
~ Nanodata Model QM-1
~ Central Processing ~nit

The QM-1 is a high-speed general purpose digital com­
puter that operates under two levels of microprogram
control. The unique design of the QM-1 supports a system
of software-created user levels, whereby users at different
levels approach architecture, machine language, and pro­
gramming in ways most suited totheirown specific require­
ments of the hardware.

THE QM-1 CONTROL HIERARCHY

In the QM-1, a two-level design smooths the machine defi­
nition process over two stages, achieving the advantages
of both Horizontal and Vertical control:

Machine instructions in Main Store are executed by
(and defined by) microprograms in Control Store, under
Vertical Control.

Microinstructions in Control Store are in turn executed
by (and defined by) Nanoprograms in Nanostore, under
Horizontal Control.

An illustration of this concept is shown in Figure 1.
In particular, Control Store is a fully general-purpose

Read/Write store, hence it is feasible, for some applica­
tions, to approach QM-1 Control Store as the primary pro­
gram store of the machine, executing programs which can
regard the passive Main Store as a secondary storage unit.

MAIN STORE
MAIN STORE INSTRUCTION "ABC" IS FETCHED AND

DECODED UNDER MICROPROGRAM CONTROL.

ABC

CONTROL
STORE

MICROPROGRAM EXECUTING
"ABC" IS SHADED

MICROINSTRUCTION "XYZ"
IS FETCHED AND DECODED

UNDER NANOPROGRAM
CONTROL.

NANOSTORE

MACHINE
CONTROL

T4

T3

NANOPROGRAM EXECUTING "XYZ" IS SHADED T2

K TI
NANOPROGRAMS ARE DIRECTLY

EXECUTED BY HARDWARE:
CONTROL SIGNALS ARE SENT TO COMPONENTS ...,.

Figure 1. QM-1 Control Hierarchy- Example
of Two Level Emulation

USER AND MACHINE HIERARCHIES

The design of the QM-1 lends itself to a system of "virtual
machines" arranged in a hierarchy of levels. Each level is
supported by the machine below, and in turn supports the
machine above. Once a given machine is defined by suit­
able software (or "firmware"), its implementation - i.e.,
the nature of that software structure - is transparent to the
user of that machine. For example, after suitable nanopro­
gramming is done to define a "mico-machine;· the very
existence of Nanostore is irrelevant to the micro-machine
user.

HARDWARE LEVEL

The basic hardware components of the QM-1 include
several banks of registers; a system of three stores; arith­
metic, boolean, and shift components; and twelve inde­
pendent buses. Bus connections between the components
are programmable and may be changed as often as re­
quired to best fit the current task. All these units may be
exercised independently, allowing a high degree of par­
allelism.

Complete control over the hardware is provided by a
360-bit word read from the dynamically writable Nano­
store; the active Nanoword provides a sequence of four
Machine State Vectors, each of which drives the individ­
ual machine components and their interconnections dur­
ing a machine clock period.

NANO-MACHINE LEVEL

Nanoprogramming is the process of defining a ~et of such
control sequences to implement Microinstructions exe­
cuted at the next level. The opcode of a vertically formatted
Microinstruction, read from Control Store, is used to select
the entry point in Nanostore at which to begin executing
the defined Nanoprogram. The Microinstruction Set used
may be either that defined by NANODATA (with possible
user modifications/extensions for the current task) or that
defined by the user; the NANODATA supplied micro­
language is accompanied by systems software to support
1/0 and process management.

~
~
i
i

1/

11

MICRO-MACHINE LEVEL

Since microinstructions reside in the fully Readable/
Writable Control Store, microprogramming can be used to
define the application directly. Due to the flexibility pro­
vided at the Nano level, a variety of micro-machines may
be defined to efficiently match varied applications. The
micro-machine can then be viewed as a conventional
machine with a customized instruction set and a 150 Nano­
second memory.

MAIN-STORE-MACHINE LEVEL

For many applications, the above number of levels will be
sufficient; applications software may be written in the
defined microlanguage, executing out of Control Store at
very high speeds. For those applications in which another
level of flexibility is desired, however, microprogramming
in Control Store may be used to define the architecture
and instruction set for software in Main Store. At the micro­
level, Main Store is viewed simply as a passive general­
purpose data store; the process is one of classical
emulation.

Specifications

TECHNOLOGY
T2L-MSI
Basic cycle time 80ns

PROCESSOR
Instruction Word Length

Nanostore 360 Bits
Control Store Variable
Main Store Variable

Data Word Length
Control Store
Main Store

General Registers

Groups of 18 Bits
Groups of 18 Bits

32 18 Bit Hardware
12 6 Bit Hardware

Indexing Registers
32 18 Bit Hardware
32 6 Bit Hardware

Special Purpose and 1/0 Registers
32 18 Bit Hardware
28 6 Bit Hardware

Direct Addressing
1024K 18 Bit Words of Main Store

40K 18 Bit Words of Control Store
1 K 360 Bit Words of Nanostore

Arithmetic
2 Fully parallel, 18 bit wide, arithmetic/logic units
providing 16 boolean and 32 arithmetic transformations.

1 Six bit wide arithmetic/logic unit providing
16 boolean and arithmetic transformations. (Optional)

A Matrix shift unit, 36-bits wide, capable of
performing circular, logical, or sign extending
shifts or any value in either right or left
direction. An optional 32 bit wide matrix is
available to facilitate 8/16/32 bit circular shifts.

Bussing
14 Major Independent 18 Bit Data Paths

7 Major Independent 6 Bit Data Paths

The Hardware Level Users Manual provides complete
functional specifications of the QM-1, and thus defines the
"nano-machine" available to the hardware-level user. Many
users will be concerned with the machine at this most
fundamental level. The NANODATA Systems Software
staff, for example, approaches the machine at this level.
Already developed nanocode for support of a general
purpose micro-instruction set is available, however, and
when such appropriate software, including both systems
support functions and any one of several microlanguage
definitions, is included in the QM-1, the micro-level user
can program the ma.chine without being concerned with
the structure beneath.

Specifications (Continued)

1/0 MODES
Programmed Transfer-Eight 18 Bit MUX Channels

Block transfer up to 1960K Bytes/sec.
Direct memory access-Five 18 Bit MUX Channels

1million18 Bit Words/sec or 2 million 9 Bit Words/sec.
Priority Interrupts-Identification of up to 512 hardware levels
with automatic device identification and vectoring.
Interrupt latency time 480ns.

MEMORIES
Main Store 18 Bits+ 2 parity bits

Cycle Time 750ns
Control Store 18 Bits

Nanostore
Access Time 75ns
360 Bits
Access Time 75ns

INPUT POWER
208 Volts, 3 phase
Optionally

ENVIRONMENT
Operating Temperature
Operating Humidity
Heat Dissipation

DIMENSIONS
Height
Width
Depth
Weight

60HZ@ 7KVA
50HZ

60°F to 80°F (15°C to 26°C)
40% to 60% Non-condensing
25,000 BTU/Hr.

61.75" (156.8 cm)
55.5" (141.0 cm)
27" (68.6 cm)
1500 lbs. (680.4 kg)

r.wJ Nanodata Model QM-1
u.J Central Processing l)nit

M-1
APPLICATION/ BENEFITS
AVAILABLE SUPPORT

CONFIGURATIONS

NANDDATA CORPORATION
' 2457 Wehrle Drive Will iamsville, New York 14221 (716) 631-5880

DEVELOP PROGRAMS ON OUR SYSTEM FOR THE EXPENSIVE SYSTEM YOU PLAN TO BUY

Here's why • • •

Program development takes time. Use our system to write and debug programs,
in order to defer major system expenditures until they are warranted. You'll
save dollars in the long run on rentals, depreciation, and cost of money.

The passage of time increases competitive pricing options open to you and
reduces your vulnerability to destandardization. Our system allows you to
initiate a major development effort without incurring substantial costs or
risks.

Avoid buying the wrong size system. It is difficult to properly size a
system beforehand. Developing software and analyzing design on our system
will aid immeasurably in ordering the right sized system and provide you
true cost data before the fact.

Insure you order the right system by developing some software for two or
three manufacturers on our system rather than using manufacturer's bench­
marks results as sole selection criteria.

Use our system to develop software at first for the new system and later to
replace the old system. Use it to run programs that are difficult to con­
vert. Chances are the maintenance dollars saved are enough to offset the
entire cost of our system.

USER BENEFITS

Increase Productivity and Overall Performance

• Stretch an Education or R & D Budget

• On Our System Develop Programs for Expensive Systems

INCREASE PRODUCTIVITY AND OVERALL PERFORMANCE WITH OUR SYSTEM

Here's how • • •

Our system, because of its unique features, allows users to develop software
for other systems more easily and determine bottlenecks faster. It is in­
valuable in developing software for minis, and will allow the user to deter­
mine in adyance the upper limits to which a mini can be expanded or pushed.

On-line software development on some computers is costly in tenns of hardware
or reduced system performance. Our system can be used for that software
development.

Our hardware can be used to support many types of systems, from an IBM 370
to a one of a kind airborne computer. In fact, our system has already emu­
lated a military computer a year before the real computer was built.

Use our system to tie a network together, as a node in a distributed process­
ing environment emulating the central site CPU. Or use it as a translation
processor allowing different types of computers to communicate effectively
with each other.

STRETCH AN EDUCATION OR R & D BUDGET

Here's how • • •

Education tool for basic or advanced study in programming, design, and
architecture of any system or many systems.

Develop a special purpose system with unique instruction repertoire
APL processor, DATA BASE Management Processor, Formula machines for math,
physics and other sciences.

Test and validate new computer designs for any system from microprocessors
to multi-processor fourth generation systems.

Save the expense of ruggedized equipment in a benign environment.

Use our system over and over, for entirely different purposes, without
ever requiring hardware modifications. Your R & D efforts can be kept
entirely in-house and secret.

Our system is hundreds of times more cost effective than simulation tech­
niques on other systems.

HERE'S HOW ONE NANODATA CUSTOMER IS USING THEIR SYSTEM

APPLICATIONS

ARCHITECTURE DESIGN FOR REAL TIME AND NEAR REAL TIME
COMMUNICATION, COMMAND AND CONTROL SYSTEMS

DEVELOP AND VALIDATE MICROPROCESSOR FIRMWARE AND SOFTWARE

DEVELOP SOFTWARE FOR OPERATIONAL COMPUTERS WHICH ARE
INACCESSIBLE BECAUSE THEY LACK I/O OR ARE ONE OF A KIND

DEVELOP EMULATORS FOR OBSOLETE, HARD TO MAINTAIN COMPUTERS

SPECIFY COMPUTER ARCHITECTURES BASED ON SOFTWARE DESIGN

SOFTWARE AND FIRMWARE VERIFICATION AND VALIDATION

RESEARCH

COMPUTER ARCHITECTURE DEFINITION EMULATION COMPILER

DISTRIBUTED DATA BASE SIMULATION FACILITY

NETWORK DESIGN ANALYSIS

SATELLITE GRAPHICS DESIGN

COMPUTER ARCHITECTURE STUDIES FOR ARTIFICIAL INTELLIGENCE
AND FAULT-TOLERANT COMPUTING

HIGH ORDER LANGUAGE PROCESSORS AND SPECIAL PURPOSE PROCESSORS

MICROPROCESSOR DESIGN

POPULAR SYSTEM EMULATORS AVAILABLE FROM NANODATA
THROUGH A PROGRAM LICENSE AGREEMENT

IBM 360 (DOS and OS)

DG NOVA Series

DEC PDP 11/10

EMULATORS DEVELOPED BY NANODATA FOR CUSTOMERS

IBM 7094 with Modified I/O

Trident Missile Fire Control Computer System

CDC 160A

CDC 200UT

EMULATORS UNDER CONSIDERATION

DEC PDP 11/70

DG Eclipse

EMULATORS COMPLETED OR BEING DEVELOPED BY CUSTOMERS

Systems

AN/UYK 20

INTEL 8080

UNIVAC 1106

RCA SCP-234 (MARC 1)

DELCO Magic 352

MIX

DEC PDP 11/40

High Level Language Machines

SIMPL - Q

BLAISE (Extended PASCAL)

APL

Concurrent PASCAL

SYSTEM SOFTWARE

NANODATA CONTROL SYSTEM (NCS)

NCS is a basic operating system supporting data and program
files in a disk storage environment, with absolute minimum
memory overhead.

NCS is an overlay-oriented system. Each system overlay per­
forms a specific task for the console operator, a user program,
or for other system subroutines.

Those wishing to modify NCS can do so with the assembly capa­
bility provided by the QM microassembler.

MULTI MICROMACHINE (MULTI)

The MULTI Micromachine is a multi-purpose, microprogramming
architecture. It was designed to be the base instruction set,
whereby with the appropriate specialized extensions for any
target architecture, the task of microprogramming an emulator
can be easily and quickly accomplished. The architecture has
18/36-bit or 16/32-bit (Single/Double) data width, and 18 or
36-bit instruction width. The 80 instructions encompass the
categories of control store operations, arithmetic operations,
shifting operations, main store operations, branching and
testing operations, special control and data operations, and
system support operations. All of the basic operations in an
emulation environment can be programmed with this instruction
set. Extensions to this set are common in existing emulators
but only necessary for speed and brevity at the micro level.

PROGRAMMABLE RUN-TIME OPERATOR (PROD)

The Prograrmnable Run-Time Operator display is designed to
provide the emulator designer with a flexible yet uniform
control base on which to build his emulator. Its primary pur­
pose is to allow the operator to control the emulated CPU.
PROD also provides trace/debug capabilities for the emulated
hardware system and display/debug capabilities for the micro­
programmer.

PROD consists of five logical sections. A task manager who
oversees the execution of the emulator, the debug/display
package, the console emulation routines (which provide the
operator a method of controlling the emulated CPU's console),
special support interfaces, and instrumentation supports.
Each section is easily modified to suit the particular target
while the nucleus is universal and provides a working base on
which a wide range of facilities may be added.

SYSTEM SOFTWARE

QM MICROASSEMBLER (MICRO)

The QM Microassembler is a main store program which provides
for assembly of QM/system control store microprograms.

MICRO is extendable and can be restructured, dynamically, to
conform to any of the microprogramming architectures defined
for execution on the QM-1.

MICRO is a conventional two-pass assembler with special pro­
vision for the definition of microinstruction operation codes,
formats and constants when used for the assembly of micropro­
grams.

TASK CONTROL PROGRAM (TCP)

TCP supports multiple co-resident control store tasks. Tasks
are controlled in a hierarchical manner. Task 0 is the super­
visory control program. Contained within the supervisor task
are all input/output control functions, as well as task sche­
duling routines.

Task 1 is activated innnediately after system initialization
and becomes the primary system task. Task 1 maintains communi­
cations with the operator console, while also controlling the
execution of the object program, or emulator, at task level 2.

QM NANOASSEMBLER (NA)

The QM Nanoassembler is a main store program for translating
source programs into modules for loading QM-1 nanostore.

NA frees the QM-1 user from explicitely specifying each of the ·
many bits in each nanoword. It allows, instead, general sym­
bols and transfers to be specified by the user and then expands
these into the necessary bit configurations.

NA can generate a full binary output file for use in loading
nanostore or it can generate a definition file to be used as
input to the QM microassembler.

Special Hardware Devices Available from Nanodata

IBM 360 Compatible Channel Controller
UNIVAC 1100 Peripheral Interface Channel

Education Courses Offered

One-Day Microprogramming and QM-1 System Overview
Two-Week QM-1 Programming Class
Two~Week System Engineering Class
One-Week Advanced Systems and Methods

User Group Membership (meets annually)

President: Professor Walter A. Burkhard
University of California, S.D./

Computer Science Division/Applied Physics Dept.

Participating Members:

Maintenance

University of Alberta/Dept. of Computer Sciences/
Edmonton

U.S.A.F./Griffiss AFB/Rome Air Development Center
U.S. Army/Harry Diamond Labs/Adelphi
U.S. Navy/Naval Surface Weapons Center/Dahlgren
TRW/Systems Group/Redondo Beach
Martin Marietta/Aerospace Div./Denver
McDonnell Douglas/McAuto Div./Astronautics Co./

Huntington Beach

Contract maintenance is available on a yearly renewable
basis. Principal period of maintenance consists of eight
contiguous hours (9 a.m. - 5 p.m.) daily, Monday-Friday.
Normal response is within 24 hours.

Contract Programming

Prices based on level of effort and potential resale value.

•'

NANODATA MANUALS

No. Description

Ml QM-1 Hardware Level User's Manual
M2 QM Micro - QM Microassembler Reference Manual
M3 MULTI Micromachine Description
M4 PROD User's Guide - Programmable Run-Time Operator Display
M6 Microprogramming and the QM System
M7 TASK - Task Control Program Overview
Ml3 Environment and Space Requirements for QM System
Ml4 QM Interfacing Manual
Ml5 Loader Services Program (LSP)
MB QM-NCS - Systems Operation Guide (NOVA, UllOO, etc.)
Ml2 Operating the 360 Emulator
Ml9 PDP 11/10 Emulator Control Program Sunnnary
Ml7 QM-1 200 UT User's Guide
M9 BLAISE on the QM-1
MlO Line Printer System
Mll Data Communication Controller
Ml6 Precision Real Time Clock
Ml8 Magnetic Tape System

NANODATA PRODUCT BULLETINS

Description

Model QM-1 Central Processing Unit
Rotate, Mask & Index Unit (RMI)
360 Channel Interface
1100 Channel Interface
CRT Terminal
Cartridge Tape System
Disk Systems (12 or 60 meg byte drives)
Chain Printers (300, 400, 600 and 800 LPM)
Drum Printer
Card Reader/Punch
Card Reader (200, 600 and 1,000 CPM)
Magnetic Tape Systems (45-125 IPS, NRZI and PE,

7 and 9 track)
Paper Tape Punch

SPECIAL CPU FEATURES INCLUDED:

Pf'OGRAMMABLE REAL TIME CLOCK
M.S. IASE 9'EGISTER ANO FIELD LENGTH

1
CRT ANO

MINIMUM SYSTEM CONFIGURATION

256 WORDS NANOSTORE ME MORY
(360 BIT WORDS, 240 NANOSECOND CYCLE TIME)

l

QM-I
CPU

HIGH SPEED

MlJLTIPLEX
CHANNEL

CARTRIDGE

4K WORDS CONTROL STORE MEMORY
• I (240 NANOSECOND CYCLE TIME/ 18 llTS)

4 PORT H 16 K WORDS MAIN .STORE MEMCRt'
ST~~ (7150 NANOSECOND CVCLI n../11 BtTS t

CONTROLLER I M9'1TY)

l l
60

SYSTEM CONTROL TAPE MEGABYTE

600 LPM

LINE
PRINTER CONSOLE

NANODATA CORPORATION 197 7

,,

DRIVE DISK DRIVE

SELLING PRICE I 190,000

MONTHLY MAINTENANCE I 1,15 0
INSTALLATIO~ CHARGE t I, 200
SHIPPING CHARGES F 0 B NANODATA

SPECIAL C?U FEATURES INCLUDED:
PR08RAMMAaLE REAL TIME CLOCK
M.S. BASE RE&ISTH AND FJELD L£N&TH
ftOWER fAIL MACHINE CHECK
ROTATE MAIK AND INDEX UNIT
C.I. aAIE M81STEllt AND FIELD LENGTH
"ll llT SHl,TER

CRT ANO
SYSTEM CONTROL

COMMUNICATIONS

CONSOLE CONTROLLER

NANODATA CORPORATION 1917

TYPICAL CUSTOMER CONFIGURATION

256 WORDS NANOSTORE MEMORY
(360 BIT WORDS. 240 NANOSECOND CYCLE TIME)

EXPANDABLE TO 1024 WORDS

NOTE:
THIS CONFIGURATION WILL RUN ALL EMULATORS CURRENTLY
AVAILABLE. THE PERIPHERALS SHOWN ARE TYPICAL,
OTHER SIZES OR SPEEDS ARE ALSO AVAILABLE.
ADDITIONAL MULTI-PROCESSOR FEATURES ARE ALSO
AVAILABLE BUT NOT NECESSARLY REQUIRED FOR
DEVELOPMENTAL WORK

12K WORDS CONTROL STORE MEMORY
• 1(240NANOSECONO CYCLE TIME/18 81TS)

QM-I
CPU

UP TO 5 MUXES AND AUTOMATIC J:D
OF UP TO 512 DEVICES

DIRECl HIGH SPEED

MULTIPLEX
CHANNEL

~ MEMORY
ADDRESSING

EXPANDABLE TO 40K WORDS

4 PORT 144K WORDS MAIN STORE MEMORY
STORAGE n (7DO NANOSECOND CYCLE TIME I II arrs + Z MRITY)

CONTROLLER EXPANDABLE TO 1024 K WORDS

I I 1
600 CPM

600 LPM
LINE

CARTRIDGE
TAPE
DRIVE

60
MEGABYTE

DISK DR I VE

MAG TAPE
9TRK, NRZI CARD READER "PRINTER

SELLING PRICE l2s1,ooo
MONTHLY MAINTENANCE I ~ 800
INSTALLATfON CHARGE 11,200
SHIPPING CHARGES F 0 B NANOOATA

"Imagine a ... programmers machine ... designed to provide all the
tools for debugging logical breakpoints, displays, etc
that the programmer ... always wished he had ... but that previously
required rewiring the underlying hardware By means of a
microprogrammed emulation such an 'extended' machine archi­
tecture is a workable, practicable, efficient alternative to
blinking-lights, toggle-switched, and other paraphenalia of
the nardware engineer "

C. W. Flink, U.S. Navy, MICR0-10 PROCEEDINGS, Oct. 5, 1977.

For more inf ormation on the NANODATA Corp. QM/l please contact:

San Diego, CA

Robert C. Boe
714 226 8502

Williamsville, NY

Michael C. Senft
716 631 5880

MICROPROGRAMMING

AND THE

QM-1

(c) NANODATA CORPORATION
1973

Introduction To Microprogramming And the QM-1

Every programmable device, or "machine", possesses an architecture
and an instruction set. The architecture is its system of a:>mponents
and their interconnection; in the case of a computer, architectures
are described in terms of stores, registers, arithmetic-logic units,
data paths, etc. A machine instruction is a command which causes
elements of the architecture to operate in some predetermined manner;
the instruction set of a machine is simply a list of all instructions
which the machine recognizes.

I Main Store (Memory) I
I I
I ------------------ I

Using these broad definitions
and the simplified model of a
computer shown in Figure A, a
discussion of three phases of
the "instruction sequence"
provides a basic explanation
of computer operation.

-In_p_u_t_>I
1

_I ___ In_s __ tr_u_c_t __ io_n_s ____ I I

----- ~ i-~~;~--i ~~~~~~~~~
Instruction Fetch

Sequences of machine instructions,
in the form of binary numbers, are
typically stored in contiguous
locations in Main Store (memory);
instruction execution is initiated
by fetching a machine instruction
from a given location in memory
and placing it into an Instruction
Register. The memory address from
which to fetch an instruction is
contained in an Instruction
Location Counter Register, often
called a Program Counter; part
of the effect of every instruction
is to update this register to
point to the successor instruction,
and then to begin the memory
fetch for the next sequential
instruction.

Instruction Decode

I --------- I ----------y-y------------

CPU supplies
address for
single word
transfers

I I
I I
I I

~ ~ /\. Control Unit

1 I ~ ~ sigµals Main
I I I I Store,I/O

V I I units, and
I I other CPU
I I functions

I Central Processing Unit I
I (CPU) I
!-------------------------!
I I Registers, I
I Control I Shifters, I
I Unit I Test Units, I
I 1 Adders, etc. I

Slock Diagram of a Computer
Figure A

A portion of the contents of the Instruction Register is designated
as the Operation Code. This binary number is decoded by the Control
Unit to select among a number of modules, each of which is responsible
for accomplishing the effect of one of the instructions in the com­
puter's instruction set. As will be shown later, the method of de­
coding and the nature of these modules is critical to the definition
of Microprogramming.

-1-

Instruction Execution

The ultimate effect of any instruction-execution module is the genera­
tion of electrical signals to the various computer components.

Basic Instruction Sequence

These three phases of Instruction Fetch, Decode, and Execute, form the
basic Instruction Sequence (or "instruction cycle"). After initial
start-up, all computers follow an instruction sequence similar tD that
illustrated in Figure B.

I Instruction I------~I I------!>I Instruction I
I Location I Step 1 I Memory I Step 2 I Register I
I Counter I------ I I------ I (Opcode) I _____ ?l _____ _

Step 3
Add one

Instruction Fetch

Instruction Sequence

Figure B

Step 1 - A word is read from memory at
the location specified by the CPU'S
Instruction Location Counter.
Step 2 - The word is placed in
Instruction Register.
Step 3 - The Location Counter is
updated (add one).

Instruction Decode
Step 4 - The Operation Code (A portion
of the instruction word) is transferred
to a decoder.
Step 5 - The decoder selects one of a
number of execution plans.

Instruction Execute
Step 6 - Carry out execution plan which
may include data fetch, data manipulation,
data store, repeatedly.

End of Sequence - Do next instruction
fetch (Step 1.).

-2-

-----TT ___ _
S~4

1--------y
1
Decoder

1
----T--T-~

Step 5 ______ v.. _____ _
I Selected I
I Execution I
I Unit I

Microprogrammed Control

The final phase is of particular interest here. The electrical signals
which the control unit sends to the architectural components are the
most basic, or "primitive", commands in the computer; these signals
have effects such as opening and closing gates (for example, to transfer
register contents), initiating memory cycles, and setting individual
bits. In fact, the Instruction Sequence itself is under the control
of such primitive operations; an implicit effect of every machine in­
struction is the execution of the next Instruction Sequence.

Only rarely do machine instructions correspond to a single architectural
primitive; most machine instructions result in the generation of a num­
ber of primitives, frequently arranged in a time sequence. For some
instructions, the arrangement of primitives can be fairly complex. An
example is a Multiply instruction on a machine which has only an adding
component, the adder must be used iteratively, and tRe internal plan
of the instruction resembles a computer programo

The later observation suggests an implementation of the primitive signal
control function. In the conventional, or "hard-wired" computer, a
hardware decoding of the relevant portion of the instruction word selects
one of several logic circuits, each of which is responsible for gener­
ating and sequencing the primitive signals of a given machine instruction.
If, however, the primitive control functions are regarded as ·"micro­
operations", then· a "microprogram" can be written to plan the flow of
an instruction. The steps of this microprogram can then be implemented
as primitive commands executing out of a fast-access store, such as
semiconductor memory. (Execution of such commands is simple to accom­
plish, since the microoperations correspond directly to architectural
functions.)

Using a microprogrammed approach to machine instruction implementation,
the instruction-decode step of machine operation changes: rather than
decoding the operation-code portion of the instruction to select one
of several hardware modules, this binary number is used directly as
an address, or pointer, into the microprogram store ("control store");
the location so defined is programmed as the entry point of the micro­
program which implements the original machine instruction. This process
is illustrated in Figure C.

The Operation Code of. a Machine Ins truc,t ion determines the arrangement
and timing of the signals which control movement of data between Memory,
CPU Registers, Arithmetic-Logic Units and o±her hardware facilities.

-3-

Hard-Wired Computer

In a conventional {hard-wired) computer, the opcode is decoded and
used to select among logic circuits which provide the control signals
within the computer.

Instruction Register

I Opcode I **********I Machine Instructions---

----[]--------~~~~~~~~~~~~~~~
----- ------- ; / ,,.

and hence the functional
nature of the computer as
seen by the programmer -
are determined by the hard­
ware machine designer.

=-~==~~=~----=~~;-~~;~~~;-;-;
-------------!

->I Circuit N I

Microprogrammed Computer

In a microprogrammed computer, the opcode is used as an address
(pointer) into a fast "control store." The microprogram starting at
that address has been written to provide the control signals·.

Instruction Register

I Opcode !********** I

I I
I I

(Address of
Micro rogram)

Control Store

I I -----------------
1-----------I I Mechanism to I

3>1 Begin I=>I Convert Micro '1
I I I Instruction I
I I I Into Control I
I End I I Signals I
1-----------I -----------------
! I
I I

Figure C - Instruction Decode Schemes

-4-

Machine Instructions -­
and hence the functional
nature of the computer as
seen by the programmer -­
are determined by the
microprogrammer and may be
redefined as readily as
the control store may be
reprogrammed. If control
store is.-writable, the
user can microprogram at
his convenience, modifying
his machine at computer
speeds instead of "solder­
ing iron" speeds.

Uses of Microprogramming

With the previously defined model of microprogram machine control, we
can now examine the uses and advantages of microprogramming. The
strongest single justification for microprogramming lies in the current
disparity between the speed of main store (core memory) and the speed
of currently available logical components. For example, more than 10
sets of primitive functions may be executed in the time taken to read
one word from core memory. Thus time exists for more than 10 control
store steps to implement a main store instruction. This large ratio
makes possible a significant increase in the power of the instructions
defined at the higher level over those required in the underlying
hardware. For this reason, microprogramming is now common in many
computers.

Microprogramming provides other advantages as well. Since micropro­
gramming in control store serves to define the computer as seen at the
conventional level, the flexibility of microprogramming may be used to
vary the machine defined. Many of the advantages that result are
tabulated in Figure D, and with a writable control store any number of
the uses may be achieved in the same machine hardware by dynamically
altering the contents of control store to match the needs.

From a fully flexible microprogrammed design arises the full gammet of
uses, from the historical one of defining a common instruction set to
range across a variety of architectures, to the common use of emulating
another computer, to the ultimate use of control store being utilized
as the user level, with main store acting as some type of file, paging,
or higher-level language system.

-5-

Microprogramming May Be Used To

1. Define a computers instruction
set independent of the basic
hardware development. This was
the most common early use.

2. Cause the hardware to function
as another (pre-existing)
computer. This is the common
definition of emulation.

3. Emulate another computer, but
with extra instructions and/or
special features.

4. Create a special-purpose
computer to meet the needs.of
a particular environment.

Advantages Figure D

A) Separates the instruction
definition from the hard­
ware specification.

B) Permits matching memory speed
to logic speeds when a large
difference exists.

A) Emulated machines software
may be used without modifi­
cation thus preserving
possibly large software in­
vestments.

B) Host computer system may be
faster or less expensive than
original machine.

C) Several machines may be emu­
lated at different times, on
same hardware host.

Increased efficiency: functions
requiring complex and time con­
suming software may be performed
directly on the machine, as a
single (special) instruction.
Examples;

* floating point arithmetic
* operating system functions
* any programmed procedure

commonly used in a given
application.

A) Microprogram development is
easier, faster, and less
expensive than hardware dev­
elopment, and is performed
by personnel typically
closer to end needs than
hardware p~rsonnel.

B) Result can be modified easily
when necessary, as needs
change.

C) When application is phased
out, host hardware remains
usable.

------------------------------------ ----------------------------------
5. Write user programs in control

store, with main store used as
a fast message buffer, page
backup, file storage, etc.

-6-

Very fast processing times are
possible for suitable applica­
tions. Less hardware may be
necessary to do the job since
the hardware is used directly.

Horizontal and Vertical Control

The designer of a machine with microprogrammed control faces an
immediate decision as to the format of microinstructions to be used
in the machine. He may choose to use a wide, unstructured microword,
usually called a horizontal microinstruction:

--- Each bit is
·••o••······Horizontal Microinstrution ...•.. independent
--- of other bits.

When executed, each bit in a horizontal microinstruction results in
a control signal to a hardware component. This is generally found
in more powerful machines. The microinstruction may run to 100 or
more bits (the IBM 360/50 uses a microinstruction 90 bits wide).

Or the designer may choose a highly encoded microinstruction packed
into a much smaller word. The word contains a micro-opcode and
several other encoded fields. For this reason, it is often referred
to as a vertical microinstruction:

------------------------ Several bits form
Vertical Microinstruction Micro-Opcode I XXX XXXX an encoded fieldo

~-----------------------
When executed, the micro-opcode of a vertical microinstruction selects
a sequence of control signals, similar to the operation of a machine
instruction opcode but at a lower level (simpler sequences are invoked).
Vertical microinstructions are much shorter (the IBM 360/25 has a 16
bit microinstruction).

Each scheme for microprogrammed control offer certain advantages. A
choice involves evaluation of many trade-offs. Some of the factors
are tabulated in Figure E.

Conclusions:

Horizontal microinstructions are preferable to vertical micro­
instructions for flexibility and parallelism, but they are more
difficult to program, require larger amounts of expensive storage
and are limited in what time sequences may be programmed.

The QM-1 has been designed to make available the advantages of each
scheme of microprogrammed control and to avoid the disadvantages
inherent in each. The untque features of the QM-1 that make this
possible will be examined next.

-7-

Trade-Offs Between Horizontal And Vertical Control Figure E

Horizontal Microinstructions ...

Allow ultimate flexibility in
control, since each signal (bit)
may be individually selected by
the microprogrammer.

May be executed simply by
gating them to a register, to
which signal lines are
attached directly.

Allow parallel operation of
hardware components.

Are relatively difficult to
program.

Must be executed frequently,
since they exercise each
hardware component at most once.

Are wide, typically on the
order of 100 bitso

The last two items imply that
storage of enough horizontal
microinstructions to run a
reasonably powerful emulation
may be expensive in number
of bits.

-8-

Vertical Microinstructions ...

Provide a Limited selection of
control patterns; the number of
possibilities depends upon the
width of the Micro-Opcode.

Require execution machinery
similar to (but simpler than)
that required to execute machine
instructions.

Typically specify "single-thread"
operations.

Are relatively simple to
program.

May specify a time-sequence of
control signals, so they may be
executed less frequently.

Require only enough bits to
contain the Micro-Opcode and
perhaps some parameters -­
typically 8 to 18 bits.

The last two items imply that
storage of enough vertical
microinstructions to run a
reasonably powerful emulation
may be inexpensive in number
of bits.

The QM-1 Control Hierarchy

In the QM-1, a two-level design smooths the machine definition process
over two stages, achieving the advantages of both Horizontal and Vertical
control:

Machine instructions in Main Store are executed by (and defined by)
microprograms in Control Store, under Vertical control.

Microinstructions in Control Store are in turn executed by (and de­
fined by) Nanoprograms in Nanostore, under Horizontal control.

An illustration of this concept is shown in Figure F

Main Store
.------------..., Main Store instruction "ABC" is fetched

and decoded under microprogram control.

Microinstruction_"XYZ" is fetched and
decoded by hardware under Nanoprogram
control.

Nanostore Machine Control

T4

Microprogram executing
"ABC" is shaded.

T3

T2
Nanoprogram executing f----- -----

"XYZ" is shaded. >r K Tl
Nanoprograms are directly executed Ill'l flif T
by hardware: control signals are sent .to components --------> t

Figure F QM-1 Control Hierarchy Example of Two Level Emulation

This unique control hierarchy takes advantage of the best features of
both horizontal and vertical control as summarized.in Figure G. In
addition, flexible time sequencing is possible at both levels. And
most important, both control store and nanostore are fully writable
semiconductor memories, so that the QM-1 user can take advantage of
all possible flexibility in the system by dynamic reprogramming.

In particular, control store is a fully general-purpose Read/Write store,
hence it is feasible, for some applications, to approach QM-1 Control
Store as the primary program store of the machine, executing programs
which can regard the passive Main Store as a secondary storage unit.

-9-

Control Hierarchy Dimensional Trade-Offs
--

At Highest Level

End user has system
simple to program.

Generalized indirect control.
Powerful (high level)
instructions.

Meaning of main store
contents fully redefinable.

Large memory available.

Low cost/bit.

User and Machine Hierarchies

Figure G

At Lowest Level

Hardware designer has system
directly implementable.

Absolute direct control.
Primitive (low level)
functions.

Meaning of control
signals fixed in hardware.

Small store required.

Fast operation.

The design of the QM-1 lends itself to a system of "virtual machines"
arranged in a hierarchy of levels. Each level is supported by the
machine below, and in turn supports the machine above. Once a given
machine is defined by suitable software (or "firmware"), its implementa­
tion -- I.E., the nature of that software structure -- is transparent
to the user of that machine. For example, after suitable nanoprogramming
is done to define a "micro-machine", the very existence of Nanostore is
irrelevant to the Micro-Machine user.

Hardware Level

The basic hardware components of the QM-1 include several banks of regis­
ters; a system of three stores; arithmetic, boolean, and shift components;
and twelve independent buseso Bus connections between the components are
programmable and may be changed as often as required to best fit the
current task. All these units may be exercised independently, allowing a
high degree of parallelism.

Complete control over the hardware is provided by a 360-bit word read from
the dynamically writable Nanostore; the active Nanoward provides a sequence
of four Machine State Vectors, each of which drives the individual machine
components and their interconnections during a machine clock period of
75 Nanoseconds.

-10-

Nano-Machine Level

Nanoprogramming is the process of defining a set of such control sequences
to implement Microinstructions executed at the next level. The opcode of
a vertically formatted Microinstruction, read from Control Store, is used
to select the entry point in Nanostore at which to begin executing the
defining Nanoprogram. The Microinstruction Set used may be either that
defined by NANODATA (with possible user modifications/extensions for the
current task) or that defined by the user; the NANODATA-supplied micro­
language is accompanied by systems software to support I/O and process
management.

Micro-Machine Level

Since microinstructions reside in the fully Readable /Writable Control
Store, microprogramming can be used to define the application directly.
Due to the flexibility provided at the Nano level, a variety of Micro­
machines may be defined to efficiently match the application. The
Micro-machine can then be viewed as a conventional machine with a cus­
tomized instruction set and a 150 Nanosecond memory.

Main-Store-Machine Level

For many applications, the above number of levels will be sufficient;
applications software may be written in the defined microlanguage,
executing out of Control Store at very high speeds. For those applications
in which another level of flexibility is desired, however, microprogramming
in Control Store may be used to define the architecture and ·instruction
set for software in Main Store. At the micro level, Main Store is viewed
simply as a passive general-purpose data store; the process is one of
classical emulation.

As indicated previously, the Hardware Level Users Manual provides complete
functional specifications of the QM-1, and thus defines the "nano-machine"
available to the hardware-level user. Many users will be concerned with
the machine at this most fundamental level. The NANODATA Systems Software
staff, for example, approaches the machine at this level. Already
developed nanocode for support of a general purpose micro-instruction
set is available, however and when such appropriate software, including
both systems support functions and any one of several micro language
definitions, is included in the QM-1, the micro-level user can program
the machine without being concerned with the structure beneath.

-11-

The QM-1 Architecture

The architecture of the QM-1 is specifically designed to span the
levels of programming with the flexibility needed at the lowest
level, and the power necessary for the highest. The hardware
drawing on the next page gives an idea of the extent to which the
architecture is flexible. It shows the data paths of the QM-1
computer, and that group of components, which make up the controls
and functional units as viewed at the lowest level by the nanopro­
grammer. This drawing can be an insight into what is available at
this level, however, without having to program at this level. The
parallelism which this level is capable of providing for the micro
level and the main store level, through the implementation of
specialized support for a specific application, greatly extends the
power of each level. The micro architecture will, in general, be a
major extension of the QM-1 architecture, and the Main Store archi­
tecture can be likewise; e.g., a virtual machine at either level
can be designed with a large number of general purpose registers
{probably residing in control store). The range of feasible virtual
machine definitions is limited only by the ingenuity of the designer,
and the efficiency considerations of the emulation process; stack
machine architectures, sophisticated arithmetic processors, and
"wideword" or "bit addressable" machines are only a few examples of
the kinds of possibilities which are all well within range.

-12-

I
1--'
w
I

~ EJ

MA!!!, I I

STORE I

I I I

I
ALU

(-18-)

8 GJ[EJ

I I EOD I I
-----------··- -- ---.

~ lc~o

I 1

I I

a

NANO
STORE

(-380-)

I •
r.NANO

DDRES8

I SELECT

,_

QM- I

DATA
PATHS

•c1Nc OUT)

··~+•• LOCAL ••

STORE

~

I EXTERNAL I Cl
4 •

STORE

(32118)
INDEX ALU rl RE~:::S I 4 1/0 •

t-------'ie LINES

(32 118)

" (INC 'f i{]llPC llEllSTERI c -- -- ... 4 •

STORE. 1· ~fak1 11 r1 11110Nc IN,.
I 1!1 • ~INDEX)

~ MPC UN IT 1-t-J
(-18-)

' .
8@

I I INC F 0

Fl

s

--6- - 20J
R G
E REGS'~

~
NOTE". IC32x6) b1

11
F RE618TERS

11
DIRECTLY CONTROL

BUSES SUCH AS FMOD,FCIA,ETC ..
* INC BUSES ARE INDIRECTLY REFERSICED

NANODATA CORPORATION ® 1973 I I I t ID t

i

