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The QM-1 is a high-speed general purpose digital com­
puter that operates under two levels of microprogram 
control. The unique design of the QM-1 supports a system 
of software-created user levels, whereby users at different 
levels approach architecture, machine language, and pro­
gramming in ways most suited totheirown specific require­
ments of the hardware. 



THE QM-1 CONTROL HIERARCHY 

In the QM-1, a two-level design smooths the machine defi­
nition process over two stages, achieving the advantages 
of both Horizontal and Vertical control: 

Machine instructions in Main Store are executed by 
(and defined by) microprograms in Control Store, under 
Vertical Control. 

Microinstructions in Control Store are in turn executed 
by (and defined by) Nanoprograms in Nanostore, under 
Horizontal Control. 

An illustration of this concept is shown in Figure 1. 
In particular, Control Store is a fully general-purpose 

Read/Write store, hence it is feasible, for some applica­
tions, to approach QM-1 Control Store as the primary pro­
gram store of the machine, executing programs which can 
regard the passive Main Store as a secondary storage unit. 

MAIN STORE 
MAIN STORE INSTRUCTION "ABC" IS FETCHED AND 

DECODED UNDER MICROPROGRAM CONTROL. 

ABC 

CONTROL 
STORE 

MICROPROGRAM EXECUTING 
"ABC" IS SHADED 

MICROINSTRUCTION "XYZ" 
IS FETCHED AND DECODED 

UNDER NANOPROGRAM 
CONTROL. 

NANOSTORE 

MACHINE 
CONTROL 

T4 

T3 

NANOPROGRAM EXECUTING "XYZ" IS SHADED T2 

K TI 
NANOPROGRAMS ARE DIRECTLY 

EXECUTED BY HARDWARE: 
CONTROL SIGNALS ARE SENT TO COMPONENTS ...,. 

Figure 1. QM-1 Control Hierarchy- Example 
of Two Level Emulation 

USER AND MACHINE HIERARCHIES 

The design of the QM-1 lends itself to a system of "virtual 
machines" arranged in a hierarchy of levels. Each level is 
supported by the machine below, and in turn supports the 
machine above. Once a given machine is defined by suit­
able software (or "firmware"), its implementation - i.e., 
the nature of that software structure - is transparent to the 
user of that machine. For example, after suitable nanopro­
gramming is done to define a "mico-machine;· the very 
existence of Nanostore is irrelevant to the micro-machine 
user. 

HARDWARE LEVEL 

The basic hardware components of the QM-1 include 
several banks of registers; a system of three stores; arith­
metic, boolean, and shift components; and twelve inde­
pendent buses. Bus connections between the components 
are programmable and may be changed as often as re­
quired to best fit the current task. All these units may be 
exercised independently, allowing a high degree of par­
allelism. 

Complete control over the hardware is provided by a 
360-bit word read from the dynamically writable Nano­
store; the active Nanoword provides a sequence of four 
Machine State Vectors, each of which drives the individ­
ual machine components and their interconnections dur­
ing a machine clock period. 

NANO-MACHINE LEVEL 

Nanoprogramming is the process of defining a ~et of such 
control sequences to implement Microinstructions exe­
cuted at the next level. The opcode of a vertically formatted 
Microinstruction, read from Control Store, is used to select 
the entry point in Nanostore at which to begin executing 
the defined Nanoprogram. The Microinstruction Set used 
may be either that defined by NANODATA (with possible 
user modifications/extensions for the current task) or that 
defined by the user; the NANODATA supplied micro­
language is accompanied by systems software to support 
1/0 and process management. 
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MICRO-MACHINE LEVEL 

Since microinstructions reside in the fully Readable/ 
Writable Control Store, microprogramming can be used to 
define the application directly. Due to the flexibility pro­
vided at the Nano level, a variety of micro-machines may 
be defined to efficiently match varied applications. The 
micro-machine can then be viewed as a conventional 
machine with a customized instruction set and a 150 Nano­
second memory. 

MAIN-STORE-MACHINE LEVEL 

For many applications, the above number of levels will be 
sufficient; applications software may be written in the 
defined microlanguage, executing out of Control Store at 
very high speeds. For those applications in which another 
level of flexibility is desired, however, microprogramming 
in Control Store may be used to define the architecture 
and instruction set for software in Main Store. At the micro­
level, Main Store is viewed simply as a passive general­
purpose data store; the process is one of classical 
emulation. 

Specifications 

TECHNOLOGY 
T2L-MSI 
Basic cycle time 80ns 

PROCESSOR 
Instruction Word Length 

Nanostore 360 Bits 
Control Store Variable 
Main Store Variable 

Data Word Length 
Control Store 
Main Store 

General Registers 

Groups of 18 Bits 
Groups of 18 Bits 

32 18 Bit Hardware 
12 6 Bit Hardware 

Indexing Registers 
32 18 Bit Hardware 
32 6 Bit Hardware 

Special Purpose and 1/0 Registers 
32 18 Bit Hardware 
28 6 Bit Hardware 

Direct Addressing 
1024K 18 Bit Words of Main Store 

40K 18 Bit Words of Control Store 
1 K 360 Bit Words of Nanostore 

Arithmetic 
2 Fully parallel, 18 bit wide, arithmetic/logic units 
providing 16 boolean and 32 arithmetic transformations. 

1 Six bit wide arithmetic/logic unit providing 
16 boolean and arithmetic transformations. (Optional) 

A Matrix shift unit, 36-bits wide, capable of 
performing circular, logical, or sign extending 
shifts or any value in either right or left 
direction. An optional 32 bit wide matrix is 
available to facilitate 8/16/32 bit circular shifts. 

Bussing 
14 Major Independent 18 Bit Data Paths 

7 Major Independent 6 Bit Data Paths 

The Hardware Level Users Manual provides complete 
functional specifications of the QM-1, and thus defines the 
"nano-machine" available to the hardware-level user. Many 
users will be concerned with the machine at this most 
fundamental level. The NANODATA Systems Software 
staff, for example, approaches the machine at this level. 
Already developed nanocode for support of a general 
purpose micro-instruction set is available, however, and 
when such appropriate software, including both systems 
support functions and any one of several microlanguage 
definitions, is included in the QM-1, the micro-level user 
can program the ma.chine without being concerned with 
the structure beneath. 

Specifications (Continued) 

1/0 MODES 
Programmed Transfer-Eight 18 Bit MUX Channels 

Block transfer up to 1960K Bytes/sec. 
Direct memory access-Five 18 Bit MUX Channels 

1million18 Bit Words/sec or 2 million 9 Bit Words/sec. 
Priority Interrupts-Identification of up to 512 hardware levels 
with automatic device identification and vectoring. 
Interrupt latency time 480ns. 

MEMORIES 
Main Store 18 Bits+ 2 parity bits 

Cycle Time 750ns 
Control Store 18 Bits 

Nanostore 
Access Time 75ns 
360 Bits 
Access Time 75ns 

INPUT POWER 
208 Volts, 3 phase 
Optionally 

ENVIRONMENT 
Operating Temperature 
Operating Humidity 
Heat Dissipation 

DIMENSIONS 
Height 
Width 
Depth 
Weight 

60HZ@ 7KVA 
50HZ 

60°F to 80°F (15°C to 26°C) 
40% to 60% Non-condensing 
25,000 BTU/Hr. 

61.75" (156.8 cm) 
55.5" (141.0 cm) 
27" (68.6 cm) 
1500 lbs. (680.4 kg) 
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M-1 
APPLICATION/ BENEFITS 
AVAILABLE SUPPORT 

CONFIGURATIONS 

NANDDATA CORPORATION 
' 2457 Wehrle Drive Will iamsville, New York 14221 (716) 631-5880 



DEVELOP PROGRAMS ON OUR SYSTEM FOR THE EXPENSIVE SYSTEM YOU PLAN TO BUY 

Here's why • • • 

Program development takes time. Use our system to write and debug programs, 
in order to defer major system expenditures until they are warranted. You'll 
save dollars in the long run on rentals, depreciation, and cost of money. 

The passage of time increases competitive pricing options open to you and 
reduces your vulnerability to destandardization. Our system allows you to 
initiate a major development effort without incurring substantial costs or 
risks. 

Avoid buying the wrong size system. It is difficult to properly size a 
system beforehand. Developing software and analyzing design on our system 
will aid immeasurably in ordering the right sized system and provide you 
true cost data before the fact. 

Insure you order the right system by developing some software for two or 
three manufacturers on our system rather than using manufacturer's bench­
marks results as sole selection criteria. 

Use our system to develop software at first for the new system and later to 
replace the old system. Use it to run programs that are difficult to con­
vert. Chances are the maintenance dollars saved are enough to offset the 
entire cost of our system. 

USER BENEFITS 

Increase Productivity and Overall Performance 

• Stretch an Education or R & D Budget 

• On Our System Develop Programs for Expensive Systems 



INCREASE PRODUCTIVITY AND OVERALL PERFORMANCE WITH OUR SYSTEM 

Here's how • • • 

Our system, because of its unique features, allows users to develop software 
for other systems more easily and determine bottlenecks faster. It is in­
valuable in developing software for minis, and will allow the user to deter­
mine in adyance the upper limits to which a mini can be expanded or pushed. 

On-line software development on some computers is costly in tenns of hardware 
or reduced system performance. Our system can be used for that software 
development. 

Our hardware can be used to support many types of systems, from an IBM 370 
to a one of a kind airborne computer. In fact, our system has already emu­
lated a military computer a year before the real computer was built. 

Use our system to tie a network together, as a node in a distributed process­
ing environment emulating the central site CPU. Or use it as a translation 
processor allowing different types of computers to communicate effectively 
with each other. 

STRETCH AN EDUCATION OR R & D BUDGET 

Here's how • • • 

Education tool for basic or advanced study in programming, design, and 
architecture of any system or many systems. 

Develop a special purpose system with unique instruction repertoire 
APL processor, DATA BASE Management Processor, Formula machines for math, 
physics and other sciences. 

Test and validate new computer designs for any system from microprocessors 
to multi-processor fourth generation systems. 

Save the expense of ruggedized equipment in a benign environment. 

Use our system over and over, for entirely different purposes, without 
ever requiring hardware modifications. Your R & D efforts can be kept 
entirely in-house and secret. 

Our system is hundreds of times more cost effective than simulation tech­
niques on other systems. 



HERE'S HOW ONE NANODATA CUSTOMER IS USING THEIR SYSTEM 

APPLICATIONS 

ARCHITECTURE DESIGN FOR REAL TIME AND NEAR REAL TIME 
COMMUNICATION, COMMAND AND CONTROL SYSTEMS 

DEVELOP AND VALIDATE MICROPROCESSOR FIRMWARE AND SOFTWARE 

DEVELOP SOFTWARE FOR OPERATIONAL COMPUTERS WHICH ARE 
INACCESSIBLE BECAUSE THEY LACK I/O OR ARE ONE OF A KIND 

DEVELOP EMULATORS FOR OBSOLETE, HARD TO MAINTAIN COMPUTERS 

SPECIFY COMPUTER ARCHITECTURES BASED ON SOFTWARE DESIGN 

SOFTWARE AND FIRMWARE VERIFICATION AND VALIDATION 

RESEARCH 

COMPUTER ARCHITECTURE DEFINITION EMULATION COMPILER 

DISTRIBUTED DATA BASE SIMULATION FACILITY 

NETWORK DESIGN ANALYSIS 

SATELLITE GRAPHICS DESIGN 

COMPUTER ARCHITECTURE STUDIES FOR ARTIFICIAL INTELLIGENCE 
AND FAULT-TOLERANT COMPUTING 

HIGH ORDER LANGUAGE PROCESSORS AND SPECIAL PURPOSE PROCESSORS 

MICROPROCESSOR DESIGN 



POPULAR SYSTEM EMULATORS AVAILABLE FROM NANODATA 
THROUGH A PROGRAM LICENSE AGREEMENT 

IBM 360 (DOS and OS) 

DG NOVA Series 

DEC PDP 11/10 

EMULATORS DEVELOPED BY NANODATA FOR CUSTOMERS 

IBM 7094 with Modified I/O 

Trident Missile Fire Control Computer System 

CDC 160A 

CDC 200UT 

EMULATORS UNDER CONSIDERATION 

DEC PDP 11/70 

DG Eclipse 

EMULATORS COMPLETED OR BEING DEVELOPED BY CUSTOMERS 

Systems 

AN/UYK 20 

INTEL 8080 

UNIVAC 1106 

RCA SCP-234 (MARC 1) 

DELCO Magic 352 

MIX 

DEC PDP 11/40 

High Level Language Machines 

SIMPL - Q 

BLAISE (Extended PASCAL) 

APL 

Concurrent PASCAL 



SYSTEM SOFTWARE 

NANODATA CONTROL SYSTEM (NCS) 

NCS is a basic operating system supporting data and program 
files in a disk storage environment, with absolute minimum 
memory overhead. 

NCS is an overlay-oriented system. Each system overlay per­
forms a specific task for the console operator, a user program, 
or for other system subroutines. 

Those wishing to modify NCS can do so with the assembly capa­
bility provided by the QM microassembler. 

MULTI MICROMACHINE (MULTI) 

The MULTI Micromachine is a multi-purpose, microprogramming 
architecture. It was designed to be the base instruction set, 
whereby with the appropriate specialized extensions for any 
target architecture, the task of microprogramming an emulator 
can be easily and quickly accomplished. The architecture has 
18/36-bit or 16/32-bit (Single/Double) data width, and 18 or 
36-bit instruction width. The 80 instructions encompass the 
categories of control store operations, arithmetic operations, 
shifting operations, main store operations, branching and 
testing operations, special control and data operations, and 
system support operations. All of the basic operations in an 
emulation environment can be programmed with this instruction 
set. Extensions to this set are common in existing emulators 
but only necessary for speed and brevity at the micro level. 

PROGRAMMABLE RUN-TIME OPERATOR (PROD) 

The Prograrmnable Run-Time Operator display is designed to 
provide the emulator designer with a flexible yet uniform 
control base on which to build his emulator. Its primary pur­
pose is to allow the operator to control the emulated CPU. 
PROD also provides trace/debug capabilities for the emulated 
hardware system and display/debug capabilities for the micro­
programmer. 

PROD consists of five logical sections. A task manager who 
oversees the execution of the emulator, the debug/display 
package, the console emulation routines (which provide the 
operator a method of controlling the emulated CPU's console), 
special support interfaces, and instrumentation supports. 
Each section is easily modified to suit the particular target 
while the nucleus is universal and provides a working base on 
which a wide range of facilities may be added. 



SYSTEM SOFTWARE 

QM MICROASSEMBLER (MICRO) 

The QM Microassembler is a main store program which provides 
for assembly of QM/system control store microprograms. 

MICRO is extendable and can be restructured, dynamically, to 
conform to any of the microprogramming architectures defined 
for execution on the QM-1. 

MICRO is a conventional two-pass assembler with special pro­
vision for the definition of microinstruction operation codes, 
formats and constants when used for the assembly of micropro­
grams. 

TASK CONTROL PROGRAM (TCP) 

TCP supports multiple co-resident control store tasks. Tasks 
are controlled in a hierarchical manner. Task 0 is the super­
visory control program. Contained within the supervisor task 
are all input/output control functions, as well as task sche­
duling routines. 

Task 1 is activated innnediately after system initialization 
and becomes the primary system task. Task 1 maintains communi­
cations with the operator console, while also controlling the 
execution of the object program, or emulator, at task level 2. 

QM NANOASSEMBLER (NA) 

The QM Nanoassembler is a main store program for translating 
source programs into modules for loading QM-1 nanostore. 

NA frees the QM-1 user from explicitely specifying each of the · 
many bits in each nanoword. It allows, instead, general sym­
bols and transfers to be specified by the user and then expands 
these into the necessary bit configurations. 

NA can generate a full binary output file for use in loading 
nanostore or it can generate a definition file to be used as 
input to the QM microassembler. 



Special Hardware Devices Available from Nanodata 

IBM 360 Compatible Channel Controller 
UNIVAC 1100 Peripheral Interface Channel 

Education Courses Offered 

One-Day Microprogramming and QM-1 System Overview 
Two-Week QM-1 Programming Class 
Two~Week System Engineering Class 
One-Week Advanced Systems and Methods 

User Group Membership (meets annually) 

President: Professor Walter A. Burkhard 
University of California, S.D./ 

Computer Science Division/Applied Physics Dept. 

Participating Members: 

Maintenance 

University of Alberta/Dept. of Computer Sciences/ 
Edmonton 

U.S.A.F./Griffiss AFB/Rome Air Development Center 
U.S. Army/Harry Diamond Labs/Adelphi 
U.S. Navy/Naval Surface Weapons Center/Dahlgren 
TRW/Systems Group/Redondo Beach 
Martin Marietta/Aerospace Div./Denver 
McDonnell Douglas/McAuto Div./Astronautics Co./ 

Huntington Beach 

Contract maintenance is available on a yearly renewable 
basis. Principal period of maintenance consists of eight 
contiguous hours (9 a.m. - 5 p.m.) daily, Monday-Friday. 
Normal response is within 24 hours. 

Contract Programming 

Prices based on level of effort and potential resale value. 
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NANODATA MANUALS 

No. Description 

Ml QM-1 Hardware Level User's Manual 
M2 QM Micro - QM Microassembler Reference Manual 
M3 MULTI Micromachine Description 
M4 PROD User's Guide - Programmable Run-Time Operator Display 
M6 Microprogramming and the QM System 
M7 TASK - Task Control Program Overview 
Ml3 Environment and Space Requirements for QM System 
Ml4 QM Interfacing Manual 
Ml5 Loader Services Program (LSP) 
MB QM-NCS - Systems Operation Guide (NOVA, UllOO, etc.) 
Ml2 Operating the 360 Emulator 
Ml9 PDP 11/10 Emulator Control Program Sunnnary 
Ml7 QM-1 200 UT User's Guide 
M9 BLAISE on the QM-1 
MlO Line Printer System 
Mll Data Communication Controller 
Ml6 Precision Real Time Clock 
Ml8 Magnetic Tape System 

NANODATA PRODUCT BULLETINS 

Description 

Model QM-1 Central Processing Unit 
Rotate, Mask & Index Unit (RMI) 
360 Channel Interface 
1100 Channel Interface 
CRT Terminal 
Cartridge Tape System 
Disk Systems (12 or 60 meg byte drives) 
Chain Printers (300, 400, 600 and 800 LPM) 
Drum Printer 
Card Reader/Punch 
Card Reader (200, 600 and 1,000 CPM) 
Magnetic Tape Systems (45-125 IPS, NRZI and PE, 

7 and 9 track) 
Paper Tape Punch 



SPECIAL CPU FEATURES INCLUDED: 

Pf'OGRAMMABLE REAL TIME CLOCK 
M.S. IASE 9'EGISTER ANO FIELD LENGTH 

1 
CRT ANO 

MINIMUM SYSTEM CONFIGURATION 

256 WORDS NANOSTORE ME MORY 
(360 BIT WORDS, 240 NANOSECOND CYCLE TIME) 

l 

QM-I 
CPU 

HIGH SPEED 

MlJLTIPLEX 
CHANNEL 

CARTRIDGE 

4K WORDS CONTROL STORE MEMORY 
• I (240 NANOSECOND CYCLE TIME/ 18 llTS) 

4 PORT H 16 K WORDS MAIN .STORE MEMCRt' 
ST~~ (7150 NANOSECOND CVCLI n../11 BtTS t 

CONTROLLER I M9'1TY) 

l l 
60 

SYSTEM CONTROL TAPE MEGABYTE 

600 LPM 

LINE 
PRINTER CONSOLE 

NANODATA CORPORATION 197 7 

,, 

DRIVE DISK DRIVE 

SELLING PRICE I 190,000 

MONTHLY MAINTENANCE I 1,15 0 
INSTALLATIO~ CHARGE t I, 200 
SHIPPING CHARGES F 0 B NANODATA 



SPECIAL C?U FEATURES INCLUDED: 
PR08RAMMAaLE REAL TIME CLOCK 
M.S. BASE RE&ISTH AND FJELD L£N&TH 
ftOWER fAIL MACHINE CHECK 
ROTATE MAIK AND INDEX UNIT 
C.I. aAIE M81STEllt AND FIELD LENGTH 
"ll llT SHl,TER 

CRT ANO 
SYSTEM CONTROL 

COMMUNICATIONS 

CONSOLE CONTROLLER 

NANODATA CORPORATION 1917 

TYPICAL CUSTOMER CONFIGURATION 

256 WORDS NANOSTORE MEMORY 
(360 BIT WORDS. 240 NANOSECOND CYCLE TIME) 

EXPANDABLE TO 1024 WORDS 

NOTE: 
THIS CONFIGURATION WILL RUN ALL EMULATORS CURRENTLY 
AVAILABLE. THE PERIPHERALS SHOWN ARE TYPICAL, 
OTHER SIZES OR SPEEDS ARE ALSO AVAILABLE. 
ADDITIONAL MULTI-PROCESSOR FEATURES ARE ALSO 
AVAILABLE BUT NOT NECESSARLY REQUIRED FOR 
DEVELOPMENTAL WORK 

12K WORDS CONTROL STORE MEMORY 
• 1(240NANOSECONO CYCLE TIME/18 81TS) 

QM-I 
CPU 

UP TO 5 MUXES AND AUTOMATIC J:D 
OF UP TO 512 DEVICES 

DIRECl HIGH SPEED 

MULTIPLEX 
CHANNEL 

~ MEMORY 
ADDRESSING 

EXPANDABLE TO 40K WORDS 

4 PORT 144K WORDS MAIN STORE MEMORY 
STORAGE n ( 7DO NANOSECOND CYCLE TIME I II arrs + Z MRITY) 

CONTROLLER EXPANDABLE TO 1024 K WORDS 

I I 1 
600 CPM 

600 LPM 
LINE 

CARTRIDGE 
TAPE 
DRIVE 

60 
MEGABYTE 

DISK DR I VE 

MAG TAPE 
9TRK, NRZI CARD READER "PRINTER 

SELLING PRICE l2s1,ooo 
MONTHLY MAINTENANCE I ~ 800 
INSTALLATfON CHARGE 11,200 
SHIPPING CHARGES F 0 B NANOOATA 



"Imagine a ... programmers machine ... designed to provide all the 
tools for debugging . .. . logical breakpoints, displays, etc ..... 
that the programmer ... always wished he had ... but that previously 
required rewiring the underlying hardware .... . .. By means of a 
microprogrammed emulation . ... such an 'extended' machine archi­
tecture is a workable, practicable, efficient alternative to 
blinking-lights, toggle-switched, and other paraphenalia of 
the nardware engineer ..... . .. " 

C. W. Flink, U.S. Navy, MICR0-10 PROCEEDINGS, Oct. 5, 1977. 

For more inf ormation on the NANODATA Corp. QM/l please contact: 

San Diego, CA 

Robert C. Boe 
714 226 8502 

Williamsville, NY 

Michael C. Senft 
716 631 5880 
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Introduction To Microprogramming And the QM-1 

Every programmable device, or "machine", possesses an architecture 
and an instruction set. The architecture is its system of a:>mponents 
and their interconnection; in the case of a computer, architectures 
are described in terms of stores, registers, arithmetic-logic units, 
data paths, etc. A machine instruction is a command which causes 
elements of the architecture to operate in some predetermined manner; 
the instruction set of a machine is simply a list of all instructions 
which the machine recognizes. 

I Main Store (Memory) I 
I I 
I ------------------ I 

Using these broad definitions 
and the simplified model of a 
computer shown in Figure A, a 
discussion of three phases of 
the "instruction sequence" 
provides a basic explanation 
of computer operation. 

-In_p_u_t_>I
1 

_I ___ In_s __ tr_u_c_t __ io_n_s ____ I I 

----- ~ i-~~;~--i ~~~~~~~~~ 
Instruction Fetch 

Sequences of machine instructions, 
in the form of binary numbers, are 
typically stored in contiguous 
locations in Main Store (memory); 
instruction execution is initiated 
by fetching a machine instruction 
from a given location in memory 
and placing it into an Instruction 
Register. The memory address from 
which to fetch an instruction is 
contained in an Instruction 
Location Counter Register, often 
called a Program Counter; part 
of the effect of every instruction 
is to update this register to 
point to the successor instruction, 
and then to begin the memory 
fetch for the next sequential 
instruction. 

Instruction Decode 

I --------- I ----------y-y------------

CPU supplies 
address for 
single word 
transfers 

I I 
I I 
I I 

~ ~ /\. Control Unit 

1 I ~ ~ sigµals Main 
I I I I Store,I/O 

V I I units, and 
I I other CPU 
I I functions 

I Central Processing Unit I 
I (CPU) I 
!-------------------------! 
I I Registers, I 
I Control I Shifters, I 
I Unit I Test Units, I 
I 1 Adders, etc. I 

Slock Diagram of a Computer 
Figure A 

A portion of the contents of the Instruction Register is designated 
as the Operation Code. This binary number is decoded by the Control 
Unit to select among a number of modules, each of which is responsible 
for accomplishing the effect of one of the instructions in the com­
puter's instruction set. As will be shown later, the method of de­
coding and the nature of these modules is critical to the definition 
of Microprogramming. 

-1-



Instruction Execution 

The ultimate effect of any instruction-execution module is the genera­
tion of electrical signals to the various computer components. 

Basic Instruction Sequence 

These three phases of Instruction Fetch, Decode, and Execute, form the 
basic Instruction Sequence (or "instruction cycle"). After initial 
start-up, all computers follow an instruction sequence similar tD that 
illustrated in Figure B. 

I Instruction I------~I I------!>I Instruction I 
I Location I Step 1 I Memory I Step 2 I Register I 
I Counter I------ I I------ I (Opcode) I _____ ?l _____ _ 

Step 3 
Add one 

Instruction Fetch 

Instruction Sequence 

Figure B 

Step 1 - A word is read from memory at 
the location specified by the CPU'S 
Instruction Location Counter. 
Step 2 - The word is placed in 
Instruction Register. 
Step 3 - The Location Counter is 
updated (add one). 

Instruction Decode 
Step 4 - The Operation Code (A portion 
of the instruction word) is transferred 
to a decoder. 
Step 5 - The decoder selects one of a 
number of execution plans. 

Instruction Execute 
Step 6 - Carry out execution plan which 
may include data fetch, data manipulation, 
data store, repeatedly. 

End of Sequence - Do next instruction 
fetch (Step 1.). 

-2-
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I Selected I 
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Microprogrammed Control 

The final phase is of particular interest here. The electrical signals 
which the control unit sends to the architectural components are the 
most basic, or "primitive", commands in the computer; these signals 
have effects such as opening and closing gates (for example, to transfer 
register contents), initiating memory cycles, and setting individual 
bits. In fact, the Instruction Sequence itself is under the control 
of such primitive operations; an implicit effect of every machine in­
struction is the execution of the next Instruction Sequence. 

Only rarely do machine instructions correspond to a single architectural 
primitive; most machine instructions result in the generation of a num­
ber of primitives, frequently arranged in a time sequence. For some 
instructions, the arrangement of primitives can be fairly complex. An 
example is a Multiply instruction on a machine which has only an adding 
component, the adder must be used iteratively, and tRe internal plan 
of the instruction resembles a computer programo 

The later observation suggests an implementation of the primitive signal 
control function. In the conventional, or "hard-wired" computer, a 
hardware decoding of the relevant portion of the instruction word selects 
one of several logic circuits, each of which is responsible for gener­
ating and sequencing the primitive signals of a given machine instruction. 
If, however, the primitive control functions are regarded as ·"micro­
operations", then· a "microprogram" can be written to plan the flow of 
an instruction. The steps of this microprogram can then be implemented 
as primitive commands executing out of a fast-access store, such as 
semiconductor memory. (Execution of such commands is simple to accom­
plish, since the microoperations correspond directly to architectural 
functions.) 

Using a microprogrammed approach to machine instruction implementation, 
the instruction-decode step of machine operation changes: rather than 
decoding the operation-code portion of the instruction to select one 
of several hardware modules, this binary number is used directly as 
an address, or pointer, into the microprogram store ("control store"); 
the location so defined is programmed as the entry point of the micro­
program which implements the original machine instruction. This process 
is illustrated in Figure C. 

The Operation Code of. a Machine Ins truc,t ion determines the arrangement 
and timing of the signals which control movement of data between Memory, 
CPU Registers, Arithmetic-Logic Units and o±her hardware facilities. 
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Hard-Wired Computer 

In a conventional {hard-wired) computer, the opcode is decoded and 
used to select among logic circuits which provide the control signals 
within the computer. 

Instruction Register 

I Opcode I **********I Machine Instructions---

----[]--------~~~~~~~~~~~~~~~ 
----- ------- ; / ,,. 

and hence the functional 
nature of the computer as 
seen by the programmer -
are determined by the hard­
ware machine designer. 

=-~==~~=~----=~~;-~~;~~~;-;-; 
-------------! 

->I Circuit N I 

Microprogrammed Computer 

In a microprogrammed computer, the opcode is used as an address 
(pointer) into a fast "control store." The microprogram starting at 
that address has been written to provide the control signals·. 

Instruction Register 

I Opcode !********** I 

I I 
I I 

(Address of 
Micro rogram) 

Control Store 

I I -----------------
1-----------I I Mechanism to I 

3>1 Begin I=>I Convert Micro '1 
I I I Instruction I 
I I I Into Control I 
I End I I Signals I 
1-----------I -----------------
! I 
I I 

Figure C - Instruction Decode Schemes 
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Machine Instructions -­
and hence the functional 
nature of the computer as 
seen by the programmer -­
are determined by the 
microprogrammer and may be 
redefined as readily as 
the control store may be 
reprogrammed. If control 
store is.-writable, the 
user can microprogram at 
his convenience, modifying 
his machine at computer 
speeds instead of "solder­
ing iron" speeds. 



Uses of Microprogramming 

With the previously defined model of microprogram machine control, we 
can now examine the uses and advantages of microprogramming. The 
strongest single justification for microprogramming lies in the current 
disparity between the speed of main store (core memory) and the speed 
of currently available logical components. For example, more than 10 
sets of primitive functions may be executed in the time taken to read 
one word from core memory. Thus time exists for more than 10 control 
store steps to implement a main store instruction. This large ratio 
makes possible a significant increase in the power of the instructions 
defined at the higher level over those required in the underlying 
hardware. For this reason, microprogramming is now common in many 
computers. 

Microprogramming provides other advantages as well. Since micropro­
gramming in control store serves to define the computer as seen at the 
conventional level, the flexibility of microprogramming may be used to 
vary the machine defined. Many of the advantages that result are 
tabulated in Figure D, and with a writable control store any number of 
the uses may be achieved in the same machine hardware by dynamically 
altering the contents of control store to match the needs. 

From a fully flexible microprogrammed design arises the full gammet of 
uses, from the historical one of defining a common instruction set to 
range across a variety of architectures, to the common use of emulating 
another computer, to the ultimate use of control store being utilized 
as the user level, with main store acting as some type of file, paging, 
or higher-level language system. 
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Microprogramming May Be Used To 

1. Define a computers instruction 
set independent of the basic 
hardware development. This was 
the most common early use. 

2. Cause the hardware to function 
as another (pre-existing) 
computer. This is the common 
definition of emulation. 

3. Emulate another computer, but 
with extra instructions and/or 
special features. 

4. Create a special-purpose 
computer to meet the needs.of 
a particular environment. 

Advantages Figure D 

A) Separates the instruction 
definition from the hard­
ware specification. 

B) Permits matching memory speed 
to logic speeds when a large 
difference exists. 

A) Emulated machines software 
may be used without modifi­
cation thus preserving 
possibly large software in­
vestments. 

B) Host computer system may be 
faster or less expensive than 
original machine. 

C) Several machines may be emu­
lated at different times, on 
same hardware host. 

Increased efficiency: functions 
requiring complex and time con­
suming software may be performed 
directly on the machine, as a 
single (special) instruction. 
Examples; 

* floating point arithmetic 
* operating system functions 
* any programmed procedure 

commonly used in a given 
application. 

A) Microprogram development is 
easier, faster, and less 
expensive than hardware dev­
elopment, and is performed 
by personnel typically 
closer to end needs than 
hardware p~rsonnel. 

B) Result can be modified easily 
when necessary, as needs 
change. 

C) When application is phased 
out, host hardware remains 
usable. 

------------------------------------ ----------------------------------
5. Write user programs in control 

store, with main store used as 
a fast message buffer, page 
backup, file storage, etc. 
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Very fast processing times are 
possible for suitable applica­
tions. Less hardware may be 
necessary to do the job since 
the hardware is used directly. 



Horizontal and Vertical Control 

The designer of a machine with microprogrammed control faces an 
immediate decision as to the format of microinstructions to be used 
in the machine. He may choose to use a wide, unstructured microword, 
usually called a horizontal microinstruction: 

------------------------------------------- Each bit is 
·••o••······Horizontal Microinstrution ...•.. independent 
------------------------------------------- of other bits. 

When executed, each bit in a horizontal microinstruction results in 
a control signal to a hardware component. This is generally found 
in more powerful machines. The microinstruction may run to 100 or 
more bits (the IBM 360/50 uses a microinstruction 90 bits wide). 

Or the designer may choose a highly encoded microinstruction packed 
into a much smaller word. The word contains a micro-opcode and 
several other encoded fields. For this reason, it is often referred 
to as a vertical microinstruction: 

------------------------ Several bits form 
Vertical Microinstruction Micro-Opcode I XXX XXXX an encoded fieldo 

~-----------------------
When executed, the micro-opcode of a vertical microinstruction selects 
a sequence of control signals, similar to the operation of a machine 
instruction opcode but at a lower level (simpler sequences are invoked). 
Vertical microinstructions are much shorter (the IBM 360/25 has a 16 
bit microinstruction). 

Each scheme for microprogrammed control offer certain advantages. A 
choice involves evaluation of many trade-offs. Some of the factors 
are tabulated in Figure E. 

Conclusions: 

Horizontal microinstructions are preferable to vertical micro­
instructions for flexibility and parallelism, but they are more 
difficult to program, require larger amounts of expensive storage 
and are limited in what time sequences may be programmed. 

The QM-1 has been designed to make available the advantages of each 
scheme of microprogrammed control and to avoid the disadvantages 
inherent in each. The untque features of the QM-1 that make this 
possible will be examined next. 

-7-



Trade-Offs Between Horizontal And Vertical Control Figure E 

Horizontal Microinstructions ... 

Allow ultimate flexibility in 
control, since each signal (bit) 
may be individually selected by 
the microprogrammer. 

May be executed simply by 
gating them to a register, to 
which signal lines are 
attached directly. 

Allow parallel operation of 
hardware components. 

Are relatively difficult to 
program. 

Must be executed frequently, 
since they exercise each 
hardware component at most once. 

Are wide, typically on the 
order of 100 bitso 

The last two items imply that 
storage of enough horizontal 
microinstructions to run a 
reasonably powerful emulation 
may be expensive in number 
of bits. 
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Vertical Microinstructions ... 

Provide a Limited selection of 
control patterns; the number of 
possibilities depends upon the 
width of the Micro-Opcode. 

Require execution machinery 
similar to (but simpler than) 
that required to execute machine 
instructions. 

Typically specify "single-thread" 
operations. 

Are relatively simple to 
program. 

May specify a time-sequence of 
control signals, so they may be 
executed less frequently. 

Require only enough bits to 
contain the Micro-Opcode and 
perhaps some parameters -­
typically 8 to 18 bits. 

The last two items imply that 
storage of enough vertical 
microinstructions to run a 
reasonably powerful emulation 
may be inexpensive in number 
of bits. 



The QM-1 Control Hierarchy 

In the QM-1, a two-level design smooths the machine definition process 
over two stages, achieving the advantages of both Horizontal and Vertical 
control: 

Machine instructions in Main Store are executed by (and defined by) 
microprograms in Control Store, under Vertical control. 

Microinstructions in Control Store are in turn executed by (and de­
fined by) Nanoprograms in Nanostore, under Horizontal control. 

An illustration of this concept is shown in Figure F 

Main Store 
.------------..., Main Store instruction "ABC" is fetched 

and decoded under microprogram control. 

Microinstruction_"XYZ" is fetched and 
decoded by hardware under Nanoprogram 
control. 

Nanostore Machine Control 

T4 

Microprogram executing 
"ABC" is shaded. 

T3 

T2 
Nanoprogram executing f----- -----

"XYZ" is shaded. >r K Tl 
Nanoprograms are directly executed Ill'l flif T 
by hardware: control signals are sent .to components --------> t 

Figure F QM-1 Control Hierarchy Example of Two Level Emulation 

This unique control hierarchy takes advantage of the best features of 
both horizontal and vertical control as summarized.in Figure G. In 
addition, flexible time sequencing is possible at both levels. And 
most important, both control store and nanostore are fully writable 
semiconductor memories, so that the QM-1 user can take advantage of 
all possible flexibility in the system by dynamic reprogramming. 

In particular, control store is a fully general-purpose Read/Write store, 
hence it is feasible, for some applications, to approach QM-1 Control 
Store as the primary program store of the machine, executing programs 
which can regard the passive Main Store as a secondary storage unit. 
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Control Hierarchy Dimensional Trade-Offs 
----------------------------------------

At Highest Level 

End user has system 
simple to program. 

Generalized indirect control. 
Powerful (high level) 
instructions. 

Meaning of main store 
contents fully redefinable. 

Large memory available. 

Low cost/bit. 

User and Machine Hierarchies 

Figure G 

At Lowest Level 

Hardware designer has system 
directly implementable. 

Absolute direct control. 
Primitive (low level) 
functions. 

Meaning of control 
signals fixed in hardware. 

Small store required. 

Fast operation. 

The design of the QM-1 lends itself to a system of "virtual machines" 
arranged in a hierarchy of levels. Each level is supported by the 
machine below, and in turn supports the machine above. Once a given 
machine is defined by suitable software (or "firmware"), its implementa­
tion -- I.E., the nature of that software structure -- is transparent 
to the user of that machine. For example, after suitable nanoprogramming 
is done to define a "micro-machine", the very existence of Nanostore is 
irrelevant to the Micro-Machine user. 

Hardware Level 

The basic hardware components of the QM-1 include several banks of regis­
ters; a system of three stores; arithmetic, boolean, and shift components; 
and twelve independent buseso Bus connections between the components are 
programmable and may be changed as often as required to best fit the 
current task. All these units may be exercised independently, allowing a 
high degree of parallelism. 

Complete control over the hardware is provided by a 360-bit word read from 
the dynamically writable Nanostore; the active Nanoward provides a sequence 
of four Machine State Vectors, each of which drives the individual machine 
components and their interconnections during a machine clock period of 
75 Nanoseconds. 
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Nano-Machine Level 

Nanoprogramming is the process of defining a set of such control sequences 
to implement Microinstructions executed at the next level. The opcode of 
a vertically formatted Microinstruction, read from Control Store, is used 
to select the entry point in Nanostore at which to begin executing the 
defining Nanoprogram. The Microinstruction Set used may be either that 
defined by NANODATA (with possible user modifications/extensions for the 
current task) or that defined by the user; the NANODATA-supplied micro­
language is accompanied by systems software to support I/O and process 
management. 

Micro-Machine Level 

Since microinstructions reside in the fully Readable /Writable Control 
Store, microprogramming can be used to define the application directly. 
Due to the flexibility provided at the Nano level, a variety of Micro­
machines may be defined to efficiently match the application. The 
Micro-machine can then be viewed as a conventional machine with a cus­
tomized instruction set and a 150 Nanosecond memory. 

Main-Store-Machine Level 

For many applications, the above number of levels will be sufficient; 
applications software may be written in the defined microlanguage, 
executing out of Control Store at very high speeds. For those applications 
in which another level of flexibility is desired, however, microprogramming 
in Control Store may be used to define the architecture and ·instruction 
set for software in Main Store. At the micro level, Main Store is viewed 
simply as a passive general-purpose data store; the process is one of 
classical emulation. 

As indicated previously, the Hardware Level Users Manual provides complete 
functional specifications of the QM-1, and thus defines the "nano-machine" 
available to the hardware-level user. Many users will be concerned with 
the machine at this most fundamental level. The NANODATA Systems Software 
staff, for example, approaches the machine at this level. Already 
developed nanocode for support of a general purpose micro-instruction 
set is available, however and when such appropriate software, including 
both systems support functions and any one of several micro language 
definitions, is included in the QM-1, the micro-level user can program 
the machine without being concerned with the structure beneath. 
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The QM-1 Architecture 

The architecture of the QM-1 is specifically designed to span the 
levels of programming with the flexibility needed at the lowest 
level, and the power necessary for the highest. The hardware 
drawing on the next page gives an idea of the extent to which the 
architecture is flexible. It shows the data paths of the QM-1 
computer, and that group of components, which make up the controls 
and functional units as viewed at the lowest level by the nanopro­
grammer. This drawing can be an insight into what is available at 
this level, however, without having to program at this level. The 
parallelism which this level is capable of providing for the micro 
level and the main store level, through the implementation of 
specialized support for a specific application, greatly extends the 
power of each level. The micro architecture will, in general, be a 
major extension of the QM-1 architecture, and the Main Store archi­
tecture can be likewise; e.g., a virtual machine at either level 
can be designed with a large number of general purpose registers 
{probably residing in control store). The range of feasible virtual 
machine definitions is limited only by the ingenuity of the designer, 
and the efficiency considerations of the emulation process; stack 
machine architectures, sophisticated arithmetic processors, and 
"wideword" or "bit addressable" machines are only a few examples of 
the kinds of possibilities which are all well within range. 
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