NUCLEAR DATA, INC,
Post Office Box 451
Palatine, Hlinois 60067

January, 1971

1M41-0001
SOFTWARE INSTRUCTION MANUAL
BASC-12 GENERAL ASSEMBLER

Copyright 1971, by Nuclear Data, Inc.
Printed in U, S.A.

Section

1

2
3
4

5

Appendices
A
B

C

Title

INTRODUCTION .« + &

Program Summary
Program Area . .
Starting Address ,

moOMNwl>

Definitions + «

PROGRAM DESCRIPTION

Equipment Configuration

L)
.
¢
.
.
.

OPERATOR OR USER CONTRCL

OPERATIONAL PROCEDURE

ERROR DIAGNOSTICS .

INSTRUCTIONS IN MNEMONIC SEQUENCE

INSTRUCTIONS IN OCTAL SEQUENCE

ASCIlI CHARACTER SET

L]

L]

(]

iti

e = - - -

L]

L

TABLE OF CONTENTS

s e - . -

« o - . -

e o 3 - -

e e - 3 -

Page

1-1

— -t o — —

2-1

3-1

4-1

5-1

1. INTRODUCTION

A. PROGRAM SUMMARY

BASC-12 is a 2-Pass Assembler (optional 3rd pass) for the ND812 Central Processor.
BASC-12 translates symbolic mnemonics (source) into machine instructions (object),
executable by the Central Processor hardware. The BASC-12 Language is structured to
give the programmer complete control over the machine language instructions to be
executed by the processor, while allowing easily remembered and understood symbols
(letters, numbers, and special characters) to specify the desired instructions. BASC-12
is designed fo run in a 4K Processor equipped with paper tape and/or magnetic tape
cassette peripherals.

B. PROGRAM AREA

00008 ’rhrouéh 53038 with locations 30538 through 41769 used as the Input Buffer,

C. STARTING ADDRESS

0200g.

D. EQUIPMENT CONFIGURATION

Minimum requirements are a 4K ND812 Central Processor equipped with an ASR33 Teletype
(low speed punch/reader). Optional peripherals include the high speed punch or reader
and/or a Magnetic Tape Cassette Unit.

E. DEFINITIONS

1. Source

The Symbolic Program is written by the programmer in the symbols allowed in BASC-12

language. The program source (usually punched on tape) is the input to the Assembler
which then "assembles" or "translates” it into a machine language or "binary" version of

1-1

of the program. The Symbolic Text Editor (ND41-0002) is usually employed to prepare
a "Source" tape.

2; Binary

The output from an assembler is often referred to as the "Object Program", If the Object
Program is not produced in directly executable form by the Assembler, it must either be
assembled further, or else must be loaded and executed with a run-time monitor which
interprets the object coding and performs the required operations. The output from the
BASC-12 Assembler may be loaded without modification as it is in absolute binary form,
so that, once in core, it is executed directly by the processor without the need for a
run-time monitor. To distinguish this type of object program, it will be referred to as the
Binary Output or simply "Binary". Therefore, a binary file is a one=to-one copy of

core which may be loaded and executed directly.

3. Listing

This consists of a hard=-copy symbolic listing of the program with the octal equivalents of
the assembled instructions and their octal locations in memory. It represents the documen=
tation of the program, including the actual instructions assembled, and their execution
locations. The format used is:

2345 6740 SYMBOLIC LINE OF CODING,

where "2345" and "6740" are octal numbers representing a memory address and the contents
of that address respectively. The balance of the line consists of a repetition of the Program
Source which was assembled to yield the machine instruction "6740",

4. Numbers

All absolute numbers are interpreted by the BASC~12 Assembler as four-digit octal

numbers. The high order digits of longer numbers will be ignored. The decimal digits

"8" and "9" will be interpreted as non-numeric.characters.

5. Characters

A single letter, number, etc. When referred to paper tape, a character occupies one frame,

6. Symbols

A symbol consists of any collection of letters, numbers, or other characters appearing
anywhere on a line, not in a comment, and followed by a terminator.

NOTE

Spaces are terminators,

A legal symbol should be no more than 6 characters long and must begin with an alphabetic
character. Longer symbols are allowed but will be truncated to 6 characters with the
excess being ignored. Thus, the symbol "STARTS", "STARTSA", and "STARTSAB" will

be interpreted as the same symbol by the Assembler, namely "START".

7. Non=-Printing Characters
The following symbols are used to represent non=printing symbols:

Horizontal Tab = - Carriage Return =
Vertical Tabe = ¥ Line-Feed = ¢

These characters, although non=printing, may be typed by the user on the keyboard and
may appear in a Program Source, They generally initiate some action in the printing
device (such as a carriage return) or cause a special response from a program (such as a

tab) .

A space is represented by the symbol " a " even though it is a printing character in the

sense that it causes the carriage to move one column to the right. It is, however, often
important to know how many spaces appear in a line of text, so that it is convenient to

have a symbol to represent it in the documentation.. None of these special symbols are

never printed, but are used whenever necessary to clarify the contents of a line of text

in the examples and dlSCUSSIOhS which follows.

8. User Entry
User entry is always underscored. All other characters are printed by the program.
9. Ignored Characters

A character "ignored" by the BASC-12 Assembler is reproduced in the listing, but does not
affect assembly of the program. Ignored characters will terminate a symbol, but otherwise
initiate no special action. The "Space" is an example of an ignored character. [f spaces
intervene between a symbol and another special character, the assembler interprets the
resulting coding as though the spaces were not present. Spaces between symbols serve
only to separate the symbols,

10. Terminators

The following characters have special meaning to the Assembler and will also terminate

a symbol: Comma (,), Slash (/), Asterisk (*), Plus +), Minus (=), Equal (=), Number (¥),
Left Bracket (L), At (@), Horizontal Tab (=), Vertical Tabe (T), Form=Feed, Up
Arrow (4), Carriage=-Return (Q), and Dollar ($). Blank tape, rubouts, and line-feeds
are not stored in the Assembler buffer. Twenty~four consecutive Rubouts are interpreted
as an out-of-tape condition.

Space (a)

Comma (,)

Slash (/)

Asterisk (¥)

Plus (+)

Minus (=)

Equal (=)

Serves only to terminate a symbol. Spaces are
otherwise ignored,

Indicates that the symbol preceding it (ignoring
spaces) should be interpreted as a tag for that
location, The symbol is set equal to the Program
Location Counter (PLC). A symbol may not be
used as the tag for two different program locations.
Command mnemonics may not be used as tags.

The slash indicates the beginning of a comment.

All characters, including the terminators, following
the slash will be ignored by the assembler until

the next carriage-return. The Number sign (¥)

will be flagged as an illegal character. Comments,
including the Slash, are ignored and are reproduced
only in the Pass 3 Listing.

The asterisk is an instruction to the assembler to
reset the program location counter (PLC) to the
value of the symbol(s) following the asterisk.

If the asterisk is followed by several symbols, they
will be assembled according to the rules of assembly
applying to a single location and the PLC will

be set equal to the result. Numbers are, as usual,
interpreted literally. Octal numbers larger than
four digits are truncated from the high-order end.
If any one of the symbols appearing after the "*"
have not been previously defined, the expression
will be ignored and the undefined origin (UQO)
diagnostic printed,

Causes the symbol following the plus sign to be
added to the symbol preceding the sign. An
undefined symbol at the time of evaluation is
ignored.

Causes the symbol following the minus sign to be
subtracted from the symbol preceding the minus sign.

Causes the symbol preceding the sign to be set

equal to the symbol or symbols following the sign.

If the symbol following the equal sign is undefined,
the Assembler reacts differently depending on the
current pass number and the type and kind of symbols

1-4

involved. The treatment of statements containing
an equal sign is discussed under "equivalence
Statements",

Number (#) Denotes an illegal character., A character other
than blanks, line-feeds, or rubouts, and with
octal code less than 0240 or greater than 0337
is stored in the input buffer as a "#", When this
character is encountered by the Assembler
during processing of its buffer, the message "IC
AT XXXX" is generated where "XXXX" represents
the current value of the PLC. If the character
"# gppears in the user's source, it will be inter-
preted as an illegal character during assembly.

Left Brack (L) Indicates that the symbol following the " " is
to be taken as an Assembler Directive; that is,
an instruction to the assembler to interrupt
processing and perform some other task indirectly
related or not related to processing the source
program. The section on Assembler Directives
describes the various directives included in the
assembler and the procedure necessary to create
user directives.

At Symbol (@) Indicates an indirect address for a memory reference
. instruction. The "@" symbol should appear immed-
iately after the instruction mnemonic without
separating spaces (i.e. "JMP@").

Horizontal Tab (=) Equivalent to a space. When creating the Pass 3
Listing, the assembler will generate the proper
number of spaces on the teletype or other output
device. The output device need not have mechanical
tabbing ability.

Vertical Tab (T) Terminates a line and advances the paper to the
top of the next page.

Form=Feed Interpreted by the Assembler as a vertical tab.
Up Arrow (1) Automatically generates a two word |/O where
the symbol following the up arrow is taken as the

second word of the I/O. The octal code 0740
is automatically generated in the first location of

1-5

Carriage Return

Dollar ($)

Period or Dot (.)

the two word instruction. This symbol's action

is an exception to the one location per line rule

in that it generates two locations for one line of
coding. It does not, however, restrict the
programmer's flexibility of control over the

final binary program since use of () is optional.
The up arrow need appear only once on a line.
Succeeding up arrows on the same line are ignored.
Symbols preceding the up arrow on a line are
ignored,

Carriage Return (D) terminates a line of coding.
A location is not assigned to lines containing an
(=) or (*) or blank lines containing no coding or
a comment only, Extra carriage-returns in the
source, though they generate extra lines in the
program listing, do not affect the length of the
machine language program and may be used to
format the listing for better legibility, It is
recommended that blank lines be used to separate
logical blocks of the Source and to separate the
constants and variables from instructions.

The Dollar ($) indicates the end of the Source.
The dollar sign will initiate termination of the
current pass and so should be the last symbol in

a Program Source. If a dollar sign is not read by
the Assembler before it runs out of input tape, the
assembler waits for teletype input to supply the
"$", indicating the end of the pass, or any other
character indicating that the input device was
reloaded and the assembly should continue with
the additional source. The "$" should not be used
anywhere in the body of the source except as the
last line.

Is equivalent to a symbol representing the current
value of the Program Location Counter (PLC).
The period or dot does not serve as a terminator
and must be used in all respects like any other
symbol.

2. PROGRAM DESCRIPTION

When using the BASC-12 Assembler it is imperative that the user have a solid knowledge

of the source language. (See Appendix A and B for a brief listing of these.) The source
program consists of ASCII coded binary words that represent symbols, special characters

and terminators written in a format acceptable by the BASC-12 Assembler. The following
example illustrates the statement format which can be interpreted by the BASC=12 Assembler:

LABEL OPERATION ADDRESS /COMMENT
READ, JMP END - /INPUT ONE CHARACTER

Fields of each instruction line are not rigidly defined. They are separated from one
another by any of the terminators except the + and = characters. Plus (+) and Minus
(=) are used to connect multiple symbols to form a single field. The + and - signs are
evaluated from left to right before a field is connected with another. Parentheses are
not permitted.

The commend field must begin with a slash (/). A comment may start anywhere on the
line and always continues to the end of the line.

It is suggested, in the interest of neatness and legibility of final output, that the OPERATION
field begin in the ninth column (first tab), that the ADDRESS begin in the fourteenth

column (automatic provision for inserting an extra space after 3-letter instructions is

made in the Editor), and the comment begin in the 25th column (4th tab position; one tab
after most instructions). On lines which contain no instructions or definitions, the comment
may start anywhere on the line and is generally left=justified. A line containing a

comment only is left=justified in Pass 3 output of the Assembler.

A. LABEL FIELD
The label field may consist of one symbol followed by a comma. Plus (+) and Minus (<)

signs are not permitted in the Label Field. The symbol may not have been previously
defined by appearing in an equivalence statement or by having been used as a tag. There

2=1

may be more than one tag on a line, but each may consist of only one symbol and each
must be followed by a comma. All tags on the same line will reference the same location
in the assembled program.

An attempt to use a symbol as a tag which has already appeared in an equivalence state-
ment, or was used as a tag, will result in the duplicate tag error diagnostic "DT AAAAAA
AT XXXX" where the location counter at the time the error was detected.

The label field does not affect the contents of the current location.
B. OPERATION AND ADDRESS FIELDS

If, after assembling an element other than a label element, the result is between 2400g

- 7737g, the next field will be treated as the address field of a Single=Word Memory
Reference Instruction. In this case, no field, except a comment, may follow on the same
line. Each symbol beyond the Address field of a Single=Word Memory Reference Instruction
will generate the Double Address Diagnostic "DT AAAAAA AT XXXX", where "AAAAAA"
is the symbol and "XXXX" is the value of the location counter at the line where the double
address was detected.,

Since Single-Word Memory Reference Instructions are recognized by their octal coding,
it is possible for the user to devise his own mnemonics for special applications. In
addition, the assembler will always recognize error conditions involving Single-Word
Memory Reference Instructions no matter how the octal code is created. This parallels
the fact that the processor also recognizes instructions by their octal codes and errors
made in the Source will be carried through to run-time,

It should be noted that the Assembler does not check for the absence of the Address field,
If a Single-Word Memory Reference is assembled into a location and no address field is
provided, reference to location 0000g will be assembled by default.

In any case, proper assembly of a Single=Word Memory Reference Instruction demands
that it appear in the first non-label field on the line. Although not essential for proper
assembly, the same rule should be applied to all instructions to minimize the possibility
of error and to make the Source Listing easiest to read.

Fields evaluated to a number less than 24008 or greater than 73774 are combined with an
inclusive logical "OR". This allows micro-programming of the Operate and /O msfruchons.

'C. EQUIVALENCE STATEMENT

An Equivalence Statement consists of an "Object Symbol" followed by an equal sign (=)
followed by an expression consisting of symbols, plus signs (+), minus signs (=), and spaces
(to separate symbols in the absence of a plus or minus sign). The expression is assembled
according to the algorithm for the assembiy of an instruction and the symbol appearing

to the left of the equal sign is set equal to the result.

2=2

D. DEFINITION STATEMENT

A Definition Statement is the special case of an Equivalence Statement in which all of

the symbols appearing to the right of the equal sign are defined when the statement is
encountered. Ultimately, it is the purpose of all Equivalence Statements to assign an
octal value to the object symbol or to set the object symbol equal to another symbol which
has been assigned an octal value. In other words, it is the purpose of the Assembly to
change all Equivalence Statements into Definition Statements. "RD XXXXXX AT NNNN"
indicates an attempt to assign a second value to the same symbol. The error diagnostic
"DT XXXXXX AT NNNN" is generated if a symbol appearing as the object of an Equi-
valence Statement also appears as a Program Tag (Where "XXXXXX" is the symbol and
"NINNN" is the current value of the Location Counter).

Equivalence Statements are closely related to the use of symbols as Program Tags. Use

of a symbol as a Program Tag sets it equal to the Memory Address assigned fo the instruction
or constant it fags. Since a symbol may have only one octal value, any attempt to also
use the symbol as the object of an Equivalence Statement will generate the error diagnostic
"RD XXXXXX AT NNNN" and the prior value of the symbol will not be affected,

Similarly, any attempt fo use a symbol two or more times as the object of an Equivalence
Statement will generate the same error message: "RD XXXXXX AT NNNN" where "XXXXXX"
is the symbol and "NINNN" is the current value of the Location Counters.

The Assembly of a Definition Statement is straight=forward if all of the symbols on the
right=hand side of the equal sign are defined. The Assembler will assemble the right-
hand symbols according to the algorithm used for instruction locations and set the left-
hand symbol equal to the result, For example, the statements:

DBSKIP = JMP .+3
CSLCT = 7466

would cause "DBSKIP" to be set equal to 6003 and "CSLCT" to be set equal to 7466
in the Pass 1 symbol table., Thereafter, the octal number 6003 would be substituted for
"DBSKIP" whenever the symbol occurred. ;

A statement of the form:
READ = JPS INPUT

is a definition (and is handled as described above) only if both "JPS" and "INPUT" were
defined or used as a tag prior to the appearance of the above statement, [If "INPUT" is
used as a tag or appears in an equivalence statement after the above statement, then
assembly of the dbove statement must be deferred to a later pass at which time "INPUT"
will be presumably defined. In this case, "READ" will not appear in the Pass 1 Symbol
Table. On the second or subsequent passes, "READ" will be properly defined and listed
normally in the Pass 3 Symbol Table. The user should be aware, however, that "READ"

2=3

remains undefined until it is encountered during processing of Pass 2 or 3 and will generate
an Undefined Symbol error diagnostic during Pass 2 or 3 if used prior to the appearance
of the statement which defines "INPUT",

If "INPUT" is not defined anywhere in the program, the error diagnostic "UE XXXXXX
YYYYYY AT NNNN" (Undefined Equivalence) will be generated during Pass 2 and 3
where "XXXXXX" is the left~hand symbol and "YYYYYY" is the undefined right-hand
symbol. The diagnostic will be generated as many times as an undefined right-hand
symbol appears. In any case, "READ" will remain undefined and will appear in the
Pass 3 Symbol Table as

READ = **

One special circumstance arises if o symbol appears in both a Pass 1 Redefinition or
Duplicate Tag error and a Pass 2 or 3 Undefined Equivalence error. For example suppose
the following coding were assembled:

READ = JPS RD
*0200

READ, 0

$

Note that "RD" is never defined and that "READ" appears as the left~hand portion of an
equivalence statement and as a program tag.

During Pass 1, the error diagnostic:

DT READ AT 0200

would be generated and "READ" would not be listed in the Pass 1 Symbol Table,
During Pass 2 or 3, the error diagnostic:

UE READ RD AT 0100

- would be generated but "READ" would remain undefined only until the "READ, 0"
statement was encountered, Inasmuch as "READ" is still undefined, the assembler will

define it as a tag (giving it the value "0200") and it would appear in the Pass 3 Symbol
Table as

READ = 0200

A statement of the form:
READ = [INPUT = GT = JPSRD

will cause the following entries in the Pass 1 Symbol Table (assuming "RD" is undefined
when the above statement appears):

GET =%**
INPUT = GET
READ = INPUT

During Pass 2 or 3, "GET" will be defined, and be listed in the Symbol Table with the
appropriate octal number to replace the double asterisk. In any case, "READ" and "INPUT"
will be treated by the assembler exactly as though the symbol "GET" were being used.

If "GET" is never defined, "READ" and "INPUT" will also remain undefined.

Finally, there may be only one complex expression or previously defined symbol on a line
and it must be terminated with a carriage=return. Thus, the following statement is illegal:

READ = JPS RD = JPS INPUT

No error diagnostic will be immediately produced, but "RD" will be listed in the Pass 1
Symbol Table as "RD" will be listed in the Pass 1 Symbol Table as "RD = **" and any
subsequent attempts to define it or use it as a tag will generate the Redefinition or Duplicate
Tag error messages.

During Pass 2 or 3, the Undefined Equivalence message will be produced'and then "RD"
will be defined with a somewhat arbitrary value, Additional error diagnostics may be
produced depending on the current value of the Location Counter and the current definition
status of the rest of the symbols on the line.

Coding of the following forms:

READ, O

INPUT = READ = GET = FIND

are also illegal and will generate the Redefinition error message.

3. OPERATOR OR USER CONTROL -

The BASC=12 General Assembler is a 2 Pass Assembler that examines the source program
and creates a table of symbol address on Pass 1, outputs the assembled binary translation

of the source program on Pass 2. An optional third pass is possible during which a symbolic
listing (in ASCIlI Code) is created, Passes 2 and 3 are combined on BASC-12 for DISC
systems. Switch Register settings specify which pass the assembler is to undertake and what
input and output devices are to be utilized. The following is a detailed description of

the Switch Register bit assignments:

Bits 0 and 1 indicate which Pass the assembler is to undertake. Pass O is illegal

Bit O Bit 1
Pass 1 . 0 1
Pass 2 ' 1 0
Pass 3 1 1

Bit 2 is unassigned.

Bit 3 set to "1" causes the assembler to generate the symbol table at the end of Pass 1.
Bit 4 is unassigned.

Bit 5 set to "1" suppresses page formatting.

Bits 6 and 7 select the input device.

: Bit 6 Bit 7
Low Speed Reader (TTY) 0 0
High Speed Reader 0 1
None 1 0
Cassette 1 1

3-1

Bits 8 and 9 select the output device for Pass 1 and 3. When the non-existent output
device is selected, the symbolic listing is destroyed but the error messages are printed.
This is of value to a user assembling a rough program and anticipating many errors.

Bit 8 Bit 9
Low Speed Punch (TTY) 0 0
High Speed Punch 0 1
Non-existent Device 1 0
Non-existent Device 1 1

Bits 10 and 11 select the output device for Pass 2, When the non=-existent output device
is selected, the binary is destroyed but the error messages are printed.

Bit 10 Bit 11
Low Speed Punch (TTY) 0 0
High Speed Punch 0 1
Non=existent Device 1 0

An important "control" the user must not overlook, is the understanding of Instruction Codes,
formatting acceptable to the assembler, terminators, directives and special characters.

This knowledge can be attained by reading the REFERENCE MANUAL, the DEFINITIONS
and PROGRAM DESCRIPTION Sections of this manual,

4, OPERATIONAL PROCEDURE

1) Load the BASC=12 General Assembler program tape with the
Binary Loader (Refer to the Binary Loader ND41-003 for a detailed
description).

2) Set the Switch Register to 0200g and depress LOAD AR.

3) Turn on all input and output devices that are intended for use
during this assembly.

4) Place the paper tape or the cassette storing a source program
in the appropriate input device,

5) Set the pass number (Bits 0 and 1), input device (Bits 6 and 7),
pass 2 output device (Bits 10 and 11), and pass 1 and 3 output
device (Bits 8 and 9) into the Switch Register. Refer to the
OPERATOR or USER CONTROL Section for a detailed descrip-
tion of this operation.,

6) Depress START.

7) The source program will now be read and the assembled binary
or symbolic translation written on the specified device,

NOTE

The storage buffer of BASC-12 General Assembler is 1024 characters
long, excluding line feeds, blank tape and rub=-outs. If a source
program is contained on paper tape and exceeds the limits of the
“storage buffer, it will be necessary fo reload the source program for each

pass of the assembler (return to Step 4 and 5 above and depress
CONTINUE in place of START in Step 6).

41

The Magnetic Tape Cassette Unit incorporates circuitry which automatically rewinds the
cassette at the end of tape, allowing the assembler to reload the source program via
software control,

5. ERROR DIAGNOSTICS

The error messages generated by the BASC-12 Assembler refer to syntactic errors appearing
in the source. A syntactic error will cause a zero to be assembled for the statement in
which the error occurs. (This is equivalent to a STOP instruction and will cause the
processor to STOP on encountering the incorrectly written instruction when the object
program is executed). Numbers in parentheses indicate the pass during which the error
diagnostic may occur,

A. IC AT NNNN (ILLEGAL CHARACTER) (1, 2, 3)

An illegal character was detected during input. The character will appear in the Pass 3
Symbolic Text as "#", The illegal character (or "#") is counted as a blank during assembly.
IHegal character messages-are not counted among the syntactical errors which follow.

B. RD XXXXXX AT NNNN (REDEFINITION) (1)

The symbol "XXXXXX" was encountered as the left=hand portion of an Equivalence
Statement for the second time or was previously used as a program tag. The Equivalence
is ignored,

C. DT XXXXXX AT NNNN (DUPLICATE TAG) (1)

A symbol "XXXXXX" followed by a comma was encountered and had already been used
as a program tag or as the left=hand portion of an equivalence statement. The symbol
and comma are ignored.

D. UO XXXXXX AT NNNN (UNDEFINED ORIGIN) (1, 2, 3)

The symbol "XXXXXX" was used in a statement preceeded by a "*" without having been
previously defined. An origin specification may consists of any complex expression, but
all of the symbols used in the expression must be defined in order for the assembler to
“reset its Program Location Counter (PLC) to the proper value. It is not possible to defer
the definition of an origin since it is required for Pass 1 as well as 2 and 3.

5-1

E. US XXXXXX AT NNNN (UNDEFINED SYMBOL) (2, 3)

The symbol "XXXXXX" was used in the program without ever having appeared in a legal
Equivalence statement or having been used as a program tag. The symbol will also appear
in the Pass 3 Symbol Table followed by the double asterisk (**), The symbol is ignored.

F. IR MMMM XXXXXX AT NNNN (ILLEGAL REFERENCE) (2, 3)

The Symbol "XXXXXX" (with a definition of "MMMM") was used as the address of a
Single-Word Memory Reference Instruction and the difference between the Program
Location Counter (PLC) and "MMMM" is greater than 6310(77g) placing "XXXXXX" out
of range of the Single=Word MRI. This diagnostic is also produced if the address of an
"ANDF" instruction is less than the PLC (Reverse Reference), if the absolute octal portion
of a literal instruction is greater than 77g, negative or zero or if any Single-Word instruc-
tion attempts to reference itself (MMMM=NNNN=(LC)).

G. DA XXXXXX AT NNNN (DOUBLE ADDRESS) (2, 3)

The address of a Single=Word Instruction may consist of only one symbol not connected by
plus or minus signs. For example, the statement: JPS A+B is legal; JPS A B is nof and
will generate the error message "DA B AT NNNN", The second and succeeding symbols
are ignored,

H. UE YYYYYY XXXXXX AT NNNN (UNDEFINED EQUIVALENCE) (2, 3)

The symbol "XXXXXX" appears in the right=hand portion of an Equivalence Statement
attempting to define YYYYYY and XXXXXX is undefined. "YYYYYY" will not be defined,
regardless of the status of other symbols in the right=hand portion of the Equivalence
Statement, The diagnostic is generated for every undefined symbol which appears in

the right-hand portion of the statement,

. UN XXXXXX AT NNNN (UNDEFINED DIRECTIVE) (1, 2, 3)

An Assembler Directive was encountered which is not defined at all, or is a user defined
directive which appears in the program before the appearance of the "ENABLE" Directive.
It is ignored.

J. ST OV XXXXXX AT NNNN (SYMBOL TABLE OVER-FLOW) (1, 2, 3)

No room could be found in the Symbol Table for the symbol "XXXXXX", The current
pass is automatically terminated. The Symbol Table may be extended by 128 symbols
with use of the "EXTEND" directive. This, however, risks destruction of the Binary
Loader. If the "EXTEND" directive has already been used in the source, it will be
necessary to alter the program to use fewer symbols.

5-2

K. SYMBOL TABLE DIAGNOSTICS

Except for the double asterisk, no diagnostics are produced in either symbol table. The
double asterisk is used to flag "Undefined Symbols", which, after pass 3, consists of all
those symbols for which no definition could be assembled. The message "SE MMMM"
which appears on the first line of the Symbol Table (Pass 1 or 3) indicates the first Memory
Address not used for Symbol Table storage. Programs previously loaded into memory which
use no locations less than MMMM are therefore not impaired in any way. The number
also allows the user to determine how much room is left for additional symbols. (Each
symbol requires 4 memory locations for storage). Maximum Capacity of the symbol table is
as follows:

Normal Length (Ending at 6776g) = 3554
Extended Length (Ending at 7776g) = 48319

These include the Permanent Symbol Table, which contains 891 symbols. The message
"ER XXXX" is generated as the last line of the Symbol Table where "XXXX" is the octal
number of syntactical errors occurring in the program during the current Pass. This
message appears only at the end of Pass 1 or Pass 3. [llegal characters do not affect
this count,

Finally, it should be noted that the Assembler does not check for the absence of the
Address element. If a Single-Word Memory Reference is assembled into a location and
no address element is provided, reference to location 0000g will be assembled by default.

In any case, properassembly of a Single=Word Memory Reference Instruction demands
that the instruction appears in the first non-label element on the line, Although not
essential for proper assembly, the same rule should be applied to all instructions to
minimize the possibility of error and to make the Source Listing easiest to read.

Elements evaluated to a number less than 2400g or greater than 73774 are combined with
an inclusive logical "OR". This allows micro=programming of the Operate and /O
Instructions,

ADDL
ADJ
ADR J
ADR K
ADS J
ADS K
AJK J
AJK K
AJK JK
ANDF
AND J
AND K
AND JK
ANDL
CCLF
CHSF
CHSR
CLR
CLR J
CLR K
CLR JK
CLR O
CMP
CMP J
CMP K
CMP JK
CMP O
CRDT
CSBT
CSET
CSFM

OCTAL

22XX
4400
1122
1222
1124
1224
1120
1220
1320
20XX
1100
1200
1300
21XX
0141
0101
0121
1410
1510
1610
1710
1450
1420
1520
1620
1720
1460
0144
0130
0110
0104

APPENDIX A
INSTRUCTION MNEMONICS IN

ALPHABETICAL ORDER

DESCRIPTION

Add Literal to J
Add to J

R+ JtoJ

R+ Kito K

S+ JtolJ

S+ Kto K

J+KtolJ

J+ KioK

J+Ktod, K

AND with J, Forward

AND J,K into J
AND J,K into K

AND K, J into K, J

AND Literal with J

Clear all Cassette Flags (TWIO)
High Speed Forward to EOT (TWIO)
High Speed Reverse to BOT (TWIO)
Clear Flag Register

Clear J

Clear K

Clear J,K

Clear Overflow Register
Complement Flag Register
Complement J

Complement K

Complement J, K

Complement Overflow Register
Read Cassette Tape to J (TWIO)
Skip if Cassette at BOT (TWIQO)
Skip if Cassette at EOT (TWIO)

" Skip if Cassette Read File Mark (TWIO)

A-1

TIMING

T ey
2 cy
Tcy
1cy
Tecy
T cy
Tey
Tey
1cy
2cy
1 cy
1cy
1 cy
Tcy
5 ps
5 ps
5 ps
Tcy
Tey
Tcy
Tecy
1 cy
Tey
1cy
Tcy
Tey
1ey
5 ps
5 ps
5ps
5 ps

or

CSLCT1
CSLCT2
CSLCT3
CSNE
CSPF
CSRR
CSTR
CSWR
CWFM
CWRT
DIV
DSZ
EXJR
EXJKRS
EXKS
HIF
HIR
HIS
HLP
HRF
HOP
HOS
INC J
INC K
INC JK
IOFF
IONA
IONB
IONH
IONL
1SZ
JMP
JPS
LDJ
LDJK
LDREG
LJIPB
LJKFRS
LJST
LJSW
LKFJ
LJFR
LKFS
LRFJ

OCTAL

7601
7602
7604
0122
0102
0142
0124
0152
0151
0154
1001
3000
1103
1303
1203
7421
7422
7424
7433
7423
7431
7434
1504
1604
1704
1003
1005
1006
1004
1007
3400
6000
6400
5000
7721
7720
7722
1302
1011
1010
1204
1102
1202
1101

DESCRIPTION

Place Cassette 1 On-Line

Place Cassette 2 Cn~-Line

Place Cassette 3 Cn-Line

Skip if No-Error Cassette (TWIQ)
Space Cassette Forward to File Mark (TWIQ)
Skip if Cassette Read Ready (TWIO)
Skip if On-Line Cassette Ready (TWIO)
Skip if Cassette Write Ready (TWIO)
Cassette Write File Mark (TWIO)
Cassette Write Transfer (TWIO)
Divide J and K by R

Decrement Memory and Skip
Exchange J and R

Exchange J,K with R, S

Exchange K and §

HS Reader Fetch

CLR Flag; Read HS Buffer

Skip if HS Reader Reader

HS Punch Load and Punch

HS Reader Read-Fetch

HS Punch On

Skip if HS Punch Ready

Increment J

Increment K

Increment J, K

Disable all Interrupt Levels

Enable Interrupt Levels H & A
Enable Interrupt Levels H & B
Enable Interrupt Level H Only -
Enable All Interrupt Levels
Increment Memory and Skip
Unconditional Jump

Jump Subroutine :

Load J :
Load JPS Reg to J, INT reg to K
Load JPS Reg From J, INT reg to K
Set JPS and INT Status Bits

Load J,K from R, S

Load J from Status Register

Load J from Switches

Load K from J

Load J from R

Load K from §

Load R from J

TIMING

1 cy
1cy
I ey
5 ps
5 ps
S ps
5 ps
S ps
S ps
5 ps
11 ps
2 cy
T ey
Tey
ey
3 ps
3 ps
3 ps
3 ps
3 ps
3 ps
3 ps
Ty
1cy
cy
cy
cy
cy
cy
cy
2 cy
1 cy
2 cy

—— el ot wd m——t —h

2cy

1cy
Tey
Tey
1cy
1cy
1cy
1ecy
1 cy

1 cy
1 cy

oP. OCTAL DESCRIPTION TIMING

LRSFJK 1301 Load R, S from J, K Tecy
LSFK 1201 Load S from K Tcy
MPY 1000 Multiply J by K 10.75 ps
NADR J 1132 -R+ Jy to J | Tey
NADR K 1232 -(R+ K) to K 1 cy
NADSJ 1134 -(S+ J)toJ T'ey
NADS K 1234 -(S+ K) to K 1 cy
NAJK J 1130 ~J+K)tol 1ey
NAJK K 1230 =(J+ K) to K 1 cy
NAJK JK 1330 ~(J+K) to J,K 1cy
NEG J 1524 Negate J ey
NEG K 1624 Negate K 1 cy
NEG JK 1724 Negate J, K 1cy
NSBR J 1133 J-Rto J 1cy
NSBR K 1233 K=R to K 1 cy
NSBS J 1135 J=-StoJ 1 cy
NSBS K 1235 K-S to K 1 cy
NSJK J 1131 K-J to J 1 cy
NSJK K 1231 K-J to K 1ey
PIOF 1600 Powerfail system off 1 cy
PION 1500 Powerfail system on 1 cy
RFOV 1002 Read Flag and Overflow Bits from J 1 cy
ROTD J 1160 Rotate J Left N 1ey+
ROTD K 1260 Rotate K Left N 1cy+
ROTD JK 1360 Rotate J, K Left N lcy+
SBJ 4000 Subtract J 2 cy
SBR J 1123 R-J to J 1 cy
SBR K 1223 R-K to K 1cy
SBS J 1125 S=J to J Tecy
SBS K 1225 S-K to K Tcy
SET 1430 Set Flag Register 1 cy
SET J 1530 Set J to =1 1ecy
SET K 1630 Set K to -1 Tey
SET JK 1730 Set J,K to -1 1 cy
SET O 1470 Set Overflow Register Tey
SFTZ J 1140 Shift J Left N lcy+
SFTZ 1240 Shift K Left N Tey+
SFTZ JK 1340 Shift J, K Left N 1 cy
SIN J 1506 Skip if J Negative 1cy
SIN K- 1606 Skip if K Negative I cy
SIN JK 1706 Skip if J,K Negative Tey
SipJ 1502 Skip if J Positive 1cy
SIP K 1602 Skip if K Positive 1cy
1 cy

SIP JK 1702 Skip if J, K Positive

A-3

OP

SIZ
SIZ J
SIZ K
SIZ JK
SIZ O
SJK J
SJK K
SKIP
SKPL
SMJ
SNZ
SNZ J
SNZ K
SIZ'JK
SNZ O
STJ
STOP
SUBL
TCP
TIF
TIR
TIS
TOC
TOP
TOS
TWADJ
TWADK
TWDSZ
TWISZ
TWJIMP
TWJPS
TWLDJ
TWLDK
TWSBJ
TWSBK
TWSMJ
TWSMK
TWSTJ
TWSTK
XCT

OCTAL

1405
1505
1605
1705
1445
1121
1221
6002
1440
2400
1401
1501
1601
1701
1441
5400
00XX
23XX
7413
7401
7402
7404
7411
7412
7414
0400
0450
0300
0340
0600
0640
0500
0510
0400
0410
0240
0250
0540
0550
7000

"@" adds one cycle to any memory reference instruction,

DESCRIPTION

Skip if Flag Zero

Skipif J=0

Skip if K =0

Skip if J,K =10

Skip if Overflow Register = 0
J-K to J

J=K to K

Unconditional Skip (Jump)

Skip if Power Low

Skip if Memory Not Equal J

Skip if Flag One

Skip if J Not Equal Zero

Skip if K Not Equal Zero

Skip if J, K Not Equal Zero

Skip if Overflow Register = One

Store J

Stop Execution

Subtract Literal from J

Clear TTY Flag, Print-Punch

TTY Keyboard=-Reader Fetch

TTY Load Keyboard into J

Skip if TTY Keyboard Ready

TTY Clear Flag

TTY Clear flag; Print=Punch

TTY Skip if Printer-Punch Ready

Two Word Add J

Two Word Add K

Two Word Decrement Memory and Skip
Two Word Increment Memory and Skip
Two Word Unconditional Jump

Two Word Jump Subroutine

Two Word Load J

Two Word Load K

Two Word Subtract J

Two Word Subtract K :

Two Work Skip if Memory Not Equal J
Two Work Skip if Memory Not Equal K
Two Word Store J

Two Word Store K

Execute Displaced Instruction

TIMING

1 cy
1 cy
Tey
1 cy
1 cy
Tey
1 cy

1ey

1cy
2 ¢y
T ey
Tcy
ey
1 cy
1 cy
1 cy
1cy
I ey
3 ps
3 ps
3 ps
3 ps
3 ps
3 ps
3 ps
3 cy
3 cy
3 cy
3 cy
2 cy
3 cy
3cy
3 cy
3 cy
3 cy
3 cy
3 cy
3 cy
3cy
3 cy

APPENDIX B
INSTRUCTIONS IN OCTAL

SEQUENCE
OCTAL SYMBOL DESCRIPTION TIMING
00XX STOP Stop Execution 1ey
0101 CHSF Cassette High=Speed Forward EOT (TWIO) 5 ps
0102 CSPF Cassette Space Forward to File Mark (TWIO) 5 ps
0104 CSFM Cassette Skip on File Mark (TWIO) 5 ps
0110 CSET Cassette Skip if EOT (TWIO) 5 ps
0121 CHSR " Cassette High-Speed Reverse BOT (TWIO) 5 ps
0122 CSNE Cassetfte Skip No-Error (TWIO). 5 ps
0124 CSTR Cassette Skip if Cn-Line Tape Ready (TWIO) 5 ps
0130 CSBT Cassette Skip if BOT (TWIO) 5 ps
0141 CCLF Cassette Clear All Flags (TWIO) 5 ps
0142 CSRR Cassette Skip if Read Ready (TWIO) 5 ps
0144 CRDT Cassetfte Read to J (TWIO) 5 us
0151 CWFM Cassette Write File Mark (TWIO) 5 us
0152 CSWR Cassette Skip if Write Ready (TWIO) 5 ps
0154 CWRT Cassette Write Transfer (TWIO) 5 ps
0240 TWSMJ Two Word Skip if Memory Not Equal J 3 cy
0250 TWSMK Two Word Skip if Memory Not Equal K 3 cy
0300 TWDSZ Two Word Decrement and Skip 3 cy
0340 TWISZ Two Word Increment and Skip _ 3 cy
0400 TWSBJ Two Word Subtract J 3cy
0410 TWSBK Two Word Subtract K 3cy
0440 TWADJ Two Word Add J 3cy
0450 TWADK Two Word Add K 3 cy
0500 TWLDJ Two Word Load J 3 cy
0510 TWLDK Two Word Load K 3 cy
0540 TWSTJ Two Word Store J 3 cy
0550 TWSTK Two Word Store K 3 cy
0600 TWJMP Two Word Unconditional Jump 2 cy
0640 TWJPS Two Word Jump Subroutine 2 cy
1000 MPY Multiply J by K ‘ 10.75 ps

B-1

OCTAL SYMBOL
1001 DIV
1002 RFOV
1003 IOFF
1004 IONH
1005 IONA
1006 IONB
1007 IONL
1010 LISW
1011 LJST
1100 AND J
1101 LRFJ
1102 LJFR
1103 EXJR
1120 AJK J
1121 SJK J
1122 ADR J
1123 SBR J
1124 ADS J
1125 SBS J
1130 NAJK J
1131 NSJK J
1132 NADR J
1133 NSBR J
1134 NADS J
1135 NSBS J
1140 SFTZ J
1160 ROTD J
1200 AND K
1201 LSFK
1202 LKFS
1203 EXKS
1204 LKFJ
1220 AJK K
1221 SJK K
1222 ADR K
1223 SBR K
1224 ADS K
1225 SBS K
1230 NAJK K
1231 NSJK K
1232 MADR L
1233 NSBR K
1234 NADS K
1235 NSBS K

DESCRIPTION

Divide J and K by R

Read Flag, Overflow from J
Disable All Interrupt Levels

Enable Level H Only

Enable Interrupt Levels H & A
Enable Interrupt Levels H & B
Enable All Interrupt Levels

Load J from Switches

Load J from Status Register

And J,K into J
Load R from J
Load J from R
Exchange J and R
J+ KtoJ
J~KtoJ

R+ JtoJ
R=JtoJ

S+ JtoJ
S~JtolJ
-(J+K) to J
K=Jtol

S -(R+ J) to J

J-RtoJ
-(S+ J)toJ
J=StoJ
Shift J Left N
Rotate J Left N
AND J,K into K
Load S from K
Load K from S
Exchange Kand S
Load K from J
J+ Kto K
J-KtoK

R+ KtoK
R=-KtoK

S+ KtoK
S=-KtoK
-(J+ K) toK
K=JtoK
-(R+ K) to K
K=RtoK
-(S+ K) to K

K=StoK

B~2

TIMING

11 ps
ey
1cy
1 cy
1 cy
Tey
1 cy
1cy
T ey
Tey
Tcy
1cy
1 cy
Tey
1cy
1 cy
Tey
Tcy
1 cy
1 cy
1 cy
Tey
1 cy
Tey
1 ey

1 cy
1 cy
1 ey
Tey
Tcy
Tey
T ey
ey
Tey
1 cy
Tey
1 cy
Ty
1 cy
1 cy
lcy
Tcy

1704

OCTAL SYMBOL
1240 SFTZ K
1260 ROTD K
1300 AND JK
1301 LRSFJK
1302 LJKFRS
1303 EXJKRS
1320 AJK JK
1330 NAJK JK
1340 SFTZ JK
1360 ROTD JK
1401 SNZ
1405 SIZ
1410 CLR
1420 CMP
1430 SET
1440 SKPL
1441 SNZ O
1445 SIZ O
1450 CLR O
1460 CMP O
1470 SET O
1500 PION
1501 SNZ J
1502 SIP J
1504 INC J
1505 SIz J
1506 SIN J
1510 CLR J
1520 CMP J
1524 NEG J
1530 SET J
1600 PIOF
1601 SNZ K
1602 SIP K
1604 INC K
1605 SIZ K
1606 SIN K
1610 CLR K
1620 CMP K
1624 NEG K
1630 SET K
1701 SNZ JK
1702 SIP JK
INC JK

DESCRIPTION

Shift K Left N

Rotate K Left N

AND J,K into K, J

Load R, S from J, K

Load J,K from R, S

Exchange J, K with R, S

J+ Kto J,K

-(J+ K) to J,K

Shift J,K Left N

Rotate J, K Left N

Skip if Flag Register One
Skip if Flag Register Zero
Clear Flag Register
Complement Flag Register

Set Flag Register to One

Skip on Power Low

Skip if Overflow Register One
Skip if Overflow Register Zero
Clear Overflow Register
Complement Overflow Register

Set Overflow Register to One ~

Powerfail System On
Skip if J Not Equal Zero
Skip if J Positive
Increment J

Skip if J=0

Skip if J Negative
Clear J

Complement J

Negate J

Set J to -1

Powerfail System Off
Skip if K Not Equal Zero
Skip if K Positive
Increment K

Skip if K=0

Skip if K Negative
Clear K

Complement K

Negate K

Set K to -1

Skip if J,K Not Equal Zero
Skip if J,K Positive

Increment J, K

B~3

TIMING

1 cy
lcy
Tey
Tcy
1 cy

ey

1 cy
T ey
1 cy
Tey
cy
Tey
1 cy
1 cy
Tcy
Tey
Tcy
1 cy
1cy
Tey
1cy
1

1

—

cy

cy
Tey
cy
cy
cy
cy
cy
cy
cy
cy
cy
Tcy
1ey
1 ey
1 cy
1ecy
Tey
1 cy

— . N) "

— ol o

OCTAL SYMBOL
1705 SIZ JK
1706 SIN JK
1710 CLR JK
1720 CMP JK
1724 NEG JK
1730 SET JK
20XX ANDF
21XX ANDL
22XX ADDL
23XX SUBL
2400 SMJ
3000 DSZ
3400 1Sz
4000 SBJ
4400 ADJ
5000 LDJ
5400 STJ
6000 JMP
6002 SKIP
6400 JPS
7000 XCT
7401 TIF
7402 TIR
7404 TIS
7411 TOC
7412 TOP
7413 TCP
7414 TOS
7421 HIF
7422 HIR
7431 HOP
7432 HOL
7433 HLP
7434 HOS
7601 CSLCTT
7602 CSLCT2
7604 CSLCT3
7720 LDREG
7721 LDJK
7722 LJIPB

"@" adds one cycle to any memory reference instruction.

DESCRIPTION

Skip if J,K=0

Skip if J, K Negative

Clear J, K

Complement J, K

Negate J, K

Set J,K to -1

AND with J, Forward

AND J Literal

ADD J Literal

SUBTRACT J Literal

Skip if J not Equal Memory
Decrement Memory and Skip
Increment Memory and Skip
Subtract from J

Add to J

Load J

Store J

Unconditional Jump
Unconditional Skip

Jump Subroutine)
Execute Displaced Instruction
TTY Keyboard-Reader Fetch

TTY Keyboard Into J

TTY Skip if Keyboard Ready

TTY Clear Flag

TTY Clear Flag, Print-Punch
TTY Clear Flag, Print-Punch
TTY Skip if Printer~Punch Reader
HS Reader - Fetch

HS Reader = CLR Flag, Read Buffer
HS Punch = Punch On

‘HS Punch - CLR Flag, Load Buffer
HS Punch - Load and Punch

HS Punch - Skip if punch ready
Cassette = Unit 1 On=Line
Cassette = Unit 2 On-Line
Cassette = Unit 3 On-Line

Load JPS Reg from J, INT Reg from K
Load JPS Reg to J, INT Reg to K
Set JPS and INT Status Bits

B-4

TIMING

cy
cy
cy
cy
cy
cy
cy
2cy
1 ey
1 ey
1cy
T cy
2 cy
2 cy
2 cy
2 cy
2 cy
2 cy
1cy
Tcy
1 +n
3 ps
3 ps
3 ps
3 ps
3 ps
3 ps
3 ps
3 ps
3 ps
3 ps
3 s

3
3
3
3
3
1

1

O 0T T
NX %G 6% 5

Tey

APPENDIX C
ASCII CHARACTER SET

CHARACTER ASCIlI CODE CHARACTER ASCII CODE
A 301 0 260
B 302 1 261
C 303 2 262
D 304 3 263
E 305 4 264
F 306 5 265
G 307 6 266
H 310 7 267
| 311 8 270
J 312 9 271
K 313 $ 244
L 314 * 252
M 315 + 253
N 316 ! 254
O 317 - 255
P 320 . 256
Q 321 / 257
R 322 ; 273
S 323 = : 275
T 324 Space 240
U 325 Tab ‘ 211
\Y 326 Line Feed 212
w 327 Form Feed 214
X 330 Carriage Return 215
Y 331 Rubout 377
Z 332

iC-1

	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	4-01
	4-02
	5-01
	5-02
	5-03
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	C-01

