
MUMPS
Development

Committee

IW: 'U" IW: :PS

PROGIAllEIS' REFERENCE MANUAL

IW'UIW::PS

PRO&RlllEIS' REFERENCE MANUAL

MUMPS DEVELOPMENT COMMITTEE

MDC/42
Revised 9 /28/76

LEGAL NOTICE

This report was prepared as an account of Government sponsored
work and describes a code package which is one of a series collected
by the Biomedical Computing Technology Information Center (BCTIC).
The codes were written by various Government and private organizations
who contributed them to BCTIC for distribution; they were not originated
by BCTIC. BCTIC is informed that each code has been tested by the
contributor and sample problems have been run by BCTIC; however,
neither the United States, nor the sponsors, nor Union Carbide Corp­
oration, Nuclear Division, nor any person acting on behalf of the
sponsors or Carbide:

A. Makes any warranty or representation, express or implied,
with respect to the accuracy, completeness, usefulness or
functioning of any information, code, program and related
material, or that the use of any information may not
infringe privately owned rights; or

B. Assumes any liability with respect to the use of, or for
damages resulting from the use of any information, code,
program and related program material disclosed in this
report.

MUMPS

Programmers' Reference Manual

MUMPS Development Committee
Subcommittee on Documentation

Task Group #1 on the Reference Manual

MDC/42
Revised 9/28/76

This reference manual is based on the language defined in the
MUMPS Language Specification, MDC/28, dated March 12, 1975, with
corrigenda through March 9, 1976 (also published as Part I of National
Bureau of Standards Handbook 118, dated January and March 9, 1976,
respectively). It supersedes the June 20, 1975 manual having the
same title and document number.

The reader is hereby notified that the following specification
has been approved by the MUMPS Development Committee but that it may
be a partial specification which relies on information appearing in
many parts of the MUMPS specifications. The specification is dynamic
in nature, and the changes reflected by this approved release may not
correspond with the latest specification available.

Because of the evolutionary nature of MUMPS specifications, the reader
is further reminded that changes are likely to occur in the specification
released herein prior to a complete republication of MUMPS speci­
fications.

ACKNOWLEDGMENTS

This document was written by Melvin E. Conway under Contract No.
5-35770 with the National Bureau of Standards. He was assisted by
Paul L. Egerman who developed many of the programming examples, under
NBS Purchase Order No. 512576. The work was authorized under the
terms of an interagency agreement between the National Center for Health
Services Research, Health Resources Administration, U.S. Department
of Health, Education, and Welfare and the Institute for Computer Sciences
and Technology, National Bureau of Standards, U.S. Department of
Conunerce.

Although copyrighted (1976) by the MUMPS Development Committee,
permission is given to reproduce this document in any form so long
as acknowledgment of the source is made.

Anyone reproducing this release is requested to include these
acknowledgments.

TABLE OF CONTENTS

Part I: Introduction

1. Purpose of This Manual
2. A Description of the Style of This Manual

Part II: The MUMPS System Model

3. The MUMPS System Model
4. System Storage
5. Partition Storage
6. The Partition Stack and Control of Execution

Part III: The Language

7.
8.
9.

10.
11.
12.

Appendices

A.
B.
c.

Routines and Lines
Commands
Special Variables
Functions
Expressions
Expression Atoms

Table of ASCII Characters
Index of Syntactic Types
Index of Technical Terms

Sequence

1
3*

11
13*
21*
27*

35
39*
95*

107*
129*
153*

A-1
B-1
C-1

*Note: Except for Chapters 1, 3, and 7, each chapter starts with a
Table of Contents at the pa~e indicated.

iii

CHAPTER 1

PURPOSE OF THIS MANUAL

This document is an application progranuners' reference manual for
the use of the Standard MUMPS Language. Since it is written independently
of any implementation of the MUMPS language, and since many implementations
of MUMPS will be accompanied by their own application progranuners' manuals,
the question arises: What is the role of an implementation-independent
reference manual? The significance of this question is heightened by
the lack of a need for a teaching manual for the Standard MUMPS Language;
the MUMPS Primer fills that role.

This reference manual addresses itself primarily to the progranuner
who already knows the Standard MUMPS Language well enough to write application
programs. It serves such a programmer by means of the following approach.

1. The Reference Manual is for reference use. Once the use of
the manual is understood (see Chapter 2), it is used to give
specific answers to specific questions. After reading Chapter
2 and obtaining a familiarity with the rest of the document,
the user should be able to dip into any portion of the manual
and stay only until his specific question is answered.

2. The Reference Manual concentrates on questions of interpretation,
rather than language structure. Syntax is presented, but the
primary emphasis is on answering the "What happens when ••• ?"
type of question. As a result of this emphasis, much of the
explanation of this manual is presented in terms of concrete
actions of a "MUMPS System Model", described initially in Chapter
3o This MUMPS System Model is a hypothetical implementation
of Standard MUMPS invented only for the expository purposes
of this manual. Real implementations are not expected necessarily
to imitate the internal characteristics of the System Model;
however, if the MUMPS routines in question observe all MUMPS
portability rules, a valid implementation of Standard MUMPS
and the MUMPS System Model should give identical output, given
identical input.

3. The Reference Manual attempts to illuminate the remote corners
of the language as well as the most frequently used and most
easily understood portions.

4. The Reference Manual encourages program portability by incor­
porating the MUMPS Portability Requirements. These requirements
are not merely incorporated, however, but are explicitly cited.
One important reason for visibly identifying the Portability
Requirements is to avoid the,appearance of contradicting the
documentation of those implementations which relax some of these
restrictions. By these means the responsibility for trading
off portability against other benefits possibly offered by some
implementations is placed where it belongs: with the management
of the programming activity.

2

Secondarily, this Reference Manual addresses itself to the implementor.
Implementors are constantly having to interpret language specifications
by answering questions which were not anticipated by the language designers.
This manual attempts to anticipate as many questions as possible. To
cover the inevitable unanticipated questions, the use of a comprehensive
model seeks to present a coherent structure within which different implementors
will tend to make similar interpretations. This goal is particularly
important to the designers of MUMPS, who have paid great attention to
questions of application portability.

2.1

2.2

2.3

2.4

2.5

2.6

3

CHAPTER 2

A DESCRIPTION OF THE STYLE OF THIS MANUAL

Divisions of This Manual

Technical Terminology

Table of Contents

Syntax Specification Metalanguage

Starting Syntax Definitions

Portability Requirements

The Use of Examples

5

5

6

9

10

10

5

CHAPTER 2

A DESCRIPTION OF THE STYLE OF THIS MANUAL

2.1 Divisions of this Manual

As the Table of Contents indicates, this Reference Manual is divided
into three parts.

Part I (Chapters 1-2) contains introductory material.

Part II (Chapters 3-6) presents a model of a MUMPS system. In Part II
various concepts are introduced which are later employed in the language
descriptions. Thus many of the cross-references in Part III refer
back to Part II.

Part III (Chapters 7-12) describes the syntax and semantics of the elements
of the MUMPS language, generally in top-down order, from routines
(Chapter 7) to expression atoms (Chapter 12).

In addition, there are three appendices.

Appendix A contains a table of ASCII characters whose particular value
to the MUMPS progrannner is that the numeric character codes are presented
in decimal form.

Appendices B and C contain indices to the definitions of the technical
terms appearing in this manual.

2.2 Technical Terminology

Technical terms introduced in this manual fall mainly into two categories.

Syntactic Types

A syntactic type is a name given to a class of character strings
which may appear in a MUMPS system. Membership in the class is defined
by the spelling of the strings.

It is important to note that the strings classified by syntactic
types can occur in several different contexts.

1. They may occur as part of a MUMPS routine. Examples are line,
command, expression, string literal.

2. They may occur in data operated on by a MUMPS process. Examples
are numeric value, nonnegative integer, truth value.

3. They may occur as values computed by a process defined in the
model, but not necessarily appearing as data. Examples are
node designator, device designator.

6

Thus, the syntax definition and specification methods employed in
this manual apply uniformly to data strings as well as routine strings.

Syntactic types are always spelled entirely with lower-case letters
(and an occasional hyphen). In certain contexts they may be underlined;
this underlining does not change their nature, but is meant only to assist
in rendering the accompanying description more readable.

1. When a syntactic type occurs in a syntax definition, it is always
underlined. This underlining is particularly important when
the type name has more than one word. Thus, expression atom
is clearly a single entity.

2. In text, underlining a syntactic type is sometimes used to clarify
a reference to a particular instance of that syntactic type.
For example, in the syntax description of the SET command (8.2.15),
an expression appears to the right of the = sign. Well down
into the verbal description of the execution of the command
the sentence appears: "The expression is evaluated". The use
of underlining particularizes the reference so that it is clearly
to the expression. appearing in the syntax description.

Capitalized Technical Terms

The MUMPS System Model description introduces some technical terms,
such as names of storage registers in the model, which are called here
Capitalized Technical Terms. They are distinguished from syntactic types
by appearing with initial capital letters in their spellings. Examples
are Named System Storage, Job Number P-vector, Clock Register, Test Switch,
Current Device Designator, Naked Indicator.

2.3 Syntax Specification Metalanguage

A syntax specification is a rule which partitions the set of all
strings into two classes: those which satisfy the syntax specification
and those which do not. Syntax specifications occur in two contexts.

7

1. On the right side of a syntax definition. A syntax definition
has three parts: on the left is the name of the syntactic type
being defined, in the middle is the metalangauge operator ::= ,
and on the right is a syntax specification. Examples from Chapter
7 follow.

line : : = line head line bod:i

line head : : = [label] ls -l command ['--' command] ... [~comment] J
line body •• = eol

comment

In the first example, the syntax type being defined is line,
and the : := says that, by definition, any (and only any)String
which satisfies the syntax specification line head line body
will satisfy the syntactic type line • Each syntactic type
appears on the left side of at most one syntax definition (which
may, however, be repeated within the manual). Those syntactic
types which do not appear on the left side of a syntax definition,
such as alpha, graphic, nonquote are defined informally; in
the cases shown here (but not necessarily always) they are defined
as a class of one-character strings.

2. As a free-standing syntax specification. For example, the definition
of the syntactic type coillI'!land is never formally given, but informally,
command is defined to be satisfied by any of the syntax specifications
of the separate commands described in 8.2. For example, the
SET command has a (simplified) syntax specification as follows.

SET w storage reference = expression

The following metalinguistic operations occur in syntax specifications.

Succession

Example: line head line body

Explanation: Any string which can be expressed as a concatenation
of

1. a string satisfying line head on the left, and
2. a string satisfying line body on the right,

satisfies line head line body.

8

Choice

Example: expression atom

expression expression tail

Explanation: The vertical lines are used to define the boundaries
of a string under consideration, and have no other metalinguistic
significance. Sometimes (as in the definition of line body given
before) this function of boundary definition is performed by brackets
[], which have an additional metalinguistic function as explained
below.

Any string which satisfies either the syntax specification expression atom
or the syntax specification expression expression tail satisfies
the syntax specification

expression atom

expression expression tail

Option

Example: [label] ~

Explanation: Anything enclosed in brackets may be either present
or absent. In the example, a string satisfies [label] ls either
if it satisfies label ls or if it satisfies ls o

Repetition

Example: conunand I u command I ••• eol

Explanation: The three dots ••• denote optional indefinite repetition
of the immediately preceding minimum syntax specification, in this
case command • Thus, a string satisfying any of the following
satisfies the specification in the example.

command u command eol

command L..I command w command eol

comm~nd u ~and u command .__J command eol

(• t ,.

9

Value Specification

Example: @ expression atom y global variable

Explanation: The metalinguistic operator V applies to the expression atom
to its left and to the minimurn syntax specification il'IIllediately to
its right. It specifies that

1. the syntax of the syntax specification must satisfy
@ expression atom , and

2. after the expression atom is evaluated, the syntax of its
value must satisfy global variable •

Note: @ expression atom y is used to denote opportunities for indirection.
Any discussion accompanyinp, such a syntax specification applies to
the string after all evaluation of indirection calls has occurred.

2.4 Starting Syntax Definitions

The following syntax definitions are taken as axiomatic.

graEhic : : = the set of one-character strings whose characters
are the 95 ASCII graphics

alpha : := the set of one-character strings whose characters
are the 52 ASCII alphabetics

l.....J
: := the one-character string consisting of the ASCII character

space (SP)

Any ASCII graphic may appear in a syntax specification; it stands
for the one-character string consisting of that character. (This provides
another reason that syntactic types are always underlined when appearin~
in syntax specifications.) The following nonprinting ASCII characters
may also occur in syntax specifications: space (represented by SP or w),
carriage return (represented by CR), line feed (represented by LF), and
form feed (represented by FF).

10

2.5 Portability Requirements

Statements taken from the MUMPS Portability Requirements are enclosed
in the brackets

[Port: :Port]

It is to be understood that such statements are not statements ahout
the ~lliMPS language but are constraints which application pro~rammers and
MUMPS system implementors are asked to accept in order to make the goal
of inter-system portability of application programs at reasonable cost
a reality.

2.6 The Use of Examples

The text of this manual usually offers a precise basis from which
the reader may make correct deductions. The exarr.ples, on the other hand,
rely on the power of the reader to make correct inductions from statements
which may not be formally complete or even correct. Thus the tone of
the text accompanying the examples is more relaxed, and frequently there
are inferences to be gained from the comparison of several examples.

Ocassionally, the word "typically" appears in the text of this manual.
Statements containing "typically" are not to be taken as precise but as
describing common usage.

11

CHAPTER 3

THE MUMPS SYSTEM MODEL

For the positive integer P, a P-partition MUMPS system is one capable
of supporting the concurrent execution of at most P 1-fUMPS processes.
Each "partition" is an environment for the execution of one process.
The number P is usually a fixed (or very slowly changinp,) attribute of
a given system, hut this is not necessarily so.

The model employed here of a P-partition MtTMPS system consists of
P+l components: the P partitions plus System Storage.

Partitions

~' \
1 2 p

System Storage

System Storage contains those data structures availahle to all par­
titions. The bulk of System Storage consists of what is traditionally
called global data. In order to maintain a wide distinction between language
entities and data, we shall use the term "Named System Storage" for that
part of System Storage traditionally called global data.

In addition, System Storage contains a clock and three P-part data
structures: the Lock List P-vector, the Open List P-vector, and the Joh
Number P-vector. Each partition has its own Lock List, Open List, and
Job Number; the reason that they are assigned to System, and not Partition,
Storage is that in manipulating the contents of its Lock and Open Lists
each partition must know the contents of the P-1 other lists of the same
type. Similarly, Job Numbers are assigned to be unique. The model is
designed according to the premise that each partition may communicate
with System Storage, but no two partitions may communicate directly with
each other. The detailed structure of System Storage is described in
Chapter 4.

12

Within each partition are the following components.
1. An interpreter
2. Partition Storage
3. The Partition Stack

Each partition is given its own interpreter in this model, not as
an expression of a position on distributed vs. centralized processinR,
but as a way of avoiding having to take positions on time-slicing methods.
As a further step in the direction of avoiding sequence dependencies arising
from system (as opposed to application) design decisions, the interactions
between the several interpreters and Syste~ Storage (reading values, writing
values, killing subtrees, creating chains, creating and deleting lists,
etc.) are defined to be indivisible and to occur nonsiroultaneously. What
is not defined here is how fast each interpreter works, either ahsolutely
or in relation to any other interpreter.

Partition Storage contains those partition-local data structures
which are not stacked by the DO or XECUTE commands; these include Named
Partition Storage (i.e., local data or the "symbol table"), the Naked
Indicator, the Test Switch ($T), and the Current Device DesiRnator. Par­
tition Storage is described in detail in Chapter S.

The Partition Stack contains those entities which must he stacked
for proper sequence control. In this model the whole routine body is
stacked as well as status information such as the line pointer, line buffer,
and character pointer. The model is not concerned with the details of
stacking during expression evaluation, so there is no value stack as such
in the model. Chapter 6 describes in detail the Partition Stack and its
relationship to execution sequencing.

4.1 Named System Storage

4.2 Lock List P-vector

4.3 Open List P-vector

4.4 Job Number P-vector

4.5 Clock

13

CHAPTER 4

SYSTEM STORAGE

Table of Contents

15

17

18

19

19

15

CHAPTER 4

SYSTEM STORAGE

System Storage in a P-partition system consists of the following
elements.

1. The Named System Storage data structure.
2. The following P-vectors in each of which there is a one-to-one

correspondence between the partitions and the components of
the P-vector.

a. The Job Number P-vector. F.ach element is an integer.
b. The Lock List P-vector. Each element is a list of

Named System Storage node designators or Named Partition
Storage node designators.

c. The Open List P-vector. Each element is a list of
Device Designators.

3. The Clock Register.

4.1 Named System Storage

Named System Storage is a finite tree structure on every node
of which resides an "attribute block" storage register whose contents
are subject to certain constraints described below. The tree may
be thought of as being arranged in levels wherein all the nodes at
level n are at a distance n from the root ("directory") node.

Directory level (level O)

Unsubscripted level (level 1)

Singly subscripted level (level 2)

Doubly subscripted level (level 3)

n-tuply subscripted level (level n+l)

16

Each attribute block (shown as a rectangle above) is a
three-part storage register containing the attributes named
Name, D, Value.

Rules Governing Contents of Attribute Blocks At Each Node

1. The permissible entries in the D attribute are the four data
strings

0
1

10
11

2. If D is 0 or 10, the Value attribute is said . to be "undefined",
and the content of the Value entry in the attribute block is
unavailable. If D is 1 or 11, the Value attribute is said to
be "defined", and the content of the Value entry in the attribute
block may be any data string, including the empty string.

3. The Name attribute at level k (k#O) is a k-tuple

N ¢ S! ¢ S2 ¢ ••• ¢ Sk-1 , where

a. The separator ¢ is chosen for typing convenience and
denotes a unique separator outside of the data character
set.

b. Each element of the k-tuple is a data string.
c. [Port: The spelling of each Si data string satisfies

the syntax of nonnegative int;ger (see 12.4). :Port]
(Note: See 2.5 for a description of this portability
notation.)

d. The spelling of the N data string satisfies the syntax
of ~name (see 12.4).

Note that the nodes or attribute blocks are considered to be part
of the data structure, but the branches are not; the branches are
drawn only to show ascendancy relationships (see below).

17

Rules Governing Coupling Between Attribute Block Contents and Tree Structure

1. Every node has an attribute block.
2. The attribute block on the node at the directory level (the

"directory node") has only one entry of interest, D, whose contents
may be only 0 or 10.

3. The initial state of the tree (prior to the first process initiation)
is as follows: there is only the directory node, for which
D=O.

4. In the following definitions, let N(i) denote any node at level d.
a. If N(k) and N(k+l) are connected by a branch, then

N(k+l) is called an "immediate descendant" of N(k)
and N(k) is called the "immediate ascendant" of N(k+l).

b. N(j) is an "ascendant" of N(k) and N(k) is a "descendant"
of N(j) (for j < k) if and only if there is a sequence
of nodes N(j), N(j+l), ••• , N(k) such that for each
i in [j,k-1) N(i) is the immediate ascendant of N(i+l).

Rule: For any positive j, N(j) is an i~mediate ascendant of
N(j+l) if and only if the content of the Name attrihute of N(j)
may be obtained from the content of the name attribute of N(j+l)
by deleting ¢ Sj •

5. If the Node N(k) has D=O or 1, then N(k) has no descendant.
The converse is not necessarily true; N(k) may be a "terminal
node" (i.e., it has no descendant) with D=lO or 11. This situation
can only arise, however, as the direct result of the execution
of a selective KILL naming the sole immediate descendant of
N(k).

4.2 Lock List P-vector

Each partition of the syste~, numbered 1 to P, is associated
with a "Lock List". The collection of these P Lock Lists makes up
the "Lock List P-vector" in System Storage. Each Lock List may be
eMpty, or it may be a list of data strings satisfyinp, the svntax
of node designator and separated by a unioue separator outside of
the data character set, desip,nated here hy ¢¢.

node designator stands for the kinds of k-tuples (k#O) which
may occur in the Name part of the attribute block on a k-level node
in either Named System Storage or Named Partition Storage:

N ¢ S1_ ¢ Sl_ ¢ ••• ¢ Sk-1 , where

a. The separator ¢ is outside of the ASCII data alphabet.
b. Each entry of the k-tuple is a data string.
c. [Port: The spelling of each Si data string satisfies

the syntax of nonnegative integer (see 12.4). :Port]
d. The spelling of the N data string satisfies the syntax

of name or of Aname (see 12.4).

18

Lock List 1: [node designator [¢¢node designator] •••]

Lock List P: [node designator [¢¢node designator] •••]

Descendant Exclusivity Rule
No node designator in Lock List i may be an initial subsequence of
any node designator in Lock List j, for any i~j. (Interpretation:
no node named in the Lock List of one partition may be an ascendant
or descendant of any node named in the Lock List of any other partition.)

There is no necessary connection between the presence of any
node designator in any Lock List and the existence of any node in
Named System Storage or Named Partition Storage.

Initially, all Lock Lists are empty.
process in partition i is initiated, Lock
List is changed only as the direct result
actions.

In particular, when the
List i is empty. A Lock
of one of the following

1.

2.

Termination of the process (explicit or implicit
of HALT) in partition i empties Lock List i.
Execution of LOCK without arguments in partitj_on
Lock List i.

execution

i empties

3. Execution of LOCK with an argument in partition i:
a. first, empties Lock List i;
b. then, sets the entire node designator list denoted

by the argument into Lock List i, but only if
the Descendant Exclusivity Rule will not thereby
be violated. If the Rule would be violated,
the Lock List remains empty.

4.3 Open List P-vector

The syntax of a "device designator" is specified by each system
implementor; however, this much can be said here.

1. It is a data string.
2. It uniquely designates a "device", which is a sequential

character source and/or a sequential character sink.

Each partition of the system, numbered 1 to P, is associated
with an "Open List". The collection of these P Open Lists makes
up the "Open List P-vector" in System Storage. Each Open List may
be empty, or it may be a list of device designators separate~ by
the nondata separator ¢¢.

Open List 1: [device designator [¢¢device designator] •••]

Open List P: [device designator [¢C devi~~ designator 1 •••]

19

Device Exclusivity Rule
No device designator in Open List i may designate the
as any device designator in Open List j, for any i#j.
partitions "own" devices exclusively.)

same device
(Interpretation:

Initially, all Open Lists are empty. In particular, when the
process in partition i is initiated, Open List i is empty. (See
the discussion of the Principal Device Convention in 5.4 for an ex­
ception.) An Open List is changed only as the direct result of one
of the following actions.

1. Execution of OPEN in partition i adds those device designators
to Open List i which are denoted by the argument list.

2. Execution of CLOSE in partition i removes those device
designators from Open List i which are denoted by the argument
list. (See the discussion of the Principal Device Convention
in 5.4 for consideration of a possible side effect of CLOSE.)

3. Termination of the process (explicit or implicit execution
of HALT) in partition i empties Open List i.

4.4 Job Number P-vector

In order for a process to execute, it must be "active". The
means by which a process becomes active is not defined in the Standard.
Once a process is active, it remains active until it executes HALT
or its equivalent (see 6.2 paragraph 2).

Each partition of the system which contains an active process
is associated with a unique, positive-integer "Job Number". Inactive
partitions have the Job Number zero. The collection of these P Job
Numbers makes up the "Job Number P-vector" in System Storage. The
Job Number of a process is assigned when the process becomes active,
and it remains fixed throughout the life of the process. Its value
is directly obtained by execution of the special variable $J as an
expression atom. At no time may two active partitions have the same
Job Number value. In some implementations the Job Number of an active
partition may simply be the partition number, but this is not necessarily
the case.

4.5 Clock

The content of this storage register is always defined and may
be directly obtained by execution of the special variable $H as
expression atom. The clock value reflects the correct date and

an
time
D and has the form of two integers separated by a comma: D,S

is a day counter. S is a second counter running from 0 to 86399
for each value of D. D ha8 a fixed value from each midnight to the
immediately succeeding midnight; at the instant of midnight D is
increased by 1 and S is set to 0. S counts seconds after midnight.
The reference clock value 0,0 is the first second of January 1, 1841.

5.1 Named Partition

5.2 Naked Indicator

5.3 Test Switch

5.4 Current Device

5.5 Current Device

Storage

21

CHAPTER 5

PARTITION STORAGE

Table of Contents

Designator

Horizontal and Vertical Cursors

23

23

24

25

26

23

CHAPTER 5

PARTITION STORAGE

In each of the P partitions of the system Partition Storage contains
the following components.

1. The Named Partition Storage data structure, commonly called
"local data" or the "symbol table".

2. The Naked Indicator.
3. The Test Switch.
4. The Current Device Designator.
S. The Current Device Horizontal Cursor and Current Device Vertical

Cursor.

5.1 Named Partition Storage

In each partition, Named Partition Storage is a data structure
which follows the identical set of rules as Named System Storage
(see 4.1), except as follows.

Rule 3.d governing contents of attribute blocks at each node
is changed as follows.

The spelling of the N part of the Name attribute, instead of
having the syntax Aname , has the syntax name •

Rule 3 governing coupling between attribute block contents and
tree structure reads as follows.

Each partition has its own distinct tree. Upon initiation of
the process in partition i, its tree consists only of a directory
node, for which D=O.

5.2 Naked Indicator

The content of the Naked Indicator is either empty ("undefined"),
or it satisfies the syntax of node designator (see 4.2).

The Naked Indicator is changed only as a direct result of one
of the following actions in the partition.

1. Initiation of the process causes the Naked Indicator to
be undefined.

2. Execution of an unsubscripted global variable causes the
Naked Indicator to be undefined.

3. Execution of a global variable or naked reference whose
implied immediate ascendant either does not exist or has
D=O or 1 causes the Naked Indicator to be undefined. This
will never occur, however, when the global variable or
naked reference occurs in an argument of the SET command
to the left of the = delimiter.

4. Except for the above, execution of a global variable or
naked reference causes the content of the Name attribute
of the implied immediate ascendant to be copied into the
Naked Indicator. That is, the remainder after removing
the last ¢ Sk-1 from the implied level k node designator
is placed into the Naked Indicator.

24

Execution of a naked reference is erroneous when the Naked Indicator
is undefined. If the Naked Indicator is defined, execution of the
naked reference A(expression !, ... ,expression i), where S_!, =the
value of expression 1, ••• , Si= the value of expression i, implies
the node designator

content of Naked Indicator¢ S.!_ ¢ ••• c S.f.

after the use of which the Naked Indicator is given the value ohtained
by deleting ¢ Si.

5.3 Test Switch

The content of the Test Switch register is one of three data
strings: empty ("undefined"), 0 ("false"), or 1 ("true"). When
defined, this content may be directly obtained by executiot' of the
special variable $T as an expression ato~.

The content of the Test Switch is changed only as a direct result
of one of the following actions in the partition.

1. Execution of IF with an argument places the truth-value
interpretation of the value of the argument into the Test
Switch.

2. Execution of LOCK, OPEN, or F.EAD with an argument which
has a timeout attached to the argument implies a test of
some condition; specifically, the ability to load the par­
tition's Lock List without violating the Descendant Exclusivity
Rule, the ability to load the partition's Open List without
violating the Device Exclusivity Rule, or explicit termination
of the input data string prior to resurnption of execution
after the timeout, respectively. If the condition is satisfied,
the Test Switch receives the value l; otherwise it receives
the value O.

In addition to the ability to obtain directly the content of
the Test Switch by execution of ST, the process may, by execution
of ELSE or IF, conditionalize execution of the remainder of the line
containing the ELSE or IF depending on the value of the Test Switch.

25

5.4 Current Device Designator

See the first paragraph of 4.3 for a definition of "device"
and "device designator". The content of the Current Device Designator
storage register is either empty ("undefined") or else it is a data
string which satisfies the syntax of device designator. The content
of the Current Device Designator may be directly obtained by executing
the special variable $I as an expression atom.

The "current device" is that device which is uniquely designated
within the partition for data transfer upon execution of READ or
WRITE. When the designation of the current device is undefined (i.e.,
the content of the Current Device Designator is empty), the result
of execution of READ or WRITE is undefined. Otherwise, the Current
Device Designator designates the current device.

Current Ownership Rule
At all times the current device of partition i must also be designated
in Open List i. (Interpretation: the process must own a device
before it may be declared current. Also, when the process CLOSEs
a device which is current, the device designator is .removed from
the Current Device Designator as well as from the Open List.)

The implementor has an option with respect to the initial content
of the Current Device Designator and the response to CLOSE naming
the current device. Following is a description of the '~rincipal
Device Convention", which is one choice.

1. There is a device D for this process called the "Principal
Device". The identity of the Principal Device is specified
by the implementor and it does not change throughout the
life of the process.

2. Upon initiation of the process in partition i, Open List
i designates D (and D only), and partition i's Current
Device Designator designates D.

3. Whenever a CLOSE is executed which would empty the Current
Device Designator, a designator of D is placed into the
Current Device Designator and the Open List (if it is not
already there and if the operation can be performed without
violating the Current Ownership Rule).

If the implementor does not follow the Principal Device Convention
with respect to this process, the Current Device Designator will
be empty initially and as a result of executing a CLOSE which names
the current device.

Except as specified above, the content of the Current Device
Designator is changed only as a direct result of execution of USE;
the device designator specified by the argument of the executed USE
replaces the content of the Current Device Designator, provided that
the specified device designator designates a device also designated
by the Open List.

26

5.5 Current Device Horizontal and Vertical Cursors

As part of the status information stored for each device in
System Storage are two registers per device, X and Y, called the
horizontal cursor and vertical cursor, respectively. In Partition
Storage there are two registers, CX and CY, called the Current Device
Horizontal Cursor and the Current Device Vertical Cursor, respectively,
which make available the values of X and Y for the current device.
The contentR of CX and CY are directly available by execution of
the special variables $X and $Y, respectively, as expression atoms.

When the content of the Current Device Designator register changes,
the contents of CX and CY are placed into the X and Y registers of
the former current device and the X and Y registers of the new current
device are placed into the CX and CY re~isters. Thus, as ownership
of a device changes, the state of its cursors is not lost.

The content of each cursor is a data string which satisfies
the syntax of nonnegative integer. The initial value of each cursor
is not defined until the # format is executed by some process while
the device is current in that process.

Aside from the changing of CX and CY arising from changing the
current device, CX and CY are changed only by format operations and
character transfers performed during the execution of READ and WRITE.
Each format operation affects the values of CX and CY as follows.

places 0 into CX and adds 1 to CY.
sets ex and CY to 0.
?n places the value of max(n,CX) into CX.

The effects on CX and CY resulting from data transfers performed
during the execution of READ and WRITE are specified in the MUHPS
Language Standard as goals; the framers of the Standard recognized
that some implementations may exist within the constrainta of operating
s~rstems which may make absolute achievement of all the goals impractical.
The goals are stated here, and each implementor is expected to come
as close to 100% achievement as is practical.

1. The effect on CX and CY of transferring a character is
registered when that character is transferred.

2. The effect on CX and CY of transferring a character is

3.

a function of each character's identity, and is independent
of the context of the character or whether READ or WRITE
is being executed.
The following effects on ex and CY are specified.

Each graphic: Add 1 to ex.
Backspace (BS): Set ex= rnax(O,CX-1).
Line Feed (LF): Add 1 to CY.

Carriage Return (CR): Set ex = o.
Form Feed (FF): Set ex = O, CY o.

27

CHAPTER 6

THE PARTITION STACK
AND CONTROL OF EXECUTION SEOTJF.NCE

Table of Contents

6.1 Normal Execution Sequence

6.2 Changes of Sequence
1. HALT
2. QUIT (For Scope Switch off), eor
3. IF, ELSE
4. DO
5. GOTO
6. XECUTE
7. FOR
8. Indirection

29

30
30
30
30
31
31
31
32
33

29

CHAPTER 6

THE PARTITION STACK
AND CONTROL OF EXECUTION SEQUENCE

The Partition Stack is a last-in, first-out data structure which
controls the sequence of execution of a MlJMPS process. Each item of the
stack contains the following five components.

1. A routine body.
2. A Line Pointer which designates one line of the routine body.

It can also designate the eor at the end of that routine.
3. A Line Buffer which contains a (possibly modified) copy of the

line designated by the Line Pointer.
4. A Character Pointer which designates one character of the line

Buffer.
S. A two-valued indicator called the For Scope switch.

[Port: Routines designed for portability should not cause the Partition
Stack to be nested beyond fifteen levels. :Port]

6.1 Normal Execution Sequence

The execution of a ~UMPS process i.s a sequence of atomic operations,
each such atomic operation being the execution of one character.
The routine body whose characters are currently being executed is
always that at the top of the stack. Within this routine body the
sequence of characters being executed is described by rules given
in the remainder of this chapter. Normally, the following rules
apply.

1. The "normal execution sequence" prevails except when it
is altered by execution of HALT, IF, ELSE, FOR, QUIT, ~'
by execution of an argument of DO, GOTO, IF, or XECUTE,
or by indirection. Rules 2 and 3 describe the normal execution
sequence.

2. Execution of a given line is defined to be the sequence
of character executions which occur while a copy of that
line is in the Line Buffer. When the Line Pointer is changed
to designate a new line, the following occurs.

a. A copy of the new line, from the character immediately
to the right of ~ to and including the eol,
is taken from the routine body and placed into
the Line Buffer.

h. The Character Pointer is set to designate the
leftmost character of the Line Buffer.

3. A copy of the character designated by the Character Pointer
is obtained and executed. If the character is eol and
the For Scope switch is off, its effect is to cause the
Line Pointer to advance to the next line (or to the~).
If the character is not eol, then just prior to execution
of the character, the Chrncter Pointer is advanced to
the next character to the right; then the character which
had been obtained is executed,

30

The normal execution sequence, then, is a strict left-to-right
sequence of execution of characters within lines and of lines within
the routine body. The identity of the first line to be executed
when a new routine body is pushed onto the top of the Partition Stack
is specified within the DO argument which names the routine. In
the default case, i.e., when the DO argument contains no line specification
or upon initiation of the process without a line specification, the
first line of the routine body is implied.

In the initial state of a process just prior to execution of
the first character, the Partition Stack contains one rq11tine body,
the Line Pointer and the Character Pointer designate the first character
of the first executed line of the routine body, and the For Scope
switch is off.

6.2 Changes of Sequence

Deviation from the normal execution sequence can occur in the
following ways.

1. Execution of HALT causes the process to terminate. Ter­
mination of a process implies the following op.:!rations
in System Storage associated with the partition k in which
the process terminates.

a. The kth element of the Job Number P-vector is
set to zero.

b. The kth element of the Lock List P-vector is
made empty.

c. The kth element of the Open List P-vector is
made empty.

2o Execution of QUIT with the For Scope switch off, or execution
of ~' causes the top element of the Partition Stack to
be popped. If the Partition Stack thereby becomes empty,
the process terminates as if HALT had been executed. If
there is still a routine body on the Partition Stack, the
next character executed is the character designated by
the Character Pointer in the new stack top.

3. Execution of any of the following subject to the condition
stated causes the Character Pointer to scan to the right
fetching but not executing each character until it points
to the eol of the Line Buffer; that is, the effect of exe­
cuting any of the following is to suppress execution of
the remainder of the line to its right.

a. Execution of argumentless IF such that the content
of the Test Switch is O.

ho Execution of ELSE such that the content of the
Test Switch is 1.

c. Execution of an IF argument whose value (after
taking the truth-value interpretation) is zero.

31

4. Execution of a DO argument causes a new element to be pushed
onto the Partition Stack. The procedure is described as
follows.

a. If the DO argument contains a routine name.
(1) The routine body is that designated by the

routine name.
(2) The Line Pointer is set to point to the

line desip,nated by the DO argument; if the
DO argument contains no line reference,
the Line Pointer is set to point to the
first line of the routine body.

(3) The Line Buffer is loaded and the Character
Pointer is set to point to its leftmost
character.

(4) The For Scope switch is set off.
b. If the DO argument contains no routine name.

(1) The routine body is a copy of the one at
the top of the stack.

(2) The Line Pointer is set to point to the
line designated by the DO argument. Then
(3) and (4) above are executed~

5. Execution of a GOTO argument causes the following two operations
to occur in sequence.

a. The top element of the stack is popped as if
QVIT with the For Scope switch off had been executed.

b. An element is pushed onto the stack as if a DO
argument with the same spelling as the GOTO argument
had been executed.

6. Execution of an XECl'TE arp;ument is similar to execution
of a DO argunent with the following amendments.

a. The routine body is a copy of the one at the
top of the stack.

b. The Line Pointer is set to point to the last
line of this routine body, just preceding the
ear.

c. The Line Buffer is loaded with the following
string

value of XECUTE argument eol

and the Character Pointer is set to its leftmost
character.

32

7. Execution of the command word FOR causes the For Scope
switch to be turned on, regardless of its prior state.
After evaluation of all expressions in the first for parameter,
a unique marker character, called a Parameter Marker,
is inserted into the Line Buffer between the for parameter
just evaluated and the separator immediately to its right.
The Character Pointer is then moved to the right to the
first character to the right of the space following the
for parameter list. (If the for parameter list is immediately
followed by eol, the Character Pointer points to this eol.)
Another unique-character, called a Scope Marker, is inserted
immediately to the left of this character, and normal execution
resumes. The following subsequent breaks in the normal
sequence can occur.

a. If eol is executed with the For Scope switch
on and the scope must be executed again under
the current for parameter, the Character Pointer
repositions at the character to the right of
the rightmost Scope Marker, and the normal execution
sequence resumes.

ho If eol is executed with the For Scope switch
on and the scope does not have to be executed
again under the current for parameter, the Character
Pointer scans to the left looking for .a Parameter
Marker.
(1) If a Parameter Marker is found and the character

immediately to its right is a space or eol
(that is, the scope of the FOR under control
of the last for parameter has just been
executed), then the Parameter Marker and
the Scope Marker to its right are deleted
and the leftward scan described in b. above
is resumed.

(2) If no Parameter Marker is found, the For
Scope switch is turned off and the normal
eol execution described in 6.1 paragraph
3. above occurs.

(3) If a Parameter Marker is found and the character
immediately to its right is a comma, the
Parameter Marker is deleted, the for parameter
to its right is evaluated, the Parameter
Marker is inserted immediately to the right
of this for parameter, the Character Pointer
is moved to point to the character immediately
to the right of the Scope Marker, and normal
execution resumes.

c. Execution of QUIT with the For Scope switch on
causes the Character Pointer to scan to the left
until it encounters a Parameter Marker. This
Parameter Marker and the Scope Marker to its
right are deleted. Then the eol procedure beginning
at 7a. above is executed.

d. Execution of a GOTO argument with the For Scope
switch on is unchanged from that described in
s.

33

8. Execution of @ (signaling indirection) causes the following
steps to occur.

a. The Character Pointer continues to the right
as the expression atom to the right of the @
is evaluated. Note that this evaluation can
encounter a @, so the whole of 8. is recursive.

b. After the expression atom is evaluated, the value
of the expression atom is inserted into the Line
Buffer immediately to the right of the expression
atom, and the Character Pointer is set to point
to the leftmost character of this value. (If
the value is empty, the Character Pointer points
to the first character to the right of the expression
atom, and the effect of the following step is
null.)

c. As each character in the Line Buffer which arose
from the evaluation of the expression atom is
designated by the Character Pointer and a copy
of it is fetched, that character is deleted from
the Line Buffer. The effect is to.leave no trace
that indirection has occurred so that a single
instance of indirection may be called repeatedly
in the scope of a FOR.

35

CHAPTER 7

ROUTINES AND LINES

The routine js the unit of algorithm interchange. Programs and packages
are unordered collections of routines. When called for execution, a routine
is denoted by its routine name. The syntax observed by routine names
is the same as name.

routine name ::=
%

alpha

I-digit~
LalphaJ

[Port: Routine names containing 9 or more characters are identified and
distinguished only on the basis of their left 8 characters. No lower-case
alphabetic characters may occur in a routine name. :Port]

When one refers to the syntax of a routine, one is referring to the
routine as stored on a linear external medium as in algorithm interchange.
In this context, a routine consists of two parts: the head, which contains
the routine name for identification in interchange, and the body, which
contains the executed code, consisting of a sequence of lines.

routine ::= routine head routine body

routine head ::= routine name eol

routine body ::= line [line] ••• eor

In interchange, the three separators .!..§_, eol, and eor denote the
following ASCII character or control character pairs.

ls "= SP

eol : := CR LF

eor : := CR FF

Thus, if the routine is printed on a device which observes ASCII
control conventions, the routine name would appear as the first printed
line and the executed code would appear on the remaining printed lines.

36

Analogously to the structure of the routine, each line consists of
two parts. The line head may contain an optional label for identifying
the line, and the line body contains the executable commands, if any,
of the line.

line ::= line head line body

line head : : = [label} ls

j.command l....J
command] ... [comment 11

line body : : =
I I comment

'--J

name
label : :=

integer literal

comment ··= ; [graphic]

[Port: The total number of characters in a line, excluding the eol,
but including the remainder of the line body and the whole of th-e-Tine
head, may not exceed 255. :Port]

Labels are used to identify lines. Line references occur in DO and
GOTO commands and in the $TEXT function. DO and GOTO may refer to a line
in any routine, whereas $TEXT refers only to the routine body at the top
of the Partition Stack.

Within a given routine, a line whose line head contains a label may

eol

be designated by naming the label. Thus the simplest form of a line reference
is an occurrence of label. More generally, any line in a given routine
may be designated by referring to a prior line containing a label in its
line head. The form label + integer expression (where i is the integer
interpretation of the value of the expression) means "the ith line after
the line containing label in its line head". The reference~abel + 0
is equivalent to label. Negative values of integer expression are not
allowed.

Within any given :toutine, no spelling of any labe~.l1:1ay occur more
than once fr1. any line head. When the label consists entj.rely of numeric
digits, leading zeros are significant to its spelling; t~at is, the label
01 is different from the label 1. [Port: Labels containing 9 or more
characters are identified and distinguished only on the basis of their
left 8 characters. :Port]

37

In the general form of a line reference, indirection is permitted
on the label portion but not on the line reference as a whole.

line reference ::= dlabel + integer expression

dlabel : := I
label

j@ expression atom V dlabel

The $TEXT function has a default definition which handles the case
of a line reference either reaching beyond the end of a routine or referring
to a label not appearing in a line head in the routine. DO and GOTO do
not have such default definitions; therefore the following conditions
are not allowed in the context of DO or GOTO.

1. A spelling of label which does not occur in a line head of the
routine denoted.

2. A value of integer expression so large as not to denote a line
within the routine body.

DO and GOTO can specify a routine as well as a line, and their arguments
therefore contain a more general form of line reference called an entry
reference. Within an entry reference, three syntactic cases may be dis­
tinguished.

1. The entry reference has the form of line reference , in which
case the routine body implied is that at the top of the routine
stack.

2. The entry reference has the form of Aroutine reference , in
which case the first line of the routine whose name is denoted
by the routine reference is implied.

3. The entry reference has the form of line referenceAroutine reference ,
in which case the designated line of the designated routine
is implied.

line reference [A routine reference]
entry reference . ·=

A routine reference

routine name
routine reference ::=

@ expression atom V routine reference

39

CHAPTER 8

COMMANDS

Table of Contents

8.1 Introductory Definitions 41

8.2

8.1.1 Command Syntax 41
8.1.2 Format of Command Definitions 42
8.1.3 Elaborations 42

8.1.3.1 Abbreviation of the Command Word 42
8.1.3.2 Post-conditionalization of the Command Word 43
8.1.J.3 Listing of Multiple Arp,uments 44
8.1.3.4 Post-conditionalization of Any Argur.1ent 45
8.1.3.5 Argument Indirection 46

8.1.4 Some Common Elements Among Command Definitions 48
8 .1. L, .1 Formats in READ and WRITE 48
8.1.4.2 Timeouts in LOCK, OPF.N, and READ 49

Command Definitions
8.2.1 BREAK
8.2.2 CLOSE
8.2.3 DO
8.2.4 ELSE
8.2.5 FOR
8.2.6 GOTO
8.2.7 HALT
8.2.8 HANG
8.2.9 IF
8.2.10 KILL
8.2.11 LOCK
8.2.12 OPEN
8.2.13 QUIT
8.2.14 READ
8.2.15 SET
8.2.16 USE
8.2.17 VIEW
8.2.18 WRITE
802.19 XE CUTE
8.2.20 z

51
52
53
55
56
61
63
64
65
67
69
73
76
78
8lf

88
90
91
93
94

41

CHAPTrR 8

COMMANDS

8.1 Introductory Definitions

8.1.1 Command Syntax

In Chapter 7 it i.s shown how the syntactic object conunand occurs
within a line body. In this chapter the syntax and semantics of cot!1lllanrl
are made explicit.

In place of any occurrence of command in the definition of line body
can stand any of the command definitions of 8.2. Every command begins
with a mnemonic command word spelled entirely with capital letters, such
as SET.

Commands fall into two basic categories. Some command words have
variations which fall into both categories.

1. Argumentless commands. The syntax of an argurnentless command
consists of the command word, possihly followed by a space.

a. If the occurrence of an argumentless command immediately
precedes the eol, there is no space following the
command word.~-

QUIT eol

b. If the occurrence of an argumentless command does
not immediately precede the eol, the command word
is followed by exactly two spaces, the first considered
to be part of the command, and the second considered
to be between this command and the next command or
comment. (Refer to the syntax of line body in Chapter 7.)

ELSE L...JL...J GOTO..._. X eol

2. Commands with arguments. The syntax of a command which takes
an argument consists of the command word followed by a single
space followed by an argument or argument list.

IF L...J X=Y L...J DO L...I A._. Qt'IT:X=l L...IL...I DO L..J B eol

42

8.1. 2 Format of Command Definitions

Each command definition of 8.2 is organized into the following parts.

1. Syntax. The syntax of the most suggestive, and usually the
simplest, form of the command is given here.

2. Elaboration. Variations on the syntax given in 1. are discussed.
These can fall into the following five categories discussed
in detail in 8.1.3.

a. Abbreviation of the command word
b. Post-conditionalization of the command word
c. Listing of multiple arguments
d. Post-conditionalization of any argument
e. Argument indirection

3. Execution. The effect of executinp, the command is described.
4. Cross-reference. Reference is made to other portions of this

reference manual where a related discussion may shed light on
the definition of this command.

5. Examples. Examples of use of the command are given, usually
with explanation and in a sequence which permits the reader
to make useful inferences about the command.

8.1 .• 3 Elaborations

8.1.3.1 Abbreviation of the Corr.mand Word

Wherever a command word may properly occur, it may occur in either
of two forms: as fully spelled out in the syntax portion of the command
definition, or in an initial-letter abbreviation. Other forms are not
allowed. For example,

GOTO L...J A

may be written
GOTO L...J A

or
G L...J A

but neither
GO L...I A

nor
GOT w A

nor
GOING w A

nor
GOTOHERE A

43

8.1.3.2 Post-conditionalization of the Command Word

A post-conditional is a colon immediately followed by a truth-valued
expression, the pair of which can appear as an optional suffix to certain
command words or command arguments.

post-conditional ::= truth-value expression

All command words defined by the MUMPS Standard except FLSF, FOR,
and IF may be post-conditionalized, either in their spelled-out or abbreviated
forms. For example, a post-conditionalized form of

SET .._. X=l
is

SET:Y=2 w X=l
or

S:Y=2 L...I X=l

(Note the two different uses of the "=".)

The interpretation of the post-conditional attached to a command
word is as follows.

1. If the post-conditional is absent, the command as a whole is
executed unconditionally, subject to external factors which
might inhibit its execution, such as a preceding ELSE or IF.

2. If the post-conditional is present, it is evaluated before anything
to its right is executed. If the truth-value interpretation
of its value is 1 (true), then the command as a whole is executed.
If the truth-value interpretation of the value of the post-conditional
is 0 (false), then no part of the command is executed and no
argument is evaluated.

The evaluation of a post-conditional can have side effects even if
it inhibits the execution of its host command. For example,

SET:$D(A(l,2))=3 L...I X=X+l

will never change X but will always change the Naked Indicator.

Since the post-conditional does not affect the Test Switch, its use
is not equivalent to the use of IF.

44

8.1.3.3 Listing of Multiple Arguments

The syntax presented in 8.2 for each command which accepts an argument
has the following structure.

command word a single space a single argument

If the elaboration does not state explicitly that arguments may be listed,
then the argument form shown describes all permissible argument structures
for this command. If the elaboration states that arguments may be listed,
then the following convention applies.

Let Y denote the connnand word, and let Al, A2, ••• ,An each denote
a single argument, each with syntax as specified in the syntax description.
If the syntax description is shown as

y Al
~

then the following forms of the command syntax are also permitted.

Y L.J Al,A2

Y 1.--1 Al,A2, ••• ,An

(The three dots are not to be taken literally but suggest indefinite but
finite repetition, with a connna and no space between each pair of arguments.)

The interpretation of

Y 1-.J Al,A2, ••• ,An

is precisely the same as

Y 1-.J Al j_J Y J._J AZ ._. • • • 1-.J Y .._, An

That is, each comma separating command arguments preceded by the command
word Y is literally to be interpreted as

[Port: The restriction on the number of characters in a line applies
as the line actually appears in routine interchange, and not as the line
might appear after making each substitution of L-J Y L.J for , :Port]

45

8.1.3.4 Post-conditionalization of Any Argument

Only the commands DO, GOTO, and XECUTE permit post-conditionalization
of arguments; therefore the following discussion applies only to these
three commands.

Any argument may be post-conditionalized, independently of the post­
conditionalization of the command word or of any other argument in the
argument list. The interpretation of a post-conditionalized argument
is as follows.

1. In what follows, the command word may be assumed to be not
post-conditionalized, for this reason. If a post-conditional
on the command word is present and (its value is) false, then
no argument interpretation is necessary, since no argument of
the command is interpreted or executed. If a post-conditional
on the command word is present and true, then each argument
is interpreted in turn as if the command word had not been
post-conditionalized.

2. Let Pi denote a post-conditional appearing on argument Ai.
With respect to the question of whether or not the explicit
execution of a particular argument occurs,

Y L...J Al:Pl

is interpreted as

Y:Pl L....I Al

In the interpretation of the expansion of

Y L-.1 Al,A2, ••• ,An

if any argument is of the form

Ai:Pi

then in the expansion in which the commas are removed it appears
as

Y:Pi L....I Ai

46

3. With respect to side effects, the matter is complicated by the
fact that a post-conditional has no effect on the normal execution
sequence (see Chapter 6) until after it, and the argument which
it qualifies, have already been evaluated. Therefore, in the
execution of

DO w X:A

the entry reference X and the expression A are always fully
evaluated (unless the DO is falsely post-conditionalized) even
if A is false and therefore the subroutine call is not performed.
Therefore,

XECUTE......., ~(3,4):0

will have the effect of attempting to change the Naked Indicator
and of attempting to fetch the designated value (each of which
attempts can lead to an error if the respective arguments are
not defined), but not of executing the evaluated expression.

8.1.3.5 Argument Indirection

The following discussion applies to those commands for which argument
indirection is permitted. Any command admitting argument indirection
also admits argument listing.

The indirection call

@ expression atom

may occur in place of any argument in an argument list, or in place of
any isolated argument. Thus, where the syntax permits

Y LJ Al

then

Y u @ expression atom 1

is permitted, and where the syntax permits

Y L-J Al,A2, ••• , An

then

Y L....J Al,A2, ••• ,@ expression atom i, ••• ,An

is permitted.

47

The value of expression atom i must be an argument or argument list
satisfying the syntax specification of Y. Thus, the value of
expression atom 1 in Y @ expression atom 1 may be a single argument

Al

or an argument list

Al,A2, ••• , An

or an argument list containing one or more indirection calls

Al,A2, ••• ,@ expression atom i, ••• ,An

requiring subsequent indirection evaluation.
are equally valid for an @ expression atom i
argument list, since the expansion of

These three possibilities
occurring anywhere in an

Y 1-1 Al,A2, ••• ,@expression atom i, ••• ,An

is

Y 1-1 Al 1-1 Y 1-1 A2 L-J ••• L-J Y L-J @ expression atom i L.J ••• L-J Y L.J An

48

8.1.4 Some Common Elements Among Command Definitions

8.1.4.1 Formats in READ and WRITE

The format, when executed as part of a READ or WRITE command, generates
format-controlling output operations. The parameters of a format are
executed one at a time, in left-to-right order.

format : := 11~1 [~] 1

? integer expression

integer expression

The format-control parameters may take the following forms.

causes a "new line" operation to be executed at the current device.
(See 5.4 for a discussion of the current device.) The effect of
! is equivalent to writing CR LF on a pure ASCII device. In addition
CX is set to 0 and 1 is added to CY (see 5.5).

causes a "top of form" operation to be executed at the current device.
The effect of # is equivalent to writing CR FF on a pure ASCII device.
In addition, CX and CY are set to O. When the current device is
a display, the screen is blanked and the cursor is positioned at
the upper-left corner.

? integer expression produces an effect similar to "tab to column
integer expression". More precisely, if CX is greater than or equal
to the value of integer expression, there is no effect. Otherwise,
the effect is the same as writing (integer expression - $X) spaces.
($X is the value of CX.) Note that the leftmost column of a line
is given the number O.

If the current device does not accept output, execution of a format
has no effect, except as described on CX and CY.

49

8.1.4.2 Timeouts in LOCK, OPEN, and READ

The LOCK, OPEN, and READ commands can make use of an optional timeout
specification, invoked by the presence of the timeout in the executed
command.

timeout : := numeric expression

Each of these three commands has associated with its definition a specific
external condition to which the execution of the command is sensitive.

LOCK

OPEN

READ

Execution of LOCK may not proceed in violation of the Descendant
Exclusivity Rule (see 4.2). The condition tested is the absence
of any descendancy relation between each node designator implied
by the argument of the LOCK command and the union of Lock Lists
over all other partitions of the system.

Execution of OPEN may not proceed in violation of the Device
Exclusivity Rule (see 4.3). The condition tested is the absence
of any common device between any device designator implied by
the argument of the OPEN command and the union of Open Lists
over all other partitions of the system.

By definition, execution of READ is complete when the input
message has been terminated. The condition tested is termination
of the input message.

If the optional timeout is absent from the conunand argument, execution
of the command will proceed if and only if the condition essociated with
the command is satisfied. If the condition is not satisfied, execution
will be suspended until the condition is satisfied; then execution will
proceed.

If the optional timeout is present in the command argument, a non-
negative value of numeric expression is required. If the value of numeric expression
is negative, zero is used. Let t be this nonnegative value; the timeout
specifies a suspension of execution of no more than t seconds, as described
in the following.

If t = 0, the condition is tested. If it is true, the Test Switch
is set to l; otherwise, the Test Switch is set to O. Execution proceeds
without delay.

If t is positive, execution is suspended until the condition is true,
but in any case no longer than t seconds. If at the time of resumption
of execution the condition is true, the Test Switch is set to l;
otherwise, the Test Switch is set to O.

so

If the optional timeout is present and the rules stated above require
that execution must proceed without the condition having been satisfied,
resolution is obtained in the following ways, depending on the connnand
involved.

LOCK

OPEN

READ

The function specified by the argument in question is only partly
executed (that is, the partition's Lock List is left empty)
and control proceeds to the next command or argument.

The function specified by the argument in question is not executed
and control proceeds to the next conunand or argument.

Whatever input characters have arrived prior to resumption of
execution are taken as the whole input message, even if that
message is empty. The disposition of those input characters
which arrive after resumption of execution but prior to execution
o~ the next READ, if any, is specified by the implementor.

51

8.2.1 BREAK

Syntax

[~]
BREAK

u argument syntax specified by implementor

Elaboration

1. The command word may be abbreviated to the single letter B.
2. The command word may be post-conditionalized.
3. The implementor specifies whether there is a form with arguments

and, if so, whether arguments may be listed.
4. The implementor specifies whether arguments may be post-conditionalized.
5. The implementor specifies whether argument indirection is permitted.

Execution

1. Argumentless form. No change is made to partition storage or
system storage as a direct result of execution of BREAK. Execution
is suspended until receipt of a signal, whose nature is specified
by the implementor, from a device, whose identity is specified
by the implementor. (It is possible that storage values may
be changed as a result of external intervention while execution
is suspended.)

2. Form with argument. Execution is specified by the implementor.

Examples

1. B Unconditional BREAK

2. B:X=3 BREAK if X=3

3. SET X=AA(3) IF X=O BREAK KILL AA

A BREAK is inserted before a global
is deleted so that the progrannner
may examine the job's status.

52

CLOSE 8" 2. 2

Syntax

CLOSE u device specifier [: device parameters

device specifier ::= expression

!expression
device parameters : : =

'1' ,.

, expression expression) l ...)
I

Elaboration

1. The command word may be abbreviated to the single letter c.
2. The command word may be post-conditionalized.
3. Arp,uments may be listed.
4. Arguments may not be post-conditionalized.
5. Argument indirection is permitted.

Execution

The value of the Open List corresponding to this partition is subject
to change. Depending on whether the value of the device specifier
designates the current device, the content of the Current Device
Designator is subject to change.

The value of the expression in the device specifier is a device designator
which denotes a device, or it may not, depending on a specification
provided by the implementor. If the device desif!;Uator implied by
the argument designates the same device as any device designator
in the Open List, then each of the latter is removed from the Open
List. See the discussion of device parameters under OPEN (8.2.12).

Cross-reference

4.3 Open List and device designator
5.4 Current Device Designator and Principal Device Convention

Examples

1. c 3 Device 3 is CLOSEd.

2. C:X=l X Device X is CLOSEd only if X=l.

53

8.2.'.1

Syntax

DO ~ entry reference

Elaboration

1. The corr:mand word may be abbreviated to the single letter ll.
2. The command word n~ay be post-conditionalize>0.
3. Arp,uments may be liste.d.
4. Arguments may be i.;oi:;t-conditionali:::ed.
S. ftr~ument indirection is permitted.

Execntion

DO

Exe~ution of an arguL~nt of no is described in full in terms of the
system model in 6.2 paragraph 4. Execution is equivalent to a subroutine
call. The entry pofr.t of the subroutine is defined by the argunent.
The exit point cccurs upon execution of QUIT not in the scope of
FOR, or of~· neither of which is serving as an exit point for
a subsequently executed DO or XECP'.I'F.

Cross-reference

6.2 paragraph 4
6.2 paragraph 2
eor

Fxecution description
Fxecution of QUIT not in the scope of FOR, and of

Chapter 7 Syntax and interpretation of entry reference

Examples

1.

2.

3.

4.

5.

6.

7.

8.

DO X WRITE Y

DO X,Y

DO "PGM WRITE Y

DO A,"PGM,"ROU

DO INT" JTO

D:X=l A"PGM,B,"TEST

DO "CEN: 'A,B

D @X
D @X"PGM
D "@XYZ
D @A"@B
D:@A=B @C"@D:@E=@F

54

The subroutine beginning at the
line labeled X is executed; then
the variable Y is written.

This is equivalent to DO X DO Y

Routine PGM is invoked; then Y is
written.

Multiple routine names ard labels
may be listed as arguments.

Routine JTO is invoked beginning
at label INT.

The list of subroutines is invoked
only if X=l.

Routine CEN is invoked if A=O;
subroutine B is invoked independently
of the value of A

Indirection may be used in the
DO command

55

8.2.4

Syntax

ELSE [.......]

Elaboration

1. The command word may be abbreviated to the single letter E.
2. The command word may not be post-conditionalized.

Execution

Execution of ELSE is described in terms of the system model in 6.2
paragraph 3. When ELSE is executed and the Test Switch ($T) has

ELSE

the value 1, the execution of the remainder of the line up to, but
not including, the eol is inhibited. In the scope of FOR the effect
of each execution of""a given ELSE is considered separately at the
time it is executed.

Cross-reference

6.2 paragraph 3 Execution description
5.3 Test Switch

Examples

The following two examples produce the same effect.

IF X=l WRITE "YES"
ELSE WRITE "NO"

WRITE:X=l "YES" WRITE:'(X=l) "NO"

'•

56

FOR 8.2.5

Syntax

FOR local variable for parameter [, for parameter] •••

expression

for parameter ::= start-step par.amet!:!_ numeric expression 3

start-step pArameter

start-stPp parameter ::= nuffieric expression 1 numeric express:!.or L

Elaboration

1. The command word may be abbreviaterl to the single letter F.
2. The comrnanci word may not be post-conditionalizec:l.
3. Arp;mTJents IllCIY not be listed; however, for parameters may be

listed in any order within the sinj!le argument.
4. Arguments may net be post-conditj.onalized.
5. Argument indirection is not permitted, nor is any indirection

permitted at trc level of the for parameter.

Fxecution

The "scope" of this FCR coIT<mand begins at the next cornnand following
this FOF on the sarre line and ends just prior to the eol on the same
line.

FOR specifies and controls repeated execution of its scope for suc­
cessive values of the named local variable. Each for paraTTleter
causes the local variable to be given a specified sequence of values,
and the scope to be executed once for each of these values; successive
for parameters control this process in turn, in left-to-right order.
Any expression occurring in the local variable, for exampJe in a
subscript or in indirection, is evaluated once per eyecution of the
complete FOR, prjor to the first execution of any for parameter.

The following descriptions specify how each of the for parameter
fon:-is specifies <md controls the values of the local variable and
the sequence of executions of the scope. The variable names A, B,
and r nr<' to l:e considered hjc!den storagf' re1?isters used solely for
concrc~ of each FCR commanrl.

57

1. If the for parameter is of the form expression.

a. Set local variable = expression.
b. Execute the scope nnce.
c. Execution of this for parameter is complete.

2. If the for parameter is of the form start-step parameter.

a. Set A = numeric exEression 1.
b. Set B = numeric exEression 2.
c. Set local variable = A.
d. Execute the scope once.
e. Set local variable = local variable + B.
f. Go to d.

Note that this procedure specifies an ecdless loop. Termination
of this loop must occur by execution of a QUIT or GOTO within
the scope. These two termination methods are availablP within
the scope of any FOR, and they will be described in general
below. Note also that no for para~eter to the right of one
of this form can ever achieve control.

3. If the for parameter is of the form
start-step_l>arameter : numeric exEression 3
and the step parameter (numeric expression 2)
has a nonnegative value.

a.
b.
c.
d.

Set
Set
Set
Set

A = numeric exEression 1.
B - numeric exEression 2.
c numeric exEression 3.
local variable = A.

e. If local variable > C, execution cf thj_s for parameter
is complete.

f. Execute the scope once.
g. If local variable > C-B, execution of this for parameter

is complete.
h. Set local variable = local variable + B.
i. Go to f.

58

4. If the foi parameter is of the form
start-step parameter : numeric expre.ssion 3
and the step para~eter (numeric expression 2)
has a negative value.

a. Set A= numeric expression 1.
b. Set B = numeric expression 2.
c. Set C numeric expression 3.
d. Set local variable = A.
c. If local variable < C, execution of this for parameter

is complete.
f. Execute the score once.
g. If local variable < C-B, execution of this for parameter

is complete.
h. Set local variable = local variabl0 + B.
i. Go to f.

If there is more than one FOR in a line, their executions may be
considered to be nested, and a FOR to thf> right is said to be "wi.thin"
or "inside" a FOR to the left. When two FORs are so nested, one.
execution of the scope of the outer FOR encompasses one execution
of the entire inner FOR corr.manci, corresponding to a complete pass
through the inner FOR's for parameter list (subject to early termination
by a cnro or QUIT).

Note that any particular execution of any command in the scope of
a FOR is under control of exactly one for para~eter of that FOR at
the time cf the command's execution. Two commands, GOTO and QUIT,
have special effects when they are executed in the scope of a FOR.
These eff Pcts are considered below.

Execution of a QUIT within the scope of a FOF has two effects.

a. It terminates this particular execution of the scope at the
QUIT; commands to the right of the QUIT are not executed duri.ng
this execution of the scope.

b. With respect to the innermost FOR in whose scope the QTTIT occurs,
it causes the rel'f1aining values specified by the controlling
for parameter, and nll values specified by any remaining for
paraffieters in the same for pararreter list, not to be calculated,
and the scope not to be executed unner their control.

In other words, execution of QUIT in the scope of a FOR effects the
immediate termination of execution of the innermost such FOR. If
there is a next outer FOR, execution of this QUIT effects the immediate
termination of one execution of the scope of this FOR.

Execution of a GOTO within the scoi:;e of a FOR effects the immediate
ternination of all FORs to the left of the GOTO in the same line,
and it transfers control to the point specified.

59

Cross-reference

6.2 paragraph 7 Execution of FOR
6.2 paragraph 2 Execution of QUIT in the scope of FOR
6.2 paragraph 5 Execution of GOTO in the scope of FOR
8.2.6 Definition of GOTO
8.2.13 Definition of QUIT

Examples

1. F I=l:l WRITE I Q:I>2 W "*" The output will be 1*2*3

2. F I=l:l:3 W I The output will be 123

3. F I=3:-2:-2 W I The output will be 31-1

4. F I=5,3,4,7,9 W I The output will be 53.479

5. F I=.4,1:2:5,9,10:1 DO A IF I>l5 QUIT
A will be executed 12 times

60 F I=l:l:2 F J=2:2:6 W I,"@",J,"*"
The output will be
1@2*1@4*1@6*2@2*2@4*2@6*

7. F I=l:l:3 F J=l0:10:30 Q:I*J>30 W I,"@",J,"*"

8. F I=3:5:0 WRITE I

9. FOR I=.01:.0001:.02 DA

10. F I=X:Y:Z D A

11. F I=l:2:10 SET I=I-1 W I

The output will be
1@10*1@20*1@30*2@10*3@10*

Nothing will be written. The final
value of I will be 3.

This will execute A 101 times.

Changing the value of the local
variable which is used as an index
is permitted. The output will be
0123456789

60

12. SET Z=lO F I~2:2:Z SET Z=Z-1 DO A

13. F I="TEST",X,3:4:5 •••

Because thP ending value of the
loop is computed before the scope
is executed, A w:fll be ex~cuted
5 times

When the simple form of the for
parameter is used, the indE:x may
be given nonnumeric values.

14. F I=X:Y:Z F .r~-=A:ll:C F K=-1:1:3 •.. G LCS

15. F @A=l:l:3 DO E

16. F I=@X:l:3 DO @B

17. F @I=@X:@Y:@Z DO @B

'i'he GOTO exits from all nested FORs.

Although indirection :f.s not permitted
on the for parareeter as a ~hole,
it may be used as usual in place
of variable names.

61

~.2.E

GOTO '-~ entry reference

Elaboration

1. The command word may be abbrevic.:ted to the single letter G.
2. The command word may be post-conditionalized.
J. Arguments may be listE!d.
4. Argurrcnts may be post-condi.tionalized.
5. Argument indirection is permitted.

Fxecution

Execution of an argureent of GOTC is descril:ed i.n full ir. terms of
the system Model in 6.2 paragraph 5. Execution is equivalent to

GOTO

a simple transfer of controL If the executed argument names another
routine, the routine body at the top of the partition stack is replaced
hy the named routine body. Note that, in contrast to DO, when argut'l<-·nts
are listed, at most one argument actually transfers control. W'r.en
GOTO is executed in tte scope of FOR, all FORs to the left of the
GOTO in the same lin~ are terminated with the transfer of control.

Crcss-ref erence

6.2 paragraph 5 Execution cescription
Chapter 7 Syntax and i.nterpretation of entry reference
8.2.5 Execution of GOTO in the scope of FOR

Examples

1.

2.

3.

4.

s.

6.

7.

8.

9.

GOTO XYZ

GOTO "PGM

G CC+2"Nl.H

C l3"CRAY:A=l

C-:A=l 11"GRAY

G "ADM:A=O,X"cn~

C:A=l .AAA:D=2,13:D=l1

C @X
G "0B
G A"@E
G @A"B
C. @A"@B

G:X=@Y @A+@c+n"@PGM:@E==@F

62

Execution continues at the start
of the line labeled XYZ in this
routine.

Context switches froM the routine
containin~ the GOTO to the first
line of the routine rrY.

Context switcI-.es to routine ~TJ.F

and executior. bqr,ins at the second
line after the line labeled CC.

If and only if A=l, context switches
to routine CRAY and execution begins
at the line labeled 13.

Equivalf'nt to Example l1.

If A::O, context .sldtches to routine
An?! and execution begins at its
first line; otherwi.se, context switches
to routine CFf-' and execution beg:fns
at the line labeled X.

This U.ne is equivalent to
G AAA:A=l&(R=2) G 13:D=4&(A=l)

There are many opportunities to
use incirection within the
GOTO command

If control transfers, the line at
which execution continues is the
@C+Dth line after label @A

63

8 . .::. 7 HALT

Syntax

~IALT

1. The command word mny be abbreviated to the single lf'tter H.
Note that when HALT is abbreviate0, the absence of an arp.ur:ent
c1istinguishes it from HA'!'TG.

2. The coDmand word may be post-conditionalize<l.

F.xecution

Execution of the process in this na.rtition terl'l:lnatu;. Systel'i stcrar;e
associated witr. this partition is left in the fcllm'!ing state.

1. The element of the Job Number P-vectnr corresponding to this
partition is zero.

2. The element of the Loct List P-vector correspondinr to this
partition is empty.

3. The element of the Cpcn List P-vector corrcEpon<ling to this
partition is empty.

Cress-reference

6.2 paragraph 1 Fxccution of HALT

F.xarq les

1. H

2. F: .A.= J HR ITF "TEST"

3. H:.A=(c!B

Unconditional HALT

If A=l, tl-e process HALTs. Otherwise,
execution continues and 'l'F.ST is
written.

Indirection may be used in the post­
conc it ionc.l.

64

HANG 8.2.8

Syntax

HANG int~ger expreEsior.

Elaboration

1. The command word may be abbreviated to the single lettPr H.
2. The command word may be post-conditionalized.
3. ArguMents may he 1 is ted.
4. Arguments may not be post-conditionali7.ed.
5. Argument indirection is permitted.

Execution

Let t be the integer interpretation of the value of the argument.
If t is zero or negative, H.ANG is of no effect. If t is positive,
execution is suspended for t seconds. No storage contents are changed
as a direct result of execution of HANG.

C1oss-reference

Examples

1. A IF $P(SH, 11 ,",2)<X HANG 3 GA

2. H:I=3 10 WRITE

3. H @X
H:SE(@A,B,@C) X+0Y+7

If the number of seconds after
midnight is less than X, execution
hangs three seconds and the line
repeats.

If I=3, a ten-second HANG is executed
before the WRITE command is executed.

Indirectioc may be used in the
HANG command.

65

8.2.9 IF

Syntax

Argumentless form: IF [L~]

Form with argument: IF u truth-value expression

Elaboration

1. The command word may be abbreviated to the single letter I.
2. The command word may not be post-conditionalized.
3. Arguments may be listed.
4. Arguments may not be post-conditionalized.
5. Argument indirection is permitted.

Execution

Execution of both forms of IF may be viewed in a unified way as follows.
Execution consists of two steps. The first step is not executed
by the argumentless form. The second step is conunon to both forms.

Step 1.

Step 2.

Cross-reference

The truth-value interpretation of the value of the argument
is placed into the Test Switch.
If the content of the Test Switch is 1, there is no action;
that is, execution continues at the next command or argument.
If the content of the Test Switch is O, execution of every
character in this line to the right of this argument, up
to but not including the eol, is inhibited. There can
be no direct or side effect arising from any such inhibited
execution.

6.2 paragraph 3 Execution of IF and ELSE
8.2.4 Execution of ELSE
8.1.3.2 Difference between post-conditional and IF

Examples

1.

2.

3.

4.

5.

6.

7.

I X=l WRITE X

I Y S Z=3

I X=l,Y=2 DO 3

I X,"A(Y) G 3

I X?1N2A! (Y=2)

IF X=l W !,"TEST"
ELSE W ! , "EXAM"
IF W " ARGUMENTLESS"

IF @X
IF A,@B,C
IF A=@B,@C=D,E=F+@G+H

66

The code to the right of the IF
connnand is executed only if X=l.

The code to the right of the IF
command is executed only if the
numeric interpretation of the value
of Y is nonzero.

Either of the two following forms
will or will not DO 3 under the
same conditions.
IF X=l IF Y=2 DO 3
IF X=l&(Y=2) DO 3
That is, the effect on the sequence
of execution of listing arguments
is similar to an implied and.

The side effects, however, may be
different. This code is not equiva­
lent to
I X&("A(Y)) G 3 since the latter
will always evaluate "A(Y) while
the former might not.

Complex expressions occur frequently
in IF commands

If X=l, this code will write
TEST ARGUMENTLESS
otherwise, it will write EXAM.

Indirection may be used
in the IF command

67

8.2.10 KILL

Syntax

1. "Kill All" argumentless form: KILL [L.J]

2. "Selective Kill" form: KILL L.J storage reference

3. "Exclusive Kill" form: KILL ..__, (name [, name . . .)

Elaboration

1. The conunand word may be abbreviated to the single letter K.
2. The conunand word may be post-conditionalized.
3. Arguments may be listed. In an argument list the two argument

forms may be mixed. (Note that the Exclusive Kill syntax form
contains only one argument.)

4. Arguments may not be post-conditionalized.
5. Argument indirection is permitted.

Execution

The execution of all three forms may be defined in terms of a single
atomic operation: the killing of a single variable. Let V be a
storage reference. Let N be the corresponding node, if any, in Named
Partition Storage or Named System Storage, respectively, for which
the Name attribute corresponds to V. (See 12.4 for a discussion
of this correspondence.)

Killing V has the following effect. If N does not exist, there is
no effect. If N exists, N and every descendant of N is deleted.
No attribute of any ascendant of N is changed when V is killed.

la Execution of a Kill All kills all local variables.
2. Execution of a Selective Kill kills the variable named in the

argument.
3. In the Exclusive Kill form, name denotes an occurrence of

_local variable containing no subscripts. All unsubscripted
local variables except for the one or more named in the argument
are killed. Consequently, all descendants of all local variables
are killed except for the descendants of the variables named
in the argument.

68

Cross-reference

4.1 Structure of Named System Storage
5.1 Structure of Named Partition Storage
12.4 storage reference

Examples

1.

2.

3.

4.

5.

6.

7.

8.

KILL X

KILL X,Y,AA(3,4)

KILL (A)

K (A,C,DEF,Al)

K SET X=$T

K:X=l AA(X)

K @X
K A,@B,C
K:@B=C A(B,@C)

Local variable X is killed.

Local variables X and Y, and global
variable AA(1,4) are killed.

All local variables except A an<l
its descendants are killed.

All local varia.bles except those
named and their descendants are
killed.

The argumentless kill causes all
local variables to be killed. After
execution of this line, X will be
the only local variable with a defined
value (provided that $T is defined).

If X=l, then AA(l) is killed. All
forms of KILL may have a post-conditional
on the command word.

The entire global array AA is killed.

Indirection may be used
in the KILL command

69

8.2.11 LOCK

Syntax

1. Argumentless form:

LOCK [L.J]

2. Form with argument:

LOCK w
I variable name

[timeout]
!<variable name [, variable name] •••)

Elaboration

1. The command word may be abbreviated to the single letter L.
2. The command word may be post-conditionalized.
3. Arguments may be listed.
4. Arguments may not be post-conditionalized.
5. Argument indirection is permitted.

Execution

The upper argument form, LOCK variable name [timeout]
is equivalent to the lower argument form in which exactly one name
occurs: LOCK L...J (variable name) [timeout] Therefore the following
definition of the form with argument deals only with the second,
more general, argument form.

Execution of both forms of LOCK may be viewed in a unified way as
follows. Execution consists of two steps. The first step is common
to both forms. The second step is not executed by the argurnentless
form.

Step 1.

Step 2.

The element of the Lock List P-vector corresponding to
this partition is unconditionally made empty.
Subject to the conditions described below, the element
of the Lock List P-vector corresponding to this partition
is given a new value. The following comments apply to
this process.

70

In 8.1.4.2 it was stated that the presence of a timeout in a connnand
argument denotes that execution is dependent on an external condition
whose definition is associated with the particular connnand. The
condition associated with LOCK is true if and only if the Descendant
Exclusivity Rule (referred to in the following as "the Rule", see
4. 2) would not be violated by replacement of the now-empty Lock Li.st
associated with this partition by a new Lock List denoted by the
argument. Stated another way, the Rule mandates a particular kind
of noninterference which must hold between all possible pairs of
partition Lock Lists. This LOCK argument defines a new Lock List
(in a way to be described below) for this partition. The new Lock
List, taken as a whole, must not violate the Rule. If indeed it
would not, the condition is true; if it would violate the Rule, the
condition is false. Of course, the truth of the condition can be
a function of time, since other partitions' Lock Lists may be changing.

If the timeout is absent, execution is suspended, if and only if
necessary to satisfy the Rule, until assignment of the new value
to this partition's Lock List can occur without violation of the
Rule. When the Lock List can be given the entire new value, it will,
and execution will proceed. The Test Switch will not be altered.

If the timeout is present, the definition of execution is the same
as that stated above, with two additional elements. Let t be the
nonnegative value implied by the timeout (see 8.1.4.2).

1. If t=O, no suspension of execution occurs. If t is positive,
execution is suspended if and only if necessary as specified
above, but at the end of t seconds, resumption of execution
is forced. (In the following, if t=O, the "time of resumption
of execution" is defined to be the time at which execution occurs.)

2. At the time of resumption of execution, the condition is tested.
If it is true, the Lock List is given its designated value,
the Test Switch is given the value 1, and execution resumes.
If the condition is false, the Lock List remains empty, the
Test Switch is given the value 0, and execution resumes.

There are no partial assignments to the Lock List of a sublist of
the list specified by an argument, and there are no retroactive or
delayed changes to a Lock List. If a process fails to establish
its Lock List as desired upon execution of a LOCK, any future retries
must be explicitly executed by means of the LOCK command.

71

The Lock List specified by the argument contains as many elements
as the argument contains variable names, and they are in one-to-one
correspondence. For each variable name in the argument, the corres­
ponding Lock List element is the node designator derived from that
variable name. See 12.4 for the syntax of variable name and the
algorithm for deriving its implied node designator.

Since an argument of LOCK is only a name and not a reference to Named
Partition or System Storage, the following propositions hold.

1. There is no relationship between a variable name appearing
as an argument of LOCK and the existence of, or the attributes
of, any node in Named Partition or System Storage.

2. The appearance of a global variable as an argument of LOCK
does not affect the Naked Indicator.

Cross-reference

4.2 Lock List in System Storage
5.3 Test Switch
8 .1. 4. 2 timeout
12.4 Node Designation Mapping, variable name

Examples

1. LOCK "A

2.

Between the time execution is resumed
after this LOCK and the time of
execution of the next LOCK by this
process, no other process will be
able to execute an argument of LOCK
containing the unsubscripted global
name "A or any subscripted global
name whose name part is A. In addition,
any variable names previously LOCKed
by this process are unLOCKed.

Between the time execution is resumed
after this LOCK and the time of
execution of the next LOCK in this
partition, no other process will
be able to LOCK any of the following
variables.
AB "B(l) AB(l,2,3)
Ac Ac(3) Ac(3,4,5)
However, another process can LOCK
any of the following.
AB(2) AB(l,3,4)
"c (4)

3. L SET X=l

4. L D(l):3 G A:'$T

s. L D(l):3 ELSE GA

6.

7. L @A
L:@B=C X(@A),@B

72

The argumentless LOCK command releases
the effect of any previous LOCK
in this partition.

An attempt will be made for an interval
of three seconds to LOCK D(l).
If the attempt is successful, ST
will assume a value of 1. If unsuc­
cessful, $T will be zero and execution
will continue at the line labeled
A.

This has the same effect as the
example above.

The LOCK command can be post-condition­
alized. Appearance of a global
variable name does not affect the
Naked Indicator unless, as in this
example, it occurs in an evaluated
expression. Here ·it is a subscript;
other such possibilities are in
post-conditionals and indirection.

Indirection may be used in the
LOCK command.

73

8.2.12 OPEN

Syntax

OPEN L..J device specifier [= timeout

[timeout] J device parameters

device specifier ::= expression

expression
device parameters ::=

(expression expression]] •••)

Elaboration

1. The comil"~nd word may be abbreviated to the single letter n..
2. The command word may be post-conditionalized.
3. Arguments may be listed.
4. Arguments may not be post-conditionalized.
5. Argument indirection is permitted.

Execution

The device specifier in the command argument denotes an input-output
"device", which is a sequential character source and/or sink. The
value of this expression is to be used as a device designator in
the Open List corresponding to this partition, as described in 4.2.
The implementor specifies the syntax rules which the value of this
expression must satisfy. Also, the implementor specifies the corres­
pondence between the possible values of this expression and the set
of available devices.

A partition is said to "own" device D if and only if a device designator
designating D is in the partition's Open List.

The intended function of OPEN with one argument is to obtain ownership
of one device. Execution of each argument of a multiple-argument
form of OPEN will add, in turn, each device designator specified
by the argument to the partition's Open List unless doing so would
violate the Device Exclusivity Rule ("the Rule"). The Rule states
that no two partitions may own the same device. The condition associated
with the OPEN conunand (see 8.1.4.2) is true if and only if adding
the specified device designator to the partition's Open List would
not violate the Rule.

74

If there is no timeout in the argument, execution will be suspended
if and only if necessary to avoid violation of the Rule. When the
device designator specified by the argument may be added to the Open
List associated with this partition without violating the Rule, it
will be, and execution will proceed. The Test Switch will not be
affected.

If there is a timeout in the argument, the definition of execution
is the same as that stated above, with two additional elements.
Lett be the nonnegative value implied by the timeout (see 8.1.4.2).

1. If t=O, no suspension of execution occurs. If t is positive,
execution is suspended if and only if necessary as specified
above, but at the end of t seconds, resumption of execution
is forced. (In the following, if t=O, the "time of resm11ption
of execution" is defined to be the time at which execution occurs.)

2. At the time of resumption of execution, the condition associated
with the OPEN command is tested. If it is true, the device
designator is added to the Open List, the Test Switch is given
the value 1, the device parameters are disposed of as specified
below, and execution proceeds. If the condition is false,
the Open List remains unchanged, the Test Switch is given the
value O, there is no effect due to the device parameters, and
execution proceeds.

The device parameters portion of the argument is used to specify
whatever parameters the implementor chooses to associate with the
device in question. The permissible syntax of the value of each
expression in the device parameters, and the interpretation of each
value, is specified by the implementor. This much, however, is common
among all implementations. Device parameters are uniquely stored
in association with each device, not each partition. At system initi­
ation, each device is given an appropriate set of default parameters,
as specified by the implement'Jr. Each time an OPEN, CLOSE, or USE
is executed, one or more device parameters may be changed by the
executed argument. The value of each device parameter persists until
it is replaced by a subsequent successful execution of an argument
of OPEN, CLOSE, or USE in any partition which specifies a value for
the device parameter.

Cross-reference

4.3 device designator

Examples

1. OPEN 4

0 4,X,Y

3. 0 X::3 G A: 1 $T

4. 0 X:: 3 ELSE G A

5. O:X=l A,B,C

75

Ownership of device 4 is obtained.
If another process already owns
device 4, this process will hang
until the device is available.

Similarly, devices 4, X, Y are OPENed
in turn.

The process attempts to OPEN device
X for up to three seconds. If it
is successful, $T will assume a
value of 1. Otherwise, $T will
be zero and execution will continue
at the line labeled A.

This is equivalent to the above.

The OPEN command word may be post­
condi tionalized.

6. 0 A:("I0":300:"TTY"),B:("0":800:"MT":20):TIM

7. 0 @X

In some implementations, additional
arguments may be used for setting
device-specific parameters.

Indirection can be used in arguments
of the OPEN command.

76

QUIT 8.2.13

Syntax

QUIT [L...J]

Elaboration

1. The command word may be abbreviated to the single letter Q.
2. The conunand word may be post-conditionalized.

Execution

QUIT may occur in either of two distinct contexts.

1. In the scope of FOR.
2. Not in the scope of FOR.

The function of execution of QUIT not in the scope of FOR is to cause
an exit from the subroutine initiated by a DO or XECUTE argument.
(The initial activation of this process is assumed to be the result
of an externally executed DO.) In terms of the system model, execution
of QUIT not in the scope of FOR pops the top level off the Partition
Stack (see 6.2 paragraph 2). If this leaves the stack empty, HALT
is executed.

Execution of eor, i.e., executing off the end of a routine body,
is equivalent to execution of QUIT not in the scope of FOR.

Execution of QUIT in the scope of FOR immediately terminates execution
of the innermost FOR in whose scope the QUIT occurs. If the line
containing the QUIT has only one FOR, execution of the QUIT terminates
execution of the line. If the line has more than one FOR, execution
of the QUIT causes termination of the innermost FOR and causes ter­
mination of the current execution of the scope of the second-from­
innermos t FOR.

Cross-reference

6.2 paragraph 2 Execution of QUIT
8.2.3 DO
8.2.5 FOR
8.2.7 HALT
8.2.19 XECUTE

77

Examples

1. I X>3 Q WRITE Y

2. Q:X>3 WRITE Y These two examples do not have the
same effect because the scope of
the IF extends to the end of the
line. In the first example the
WRITE Y is never executed.

3. Consider the following routine body.

A F I=l:l:lOO D B Q:I+X>6 W I
w II END" Q

B S X=I,.~2 D C W "B"
Q

C W "C" Q

In this routine body:

a. The QUIT in
b. The QUIT in
c. The QUIT in

line A terminates the FOR loop.
line A+l terminates the routine.
line B+l ends execution of the DO

execution to return inside the FOR loop.
d. The QUIT in line C ends execution of the DO C

execution to return to line B.

The output is CB1CB2CB END

B causin~

causing

78

READ 8.2.14

Syntax

string literal
READ w format

Elaboration

local variable
*local variable

timeout
timeout

1. The command word may be abbreviated to the single letter R.
2. The command word may be post-conditionalized.
3. Arguments may be listed.
4. Arguments may not be post-conditionalized.
5. Argument indirection is permitted.

Execution

Execution of READ causes input and/or output on the current device.
Each argument form governs the execution of READ according to a dif­
ferent set of rules.

READ string literal causes output of the string literal to the current
device, with alteration of the values of CX and CY as described in
5.5. If the current device does not accept output, the effect on
CX and CY is still as described in 5.5, but no output operation is
performed.

READ format causes output of format control information to the current
device, with alteration of the values of CX and CY as described in
8.1.4.1. If the current device does not accept output, the effect
on CX and CY is still as described in 8.1.4.1, but no output operation
is performed.

READ local variable [timeout] causes an input ASCII data string
from the current device to be accumulated until a termination criterion
is met. This termination criterion is dependent on whether the
timeout is present, as described below.

The implementor defines an "explicit termination procedure" which
may be device-dependent. If the explicit termination procedure involves
entry of a character, the implementor defines whether or not that
character becomes part of the input string when the procedure is
executed.

79

Let t be the nonnegative value associated with the timeout. (See
8.1.4.2.)

1. If the timeout is absent, execution is immediately suspended
until the explicit termination procedure is executed; then
execution immediately resumes. The input string is the concat­
enation of all characters received during the time that execution
is suspended, with characters received earlier at the left.

2. If the timeout is present and t=O, execution is not suspended
and the input string is empty.

3. If the timeout is present and t is positive, execution is immedi­
ately suspended. Execution resumes either at the end of t seconds
or immediately upon explicit termination, whichever is earlier.
The value of the input string is the concatenation of all charac­
ters received during the time that execution is suspended, with
characters received earlier at the left.

Let I be the value of the input string as defined above. At the
time of resumption of execution, the following occurs.

1. Execute SET local variable = I.

2. If the timeout is absent, the Test Switch is unchanged. If
the timeout is present and t=O, the Test Switch is given the
value O. If the timeout is present and t is positive and the
explicit termination procedure did not occur at or prior to
resumption of execution, the Test Switch is given the value
O. If the timeout is present and t is positive and the explicit
termination procedure occurred at or prior to the resumption
of execution, the Test Switch is given the value 1.

READ *local variable [timeout] is a one-character read, where the
input character may be an ASCII character, or it need not be; for
example, the input "character" may be a status value.

The local variable named in the argument always receives an integer
value. Whether the integer value is associated with a character
in a code table (for example, it may be the decimal equivalent of
the binary ASCII code of the input character), or whether it has
some other interpretation, is a matter which the implementor may
define in a device-dependent way.

80

1. If the timeout is absent, execution is innnediately suspended
until one input character arrives from the current device; then
execution inunediately resumes.

2. If the timeout is present and t=O, execution is not suspended
and no character is considered to have arrived from the current
device.

3. If the timeout is present and t is positive, execution is immedi­
ately suspended. Execution resumes either at the end of t seconds
or immediately upon receipt of one character from the current
device, whichever is earlier.

At the time of resumption of execution, the following occurs.

1. If a timeout is present and either t=O or t is positive and
no character arrived during suspension of execution, execute
SET local variable = -1.

2. Otherwise, execute SET local variable = the integer value as­
sociated with the input character.

3. If the timeout is absent, the Test Switch is unchanged. If
the timeout is present and t=O, the Test Switch is given the
value Oo If the timeout is present and t is positive and no
input character arrived during suspension of execution, the
Test Switch is given the value O. If the timeout is present
and t is positive and an input character arrived during suspension
of execution, the Test Switch is given the value 1.

The form READ local variable [timeout] (that is, the form "without
asterisk") affects CX and CY as described in 5.5. The form with
asterisk may also affect CX and CY according to 5.5, depending on
the implementor's interpretation of the input character.

A strict reading of the execution definition of the last two forms
of READ leads to the conclusion that any character or explicit ter­
mination procedure arriving prior to the execution of this READ and,
if there was a prior READ, after its execution, will be lost. This
interpretation may be undesirable in certain operating environments.
Therefore, the implementor has latitude to make some or all of the
following re-interpretations, in a consistent, but possibly device­
dependent, wayo

81

1. Input characters are queued and received from the current device
by the READ command in first-in, first-out order in such a way
that no character is lost. In the case of READ without asterisk,
all characters arriving from the current device prior to execution
of this READ and after all prior READs are concatenated to the
left of the input string described above. In the case of READ
with asterisk, the first character to arrive after all prior
READs is the one processed.

2. In the case of READ without asterisk, the implementor must
decide how to treat multiple explicit terminations. There are
two choices.
a. Terminations are queued with, and partition, input characters,

and each READ accepts only one such partition.
b. If, at the start of the READ, a character has been received

since the most recent termination, all prior terminations
are ignored. If a prior termination has not been followed
by a character, then that termination is considered to
occur immediately after the start of the READ.

3. When a timeout is present, the case t=O cease·s to be a special
case and may, along with positive values of t, give a value
of 1 to the Test Switch if the condition being tested (explicit
termination or arrival of a character, respectively) occurred
prior to this READ and subsequent to all prior READs. However,
assignment to the Test Switch of the value 1 means, and only
means, that the value given to the named local variable is as­
sociated with a specific condition. In the case of READ without
asterisk, the explicit termination procedure was executed.
In the case of READ with asterisk, the value assigned to the
local variable is associated with an input character and is
not the result of the default assignment of the value -1 to
the variable.

Cross-reference

8.1.4.1
8.1.4.2
12.2
12.4

format
timeout
string literal
local variable

Examples

1. READ X

2. R X,Y,Z

3. R "PATIENT?",X

82

A data string is entered into local
variable X.

The message PATIENT? appears on
the current device; then execution
waits for data to be entered, after
which it is placed into X.

4. R !!,"FIRST?",X,?30,"SECOND?",Y

5. R "TIMING?",X:lO G A:'$T
R "TIMING?",X:lO E GA

This code causes two carriage return­
line feeds to occur on the current
device. Then the message FIRST?
is displayed. After data is entered
into variable X, the device spaces
to column 30 and the message SECO}ID?
is displayed. Data may then be
entered and read into variable Y.

These two lines do the same thing.
After displaying TIMING? the job
will hang for ten seconds waiting
for input. If the return key (the
assumed termination procedure) is
pushed during that time period,
$T will be set to 1. Otherwise,
$T will be 0,. X may contain partial
input, and execution will continue
at A. If no characters have been
entered, X will contain the empty
string.

6. R *X,*Y,*Z

7. R *X:lO E G A

83

Under one interpretation available
to the implementor, this form of
READ may be used for entry of single
characters and conversion to their
ASCII-equivalent numeric codes.
If the characters AB CR were entered,
the following values would result.
X=65
Y=66
Z=l3

The asterisk form may also use a
timeout. If the timeout expires
without a character having been
entered, X will have the value -1
and execution will continue at A.

8. R:$D ("A) 11, "TEST" ,X:l2, *Y, *Z: 10,11, "SAMPLE",! ,A: 9

9. R @X
R X:@Y
R:@C @X:@Y
R *@A

The READ command may be post-conditional­
ized. All of the various argument
forms may appear in one argument
list. When more than one timeout
is present, the value of $T reflects
the last-executed (rightmost) timeout.

Indirection can be used with READ.

84

SET 8.2.15

Syntax

storage reference
SET L.J expression

(storage reference [,storage reference] •••)

Elaboration

1. The command word may be abbreviated to the singl:eJ letter S.
2. The command word may be post-conditionalized. ti/

3. Arguments may be listed. (The form shown above is a single argument.)
4. Arguments may not be post-conditionalized.
5. Argument indirection is permitted.

Execution

The SET command provides the means whereby a data string is placed
into the value attribute of one (or more) node(s) of Named Partition
or System Storage. The data string is the value of the expression;
the node(s) is (are) that (those) designated by the storage reference(s).
(The words in parentheses apply to the parenthesized form of the
argument.)

Execution occurs in the following order.

1. Any indirections or subscripts in the storage reference(s) are
evaluated, in left-to-right order as they appear in the argument.

2. The expression is evaluated. Let V denote the value of the
expression.

3. For each storage reference (one at a time in left-to-right order
if there are several), Vis placed into the Value attribute
of the node of Named Parlition Storage or Named System Storage
denoted by the storage reference. (The details of this mapping
from a storage ref er2nce to a node designator are discussed
in 12.4.) Thjs may involve the following considerations.

a. If the storage reference is a naked reference, the
content of the Naked Indicator is used to produce
the node designator, and then this resulting node
designator causes the content of the Naked Indicator
to be given a (possibly new) value. The process is
described in 5.2 and 12.4.

Cross-reference

85

b. If there does not exist a node with a Name attribute
as denoted by the storage reference, a minimum number
of nodes is created so that

(1) A node with the Name attribute defined by
the storage reference exists, and

(2) It is a descendant of the directory node
in either Named System Storage (if the first
character of the Name attribute is """)
or Named Partition Storage (otherwise).

c. If any nodes are so created, their Name attributes
are defined by the description of the creation process
given above. Their other attributes are defined as
follows.

(1) The node whose Name attribute is defined
by the storage reference is given the D
attribute 1 and the Value attribute v.

(2) Any other nodes so created (and they form
an unbroken chain of ascendants of the above
node beginning with its immediate ascendant)
are given the D attribute 10. Their value
attributes, being unavailable, need not
be given any value.

d. Also, if any node is so created, there exists a unique
node which, prior to the creation had no descendant
and after the creation has all of the created nodes
as descendants. The D attribute of this node is given
the following value.

If it was
0
1

10
11

then it becomes
10
11
10
11

e. If the node whose Name attribute denoted by the storage
reference does exist, V is placed into its Value attribute
and its D attribute is given the following value.

If it was
0
1

10
11

then it becomes
1
1

11
11

4.1 Named System Storage
5.1 Named Partition Storage
5.2 Naked Indicator
12.4 storage reference and the mapping to a node designator

Examples

1. SET "X=Y

2. S "A(l,2)=B(3,4)

86

The content of the Value attribute
of the level 1 Partition node named
Y (i.e. , the "value of the unsubscripted
local variable Y") is placed into
the Value attribute of the level
1 System node (i.e., the "unsubscripted
global variable") named "x.

Similarly for subscripted variables.

3. S "A(l,2)=X,B(4)=7, "C="TEST" ,X="D [

4. S "(2)="C(X,2)+1

s. S (A,B,C)=X

Multiple argumentsl'of SET.

Because the expression to the right
of the = is evaluated before the
variable name to its left is determined,
the naked reference "(2) denotes "c(X,2).
If the line had been

S "C(X,2)="(2)+1
the meaning of the naked reference
would depend on the state of the
Naked Indicator prior to execution
of the SET.

This is the "multiple" set. All
variables in the parentheses are
set to the same value.

6. S (A,B,C,D)=O,"A(3)=W,("A(3,4),"B(5))=I

7. S "A(5)=10,B("(3))="C(4)

Multiple and single SETs may be
mixed in one command.

When subscripts occur to the left
of the =, they are evaluated before
the right-side expression. Thus
this line is equivalent to

S "A(5)=10,B("A(3))="C(4)

B.

9. S I=3, (I,A(I))=4

10. S:X=3 X=4.5

11. S X=$S(X=3:4.5,l:X)

12. S X=X=3*1.5+X

13. S @X
S @A=B+C
S A=@B+C
S A=B+@(C_D)

87

This line is executed as follows.
a. AA(3) is given the value 10.
b. The subscript A(3), which is
AA(3), is evaluated as 10.
c. AC(4) is evaluated.
d. This value is given to A(lO),
which is AC(lO).
This line is therefore the same as

s AA(3)=10,AC(AA(3))=AC(4)
The order is always:
a. First the left-hand subscripts.
b. Then the right-hand expression.
c. Then the left-hand oame.

Even in a multiple SET, the left­
hand subscripts are evaluated before
the assignment is made. But each
argument is completed before the
next is begun. Thus, this line
is equivalent to

S I=3,(I,A(3)))=4
and I ends up with the value 4.

The SET command may be post-conditionalized.
In this example, if X has the value
3, then it is given the value 4.5.

The $SELECT function is valuable
when used in the right-hand expression
of a SET command. This line has
the same effect as the previous
example.

The expression to be evaluated may
be quite complex. In this example,
the expression X=3*1.5+X is evaluated,
and the result is given to the variable
X. This line has the same effect
as the previous two examples.

Indirection is often used in the
SET command.

88

USE 8.2.16

Syntax

USE L...J device specifier [: device parameters

device specifier ::= expression

expression
device parameters ::=

(expression expression]] • • •)

Elaboration

1. The command word may be abbreviated to the single letter U.
2. The command word may be post-conditionalized.
3. Arguments may be listed.
4. Arguments may not be post-conditionalized.
5. Argument indirection is permitted.

Execution

The device specifier in the command argument denotes an input/output
"device", which is a sequential character source and/or sink. The
value of this expression is to be used as a device designator in
the partition's Current Device Designator, as described in 5.4.

The intended function of USE is to make the designated device the
current device by moving the value of the device specifier into the
Current Device Designator. Execution proceeds as follows.

1. If, and only if, the content of the Current Device Designator
designates a device, the values of CX and CY are placed into
the X and Y registers specific to that device.

89

2. One of the following two alternatives exists.

a. If the value of the device specifier designates a
device and if there is a device designator in the
partition's Open List which designates the same device,
then the value of the device specifier is placed into
the Current Device Designator, the X and Y values
specific to that device are placed into CX and CY,
respectively, and the device parameters are recorded
as described under OPEN (8.2.12). (Translation:
The device designated by the USE command is made
the current device of the process executing it.)

b. Otherwise, an erroneous condition exists.

The value of the Current Device Designator may be obtained by execution
of the special variable $IO as an expression atom.

Cross-reference

4.3 device designator
5.4 Current Device Designator
8.2.12 device parameters
Chapter 9 $IO special variable

Examples

1. USE 3

2. U 3 SET X=$I

3. U X:Y

4. U:X'=O X

s. U @X

Device 3 is specified for routing
of READ and WRITE data.

X will receive the value 3.

In some implementations, Y may be
used to specify device parameters.

The USE command may be post-conditionalized.
This example inhibits making device
0 the current device.

Argument indirection is permitted.

90

VIEYI 8.2.17

Syntax

VIEW argument syntax specified by implementor

Elaboration

View is an implementation-specific command made available to implementors
who may wish to output data not otherwise available. Whether or
not it takes one or more arguments, and what any argument syntax
is, are specified by the implementor. Each implementation must recognize
and accept the VIEW command regardless of any interpretation given
to it.

[Port: Routines designed for portability should not contain the
VIEW conunand. :Port]

8.2.18

Syntax

91

format
WRITE w expression

*integer expression

Elaboration

1. The command word may be abbreviated to the single letter w.
2. The command word may be post-conditionalized.
3. Arguments may be listed.
4. Arguments may not be post-conditionalized.
5. Argument indirection is permitted.

Execution

WRITE

Execution of an argument of WRITE causes output of data and/or control
information to the current device. Each argument form governs the
execution of WRITE according to a different set of rules.

WRITE format causes output of format control information to the current
device, with alteration of the values of CX and CY as described in
5.5 and 8.1.4.1. If the current device does not accept output, the
effect on ex and CY is still as described there, but no output operation
is performed.

WRITE expression causes output of the value of the expression, one
character at a time, in left-to-right order. The effect of each
character at the device is defined by the ASCII standard and conventions.
Each character of the output affects the values of CX and CY as des­
cribed in 5.5. If the current device does not accept output, the
effect on ex and CY is still as described in 5.5, but no output
operation is performed.

92

WRITE *integer expression is a one-character write whose possibly
device-dependent interpretation is defined by the implementor.
Possible interpretations include the following.

1. A device command, such as a tape-unit rewind.
2. A numeric device parameter, such as a disk arm position or an

absolute plotter coordinate.
3. Any ASCII character the decimal equivalent of whose binary code

is the value of the integer expression.
The implementor defines the effect of this form of WRITE on ex and
CY.

It is intended that, except for the effects of timeouts, READ and
WRITE have identical side effects for identical data transfers.

Cross-reference

5.4 Current device
5.5 ex and CY
8.1.4.1 format
8.2.14 READ

Examples

1. WRITE X

2. W !,"Line feed",11,"Form feed",?20,"TAB",A(3)

3. w *7,*7,*97

4. W X,*Y,*Z,!!,"TEST",A=B

5. W:X>lO $J(X,7,2)

6. W @X
W Z,@X,Y

The arguments of the WRITE command
may be a mixed selection.

Under interpretation 3 above, this
command would ring the bell twice,
then output an "a".

Expressions containing operators
may be used as arguments.

The WRITE command may be post-condition­
alized. The $JUSTIFY function is
frequently used in arguments of
WRITE.

Indirection may be used in arguments
of WRITE.

93

8.2.19 XECUTE

Syntax

XECUTE L...J expression

Elaboration

1. The command word may be abbreviated to the single letter X.
2. The command word may be post-conditionalized.
3. Arguments may be listed.
4. Arguments may be post-conditionalized.
5. Argument indirection is permitted.

Execution

Execution of an argument of XECUTE is described in full in terms
of the system model in 6.2 paragraph 6. Its effect is to call a
one-line subroutine whose spelling is the value of the expression,
preceded by ls and followed by eol. Control automatically returns
to the argument or command following the XECUTE argument upon completion
of or exit from the subroutine. The implied routine-body context
of this subroutine (necessary for interpretation of a $TEXT or local
entry reference in the subroutine) is the routine body containing
the XECUTE.

Cross-reference

6.2 paragraph 6 Execution of XECUTE
8.2.13 QUIT

Examples

1. XECUTE A

2. X "S X=B Q:X<3 W Y" W "OUT"

3. X "G A" W "OUT"

4. X A, B _" D 3 G "_ C , D

5. X:Y=l A II x B,C",Y

6. x @Y,"I @AG II @D

If A has the value "S X=l", then
X will receive the value 1.

In this example the QUIT in the
value of the argument may terminate
the execution of the subroutine.
The "OUT" is always written.

The "OUT" is never written.

XECUTE may have multiple arguments.
Note also the use of concatenation
for stringing together commands
and arguments.

XECUTE with a post-conditional.
Note the nesting of XECUTEs.

An example with indirection at two
levels.

94

z 8.2.20

Syntax

Z [spelling of remainder of connnand word is specified by the
implementor] argument syntax is specified by the implementor

Elaboration

Implementors desiring to offer commands not in the standard are required
by the standard to spell the command words beginning with z.

[Port: Routines designed for portability should not contain Z commands.
:Port]

Introductory Discussion

9.1 $HOROLOG

9.2 $IO

9.3 $JOB

9.4 $STORAGE

9.5 $TEST

9.6 $X

9.7 $Y

9.8 $Z

95

CHAPTER 9

SPECIAL VARIABLES

Table of Contents

97

98

99

100

101

103

104

105

106

"~ -·I

CHAPTER 9

SPECIAL VARIABLES

A special variable is an upper-case alphabetic name from a prescribed
list, preceded by a $, which, when executed as an expression atom, yields
a value which is in System Storage or Partition Storage but is not otherwise
explicitly available. The following special variables are defined.

$HOROLOG The content of the Clock Register.

$IO The content of the Current Device Designator.

$JOB The content of the element of the Job Number P-vector
corresponding to this partition.

$STORAGE A measure of space available for the routine and
Named Partition Storage.

$TEST The content of the Test Switch.

$X The content of ex.

$Y The content of CY.

$Z[implementor-defined]: as defined by the implementor.

Special variables may be abbreviated to two characters: the $ followed
by the first letter of the name.

The syntactic entity special variable is defined as follows.

special variable ::=

$H[OROLOG]
$1(0]
$J[OB]
$S[TORAGE]
$T[EST]
$X
$Y
$Zimplementor-specified

SHOROLOG 9.1

Name: $HOROI.OG

Abbreviation: $li

Value: Tne co.1tent uf the Clock H.f,6ister at the time of execution.

Cross-reference: 4.5 Clock Register

Examples:

1. The following cocie cunverts $i-: to « readablt time format such as
11:15:01 AM

S TIME=$P($H,",",2),SECONDS=TIME#60
S X=TIME\ 60, HOlJRS=X .60, NINUTES,,,Xf/60
S SUFFIX=$P("AM,PM",", 11 ,HOUR\l2+1)
w ! , HOUR//12+ 1, II: II ,MINUTES, II: II. SECONDS, II II' SUFFIX

2. The following code converts $H to a date in the form MM/DD/YYYY.

S H=$H>21607+$H,LEAPYRS=H\1461,Y=H#l461
S YEAR=LEAPYRS*4+184 l+ (Y\365), DAY=Y#365+1
S MO=l I Y=l,46D S DAY=-366,YEAR=YEAR=l
F 1=31, YEARtf ·-1-=o+28, '3 l , 30, 31, 30, 31, 31, 30, 31, 30, 31 Q :DAY' >r S DAY=DAY-1 ,MO=Mo+l
W M0\10,l10#lO,"/",DXi' 10,VAY/110,"/",YEAR

9.2

Name:

Abbreviation:

Value:

Cross-reference:

Examples:

1. USE 3 S X=$1

2. S "A($1,l)=X

99

$10

$1

The content of the Current Device Designator.

5.4 Current Device Designator

X is given the value 3.

Scratch files can be set up with
data stored by device number.

$10

$JOB

Name:

Abbreviation:

Value:

Cross-reference:

Examples:

1. S "A($J,2)=Y

100

9.3

$JOB

$J

The content of that element of the Job Number P-vector
corresponding to this partition.

4.4 Job Number P-vector

Scratch files can be set up with
data stored by job number.

2. WRITE tl,DATE," ",$J A way of identifying the source
of output.

9.4

Abbreviation:

Value:

101

SSTORAGE

$STORAGE

$S

The value of $S is not precisely defined by the Standard
because it is necessarily somewhat implementation-dependent.
$S measures, at the time of its execution, the number
of additional characters which may be added to the
"partition space" before the system refuses to allow
further expansion of the partition space. In the
absence of a more precise formula provided by the
implementor, the Portability Requirements suggests
the following model. Partition space PS is computed
as the following sum.

PS = RS + LVS + TRS

RS (routine size) is the number of characters in all
lines of the routine body at the top of the Routine
Stack (where ls counts as one character and eol counts
as two characters).

LVS (local variable storage) is the total number of
characters in all Value attributes of all nodes of
Named Partition Storage (undefined values are considered
empty) plus the total number of data characters (¢
is excluded) in all Name attributes of such nodes
plus two times the number of such nodes plus two times
the number of pairs of such nodes which are in the
immediate ascendant/immediate descendant relationship.

TRS (temporary result storage) is the number of characters
of temporary data values, arising from execution of
the current line, in existence at the time of execution
of $S. These include
1. Characters which have been added to and remain

in the line buffer as a result of indirection.
2. Intermediate results in the evaluation of the

expression containing the $S due to incomplete
parenthesized right-hand operands of binary operators.

3. If the $S occurs in a SET, the data characters
in the storage reference node designators which
are both to the left of the = and to the left
of the $S.

Cross-reference:

Examples:

102

[Port: PS is not to exceed 4000 at any time during
execution of a routine designed for portability.
:Port]

If TAS is the "total available space" measured in
characters at the time of execution of the $S,

$S = TAS - PS

Note, however, that TAS may be a function of activity
outside the partition in which the $S is executed.

5.1 Named Partition Storage (See also 4.1)
6.2 paragraph 8 Indirection
Chapter 7 Structure of lines
8.2.15 left-hand side of SET

1. I $S<50 G AOVERFLOW A test for $S below a threshold
permits preparing for a storage
overflow.

2. F I=l:l:lOO DO 3 I $8<100 D AFILE

9.5

Name:

Abbreviation:

Value:

Cross-reference:

Examples

1. I X=3 S Y=A
W:$T Y S Y=B

103

$TEST

$T

The content of the Test Switch (0 or 1). The Test
Switch must be defined at the time of execution of
$T, ELSE, or argumentless IF.

5.3 Test Switch
8.1.4.2 timeouts
8.2.4 ELSE
8.2.9 IF

This code is equivalent to
I X=3 S Y=A
I W Y
S Y=B

ST EST

2. R X:lOO G A:'$T DOB In this example, $T is used to test
whether the input was explicitly
terminated before the timeout ex­
pired. If there was no termination

3. 0 4:10 G A:'$T U 4 W X

(i.e., if the input string is incomplete),
execution continues at A.

This is similar to example 3; execution
transfers to A if the OPEN is unsuccessful.

sx

Name: $X

Abbreviation: $X

Value: The ---
Cross-reference: 5.5

Examples:

1. W l,"123" S Y=$X

') W I S Y=$X

3. W: $X>72 I

content of ex

ex

104

9.6

Y is given the value 3.

Y is given the value O.

This code writes a carriage return,
line feed if $X indicates that the
next output character would be to
the right of column 72.

9.7

Name:

Abbreviation:

Value:

Cross-reference:

Examples:

1. W It S Y=$Y

2. W II! ! I S Y=$Y

3. W: $Y>56 II

$Y

$Y

The content of CY

5.5 CY

105

Y is given the value O.

Y is given the value 3.

If the page is full, skip to a new
page.

SY

SI

Name:

Abbreviation:

Value:

106

9.8

$Zspecified by implementor

$Zspecified by implementor

Specified by implementor. The Standard requires that
all implementor-defined special variables begin with
$Z.

[Port: Routines designed for portability should not
contain ~Z special variables. :Fort]

107

CHAPTER 10

Fl!NCTIONS

Table of Contents

10.1 General Information
10.1.1 Definition of Position Number

10.2 Function Definitions
10.2.1 $ASCII
10.2.2 $CHAR
10.2.3 $DATA
10.2.4 $EXTRACT
10.2.5 $FIND
10.2.6 $JUSTIFY
10.2.7 $LENGTH
10.2.8 $NEXT
10. 2. 9 $PIECE
10.2.10 $RANDOM
10.2.11 $SELECT
10.2.12 $TEXT
10.2.13 $VIEW
10.2.14 $Z

109
111

112
113
114
116
117
118
119
120
121
123
124
125
127
128

109

CHAPTER 10

FUNCTIONS

10.1 General Information

Each MUMPS function has one or more function arguments and, when it is
executed as an expression atom, yields a value which is a data string.
While the specific syntax of each function is separately prescribed, all
functions have the following general syntax.

1. A function is a function name followed by an argument list enclosed
in parentheses.

2. A function name is a "$" followed by an upper-case alphahetic name
from the prescribed list of function names.

3. In the case of multiple function arguments, adjacent arguments are
separated by a comma.

The following function names are defined.

$ASCII selects a character of a string and returns its code as an integer.

$CHAR translates a list of integers into a string of characters whose
ASCII codes are those integers.

$DATA returns the D attribute of the designated node of Named System
or Named Partition Storage.

$EXTRACT returns a character or substring of a string expression, selected
by position number.

$FIND returns an integer specifying the end position of a specified
substring within a string.

$JUSTIFY returns the value of an expression, right-justified in spaces
within a field of specified size.

$LENGTH returns the length of a string.

$NEXT identifies the next (in order of ascending last integer subscript)
sibling node of a specified node of Named System or Named Partition
Storage.

$PIECf

$RANDOM

$SELECT

$TEXT

$VIEW

110

returns the string between two specified occurrences of a specified
substring within a specified string.

returns a pseudo-random number in a specified interval.

returns the value of one of several expressions in a list, selected
by the truth values in a second list of expressions.

returns the text content of a specified line of the routine
body at the top of the Routine Stack.

an implementor-defined function available for providing implementation­
specific data.

$Z[implementor-defined]
as defined by the implementor.

FJnction names may be abbreviated to two characters: the $ followed by
the first letter of the name.

The syntactic entity function is defined as follows.

$A[SCII](expression[,integer expression])
$C[HAR](integer expression[,integer expression] •••)
$D[ATA](storage reference)
$E[XTRACT](expression,integer expression[,integer expression])

I. $F[IND](expression,expression[,integer expression])
$J[USTIFY](expression,integer expression)

'$J[USTIFY](numeric expression,integer expression,integer expression)
function ::= $L[ENGTH](expression)

$N[EXT](storage reference)
I $P [IECE] (expression,expression, integer expression [,integer expre~:::, ~~~])

$R[ANDOM](integer expression)
$S[ELECT](truth-value expression:expression

[,truth-value expression:expression] •••)
$T[EXT](+integer expression)
$T[EXT](line reference)
[$V[IEW](argument(s) specified by implementor)]
[$Zname specified by implementor(argument(s) specified by

implementor)]

111

10 .1.1 Definition of Position Number

If a nonempty string S has n characters, each character is given a unique
Position Number in the closed interval [l,n]. The leftmost character
of S has the position number 1, the rightmost character of S has the position
number n, and intermediate character positions map into the inter~ediate
integers in the expected way.

The reverse mapping $E(S,p) from an integer-valued position number p tn
S to a string containing zero or one character is defined as follows.

1. If the position number p is less than 1 or greater than n, the value
of $E(S,p) is the empty string. (This is also the case for all values
of p whenever S is empty.)

2. If the position number p is in the interval [l,nJ, the value of $E(S,p)
is the one-character string whose character is the character of s
with position number p.

This reverse mapping is the definition of the two-argument form of
$EXTRACT(S,p).

SASC II

Name:

Abbreviation:

Syntax:

Value:

Cross-reference:

Examples:

112

$ASCII

$A

$A[SCII](expression 1 [,integer expression 2])

If integer expression 2 is absent, a default value
of 1 is used.

10.2.1

$ASCII yields an integer value which is the decimal
equivalent of the ASCII code of the value of
$E(expression l,integer expression 2). If that value
is empty, the value of $ASCII is -1.

10.1 $E
Appendix A ASCII code table

Value of first argument string Value of function

SET X="ABCDE"

SET Y=4

SET X="" (the empty string)

SET X="AB"

$A(X)=65
$A(X,1)=65
$A(X,2)=66
$A(X,3)=67

$A(X,Y)=68

$A(X)=-l
$A(X,n)=-l for all n

$A(X,O)=-l
$A(X,3)=-l
$A(X,-7)=-1
$A(X,1.92)=65 (that is, the integer

value is used)

10.2.2

Name:

Abbreviation:

Syntax:

Value:

Cross-reference:

Examples:

Value of arguments

113

SCH AR

$CHAR

$C

$C[HAR](integer expression [,integer expression] •••)

$CHAR returns a string whose length is the number
of argument expressions which have integer values
in the closed interval [0,127]. Each integer expression
whose value is in that interval maps into the ASCII
character whose code (expressed as a decimal number)
is the integer expression's value; this mapping is
order-preserving. Each negative-valued argument maps
into no character in the value of $CHAR. Values above
127 are considered to be erroneous.

Appendix A ASCII code table

Value of function

SET X=65,Y=66,Z="GOB" $C(X)="A"
$C(Y)="B"
$C(X,Y)="AB"
$C (X, Y, 6 7) ="ABC"
$C(X,-l,Y)="AB"
$C(-l)="'' (the empty string)
$C(O)=the ASCII NUL character
$C($A(Z,l),$A(Z,2),$A(Z,3))="GOB"

SD A TA

Name:

Abbreviation:

Syntax:

Value:

Cros~-1eference:

Examples:

114

10.2.3

$DATA

$D

$D[ATA] (storage reference)

If the node designated by the argument exists, the
value of the function is the content of its D attribute.
If the node does not exist, the value of the function
is O. If the storage reference is a naked reference,
the Naked Indicator must be defined. If the storage
reference is a global variable or a naked reference,
the Naked Indicator's content may change.

4.1 D attribute
5.2 Haked Indicator
12.4 storage reference

1. Assume that Named Partition Storage is in its initial state.

Argument values

Y has no defined value
SET Y=lOO
SET Y="AB"
SET A(l)="TEST"

SET B(l,2)="SAMPLE"

SET B(l)="ANOTHER SAMPLE"
KILL B(l,2)

Function valuf's

$DATA(Y)=O
$DATA(Y)=l
$D(Y)=l
$D(A(l))=l
$D(A)=10
$D(B(l,2))=1
$D(B(l))=10
$D(B(l))=ll
$D(B(l,2))=0
$D(B(l))=ll (the KILL does not
change the D attribute of any ascendant)

115

2. Assume that the argument is a global variablE and that Namerl System
Storage is in its initial state except for the result of executing
SET "A(l,2,3)="TEST".

Action Value of X

SET X=$D("A) 10
SET X=$D("(l)) error
SET X=$D("A(l)) 10
SET X=$D("A(99)) 0
SET X=$D("(l)) 10
SET X=$D("(l,2)) 10
SET X=$D("(2)) 10
SET X=$D("(2,3)) 1
SET X=$D("(3)) 1
SET X=$D("(4)) 0
SET X=$D("A(l,2)) 10
SET "A(l,2,3,4)="H",X=$D("A(l,2,3))

11

Resulting value of Nakerl Indicator

undefined
undefined
"A
unchanged
unchanged
"A ¢ 1
unchanged
"A ¢ 1 ¢ 2
unchanged
unchanged
"A ¢ 1

"A ¢ 1 ¢ 2

116

SEX TRACT 10.2.4

Name: $EXTRACT

Abbreviation: $E

Syntax:

$E[XT~CT](expression !,integer expression 2 [,integer expression 3])

Value:

Cross-reference:

Examples:

Prior condition

SET X="ABCDE"

SET A(l)=''2BC"

If integer expression 3 is absent, the definition
given in 10.1.1 is used. If integer expression 3
is present, the value of $EXTRACT is the contiguous
substring of expression 1 defined by the following
concatenation formula.

If the value of integer expression 3 is not less than
the value of integer expression 2,

$E(S,m,n) m $E(S,m) $E(S,m+l) •• ~ SE(S,n-1) $E(S,n) - - - -
If the value of integer expression 3 is less than
the value of integer expression 2, the value of the
function is the empty string.

10.1.1 Definition of two-argument form of $E

Function value

$E(X,l)="A"
$E(X,2)="B"
$E(X,l,2)="AB"
$E(X,l,4)=11ABCD"
$E(X,0,100)="ABCDE"
$E(Y,1.9)="A" (the integer value
of the argument is used)
$E(X,99)='"' (the empty string)
$E(X,-3)="" (the empty string)
$E(X,3,2)="" (the empty string)
$E(A(l),A(l))="B" (the integer
interpretation of the second argument
is used)

10.2.5

Name:

Abbreviation:

Syntax:

Value:

117

$FIND

$FIND

$F

$F[IND](expression !,expression 2[,integer expression 3])

If integer expression 3 is absent, or if its value
is less than 1, a default value of 1 is used. $FIND
searches for an instance of the value of expression 2
as a substring of expression 1. The search is conducted
from left to right beginning at the character whose
position number is the value of integer expression 3.

If the value of integer expression 3. is greater than
the length of expression 1, or if no instance of
expression 2 is found, $FIND returns zero. Otherwise,
the first (leftmost) instance found is the one reported,
as follows. If the position numbers in expression 1
of the found instance of expression 2 are the integers
in the interval [i,j], the value of $FIND is j+l.

Cross-reference: 10.1.1 Position Number

Examples:

Prior condition

SET X="ABCAX"

SET Y= 11 B11

SET Z=" 1. 2W11

Function value

$F(X, 11 A11)=2
$F(X, 11 B11)=3
$F (X, 11 Z11)=0
$F(X, 11 ABC11)=4
$F("ABC11 , 11 ABC11)=4
$F (X' II A11 '1) = 2
$F(X, 11 A11 ,2)=5
$F(X, 11 A11 ,4)=5
$F(X,"A11 ,5)=0
$F(X,"A",100)=0
$F(X, '"')=l
$F (X' II II ' 4) =4
$F(X, 1111 , 10)=0
$F(X,Y)=3
$F(X,Y,Z)=3

118

$JUSTIFY 10.2.6

Name: $JUSTIFY

Abbreviation: $J

Syntax:
expression !,integer expression 2

$'J[USTIFY](
numeric expression !,integer expression 2,integer expressior.

Value:

Cross-reference:

Examples:

Prior conc!ition

SET X=12.35

SET Y=l97
SET Z=5.4
SET W=l.487

The two-argtll'lent form right-justifies expression 1
in a field of integer expression 2 spaces. Let 11
be the length of expression 1 and let N2 be the value
of integer expression 2. If N2 < Ll there is no truncation;
the value of $J is the value of expression 1. If
N2 > Ll the value of $J is N2-Ll spRces on the left
concatenated with the value of expression 1 on the
right.

In the three-argument form, also let N3 be the value
of integer expression 3. This form edits the value
of numeric exwression 1, right-justified, in a field
of N2 spaces with N3 decimal places. Specifically,
let R be the value of numeric expression 1 after rounding
to N3 fraction digits, including possible trailing
zeros. (If N3=0, R contains no decimal point.) The
value returned by $J is $J(R,N2).

[Port: Negative values of N3 are reserved for future
expansion of the definition of $J, and therefore should
be avoided by implementors as well as users. :Port]

Function value

$J(X,6)=" 12.35"
$J(X,5)="12.35"
$J(X,4)="12.35"
$J(X,3)=1112.35"
$J(X,7,4)="12.3500"
$J(X,7,3)=" 12.350"
$J(X,7,2)=" 12.35"
$J(X,7,l)=" 12.4"
$J(X,7,0)=" 12"
$J(Y,7,2)=" 197.00"
$J(Z,7,2)=" 5.40"
$J(W,7,2)=" 1.49"
$ J (W. 7 ' 1) =" 1. 5 II
$J(W,7,0)=" l"

10.2.7

Name:

Abbreviation:

Syntax:

Value:

Cross-reference:

Examples:

Prior condition

SET X="ABC"
SET X="123456789"

119

SLENGTH

$LENGTH

$L

$L[ENGTH](expression)

$LENGTH(expression) returns the integer number of
characters in the value of expression. If the value
of expression is empty, $1 returns zero.

Function value

SET X="" (the empty string)

$L(X)=3
$L(X)=9
$L(X)=O

SN EXT

Name:

Abbreviation:

Value:

Cross-reference:

~x::.mples:

Action ----
SET X=$N(""A)
SET X=$N(""A(-1))
SET X=$N(X(4))
SET X=$N(""(l))
S::::T X=$N(""(4))
SET X=$N(""(4,3))
SFT X=$N("A(l,-l))
~JE'.i., X=$n('' (2 ,-1))
SET X=" (3)
SET X=$N("" (3))
SET X=$N(""B(l,2))

120

10.2.8

$NEXT

$N

$N[EXT](storage reference)

Only subscripted (level 2 or greater) forms of the
argument are permitted, and the value of the rightmost
subscript must be an integer whose value is -1 or
greater. If the argument is a naked reference, the
Naked Indicator must be defined.

I.et the arguMent be of the form

N(s_!_,s±_, ••. , sn-1,sE_)

wi;t~re sn is constrained as stated. $N:RXT reports
the existence and identity of a storagf' node denoted
by the storage reference

N(s!_,s!, ••• , s~,t) , such.that

1. the node has a nonzero D attribute;
2. t is an integer greater than sn; and
3. t is the smallest possible value meeting these

conditions.

If such a node exists, the value of $NEXT is t; if
no such node exists, the value of $NEXT is -1.

4.1
4.1
12.4

Levels of storage
D attribute
storage reference

Assume that Named Partition and System Storage are
in their initial states except for the results of
execution of SET

Value of x

error
1

-1
4

-1
-1

2
3

"TEST"
-1
-1

""A(l,2,3)=11TEST",""A(4)=11SAMPLE".

Resulting value of Naked Indicator

undefined
""A
unchanged
unchanged
unchanged
undefined
"A¢ 1
"A ¢ 1 ¢ 2
unchanged
unchanged
undefined

121

10.2.9 SPIECE

Name: $PIECE

Abbreviation: $P

Syntax:

$P[IECE](expression l,expression 2,integer expression 3 [,integer expression 4])

Value: If integer expression 4 is absent, a default value
which is the value of integer expression 3 is used.
Let Sl denote the value of expression 1, let S2 denote
the value of expression 2, let N3 denote the value
of integer expression 3, and let N4 denote the value
of integer expression 4.

$PIECE(Sl,S2,N3,N4) searches for, and returns as its
value, a substring of Sl whose left and right boundaries
are delimited by values specified by S2, N3, and N4.
Typically, the substring is bounded on the left by
(but does not include) the N3-lth occurrence of S2
in Sl, counting from the left end of Sl, and the sub­
string is bounded on the right by (but does not include)
the N4th occurrence of S2 in Sl, counting from the
left end of Sl. Since empty substrings may be found
anywhere in any number required, $P returns an empty
string if S2 is empty.

Any of the following conditions causes $PIECE to return
the empty string.

1. N3 > N4
2. N4 < 1
3. There are fewer than N3-l distinct nonoverlapping

instances of S2 in Sl.
4. S2 is empty.

Provided that none of the above conditions holds,
the value of $PIECE is the contiguous substring of
Sl which is both to the right of the N3-lth occurrence
of S2 in Sl and to the left of the N4th occurrence
of S2 in Sl.

The occurrences of S2 in Sl are counted from the left
end of Sl and are considered to be nonoverlapping.
Thus, there are two occurrences of "ABAB" in "ABABABABAB",
in the sense of the terms used here.

If N3 is 1 or less, the selected substring includes
the left end of Sl. If N4 is greater than the number
of occurrences of S2 in Sl, the selected substring
includes the right end of Sl.

Cross-reference:

Examples:

Prior condition

SET X="ABC*DEF"

SET Y="B"

SET Z="A.B.C.D"

122

Function value

$P(X,"*",l)="ABC"
$P(X,"*",2)="DEF"
$P(X, "*" ,3)="" (the empty string)
$P (X, "B", l)="A"
$P(X,Y,l)="A"
$P(X,Y,2)="C*DEF"
$P(X,"/",l)="ABC*DEF"
$P(Z,".",l)="A"
$P(Z,".",2,3)="B.C"
$P(Z,".",l,100)="A.B.C.D"
$P(Z,".",3,2)="" (the empty string)
$P (Z, "'', 1, 100) =""

10.2.10

Name:

Abbreviation:

Syntax:

Value:

Cross-reference:

Examples:

123

$RANDOM

$RANDOM

$R

$R[ANDOM](integer expression)

Let N denote the value of the argument. N must be
positive. $R(N) returns a random or pseudo-random
integer uniformly distributed in the closed interval
[O,N-1].

1. SET X=$RANDOM(N) X will be given an integer value
between 0 and N-1.

2. SET Y=$R(2)

3. SET Y=$R(l)

Y will randomly be given either
the value 0 or 1.

Y is O.

124

SS ELECT 10. 2 .11

Name: $SELECT

Abbreviation: $S

Syntax:

$S [ELECT] (truth-value expression:expression

Value:

Cross-reference:

Examples:

Prior condition

SET X=l

SET Y="B"

SET "A(l)="TEST"

[,truth-value expression:expression] •••)

Each argumt-nt of SSF.LECT is an ordered pair separated
by a colon: trLth-,·alue expressicn:expressj_on •
Tlw funcL:...on may conL'iI! any positive number of arguments.
At least cue truth-value expression must have a value
1 (true).

Without evaluating the corresponding expression, each
truth-value expression is evaluaterl, one at a time,
in left-to-right order. This evaluation stops at
the first argument for which the truth-value expression
has the value 1. In this argument, and in no other,
the expression is evaluated and this latter value
becomes the value of $SELECT. Notice that no other
expression need have a defined value.

Function value

$S(X=l:8,2=3:0)=R
$S(X=l:8,2=2:0)=8
$S(X=2:8,2=2:0)=0
$S(X=2:8,2=3:0)=error; one argument
must have a true truth value.
$S(X=3:8,Y="B":"HELLO",X=l:l3)=11HELLO"
$S(X=Y:B(l),Y="A":"(2,3),1:3)=3
Note that this function call does
not use or alter the Naked Indicator.
$S(X=l:"A(l),Y:S)="TEST" The Naked
Indicator is changed to "A

10.2.12

Name:

Ahbreviation:

Syntax:

Value:

Cross-reference:

125

ST EXT

$TEXT

$T

+ integer expression
$T[EXT]()

line reference

The argument denotes a l:i.ne of the routine body which
is at the top of the Partition Stack. This denotation
is made in either of the following ways.

1. If the argument has the form + integer expression,
its value, which we shall denote by N, must be
greater than zero. The line denoted is the Nth
line of the routine body. (The first line is~
associated with N=l.)

2. If the argument has the form line reference,
the line is that denoted by the line reference,
according to the method given in Chapter 7.

If the argunent of $TEXT, by virtue of a line reference
containing a label not appearing in a line head of
the routine body or by virtue of a too-large value
of an integer expression, does not denote a line,
the value of $TF~T is the empty string. Otherwise,
the value of $TEXT is the value of the line denoted,
except for the following changes: ls is replaced
by one space (SP), and eol is deleted.

Chapter 6
Chapter 7
Chapter 7

Partition Stack
routine body
line reference

126

Examples:

Assume that the following routine body is at the top of the Partition
Stack.

ABC ;SAMPLE
SET X=3 WRITE Y
READ X

Z WRITE ! ,X

Then:

.~'.':'(AJ3C)cc 11ABC ',SANT'] .,
$: f?" '': WRI', c. '., '>'.'
$T .o.b(+::.)= 11 SET :\=.: vTRl'i'E Y"
$'!'(AEC+2)=" F.EAr x"
$T(+l)="A£C ;SANFLF"
<!:T(+3)=" READ X"
$T(Z+l)=""
$T(@A+2)=" READ X" (given that A="ABC")
$T(ABC+K)=" READ X" (given that K=2)
$T(+B)=" READ X" (given that B=3)

The following two lines write out the routine body containing them.

F I=l:l S X=$T(+I) Q:X="" W X, !
w ff

10.2.13

Name:

Abbreviation:

Syntax:

Value:

127

SVIEW

$VIEW

$V

$V[IEW](argument syntax specified by implementor)

$VIEW is an implementation-specific function available
to the implementor who may wish to make available
to programs certain data not otherwise available.
Each implementation must recognize and accept the
$VIEW function, regardless of any interpretation given
to it.

[Port: Routines designed for portability should not
contain calls of the $VIEW function. :Port]

128

sz 10.2.14

Name: $Zremainder of name specified by implementor

Abbreviation: $Zremainder of abbreviation specified by implementor

Syntax:

$Zspecified by implementor(argument syntax specified by implementor)

Value: Implementors desiring to offer functions not in the
standard are required by the standard to spell their
function names beginning with $Z.

[Port: Roatines desiRUed for portab:Uity should not
contain calls of any $Z function. :Port]

11.1

129

CHAPTER 11

EXPRESSIONS

Table of Contents

Ger.eral Rules Governinf? Expressions
11.1. l Syntax of expression
11.1. 2 MUMPS Values
11.1. 3 Interpretation Operations

11.1.3.1 The Interpretation Ie
11.1.3.2 The Interpretation Ten
11.1. 3.3 The Interpretation Ini
11.1.3.Li The Interpretation Int

11.1.4 Calculation of expression Values

131
131
132
134
138
139
139
139
139

11.2 Types of Expression Tails 141
11. 2 .1 Nonrcstricting Express:f.on Tails 142
11.2.2 Numeric-value Restricting Expression Tails 143
11. 2. 3 Integer-value Restricting Expression Tails 145
11.2.4 Truth-value Restrictinp., Expression Tails 146

11.2.4.1 Relational Operators 14fi
11. 2. 4. 2 Logical Opera tors 148
11.2.4.3 Pattern-match Opetator 149
11.2.4.lf E:xatnpJes of Truth-valued Operators 151

131

CHAPTER 11

EXPRESSIONS

11.l General Rules Governing Expressions

11.1.1 Syntax of expression

An expression is a substring of a command which, when executed, yields
a value. The execution of expressions is the principal means by which
values are obtained for subscripts, for arguments of functions, and for
assignment to storage nodes.

Expressions may be arbitrarily complex, subject to certain practical limits
such as that placed on line length for the sake of portability (see Chapter 7);
however, there are typically just two atomic elements of which expressions
are built: expression atoms and binary operators. An expression atom
(discussed in Chapter 12) is the simplest form of an expression; it is
the atomic value-yielding substring of a line of which more complex expressions
are compounded. Binary operators provide the linkages between expression
atoms to form the more complex expressions.

As is almost every other process in the execution of a MUMPS routine,
the execution of an expression is a progressive process which accompanies
a left-to-right scan of characters of the line. This basic progressive
structure is revealed in the syntax definition of expression.

expression atom
expression ::=

expression expression tail

The right-hand side of the above recursive formulation is syntactically
equivalent to the following simpler, iterative, formulation

expression atom [expression tail] •••

but the recursive formulation is chosen to correlate more closely with
the calculation model which is presented. Every expression tail is in
two parts: a binary operator on the left and an expression atom or pattern
on the right.

132

11.1.2 MUMPS Values

The universe V within which all MUMPS values fall is the set of all strings
of characters chosen from the 7-bit ASCII set. (See Appendix A for a
list of these 128 ASCII characters.) This universe includes the empty
string. Except for certain practical limits such as storage capacity,
given a value chosen from this universe, a MUMPS routine can be written
to produce that value.

[Port: The practical universe in which all values produced by MUMPS routines
designed for portability must fall contains all ASCII strings whose lengths
are 255 or less and no strings whose lengths exceed 255. :Port]

There are four important subsets of V: the subset Ve of numeric values
expressed in exponential notation, its subset Vn of numeric values without
exponents, its subset Vi of integer values, and its subset Vt of truth
values. These subsets form a descending nested sequence in the order
given. The subsets are defined by the syntax of the string which are
their elements. This relationship between set membership and syntax is
expressed in the following table.

Strings in the All have the Defined
value subset syntax of in

Ve exEonential value 11.1.3
Vn numeric value 11.1.2
Vi inteser value 11.1.2
Vt truth value 11.1.2

The syntax definitions of numeric value, inteser value, and truth value
are given below.

0
truth value ::=

l

1
2
3
4

nonzero digit ::= 5
6
7
8
9

digit : :=

133

0

nonzero rlir,it

0
integer value : :=

(-] nonzero digit [digit)

[Port: The number of digits of any integer value produced by the execution
of a MUNPS routine designed for portability may not exceed nine. :Port]

fraction value ::= • [digitl ••• nonzero digit

(Note that the single period denotes ".", whereas the group of three periods
denotes optional repetition of the [digit] syntactic eleynent.)

nuI!'.eric value : : =

I o
I[-] nonzero c!ip:H [digit] ••• [fraction value) I
I(-] fraction va1ue

Each integer value or numeric value uniquely denotes a real number; the
nurr.cer denr)ted is the obvious one. The truth value 0 denotes False; the
truth value 1 denotes True.

[Port: A MUMPS routine designed for portability may produce only those
numeric values denoting zero and the numhers whose ahsolute values are
in the closed interval

:Port]

134

11.1.3 Interpretation Operations

The value sets V, Ve, Vn, Vi, and Vt form a nested sequence of sets, as
depicted in the following-Vei:m diagram.

That is, every truth value is an integer value, every integer value is
a numeric value, every numeric value is an exponential value, and every
exponential value is a MUMPS value. Many operators, some examples of
which are listed here, have n~tural definitions, however, only on one
of these subsets of V but not on the whole of v.

1. Arithmetic is defined on numeric values.
2. The Boolean operators are defined on truth values.
3. Certain functions, such as $CHAR and EXTRACT, have some arguments

which are assumed to be integer values.

It is a principle of design of the MTJMPS language that any operation which
is defined on a subset of V will not fail to operate if an actual argu~ent
falls outside that subset. Rather, any operation which requires such
a restricted argument automatically performs an "interpretation" operation
on each such argument before the operation itself is performed. The
appropriate interpretation operation maps all MUMPS values into the required
subset (while not changing those values already having the correct syntax),
thereby guaranteeing that all argument values will meet the restrictions
assumed in the definition of the operation.

135

In each argument of a function, operator, command, etc., the requirement
for a particular interpretation operation is denoted by the syntactic
form of the argument.

Syntactic form
of argument

Required subset
of values

Interpretation operation performed
on argument prior to execution

expression,
expression atom

exponential expression,
exponential expression atom

numeric expression,
numeric expression atom

integer expression,
integer expression atom

truth-value expression,
truth-value expression atom

v none

Ve exponential interpretation le

Vn numeric interpretation In

Vi integer interpretation Ii

Vt truth-valu~ interpretation It

Note that in the routine itself, these specialized argument forms have
the same syntax as their more general forms.

exponential expression atom : := expression atom
numeric expression atom : : = expression atom
inte8er expression atom : := exEression atom

truth-value expression atom : := expression atom

exeonential expression : : = expression
numeric expression : : = expression
integer expression : : = exEression

truth-value expression : : = expression

136

Each interpretation operation is a mapping from the whole of V onto the
required subset of values, which does not alter those values already in
the required subset. This is expressed schematically as follows.

le
Ve

In
v

Ii
v ---------vi

It
V --------- Vt

Whe_r.~as :MID1PS arithmetic operators do not produce results in exponential
:.-r 'scie:ritific" form, the numeric interpretation In correctly interprets
c.rgc· cnt data in this form and converts it to numeric form. This is the
rea , ,-, for the introduction of the set Ve, even though exponential values
~ .::>e are not employed in the definition of the arithmetic operations.
(In Chapter 12, the exponential form of data is used more explicitly
in connection with the interpretation of the numeric literal form of
expression atom.) The synrax definition of exponential value, which
defines the elements of Ve, follows.

digit seguence : := di Bit [digit] ...
digit seguence [. di8it seguence]

mantissa : : = . digit seguence

exponent : := E (~] digit sequence

exEonential value : := [-] mantissa [exEonent]

137

The interpretations In, Ii, and It then break down into sequences of more
than one of the primitive interpretations Ie, Ien, Ini, and Int, as expressed
in the following diagram and table.

Ie Ien Ini
V ----------------~ Ve ---- ------> Vn

Vt

To obtain the Apply
interpretation the sequence

In le followed by Ien

Ii In followed by Ini

It In followed by Int

138

11.1. 3.1 The Interpretation Ie

The transformation of any data string S into one in Ve proceeds in two
steps. The first simplifies any leading signs; the second takes the largest
head satisfying exponential value.

Definition of Head. The head of a string with respect to a
given point which is innnediately to the right or left of any
character of the string is defined to be that substring which
contains all characters to the left of the point and no characters
to the right of the point. Note that a head may be empty, or
it may be the entire string.

1. Apply the following initial-sign reduction rules to S as many times
as possible, in any order.

a. If S is of the form+ T, then remove the +.
(Shorthand: + T ~ T)

b. - + T ~ - T
c. - - T ~ T

2. Apply whichever of the two following cases is appropriate.

a. If the leftmost character of S is not "-", the result is
the longest head of S having the syntax of exponential value.

b. If S is of the form - T, take the longest head of S which
has the syntax of exponential value. If the mantissa part
of the result denotes 0 (or -0), make the whole value "O".

139

11.1.3.2 The Interpretation Ien

1. If the mantissa part of the argument has no
right end of the mantissa.

" " . ' place one at the

2. The presence of an exponent is recognized by the "E". If it is absent,
skip step 3.

3. If the exponent has a +or has no sign, move the "." a number of
decimal digit positions to the right in the mantissa equal to the
number denoted by the exponent, appending zeros to the right of the
mantissa as necessary. If the exponent has a minus sign, move the
"." a number of decimal digit positions to the left in the mantissa
equal to the absolute value of the number denoted by the exponent,
appending zeros to the left of the mantissa as necessary.

4. Delete the exponent and any leading or trailing zeros of the mantissa.

S. If the rightmost character is ".", remove it.

6. If the result is empty or "-O", make it "O".

11.1. 3. 3 The Interpretation Ini

1. The presence of a fraction value is recognized by the
is present, delete the fraction value.

2. If the result is empty or "-", make it "O".

11.1.3.4 The Interpretation Int

If the number is not "O", make it "l".

11.1.4 Calculation of expression Values

" " • •

The syntax of an instance of expression has one of the two forms

expression atom

or

expression expression tail •

If it

Chapter 12 prescribes the value of each expression atom. If the expression
has the form expression atom, then the value of the expression is the
value of the expression atom.

140

Otherwise, the expression is of the form

expression expression tail

and the following general comments apply to its evaluation.

The MUMPS scan of an expression is left to right. At the time that the
expression is to be evaluated, the rightmost character of the expression
tail has just been scanned. Therefore, the values of all component expressions
and/or expression atoms are already known. Specifically, the value of
the left-hand ex.pression is known, and the value of any ex.pression atom
in the expression tail is known.

Because an evaluation occurs immediately after each expression tail is
scanned, and because the direction of scan is left-to-right, an expression
containing several expression tails, e.g.,

expression it\~~

A + B - C * 3

expression t~i~~· ~.__..,
expression tail~
expression tail

is naturally grouped from the left. That is, any implied parentheses
are as follows.

(((A + B) - C) * 3)

If it is desired to force a different order of calculation, parentheses
may be used to insure that certain combinations of symbols be treated
as expression atoms, to wit:

expression atoms
,/\, ~

A + B - (C * 3)
._.,...... ------­

expression ta!1 /

expression tail

141

11.2 Types of Expression Tails

It may be predicted from examining just the binary operator of the following
expression tail

expression expression tail

in what value class, Vt, Vi, Vn, or V, the value of the overall expression
will fall. This fact is the basis for grouping the expression tails into
the following four groups, each of which "restricts" its resulting value
into the named value class.

1.

2.

3.

4.

Nonrestricting expression tails. The only operator in this group
is string concatenation ().
Numeric-value restricting expression tails. This group contains
the arithmetic operators + - I * #.
Integer-value restricting expression tails. The only operator in
this group is the integer-quotient divide (\).
Truth-value restricting expression tails. This group contains the
relational operators (= < >] [), the logical operators (& !),
and the pattern-match operator (?). Any of these operators may
be immediately prefixed with the not-prefix (') which reverses
the truth value of the result.

The syntax definition of expression tail follows.

expression tail ::=

string operator ::=

arithmetic operator ::=

+

*
I
\
II

string operator
arithmetic operator
['] truth operator

['] ? pattern

relation
truth operator ::=

logical

<
>

relation : := =

logical : :=

[
]

&

expression atom

142

.i.L '.' .1 No~restri~ting Expression Tails

Operators: (st:clng concatenaticn)

Expression syntax: expression 1 expression atom 2

Value calculation: The value of the resulting expression is the result
of concatenating the value of expression 1 with the
value of expression atom 2, with expression 1 on the
left.

Cross-reference:

Examples: Let X have the value "DE".

Expression Value

"A" "B"
"A"-"B" "c"
"A"-"l "-23
"AB"_x_(3*4)
1 2
1-2*3
1_(2*3)

AB
ABC
Al23
ABDE12
12
36
16

143

11. 2. 2 Numeric-value Restricting Expression Tails

Operators: + (algebraic addition)
- (algebraic subtraction)
* (algebraic multiplication)
I (algebraic division)
II (modulo)

Expression syntax:

+

numeric expression 1 * numeric expression atom 2
I
II

?:. L.ue calculation: [Port: Routines designed for portability should not
contain calculations requiring more than nine significant
digits of accuracy in any intermediate or final values.
:Port]

The numeric interpretation In is taken of both arguments.

The value of the result is defined by the real number
which it denotes, as follows.

+ produces the algebraic sum.

- produces the algebraic difference.

* produces the algebraic product. [Port: The value
of the result may not be uniquely defined if the number
of significant digits in the product exceeds nine.
:Port]

Cross-ref~rence:

144

I produces the algebraic quotient. Note that the si.,~11
of the quotient is negative if and only if one argument
is positive and one argument is negative. Division
by zero is not permitted. [Port: The value of the
result may not be uniquely defined if the number of
significant digits of the quotient exceeds nine or
if the quotient contains a nonterminating fraction.
:Port]

produces the value of the left argument modulo the
right argument. # is defined only for nonzero values
of its right argument, as follows.
A # B = A - (B * floor(A/B))
where floor(x) = the largest integer < x.
[Port: The value of the result may not be uniquely
defined if the number of significant digits in the
result exc~~ds nine. :Port]

11.1. 3 }111r1•'.·ric interpretation In

Examples: Let A=O,B=l,C=2.

Expression Value

2+3
2*3+4
4+2*3
(4+2)*3
4+(2*3)
4+(2/3)
l+.123456789
A-B-C
A-(B-C)
B#C
C#B
B+2*C
B+(2*C)

5
10
18
18
10
4.66666667
1.12345679
-3
1
1
0
6
5

(approximately)
(approximately)

145

11.2.3 Integer-value Restricting Expression Tails

Operator: \ (integer-quotient divide)

Expression syntax: numeric expression 1 \ numeric expression atom 2

Value calculation: The value of the result is the integer interpretation
Ii of the value of

Cross-reference:

Examples:

Expression

4+2\3
4+(2\3)

numeric expression 1 I numeric expression atom 2

[Port: The value of the result may not be uniquely
defined if the number of significant digits in the
result exceeds nine. :Port]

11.2.2 division operator I

Value

2
4

146

11.2.4 Truth-value Restricting Expression Tails

Operators:

11.2.4.1

Expression

numeric

Relational operators (see 11.2.4.1)
= (string identity)
< (algebraic less than)
> (algebraic greater than)
[(string contains)
] (string follows)

Logical operators (see 11.2.4.2)
& (and)
! (or)

Pattern-match operator (see 11.2.4.3)
?

Relational Operators

syntax:

<
ex;eression 1 ['] numeric ex;eression atom 2

>

=
ex;eression 1 ['] [ex;eression atom 2

]

147

Value calculation: In the case of all of these operators, denoted here
by~'

A '~ B has the same value as '(A~ B)

A ~ B has the value 1 if the relation it expresses
is true; it has the value 0 otherwise.

The inequalities > and < compare the numeric interpretations
of their arguments; the relation which they express
is the conventional algebraic "greater than" or "less
than".

The operator = y:f.elds the value 1 if and only if the
two arguments (without taking any interpretation)
are identical strings. If both arguments are known
to be in numeric-value form, the uniqueness of the
numeric representation permits = to be used to test
for numeric equality. [Port: The effects of inexact
arithmetic must be taken into accoun.t if any truncation
has taken place in the calculation of an argument.
:Port]

The relation [is called "contains". A [B is true
if and only if B is a contiguous substring of A; that
is, A [B has the same value as ''$F(A,B). The empty
string is a substring of every string.

The relation] is called "follows". A] B is true
if and only if A follows B lexicographically in the
conventional ASCII collating sequence. A is defined
to follow B if and only if any of the following is
true.

a. B is empty and A is not.
b. Neither A nor B is empty, and the leftmost

character of A has a numerically greater
ASCII code than the leftmost character of
B.

c. There exists a positive integer n such that
A and B have identical heads of length n
and the remainder of A follows the remainder
of B.

148

11. 2. 4. 2 Logical Operators

Expression syntax:

&
truth-value expression 1 ['] truth-value expression atom 2

Value calculation: & and are given the names "and" and "or", respectively.

G
if both A and B have the value 0

A I B =
otherwise

G
if both A and B have the value 1

A & B =
otherwise

The dual operators '&and 'I are defined by:

A'& B ='(A & B)
A'! B ='(A I B)

149

11.2.4.3 Pattern-match operator

Expression syntax:

expression 1 ['] ? pattern

pattern atom [pattern atom] ...
pattern ::•

@ expression atom V pattern

pattern atom ::=

pattern code ::•

integer literal

c
N
p
A
L
u
E

•

•••

string literal

pattern code

Value calculation: S '?Pis defined to have the same value as '(S ? P).

A pattern is a concatenated list of one or more pattern
atoms. Let n be the number of pattern atoms in pattern.
S ? pattern is true if and only if there exists a
partition of S into n substrings

S = Sl S2 ••• Sn

Such that there is a one-to-one order-preserving
correspondence between the Si and the pattern atoms,
and each Si "satisfies" its respective pattern atom.
Note that some of the S.!_ may be empty.

Each pattern atom consists of two parts: a pattern
code or a string literal, which is used as the basis
for a comparison with Si, and a preceding multiplier:
either a numeric literal specifying an exact number
of iterations or the "indefinite multiplier" "."-

150

If the integer literal multiplier is present, S.! satisfies
the pattern atom if and only if Si is a concatenation
of integer literal substrings, each of which satisfies
the string literal or pattern code of the pattern
atom.

If the indefinite multiplied "." is present, Si satisfies
the pattern atom if it is a concatenation of any number
(including zero) of substrings, each of which satisfies
the string literal or pattern code of the pattern
atom.

A substring satisfies a string literal if and only
if it is identical to the value of the strin~ literal.

A pattern code is a string of letters, each of which
represents a class of characters, as follows.

Letter

c
N
p

A
L
u
E

Class of characters

33 Control characters, including DEL
10 Numeric characters
33 Punctuation characters, including SP
52 Alphabetic characters
26 Lower-case alphabetic characters
26 Upper-case alphabetic characters
Everything (the Entire set of characters)

The class of characters represented by a pattern code
is the union of the classes of characters represented
by each of the letters of the pattern code. A substring
satisfies a pattern code if and only if each of the
substring's characters falls into the class of characters
represented by the pattern code.

151

11.2.4.4 Examples of Truth-vaJued Operators

Relational and logical operators

Let X=3,v="A"

Expression

l=l
l=O
(X:'.~) ! (l=l)
(X=3)+1
X=3+1
X>Y
X>Y=l
Y'<X=l
X='.i!(Y="A")
Y="A" "B"
"MGH"]Y<3

Value

1
0
1
2
2
1
1
0
1
lB
1

Pattern-match operator

Prior condition

SET X="l23456"

SET X="Al2Bl2C"

SET X="TESTTESTtest"

SET X="l2. Jl1 dollars"

SET X=l2.34
SET X=l23l' .•
SET X="l234. 11

SET X=$C(7) $C(l0)

Expression

X?.N
X?2N4F.
X?1"12"4N
X? .A
X?.Nl"6"
X?.El"3".N
X?.N
X? .NA
X?2NA.El"l".E
X?2"TEST".E
X?l"TEST" .E
X?8U4L
X?8Al"test"
X?.lil"test"
X? .A2L
X?.NlP.E
X?2NlP2Nl" ".L
X?.N
X?.N
X?.N
X?2C
X?.ElC.E

Value

1
1
1
0
1
1
0
1
1
1
1
1
1
1
1
1
1
0
1
0
1
1

12.1

12.2

12.3

12.4

12.5

153

CHAPTER 12

F.:XPPESSHl'N ATOMS

Table of Contents

Syntax of exEression atom
12 .1.1 Use of Parentheses to Form Expression Atoms

String Literals

Numeric Literals

Storage References

Unary Operators

155
155

156

157

158

161

155

CHAPTER 12

EXPRESSION ATOMS

12.1 Syntax of expression atom

An expression atom is the atomic value-yielding component of an expression.
(See 11.1.1 for a discussion of the role of expression atoms in expressions.)
When executed, an expression atom yj_elds a value. This chapter describes
the syntax and value of each form of expression atom.

The syntax definition of expression atom follows. To the rip.ht, there
is a cross-reference to the detailed discussion of each form of expression
atom.

12.1.1

expression atom ::=

(expression)
special variable
function
string literal
numeric literal
storage reference
1 truth-value expression atom

l~I numeric expression atom

Use of Parentheses to Form Expression Atoms

Defined in

12.1.1
Chapter 9
Chapter 10
12.2
12.3
12.4
12.5

12.5

Any calculation procedure which may be expressed as an expression may
be used to compute the value of an expression atom by writing the expression
atom as (expression) • Since the value of an expression's component expression
atoms Must be computed prior to the computation of the value of the expression,
this use of parentheses is the basis for controlling the order of evaluation
of the components of an expression. (Section 11.1.4 contains more discussion
and an example on this subject.)

156

12.2 String Literals

A "literal" is an expression atom whose value is a function only of its
spelling. There are two types of literals, string literals (discussed
here) and numeric literals (discussed in 12.3).

The presence of a string literal is indicated by the quotes which are
its first and last characters. To define the syntax of string literal
one needs to define the class of characters nonquote. In the interest
of space, this definition is an informal one. A nonquote is any single
ASCII graphic except for the quote sign (").

string literal ::= II ~
-

II II

nonquotJ
II

In wordJ, a string literal is bounded by quotes (considered to be part
of the literal), and it contains within the quotes any string of graphics,
except that whn, quotes occur inside, they occur in adjacent pairs. The
value of an instance of string literal is the same as its spelling except
that the following deletions are made.

1. Neither of the two bounding quotes is in the value.
2. Whenever a quote pair occurs inside the bounding quotes, one quote

of the pair is deleted.

The string literal denoting the empty string is written II II

157

12.3 Numeric Literals

The presence of a numeric literal (in a context in which an expression
atom is appropriate) is indicated by its first character, which must be
either a digit or a decimal point. A numeric literal is a form of literal,
designed primarily for convenience in arithrnetfc calculation, whose value
is restricted to Vn.

The syntax of numeric literal is that of exponential value, except that
no leading sign is permitted. (See 11.1.3.)

numeric literal ::= mantissa [exponent]

The value of a numeric literal is derived from its spelling by direct
application of the interpretation operation Ien (see 11.1.3.2).

The construct integer literal is used in other definitions within this
manual.

integer literal ::= digit [digit]

The value of an integer literal is derived from its spelling by <lirect
application of the interpretation operation Ii (see 11.1.3).

Examples of literals

Spelling

"HELLO"
II II "HELLO"""
1
0001
1.23
!El
1E2
l.5E2
3.1415E3
2.34E-2
.01E2
"0001"

Value

HELLO
"HELLO"
1
1
1.23
10
100
150
3141.5
.0234
1
0001

158

12.4 Storage References

A storage reference is a unique designator of a node of either Named Partition
Storage or Named System Storage. Storage references may appear in contexts
other than the expn~ssion atom context (for example, in the argument of
the $DATA function or to the left of the= in the SET command), Whenever
a storage reference appears in the expression atom context, its value
is the content of the Value attribute of the designated storage node;
in this context, if there is no storage node as desiP.nated by the storap.e
reference, or if the storage node exists but its Value attribute is undefined,
execution of the storage reference is considered to be in error, and it
has no defined value.

Syntactically, there are three varieties of storage reference, as enumerated
in the following syntax definitions.

%
name : :=

alpha

IEigitl

~lphaj
[Port: Routines designed for portability should not ·have any lower-case
letters in names. names with 9 or more characters should be distinguished
on the basis of their first 8 characters. :Port]

storage reference ::=

local variable ::=

global variable ::=

naked reference ::=

local variable
global variable
naked reference

name [(expression [,expression] •••)]

@ expression atom V local variahle

A~ [(expression [,expression] •••)]

@ expression atom y_ global variable

A(expression [,expression] •••)

@ expression ato~ V naked reference

The expressions in parentheses are called "subscripts".

The syntactic form

local variable
global variable
naked reference

Designates a node in

Named Partition Storage
Named System Storage
Named System Storage

The LOCK command requires a name-only reference which excludes naked reference.
variable name exists for this purpose.

local variable
variable name ::=

global variable

159

The algorithm by which an instance of storage reference designates a
storage node consists of the following two steps.

1. A mapping, called here the Node Designation Mapping (described below),
is executed, using the storage reference instance as its argument.
The value of this mapping is a node designator (see 4.2).

2. If a storage node exists whose Name attribute contains the same string
as the computed node designator, this storage node is unique and
it is the designated storage node. If it does not exist, the resultant
action depends on the context in which the storage reference appears.

Description of Node Designation Mapping

The Node Designation Mapping starts with an empty Node Designator Register
and builds up the final node designator by a process of successive concaten­
ation to the right of the content of the Node Designator Register.

1. Call the Node Designator Register "NDR". The first step depends
on the syntactic form of the storage reference or variable name instance.

a. If local variable, place the instance of ~ into the
NDR.

b. If global variable, place the instance of "name into the
NDR. (That is, the first character is ""'" .-)--

c. If naked reference, place the content of the Naked Indicator
into the NDR. If the Naked Indicator is undefined, the
storage reference instance is erroneous.

2. If the storage reference or variable name instance is a local variable
or global variable which contains no subscript, the Node Designation
Mapping ends here. Otherwise, proceed to step 3.

3. Execute this step once for each suhscript expression, proceeding
in a left-to-right direction. This step contains the following two
parts.

a. First, evaluate the expression. Let V denote its value.
b. Then concatenate ¢V to the right of the NDR.

4. This completes the Node Designation Mapping. If the argument is
a storage reference, refer to 5.2 for a description of any effect
on the Naked Indicator of executing a global variable or naked reference.
If the argu~ent is a variable name, there is no effect on the Naked
Indicator.

160

[Port: MUMPS routines designed for portability may only execute subscripts
whose values have the syntax of nonnegative integer.

0
nonnegative integer ::=

nonzero digit [digit] •••

There may be at most nine digits in the value of a suhscript expression.
Accompanying each implementation should be a description of the interpreter's
response to subscript expressions whose values are other than nonnegative
integers with nine or fewer digits. Interpreters which accept such sub­
script values should do so in a way which maintains consistency with the
rest of this reference manual. :Port]

Examples of correct local variables

x AB A(3) AB(4,5,X) A(B(3))
A(3 ,4)
A(l)
A(Ol)

AB(X,Y(Z),AA(3,4,5)) A(B(C(D(E,F(G)))))
A(--1) A(+l) A("l") A(l.O)
A(l. 5El) A(l.) A(+"l2A")

Examples of nonportable storage references

A(l.5) A(-1) A("Ol ") A(l2A) A("12A")
A(l.55El) A("l.")

Examples of Naked References

Prior content of Storage reference Node designator
Naked Indicator

undefined "A(l) "A¢1
"A "(2) "A¢2
"A "'(3,4) "A¢3¢4
"A¢3 "(5) "'A¢3¢5
"A¢3 "B (3 ,5) "B¢3¢5
"B¢3 "x "'X
undefined "(2) error
undefined "'y "y

undefined "X(5,6,7,8) "X¢5¢6¢7¢8
"X¢5¢6¢7 "(9) "X¢5¢6¢7¢9
"X¢5¢6¢7 "(9,-2) "X¢5¢6¢7¢9¢-2 (*)
"X¢5¢6¢7¢9 A("+") "X¢5¢6¢7¢9¢+ (*)

Subsequent content
of Naked Indicator

"A
"'A
"A¢3
"A¢3
"B¢3
undefined
undefined
undefined
"'X¢5¢6¢7
"X¢5¢6¢7
"'X¢5¢6¢7¢9 (*).
"'X¢5¢6¢7¢9 (*)

(*)Note: Some implementations may properly consider this to be erroneous;
if they do not, this is the result they should show.

161

12.5 Unary Operators

The three operators '(not), +(plus), and -(minus) are called unary operators.
Their effects are defined as follows.

The value of 'truth-value expression atom is the complement of the value
of truth-value expression atom. That is, where T is a truth-value expression atom,

if the value of T is 0
'T =

if the value of T is 1

The value of +numeric expression atom is the same as the value of
numeric expression atom. That is, + is simply a way of forcing execution
of the numeric interpretation In.

The value of -numeric expression atom is the negative of the value of
numeric expression atom. Let V be the value of numeric expression atom.
The value of -numeric expression atom is the result of applying In to
the string -V. (Simplification of double negatives occurs in the sign
reduction rules of 11.1.3.1.)

Let unary operator denote any of the three unary operators. The portion
of the syntax description of expression atom referring to unary operators
reads as follows.

expression atom ::= unary operator expression atom

This recursive formulation is chosen over an iterative formulation expressed
informally by

[unary operator] ••• expression atom

in order to make explicit that the order of evaluation of unary operators
is right-to-left.

Examples of unary operators

Expression_

+"A"
+-"A"
-"5.0"
'"5.0"
'(1+2E-10-l)
'(l-1+2E-10)
3--5
3-0--5
3---5
3--'"A"

Value

0
0
-5
0
1 (possibly)
0 (definitely)
8
8
-2
4

162

A-1

APPF.NDIX A

Table of ASCII Characters

'l'he character notation is that used in ANS X3.4-1968. The co<ie valueB
are those which appear as values of the SASCII function and as argul!lents
of the $CHAR function.

Code Character Code Character Code Character Code Character

0 NUL 32 SP 64 (ol 96
1 SOH 33 ES A 97 a
2 STX 34 " 66 B 98 b
3 ETX 35 if 67 c 90 c
4 EOT 36 $ EB D 100 d
5 EEO 37 o; 69 E· 101 e lo

6 ACK 38 & 70 F 102 f
7 BEL 19 71 G 103 p,
8 BS 40 (72 H 1011 h
9 HT 41) 73 I 105 i

10 I.F 42 * 74 J 106 j

ll VT 43 + 75 K 107 k
12 FF 44 76 L 108 1
13 CR 45 77 M 109 m
14 so 46 78 N 110 n
15 SI 47 I 79 0 111 0

16 DLE 48 0 80 p 112 p
17 DCl 49 1 81 Q 113 q

18 DC2 50 ., 82 R 114 r "-

19 DC3 51 3 83 s 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 u 117 u
22 SYN 54 6 86 v 118 v
23 ETB 55 7 87 w 119 w
24 CAN 56 8 88 x 120 x
25 EN 57 9 89 y 121 y

26 SUB 58 90 z 122 z
27 ESC 59 91 [123 {

28 FS 60 < 92 \ 124 I
I

29 GS 61 93] 125 }

30 RS 62 > 94 126 '\,

31 us 63 ? 95 127 DEL

B-1

APPE't-IDIX B

Index of Syntactic Typei:

Page numbers refer to principal definitions.

¢

~c

alpha
arithmetic operator
comrr:an<l
comn1cnt
device dc~signatcr
device parameters
device specifier
digit
dip.it sequence
dlabel
entry reference
eol
eor
exponent
exponential expression
exponential expressior

exponential value
expression
expression atom
expression tail
for paraneter
forI!'.at
fraction value
function
global variable
graphir.
integer expressior.
integer expression atorr:
integer literal
integer v<lne
label
line
line body
line head

9
16, 17
17,18

9
141

41
36
JP.
73
73

133
13r

37
37
35
35

136
135

a torr
135
136
131
155
141.

56
48

133
llO
158

9
135
135
157
133

36
36
36
3fi

line referenc:e
local variable
logical
ls
tr.a.ntissa
naked reference
name
node desirnator
nonnegative integer

'3 7
ISP
141

3S
136
158
158

17
J.(.n

nonquote lSf
ncn~ero digit 133
I'nmeric expression 1.15
numeric expression ato~ 135
numeric literal 157
numeric value 131
pattern 149
pattern ator.
pattern code
post-conditional
relation
routine
routine body
routine head
routine name
routine reference
special variable
start-step parameter
storage reference
string literal
string operator
timeout
truth operator
truth value
truth-value expression
truth-,ralue expression

unary operator
variable name

l'~"
149

41
llfl

35
35
35
35
37
97
56

158
156
141
4~

11.1
132
135

atom
135
161
158

C-1

APPFNDIX C

Index of Technical Terms

ascendnnt 17
ascendant, ir.wediate 17
attribute block 15
Character Pointer 29
Clock 19
command wore~ 41
Current Device Designator 25
Current Device Horizontal

Cursor 26
Current Device Vertical

Cursor 26
Current Ownership Rule 25
ex 26
CY 26
D attribute 16
descendant 17
descendant, imr.ediate 17
Descendant Exclusivity Rule 18
Device Exclusivity Rule 19
directory node 17
For Scope switch 29
le 138
Ii 137
In 137
It 137
Jen 139
Ini 139
Int 139
immediate ascendant 17
immediate descendant 17
Job NuMb~r 19
Job Number P-vector 19

level (of storage node) 15
Line Buffer 29
Line Pointer 2Q
literal 156
Lock List 17
Lock List P-vector 17
Naked Indicator 21
Name attrihute 16
Named Partition Storap.e 23
Named System Storap,e 15
node, storage 15
Node Designation Mapping 159
Node Designator Register 15Q
normal execution sequence 29
Open List 18
Open List P-vector 18
Parameter Marker 32
partition 11
partition space 101
Partition Stack 29
Principal Device Convention 25
Scope Marker 32
System Storage 15
termination procedure 78
Test Switch 24
v 132
Ve 132
Vi 132
Vn 132
Vt 132
Value attribute 16

MDC Doc. No.

NBS Handbook 118

29

30

35

1/11

2/1

2/2

2/3

3/5

MUMPS Development Conunittee Manuals

Identification

January 1976 (with errata sheets thru March 9, 1976),
MUMPS Language Standard

Part I: MDC/28, 3/12/75, MUMPS Language Specification
M. E. Conway

Part II: MDC/33, 9 /17 /75, MUMPS Transition Diagrams
D. D. Sherertz and Anthony I. Wasserman

Part III: ~~DC/34, 9/17/75, MUMPS Portability Requirements
E. A. Gardner and C. B. Lazarus

5/28/75, ML~1PS Interpreter Validation Program User Guide
J. Rothmeier and P. L. Egerman

6/25/75, MU¥PS Translation Methodology
P. L. Egerman, C. B. Lazarus and P. T. Ragon

11/10/76, MUHPS Documentation Manual
L. J. Peck and R. A. Greenes

6/13/75, MUHPS Primer
H. E. Johnson and R. E. Dayhoff

5/15/75, MUMPS Globals and Their Implementation
A. I. Wasserman, D. D. Sherertz and C. L. Rogerson

5/30/75, Design of a Multiprograrrnning System for the MUMPS
Language
A. I. Wasserman, D. D. Sherertz and R. ~. Zears

6/15/75, Implementation of the MUMPS Language Standard
A. I. Wasserman and D. D. Sherertz

8/31/76, MUHPS Programmers' Reference Manual
M. E. Conway and P. L. Egerman

