been completed, putse EP6* sets the done latch (7B4). When the done latch is set, it
remains in its set state until pulse BP1 occurs so that during normal operation, the done latch
set state overlaps two contiguous instructions except when a DMA or interrupt request occurs.

However, because operate instructions require no execute phase, the basic phase
is re-entered at the conclusion of a previous basic phase because the done latch is set at
the end of the basic phase: rather than at the end of the execute phase. Also, this occurs
for multi~basic phase instructions, particularly an indirect and a two-word instruction. The
instructions that cause the basic phase to be re-entered after the conclusion of a basic phase
are: a two word, a halt, dn input/output, all the literal instructions, operates, and jump
and indirects. All these instructions permit the done latch to be set by pulse BP6 (7A3)
rather than EP6. Referring to Table 4-12, it can be seen that from B, the execute phase is
set only when the done latch is not set and a two-word, execute, or indirect instruction is
Q_o_if_in effect. Also, from C of the sume table it can be seen that the basic phase is entered
on;ly when the done latch is set or a two-wrod, execute, or indirect instruction is in effect.

The major state control J/K* inputs assume their high-level state if a multi-
basic phase instruction has not been sensed when pulse PU7 is present (Figure 4-11),

| 4-36

| BPH EPH BPH

EPH BPH ! EPH |
PP AR SV R S R N D I B A RS S S S AU R U S DA R RN SO DL
O|1]2]3]41516[7!0[1|2|3|4|51617|0l1|2I3|4l5'6|7|0|1|2|3|4'5'
APUPULSES|,|III|I[|,,,xntlxnl.-x.nx-ll
- ottt | | i I
b 1 | !
8 BPH : Pl : | :]! ; . | I 1
) R L T N B I 1 |
c N I TR T S -
EPH ! v b !) 1 L l
o I S 1 | |
A Y I B ' !)
I I [p ! 1 [: |] I
D. BPO P B | + b 4 .
. oo | ; \ \
i LI | |
I l oo b | |
E BP1 - R !
) I
b
ot
’ VT
| : !
BP4 | l b
G T
]

BPS

—
N I

BP6

BP7

]

EPO

EZ]";:]

e e e e e - -} —-— ¢

EP1

EP3

-

EP4

e I s
o _EPB]—l

Figure 4-11, Basic and Execute Phase Pulses, Timing Diagram

When a cycle steal (DMA) or interrupt is sensed the major-state blocking register is
primed to toggle (the clear input goes to its high-level state) except when pulse PUO occurs
so that at the beginning of each machine cycle the blocking register is reset to its non-
blocking state. However, if a cycle steal or interrupt is sensed, pulse PUO cannot reset
the blocking register and it remains in its set configuration, Thus, during an interrupt or
cycle steal, when pulse PU7 occurs simultaneously with clock pulse CPPU*, the blocking
register is set to its block state (BLKBEP goes to its high-level state) and basic and execute
phases are inhibited until the requesting peripheral device has been serviced. Because
blocking occurs only in the presence of pulse PU7, the current phase is completed before
the machine cycle is deferred, nor can the next phase take place until the cycle-steal

4-37

request has been serviced and pulse PUO occurs; this permits the blocking register to be
set to its non-blocking state once more.

4/3.3.1 CONTROL REGISTER CLOCK/ENABLE LOGIC. The Register Clock/Enable
Logic generates the clock pulses (CPK, CPJ, etc.) for the major registers of the ND812
processor. These signals are generated as a function of the decoded instruction, an /0
request, or control panel operation at discrete times during the execute (EP), basic (BP)
or PU phase of the instruction cycle. The registers are 12-stage synchronous storage
registers that can accept parallel data on each positive-going (low-to-high) transition of
their input clock pulses. When the parallel enable signal is low, the input parallel data
bits determine the next condition of the shift register when the clock pulse is generated.

4.3.4 CONTROL REGISTERS

The various registers in the ND812 are used to store data., They permit the
processor to control the program, to skip instructions or data, permit the various arithmetic
and logical operations to be carried out, and permit the program to access memory for
reading or writing data, The control registers hold a 12-bit data word during various
operations that take place during the execution of a given instruction. They are all of the
same general type and are operated in a similar manner. However, the J and K accumu-
lators, which are special registers used for arithmetic operation, can function as storage
registers or as shift registers.

I
4]3.4.1 INSTRUCTION DECODERS, There are two instruction decoders, one detects the
instruction operation codes and class of instruction and the other detects codes of operate-
class instructions. Each instruction decoder consists of two Type 9301 one-of-ten decoders.
The inputs of these decoders are obtained from specific bits of an instruction word. The
instruction decoder that detects the instruction operation code and class of instruction is
called the primary instruction decoder; the instruction decoder that detects the various
operate class of instructions is called the operate decoder.

4.3.4.1,1 Primary Decoder. The primary instruction decoder (7A1) receives bits 0, 1, 2,
and 3 of the word when an instruction is processed. The outputs from the primary instruction
decoder are always available to the processor data control logic. Whenever an instruction
is processed, only one output from one of the primary one-of-ten decoders is asserted for
any four=bit combination of instruction register inputs. The primary decoders actual ly
function as one-of-eight decoders with the A3 input of the selected decoder N20, or P20
active low. Inputs A0, A1, and A2 address an active low to any of eu ht outputs (0 - 7).
T|+us, each of the primary decoders is capable of detecting one of 8 (2°) possible input
combinations so that together they can decode any one of the 16 ins’rruchons (23 + 23 = 16).
Table 4-13 lists the primary instruction decoder outputs for any one of the 16 instructions.
The Op Code column gives the octal value of the operation code, the first digit of the
operation code is the octal value of bits 0, 1, and 2 of any instruction, and can range
between Og (0005) and 7g (1119). The second digit of the operation code is the octal

v}lue of bit 3 of any instruction, If bit 3 is not set in the instruction word, the octal value

ofl this digit is 0; if bit 3 is set, the octal value of this digit is 4. The second column lists

| 4-38

Table 4-13, Primary Decoder Outputs

op BINARY CODE SIGNAL DECODER
CODE 100 101 102 103 NAME ouUTPUT
00 0 0 0 0 00* N20-(13)
04 0 0 0 1 o1 N20-(12)
10 0 0 1 0 oP1* N20-(11)
14 0 0 1 1 opP2* N20-(10)
20 0 1 0 0 LT N20-(9)
24 0 1 0 1 SiD* N20-(3)
30 0 1 1 0 Dsz* N20-(4)
34 0 1 1 1 152> N20-(5)
40 1 0 0] 0 sBJ* P20-(13)
44 1 0 0 1 ADJ* P20-(12)
50 1 0 1 0 LDJ* P20-(11)
54 1 0 1 1 STJ* P20-(10)
60 1 1 0 0 JMP™ P20-(9)
64 1 1 0 1 JPs* P20-(3)
70 1 1 1 0 XCT* P20-(4)
74 1 1 1 1 /0™ P20-(5)

the four=bit binary code required to obtain the various decoded instruction outputs listed

in the Signal Name Column. Any output from the primary instruction decoder is asserted
when the signal is low=level; all other primary decoder outputs are high level. The Decoder
Output column lists the teminals which will be asserted for each of the input operation

codes,

4,3.4.1,2 Operate Decoder. The operate decoder (11A1) provides asserted outputs when-
ever the primary instruction decoder detects a group 1 operate instruction. The Group 1
operate instructions enable various arithmetic and logical functions. These arithmetic and
logical operations deal with data in the accumulator registers. They include data shifts

and rotates, ANDing operations, subtractions and additions, and multiply and divide. The
operate decoder receives the current bits 6 through 11 from the instruction register; however,
its outputs are not asserted unless the primary instruction decoder has detected a Group 1
operate instruction, Whenever a Group 1 operate instruction is detected, only one of the
13 outputs available from the operate decoders is asserted. Its output depends on the input
bit configuration.

In particular, if bits 4 or 5 or both are set, an arithmetic operation is called for.
If bit 6 is set, a rotate or shift is called for, If bit 6 and bit 7 are set, a rotate is specified.
If bits 4 and 5 are unset, the operation is a hardware multiply or divide, depending on
whether bit 11 is set or unset, If the 11th bit is unset, the operation is a multiply; if the
11th bit is set, the operation is division.

Table 4-14 lists the operate decoder outputs for any of the Group 1 operate

instructions. The various combinations of bit patterns permit the selection of 51 unique
arithmetic operations. The Op Code column gives the octal value of the operation code

4-39

Table 4~14, Operate Decoder Outputs

- BINARY CODE SIGNAL DECODER
i . CODE 106 107 108 109 110 111 NAME OuUTPUT
o+ 0 0 0 X X X OP100* M20-13
1™ 0 0 1 X X X OP101* M20-12
2% 0 1 0 X X X OP102* M20-11
3** 0 1 1 X X X OP103* M20-10
4** 1 0 0 X X X OP104* M20-9
: B** 1 0 1 X X X OP105* M20-3
; 6** 1 1 0 X C X X OP106* M20-4
' 7 1 1 1 X X X oP107* M20-5
0 X X X 0 0 0 HWM* PO4-13
1 X X X 0 0 1 HWD* PO4-12
2 X X X 0 1 0 RIST*™ PO4-11
.3 X X X 0 1 1 IOFF* PO4-10
4 X X X 1 0 0 not used P0O4-9
5 X X X 1 0 1 notused P0O4-3
6 X X X 1 1 0 notused PO4-4
7 X X X 1 1 1 110111* PO4-6

**Arithmetic instructions
X don’t care

for the various bit inputs to each of the decoders. The second columns list the three-bit
binary codes required fo obtain the asserted signals listed in the Decoder Qutput column.
Ariy output from the instruction decoder is asserted when the signal is low level; all other
: operai'e decoder outputs are high-level, The Decoder Output Column lists the terminals
anch will be asserted for each input of the operation code bits 6, 7, and 8; and bits
9,10, and 11,

4, B 4,2 INSTRUCTION REGISTER. The Instruction Register (17B1, 2, and 3) holds the
current instruction until the execute phase has been completed, This register holds the

12 bits of the instruction word during the time an instruction is being processed. |t receives
its inputs from the bus and memory buffer multiplexer and provides its outputs to the instruc-
tidn decoders, to the TS multiplexer, and to various logic elements in the processor. The
primary instruction decoder receives bits 0, 1, 2, and 3, the operate decoder receives

bits 6 through 11, and the TS multiplexer receives bits 6 through 11, and the processor
logic receives all bits.,

Three Fairchild Semiconductor Type 9300 4-bit registers (M19, N19, and P19,
sheet 17) comprise this instruction register. These IC's are generally used as storage
eléments and not as shift registers, but when a two-word instruction is detected, an effective
three=-bit shift to the left is carried out by a single clock pulse which occurs during period
BPB. Whenever register input PE is low=level, inputs PMROO through PMR11 are admitted
into the instruction register when a clock pulse (CP) is produced. For the instruction
register, the enabling input signal is PEI* and the clock-pulse signal is CPI*. This register
is cleared by a low=-level MRI* signal which is produced whenever the done latch is set

4-40 . e

and pulse PU7B occurs. These signals are developed at the conclusion of either a memory
reference, operate or input/output instruction. Refer to paragraph 4.4 for details. Data
held in the instruction register is available until the conclusion of the machine cycle.

4.3.4.3 ADDRESS REGISTER. The address register (14B3, 15B3, and 16B3) holds the
address of the location in memory currently being accessed. At the end of one instruction
and before a new one is processed, the content of the address register is the last address
accessed (for example, during an indirect or jump instruction). The address register holds
12 bits of address data (AQO through A11), which is derived from the adders via either the
MX multiplexer, the TS multiplexer, or both (when a current address is summed with an
effective address), for a jump (JMP) instruction or when the current address is incremented.
Its outputs are provided to the MX multiplexer and tc the address decoders in the memory
unit, ' '

The address register also consists of three Fairchild Semiconductor Type 9300
4-bit shift registers (14B3-M06, 15B3-N06 and 16B3-P06). These IC's are not used as
shift registers, but as storage registers. Whenever register input PE is low-level, inputs
BOO through B11 are admitted from the adders into the address register when a low=level
clock pulse (CP) is produced. Fcr the address register, the enabling input signal is PEA*
and the clock=-pulse signal is CPA*, The address register cannot be cleared because the
steady-state high-level PULLU signal is present at the respective MR (reset) inputs;
address register data is changed only when replaced by new data. Generally, the address
register receives its inputs from the program counter through the MX multiplexer and adders
at the beginning of an instruction; however, for memory reference instructions, this may
be modified by an effective-address or replaced by an indirect pointer (second address).

When the ND812 is not in the run state 1 the content of the address register can
be examined at the front panel SELEC TED REGISTER indicators when the SELECT REGISTER
switch is in the ADDRESS position. Refer to paragraph 4.2,2.7 for details of the selected
register selection circuits. Details of address register operation are given in paragraph 4.4,

4.3.4.4 PROGRAM COUNTER. The program counter holds either the next location in
memory from which an instruction will be read or the location of the current instruction
being processed. At the beginning of an instruction it holds the next location in memory
to be accessed; however, before the instruction is completed it is incremented to obtain the
next address. Thus, the program counter holds only instruction addresses while the addres
register can hold either instruction or data addresses. The program counter holds 12 bits

of address data (POO through P11) which is derived from the address via either the MX
multiplexer, the TX multiplexer or both, lts outputs are provided to the MX multiplexer.

The program counter also consists of three Fiarchild Semiconductor Type 9300
4-bit shift registers as do the instruction and address registers (14B3-M05, 15B3-NO05, and
16B3-P05). These IC's are also used as storage registers. Whenever register input PE is
low level, inputs BOO through B11 are admitted from the adders into the program counter
when a low-level clock pulse (CP) is produced. For the program counter, the enabling
signal is PEP* and the clock-pulse if CPP*, The program counter cannot be cleared
~ because the same steady=state high-level PULLU signal that disables the address register

4-41

master reset input also dlspbles the program counter master reset input, Thus, like the
address register, it rei'ams its information until it is replaced by new information. Generally,
~ the program counter receives its first instruction location manually through the switch

register (refer to parqgraph 4.2.2,1). From then on, as a program is executed, the content
oF| the program counter is automatically modified through the adders.

When the ND812 is not in the run state, the content of the program counter can
be!l examined at the front panel SELECTED REGISTER indicators when the SELECT REGISTER
switch is in the PC position. Refer to paragraph 4.2.2.7 for details of the program counter
selechon circuits. Detocl‘s of program counter operation are given in paragraph 4.4,

4, 3 4.5 MEMORY BUFFER REGISTER. The memory buffer register is the memory output
link between the processor and memory. It receives parallel inputs from up to two 8K
memory modules, including memory extension. Memory buffer register inputs are routed
through connector R28 from the memory extension or from the basic self-contained memory
modules (memory fields MFOO and MFOT) through connector V29 and W29, Its outputs are
supplies to the write amplifiers in the memory unit, so that any information read from a
given location will be restored at the same location, and to the bus and memory buffer
multiplexer. All words read from memory are strobed into the memory buffer register
during period PU2 of any phase. The memory buffer register is cleared by low=level pulse
RMB* which is derived through an inverter whenever pulse PU1B is generated,

The memory buffer register holds 24 bits of data in two 12-bit words. This
24 bit register system is used because of the 4K (MF00) + 4K (MFO1) configuration of the
basic 8K memory. The mformahon obtained from the first 12-bit word is derived from
one memory field and the data information obtained from the second 12-bit word is derived
- from the other memory field. When a memory extension is included as an option to the
ND812, two more 4K fields can be added in an 8K stack making a total of 16K memory
locations in four memory fields. The extended memory is also configured as two 4K
memory fields.

The memory buffer register comprises six Fairchild Semiconductor Type 9314
4-bit latches. The first 4K memory field supplies outputs via lines MSO0* through MS11*
through connector W29 to the first field (MFO0) memory buffer register (18AB1-M24, -N24,
an% -P24) and the second 4K memory field supplies outputs via data lines MS12* through
MB23* through connector V29 to the second field (MFO1) memory buffer register (18AB3-M25,
—N25 and -P25). Memory extension inputs are configured similarly but extended memory
do|tc (MF10, and MF11) is coupled to the memory buffer register through connector R28.
Memory buffer register outputs are applied as inputs to the bus and memory buffer multi-
pléxer as signals MBOO through MB23. Word selection (MBOO through MB11 through MB23)
is made at the multiplexer. The memory buffer register consists of six Fairchild Semicon-
ductor Type 9314 4-bit latches configured in two groups of three (M24, N24, P24, M25,
N25, and P25, sheet 18). With enable input E grounded, this terminal of these 4-bit
latches is a static low-level signal which admits any low-level signal at inputs Sq, Sy,

52, and 53 when corresponding inputs Dg, Dy, Dy, and D3 are high level. However, the
D inputs are connected to static high-level signal PULLCK so that these latches are always

4-42

enabled. When the master reset (MR) input goes low, these registers are cleared. Any set
bits from memory are low level when asserted so that each memory buffer register remains
- cleared until the memory strobe (PU2) is generated during a basic phase.

4.3.4.6 MEMORY DATA REGISTER. The memory data register is the memory input link
between the processor and memory. During a machine cycle, the memory data register
holds any 12-bit word that must be written into memory during the current phase. It
receives its inputs from the bus and memory buffer multiplexer. The bus and memory buffer
multiplexer is an electronic switch that can provide as its output either memory buffer or
adder information so that the memory data register can store either memory buffer or bus
data from input lines PMROO through PMR11, Memory data register outputs are also
supplied from the memory data register to external equipment connected to the input/
output bus through NAND gates that are enabled by I/O functions (17AB4). Memory data
register outputs supplied to the self-contained basic 8K memory are routed through connectors
W29 and V29, Information supplied through connector W 29 is for memory field MFOO and
data supplied through connector V29 is for memory field MFO1, Information supplied to
the memory extension module is routed through connector R28 for memory fields MF10 and
MF11, Data supplied to I/O devices is routed through connectors 526, 527, W30, Y30

or Z30,

The memory data register comprises three Fairchild Semiconductor Type 9300
4-bit shift registers (17A1-M21, 17A2-N21, and 17A3-P21); however, they are used as
storage registers rather than shift registers. These registers are of the same type as the
address register and program counter, enabled through the PE input and clock through the
CP input. For the memory data register the enabling input is PEM* and the clock pulse
input is CPM*, Like the address register and program counter, this register cannot be
cleared because the steady-state high-level PULLCK signal is present at its respective
reset inputs. Thus, like the address register and program counter, data in the memory
data register is changed only when replaced by new information during a machine cycle.

The content of the memory data register is displayed by the front panel
MEMORY REGISTER indicators. Refer to paragraph 4.5.4 for details of memory data
register operation.

4,3.4.7 OTHER REGISTERS. The ND812 has other registers and latches most of which
store single-valued bits of data. These registers include the up counter, which holds the
value of a shift or rotate count, and the interrupt priority register which stores the current
priority level under which the processor is controlled by the input/output processor. Also
included is the overflow register and the flag register.

4,3.4.7.1 Overflow Register. The overflow register (11B4~A04) is a 1-bit JK register
used to indicate an overflow during an arithmetic or a hardware multiply operation. The
purpose of the overflow register is to indicate that the result of an arithmetic operation

has exceeded the capacity of the accumulator, Each time an overflow occurs (as a result
of an arithmetic operation), the overflow (OV) register is complemented. Thus, if overflow
is possible as the result of an arithmetic operation, the status of the overflow register will

4-43

mdlcc’re this condition. Thus, the programmer must monitor the condition of this register,
The ND812 instruction set permits the overflow register to be set, cleared, complemented,
angd tested, but testing does not automatically clear it.

When an arithmetic operation requires two binary numbers to be summed, over-
flow occurs when the content of the affected register (the register in which the arithmetic
operation occurs) is greater than 4095 (7777g). When overflow occurs the equivalent
of the decimal quantity 40955 must be added to the quantity left in the affected register
to obtain the proper sum. This is not done by the hardware, but is an element of the
bookkeeping requirements for the programmer. When an arithmetic operation requires
two binary numbers to be subtracted, the twos complement of the subtrahend is added to
the minuend. Thus, overflow is also possible when a subtraction is ordered by the instruc-
tion currently being processed, but the programmer must decide whether such an overflow
candition has significance when determining the absolute value of the result. The theory
of twos complement subtraction can be found in various elementary texts on computers,

The overflow register and logic receives timing inputs from the control unit,
bits 6 and 7 from the IR, decoded instructions from the instruction decoder, and the carry
output (COUT) from the most significant stage of the adder. These inputs are gated into
the overflow register.

4,3.4.7.2 Up Counter. The’up counter (11A3) is used when the instruction decoder
detects shift or rotate or multiply and divide instructions. The up counter is a Fairchild
Sémiconduc’ror Type 9316 four-stage binary counter which is preset to a value whose
mbgmtude is the difference between the wanted count and 15. When the counter PE input
5|gna| SCNTR* is low level, signals 108%, 109*, 110* and 111* are admitted into the
counter. These signals are the complements of the corresponding instruction register bits,
Thus, if the up counter is to count out 12 pulses, the instruction register bits are set as
fallows: 108 =0, 109 =0, 110 =1and |11 =1, However, because the complement of
this value is loaded into the up counter, the bit configuration is that shown for 12 moves
in Table 4-15. Figure 4-12 is the waveform diagram for operation of the counter. Taking
the difference between 15 and 12 to be 3, the counter must be preloaded to the value 3.
Thus, referring to Figure 4=12 when three CLKCNT pulses have occurred, the state of

’rh!e counter is that shown in Table 4-12 for a count of 3, or, Qg =1, Q1 =1, Q2 =0,
aﬂ\d Q3 = 0. Counting the remaining pulses gives 4 through 15, or a total of 12,

! The counter changes states with each low=to-high transition of the CLKCNT
|dput pulses which are obtained through the operate logic or through the multiply and
divide logic. There are two discrete countouts of importance. One of these is the teminal
count which provides a high-level CNTR output signal when a full count of 15 has been
reiached; the other is a count of 12 which is detected by output AND gate D17, When this
g%fe is enabled, a logical PS12* signal is produced that indicates the counter has received

pulses. This information is required for hardware multiply and divide operations. Details

of up counter operation are described in paragraph 4.4, Processing Instructions.

42.3.4.7.3 Flag Register. The flag register (10B3-A20) is a one-bit register with associated
gating used to store the status of any previous condition, It is programmer accessible

A-44 - I o

6 1 2 3 4 5 6 7 8 9 10 14 12 13 14 15
1 { i | | | 1 | i | | | | ' !
| t | t] | t 1 | | i | ! { i |
CLKENT | 1 i . |
Qo 1 ! | | i [
]]]]] \ i
a1 .
| t i
Q2
|
Q3
TC
Figure 4-12, Up Counter, Timing Diagram
Table 4-15. Up Counter Preload Codes Vs, No. of Moves
Up Counter Preload Codes
111*(Q,) 1o*Q,) 109*(Q;) 108%(Q;) No. of Maves
1 1 1 1 0
1 1 1 0 1
1 1 0 1 2
1 1 0 0 3
1 0 1 1 4
1 0 1 0 5
1 0 0 1 6
1 0 0 0 7
0 1 1 1 8
0 1 1 0 9
0 1 0 1 10
0 1 0 0 11
0 0 1 1 12
0 0 1 0 13
0 0 0 1 14
0 0 0 0 15

4-45 -

through the group 2 operate instructions which permit the flag register to be set, reset,
complemented, restored, and otherwise tested. In this manner, it can be used as a one-
bit memory to store the presence of absence of some condition. Only the instructions
which specifically address the flag register have any effect on its stage. The flag register
output is also routed to the status input of the MX multiplexer. Details of flag register
operation are described in paragraph 4.4.2.2,

4,3.4.8 ACCUMULATOR REGISTERS (J,K,R AND S). The accumulator registers are
the arithmetic processing elements of the ND812 processor. All four of them are involved
in additions, subtractions, multiplication and division. However, only the J and K registers
are directly accessible to or from the memory. The R and S registers receive their inputs
from the J and K registers, respectively. Data may be transferred between the J and K
registers or between J,R, K, and S registers through the MX multiplexer; it may be shifted
left in J and K registers, and it may be shifted right in R and S registers during hardware
multiply. Arithmetic results can be called for either from the J or K registers. These
registers provide the ND812 data path to the memory registers through the MX multiplexer
so that the results of arithmetic and logical operations can find their way into specified
memory locations. Data is transferred between the J and K registers and memory when
certain memory reference instructions are processed. Arithmetic, logical, and multiply
and divide operations are carried out by Group 1 operate instructions.

| Each of these registers holds 12-bits of data. Arithmetic and logical operations
cause data to appear in either the K or J register. The R and S registers receive their
inputs from the J and K registers although their outputs are also routed to the MX multiplexer.
When the operation is multiplication, the multiplicand is loaded into the K register and
the multiplier is loaded into the J register, The product appears in the two subaccumulator
" registers, R and S with the most significant half of the product in the S register and the
least significant half in the R register.

| When division is the operation to be executed, the divisor must be loaded into
th;a R register and the dividend must be loaded into the J and K registers. The most signi-
ficant half of the dividend, a 23-bit word (the most significant bit must be zero) must be
loaded into the K register and the least significant half into the J register. The division
operation results in the quotient appearing in the J register and the remainder appearing
ini the K register.

4,3.4,8.1 Arithmetic Operations. Figure 4-13 is the block diagram of the ND812 arith-
metic loop. In this configuration, the TS multiplexer (2), the MX multiplexer (3), and the
adder (4) play an important part, not only in arithmetic operations, but in data exchanges,
shifts and rotates, and in multiply and divide operations. For the purpose of programming,
the R and S registers (7 and 8) are not directly accessible to or from memory; however, data
cantained in these registers may be transferred to the J or K registers (5 and 6) and then
written into specified memory locations by a memory reference instruction. All the arith-
méfic instructions are group 1 operate instructions.

With the exception of the multiply instruction which leaves a 24-bit product in
the R and S registers, the results of arithmetic operations are left in either the J or the K

| 4-46

woiBpiq 320|g ‘doo pypg diBWYIHY ZIgON €|~ 24nBig

L r-oor

VW d-0BENd
115-00S
1-00N
(8) (€}
S S S
(WNoOY) (WNooY) VIXN-0OXA hydiin]-
934 HX-00N 934 XW
Y
v)
(6) s N :
XN TOBINGD
uan . -] S¥340Y |15 1-00S1 8ns-aav
8 118 -008 18
sng oe8]
(£) s} n%m._ @)
aav 3
(NODIY) Le-gor | (Wnoow) 1 R LA
934 934 Z Si 0N W -|oow
fe— 110 Z r
Yy r

1iyd-oQy

(L)

HaW

4-47

regwsfers. Upon inspection of thure 4-13 the possible permutations of additions, subtractions,
and data exchanges become apparent, For example, when the content of the J and K
registers are summed and the result is to be left in the K register, one of the possibilities

is to admit the output of the J register to the TS multiplexer and the output of the K register
to the MX multiplexer. These data can then be summed by the adders and admitted to the

K register.

Subtractions can be obtained in a similar manner; the complement of the content
of the J register is taken from the TS multiplexer and incremented by a count of 1 to obtain
the 2's complement of the J register data word (this logic is not shown but suggested in
Figure 4-13), which is then summed with the content of the K register. Exchange and load
operations permit other data transfers. |t is interesting to note that although there is not a
direct instruction that permits the content of the R and S registers to be exchanged, never-
theless, this is possible by first exchanging the data in J and K with the data in R and S
(EXJRKS) and then exchanging the data between J and K (EXJK). Details of arithmetic
operations are described in paragraph 4.4.2,1,

Although the bus and memory buffer multiplexer (9) and the memory data register
(1) are shown, they are not used during addition, subtraction, or multiplication. They are,
however, used during the divide operation. During divide operations, the memory data
register is used to store a modified version of the divisor.

4.3.4,.8.2 J Register. The J register holds 12 bits of arithmetic data (JOO through J11), or
duﬁng the execution of certain memory reference instructions, a word fransferred from or

to memory, which is derived through the adders. The J register outputs are provided to the
TS multiplexer, the MX muyltiplexer, and the R register (Figure 4-13).

The J register consists of three Fairchild Semiconductor Type 93C0 4-bit shift
registers (M16-14A3, N16-15A3, and P16-16A3), which are used as both storage and shift
re%sters. Whenever register input PE is low level, inputs BOO through B11 are admitted from
the adders into the J register when a low-level clock pulse CP is produced. For the J
register, the enabling signal is PEJ* and the clock pulse is CPJ*. Whenever clock pulse
CPJ* occurs and signal PEJ* is not low level, a single bit shift to the left occurs. The
J tegister can be cleared when pulse MRJ* becomes low level. Thus, unlike many of the
other registers in the ND812, the J register retains its data unless cleared by the low-level
MRJ* pulse.

4.3.4.8.3 K Register. Like the J register, the K register holds 12 bits of arithmetic data
(KOO through K11), or during the execution of certain memory reference instructions, an
operand transferred from or to memory, which is also derived through the adders. The K
register outputs are provided to the TS multiplexer, the MX multiplexer, and the S register

(Figure 4-13).
The K register also consists of three Fairchild Semiconductor Type 9300 4-bit

shift register (14A3, 15A3, and 16A3) which are used as both storage and shift registers.
Wlhenever register input porallel enable is low level, inputs BOO through B11 are odmn‘r'red

4-48 -- L

from the adders into the K register when a low-level clock pulse is produced. For the K
register, the enabling signal is PEK* and the clock pulse is CPK*, The K register can be
cleared when pulse MRK* becomes low level. Thus, as with the J register, the K register
retains its data unless cleared by the low-level MRK* pulse. Data in the K register can
also be shifted one bit to the left whenever the clock pulse CPK* occurs when parallel
enable signal PEK* is not low=level.

4.3.4.8.4 R Register. The R register holds 12 bits of data (ROO through R11), which are
derived from the J register. The R register outputs are provided to the MX multiplexer
(Figure 4-13). Data in the R register cannot be directly accessed by memory, but may be
transferred through the J register.

The R register consists of three Fairchild Semiconductor Type 9300 4-bit shift
registers (14A4, 15A4, and 16A4), which are used as both shift and storage registers.
Whenever register input parallel enable is low level, inputs JOO through J11 are admitted
into the R register when a low-level clock pulse is produced. For the R register, the
enabling signal is PER* and the clock pulse is CPR*, The R register cannot be cleared
because it has a static high-level PULLU signal at its reset input, MR*. Thus, like many
other registers in the ND812, it retains its data until replaced by new data. Data in the
R register cannot be shifted upon command; however, during a multiply operation, data in
the R and S registers are shifted one bit to the right whenever clock pulse CPR* occurs and
parallel enable pulse PER* is not low level. Details of the R and S rightward shift are
described under Hardware Multiply (paragraph 4.4.2.1.1).

4.3.4.8.5 S Register. The S register is the K register subaccumulator and it functions

in a manner similar to the R register in conjunction with the K register. The S register holds
12 bits of data (SO0 through S11) which is derived from the K register, The S register
outputs are provided to the MX multiplexer (Figure 4-13). The S register cannot be directly
accessed by memory, but similar to the R register, it may accept data through the K register.

The S register consists of three Fairchild Semiconductor Type 9300 4-bit shift
registers (14A4, 15A4, and 16A4), which are used as both shift registers and storage
registers in a manner similar to that for the R register. Whenever register input parallel
enable is low level, inputs KOO through K11 are admitted into the S register when a low-
level clock pulse is produced. For the S register, the enabling signal is PES* and the clock
pulse is CPS*, As with the R register, the S register cannot be cleared because it has a
static high-level PULLU signal at its reset input, MR*, Thus similar to the R register, it
retains its data until replaced by new data. Data in the S register cannot be shifted upon
command; however, as with the R register, data in the S register is shifted one bit to the
right during a multiply operation whenever clock pulse CPS* occurs and the porallel
enable pulse PES* is not low level.

4.3.4.9 MULTIPLEXERS. The multiplexers are electronic switches that permit any one of
a number of multiple inputs to be selected as their output. The multiplexers permit various

data, held in the ND812 storage registers, to be manipulated for obtaining arithmetic oper-
ations, shifts, rotates, multiply, divide, data exchanges, complements, negations and

4-49 . e

logical operations to take place. There are three multiplexers in the ND812, the bus and
memory buffer multiplexer, the TS multiplexer, and the MX multiplexer. The TS and MX
multiplexers play a significant role in the ND812 arithmetic loop which has been described
under Accumulator Registers (paragraph 4.3.4.8).

4.3.4.9.1 Bus and Memory Buffer Multiplexer. The purpose of the bus and memory buffer
mdltiplexer (17A1,2,3 and 4) is to enable data stored in the memory buffer register or held
by!the adders to be returned to the memory data register. The bus and memory buffer multi-
pléxer receives memory buffer outputs MBOO through MB23 and adder outputs BOO through
BI]1. As previously described in paragraph 4.3.4.5, the memory buffer register provides
memory data from memory fields MFOO through MF11 depending on the memory field selected.

The bus and memory buffer multiplexer consists of six Fairchild Semiconductor
Type 9309 Dual Four-Input Multiplexers having common input select logic (sheet 17).
However, they are connected as Dual Three-Input Multiplexers because the adder inputs
are connected to two input terminals. Depending on the configuration of the select logic
bift pattern at terminals S %dnd Sor only one of signals lg, through 13, and lg through I3},
of leach multiplexer is selected from the bus and memory buffer multiplexer as signals
PMROO through PMR11, Table 4-16 lists the bit configuration for signal selection. The
oﬁppufs from this multiplexjer include both high-level and low-level assertion; however,
only the high-level signal assertion is used. When signal RDB* is low-level adder outputs
BOO through BI1 are selec‘*ed. These outputs appear at terminals Za and Zb of each of the
six multiplexers integrated circuit modules. The bus and memory buffer multiplexer outputs
are applied to both the memory data and the instruction registers (see Figure 1-2).

Table 4-16. Bus and Memory Buffer Multiplexer Qutputs

i ENABLING SIGNALS

RDB* ! ADDF1* SELECTED INPUT SIGNAL

0 0 BOO through B11

0 1 BOO through B11
1 0 MB12 through MB23
: 1 1 MBOO through MB11

4.3.4.9.2 TS Mulﬁ;ﬁlexer. The purpose of the TS multiplexer is two-fold: it is used to
sélect outputs from one of four registers, and it is used in arithmetic operations to select a
data word or its complement. The four registers providing data to the TS multiplexer are

ti’xe J register, the K register, the instruction register, and the memory data register. Also
used in conjunction with the TS multiplexer, and logically inseparable from it, is the add-
subtract gate logic. This logic determines whether the register data word or its complement
vélill be selected as the TS multiplexer output word. The output of the TS multiplexer is
dpplied as one of the inputs to the adders. This adder input is summed with the output from
the MX multiplexer which is also applied as an input to the adders. Thus, whenever a
data-word or its complement is selected by the add-subtract logic, an addition or subtraction

4-50

takes place at the adders with the result appearing as the adder output. During arithmetic
operations, the adder is incremented when subtraction is ordered so that 2's complement
subtraction occurs. :

Figure 4-14 illustrates the add-subtract logic for one unit IC module of the TS
multiplexer output. Assuming that the upper half of the integrated circuit module contains
a bit of information, bit X, which is set, and the lower half contains a second bit of infor-
mation, bit Y, which is unset, the following illustrates how either the data word or its
complement is chosen for output from the TS multiplexer accordingly as an add or subtract
is ordered from the add-subtract gate logic. Both the assertion and negation of eoch bit
is available as outputs from the TS multiplexer and appear at outputs Zy,, Zp*, Z,, and
Zy*. When addition is ordered, signal TSADD* is asserted and low=level; TSSUB* is not
asserfed and is high-level, :

AX
cX .
J —lIzp Zy J BX R (tAX)($BX)= ¢ CX
($OX)(FEX)=t FX
K —1zp, SX tex+tex - box-0
BIT X =1 DX
1# Iip FX
EX S
M —Ipp Zpo—
J 130 Za AY ’ ’

: T LY LAvHBY <d CY
o K 120 BY oY {OY+{EY =} FY
BIT Y=0 ‘ W (JEYN}FY)=t GY= o

k2 Lia DY

, FY
M 19q a* P EY v
So Sy

TSSO —————I
TSSH
TSADDY
Tssup®

| £ =IR'BITS 0 THROUGH 6 NOT AVAILABLE
TO THE TS MULTIPLEXER

Figure 4-14, Typical TS Multiplexer Add-Subtract Logic

Examining AND gate R for the effect of the low-level TSADD* signal and AND
gate S for the effect of the high-level TSSUB* signal, it can be seen that the logic equations
opposite OR gate W are satisfied for bit X and that bit X will appear as the data at the out-
put of OR gate V, However, for bit Y, the conditions described by the logic equations
opposite OR gate V are satisfied for bit Y so that the negation of bit Y, or binary 1, will
appear at the output of OR gate W. Thus, when addition is ordered, the data word is
'selected as an output from the TS multiplexer because the add- subtract logic inverts its
selected inputs.

4-51 - o

When subtraction is ordered by the logic, signal TSSUB* is asserted and low
level, and signal TSADD* is not asserted and high level. Examining the respective AND
gates R, S, T, and U for the effect of these states, it can be seen that the conditions described
by the logic equations opposite OR gates V and W, respectively, are obtained and that the
complements of the bits X and Y are produced as outputs. Thus, an add command produces
the data word, and a subtract command produces the complement of the data word, bit for
bit. When neither an add nor subtract is ordered, the conditions described by the logic
equations opposite OR gate V are obtained for all outputs from the add-subtract logic so
that all outputs from the TS multiplexer will produce low-level outputs.

The TS multiplexer consists of six Fairchild Semiconductor Type 9309 Dual four-
input multiplexers having common input select logic (sheet 13). Electrically, these inte-
grated circuit modules permit any one of four input data words to be selected for application
to the add-subtract logic, depending on the states of the select logic bit pattern at input
terminals Sq and Sy. Table 4-17 lists the bit configuration required for selection of the
J-register (JOO through J11), the K-register (KOO through K11), the instruction register
(bits 106 through 111 only), and the memory data register (MO0 through M11) data words.

It should be noted that in the absence of any selection command from the logic, signals
TSS1 and TSSO are low level so that the content of the memory data register is selected
as the output data word. This condition occurs during the hardware divide operation.

Table 4=17. TS Multiplexer Selection Codes

Selection Bits

TSS1 TSSO Signals Source
0 0 MOO-M11 Memory Data Register
0 1 106-111 Instruction Register
1 0 KO0O0-K11 K Register
1 1 JO0-J11 J Register

4,3.4.9.3 MX Multiplexer. The purpose of the MX multiplexer is to switch any one of
eight input data words to the adders. The selected data word from the MX multiplexer is
summed with the output from the TS multiplexer add-subtract logic (Figure 4-13) so that
when a TS multiplexer data word is selected, the result of summation is addition; when a
TS multiplexer data-word complement is selected the result of summation is subtraction; and
when neither the data word nor its complement is selected, the result of summation is feed
through, i.e., the selected MX multiplexer data word is summed with all zeros resulting
isladder feedthrough of the MX multiplexer data word only. ‘

Figure 4-13 shows only the registers in the arithmetic loop which provide inputs
td the MX multiplexer; these registers include the four accumulators, J,K,R, and S.
Other register inputs include the address register, the program counter, the utility gates,
and the status register.

| 4-52

The MX multiplexer consists of 12 Fairchild Semiconductor Type 9312 (sheet 14,
sheet 15, and sheet 16) Eight-Input Multiplexers having common input select logic. The
MX multiplexer integrated circuit modules pemit any one of eight input data words to be
selected for application to the adders (Table 4-18) accordingly as the three-bit select
signals Sg, S7, and S3 are high or low-level. Table 4-18 lists the input bit combinations
of signals MXS0, MXS1, and MXS2 for selection of the various input data words. In order
to admit input data to the MX multiplexer, parallel input enable signal MXEN* must be
low level together with the required bit pattern. In the absence of any bit pattern signals,
inputs MXSO, MXS1, and MXS2 are low level and the address register data word will be
admitted whenever enable signal MXEN* is low level. Whenever signal MXEN* s
disabled (high-level) the output from the MX multiplexer is zero (all binary 0's).

Table 4-18. MX Multiplexer Selection Codes

MXS2 MXS1 MXS0 Register
0 0 0 Address Register
0 0 1 Utility Gates
0 1 0 Program Counter
0 1 1 S. Register
1 0 0 J. Register
1 0 1 K. Register
1 1 -0 R. Register
1 1 1 Status Register

4.3.4.10 ADDER. The adder is a parallel high-speed binary full adder consisting of six

"~ Type 9304 Fairchild Semiconductor integrated circuit modules (sheets 14, 15 and 16).
Each of the six modules is capable of adding two bits; thus the six IC's provide a 12-bit
capacity. Each stage of the adder is equipped with an A input (operand from MX Multi-
plexer), a B input (operand, from TS multiplexer), and a C input (carry from previous
stage). Each stage of the adder also has three outputs. The sum(s) output is the sum of
the A and B inputs (S5=A+B). These outputs (BOO through B11) are placed on the sum bus for
distribution to the accumulators (J or K), OUT, PR, or AR, (or IR and MR through the bus
and memory buffer multiplexer). The S* output is the complement of the S output, and is
routed to comparison logic to detemmine if all stages of the adder are in the zero state.

The Cq output is the output from the carry structure, which becomes the C input to the
next higher order stage (except most significant bit). The C(output is approximately 8
nanoseconds delay from the sum outputs, and is the sum of the carry and/or the A and B
inputs (i.e. Co = AB+BC+AC). The carry output (COUT) from the last stage is routed to the
overflow register and logic.

4,3.4.11 UTILITY GATES. The utility gates are not actually registers, but 12 AND-OR
invert gates that permit data words from two external sources or literal functions to be
admitted into the MX multiplexer via input lines UOO through U11, External data word
sources include the 12 front panel switch register switches and any peripheral data (EXT's)
through which program-controlled word transfers are made. The literal functions permit
literal data words to be ANDed with data from the J and K register with the result gated

4-53

i‘hlfough the MX multiplexer, A literal is a direct representation of a symbolic data
reference, thus, any representation of data which defines itself (a pure number) is a

lit

.Larcl (refer to the ND812 Principles of Programming Text). Details of the utility gate

operation are described ini paragraph 4.4.9.

The u'nlu’ry gates consist of 12 Type 9008 Fairchild Semiconductor 4~input AND-

OR Inverter Gates (sheet 14, sheet 15, and sheet 16).

4.i

from various one-bit registers that are stored in the J register when the status word is

ca
an
re

Th
se
of
nu
mq
de
N
ta
of|
th
as
qu
ex

th

fo
an
in
Th
m¢
in
In
cg
OF
in

3.4.12 STATUS REGISTER., The status register is not a register, but a collection of bits

lled for by a programmed instruction. Table 4-18 describes the status register data format
d the output bit configuration as it is collected in the MX multiplexer. Details of status
gister data collection are described in paragraph 4.4.2.2.

.4 PROCESSING INSTRUCTIONS

There are 16 basic one-word instructions in the ND812 instruction repertoire.
ese 16 basic instructions are augmented through various bit permutations into more than
veral hundred one-word and two-word instructions, each obtaining a discrete operation
the processor. When the various possible input/output instructions are included in this
mber, the possibilities for discrete operations number in the thousands; these possibilities
ke the ND812 one of the most powerful mini-computers available today. This section
scribes how the various operate and memory reference instructions are processed by the
D812. These descriptions include a discussion at the block diagram level and at a de-
iled level. These diagrams provide the service engineer with a generalized understanding
how a given instruction is processed, the timing constraints, the registers affected, and
e result of the operation, The detailed description is an analytical one, and is intended
an aid in trouble analysis. The fundamental operation tables describe the signals re-
ired for assertion of the required operations with the aid of a list of simplified logic
pressions. These tables, together with the timing diagrams, offer detailed insight into
e anatomy of instruction processing.

Operate and memory reference instructions serve complementary functions. The
rmer are used as liaison between the central processor and arithmetic unit on the one hand
d the central processor and the memory unit on the other hand. Memory reference
structions fetch data to the arithmetic unit which carries out some operation on the data.
e resultant data is sent back to memory through the application of a separately programmed
2mory reference instruction. Operate instructions carry out all operations that require
teraction between the various accumulators and the adder with its multiplexed inputs.
view of the above, the memory reference and operate instructions should be viewed as
mplementary instructions. Memory reference instructions supply and store the data and
erate instructions manipulate the data according to the characteristics of the particular
struction,

The nearly one hundred instructions vary in their processing features considerably

4-54

with respect to format, addressing, and execution time. Throughout this discussion,
uniformity is sought; descriptions of common features between instructions have preference
over repetitiously describing the same operation as it occurs for several instructions., This
method of presentation gives a better insight info the underlying processing philosophy of

the ND812, Some repetition, either serving to enhance familiarity with difficult operations,
or for the sake of clarity, is retained, however,

Formats are illustrated for groups, or subgroups, of instructions along with their
detailed descriptions. The various addressing schemes are discussed in detail in conjunction
with memory reference instructions only, because operate instructions do not reference
memory, and hence, addressing modes are not applicable.

In seeking uniformities, the basic phase is described first. The basic phase
accounts for execution of the complete instruction for operate instructions, with the excep-
tion of shift/rotate operations, which require a phase extension in real time, but still are
processed in one basic phase in terms of machine time. The memory reference instructions,
in addition to one or more basic phases, also require an execute phase for completion.
Because the basic phase is indispensible for all processing instructions, and because the
operate instructions, which constitute the majority of instructions, require only one basic
phase, the operate instructions are discussed, first. The following discussion treats only
that part of the basic phase which is common to all processing instructions. The distin-
guishing features are given later as the detailed description for the instruction is provided.

The instruction descriptions generally include a block diagram which illustrates
the data transfer paths invoked by the called instruction and a timing diagram which shows
various time related functions of the hardware control logic together with two important
tabulations called Event Summary and Fundamental Operations.

The Event Summary tabulation shows the relationship between the mnemonic
symbol registered in the permanent symbol table of the ND812 assembler, the octal code
which calls the various hardware routines (a condensed version of data listed in format
tables), the hardware routines themselves, and a shorthand notation of the process which
takes place during the operation.

The Fundamental Operation tabulation shows the relationship between the octal
code, the hardware routine called by the code, and a simplified logic description of the
operation in terms of the period in which it occurs.

These tables should be used in trouble analysis. The Event Summary identifies
the data transfer paths, their time relationship in the machine cycle, and the individual
hardware operations. These tables are useful in identifying the various multiplexer,
registers, and accumulators used in the operation. On the other hand, the Fundamental
Operations tabulations are useful in identifying the control logic which is used to obtain
the hardware process.

4-55 . e

4.4,1 COMMON BASIC PHASE

For the basic phase, eight discrete time periods occur. Each period has a
duration of 0,25 microseconds so that each phase requires 2 microseconds. Not all periods
are required for each instruction, and more than one event can occur during the same
period. In some cases two or more adjacent time periods are ORed to form extended time
periods.

4,4,1,1 BLOCK DIAGRAM DESCRIPTION. During the basic phase various latches are
cleared (refer to Table 4-8), the content of the program counter is transferred to the address
register to obtain the location of the instruction to be processed, and the instruction is
loaded from memory into the instruction register. In Figure 4-15, the timing diagram, when
pulse PUO occurs, the various cleared latches provide inputs to the processor control logic
that determine the event that will take place during each period of the basic phase.

During the first period (PUO), the content of the program counter (2, Figure 4-16) is trans-
ferred over MX multiplexer data lines (MS00 through MS11) to the adder (10). Because at
this time, TS multiplexer outputs have not been called for, signals TSO0 through TS11
provide all zeros; thus the result of the adder summing operation is the program counter data
which is transferred over bus BOO through B11 to the address register (11)., Address register data
is.always available to memory control over data lines AOO through A11, The address data
determines the location of the memory register, from which the operand must be fetched.

When pulse PUIB occurs, the memory buffer register (1) is cleared of the last
word so that when the memory register is strobed for a read operation, meaningful data is

available. [f the memory: buffer register (1) is not cleared, the current word would be
ORed with the last fetched word.

During PU2, the data contained in the memory register, specified by the content
of the address register, is read into the memory buffer register (1) over data lines MSOO
through MS11, Data is permitted to enter the memory buffer register at any time. Pulse
PU2 is used to read the addressed memory register into the memory buffer. Thus, this

event occurs during every phase. Memory buffer data output is transferred over buses
MBOO through MB11 to the bus and memory buffer multiplexer (3) which also receives
inputs from the adder (10) over buses BOO through B11.

i On the trailing edge of pulse PU3, memory buffer data (as opposed to adder
dqxtc:) is switched through the bus and memory buffer multiplexer (3) to the memory data
register (6), and the instruction register (7). Pulse PU3 is used to read memory buffer
register data into the memory data register (6), so that when the memory register is strobed
far a write operation, the same data read from memory, will be written into memory at the
|QCahon specified by the content of the address register. When the instruction is read
into the instruction reguster (7) during period BP3, its data becomes immediately available
ta the data control logic and to the instruction decoders 9.

434.].2 FUNDAMENTAL OPERATIONS. Most of the events pertaining to the individual
operations of the instructions are carried out during PU4, PUS, and PU6. During period

4-56

MSOO-MSH
FROM MR

A TWFFRFLLOC* XCT™IND
(384) (384) '(781) 6AD
Talalgtag! 71
5. PUSBPS O'igi3a4,5,6,47,
» *
c. %‘-Bpnggig‘ I qu MULTIPLEXER ENABLE
0. ?;Z’;‘,- I SELECTS PC—=MX
E. (PQEB‘:;' ENABLE AR
»*
F o2 I_“X"“R
*
e | lMBR——-CLR
*
H. (“;‘gé’}) I lREAD MR— MBR
1. MPASS*
(1384)
J. PEI® ENABLE IR
(6A4) I I
*
K (%'7\14) UMBR——m
*
L gggs) ! IENABLE MDR
*
M ”MBR—-MDR
]
N. :g%{“'{ | Iwmn-: MDR—eMR
Figure 415, Common Basic Phase, Timing Diagram
BO@-BU
MOR | MO@-M11 . TO
(6) *» MEMORY
8US &
MBR |PMROQ-
MBR |MBQQ-MBI P(vgg PMRI11 n
) 100-103 INSTRUCTION
IR CECSPE ™70 LoGic
(n
- INSTRUCTION
~ 0D 104-I11 T
MX sSUB |TS@D-TSH TO LOGIC
@ 7* LOGIC
8)
ADDERS
10 |soe-sit
AR | AQ@-Alt SDAATO
(pac’ POO-PI1 m MXO@-MX11) MEMORY

(5)

Figure 4-16. Common Basic Phase, Simplified Block Diagram

4-57 .

PU7 the major state control logic determines whether the next phase should be another
basic phase or an execute phase.

These events conclude the operations that occur during the common basic phase.
The above outlined operations are summarized in Table 4-19 and further detailed in terms
of fundamental operations in Table 4-20.

Fundamental operation B is not carried out if there is an indication that this is
not a common basic phase. To understand the significance of this provision, it must be
remembered that the present instruction is decoded only during period PU3., Therefore,
during period BPO, the presence of an execute instruction (XCT*), a two-word memory
reference instruction (TWFF*), auto index instruction (FLLOC*), or an indirect fetch (IND*), -
tells the processing logic that the present phase is not a common basic phase, but a
secondary basic phase. The result is that the content of the program counter is not selected
as input to the MX multiplexer if any of the above signals are low level.

Fundamental operation D is also a conditional operation; it is not carried out if
signal DONE is low level, meaning that processing is past the initial basic phase, and in
ciecondcry basic phase. The secondary basic phase and execute phase are discussed in
conhjunction with memory reference instructions.

_ Fundamental operation E clears the done latch early in the basic phase. Later,
at/PU6, all instructions that require only one basic phase for processing (for example, all
operate instructions) set the done latch, resulting in the next machine cycle being set
as|a basic phase when this condition is detected during fundamental operation K.

! Fundamental operation | occurs if a two-word or indirect memory reference
instruction is not in effect.

. Fundamental operation K is concerned with setting the next phase. Another
basic phase follows if the done latch is set, or the instruction decoder indicates the presence
of a two-word, an execute, or an instruction using indirect addressing. An execute phase
follows only if all above conditions are absent; this is the case, for example, when a
memory reference instruction using direct addressing is being processed.

4.4.1,3 TIMING DIAGRAM DESCRIPTION. Figure 4-15 is the timing diagram for the
signals generated during the basic phase when the memory reference instruction specifies
direct addressing. At the outset, when pulse PU7 occurs during the execution of the pre-
vibus instruction, the two=word first-last and indirect latches are cleared. Hence, signals
TWFF*, FLLOC*, XCT*, and IND* are high-level. When pulse BPO occurs, high-level
odtput BPO is ANDed with the above high level signals to develop the low-level SLPMX*
signal which enables the MX multiplexer (9A2), and selects the program counter input
(signals POO through P11) for output from the MX multiplexer by producing high-level MXS1
signal (waveform D). This provides an MX selection code of 010 (Table 4-18). Pulse

PUOB occurs simultaneously with pulse BPO, so that outputs from the MX multiplexer (signals
MX00 through MX11) are applied through the adders (as signals BOO through B11) for entry
into the address register. The address register, enabled by low latches, develops a low-level

4-58

Ref.
A.
B.
C.
D.
E.
F.
G.
H.
l.
J.
K.
L.
Ref.
A.
B.
C.
D.
E.
F.

Table 4~19, Common Basic Phase, Event Summary

Period

BP6 or EP6
BPO
PUOB
PUOB
BP1
PU1
PU2
PU3
BP3
PUS
BP6
PU7

Event

CLR—LATCHES
PC—~MX—ADDER
ADDER—AR
CLEAR-IR
CLR-DONE
CLR->MBR
MR—MBR
MBR—MDR
MBR—IR
MDR-MR
SET—DONE (conditional)
SET—PHASE

Table 4-20. Common Basic Phase, Fundamental Operations

Period

PU7

BPO

puOB

PUOB

BP1

PU1

Simplified Logic

CLR—LATCHES

1. \EP6*/5A4 = SET>DONE (1DONE/
784, IDONE™)

2. (TDONE/7B4) (1PU7B/5B2)~
ISTDN7%/3B3 ’

PC-MX—->ADDER

1. (TXCT*) (HIND*)=I X *1/8B2

2. (IX 1) (1BPO) (T TWFF™) (tFLLOC™)~
JPRAR*—1SELP—{SLPMX*/8B4

3. ISLPMX*—>tMXEN/9A2—IMXEN*/9B2 =
ENABLE->MX

4. |SLPMX*—>tMXS1 = PC>MX

ADDER—AR

1. 1PUOB—{PEA*~1PEA/QB1 =
ENABLE—AR

2. (1PEA) (1REGCLK)~{CPA*/982 =
ADDERS—AR

CLR-IR

1. (tPUOB) (tDONE})~IMRI"/6B4 = CLR~
IR

CLR-DONE

1. ({BP1/5A3) = CLR—~DONE
{IDONE/7B4, tDONE™)

CLR—MRB
1. TPUIB~IRMB*/1881 = CLR—~MBR

. 4-59 .

Event

The two-word, in-
direct and first-last
latches are cleared
to initialize basic
cycle (Table 4-6).

The content of the
program counter is in-
put to the MX
multiplexer.

The content of the
adder replaces the con-
tent of the address
register.

The instruction re-
gister is cleared.

Done flipfiop 1s
cleared.

Memory butter re
gister is cleared. -

Ref.

Table 4-20. Common Basic Phase, Fundamantal Operations (Cont'd.)

Period

PU2

PU3

BP3

PUS

BP6

PU7

Simplified Logic

MR—-MBR

1. (tADDFOQ") (tPU2)>IMCIR*/8B4 =
MR->MBR

PU3, MBR->MDR

1. JPU3*>1PEM/12B2
2. (tPEM) (tREGCLK)—=>{CPM*/12A3 =
'MBR-MDR

MBR-IR

1. (tTWFF*) (1INDFF *}»{MPASS*/13B4

2. IMPASS*~tMPASS/13B4

3. IMPASS*~>1SPE|*/6A4

4. (1SPEI™) (1BP3)—~>IPEI"/6A4 =
ENABLE-IR

5. {PEI*~1PEI/6A4

6.: (1PEI) (1 CCLK)—~>ICPI*/6A4/17B1 =
MBR—IR

MDR-MR

1. (tWTR L") (tPUSB)—PUSW*—>1PUSW/8B3
2. (tPUSW) (tADDFO*)~>{MCIW*/8B4 =
MDR-MR

SET—-DONE (B)

1. JTWHLT™ + }1/O* + |ADL* + {SBL™ +
JANL™ + JOP1* + {OP2*~
tSDONE/7B3

2. (TSDONE) (1BP6)~>{SDONE*/7B3 =
SET—-DONE (tDONE/7B4, {DONE™)

SET-PHASE

1. (1DONE™) (tTW™) (tIND™} (tXCT ™)~
{RBPH->TRBPH*/5B1

2. (tRBPH™) (JCPPU") (tPU7) = 1EPH/5B2

3. IDONE™ +JTW* + JIND™ + {XCT"~>
tRBPH—>{RBPH*/5B1
4. ({RBPH") (JCPPU™) (1PU7) = 1BPH/5B2

4-60

Event

Content of core memory

register replaces con-
tent of memory
buffer register.

Content of memory
buffer register re-
places content of in-
struction register.

Content of memory
clata register replaces
content of memory
register.

Done flipflop is set.

Next phase is set to
either a basic or an
execute phase.

MPASS* signal (waveform 1) which permits pulsevs PEI* (waveform J) and CPI* (waveform K)
to be generated. Pulse PEI* enables the instruction register, and pulse CPI* loads it with
data on lines PMROO through PMR11, :

When pulse PU5 occurs, the word previously read into the memory buffer register
during period PU2 is written back into the same memory location when low-level pulse
MCIW* is produced. No related events are produced when pulse PU6 occurs. However
when pulse PU7 occurs, the execute phase is set, if the done latch is not set, and a two-
word, indirect, or execute instruction is not being processed. The major state control goes
from its basic phase output to its execute phase output when levels DONE*, TW*, IND*,
and XCT* are high and ANDed to produce the high-level RBPH* pulse, which primes the
major-state control register. Hence, when pulse PU7 occurs, the major-state control
register is toggled to its execute state. Thus, during the common basic phase, the events
can be summarized as follows.

a. The content of the program counter is loaded into the address register.

b, The content of the memory register, located at the address specified by the
content of the address register, is read into the memory buffer register.
(This is the current instruction.) ’

c. The content of the memory buffer register is loaded into both the memory
location specified by the content of the address register, and into the
instruction register,

d. During the last period, the next phase is set.
4,4,2 OPERATE INSTRUCTIONS

Operate instructions do, in general, manipulate data which is availabie either in
one of the accumulators or in the status register; they have a single-word format and require
only one basic phase. Operate instructions can be further classified into group 1 and group
2 instructions. Group 1 instructions include multiply and divide, various combining
operations such as ANDing, arithmetic processes such as addition and subtraction, and
shigt and rotate processes which shift data to the left one or more bits in the main accumu~-
lators. Generally, group 2 instructions manipulate data without employing an arithmetic
process. These operations include skips, negations, complements and register clear and
set operations,

The common basic phase, which is employed for all instructions, has been
described. It has been pointed out that differences are noted as various types of processing
for each instruction is discussed. Table 4-21 is a summary of fundamental events required
to process the operate instructions. By comparing references for the operate instructions
with those given for the common basic phase, it can be seen that up to and including
fundamental event |, all operations are identical.,

4-61 ...

Table 4-21, Operate Instructions, Basic Phase, Event Summary

Ref. Period Event Common Basic Phase

A, BP6 or EP6 CLR—LATCHES A,
B. BPO PC>MX B.
C. PUOB ADDER—AR C.
D. PUOB CLR-IR D.
E. BP1 CLR-DONE E.
F. PU1 CLR—MBR F.
G. PU2 MR-MBR G.
H. PU3 , MBR-MDR H.
1. BP3 MBR-IR 1.
J. BP3 PC-MX -
K. BP4 ADDER-+1

L. BP4 ADDER-PC -
M. PUS MDR-MR J.
N. PU7 SET->PHASE K.

| Fundamental events K and L are not to be found during the common basic phase.
THey provide for incrementing the program counter in order to ready it for the next instruction
(refer to Table 4-22). As mentioned earlier, for all other types of processing instructions,
more than one basic phase is required during a machine cycle. For those instructions
program counter incrementation is deferred to the next, or even later subperiods of the
machine cycle.

4,4,2,1 GROUP 1 OPERATE INSTRUCTIONS. Group 1 operate instructions are charac-
terized by bit pattern 0010 in the operate code field of the instruction, bit positions 0
through 3. These instructions operate on data contained in the upper and lower accumu-
lators. The following descriptions illustrate the manner in which instructions in this group
of| operates are processed using block diagrams, timing diagrams, and various tabulations,
micludmg fundamental operations describing the events. For general orientation, paragraph
4,3.4,1 should be reviewed. This paragraph describes functions and operations of the
prumory instruction decoder and operate instruction decoder.

The operate instruction descriptions generally include a block diagram which
illustrates the data transfer paths invoked by the called instruction and a timing diagram
which shows various time=related functions of the hardware control logic together with two
important tabulations called event summary and fundamental operation.

The event summary tabulation shows the relationship between the mnemonic
symbol registered in the pemanent symbol table of the ND812 assembler, the octal code
which calls the various hardware routines (a condensed version of data listed in Table 4-25),
thp hardware routines, themselves, and a shorthand notation of the process which takes
plpce during the operation.

The fundamental operation tabulation shows the relationship between the octal
colde, the hardware routine called by the code, and a simplified logic description of the

4-62

Table 4-22,

Operate Instructions, Basic Phase,

Fundamental Operations

Ref. Period Simplified vLogic Event
Bl BPO-BP3
Identical with common
basic phase (Table 4-20)
adder incremented by
one.
J. BP4 PC-»MX—~ADDER
1. (1TWIO*) (+BP4) (tWTRL*) (tINCPR*)~> The content of the
ISLPMX */8B4 program counter is
2. ISLPMX*={MXEN"/9A1 = ENABLE-MX switched through the
3. ISLPMX™*>tMSX1/9B2 = PC~MX MX multiplexer to the
adder.
K. BP4 +1-ADDER
1. (t*MREF1¥) (tA127)>!INCPR~ The adder is
HINCPR™/9B3 incremented.
2. (tBP4) (}INCPR™) (#WTFL™) (}HLTTW™)~>
{CCIN2/12A2
3. {CCIN2-1CIN/12A2/16A3 = +1-ADDER
L. BP4 ADDER-PC
’ 1. {TWFF>1TWIO*/9B3 Content of the adder
2. (ATWIO™) (1BP4) (tWTRL™) (tINCPR™)~ is admitted to the
{PEP*/9B3 program counter.
3. {PEP*->1PEP/9B1
4. (1PEP) (tREGCLK)—->{CPP*/9B2
M. BP5-BP7

Identical with common
basic phase (Table 4-20).

operation in terms of the period in which it occurs.

These tables should be used in trouble analysis. The event summary identifies
the data transfer paths, their time relationship in the machine cycle, and the individual
hardware subroutines. These tables are useful in identifying the various multiplexers,
registers, and accumulators used in the subroutine. On the other hand, the fundamental
operation tabulations are useful in identifying the control logic which is used to obtain
the hardware subroutine,

There are 53 Group 1 operate instructions in the repertoire of the ND812 computer.
The instructions are divided into five subgroups (see Table 4-23) and are listed with their
mnemonic and octal codes and with a shorthand description of their operation. Subgroups
are formed by taking the common processing characteristics of instruction bit patterns into
consideration. This approach follows the same organization that the operate instruction

4-63

Table 4-23. Group 1 Operate Instructions Ly Subaroup

Octal

Subgroup Mnemonic Codse Operation

MPY-DIV MPY - 1000 JxK to R,S

DIV 1001 J, K/R to J, REMAINDER IN K
LOGICAL AND AND J 1100 LOGICAL AND J, K INTO J

AND K 1200 LOGICAL AND J, K INTO K

AND JK 1300 LOGICAL AND J, K INTO J, K
LOAD/EXCHANGE LRFJ 1101 LOAD R FROM J

LSFK 1201 LOAD S FROM K

LFJR 1102 LOAD J FROM R

LKFS 1202 LOAD K FROM S

LRSFJK 1301 LOAD R, S FROM J,K

LJKFRS 1302 LOAD J, K, FROMR, S

LKFJ 1204 LOAD K FROM J

EXJR 1103 EXCHANGE J AND R

EXKS 1203 EXCHANGE K AND S

EXJK 1374 EXCHANGE J, K

EXJRKS 1303 EXCHANGE J, K ANDR, S
ADD-SUBTRACT AJK J 1120 J+Ktod

SIK J 1121 JKtoJ

ADR J 1122 R+Jto J

SBR J 1123 R-Jtod

ADS J 1124 S+Jto J

SBSJ 1125 S-JtoJd

NAJK J 1130 -(J+K) to J

NSJK J 1131 K-JtoJ

NADR J 1132 -(R+J) to J

NSBR J 1133 J-RtoJ

NADS J 1134 -(S+J) to J

NSBS J 1135 J-S tod

AJK K 1220 J+K to K

SJK K 1221 J-K to K

ADR K 1222 R+K to K

SBR K 1223 R-K to K

ADS K 1224 S+K to K

SBS K 1225 S-Kto K

NAJK K 1230 -(J+K) to K

NSJ K 1231 K-J to K

NADR K 1232 -(R+K) to K

NSBR K 1233 K-R to K

NADS K 1234 -(S+K) to K

NSBS K 1235 K-S to K

AJK JK 1320 J+K to J,K

SJK JK 1321 J-K to J,K

NAJK JK 1330 -(J+K) to J,K

NSJK JK 1331 K-J to J,K

4-64

Table 4-23. Group 1 Operate Instructions by Subgroup (Cont'd.)

Octal
Subgroup Mnemonic Code Operation

SHIFT/ROTATE SFTZJ 1140 SHIFT J LEFT N

SFTZ K 1240 SHIFTK LEFTN

SFTZ JK 1340 SHIFTJTO K LEFT N

ROTD J 1160 ROTATE J LEFT N

ROTD K 1260 ROTATE K LEFTN

ROTD JK 1360 ROTATE J, K LEFT N
LOAD/READ LJSW 1010 LOAD J FROM SWITCH REGISTER

LJST 1011 LOAD J FROM STATUS REGISTER

RFOV 1002 READ FLAG, OV FROM J

decode logic follows; it has the advantage of offering an easy survey of the simpiified logic
tables when direct reference to them is helpful in following the instruction execution flow.
The subgroups are discussed one by one, with the exception of the multiply and divide
instructions, The theory and details of operation for each of these is described separately.
Multiply and divide instructions are each autonomous and belong to no group or subgroup
of operation; hence, they are discussed as separate processes.

The format for the divide and multiply instructions, for the logical AND subgroup,
and the add=-subtract subgroup, is shown in Table 4-24, In addition to the format, Table
4-24 shows significant bits of the instructions in each subgroup aligned with the bit pattem
for any of the instructions in the subgroup. Note that the various bit positions have different
functional assignments; some specify accumulators, others detect the arithmetic operations,
and others determine shift patterns, The operation code, however, invarient for all these
operations, is 0010,. Bits 4 and 5 of the instruction are used to call one or both of the main
accumulators for the operation being processed, Bits 9 and 10 call one or two of the subac-
cumulators, Bits 6 and 7 control the arithmetic operation subgroup. Bit 8 controls negation,
but is in reality, a subtract operation which either follows a previous addition or a previous
subtraction, The previous subtraction, is controlled by bit 11, This operation is required
because not all pairs of operands (contents of accumulators) can be ordered in the required
sense for a subtraction because of transfer route limitations in the hardware,

4.4.2,1,1 Hardware Multiply (1000). Hardware multiply is carried out by the process of
accumulation of a number of partial products accordingly as digits of the multiplier appear
as a binary 1. The process is not unlike that carried out when multiplication is done with
pencil and paper; for example, arbitrarily taking the decimal numbers 105 and 115 to be
multiplied, there are several facts immediately apparent.

Example A 115 Multiplicand
105 Multiplier
575 1st partial product
1150 2nd partial product
12075 Resultant product

4-65

Table 4-24, Group 1 Operate Instruction, Bit Pattern Formats by Subgroup

000=Load
1=Negate
1=S

1=R
0=Add

1=Subtract

Octal
- Code

-
N
N
-

Mnemonic

MPY

DIV

AND J
AND K
AND JK

AJK J
SJK J
ADRJ
SBR J
ADS J
SBSJ
NAJK J
NSJK J

NADR J
NSBR J
NADS J
NSBS J
AJK K
SIK K
ADR K
SBR K
ADS K
SBS K
NAJK K
NSJK K
NADR K
NSBR K
NADS K

Operation Code
10xx, - 13xx,

This is the group 1 operate instruction format. Bits 4 and 5 select
the K and J registers, respectively. Bits 6 and 7 determine the
operation except for load. Bit 8 establishes either a load or
arithmetic operation. In a logical AND, bits 8,9, 10, and 11 have
no significance; in an arithmetic operation bit 8 selects negate,
bits 9and 10; the S and R register, respectively, and bit 11’

00=AND establishes an add or subtract. In a shift or rotate operation bits
?(‘)z;":;:"%“e“c 8,9, 10, and 11 establish the number of shifts or rotates.
11=Rotate
Bit Pattern
Subgroup 0 1 2 3 4 5 6 7 8 9 10 1
MULTIPLY 1
DIVIDE 1 1
LOGICAL 1 1
AND 1 1
1 11
ADD 1 1 1
SUBTRACT 1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 11
1 1 11 1
ADD-SUBTRACT 1 1 1 1 1
(cant) 1 1 11 1 1
1 1 Tt 1 1
1 1 111 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 11 1 1
1 1 1 1 1

4-66

Table 4-24, Group 1 Operate Instructions, Bit Pattern Format by Subgroup (Cont'd.)

Octal Bit Pattern

Code Mnemonic Subgroup o 1 2 3 4 58 6 7 8 9 10 11

1235 NSBS K 1 1 1 1 1 1

1320 AJK JK 1 1 1 1

1321 SJK JK 1 11 1 1

1330 NAJK JK 1 1 1 11

1331 NSJK JK 1 1 1 1 1 1

1101 LRFJ LOAD- 1 1 1

1102 LJFR EXCHANGE 1 1 1
1103 EXJR - 1 1 1 1

1201 LSFK 1 1 1

1202 LKFS 1 1

1203 EXKS 1 1 1 1

1204 LKFJ 1 1 1

1301 LRSFJK 1 11 1

1302 LJKFRS 1 1 1 1

1303 EXJRKS 1 1 1 1

1140 SFTZ J SHIFT-ROTATE 1 1 1

1160 ROTD J 1 1 1 1

1240 SFTZ K 1 1 1

1260 ROTD K 1 1 1 1

1340 'SFTZ JK 1 111

1360 ROTD JK 1 11 1 1

1374 EXJK 1 11 1 1 1 1

1002 RFOV LOAD-READ 1 1

1010 LJSW 1 1

1011 LJST 1 1 1

a. Partial products are shifted toward the most significant digit accordingly as
a digit occurs in the multiplier.

b. It is the product successive summation of the multiplicand that produces the
partial product; i.e., 115 x 5 isequal to 115+ 115+ 115+ 115+ 115 =
575.
c. A partial product exists for every digit of the multiplier.
While it is simple enough to implement this process, inputing of multiplier and
multiplicand requires special manipulation of input data by the programmer or unnecessary

logic would have to be added making the ND812 more costly.

Converting the decimal numbers 105 and 115 to their binary equivalents and
carrying out the same multiplication process, we have; ’

4-67 .. e

Exumple B 1150 = 11100112 and 105]0 = 110100]2

11519 = 1110011, Multiplicand
10510 = 11010012 Multiplier

1110011 1st partial product
: 111001100 1st, 2nd and 3rd shift
! 10000001011 2nd partial product

g 11100110 4th and 5th shift
i 1001001101011 3rd partial product
1110011 6th shift
12075,,= 10111100101011, 4th partial product

What is ocfually done through this process is that the order of significance of
each multiplier digit is determined and the multiplicand is shifted to that order of signifi-
cance before summing. This is the process used in the ND812 hardware multiply logic.
Thus the multiplier is loaded into the K accumulator and the multiplicand is added to
successively shifted partial products, accordingly, as the most significant digit of the
mqlhpller is a binary 1,

i In the foregoing example, the multiplier is loaded into the K accumulator and
'rhé multiplicand is loaded into the R accumulator (through the J accumulator). The multi-
pl]er is then successively shifted left and the most significant bit (KOO) continually tested,
Ad the leftward shift of the multiplier bits occur they are truncated (lopped off) because
after testing they are no Ionger needed.

The hardware multiply flow diagram is shown in Figure 4-17, At the outset of a
multiply operation the multiplier is loaded into the K accumulator and the multiplicand is

lotded into the J accumulator through programmed load K and load J instructions. Next,

the multiply instruction is ordered by the program.

The first event that occurs is that the content of the J accumulator (multiplicand)
is|transferred to the R register (A Figure 4-17) where it is retained throughout the multiply
operation,
| Next, the most significant bit of the K register is tested (C). If thisbitisa 1,
thé KOM register is set. This memory element is required because when the first multiplier
sh ft occurs, this information will be lost, but the data must be retained because it has

mportant significance in detemining the product. The KOM register holds this data until
needed

Because parhal products are accumulated in the J accumulator, the J accumulator

mwst first be cleared (B). However, the content of the J accumulator, the multiplicand,
hals been saved in the R accumulator,

4-68

4

——

‘ HWM
< A
J—=R

{8)
CLRJ

(C)
YES SET KOM
K&=1? MEMORY
ELEMENT

NO

(D)
SET R LOOP

(E)
CLR OV
CLK CNTR
SHIFT JK 1 LEFT

(F)

12 SHIFTS YES

@)
< ke=1? SE

W) —eJ

J—eR
=4

Figure 4-17, Multiply Instruction, Flow Diagram

T

4-69 . -

NOTE

Because they are able to store data, the J and K
and R ahd S storage elements are certainly registers.
However, because they acquire arithmetic results,
they are more importantly accumulators.

Next the relferuhon loop register (RLOOP) is set (D). The data stored in this
regusfer is used by the logmc to obtain the required 12 shifts and other loop operations. The
12 shifts are obtained by recychng the pulser through periods BP4, BP5 and BPé 12 times.
After RLOOP register is set, the pulser reenters period BP5 when period BPé occurs, per-
mitting the first reiteration cycle to occur.

At the begmmng of each reiteration cycle the overflow register is cleared, the
up| counter is pulsed to reqord the number of cycles, and the content of both the J and K
accumulators is shifted toward the most significant bits (JOO and K00), or leftward (E).
shffhng progresses, the KQO bit is continually tested. In Figure 4-18 no data appears in
thg cleared J accumulator until the first 1 bit is detected (multiplier bit 5 appears in KOO
of the K accumulator when shift 5 occurs).

At this time fhé content of the R accumulator (the saved multiplicand) is summed
with the content of the J @:ccumuloror (Figure 4-17, F), which is still empty. Thus, at the
conhclusion of the 5th sh|f1'w the J accumulator contains the first partial product (PP1) as the
result of the first summahqn. In Figure 4-18, when the 6th shift occurs the 1st partial
prpducf is raised to the next order of significance and the multiplicand is again summed
wilth this new partial produc’r to produce the new second partial product (PP2). Subsequently,
when the seventh shift occurs, a summation does not take place because a 1 bit has not
been detected in the KOOth position, Thus, a partial product shift occurs, but a summation
doies not. This process continues until 12 shifts (Figure 4-17,1) occur.

Because a 12-bit binary multiplier and multiplicand will result in a 24-bit
prpduct the hardware multiply logic must provide for overflow of the J accumulator,
which holds only 12 bits, Overflow can occur in two ways: (1) when the content of both
ch;a R and J accumulators are summed and a carry is produced, the overflow is entered into
the K11th bit. (2) When the JOOth bit becomes a 1, the K11th bit must receive a 1 (set)
wHen the next shift occurs. The occurance of these conditions are continuously tested
(Figure 4-17, G and H) by the multiply logic. If either event occurs, the K11th bit
receives a 1. As can be seen in Figure 4-18, the K11th bit receives a 1 after the 10th and
12th shifts occur, resulting in an accumulated partial product in the J and K registers:
K=101, J=111001010110. Comparing this result with example B indicates that the
cantent of the J register is too high by one order of binary significance and the content of
the K accumulator is too high by one order of binary significance +1 in the K11th bit.

At the conclusion of the 12th reiteration (I) the content of the KOM memory and
overflow registers are tested (Figure 4-17, J and K) and the content of the J and K accumu-
lators modified accordingly. After testing the KOM and overflow registers, the content of

4-70

KR ol11213lals|el7]s8]|o]|10fmn
sHE1 |ololojlol 1] 1lofl1]oflo|l1]o
SHF20001101o}0100
SHF3 oi0»11 1[01110]0[1]0]0]0]
SHF 4 011 10100[1[0Jo|olo
ISHF5]1]1lo|1|o[o|1lo|oJo|o[o]
» + 111001 1= JR
sHFs |1]o|l1]olol 1] ojlo|lo|lolo]o
Lt 111001148
FEnnonnonanonn
[SHFB I1|o|o|1|0]olo|o‘o|o|olﬂ
L+ 1110011—JR
rsqu lolol1[olo|o]olololololoJ
siFto lofl1]lolololololo]olololf:n
sHF11 |1]olololololololo]lol1]o
L+ 1110011—JR
KR = 1|lololo]lo|lolojo]o
siF12 lojolololojololofo|1]|o]n

Figure 4-18.

Typical Hardware Multiply Configuration

4-71

S
JR 516 8;9T;10111
- 0o 0olo oo
i - 1 .
1]
o
-— olo 0 o;o 0
b
A -
- 00 oloio|o
i
|
- oo ojlololo
-— olo olojolo
RR 1] 1 0 0]1 1
PP1 —] 111 olol 1]
- 11 ol 1:i1]o0
_ ‘ -
RR 11 010 111
pP2 — 1ol 1 0]0] 1
T
-— 0l1 otol1]o
|
|
N
i
-— 11 o 1]0] o0
RR 1] 1 oj o0 1] 1
PP3 = 1] o0 ol 1) 1]
-— o1 111 1] o0
-— 110 111700
011 1jololo
AR 1] ool 1]
PP4 — 0|1 riofl 1!
1]0] op1|rlo

the J accumulator is transferred to the R accumulator and the content of the K accumulator
is transferred to the S accumulator.

To understand how the final product is obtained, the configuration of the accu-
mulator interconnections must be understood. Figure 4-19 is the J to R accumulator inter-
connection. Data contained in the adders is admitted whenever the J accumulator PE
(parallel enable) input becomes low-level and a clock pulse (CP) occurs. Thus any adder

" data is admitted to the J accumulator when a low~level PEJ* signal and a low level CPJ*
signal occur. In the same manner, J accumulator data is admitted to the R accumulator
when low=level signals PER* and CPR* occur. However, the relative significance of the
internal R accumulator bits Qg through Qg is opposite that of the corresponding J accumu-
lator bits. Both accumulators are configured so that when a data shift occurs the direction
of the shift is toward the high order of significance; i.e., QO i5 <hifted to O'l which is
shifted to Qo which, in turn, is shifted to Q3.

4 { 4
I T
ROO IR |RO2 [RO3 RO4 |ROS |RO6 [ROT RE8 [RP9 [R10 [R11
Qo] aQt [Q2 a3 Q| Q1 [Q2]aQ3 Q2| at [Q2 | Q3
St ————o{uK -—ebK UK
cp M5 N5 cp P15 R REG
—e{PE PE PE
ol 1l2]3 ol 1l2]3 ol 1| 2]3
cPR™(982)
PER™9A4)
Joo |Jot sz [se3 Jo4 |ues |06 [Jo7 908 029 [J10 fun
3oz [0 Q3 Q2 |a1 [Qo Q3[Q2 qt | o
JK fo— JK po— JK
J REG miie P N|16 cp Phe cP
! M MR fo— MR
o1 |2 |3rg ol 1|2 |3 pg ol 1|2 |[3e
 PEJ*(9A3)
MRJ™(982)
- cpy™(9a4)
JKJ*(984)
800 BO! BO2 B3 BG4 B05 BO6 BOT BO8 B@S B0 B1}
ADDERS

Figure 4-19. J to R Register Configuration, Block Diagram

Each element of each accumti:lator comprises three Fairchild Semiconductor Type
9300 4-bit shift registers. Integrated circuit modules M16 (14A3), N16 (14A3) and P16
(16A3) are connected as shown in Figure 4-19 to form the J accumulator and modules M 15
(14A4), N15 (15A4), and P15 (16A4) are connected as shown to form the R accumulator.
A similar arrangement is shown in Figure 4-20 for the K and S accumulators; modules M14
(14A3), N14 (15A3), and P14 (16A3) form the K accumulator and modules M13 (14A4),
N13 (15A4) and P13 (16A4) form the S accumulator. Thus, data transferred from either the

4-72

J accumulator to the R accumulator or from the K accumulator to the S accumulator is
parallel transferred bit-for-bit. However, when data in the J and K accumulators is shifted,
shifting is leftward while for the R and S accumulators shifting is rightward.

To understand how this is done, it should be recalled from paragraph 4,3.4 that
for the Type 9300 4-state shift register, when the J and K inputs are tied together D type
data entry is obtained, and that further, shifting is toward the high-order bits. Because
the JKJ and JKK signals are low level, successive clock pulses, CPJ* and CPK* produce
zeros in bits 11 through 0 of both accumulators as each subsequent shift is produced by each
clock pulse. Comparing the J to R accumulator configuration of Figure 4-19 with the K to
S accumulator configuration of Figure 4-20, the JKK input signal applied to module P14 is
either low or high as the JOOth bit is high or low when either a hardware multiply or divide
instruction (signal HWMD) is being processed. Thus, the requirement of event H of the
multiply flow diagram (Figure 4=17) is satisfied.

) 4
TOR
I]] ! ; " REG
500 |50t |soz [se3 so4 [ses |ses [se7 S8 |509 {s10 [s11
Q0| Qt [e2] Q3 a0 ar [e2 a3 Qo Q1 [z a3
R UK —elUK JK
cp M3 cP N3 cP P13 S REG
—e{PE PE PE
ol1 1213 ol 1213 0 > | 3
cps™oB2)
PES*(9A4)
Koo ko1 |Ke2 |xo3 KB4 |KOS K6 [KO7 K08 (k09 [k10 [K11
Q3Jo2 a1 | oo e3[e2]aqt [Qo Q3| a2 | a1 | o
K JKfe— JK
14 p Pli4 CP
K REG Mii4 CcP N Cl P
MR MR MR
o1 |2 |3pE 0123PEP_ ol 1|2 |3ape
PEK™(943)
MRK*(9B2)
cPk*(9449)
B00 BO! 502 BO3 B804 BO5 BO6 BO7 B@8 BO9 BYO BI1
ADDERS

HWMD [
v L16 MDJOB* J 113\ UKK
4008 (984) (9B4)

Figure 4-20. K To S Register Configuration, Block Dicgrdm
Although data in both the R and S accumulators is shifted in a manner identical

to that of the J and K registers the result is an effective shift to the right. Thus, accordingly
~as the S11 signal (Figure 4-19) is high level or low level, a high-level or low=level bit is

4-73 - -

shifted into bit ROO of the R accumulator; and accordingly as bit R11 is high level or low

level (Figure 4-20), a high~level or low-level bit is shifted into bit SO0 of the S accumulator.
Figure 4-21 illustrates the R to S accumulator shift loop. These accumulators hold the partial
product produced as the result of the 12th shift for the multiplication depicted in example

C. When a shift occurs bits SO0 through S10 will be shifted to the right 1 place; bit S11

will be shifted into bit R0O, and bit R11 will be shifted into S00. Although the 12th partial
product as accumulated in the R and S registers is incorrect, the final product is obtained
when the requirement of event M of the flow diagram is carried out.

§ ACCUMULATOR R ACCUMULATOR
i M3 N3 P13 M5 Ni5 P18
ao|at|e2fa3|cofat |2 |a3|cojal Q2 |Q3 Qo |qt a2 Q3o |0t Q2|3 |0 [Q1]|Q2]a3
500 |01 |se2 |so3 |soa|ses|see|ser |ses|se9 |si0 [Sit ROO|RQ1 |RO2 |RO3 |RO4|RES |ROG | ROT |ROB |ROI|RIO |R11
ololololo|lofjolaoalo]|t|o] 11l rjololriofltjofr]|[1]oO

lelolololololelolol i To] [l [[elolilol ol]]

Figure 4-21. R-S Accumulator Shift Loop

Fundamental Operation = This paragraph describes the fundamental operations that are

required to implement the hardware multiply logic. For data flow, refer to Figure 4-13,

the arithmetic data loop block diagram, to Figure 4-22 for the multip.y operation timing

diagram, to Table 4-25 for the event summary, and to Table 4-26 for the simplified logic.

The events described in these diagrams and tables are keyed to the flow diagram, Figure 4-17,
|
| The conditions required to initialize the multiply operation occur after the

cdmmon basic phase events up to period BP3 occur. These are listed as event C in Tables

4425 and 4-26 and suggested by waveform B in Figure 4-22, the timing diagram. The events

that occur are subdivided into three subperiods as shown in the timing diagram and Table

4426; the subperiods are called enter, loop, and exit.

1. Enter. The enter peiod includes the common basic phase events, the initialize
events, and certain operations such as register transfers, the memory element test and
entry into the loop operation. These operations are described by A through H in
Table 4-26 and A through F in Figure 4-22,

2. Loop. Although some operations labeled LOOP in Table 4-26 are not loop depen-
dent (require the R LOOP signal for assertion of logic), they are listed as loop opera-
tions. For example, in Table 4-26, events H through J are not loop dependent because
waveforms G and H show that they occur whenever time period BP5 occurs. All loop
operations are dependent on the clock count logic. Hence, these operations require
that signal PSI2* remain unasserted (high).

4-74

jo—————ENTER

R LOOP +

cxn——{

PUS,BPS

T

[7‘0'1]2'3[4[5]6 a|s|e

TToTeT=TsTeT o

|

INITIALIZE MPY

ri
R -
+

] | E—

PER™*
(9A4)

SLKMX™
(1244)

KOM

(8BY)

?LOOP HWMRL
881 (1182)

y CPJY
(11B4) (9A4)(9A4)

CLKCNT
(11A3)

SO

PEPU®
(581)

KO®8
(10A2)

-
[
1

E

Koo=1 -
\AFTER smF,I,r} 121

Lﬂ

~=q =
! 13

it

4 5

TSADONSLITS
(1382) 't1384)

T K@e=1
LY JAFTER SHIFT

SLJTS

sanx‘
(8A2)

J

L

4
l12|

d b

L3

PE
(9A3)

CIN
(12A2)

1
[

{KQGM .
LJAFTERSHIFT

142,

CPOV* | I(R+d)=CARRY

wJel =]

v

-

PEK®
(9A3

scTs® pex*
(1284) (9A4)

»

-
>

T
1KOM=1
-]

cPaV
(11B3)
SLIMX™

T

TKOM=1

1
1
Lo
T
! _ NR+K)=CARRY

T

(12A3)

L

¥

PEJ
(944)

T
I 0v=t
| Ep—

*PES™ SDONER.
(9444944) (7B4)

T

L

cPR™ cps™
{982) (982)

NOTE: DASHED LINES DEPICT CONDITIONAL EVENTS

4
-

U1

Figure 4-22. Multiply Instruction, Timing Diagram

4-75

Table 4-25. Multiply Instruction, Event Summary

Ref. Pericd Event
A. PUQO CLR—R LOOP
B. BPO - BPS COMMON BASIC PHASE
C. BP3 INITIALIZE MULTIPLY
D. BP4 JR—RR
E. BPS KR—-MX—~>ADDER
F. BP5MD TEST KOO BIT
G. PUS SET—R LOOP
H. BP6MD CLR—-OV REG
I BP6MD CLOCK PULSE—~UP COUNTER
J. BP6MD SHIFT-JR, KR, 1-BIT LEFT)
K. BP6MD RECYCLE PULSER—REPEAT BP4, BP5, BP6
L. BP4, BPAMD JR=TS—~ADDER, IF KOO =1
M. BP4AMD RR—-MX—~ADDER
N. BP4MD ADDER-JR
0. BPAMD . IF (KOO = 1) (R+J) = CARRY OUT, SET-0V
P. BPS KR-MX—ADDER
Q. BP5MD +1—>ADDER = (K+1)
R. BP5SMD ADDER—KR, IF OV =1
S. BP6MD IF LOOP = 12, EXIT RECYCLE PULSER
T. BP4MD RR->MX—ADDER
U. BP4MD IF KOM =1, JR-TS
“ V. BP4AMD IF KOM =1, ADDER-~KR = (R + K)~K
W. BP4MD IF (R + K) = CARRY WHEN KOM = 1, SET-0V
X. BP5 JR-MX—~ADDER
Y. BPSMD +1-ADDER (J+1)
Z. BP5MD IF OV =1, ADDER-JR
AA. BP6MD JR—RR
AB. BPGMD KR—-SR
AC. BP6 SET—-DONE
AD. BP7 SHIFT RR AND SR, 1-BIT RIGHT
AE. PUC ENTER COMMON BASIC PHASE

During loop operation, certain events occur as the result of previously established
conditions which are established as a result of the hardware-controlled events. Hence,
signal KOOB is true only if, as the result of a leftward shift of J and K register is set.
All conditional events are shown by dashed lines superimposed on the waveform base.
Thus, event L in Tables 4-25 and 4-26 show that the admission of J-register data into
the TS multiplexer occurs only if signal KOOB is asserted (waveform K, Figure 4-22).
In any case, R-register data is unconditionally admitted into the MX multiplexer
(waveform L), but may, or may not be loaded into the J register and may or may not
cause the overflow register to be set (waveform M). These events are listed in L
through O in Tables 4-25 and 4-26. The next loop operation is shown by waveforms
N and O and is listed as events P,Q, and R in Tables 4-25 and 4-26.

At the end of each loop operation (events | through R in Tables 4-25 and 4-26),
the state of the loop counter is tested. This operation is listed as event S in Tables

4-76

Ref.

Table 4-26. Multiply Instruction, Fundamental Operation

Period

PUO
ENTER

8PO
THROUGH
BPS
ENTER

8P3
ENTER

' BP4

ENTER

BP5
ENTER

BPSMD
ENTER

Simplified Logic

CLR—R LOOP REG

1.

(tPULLU) (4PUO*) = CLR—R LOOP
(tRLOOP*/882) ({ RLOOP)

INITIALIZE MULTIPLY

1.

6.

7

(1100) (4101) (1102) (}103)~>
10P1*/7A1

. (JOP1™) (1106B) (41078} ({108B)~>

{0P100*~1tOP100/11A1

(1104%) (11058 *)=>11415—>11415*/9A1
(tOP100) (11415*)~>}OP100X */11B1
({OP100X™) (+1098B) (110B) (LIT1IN)—>
JHWM *>THWM/11A2

JHWM* +THWD*~>tHWMD—{HWMD*/11B2

(tHWMD) (1J00B)—>{MDJOB*~1JKK/9B4

JR—RR

1.

2,
3.

(tBP4MD) (tHWM) (tRLOOP*)—>
{PER*/9A4
IPER™+|HWM7*~>1PER/9B1
(tPER) (tREGCLK)—~{CPR*/9B2 =
JR—-RR

KR->MX->ADDER

1.

aRwn

JCNTR3 + {CNTR2 + ICNTR1™ +
JCNTRO*>1PS12*->{PS12/11A4

(tHWM) (TPS12%)>{MT2*>1SELK5/12A4
(tSELKS) (1BP5)>{SLKMX*/12A4
JSLKMX *>TMXEN—>{MXEN*/9B2
JSLKMX *->tMXS0, 1MXS2/9B2 =
KR->MX—~ADDER

TEST KOO BIT, IF KOO =1, SET KOMREG

1.

2.
3. {tPULLU) (tSTDN7") =

(1K00B) (tHWM) (tRLOOP*)~>
1STKOM*/8B1
ISTKOM*~>1STKOM/8B1

TOGGLE—EN

(tSTKOM) (tPULLU) ({STKOM™)
({BP5*) = SET->KOM REG (1KOM/8B1)

4-77

Event

R LOOP register
cleared.

Common basic phase
fundamental opera-
tions. See Table 4-20.

These events occur
when memory data
is loaded into in-
struction register.

Muitiplicand loaded
into R register.

Multiplier loaded
into the adder through
the MX multiplexer.

The KOM register is
used to remember
that the KOOTH bit
is alprior to the first
shift.

Ref.

Table 4-26. Multiply Instruction, Fundamental Operation (Cont'd.)

Period

PU5S
ENTER

BP6MD
ENTER

BP6MD
Loor

BP6MD
Loop

BP6MD,
LOOP
(1-12)

BP4,
BP4AMD
LOOP
(1-12)

Simplified Logic

SET->RLOOP REGISTER

1. JHWM*->1STRL

2. (fPULLU) (tPUO*) = TOGGLE—EN

3. (#STRL) (tPULLU) ({RLOOP)
(1BP5*) = SET-RLOOP (tRLOOP/8B1,
JRLOOP™)

CLR~OV REG

1. (tHWM) (1BP6MD)}—{CLOV "~
TROV—~{ROV*/11B4 = CLR-0V ({0V,
tOv*/11B4)

CLOCK PULSE—UP COUNTER

1. (tHWM) (1BP6MD)—~IHWME"/11A2

2. JHWM6"~>THWBD4/11A3

3. (tHM6D4) {(1CPPU) »| CLKCN*~
TCLKCNT/11A3 = COUNT~UP TO 12

SHIFT JR,KR

1. {HWM6*~>1PEJ, TPEK/9A4

2. (1PEK) (tREGCLK)—~|CPK*/9A4 =
SHIFT->KR LEFT, 1BIT

3. (tPEJ) (TREGCLK)—{CPJ*/9A4 =
SHIFT=JR LEFT, 1 BIT

RECYCLE PULSER—|BP4AMD,
B8P5MD, BP6MD

1. THWD *~>|{ HWD

2. {HWD + {RLOOP*>tHWD *RL*~
VHWDRL */8A1

3. IHWDRL">tGET OQUT*/5B1

4. (1GET OUT™) {tHWMD) {tPS12%)
(tBP6MD)—~>|PEPU*/5B1 = PRIME
PULSER TO BP4

5. 1CPPU—BP4/5A1

v

JR->TS—ADDER, IF KOO =1

1. (tHWM) (tRLOOP)~>| HWMRL *~
THWMRL/11B2

2. JHWMRL*>tTAD4/13B1

3. (fTAD4) (1B8P4)~>| TSADD*/13B2

4. TK0O -/ K00*~1K00B/10A2

5. (tHWMRL) (t1PS12%) (1K0OB)
(tBPAMD)—~|SLJTS*/12B3~
tTSS1, 1TSS0/13B4 = JR-TS REG

4-78

Event

The R-LOOP register
is used to control
the pulser recycle
operation.

Overflow register is
used to detect a
negative partial
product.

The up-counter is
used to count the
number of shifts in
the multiply
instruction.

J and K registers
shifted 1-bit left.

Pulser recycled to
BP4 at BP6 when
CPPU occurs.

Content of J re-
gister switched

through TS multiplexer

Ref.

M.

Period

BP4MD
LOOP
(1-12)

BP4AMD
LOOP
(1-12)

BP4MD
LOOP
(1-12)

BP5

- LOOP

(1-12)

BP5MD
LOOP
(1-12)

BP5MD
LOOP
(1-12)

BP6MD
(EXIT)

Simplified Logic

RR->MX->ADDER

1. (tHWMRL) (+BP4AMD)-+{SLRMX */8A2

2. ISLRMX*->TMXS1, tMXS2/9A2

3. {SLRMX">TMXEN->{MXEN*/9A2 =
RR->MX

ADDER—JR = {J + R)=J, IF KOO = 1

1. (YBP4MD) (PHWMRL) (1PS12%)
(1KOOB)~|PEJ*/9A3 = ENABLE—~JR
2. IPEJ*>1PEJ~>LCPJ* /9A4/14A4 = LOAD—JR

IF (KOO = 1), (R +J) = COUT, SET OV

1. (tK0OB) {1PS12*)>{ MOV *+tMOV/12B4

2. (*MOV) (+COUT) {(1BP4MD)
(tHWMRL)~>!AROV*/12B4

3. (+SOV*) (tROV*) = TOGGLE-OQV

4. {AROV*>1CPOV/1183

5. (1CPOV) (tREGCLK)>1CKOV*/11B4 =
SET-0V

KR->MX->ADDER

Same as E, this table.

+1->ADDER = (K+1)

1. (tHWM) (1R LOOP) (tBP5MD)~
JCIN3*>1CIN/12A2 = +1>ADDER

ADDER—KR IF OV =1

1. (tHWMRL) (tPS127) (tOV)~>
IMRLK*>tPEK5/9B3

2. (1PEKS) (tBPSMD)~>IPEK*~
tPEK/9A4 = ENABLE—~KR

3. (tPEK) (TREGCLK)—!CPK*/9A4 =
LOAD-KR

EXIT>RECYCLE PULSER

1. JCNTRO~>TCNTRO*/11A3

2. JCNTR1>1CNTR1*/11A3

3. (1CNTRO*) (1CNTR1*) (t{CNTR2)
(tCNTR3)>{PS12*~>1PS12/11A4

4, tHWD* + | RLOOP*~>tHWD*RL*~
I{HWDRL/8A1

5. JHWDRL-~>TGETOUT"/5B1

6. |GETOUT™ + |HWMD + {PS12* +
1BP6MD—~tPEPU™/5B1 = INHIBIT
PULSER RECYCLE AT BP4 -

PR

4-79

Table 4-26. Multiply Instruction, Fundamental Operation (Cont'd.)

Event

Content of R re-
gister switched
through to MX.

Content of R andA
J registers summed
and loaded into JR.

If bit KOO is set and
the same J + R pro-
duces a carry, set over-
flow register.

K register switched
through MX
multiplexer.

Content of K re-
gister incremented
by 1 count.

Content of adder
loaded into KR
(K+1)if OV-
register is set.

After the loop-
counter detects the
12th iteration, the
pulser BP4 enabling
signal is unprimed so
that it cannot re-
cycle again.

Ref.

T.

Table 4-26. Multiply Instruction, Fundamental Operation (Cont'd.)

Period

BP4AMD
(EXIT)

BP4AMD
(EXIT)

BPAMD
(EXIT)

BPAMD
(EXIT)

BPS
(EXIT)

BP5MD
(EXIT)

BPSMD
(EXIT)

Simplified Logic
RR-MX—~ADDER
Same as M, this table.

JR-TS, IF KOM = 1}

1. (tBPAMD) (1KOM) (tRLOOP)
(1PS12)->ISLKTS*/12A4
2. ISLKTS*>1TSS1/13A4 = KR->TS

ADDER-KR, IF KOM = 1: (R+K)=>K

1. (1BP4AMD) (tRLOOP) (1PS12)
(tKOM)—~{PEK*/9A3 = ENABLE—~KR

2. {PEK"~tPEK/9A4

3. (1PEK) (1REGCLK)~ICPK*/9A4 =
ADDER—KR '

OV—1, IF R+K = CARRY WHEN KOM =1

1. (tKOM) (TPS12)~{MOV *>TMOV/12B4

2. (tBP4MD) (1COUTHTMOV) (tHWMRL)—
IAROV*/12A4

3. JAROV*->tCPOV/11B3

4. (1cPOV) (1REGCLK)—TCKOV/11B4 =
SET-0V

JR->MX—~ADDER

1. (PHWM) (tPS12)-{M12*/12A2

2. IMI2*>1SELJS, TMI2/12A3

3. (1SELJ5) (1BP5)~>ISLIMX*/12A3

4, ISLIMX*>tMXEN—-IMXEN*/9A2 =
ENABLE-MX

5. ISLIMX*>TMXS2/9A2 = JR-MX

+1->ADDER = (J+1)
Same as Q, this table.

ADDER—JR, IFOV =1

1. (tHWMRL) (1PS12) (tOV) (tBP5MD)—
IPEJ*/9A3 = ENABLE—JR

2. |PEJ*~>1PEJ/9A4

3. (1PEJ) (tREGCLK)—>{CPJ*/9A4 =
ADDER-JR

4-80

Event

Content of R-
register switched
through MX
multiplexer.

Content of K-
register loaded into
TS multiplexer.

Adder loaded into
K-register if KOM = 1.

Overflow register set
when R+K produces a
carry out when the
KO memory register
is set.

Content of J-
register switched
through MX
multiplexer.

Content of J-
register incremented
by 1 count.

Content of adder
(J+1) loaded into
J-register if over-
flow set.

Table 4-26. Multiply Instruction, Fundamental Operation (Cont'd.)

Ref. Period Simplified Logic) Event

AA. BP6MD JR—RR

(EXIT) 4. (M12) (1BP6MD)~{PER*/9A4 = Content of J-
ENABLE—RR register is loaded
2. |PER*>1PER/9A1 into R-register
3. (TPER) (tREGCLK)—>|{CPR*/9B2 = unconditionally.
JR—>RR

AB. BP6MD KR-SR

(EXIT) 1. (tmM12) (1BP6MD)—>{PES*/9A4 = Content of K-
ENABLE—-SR register loaded into
2. |PES*>1PES/9A1 S-register
3. (tPES) (tREGCLK)—{CPS*/9B2 = unconditionally.
KR—>SR
AC, BP6 SET—DONE, Establish basic phase
(EXIT) 1. lOP1*~1SDONE/7B4 When done latch set
2. (tSDONE) (1BP6)—>{SDONE*/7B4 = basic phase enabled.

SET-DONE (1DONE/7B4, {DONE¥)

AD. BP7 SHIFT R AND S RIGHT 1 BIT
1. (tHWM) (1BP7)~>{HWM7*/9B1 Content of Rand S
2. JHWM7*-1PER, tPES/9A1 register shifted
3. (tPER) (tREGCLK)—~{CPR*/9B2 = 1-bit right.

SHIFT—RR, 1-BIT RIGHT
4. (TPES) (tREGCLK)—|CPS*/9B2 =
SHIFT—SR, 1-BIT RIGHT

AE. PUO Enter common basic phase

4-25 and 4-26. If the counter logic produces a true PSI2* signal the exit subperiod
is entered; if this signal remains unasserted, the loop operation is reentered for
another iteration and events | through R, Tables 4=25 and 4-26 reoccur.

3. Exit. The events that take place during the exit operation are listed as S through
AD in Tables 4-25 and 4-26 and are shown by waveforms P through U in Figure 4-22.
Initially, the state of the KOM register (waveform E) is tested. If this register is set,
the R-register data (waveform L), which is switched through in the MX Multiplexer,
and the K register data, which is admitted to the TS multiplexer (waveform P), is
summed and admitted into the K register. If the result of this summation produces a
carry, the overflow register is set (waveform P). The next operation that occurs is
the admission of J-register data through the MX multiplexer (waveform R) and its
incrementing (waveform N). If the overflow register is set as the result of the previous
summation, this data is admitted into the J register (waveform S). The exit operation
is concluded by admitting J-register data into the R register and K-register data into
the S register (waveform T). These data are shifted one bit to the right (waveform U)
as previously described. :

4-81 . I

4,4.2,1.2 Hardware Divide (1001). Hardware divide is carried out by the process of
successive subtraction fo the diviser from the most significant part of the dividend. As
edch subtraction occurs, the dividend is modified as the result of subtraction whenever
subtraction yields a positive number. If the diviser is larger than the significant part of the
dividend, subtraction will yield a negative number. Such a negative number is unacceptable
and is disregarded by the ND812 hardware divide logic. An identical process takes place
when division is done with pencil and paper.
Example A 105 = quotient
115 12075 = divident
-115
57 = lst subtraction and carry
-115
T258 = 2nd subtraction (not acceptable)
575 = st subtraction and carry and 2nd carry
-575

0 = 3rd subtraction

Because the first subtraction above yields a positive result, the 7 in the dividend
was carried to the partial quotient and the divisor again subtracted. However, the second
subtraction yields a negative number and this result is unacceptable. Because of this, the
remainder obtained as the result of the first subtraction and the carry is used again with the
next carry.,

These comparisons are mentally made and no thought is given to the process.
Normmally, even the second subtraction would not have been made. Our familiarity with
the decimal number system tells us that whenever the remainder is smaller than the divisor,
a'negative number will be produced as the result of the next subtraction. In the above
example some other short cuts have been taken: for example, we know that if we subtract
the divisor from the first and second digits of the dividend, the resultant subtraction yields
a negative number. Therefore the division is begun where subtraction yields the first positive
result. The mental short cuts are equivalent to three carries. Thus, the first carry in
example A is, in effect, actually the fifth carry. When the problem is converted to its
binary format, pencil and paper division yields:

Example B

1l

1101001 quotient
divisor = 1110011 10111100101011 = divident
-1110011

TOOTCOT1 = 1st subtraction and 9th carry
-1110011
; 1710011 = 2nd subtraction, 10th and 11th carries
' -1110011
T 1110011 = 3rd subtraction, 12th, 13th and 14th car.
1110011

0

4th subtraction

4-82

In example B, if the divisor is lined up with the seven most significant bits of
the dividend, the subsequent subtraction yields a negative binary number because the
divisor is larger than that portion of the dividend having the same order of significance;
therefore, to yield a positive remainder, the divisor is shifted to that position which yields
the first positive result. Effectively, this rightward shift of the divisor is equivalent to a
leftward shift of the dividend with each shift corresponding to a carry. In the ND812, the
dividend is loaded into the J and K accumulators with the least significant half of the
dividend filling the J accumulator., During a divide operation the content of the J and K
accumulators is shifted leftward during successive subtractions. Upon inspection of example
B, the following is apparent,

1. If subtraction of the divisor from the high order partial dividend produces a
positive number, a binary 1 appears inthe quotient and the result of subtraction
is retained so that, effectively, it becomes the new partial dividend.

2, If subtraction results in a negative number, the partial dividend is unaltered
(saved) and a binary 0 appears in the quotient.

3. Effectively, the dividend is shifted leffward one place each time a subtraction
occurs and is equivalent to a carry into the partial dividend.

The conclusions enumerated above define the algorithm employed by the ND812
hardware divide logic; however, because the size of the quotient is limited by the capacity
of the J accumulator and the size of the divident is limited by the capacity of both the J and
K accumulators, the absolute magnitude of the divisor is limited. In the ND812 hardware,
the absolute magnitude of the divisor is compared with the most significant part of the divi-
dend. If the divisor is equal to or less than the most significant part of the dividend, the
hardware divide logic rejects the argument because if a divide operation were permitted to
be carried out the capacity of the quotient register (J accumulator) would be exceeded and
the least significant part of the result would be lost,

Whenever the hardware divide logic rejects the divide argument, the ND812
overflow register is set., Hence, the status of the overflow register should be software tested
by subsequent programming to detemmine if the divide operation was executed. In example
B, the dividend must be loaded into the J and K accumulators and the divisor loaded into
the R subaccumulator,

One other restriction is involved; the most significant digit of the K register must
be a zero. If the dividend in example B were 24 instead of 23 bits, when the first shift
occurred, the most significant binary 1 would be lost and an erroneous result obtained.
After each shift occurs, the divisor is subtracted from the dividend until 12 shifts have
occurred, one for each order of significance of the quotient.

The hardware divide flow diagram is shown in Figure 4-23, The first event that

occurs (A) is that the overflow register is cleared, Next (B), the content of the K accumu-
lator is subtracted from the content of the R subaccumulator, Subtraction in the ND812

4-83 .. S

HWO

(A)

CLR OV
PR+1 TO PR
INCL PROGRAM

COUNTER)

:

(8)
R-K
K—>S$S

K—= S
(UNNECCESSARY)

(G)
SET ONCE

o

' (H)

| BMR % +1—-MDR

ICOMP & INC. MDR
SET R LOOP

®

(1
SHIFT JK1 LEFT
CLK COUNTER CLR
OV 8 SETOVIFK&=1

I

[NE
K+MDR —& X
(K+(-R) == K)

K TO S (SAVE K)

NO

(K)

SUMMATION TAKES PLACE IN
ADDER,KR UNALTERED AT THIS

TIME

(K)
S —~>K
(RESTORE K)

YES
Ov=14
?
K30
INC J
(SET QUOTIENT
BIT IN J)

[

|

(L)
12 SH!FTS>
?

(M)

EXIT
QUOTIENT IN J
REM IN K

Figure'4-23. Divide Instruction, Flow Diagram

4-84

is usually carried out by 2's complement addition. However, in this case, subtraction is
carried out by 1's complement addition. The reason for this is that if 2's complement
addition is used when the content of both the K anr R registers is zero, 2's complement
addition produces an overflow; 1's complement addition does not. Under these curcum-
stances the hardware would permit division by zero and that leads tc trouble. The foregoing
illustrates the problem; in 1's complement addition, subtraction of K from R for R greater
than, equal to, and less than K gives:

Given K = 00028, J =7453g, R =0163g

() ¥R>K, R= 00038 (or greater) R = K = (0003g + 77758 =
(0V) 0000g (overflow set) and R > K. :

(2) IfR=K, R=0002g R - K = (0002g + 77758) = 077778 (overflow

not set)

(3) HFR< K, R=0001g (or less) R = K = (0001 + 7775) = 07776
8 8 8 8
(overflow not set and R < K)

(4) IfR=K=0,R= 0000g and R ~ K = (0000g + 77778) = 077778

(overflow not set)

Expressions 1 through 3 above show how an overflow results using the problems
given in example B of this description when the content of the R accumulator is greater
than, equal to, and less than the content of the K accumulator. In 2's complement subtrac-
tion the subtrahend would be one binary digit larger and expressions 1,2, and 4 (rather
then (1) alone) would yield an overflow making division by zero possible.

Expression (2) is also rejected by the ND812 hardware divide logic because a
quotient one bit greater than the capacity of the J accumulator would result whenever the
content of the K and R accumulators are equal. If 2's complement subtraction is used,
expression (2) yields an overflow, but subsequent division yields an erroneous resultant
quotient in the J accumulator, The comparison of the content of the K and R accumulators
is made at time (C) as shown in Figure 4-23. Overflow is indicative of a positive result,
hence if the overflow register is not set as a result of this comparison, the divide instruction
is exited by the logic and the overflow register is set. It is for this reason that the content
of the overflow register should be tested by subsequent programming. If the overflow register
is set, the hardware divide instruction is processed and event (E) is permitted to occur.

When event (E) occurs, the overflow register is cleared and a register called
WAIT is set. The WAIT register is used to defer the first dividend shift and divisor subtrac-
tion until the content of the R accumulator (the divisor) can be converted to its 2's comp-
lement equivalent. For the divide operation the 2's complement equivalent of the divisor
is stored in the memory data register (MDR). Thus, the first step in the hardware divide
routine (F) is to get the content of the R accumulator into the MDR, Firgure 4-24 is a
modification of Figure 4-13, the ND812 arithmetic data loop, showing the R accumulator-

4-85 . e

ROO-Ri1

JOO-J11
J R
J
; Moo |- Mt MDR TS TS502-TSt! REG REG
MOR TIPLXR i (accum [u@e-att | (ACCUM)
K ADD
SUB
(1) LOGIC (4) (6)
L BOO BUS
—
. -Bit BOQ- B 8
ADD-SUB
CONTROL ADDERS MBR
MULTIPLXR
J K S
(3)
R
MX REG K@O-Ki1 REG
K [MULTIPLXR| Mx@@-MX11 (ACCUM) (ACCUM)
S
(2) (5) (7
KQQ-K11
$00-511
PMROQ-PMR11

Figure 4-24, Divide Arithmetic Data Loop, Waif Path, Block Diagram

to-MDR data path during this part of the divide operation. The R register-to-MX multiplexer
path is enabled and the MX multiplexer loaded with the content of the R accumulator, This
data appears as an adder output because the add-subtract gates are disabled at this time and
the TS multiplexer output is zero. The adder output is switched through the bus and memory
buffer multiplexer to the MDR which is enabled during this event, At this time, the content
of 'the K register is also transferred to the S register; however, this data transfer has no
significance yet. When the WAIT register is set the ONCE register is also enabled., The
ONCE register permits the content of the MDR to be complemented and incremented to get
the 2's complement of the divisor. This event occurs only one time during the divide oper-
ation. With the ONCE register set (G) the 2's complement of the divisor is obtained (H).

How this is done can be understood with the aid of Figure 4-25, At the time the
WAIT register is enabled the MDR receives the R accumulator data word, When the ONCE
register is subsequently enabled, the data path shown in the figure is enabled. The output
of the MDR is switched through the TS multiplexer and the 1's complement is selected from
the add-subtract logic for.application to the adders. Although the content of the R accum=
ulator is held in the MX multiplexer, MX multiplexer output is all zeros because it is not
enabled at this time, Simultaneously with the establishment of the ONCE data path, the
adders are incremented by a count of 1 to obtain the 2's complement of the add-subtract
output data word which currently is the 1's complement of the divisor. The adder output is
switched through the bus and memory buffer multiplexer back to he MDR so that the pre-
viously loaded divisor is replaced by its 2's complement,

4-86

RO®-R1

J@O-J11
J R
J
wor |M22]-M11 mor| T1s |Tsee-Ts INC . REG REG
TIPL® 1 (accum) [vee-unt (ACCUM)
K ADD
SUB
(1) LOGIC (4) (6)
y 0 BOQ- BI! aus
ADD-SUB - ‘ - ‘ a
CONTROL) ADDERS MBR
. - IMULTIPLXR
J K 3
(3)
R
MX REG | K@O-KI REG
K [MULTIPLXR|mx0@-MX11 (ACCUM) (ACCUM)
s
(2) (5) (7)
K@B-K11
S00-511
PMRO®-PMR 1

Figure 4-25, Divide Arithmetic Data Loop, Unce Path, Block Diagram

As shown in the divide flow diagram (Figure 4-23), the RLOOP register is set
simultaneously with the establishment of the ONCE data path. RLOOP is the reiteration
loop register and it serves the same function in the divide logic that was served in the mul-
tiply logic; it is used to obtain 12 leftward shifts of the dividend by recycling the pulser
through periods BP4, BP5, and BP6 twelve times. At the beginning of each reiteration cycle,
the up counter is pulsed to record the number of shifts and then the content of the J and K
accumulators is shifted one bit to the left, Simultaneously with the J and K shifts, the
overflow register is cleared; although it is still cleared from the last clearing operation (E).
This clearing operation has significance after every subsequent subtract operation.,

Next, the 2's complement of the divisor is added to the content of the K register
so that after each shift of the dividend occurs (I), a subtraction of the divisor from the divi-
dend occurs (J). The result of each subtraction is stored in the K register and in the S
register to save the K register data word, If the result of the subtraction produces a negative
number the overflow register is not set, However, if the subtraction produces a positive
number the overflow register is set. (Figure 4-26 shows the divide operation for 12 shifts
of the dividend for examples A and B of this description.

This figure has two columns représenﬂng the K accumulator and the J accumulator.
The dividend is shown loaded in the second row. The numbers at the head of each column
indicate the orders of significance of the 24-bit dividend; the zero bit of the K accumulator

EERY

4-87 . T

K ACCuM

ovlofl 1] 2|3|a|ls|e|l7]8]|9|w|n
o{olo|lo|lololojo]Jo|o} 1|0

1] 01

111 v |1t olofo] 1l 1]ofn
ol1|1| 1|11 olo]1|ojo|l t]|o
ololololojo|lo|lo|l1]o] 1|1

1l a1l 1]o|lojo| 1] 1}o}n
ol 1| 1|11l ololt]1lolo]o
ol 1] 1|

Tl [l a]ololal i) o]

[57 1§ 1l 1|1 1]o} 1] o|lol1lolo
! A I I T O O O B

11l a1 1]lololol1]1] o]

ol 1l vt 1tol 1111 o]o
‘ 1ol v 1] 1]o0

bl a1 oo of 1] 1] 0]

of 11y afrfo] o]t
1ol 1] 1] 1|1]o0}o0

vl r]ojloloj1]1jo]n

[1 olofolojol1)o|a]1]o]o]fn
ofof{ofjol1}fojof1]o}lo| 1]

1l 1t} 11100l g 11} o0]1
1{0lo]lo|lojolo|1]djojojolo
t{olagjolojfojo

vl 1|1 rjojojal1j1)0])T

0 1E 1l rpaf vl 1lolaopr]foln
og olojofl1{ojo|0]ojo| 0]
vlal il alolol o 1] 1] o]

1 0% olo|lolo|lo|lo|ja|l 1] 1 1]o0
1111 01lo0

1(1{ 11|l 1jojojo}l 1| 1|o0]n

0 1% 1l 1|1 1]o] 1o}l 1{0]| 0l
1] 1] 1] o]l o}

i a1 fololofl 1| 1] o]

ol 1y vl 1lofolo|l 1] 1o
11 1] 1 0] 0] 1|1

11l 1lojolo] 1] 1] o0l

(} o|lolo|lololo|lolojo|o|o]|oO

SK
MDR,
(K-R),
SK,
MDR,
(K-R),
SK,
MDR,
(KR,
SK.
MDR,
(K-R),
SK
MDR;
(K-R)s
SK,
MDR,
(K-R),
SK,
MDR.
{K-R),
SKy
MDR,
(K-R},
SKa
MDR,
(K-R),
SK, 4
MDR, ,
(K-R),
SK, |

MDR, ,

(KR),,

SK,
MDR, ;

(K-R}, »

J ACCUM
12 |13 (141516171819 21| 2
1 1 1 110} 0] 1 0 0f 1
1 1 110 00 1] 0 1 1 1
1 1 0] 0 1] 0} 1 0 11 0
1ol ol 1 o] 1 O 1 of 0
oo 1y0} 11 0|1 1 0of 0
of1{0}p 1] 0} 1 11 0 0| O
1] 01110} 1 11 0} 0O 0} O
1 04 1 ol 1 11 0| O 0| O
o t] 0} 11 0 0} O o} 1
o] v} 011 11 0 0] O 0 1
11011 1 o 0l 0y O 1 1
01 110 0y 0] O} O 11 0
o 1 1] 00| 0 0} O 11 0
1 110} 0] 0[O0} O} 1 0 1
11o0lof 0] 0} 0] 1 1 1 0
0|0} 03] 0| O} 1 11 0 0] O
00} 0] 0] O} 1 1 0 0| O

EY

Figure 4-26, Hardware Divide Operation for Examples A and B.

4-88

DIVIDE!

S

SJ,

SJx

SJa

SJ<

SJ.,

JR= +1

JR—= +1

SJ.

JR— +1

SJ!U

Sty

SJi e

is the most significant digit of the 24-bit dividend. Although they may seem unnecessary,
the low-order zeros in the 24-bit dividend must be loaded into the K accumulator to esta-
blish the position of the first positive result of subtraction. Thus, although the significant
part of the dividend is equivalent to 28, 0002g must be loaded into the K accumulator and
7453g, the least significant portion of the dividend, must be loaded into the J accumulator.

Between the two columns, the shift, the content of the MDR, and the result of
the subtraction is given as follows; symbols SK; through SK12 indicate the required 12
shifts of the K register. Symbols MDR{ through MDR 5 indicate the number of times the
content of the MDR (7615g) is added (2's complement added) to the content of the K
accumulator, and symbols (K - R)] through (K - R);5 indicate the resultant binary number
after addition. For any addition in which an overflow is not produced, the result is a
negative number if the KOth bits is a binary 1. This occurs in all cases when the overflow
register is not set,

As can be seen from the figure, when the overflow register is not set, the con-
tent of the K register, prior to the last subtraction, is used as the partial dividend. How-
ever, when the overflow register is set, the result is used as the dividend. Also, when an
overflow occurs, the content of the J accumulator is incremented by a count of 1 to esta-
blish the value of the quotient. For the J accumulator column in Figure 4-26, the symbols
SJy through SJy, indicate shifts of the content of the J accumulator. When an overflow
occurs, the J accumulator is shown modified by the incrementing count prior to the next
shift, The result of the divide operation yields a zero remainder in the K accumulator and
the quotient in the J accumulator. If a remainder had resulted when the divide operation
was completed it would have appeared in the K accumulator. In the figure, significant

zeros of the K accumulator have been dropped to aid in understanding a somewhat complex
example,

The data path employed during the addition (J, Figure 4-23) is shown in Figure
4-27. The content of the K accumulator is admitted into the MX multiplexer and is switched
through the MX multiplexer to the adders. Simultaneously the content of the MDR (divisor
2's complement) is switched through the bus and memory buffer multiplexer where the data
word is selected by the add-subtract logic and summed with the content of the MX multi-
plexer by the adders. This information is held in the adders until the overflow register is
tested. Simultaneously, the content of the K accumulator is saved in the S subaccumulator.

When the overflow register is tested (K, Figure 4-23) if the result of the addition
(J) produced a negative number the content of the S register is transferred back to the K
register (Ky). However if the result of addition produced a positive number the content
of the J accumulator is incremented (K5) and the resultant dividend now held in the K
accumulator is unaltered. When the next loop takes place either the new content of K is
used, or the previous content (which is now held in the S subaccumulator) is used. These
data paths are shown in Figures 4-28 and 4-29,

For the case where the overflow register is unset, the path shown in Figure 4-28
is enabled. The content of the S register, which now holds the result of the previous

4-89

ROO-R11

MDB

JO-J 11
2 J R
J
moo|-Mi1| MOR] TS z REG . REG
PR3 (accumy | yeo-utt (ACCUM)
K ADD
SuB
() LOGIC (4) (6)
: Tsoa.1S1] Be?i? BOG- BI1 Bl:]a.s
; ADD-SUB ____| - '
; CONTROL ADDERS MBR
‘ MULTIPLXR
il
: J K 3
(3)
R
MX REG K@Q-K11 REG
K MULTIPLXRMx@@-MX11 (ACCUM) (ACCUM)
S
(2) (5) (n
K@B-K11
S00-St!
PMROO-PMR11
Figure 4-27. Divide Arithmetic Data Loop, Summation, Block Diagram
ROO-R14
JOO-J 11
J R
J
[Moo|-mi1 MOR Ts | TS@@-TSH REG REG
MULTIPLYE (accumy | Jea-dtt (ACCUM)
: K ADD
: suB
:) LOGIC (4) (6)
L o 800- 811 B
ADD-SUB ____| ' - 8
CONTROL ADDERS MBR
MULTIPLXR
J K 3
: (3)
| R
| MX REG KOO-Kit REG
K MULTIPLXRIMX@O-MX1 1 (ACCUM) (ACCUM)
S
(2) (5) (7)
KO@-K1
S00-S11

PMRO®O-PMR11

Figure 4-28. Divide Arithmetic Data Loop, S to K Register Data Path,

Block Diagram
4-90

" ROO-RI

JOO-J11
J R
J .
" Iwool-mi] wor| s |Tsee-rsi INC REG REG
DR TIPLYXR i (ACCUM) | Jo@-ut (ACCUM)
K ADD
suB
(1) LOGIC (4) (6)
* A 800- BN iy
R - - a
%?JST%%E — ADDERS MBR
MULTIPLXR
J K S
(3)
R
MX REG K@o-K11 REG
K _|MULTIPLXR| mMx@@-MX11 (ACCUM) (ACCUM)
s .
(2) : (5) (7)
K@@-K11
S00-511
PMROO-PMRI

Figure 4-29. Divide Arithmetic Data Loop, J-Register Increment Data Path,
Block Diagram

~ summation is admitted to the MX multiplexer and switched through the MX multiplexer to
the adders. The output of the adders is admitted to the K register resulting in a transfer of
the S register data into the K register,

For the case where the overflow register is set, the path shown in Figure 4-29 is
enabled, The content of the J register is admitted to the MX multiplexer and switched
through the MX multiplexer to the adders, Simultaneously the adders are incremented and
their resultant output is admitted back into the J register, It is this operation that produces
the quotient, After the 12th iteration, the divide operation is completed with the quotient
in the J register and the remainder in the K register,

Fundamental Operation ~ This paragraph describes the fundamental operations that are
required to implement the hardware divide logic, For data flow, refer to Figures 4-24,
4-25, and 4-26 through 4-29, Figure 4-30 is the divide timing diagram. Table 4-27 is
the divide logic event summary and Table 4-28 describes the simplified logic.

As with the multiply operation, the conditions required to initialize the divide
operation occur after the common basic phase events up to period BP3 occur. These events
are listed in reference C of Tables 4-27 and 4-28 and suggested by waveform B in Figure
4-22, the timing diagram. The events that occur during a divide operation are also subdiv-
ided into subperiods as shown in the timing diagram cmd Table 4-28; the divide subperiods
are called enter, wait, once, loop and exit,

4-91

ONCE

ENT%ER———-}-—WAIT——-{ LOOP—— |
“Pl‘JS_..BF'Sl'I o]1'2”3|4|5|e|$|8[? 4]5|6|4|5l6'r]4r|5|6|4|5|s|7
IDNS'IALIZE ’ J { +
s g v I I O I 0 I
s Tasge” L , o

iwoer I I

cPOV* : T JCOUT=SET—=OV I 1
(12B4) —ad L-

™ 3

foan A T O I B N I O

BMEM* PEM® CPM* ADDER—e T

(12A2) '(1283] (17A1) l___l;on

ONCE

(8A3) | l .

RLOOP ! .

(882) |

DONE s

(784) - . |

ov r-

(11B4) ' -! .

PEPY* 3 T 1 2 Li'z_r

= \ L ke

Tssus* MDR—= v =
COMPL

CIN FRp——

(12A2) ADDER o

fras" B | | |

Tsa00" L le T e |

v] L e

PEK® CPK¥ A 1]_z_l_" * 12
(9A4}(9A4) L_f I_r

SLUMX®, PEJ®, SLSMX®, PEK®

HO i 1124
(9A1) (9A3)(8B2) '(9A4) Lou Lol i
| plent | ~= [e]
CIN 101
(1283) I 124, 2]

Figuré 4-30. Divide Instruction, Timing Diagram

4-92 .- S

1. Enter. During the enter subperiod of the divide operation, the content of the K
register is complemented to get a 1's complement of the most significant part of the
dividend so that its magnitude can be compared with the magnitude of the divisor.
These operations are described by A through H in Tables 4-27 and 4-28. Initially the
overflow register is cleared (D, Tables 4-27 and 4-28) when pulse PU4 occurs (wave-
form C, Figure 4-30). This clearing operation occurs unconditionally during every
period 4 of a divide operation. Next, the content of the K register (most significant
part of the dividend), is admitted into the TS multiplexer and is complemented so
that one input to the adder is effectively =K (E and F, Tables 4-27 and 4-28 and
waveform D). The other input to the adder is the content of the R register (divisor)
which is routed through the MX multiplexer (G, Tables 4-27 and 4-28 and waveform
E). This event occurs only if register R LOOP (wavefom K) is not set.

If the resultant summation does not produce an overflow (positive result), the
overflow register is not set (H, Tables 4-27 and 4-28 and waveform F), and the hard-
ware routine is exited.

2, Wait. The purpose of the wait subperiod is to test the magnitude of the divisor to

determine if it is greater than that of the dividend. Depending on whether a carry is

produced by the adder (H, Tables 4-27 and 4-28 and waveform E), the divide routine

may or may not continue., Thus, the WAIT subperiod may either cause the pulser to be
recycled or the routine to be exited. In either case, the WAIT register is set and the

content of the K register is saved in the S register (I and J, Tables 4-27 and 4-28 and

waveforms G and H, respectively).

For the case when the overflow register is not set (negative result for R-K), the
events described by operations K, L, and M in Tables 4-27 and 4-28 remain, If the
overflow register is not set (waveform F), the pulser is not recycled and period PU7
is permitted to occur during the WAIT subperiod. Thus, the unset overflow register
(waveform F) is set (waveform M), When the first BP6 period occurs, the DONE latch
is set unconditionally so that when period BP7 occurs, the instruction is exited.

For the case when the overflow register is set (positive result for R=-K), the events
described by operation K, Table 4-28 is inhibited because signal OV* remains low
level and low=level signal GET OUT* is not produced. Hence, signals GET OUT*,
HWMD, BP6MD, and PS12* are high level and the pulser is primed to enter period
BP4 when period BP6 occurs (waveform N). Thus, the hardware divide operation is
permitted to continue,

At the conclusion of the WAIT subperiod, the content of the R register (O,
Tables 4-27 and 4-28 and waveform E) is routed through the adder, the busand
memory buffer multiplexer (P, Tables 4-27 and 4-28 and waveform 1), and to the
memory data register. This is possible because in the absence of any asserting signals,
the content of the adder is routed through the bus and memory buffer multiplexer.
Because during this time the memory data register is enabled by low-level signal PEM*,

the content of the adder is admitted to the memory data register. During this period,
both the ONCE and R LOOP registers (Q and R, Tables 4-27 and 4-28) are set.

4-93 . .

Table 4-27. Divide Instruction, Event Summcry

Ref. Period Event

A. PU7 CLR-WAIT, ONCE

PUO CLR—R LOOP

B. BPO-BP5 COMMON BASIC PHASE

C. BP3 INITIALIZE DIVIDE

D. BPAMD CLR-0QV

E. BP5 KR—TS

F. BP5SMD TS~>COMPL—~ADDER (-K)

G. BP5MD RR->MX—ADDER

H. BP5SMD SET-0V, IF R-K =CARRY OUT
I BPSMD KR->SR

J. BP5* SET-WAIT

K. BP6MD RECYCLE PULSER—BP4, BPS, BP6, IF OV # 1
L. BP6 SET-DONE

M. BP7 SET—OV, IF | GET OUT*

N. BP4 CLR-OQV

0. BP5MD RR-MX—~ADDER

P. BP5MD ADDER-BUS + MDR (RR—~MDR)
Q. BP5* SET—~ONCE

R. BPS* SET—R LOOP

S. BP6MD ADDER-BUS + MDR—MDR

T. BP6MD TS COMPL—-ADDER (R = 2s compl)
U. BP4AMD CLOCK PULSE—~UP COUNTER
V. BPAMD CLR-OQV

W. BP4AMD SHIFT JR, KR LEFT 1 BIT

X. PU45 -MDR—ADDER

Y. BP5 KR—-MX—-ADDER

Z. BP5SMD ADDER-KR

AA. BPSMD KR-SR

AB. BP5MD SET-0V, IF K-R = CARRY OUT
AC. BP6MD JR->MX-ADDER, IFOV =1

AD. BP6MD +1-+ADDER, IFOV =1

AE. BP6 ADDER-JR,IF OV =1

AF. BP6MD SR—MX—-ADDER, IF OV # 1

AG. BP6MD ADDER—-KR, IF OV # 1
AH. BP6MD EXIT>INHIBIT PULSER

Al. PU7 CLR->WAIT, ONCE

AJ. PUO CLR—R LOOP, ENTER COMMON BASIC PHASE

Table 4-28. Divide Instruction, Fundamental Operation

Ref. Period Simplified Logic Event
A. PU7, CLR-WAIT, ONCE, R LOORP registers
PUO 1. |STDN7*/3B3 = CLR~WAIT, ONCE Wait, once, and
ENTER ({WAIT/8B2, tTWAIT*) (LONCE/8B3, R-LOOP re-
tONCE™) gisters cleared.

2. (TPULLU) ({PUO¥) = CLR—R LOOP
({R LOOP/8B2, 1R LOOP™)

4-94

Ref.

Table 4-28. Divide Instruction, Fundamental Operation (Cont'd.)

Period

BPO

BP5
Enter

BP3
Enter

BPAMD
Enter

BP5S
Enter

BPSMD
Enter

BP5MD
Enter

Simplified Logic

Common basic phase fundamental
THROUGH operations, Table 4-20

INITIALIZE DIVIDE
1. (1100) (4101) ($102) (103)~>

JOP1*/7A1

2. (VOP1¥) (1106B) ({1078) (1108B)~

JOP100*/11A1

3. (1104*) (1105B*)->11415->11415*/9A1
4. (1OP100) (t1415%)~>{0OP1-00X"/11B1
5. (LOP10X™) (1109B) ({110B) (t111N)—>

JHWD*, tHWD/11B1

6. LHWD* + {HWM*~tHWMD~

{HWMD*/11B2

7. {(tHWMD) (+J00B)—~{MDJGB*~
tJKK/9B4 = PRIME KR~
K00 (after clock)

8. (THWD) (tRLOOP*)}=>{HWD*RL"*~>

THWDRL/BA1

CLR->0V

1. (1HWD) (14mC*) (tBP4AMD)->ICLOV™*~
tROV—>{ROV*/11B4 = CLR — OV

KR—TS REG

1. (PHWDRL*) (tWAIT*)=>IDR*LW*~

tOP1K/12A4

2. (t1OP1K) (1BP5)>|SLKTS*/12A4 =

ENABLE TS

3. {SLKTS*~>1TSS1/13A4 = KR-TS

TS COMPL—~ADDER

1. {DR*LW*~>1tSUB5/13B3

2. (tSUBS) (1BP5B')—+ITSSUB*/13B3 =
COMPL~TS (-K~ADDER)

RR—>MX—~ADDER

1. (tHWD) (tRLOOP*)~

JHWD*RL*~>1SELR23/8A1
2. (tSELR23) {1BP5MD)~>{SLRMX*/8B2
3. ISLRMX*>TMXEN-IMXEN */9A3 =

ENABLE-MX

4, |SLRMX™>1TMXS2, tMXS1/9A2 =

RR—-MX

4-95

- Event

See table 4-20.

These events occur
when memory data
is oaded into in-
struction register.

Overflow register is
used to detect a
negative result of
subtraction.

Content of K-
register is switched
through TS
multiplexer.

Ones complement
of K-register data

" to adder.

Content of R-
register switched
through MX multi-
plexer and summed
with -K.

Table 4-28. [bivide Instruction, Fundamental Operation (Cont'd.)

Ref. Period Simplified Logic Event
H. BPSMD SET-OV, IF R-K POSITIVE
Enter 1. (1BPSMD) (+COUT) (tHWD)~ The overflow re-
JAROV*/12B4 gister is set if sum-
2. JAROV*->tCPOV/11B3 mation produces a
3. (tCPOV) (tREGCLK)—~{CKOV /1184 = carry output from
SET—0V (t0V/12B4, {0V*) the adder.
I BPSMD KR-SR
Wait 1. {HWD*>10P1ES/0A4 The content of the
2. (TOP1ES) (1BP5MD)-{PES*/9A4 = K-register is ad-
NABLE-SR mitted into the
3. IPES*~1PES/9B1 S-register.
4. (1PES) (tREGCLK)-{CPS*/9B2 =
'R—SR
|
BP5* SETH>WAIT REG ,
Wait 1. (fPULLU) (1STDN7*) = TOGGLE~ The wait-
E;NAB LE ' register is set.
2. (tRLOOP) (tHWD) ({BP5*) =
SET-WAIT (tWAIT/8B2, {WAIT*)
K. BP6MD INH*BIT RECYCLE, IF OV # 1
Wait 1. (tOV*) (tHWDRL)~{GET OUT*/581 The pulser is not
2. H;ET OUT™ + JHWMD + |BP6MD + recycled if the result
H“’S12*—>TPEPU*/581 = of R-K does not
INHIBIT PULSER RECYCLE yield a positive
number.
L. BP6 SET-DONE
Wait 1. {OP1*>tSDONE/7B4 Done latch is set un-
2. (1SDONE) (1BP6)-|SDONE*/784 = conditionally at BP6.
SET DONE (fDONE/7B4, JDONE*)
M. BP7 SET-0V, IFLGET OUT*
Wait 1. (HWDRL) (tBP7)-1SOV*/1183 = The overflow re-
SET-0OV (t0V/11B4,i0V*) gister is set and
3 instruction exe-
cuted if pulser not
recycled.
N. BP4 CLR—OV
Wait Same as D, this table. Overflow re-
‘ gister is cleared.
0. BPSMD RR—-MX->ADDER
Once Same }jas G, this table.

4-96

Table 4-28. Divide Instruction, Fundamental Operation (Cont'd.)

Ref. Period
P. BP5MD
Once
Q. BP5*
Once
R. BP5*
Once
S. BP6MD
Once
T. BP6B
Once

Simplified Logic . Event

ADDER—BUS + MBR—>MDR

1.
2
3.
4. |\BMEM*->tRDB-{RDB*/12B3 =

(tWAIT) (t1BPSMD)—~>{WAIT5*/12B1 The content of the
. {WAIT5">1DRDB/12B1 R-register is ad-
{(tDRDB) {(tHWD)—{BMEM*/12B2 mitted to the MDR.

SELECT ADDER—BUS + MBR -
{BMEM*~>tPEM—~|{PEM*/12B3 =
ENABLE-MDR 4
(tPEM) (TREGCLK)~>{CPM*/12B3 =
ADDER-MDR

SET~ONCE REG

1.

2.

(tPULLU) (*1STDN7)>TOGGLE Once register is
ENABLE used to complement
(tHWD) (tWAIT) ({BP5*) = SET~ R-register data.

ONCE (tONCE/8B3, {ONCE™)

SET—R LOOP REG

1.
2.

3.

4,

IWAIT->1STRL/8B1 R-LOOP
(tPULLU) (TPUO%) = TOGGLE~ register set.
ENABLE

(1STRL) ({BP5™) = SET~R LOOP
{tR LOOP, {|RLOOP*/8B2)

{HWD + {R LOOP*>tHWD*RL*~>
I{HWDRL/8A1

ADDER—-BUS + MBR—>MDR"

LN

(tONCE) (1BP6MD)~>{ONCEG*/12B1 The content of the
JONCE6*~tDRDB/12B1 R-register is ad-
(tDRDB) (tHWD)~>{BMEM*/12B1 mitted to the MDR.
IBMEM*~>tRDB-!RDB*/12B3 =

SELECT ADDER—BUS + MBR

5. \BMEM*->tPEM—~|PEM*/12B3 =
ENABLE—-MDR
6. (tPEM) (tREGCLK)~>{CPM*/12B3 =
ADDER—>MDR
TS COMPL—~ADDER
1. ({ONCE™)~1SUB6/13B3 The content of the
2. (tsSuUBG) (t1BP6B)~>{TSSUB*/13B3 = MDR is admitted to
TS—>COMPL (MDR—-COMPL) the TS multiplexer.
3. {HWD + {ONCE*=1DCIN™/12A1 The TS MX is com-
4. (1DCIN*) (+TSSUB) (10P2%)~> plemented and the
tCIN/12A2 = +1-ADDERS adder incremented,

{2s COMPL, MDR)

4-97 - =

Ref,

AA.

AB.

Table 4-28. Divide Instruction, Fundamental Operation (Cont'd.)

Period

BP4AMD
Loop

BP4MD
Loop

BPAMD
Loop

PU45
Loop

BP5
Loop

BPSMD
Loop

BP5MD
Loop

BPSMD
Loop

Siraplified Logic

CLOCK PULSE—UP COUNTER

1.

2.
3.
4.

(tHWD) (tRLOOP)~>{HWDRL*~
HWDRL/11B2

(tHWDRL) (tBP4AMD)—~>{HWD4*
{HWD4*~tHM6D4/11A3

(tHM6D4) (tCPPU)=>{CLKCN*/11A3~
TCLKCNT = COUNT—UP TO 12

CLR-QV
Same as D, this table.

SHIFT—JR, KR

1.
2.

3.

JHWD4*~1PEJ, TPEK/9A4

(1PEJ) (1REGCLK)~{CPJ*/9A4 =
SHIFT-JR LEFT, 1 BIT

(tPEK) (tREGCLK)—>{CPK*/9A4 =
SHIFT—KR LEFT, 1 BIT

-MDR—ADDER

1.
2.

JHWDRL*>1TSEXT/13B1
(1 TSEXT) (tPU45)>TSADD*/13B1 =
MDR->ADDER

KR-MX—~ADDER

1.
2.
3.

4,

JHWDRL*>1SELK5/12A4

(1SELK5) (1BP5)>ISLKMX*/12A4
YSLKMX *>tMXEN—~>IMXEN*/9A2 =
ENABLE-MX

JSLKMX *>1tMXS0, 1MXS2/9B2 = KR>MX~

ADDER

ADDER—KR

. JHWDRL*>tPEK5/9B82

(tPEKS5) (1BPSMD)~>{PEK*/9A3 =
ENABLE-KR

JPEK*>1PEK/9A4

(1PEK) (tREGCLK)->{CPK*/9A4 =
ADDER—KR

KR-SR
Same as J, this table.

SET-0V, IF K-R = CARRY OUT
Same as |, this table.

4-98

Event

The up counter is
used to count the
number of shifts in
the divide in-
struction.

J and K register
shifted 1-bit left.

The content of the
MDR (-R} is ad-
mitted to adders.

The content of the
MDR and K-register
is summed [K+(-R)].

Content of adder
{oaded into K-
register.

Ref.
AC.

AD.

AE.

AF.

AG.

AH!

Table 4-28. Divide Instruction, Fundamental Operation (Cont'd.)

Period

BP6MD
Loop

BP6MD
Loop

BP6
Loop

BP6MD
Loop

BP6MD
Loop

BP6MD
Exit

Simplified Logic
JR-MX—~ADDER, IFOV =1

1. (tOV) (tHWD) (tBP6MD)~
ISLIMX*/12A3

2. ISLIMX*>TMXEN~>IMXEN*/9A2 =
MX—ENABLE

3. ISLIMX*>TMXS2/9A2 =
JR—>MX

+1-ADDER, IF OV =1

1. (tOV) (t4amMcDD*) (tHWDRL)
(tBP6MD)—>{CIN3*/12B2
2. {CIN3*->1CIN/12A2=+1-ADDER

ADDER-JR, IF OV =1

1. (tHWDRL) (tOV)={RLD*/9A2

2. {RLD*~>1PEJ6/9A3

3. (1PEJB) (tBP6)>{PEJ"/9A3 =
ENABLE-JR

4, {PEJ*~>1TPEJ/9A4

5. (tPEJ) (REGCLK)=>{CPJ*/9A4 =
ADDER-JR

SR-MX—-ADDER, IFOV =1

1. (tDCIN) (tOV*) (1BPEMD)
ISLSMX */8B2

2. {SLSMX*->tMXEN—-IMXEN"/9A2 =
ENABLE-MX

3. {SLSMX*->tMXS0/9B2, tMXS1/9B2 =

SR—-MX
ADDER—KR, IF OV # 1

1. (tHWDRL) (1OV*) (tONCE*)->
IDRLO*~1PEK6/9A3

2. (1PEK®6) (tBP6)—| PEK*/9A3 =

ENABLE—~KR

|PEK*>1PEK/9A4

4, (1PEK) (tREGCLK)—~{CPK*/9A4 -
ADDER-~KR

w

EXIT~INHIBIT PULSER

1. {CNTRO~tCNTRO* /11A3

2. JCNTR1->tCNTR1*/11A3

3. (CNTRO*) (tfCNTR1¥) (1CNTR2)
(tCNTR3)>{PS12*~
PS12/11A4 ‘

4, tHWD + {RLOOP*->THWD*RL"/8A1~

{HWDRL/8A1

JHWDRL~1GET OUT*/5B1

6. tGET OUT" + JHWMD + {PS12*+
{BP6MD—1 PEPU"/5B1 = INHIBIT
PULSER RECYCLE AT BP4 '

o

4-99

Event

If overflow re-
gister is set, admit
content of J-
register to MX
multiplexer.

If overflow re-
gister is set,
increment
adder.

If overflow re-
gister is set, admit
content of adder
to J-register
(J+1=J).

If the overflow
register is not set,
the S-register,
(saved F) is ad-
mitted to the MX
mulitiplexer,

If the overflow re-
gister is not set, the
content of the adder
is admitted into the
K-register.

After the up counter
detects the 12th
iteration, the pulser
BP4 enabling signal
is unprimed so that
it cannot recycle
again.

3. Once. The purpose of the ONCE subperiod is to produce the 2's complement of
the divisor so that when it is summed with the most significant part of the dividend, the
result is subtraction. This is accomplished by enabling the MDR-to-MDR loop through
the TS multiplexer dnd incrementing the adder to yield the 2's complement of the
divisor (-R). These operations occur during period 6 (S and T, Table 4-27 and 4-28
and waveforms |, O, and P, respectively). At the conclusion of period 6, period 4 is
reentered and the divide loop operation commences.

4. Loop. The loop subperiod pemits the actual divide arithmetic operations to occur.
During each period 4, the overflow register is cleared, the up counter is pulsed, and
the contents of the J and K registers (dividend) is shifted one bit to the left (U,V, and
W, Tables 4-27 and 4-28 and waveforms C and Q, respectively). Also, during each
loop, when period 5 occurs, the content of the memory data register and the K register
(K-R) are summed (X and Y, Tables 4-27 and 4-28, waveforms R and S). The result of
the summation is stored in the K and S registers (Z and AA, Tables 4-27 and 4-28 and
waveforms T and H, respectively).

If the results of the loop summation is positive, a carry out is produced from the
adder. Any resulting carry out signal sets the overflow register (AB Tables 4~27 and
4-28, and waveform F). If the result of the summation yields a positive number, the
content of the J register is incremented and restored into the J register (AC, AD, and
AE, Tables 4-27 and 4-28, and waveform U). If the result of the summation is
negative, no carry out is produced from the adder and the overflow register is not set,
In that event, the content of the S register (unsummed K register data) is stored in the
K register for the next iteration (AF and AG, Tables 4-27 and 4-28. waveform U).
After the twelfth iteration, the divide instruction is exuted by inhibiting the pulser
recycle mode (AH, Tables 4-27 and 4-28).

4,4,2,1.3 Logical AND Subgroup. For this subgroup, Figure 4-31 is the block diagram,
Figure 4-32 is the composite timing diagram, Table 4-29 is the Event Summary which lists
all fundamental operations for the subgroup, Table 4-30 is the instruction listing in tems
of the Fundamental Operation.

The logical AND operation is characterized by the logical combination of two
corresponding bits of two data words to be ANDed. For example, when bits JO and KO are
binary 1's, the result of the operation is 1 only when both bits are also 1. Figure 4-31
illustrates how the bits of two words are ANDed through the arithmetic data loop. Hence,
corresponding bits of data words stored in the J (5) and K (6) registers are ANDed (1) and
the results appear at the input to the enabled utility gates (2). The utility gate outputs are
admitted to the MX multiplexer (3) and adder (4) so that the content of the adder replaces
the content of the J register (instruction 1100), the K register (instruction 1200), or both
(instruction 1300).

OP100* - All processing paths for this instruction subgroup are initialized by signal which
is output from the operate instruction decoder.

4-100 -

JO@-J11

AND JK 1 x@@-JK11

LOGIC
— O

UTILITY
GATES
(2)

- MX
uad-un MULTIP

MXBA-MX1 1 ADDER |BO@-Bft

J “|
REG

(5)

(3

KQO-K11

[C]

REG
() ‘l

Figure 4-31. Logical AND Subgroup, Block Diagram

A. BPS |o]1]z]3|4]5[6|7|o|1

Ol
(1181)

C. BP56

(11a2)’

D. sLuUMX

(8A4)

E. PEK¥
(9A3)

F. PEJ™
(9A3)

P00, OPOX .
(8A3) I I

ANDJK
(BA3) l |
* MXEN* | I

(9A2)

||

L

Figure 4-32, Logical AND Subgroup, Timing Diagram

Table 4-29. Logical AND Subgroup, tveni Summary

Octal
Mnemonic Code
AND J 1100
AND K 1200
AND JK 1300

Ref.

A.
B.
Cc

cCw>

Period

BPO-BP6
BP56
BP3

BP6

BPO-BP6
BP56
BP3
BPSMD

BPO-BP6
BP56
B8P3
BP5MD
BP6

4-101

Event

COMMON BASIC PHASE (Tabie 4-23)
UT-MX

AND J,K

ADDER~J

COMMON BASIC PHASE (Table 4-23)
UT->MX

AND JK

ADDER—K

COMMON BASIC PHASE (Table 4-23)
UT-MX

AND J.,K

ADDER-K

ADDER—J

Addressing and activating the MX and TS multiplexers is described in Section I.
Transfer of data from the adder to the J and K registers is also discussed in Section |. It is
important to observe, however, that all register clock signals, for example, CPK* and CPJ¥,
are gated by signal REGCLK which occurs during each timing period.

It should also be noted that the TS multiplexer is not shown on the block diagram.
The reason for this is that the TS multiplexer does not play an active role in the execution
of this instruction subgroup; it merely contributes zeros to the adder since neither an add
nor a subtract operation is selected.

ANDJ, 1100 = Logical AND operation is performed on all twelve bit-pairs of the J and
K registers, The result replaces the content of the J register.

ANDK, 1200 - Logical AND operation is performed on all twelve bit-pairs of the J and
K registers. The result replaces the content of the J register.

ANDJK, 1300 - Logical AND operation is performed on all twelve bit-pairs of the J and
K registers. The result replaces the contents of both the J and K registers.

Table 4-30. Logical AND Subgroup, Fundamental Operations

Ref. Period Simplified Logic Event

A. BP56 UG—+MX—~ADDER
(1100) 1. JOP100*—~10OP100/11A1 Content of utility gates
(1200) 2. (fOP100) (1109%) (+110*) (}111B *)—> enter MX multiplexer.
(1300) LOPOX*/8A2

3. {OPOX*>tOPOX/8A3
4. (1OPOX) (1BP56) (11415)~> ANDJK*—>
| +ANDJK/8A3
‘ 5. JANDJK*>TSELU/BA3~>|SLUMX*/8A4
6. {SLUMX*~>1TMXS0/9B82
7. ISLUMX*>tMXEN—>{MXEN*/9A2

B. BP3 AND J.K
(1100} 1. JJOOB + {KOOB—1JK0O0*/14B1 THRU Content of ‘J and K
(1200) 1B + {K11B->1JK11%/16A1 are logically ANDed.
(1300) 2. (1JK00*) {(tANDJK)}->1U00/14B2 THRU

(tJK11%) (tANDJIK)—>{U11/1682

C. BP3 ADDER-J

(1100) 1. (tOP100) (1105B) (111110*)~> Content of adder

(1300) {OP16*/9A2 replaces content of
2. JOP16*~1PEJ6/9A3 " J-register.

3. (1PEJ6) (1BP6)>|PEJ*>1PEJ
4, (tPEJ) (tREGCLK)~{CPJ*/9A4

D BPSMD ADDER-K

(1200) 1. (tOP100) (111110*) (1104B)~ Content of adder
(1300) JOP1PK*/9A2 replaces content of
2. |OP1PK*~>tPEK5/9A3 K-register.
3. (tPEK5) (1BPSMD)—{PEK */9A3 '
4. |\PEK*>1PEK/9A4
5. (tPEK) (IREGCLK)>CPK*/9A3

4,4,2.1.4 load/Exchange Subgroup. For this subgroup Figure 4-33 is the block diagram,
Figure 4-34 is the timing diagram, Table 4-31 is the event summary of all fundamental
- operations, and Table 4-32 is the simplified logic in terms of fundamental operations.

Instructions of this subgroup perform data transactions between the four accumu-
lator registers, J,K,R, and S. Depending on whether the operation specifies a load or an
exchange operation, the transaction can result in new content only for one of the registers
called for in the operation, or both will contain new values after the execution of the
instruction. Principally, when the operation called for is a load, the content of one register
replaces the content of the other register. For example, the instruction LRFJ (Tables 4-23
and 4-24) results in placing the content of the J register into the R register. The exchange
operation is an extension of the load operation; it consists of two load operations, Instruc-
tion EXJKRS specifies a double exchange; two single exchanges are performed one after
the other.

It should be noted that loading from main accumulators, J and K into their
respective lower accumulators, R and S is done directly by generating the low-level enabling
signals PER*, PES* and clock signals CPR* and CPS*, However, the upper accumulators
have no direct access to the inputs of the main accumulators. In this case, the loading
transaction is accomplished via the MX multiplexer and the adder, as required.

All processing paths for this instruction group derive from decoder signal OP100,
which when combined with appropriate bits of the instruction, gives rise to the various
control signals, OP1PER, OPI1PES and others. These control signals generate the funda-
mental functions for this instruction subgroup, as can be seen in the listing of Table 4-31,

Table 4~32 lists all instructions for the load-exchange subgroup.

LSFK (1201) - The content of the K register (4, Figure 4-33) replaces the content of the S
register (6). The content of the K register remains unchanged.

ROO-R11{
JOO-J 11
J R
REG REG
(3) (5)
MX -
MPXR MXOQ-MX14 ADDER BOO-Bl4
() (2)
K - S '
REG KO@-K11 REG
(4) (6 '
S@-S11

Figure 4-33. Load/Exchange Subgroup, Block Diagram

4-103 - S

Table 4-31.

Mnemonic
Code

LRFJ
LSFK
LJFR
LKFS
LRSFJK

LJKFRS

LKFJ

EXJR

EXKS

EXJRKS

Figure 4-34.% Load/Exchange Subgroup, Timing Diagram

Loa

>

(12a1) '(9A3) (9A3)

Octal
Code

1101
1201
1102
1202
1301

1302

1204

1103

1203

1303

Ref.

TP OOPDOROTMPPOMINIONUEPNOTNOD D

d/Exchange Subgroup, Event Summary

Period

BPG6MD
BPSMD
BP6MD
BP6MD
BPSMD
BPSMD
BP6MD
BP5MD
BP5MD
BPSMD
BP6MD
BP6MD
BP5

BP5MD
BP6MD
BP6MD
BP6

BP5MD
BP5MD
BPSMD
BPSMD
BP5MD
BP5MD
BP6MD
BP6MD
BP6

PER, OPIPES

(944) '(9A4)

49 ,PEJ6 ,PEKS

- [olql2|3|4lslsl7lo

S R
N

D. PES™, SLSMX*
{944) (9B1)

E. st_hmx‘

i

(12A3)

i
F. MXEN™

(942)

CCC

4-104

Event

J-R

K-§
R—>MX
ADDER-J
S>MX
ADDER—-K
J-R

K=$§
S—~MX
ADDER—-K
R->MX
ADDER—J
J->MX
ADDER-K
R—>MX
J-R
ADDER—J
S—>MX
K-S
ADDER—K
S—>MX
K-S
ADDER—-K
R—-MX
J-R
ADDER—J

Table 4-32. Load/Exchange Subgroup, Fundamental Operations

Ref.

A,
(1101)
(1103)
(1301)
{1303)

B.
(1201)
(1203)
(1301)
(1303)

C.

(1302)
(1303)
(1102)
(1103)

D.
(1302)
(1303)
(1202)
{1203)

E.
{1204)

Period

BP6MD

BPSMD

BP6MD

BPSMD

BPS

Simplified Logic

R

. (toP100) (t1058B) (1111N)—>

{OP1LDR—TOP1PER/9A4

. (tOP1PER) (tBP6MD)->{PER*/9A4 =

ENABLE-RR

PER*>tPER/9B1

(tPER) (tREGCLK)~>{CPR*/9B2 =
LOAD—RR

K-S

. (tOP100) (t114SKP) (t111B)~>

JOP1LRS*-+tOP1PES/9A4

. (tOP1PES) (tBPSMD)—>{PES*/9A4 =

ENABLE-SR

JPES*—~>1PES/9B1

(*PES) (tREGCLK)~>{CPS*/9B2 =
LOAD-SR

R-MX-ADDER

1.

5.

(tOP100) (t1058) (t110B)->{ R00*/8B1

2. $ROO*—>1SELR00"8B1
3.
4, {SLRMX*>TMXEN—-{MXEN*/9A2 =

(1SELROO) (1BP6MD)—~>{SLRMX*/8A1

ENABLE-MX
JSLRMX *>tMSX1, TMXS2/9A1 =
LOAD—MX (R)

S>MX—~ADDER

1.
2,
3.
4,

5.

(tOP100) (11108B) (1104B)-{S00*/8B1
$500*~1SELS/8B1

(1SELS) (tBP5SMD)~>{SLSMX */8B2
ISLSMX*+TMXEN—->{MXEN"/9A2 =
ENABLE->MX

ISLSMX *=>TMXS0, MXS1/9B1 =
LOAD~MX (S)

J>MX—~>ADDER

1.

@

(tOP100) (1104B) (t109B)~>
JOP149/12A2
JOP149->1SELJS/12A3

(1SELJS) (1BPS)—~>ISLIMX*/12A3
ISLIMX *>TMXEN—-IMXEN*/9A2 =
ENABLE-MX (J)
JSLIMX*>TMXS2/9A2

4-105

Event

The content of the
J-register replaces
the content of the
R-register.

The content of the
K-register replaces
the content of the
S-register.

The content of the
R-register enters the
MX multiplexer.

The content of the
S-register enters the
MX muitiplexer.

The content of the
J-register enters the
M)_(multiplexer.

Table 4-32. Load/Exchange Subgroup, Fundamental Operations (Cont'd.)

Ref. Period Simplified Logic Event
F. BP6 ADDE -
{1103) 1. {15P100) (1105B) (111110%)~ The content of the
(1303) JOPIB*/9A2 adder replaces the
2. JOP16*>1PEJ6/9A3 content of the

(tPEJ6) (1BPG)~>{PEJ*/9A3= ENABLE~JR J register.
3. {PEJ*~>1PEJ/9A4 _
4, (tPEJ) {(tREGCLK)—{CPJ*/9A4

LOAD-JR

G BPSMD ADDER—K

(1203) 1. (tOP100) ($11110%) (1104B)— The content of the
(1303) JOP1PK*/9A2 adder replaces the
2. {OP1PK*>TPEK5/9A3 content of the
3, (tPEKS5) (t1BPSMD)~|PEK*/9A3 K register.
4, |PEK*>1PEK/9A4/14A3
5. (1PEK) (tREGCLK)*{CPK*/9A4

LJFR (1102) - The content of the R register (5) is transferred via the MX mul’riplexer (M
and adder (2) to the J register (3) and replaces the latter's content. The contfent of the R
register (5) remains unchanged.

LKFS (1202) - The content of the S register (6) is transferred via the MX multiplexer (1)
and adder (2) to the K register (4) and replaces the latter's content. The content of the S
register (6) remains unchanged.,

LRSFJK (1301) - The contents of the J (3) and K (4) registers replace the content of the R
(5) and S (é) registers, respectively. The contents of the J and K registers remain unchanged.

LJKFRS (1302) - The contents of the R (5) and S (6) registers are transferred via the MX
multiplexer (1) and adder (2) to the J (3) and K (4) registers, respectively, and replace
their contents, The contents of the R and S registers remain unchanged.

LKFJ (1204) - The contents of the J register (4) is transferred via the MX multiplexer (1)
and adder (2) to the K register (3) and replaces the latter's content. The content of the J
register remains unchanged.

EXJR (1103) = First, the content of the R register (5) is transferred via the MX multiplexer
(1) to the adder (2). Next, the content of the J register (3) replaces the content of the
R-register (5). Finally, the content of the adder (2) replaces the content of the J register (3).

LRFJ (1101) - The content of the J register (3) replaces the content of the R register (5).
The content of the J register (3) remains unchanged., -

4-106 - R

EXKS (1203) - This instruction performs the same operation as EXJR on registers S (6) and
K (4).

EXJKRS (1303) = This instruction combines the operations of EXJR and EXKS.

EXJK (1373) - This instruction is an exchange of the content of the J and K registers, but
is not one of this subgroup because the contents of these two registers are exchanged in the
shift and rotate subgroup.

4.4,2,1,5 Add/Subtract Subgroup. For this subgroup, Figure 4-35 is the block diagram,
Figure 4-36 is the timing diagram, Table 4~33 is the instruction event summary for the
fundamental operations and the instruction codes that invoke them, and Table 4-34 is the
description of the 14 fundamental operations. '

Instructions from this subgroup perform arithmetic operations on the contents of
the four accumulators, For a given instruction only two of the registers can be party to the
operation, The operation can be any of three types; addition, subtraction, or negation.
Addition is carried out by combining two positive quantities through the MX and TX multi-
plexers. Because the MX multiplexer is capable of contributing only a positive quantity,
subtraction and negation are performed through control of the TS multiplexer add-subtract
logic. '

The add-subtract operations can be considered as one=pass or two-pass operations,
each occurring in its own time period, BP5 for the one-pass and BP6 for the two-pass. In a
one-pass operation, the result of the summation, which takes place in the adder, is obtained
by providing data paths that switch data through the TS and MX multiplexers only one time
to obtain the desired result, Although other events occur during the second pass, or period
BP4, they have no relevance as far as the operation is concermned. The irrelevant operations
are listed in italics in Table 4-33. On the other hand, a two=-pass operation produces the
desired results providing a summation, performed in the adder during the first pass, and then
taking the complement of the result through the add=-subtract logic via the TS multiplexer.
The two-pass operation has a relevance when a negative quantity cannot be produced by
switching through the TS multiplexer and the add-subtract logic during period BP5, For
example, the quantity =R cannot be produced through the TS multiplexer because the TS
multiplexer does not accept -R (or -S) register data. The two-pass operation is also used
in producing the negative of a sum such as -(A + B) or -(A - B),

In a one-pass operation, instruction SJK J (1121), for example, the contents of
the J register is switched through the MX multiplexer, and the contents of the K register
is switched through the TS multiplexer. Decoder control logic associated with this instruction
prepared the add-subtract logic for a subtract operation through the TS multiplexer. When
the adder output is formed, the J register is enabled and clocked, and the summation result
replaces the contents of the J register. Although events L and N, Table 4-33, duplicate
events D and H, they are meaningless becuase the operation has produced the required
results during the first pass.

4-107 - B

KOQ-Ki1

y4
— Ts
MX z%
—a () ———l
ADDE;S(l:B
LOGI
K S
(3) REG REG
(5) n
ADD-sUB | |Ts@e-Tst
CONT ADDER |B@@-BH
(4)
J R
Mx {xoe-Mxit REG REG
2 (6) (8)
L
JOO-J1
ROG-R11
S@Q@-Sit

Figure 4-35. Add/Subtracr Subgroup, Block Diagram

b BPS |
T T=T1<1=1]"°
A. INITIALIZE
OP102 , OP133 ,0P1023 , OPIBX
(1A (11A1) (1A (11A2)
B. SLJMX® SLRMX® SLSMX* J—= MX
{9A1) © (SA1) (9A1) R—e MX
S—eMX
C. SLJTS™ SLKTS* J—=TS
(12B3) (12A4) K—=TS
F. PEJ* PEK™ ADDER—= J
(9A3) (9A4) ADDER—=K
G. CPJ" CPK¥, CPOV* . ADDER= COUT
(944) (9A4) (11B4) COMPL = OV
H. SLJT$* SLKTS® J—=T1S
(12B3) (12A4) K~=TS

I. Tsaop* Tssus®
(1381) (1383)

J. CIN
(12A2)

MK +TS)—= ADDER
| MX-TS)—=ADDER

| bMK-—T S)-=ADDER

K. CPOV*
(1184)

MPL—=0V, SUB
MPL—=OV,NEG.ADD

D. TSAOD¥,TSSUB™
(1381) (1383)

E. CIN
(12A2)

(MX+TS) —~=ADDER
(MX-TS) —=ADDER

l I(MX-TS)"’ADDER

Figure 4-36. Add/Subtract Subgroup, Timing Diagram

4-108

Table 4-33. Add/Subtract Subgroup, Event Summary

Mnemonic

AJKJ
(J+K)

SIK J
(J-K)

ADRJ
(R+J)

SBRJ
(R-J)

ABSJ
(S+J)

SBS J
(S-)

Octal
Code

1120

1121

1122

1123

1124

1125

Ref.

Zrx-Imp»

TVZrA-000

IZrA-o0mp

PZEA-OO® ZrA-IOD

ZrRA-TOO

Period

BPS
BP5
BP5B
BP56

BP56 .

BP6B
BP6B

BP5
BP5
BP5
BP56
BP56
BP6B
BP6B
BP7

BP5MD

BP5

BP5B
BP56
BP56
BP68B
BP68B

BPS
BP5
BP5
BP56
BP56
BP68B
BP6B
BP7

BP5MD

BP5

BP5B
BP56
BP56
BP6B
BP68B

Pass

1
1
1
1.2
1,2
2
2

NN

Event

J>MX~ADDER
K~TS~+LOGIC

(MX + TS)>ADDER
ADDER-J
COMPL~OV, IF ADDER=COUT
J>TS>+L0GIC

(MX + TS)>ADDER

J>MX->ADDER
K-TS—>*LOGIC

(MX - TS)>ADDER

ADDER-J

COMPL-0OV, IF ADDER=COUT
Jo>TS—>2LOGIC

(MX + TS]-ADDER
COMPL—-0V, SUBTRACT

R-MX->ADDER

J=»TS—>t LOGIC

{(MX + TS)>ADDER

ADDER-J

COMPL—~QV, IF ADDER=COUT
J>TS—>:LOGIC

(MX + TS)>ADDER

R—>MX~ADDER

J=TS—>* LOGIC

{(MX - TS)>ADDER

ADDER~J

COMPL—~OQV, IF ADDER=COUT
J=>TS—>*L0G/C

(MX + TS)>LOGIC
COMPL-QV, SUBTRACT

S>MX—~ADDER

J>TS—~ADDER

(MX + TS)>ADDER

ADDER—J

COMPL-0V, IF ADDER=COUT
J=>TS=>£LOGIC

(MX + TS)>ADDER

S>MX—~>ADDER
J->TS>:LOGIC

(MX - TS)~ADDER

ADDER—J

COMPL—~QV, IF ADDER=COUT
J>TS=2LOGIC

(MX + TS)>ADDER
COMPL-~OV, SUBTRACT

Table 4-33. Add/Subtract Subgroup, Event Summary (Cont'd.)

Octal

Mnemonic Code Ref. Period Pass Event
NAJK J 1130 A BP5 1 J>MX—~ADDER
-(J+K) E BP5 1 K—=TS—£L.OGIC
H BP5B 1 (MX + TS)~ADDER
| BP56 1,2 ADDER—J
K BP56 1,2 COMPL~-OV, |F ADDER=COUT
L BP6B 2 J=>TS—*LOGIC
(0] BP6B 2 {MX - TS)>ADDER
Q BP7 3 COMPL—-OV, NEGATE ADD
NSJK J 1131 A BPS 1 J>MX—ADDER
(K-J) E BPS 1 K-TS—+ LOGIC
G BP5 1 (MX - TS)>ADDER
| BP56 1.2 ADDER~J
K BP56 1,2 COMPL—OQV, IF ADDER=COUT
L BP6B 2 J=TS—* LOGIC
0 BP6B 2 (MX - TS)~>ADDER
NADR J) 1132 B BP5MD 1 R—-MX—ADDER
{(R+J) D BP5 1 J=>FS—+ LOGIC
' H BP5B 1 (MX + TS)>ADDER
| BP56 1,2 ADDER-J
K BP56 12 COMPL—QV, IF ADDER=COUT
L BP6B 2 J=>TS—+L0OGIC)
(6] BPGB 2 (MX - TS)>ADDER
Q BP7 3 COMPL-OV, NEGATE ADD
NSBR J 1133 B BPS5MD 1 R—-MX—~ADDER
(J-R) D BP5 1 J>TS~>+LOGIC
G BP56 1,2 (MX - TS)—>ADDER
| BP56 1,2 ADDER~J
K BP56 1,2 COMPL-OV, IF ADDER=COUT
L BP6B 2 J-TS-+ LOGIC
(6] BP6B 2 {(MX - TS)»ADDER
NADS J 1134 C BP5MD 1 S—>MX—~ADDER
-(S+J) D BPS 1 J=>TS-+ LOGIC
H BP58 1 (MX + TS)>ADDER
! BP56 1,2 ADDER—J
K BP56 1.2 COMPL—QV, {F ADDER=COUT
L BP6B 2 J=>TS~>+ LOGIC
(0] BP6B 2 (MX - TS)~ADDER
Q BP7 3 COMPL—0OV, NEGATE ADD
NSBS J 1135 C BP5MD 1 S->MX—-ADDER
(J-S) D BP5 1 J->TS—+ LOGIC
G BP5 1 (MX - TS)>ADDER
] BP56 1,2 ADDER—J
K BP56 1,2 COMPL-OV, IF ADDER=COUT
L BP68B 2 J-»TS->t LOGIC
(0] BP6B 2 (MX - TS)>ADDER

4-110 -- — e

Table 4-33. Add/Subtract Subgroup, Event Summary (Cont'd.)

Mnemonic

AJK K
(J+K)

SJIK K
(J-K)

ADR K
(R+K)

SBR K
(R-K)

ALS K
(S+K)

SBS K
(8-K)

Octal
Code

1220

1221

1222

1223

1224

1225

Ref.

Z2XRxTTn>

TZE2RedOTD

VZARAOHmTm

22 RXReaeITO

22RO TO

Z2ReI N

Period

BPS

BP5

BP5B
BP56
BP56
BP6B
BP68B

BP5
BP5
BPS
BP56
BP56
BP6B
BP68B
BP7

BP5MD

BP5

BP5B
BP56
BP56
BP6B
BP6B

BP5
BP5
BP5
BP56
BP56
BP6B
BP6B
BP7

BP5MD

BP5

BP5B
BP56
BP56

- BP68B .

BP68B

BP5MD

BP5
BPS
BP56
BP56
BP6B
BPGB
BP7

Pass

NN

[T QT QY

WN N -
NN

—_— e o =
~ 0~
NN

NN

ISR

MN—b—lﬂ—l_l
NN

Event

J>MX->ADDER

K—=TS—>* LOGIC

{(MX + TS)->ADDER

ADDER-K

COMPL—~OQV, IF ADDER=COUT
K->TS—>*LOGIC

{MX + TS)>ADDER

J>MX—>ADDER

K—=TS £ LOGIC

{MX - TS}>ADDER

ADDER—K

COMPL-OV, IF ADDER=COUT
K->TS>=LOGIC
(MX+TS)>ADDER
COMPL~OV, SUBTRACT

R—+MX—-ADDER

K=TS—>* LOGIC

(MX + TS)>ADDER

ADDER-K

COMPL—0OV, {IF ADDER=COUT
K—>TS~>*tLOG/C

{MX + TS)>ADDER

R—~MX—~ADDER

K-=>TS—% LOGIC

{(MX - TS)>ADDER

ADDER-K

COMPL—0OV, IF ADDER=COUT
K->TS—+ LOG/C

(MX + TS)>ADDER
COMPL-0V, SUBTRACT

S>MX—~ADDER
K=TS—~ADDER

(MX + TS)>ADDER

ADDER—K

COMPL~OV, IF ADDER=COUT
K=>TS->tLOG/IC

(MX + TS)>ADDER

S~MX—~ADDER

K—TS—* LOGIC

(MX - TS)~ADDER

ADDER-K

COMPL—-OQV, IF ADDER=COUT
K->TS~>*LOGIC

(MX + TS)>ADDER
COMPL—OV, SUBTRACT

Table 4-33. 'Add/Subtract Subgroup, Event Summary (Cont'd.)

Mnemonic

NAJK K
-(J+K)

NSJK K
(K-J)

NADR K
-(R+K)

NSBR K
(K-R)

NADS K
-(S+K)

NSBS K
(K-S)

Octal
Code

1230

1231

1232

1233j

1234

1235

" Ref.

PDOZEAR«ITNO OZZAReOTw PDOEXReITNwW OZ2Re«mT P> DOEARAeIT >

OZ2ARAeeOMO

Period

BPS
BPS
BP5B
BP56
BP56
BP68B
BP6B
BP7

BP5
BPS
BP5
BP56
BPS6
BPGB
BP6B

BPSMD

BP5

BP5B
BP56
BP56
BP6B
BP6B
BP7

Pass

WN N - o ot -
NN

BPSMD 1

BP5

BP56
BP56
BP56
BP6B
BP6B

BP5MD
BP5
BP5B
BP56
BP56
BP6B
BP6B
BP7

BP5MD

BP5
BP5
BP56
BP56
BP6B
BP6B

NN

4-112

Event

J>MX->ADDER
K-=TS~>xLOGIC

(MX + TS)>ADDER

ADDER—K

COMPL-~OV, IF ADDER=COUT
K—=>TS->+LOGIC

{(MX - TS)~ADDER
COMPL—~OV, NEGATE ADD

J>MX-=ADDER

K->TS—>* LOGIC

{MX - TS)>ADDER

ADDER-K

COMPL~OQV, IF ADDER=COUT
K=TS—+LOGIC

{MX - TS)>ADDER

R—-MX—ADDER

K-=>TS—>x LOGIC

(MX + TS)~>ADDER

ADDER—K

COMPL~OV, IF ADDER=COUT
K—=TS->£LOGIC

{(MX + TS)~>ADDER
COMPL—~OV, NEGATE ADD

R-MX—~ADDER
K->TS-*LOGIC

(MX - TS)>ADDER

ADDER—K

COMPL-~OV, IF ADDER=COUT
K—>TS—+ LOGIC

(MX - TS)>ADDER

S>MX—-ADDER

K-=>TS—% LOGIC

{(MX + TS)->ADDER

ADDER-K

COMPL—~OV, IF ADDER=COUT
K-=TS—% LOGIC

(MX - TS)~ADDER
COMPL—~OV, NEGATE ADD

S>MX—~ADDER

K->TS—% LOGIC

(MX - TS}>ADDER

ADDER—K

COMPL~OV, IF ADDER=COUT
K-=TS—+ LOGIC

(MX - TS)—~ADDER

Table 4-33. Add/Subtract Subgroup, Event Summary (Cont'd.)

Octal

Mnemonic Code Ref.
AJKJK - 1320 A
(J+K) E,F
H
|
J
K
L
M
N
SJK JK 1321 A
(J-K) E,F
G
|
J
K
L
M
N
NAJK JK 1330 A
-(J+K) E,F
H
|
J
K
L
M
(o]
Q
NSJK JK 1331 A
(K-J) E.F
H
|
J
K
L
M
o
Q

Period

BP5

BP5

BP5B
BP56
BP56
BP56
BP6B
BP6B
BP68B

BP5
BP5
BPS
BP56
BP56
BP56
BP6B
BP6B
BP68B

BP5

BPS

BP5B
BP56
BP56
BP56
BP6B
BP6B
BP6B
BP7

BP5
BP5
BP5
BP56
BP56
BP56
BP68B
BP6B
BP6B
BP7

Pass

e

R T Y

1,2

1,2

w NN

-— o -

4-113 ..

Event

J~MX-ADDER

K=TS—=% LOGIC

(MX + TS)>ADDER

ADDER—J

ADDER-K

COMPL-OV, IF ADDER=COUT
JoTS~>+ LOGIC

K->TS—+ LOGIC

{MX + TS}>ADDER

J>MX—~ADDER

K->TS—+ LOGIC

{MX - TS)~ADDER

ADDER-J

ADDER—K

COMPL—+0OV, IF ADDER=COUT
J=TS—>+LOGIC

K->TS—+LOGIC

{MX + TSj~ADDER

J>MX~ADDER

K=TS—+ LOGIC

(MX + TS)>ADDER

ADDER-J

ADDER—K

COMPL~OV, IF ADDER=COUT
J=>TS—t LOGIC

K—=>TS—t LOGIC

(MX - TS)>ADDER
COMPL-~OV, NEGATE ADD

J>MX—-ADDER

K—-TS—+ LOGIC

(MX + TS)~-ADDER

ADDER—J

ADDER-K

COMPL-OQV, IF ADDER=COUT
J=>TS»>+LOGIC

K=TS—->+LOGIC

(MX - TS)>ADDER
COMPL~OV, NEGATE ADD

Table 4-34, Add/;/Subtract Subgroup, Fundamental Operations

Ref.

A.
(1120)
(1121)
(1130)
(1131)
{1220)
(1221)
(1230)
(1231)
(1320}
{1321)
(1330)
(1331)

B.
(1122)
(1123)
(1132)
(1133)
(1222)
(1223)
(1232)
(1233)

C.
(1124)
{1125)
(1134)
(1135)
(1224)
(1225)
{1234)
{1235)

D.
(1122)
(1123)
(1124)
(1125)
(1132)
(1133}
(1134)
(1135)

E.
{1120}
(1121)
(1130)
(1131)
(1321)
(1331)

Period

BP5

BP5MD

BP5MD

BP5B

BPS

Simplified Logic

J>MX—~ADDER

JOP102* + JOP103*~>10OP1023/11A1
(tOP1023) (11416)~|OP10X *~tOP10X/11A2
(tOP10X) (119110*)~>4SLJ23*~>1SELJ5/12A3
(1SELJ5) (1BP5)—>{SLIMX */12A4

ISLIMX *>1MXS2/9A2 = JR-MX—>ADDER

oopwn~

R~>MX—~ADDER

1. LOP102* + |OP103*~TOP1023/11A1

2. (1OP1023) (11415)>LOP10X*~>tOP10X/11A2

3. (tOP10X) (t110B) (1109%)>{R23*/8A1

4, |R23*~>tSELR23/8A1

5. (tSELR23) (tBP5SMD)~>{SLRMX*/8A2

6. ISLRMX*>TMXS1, TMXS2/9A1 = RR—
MX—~ADDER

Event

Content of J-
register is switched
through MX multi-
plexer to adder.

{SLIMX *>tMXEN->MXEN*/9A2 = ENABLE-MX

Content of R-
register is switched
through MX multi-
plexer to adder.

7. 1SLRMX *>1tMXEN—~IMXEN*/9A2 = ENABLE-MX

S—~MX->ADDER

. LOP102* + {OP103*~>10P1023/11A1

. (t0P1023) (11415)~>,0P10X *~>1OP10X/11A2

. (tOP10X) (1110%) (1109B)—{523*/8B1

. 1823*~>SELS/8B1

. (1SELS) (1BPSMD)~>{SLSMX */8B2

. ISLSMX*~>tMXS0, tMXS1/981 = SR~
MX—~ADDER

-—

o0 bdWN

Content of S-
register is switched
through MX multi-
plexer to adder.

7. ISLSMX*->TMXEN-JMXEN*/9A2 = ENABLE-MX

J>TS>=LOGIC

1. 11109* + L110*=>tX0X1*/11A4

2.'{OP102* + {OP103*~10P1023/11A1

3. [(tOP1023) (tX0X1*) (1105X)~>{JARTH */12B2
4, JJARTH*~>1JARTH/12B3

5. !(TJARTH) {(1BP5B)~|SLJTS*/12B3

6. '4SLJTS*>1TSS0/13B4, 1TSS1 = J=

‘TS £ LOGIC

K=+TS—+LOGIC

1JOP102* + {OP103*~>1T0OP1023/11A1
(tOP1023) (1105B)—+{0P235*/9A3

.1 10P235*~10P235/12B3

{tOP235) (119110%)>{0P23K*~>1TOP1K/12A4
(tOP1K) (tBP5)—>|SLKTS*>1TSS1/13B4 =
K—=>TS>+LOGIC i,

QW=

4-114

Content of the J-
register is switched
through the TS
multiplexer to the
add-subtract logic.

Content of the K-
register is switched
through the TS
multiplexer to the
add-subtract logic.

Table 4-34, Add/Subtract Subgroup, Fundamental Operations (Cont'd.)

Ref. Period Simplified Logic Event

F BP5 K=>TS—>+LOGIC

(1220) 4OP102* + {OP103*~>10P1023/11A1
(1221) (1OP1023) (1104B)-+{0P231*/9A3
(1222) 1OP231*~10P1K/12A4

(1223) (tOP1K) (1BPS)=ISLKTS*/12A4

:}g;g; ISLKTS*~>1TSS1/13B4 = K>TS—>tLOGIC

{1230)
(1231)
{1232)
(1233)
(1234)
(1235)
(1320)
(1321)
{1330)
(1331)

G BP5B {(MX-TS)->ADDER

(1121) JOP102* + {OP103*->10P1023/11A1 Difference of MX and
(1123) (tOP1023) (11415)>}OP10X*~10P10X/11A2 TS multiplexer is the
(1125) (tOP10X) (1111N)>{OP1SB*~1SUB5/13B3 adder output.

(1131) (tsuBs) (1BP5B)- TSSUB*/13B2

(1133) (4TSSUB™) (tDCIN*) (tOP2*)>{CIN2*~

(1135) 1CIN/12A2 = MX - TS>ADDER
(1221)

(1223)
(1225)
(1231)
(1233)
(1235)
(1321)
(1331)

S ol Sl

aoprwN=

H BP5B (MX+TS)~ADDER

(1120) 1. OP102” + LOP103*~10P1023/11A1 Sum of MX and TS
(1122) 2. (1OP1023) (1BP5B) (11415) (1111B*)~> multiplexer is the

:: :gg; ITSADD"/13B2 = MX + TS~ADDER adder output.

{1132)
(1134)
(1220)
(1222)
(1224)
(1230)
{1232)
{1234)
(1320}
(1330)

4-115 .. - e

Table 4-34, Add/Subtract Subgroup, Fundamental Operations (Cont'd,)

Ref.

I
(1120)
(1121}
(1122)
(1123)
(1124)
(1125)
(1130}
(1131}
(1132)
(1133)
(1134)
(1135)
(1320)
(1321)
(1330)
(1331}

J.
(1220)
(1221)
(1222)
(1223)
(1224)
(1225)
(1230)
(1231)
(1232)
(1233)
(1234)
{1235)
(1320)
(1321)

(1330)

(1331)

K.
(1120)
(1121)
(1122)
{1123)
(1124)
(1125)
(1130)
(1131)
(1132)
(1133)
{1134)
{1135)
{1220)
(1221)

Period

BP56

BP56

BP56

Simplified Logic Event

ADDER—J

SohwnN =

$OP102* + |OP103*->10OP1023/11A1 Content of adder re-
(tOP1023) (1105B)—|0P235*/9A3 places content of J-
LOP235*~>1PEJ56/9A3 register.

(tPEJS6) (tBP56G)—>{PEJ* = ENABLE~JR

IPEJ*—>1PEJ/9A4

(tPEJ) (tREGCLK)=>{CPJ*/9A4 = LOAD~JR

ADDER-K

HPLN

o

lOP102* + LOP103*~>10P1023/11A1 Content of adder re-
{tOP1023) (1104B)->10P231%/9A3 places content of K-
{OP231*>1PEK5+6/9A3 register.

({PEK5+6) (tBP56)—~>{PEK™/9A4 =

ENABLE—-KR :

JPEK*>1TPEK/9A4

(1PEK) (TREGCLK)={CPK*/9A4 = LOAD—KR

COMPL—~OQV, IF ADDER = COUT

1.
2.

3.

IBP5* + |BP6*~1BP56/11A2 Overflow register is
(1BP56) (tCOUT) (1OP1023)={COUTV*~ complemented if a
1CPOV/11B4 carry is produced by
{(tCPOV) (tREGCLK)={CKOV /11B4 the adder.

JCKOV /11B4 = SET~0V (tOV, {0V */11B4)

4-116

Table 4-34, Add/Subtract Subgroup, Fundamental Operation (Cont'd.)
Ref. Period Simplified Logic | Event

(1222)
(1223)
(1224)
(12265)
(1230)
(1231)
(1232)
(1233)
(1234)
(1235}
(1320)
{1321)
(1330)
(1331)

L.
(1120) BP6B J=>TS—>+LOGIC

(1121) 1. JOP102* + {OP103*~10P1023/11A1 Content of the J-
(1122) (tOP1023) (11058)-~0P235*~>10P235/12B3 register is switched
(1123) (+OP235) (1BP6B)->{SLJTS*/12B3 through the TS
(1124) {SLITS*>1TSS0/13B4, 1TSS1 = multiplexer to the

(1125) J>TS>+LOGIC add-subtract logic.
(1130)

(1131)
(1132)
(1133)
(1134)
(1135)
(1320)
(1321)
{1330)
(1331)

M.
(1220) BP6B K->TS—>tLOGIC

(1221) . LOP102 + |OP103*~10P1023/11A1 Content of the K-
(1222) . (tOP1023) (1104B)—>|0P231*/9A3 register is switched
(1223) . LOP231*>1KTS6/12A4 through the TS

(1224) . (1KTS6) (1BP6B)~ISLKTS*>1TSS1/13B4 = multiplexer to the

:133(5): K-TS=>+LOGIC add-subtract logic.

(1231}
(1232)
{1233}
(1234}
{1235}
(1320}
(1330)
(1321}
{1331)

s

-

S WN

4-117

Table 4-34, Add/Subtract Subgrodp, Fundamental Operations (Cont'd.)

Ref. Period Simplified Logic Event

N. BP6B (MX+TS)>ADDER
(1120) 1. (tOP102) (t1415)-{OP245*~>1TAD6/13B1 Sum of MX and TS
(1121) 2. (1TAD6) (+BP6B)~+ TSADD*/1382 = multiplexer is the
(1122) MX+TS—~ADDER adder output,
(1123)
(1124)
(1125)
(1220)
(1221)

(1222)

(1223)

(1224)

(1225)

(1320)

(1321)

O. BP6B (MX-TS)~ADDER

(1130) 1. (1OP103) (11415)>10P205*/13B2 Difference of MX
(1131) 2. JOP205*~tSUB6/13B3 and TS multiplexer is
(1132) 3. (1SUB6) (1BP6B)->|TSSUB*>+TSSUB/13B3 the adder output.
(1133) 4. (YTSSUB) (1DCIN*) (tOP2*)—>{CIN2*~

(1134) 1CIN/12A2 = MX-TS>ADDER

(1135)

(1230)

{1231)

(1232)

(1233)

(1234)

(1235)

(1330)

(1331)

P. BP7 COMPL~OV, SUBTRACT

(1121) 1. LOP102*>10P102/11A1 Overflow register is
(1123) 2. (tOP102) (11118)>}OP211*>10P1SBL/12B4 complemented for
(1125) 3. (tOP1SBL) (tBP7)~!AROV*/1284 add operation.
(1221) 4. LAROV*~>1CPOV/11B3
(1223) 5. (1CPOV) (tREGCLK)~CKOV /11B4

(1225) 6. LCKOV /11B4 = SET (tOV—{OV* + OV~

tOV*/11B4) = COMPL-0V

Q. BP7 COMPL~0OV, NEGATE ADD
(1130) 1. {OP103*->10P103/11A1 Overflow register is
(1132) 2. (tOP103) (t11B*)>JOP1311*~1OP1SBL/12B4 complemented for
(1134) 3. (tOP1SBL) (1BP7)~AROV*/12B4 subtract operation.
(1230) 4. JAROV*~1CPOV/11B3
(1232) 5. (1CPOV) (tREGCLK)~CKOV /1184
(1234) 6. UCKOV /11B4 = SET (tOV—J0OV* + OV~
(1330) tOV*/11B4) = COMPL~OV

4-118

Study of the requirements of instruction NSBR J (1133) in Table 4-33 shows that

the difference between confents of (J-R) cannot be formed in a single pass because the

. quantity R has a negative sign. Figure 4-35, the block diagram reveals that the contents
of the R register can only be sent to the MX multiplexer, which is not capable of treating
a negative quantity. Therefore, this instruction must be carried out in a two=pass operation,
The quantity R-J is produced during the first pass by switching the content of the J register
through the TS multiplexer and subtracting it from the content of the R register, which is
switched through the MX multiplexer. The resulting content of the adder, is loaded into
the J register and then the content of the J register is switched through the Ty multiplexer
during the second pass to produce a negation. During the second pass, the MX multiplexer
is not enabled, and hence, can only contribute zeros to the adder. The result of this
operation produces -(R - J), which is equivalent to J = R, as the instruction requires.

A two-pass operation is required for parenthetical expressions of the type =(A +
B) and =(A - B) = (B - A). For these summations the TS multiplexer output is selected for
addition during the first pass and for negation during the second pass. Whenever subtraction
or negation is ordered, 2's complement addition between the two quantities occurs. The
2's complement or negative quantity is obtained by summing the complement of the data
switched through the TS multiplexer with the data switched through the MX multiplexer
and then incrementing the adder with a carry input (high-level CIN signal). For any of the
add/subtract operations, overflow is possible. If addition produces an overflow, the oper-
ation yields an improper result and if subtraction does not produce an overflow, the operation
also yields an improper result. For this reason, operation K tests for an overflow, and in
the case of subtraction, and negation, operations P and Q (Table 4-34) cancel it if the
operation yields a proper result.

All processing control for this instruction subgroup is derived from operate
decoder signals OP102* and OP103*, which when combined with appropriate bits of the
add/subtract subgroup instruction, gives rise to various other control signals. These control
signals generate the fundamental operations listed in Table 4-34. Table 4-33, the event
summary, lists all the operations specified in Table 4-34 which are used in the processing
of the instruction. The instructions are described below.

AJK J (1120) - The contents of the J and K registers are added via the MX and TS multi-
plexers, respectively, during the first pass and the result, J + K replaces the confents of
the J register. Operations L and N are irrelevant,

SJK J (1121) - The contents of the J and K registers are added after first complementing
and incrementing the contents of the K register which is switched through the TS multiplexer
resulting in a subtraction, J - K. The result replaces the content of the J register. Oper-
ations L and N are irrelevant,

ADR J (1122) - The contents of the R and J registers are added via the MX and TS multi-
plexers, respectively, and the result, R+ J, replaces the contents of the J register.
Operations L. and N are irrelevant,

4-119

SBR J (1123) - The contents of the R and J registers are added after first complementing
and incrementing the content of the J register which is switched through the TS multiplexer
resulting in a subtraction, R - J. Operations L and N are irrelevant.

ADS J (1124) ~ The contents of the S and J registers are added via the MX and TS multi-
plexers, respectively, during the first pass and the results, S+ J, replace the contents of
the J register. Operations L and N are irrelevant. :

SBS J (1125) - The contents of the S and J registers are added after first complementing and
incrementing the content of the J register which is switched through the TS multiplexer
resulting in a subtraction, S - J. Operations L and N are irrelevant.

NAJK J (1130) - This is g two=pass operation, During period BP5, the first pass takes place.
The first-pass events are identical to the first-pass events of instruction AJK J (1120).
During period BP6B, the second pass takes place. The second-pass events L and O switch
the content of the J register, J+ *, through the TS multiplexer so that its output can be
complemented and incremented. The result, -(J + K) replaces the content of the J register,
which remains enabled. Pass 3 complements the overflow register,

NSJK J (1131) - This is a two=-pass operation. During period BP5, the first pass takes place.
The first-pass events are identical to the first-pass events of instruction SJK J (1121),
Dyring period BP6B, the second pass takes place. The second-pass events L and O switch

the contents of the J register J-K, through the TS multiplexer so that its output can be
complemented and incremented. The result, K - J, replaces the content of the J register,
which remains enabled, Pass 3 does not occur.

NADR J (1132) - This is a two-pass operation. During period BP5, the first pass takes place,
The first-pass events are identical to the first-pass events of instruction ADR J (1122).
During period BP6B, the second-pass takes place, The second-pass events L and O switch
the contents of the J register, R+ J, through the TS multiplexer so that its output can be
complemented and incremented. The results =(R + J), replace the contents of the J register,
which remains enabled., Pass 3 complements the overflow register.

N$BR J (1133) - This is a two-pass operation. During period BP5, the first pass takes place.
The first-pass events are identical to the first-pass events of instruction SBR J (1123).
Dyring period BP6B, the second pass takes place. The second-pass events L and O switch
the contents of the J register, R - J, through the TS multiplexer so that its output can be
complemented and incremented. The results, J - R, replace the contents of the J register,
which remains enabled. Pass 3 does not occur.

NADS J (1134) - This is a two=pass operation. During period BP5, the first pass takes place.
The first-pass events are identical to the first-pass events of instruction ADS J (1124).

During period BP6B, the second-pass takes place. The second-pass events L and O switch

the contents of the J register, S+ J, through the TS multiplexer so that its output can be
complemented and incremented. The results, =(S+ J), replace the contents of the J register,
which remains enabled. Pass 3 complements the overflow register.

4-120

NSBS J (1135) - This is a two-pass operation, During period BP5, the first pass takes place.
The first-pass events are identical to the first-pass events of instruction SBS J (1125),

During period BP6B, the second-pass takes place. The second-pass events L and O switch
the contents of the J register, S = J, through the TS multiplexer so that its output can be
complemented and incremented. The results, J = S, replace the contents of the J register,
which remains enabled. Pass 3 does not occur.

AJK K (1220) - The contents of the J and K registers are added via the MX and TS multi-
plexers, respectively, during the first pass and the result, J+ K, replace the contents of
the K register, Operations M and N are irrelevant.

SJK K (1221) - The contents of the J and K registers are added after first complementing
and incrementing the contents of the K register which is switched through the TS multiplexer
resulting in a subtraction, J = K. The result replaces the content of the K register.
Operations M and N are irrelevant,

ADR K (1222) - The contents of the R and J registers are added via the MX and TS multi-
plexers, respectively and the result, R+ K, replaces the contents of the K register.
Operations M and N are irrelevant,

SBR K (1223) - The content of the R and K registers are added after first complementing and
incrementing the content of the K register which is switched through the TS multiplexer
resulting in a subtraction, R = K. Operations M and N are irrelevant,

ADS K (1224) - The contents of the S and K registers are added via the MX and TS multi-
plexers, respectively, during the first pass and the results, S+ K, replace the contents of
the J register. Operations M and N are irrelevant.

SBS K (1225) - The contents of the S and K registers are added after first complementing and
incrementing the content of the K register which is switched through the TS multiplexer
resulting in a subtraction, S ~ K, Operations M and N are irrelevant.

NAJK K (1230) -~ This is a two=-pass operation., During period BP5, the first pass takes place.
The first=pass events are identical to the first-pass events of instruction AJK K (1220).,
During period BP6B, the second pass takes place. The second=-pass events M and O switch
the content of the K register, J+ K, throug the TS multiplexer so that its output can be
complemented and incremented. The result, =(J + K) replaces the content of the K register,
which remains enabled, Pass 3 complements the overflow register.

NSJK K (1231) - This is a two=pass operation, During period BP5, the first pass takes place.
The first=pass events are identical to the first-pass events of instruction SJK K (1221).
During period BP6B, the second pass takes place. The second-pass events, M and O, switch
the contents of the K register J = K, through the TS multiplexer so that its output can be
complemented and incremented, The result, K = J, replaces the content of the K register,
which remains enabled. Pass 3 does not occur.

4-121

NADR K (1232) - This is a\ two=pass operation. During period BP5, the first pass takes place.
The first-pass events are identical to the first=-pass events of instruction ADR K (1222),

During period BP6B, the sqcond-pass takes place. The second-pass events M and O switch
the contents of the K register, R+ K, through the TS multiplexer so that its output can be
complemented and increm nted The- results =(R+ K), replace the contents of the K register,
which remains enabled. Puss 3 complements the overflow register,

NS$BR K (1233) - This is a two-pass operation. During period BP5, the first pass tokes place.
The first-pass events are iqientical to the first-pass events of instruction SBR K (1223),

During period BP6B, the second pass takes place. The second-pass events, M and O, switch
the contents of the K register, R - K, through the TS multiplexer so that its output can be
complemented and incremented. The results, K - R, replace the contents of the K register,
which remains enabled. ﬂass 3 does not occur.

NADS K (1234) - This is a two-pass operation. During period BP5, the first pass takes place.
The first=pass events are identical to the first-pass events of instruction ADS K (1224).

During period BP6B, the second-pass takes place. The second-pass events, M and O, switch
the contents of the K regu‘sfer, S+ K, through the TS multiplexer so that its output can be
complemented and incremented. The results, =(S+ K), replace the contents of the K register,
anch remains enabled. Pass 3 complements the overflow register.

N$BS K (1235) - This is o two-pcss operation., During period BP5, the first pass takes place.
The first-pass events are |cﬁenhcal to the first-pass events of instruction SBS K (1225).

qumg period BP6B, the second pass takes place. The second-pass events, M and O, switch
’rhe contents of the K reglj’rer, S - K, through the TS multiplexer so that its output can be
complemented and mcrem¢m‘ed The result, K - S, replaces the contents of the K register
which remains enabled. Pass 3 does not occur.

AJ?K JK (1320) - The contents of the J and K registers are added via the MX and TS multi-
plexers, respectively, during the first pass and the result, J + K, replaces the contents

ofibofh the J and K regisfg‘ers. Operations L, M and N are irrelevant,

SJ[K JK (1321) - The confénfs of the J and K registers are added after first complementing
and incrementing the contents of the K register which is switched through the TS multiplexer
resulting in a subtraction,|J = K. The result replaces the contents of both the J and K
registers, Operations L, M, and N are irrelevant,

NAJK JK (1330) - This isia two-pass operation, During period BP5, the first pass takes place.
The first-pass events are ldenhcal to the first-pass events of instruction AJK JK (1320).
During period BP6B, the second pass takes place. The second-pass events L, M, and O,
switch the contents of bofl‘ﬁ the J and K registers J + K, through the TS multiplexer so that

its output can be complemiented and incremented. The result, =(J + K), replaces the contents
of |both the J and K registers which remain enabled. Pass 3 complements the overflow
register. That the contents of both J and K registers are switched through the TS multiplexer
does not produce an erroneous result because both registers contain the sum J+ K. Thus,
although the data overlaps, there is no conflict in operations,

4-122

NSJK JK (1331) - This is a two-pass operation. During period BP5, the first pass takes
place. The first-pass events are identical to the first pass events of instruction SJK JK
(1321). During period BP6B, the second pass takes place. The second-pass events L, M,
and O switch the contents of both the J and K registers, J - K, through the TS multiplexer
so that its output can be complemented and incremented. The result, =(J - K) = (K - J),
replaces the contents of both the J and K registers which remain enabled. Pass 3 comple-
ments the overflow register. This operation is similar to the SJK JK operation because the
contents of both the J and K registers are switched through the TS multiplexer without
producing conflicting results,

4,4,2,1,6 Shift/Rotate Subgroup. For this subgAroup, Figures 4-37 and 4-38 are the block
diagrams, Figure 4-39 is the timing diagram, Table 4-35 is the Event Summary, and Table
4-36 is the list of Fundamental Operations. '

Instructions of this subgroup permit data in either the J or K registers, or both,
to be shifted or rotated up to 15 times. Shifting is defined as a displacement of data from
right to left, When a shift is ordered, successive zeros enter from the right (the J11th or
K11th bit) and are displaced one bit at a time toward the left. Data contained in the JOOth
or KOOth bit is shifted out of either the J or K register and is lost, It takes 12 shifts to
propagate the zero of the J11th or K11th bit down to the JOOth or KOOth bit, The rotate
instructions are extensions of the shift instructions with the exception that data in the J and
K registers is not lost, but simply rotated from right to left. Data can be rotated in only
the J or K registers-or from the K register into the J register, and out of the J register into
the K register. Thus, instead of being lost, data shifted out of the JOOth or KOOth bit is
returned to the J11th or K11th bit, depending on the instruction.

The logic for this subgroup has two functions; it controls the application of the
priming bit to the 11th bit of the affected register, and it controls the number of bit shifts
that must take place. Figure 4-37 is the block diagram for the rotate and shift control and
Figure 4-38 is the block diagram for the counter and clock control which determines the
number of bit shifts that occur.

Rotate/Shift Control - The rotate/shift control (Figure 4-37) determines whether the JOOth
bit will be used to prime the J11th or the K11th bit. When rotate is ordered, operation code
OP104 produces signal OP104, When a shift is ordered, operation code OP106 produces
signal OP106. These operate code signals determine whether the operation is a shift or a
rotate. Rotate operation codes are identified by a 6 as the 3rd octal digit. The heavy lines
shown in Figure 4-37 show the bit paths for rotate instruction ROTD JK (1360). The diagram
clearly shows that the JOOth bit from the J register is used to prime the K11th bit of the K
register and the KOOth bit of the K register is used to prime the J11th bit of the J register.
This operation results in data in the J register being rotated out of the JOOth bit into the
K11th bit, and data out of the KOOth bit being shifted into the J11th bit. Hence, data in
these registers is swapped, end-for-end. Some of the operations are not required. Thus, for
example, whenever a shift occurs, none of the logic is exercised, and both the J11th and
K11th bits are unprimed. Because the unprimed condition is a low-level signal, when the
shifts occur, zeros are loaded into the J11th or K11th bit with each shift., Other bit transfer
paths can be worked out by referring to the instruction on Figure 4-37, which exercises control,

4-123 . B

woiBolq 320jg ‘|onuoD) dnosBqng a4pjoy AIYS *Le-f 2unBig

A L —
SINF

oLy
60 3
80 <
o -~ (9 (visL) m

A0LlM o (09c1) HOHLNOD [d! Wou4
90 10 /L4HS (ovet)

(09tLt) 14HS/104d

S0 (oviL)
Y0
£0 —

(v) (09z1)
20> NOLY g

31vi04
S PETNLELD
00 >
(pLeL)
e e (g) [| (looen)
OIF FOLY e (o9cl))

oLr 104Y/14HS
60T
sor
Lor .

(z) (ootLL)
oor rosLr
sor 31V10Y [}
vor
eor
zor
0F | y3151034 ¢
oor

4-124

wo1bpig >20|g ‘|osuo)) 90| pup sajunoy)