
UNIX™ SUPPORT FROM BERKELEY

43 BSD with NFS

User Contributed
. Software

UCS

,

,. -

."'1 XI •• ,
~ . ~,
~ . ~
• \ •
~ ~
\, UNIX™ SUPPORT FROM BERKELEY I
., ' . ,
~ .~ .
~"",.. IX.~

UNIX is a trademark of Bell Laboratories

User Contributed Softw~

The subtree /usr/srclnew contains programs contributed by the'_.~unity.'. 'the:~
ing software is included: '

Directory ,
B
X
ansi
apt
bib
courier
cpm
dipress
dsh
emacs
enet
help
hyper
icon
jove
kermit
mh
mkmf
mmdf
news
notes
nplOO
patch
pathalias
res
m
spms
sumacc
sunrpc
tac
tools
umodem
xns

Description
B progamming language & enviroriOtdllir'
X Window system '
ANSI and VMS standard tape hacIer
APL system
bibliography system
remote procedure call package
CP/M floppy access package
Xerox Interpress Tools
distributed shell
Gnumacs
Packet' filter
Help system
Hyperchannel support tools
ICON system
Emacs editor
File transfer protocol
MH mail system
Makefile generator
MMDF mail system
"readnews" bulletin board system
notes files bulletin board system
Utilities for Interlan NPlOO
apply di1fs to originals
uucp router
revisio'n control system
readnews front end
software project management systel1J
MacIntosh cross development system
Remote procedure call package
reverse a file by segments
miscellaneous tools
File transfer protocol
XNS/Courier user code

,-''."

C • '~i)' 'OD""':~~'¥4t"
eM"
M.I.T.
Tom Quarles, Berkeley
Purdue'
Ariz~

Eric ¢;pc;r, Berbr6y'
Helge Skriyetvik '
Xerox, '
Dave Presotto, Berkeley
Richard Stallman
Jeff Mogul, StanfOi'd
John Kulld,Berkeiey "
Steve Gtaser~4'ektrQ11ix"
Arizona ", '
Jon Payae
Columbia Univert#Y
Rand Corporatios '
Peter Nicklln, Bert*,,'
Dr. Dave Farber, geiaware
Matt ~an, Berkeley
Illinois
MICOM:·lnterlan
Larry WaP. SOC
PeterH~,Princ~n
W~,f T;;;;iiUt Pur_~j ",'", ~"" ,
LairYWall
PetdtN~,~~
Willi3m '~ Stantbrd
Sun'MicaysteID$
Jay ;t.ip~ li1tJh
]obir~, ,,' "'~l.,'"

f~~
LaurenW'e,insteia - ,

'J.Q. Johason, Cotne~z., ~,.

The individ~als responsible for the software sho\llc1 be identified in the accott1\)~
4.3BSD documents which describe the user contribute¢.$C)t'tware. All software included.'
has been written by outside parties; we gratefully acknowled" theil,' ~butions.

Consult "Installing and Operating 4.3BSD on\f1e'V.~" (SMl\t.l) for instructio.~iRt
how to extract the user contributed software. The ortflllization of the software is such th~ta
single make command will cOlQl)ile,,,.9r, install .1~tt~;~i.t. Some of the software,~'
customization before it can be built and installed.!~e, ;so4ware re9uiring customiza~o.ri.\"

fY" "'\

- 2-

listed in the top level Makefile in OPTDIR. To compile everything else, simply type

make

Once this is done, to install the default software in the /usr/new area of the file system type

make installall

to install only the subset of software installed on the distribution tape type

make install

Most subdirectories have README files and individual Makefiles. If you want only some of
the software contained here go to the appropriate directories and use the "make" and "make
install" commands to compile and install the desired system. As distributed, all the default
software is set up to be installed in ${DESTDIR}/usr/new, where DESTDIR is a make macro
that can be supplied ,~n the command line. Consult each directory's README file for the
information neededt(s'"change this.

The software included here is in use at Berkeley, or other sites running 4.3BSD (or an
earlier derivative). Please remember that this is contributed software and, as such, we do not
"support"· it in the same manner as that software which is part of the standard distribution.
Most subsystems have either a README file or doc directory that should be consulted to find
an interested party to which bugs and/or bug fixes should be sent. In certain cases these peo­
ple are located at Berkeley; this does not imply they are part of the Computer Systems
Research Group, please contact them as individuals.

Mike Karels
Kirk Mckusick
Jim Bloom
Miriam Amos
Kevin Dunlap

' .. S '. :-

>,

USER CONTRIBUTED SOFTWARE
'""

" (UCS) " .'7L ",::.j);JU"

4.3 Berkeley Software Distribution
Virtual V AX-11 Version

April, 1986

Computer Systems Research Group
." Computer Science Division

Department of Electrical Engineering and Computer Science
University of California

Berkeley, California 94720

!: .. ,r. -;
·,'V_..!.

USER CONTRIBUTED SOFTWARE
(UCS)

4.3 Berkeley Software Distribution
Virtual V AX-11 Version

April, 1986

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California

Berkeley, California 94720

INDIVIDUAL MANUAL PAGES
(ues)

COURIER(l) UNIX Programmer's Manual COURIER (1)

NAME
courier - Courier remote procedure call compiler

SYNOPSIS
courier [-x] specification

DESCRIPTION
Courier is a compiler for the Mesa-like specification language associated with the Courier
remote procedure call protocol.

FILES
Program.cr Courier specification file for Program

The following files are generated by courier from the above:

Program.h definitions and typedefs
Pro8fam-stubs.c mappings between C and Courier
Program_server.c server routines
Program_client.c client routines

SEE ALSO
"Writing Distributed Programs with Courier" by Eric C. Cooper.
"Courier: The Remote Procedure Call Protocol," Xerox System Integration Standard 038112,
December 1981.

4th Berkeley Distribution 28 July 1983

•

CPM(l) UNIX Programmer's Manual CPM(l)

NAME
cpm - read and write CP/M~ floppy disks

SYNOPSIS
cpm [options] [filename]

DESCRIPTION
Cpm reads and writes files with an internal structure like a CP/M file system. By default cpm
assumes that the specified file has the parameters of a standard IBM format single sided single
density 8" CP/M floppy disk, i.e., 2002 records containing 128 bytes each, of which 52 are
reserved for system use and 16 (2 blocks) are used by the directory (maximum 64 directory
entries). These parameters may be changed by specifying the appropriate flags (see below).
Thus, various double density formats may also be read and written, provided that the
hardware can handle the actual format.

The specified file may be a floppy disk drive (e.g., Idev/floppy on an 111780 or Idev/rrx?b if
rx02 drives are available on your system), or a standard UNIX file with the appropriate struc­
ture. Since it may be inconvenient (and slow) to access the device directly, in particular the
console floppy on an 111780, it is always a good idea to copy the contents of the diskette into
a standard file using dd(1), e.g.,

dd if=/dev/floppy of=yourfile bs= 128 count=2002

On most systems you have to be superuser to access the console floppy and to be able to write
to rx02's.

Flags:

-d

-B

-c name 1 name2

-C name1 name2

-p name

-i

-I

-sn
-bn
-mn

-In

-rn

display directory on standard output

the files specified with the c or C flag contain binary code rather than
plain text (default)

copy the CP/M file name1 to the UNIX file name2

copy the UNIX file name1 to the CP/M file name2

copy the specified CP 1M file to standard output

enter interactive mode (all the above flags are turned oft)

force initializtion of the specified CP/M file (e.g., delete all files)'

skew factor (sector interleaving); default is 6

block size (in bytes); default is lK bytes

max number of directory entries; default is 64

sector size (in bytes); default is 128

number of sectors per track; default is 26

If the -i flag is specified, the filename argument must always be present. If the specified file
does not exist, a new file will be initialized. The -C, -c and -p flags are mutually exclusive.

The following commands are available in interactive mode:

ccopyin unixjile cpmjile copy UNIX binary file to CP/M

ccopyout cpmjile unixjile copy CP/M binary file to UNIX

copyin unixjile cpmjile copy UNIX text file to CP/M

copyout cpmjile unixji/e copy CP 1M text file to UNIX

del[ete] jilename a synonym for erase

4th Berkeley Distribution 3 May 1983

CPM(1) UNIX Programmer's Manual CPM(1)

FILES

dire ectory] or Is

era(se] filename

bel[p]

log{out] or exiIt] or AD

ren[ame] file1 file2

type e) filename

display directory

delete the given file

print a short description of each command

terminate, return to the shell

rename file 1 to file2

print CP/M file to console

The commands may be abbreviated as indicated by brackets. CP/M file names are automati­
cally converted to upper case. The copy commands refuse to overwrite existing files.

If the CP/M floppy file becomes full during a file transfer from UNIX, the file is closed and
the command terminated. The data already written to the CP/M file will be saved.

The copyout command assumes that CP/M text files have cr+lf as line terminators and
removes carriage returns. Copyin adds a carriage return in front of each line-feed, and adds a
AZ to the end of the file. The binary copy commands provide for "raw" file copying, thus
making it possible to copy code files to and from diskettes.

Interrupts are recognized in interactive mode, and will return you to the command level.

Idev/floppy
Idev/rrx?b
lusr/new/lib/cpm.hlp

SEE AISO

BUGS

dd(l), rx(4v)

CP/M user numbers are ignored. files written to the CP/M floppy file will always have user
number O.

No testing has been done with double density floppies.

CP/M filename extensions containing more than 3 characters will quietly be truncated.

Wildcards are not supported.

The distinction between text and binary files is clumsy but necessary because CP 1M uses
CRiLF for line termination.

AUTHOR
Helge Skrivervik

4th Berkeley Distribution 3 May 1983. 2

DSH(IX) UNIX Programmer's Manual DSH(lX)

NAME
dsh - distributed shell

SYNOPSIS
dsb [-8] [-v] [-b host] [-0] [-i copyto] [-0 copyback] command

DESCRIPTION
Dsh selects a host and executes the specified command on it. If the command specifies a host
using the -b option, that host is used. Otherwise the selection algorithm attempts to select
the least loaded of the hosts. At the moment "least loaded" corresponds to the lowest load
average. Dsh copies its standard input to the remote command, the standard output of the
remote command to its standard output, and the standard error of the remote command to its
standard error. Interrupt is propogated to the remote system. Dsh normally terminates when
the remote command does. '

The host is selected from a list of hosts. A default for this list exists on each system in a file
called lusrllibldshrc. This list can be overridden by an entry in a .dshrc file in the user's home
directory. The format of the entry is:

hosts = [<weight>] <host> , ... , [<weight>]<host>

where <host> can be simply a host name or a binary tuple of the form:

«host name>, <account name»

where <weight> is a multiplier of the form:

<decimal number>*

The account used to run the command is by default the account of the user executing the dsh.
This can be overridden using the second form of the host specification shown above. For
example a user "mini" that wanted to execute commands on HOSTI as herself and on
HOST2 as "mickey" would have a .dshrc file with the entry:

hosts = HOST!, (HOST2, mickey)

Of course "mickey" must have an entry in his .rhosts file to allow "mini" to use his account.

If "mini" wanted to wieght HOST! so that it would be used even when its load average was
twice that of HOST2 she would use:

hosts = 2.t-HOST!, (HOST2, mickey)

The directory created to run the command in on the remote machine is normally in the
account's login directory. This can be overridden by another entry in the .dshrc file of the for­
mat:

dir = <directory name>

If the -v option is specified dsh reports the name of the machine the command is executed on.

Shell metacharacters which are not quoted are interpreted on local machine, while quoted
metacharacters are interpreted on the remote machine. Thus the command

dsh cat remote file » localfile

appends the remote file remote/lie to the localfile localfile. while

dsh cat remotefile .. > >" otherremotefile

appends remotefile to otherremotefile.

The -i option is used to transfer the copy to file to the remote host before the command is exe­
cuted. More than one -i option may be specified.

4th Berkeley Distribution 10 November 1982

DSH(1X) UNIX Programmer's Manual DSH(lX)

FILES

The -0 option is used to transfer the copyback file back from the remote host after the com­
mand is executed. More than one -() option may be specified.

The -a option causes dsh to try to execute the command on as many hosts as it can.

Host names are given in the file lusr/lib/hosts. Each host has one standard name (the first
name given in the file), which is rather long and unambiguous, and optionally one or more
nicknames.

-I.dshrc
lusrllib/dshrc
lusr/ucb/dbid

the user's initialization file
the system defaults
the bidder (must exist on each machine)

SEE AlSO

BUGS

rlogin(1x), rpasswd(lx), rsh(1x)

If you are using csh(1) and put a drh(Ix) in the background without redirecting its input away
from the terminal, it will block even if no reads are posted by the remote command. If no
input is desired you should redirect the input of drh to Idev/null using the -0 option.

You cannot run an interactive command (like rogue(6) or vi (6)),' use rlogin(lx).

Stop signals stop the local drh process only; this is arguably wrong, but currently hard to fix
for reasons too complicated to explain here.

4th Berkeley Distribution 10 November 1982 2

..

HELP(l) UNIX Programmer's Manual HELP (1)

NAME
help - an easy way to find and use information

SYNOPSIS
help [-d dirlist) [-m key) (-p prompt) [-i) [-0] (-q J [topic [subtopic [sub subtopic [...
JIll

DESCRIPTION
The primary purpose of help is to provide easy access to on-line documentation. In response
to the command help, the user is placed in an interactive setting and presented with a list of
topics and a set of instructions to perform on them. To bypass the interactive part and just
display what is known about a topic, enter the topic name on the command line after help.

A topic is displayed by typing its name or a unique abbreviation, and topics may be requested
and listed with numbers. Topics may be saved in a file or printed on the lineprinter. When
you request a topic not on its list, help can search a set of indexes into its own files, the Unix
Programmer's Manual, and various optional off-line sources. References found in this way
can be displayed if material is available on-line. All topic requests, including .ones which
yield no useful information, are automatically recorded for later analysis by system main­
tainers. Any user may effectively add topics to help's knowledge base from that user's point
of view by suitably defining the environment variable HELPPOOL. Thus each user can have
a private cache of topic files accessible with help.

In general the purpose of help is to provide a way to move around easily in a set of hierarchi­
cal databases, namely, one or more Unix file system subtrees. Although an inherent disadvan­
tage of such databases is that data may be hidden within the hierarchies, the program over­
comes this to some extent with its indexing feature. Help can be made to serve in special pur­
pose applications without programmer intervention.

The following technical description may be of little interest to casual users.

The default knowledge base consists of the files and directories in the subtree lusr/lib/help/cat.
If the environment variable HELPPOOL contains a list of directories (separated by spaces or
colons), their contents are merged with the default list to form the knowledge base. The
entire directory pool may be overridden by giving a directory list in dirlist after the -d option.

The interactive user prompt is by default the tail of argument zero from exec(3), usually
"help", followed by a list of directories leading to the current subtopic directory. A different
prompt may be specified by making a link with a name of your choice to lusr/ucb/help or by
specifying a name after the -p option. A special prompt is used in help-index mode, which is
entered when the user initiates an index search on a given keyword. The string "-index" and
the keyword are added to the prompt in this case.

Help may be invoked with any number of topic, subtopic, subsubtopic, etc., arguments, which
may be abbreviated. Starting at the top directory level help tries to change to each directory
named by successive arguments, interactively resolving non-unique abbreviations along the
way. When a name corresponds to a file, the file is displayed and, unless -i was specified, the
program exits .. If the standard output is not a terminal, help refuses to be interactive unless
the -i option is given. If the last valid name is a directory, or no topics were requested, help
lists the topics at the current level and prompts for user input.

Maintainers of help-style knowledge bases can U.:ie the -m option to perform various custodial
functions using shell scripts. Permission to use this option is restricted to those users who
have write permission for one of the directories in the list specified after the -d option or in
HELPPOOL. If such a directory exists, it (the first one) becomes the value of the variable
$subtree, and the local maintenance configuration is sourced from $subtree/ . .Imainticonfig
before most functions are performed. The function name, given as key after -m , may be fol­
lowed by other arguments (but no topic abbreviations are recognized here), in which case the
script $subtree/ . .Imaintldo.key is invoked. In the absence of key, the word "default" is used,

7th Edition 28 May 1984

HELP (1) UNIX Programmer's Manual HELP (1)

usually causing the valid function choices to be listed.

A simple macro package called -mayday is used by authors to format help topic files. Its pur­
pose is to standardize somewhat the display format for topic files, create a hook for the index
generating script, and guarantee page headers and' footers of a fixed length so that help will
not strip out too much or too little of a topic file when disp'laying it without pagination. The
only macro call required is the initializing macro, .TI, followed by a filename and an optional
date on the same line, and by a keyword-rich title (to be useful for the index) on the next line.
A handful of other macros are provided for compatibility with other packages, though they
are usually unnecessary ..

Authors of help topics may make topic files into shell scripts by entering a # or : at the begin­
ning of the first line. This causes help to run the script when that topic is requested, allowing
programs to be demonstrated, questions asked, etc. There are maintenance scripts which will
convert a script with embedded nroff source text into a script with embedded formatted text,
provided the lines to be formatted appear between the special lines "##nroff"and "##".

Similarly, authors may use programs as topic files, the source being written in an aribtrary
programming language.

The -0 option causes topics to be listed and accessible by numbers (and still accessible by
unique abbreviations). The -q option suppresses the instruction line appearing before each
prompt, including the prompt printed by the -d option to more(1), through which long output _
is piped after multiple blank lines in a row are reduced to one. Both of these features are
available as instructions from within help.

The internal instructions are described below.

% or $ Quit from help and return to the shell. Control-d works also.

topic Display topic on the terminal. Topic may be the shortest unique name abbreviat­
ing a topic at the current level. Help prompts for more characters if a non-unique
name is given, and asks to look in the index if the name abbreviates no topic. If a
name is given as = in any context other than index mode, the current topic is used,
where the. current topic is defined to be the one most recently accessed. In index
mode, a name of == has no special significance, and if topic is a unique abbrevia­
tion for a reference, that reference is displayed.

topic + Enter index mode and see what more is known about topic by looking in the
indexes. A missing topic is taken to be =.

topic> file
Save topic in file. A missing topic is taken to be =, and a missing file is taken to
be "helpsave". If file exists the topic file is appended to it.

topic >& file
Save topic in file, preserving headers and footers. Normally, topics are stored as
nroffd text files, the headers and footers of which are suppressed when displayed
on a terminal. They are preserved in file with this instruction.

topic I Ipr Print topic on the lineprinter, preserving headers and footers. The /pr string may
be replaced with another program name (such as ipr or vpr) followed by one
optional argument. A missing topic is tak~n to be the current topic, and a missing
/pr is taken to be "lpr".

? List the internal instructions and describe them briefly,

7th Edition

List topics at the current level, indicating the current topic, if any, with an =. In
index mode, list references for the current subject.

Back up to and list the next higher level of topics. From index mode, this means
leave index mode and continue at the previous topic level.

28 May 1984 2

HELP(l) UNIX Programmer's Manual HELP (1)

I Back up to and list the top level of topics. From index mode, this means leave
index mode and continue at the top level of topics.

< Send comments or other input to the maintainer of help via electronic mail.

!command
Do a Unix command and then return to help. All occurrences of = inside com­
mand will be replaced by the current topic, if any .

• flag on/off
Set flag OD or off to adjust the behavior of the program. A missing value for flag
means invert its current value, and * by itself means display the current flags, their
settings, and what they signify. There are currently two flags, nand q, which con­
trol the same things as the -D and -q options to help.

lusrlliblhelp/cat root of system help files
lusr/liblhelp/src nroff sources for system help files
lusrlliblhelpllog log of user requests; can be removed
!usrllib/help/maint maintenance scripts
!usrllib/help/catlgeneralgeneral introduction to help
lusr/lib/help/catlindex_* used to locate further references
lusr/lib/tmac/tmac.ayday macro package for help files

SEE ALSO
environ(7), exec(3), learn(l), lpr(l), more(1), nroff(1)

AUTHOR
John Kunze

BUGS
Pathnames inside topic names are not recognized.

Help is really just a weak, friendly shell. Strengthening it might be more painful and less use­
ful than civilizing the shell.

7th Edition 28 May 1984 3

HYROUTE(8) UNIX Programmer's Manual HYROUTE(8)

NAME
hyroute - set the hyperchannel routine tables

SYNOPSIS
hyroute [-s] [-p] [-c][-I] [-d] [file]

DESCRIPTION
Hyroute manipulates the Hyperchannel routing information.

With the -s option, it reads file and sets the system's database according to the information in
the file (see below). If no input file is given, or if the argument '-' is encountered, hyroute
reads from standard input.

The -c option causes hyroute to compare the system's current information to that contained
in file.

The -p option causes a digested version of file to be printed.

The -d option causes a "dump" of the system's table (used for debugging routing code).

FILE FORMAT
The input file is free format. Comment lines start with a '.' in column one. Statements end
with a semicolon.

direct host dest control access ;

Describes a host that can be directly reached from this adapter.' Host is a host name as listed
lusr/lib/hosts, dest, control, and access are hexadecimal numbers. The data will be send to
hyperchannel address dest using a control value of control and an access code of access (see
adapter manuals for details).

The specified remote adapter and the local adapter must both be connected to one or more
common trunks or connected to trunks that are connected with with link adapters.

gateway host gate J gate2 gate3 ... ;

Describes a host that must be reached indirectly through anyone of the hosts indicated by
gaten. The hosts listed are not gateways in the formal sense (they don't run the internet gate­
way protocols), but are hosts on the hyperchannel can "bridge" between subsections of the
hyperchannel network.

A sample file follows:

• comment
direct azure 6100 0 0;
direct bronze 6101 0 0;
direct cyber 2100 1100 0;
direct dadcad 6102 0 0;
direct tekcad 2400 1100 0;
direct tekcrd 2201 1100 0;
direct tekid 2500 1100 0;
direct teklabs 2200 1100 0;
gateway iddic tekcrd teklabs cyber tekcad tekid;
gateway iddme tekcrd teklabs cyber tekcad tekid;
gateway metals tekcrd teklabs cyber;

SEE ALSO
hy(4)

FILES
Idev/hy
entry)

character special file to get to the interface

4th Berkeley Distribution

(only has an ioctl

HYROUTE(8) UNIX Programmer's Manual HYROUTE(8)

BUGS
Probably.

AUTIIOR
Steve Glaser, Tektronix Inc.

4th Berkeley Distribution 2

JOT (1) UNIX Programmer's Manual JOT(l)

NAME
jot - print sequential or random data

SYNOPSIS
jot [options] [reps [begin [end [s)]]]

DESCRIPTION
Jot is used to print out increasing, decreasing, random, or redundant data, usually numbers,
one per line. The options are understood as follows.

-r Generate random data instead of sequential data, the default.

-b word
Just print word repetitively.

-wword
Print word with the generated data appended to it. Octal, hexadecimal, exponential,
ASCII, zero padded, and right-adjusted representations are possible by using the
appropriate printfl..3) conversion specification inside word, in which case the data are
inserted rather than appended.

-e This is an abbreviation for -w %c.

-s string
Print data separated by string. Normally, newlines separate data.

-0 Do not print the final newline normally appended to the output.

-p precision
Print only as many digits or characters of the data as indicated by the integer preci­
sion. In the absence of -p, the precision is the greater of the precisions of begin and
end. The -p option is overridden by whatever appears in a printf(3} conversion fol­
lowing -w.

The last four arguments indicate, respectively, the number of data, the lower bound, the
upper bound, and the step size or, for random data, the seed. While at least one of them
must appear, any of the other three may be omitted, and will be considered as such if given as
-. Any three of these arguments determines the fourth. If four are specified and the given
and computed values of reps conflict, the lower value is used. If fewer than three are
specified, defaults are assigned left to right, except for s, which assumes its default unless both
begin and end are given.

Defaults for the four arguments are, respectively, 100, 1, 100, and 1, except that when ran­
dom data are requested, s defaults to a seed depending upon the time of day. Reps is
expected to be an unsigned integer, and if given as zero is taken to be infinite. Begin and end
may be given as real numbers or as characters representing the corresponding value in ASCII.
The last argument must be a real number.

Random numbers are obtained through random(3}. The name jot derives in part from iota, a
function in APL.

EXAMPLES
The command

jot 21 -1 1.00

prints 21 evenly spaced numbers increasing from -1 to 1. The ASCII character set is gen­
erated with

jot -c 128 0

and the strings xaa through xaz with

4th Berkeley Distribution 15 May 1983

JOT (1) UNIX Programmer's Manual JOT (1)

jot -w xa%c 26 a

while 20 random 8-1etter strings are produced with

jot -r ~ 160 a z· I rs -g 0 8

Infinitely many yes's may be obtained through

jot -b yes 0

and thirty ed(1) substitution commands applying to lines 2, 7, 12, etc. is the result of

jot -w %cis/old/newt 30 2 - 5

The stuttering sequence 9, 9, 8, 8, 7, etc. can be produced by suitable choice of precision and
step size, as in

jot 0 9 - -.5

and a file containing exactly 1024 bytes is created with

jot -b x 512 > block

Finally, to set tabs four spaces apart starting from column 10 and ending in column 132, use

expand -'jot -s, - 10 132 4'

and to print all lines 80 characters or longer,

grep 'jot -s •• -b . 80'

SEE ALSO
rs(1), ed(1), yes(1), printf(3), random(3), expand(1)

AUTHOR
John Kunze

BUGS

4th Berkeley Distribution 15 May 1983 2

KERMIT (lC) UNIX Programmer's Manual KERMIT (lC)

NAME
kermit - kermit file transfer

SYNOPSIS
kermit [option ...] [file ...]

DESCRIPTION
Kermit is a file transfer program that allows files to be moved between machines of many
different operating systems and architectures. This man page describes version 4C of the pro­
gram.

Arguments are optional. If Kermit is executed without arguments, it will enter command
mode. Otherwise, kermit will read the arguments off the command line and interpret them.

The following notation is used in command descriptions:

In A Unix file specification, possibly containing either of the "wildcard" characters '.' or
'1' ('.' matches all character strings, '1' matches any single character).

In1 A Unix file specification which may not contain '.' or '1'.

rln A remote file specification in the remote system's own syntax, which may denote a
single file or a group of files.

rln1 A remote file specification which should denote only a single file.

n A decimal number between 0 and 94.

c A decimal number between 0 and 127 representing the value of an ASCII character.

cc A decimal number between 0 and 31, or else exactly 127, representing the value of
an ASCII control character.

(I Any field in square braces is optional.

{x,Y,z} Alternatives are listed in curly braces.

Kermit command line options may specify either actions or settings. If Kermit is invoked
with a command line that specifies no actions, then it will issue a prompt and begin interac­
tive dialog. Action options specify either protocol transactions or terminal connection.

COMMAND LINE OPTIONS

-sin Send the specified file or files. If In contains wildcard (meta) characters, the Unix
shell expands it into a list. If In is '-' then Kermit sends from standard input, which
must come from a file:

kermit -s - < foo.bar

or a parallel process:

Is -I I kermit -s -

You cannot use this mechanism to send terminal typein. If you want to send a file
whose name is .. -" you can precede it with a path name, as in

kermit -s ./-

-r Receive a file or files. Wait passively for files to arrive.

-k Receive (passively) a file or files, sending them to standard output. This option can

7th Edition

be used in several ways:

kermit -k

Displays the incoming files on your screen; to be used only in "local mode" (see
below).

KERMIT(IC) UNIX Programmer's Manual KERMIT (IC)

kermit -k > fn I

Sends the incoming file or files to the named file, fnl. If more than one file arrives,
all are concatenated together into the single file fnl.

kermit -k I command

Pipes the incoming data (single or multiple files) to the indicated command, as in

kermit -k I sort> sorted.stuff

-8 fnl If you have specified a file transfer option, you may specify an alternate name for a
single file with the -8 option. For example,

kermit -s foo -a bar

sends the file foo telling the receiver that its name is bar. If more than one file
arrives or is sent, only the first file is affected by the -8 option:

kermit ora baz

stores the first incoming file under the name baz.

-x Begin server operation. May be used in either local or remote mode.

Before proceeding, a few words about remote and local operation are necessary. Kermit is
"local" if it is running on a PC or workstation that you are using directly, or if it is running on
a multiuser system and transferring files over an external communication line - not your
job's controlling terminal or console. Kermit is remote if it is running on a multiuser system
and transferring files over its own controlling terminal's communication line, connected to
your PC or workstation.

If you are running Kermit on a PC, it is in local mode by default, with the "back port" desig­
nated for file transfer and terminal connection. If you are running Kermit on a multiuser
(timesharing) system, it is in remote mode unless you explicitly point it at an external line for
file transfer or terminal connection. The following command sets Kermit's "mode":

-1 deY Line - Specify a terminal line to use for file transfer and terminal connection, as in

kermit -1/dev/ttyi5

When an external line is being used, you might also need some additional options for success­
ful communication with the remote system:

-b n Baud - Specify the baud rate for the line given in the -I option, as in

kermit -I/dev/ttyi5 -b 9600

This option should always be included with the -1 option, since the speed of an exter­
nalline is not necessarily what you expect.

-p x Parity - e, 0, m, s, D (even, odd, mark, space, or none). If parity is other than none,
then the 8th-bit prefixing mechanism will be used for transferring 8-bit binary data,
provided the opposite Kermit agrees. The default parity is none.

-t Specifies half duplex, line turnaround with XON as the handshake character.

The following commands may be used only with a Kermit which is local - either by default
or else because the -I option has been specified.

-g rfn Actively request a remote server to send the named file or files; rfn is a file
specification in the remote host's own syntax. If fn happens to contain any special
shell characters, like , .. , these must be quoted, as in

kermit -g x\ •. \?

7th Edition 2

KERMIT (1 C) UNIX Programmer's Manual KERMIT (1 C)

-f Send a 'finish' command to a remote server.

-c Establish a terminal connection over the specified or default communication line,
before any protocol transaction takes place. Get back to the local system by typing
the escape character (normally Control-Backslash) followed by the letter 'c'.

-0 Like -c, but after a protocol transaction takes place; -c and -D may both be used in
the same command. The use of -D and -c is illustrated below.

On, a timesharing system, the -I and -b options will also have to be included with the -r, -k,
or -s options if the other Kermit is on a remote system.

If kermit is in local mode, the screen (stdout) is continously updated to show the progress of
the file transer. A dot is printed for every four data packets, other packets are shown by type
(e.g. 'S' for Send-Init), 'T' is printed when there's a timeout, and ''lb' for each retransmission.
In addition, you may type (to stdin) certain "interrupt" commands during file transfer:

Control-F: Interrupt the current File, and go on to the next (if any).

Control-B: Interrupt the entire Batch of files, terminate the transaction.

Control-R: Resend the current packet

Control-A: Display a status report for the current transaction.

These interrupt characters differ from the ones used in other Kermit implementations to
avoid conflict with Unix shell interrupt characters. With System III and System V implemen­
tations of Unix, interrupt commands must be preceeded by the escape character (e.g. control­
\).
Several other command-line options are provided:

-i Specifies that files should be sent or received exactly "as is" with no conversions.
This option is necessary for transmitting binary files. It may also be used to slightly
boost efficiency in Unix-t~Unix transfers of text files by eliminating CRLF/newline
conversion.

-w Write-Protect - A void filename collisions for incoming files.

-q Quiet - Suppress screen update during file transfer, for instance to allow a file
transfer to proceed in the background.

-d Debug - Record debugging information in the file debug.log in the current directory.
Use this option if you believe the program is misbehaving, and show the resulting log
to your local Kermit maintainer.

-h Help - Display a brief synopsis of the command line options.

The command line may contain no more than one protocol action option.

INTERACI1VE OPERATION

Kermit's interactive command prompt is "C-Kermit>". In response to this prompt, you may
type any valid command. Kermit executes the command and then prompts you for another
command. The process continues until you instruct the program to terminate.

Commands begin with a keyword, normally an English verb, such as "send", You may omit
trailing characters from any keyword, so long as you specify sufficient characters to distinguish
it from any other keyword valid in that field. Certain commonly-used keywords (such as
"send", "receive", ·connect") have special non-unique abbreviations ("s· for "send", "r" for
"receive", ·c· for ·connect").

Certain characters have special functions in interactive commands:

7th Edition 3

KERMIT (tC) . UNIX Programmer's Manual KERMIT(te)

? Question mark, typed at any point in a command, will produce a message explaining
what is possible or expected at that point. Depending on the context, the message
may be a brief phrase, a menu of keywords,or a list of files.

ESC (The Escape or Altmode key) - Request completion of the current keyword or
filename, or insertion of a default value. The result will be a beep if the requested
operation fails.

DEL (The Delete or Rubout key) - Delete the previous character from the command.
You may also use BS (Backspace, Control-H) for this function.

"W (Control-W) - Erase the rightmost word from the command line.

AU (Control .. U) - Erase the entire command.

"'R (Control-R) - Redisplay the current command

SP (Space) - Delimits fields (keywords, filenames, numbers) within a command. HT
(Horizontal Tab) may also be used for this purpose.

CR (Carriage Return) - Enters the command for execution. LF (Linefeed) or FF
(formfeed) may also be used for this purpOse.

\ (Backslash) - Enter any of the above characters into the command, literally. To
enter a backslasb, type two backslashes in a row (\ \). A single backslash immediately
preceding a carriage return allows you to continue the command on the next line.

You may type the editing characters (DEL, "W, etc) repeatedly, to delete all the way back to
the prompt. No action will be performed until the command is entered by typing carriage
return, linefeed, or formfeed. If you make any mistakes, you will receive an informative error
message and a new prompt - make liberal use of '1' and ESC ~o feel your way through the
commands. One important command is "help· - you should use it the first time you run
Kermit. .

Interactive Kermit accepts commands from files as well as from the keyboard. When you
enter interactive mode, Kermit looks for the file .kermrc in your home or current directory
(first it looks in the home directory, then in the current one) and executes any commands it
finds there. These commands must be in interactive format, not Unix command-line format.
A "take" command is also provided for use at any time during an interactive session. Com­
mand files may be nested to any reasonable depth.

Here is a brief list of Kermit interactive commands:

Execute a Unix shell command.

bye Terminate and log out a remote Kermit server.

close Oose a log file.

connect Establish a terminal connection to a remote system.

cwd . Change Working Directory.

dial Dial a telephone number.

directory Display a directory listing.

echo Display arguments literally.

exit Exit from the program, closing any open logs.

finish Instruct a remote Kermit server to exit, but not log out.

7th Edition 4

KERMIT (IC)

get

help

log

quit

receive

remote.

script

send

se"er

set

show

space

statistics

take

UNIX Programmer's Manual

Get files from a remote Kermit server.

Display a help message for a given command.

Open a log file - debugging, packet, session, transaction.

Same as 'exit'.

Passively wait for files to arrive.

Issue file management commands to a remote Kermit server.

Execute a login script with a remote system.

Send files.

Begin server operation.

Set various parameters.

Display values of 'set' parameters.

Display current disk space usage.

Display statistics about most recent transaction.

Execute commands from a file.

The 'set' parameters are:

block-check Level of packet error detection.

delay How long to wait before sending first packet.

duplex

escape-character

file

flow-control

handshake

line

modem-clialer

parity

prompt

receive

send

speed

Specify which side echoes during 'connect'.

Character to prefix "escape commands" during 'connect'.

Set various file parameters.

Communication line full-duplex flow control.

Communication line half-duplex turnaround character.

Communication line device name.

Type of modem-dialer on communication line.

Communication line character parity.

Change the Kermit program's prompt.

Set various parameters for inbound packets.

Set various parameters for outbound packets.

Communication line speed.

The 'remote' commands are:

cwd

delete

7th Edition

Change remote working directory.

Delete remote files.

KERMIT (IC)

5

KERMIT(IC) UNIX Programmer's Manual KERMIT(lC)

FILES

directory

help

host

space

type

who

Display a listing of remote file names.

Request help from a remote server.

Issue a command to the remote host in its own command language.

Display current disk space usage on remote system.

Display a remote file on your screen.

Display who's logged in, or get information about a user.

$HOME/.kermrc Kermit initialization commands
.I.kermrc more Kermit initialization commands

SEE ALSO
cu(1 C), uucp(1 C)
Frank da Cruz and Bill Catchings, Kermit User's Guide, Columbia University, 6th Edition

DIAGNOSTICS
The diagnostics produced by Kermit itself are intended to be self-explanatory.

BUGS
See recent issues of the Info-Kermit digest (on ARPANET or Usenet), or the file ckuker.bwr,
for a list of bugs.

7th Edition 6

LAM(1) UNIX Programmer's Manual LAM(l)

NAME
lam - laminate files

SYNOPSIS
lam [-[fpl min. max] [-5 sepstring] [-t c] file ...

DESCRIPTION
Lam copies the named files side by side onto the standard output. The n-th input lines from
the input files are considered fragments of the single long n-th output line into which they are
assembled. The name '-' means the standard input, and may be repeated.

Normally, each option affects only the file after it. If the option letter is capitalized it affects
all subsequent files until it appears again uncapitalized. The options are described below.

-Cmin.max .
Print line fragments according to min. max, where min is the minimum field width
and max the maximum field width. If min begins with a zero, zeros will be added to
make up the field width, and if it begins with a '-', the fragment will be left-adjusted
within the field.

-p min.max
Like -C, but pad this file's field when end-of-file is reached and other files are still
active.

-5 sepstring
Print sepstring before printing line fragments from the next file. This option may
appear after the last file.

-t c The input line terminator is c instead of a newline. The newline normally appended
to each output line is omitted.

To print files simultaneously for easy viewing use pr(1).

EXAMPLES
The command

lam file! file2 file3 file4

joins 4 files together along each line. To merge the lines from four different files use

lam file1 -S "\
" file2 file3 file4

Every 2 lines of a file may be joined on one line with

lam - - < file

and a form letter with substitutions keyed by '@' can be done with

lam - T @ letter changes

SEE ALSO
pr(1), join(1), printf(3)

AUTHOR
John Kunze

BUGS

4th Berkeley Distribution 14 June 1983

MKMF(1) UNIX Programmer's Manual MKMF(1)

NAME
mkmf - makefile editor

SYNOPSIS
mkmf [-acdil] [-f makefile] [-F template] [macroname=value ...]

DESCRIPTION
Mkmf creates a makefile that tells the make command how to construct and maintain pro­
grams and libraries. After gathering up all the source code file names in the current working
directory and inserting them into the makefile, mkmf scans source code files for included files
and generates dependency information which is appended to the makefile. Source code files
are identified by their file name suffixes. Mkmfknows about the following suffixes:

.c C

.e Efl

.F Fortran

.f Fortran

.h Include files

.i Pascal include files

.1 Lex. or Lisp

.0 Object files

.p Pascal

.r Ratfor

.s Assembler

.y Yacc

Mkmf checks for an existing makefile before creating one. If no -f option is present, the
makefiles 'makefile' and 'Makefile' are tried in order.

After the makefile has been created, arbitrary changes can be made using a regular text editor.
Mkmf can also be used to re-edit the macro definitions in the makefile, regardless of changes
that may have been made since it was created.

By default, mkmf creates a program makefile. To create a makefile that deals with libraries,
the -I option must be used.

Make Requests

Given a makefile created by mkmf, make recognizes the following requests:

all Compile and load a program or library.

clean

depend

extract

index

install

library

print

tags

program

update

Remove all unnecessary files.

Edit the makefile and regenerate the dependency information.

Extract all the object files from the library and place them in the same direc­
tory as the source code files. The library is not altered.

Print an index of functions on standard output.

Compile and load the program or library and move it to its destination direc­
tory.

Compile and load a library.

Print source code files on standard output.

Create a tags file for the ex editor, for C, Pascal, and Fortran source code
files.

Compile and link a program.

Recompile only if there are source code files that are newer than the program
or library, link and install the program or library. In the case of an out-of-

4th Berkeley Distribution 28 June 198$

MKMF(l) UNIX Programmer's Manual MKMF(l)

date library, all the object files are extracted from the library before any
recompilation takes place.

Several requests may be given simultaneously, For example, to compile and link a program,
move the program to its destination directory, and remove any unnecessary object files:

make program install clean

Macro Definitions

Mkmf understands the following macro definitions:

CFLAGS C compiler flags. After searching for included files in the directory currently
being processed, mkmf searchs in directories named in -I compiler options,
and then in the '/usr/include' directory.

DEST Directory where the program or library is to be installed.

EXTHDRS

FFLAGS

HDRS

LIBRARY

LIBS

MAKEFILE

OBJS

PROGRAM

SRCS

SUFFIX

List of included files external to the current directory. Mkmf automatically
updates this macro definition in the makefile if dependency information is
being generated.

Fortran compiler flags. After searching for included files in the directory
currently being processed, mkmf searchs in directories named in -I compiler
options, and then in the '/usr/include' directory.

List of included files in the current directory. Mkmf automatically updates
this macro definition in the makefile.

Library name. This macro also implies the -I option.

List of libraries needed by the link editor to resolve external references.

Makefile name.

List of object files. Mkmf automatically updates this macro definition in the
makefile.

Program name.

List of source code files. Mkmf automatically updates this macro definition
in the makefile.

List of additional file name suffixes for mkmf to know about.

Both these and any other macro definitions already within the makefile may be replaced by
definitions on the command line in the form macroname=value , For example, to change the
C compiler flags, the program name, and the destination directory in the makefile, the user
might type the following line:

mkmf "CFLAGS=-l../include -0" PROGRAM-mkmf DEST=/usr/new

Note that macro definitions like CFLAGS with blanks in them must be enclosed in double
quote '"' marks.

File Name Suffixes

Mkmf can be instructed to recognize additional file name suffixes, or ignore ones that it
already knows about, by specifying suffix descriptions in the SUFFIX macro definition. Each
suffix description takes the form '.suffix:!!, where t is a character indicating the contents of the
file (s = source file, 0 = object file, h = header file, x = executable file) and I is an optional
character indicating the include syntax for included files (C = C syntax, F = Fortran, Efl, and
Ratfor syntax, P = Pascal syntax). The following table describes the default configuration for
mkmf

.c:sC C

4th Berkeley Distribution 28 June 1985 2

MKMF(1) UNIX Programmer's Manual MKMF(1)

.e:sF Efl

.F:sF Fortran

.f:sF Fortran

.h:h Include files

.i:h Pascal include files

.l:sC Lex or Lisp

.0:0 Object files

. p:sP Pascal

.r:sF Ratfor

.s:s Assembler

.y:sC Yacc

For example, to change the object file suffix to .obj, undefine the Pascal include file suffix, and
prevent Fortran files from being scanned for included files, the SUFFIX macro definition
might look like:

"SUFFIX = .obj:o .i: J:s"

Include Statement Syntax

The syntax of include statements for C, Fortran, and Pascal source code are of the form

C: #include "filename"

Fortran:

where # must be the first character in the line.

include 'filename'
INCLUDE 'filename'
where the include statement starts in column 7.

ascal: . #include "filename"
#INCLUDE "filename"
where # must be the first character in the line.

User-Defined Templates

If mkmf can not find .a makefile within the current directory, it normally uses one of the stan­
dard makefile templates, 'p.Makefile' or '1.Makefile', in /usr/new/lib unless the user has alter­
native 'p.Makefile' or 'l.Makefile' template files in a directory $PROJECTllib where $PRO­
JECT is the absolute pathname of the directory assigned to the PROJECT environment vari­
able.

OPTIONS
-a When searching a directory for source and include files, also consider files which have

names beginning with periods. By default, mkmf ignores file names which have lead­
ing "dots," such as those of backup files created by some editors.

-c Suppress 'creating makefile from ... ' message.

-d Turn off scanning of source code for 'include' files. Old dependency information is left
untouched in the makefile.

-f makefiie
Specify an alternative make file file nam..:. The default file name is 'Makefile'.

-i Cause mkmfto prompt the user for the name of the program or library, and the direc­
tory where it is to be installed. If a carriage return is typed in response to each of
these queries, mkmfwill assume that the default program name is a.out or the default
library name is lib.a, and the destination directory is the current directory.

-1 Force the makefile to be a library makefile.

4th Berkeley Distribution 28 June 1985 3

MKMF(l) UNIX Programmer's Manual MKMF(l)

FILES

-F temp/ate
Specify an alternative make file template file name. The default program makefile tem­
plate is 'p.Makefile' and the default library makefile template is '1. Makefile'. MkmJ
normally looks for temp/ate in /usr/new/lib or $PROJECT/lib. However, template can
be specified as an absolute pathname.

/usr/newllib/p.Makefile
/usr/new/libll.Makefile
$PROJECT llib/p.Makefile
$PROJECT llibll.Makefile

Standard program makefile template.
Standard library makefile template.
User-defined program makefile template.
User-defined library makefile template.

SEE AlSO
ar(1), ctags(1), ex(1), Id(1), Is(l), make(1)

Feldman, S.I., "Make - A Program for Maintaining Computer Programs·

Walden, K.., • Automatic Generation of Make Dependencies", Software-Practice and Experi-
ence, vol. 14, no. 6, pp. 575-585, June 1984. .

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR

BUGS

Peter J. Nicklin

The name of the makefile is included as a macro definition within the makefile and must be
changed if the makefile is renamed.

Since executable files are dependent on libraries, standard library abbreviations must be
expanded to full pathnames within the LIBS macro definition in the makefile.

Generated dependency information appears after a line in the makefile beginning with '###'.
This line must Dot be removed, nor must any other information be inserted in the makefile
below this line.

4th Berkeley Distribution 28 June 1985 4

PATHALIAS(1) UNIX Programmer's Manual PATHALIAS(1)

NAME
pathaIias, makedb - electronic address router

SYNOPSIS
pathalias [-ivc] [-t link] [-I host I [-d link] [files]

makedb [-a I [~ dbmfile] [files ... I
DESCRIPTION
. pathalias computes the shortest paths and corresponding routes from one host (computer sys­

tem) to all other known, reachable hosts. pathalias reads host-to-host connectivity informa­
tion on standard input or in the named files, and writes a list of host-route pairs on the stan­
dard output.

makedb takes pathalias output and creates or appends to a dbm(3) database.

Here are the pathalias options:

-i Ignore case: map all host names to lower case. By default, case is significant.

-c Print costs: print the path cost (see below) before each host-route pair.

-v Verbose: report some statistics on the standard error output.

-I host
Set local host name to host. By default, pathalias discovers the local host name in a
system-dependent way.

-d arg

-t arg

Declare a dead link, host, or network (see below). If arg is of the form "hostl!host2,"
the link from host! to host2 is treated as an extremely high cost (i.e., DEAD) link. If
arg is a single host name, that host is treated as dead and is be used as an intermediate
host of last resort on any path. If arg is a network name, the network requires a gate­
way.

Trace input for link, host or network on the standard error output. The form of arg is
as above.

Here are the makedb options:

-a Append to an existing database; by default, makedb truncates the database.

~ dbmfile
Identify the output file base name.

pathalias Input Format
A line beginning with white space continues the preceding line. Anything following '#' on an
input line is ignored.

A list of host-to-host connections consists of a "from" host in column 1, followed by white
space, followed by a comma-separated list of "to' hosts, called links. A link may be preceded
or followed by a network character to use in the route. Valid network characters are '!'
(default), '@', ':', and '%'. A link (and network character, if present) may be followed by a
"cost" enclosed in parentheses. Costs may be arbitrary arithmetic expressions involving
numbers, parentheses, '+', '-', '.', and 'f'. The following symbol~c costs are recognized:

7th Edition

LOCAL
DEDICATED
DIRECT
DEMAND
HOURLY
EVENING
DAILY

25
95

200
300
500

1800
5000

(local-area network connection)
(high speed dedicated link)
(toll-free call)
(long-distance call)
(hourly poll)
(time restricted call)
(daily poll, also called POLLED)

PATHALIAS(1) UNIX Programmer's Manual PATHALIAS(1)

WEEKLY 30000 (irregular poll)

In addition, DEAD is a very large number (effectively infinite), and HIGH and LOW are -5 and
+5 respectively, for baud-rate or quality bonuses/penalties. These symbolic costs represent an
imperfect measure of bandwidth, monetary cost, and frequency of connections. For most
mail traffic, it is important to minimize the number of intermediaries in a route, thus, e.g.,
HOURLY is far greater than DAILY / 24. If no cost is given, a default of 4000 is used.

For the most part, arithmetic expressions that mix symbolic cons~nts other than HIGH and
LOW make no sense. E.g., if a host calls a local neighbor whenever there is work, and addi­
tionally polls every evening, the cost is DIRECT, not DIRECT + EVENING.

Some examples:

down

princeton
topaz

princeton!(DEDICA TED), tilt,
%thrash(LOCAL)
topaz!(DEMAND+ LOW)
@rutgers(LOCAL)

If a link is encountered more than once, the least-cost occurrence dictates the cost and net­
work character. Links are treated as hidirectional, to the extent that a DEAD reverse link is
assumed unless better information is available.

The set of names by which a host is known by its neighbors is called its aliases. Aliases are
declared as follows:

name = alias, alias ...

The name used in the route to or through aliased hosts is the name by which the host is
known to its predecessor in the route.

Fully connected networks, such as the ARPANET or a local-area network, are declared as fol­
lows:

net = {host, host, ... }

The host-list may be preceded or followed by a routing character, and may be followed by a
cost:

princeton-ethernet = {down, up, princeton}!(LOCAL)
ARPA = @{sri-unix, mit-ai, su-score}(DEDICATED)

See also the sections on gateways and domains below.

Connection data may be given while hiding host names by declaring

private {host, host, ... }

pathalias will not generate routes for private hosts, but may produce routes through them.
The scope of a private declaration extends from the declaration to the end of the input file in
which it appears. It is best to put private declarations at the beginning of the appropriate
input file.

Output Format
A list of host-route pairs is written to the standard output, where route is a string appropriate
for use with printj(3), e.g.,

rutgers princeton!topaz!%s@rutgers

The "%s" in the route string should be replaced by the user name at the destination host.
(This task is normally performed by a mailer.)

Except for domains (see below), the name of a network is never used in expansions. Thus, in
the earlier example, the path from down to up would be "up!%s," not "princeton­
ethernetlup!%s. "

7th Edition 2

PATHALIAS(1) UNIX Programmer's Manual PATHALlAS(1)

Gateways
A network is represented by a pseudo-host and a set of network members. Links from the
members to the network have the weight given in the input, while the cost from the network
to the members is zero. If a network is declared dead on the command line (with the -d
option), the member-to-network links are marked dead, which discourages paths to members
by way of the network.

If the input also shows a link from a host to the network, then that host will be preferred as a
gateway. Gateways need not be network members.

E.g., suppose CSNET is declared dead on the command line and the input contains

CSNET"" { ... }
csnet-relay CSNET

Then routes to CSNET hosts will use csnet-relay as a gateway.

pathalias discourages forwarding beyond dead networks.

Domains
A host or network whose name begins with '.' is called a domain. Domains are presumed to
require gateways, i.e., they are DEAD. The route given by a path through a domain is similar
to that for a network, but here the domain name is tacked onto the end of the next host. Sub­
domains are permitted. E.g.,

harvard .EDU
.EDU = (.BERKELEY)
.BERKELEY ernie

yields

ernie ... !harvard!ernie.BERKELEY.EDU!%s

Output is given for the nearest gateway to a domain, e.g., the example above gives

.EDU ... !harvard!%s

Output is given for a subdomain if it has a different route than its parent domain, or if all of
its ancestor domains are private.

Databases
Makedb builds a dbm(3) database from the standard input or from the named./iles. (Makedb
replaces the obsolete -b option of pathalias, which is no longer recognized.) Input is expected
to be sequence of ASCII records, each consisting of a key field and a data field separated by a
single tab. If the tab is missing, the data field is assumed to be empty.

FILES ET AL.

BUGS

/usrllocalllib/palias. (dir,pag) default dbm output
newsgroup mod. map likely location of some input files
getopt(3), available from newsgroup mod. sources (if not in the C library).

The order of arguments is significant. In particular, -i and -t should appear early.

pathalias can generate hybrid (i.e. ambiguous) routes, which are abhorrent and most certainly
should not be given as examples in the manual entry.

Multiple '@'s in routes are prohibited by many mailers, so pathalias resorts to the "magic %"
rule when appropriate. This convention is not documented anywhere, including here.

Domains constitute a futile attempt to defeat anarchy and otherwise retard progress.

AUTHORS
Steve Bellovin (ulysses!smb)
Peter Honeyman (princeton!honey)

7th Edition 3

RS(1) UNIX Programmer's Manual RS(l)

NAME
rs - reshape a data array

SYNOPSIS
rs [-(csCSUx)[kKgGw)[N]tTeEnyjhHm] [rows I cols]]

DESCRIPTION
Rs reads the standard input, interpreting each line as a row of blank-separated entries in an
array, transforms the array according to the options, and writes it on the standard output.
With no arguments it transforms stream input into a columnar format convenient for termi­
nal viewing.

The shape of the input array is deduced from the number of lines and the number of columns
on the first line. If that shape were inconvenient, a more useful one might be obtained by
skipping some of the input with the -k option. Other options control interpretation of the
input columns.

The shape of the output array is influenced by the rows and cols specifications, which should
be positive integers. If only one of them is a positive integer, rs computes a value for the
other which will accommodate all of the data. When necessary, missing data are supplied in
a manner specified by the options and surplus data are deleted. There are options to control
presentation of the output columns, including transposition of the rows and columns.

The options are described below.

-ex . Input columns are delimited by the single character x. A missing x is taken to be 'T.

-sx Like -e, but maximal strings of x are delimiters.

-Cx Output columns are delimited by the single character x. A missing x is taken to be

-Sx Like -C, but padded strings of x are delimiters.

-t Fill in the rows of the output array using the columns of the input array, that is, tran-
spose the input while honoring any rows and cols specifications.

- T Print the pure transpose of the input, ignoring any rows or cols specification.

-kN Ignore the first N lines of input.

-KN Like -k, but print the ignored lines.

-gN The gutter width (inter-column space), normally 2, is taken to be N.

-GN The gutter width has N percent of the maximum column width added to it.

-e Consider each line of input as an array entry.

-0 On lines having fewer entries than the first line, use null entries to pad out the line.
Normally, missing entries are taken from the next line of input.

-y If there are too few entries to make up the output dimensions, pad the output by recy­
cling the input from the beginning. Normally, the output is padded with blanks.

-h Print the shape of the input array and do nothing else. The shape is just the number
of lines and the number of entries on the first line.

-H Like -h, but also print the length of each line.

-j Right adjust entries within columns.

-wN The width of the display, normally 80, is taken to be the positive integer N.

-m Do not trim excess delimiters from the ends of the output array.

4th Berkeley Distribution 14 June 1983

RS(1) UNIX Programmer's Manual RS(l)

With no arguments, rs transposes its input, and assumes one array entry per input line unless
the first non-ignored line is longer than the display width. Option letters which take numeri­
cal arguments interpret a missing number as zero unless otherwise indicated.

EXAMPLES
Rs can be used as a filter to convert the stream output of certain programs (e.g., spell, du, file,
look, nm, who, and wc(l) into a convenient "window" format, as in

who I rs

This function has been incorporated into the ls(1) program, though for most programs with
similar output rs suffices.

To convert stream input into vector output and back again, use

rsl0lrsOl

A 10 by 10 array of random numbers from 1 to 100 and its transpose can be generated with

jot -r 100 I rs 10 10 I tee array I rs - T > tarray

In the editor vi(1), a file consisting of a multi-line vector with 9 elements per line can undergo
insertions and deletions, and then be neatly reshaped into 9 columns with

:1,$!rs 0 9

Finally, to sort a database by the first line of each 4-line field, try

rs-eC041 sort I rs-cOl

SEE AlSO
jot(1), vi(1), sort(1), pr(1)

AUfHOR

BUGS

John Kunze

Handles only two dimensional arrays.

The algorithm currently reads the whole file into memory, so files that do not fit in memory
will not be reshaped.

Fields cannot be defined yet on character positions.

Re-ordering of columns is not yet possible.

There are too many options.

4th Berkeley Distribution 14 June 1983 2

TAC(1) UNIX Programmer's Manual

NAME
tac - concatenate and print files in reverse

SYNOPSIS
tac [-string] [+string] file ...

DESCRIPTION

TAC(1)

Tac reads each file in sequence and writes it on the standard output, reversed by the file seg­
ments delimited by string. -string specifies segments bounded on the left by string. while
+string specifies right-bounded segments. The default is + \n (print lines in reverse order).

EXAMPLES
tac '-\
From'/usrlspoollmaill$USER

prints out one's mail messages, most recent first.

tac file
prints the file in reverse, line by line, and:

tac file 1 file2 >file3
reverses each of the first two files by line and places the concatenated result on the third.

SEE ALSO

BUGS

cat(1), rev(1), tail(1), tmail(1)

Tac doesn't yet handle multiple argument files exactly right. It's also unclear which direction
it should process them in.
Tac does not (and cannot efficiently) work on piped input.

7th Edition June 9,1985

TMAlL(1) UNIX Programmer's Manual

NAME
tmail - print out mail messages, most recent first

SYNOPSIS
tmail [usemame] [mboxfile]

DESCRIPTION

TMAIL(1)

Tmail prints Unix-style mail messages in reverse order (most recent first). If no argument is
given it looks in your system mail drop (/usrlspoollmaill$USER). An argument which is a
valid username causes tmail to look in that person's maildrop; otherwise the argument should
be the name of a Unix-style "mailbox" file.

SEE AlSO
tac(1), cat(1).

BUGS
Should handle multiple arguments.

7th Edition June 9, 1985

UMODEM(l) UNIX Programmer's Manual UMODEM(l)

NAME
umodem - Version 3.1 - UNIX-Based Remote File Transfer Facility

SYNOPSIS
Usage:

umodem -[c!rb!rt!sb!st][options] filename

Major Commands -
c <- Enter Command Mode
rb <- Receive Binary
rt <- Receive Text
sb <- Send Binary
st <- Send Text

Options -
1 <- (one) Employ TERM II FTP 1
4 <- Enable TERM FTP 4
7 <- Enable 7-bit transfer mask
a <- Tum ON ARPA Net Flag
d <- Do not delete umodem.log file before starting
I <- (ell) Tum OFF LOG File Entries
m <- Allow file overwiting on receive
p <- Tum ON Parameter Display
y <- Display file status (size) information only

DESCRIPTION
Umodem uses the Christensen protocol to transfer files to and from CP/M systems.

Umodem - Implements the ·CP/M User's Group XMODEM" protocol, the TERM II File
Transfer Protocol (FTP) Number 1, and the TERM II File Transfer Protocol Number 4 for
packetized file up/downloading.

There is currently no batch transfer capability. The program writes logging data to a file in
the user's home directory called umodem.log.

The program will do a protocol file transfer with error checking to or from a CP/M system
running Ward Christensen's program MODEM or one of its derivatives (MODEM7 or
APMOD777 etc.) or any program that uses the same protocols (e.g. ZPRO, TERM II). Note
that executable and squeezed files must use the -sb or orb options.

Umodem supports an interactive mode in which the user may perform a number of
Umodem-oriented functions without leaving Umodem. These functions (and their com­
mands) are:

UMODEM COMMAND MODE OPTIONS

Usage: r or s or option
Major Commands -

rb <- Receive Binary
rt <- Receive Text
sb <- Send Binary
st <- Send Text

Options -
1 <- (one) Employ TERM II FTP 1

7th Edition

UMODEM(l) UNIX Programmer's Manual

3 <- Enable TERM FTP 3 (CPIM UG)
7 <- Toggle 7-bit transfer mask
a <- Turn ON ARPA Net flag
1 <- Toggle LOG File Entries
m <- Allow file overwiting on receive
x <- Exit
y <- Display file status (size) information only

UMODEM COMMAND MODE

UMODEM(l)

The following is a sample session illustrating what. can be done in the command mode
ofUmodem.

$ umodem-c

UMODEM Version 3.5 - UNIX-Based Remote File Transfer Facility

UMODEM: LOG File '/user/rxclumodem.Iog' is Open

UMODEM Command Mode - Type ? for Help
3 L UMODEM>?

Usage: r or s or option
Major Commands -

rb <- Receive Binary
n <- Receive Text
sb <- Send Binary
st <- Send Text

Options -
1 <- (one) Employ TERM II FTP 1
3 <- Enable TERM FTP 3 (CP/M UG)
7 <- Enable 7-bit transfer mask
a <- Turn ON ARPA Net flag
1 <- Toggle LOG File Entries
m <- Allow file overwiting on receive
x <- Exit
y<- Display file status (size) information only

3 L UMODEM> 1

TERM FTP 1 Selected
1 L UMODEM> m

File Overwriting Enabled
1 LM UMODEM> m

File Overwriting NOT Enabled
1 L UMODEM> 7

7-Bit Transfer Selected
17 L UMODEM> 7

7-Bit Transfer NOT Selected

7th Edition 2

UMODEM(l) UNIX Programmer's Manual

FILES

1 L UMODEM> y umodem.c

UMODEM File Status Display for umodem.c
Estimated File Size 42K, 331 Records, 42252 Bytes

1 L UMODEM> x

UMODEM(1)

umodem.log keeps a log of transfers to and from and any problems during transfer.

SEE ALSO
AUTHOR

- Lauren Weinstein, 6/81
- (Version 2.0) Modified for JHUIUNIX by Richard Conn, 8/1/81
- Version 2.1 Mods by Richard Conn. 8/2/81
- Version 2.2 Mods by Richard Conn, 8/2/81
- Version 2.3 Mods by Richard Conn, 8/3/81
- Version 2.4 Mods by Richard Conn, 8/4/81
- Version 2.5 Mods by Richard Conn, 8/5/81
- Version 2.6 Mods by Bennett Marks, 8/21/81 (Bucky @ CCA-UNIX)
- Version 2.7 Mods by Richard Conn, 8/25/81 (rconn @ BRL)
;... Version 2.8 Mods by Richard Conn, 8/28/8"1
- Version 2.9 Mods by Richard Conn, 911181
- Version 3.0 Mods by Lauren Weinstein, 9/14/81
- Version 3.1 Mods by Lauren Weinstein, 4/17/82
- Version 3.2 Mods by Michael M Rubenstein, 5/26/83
- Version 3.3 Mod by Ben Goldfarb, 07/02/83
- Version 3.4 Mods by David F. Hinnant, NCECS, 7/15/83
- Version 3.5 Mods by Richard Conn, 08127/83

UMODEM.MAN - Received From:

Received: From Ucb-Vax.ARPA by BRL via smtp; 6 Sep 83 9:11 EDT
Received: by ucbvax.ARPA (4.9/4.7)

id AA21658; Tue, 6 Sep 83 06:11:52 PDT
Message-Id: <8309061311.AA21658@ucbvax.ARPA>
Date: 5-Sep-83 20:22: 19-PDT (Mon)
Original-From: ucsfpgs!brian (#Brian Katzung)
From: ucsfcgl!ucsfpgs!brian@Berkeiey (#Brian Katzung)
Subject: umodem.l "
To: rconn@brl.ARPA

UMODEM.l - Modified by:

Richard Conn

7th Edition 3

ANSI
Tom Quarles, Berkeley

ANSIT APE (LOCAL) UNIX Programmer's Manual ANSITAPE (LOCAL)

NAME
ansi tape - ANSI standard tape handler

SYNOPSIS
ansi tape [key] [keyargs] [files]

DESCRIPTION
Ansitape reads and writes magnetic tapes written in ANSI standard format (called "Files-II"
by DEC). Tapes written by ansitape are labeled with the first 6 characters of the machine
name by default. Actions are controlled by the key argument. The key is a string of charac­
ters containing at most one function'letter. Other arguments to the command are a tape label
and file names specifying which files are to be written onto or extracted from the tape.

The function portion of the key is specified by one of the following letters:

r The named files are written at the end of the tape. The c function implies this.

x The named files are extracted from the tape. If no file argument is given, the entire
contents of the tape is extracted. Note that if the tape has duplicated file names,
only the last file of a given name can'be extracted.

t The names of the specified files are listed each time they occur on the tape. If no file
argument is given, all files on the tape are listed.

c Create a new tape; writing begins at the beginning of the tape instead of after the last
file. This command implies r.

The following characters may be used in addition to the letter which selects the function
desired.

f This argument allows the selection of a different tape device. The next word in the
keyargs list is taken to be the full name of a device to write the tape on. The default
is Idev/rmtl2.

n The n option allows the user to specify as the next argument in the keyargs list, a
control file containing the names of files to put on the tape. If the file name is '-', the
control file will, instead, be read from standard input. The control file contains one
line for each file to be placed on the tape. Each line has two names, the name of the
file on the local machine, and the name it is to have when placed on the tape. This
allows for more convenient flattening of hierarchies when placing them on tape. If
the second name is omitted, the UNIX file name will be used on the tape also. This
argument can only be used with the rand c functions.

The I option allows the user to specify the label to be placed on the tape. The next
argument in the keyargs list is taken as the tape label, which will be space padded or
truncated to six characters. This option is meaningless unless c is also specified.

v Normally ansitape works relatively silently. The v (verbose) option causes it to type
information about each file as it processes it.

b The b option allows the user to select the blocksize to be used for the tape. By
default, ansilape uses the maximum block size permitted by the ANSI standard,
2048. Some systems will permit a much large block size, and if large files are being
put on the tape it may be advantageous to do so. Ansitape will take the next argu­
ment of the keyargs list as the blocksize for the tape. Values below 18 or above 32k
will be limited to that range. The standard scale factors b=512 and k= 1024 are
accepted.

Ansitape will not copy directories, character or block special files, symbolic links, sockets, or
binary executables. Attempts to put these on tape will result in warnings, and they will be
skipped completely.

7th Edition 4/10/85 UCB Local

ANSITAPE (LOCAL)

FILES
Idev/rmt12

DIAGNOSTICS

UNIX Programmer's Manual ANSITAPE (LOCAL)

A warning message will be generated when a record exceeds the maximum record length and
the affected file will be truncated.

BUGS
Ansitape quietly truncates names longer than 17 characters.
ANSI 'f format files can be read but not written.
Multivolume tapes can.not be handled.

7th Edition 2

VMSPREP (LOCAL) UNIX Programmer's Manual VMSPREP (LOCAL)

NAME
vmsprep • VMS tape preperation aid

SYNOPSIS
vms prep [-] [name ...]

DESCRIPTION

FILES

Vmsprep traverses hierarchies of files and prepares them for transportation to VMS. Since
ANSI stardard tapes (the VMS standard) do not allow hierarchy, this program provides a
method of flattening the hierarchy onto a tape in such a way that it can be unpacked on VMS
to recreate the same tree'structure. '

For reasons best not described here, vmsprep will attempt to exclude all RCS and SCCS
archives by ignoring all files or directories named 'RCS' or 'SCCS', or files starting with's.' or
ending in ',v'.

-
The output of vmsprep is a pair of files vmsprep.namelist and UNPACK. COM.
vmsprep.namelist is a list of files to be placed on the tape in the format required by ansitape.
If the first argument is '.' instead of a file or directory name, vmsprep will instead send the
namelist to standard output, and place UNPACK.COM in Itmp to avoid attempting to write
in the current directory. All of the files except UNPACK.COM will be placed on the tape
under cryptic names. UNPACK.COM is a VMS command script which will recreate all of
the necessary directories and then move the cryptically named files to their proper place.

A typical sequence would be:
vmsprep • tree 1 tree2 file I ansitape cln trees·

Then on a VMS machine
mount MF AO: trees
copy MFAO:*.*.* *
@UNPACK

vmsprep.namelist
UNPACK.COM

DIAGNOSTICS
A warning is reported if a file or directory name contains a character not permitted in VMS
names. The offending character is replaced by 'Z' and vmsprep continues.

SEE ALSO
ansitape(l)

BUGS
Extra periods in file names may not be dealt with optimally.
All files and directories to be moved must be descendants of the current working directory.
Absolute path names and paths containing •..• will produce unpredictable results.
Since vmsprep uses find(1) internally, it does not follow symbolic links.
The exclusion of RCS and SCCS files should be controlled by a command line flag.
Assumes VMS v4.0 or greater for long file names.

7th Edition

APL SYSTEM
Purdue

APL(1) UNIX Programmer's Manual APL(1)

NAME
apl - apl interpreter

SYNPOSIS
apl [-m] [-e] [-q] [-r] [-t] [-c] [-C] [-d] [-D] [ws]
apl2 [-m] [-e] [-q] [-r] [-t] [-c] [-C] [-d] [-D] [ws]

DESCRIPTION
This is the Unix APL interpreter. It has lived through several different versions of Unix and
grown steadily more complex. Currently, a version of APL for Unix on the PDP-II and the
VAX is supported. This version supports monadic and dyadic domino, a state indicator of
sorts, and Unix I/O quad functions.

The best documentation concerning the use of APL once it has been started from the shell is
the Unix APL\1J User's Manual. This manual includes a list of the APL character set, sys­
tem commands, quad functions, and i-beam functions, as well' as an overall description of the
use of APL. The specifics are contained in the four appendices for easy reference by the more
experienced user.

The command invoking APL may optionally contain the name of a workspace file to be
loaded (default is "continue", or, if "continue" does not exist in the current directory, APL
starts executing with a "clear ws").

There are all sorts of flags which may be specified when APL is invoked. Only a subset of
these are of general usefulness; the remainder exist for convenience in debugging and software
maintenance purposes. In the following description, the flags are presented from those which
are of the most general interest to those which are of interest only to persons maintaining
APL.

Normally, APL runs in "ASCII mode". (This is discussed more fully following the descrip­
tion of the various flags.) If "-m" is specified, APL "maps" the standard input and standard
output as appropriate for use with an APL terminal.

By default, APL attempts to determine whether or not the standard input is a terminal. If
not, all input will be echoed to the standard output. In this fashion, when APL is run with a
pipe or disc file as input, the output clearly shows the commands issued along with their
results. The "-e" flag forces APL to echo its input to its output regardless of the input dev­
ice. Similarly, "-q" ("quiet") forces APL not to echo its input to the standard output.

The flag "-r" has meaning only when the Purdue EE editor XED is used. This flag is passed
by APL to XED to invoke funny XED stuff. This is generally a non-portable feature. .

By default, APL places its scratch files into /tmp. If the "-t" flag is specified, temporary files
will be placed into the current directory.

By default, APL catches fatal signals (e.g. memory fault, floating-point exception, etc.) and
prints a termination message of the form:

fatal signal: message

It then exits normally. If the flag "-c" or "-C" is specified, it will print this error message
and then exit via an "abort", producing a core dump. If the flag "-d" or "-0" is specified, it
will not catch fatal errors, and thus will be automatically terminated by the Unix kernel if a
fatal signal is received. (This will also invoke a core dump.) These flags are useful for debug­
ging APL, but aren't of much use to the ordinary user.

The program "apI2" is identical to "apl" except that "apl" is double-precision and "apI2" is
single-precision. Workspaces are stored in whatever precision is in use, and are converted if
necessary automatically when they are ")load"ed. Effectively, "apI2" has twice as much space
in its internal workspace.

4th Berkeley Distribution 3 August 1983

APL(1) UNIX Programmer's Manual APL(l)

APL is designed tooperate principally from ASCII terminals. Upper-case letters are used for
the various APL symbols, as described in a separate document. Overstrike characters, which
generally will not appear as overstruck characters on a CRT screen, are generated by typing
the first character, a control-H, and the second character. The order of the two characters is
not significant. The workspace used by APL is stored in this special ASCII format.

APL does support APL terminals. To use APL from an APL terminal, it is necessary to
specify the "-m" flag when calling APL from the shell; this causes the APL character set to be
mapped tolfrom ASCII for input/output. The workspace file is still stored in ASCII format;
thus work may be done interchangeably on both types of terminals.

HISTORY

FILES

APL was originally written at Bell Labs by Ken Thompson, sometime before version six Unix.
It was modified for a while at Yale University. and then came to Purdue University, where it
has undergone extensive modification. It is currently being supported by the Electrical
Engineering Unix network. Complaints, suggestions, or whatever should be forwarded to user
"bruner" on the EE Network system, or sent to either John Bruner or Dr. Anthony P. Reeves
in the school of Electrical Engineering at Purdue University.

Itmp/apled.###### - editor temporary file
Itmp/aplws.###### - workspace temporary file
continue - default workspace file

SEE ALSO

BUGS

aplcvt(I) - convert between PDP-II and VAX workspace formats
aplopr(I) - output APL files to the Printronix printer
cata(1) - display functions with APL line numbers
prws(1) - print workspace

Character comparisons do not work.
Only a restricted form of dyadic format is available. Laminate is not supported.
The workspace size on the PDP-II is limited to about 5000 items in APL and 10000 in
APU.
The workspace size on the VAX is limited only by the virtual memory system.

4th Berkeley Distribution 3 August 1983 2

APLCVT(I) UNIX Programmer's Manual APLCVT(I)

NAME
aplcvt - convert APL workspaces between PDP-II and VAX formats

SYNPOSIS
aplcvt [-v I-p][file ...]

DESCRIPTION
apicvt performs the necessary transformalions to produce a V AX format workspace from a
PDP-II format workspace, and vice versa. The workspace formats differ because the word
sizes of the two machines are different; hence, pointers have different lengths. In general, any
PDP-II workspace can be converted to VAX format. VAX format workspaces can be con­
verted to PDP-II format provided they are "small enough" (if a VAX workspace is too large
to be converted to PDP-II format, it is also too large to run on the PDP-II APL interpreter).

In the usual case, the workspaces to be converted are specified on the command line. The
output files have the same names as the input files with a ".pdp" or ".vax" extension. (If the
input file name ends with a ".pdp" or ". vax" extension, that extension will be stripped off
first) Alternately, aplcvt can be used as a IDter. (If either the standard input or the standard
output are directed to a tty, a syntax message is output. It is highly unlikely that a user will
want a converted binary workspace printed on his or her terminal,)

The default direction of conversion is to convert to the format used by the host machine; i.e.
on a PDP-II the default is to convert VAX format to PDP-It" format. If desired, the direc­
tion may be specified explicitly by a "-p" or "-v" flag.

SEE ALSO

BUGS

apl(I) - the APL interpreter

Occasionally, ap[cvt will bomb out with an error when none really occurred. This seems to be
due to a bug in the standard 110 library.

. 4th Berkeley Distribution 28 July 1983

XED (1) UNIX Programmer's Manual XED (1)

NAME
xed - eXtended text EDitor - V7.15

SYNOPSIS
xed,[-!@abBcdefhiklmnoOpqrstvwy] [name]

DESCRIPTION
Xed is the eXtended text EDitor.

If a name argument is given, xed simulates an e command (see below) on the named ·file; that
is to say, the file is read into xed's buffer so that it can be edited. After every 35 (default)
commands have been executed, the edit buffer will be written on a scratch file. When xed
terminates successfully, the save file will be removed unless the -d flag was selected. If a
writeable file named "edsav" exists in the current directory, all commands typed, will be
written to it.

The optional flags after the - have the following functions:

-! Disallow use of the ! command. Mostly useful for writing programs which cannot
allow unrestricted access to shell commands.

-@fn Preset the indirect file name to fn. Subsequent use of the @ command will read
commands from In, until the name is changed by giving an argument to the @
command.

-a The line numbers will be printed in api mode. The form is "[n]\t" followed by 'the
text. In addition, overstruck characters will be printed on two lines, one above the
other. Api line numbers begin at zero instead of one.

-b Make a backup copy of the edit file upon entry to the editor. The file's name will be
that of the original file with a ".bak~' extension.

-Bnnnn
Set the line buffer size to nnnn (decimal) bytes. The default line buffer size is 512
bytes, which limits the maximum length line which may be processed. Since there are
occasions where it is desired to process longer lines, the buffer size may be increased.

-cnn Set the editor's idea of the depth of the Crt screen for the : command to nn (decimal).
Default is 21 lines. If nn is zero, the paging will be disabled. (See also the d= nn
command.)

-d Disables the deletion of the file created via the auto-save feature. (The ".edt" file.)

-e Each input command will be echoed on standard output. This is useful for debugging
editor command files, since the error message will be immediately preceded by the
command that caused it.

-f Xed will automatically prompt for text lines upon being invoked. Upon exit, xed will
automatically write the file. This is useful for creating files without having to type the
a command upon entry. Note: If this flag is selected, the editor will over-write an
existing file by the same name. See the qi command.

o _ b Enable processing of a "huge" file, I.E. one with up to 511 blocks, instead of the
normal limit of 255 blocks. The use of -b disallows the g and v commands. (This
flag is inoperative and unnecessary on the Vax.)

- i If an interrupt (ASCII DEL) character is typed, xed will write the current contents of
the edit buffer on a file, and exit. The name of the dump file is that of the original file
with a .int extension. The -i flag is very useful for shell files which call the editor,
since the editor will not hang around after an interrupt, interfering with the user's
commands.

4th Berkeley Distribution 28 July 1983

XED(1) UNIX Programmer's Manual XED(l)

-k Useful for slow terminals, this flag kills verbose error messages. Instead, xed prints a
query? followed by an error number. The actual error message may be obtained by
typing the enn command (see below). The long error messages may be turned on/off
via the e+ and e- commands (see below).

-Ie The eol character is initialized to character c. It may be changed during the edit
session by the e=c command.

-mnn The modification count before an automatic save of the eait buffer is set to nn
(decimal). Default is 35. (That is, after every 35 commands which cause a
modification to one or more lines, the edit buffer will be written on the edit file name
with .edt extension.) If the count is zero, the auto-save feature is disabled.

-D The no-line-numbers flag is toggled. This results in the omission of line number
prompts as well as line numbers on the p and 1 commands.

-0 The editor will not seek standard input to end-or-file upon detecting a command
error. Normally, this results in a command file terminating immediately.

-0 If a write is attempted to a file that is write-locked, but is owned by the user, an
attempt will be made to override the permission.

-p Tum on prompts even if not talking to a terminal, mostly useful for editing through
pipes (as when using protocol(l) or script(1».

-q The editor will NOT ignore a quit (ASCII FS or ctrl-\) signal. Normally for editor
debugging purposes, as a core dump can then be made.
Beware, the edit buffer can not be recovered!

-r Removes the special meaning of the special characters: $ & \(\) [.• A \

-s Silent mode. No prompts are issued, printing of lines resulting from commands is
suppressed unless they are explicitly terminated with a p. This mode is useful for
running editor command files.

-tc Set the tab character to c. This is the character which will be expanded to the
appropriate number of fill characters to get to the next column which has a tab stop
set in it. The tab character may be set/changed using the t=c command.

- vc Set the tab fill character to c. This character is used to pad out the space between
expanded fields. The tab fill character may be set/changed by the f=c command.

-wnn Set the editor's idea of the page width to nn (decimal). Default is 80 columns. (See
also the w=nn command.)

-y Set the interrupt processing to list out one page (see the: command) upon receipt of
an interrupt.

-8123456789
A decimal number preceded by a - will set a tab stop in that column. Tab settings
may be made during edit session by the t,nn command.

A comma in the flag list is ignored to facilitate setting multiple tab stops. For
example, tabs may be set by any of the forms "-9 -17 -25", "-9,17,25",
"-9a17d25f'.

Xed operates on a copy of any file it is editing; changes made in the copy have no effect on
the file until a w (write) command is given. The copy of the text being edited resides in a
temporary file called the buffer. There is only one buffer. .

Commands to xed have a simple and regular structure: zero or more addresses followed by a
one or more character command, possibly followed by parameters to the command. These
addresses specify one or more lines in the buffer. Every command which requires addresses
has default addresses, so that the addresses can often be omitted.

4th Berkeley Distribution 28 July 1983 2

XED (1) UNIX Programmer's Manual XED(1)

In general, only one command may appear on a line. (See the e=c command and the -1 flag.)
Certain commands allow the input of text. This text is placed in the appropriate place in the
buffer. While xed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by typing a period
. alone at the beginning of a line, or by receipt of an end-of-file (Ctrl-D) from the keyboard.

Xed supports a limited form of regular expression notation. A regular expression specifies a
set of strings of characters. A member of this set of strings is said to be matched by the
regular expression. The regular expressions allowed by xed are constructed as follows: In the
following specification for regular expressions the word character means any character but
newline. .

1. Any character except a special character matches itself. Special characters are the
regular expression delimiter plus \ [. and sometimes A • $.

2. A . matches any character.

3. A \ followed by any character except a digit or () matches that character.

4. A nonempty string s bracketed (s) (or rsJ) matches any character in (or·not in) s. In
s, \ has no special meaning, and) may ·only appear as the first letter. A substring
a-b, with a and b in ascending ASCII order, stands for the inclusive range of ASCII
characters.

5. A regular expression of form 1-4 followed by • matches a sequence of zero or more
matches of the regular expression.

6. A regular expression, x, of form 1-8, bracketed \(x\) matches what x matches, with
side-effects described under the s command below.

7. A \ followed by a digit n matches a copy of the .string that the bracketed regular
expression beginning with the nth \(matched.

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y
matches a match for x followed by a match for y, with the x match being as long as
possible while still permitting a y match.

9. A regular expression of form 1-8 preceded by A (or followed by $), is constrained to
matches that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in
a line.

11. An empty regular expression stands for a copy of the last regular expression
encountered.

Regular expressions are used in addresses to specify lines and in one command (see s below)
to specify a portion of a line which is to be replaced. If it is desired to use one of the regular
expression metacharacters as an ordinary character, that character may be preceded by \.
This also applies to the character bounding the regular expression (often /) and to \ itself.

To understand addressing in xed it is necessary to know that at any time there is a current
line. Generally speaking, the current line is the last line affected by a command; however, the
exact effect on the current line is discussed under the description of the command. Addresses
are constructed as follows.

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line (or lines) marked with the mark name character x, which must be
a lower-case letter. An alternative to this syntax is the capital letter alone. Lines are

4th Berkeley Distribution 28 July 1983 3

XED (1) UNIX Programmer's Manual XED (1)

marked with the k command described below.

5. ·x· (or XA) addresses the first (lower) line of the range marked with the mark name
character x. (See the k command description.)

6. 'x$ (or X$) addresses the last (upper) line of the range marked with the mark name
character x. (See the k command description.) .

7. A regular expression enclosed in slashes I addresses the first line found by searching
toward the end of the buffer and stopping at the first line containing a string matching
the regular expression. If necessary the search wraps around to the beginning of the
buffer. .

8. A regular expression enclosed in queries ? addresses the first line found by searching
toward the beginning of the buffer and stopping at the first line containing a string
matching the regular expression. If necessary the search wraps around to the end of
the buffer.

9. An address followed by a plus sign + or a minus sign - followed by a decimal
number specifies that address plus (resp. minus) the indicated number of lines. The
plus sign may be omitted.

10. If an address begins with + or - the addition or subtraction is taken with respect to
the current line; e.g. -5 is understood to mean .-5. (If the first address is omitted,
but a second bound is specified, then the first address will be the current line plus orie.
e.g. '\+10" is equivalent to ".+1,.+10".)

11. If an address ends with + or -, then I is added (resp. subtracted). As a consequence
of this rule and rule 10, the address - refers to the line· before the current line.
Moreover, trailing + and - characters have cumulative effect, so - - refers to the
current line less 2. (There are complications of this rule, see the b command below.)

12. To maintain compatibility with earlier versions of the editor, the character A in
addresses is entirely equivalent to -.

13. The character := specifies that the address bounds of the previous command are to be
used for the current command.

14. The character pair =A addresses the lower bound (first address) specified in the
previous command.

15. The character pair =$ addresses the upper bound (second address) specified in the
previous command.

16. The character pair .• addresses the last value of . different from the current value of ..

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two addresses
assume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used .

. Addresses are separated from each other typically by a comma,. They may also be separated
by a semicolon ;. In this case the current line . is set to the first address before the next
address is interpreted. The second address of any two-address sequence must correspond to a
line following the line corresponding to the first ad"dress.

In the following list of xed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the
default.

As mentioned, it is generally illegal for more than one command to appear on a line.
However, most commands may be suffixed by p, b, q or I, in which case the current line is
either printed (as in the p command), listed with balanced pairs of parentheses, square

4th Berkeley Distribution 28 July 1983 4

XED (1) UNIX Programmer's Manual XED (1)

brackets, and brace brackets numbered (b), quoted (by· or ') string lengths (q), or listed as in
the I command.

(•)a
text

The append command reads the given text and appends it after the addressed line.
is left on the last line input, if there were any, otherwise at the addressed line.
Address "8" is legal for this command; text is placed at the beginning of the buffer.

(•)a text
If a space immediately follows the append command, then the text immediately
following the space is appended after the addressed line. . is left at the newly created
line. This is essentially a quick ~ethod for entering one line.

(. , •)aJtextl

bnn

(• , •)c
text

Append the text after the last character in the addressed lines.

The browse count is set to nn (decimal). This count is then used for subsequent new­
line commands as the number of lines to be printed out. If nn is missing, the count is
reset to 1.

In constructing addresses as described in rule 11 above, the browse count is added to
or subtracted from the current address, instead of a constant of 1 for each + or -.
Normally this has no effect since the default is 1.

The change command deletes the addressed lines, then accepts input text which
replaces these lines. . is left at the last line input; if there were none, it is left at the
first line not deleted.

(. , .)clregular expressionlreplacementl
(. , .)clregular expressionlreplacementlnn
(. , .)clregular expressionlreplacementlg

This form of the change command is identical to the s command below.

(.,.)coa
The co (copy) command is identical to the t (transfer) command below.

(• , •)d
The delete command deletes the addressed lines from the buffer. The line originally
after the last line deleted becomes the current line; if the lines deleted were originally
at the end, the new last line becomes the current line.

4th Berkeley Distribution 28 July 1983 5

XED(l) UNIX Programmer's Manual XED(1)

d pathname

d-nn

The current directory is set to pathname by a call to chdir(2).

Sets xed's idea of what the depth of the screen is, to nn (decimal) lines. This is used
in calculating how many lines will fit on the screen with the : command, and may be
preset with the -c flag (see above).

efilename
eifilename

e ... c

enn

e+
e-

The edit command causes the entire contents of the. buft'er to be deleted, and then the
named file to be read in. If no filename is given, the cu"ent file is used. • is set to the
last line of the buffer. The number of lines read is printed. filename (if present) is
remembered for possible use as a default file name in a subsequent e, r, or w
command. If the i is present, xed will read filename immediately (without double-
checking first). .

The end-offine character is set to c. Thereafter, any occurrences of c are treated as if
they were an actual newline character. This facilitates entering several commands on
the same physical line. Caution:· the eol character is also interpreted in insert mode.

Displays the long error message for error number nn.

If a - follows, issue error messages in the form ?nn where nn is the error number of
the error that occurred. This is mostly useful for slow terminals. A + returns to long
error messages. (See the - k flag, and the enn command above.)

(.,.)exp .
Providing that a tab character has been set (see the t==c command and the -t flag) as
well as tab stops being set (see the t,nn command), any instances of the tab character
within the addressed lines which are to the left of a column which is marked as a tab
stop, will be expanded with an appropriate number of fill characters. (See the f-c
command).

ffilename

f=c

The filename command prints the currently remembered file name. If filename is
given, the currently remembered file name is changed to filename.

Set the fill character to c. This is the character used to fill out a line where tab
characters have been expanded. If c is missing, the fill character is reset to the
default, which uses as many tabs as possible, followed by as many blanks as necessary
to reach the desired column, resulting in the fewest possible characters to get to the
desired position.

4th Berkeley Distribution 28 July 1983 6

.
XED (1) UNIX Programmer's Manual XED(l)

(1 , $)g/regular expressionlcommand-list
(1 , $)glregular expression/vcommand-list

h
hnn

he{lp]

(•)i
text

In the global command, the first step is to mark every line which matches the given
regular expression. If the optional v is present after the regular expression, each line
potentially matching the regular expression will be printed, followed by the message
"Ok? " .. If the response begins with n, the line will not be marked, any other
response. will cause the line to be marked. Then for every marked line, the given
command list is executed with • initially set to that line. A single command or the
first of D?-ultiple commands appears on the same line with the global command. All
lines of a multi-line list except the last line must be ended with \. The a, i, and c
commands and associated input are permitted; the • terminating input mode may be
omitted if it would be on the last line of the command list. The (global) commands,
I, and v, are not permitted in the command list. If an end-ol-file (Ctrl-D) is typed in
response to the prompt, no further lines will be scanned or marked, and all lines
marked so far (if any) will have command-list applied to them.

Column numbers to column nn (default 71) are printed out. Any columns which have
tab stops set will print out with - character in the appropriate position.

List syntax of all xed commands available. (Merely displays the contents of the file
letc/xed.doc.)

This command inserts the given text before the addressed line .. is left at the last line
input; if there were none, at the addressed line. This· command differs from the a
command only in the placement of the text.

(•)i text
This form of the insert command inserts one line before the addressed line, consisting
of the text following the space. (See the a command.)

(•••)iltextl
Insert the text before the first character in the addressed lines.

(.-I,.)j
(.-1 , .)jltextl

Join the addressed lines together to form one resulting line. This effectively removes
the new-line from the ends of all but the last line. (U seful for rejoining lines that
were split incorrectly by the s command.)

If a delimiter (and perhaps some text) is present, then the text will be inserted
between the text of the joined lines.

4th Berkeley Distribution 28 July 1983 7

XED(1) UNIX Programmer's Manual XED (1)

k
(.,.)kx

(., •)1

The mark command marks the addressed line(s) with name x, which must be a letter.
Either of the address forms 'x or X (capital letter) then address this/these line(s). If no
character is specified after the command, all currently marked lines are listed.

The list command prints the addressed lines in an unambiguous way: non-graphic
characters are printed as AX, and long lines are folded. Tab characters show as :> and
backspace characters are displayed as <. An I command may follow most others on
the same line.

(.+1 , .+nn)Ia
One page of text is listed as in the 1 command above. The text is guaranteed not to
scroll off the screen.

(1 , $)11

m

The entire contents of the edit buffer are listed as if "1,$1" had been typed.

The characters A $.• [& \(\) and \ lose or regain their special meaning in patterns
as well as in the substitute command. Each invocation of m toggles the "magic"
characters on/off.

(.,.)ma
(• ,".)moa

D

D+
D-

(• , •)p

The move command repositions the addressed lines after the line addressed by a.
The last of the moved lines becomes the current line.

Line numbering is toggled on or off.

Line numbering for the I (and other variants) command is turned on for a +, off for a

The print command prints the addressed lines. . is left at the last line printed. The p
command may be placed on the same line after most commands.

(.+1 , .+nn)pa
One page of text is printed out. The text is guaranteed not to scroll off the screen.
(See the: command below.)

4th Berkeley Distribution 28 July 1983 8

XED (1) UNIX Programmer's Manual XED(l)

(l,$)pp

q
qi

The entire contents of the edit buffer are listed as if "l,$p" had been typed.

The quit command causes xed to exit. No automatic write of a file is done. If the
edit file has been modified. and the entire contents of the buffer have not been written
to a file, a query will be issued to insure that the user has not forgotten to write his
file. If the i is present, the editor will quit immediately (without double-checking
first). Moreover, if the -f flag was selected, the file will not be (over)written.

($)r filename

s

The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (see e and f commands). The
remembered file name is not changed unless filename is the very first file name
mentioned. Address "8" is legal for r and causes the file to be read at the beginning
of the buffer. If the read is successful, the number of lines read is typed. . is left at
the last line read from the file.

The stop command without any parameters performs an automatic write (w) if the file
has been modified and then exits the editor.

(. , . }s/regu/ar expression/replacement/
(. , • }s/regular expression/replacement/nn
(• , • }s/regu/ar expression/replacement/g

The substitute command searches each addressed line for an occurrence of the
specified regular expression. On each line in which a match is found, one of the
folowing actions are taken for each of the three forms of the command:

1. The first occurrence of the specified expression is replaced by the replacement
text.

2.

3.

sann

The nn-th (where nn is a decimal number) occurrence of the specified
. expression is replaced by the replacement text.

All occurrences of the specified expression are replaced.

It is an error for the substitution to fail on all addressed lines. Any character other
than newline may be used instead of / to delimit the regular expression and the
replacement. . is left at the last line substituted.

An ampersand & appearing in the replacement is replaced by the string matching the
regular expression. As a more general feature, the characters \n, where n is a digit,
are replaced by the text matched by the n-th regular subexpression enclosed between
\(and \). When nested, parenthesized subexpressions are pres,~nt, n is determined by
counting occurrences of \(starting from the left.

Lines may be split by substituting newline characters into them. The newline in the
replacement must be escaped by preceding it with a \.

The save-count command changes the default (35) count of text-changing commands

4th Berkeley Distribution 28 July 1983 9

XED (1)

t

UNIX Programmer's Manual XED (1)

which may be executed before an automatic buffer save will be done. (nn is a decimal
number.) The save file name is the current filename with a .edt extension. A count of
zero (0) will disable the auto-save feature.

All tab stops currently in effect, as set by the t,nn command, are listed.

(.,.)ta

t-c

A copy of the addressed lines is trans/erred after address a (which may be 0). . is left
at the last line of the copy.

Set tab character to c. All occurrences of this character entered by the a or i
commands will be expanded to the appropriate number of fill characters to get to the
next column with a tab stop. Any occurrences of the tab character after the last tab
column will be untouched.

t,nn,nn, ...

u

Set tab stops in specified (decimal) columns. Numbers preceded by a - will clear the
tab setting at that position. The number zero clears all tab settings.

The undo command will restore the last modified line to its original condition. This
is different from the x (undelete) command, which recovers blocks of deleted lines,
whereas u will restore only one line, when modified by a substitution or tab expansion.
Undo will not recover from a join command, nor from any deletion, which is
processed by the undelete command.

(1 , $)v/regular expressionlcommand-list
(1 , $)v/regular expression/vcommand-list

This command is the same as the global command except that the command list is
executed with • initially set to every line except those matching the regular expression.

(1 , $)w filename
(1 , $)w>filename
(1 , $)wi filename

w=nn

The write command writes the addressed lines onto the given file. If the file does not
exist, it is created (see umask(2». The remembered file name is not changed unless
filename is the very first file name mentioned. If no file name is given, the
remembered file name, if any, is used (see e and f commands) .. is unchanged. If the
> is present, the addressed lines will be appended onto the end of the file. If the wi
form is used, and the file is write-locked, then xed will attempt to over-ride the file
permission, if possible.

Sets xed's idea of how wide the screen is to nn columns. This is used in calculating
how many lines will fit on the screen with a : command, and may be preset with the
-w flag (see above).

4th Berkeley Distribution 28 July 1983 10

XED(l)

(•)x

(•)y+
y
y-

UNIX Programmer's Manual XED (1)

Undelete is used to recover the most recently deleted (or replaced) block of lines. . is
left at the last recovered line.

Example:
25,34d.
•
24x

delete the lines
see the damage
recovers the lost lines

This command changes the processing of an interrupt received from the terminal. If
the - is present, normal processing takes place. That is, the message
"INTERRUPT1" will be displayed on the terminal and xed will prompt for another
command. If the + is present, the addressed line is set as the initial address for the :
command, which will automatically be invoked upon each interrupt. Lastly, if no
character follows, then upon each interrupt, one page will be displayed from . onward,
which is useful for paging through sections of text.

@./ilename
@pfilename

Xed opens the specified file, and reads command lines from it. The commands are
echoed to the terminal (if the p is present) as each character is processed. This allows
monitoring the command file as it is running, so that erroneous command line(s) will
appear before their respective error messages. If no filename is given, the last
indirected filename, if any, will be used.

! UNIX-command
The remainder of the line after the ! is sent to the shell (see SH(1» to be interpreted
asa UNIX command .. is unchanged.

(.)1 UNIX-command

1+
1-

The addressed lines are piped as the standard input to the command(s) following the I
symbol. The UNIX command is passed to the shell (as in ! above) to be processed.
Line numbers will not precede the lines of text sent to the command(s) unless
explicitly enabled via the D+ command (see above).

Turn on (or off, respectively) strict checking of the exit status of UNIX commands
executed via the 1 1 command. If checking is enabled, no processing will be done on
the text returned by a command which has a non-zero exit status (thereby implying an
error occurred). This reduces the chance of erroneous command processing causing
loss of lines. Lines deleted by the I I command may be recovered with x (undelete).

4th Berkeley Distribution 28 July 1983 11

XED(1) UNIX Programmer's Manual XED(l)

(.) I I UNIX-command
This variant of the pipe command (commonly referred to as the "double-pipe"
command) performs similarly to the I command above, but replaces the lines sent to
the command(s) with those received from the command(s) on the standard output of
the command(s). If the error status from the command(s) is not that of a normal exit,
no change will be made in the text. Similarly, (by default) if the exit status of the
command(s) is non-zero (possibly indicating an error) no changes will be made. This
is due to the existence of many older programs which do not terminate with a
meaningful exit status. The strict exit status checking may be disabled via the 1-
command below. An optional line number (not address) may immediately follow the
I I which will specify the line after which the returned lines are to be placed.

1< UNIX-command
Lines generated by the UNIX command(s) are inserted after.. An optional line
number (not address) may immediately follow the < which will specify the line after
which the returned lines are to be placed.

(•)I >UNIX-command
The only difference between this command and the I I command above is this variant
inserts the generated text after the lines sent, instead of replacing the original lines.
An optional line number (not address) may immediately follow the> which will
specify the line after which the returned lines are to be placed.

(.+1 , .+nn):
(.-nn , •):-
(.-nn , .+nn).

One page of text is printed out. The text is guaranteed not to scroll off the screen.
The first form (just the: alone) will start at the addressed line, the line following. is
the default, and print one screenful, or page of text. . is set to the last line displayed.
The second form, :-, displays one screenful, leaving • as the last line displayed, and
remaining as the current line. The last form, *, displays one screenful, with. centered
in the page.

(. + 1 , . + nn)(newlinej
An address alone on a line causes the addressed line to be printed. A blank line alone
is equivalent to ".+l,.+nnp"; it is useful for stepping through text. The nn is the
count specified with the b command (default 1).

If an interrupt signal (ASCII DEL) is received, xed prints "INTERRUPTI" and returns to its
command level. (See also the y command for alternate interrupt processing.)

Some size limitations
512 characters per line, (see the -B flag above)
256 characters per global command list,
64 characters per file name,
128K characters in the temporary file (PDP-II version only)
(256K characters with -h flag)
(No limit on the Vax version)
The limit on the number of lines depends on the amount of core:

each line takes I word.
(The current absolute maximum on the PDP-II 's is 24,062 lines.)

4th Berkeley Distribution 28 July 1983 12

XED (1) UNIX Programmer's Manual

FILES
Itmp/e?????

temporary; ????? is process number (in decimal).

Itmp/ep?????
temporary for I I stuff .

•. hup if hangup signal is received .

•. bale if -b flag is specified .

• .int if -i flag is specified and an interropt is received .

•. edt auto-save (every 35 commands) .

•. trm if termination signal is received.

letc/xed.doc
for the help command.

DIAGNOSTICS
Each command has self-explanatory error messages.

SEE AlSO
ed(1), edit(l), eed(1), ex(1), umask(2), vi(1)
A Tutorial Introduction to the ED Text Editor - B. W. Kernighan

BUGS

XED (1)

A \ followed by a newline, useful for splitting lines with the substitute command, may not be
passed through the global command.

If line(s) are deleted which include the endpoints of a range marked with the k command,
that mark-name character will not work correctly.

4th Berkeley Distribution 28 July 1983 13

..

B PROGRAMMING LANGUAGE & ENVIRONMENT
CWI

Copyright (c) Stichting Mathematisch Centrum, Amsterdam, 1984.

HOW'TO INSTALL Mark1:

Decide on some directory to put the B system in, for instance /usr/src/local. Check the tape
sticker, and your system's documentation to infer the precise 'tar' command. (Consult the sheet
'The B files on ANSI labelled tapes' if you asked for an ANSI tape). Then, mount the tape and
type something like:

cd /usr/src/1ocal
tar x

which will extract all files into the directory /usr/src/local/)). You will need 2.5 megabytes in
total to compile and load the system. Now type:

cdB
Setup

which will ask you some questions to set the B system up on your installation. You can call
'Setup' any number of times without spoiling files. So run it once to see what questions you will
be asked. IT you don't know the answer to some question, you can run it again.

make all

will compile and load the B system, install the 'b' command file in .Ibin and the binaries and
datafiles it needs in .Ilib. You can test the B interpreter with:

make examples

This runs some examples in .lex. It does not test the B editor, however; that can only be done
interactively. Try that in .lex/try. Consult the sheet 'HOW/TO TRY the B editor' (also in
.lex/try/README) ..

If all is well and you want to make B public

make install

will do some recompilations to get the right patbnames in, and install the 'b' shell command file,
the 'b. 1 ' manual file, and the auxiliary files in the directories you indicated during setup. Finally

make clean

will clean all intermediate object files from the source directories.

To run the B system you only need the commands, binaries and data files installed in .Ibin and
.I lib. IT you have made B public, all necessary tiles have been copied to the public places, and you
can get rid of the entire B tile system hierarchy you extracted from the tape, if you want.

IT there are any problems, don't panic. Edit the example Bug Report fonnin .I doc to communi­
cate the problem to us. We will then send out ditfs for fixed problems in the future.

Above all, we would be very grateful to receive any comments you have about the setup procedure,
or the B system in general, on how to make it easier to use.

Good luck!

Copyright (c) Stichting Mathematisch Centrum, Amsterdam, 1984.

HOW'TO TRY the B editor:
The directory B/ex/try is here to try the B editor interactively. The example B workspace here
can always be regenerated with:

cd . .Igenerate
cp \ ' •. .Itry
cd . .Itry

Now enter the B system from this directory with

. .I . .Ibin/b

After the B system has started up it will prompt for a command with

>>> 1
Slowly type's', then 't', (no capitals needed) and you should see the B editor suggest the SELECT
and START commands, respectively. Now press [TAB] to accept this last suggestion, and
[RETURN] to enter the START command to the B interpreter. This command will promt you for
input. with

? ...
Just enter about four lines of text, (which will be echoed), ending with an empty one (press
[RETURN1 immediately). A short 'poem' should be generated by the B interpreter.

If you are already familiar with the B language. you might try to edit the START unit by answer­
ing

»>1
with

: START

For example, try to remove the SET'RANDOM command, to get random results on the same input.
Or make the unit delay the echoing of the text, entered by the user, until after the reading of the
empty line. For testing purposes you should at least try the arrow keys to move the focus around.

You can undo any change by pressing [BACKSPACE].
You can get help with 1.
You can leave the B editor with control-X.
You can leave 'b' by typing QUIT.

For more information, see the manual pages 'B(l)' and 'btermina1(S)" and the User's Guide.

See the B Newsletter, issue 2, for a description of the 'generate' program.

If there are any problems with the editor, consult the 'bterminal(S)' manual entry before trying
anything else.

B(1) UNIX Programmer's Manual B(1)

NAME
b - B interpreter & environment

SYNOPSIS
b Starts the B interpreter

b -e Starts the B interpreter, using the editor defined in the environment variable
EDITOR (vi default)

b file '" Makes the B interpreter execute the B commands in the named file or files.
Input for READ is taken from standard input. .

b -i table An empty permanent table table is created; standard input is read, and its lines
(considered as texts) are successively put in tablell]. tablel2] • ...

b -0 table The associates of the permanent table table are written to standard output, one
to a line. .

b -I The units in the workspace are listed on the standard output.

b -p The units in the workspace are printed on the system's printer.

DESCRIPTION
A 'B 'work-space' corresponds to a UNIX directory in which the units and permanent targets
are kept as separate files.

A call of b starts the B interpreter; commands can be entered and will be performed immedi­
ately. The B system takes over control of the screen; it reacts immediately to each key
pressed. There is a repertoire of editing operations using function keys and control charac­
ters, which may be used to edit the input. A description of all editing operations is given in
the User's Guide. The manual entry bterminal(5) tells you how the binding of the operations
to your terminal's keys can be changed. Here we describe the basic mechanisms using the
default key bindings, as listed in the summary at the end.

When the first letter of a command is typed (upper case is not necessary), a possible continua­
tion is suggested on the display. The suggestion can be accepted by pressing the [TAB] key;
this moves the cursor to the first hole (shown as '1') in the suggestion, or to the end of the line
if there is none. The suggestion can also be ignored; when more characters are typed the
suggestion is changed to conform to these, or removed if nothing applies.

When a command has been completed, it can be executed by pressing [RETURN]. For control
commands such as IF and FOR, [RETURN] moves the cursor to an indented position on the
next line, awaiting entry of the 'body' of the control command, which may consist of any
number of lines. When [RETURN] is pressed twice in succession, this reduces the indentation
level; the command is executed when the indentation level is back to zero.

Corrections can be made by pressing the [BACKSPACE] key. This cancels the effect of any key
pressed, including [TAB] and the editing operations, as well as [RETURN] within a control com­
mand. Repetition of [BACKSPACE] cancels more keys, to a maximum of 100 (currently). Once
execution of a command has started, it cannot be corrected, though it can be stopped by
pressing [BREAK] at any time. If the copy-buffer is empty (see the Copy command), the last
command executed, last input provided or last text deleted is saved in the buffer, and can be
retrieved with [control-C]. It may then be edited using standard editing operations.

When the user types the first line of a HOW'TO-, YIELD- or TEST-command, editing of the
unit continues in a similar way to editing an IF or FOR command. The user can complete
the unit through standard editing operations, and finish by pressing [control-X] or several
[RETURN]S. Further commands can then be given.

An existing unit can be edited by typing, on the command level, a colon (:) followed by the
unit name. Similarly, an existing target can be edited by typing an equals-sign (==) followed
by the target name. The name may be left out in subsequent edit requests for the same

7th Edition

B(l)

FILES

UNIX Programmer's Manual B(l)

object, or for the unit that most recently caused an error message.

When a unit that is being edited gets longer than the screen size, a scroll bar will be displayed
at the bottom of the screen. It shows approximately which part of the unit is visible on the
screen. If your terminal has the Goto operation. and you goto some place on the scroll bar,
the B system will reposition the visible part of the unit accordingly.

A double colon (::) given at the command level lists the headings of the units in the present
workspace. Likewise, a double equals-sign (= "") gives the names of the permanent targets.

A call of b -e starts the B interpreter, but uses the editor defined by the environment variable
EDITOR. If this is not set then vi is used. The editor is then only used for entering units, or
editing existing units; immediate commands cannot be edited.

The other calls of b do not activate the interpreter, but provide communication between the
workspace and UNIX, as described above in the synopsis.

SHOME/.Bed.. buf
SHaMEl. Bed.. pos
.b_perm
.b_temp
.BecLsugg
'*, <*, "*, >*
=*

copy buffer (if locked) between sessions
focus position of last 50 edited units
table mapping object names to file names
scratch file
suggestion list for user-defined commands
units in this workspace
permanent targets in this workspace

SEE ALSO
bterminal(5)
Lambert Meertens, Draft Proposal for the B Programming Language; Semi-formal Definition,

Mathematical Centre, 1982.
Lambert Meertens and Steven Pemberton, Description of B, CWI (formerly Mathematical

Centre), 1984. Also: SIGPLAN Notices, Vol. 20, No.2, February 1985.
Steven Pemberton, A User's Guide to the B System, CWI, 1984.
B Quick Reference card. Available from CWI.
Leo Geurts, Computer Programming for Beginners, Introducing the B Language; Part 1, CWI,

1984. (Also available in Dutch.)
Leo Geurts, An Overview of the B Programming Language, or B without Tears, SIGPLAN

Notices, Vol. 17, No. 12, December 1982.

AUTHORS
Frank van Dijk, Leo Geurts, Timo Krijnen, Lambert Meertens, Steven Pemberton, Guido van
Rossum

7th Edition 2

B(l) UNIX Programmer's Manual B(1)

SUMMARY OF EDITING OPERATIONS
Name Default Keyst Short description

Accept [TAB] Accept suggestion, focus to hole or end of line
Return [RETURN] Add line or decrease indentation

Widen f1, [ESC] w Widen focus
First /2, [ESC] f Move focus to first contained item
Last /3, [ESC] I Move focus to last contained item
Extend 14, [ESC] e Extend focus (usually to the right)

Upline /5, [ESC] u Move focus to whole line above
Previous 16, [ESC] p Move focus to previous item
Next }7, [ESC] n Move focus to next item
Downline fB, [ESC] d Move focus to whole line below

Up t, [ESC] U Make new hole, move up
Down t, [ESC] D Make new hole, move down
Left -, [ESC] , Make new hole, move left
Right -, [ESC] . Make new hole, move right

Goto [ctrl-G] New focus at cursor position

Undo [BACKSPACE] Undo effect of last key pressed (may be repeated)
Redo [ctrl-U] Redo last UNDOne key (may be repeated)

Delete [ctrl-o] Delete contents of focus (to buffer if empty)
Copy [ctrl-C] Copy buffer to hole, or focus to buffer

Record [ctrl-R] Start/stop recording keystrokes
Play [ctrl-P] Play back recorded keystrokes

Look [ctrl-L] Redisplay screen
Help [ESC]? Print summary of editing operations

Exit [ctrl-X] Finish changes or execute command
Interrupt [BREAK], [DEL] Interrupt command execution

t Notes:

The binding of editing operations to keys may be different for your terminal; see bterminal(5)
for more information.

Keys named fJ .. .f8 are function keys. The way to type these is terminal-dependent. The codes
they send must be defined by the termcap entry for your terminal. See bterminal(5).

If a terminal has arrow keys t, -, -, t which transmit codes to the computer, these should
be used for Up, Down, Left and Right. Again, the termcap entry must define the codes.
The Goto operation can only be used if the cursor can be moved locally at the terminal; the
Goto operation will sense the terminal for the cursor position, using two extra non-standard
termcap capabilities; see bterminal(5) for more details.

If you have set your interrupt character with stty(1) to something other than [DEL], you can
type [ctrl-lJ for Interrupt.

[Ctrl-O] means: hold the [CTRL] (or [CONTROL]) key down while pressing d.

[ESC] w means: press the [ESC] key first, then w.

7th Edition 3

•

BTERMINAL (5) UNIX Programmer's Manual BTERMINAL(5)

NAME
bterminal - adapting the B system to your local terminals

DESCRIPTION
The B system uses the termcap library to address the terminal, and determines the codes sent
by your terminal's function keys from the term cap database. To this end it uses the environ­
ment variables TERM and TERM CAP to determine the type and capabilities of your termi­
nal. (See tset(l) and termcap(5) for the exact use oftermcap.)

You can also redefine the binding of editing operations in a key definitions file. There are a
number of places where this file can be found, so that there can be different key bindings per
terminal and per user. It is even possible to define an environment variable giving this place.

DEFAULT KEY BINDINGS
The following table gives the names of the editing operations, and the default bindings.

Notes:

Name Default bindings Termcap bindings

accept 4 I (1)
return 4M
widen "'ew"
first "'ef"
last "'el"
extend "'ee"
upline "'eu"
previous "'ep"
next "'en"
downline "'ed"
up "'eU"
down "'eO"
left "'e,"
right "'e."
goto 4G
undo 4H
redo 4U
delete AD
copy AC
record AR
play .p
look AL
help "'e?"
exit AX

ignore (3)
tenIL init (4)
tenIL done (4)

kl (2)
k2
k3
k4
k5
k6
k7
k8
ku
kd
kl
kr

ks
ke

(1) A X means the Control-X character, 'e means escape; see below for an exact descrip­
tion of the format of key definitions.

(2) The termcap entries kl ... k8 describe the codes sent by the function keys, and ku ...
kd decribe the codes sent by the arrow keys.

(3) With the name ignore you can declare input strings illegal; see below.

(4) The termcap entries ks and ke ~re sent to the terminal at startup and upon exiting.

7th Edition

..

BTERMINAL (S) UNIX Programmer's Manual BTERMINAL (5)

The third column of the table describes additional bindings for some operations that are
derived from termcap, if the termcap entry for your terminal defines that capability. If a
termcap definition conflicts with some other default, the definition derived from the termcap
holds. (For instance, on a Televideo the left arrow key sends A H; this means that the binding
of undo to AH (or [BACKSPACED is no longer valid.)

KEY DEFINITIONS FILE
Each line in the key definitions file contains one definition or a comment. A definition con­
sists of the name of the editing operation (see the table above), an equals sign (=), and one or
more items. Each item can be a string, a number, or a control-character. The latter is written
as ,A, followed by a letter. A number is an octal number if it starts with 0 (it should not
include 8 or 9, then), otherwise it is decimal; it stands for the corresponding ASCII character.
Strings are delimited by single (') or double n quotes. Inside strings, the following escape
sequences are recognized:

'ddd (one to three octal digits) the ASCII character ddd
~ backspace, 010
'e escape, 033
'f formfeed, 014
'n linefeed, 012
'f carriage return, 015
't tab, 011
~har any other character (notably \ or ' or ")

Finally, everything from a '#' character to the end of the line is taken as a comment (except
inside a string, of course).

Each definition implies that the concatenation of its items, when received as i~put, will pro­
voke the execution of the designated editing operation. A definition for the 'operation' ignore
means that this input string will be treated as an illegal operation (the B system will try to
ring the bell).

Definitions for the term_ init and term_ done operations define strings that will be sent to the
terminal at initialization time, and on exiting, respectively. These can be used to set pro­
grammable function keys, for instance.

Note that the definitions in the file only add to the already existing key bindings (see the
defaults above). When one definition is an initial subsequence of the other, the last one given
in the file holds. It is probably counter-productive to have the first item of a definition start
with a printable character, as this would make it impossible to enter that character.

Beware that you cannot use A] as a key binding when your interrupt character is not the
default [DEL] key; see below.

Examples:

widen = "'ep'f"
accept = AI
undo = A A '0· AM

HP-2621 function key I is escape p return
tab
unshifted function key lIon Televideo
used because left arrow overwrites A H

ignore = 0177 # ignore DEL (a common noise character)

The first of the following four files found by the B system is used to read key bindings from:

$HOME/.Bed.. $TERM
B_ LIB/.Bed.. $TERM
$HOME/.Bed..def
B_ LIBI . Bed.. def

7th Edition 2

BTERMINAL (5) UNIX Programmer's Manual BTERMINAL(5)

Here SHOME and STERM are the values of the environment variables; see sh(l) and tset(l).
B_LIB stands for a directory appointed by your system administrator (normally
lusr/newllib/B) where various auxiliary files for the B system are kept. This organization
allows different key bindings per user and per terminal.

HELP FILE
The file B_LIB/Be~help contains a screenful of help information, describing the editing
operations and the keys to which they are bound. If you change the key bindings this infor­
mation is not correct anymore, and so you can define an environment variable BED_HELP,
that gives the pathname of the file to be printed when the help operation is executed.

INTERRUPT
To interrupt the execution of a B command you should normally use the [BREAK] key. If
your interrupt character is the [DEL] key, this will also work. However, if you have set your
interrupt character with stty(l) to something other than [DEL], the B system will in tum reset
it to .]. This is done to prevent a collision with a key that accesses one of the B editing
operations, like AC for copy. It means that you cannot use A] as a key binding in a descrip­
tion file in this case.

INVERSE VIDEO (standout mode)
If your terminal skips a position on the screen when switching to or from inverse video, you
are out of luck. The B editor must be able to display part of a word in inverse video and the
rest normal, without surrounding spaces in between. You can still use B (without the B edi­
tor) with the command b -e; see b(1).

GOTO OPERATION

FILES

BUGS

The Goto operation can only be used on terminals that can move the cursor locally, ego the
arrow keys do not send any codes to the host computer. If your terminal can be sensed for
the cursor position, then you can use the operation to tell it you moved the cursor away. You
should ask your system administrator to add the non standard capabilities sp and cp to the
termcap entry for your terminal. The sp capability should define the string sent by the B sys­
tem to the terminal to request the cursor position. The cp capability must define the format
of the cursor position string as returned by the terminal; most of the % escapes as defined in
termcap(S) for cursor addressing are recognized (For example,

cp= ,£&a%r%3c%3Y· M:sp= ,£"()21

are the entries for a HP2621 terminal.)

B_LIB
SHOMEI.Be~STERM
B_LIB/.Be~$TERM
SHOMEI.Be~def
B_LIB/.Be~ def
SBED_HELP
B_LIB/Be~help

lusr/newllib/B, unless changed by your system administrator
key definitions file; first of these four holds

file with one screenful of help info
default help file

In searching for the key definitions file .Be~STERM the B system doesn't recognize aliases
for terminal types. Watch out for variations like e.g. TERM=2621-wl.

7th Edition 3

Copyright (c) Stichting Mathematisch Centrum, Amsterdam, 1984.

==
= The B programming language and environment. =
==

Authors:

Net address:

Description:

Frank van Dijk
Leo Geurts
Timo Krijnen
Lambert Meertens
Steven Pemberton
Guido van Rossum

Centrum voor Wiskunde en Informatica
Department of Computer Science
POB 4079
1900 AB Amsterdam
The Netherlands

••• {decvax,philabs}lmcvaxltimo

B is a new programming language and environment for personal computing
being designed and implemented at the CWI.
We have tried to combine attractive features in existing systems
with some ideas of our own.

Some of the good points of B programming language proper are:
• a powerful collection of only five different data types

that may easily be combined;
• strong typing, yet ~thout declarations;
• no limitations, apart from sheer exhaustion of memory;
• refinements to support top-down programming;
• nesting by indentation.

Some of the good pOints of the B environment are:
• no need for files; units (procedures and functions) and global

variables remain after logging out;
• one consistent face is shown to the user at all times,

whether she executes commands, edits units, or enters input to
a program;

• generalized undo mechanism.

The Mark 1 distribution is a full implementation of the language, with
a small environment that includes a B dedicated editor front-end to the
interpreter, variables that survive logging out, and independently
editable program units.

I Copyright (0) Stichting Mathematisch Centrum, Amsterdam, 1984.

===
= The Structure of the file system of the Mark 1 Implementation of B. =
===
I
DIRECTORY STRUCTURE ,
bin place to install 'b' shell command file within B file system.

ex example B workspaces.

doc documentation.

lib place to install auxiliary files and binaries within B file system.

man manuals.

src sources for the B system.

src/b
sources for 'b' shell command file and its auxiliary files.

src/bed
sources for the B editor 'bed'.

src/bint
sources for the B interpreter 'bint'.

src/libbed
sources for auxiliary files needed by the B editor.

src/libtermcap
sources for the termcap library needed by the B editor.

I
I README's and MAKEFILE's
I

All source directories have README and Makefile files.
These Makefiles accept the following entry points:

make install

make clean

make print

I
, generic files
I

build new version of a program or library and install it
together with auxiliary files in ./bin or ./lib.

remove unnecessary files that can easily be rebuilt.

print sources, documentation or manuals.

Most source Makefile's and src/b/b.sh and src/b/b p.sh are generated
from generic copies by ./Setup. If you need to edIt any of these and
still be able to run ./Setup later, you must edit the xx.gen generic
version of the file, and install it by running ./Setup.

FROM

Name:

Firm/Institute:

Address:

Telephone:

Internet network address:

Machine Type: o vax o sun o pdp o other:
Operating System: o 4.2 BSD o Version 7 o System V o other:
==
B VERSION: Mark1C.
========~===

FAULTY PROGRAM:

DESCRIPTION OF FAULT:

REPEAT BY:

==

Send to

B Group
Informatics / AA
CWI
POB 4079
1009 AB Amsterdam
The Netherlands

or by electronic mail to

••• {decvax,philabs,seismo}lmcvaxltimo

DIPRESS - XEROX INTERPRESS TOOLS
Xerox

CHARSET(I) UNIX Programmer's Manual CHARSET(I)

NAME
charset - print all characters within a given character subset of an interpress font

SYNOPSIS
charset [-psubset] [-spointsize] [-ooutputfile] fontname

DESCRIPTION

FILES

Charset will create an interpress master which will print a specified character subset of an
interpress font at a given point size.

The specification for fontname is treated as the final identifier of the universal naming scheme
in §3.2.2 in Interpress Electronic Printing Standard (XSIS 048404). The name specified is
appended to ·Xerox/XCI-I-I!" to form the full interpress name.

The following options are understood:

-psubset
The number of the character subset to be printed. This is specified in octal and
defaults to character subset O.

-spointsize
The point size to be used for the font to be printed. This is specified in decimal and
defaults to IO.

-ooutputfile
The name of the file to be created as the interpress master. If the option is omitted,
the interpress master will be created on the standard ouptut, so it is best to redirect
this to a file or pipe to the queueing software. Note that outputfile may directly follow
the -0 or it may be the next argument in the list.

/usrl1ocalllib/fontldevipress device and font information

SEE ALSO
Interpress Electronic Printing Standard, XSIS 048404

AUTHOR
William LeFebvre, Webster Research Center, Xerox Corporation

BUGS
The output file is not automatically queued for printing.

4th Berkeley Distribution 5/23/85

DIPRESS(1) UNIX Programmer's Manual DIPRESS(l)

NAME
dipress - convert device independent troff output to interpress

SYNOPSIS .
dipress [-Cdirectory] [-olist] [-t] [file] ...

DESCRIPTION

FILES

Dipress take the output of device independent trojJ(1) found in the files specified, produce an
interpress file, and queue that file for printing on the interpress printer. If no files are
specified, then standard input is used. The following options are understood:

-Cdirectory
Take font information from directory instead of the default.

-olist Print pages whose numbers are given in the comma-separated list. The list contains
single numbers N and ranges Nl-N2. A missing Nl means the lowest numbered page,
a missing N2 means the highest.

-t Direct output to standard output rather than the printer. No queueing is performed if
this option is specified. Redirecting standard output is highly recommended when
this option is used.

/usrllocalllib/fontldevipress

SEE ALSO

device and font information

troff(l)

AUTHOR

BUGS

William leFebvre, Webster Research Center, Xerox Corporation

If you have Services 11 or earlier on your printer, long boxes will experience a small
overshoot at the right end.

For a similar reason, it is recommended that the -D option be used with pic(1). Any pictures
built with the drawing commands will not show up on the Xerox. 8700/9700. That printer
uses a different representation for bitmaps than the 8044.

4th Berkeley Distribution 5/23/85

IPMETRICS (1) UNIX Programmer's Manual IPMETRICS(1)

NAME
ipmetrics - convert an Interpress metrics master to other forms

SYNOPSIS
ipmetrics [-t] [[- T] [-d destinationLibrary] file ...

DESCRIPTION
Ipmetrics executes the Interpress metric masters given on the command line and converts the
results to the metrics formats for various composition systems. Currently the system will pro­
duce metrics for Troft' and TeX.

The default option is -t which means to produce metrics files for troft'. The -T says to pro­
duce metrics for TeX. The -d option specifies the final destination of the output metrics files.
This program doesn't place the metrics files there immediately, it uses this option to help gen­
erate a shell script to do the installation. The default for this option is site dependent.

On the standard input is a description of the mapping from the font names in the metric mas­
ter to target font names. The standard-input is token-based where tokens are seperated by
white space. A "#" in column one (1) indicates a comment. The first token on the standard
input must be "device" followed by the name of the target device. Each line after that con­
tains the description of one font. Each of these lines has five (5) tokens in it. The first three
are the full universal name of the font, the next is the name as it's known to the destination
composition system and the last token names a file that will contain the mapping specification
for the font. That file will specify how to translate from the metric master's character set
(usually XCI-I-I) to that of the destination system. Note that a font in the metrics master
can be named multiple times to create several logical fonts for one physical font. Example:

this is a commment
device 8044
Xerox XC 1-1-1 TroffClassic
Xerox XCI-I-I TroffMathExtra
Xerox XC 1-1-1 TroffMathExtra

R troffClassic.map
RN romanNumerials.map
XX xerox-eXtra.map

The •. map files are used to map between XCl-l-1 and the destination system. Each line
should specify a different character in the 16 bit character space. The first token specifies the
high-order eight bits in octal and the second token the low-order eight bits (again in octal).
The third byte specifies the Troff ascender/descender information and the rest of the line
specifies various names for that character. Example:

#char (a Ide)sender alias
0041 2 !
0042 2

SLIB/fontsi. fonts •. map mapping files

SEEAISO

BUGS

The Interpress Toolkit manual, dipress(1), troff(1)

Fuzzyness about the nature of what the DVI -> Interpress converter wants make the TeX
mode less than perfect. Fuzzyness about the "easy" property of a master makes handling sizes
non-uniform.

7th Edition 1/15/86

IPTOTEXT (1) UNIX Programmer's Manual

NAME
iptotext - convert an interpress file into intertext

SYNOPSIS
iptotext [-d J [-0 output/tle J [file ...]

DESCRIPTION_

IPTOTEXT (1)

Iptotext will convert an interpress file into a readable Ascii form. This textual form, called
intertext, consists of, basically, numbers and operator names. The output can be edited by
any conventional text editor and converted back to an interpress file with texttoip(1).

The -d option will cause pixel arrays to be formatted and included in the output. The default
is to not dump pixel array data because of its voluminous nature.

If -0 is specified, the text is written to the file output/tle. If no output file name is given, the
output appears on standard out. Note that this is a little different than texttoip(1).

AUTHOR
William LeFebvre

SEE ALSO
texttoip(1)

Intertext-a Textual Representation of Interpress, William LeFebvre
Interpress Electronic Printing Standard, XSIS 048404

4th Berkeley Distribution 5/23/85

IPTROFF(1) UNIX Programmer's Manual IPTROFF(1)

NAME
iptrotf - convert trotf to Interpress

SYNOPSIS
iptroff [-D device] [-0 output-file] [-t] trotf arguments

DESCRIPTION

FILES

Itroff runs troff(1) sending its output through dipress(1) to produce typeset output for an Inter­
press printer. As the document is processed, the names of the passes will be printed. This
can be suppressed with the -q' (quiet) switch. If the trotf -t switch is specified, however, the
trotf output will be sent directly to the standard output and not piped through dipress. In
addition, the -q option is assumed with the -t option. If the -D switch is specified, then the
font metrics for the named device will be used instead of the default set. The actual printer
that the Interpress master gets sent to is site dependent. If the -0 option is specified, then the
Interpress master is left in the specified file rather than being transmitted to a print server.

The default font is TrotfClassic which is the normal Xerox Oassie font augmented to provide
all the special characters found in the trotf manual with the single exception of the Bell Sys­
tem Logo.

Example:

iptrotf -ms paper

will set a paper with the oms· macro package in the TrotfClassic.

$LIB/fonts/. default font mounts and bug fixes

SEE ALSO
The Interpress Toolkit manual, dipress(l), trotf(l)

BUGS
The TrotfClassic font is the only font currently being exported.

7th Edition 5/23/85

MAHA(1) UNIX Programmer's Manual MAHA(l)

NAME
maha - make and print interpress files

SYNOPSIS
maha [options] [files]

DESCRIPTION
Maha (maharani-the Interpress version of the program czarina) reads in text files, converts
them to interpress format and ships them to an interpress printer. It also performs some sim­
ple page formatting.

The environment variable MAHA may be used to specify default options. The value of
MAHA is parsed as a string of arguments before the arguments that appear on the command
line. For example, "MAHA='-f Classicl8'" sets your default body font to 8 point Dassie.

The possible options are:

-n Prints output n columns per page (note that n is limited to one digit)

-b banner
Uses banner to label the output. It will appear on the cover page on the line labeled
"Document". .

-c n Causes n copies of the output to be printed. The default is 1.

-Cfont
Sets the font to be used for the body of each page. The default is "Vintage­
Printwheell 1 0".

-F font Sets the font to be used for page headings. The default is "Modern-Boldl12".

-H header
Sets the format for page headings to the string header. Certain formatting options can
be embedded in this string. See the section below entitled "Header Format". The
default header is constructed from the file name, its last modification date, and a page
and line number.

-b header
Appends the string header to the current header format string. This can be used to
append something to the default header.

-1 Causes line printer simulation mode to be used: pages will be 66 lines long and
headers will be omitted.

-0 name

-0 file

Sets the delivery address of your output (the "For" field on the cover sheet) to name.
The default is your full name as recorded in the gecos field of the password file
("/etclpasswd").

The interpress code is written into file. The default is generated from the process i.d.
of the program.

-r Rotates the output 90 degrees on the page (landscape mode). This is good for output
that requires a wide paeg or for program listings when srecifying two columns. Some
people like the program listings produced by the command "maha -2 -r files".

-R Forces portrait mode. This overrides the -r option. It is useful if the environment
variable MAHA sets -r.

-5 pages
Selects pages to be printed. Pages may be a single page specification (eg. "5"), a range
of pages ("5-10"), or a list of page specifications (eg. "3,11-13"). Note that this syn­
tax is identical to that accepted by the -0 option of troff.

4th Berkeley Distribution 5/23/85

MAHA(1) UNIX Programmer's Manual MAHA(1)

-t Causes page headings (titles) to be omitted.

Specifying Fonts

The naming scheme for fonts is a slight variant on the universal naming scheme used by
interpress. See §3.2.2 in Inter press Electronic Printing Standard (XSIS 048404) for a descrip­
tion of universal names. Each identifier of a universal font name is separated by a slash ("I").
If the final identifier in the name is nothing more than a series of digits, as in "Classic/8",
then it is taken to be a point size. The actual universal name is formed by removing this last
identifier. If the last part of the name is not strictly a number, then the point size is assumed
to be 10. Since most environments use the same prefix for a universal font name, A standard
prefix of several identifiers is prepended to every font name given on the command line. This
can be overridden by placing a slash at the front of the given name in which case the univer­
sal name is formed by simply removing the slash from the front of the name. Note that the
point size calculation mentioned above will still be performed on this type of name.

Here are some examples that should clear the air:

Name Given

Classic
Modeml12
IRice/TimesRoman
IRice/TimesRoman/ltalic/8
IRiceNileBlob/81 1 0

Universal Name Point Size

XeroxlXCl-l-lIClassic 10
XeroxlXCl-l-lIModern 12
Rice/TimesRoman 10
Rice/TimesRomaniltalic 8
RiceNileBlob/8 10

If a font name has the unfonunate characteristic of containing nothing but numbers in its last
identifier, it can still be specified by always appending a point size to the name, as in the last
example above.

Header Format

The string that is used to build the header can have format options embedded in it. Each for­
matting option is preceded with the character "%" in a manner similar to printj(3S) strings in
C. The following format characters are recognized:

f current file name
t last modified time of the current file
p current page number
1 line number for the top line of the current page

If a percent sign is followed by a character not in the list above, then that character gets
printed (without the leading percent sign). Note that a percent sign can still be printed in the
header by placing two in the format. The default format string is:

"%f %t Page %p, line %1"

ENVIRONMENT
MAHA strings of options to be used by maha.

FILES
. /etc/passwd

SEE AlSO
cz(l)

contains information about system users

czarina

4th Berkeley Distribution 5/23/85 2

MAHA(l) UNIX Programmer's Manual MAHA(l)

BUGS

Interpress Electronic Printing Standard, XSIS 048404

The document name doesn't appear on the banner page like it should. This is really the fault
of the queueing software.

Maha will not realize that a file is already in interpress format and skip the conversion phase.

4th Berkeley Distribution 5/23/85 3

TEX'ITOIP (1) UNIX Programmer's Manual TEX'ITOIP(l)

NAME
texttoip - convert an intertext file into interpress

SYNOPSIS
texttoip [...:0 outputfi.le] [file ...]

DESCRIPTION
Texttoip will convert a textual representation of an interpress file (called an intertext file) into
an actual interpress file. The utility iptotext(1) generates output that is suitable to be used as
input to this program. If -0 is specified, the interpress codes are written to the file outputjzle.
If no output file name is given, the output is written to the file "intertext.ip" unless output
has been redirected away from the terminal. Sending interpress codes directly to a terminal is
not considered to be a worthwhile operation. If more than one file is specified as input, the
interpress header is taken from the first input file and any header specifications in subsequent
files are ignored.

AUTHOR
William LeFebvre

SEE ALSO
iptotext(1)

Intertext-a Textual Representation of Interpress, William LeFebvre
Interpress Electronic Printing Standard, XSIS 048404

4th Berkeley Distribution 5/23/85

ICON SYSTEM
Arizona

An Overview of the Icon Programming Language""

Ralph E. Griswold

TR 83-3a

May 13, 1983

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant MCS81-01916.

An Overview of the Icon Programming Language

1. Introduction

Icon is a high-level programming language with extensive facilities for processing strings and
lists. Icon has several novel features, including expressions that may produce sequences of results,
goal-directed evaluation that automatically searches for a successful result, and string scanning that
allows operations on strings to be formulated at a high conceptual level.

Icon resembles SNOBOL4 [1] in its emphasis on high-level string processing and a design philoso­
phy that allows ease of programming and short, concise programs. Like SNOBOL4, storage alloca­
tion and garbage collection are automatic in Icon, and there are few restrictions on the sizes of
objects. Strings, lists, and other structures are created during program execution and their size does
not need to be known when a program is written. Values are converted to expected ty.pes automati­
cally; for example, numeral strings read in as input can be used in numerical computations without
explicit conversion. Whereas SNOBOL4 has a pattern-matching facility that is separate from the
rest of the language, string scanning is integrated with the rest of the language facilities in Icon.
Unlike SNOBOL4, Icon has an expression-based syntax with reserved words; in appearance, Icon
programs resemble those of several other conventional programming languages.

Examples of the kinds of problems for which Icon is well suited are:

text analysis, editing, and reformatting

document preparation

symbolic mathematics

text generation

program parsing and translation

data laundry

• graph manipulation

Icon is implemented in C [2] and runs under UNIX· on the PDP-ll, VAX-ll, and Onyx C8002
computers. Implementations for other computers and operating systems are presently underway. An
earlier version of Icon [3] i.s available on several large-scale computers, including the CRAY.1, DEC·
10, IBM 360/370, PRIME 450/550/650, DG MV8000, and CDC eyber/GOOO.

A brief description of some of the representative features of Icon is given in the following sections.
This description is not rigorous and does not include many features of Icon. See [4] for a complete
description.

2. Strings

Strings of characters may be arbitrarily long, limited only by the architecture of the computer on
which Icon is implemented. A string may be specified literally by enclosing it in double quotation
marks, as in

greeting : = "Hello world"

which assigns an ll-character string to greeting, and

·UNIX is a trademark of Bell Laboratories.

-1-

address := ""

which assigns the zero-length empty string to address. The number of characters in a string s, its size, is
given by .S. For example, .greeting is 11 and .address is O.

Icon uses the ASCII character set, extended to 256 characters. There are escape conventions, simila.r to
those oCC , for representing characters tha t cannot be keyboarded.

Strings also can be read in and written out, as in

line : = readO

and

, write (line)

Strinp can be constructed by concatenation, asin

element : = "(" IlreadO II ")"
If the concatenation of a number oC strings is to be written out, the write function can be used with several
arguments to avoid actual concatenation:

write("(" ,read(), '')'')

Substrings can be formed by subscripting strings with range specifications that indicate,by position,
the desired range of characters. For example,

middle := liDe[10:20]

assigns to middle the string oCcharacters of line between positions 10and20. Similarly,

write(line[2D

writes the second character oC1iDe. The value 0 is used to refer to the position after the last character of a
string. Thus

write(line[2:0D

writes the substring of1iDe from the second character to the end, thus omitting the first character.

Anassignmentcanbemadetothesubstring oCatring-valued variable to change its value. For example,

1iDe[2] : = " ... "
replaces the second character of line by three dots. Note thatthe size ofline changes a utoma tically.

There are many functions for analyzing strings. An example is

flDd(sl,s2)

which produces the position in s2 at which 81 occurs as a substring. For example, if the value of greeting is
as given earlier,

find("or",greeting)

produces the value 8. See Section 4.2 for the handling oCsituations in which sl does not occur in s2, or in
which it occurs at several different positions.

3. Character Sets

While strings are sequences of characters, esets are sets of characters in which membership rather than
order is significant. Csets are represented literally using single enclosing quotation marks, as in

vowels := 'aeiouAEIOU'

Two useful built-in csetsare &lcase and &ucase, which consist of the lowercase and uppercase letters,
respectively. Setoperations are provided forcsets. For example,

-2-

letters := &lcase + + &ucase

forms the cset union of the lowercase and uppercase letters and assigns the resulting cset to letters, while

consonants := letters - - 'aeiouAEIOU'

forms thecsetdift'erence of the letters and the vowels and assigns the resulting cset to consonants.

Csets are useful in situations in which anyone of a number of characters is significant. An example is
the string analysis function

upto(c,s)

which produces the position s at which any character in c occurs. For example,

upto(vowels, greeting)

produces 2. Another string analysis function that uses csets is

lDany(c,s)

which produces the position in s after an initial substring consisting only of characters that occur in s. An
example of the use of many is in locating words. Suppose, for example, that a word is defined to consist of a
string ofletters. The expression

write(line[l:many{letters,line)])

writes a word atthe beginning ofline. Note the use of the position returned by a string analysis function to
specify the end of a substring.

4. Expression Evaluation

4.1 Conditional Expressions

In Icon there are conditional expressions that may succeed and produce a result, or may fail and not pro­
duce any result. An example is the comparison operation

i > j

which succeeds (and produces the value ofj) provided that the value ofi is greater than the value ofj, but
fails otherwise.

The success or failure of conditional operations is used instead of Boolean values to dri ve control struc­
tures in Icon. An example is

if i > j then k : = j else k : = j
which assigns the value ofi to k if the value ofi is greater than the value ofj, but assigns the value ofj to k
otherwise.

The usefulness of the concepts of success and failure is illustrated by find(sl,s2), which fails if sl does
not occur as a substring ofs2. Thus

if i : = find("or",line) then write(i)

writes the position at which or occurs in line, ifitoccurs, but does not write a value ifitdoes not occur.

Manyexpressions in Icon are conditional. An example is readO, which produces the next line from the
input file, but fails when the end of the file is reached. The following expression is typical of programming
in Icon and illustrates the integration of conditional expressions and con ventional con trol structures:

while line := readO do .
writeOine)

This expression copies the in put file to the output file.

-3-

If an argument of a function fails, the function is not called, and the function call fails as well. This
«inheritance" of failure allows the concise formulation of many programming tasks. Omitting the
optional do clause in while-do, the previous expression can be rewritten as

while write(readO)

4..2 Generators
In some situations, an expression may be capable of producing more than one result. Con,sider

sentence := "Store it in the neighboring harbor"
find("or",sentence)

Here or occurs in sentence at positions 3,23, and 33. Most programming languages treat this situa tion by
selecting one of the positions, such as the first, as the result of the expression. In Icon, such an expression is
agenerator and is capable of producing all three positions.

The results that a generator produces depend on context. In a situation where only one result is needed,
thefilstisproduced,asin

i := find("or",~entence)

which assigns the value 3 to i.
If the result produced by a generator does not lead to the success of an enclosing expression, however,

the generator is resumed to produce another value. Anexample is

if (i := find("or",sentence)) > 5 then write(i)

Here the first result produced by the generator, 3, is assigned to i, but this value is not greater than 5 and
the comparison operation fails. At this point, the generator is resumed and produces the second position,
23, which is greater than 5. The comparison operation then succeeds and the value 23 is written. Because
of the inheritance of failure and the fact that comparison operations return the value oftheir right argu­
ment, this expression can be written in the following more compact form:

write(5 < find("or",sentence»

Goal-directed evaluation is inherent in the expression evaluation mechanism orIcon and can be used
in arbitrarily complicated situations. Forexample,

find("or",sentence 1) = find("and" ,sentence2)

succeeds iforoccurs insentencel atthesameposition as and occurs insentence2.

A generator can be resumed repeatedly to produce all its results by using the every-do control struc­
ture. An example is

every i := find("or",sentence)
do write (i)

which writes all the positions at which or occurs in sentence. For the example above, these are 3, 23, and
33.

Generation is inherited like failure, and this expression can be written more concisely by omitting the
optional do clause:

every write(ftnd("or",sentence»

There are several built-in generators in Icon. Oneofthe most frequently used of these is

i to j

which generates the integers from i toj. This generator can be combined with every-do to formulate the
traditional for-style control structure:

-4-

every k : = i to j do
f(k)

Note thatthis expression can be written more com pactly as

every f(i to j)

There are a number of other control structures related to generation. One is alternation,

uprz I exp'2

which generates the results of exprz fonowed by the results of exP'2. Thus

every wrlte(ftnd("or",sentence1) I ftnd("or",sentence2»

writes the positions of or in sentence 1 fonowed by the positions of or in sentence2. Again, this sentence
can be written more compactly by using alternation in the second argument offind:

every write(ftnd("or",sentencel I sentence2»

Another use oCalternation is illustrated by

(i I j I k) = (0 I 1)

which succeeds ifanyofi,j, or khas the value Oor 1.

5. String Scanning

The string analysis and synthesis opera tions described in Sections 2 and 3 work bestfor relatively sim­
ple operations on strings. For complicated operations, the bookkeeping involved in keeping track of posi­
tions in strings becomes burdensome and error prone. In such cases, Icon has a string scanning facility
that is analogous in many respects to pattern matching in SNOBOL4. In string scanning, positions are
managed automatically and attention is focused on a current position in a string as it is examined by a
sequence oCoperations.

The string scanning operation has the form

s ? upr

where s is the subject string to be examined and expr is an expression that performs the examination. A
position in the subject, which starts at 1, is the focus of examination.

Matching functions change this position. One matching function, move(i), moves the position by i and
produces the substring of the subject between the previous and new positions. If the position cannot be
moved by the specified amount (because the subject is not long enough), move(i) fails. A simple example is

line ? while write(move(2»

which writes successive two-character substrings oCline, stopping when there are no more characters.

Another matching function is tab(i), which sets the position in the subject to i and also returns the sub­
string of the subject between the previous and new positions. For exam pIe,

line ? if tab(10) then write(tab(O»

first sets the position in the subject to 10 ar.d then to the end of the subject, writing line[lO:O]. Note that no
value is written if the subject is not long enough.

String analysis functions such as find can be used in string scanning. In this context, the string that
they operate on is not specified and is taken to be the subject. For example,

line ? while write(tab(find("or"))
do move(2)

writes all the substrings ofline prior to occurrences of or. Note that find produces a position, which is then
used by tab to change the position and produce the desired substring. The move(2) skips the or that is

-5-

found.

Another example of the use of string analysis functions in scanning is

line ? while tab(uptoOetters» do
write(tab(many()etters»)

which writes all the words in Une.

As illustrated in the examples above, any expression may occur in the scanning expression. Unlike
SNOBOIA, in which the operations that are allowed in pattern matching are limited and idiosyncratic;
string scanning is completely integrated with the rest of the operation repertoire orIcon.

8.Slractures

8.1 LisU

While strings are sequences of characters, lists in Icon are sequences ofvalues of arbitrary types. Lists
are created by enclosing the lists of values in brackets. An example is

carl := r'buick","skylark",1978,2450]

in which the list car I has four values, two of which are strings and two of which are in tegers. Note that the
values in a list need not all be of the same type. In fact, any kind ofvalue can occur in a list - even another
list, asin

inventory := [carl,car2,car3,car4]

Lists also can he created by

a := IisUi,x)

which creates a list ofi values, each of which has the value x.

The values in a list can be referenced by position much like the characters in a string. Thus

carl[4] := 2400

changes the last value in carl to 2400. A reference thatis out of the range of the listfails. For example,

write(carl[5])

fails.

The values in a list a are generated by!a. Thus

every write(!a)

writes all the values in a.

Lists can be manipulated like stacks and queues. The function push(a,x) adds the value ofx to the left
end of the list a, automatically increasing the size of a by one. Similarly, pop(a) removes the leftmost
value from a, automatically decreasing the size of a by one, and produces the removed value.

A list value in Icon is a pointer (reference) to a structure. Assignment of a structure in Icon does not copy
the structure itse1fbutonly the pointer toit. Thus the result of

demo := carl

causes demo and carl to reference the same list. Graphs with loops can be constructed in this way. For
example,

nodel := r'a"]
node2 := [nodel,"b'1
push(node 1,node2)

-6-

constructs a structure that can be pictured as follows:

node I •• >s .•.

node2 ' •• b<.'

6.2 Tables

Icon has a table data type similar to that ofSNOBOL4. Tables essentially are sets of pairs ofvalues, an
entry value and a corresponding assigned value. The entry and assigned values may be of any type, and the
assigned value for any entry value can be looked up automatically. Thus tables provide a form of associa­
tive access in contrast with the positional access to values in lists.

A table is created by an expression such as

symbols : = table(x)

which assigns to symbols a table with the default assigned value x. Subsequently, symbols can be refer­
enced by any entry value, such as

symbolsr'there'1 := I

which assigns the value I to the thereth entry in symbols.

Tables grow automatically as new entry values are added. For example, the following program seg­
mentprociuces a table containing a count of the words that appear in the input file:

words : = table(O)
while Une : = readO do

Une ? while iab(upto(leiiers» do
words[tab(many(letiers))] + : = I

Here the default assigned value for each word is 0, as given in iable(O), and +: = is an augmented assign­
ment operation that increments the assigned values by one. There are augmented assignment operations
for all binary operators.

Tables can be converted to lists, so that their entry and assigned values can be accessed by position.
This is done by sori(t), which produces a list of two-element lists from t, where each two-element list con­
sists of an entry value and its corresponding assigned value. For example,

wordlisi : = sori(words)
every pair : = !wordlist do

wriie(pair[l]," : ",pair[2D

writes the words and their counts from words.

7. Procedures

An Icon program consists ofa sequence of procedure dedarations. An example of a procedure dedara­
tionis

procedure max(i,j)
if i > j then return i else return j

end

where the name of the procedure is max and its formal parameters are i and j. The return expressions
return thevalueofiorj, whichever is larger.

-7-

Procedures are called like built-in functions. Thus

k := max(*s1,*82)

assigns to k the size of the longer of the strings s 1 and s2.

A procedure also may suspend instead of returning. In this case, a result is produced as in the case of a
return, but the procedure can be resumed to produce other results.·An example is the following procedure
that generates the words in the input file.

procedure genwordO
local liDe, letters, words
letters : = &Icase + + &ucase
while liDe : = readO do

eDd

be ? while tab(upto(1etters» do {
word : = tab(many(letters»
suspend word
}

The braces enclose a compound expression.

Such a generator is used in the same way that a built-in generator is used. For example

every word : = genwordO do
if find("or",word) then write(word)

writes only those words that contain the substring or.

8. An Example
The following program sorts graphs topologically.

procedure mainO
local sorted, nodes, arcs, roots
while nodes : = readO do {

arcs : = readO
sorted : = ,m

get next node list
get arc list
sorted nodes
get nodes without predecessors

while *(roots : = nodes
sorted II: = roots
nodes - -:= roots

snodes(arcs» > 0 do {

}
end

arcs : = deiarcs(arcs,roots)
}

if *arcs = 0 then write(sorted)
else write("graph has cycle")

-8-

add to sorted nodes
delete these nodes
delete their arcs

successfully sorted
cycle if node remains

procedure snodes(arcs)
local nodes
nodes := It"
arcs ? while move(1) do

move(2)
nodes 11:= move(1)
move(1)
}

return nodes
end

procedure delarcs(arcs,roots)
local newarcs, node
newarcs : = ""
arcs ? while node : = move(l) do {

if many(roots,node) then move(4)
else newarcs 11:= node II move(4)
}

retnrn newarcs
end

predecessor
skip It_>It
successor
skip It;It

get predecessor node
delete arc from root node
else keep arc

Graph nodes are represented by single characters with a list of the nodes on one inpu t line followed by a list
of arcs. For example. the graph

is given as

abcde

.................
I
I t
a------>b----·->c
tit
I I I
I t I
d - - - - - ->e. - . - - - - '

a- >b;a- >c;b- >c;b- >e;d- >a;d- >e;e- >c;

for which the output is

dabec

The nodes are represented by csets and automa tic type con version is used to con vert strings to csets and
vice versa. Note the use of augmented assignmen t operations for concatena tion and in the com pu ta tion of
cset differences.

Acknowledgement

Icon was designed by the the author in collaboration with Dave Hanson, Tim Korb, Cary Coutant. and
Steve Wampler. The current implementation is largely the work of Cary Coutant and Steve Wampler with
recent contributions by Bill Mitchell. Dave Hanson and Bill Mitchell also made several helpful sugges­
tions on the presentation of material in this paper.

-9-

RefereDces

1. Griswold, Ralph E., Poage, James F., and Polonsky, Ivan P. The SNOBOL4 Programming Language,
second edition. Prentice-Hall, Inc., Englewood Cliffs, NewJersey. 1971.

2. Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language. Prentice-HalI, Inc.,
Englewood Clift's, New Jersey. 1978.

3. Griswold, Ralph E. Differences Between Versions 2 and 5 of I con, Technical Report TR 83·5, Depart­
mentofComputerScience, The University of Arizona. 1983.

4. Griswold, Ralph E. and Griswold, Madge T. The Icon Programming Language. Prentice-HalI, Inc.,
Englewood Clift's, New Jersey. 1983.

-10·

Extensions to Version 5 of the Icon Programming
Language*

Ralph E. Griswold

Robert K. McConeghy

William H. Mitchell

TR 84-10a

June 27,1984; Revised August 4, 1984

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grants MCS81-01916 and
DCR-8401831.

Extensions to Version 5 of the Icon Programming

Language

1. IDtroduction

The standard features of Version 5 of Icon are described in Reference 1. Since Icon is the bypro­
duct of a research effort that is concerned with the development of novel programming language
facilities for processing nonnumeric data, it is inevitable that some extensions to the standard
language will develop.

Some of these extensions are incorporated as features of new releases. Others are available as
options that can be selected when the Icon system is installed [2]. This report describes the exten­
sions that are included in Version 5.9 of leon.

All the extensions are upward-compatible with standard Version 5 Icon. Their inclusion should
not interfere with any program that works properly under the standard version.

2. New Version 5.9 Features

2.1 The Link Directive

Version 5.9 contains a link directive that simplifies the inclusion of separately translated
libraries of Icon procedures. If icont(l) [3] is run with the -c option, source files are translated into
intermediate ucode files (with names ending in .ul and .u2). For example,

icont -c Hbe.icn

produces the ucode files Hbe.ul and Iibe.u2. The ucode files can be incorporated in another program with
the new link directive, which has the form

link Hbe

The argument ofJink is, in general, a list of identifiers or string literals that specify the names of files to be
linked (without the.ul or .u2). Thus

link Hbe, "/usr/iconlilib/collate"

specifies the linking oflibe in the current directory and collate in/usr/iconfilib.

The environment variable 1PATH controls the location of files specified in link directives. 1PATH
should be have a value of the form pI :p2: ... pn where each pi names a directory. Each directory is searched
in turn to locate files named in link directives. The default value of 1PATH is '.', that is, the current direc­
tory.

2.2 Installation Options

When an Icon system is installed, ~ arious configuration options are specified [2]. The value of the key­
word &options is a string that contains the command line argumen ts tha t were used to configure Icon.

3. Optional Extensions

There are two extension options: sets (- sets in &options), and a collection of experimental features
(- xpx in &options).

-1-

3.1 Sets
Sets are unordered collections of values and have the properties normally associated with sets in the

mathematical sense. The function

seUa)

creates a set that contains the distinct elements of the list a. For example,

seurabc",3D

creates a set with two members, abc and3. Note that

set([])

creates an empty set. Sets, like other data aggregates in Icon, need not be homogeneous - a set may con­
tainmembers of different types.

Sets, like other Icon data aggregates, are represented by pointers to the actual data. Sets can be
members ofsets, asia

sl : = set([1,2,3D
12 : = set([sl,[]])

in which I2coatains two members, one of which is a set of three members and the other of which is an empty
list.

Any specific value can occur only once in a set. For example,

set([1,2,3,3,ID

creates a set with the three members 1, 2, and 3. Set membership is determined the .same way the
equivalence oevalues is determined in the operation

l[=== '1

Foruample,

set([[],m)

creates a set that contains two distinct empty lists.

The functions and operations ofIcon that apply to other data aggregates apply to sets as well. For exam­
ple, ifsisaset,

••
is the size ofs (the number of members in it). Similarly,

type(s)

produces the string set and

s := seUrabc",3D
write(image(s»

writes set(2). Note that the string images ofsets are in the same style as for other aggregates, with the size
enclosed in parentheses.

The operation

Is

generates themembersoh, but in no predictable order. Similarly,

1s

produces a randomly selected member oCs. These operations produce values, not variables - it is not possi­
ble to assign a value to Is or ?s.

-2-

The function

copy(s)

produces a new set, distinct from s, but which contains the same members as s. The copy is made in the
same fashion as the copy of a list - the'mem bers themselves are not copied.

The function

sort(s)

produces a list containing the members of s in sorted order. Sets themselves occur after tables but before
records in the sorting order.

The customary set operations are provided. The function

member(s,x)

succeeds andreturns the value ofx ifx is a member of s, butCails otherwise. Note that

member(sl,member(s2,x»

succeeds ifx is a member of both sl and s2.

The function

insert(s,x)

inserts x into the set sandreturns thevalueofs(itis simil;lr toput(a,x) inform}. Note that

insert(s,s)

adds s as an member ofitself.

The function

delete(s,x)

deletes the member x from the set s and returns the value of s.

The functions insert(s,x) and delete(s,x) always succeed, whether or not x is in s. This allows their use
in loops in which failure may occur for other reasons. For example,

s := set(m
while insert(s,read())

builds a set thatcensists of the (distinct) lines from the standard input file.

The operations

sl + + 52
sl •• s2
sl -- 52

create the union, intersection, and difference orsl and s2, respectively. In each case, the result is a new set.

The use of these opera tions on csets is unchanged. There is no au toma tic type conversion between csets
and sets; the result of the operation depends on the types of the argumen ts. For exam pIe,

'aeiou' + + 'abede'

produces the cset abedeiou, while

8et([1,2,3]) + + 8et([2,3,4])

produces aset that contains 1,2,3,and4. On the other hand,

set([1,2,3D + + 4

results in Run-time Error 119 (set expected).

-3-

Examples
Word Counting:

The following program lists, in alphabetical order, all the different words that occur in the standard
input file:

procedure mainO
leiter : = &Icase + + &ucase
words : = set(rn
while text : = rea dO do

text ? while tab(upto(letter» do
iDsert(words,tab(many(letter»)

every write(lsort(words»
end

TheSieve of Eratosthenes:
The follow program produces prime numbers, using the classical "Sieve of Eratosthenes":

procedure main(a)
local limit, s, i
limit := aU] I 5000 # limit to 5000 if not specified
s := set<rn
every insert(s,1 to limit)
every member(s,i := 2 to limit) do

every delete(s,i + i to limit by i)
primes : = sort(s)
write("There are ",*primes, It primes in the first ",limit," integers.")

. write("The primes are:'')
every write(right(lprimes,*limit + 1»

end

4. Expermental Features

4.1 PDCO Invocation Syntax

The experimental features include the procedure invocation syntax that is used for programmer­
defined control operations [4]. In this syntax, when braces are used in place of parentheses to enclose an
argument list, the arguments are passed as a list of co-expressions. That is,

p{e.xprl' e.xp'2, ... , e.xpr,,}

is equivalent to

p([create e.xprl, create e.xp'2, ... , create e.xpr,,])

Note that

pH
is equivalent to

p(O)

4.2 Invocation Via String Name

The experimental features allow a string-valued expression that corresponds to the name of a pro­
cedure or operation to be used in place of the procedure or operation in an invocation expression. For exam­
ple,

-4-

"'UIlage"(x)

produces the same call as

iJDage(x)

and

"-"(i,J1

is equivalent to

i - j

In the case of operations, the number of arguments determines the operation. Thus

"-"(i)

is equivalent to

-i

Since to-by is an operation, despite its reserved-word syntax, it is included in this facility with the string
name_. Thus

"_"(1,10,2)

iaequivalent to

1 to 10 by 2

Similarly, range specifications are represented by":", so that

":"(s,iJ)

is equivalent to

s[i.il

Defaults are not provided for omitted or null-valued arguments in this facility. Consequently,

"_"(1,10)

results in a run-time error when it is evaluated.

The subscripting operation also is available with the string name O. Thus

"Q"(&lcase,3)

producesc.

String names are available for all the operations in Icon, but not for control structures. Thus

'"(exprl,eXp'2)

is erroneous. Note that string scanning is a con trol structure.

Field references, of the form

expr • fieldname

are not operations in the ordinary sense and are not availab Ie via string invoca tion.

String names for procedures are available through global iden tifiers. Note that the names off unctions,
such as image, are global identifiers. Similarly, any procedure-valued global identifier may be used as the
string name of a.procedure. Thus in

-5-

global q

procedure mainO
q := p
"q"("hi")

end

procedure p(s)
write(s)

end

the procedure p is invoked via the global identifier q.

4.3 Conversion to Procedure

The experimental features include the function proc(x,i), which converts x to a procedure, if possible.
Ibis procedure-valued, its value is returned unchanged. lfthe value ofx is a string that corresponds to the
name of a procedure as described in the preceding section, the corresponding procedure value is returned.
The value of i is used to distinguish between unary and binary operators. For example, proc("''',2) pro­
duc~ the exponentiation operator, while proc("''',l) produces the co-expression refresh operator. lfx
cannot be converted to a procedure, proc(x,i) fails.

4.4 Integer Sequences

To facilitate the generation ofinteger sequences that have no limit, the experimental features include
the function seq(i,j). This function has the result sequence {i, i +j, i +2j, ... }. Omitted or null values for i
andjdefault to 1. Thus the result sequence for seqO is{1, 2,3, ... }.

Acknowledgements

The design of sets for Icon was done as part of a class project. In addition to the authors of this paper, the
following persons participated in the design: John Bolding, Owen Fonorow, Roger Hayes, Tom Hicks,
Robert Kohout, Mark Langley, Susan Moore, Maylee Noah, J analee O'Bagy, Gregg Townsend, and Alan
Wendt.

References

1. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall, Inc.,
Englewood Clift's, New Jersey. 1983.

2. Griswold, Ralph E. and William H. Mitchell. Installation and Maintenance Instructions for Version 5.9
orlcon, Technical Report TR 84-13, Department of Computer Science, The University of Arizona. August
1984.

3. Griswold, RalphE.andWilliam H. MitchellICONT(l),manualpageforUNIXProgrammer's Manual,
Department of Computer Science, The University of Arizona. August 1984.

4. Griswold, Ralph E. and Michael Novak. "Programmer-Defined Control Operations", The Computer
Journal, Vol. 26,No. 2(May 1983). pp.175-183.

-6-

Version 5.9 ofIcon

Ralph E. Griswold, Robert K. McConeghy, and William H. Mitchell

August 22, 1984 . .
Version 5.9 ofIcon is a modification of Version 5.8 ofIcon. The UNIX implementation runs on both

PDP-Ilsand V AXs. This document is abriefsummary ofV ersion 5.9. See also References 1,2, and3.

Changes

• An optional language extension provides sets as a built-in data type [3].
• The Icon compiler has been deleted, leaving only the interpreter. A "personalized interpreter" facil­

ity has been added to allow individuals to maintain customized versions of the Icon run-time system
[5]. This facility replaces the former use of external functions with the Icon compiler to augment the
function repertoire ofIcon.

• The implementation of the table data type has been redone to increase the efficiency of table lookup.
• There isa new keyword, &options, whose value isa string listing the options used for installing Icon at

the local site [3, 4].
• Considerable work has been done throughoutthe Icon system to improve the quality of the code and

to remove nonportable constructs.
• The source code has been commented extensively.
• A number of minor bugs have been fixed.
• The Icon program library has beedreorganized and new material has been added to it [6].

• The Icon distribution hierarchy has been reorganized and new material has been added to aid in test­
ingandportingtonewcomputers[4].

User Impacts

• Persons who formerly used the Icon compiler with external functions will need to convert to person­
alized interpreters.

• The internal organization of tables is different from earlier implementations. For example, if t is a
table, the order of elements generated by !t generally is different from before. Similarly, the value of
?tis likely to be different.

• The functionality of some components of the Icon program library has been changed.

UNIX· is a trademark of AT&T Bell Laboratories.

-1-

Known Bugs
This list ennumerates all known bugs in Version 5.8 ofIcon. If you find a bug that is not in this list, please

contact us.

• The translator does not detect arithmetic overflow in conversion of numeric literals. Very large
numeric literals m:ay have incorrect values.

• Integer overflow on multiplication and exponentiation are not detected during execution. This may
occur during type conversion.

• Line numbers maybe wrong in diagnostic messages related to lines with con tinued quoted literals.

• In some cases, trace messages may show the return of subscripted values, such as &null[2}, that
would be erroneous iftheyweredereferenced.

• File names are truncated to 14 characters by some versions of UNIX. If such a truncation deletes
part of the terminating.icn of a file that is input to the translator, mysterious diagnostic messages
may occur during linking.

• On PDP~ 11 s, list blocks can contain no more than 4090 elements. List blocks are created when the
listO function is called, when literal lists are specified, and when the sortO function converts a table
into a list. It should be noted that it is possible for a list to grow to beyond 4090 elements; the limita~
tion is only upon the size of the list when it is created.

• There is a bug in the 4.1 bsd fopenO routine that under certain conditions returns a FILE pointerthat
is out of range when one tries to open too many files. On systems where this bug is present, it may
manifest itself in the form of run~time Error 304 when one tries to open too many files. (On 4.1 bsd
systems this limit is usually 20 files.)

• If one has an expression such as x:= create ... in a loop, and x is not a global variable, the unreference­
able expression stacks generated by each successi ve create operation are not garbage collected. This
problem can be circumvented by making x a global variable or by assigning a value to x before the
create operation, e.g., x: = &null; x: = create.

• Overflow of a c~xpression stack due to excessive recursion is not detected and may cause mysteri­
ous program malfunction.

• Program malfunction may occur if displayOis used in aco~xpression.

• The garbage collector was designed for machines with small address spaces and as such is not well­
suited for machines like the VAX. No empirical studies have been made, but it is suspected that per­
formance of the garbage collector could be improved substantially on the V AX. In particular, if the
user attempts to create a very large data object that will not fit into memory, (such as a million~
element list), it takes the system an inordinately long time to determine that the object can not be
allocated.

References

1. Griswold, Ralph E.An Overview of the Icon Programming Language. Technical Report TR 83~3a, Depart­
mentofComputerScience, The University of Arizona. May 1983.

2. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language. Prentice~Hall Inc., Engle­
woodCHifs, New Jersey. 1983.

3. Griswold, Ralph E., Robert K. McConeghy, and William H. Mitchell. Extensions to Version 5 of the Icon
Programming Language. Technical Report TR 8~ lOa, Department of Computer Science, The U ni versity
of Arizona. August 1984.

4. Griswold, Ralph E. and William H. Mitchell. Installation and Maintenance Guide for Version 5.9 of Icon ,
Technical ReportTR 8~13,DepartmentofComputerScience, The University of Arizona. August 1984.

, 5. Griswold, Ralph E., Robert K. McConeghy, and William H. Mitchell. Personalized Interpretersfor Icon.
TechnicaIReportTR8~14,DepartmentofComputerScience,TheUniversityofArizona.AugustI984.

6. Griswold, Ralph E. The Icon Program Library. Technical Report TR 8~ 12, Department of Computer Sci­
ence, The University of Arizona. August 1984.

-2-

NllvIDF MAIL SYSTEM
Dr. Dave Farber, Delaware

MMDFII: A Technical Review

Douglas P. Kingston III

Ballistic Research Laboratory
Aberdeen Proving Grounds, Maryland 21005

<dpk@brl>

ABSTRACT

The Multi-channel Memo Distribution Facility (MMDF) is one of the most
sophisticated mail systems available for the UNIXt operating system. MMDF is a
mail transport system that supports a variety of user interfaces and delivery mechan­
isms. The design was not encumbered with the need to be compatible with existing
mail systems, and as a result MMDF has a unified family of mail handling programs.
This review will discuss MMDFs design and operation, concentrating on those
features that are unique to MMDFII, the latest release of MMDF.

MMDFs design allows it to grow from a single-host system to a large mail
relay without degradation of mail system performance, and to degrade gracefully as
the load becomes huge. The demands of a high volume mail relay have led to many
of MMDFs innovative design choices.

Unlike some other systems, MMDF has separate processes for mail submission
and delivery. Recent changes to the delivery software to permit intelligent retry stra­
tegies based on the retry history for each dead host will be explained. The effect of
the new domain server mechanism on address validation will be discussed.

The separation of mail into channels is key to MMDFs ability to handle large
amounts of mail. Each channel represents a different class of delivery and each chan­
nel has its own queue. This isolates problems and allows one to provide different
"levels of service" to different channels.

Other topics to be discussed will include available user interfaces, the mailing
list processor, aliasing, runtime configuration, and domain based naming.

The MMDF system was originally developed at the University of Delaware and
has since seen significant development work at the Ballistic Research Laboratory and
University College London.

Introduction and History

The Multi-channel Memo Distribution Facility, commonly called MMDF, is a suite of software
that has seen a great deal of work since it was originally released in 1980. The original code was
designed and implemented by Dave Crocker working under Professor David Farber at the University
of Delaware (UDEL). The MMDF system was then chosen to form the initial backbone software for
the CSNET project and has been in use for several years by elements of the U.S. Army. The software
has seen a great deal of change in the process. The original code is commonly referred to as MMD FI
or MMDF Version 1. A number of minor additions and changes were made while fielding MMDFI
as the result of collaboration between UDEL and BRL and some other sites. After the original code
was fielded in CSNET, Dave Crocker began the development of a upgraded version of the MMDF

t Unix is a trademark of Bell Laboratories.

-2-

system which was designed to work in the new Internet domain naming system and was to incor­
porate numerous design changes suggested by experience with MMDFI. Dave Crocker left the
CSNET project before completing this work, approximately two weeks before the TCP/IP switchover
of the ARPANET, 1 January 1983. At this time, BRL was a solid MMDF site. We were reluctant to
try to retrofit the existing version of MMDFI to handle the new mail protocols that also took effect on
1 January, so Doug Kingston of BRL undertook the task of finishing the work needed to make
MMDFII operational. A production version of MMDFII was installed at BRL during the third week
of January 1983, and served as BRt's mail system on three hosts, but there was no stable version of
the MMDFII code until June 1983. The first few months of MMDFII were quite rough and it needed
a great deal of "tender loving care".

For reasons that will be clear in a moment, this stable version of June 1983 is now referred to as
the MMDFII-pre-England version. Around June, a copy of this stable version was delivered to Steve
Kille of University College London (UCL) and to Brendan Reilly of UDEL, who had taken over
Dave Crocker's work on MMDF at UDEL. Steve Kille made a number of major changes to the han­
dling of domains, address parsing, and handling of the alias files. Steve also added support for .
NIFfP, a European file transfer protocol used for sending mail in a batch environment. At the same
time that Steve was making his enhancements, Doug Kingston continued to develop BRt's copy of
MMDFII to make it an even more solid mail system. BRt's changes were not as major as Steve's but
covered a great deal of code and fixed several major outstanding bugs. This dual development led to
two variants of MMDFII that each needed the other's improvements. In late September of 1983
Brendan Reilly and Doug Kingston spent a week in England with Steve to merge the variants and to
discuss future changes and directions for MMDF. The result of this meeting was a merged version of
MMDFII which I will call MMDFII-post-England. Just prior to this trip, the CSNET Information
Center (CIC) received a copy of the pre-England MMDF. Their later changes were based on this
pre-England version which made merging of their changes into the post-England version somewhat
difficult.

After the England meeting, Brendan Reilly of UDEL took the role of coordinator of the subse­
quent changes to MMDF. Copies of the MMDF-post-England were made simultaneously available to
BRt, UCL, and UDEL. Since then many minor changes have been made by all four sites; in essen­
tially all cases these changes have been bug fixes or changes to make MMDF a more stable and robust
system.

Since then, Doug Kingston at BRL has made changes to the local delivery mechanism, rewriting
much of the original code, and the central delivery program has been upgraded to take advantage of
large-address-space machines, when possible, to keep retry histories for messages on a host-by-host
basis. Bernie Cosell at the CIC has undertaken to speed up MMDF execution by providing a facility
for compiling in some of the information normally included in the ASCII text-based version. Steve
Kille an alternative to the ASCII text based version. Steve Kille has continued to refine the address
handling and the British "backwards" domain code. 1 Brendan Reilly has made changes to the pack­
age to allow it to run on the Altos system and has fixed numerous bugs in the PhoneNet code.

The MMDF Design

The MMDF system design has not changed fundamentally from the original design proposed
and implemented for MMDFI. The desi~n of MMDFI is covered in detail in the paper "An Internet­
work Memo Distribution Capability". In this chapter, I will summarize the basic design and

1 The British do domains backwards. For example, if in the US (Internet) we write
"user@VAXl.EE.UDEL.ARPA" known as "little endian" order, the British (SERC Net) write
"user@ARPA.UDEL.EE.VAXI" or "big endian" order. Put another way, "big endians" put the largest,
most general, or most significant element of the domain first. "Little endians" use the other order, with the
most significant part last. [See Gulliver's Travels by loanthan Swift. The "big endian" vs. "little endian"
controversy was a causus belli in Lilliput.]

2 D. Crocker, E. Szurkowski, and D. Farber, "An Internetwork Memo Distribution Capability", Da­
tacom Conference, September 1979.

- 3 -

discuss those changes that have been made in MMDFII.
Mail software is normally classed into one of two groups. A user agent (UA) is a program that

is responsible for providing a "user friendly" interface for reading or writing mail and converting to
the canonical interface of the mail transfer agent as necessary. A mail transfer agent (MT A) is a pro­
gram or system to which you or your user agent entrusts a message for delivery to someone else's user
agent. There has been a great deal of confusion caused by people who fail to realize the difference
between a mail transfer agent and a user agent, or even that a difference exists! There is a wide
variety of user agents which can be used with MMDF, and it is the responsibility of the use agent to
provide a user interface. This separation of the functions of user agent and mail transfer agent has
many advantages, not the least of which is that MMDF can support many different user interfaces
with ease. Currently, there are at least five different interfaces available including the Rand MH sys­
tem, V6 style mail, Berkeley's Mail (cap-mail), the Tenex-style Send and Msg programs, and Rmail
(for UUCP). MMDF is a mail transfer agent. MMDF does not have, nor does it claim to have, a
good "user interface"; instead it has a good program (MT A-UA) interface. MMDF accepts messages
for delivery either locally or to a remote site. It attempts to verify the validity of the addresses at
submission. time to the extent possible given only a host table and a list of local addresses. If
accepted, it will continually try to resend the message until the retry time is exhausted at which time
the message is returned to the sender.

The MMDF system can be thought of as two subsystems, responsible for mail submission and
mail delivery, respectively. Between these two halves is the mail queue. The mail queue will be dis­
cussed later, but basically it stores each message as two files, an address list with some control infor­
mation, and a separate file containing only the message text (header and body).

The submission half of the system consists mainly of one program, called "submit", which is
responsible for enqueuing mail to be delivered. As much verification as possible is performed on the
message at submission time. For mail destined for the local machine, this means making sure the
destination account exists, and that any local mailing list or aliases expand properly. For mail that
has a non-local host specification, the submit process checks to see if it knows how to reach the
specified host. Mail which for any reason is known to be undeliverable, is not accepted for delivery.
Submit is called by two types of processes. The first group includes user agents such as the send pro­
gram. The second group comprises channel programs such as rmail 3 which are interfacing to remote
mail transfer agents.

The delivery portion of MMDF is represented by two main elements: the deliver program which
manages the queue, and the channel programs which handle the details of delivery to a specific net­
work, host, or mail system. The deliver program takes each message which is eligible to be delivered,
and opens the appropriate address list. For each address in the list, deliver ensures that it is running
the appropriate channel program and then passes the envelope information 4 to the channel. A refer­
ence to the file containing the actual message text is passed to the channel program. The channel
decides how to deliver the message and sees to any necessary message reformatting that may be neces­
sary (e.g. "header munging").

There is currently a variety of channels and the. number is growing. The local channel handles
delivery of messages to local addresses. The list channel is a special, somewhat incestuous, channel
which acts the role of channel, receiving user agent, and sending user agent all in one. The list chan­
nel resubmits mail back into the mail system by calling submit. This has several benefits that will be

. discussed later. 5 The SMTP channel delivers mail via TCP/IP connections using the SMTP proto­
col. 6 The phone channel uses the PhoneNet link-level protocol software developed at the University
of Delaware for sending mail over dialup or hard-wired terminal lines .. The NIFTP channel queues

3 The rmail program (lbinirmail) is invoked by uucp when delivering mail on your system.
4 The MMDF envelope information consists of the the return address, the destination addresses, some

delivery options and a reference to the message text file.
S See the section on the list channel.
6 1. Postel, "RFC821 - Simple Mail Transfer Protocol", Network Information Center, SRI International,

August 1982.

- 4-

mail as files to be transferred using the NIFTP protocol used in the British research community. The
UUCP channel is used to queue requests for transfer using UUCP.

Development of MMDFII was started about the same time that the Sendmail mail transfer
agent was being written by Eric Allman at Berkeley. Dave Crocker met with Eric on a number of
occasions and was impressed by his work. Some elements of the Berkeley software were so useful
that they inspired the development of similar facilities in MMDFII. Not the least of these was the
runtime configuration file. It is now possible to configure the MMDF software totally from a single,
ASCII-text-based configuration file. Unlike Sendmail's terse configuration syntax, MMDF uses much
more verbose keyword/value pairing for configuration information. MMDFII can be configured
either from compiled-in values, for fast startup, or totally from the text configuration file, or from .any
combination of the two. As a result of the fact that many values can be compiled-in, the usual
MMDF tailoring file is one-tenth the size of a Sendmail tailoring file, and can be even smaller, even
on a large relay site. The runtime configuration file is one of the most useful additions in MMDFII,
especially for sites supporting more than one host, since one can now run the same binaries on all
machines of the same type. Another Berkeley-inspired facility was the ability to have an alias file
entry that forces a delivery to a file or pipe. While initially insecure, this facility has been made reli­
able by adding code to IfBsubmitlfR that knows when you are processing an alias file entry and when
you are processing some other type of address. Simple ownership of the file containing the address
was not considered sufficient protection since there are too many files left writable to the world that
are owned by root or other privileged users.

The MMDF File Hierarchy
The MMDFI queue structure consisted of three directories. The "msg" directory contained the

files containing actual message text. The "addr" directory contained the address list file for each mes­
sage, and the "tmp" directory contained the address list while it was being created before moving it
to the "addr" directory. The names of the files in "msg" and "addr" were identical although the con­
tents differed. This made it easy "to find the companion file given either filename. The MMDFII
queue structure has changed in one major way from that of MMDFI. There is now one extra direc­
tory per channel named q.channel. If an address list still has any addresses destined to be sent on any
channels, then a link will exist from the address list file in "addr" to a file with the same name in
each queue directory which is referenced. All the above directories usually live in
lusr/mmdfllock/home, although the root name of this tree can be changed. The lock directory is kept
in 700 or 770 mode, accessible only to the "mmdf' user and possibly a "systems" group for ease of
maintenance. The "home" directory and all the underlying queue directories are kept in 777 mode to
allow ease of movement and access for the trusted but unprivileged programs that operate there. In
particular, the submit process is setuid to "mmdf' to allow it to enter the tree, but it then restores its
UID and GID to those of the invoker. Deliver and the channel programs normally run as the
"mmdf' user. Only the local channel, which must access the real user's mailbox files, and the
TCP/IP network daemons, which must access privileged sockets, need run privileged. There are
several other programs that are setuid to "root", but only so they can change their UID to "mmdf' so
as to to be a "trusted submitter", which allows them to specify an arbitrary From: line.

The addition of the separate queuing directories on a per channel basis was a valuable change.
UNIX performs poorly with large directories, as any UUCP backbone site can tell you. This new
mechanism allows easy partitioning of channel activities into separate directories, since deliver will
never access the copy of the address list in the "addr" directory until it goes to finally expunge the
message from the queues. If one channel or site gets backed up, it does not affect the performance of
any of the other channels.

The format of the address lists has changed somewhat since MMDFI. The old format was:

S T channel-name host-on-channel address-at-host

where S was either a '-' indicating unsent or a '+' indicating that only the address but not the text
had been sent. The T was either the type of delivery (almost always 'm' for mail) or a ,*, indicating
the message has been completely delivered. The channel-name and host-on-channel should be

- 5 -

obvious. The address-at-host parameter was only the local part of an address. The new version
differs in two ways. First, the host-on-channel is now ·the full domain address of the host to deliver
to, as specified in the routing information of the domain table. 7 Second, the address-at-host is now
the full address with both the local-part and the domain specifier.

In the future, I will probably change the location of the "message completely delivered" flag to
be in the first position (S), since I feel it was a mistake to not have it there in the past and it is
confusing in its current position. This has not been done as of February 1985.

The MMDF file hierarchy also has a logging directory. Separate logs are kept here for submit
and deliver, the channel programs, and the phone dialing package. This directory is generally accessi­
ble although unreadable and the logs are normally write only. This could be made "mmdf' access
only for some sites, with the only penalty being that some programs would be unable to add entries to
the log. A subdirectory of the log directory called "log/phase" contains time stamp files whose
modification times are changed by submit and deliver to indicate such things as last pickup time, last
delivery time, last poll made, and similar information.

There are two other directories in the MMDF hierarchy which should be mentioned. The
"chans" directory contains all of the channel programs invoked by the deliver program, and other
ancillary daemon programs such as the SMTP daemon and the SMTP server. The "table" directory
contains all files necessary to maintain the MMDF database, including domain tables, host address
files, mailbox alias files, dialing scripts, and programs to build these files and incorporate them into
the DBM library. 8

Use of some sort of keyed database system is almost essential for large MMDF systems, since
the table lookup overhead is unbearable otherwise. Currently DBM is the only readily available alter­
native and it does seem to work well, but it is running out of steam, particularly due to its limited
record length. A more flexible replacement fQr this package would be welcome.

The top of the MMDF directory tree contains the directories mentioned above, the submit and
deliver programs, and a few maintenance programs. If the site is polled for PhoneNet mail then the
"slave" program is normally also located here. The slave program is used as the remote site's login
shell and acts much as uucico in managing the link level communications. It in tum calls upon sub­
mit and deliver to send and receive mail.

Submit
For all the changes to its internals, the external interface of submit has changed remarkably little

since MMDFI. The only notable external changes to submit are that it now processes domain-style
addresses (both forward and reverse!) and both RFC822 and RFC733 format addresses. 9 A couple
of new options have been added to submit to give some control over the handling of returned mail in
the event that a message cannot be delivered. This is useful if the user is a program and does not
care if the message is undeliverable! It is also now possible to feed a bare message to submit and tell
submit to find all the addresses and show them and their validity on a one-by-one basis. This makes
it convenient to feed mail to submit from a smart mail composer that doesn't want to know how to
parse addresses (a major task these days!).

The submit program can operate in one of two modes. In protocol mode, submit accepts
options, a return address, and optionally a list of addresses for each message, followed by the message
text. Multiple messages can be submitted one after another without reinvoking the submit process.

7 See the manual section on the MMDF database (queue.S) for more information.
8 The DBM package is a set of simple hashed database access routines that were distributed with V7

U nix and are still widely used.
9 D. Crocker, J. Vittal, K. Pogran, D. Henderson, "RFC733 - Standard for the Format of ARPA Net­

work Text Message", Network Information Center, SRI International, November 1977.

D. Crocker, "RFC822 - Standard for the Format of ARPA Network Text Message", Network Information
Center, SRI International, August 1982.

-6-

Each address is individually acknowledged. If there is an error, the submission of that letter is
aborted and a new submission may be made. In one-shot mode a single message is submitted on the
standard input. As in protocol mode, it can be preceded by options and addresses, or the options can
be given on the command line and the addresses taken from the message text.

The internal address verification process of submit has changed greatly since MMDFI. Most of
the changes have been made to properly support domain style addresses. Additional changes were
made to support per-channel and per-user access controls. While submit is checking each address,
regardless of origin, it is also compiling the address list for ~he message. Each address list entry con­
tains the destination domain, 10 the destination mailbox, and the channel in whose channel table sub­
mit first found the destination host. The lookup is somewhat complicated. The destination domain
is looked up in the domain tables; the first entry found is used. Each domain table. entry has associ­
ated with it the routing to be used to reach that domain/host. Normally this is just the name of the
host itself if the host is directly accessible, but it can be a sequence of hosts if the destination is not
directly accessible. This "routing host" is then looked up in the channel tables to find a channel
which can reach it. The routing host specifications and the entries in the channel tables are always
full domain specifications, so as to be unambiguous.

Authorization is checked after a valid channel for a host is found. Access to send via a given
channel depends on the originating channel andlor the submitting user. If access to a given channel
is denied, submit will continue to look at subsequent channels to see if some other channel has access
to the same host and is authorized. This mechanism is commonly used to restrict access to expensive
transport systems or to restrict message transfer between channels representing private ~nd public
data networks. It can also be used to restrict relaying of messages between two ·controlled-access"
networks.

Deliver
The deliver. process changed little until late 1984, when a dead-host caching facility and

advanced retry mechanisms were added to deliver. Until then, the major changes to deliver were bug
fixes and changes to enhance error recovery. Most notably, the mechanism to return mail was made
much more persistent. In MMDFI, if a message could not be returned to the sender, it was "dropped
on the floor". This is not acceptable. The new mechanism first tries to return to the sender; if that
fails, an attempt is made to send the message to the local "Postmaster" address. If this too fails, then
deliver tries to write the message into a "dead letter" file (usually lusr/mmdf/locklhome/DeadLetters).
The last resort is to scream loudly into the log files.

The recent changes to deliver are designed to reduce deliver's load on a system that handles a
large amount of mail. The first change is to move the dead-host caching function out of the channels
(currently only SMTP) and into deliver. This has two advantages. First, deliver no longer has to hand
every address to the channel to find out that the host is dead. This was expensive, since communica­
tions between deliver and the channel are interactive using pipes and thus involved a great deal of
context-switching and pipe 1/0. Second, the dead-host caching is now a generally available facility
that can be used by any channel without duplication of code.

The second change is to add a mechanism for storing the retry history for each dead host on
each channel including retry count and last retry time. From this information it is possible to imple­
ment intelligent retry strategies using exponential backoff and maximal retry times. This greatly
reduces the overhead caused by recalcitrant hosts that are unavailable over a long period of time.
The retry history change is conditionally compiled into deliver since it C1n, by design, use quite a bit
of memory if there are a lot of dead hosts or pending messages (or both!). Machines with a relatively
limited address space may not be able to use this feature.

10 By "domain" we mean the full domain specification of a host, e.g. V AXl.UDEL.ARPA.

- 7 -

The Local Channel

The local channel remained unchanged until late 1983, when a major reworking of the channel
was done by BRL. The old local channel could handle delivery in three basic ways. The first and
most common was to deliver directly to the user's default mailbox, appending the message to the end.
Second, the user could put a program in his private bin directory called "rcvmail" that would be
called by the local channel to handle delivery of the message. If the user program (rcvmail) did not
complete successfully, a standard delivery was made instead.

In early versions of the local channel for MMDFII, Dave Crocker added support for mailing to
files and pipes, but the original version had a number of security problems, mostly due to submit, so
the capability was not much used.

The latest version of the local channel has kept the alias-file-originated delivery to files and
pipes, and the changes Steve Kille has made to the submit program have also made this facility reli­
able from a security standpoint. The rcvmail mechanism has been totally scrapped in favor of a more
general and powerful mechanism which I will call "mail delivery files".

Mail delivery files were designed to give the user as much flexibility over how his mail was
delivered as possible without opening security holes. The mail system was changed to allow local
addresses to have a suffix appended which consists of an '=' and any simple text; this suffix is totally
ignored except when using mail delivery files. Each user may create a ".maildelivery" file in his home
directory which contains one or more delivery specifications. A delivery specification has five parts,
separated by field separators, <FS>, which may be tabs, spaces or commas ",".

field <FS> pattern <FS> action <FS> AIRI

The field is the name of a field that is to be searched for a pattern. Currently supported fields are
From, To, Subject, Sender, and Cc, plus three special fields, addr, *, and *. The addr field is used to
match against the address being delivered to including the suffix (e.g. "dpk=unixwizards"). If the user
subscribes to different lists with different suffixes he can use his mail deli very file to segregate his mail
by source. To do this based on the message text alone is impossible to do right 100% of the time.
The default field matches if the message has not been delivered by any of the preceding lines in the
".maildelivery" file. The * field always matches, regardless of any other action.

The pattern is some sequence of characters that may be matched in the field. Case is not
significant, and multiple fields of the same name are concatenated, separated by spaces. If the field
does not need as pattern, a dash (-) or similar symbol is usually inserted to show that the field is present
but not used.

The action is "file" or ">", "pipe" or "I", or "destroy". "File" or ">" appends the message in
standard mailbox format to the file specified in the optional string. "Pipe" or "I" causes the pro­
gram in the optional string to be run with the message available on the standard input. "Destroy"
causes the mail to be thrown away silently. This is useful if you go away on a long trip and don't
want to unsubscribe to lists, but also don't want to come home to several thousand messages.

The AIRI? flag is a single character: 'A' for accept, 'R' for reject, or '7' for accept if not delivered
yet. This flag indicates whether the action, if successful, is sufficient to mark the message as
delivered. If the message is undelivered at the end of the .maildelivery file, the local channel next
consults a system-wide file, such as lusrlliblmaildevliery. If the message is still undelivered at the end
of the system-wide file, a standard delivery is made to the default mailbox. This protects against mail
being lost due to lack of foresight or errors in the maildelivery files.

The file is always read completely so that several matches can be made, and several actions
taken. For example, the user could have a TTY alert message sent to his terminal and also have the
message resent to his new home machine by the following .maildelivery file:

addr dpk pipe R" lusr/mmdf/mailutils/ttyalert"
addr dpk pipe A "/usrlbrllbin/resend dpk@brl-vgr.arpa"

The last line, if completed without error (a return code of 0 from resend), would mark the message as
delivered because of the A (accept) flag in the fourthcolumn.

-8-

The List Channel
The list channel was developed as the result of BRL's experience in managing large Internet

mailing lists. Two major problems were discovered with dealing with mailing lists in MMDFI. First,
since submit always verifies all known addresses for a message at submission time, if you were on the
machine with a large list and submitted mail to the list you would have to wait for every address on
that list to be verified. On a busy machine with a list of hundreds of addresses, this could take five or
ten minutes. Annoying as this may be for people, the situation was worse for mail submitted over
communications channels like TCP/IP. The remote end would continually time out before the mes­
sage had been completely verified so the message could never be sent.

The second problem with large lists was that there were always rejected mail notices going back
to those least able to do anything about the mail problem, the original sender of the message. What
was really desired was a method to try to have returned mail go to the list maintainer instead of the
message's original sender.

The solution to both of the problems is embodied in the list channel. This is a channel with an
incestuous relationship to submit, deliver, and the alias file. Use of the list channel is best described
in parallel with the special entries for the list channel in the alias file. If we were maintaining a large
list called "biglist", the following entries would be in the alias file:

biglist: biglist-outbound@list-processor
biglist-outbound: </usr/mmdfllistslbiglist-file
biglist-request: maintainer

The pseudo-host "list-processor" has its own domain table and its own host table but represents no
actual host. If someone submits mail to biglist, submit will find the alias entry and upon finding that
it's not a local address, will queue it to the host "list-processor", so verification is complete after only
one lookup. Unknown to deliver, the list channel simply calls submit and feeds it the aliased
addresses, "biglist-outbound". This time the actual verification is done on the contents of the address
list "biglist-file". Since the list channel is processed by a background daemon, no one is forced to
wait through the verification process except the background daemon itself, which doesn't care how
long it takes so long as it completes.

The list channel also performs another function to try to eliminate the problem of failed mail
messages. For each address given to it, (normally just one), the list channel sees if there is a matching
"!istname-request" entry in the alias table. It knows enough to try stripping any "-outbound"s from
the name first though. If a "-request" entry is found, then that address is substituted instead of the
original return address. The message text is not altered, but the new return address is recorded for
use when resending the message. The new return address is supplied in SMTP "MAIL
FROM:<address>" commands and any other situations where the return address is directly
specifiable.

The changing of the return address is useful only if mail is rejected when submitted to the
foreign host or if that host is smart enough to keep the return address information around. Many
hosts do not maintain this information, and many of the same hosts are also problematic in that they
will completely accept a message containing total garbage and decide to tell you about it later. This is
precisely what MMDF tries to avoid by submission-time verification.

The BBOARDS Channel
Sites that run the MH message system, version mh.5, may install a bboards channel which

delivers messages from interest-group mailing lists to a special "bboards" directory . The bboards
software, which is compatible with the MH message system, keeps track of which messages have been
seen by individual users, and allows designated bboards managers to control the size and access for
different bboards. 11

11 See the man entry mh-gen.8 in the MH distribution. It is important to note that the choice to install
"bboards" must be made when MMDF is generated. The "news" facility mentioned in the MH documen­
tation is not supported by CSNET.

- 9 -

The UUCP Channel
The task of integrating UUCP mail into MMDF was a prime goal for BRL. Our users would

not tolerate having to use two radically different mail interfaces for two different kinds of mail con­
nections. We decided to write a channel to interface to the UUCP mail world that would take care of
the necessary format conversions to allow mail to traverse the two mail worlds. The channel has two
parts. The input portion of the channel is the program Ibin/rmail which is executed by the UUCP
program uuxqt when mail is being delivered. The output portion is a standard channel that invokes
the UUCP system .after reformatting the message.

The rmail program has been totally rewritten to interface to MMDF. Rmail's primary task is to
collect and reformat the address strings in the message. To reformat each address, rmail uses the
UUCP channel table to determine what hosts are known to this host and shortens an host!host!host!
string down to the single most distant host we know about and any subsequent hosts we do not know.
For example knownA!knownB!knownC!unknownl !unknown2!user would become
knownC!unknownl!unknown2!user. It then converts this to an RFC822 style address by putting the
unknown hosts and the user in the local part and putting the known host with a domain in the
domain portion, e.g. unknownl!unknown2!user@knownc.UUCP. If all the hosts are known, then
only the user is left in the local part, and the address winds up being user@known.UUCP. Since you
always know the hosts you talk to, you can build any arbitrary UUCP path by simply saying
arbitrary-host-path@neighbor. UUCP.

Rmail is prepared to accept destination addresses in two forms. If the addressee is just another
UUCP host addressed using host!host!... notation, then rmail forwards the letter via UUCP without
header munging since the destination host may not support RFC822 style mail. An addressee of the
form user@domain will cause the message to be fed to submit and into MMDF. proper where the
message can be delivered to another UU~P site or any other site accessible via MMDF. Rmail will
reformat the message header in the latter case to conform as much as possible with the RFC822
specifications.

The outbound portion of the UUCP channel is a MMDF channel program called "uucp" which
is invoked by deliver. The job of this program is much easier since all it must do is reformat the
"From:" line to be compatible with UUCP mail. The outbound channel must also reformat the desti­
nation addresses which become arguments to uux. The outbound channel uses the same channel table
that rmail used but performs the reverse action on the address so, for example, root@mcnc.UUCP
becomes unc!duke!mcnc!root and this is then further divided to form the uux command "uux
unc!rmail duke!mcnc!root" (assuming the channel table maps mcnc.UUCP into duke!unclmcnc).

The UUCP channel would have to be classed as the only "f1akey" portion of MMDF since some
of these address transformation really need an advanced AI system to make an intelligent transforma­
tion. In general, though, the channel does a very good job and has little trouble with "normal"
UUCP addresses.

Using Domain Name Seners
The use of domain name servers will have some interesting effects on the address verification

aspects of mail submission. In the current system, all the information necessary for verification of
addresses is in a local data base. When we are using name servers, we can no longer be guaranteed
that all the needed information will be locally cached. In addition, we are not guaranteed that we will
be able to reach all the necessary name servers at submission time (although duplicate name servers
will make this possibiW.y small). The submit program will call the local domain resolver to verify
each address. and there will be some time limit in which to complete this task. The resolver will be
expected to first consult the local cache of domain data and, if the information is not found, contact
as many servers as necessary to resolve the address.

The possible lack of information will force us to provide a contingent submission queue for
those messages that cannot be verified at submission time. This does not imply that there will we be
no verification. We will verify that we at least know the top level domain of each address and verify
each sub-domain when possible. If some sub-domain of the full address is known to be bogus, the

- 10-

address can be flushed. Knowing that we have authoritative information that a domain does not exist
is just as important as knowing that it does exist.

A new channel, much like the list channel, will be used to process the partially-accepted address
for a message. This channel will continually try to verify the address until it is known to be good or
bad. It will have·the message returned to the sender, with an explanation, if one or more addresses is
bad. Most systems will run with a fairly rich cache of host information. For those systems which
cannot afford to keep this information around, the submission time verification might be a consider­
able delay which would be unacceptable for a user interface. On these systems it will possible to force
all message to be accepted for background verification (via the "verification" channel).

Conclusion
MMDFII had some early problems and as a result may have gotten some initial bad press, but

MMDFII has shown that it is a capable mail system which is both robust and able to handle very
large mail loads. There now exist a growing number of tools to analyze and manage large flows of
mail in a MMDF system. These tools include status programs, sophisticated logging, and log analysis
programs. Because of the separation of mail into separate queues, multiprocessing of the mail queues
is not only possible, but routinely used to both increase throughput and decrease delays. MMDF is
also a flexible system. Runtime reconfiguration is simple. generally easy to understand, and can be
done at any time. Since the MMDF core software is free of channel specific or network specific infor­
mation, one can easily add additional channels for new networks or protocols without affecting the
existing software. MMDFII represents a stable, production mail system, providing a strong base for
the development of new network interconnections and mail handling environments which are essen­
tial in today's distributed computing environment.

The MMDFII software is available under license, free of charge (with the possible exception of a
tape copy fee), for internal use only as follows: to U.S. Government agencies through the Ballistic
Research Labs. to CSNET sites through the CSNET Coordination and Information Center at BBN,
and to others through Prof. David Farber at the University of Delaware, Electrical Engineering and
Computer Science Department. Commercial concerns interested in MMDF for other than internal
use should contact Prof. Farber.

RN
READ NEWS FRONT END

Larry Wall

RN(l) UNIX Programmer's Manual RN(1)

NAME
rn - new read news program

SYNOPSIS
rn (options) (newsgroups)

DESCRIPTION
Rn is a replacement for the readnews(I) program that was written to be as efficient as possi­
ble, particularly in human interaction. Rn attempts to minimize the amount of "dead" time
spent reading news- it tries to get things done while the user is reading or deciding whether
to read, and attempts to get useful information onto the screen as soon as possible, highlight­
ing spots that the eye makes frequent reference to, like subjects and previously read lines.
Whether or not it's faster, it SEEMS faster.

If no newsgroups are specified, all the newsgroups which have unread news are displayed, and
then the user is asked for each one whether he wants to read it, in the order in which the
newsgroups occur in the .newsrc file. With a list of newsgroups, rn will start up in "add"
mode, using the list as a set of patterns to add new newsgroups and restrict which newsgroups
are displayed. See the discussion of the 'a' command on the newsgroup selection level.

Rn operates on three levels: the newsgroup selection level, the article selection level, and the
paging level. Each level has its own set of commands, and its own help menu. At the paging
level (the bottom level), rn behaves much like the more(1) program. At the article selection
level, you may specify which article you want next, or read them in the default order, which is
either in order of arrival on your system, or by subject threads. At the newsgroup selection
level (the top level), you may specify which newsgroup you want next, or read them in the
default order, which is the order that the newsgroups occur in your .newsrc file. (You will
therefore want to rearrange your .newsrc file to put the most interesting newsgroups first. This
can be done with the 'm' command on the Newsgroup Selection level. WARNING: invoking
readnewslvnews (the old user interface) in any way (including as a news checker in your login
sequence!) will cause your .newsrc to be disarranged again.)

On any level, at ANY prompt, an 'h' may be typed for a list of available commands. This is
probably the most important command to remember, so don't you forget it. Typing space to
any question means to do the normal thing. You will know what that is because every
prompt has a list of several plausible commands enclosed in square brackets. The first com­
mand in the list is the one which will be done if you type a space. (All input is done in
cbreak mode, so carriage returns should not be typed to terminate anything except certain
multi-character commands. Those commands will be obvious in the discussion below because
they take an argument.)

Upon startup, rn will do several things:

1. It will look for your .newsrc file, which is your list of subscribed-to newsgroups. If rn
doesn't find a .newsrc, it will create one. If it does find one, it will back it up under the
name ".oldnewsrc".

2. It will input your .newsrc file, listing out the first several newsgroups with unread news.

3. It will perform certain consistency checks on your .newsrc. If your .newsrc is out of date
in any of several ways, rn will warn you and patch it up for you, but you may have to
wait a little longer for it to start up.

4. Rn will next check to see if any new newsgroups have been created, and give you the
opportunity to add them to your .newsrc.

5. Rn goes into the top prompt level-the newsgroup selection level.

7th Edition

RN(l) UNIX Programmer's Manual RN(1)

Newsgroup Selection Level

In this section the words "next" and "previous" refer to the ordering of the newsgroups in
your .newsrc file. On the newsgroup selection level, the prompt looks like this:

******** 17 unread articles in net.blurfl- read now? [ynq]

and the following commands may be given at this level:

y,SP Do this newsgroup now .

. command
Do this newsgroup now, but execute command before displaying anything. The com­
mand will be interpreted as if given on the article selection level.

= Do this newsgroup now, but list subjects befo.re displaying articles.

n Go to the next newsgroup with unread news.

N Go to the next newsgroup.

p Go to the previous newsgroup with unread news. If there is none, stay at the current
newsgroup.

P Go to the previous newsgroup.

Go to the previously displayed newsgroup (regardless of whether it is before or after
the current one in the list).

Go to the first newsgroup.

Go to the first newsgroup with unread news.

$ Go to the end of the newsgroups list.

g newsgroup
Go to newsgroup. If it isn't currently subscribed to, you will be asked if you want to
subscribe.

Ipattern Scan forward for a newsgroup matching pattern. Patterns do globbing like filenames,
i.e., use ? to match a single character, * to match any sequence of characters, and []
to specify a list of characters to match. ("all" may be used as a synonym for "*".)
Unlike normal filename globbing, newsgroup searching is not anchored to the front
and back of the filename, i.e. "/jok" will find net.jokes. You may use A or $ to
anchor the front or back of the search: "rtestS" will find newsgroup test and nothing
else If you want to include newsgroups with 0 unread articles, append Ir. If the
newsgroup is not found between the current newsgroup and the last newsgroup, the
search will wrap around to the beginning.

?pattern
Same as I, but search backwards.

u Unsubscribe from current newsgroup.

I string List newsgroups not subscribed to which contain the string specified.

L Lists the current state of the . newsrc, along with status information.

Status Meaning
<number> Count of unread articles in newsgroup.
READ No unread articles in newsgroup.
UN SUB Unsubscribed newsgroup.
BOGUS Bogus newsgroup.
JUNK Ignored line in .newsrc

(e.g. readnews "options" line).

7th Edition 2

RN(1)

mname

UNIX Programmer's Manual RN(1)

(A bogus newsgroup is one that is not in the list of active newsgroups in the active
file, which on most systems is lusr/lib/news/active.)

Move the named newsgroup somewhere else in the .newsrc. If no name is given, the
current newsgroup is moved. There are a number of ways to specify where you want
the newsgroup- type h for help when it asks where you want to put it.

c Catch up- mark all unread articles in this newsgroup· as read.

o pattern
Only display those newsgroups whose name matches pattern. Patterns are the same
as for the 'I' command. Multiple patterns may be separated by spaces, just as on the
command line. The restriction will remain in effect either until there are no articles
left in the restricted set of newsgroups, or another restriction command is given.
Since pattern is optional, '0' by itself will remove the restriction.

a pattern
Add new newsgroups matching pattern. Newsgroups which are already in your
.newsrc file, whether subscribed to or not, will not be listed. If any new newsgroups
are found, you will be asked for each one whether you would like to add it. After
any new newsgroups have been added, the 'a' command also restricts the current set
of newsgroups just like the '0' command does.

& Print out the current status of command line switches and any newsgroup restric­
tions.

&switch {switch}
Set additional command line switches.

&& Print out the current macro definitions.

&&keys commands
Define additional macros.

!command
Escape to a subshell. One exclamation mark (!) leaves you in your own news direc­
tory. A double exclamation mark (!!) leaves you in the spool directory for news,
which on most systems is lusrlspooVnews. The environment variable SHELL will be
used if defined. If command is nUll, an interactive shell is started.

q Quit.

x Quit, restoring .newsrc to its state at startup of rn. The .newsrc you would have had
if you had exited with 'q' will be called .newnewsrc, in case you didn't really want to
type 'x'.

AK Edit the global KILL file. This is a file which contains Ipattemlj commands (one per
line) to be applied to every newsgroup as it is started up, that is, when it is selected
on the newsgroup selection level. The purpose of a KILL file is to mark articles as
read on the basis of some set of patterns. This saves considerable wear and tear on
your 'n' key. There is also a local KILL file for each newsgroup. Because of the
overhead involved in searching for articles to kill. it is better if possible to use a local
KILL file. Local KILL files are edited with a 'AK' on the article selection level.
There are also automatic ways of adding search commands to the local KILL file­
see the 'K' command and the K search modifier on the article selection level.

If either of the environment variables VISUAL or EDITOR is set, the specified edi­
tor will be invoked; otherwise a default editor (normally vi(l) is invoked on the
KILL file.

7th Edition 3

RN(l) UNIX Programmer's Manual RN(l)

Article . Selection Level

On the article selection level, rn selects (by default) unread articles in numerical order (the
order in which articles have arrived at your site). If you do a subject search CN), the default
order is modified to be numerical order within each subject thread. You may switch back
and forth between numerical order and· subject thread order at will. The -S switch can be _
used to make subject search· mode the default.

On the article selection level you are not asked whether you want to read an article before the
article is displayed; rather, rn simply displays the first page (or portion of a page, at low baud
rates) of the article and asks if you want to continue. The normal article selection prompt'
comes at the END of the article (though article selection commands can be given from within
the middle of the article (the pager level) also). The prompt at the end of an article looks like
this:

End ofanicle 248 (of2S7)-what next? [npq]

The following are the options at this point:

n,SP Scan forward for next unread article. (Note: the On' (next) command when typed at
the end of an article does not mark the article as read, since an article is automati~
caly marked as read after the last line of it is printed. It is therefore possible to type
a sequence such as 'mn' and leave the article marked as unread. The fact that an
article is marked as read by typing on', 'N', "''N', os', or'S' within the MIDDLE of the
article is in fact a special case.)

N Go to the next article.

AN Scan forward for the next article with the same subject, and make AN default (suoject
search mode).

p Scan backward for previous unread article. If there is none, stay at the current arti~
cleo

P Go to the previous article.

Go to the previously displayed article (regardless of whether that article is before or
after this article in the normal sequence).

Ap Scan backward for the previous article with the same subject, and make AN default
(subject search mode).

AR Restart the current article.

v Restart the current article verbosely, displaying the entire header.

AL Refresh the screen.

AX Restart the current article, and decrypt as a rot 13 message.

X Refresh the screen, and decrypt as a rot 13 message.

b Back up one page.

q Quit this newsgroup and go back to the newsgroup selection level.

Go to the first unread article.

$ Go to the last article (actually, one past the last article).

number Go to the numbered article.

range { ,range} command {:command}
Apply a set of commands to a set of articles. A range consists of either <article
number> or <article number>-<article number>. A dot '.' represents the current
article, and a dollar sign '$' represents the last article.

7th Edition 4

RN(l) UNIX Programmer's Manual
•

RN(l)

Applicable commands include 'm' (mark as unread), 'M' (delayed mark as unread), 'j'
(mark as read), "s dest" (save to a destination), "!command" (shell escape), "="
(print the subject) and "C" (cancel).

j Junk the current article- mark it as read. If this command is used from within an
article, you are left at the end of the article, unlike 'n', which looks for the next arti­
cle.

m Mark the current article as still unread. (If you are in subject search mode you prob­
ably want to use M instead of m. Otherwise the current article may be selected as
the beginning of the next subject thread.)

M Mark the current article as still unread, but not until the newsgroup is exited. Until
then, the current article will be marked as read. This is useful for returning to an
article in another session, or in another newsgroup.

Ipattern Scan forward for article containing pattern in the subject. See the section on Regular
Expressions. Together with the escape substitution facility described later, it
becomes easy to search for various attributes of the current article, such as subject,
article ID, author name, etc. The previous pattern can be recalled with "<esc>I". If
pattern is omitted, the previous pattern is assumed.

Ipattemlh
Scan forward for article containing pattern in the header.

Ipattemla
Scan forward for article containing pattern anywhere in article.

Ipattemlr
Scan read articles also.

Ipattemlc
Make search case sensitive. Ordinarily upper and lower case are considered the
same.

Ipattemlmodifiers:command {:command}

?pattern

k

K

Apply the commands listed to articles matching the search command (possibly with
h, a, or r modifiers). Applicable commands include 'm' (mark as unread), 'M'
(delayed mark as unread), 'j' (mark as read), "s dest" (save to a destination), "!com­
mand" (shell escape), "=" (print the subject) and "C" (cancel). If the first command
is 'm' or 'M', modifier r is assumed. A K may be included in the modifiers (not the
commands) to cause the entire command (sans K) to be saved to the local KILL file,
where it will be applied to every article that shows up in the newsgroup.

For example, to save all articles in a given newsgroup to the line printer and mark
them read, use "ri llpr:j". If you say "riK Ilpr:j", this will happen every time you
enter the newsgroup.

Scan backward for article containing pattern in the subject. May be modified as the
forward search is: ?pattern?modifiers[:commands]. It is likely that you will want an r
modifier when scanning backward.

Mark as read all articles with the same subject as the current article. (Note: there is
no single character command to temporarily mark as read (M command) articles
matching the current subject. That can be done with "1<esc>s/M", however.)

Do the same as the k command, but also add a line to the local KILL file for this
newsgroup to kill this subject every time the newsgroup is started up. For a discus­
sion of KILL files, see the 'AK' command below. See also the K modifier on searches
above.

7th Edition 5

RN(1) UNIX Programmer's Manual RN(l)

AK Edit the local KILL file for this newsgroup. Each line of the KILL file should be a
command of the form Ipattern/j. (With the exception that rn will insert a line at the
beginning of the form "THRU <number>", which tells rn the maximum article
number that the KILL file has been applied to. You may delete the THRU line to
force a rescan of current articles.) You may also have reason to use the m, h, or a
modifiers. Be careful with the M modifier in a kill file- there are more efficient ways
to never read an article. You might have reason to use it if a particular series of arti­
cles is posted to multiple newsgroups. In this case, M would force you to view the
article in a different newsgroup.

To see only newgroup articles in the control newsgroup, for instance, you might put

rlj
Inewgroup/m

which kills all subjects not containing "newgroup". You can add lines automatically
via the K command and K search modifiers, but editing is the only way to remove
lines. If either of the environment variables VISUAL .or EDITOR is set, the
specified editor will be invoked; otherwise a default editor (normally vi) is invoked
on the KILL file.

The KILL file may also contain switch setting lines beginning with '&'. Additionally,
any line beginning with 'X' is executed on exit from the newsgroup rather than on
entrance. This can be used to set switches back to a default value.

r Reply through net mail. The environment variables MAILPOSTER and MAIL­
HEADER may be used to modify the mailing behavior of rn (see environment sec­
tion). If on a nonexistent article such as the "End of newsgroup" pseudo-article
(which you can get to with a '$' command), invokes the mailer to nobody in particu­
lar.

R Reply, including the current article in the header file generated. (See 'F' command
below). The YOUSAID environment variable controls the format of the attribution
line.

f Submit a followup article. If on a nonexistent article such as the "End of newsgroup"
pseudo-article (which you can get to with a '$' command), posts an original article
(basenote).

F Submit a followup article, and include the old article, with lines prefixed either by
"> ,. or by the argument to a -F switch. Rn will attempt to provide an attribution
line in front of the quoted article, generated from the From: line of the article.
Unfortunately, the From: line doesn't always contain the right name; you should
double check it against the signature and change it if necessary, or you may have to
apologize for quoting the wrong person. The environment variables NEWSPOSTER,
NEWSHEADER and ATTRIBUTION may be used to modify the posting behavior
of rn (see environment section).

C Cancel the current article, but only if you are the contributor or superuser.

c Catch up in this newsgroup; i.e., mark all articles as read.

u Unsubscribe to this newsgroup.

s destination
Save to a filename or pipe using sh. If the first character of the destination is a verti­
cal bar, the rest of the command is considered a shell command to which the article
is passed through standard input. The command is subject to filename expansion.
(See also the environment variable PIPESAVER.) If the destination does not begin
with a vertical bar, the rest of the command is assumed to be a filename of some

7th Edition 6

RN(1) UNIX Programmer's Manual RN(l)

sort. An initial tilde ,..., will be translated to the name of the home directory, and an
initial environment variable substitution is also allowed. If only a directory name is
specified, the environment variable SAVENAME is used to generate the actual name.
If only a filename is specified (Le. no directory), the environment variable SAVEDIR
will be used to generate the actual directory. If nothing is specified, then obviously
both variables will be used. Since the current directory for rn while doing a save
command is your private news directory, saying "s .Ifilename" will force the file to
your news directory. Save commands are also run through % interpretation, so that
you can say "s %O/filename" to save to th~ directory you were in when you ran rn,
and "s %t" to save to a filename consisting of the Internet address of the sender.

After generating the full pathname of the file to save to, rn determines if the file
exists already, and if so, appends to it. Rn will attempt to determine if an existing
file is a mailbox or a normal file, and save the article in the same format. If the out­
put file does not yet exist, rn will by default ask you which format you want, or you
can make it skip the question with either the -M or -N switch. If the article is to be
saved in mailbox format, the command to do so is generated from the environment
variable MBOXSA VER. Otherwise, NORMSA VER is used.

S destination
Save to a filename or pipe using a preferred shell, such as csh. Which shell is used
depends first on what you have the environment variable SHELL set to, and -in the
absence of that, on what your news administrator set for the preferred shell when he
or she installed rn.

I command
Shorthand for "s I command".

w destination
The same as "s destination", but saves without the header.

W destination
The same as "S destination", but saves without the header.

& Print out the current status of command line switches.

&switch {switch}
Set additional command line switches.

&& Print out current macro definitions.

&&keys commands
Define an additional macro.

!command

Escape to a subshell. One exclamation mark (!) leaves you in your own news direc­
tory. A double exclamation mark (!!) leaves you in the spool directory of the current
newsgroup. The environment variable SHELL will be used if defined. If command
is null, an interactive shell is started.

You can use escape key substitutions described later to get to many run-time values.
The command is also run through % interpretation, in case it is being called from a
range or search command.

List subjects of unread articles.

Print last article number.

7th Edition 7

RN(1) UNIX Programmer's Manual

Pager Level

At the pager level (within an article), the prompt looks like this:

-MORE-(l7%)

and a number of commands may be given:

SP Display next page.

x Display next page and decrypt as a rot 13 message.

d, AD Display half a page more.

CR Display one more line.

q Go to the end of the current article (don't mark it either read or unread).
you at the "What next?" prompt.

Junk the current article. Mark it read and go to the end of the article .

Refresh the screen.
./

X Refresh the screen and decrypt as a ro~13 message.

b;B Back up one page.

gpattern

RN(l)

Leaves

Goto (search forward for) pattern within current article. Note that there is no· space
between the command and the pattern. If the pattern is found, the page containing
the pattern will be displayed. Where on the page the line matching the pattern goes
depends on the value of the -g switch. By default the matched line goes at the top of
the screen.

G Search for g pattern again.

AG This is a special version of the 'g' command that is for skipping articles in a digest.
It is equivalent to setting "-g4" and then executing the command "g·Subject:".

TAB This is another special version of the 'g' command that is for skipping inclusions of
older articles. It is equivalent to setting "-g4" and then executing the command
"gArc]", where c is the first character of the last line on the screen. It searches for
the first line that doesn't begin with the same character as the last line on the screen.

!command
Escape to a subshell.

The following commands skip the rest of the current article, then behave just as if typed to
the "What next?" prompt at the end of the article. See the documentation at the article selec­
tion level for these commands.

$ & I=? c C fF k K AK m M r R AR u v Y A

number
range{,range} command{:command}

The following commands also skip to the end of the article, but have the additional effect of
marking the current article as read:

n N AN s S I w W

Miscellaneous facts about commands

An 'n' typed at either the "Last newsgroup" prompt or a "Last article" prompt will cycle back
to the top of the newsgroup or article list, whereas a 'q' will quit the level. (Note that on' does
not mean "no", but rather "next".) A space will of course do whatever is shown as the
default, which will vary depending on whether rn thinks you have more articles or

7th Edition 8

RN(1) UNIX Programmer's Manual RN(1)

newsgroups to read.

The 'b' (backup page) command may be repeated until the beginning of the article is reached.
If rn is suspended (via a AZ), then when the job is resumed, a refresh el) will automatically
be done (Berkeley-type systems only). If you type a command such as '!' or's' which takes
you from the middle of the article to the end, you can always get back into the middle by typ­
ing 'Al'.

In multi-character commands such as '1', 's', '/', etc, you can interpolate various run-time
values by typing escape and a character. To find out what you can interpolate, type escape
and 'h', or check out the single character % substitutions for environment variables in the
Interpretation and Interpolation section, which are the same. Additionally, typing a double
escape will cause any % substitutions in the string already typed in to be expanded.

OptiODS

Rn has a nice set of options to allow you to tailor the interaction to your liking. (you might
like to know that the author swears by "-e -m -S -I".) These options may be set on the com­
mand line, via the RNINIT environment variable, via a file pointed to by the RNINIT vari­
able, or from within rn via the & command. Options may generally be unset by saying
"+switch". Options include:

-c checks for news without reading news. If a list of news groups is given on the command
line, only those newsgroups will be checked; otherwise all subscribed-to newsgroups are
checked. Whenever the -c switch is specified, a non-zero exit status from rn means that
there is unread news in one of the checked newsgroups. The -c switch does not disable
the printing of newsgroups with unread news; this is controlled by the -s switch. (The
-c switch is not meaningful when given via the & command.)

-C<number>
tells rn how often to checkpoint the .newsrc, in articles read. Actually, this number says
when to start thinking about doing a checkpoint if the situation is right. If a reasonable
checkpointing situation doesn't arise within 10 more articles, the .newsrc is checkpointed
willy-nilly.

-d<directory name>
sets the default save directory to something other than -/News. The directory name will
be globbed (via csh) if necessary (and if possible). Articles saved by rn may be placed in
the save directory or in a subdirectory thereof depending on the command that you give
and the state of the environment variables SA VEDIR and SA VENAME. Any KILL files
(see the K command in the Article Selection section) also reside in this directory and its
subdirectories, by default. In addition, shell escapes leave you in this directory.

-D<flags>
enables debugging output. See common.h for flag values. Waming: normally rn
attempts to restore your .newsrc when an unexpected signal or internal error occurs.
This is disabled when any debugging flags are set.

-e causes each page within an article to be started at the top of the screen, not just the first
page. (It is similar to the -c switch of more(1).} You never have to read scrolling text
with this switch. This is helpful especially at certain baud rates because you can start
reading the top of the next page without waiting for the whole page to be printed. It
works nicely in conjuction with the -m switch, especially if you use half-intensity for
your highlight mode. See also the -L switch.

-E<name> = <val>
sets the environment variable <name> to the value specified. Within rn,
"&-ESAVENAME=%t" is similar to "setenv SAVENAME '%t'" in csh, or
"SA VENAME= '%t'; export SA VENAME" in sh. Any environment variables set with

7th Edition 9

RN(1) UNIX Programmer's Manual RN(1)

-E will be inherited by subprocesses of rn.

-F<string>
sets the prefix string for the 'F followup command to use in prefixing each line of the
quoted article. For example, "-F<tab>" inserts a tab on the front of each line (which
will cause long lines to wrap around, unfortunately), "-F»»" inserts "»»" on
every line, and "-P' by itself causes nothing to be inserted, in case you want to reformat
the text, for instance. The initial default prefix is ">".

-g<line>
tells rn which line of the screen you want searched-for strings to show up on when you
search with the 'g' command within an article. The lines are numbered starting with 1.
The initial default is "-gI", meaning the first line of the screen. Setting the line to less
than 1 or more than the number of lines on the screen will set it to the last line of the
screen.

-h<strin8>
hides (disables the printing of) all header lines beginning with string. For instance, -hexp
will disable the printing of the "Expires:" line. Case is insignificant. If <string> is null,
all header lines except Subject are hidden, and you may then use + h to select those lines
you want to see. You may wish to use the baud-rate switch modifier below to hide more
lines at lower baud rates.

-H<string>
works just like -h except that instead of setting the hiding flag for a header line, it sets
the magic flag for that header line. Certain header lines have magic behavior that can
be controlled this way. At present, the following actions are caused by the flag for the
particular line: the Newsgroups line will only print when there are multiple newsgroups,
the Subject line will be underlined, and the Expires line will always be suppressed if
there is nothing on it. In fact, all of these actions are the default, and you must use + H
to undo them.

-i-<number>
specifies how long (in lines) to consider the initial page of an article-normally this is
determined automatically depending on baud rate. (Note that an entire article header
will always be printed regardless of the specified initial page length. If you are working
at low baud rate and wish to reduce the size of the headers, you may hide certain header
lines with the -h switch.)

-I disables the clearing of the screen at the beginning of each article, in case you have a
bizarre terminal.

-L tells rn to leave information on the screen as long as possible by not blanking· the screen
between pages, and by using clear to end-of-line. (The more(l) program does this.) This
feature works only if you have the requisite termcap capabilities. The switch has no
effect unless the -e switch is set.

-m-<mode>
enables the marking of the last line of the previous page printed, to help the user see
where to continue reading. This is most helpful when less than a full page is going to be
displayed. It may also be used in conjunction with the -e switch, in which case the page
is erased, and the first line (which is the last line of the previous page) is highlighted. If
-m=s is specified, the standout mode will be used, but if -m=u is specified, underlining
will be used. If neither =5 or =U is specified, standout is the default. Use +m to disable
highlighting .

.. M forces mailbox format in creating new save files. Ordinarily you are asked which format
you want.

7th Edition 10

RN(l) UNIX Programmer's Manual RN(1)

-N forces normal (non-mailbox) format in creating new save files. Ordinarily you are asked
which format you want.

-r causes m to restart in the last newsgroup read during a previous session with rn. It is
equivalent to starting up normally and then getting to the newsgroup with a g command.

-s with no argument suppresses the initial listing of newsgroups with unread news, whether
-c is specified or not. Thus -c and -s can be used together to test "silently" the status
of news from within your .login file. If -5 is followed by a number, the initial listing is
suppressed after that many lines have been listed. Presuming that you have your
. newsrc sorted into order of interest, -55 will tell you the 5 most interesting newsgroups
that have unread news. This is also a nice feature to use in your .login file, since it not
only tells you whether there is unread news, but also how important the unread news is,
without having to wade through the entire list of unread newsgroups. If no -5 switch is
given -55 is assumed, so just putting "rn -e" into your .login file is fine.

-8<oumber>
causes m to enter subject search mode (AN) automatically whenever a newsgroup is
started up with <number> unread articles or more. Additionally, it causes any 'n' typed
while in subject search mode to be interpreted as 'AN' instead. (To get back out of sub­
ject search mode, the best command is probably OA'.) If <number> is omitted, 3 is
assumed.

-t puts m into terse mode. This is more cryptic but useful for low baud rates. (Note that
your system administrator may have compiled rn with either verbose or terse messages
only to save memory.) You may wish to use the baud-rate switch modifier below to
enable terse mode only at lower baud rates.

-Tallows you to type ahead of rn. Ordinarily m will eat typeahead to prevent your
autorepeating space bar from doing a very frustrating thing when you accidentally hold
it down. If you don't have a repeating space bar, or you are working at low baud rate,
you can set this switch to prevent this behavior. You may wish to use the baud-rate
switch modifier below to disable typeahead only at lower baud rates.

-v sets verification mode for commands. When set, the command being executed is
displayed to give some feedback that the key has actually been typed. Useful when the
system is heavily loaded and you give a command that takes a while to start up.

-I sets SAVEDIR to "%p/%c" and SA VENAME to "%a", which means that by default arti­
cles are saved in a subdirectory of your private news directory corresponding to the
name of the the current news group, with the filename being the article number. +1 sets
SA VEDIR to "%p" and SA VENAME to "%AC", which by default saves articles directly
to your private news directory, with the filename being the name of the current news­
group, first letter capitalized. (Either +1 or -I may be default on your system, depending
on the feelings of your news administrator when he, she or it installed m.) You may, of
course, explicitly set SA VEDIR and SA VENAME to other values- see discussion in the
environment section.

Any switch may be selectively applied according to the current baud-rate. Simply prefix the
switch with +speed to apply the switch at that speed or greater, and -speed to apply the
switch at that speed or less. Examples: -1200-hposted suppresses the Posted lire at 1200
baud or less; + 9600-m enables marking at 9600 baud or more. You can apply the modifier
recursively to itself also: +300-1200-t sets terse mode from 300 to 1200 baud.

Similarly, switches may be selected based on terminal type:

-=vtl00+T set +T on vt100
-=tvi920-ETERM=mytvi get a special termcap entry
-=tvi920-ERNMACRO= %.I.mmac.tvi

7th Edition 11

RN(l) UNIX Programmer's Manual , RN(l)

set up special keymappings
+ -paper-v set verify mode if not hardcopy

Some switch arguments, such as environment variable values, may require spaces. in them.
Such spaces should be quoted via ., " or \ in the conventional fashion,even when passed via
RNINIT or the &; command.

Regular Expressions

The patterns used in article searching are regular expressions such as those used by ed(1). In
addition, \ w matches an alphanumeric character and \ W a nonalphanumeric. Word boun­
daries may be matched by \b, and non-boundaries by \B. The bracketing construct \(... \)
may also be used, and \digit matches the digit'th substring, where digit can range from 1 to 9.
\0 matches whatever the last bracket match matched. Up to 10 alternatives may given in a
pattern, separated by \1, with the caveat that \(... \1 .•. \) is illegal.

Interpretation and Interpolation

Many of the strings that m handles are subject to interpretations ·of several types. Under
filename expansion, an initial "-I" is translated to the name of your home directory, and
"-name" is translated to the login directory for the user specified. Filename expansion will
also expand an initial environment variable, and also does the backslash, uparrow and percent
expansion mentioned below.

All interpreted strings go through backslash, uparrow and percent interpretation. The
backslash escapes are the normal ones (such as \n, \t, \nnn, etc.). The uparrow escapes indi­
cate control codes in the normal fashion. Backslashes or uparrows to be passed through
should be escaped with backslash. The special percent escapes are similar to printf percent
escapes. These cause the substitution of various run-time values into the string. The follow­
ing are currently recognized:

%a Current article number.

%A Full name of current article (%P/%cI%a). (On a Eunice system with the LINKART
option, %P/%cI%a returns the. name of the article in the current newsgroup, while %A
returns the real name of the article, which may be different if the current article was
posted to multiple newsgroups.)

%b

%B

«!be
%C

%d

%D

%f

%F

%h

Destination of last save command, often a mailbox.

The byte offset to the beginning of the part of the article to be saved, set by the save
command. The '5' and 'S' commands set it to 0, and the 'w' and 'W' commands set
it to the byte offset of the body of the article.

Current newsgroup, directory form.

Current newsgroup, dot form.

Full name of newsgroup directory (%P /%c).

"Distribution:" line from the current article.

"From:" line from the current article, or the "Reply-To:" line if there is one. This
differs from %t in that comments (such as the full name) are not stripped out with
%f.

"Newsgroups:" line for a new article, constructed from "Newsgroups:" and
"Followup-To:" lines of current article.

Name of the header file to pass to the mail or news poster, containing all the infor­
mation that the poster program needs in the form of a message header. It may also
contain a copy of the current article. The format of the header file is controlled by
the MAILHEADER and NEWSHEADER environment variables.

7th Edition 12

RN(1) UNIX Programmer's Manual RN(1)

%H Host name (your machine's name).

%i "Message-I.O.:" line from the current article, with <> guaranteed.

%1 The reference indication mark (see the -F switch.)

%1 The news administrator's login name, if any.

%L Login name (yours).

%m The current mode of rn, for use in conditional macros.

%M

%n

%N

%0

%0
%p

%P

%r

%R

%s

%S

%t

%T

%u

%U

%x

%X

1 Initializing.
n Newsgroup selection level.
a Article selection level (What next?).
p Pager level (MORE prompt).
A Add this newsgroup?
C Catchup confirmation.
D Delete bogus newsgroups?
M Use mailbox format?
R Resubscribe to this newsgroup?

Note that yes/no questions are all upper-case modes. If, for example, you wanted to
disallow defaults on all yes/no questions, you could define the following macro: .

\040 %(%m=[A-Z]?h:)

The number of articles marked to return via the 'M' command. If the same article is
Marked multiple times, "%M" counts it mUltiple times in the current implementa­
tion.

"Newsgroups:" line from the current article.

Full name (yours).

Organization (yours).

Original working directory (where you ran rn from).

Your private news directory, normally -/News.

Public news spool directory, normally lusr/spool/news.

Last reference on references line of current article (parent article id).

References list for a new article, constructed from the references and article ID of the
current article.

Subject, with all Re's and (nO's stripped off.

Subject, with one "Re:" stripped off.

"To:" line derived from the "From:" and "Reply-To:" lines of the current article.
This always returns an Internet format address.

"To:" line derived from the "Path:" line of the current article to produce a uucp
path.

The number of unread articles in the current newsgroup.

The number of unread articles in the current newsgroup, not counting the current
article.

The news library directory.

The rn library directory.

7th Edition 13

RN(1) UNIX . Programmer's Manual· RN(1)

%z The length of the current article in bytes.

% ~ Your home directory.

%. The directory containing your dot . files, which is your home directory unless the
environment variable DOTOIR is defined when rn is invoked.

%$ Current process number.

0/01 Last search string.

%% A percent sign.

%{name} or %(name-defaultJ

%[name)

The environment variable "name".

The value of header line "Name:" from the current article. The "Name: " is not
included. For example "%0" and "%[distribution]" are equivalent. The name must
be spelled out in full.

%'command'
Inserts the output· of the command, with any embedded newlines translated to space.

%"prompt"
Prints prompt on the terminal, then inputs one string, and inserts it.

%(tesctext= pattern?then_text:else_text)
If tesLtext matches pattern, has the value then_text, otherwise else_text. The
":else_teJltt" is optional, and if absent, interpolates the null string. The = may be
replaced with !- to negate the test. To quote any of the metacharacters ('=', '?', ':',
or ')'), precede with a backslash.

%digit The digits 1 through 9 interpolate the string matched by the nth bracket in the last
pattern match that had brackets. If the last pattern had alternatives, you may not
know the number of the bracket you want- %0 will give you the last bracket
matched.

Modifters: to capitalize the first letter, insert : "%"'C" produces something like "Net.jokes".
Inserting '_' causes the first letter following the last 'r to be capitalized: "%_c" produces
"net/lakes" .

ENVIRONMENT
The following environment variables are paid attention to by rn. In general the default values
assumed for these variables by rn are reasonable, so if you are using rn for the first time, you
can safely ignore this section. Note that the defaults below may not correspond precisely to
the defaults on your system. To find the actual defaults you would need to look in config.h
and common.h in the rn source directory, and the file INIT in the rn library.

Those variables marked (%) are subject to % interpolation, and those marked () are subject to
both % interpolation and - interpretation.

ATTRIBUTION (%)
Gives the format of the attribution line in front of the quoted article included by an
Fcommand. .

Default: In article %i %f writes:

CANCEL(}
The shell command used to cancel an article.

Default: inews -h < %h

7th Edition 14

RN(1) UNIX Programmer's Manual RN(1)

CANCELHEADER (%)
The format of the file to pass to the CANCEL command in order to cancel an article.

Default:
Newsgroups: %n
Subject: cmsg cancel %i
References: %R
Reply-To: %L@%H.UUCP (%N)
Distribution: %D
Organization: %0

%i cancelled from rn.

DOTDIR
Where to find your dot files, if they aren't in your home directory. Can be interpo­
lated using "%

Default: SHOME

EDITORC)
The name of your editor, if VISUAL is undefined.

Default: whatever your news administrator compiled in, usually vi.

FIRSTLINE (%)
Controls the format of the line displayed at the top of an article. Warning: this may
go away.

Default: Article %a %(%U%M!=AOOS?(%U more%(%M!=AOS? + %M Marked to
return)\))in %C:, more or less.

HIDELINE
If defined, contains a regular expression which matches article lines to be hidden, in
order, for instance, to suppress quoted material. A recommended string for this pur­
pose is "A> ... ", which doesn't hide lines with only'>', to give some indication that
quoted material is being skipped. If you want to hide more than one pattern, you
can use "I " to separate the alternatives. You can view the hidden lines by restarting
the article with the 'v' command.

There is some overhead involved in matching each line of the article against a: regu­
lar expression .. You might wish to use a baud-rate modifier to enable this feature
only at low baud rates.

Default: undefined

HOME Your home directory. Affects - interpretation, and the location of your dot files if
DOTDIR is not defined.

Default: $LOGDIR

KILLGLOBAL C)
Where to find the KILL file to apply to every newsgroup. See the ,AK' command at
the newsgroup selection level.

Default: %p/KILL

KILLLOCALC)
Where to find the KILL file for the current newsgroup. See the commands 'K' and
,AK' at the article selection level, and the search modifier 'K'.

Default: %p/%C/KILL

7th Edition 15

RN(l) UNIX Programmer's Manual RN(l)

LOGDIR
Your home directory if HOME is undefined. Affects ~ interpretation, and the loca­
tion of your dot files if DOTDIR is not defined.

Default: none.

Explanation: you must have either $HOME or $LOGDIR.

LOGNAME
Your login name, if USER is undefined. May be interpolated using "%L".

Default: value of getloginO.

MAILCALL(}
What to say when there is new mail.

Default: (Mail)

MAILFILE ()
Where to check for mail.

Default: lusrlspoollmaill%L

MAILHEADER (%)
The format of t~e header file for replies. See also MAILPOSTER.

Default:

To: %T
Subject: %(%i = ~?:Re: %S
Newsgroups: %n
In-Reply-To: %i)
%(%[references]! = ~$?References\: %[references 1
)Organization: %0
Cc:
Bee: \n\n

MAILPOSTER ()
The shell command to be used by the reply commands (r and R) in order to allow
you to enter and deliver the response. Rn will not itself call upon an editor for
replies-this is a function of the program called by rn. See also MAILHEADER.

Default: Rnmail -h %h

MBOXSAVER(}
The shell command to save an article in mailbox format.

Default: %X/mbox.saver %A %P %c %a %B %C "%b" \
"From: %T %'date'"

Explanation: the first seven arguments are the same as for NORMSA VER. The
eighth argument to the shell script is the new From: line for the article, including the
posting date, derived either directly from the Posted: line, or not-so-directly from the
Date: line. Header munging at its finest.

NAME Your full name: May be interpolated using "%N".

Default: name from !etc!passwd, or ~!.fullname.

NEWSHEADER (%)
The format of the header file for followups. See also NEWSPOSTER.

Default:

Newsgroups: %(%F = A$?%C:%F)

7th Edition 16

RN(1) UNIX Programmer's Manual

Subject: %(%S=A$?%"Oubject: ":Re: %S)
Summary:
Expires:
%(%R = ~?:References: %R
)Sender:
Reply-To: %L@%H.UUCP (%N)
Followup-To:
Distribution: %(%i=~?%"Oistribution: ":%D)
Organization: %0
Keywords: \n\n

RN(l)

NEWSPOSTER C)
The shell command to be used by the followup commands (f and F) in order to allow
you to enter and post a followup news article. Rn will not itself call upon an editor
for followups-this is a function of the program called by Tn. See also NEWS­
HEADER.

Default: Pnews -h %h

NORMSAVERC)
The shell command to save an article in the normal (non-mailbox) format.

Default: %X/norm.saver %A %P %c %a %B %C "%b"

ORGANIZATION
Either the name of your organization, or the name of a file containing the name of
your organization. May be interpolated using "%0".

Default: whatever your news administrator compiled in.

PAGESTOP
If defined. contains a regular expression which matches article lines to be treated as
form-feeds. There are at least two things you might want to do with this. To cause
page breaks between articles in a digest, you might define it as "A __ ". To force a
page break before a signature, you could define it as "A - $". (Then, when you see "­
-" at the bottom of the page, you can skip the signature if you so desire by typing 'n'
instead of space.) To do both, you could use "A_". If you want to break on more
than one pattern, you can use" I" to separate the alternatives.

There is some overhead involved in matching each line of the article against a regu­
lar expression. You might wish to use a baud-rate modifier to enable this feature
only at low baud rates.

Default: undefined

PIPESA VER (%)

RNINIT

The shell command to execute in order to accomplish a save to a pipe
("s I command" or "w I command"). The command typed by the user is substituted
in as %b.

Default: %(%B=AO$?<%A:tail +%Bc %A D %b

Explanation: if %B is 0, the command is "<%A %b", otherwise the command is "tail
+%Bc %A i %b".

Default values for switches may be passed to Tn by placing them in RNINIT. Any
switch that is set in RNINIT may be overruled on the command line, or via the '&'
command from within Tn. Binary-valued switches that are set with "-switch" may
be unset using "+switch".

7th Edition 17

RN(l) UNIX Programmer's Manual RN(l)

If RNINIT begins with a '/' it is assumed to be the name of a file contammg
switches. If you want to set many environment variables but don't want to keep
them all in your environment, or if the use of any of these variables conflicts with
other programs, you can use this feature along with the -E switch to set the environ­
ment variables upon startup.

Default: " ".

RNMACRO(",)
The name of the file containing macros and key mappings. See the MACROS sec­
tion.

Default: %.I.mmac

SAVEDIR(",)
The name of the directory to save to, if the save command does not specify a direc­
tory name.

Default:
If -I is set: %p/%C
If +1 is set: %p

SA VENAME (%)
The name of the file to save to, if the save command contains only a directory name.

Default:
If -I is set: %a
If +1 is set: %AC

SHELL The name of your preferred shell. It will be used by the '!', 'SO and 'W' commands.

Default: whatever your news administrator compiled in.

SUBJLINE (%)
Controls the format of the lines displayed by the '=' command at the article selection
level.

Default: %s

TERM Determines which termcap entry to use, unless TERMCAP contains the entry.

TERMCAP
Holds either the name of your termcap file, or a termcap entry.

Default: letcltermcap, normally.

USER Your login name. May be interpolated using "%L".

Default: $LOGNAME

VISUAL n
The name of your editor.

Default: $EDITOR

YOUSAID (%)
Gives the format of the attribution line in front of the quoted article included by an
R command.

Default: In article %i you write:

MACROS
When rn starts up, it looks for a file containing macro definitions (see environment variable
RNMACRO). Any sequence of commands may be bound to any sequence of keys, so you
could remap your entire keyboard if you desire. Blank lines or lines beginning with # in the

7th Edition 18

RN(l) UNIX Programmer's Manual RN(l)

macro file are considered comments; otherwise rn looks for two fields separated by white
space. The first field gives the sequence of keystrokes that trigger the macro, and the second
field gives the sequence of commands to execute. Both fields are subject to % interpolation,
which will also translate backslash and uparrow sequences. (The keystroke field is interpreted
at startup time, but the ·command field is interpreted at macro execution time so that you
may refer to % values in a macro.) For example, if you want to reverse the roles of carriage
return and space in rn

AJ \040
AM \040
\040 AJ

will do just that. By default, all characters in the command field are interpreted as the canon­
ical m characters, i.e. no macro expansion is done. Otherwise the above pair of macros
would cause an infinite loop. To forc~ macro expansion in the command field, enclose the
macro call with A(... A) thusly:

@s Imysavescript
@w WA(@SA)

You can use the %0 conditional construct to construct macros that work differently under
different circumstances. In particular, the current mode (%m) of rn could be used to make a
command that only works at a particular level. For example,

A[[O %(%m=p?\040)

will only allow the macro to work at the pager level.

%(%{TERM) =vt100~[[O) rJ

will do the binding only if the terminal type is vt100, though if you have many of these it
would be better to have separate tiles for each terminal.

If you want to bind a macro to a function key that puts a common garbage character after the
sequence (such as the carriage return on the end of Televideo 920 function sequences), DO
NOT put the carriage return into all the sequences or you will waste a CONSIDERABLE
amount of internal storage. Instead of "AAF"M", put "AAF+ 1 ", which indicates to rn that it
should gobble up one character after the F.

AUTHOR

FILES

Larry Wall <lwall@sdcrdcf.UUCP> .
Regular expression routines are borrowed from emacs, by James Gosling.

%.I.newsrc

%.I.oldnewsrc

%.I.rnlock

%.I.mlast

%.I.rnsoft

%.I.rnhead

%./.rnmac

%p

status of your news reading

backup copy of your .newsrc from start of session

lock file so you don't screw up your .newsrc

info from last run of rn

soft pointers into /usrllib/active to speed startup, synchronous with
.newsrc

temporary header file to pass to a mailer or news poster

macro and keymap definitions

your news save directory, usually ~/News

7th Edition 19

RN(l)

%xlactive

%P

%XlINIT

UNIX Programmer's Manual

the list of active newsgroups, usually lusr/lib/news/active

the public news spool directory, usually lusrlspooVnews

system-wide default switches

RN(l)

SEE ALSO
newsrc(5), more(l), readnews(l), Pnews(l), Rnmail(l)

DIAGNOSTICS

BUGS

Generally self-documenting, as they say.

The -h switch can only hide header lines that Tn knows about.

The '-' command doesn't cross newsgroup boundaries, and only undoes the last article selec­
tion.

If you edit your .newsrc while Tn is running, Tn will happily wipe out your changes when it
decides to write out the .newsrc file.

Rn doesn't do certain things (like ordering articles on posting date) that the author feels
should be handled by inews.

Marking of duplicate articles as read in cross-referenced newsgroups will not work unless the
Xref patch is installed in inews.

If you get carried away with % or escape substitutions, you can overflow buffers.

There should be no fixed limit on the number of newsgroups.

Some of the more esoteric features may be missing on machines with limited address space.

7th Edition 20

PNEWS(1) UNIX Programmer's Manual PNEWS(1)

NAME
Pnews - a program for posting news articles

SYNOPSIS
Poews oewslP'Oup title

or
Poews -h headerfile (oldarticle)

or
hews

DESCRIPTION
. Pnews is a friendly interface for posting news articles. It will ask several questions, then allow
you to enter your article, and then post it using the inews(1) program. If you type h and a
carriage return at any point, Pnews will tell you what it wants to know.

The -h form is used when invoked from Tn. If your editor can edit multiple files, and you
want the article to which you are replying to show up as an alternate file, define the environ­
ment variable NEWSPOSTER as "Pnews -h %h %A". You can also modify the the NEWS­
HEADER environment variable to change the header file that Tn passes to Pnews.

ENVIRONMENT
AUTHORCOPY

If defined, contains the name of a file to which the finished article will be appended.

Default: article not saved

DOTDIR
Where to find your dot files, if they aren't in your home directory. This is primarily
for accounts which are shared by more than one person.

Default: SHOME

EDITOR
The editor you want to use, if VISUAL is undefined.

Default: whatever your news administrator installed, usually vi.

HOME Your home directory.

Default: SLOGDIR

LOGDIR
Your home directory if HOME is undefined.

LOGNAME
Your login name, if USER is undefined.

Default: value of "whoami".

NAME Your full name.

Default: name from /etcJpasswd, or -/.fullname.

ORGANIZATION
Either the name of your organization, or the name of a file containing the name of
your organIzation.

Default: whatever your news administrator chose.

USER Your login name.

Default: SLOGNAME

VISUAL
The editor you want to use.

7th Edition

PNEWS(1)

FILES

Default: $EDITOR

$DOTDIRJ.article
~ I dead. article

SEE ALSO
m(1), Rnmail(1), inews(1)

BUGS

UNIX Programmer's Manual

Not the speediest program in the world, but maybe that's a blessing to the net.

,

7th Edition

PNEWS(1)

2

RNMAIL(1) UNIX Programmer's Manual RNMAIL(1)

NAME
Rnmail - a program for replying via mail

SYNOPSIS
Romail destination_list

or
Rnmail -h headerfile [oldarticleJ

or
Rnmail

DESCRIPTION
Rnmail is a friendly interface for mailing replies to news articles. It will ask several ques­
tions, then allow you to enter your letter, and then mail it off. If you type h and a carriage
return at any point, Rnmail will tell you what it wants to know.

The -h form is used when invoked from rn. If your editor can edit multiple files, and you
want the article to which you are replying to show up as an alternate file, define the environ­
ment variable MAILPOSTER as "Rnmail -h %h %A". You can also modify the the MAIL­
HEADER environment variable to change the he~der file that rn passes to Rnmail.

ENVIRONMENT
DOTDIR

If defined, specifies a place other than your home directory where 'dot' files may be
stored. This is primarily for accounts which are shared by more than one person.

Default: $HOME

EDITOR
The editor you want to use, if VISUAL is undefined.

Default: whatever your news administrator installed, usually vi.

HOME Your home directory.

Default: $LOGDIR

LOGDIR
Your home directory if HOME is undefined.

LOGNAME
Your login name, if USER is undefined.

Default: value of "whoami".

MAILRECORD
If defined, contains the name of a file to which the finished messr ge will be
appended.

Default: message not saved

ORGANIZATION
Either the name of your organization, or the name of a file containing the name of
your organization.

Default: whatever your news administrator chose.

USER Your login name.

Default: $LOGNAME

VISUAL

7th Edition

The editor you want to use.

Default: $EDITOR

RNMAIL(l)

FILES
$DOTDIRJ.letter
-, dead.1etter

SEE ALSO
m(1), Pnews(1), mail(1)

BUGS

UNIX Programmer's Manual

Uses !bin/mail in the absence of sendmail.

7th Edition

RNMAIL(1)

2

NEWSETUP (1) UNIX Programmer's Manual

NAME
newsetup - a program to set up a .newsrc file

SYNOPSIS
newsetup

DESCRIPTION

NEWSETUP (1)

The newsetup program creates a new .newsrc file containing all of the currently active news­
groups. It tries to put them in a reasonable order, i.e. local newsgroups earlier, but you'll
probably want to change the ordering anyway (if you use rn) in order to put interesting news­
groups first. If you already have a .newsrc, it will be backed up with the name ".oldnewsrc".

ENVIRONMENT
DOTDIR

FILES

Where to put your .newsrc, if not in your home directory.

Default: $HOME

HOME Your home directory.

Default: $LOGDIR

LOGDIR
Your home directory if HOME is undefined.

/usrllib/news/active or a reasonable facsimile
$ {DOTDIR-{$HOME-$LOGDIR} }/.newsrc

SEE AISO
m(1), newsrc(5)

7th Edition

NEWSGROUPS (1) UNIX Programmer's Manual NEWSGROUPS(1)

NAME
newsgroups - a program to list unsubscribed newsgroups.

SYNOPSIS
newsgroups pattern flag

DESCRIPTION .
The newsgroups program compares your .newsrc file with the file of active newsgroups, and
prints a list of unsubscribed newsgroups matching pattern. If the second argument "flag" is
present, only newsgroups not found in your .newsrc are listed, and the display is not paged.
If the second argument is missing, the display is paged, and an additional list of unsubscribed
newsgroups occurring in your .newsrc is printed.

ENVIRONMENT
DOTDIR

FILES

Where to find your .newsrc, if not in your home directory.

Default: SHOME

HOME Your home directory.

Default: SLOGDIR

LOGDIR
Your home directory if HOME is undefined.

lusr/lib/news/active or a reasonable facsimile
S{DOTDIR-{SHOME-SLOGDIR} }/.newsrc

SEE ALSO
rn(l), newsrc(S)

BUGS
The flag argument is a kludge.

7th Edition

SPMS
SOFTWARE PROJECT MANAGEMENT SYSTEM

Peter Nicklin, Berkeley

The SPMS Software Project Management System

Peter J. Nicklin

Division oC Structural Engineering and Structural Mechanics
Department oC Civil Engineering
University oC CaliCornia, Berkeley

Berkeley, CaliCornia 94720

ABSTRACT

The Software Project Management System (SPMS) is a system for the
management oC medium- to large-scale soCtware systems. SPMS provides, within
the UNIXt environment, a number oC commands which can greatly simplify many
tasks associated with program development and maintenance. SPMS does not
attempt to duplicate existing UNIX program development tools such as make or
SCCS, but instead provides a way oC coordinating these tools.

SPMS can be fitted to existing software systems. It retains the full capabili­
ties of the UNIX environment with unrestricted access to UNIX tools. Ali a result,
software packages developed using SPMS do not depend on the system for their
survival and can be ported to versions oC UNIX that do not support SPMS.

July 3, 1985

t UNIX is a. tra.dema.rk of Bell La.bora.tories.

Table of Contents

1. Introduction ... 1

2. Simple Tasks ... 1

2.1. Getting Started ... 1

2.2. Building a Project ... 2

2.3. Displaying a Project .. 3

2.4. Moving Around Inside a Project .. 4

2.5. Compiling a Program 4

2.6. Moving Files Within a Project 5

2.7. More on Building a Project ... 5

2.8. Creating a Program Library.................... 6

2.9. More on Developing a Program ;... 6

2.9.1. Included files ... ;............ 7

2.9.2. Program libraries .. 7

2.9.3. Installation ... 7

2.10. Global Operations ... ;... 8

2.10.1. Directory selection :... 8

2.10.2. Directory order ... 8

2.11. Locating Files in a Project .. 9

2.12. Searching Files Cor Patterns .. 10

2.13. Changing the Working Project :.. 11

3. Advanced Use .. 11

3.1. Project Hierarchies .. 11

3.1.1. The root project ... 12

3.1.2. Project Pathnames ... 12

3.2. Project Environment .. ~.................... 13

3.3. Global Operations ... 14

3.3.1. Boolean type label expressions .. 15

3.3.2. Searching and editing ... :......... 16

3.4. Testing 16

3.5. Documentation .. 16

3.5.1. The project log ... 16

3.5.2. Reference manual ... 17

3.5.3. On-line help ... 17

4. Software Management .. 19

4.1. Program Development Techniques .. 19

4.1.1. Program compilation .. 19

4.1.2. InstaJlation .. :.. 20

- ii -

4.1.3. Updating .. 20

4.1.4. Dependency analysis ,.. 21

4.1.5. Program checking ... 21

4.1.6. Version control and releases 21

4.1.7. Function tagging .. 22

4.1.8. Printing 22

4.1.9. Cleaning up .. :... 22

4.1.10. Testing 22

4.1.11. Compound commands ... 23

4.1.12. User-defined commands .. 23

4.2. Layered Construction or Software Packages .. 23

4.3. Maintenance of Software Packages .. 25

4.3.1. Counting of source lines ... 25

4.3.2. Cataloging of functions 25

4.3.3. Printing .. 25

4.3.4. Program checking 26

4.3.5. Testing .. 26

4.3.6. Comparing versions 26

4.3.7. Releases .. 26

4.3.8. Cleaning up .. 27

5. Retrofitting of Software Projects :.. '1:l

6. Acknowledgements ~.. 28

7. References .. 28

Appendix A. Standard Makefile Templates 30

Appendix B. Project 'vs' Makefile Templates ... 32

Appendix C. Project Pathname Syntax ... :... 36

Appendix D. SPMS Command Summary ... 37

__ tII_

The SPMS Software Project Management System

Peter J. Nicklin

Division or Structural Engineering and Structural Mechanics
Department or Civil Engineering
University or Calirornia, Berkeley

Berkeley, Calirornia 94720

1. Introduction
Sortware packages on the UNlX operating system are rrequently organized in a haphazard

manner. The conventions ror arranging parts or the package within the file system vary rrom
package to package, and absolute pathnames are oCten used to describe the location or files. The
net result is an amorphous non-portable soCtware package requiring a substantial maintenance
effort.

It would seem extremely desirable to develop tools and file system structures to support
more coherent and portable software packages, and reduce the maintenance effort associated with
them. The Software Project Management System (SPMS) is a. system Cor the management or
medium- to large-scale sortware systems. SPMS provides, within the UNIX environment\51, a
number or commands which can greatly simplify many tasks associated with program develop­
ment and maintenance. SPMS does not attempt to duplicate existing UNIX program development
tools such as make or sees, but instead provides a way or coordinating these tools.

Ir only the simpler commands are used, the SPMS system can be helprul ror inexperienced
UNIX users. Ir the more advanced SPMS reatures are used, the experienced user can perform com­
plex tasks with less effort and greater reliability than by applying the standard UNIX tools
directly.

Each soCtware package managed by SPMS is organized as a project 17,81. A project is a col­
lection of directories, each of which supports a specific activity such as program development,
testing, or documentation (see fig. 1). There is no restriction on the number of directories belong­
ing to a project. The directory layout is arbitrary, and can be altered to reflect the changing
needs or the package. "

SPMS can be fitted to existing sortware systems. It retains the Cull c"apabilities of the UNIX
environment with unrestricted access to UNIX tools. As a result, software packages developed
using SPMS do not depend on the system ror their survival and can be ported to versions or UNIX
that do not support SPMS.

2. Simple Tasks
In this document several examples related to an interactive screen-oriented spreadsheet pro­

gram are presented to demonstrate the use or SPMS for software development and project
management. It is assumed that the reader is ramiliar with the UNIX operating system and a. text
editor such as ex. In these examples, user input is shown in bold face.

2.1. Getting Started

Berore using SPMS for the first time the rollowing steps must be perrormed1

1 For C shell, (e,Ia), nen ODIy. Consult the UNIX Programmer's Manual for instructions on how to set up
SPMS for the Bourne shell, (,Ia).

- 2-

1. Include the directory '/usr/new' in the command search path. This is done by altering the
PATH environment variable in one of the startup files, '.cshrc' or '.login', in the home
directory.

2. Add the following aliases to the' .cshrc' file located in the home directory
alias chproject 'eval '''cbproject'' \!.' ,
alias pd 'eval '''pd'' \!."

3. Add the rollowing command to the' .login' file located in the home directory
chproject •

4. Convert the home directory to a project root directory by typing
/uar/new/mkproJect -d .

5. Execute the '.cshrc' and '.login' files by typing
source .eshre
source .logln

2.2. Bundln. a Project

The directory structure to support a sortware package is created by the mkproject and
pmkdir commands. Tbese commands create directories using the standard UNIX mkdir command I
and record information about eacb directory in a project database called the project link directory.

- 3-

This inCormation is used by various SPMS commands to control the development and mainte­
nance activities Cor a project.

The steps (or building the project structure are:

1. Initialize the project using the mkproject command. Mkproject creates a directory known
as a project root directory, to serve as the Cocus Cor a project, and initializes the project
database. ACter mkproject creates the project root directory, the user is prompted Cor a line
describing the purpose oC the project.

2. Use the chproject command to change to the root directory oC the new project and make it
the working project (see § 2.13).

3. Create the project directories using the pmkdir command. ACter pmkdir creates each direc­
tory, the user is prompted Cor a line describing the purpose o(the directory.

To illustrate this process, the (ollowing commands create project 'vs' with directories 'doc',
'src', and 'work' (see fig. 2) to support a 'Visual Spreadsheet' program2 called ",.

% mkproJect VB

vs: description? (1 line): Vlaual Spreadsheet
% ehproJect vs
% pmkdlr doc src work
doc: description? (1 line): vs user's guide
src: description? (1 line): vs program source code
work: description? (1 line): va workbench
% .

Figure 2. Layout of the project 'va'

2.3. Displaying a Project

The ppd "print project directory" command may be used to list the directories belonging
to'vs':

% ppd
doc src work
%

Alternatively, a table or contents (or the project can be obtained by using ppd with the -d
description option to print the description oC each project directory.

2 v. is a. fictitious name bearing no resemblance to any actual program.

- 4-

% ppd -d
doc vs user's guide
src vs program source code
work vs workbench
%

2.4. Moving Around Inside a Project

The pd command provides a convenient way for changing to another project directory
without the user having to remember it's precise location. For example, to move to the source
code directory 'src', type

% pd arc

To change to the directory 'work', type

% pd work

To return to the project root directory, type

% pd

without any arguments.

2.S. Compillng a Program

Program development and maintenance is handled by the make command 131. Make
mechanizes many development and maintenance activities, including compiling and linking or
programs, printing of source code, and the removal of unneeded files. The instructions which tell
make how to perform these duties are kept in a special file known as a makefile, together with the
names of the source code files which make up the program. The makefile editor program, mkml,
creates the makefile (named 'Makefile' by default) by gathering up the names of all the source
code files in the current working directory and inserting them into a standard makefile.

The following example shows how to produce the program for the visual spreadsheet, given
the file 'vs.c' containing the source code in the directory 'src'.

% mkmt
mkmf: creating Makefile from template lusr/new/lib/p.Makefile
% make
cc -c vs.c
Loading a.out ... done
%

In this example the executable program is called 'a.out'. However, by using the makefile editor
interactively the name 'vs' could have been specified instead:

% mkmt -1
mkmr: creating Makefile Crom template lusr Inew Ilib/p.Makefile
program name? vs
destination directory?
% make
cc -c vs.c
Loading vs ... done
%

Since a carriage return was typed in response to the second question in the example above, the
destination directory Cor the program remains the current' directory.

Because program V8 is a screen-oriented program, it would not be surprising if it requires
special Cunctions to control cursor movement and updating or the terminal screen. There is a

- s-

standard package or C library runctions ror this purpose called 'curses' Ill, and ir the program has
taken advantage or these runctions, this library should be included in the makefile together with
the terminal database package 'termlib'. This can be done by including the LIBS macro
definition as an argument to the mkm/ command3

% mkmt -I "LIBS=-lcurse5 -ltermUb"

2.6. Movlns FUel Within a Project

A file can be moved to another project directory by using the pmv command. For instance,
the following command moves the executable program vs rrom the current working directory to
the 'work' directory

% pmv VI work

In a similar manner, files can be copied from one project directory to another using the pcp com­
mand. Pmv and pcp behave very similarly to the standard UNIX mv and cp commands in that
they blindly overwrite any existing files or the same name in the destination directory unless the
-I interactive option is used.

2.7. More on BuUdlnl a Project

As development or a software package continues, extra project directories may be needed to
support the work. For example, project 'vs' must accommodate an additional program called
vstutor which provides instruction on the use of the visual spreadsheet program; two library pack­
ages called 'hash' and 'list' ror hash table and linked list operations; and three files that are
"included" in more than one source file' - 'vs.h' which contains common program definitions,
'hash.h' which defines hash tables, and. 'list.h' which holds linked list definitions. Figure 3 shows
the extra directories needed Cor these components and the Collowing command sequence creates
them

% pd
% pmkdlr bin Include lib
bin: description? (1 line): va and vatutor prosrama
include: description? (1 line): common Included flies
lib: description? (1 line): compUed haah table and Uat Ubrarlea
% pd arc
% pmkdlr va vstutor Ubhash l1I~nat
vs: description? (1 line): va prosram source code
vstutor: description? (1 line): vatutor prosram aource code
libhash: description? (1 line): huh table library source code
liblist: description? (1 line): u.t Ubrary aource code
%

The final step is to change the description oC the 'src' directory now that it has been subdivided
into four separate source code directories. This can be done by using the pmkdir with the +d
(change description) option

% pmkdlr +d src
src: description? (1 line): C source code
%

Note that in Figure 3 there are two directories called 'vs'. The top one bears the name of the pro­
ject, and the bottom one is named according to the program contained within it. Similarly, the
directories 'libhash' and 'lib list' are named according to libraries that they contain.

3 Arguments with embedded bla.nks in UNIX comma.nds must be enclosed by double quotes.

Figure 8. Revi.ed layout. of project. 'VI'

2.8. Or_tins. Pro.,..m Library

A program library is a collection or compiled subroutines that are shared by more than one
program. In the UNIX environment a program library is stored as an archive file. Each member of
the archive is an object file containing one or more compiled subroutines. By convention a library
archive file is named Ubname,. where name is the name or the program library.

The example below shows how to create a program library ror the hash table subroutines in
the 'libhash I directory. Note that the mkmJ command must be given with the -I option so that a
makefile wiD be created ror a library rather than a program.

% mkmt -I -I
mkmf: creating Make81e from template /usr/new/lib/l.Make81e
library name? Ubhuh.a
destination directory? _/ •• /Ub
% make
cc -e hthash.c
cc -e htinit.c
cc -e htinstall.c
cc -e htlookup.c
cc -e htrm.c
Loading libhash.a ... done
%

Since the 'lib' directory is in the same project as the 'libhash' directory, the path to 'lib' is made
relative to 'libhash' so that the project will be portable.

The next step is to install the program library in the 'Jib' project directory where the V8 and
v8tutor programs can access it easily.

% make tn.taU
Installing libhash.a in .. / .. /lib
%

2.9. More on Developtns • Prosram

- 7-

I.D.l. Included file,

Definitions which are common to more than one source code file (e.g'. buffer sizes, data struc­
ture definitions) should be declared only once in a program. This can be achieved by keeping
such definitions in files separate trom the main program and "including" them at compilation
time. In C, Fortran, and Pascal programs, the contents ot a file can be included by the statement

"include "filename"

By convention filentJme ends in .h and is commonly referred to as a hetJder file. Hence, in the
source code tor programs 11' and lI,tutor, the statements

"include "vs.h"
"include "hash.h"
"include "list.h"

include common program definitions, hash table definitions, and linked list definitions respec­
tively.

Since the header flies in this example are used in more than one program, they should be
placed· in the 'include' directory where they can be accessed easily. Although the include state­
ments can be rewritten as

"include " .• / .. /include/n.h"
"include " .. / .. /include/hash.h"
"include " .. f../include/list.h"

it is better to tell the compiler ~here the header files are. by using the -I compiler option4 as fol­
lows

-I../ .. /include

This is done moat conveniently by adding the option to the compiler tlags in the makefile (see
§4.1.1). '

1.9.1. ProgrtJm librtJrie,

The LIBS macro definition in a make6le specifies the libraries that are to be used by the
link editor tor resolving reterences to subroutines that are not tound in the program source code.
Because make checks to see if the libraries needed by a program have changed since the last time
the program was made, their path names must be defined explicitly. In the make6les belonging to
programs III and vltutor, the LIBS macro definition looks like

LIBS == .. / .• /lib/libhash.a \
.. / .. /lib/liblist.a \
/usr/Iib/Iibcurses.a \
/usr/lib/Iibtermlib.a

Note also that when this macro definition was added to the makefile by the command

% mkmt "LmS-•• / .. /Ub/Ubhaah.a •• / •• /Ub/UbUat.a -leurses -ltermUb"

to include the 'hash' and 'list' libraries, the 'curses' and 'termlib' libraries were automatically
expanded to full pathnames by the makefile editor.

2.D.3. Installation

Once a program has been completed, it should be installed in a place where it will be gen­
erally available - that is, in a directory which is in the command search path specified by the
PATH environment variable. In the case ot the project 'vs', it the 'bin' directory is in the search
path, this might be a good place to install the vs and vstutor programs. IC the makefiles for these

4 C a.nd Fortru compilen only,

- 8-

programs do not already specify 'bin' as their destination d~ectory, it can be added by the com- .
mand

% mkmt "DEST== •• / •• /bln"

Then, each program can be installed by the make in8taU command. For the program va:

% pd. v.
% make In.tan
Installing vs in .. / .. /biD
%

and for the program v.tutor:

% pd v.iutol'
% make lnaiaIl
Installing vstotor in .. / .. /biD
%

2.10. Global Operailou
One of the goals of SPMS is to reduce the efl'ort associated with software maintenance. This

can be achieved by treating a software package as an atomic unit - that is, a single entity on
which to perform operations. The mechanism for executing a command over an entire software
package is provided. by the pezec command. This command takes another command as an argu­
ment and executes it in each ot the directories belonging to a project, as in

%. pexec ..

which lists the names of all the files in a project.

2.10.1. Directory ,election

By labeling each project directory according to the type of activity that it supports, global
operations can be restricted to specific directories. These labels, which are known as type labels,
are attached to project directories by the pmkdir command, and removed by the prmdir com­
mandO. For instance, if the directories containing source code in project 'vs' are labeled 'src' by

% pmkdlr +T ere Include Ubhuh UbUei v. veiutol'

then, the total number ot lines of source code in a project can be couDted by giving the command

% pexec -Tar.c 'cat $lob $IoC' I wc-l

where quotes surrouDd the cat command to prevent file name expansion in the current directory.

If a project directory supports more than one type of activity, labels corresponding to each
of the activities can be attached to the directory.

2.10.2. Directory order

In some in$tances the directories afl'ected by a global command must be processed in a par­
ticular order. For example, when installing a software package which has both libraries and pro­
grams, the libraries should be installed first. This ordering is achieved by appending priorities to
type labels. In the case of the project 'vs', it the directories containing the program and library
source c'ode are labeled 'install' with the following priorities

& Except in the cue of projed root directories, where miprojed and rmprojed must be used.

- g-

Directory Prjority
libhash
liblist
ys
ystutor

by the commands

% pmkdlr +T instaU.1 Ubhaah Ubllat
% pmkdlr +T tnstaU.2 vs vstutor

then, the command

% pexee -T tn.tall make tn.taU

1
1
2
2

installs the 'YS' soCtware package in the order shown in figure 4.

..
-----,..:.

, .. " ..

I VB I
1 ,..,...t'"J

.,.~',' I \

".II I ,

,
I ,

,
I

I

\

\
\

\
\

\

, , ,

------. ------
.. ------. ~--:..---

1 doc. 1 1 include 1 1 lib 1 I _____ ..J I _____ ..J I _____ ..J 1 bin 1 1 work 1 I _____ ..J I _____ ..J

Figure.4. Orderiul for 'juRall' directories

In a similar Cashion, if the directories containing source code are labeled 'print' with the (01-

lowing priorities, .

Directory Priority
include 1
YS 2
ystutor 2
libhash 3
liblist 3

a source code listing (or the entire project may be obtained by the command

% pexee -Tprlnt 'pr *.h *.e' I lpr

in the order shown in figure 5.

2.11. Locating FUes In a Project

When the location o(a file within a project is unknown, it can be found by using the pfind
command. For example, the command

% pftnd Makeftle

searches (or all occurrences oC 'Makefile' in project 'YS' and produces the output

I doc I I _____ .J

... 'vs/MakefUe

... 'vstutor /Makefile

... 'libhash/Makeftle

... 'liblist/Makefile

I
I

I
I

I

- 10-

\

\

\

\
\

, ,
"

-----_.
I lib I I _____ .J

Fi"".. 5. Orderinc for 'print' directories

,
.. ..

.. ,
-~---- "':..._---_.
I bin I I work I I ____ -.J I _____ .J

In a large project, the time required to search for a file can be reduced by telling pfind to
scan only those directories in which there is some likelihood of tbe file being found. II~ the exam­
ple above, since makefiles are only likely to be found in source code directories (i.e. directories
having type label 'src'), the command could have been given as

% pftnd - T Irc Makeftle

2.12. Seal'chlDs FU. to .. Pattel'lUI

Sometimes it is necessary to look at all the files in a software package that contain a certain
pattern6. One reason might be to find all of the places from which a subroutine is caned, perhaps
with the intent of altering its arguments. The pgrep command searchs through specified files in a
project for lines matching a given pattern. For example,

% P8l'ep -Tare Uatappend '*.h *.c'

will search all the C source code files in project 'vs' for the function 'listappend'. Because of the
-T option, pgrep. searchs only in those directories which have the 'src' type label.

An alternative way for specifying file names is to use the -m option. This causes pgrep to
Cetch the names of source code files Crom the HDRS and SRCS macro definitions in a makefile.
Consequently, the command in the example above could have· been expressed as

% PSl'ep -TIre -m Uatappend

If the pattern contains characters that have a special meaning to the shell, such as * or .,
the patt.ern should be quoted. For example,

% P8l'ep -TIre -m 'ht.*(,

finds all of the places where runctions rrom the hash table library are used.

II The term ptllt,rn is used to deDote & set of striDC'.

- 11-

2.13. Changing the Working ProJeet

Along with a working directory, each user has a working project. Immediately after logging
in, the working project is the root project"'. To change to a new working project, the chproject
command must be used, as in

% ehproJeet V8

which makes 'vs' the current (or working) project. To return to the root project, execute the com­
mand

% chproJeet •

To find out the name oC the working project, type

% pwp

3. Advanced Use
This section summarizes the rest oC the racilities offered by SPMS Cor handling large

soCtware projects. Techniques Cor searching and editing text files, program testing, and documen­
tation are explained.

3.1. Project Hierarehles

To Cacilitate the management or large projects, such projects can be subdivided into smaller
projects. These subprojects can be nested to any level to Corm a project hierarchy which is very
similar to the UNIX directory hierarchy. For example, as project 'vs' grows, it might be con­
venient to convert each oC the 'hash' and 'Jist' program libraries into sUbprojects (see fig. 6).

Figure 6. Project 'vs' with subprojects

To show how this conversion is done, the Collowing set oC commands converts project directory
'libhash' into a subproject.

Convert the project directory into a subproject . ..

% pd arc
% prmdlr -u Hbhaah
% mkproject l1bhaah

- 12-

libhash: description? {I line): VS Hash Table Operations

· .. create the project directorieB ...

% chproject l1bhash
% pmkdlr arc test work
src: description? (IUne): hash table l1brary source code
test: description? (I line): hash table library test programs
work: description? (I line): hash table llbr8l'Y workbench

· .. reattach the 'we laDela •..

% pmkdlr +T llbarc,lnstall.l,prlnt.3 src

• •• and rearrange the library

% pmv Makeflle *.c *.0 src
% pd arc
% mkmt DEST= •• / .• / .• /llb

3.1.1. The root project

The project at the top of each user's project hierarchy is called the root project and is given
the special name 'A'. When the SPMS system was initially set up (see §2.1), the command

% mkproject -d A

created the root project and made the user's home directory into the project root directory for "'.

3.1.2. Project Pathnames

Project pathnamea provide a convenient way for accessing a particular directory or file
within a project hierarchy7. A project pathname is formed by a succession of project na.mes
separated by • A, characters8 , followed by the name of the directory or file. For instance, the path.
name

AvsAlibhash Asrc

represents the path from the root project to the 'src' directory located in subproject 'libhash', and
the pathname

AVS Alibhash A src /hthash.c

locates the file 'hthash.c' in that directory.

A project pathname can be abBolute or relative. An abBolute project pathname specifies the
path from the root project and begins with the character 'A'. However, a project pathname not
beginning with ,A, is interpreted with respect to the current working project and is therefore
called a reiative project pathname. For example, the pathname

libhash . src

specifies the location of 'src' relative to project 'vs', assuming that 'vs' is the" working project.

7 Project pa.thna.mes a.re recognized only by SPMS comma.nds.

• Since the Bourne shell, (,II), recognizes the' A, chander a.s a.n alternative pipe symbol, Bourne shell users
must type '\ ., instead.

- 13-

Since relative project pathnames are interpreted relative to the current working project
rather than the current working directory, this means that project directories and files can be
accessed from any working directory. For example, the command

% pmv ere/Ilbh.sh •• work

moves the hash table library from the 'src' directory in the wo"rking project 'libhash' to the 'work'
directory in the same project, regardless of the location of the current working directory.

The parent of the working project is called '' and may be used in a project pathname to
go up one level in a project hierarchy. Thus, the command

% ehproJeet ••••

makes the parent project o(the current project into the new working project. If the current pro­
ject happens to be 'libhash', then the command

% ehproJeet "UbUst

will change to project 'liblist'. For completeness, ' .. .' is an alternative name for the current work­
ing project. Table 1 summarizes the conventions used in project pathnames together with the
equivalent conventions for regular pathnames.

TtJblc 1. Path Dame cODveDtioDs

Project Pathname Regular Pathname
Component Description Component Description

" root project / root directory
" separator character / separator character ... working project . working directory

.... parent project .. parent directory

Project pathnames can be modified in two ways. The first way allows a user to refer to a
project belonging to someone else by prepending - user to the pathname. For example, if 'root'
has a copyo(the project 'vs', the command

% ppd -root"va

will print the directories in that project. The other way allows a regular pathname to follow a
project pathname, separated by a 'I' character. This enables access to directories which are not
part of a project. To illustrate, if 'junk' is a regular directory in the 'work' directory of the pro­
ject 'vs', the command

% pd "v. "work/Junk

changes to that directory.

3.2. Project Environment

It is possible to tailor the environment for the current project by adding commands to the
'.projectrc' startup file located in the root directory of the project. When the project is activated
by the chproject command, this file is executed. For instance, if a user wishes to be reminded of
tasks that still need attention on a project, a reminder service can be set up by putting the rem­
inders in a file, (e.g. '.reminder') and adding the line

cat .reminder

to the' . projectrc , file.

It is also a good idea to include the -d option in the alias for the chproject command (see
§ 2.1) so that when chproject is invoked, it will print the name of the new working project, as in

% ehproJeet ·va
Visual Spreadsheet
%

3.3. Global Operations

- 14-

Even if a project is divided into subprojects, commands can still be executed globally over
the entire sottware package by the pezec command. Pezec has two modes of execution, depend­
ing on the method chosen for selecting directories. If type labels are not used tor selecting a par­
ticular set of directories, pezec descends recursively through the project hierarchy and executes
the command argument in the project directories at each level. The command

% pexec la

demonstrates this mode of operation by listing the contents of the directories in the project 'vs' in
the order shown in figure 7.

Figure 7. Directory orderine for 'pexec Is'

The other mode ot operation, involving the use or type labels, causes pezec to search the
project hierarchy ror directories with appropriate type labels, sort the directories according to
their priorities, and then execute the command argument in each directory. As an example ot this
mode of execution, figure 8 indicates the order in which the command

% pexee - T print 'pr • .h • .e· I Ipr

prints the project 'vs'.

With both modes of operation, pezec resets the current working project to the project in
which the directory resides. For each of the 'src' directories in project 'vs' the corresponding
working projects are

I doc I 1 _____ ..1

I

I
I

- 15-

vs I
,-'t"'"~.J , -

\
I \

I \

\

\
\

, ,

------ ------
I lib - I
1 _____ ..1 src 1; __ ,-

,
-----~
I libhash I 1_ ,- __ ..1

I - - --
I test I L ___ I

I

I

I . I ..
\
I

\

\
_..l __

I work I
L ___ I

I

I
I

I

I
I

I lib list I
1 __ ~.J

, "
\ ,

, , , - - --
I test I L ___ I

,

, , ------
I bin I 1 _____ ..1

, , - - --
I work I L ___ I

Figure 8. Directory ordering for 'pexec -T print .. .'

Directory
'ys'src
'YS • lib hash • src
'YS A lib list • src

Working Project
'YS

'vs'1ibhash
• vs 'liblist

3.3.1. Boolean twe Idel ezpressions

~-----

I work 1 _____ ..1

Global commands cao be made even more precise by using boolean expressionsg on type
labels to select project directories. To show how boolean expressions are used, let the source code
directories in project 'YS' have the type labeis shown below.

Directory
'ys'include
'ys'vs
'ys'ystutor
'YS 'libhash' src
'vs 'liblist' src

Type Labels
print. 1, include, src
print.2, install.2, cmdsrc, src
print.2, install.2, cmdsrc, src
print.3, install.l, libsrc, src
print.3, install.l, libsrc, src

In terms of entering the boolean expression on the command line, 'or' is represented by the cha.r­
acter 'I', 'and' by the character '&', and 'not' by'!'. Since these characters, together with '(' and
,)" are meaningful to the command shell, it is good idea to enclose the whole expression in
quotes10. Then, the command

~ The forma.l definition of a. boolea.n type la.bel expression is

E -- E ~r E I E and E I not E I (E) I id

where E is a. boolea.n expression; and, or, a.nd not a.re boolea.n opera.tor!; a.nd id is a. type la.beL M is cus­
toma.ry, it is a.ssumed that or a.nd and a.re left-a.ssociative, a.nd tha.t or ha.s the lowest precedence, then and,
then not.

10 Even if this is done, the '!' chara.cter must still be esca.ped by a. ba.cbla.sh '\' if it prece~es a. type Ia.bel to

- 16-

% puee "-T print & (Ubarc I cmdarc)" 'pr ·.h • .c· I lpr

prints the source code in both the program and library source code directories, but not the direc­
tory containing header files. Alternatively,

% pexec "-Tprlnt&\!lne1ude" 'pr *.h *.c' I Ipr

achieves the same result.

3.3.2. Searching and editing

Whenever it becomes necessary to alter something like the number of arguments in a call to
a function, the pgrep command can be used to bring up the text editor on all the files in the
software package that contain that function call. Suppose, for example, that the number of argu­
ments to the UNIX system call 'open' for opening files has changed. The command

% PlP'ep -C vi -Tare -m 'openC'

will edit all the sourCe code files containing that caU, using the vi text editor.

3.4. Teatlng

Arter a program is released for general use, it will require maintenance . .It may have to be
modified to speed it up, fix bugs, or add new features. Each time the program is altered, the parts
that are affected should be checked against previous test results by doing regression testing. The
ptest program mechanizes this process.

Ptest tests each function by running a test program and comparing the output with previ­
ously prepared results. For example, the test for the 'htinstall' Cunction in the hash table library
produces

% pteat htlnataU
htinstall: extracting archive ... compiling test ... executing test ... done
%

if the test succeeds. However, if the test fails, ptest reports this fact by

htinstall: extracting archive ..• compiling test ... executing test ... failed

and saves the error diagnostics in a file named 'Ehtinstall'.

The test program and data files ror each test case are stored in an archive file named test.a
where test is the name or the test case, located in the 'test' directory. In the case of 'htinstall',
the test archive is called 'htinstall.a' and contains the test program source file, Thtinstall.c, the
input data file, Ihtinstall, and the validated output data file, Ohtinstall. The details on how to set
up a test archive are explained more fully in section ptest(IP) of the UNIX programmer's manual.

3.5. Documentation

3.5.1. The project log

The plog project log command provides an electronic notebook system by which to record
transactions such as incoming and outgoing mail, progress reports, minutes of project staff meet­
ings, etc. PLog records messages in a file called 'projectlog' located in the project root directory,
by invoking the UNIX Mail program 191. After the Mail program starts up, the user types in the
message, followed by a period ',' or CNTL-D at the beginning or a line. Since the Mail program
processes the message, the user can take advantage of all the mailing racilities offered by the sys­
tem. For instance, the following announcement on the 'vs' project can be mailed to a group of
users labeled 'vsusers'll using the ,- c' 'carbon copy' facility oC the Mail program:

preveDt it from being iDterpreted by the ClIa history mechaDism.

11 By the II/ill' mechaDi3m of Mlli/.

% plOI
Subject: 'vs' release 2
c veusers

- 17 -

Release 2 ot the 'vs' vlaualspreadsheet packale la now available tor
dlatributlon. It haa the followinl features:

%

Plog can be used to produce reports by printing sections oC the project log with subject
headings. For example, it the above announcement is message 20 in the project log Cor the 'vs'
project, the Collowing command will print message 20 plus any subsequent messages.

% plOI -p20

--'vs' release 2

----------------,---
From pjn Wed Aug 10 11:02:44 1983
To: jusr jpjn/vsjprojectlog
Subject: 'vs' release 2
Cc: vsusers

Release 2 oC the 'vs' visual spreadsheet package is now available Cor
distribution. It has the following Ceatures:

%

Plog can also be used to collect incoming mail, edit the project log, and sort it into chrono­
logical order. These options are explained more Cully in section plog(IP) oC the UNIX
programmer's manual.

3.5.2. R e/erence manual

The pm an command supports a project reCerence manual in the same way that the man
command provides inCormation Crom the UNIX programmer's manual. For example, to print inCor­
mation about the 'vs' visual spreadsheet program, type

% pmanV8

and to find out about the 'vstutor' program, type

% pman vstutor

The directories that contain the manual entries must be set up in the same way as the
programmer's manual as shown in figure 9. By convention, manual pages Cor commands have '.1'
suffixes and are kept in the 'manI' directory, manual pages Cor libraries have' .3' suffixes and are
kept in 'man3', and file Cormats have ',5' suffixes and are kept in 'man5', The pman command
searchs through each of the 'manl', 'man3', and 'manS' directories in turn until it finds the topic,

3.5.3. On-line help

On-line help Cor a project is provided by the phelp command. Arter phe/p is typed, it prints
some introductory inCormation, a list oC available topics, and then the prompt '???', indicating
that it is ready Cor a command. The following commands are recognized

- 18-

Figure g. L&yout of the 'VS' project ID&llua.l

Command
a topic name
index
help
1
q
P projectname

carriage return only

Response
Print help information on topic.
Display list of topics available at this level.
Display help on how to use phe/p.
Display this command summary.
Exit from phelp.
Change to another prqject.
Return to the top level of help topics.
Go up one level of help topics.

It a topic name is typed in reply, phelp will print a page of information and then wait un til a
spac~ is typed before it continues.

In project 'vs' there are three topics available - 'install' explains how to install 'vs'; 'pro­
gress' lists recent developments; and 'schedule' outlines the development plan. In the following
session, phelp is used to examine some of these topics.

% phelp
(prints an introduction to pAelp)

Help topics available: install progress schedule

?11 ac:hedule
(print8 '8chedule' topic)
111 progress
(prints 'progress' and goes down one level to 'progress' sUhtopics)

progress subtopics: bugfixes

progress-> ??1 bugflxes
(prints 'hugfizes' topic)
progress-> 111 q
(erit8 from phe/p)
%

- 19-

Help topics are contained in files which reside in the 'help' directory located in the project
root directory. Figure 10 shows how these topics are set up Cor project 'vs'.

(file)

I directory I
Figure 10. Help topics Cor project 'va'

The circles represent topio files, and the rectangles represent directories. Subtopics are contained
in subdirectories named according to the topics they represent, but with a '.d' suffix. Conse­
quently, 'bugfixes' is in the subdirectory 'progress.d' since it is a subtopic oC 'progress'.

4. Software Management
Although the UNIX operating system offers a rich variety oC programming tools, a Crequent

complaint is that there are too Cew guidelines showing how to use them in a coherent way. SPMS
provides the 'glue' Cor coordinating the use oC these tools and this section describes the techniques
which have been devised Cor the development and maintenance oC software packages.

4.1. Program Development Techniques

BeCore discussing the maintenance or complete software packages, it is worthwhile to review
the basic commands for managing individual programs and libraries. The commands are summar­
ized in table 2 and explained below in more detail.

4.1.1. Program compilation

The command

% make

compiles source files into object files and loads them '~ogether to produce an executable program.
Although make uses built-in information for generating the object files from the source files, the
decision on how to load the program is left to the user. By derault, the program makefiles pro­
duced by mkmf use the C compiler ror this purpose. However, ir the programming language is not
C, the LINKER macro definition 'in the makefile should be altered accordingly. For Fortran this
can be done by typing the command

% mkmt LINKER=f77

and ror Pascal

Table t. Program development commands

Task Command

Program compilation make
Installation make install
Updating maJce update
Dependency analysis. make depend
Program checking make lint
Version control and releases make co
Function tagging make tags
Printing make print
Cleaning up make clean
Testing ptest

% mkmt LINKER==pc

Compiler options can be specified by adding certain macros to a makefile. For example, the
macro

CFLAGS ==-0

causes a C program to be compiled with optimization, and the macro

CFLAGS == -I../../include -g

tells the C .compiler to search for header files in the directory ' .. / .. /include' as well as in the
current directory (see § 2.9.1), and to compile the program with debugging information. FFLAGS
and PFLAGS can be used similarly to set options for the Fortran and Pascal compilers respec­
tively.

4.1.2. Installation

The command

% make Install

installs a program or library (see § 2.9.3). If any source code files are newer than their correspond­
ing object files they are recompiled and the program or library reformed. Even if the object files
are up-te>-date, a program may still be relinked if the libraries on which it depends are newer than
the program itself.

Normally a program is stripped or its symbol table and relocation bits when it is installed,
to save space. This can be avoided if the -a option is removed from the install command line in
the makefile.

4.1.3. Updating

If a program or library is out-of-date - that is, some of the source code files are newer than
the installed version - the command

make update

recompiles and reinstalls the program or library. This command is more powerful than make
install because it is not affected by the absence oC the object files. In the case oC an out-oC-date
library, all the object files are extracted Crom the library beCore any recompilation takes place,
and removed once the library has been reinstalled.

- 21-

4.1.4. Dependency analYlis

Although'the make program has a set oC built-in rules Cor recompiling a program iC any oC
the files on which it depends have changed since the last time it was constructed, these rules do
not extend to included files. It is necessary to add explicit dependency rules to a makefile so that
iC a header file is changed, the affected source files will be recompiled and a new program pro­
duced. For instance, iC the rule

vS.o: vs.h hash.h list.h

is added to the makefile Cor the' 'vs' program, the file 'vs.c' will be recompiled iC any oC the
included files (see § 2.9.1) have changed since the last time it was compiled. The command

% make depend

calls on the mimi makefile editor to insert header file dependencies into a makefile.

4.1.5. Program checlr:ing

Programs written in C can be checked Cor bugs, obscurities, wasteCul or error prone con­
structions, type and Cunction usage, and portability by the lint program [41. If a makefile contains
the line

lint:; @Iint S(LINTFLAGS) S(SRCS) S(LINTLIST)

where the LINTFLAGS macro definition specifies lint options, SRCS represents the source files
making up the program or library, and LINTLIST is a list oC lint libraries (see below), the com­
mand

% make Dnt

will check that the program or library is consistent.

To set up the 'vs' program might be set up Cor "linting", the macro definitions would be

LINTFLAGS =- -I../ .. /include

SRCS =- vs.c

L INTL 1ST =- .. / .. /lib/lIib-lhash.ln \
.. f../lib/llib-llist.lo \
-lc

Just as program libraries share Cunctions among different programs, lint libraries can be used
to check that those Cunctions have been used correctly. Lint libraries are created by lint -C as
shown by the Collowing entry in the makefile belonging to the 'hash' library

S(LINTLm): S(SRCS) S(HDRS) S(EXTHDRS)
@echo "Loading $(LINTLm) ... "
Clint $(LINTFLAGS) -C$(LmNAME) $(SRCS)
@echo done

where LmNAME is defined in the makefile as 'hash', and LINTLm is defined as 'llib-
1$(LIBNAME).ln' in accordance with standard lint library naming conventions .

•• 1.8. Version control and releases

During the time that a program is being developed it is quite likely that it will undergo
several revisions. Features are added and algorithms are improved. Often chang~s are made which
are later found not to work and need to be undone. One way to handle these changes is to save a
copy oC each file beCore it is revised. However, this quickly becomes expensive in terms oC space. A
better solution is to use a version control system like SCCS (Source Code Control System) 161 or
RCS (Revision Control System)[lol which stores only the changes made to the source code

- 22-

together with details such as when each change was made, why it was made, and who made it.

Once a program is ready lor release, all of the source files should be stamped with a com­
mon version name or number so that it can be recreated at any time regardless 01 any subsequent
changes. RCS has the advantage over SCCS in this respect because it enables the user to stamp
each release with a unique name. For example, il the makefile and all the source files in release 2
01 the 'list' library are stamped 'V2', the command sequence

% co -rVI Makeftle
% make .VERSION==VI co

will create that release by extracting or "checking out" the Makefile and the source files from the
RCS system usiDg the co command.

4.1.7. Function t(Jgging

By creating a database or function names12 with the command

% maket ...

it is possible for the user to Snd and edit a function without having to remember the name or the
file in which the function is located. For example, in the 'src' directory or the 'libhash' subproject,
the command

% vi -t htbdt

invokes the vi editor on· the file 'htinit.c' and positions the cursor at the beginning of the 'htinit'
hash table initialization (unction.

A list 01 lunctions which make up the program or library, together with the line number and
file in which each is defined, can be obtained by the command

% make Index

4.1.8. Printing

To print all of the program source and header liles on the line printerlpr, type

% make print I Ipr

By default the liles are lormatted by pr so that the output is separated into pages headed by a
date, the name of the file, and a page number. Another format can be specified by changing the
PRINT macro definition in the makefile.

4.l.G. Cle(Jning up

To save space once a program has been completed, the command

% make clean

removes object files plus any other files which can be regenerated easily.

4.1.10. Testing

Using the test cases prepared p.reviously (see §3.4), it is possible to test an entire program or
library by typing the command

% ptest

Ptest reports the outcome of each test· - i.e. whether it passes or rails - and if it fails, saves the
error diagnostics in a file called Elest where test is the name of the test.

12 For C, Fortran, aDd Puc&! progT&IDJ only.

- 23-

Because ptest uses a number or temporary working files ror each test and creates an error
diagnostic file for each test that rails, it is a good idea not to clutter up the directories that con­
tain source code or test cases, but instead perform the testing in another directory such as 'work'
(see § 4.3.5).

4.1.11. Compound commands

The make program can process multiple requests. For example,

% make In.tall tap clean

installs a program or library, creates function tags, and removes any unneeded files. The only
operation which may cause problems ir it is used in conjunction with install or update is make
depend because it recreates the include file dependencies after the make command has already
read the makefile.

4.1.12. U8er-de/ined command,

Most or the tasks described above are handled by the make command. More complex pro­
gramming tasks can also be defined by adding extra instructions to each makefile. However,
rather than modify every program and library makefile in a project individually, the user can get
mkm/ to use alternative 'p.Makefile' and 'I.Makefile' makefile templates when creating program
and library makefiles respectively, ir these templates exist in the project 'lib' directory (see fig. 3).
The templates Cor project 'vs' include directives for type checking and version control (see appen­
dix B). It is a worthwhile exercise to compare them against the standard templates shown in
appendix A.

4.2. Layered Construetlon ot Software Paekages

A complex software package may be built and installed in layers!21 as shown in table 3.

TlI6lc S. Layers of software

Layer Components
1 Shared source code

(header files)
2 Shared object code

(program libraries)
3 Programs
4 Data files
5 Documen tation

(reference manual, user's
guide, etc.)

Each layer is assigned a specific label so that it can be built individually, as well as a prior­
ity level so that the complete sortware package can be constructed in a predetermined sequence.
Layers are implemented by attaching type labels to the directories which are part or the building
process. Table 4 suggests a set of type labels Cor each layer. By convention, type label 'update' is
used for the construction or the entire sortware package.

It the project 'vs' is organized into layers in the manner shown in figure 11, then the com­
mand

% pexee -T Ubsre make update

brings the program libraries up-to-date, while the command

% pexee -Temdare make update

·24·

Tat/.~. Layer type labels and priority levels

Layer Layer Label 'update' Priority Range
Lower Limit

I include update.IOO
2 libsre update. ZOO
3 emdsre update.300
4 data updateAOO
5 doe upd ate. 500

Layer Project 'vs'

include
1 41ash.h) (List.h) ~

2 I libbash I I liblist I

3 I vs I I vstutor I

4

5 I doc I I man! I

Key: (file) I directory I

Figure 11. Layers of project 'va"

does the same {or the programs us and ustutor. By typing

% pexee -Tupdate make update

the entire software package can be updated.

Upper Limit
update. 199
update. 299
update.399
update.499
upd ate. 599

Layer

Label

include

Iibsrc

cmdsrc

data

doc

'update'

Label

update.lOO

update. ZOO

update.300

update.400

update.500

- 25-

•• 3. Maintenance ot Software Packages

Having established the conventions Cor maintaining the individual components oC a soCtware
package, global tasks such as printing, testing, cleaning, erc., can now be described in more detail.
The type labels that provide the means Cor coordinating these tasks are summarized in table 5.
Some oC the labels have the letter n to indicate priority because the directories to which they are
attached must be processed in a particular order (see § 2.10.2).

TtJbl, 5. Type label conventions

Type Label Purpose
clean cleaning up
cmdsrc program source code
doe documentation
include header files
lib library object code, data
libsrc library source code
man.n reference manual
print.n printing
project project root directory
src source code
test.n testing
update.n installing or updating

•• 3.1. Counting of source lines

The total number oC lines oC source code in a soCtware package can be counted by con­
catenating the source files in each "src ' directory and piping them to the word count program as

% pexec: -q -Tare make PRINT=eat print I wc -1

where -q suppresses the printing oC project directory titles, and -1 tells wc to count lines only .

•• 3.2. Cataloging of functions

A list oC Cunctions, together with the line number and file in which each is defined, may be
obtained13 Cor each program in a soCtware package by the command

% pexec -Temdsre make Index

A comprehensive index or all the library Cunctions can be generated by outputting the Cunc­
tion definitions in each library (e.g. "libhash' and "liblist') to the sort program by

% pexec -q -TUbare make Index I Bort

•• 3.3. Printing

Arter printing all oC the source code in a project by

% pexec -Tprint make print I lpr

a. table of contents can be produced by

% pexee -Tprlnt make \"PRINT=la -C\" print I Ipr

Backslash '\' characters prevent the double quotes "" Crom being stripped from the PRINT macro
definition by the shell before the make command is executed in each directory.

l3 For C, Fortran, and Puca! programs only.

- 26-

4.3.4. Program checking

Software packages written in C can be cross-checked tor tunction and type usage by apply­
ing the lint command to the source code in each ot the project directories containing a program
or library

% pexee "-T Ubare I emdare" make Unt

4.3.5. Testing

AU of the tests previously prepared tor a sottware package are exercised· by the command

% pexee -T teat ptelt > testlog

in the directories labeled 'test'. In the case of project 'vs', the tollowing directories are labeled
'test'

Directory
'vs'work
"vs Alibhash 'work
'vsAliblist'work

'test' Type Label
test.2
test.l
test.l

The outcome ot each test - i.e. whether it passes or rails - is recorded in the file called 'testlog' in
the current working directory. It a test rails, the cause of the tailure is recorded in a file bearing
the name 'Etest' where test is the name of the test, located in the directory where the test is exe­
cuted.

4.3.8. Comparing version8

The method for comparing the source code in two different versions of a project depends on
the way in which the versions are stored. It they are stored in separa.te projects the pdijf com­
mand ca.n be used to compare the contents of the directories belonging to each of the two pro­
jects. For example, if 'nvs' is a new version of the project 'vs', then the command

% pdlfl' -Tare "VI "nv.

will produce a summary of the differences between them. However, if the different versions are
stored as deltas in a version control system such as SCCS or RCS, then either the sccsdijf como
mand or the rcsdijf command must be used instead. To show how this is done with R CS,

% pexee -Tare make VERSION=V2 dlfl'

compares the current working version of the source code in the project 'vs' with a previous ver­
sion labeled 'V2'.

4.3.7. R elea8e8

It the source code for a software package is stored in a version control system like R CS, it
is possible to re-create any particular version ot the package provided that all the source files in
that version have previously been stamped with a symbolic version name14 (tor example, 'V2').
The process is carried out in two stages. After removing the current version of the source code
(hopefully, it has already been stored in the version control system) by the rollowing command
sequence,

% pexee -Tare 'I'm 'make PRINT=eeho print' Makeflle'

the makefile and source files ror the desired version (say 'V2') are checked out by

% pexee -Tare 'eo -rV2 Makeflle; make VERSION=V2 eo'

14 sees does Dot have this feature.

- 27-

4.3.8. Cleaning up

Ie a software package is in a stable state - that is, it is not being modified - then, as an
economy measure, the amount of space that it takes up can be reduced by removing object files
plus any other files that can be regenerated easily. This task is implemented by

% pexee -T clean make clean

assuming that the directories containing the files to be removed are labeled ·clean'.

5. Retrofitting of Software Projects
Since SPMS accepts an arbitrary directory arrangement, existing sortware packages can be

converted into projects with minimal reorganization. For example, the Fortran 77 compiler pro­
ject shown in figure 12 was brought under project control by the rollowing commands.

/usr /src/usr.bin

Figure 1:. The Fortr&ll 77 compiler project

% cd /usr/arc/usr.bln
% mkproJect -TproJeet t17
f77: description? (1 line): Fortran 11
% chproJect t'17
% pmkdlr - T Include,src Include
include: description? (1 line): header flies
% pmkdlr src
src: description? (1 line): source code
% pd sre
% pmkdlr -T cmdsrc,src,update.300,elean t17 tpr tspllt
i7i: description? (1 line): f77 - Fortran 77 compiler
Cpr: description? (1 line): tpr - print Fortran flies
(split: description? (1 line): (split - split multi-routine Fortran flies
% pmkdlr -T cmdsrc,src,update.300,elean t17pasal n. t2
f7ipass1: description? (1 line): f'77 parser
f1: description? (1 line): f'77 code generator
(2: description? (1 line): t'17 peephole optimizer

% cd /usr/sre/usr.llb
% pmkdlr -Tllbsl'C,src,update.200,ciean llbF77 llbI77 llbU77
libF77: description? (1 line): f'77 function llbrary
libI77: description? (1 line): (17 I/O llbrary
libU77: description? (1 line): (17 system utIDty library
% pmkdlr -Ndoc -Tdoc /usr/doc/f'77
/usr/doc/r17: description? (1 line): f'77 documentation

The directory aliasing feature of SPMS is also demonstrated by this example. Sometimes a
project will have more than one directory with the same name as is the case with the Fortran pro­
ject, where the name of the 'src/f77' compiler driver program directory coincides with the name
of the 'doc/m' documentation directory. Since SPMS insists that the directories within each pro­
ject have unique names, the 'doc/f77' directory is aliased to 'doc' using pmkdir -N.

6. Acknowledgements
SPMS was originally developed in response to a need for managing a suite of programs for

modeling the dynamic behavior of the piping in. nuclear power stations in the event of sudden
rupture. The project, involving 10 programmers, over 2000 files, and upwards of 100,000 lines of
Fortran code, was directed by Graham H. Powell, Professor of Civil Engineering at U.C. Berkeley.
His encouragement, support, and criticism has been invaluable.

The Computer Systems Research Group, directed by Professor R. S. Fabry, provided the
resources Cor the development of the second and third versions of SPMS. David Mosher otl'ered
valuable suggestions about the system and this report. Stuart Feldman also provided helpful com­
ments.

John Foderero exercised SPMS on the Franz Lisp System and Jim Kleckner did the same
Cor VLSI CAD software. Mike O'Dell installed the system in Italy. Their help in debugging SPMS
is much appreciated ..

Edward Wang modified lint so that it could generate lint libraries. His work enabled SPMS
to check complete software packages Cor consistency.

7. References

[II

[21

Arnold, K., "Screen Updating and Cursor Movement Optimization: A Library Package",
Computer Science Division, EECS, University of California, Berkeley.

Cristofor, E., Wendt, T. A., and Wonsiewicz, B. C., "Source Control + Tools = Stable
Systems", Proceedings of the Fourth Computer Software and Applications Conference, pp.
527-532, October 29-31, 1980.

[31 Feldman, S. I., "Make - A Program Cor Maintaining Computer Programs", Software - Prac­
tice and Experience, vol. 9, no. 4, pp. 255-265, April 1979.

[41 Johnson, S. C., "Lint, a C Program Checker", The UNIX Programmer's Manual, Bell
Laboratories, July 1978.

[5! Kernighan, B. W., and Mashey, J. R., "The Unix Programming Environment", Computer,
vol. 14, no. 4, April 1981.

[6J Rochkind, M. J., "The Source Code Control System"", IEEE Transactions on Software
Engineering, vol. SE-l, no. 4, pp. 364-370, December 1975.

[71 ShaCer, S., Accetta, M., Gosling J., Lucas, B., and Zsarnay, J., "Managing UNIX: Obtaining
a powerful portable programming environment under UNIX", Computer Science Dept.,
Carnegie-Mellon University, December 1979.

- 29-

[81 Shafer, S., "Maintaining UNIX Projects: Creating and Updating Shared Software under
UNIX", Computer Science Dept., Carnegie-Mellon University, June 1980.

[9J Shoens, K., "The Mail Reference Manual", The UNIXProgrllmmer'8Mllnulll,voI.2c, Com­
puter Science Division, EECS, University of California, Berkeley, September 1982.

[10J Tichy, W.F., "Design, Implementa.tion, and Evaluation or a Revision Control System",
ProceedingB of the Sixth lnternationlll Conference on Softwllre Engineering. pp. 58-67, Sep­
te'mber 1982.

- 30-

Appendbi A. Standard Makefile Templates

DEST -.
EXTHDRS -
HDRS -
LDFLAGS -
Lms -
LINKER - cc

MAKEFILE - Makefile

08JS -
PRINT - pr

PROGRAM - a..out

SRCS -
all: $(PROGRAM)

$(PR 0 GRAM): $(08JS) $(LmS)
@echo -n "Loading $(PROGRAM) ... "
@$(LINKER) $(LDFLAGS) $(081S) $(LmS) -0 S(PROGRAM)
@echo "done"

clean:; @rm -r $(08JS)

depend:; @mkml-r $(MAKEFILE) PROGRAM=-$(PROGRAM) DEST $(DEST)

index:; @ctags -wx $(HDRS) $(SRCS)

install: $(PROGRAM)
@echo Installing $(PROGRAM) in $(DEST)
@install-s $(PROGRAM) $(DEST)

print:; @$(PRINT) $(IIDRS) $(SRCS)

program: $(PROGRAM)

tags: $(HDRS) $(SRCS); @ctags $(HDRS) $(SRCS)

update: $(DEST)/$(PROGRAM)

$(DEST)/$(PROGRAM): $(SRCS) $(LmS) $(HDRS) $(-EXTHDRS)
@make -r $(MAKEFILE) DEST-$(DEST) inst:.Il

Figure AI. 'p.Makefile' program makefile template

·31 -

DEST -.

EXTHDRS -

HDRS -

LmRARY - lib.a

MAKEFILE - Makefile

OBJS -

PRINT - pr

SROS -

all: S(LmRARy)

'(LmRARY): '(OBJS)
Cecho -n "Loading S(LmRARy) ... "
@ar cru '(LmRARY) '(OBJS)
@ranlib S(LmRARy)
@echo "done"

clean:; @rm -r S(OBJS}

depend:; @mkmr -r S(MAKEFILE) LmRARY -$(LmRARY) DEST-$(DEST)

extract:; @ar xo $(DEST)/S(LmRARY)
@rm -r _.SYMDEF

index:; @ctags -wx S(HDRS) S(SROS)

install: S(LmRARy)
Cecho Installing '(LmRARy) in '(DEST)
@install S(LmRARy) S(DEST)
@ranlib '(DEST)/'(LmRARY)

library: '(LmRARy)

print:; @S(PRINT) S(HDRS) S(SROS)

tags: S(HDRS) S(SROS); Octags S(HDRS) S(SROS)

update: '(DEST)/S(LmRARy)

S(DEST)/S(LmRARy): S(SROS) S(HDRS) S(EXTHDRS)
@-ar xo '(DEST)/S(LmRARY)
@make -r '(MAKEFILE) DEST-S{DEST) install clean

Figure AB. 'I.Makefile' library makefile template

- 32-

Appendix B. Project 'vs' MakefUe Templates

CFLAGS == -D$(VERSION) -1..f../incIude -0

DEST - .. I .. /bin

EXTHDRS =-

HDRS -

LDFLAGS -

LIBS - .. / .. /lib/libhash.a \
.. / .. /lib/liblist.a \
/usr /lib/libeurses.a \
lusr /lib/libtermlib.a

LINKER - ee

LINTFLAGS - -D$(VERSION) -I../ .. /incIude

LINTLIST - .. 1 .. /lib/llib-lhash.ln \
.. / .. /Jib/Ilib-llist.In \
-Ie

MAKEFILE - Makefile

OBJS -
PRINT - pr

PROGRAM -
SRCS -
VERSION -va

all: $(PROGRAM)

$(PROGRAM): $(OBJS) $(LIBS)

clean:;

co:;

depend:;

diff:;

index:;

install:

lint:;

@eeho -n "Loading $(PROGRAM) ... "
@$(LINKER) $(LDFLAGS) $(OBJS) $(LIBS) -0 $(PROGRAM)
@eeho "done"

@rm -r $(OBJS)

@co -r$(VERSION) $(HDRS) $(SReS)

@mkmf -f $(MAKEFILE) PROGRAM=$(PROGRAM) DEST=$(DEST)

@rcsdiff.-r$(VERSION) $(HDRS) $(SReS)

@ctags -wx $(HDRS) $(SReS)

$(PROGRAM)
@eeho Installing $(PROGRAM) in $(DEST)
@install-s $(PROGRAM) $(DEST)

@Iint $(LINTFLAGS) $(SReS) $(LINTLIST)

print:;

progra.m:

ta.gs:

update:

@t(PRINT) S(HDRS) S(SRCS)

S(PROGRAM)

- 33-

t(HDRS) S(SRCS); @cta.gs S(HDRS) $(SRCS)

S(DEST)/$(PR o GRAM)

S(DESTlIS(PROGRAM): S(SRCS) *(LIBS) t(HDRS) t(EXTHDRS)
@make -r S(MAKEFILE) DEST-$(DEST) install ta.gs

Figure 91. 'p.Makefile' program makefile templa.te

- 34·

CFLAGS - -D$(VERSION) -I .. / .. / .. /incIude -0

DEST - .. / .. / .. /lib

EXTHDRS -

HDRS -

LIBNAME -

LIBRARY - lib$(LIBNAME).a

LINTFLAGS - -D$(VERSION) -I .. / .. f../include

LINTLIB - llib-I$(LIBNAME).ln

LINTLIST - -Ie

MAKEFILE - Makefile

OBJS -

PRINT - pr

SRCS -

VERSION - va

all: $(LIBRARY)

$(LIBRARY): $(OBJS) $(LINTLIB)
@eeho -n "Loading $(LIBRARY) ... "
@ar cru $(LIBRARY) $(OBJS)
@ranlib $(LIBRARY)
@eeho "done"

$(LINTLIB): $(SRCS) $(HDRS) $(EXTHDRS)
@echo "Loading $(LINTLIB) ... "
@lint $(LINTFLAGS) -C$(LIBNAME) $(SRCS)
@echo "done"

clean:; @rm -t $(OBJS)

co:; @co -r$(VERSION) $(HDRS) $(SRCS)

depend:; @mkmf -C $(MAKEFILE) LIBRARY -$(LIBRARY) DEST $(DEST)

diff:; @rcsdiff -r$(VERSION) $(HDRS) $(SRCS)

extract:; @ar xo $(DEST)!$(LIBRARY)
@rm -f _.SYMDEF

index:; @ctags -wx $(HDRS) $(SRCS)

install: $(LIBRARY)
@echo Installing $(LIBRARY) in $(DEST)
@install $(LIBRARY) $(DEST)
@ranlib $(DEST)/$(LIBRARY)
@echo Installing $(LINTLIB) in $(DEST)

library:

lint:;

Iintlib:

print:;

tags:

update:

- 35-

@install $(LINTLm) S(DEST)

S(LmRARy)

@Iint S(LINTFLAGS) $(SRCS) $(LINTLIST)

$(LINTLm)

@$(PRINT) S(HDRS) $(SRCS)

$(HDRS) $(SRCS); @ctags S(HDRS) $(SRCS)

S(DEST),S(LmRARy)

S(DEST),$(LmRARy): $(SReS) $(HDRS) $(EXTHDRS)
C-ar XQ $(DEST),$(LmRARy)
@make -r $(MAKEFILE) DEST-$(DEST) install tags clean

Figure BD. 'I.Makefile' library makefile template

- 36-

Appendix C. Project Pathname Syntax

~
It!
~ c:
>.
112

Q.l

6
Q.l It!
6 c:
a:I .c:

~ c: It! ... C. :a
~
()
Q.l

'0' ...
c..

t)
CD

5
~

- 37-

Appendix D. SPMS Command Summary

chproject

mkmf

mkproject

pcp

pd

pdiff

pexec

pfind

pgrep

phelp

plog

pman

pmkdir

pmv

ppd

prmdir

ptest

pwp

rmproject

activate project environment

makefile editor

make a project root directory

copy files

change working project directory

differential project comparator

execute command over project hierarchy

find files in projects

search files in a project hierarchy for a pattern

on-line help

records progress oC a project

print project manual

make a project directory

move or rename files

list project directories

remove a project directory

test a project module

print working project name

remove a project root directory

SPMSINTRO (1 P) UNIX Programmer's Manual SPMSINTRO (1 P)

NAME
spmsintro - introduction to SPMS commands

INTRODUcnON
The Software Project Management System (SPMS) is a system for the management of
medium- to large-scale software systems. SPMS provides, within the UNIX environment, a
number of commands which can greatly simplify many tasks associated with program
development and maintenance. SPMS does not attempt to duplicate existing UNIX program
development tools such as make or sees, 'but instead provides a way of coordinating these
tools.

Each software package managed by SPMS is organized as a project. A project is a collection
of directories, each of which supports a specific activity such as program development, testing,
or documentation. There is no restriction on the number of directories belonging to a project.
The directory layout is arbitrary, and can be altered to reflect the changing needs of the pack­
age. Projects can be nested to any level and a mechanism is provided for executing commands
globally over an entire project hierarchy.

DESCRIPTION
Getting Started

Before using SPMS for the first time you must do the following -

If you are a C shell, (csh), user:

1. Include the directory '/usr/new' in the command search path. This is done by altering
the PATH variable in one of the startup files, '.cshrc' or '.login', in the home direc­
tory.

2. Add the following aliases to the '.cshrc' file
alias chproject 'eval '"chproject" \!.'
alias pd 'eval '"pd" \!."

3. Add the following command to the '.login' file
chproject -

4. Convert the home directory to a project root directory by typing
lusr/new/mkproject -d •

5. Execute the '.cshrc' and '.login' files by typing
source .cshrc
source .login

If you are a Bourne shell, (sh), user:

1. Include the directory '/usr/new' in the command search path. This is done by altering
the PATH variable in the startup file, '.profile', in the home directory.

2. Add the following command to the '.profile' file:
eval 'chproject \-'

3. Convert the home directory to a project root directory by typing
/usr/new/mkproject -d \.

4. Execute the '.profile' file by typing
.. profile

Global Operations

The means for executing a command over an entire software package is provided by the pexec
command. By labeling each project directory according to the type of activity that it supports,
global operations can be restricted to specific directories. These labels are known as type
labels. In some instances, the directories affected by a global command must be processed in a
particular order. ,This ordering is achieved by appending priorities to type labels. For

4th Berkeley Distribution 1 July 1985

SPMSINTRO(1 P) UNIX Programmers Manual SPMSINTRO (IP)

example, if the project directories 'include', 'cmdl', 'cmd2', 'libI', and 'lib2' have the follow­
ing labels,

include print.O, src, update.lOO, include
cmdl print.I, src, update.3oo, cmdsrc
cmd2 print. I , src, update.300, cmdsrc
lib I print.2, src, update.2oo, libsrc
lib2 print.2. src, update.2oo, libsrc

the entire software package cap be updated by the command

pexec - Tupdate make update

in the order 'include', 'lib 1', 'lib2'. 'cmdl', 'cmd2'.

Global commands can be made even more precise by using boolean expressions on type labels
to select project directories. The formal definition of a boolean type label expression is

E-EorE I EandE I notE I (E) I id

where E is a boolean expression; and, or, and not are boolean operators; and id is a type label.
Or and and are left-associative. Or has the lowest precedence, then and, then not. In terms of
entering the boolean expression on the command line, 'or' is represented by the character 'I',
'and' by the character '&', and 'not' by'!'. Since these characters, together with '(' and ,)" are
meaningful to the command shell, it is good idea to enclose the whole expression in quotes.
However, even if this is done, the '!' character must still be escaped by a backslash '\' if it
precedes a type label to prevent it from being interpreted by the csh history mechanism. The
command

pexec "-Tprint&(libsrc I cmdsrc)" 'pr •. h •. c· Ilpr

prints the source code in the command and library directories, but not the directory contain­
ing header files. Alternatively,

pexec • - Tprint & \!include· 'pr •. h •. c· I lpr

achieves the same result.

Project Pathnames

Project pathnames provide a convenient way for accessing a particular directory or file within
a project hierarchy. A project pathname is formed by a succession of project names separated
by ,A, characters, followed by the name of the directory or file. For instance, to describe a file
'main.c' in the project directory 'work' in the project 'spms', the project pathname is

AspmsAworlclmain.c

The project at the top of each user's project hierarchy is called the root project and is given
the special name <A'. If a project pathname begins with the character OA', it is interpreted rela­
tive to the root project and is called an absolute project pathname. However, a project path­
name not beginning with ,A, is interpreted with respect to the current working project and is
therefore called a relative project path name. The parent .of the working project is called ''
and the alternative name for the current project is ' ... '.

Project pathnames may have a prepended ·username, and an appended regular pathname. For
example, the patbname

·pjn~spms~work/oldlmain.c

represents the path to 'main.c' located in the directory 'old' in the project 'spms' owned by
'pjn'.

omONS
. The options to SPMS commands follow certain conventions. Keyword options are uppercase

(with the exception of the -f option). The keyword can immediately follow the option, or be

4th Berkeley Distribution 1 July 1985 2

SPMSINTRO (1 P) UNIX Programmer's Manual SPMSINTRO (1 P)

separated by an arbitrary amount of space. The following options are uniformly recognized.

-P pdirname
Specify a project other than the current working project.

-T typexpr
Only use project directories corresponding to boolean type label expression, typexpr.

Non-keyword options are lowercase (with the exception of the -D option). The following
options are standard.

-q Quiet mode. Do not print titles.

-r Apply the command recursively to subprojects.

-x Trace and print, but do not execute.

-D Print the expanded pathname when a project pathname is converted to a regular path-
name.

An option specified as (+-}x means +x or -x.

ENVIRONMENT VARIABLES

FILES

PROJECT Absolute pathname of the current working project root directory.
This variable is set by chproject.

ROOTPROJECT Absolute pathname of the root project directory. The default is the
user's home directory.

Project link directory.

SEE ALSO
mkmf(1), chproject(1 P), mkproject(1 P), pcp(1 P), pd(1 P), pdiff(1 P), pexec(1 P), pfind(1 P),
pgrep(1 P), phelp(1 P), plog(1 P), pman(1 P), pmkdir(1 P), pmv(1 P), ppd(1 P), prmdir(1 P),
ptest(1 P), pwp(1 P), rmproject(1 P)

Peter J. Nicklin The SPMS Software Project Management System

AUTHOR

BUGS

Peter J. Nicklin

At present, project pathnames are only recognized by SPMS commands.

Since the Bourne shell, sh, recognizes the ,A, character as an alternative pipe symbol, Bourne
shell users must type '\ A' instead.

4th Berkeley Distribution 1 July 1985 3

CHPROJECT (IP) UNIX Programmer's Manual

NAME
chproject - activate project environment

SYNOPSIS
chproject [-df] projectname

DESCRIPTION

CHPROJECT (1 P)

Chproject activates the project environment for projectname. The project then becomes the
current working project.

After activating the environment, chproject changes to the root directory' of projectname and
executes commands from the' . projectrc' file in that directory.

OPTIONS
-d Print the project description.

-f Instruct chproject to ignore the '.projectrc' file.

ENVIRONMENT VARIABLES
PROJECT Current working project root directory.
SHELL Name of command interpreter.

FILES
. projectrc Command file executed by chproject .

SEE ALSO
csh(1), mkproject(1 P), sh(1)

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUTIIOR

BUGS

Peter J. Nicklin

C shell, csh, users should be aware that chproject is an aliased command. The '.cshrc' file in
your home directory should contain the following alias:

alias chproject 'eval '"chproject" \!.'

Bourne shell, sh, users must give the chproject command as:

eval 'chproject [-df] projectname'

4th Berkeley Distribution 22 June 1983

MKPROJECT(IP) UNIX Programmer's Manual MKPROJECT (IP)

NAME
mkproject - make a project root directory

SYNOPSIS
mkproject [{ +-}d] [{ +-}N alias] [(+-}T type[,type ...]] projectname ...

DESCRIPTION
Mkproject creates a directory called projectname. The directory is known as a project root
directory and is the focus for a project. Standard entries, '.', for the directory itself, ' . .', for its
parent, and ' .. .' for the project link directory, are made automatically. After the directory has
been created, mkproject prompts the user for a line describing the purpose of the project.

If the name of the directory conflicts with an existing project, an alternative alias for the pro­
ject may be specified via the -N option. However, even if this option is used, the name of the
directory will be recognized as a project unless it is disguised as a regular pathname. For
example, to create another project called 'spms' with alias 'newspms', type:

mkproject -N newspms Jspms

Mkproject may also be used to convert an existing regular directory to a project root direc­
tory.

Mkproject requires write permission in the parent directory.

OPTIONS

FILES

+d Change the description of an existing project.

-d Turn off prompting for the description of a new project.

N alias
Change the alias of the project.

-N alias
Specify an alternative alias for a new project.

T type Add a type label to an existing project root directory. If the type label already exists
but has a different priority, then it must be removed using the rmproject command.

-Ttype
Specify a type label for a new project root directory.

Project link directory .
... _temp Temporary project link directory.

UMlTATIONS
Project descriptions can be no longer than 128 characters.

SEE ALSO
mkdir(1), rmproject(1 P)

DIAGNOSTICS
The error message, "mkproject: projectl ... temporarily unavailable", indicates that a ' ... _temp'
temporary project link directory exists. This could be because another user is altering the pro­
ject link directory, or because a system crash terminated mkproject prematurely. If the latter
case, then removing the temporary file will fix the problem.

Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR
Peter J. Nicklin

BUGS
The root project, 'A', cannot have an alternative alias.

4th Berkeley Distribution 22 June 1983

MKPROJECT (1 P) UNIX Programmer's Manual

Directory aliases must not include the characters ':' or' I'.
Type labels must not include the characters ':' or '/'.

4th Berkeley Distribution 22 June.1983

MKPROJECT (1 P)

2

PCP(1P) UNIX Programmer's Manual PCP (IP)

NAME
pcp - copy files

SYNOPSIS
pcp [-i) filel file2

pcp [-i) file ... dimame

DESCRIPTION
Pcp copies file 1 onto file2. The mode and owner of file2 are preserved if it already exists, oth­
erwise the mode of the source file is used.

In the second form, one or more files are copied into dirname with their original file names.

File and dirname may be either regular or project pathnames. However, because pcp inter­
prets both file and dirname arguments as project pathnames, if file matchs the name of a pro­
ject directory within the same project, then pcp will print the error message 'pcp: can't copy
project directory file', unless file is disguised as .Ifile.

Pcp blindly overwrites existing files unless the -i option is specified.

Pcp refuses to copy a file onto itself.

OPTIONS
-i Interactive mode. Pcp will prompt the user with the name of the file whenever the

copy will cause an old file to be overwritten. An answer of 'y' will cause pcp to con­
tinue. Any other answer will prevent it from overwriting the file

SEE ALSO
cp(l)

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR
Peter J. Nicklin

4th Berkeley Distribution 22 June 1983

PO(1P) UNIX Programmer's Manual

NAME
pd - change working project directory

SYNOPSIS
pel [-dp] [dirname]

DESCRIPTION

PO(lP)

Dirname becomes the new working directory. Dirname may be either a project or a regular
directory.

Given without any arguments, pd returns you to the root directory of the current working pro­
ject.

If dirname is a project directory in another project, pd makes that project the current working
project.

OPTIONS
-d Print project directory description.

-p Push old working directory onto the directory stack. The current working project is
not changed.

EXAMPLE
To change to the 'work' directory of a project named 'spms':

pd AspmsAwork

SEE ALSO
cd(1), csh(1)

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR

BUGS

Peter J. Nicklin

Pd is provided only for C shell, csh. users because it is an aliased command. The '.cshrc' file
in your home directory should contain the following alias:

alias pd 'eval' ·pd" \! .. '

4th Berkeley Distribution 22 June 1983

PDIFF(IP) UNIX Programmer's Manual PDIFF(lP)

NAME
pdiff - differential project comparator

SYNOPSIS
pdiff [-rx] [-T typexpr] [diff options] projectnamel projectname2

pdiff [-x] [diff options] pdimamel pdimame2

pdiff [-x] [diff options] filel file2

DESCRIPTION
Pdi./f compares files in projects using the diff command. Diff tells what lines must be changed
in the files to bring them into agreement. Except in rare circumstances, it finds a smallest
sufficient set of file differences.

If both arguments are projects, pdi./f sorts the project directories in each project by name, and
then runs di./f on the contents of common directories. Binary files that differ, common sub­
directories, and files that appear in only one directory are listed.

If pdirnameJ is a project, then a project directory in that project with the same name as pdir-
name2 is used (and vice versa). .

If file J is a project, then a file in that project with the same name as file2. residing in a project
directory with the same name as the current working project directory, is used (and vice
versa).

OPTIONS
-r Apply pdi./frecursively to common subprojects.

-x Trace and print di./f commands, but do not execute.

-T typexpr
Only compare project directories corresponding to boolean type label expression,
typexpr.

SEE ALSO
diff(l)

DIAGNOSTICS
The error message "pdiff: don't know which project directory to use in projectname" indicates
that the file or directory that is being compared against projectname is not part of the current
working project.

Exit status is 0 for no differences, I for some, 2 for trouble.

AUTIIOR
Peter J. Nicklin

4th Berkeley Distribution 22 June 1983

PEXEC(lP) UNIX Programmer's Manual PEXEC(1P)

NAME
pexec - execute command over project hierarchy

SYNOPSIS
pexec [-?ciqx] [-P pdimame] [-T typexpr] [-X errstatus] command

DESCRIPTION
Pexec descends recursively through a project hierarchy executing command in each project
directory using either the csh or sh command interpreter. The directories at each level are
traversed in alphabetical order.

Before executing command in each directory, the current working project is reset to the pro­
ject in which the directory resides.

Unless the -i option is used, pexec quits if a directory is inaccessible or command returns a
non-zero exit status. This prevents propagation of errors through a project.

Care should be taken when using the characters $ • [I () and \ in the command as they are
also meaningful to the command shell. It is safest to enclose the entire command in single
quotes.

If a typexpr boolean type label expression is specified, pexec considers only those project
directories with type labels that satisfy that expression. The order in which the project direc­
Jories are traversed depends on the relative priorities of the type labels attached to each direc­
tory. Only those type labels that appear in typexpr are used. Directories with labels of the
same priority are sorted alphabetically. For example, if the project directories 'include',
'cmdl', 'cmd2', 'libl', and 'lib2' have the following labels:

include
cmd!
cmd2
libl
lib2

print.O, src, update.O, include
print.l, src, update.2, cmdsrc
print.!, src, update.2, cmdsrc
print.2, src, update.!, libsrc
print.2, src, update.!, libsrc

then type label expression 'update' will force pexec to traverse the directories in the order
'include', 'libl', 'lib2', 'cmdl', 'cmd2'.

Labels that are part of a negated expression are not used for sorting.

OPTIONS
-1 Do not print "Do you really want to quit? [yn](y):" when interrupted in foreground

mode. Quit immediately. .

-c Instruct csh to read the '.cshrc' startup file.

-i Ignore inaccessible directories and non-zero exit codes from command.

-q Quiet mode. Do not print '==> directory <==' titles.

-x Trace, and print directory titles, but do not execute command.

-P pdirname
Specify a project other than the current working project. If pdirname is a project
directory, command will be executed only in that directory.

-T typexpr
Only execute command in project directories corresponding to boolean type label
expression, typexpr.

-x errstatus
If pexec fails, exit with status errstatus. Default error status is 1.

4th Berkeley Distribution 22 June 1983

PEXEC(IP) UNIX Programmer's Manual PEXEC(IP)

EXAMPLES
To list all of the files in a project using Is. type:

pexecls

If the directories containing source code have been labeled previously as type 'src', then, to
count the total number of lines of source code in a project, type:

pexec - Tsrc 'cat •. h •. c' I wc-l

where quotes surround the cat command to prevent file name expansion in the current direcG
tory.

~RONMENTV~~
PROJECT Current working project root directory.
SHELL Name of command interpreter.

SEE ALSO
csh(1), sh(1)

DIAGNOSTICS
If pexec is interrupted while executing command in foreground, the message, "Do you really
want to quit? [yn](y):" will appear after command has completed .

. If the error message, "pexec: label. label ... : conflicting type label priorities", occurs when per­
forming an operation on a set of project directories that have been selected according to a
boolean type label expression with more than one type label, this indicates that the directories
cannot be sorted satisfactorily because of a clash in priorities. For example, if project direc­
tories a and b. selected by type label expression 'print & update', have the following type
labels:

directory a: print. 1 , src, update.2
directory b: print.2, src, update.1

the ordering will be ab if the directories are sorted according to the 'print' type label, and ba
if they are sorted by the 'update' type label. The -D debug option can be used to dump the
list of project directories that match typexpr. together with their type labels.

Pexec returns the exit status of command. Exit status 0 is normal. Non-zero exit status indi­
cates an error.

AUTHOR

BUGS

Peter J. Nicklin

The PROJECT environment variable must be defined.

Since pexec uses a separate command shell to execute command in each directory, the charac­
ters $ • [I () and \. will be meaningful to that shell even if command is protected by single
quotes.

4th Berkeley Distribution 22 June 1983 2

PFIND(IP) UNIX Programmer's Manual PFIND(IP)

NAME
pfind - find files in projects

SYNOPSIS
pfind [-I] [-P pdirname] [-T typexpr] file ...

DESCRIPTION .
Pfind descends recursively through a project hierarchy seeking files.

OPTIONS
-I List in long format, giving the full pathname of file.

-P pdirname
Specify a project other than the current working project. If pdirname is a project
directory, pfind will search only that directory.

-T typexpr
Only search project directories corresponding to boolean type label expression,
typexpr ..

EXAMPLES
If the file 'core' exists in the project directory 'work' of the current working project 'spms', the
command 'pfind core' will print:

... Aworkicore

and the command 'pfind -1 core' might print something like:

lusr/pjnispms/workicore

SEE ALSO
find(l)

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUffiOR
Peter J. Nicklin

BUGS
Should be able to do pattern matching on file names.

4th Berkeley Distribution 22 June 1983

PGREP(IP) UNIX Programmer's Manual PGREP(IP)

NAME
pgrep - search files in a project hierarchy for a pattern

SYNOPSIS
pgrep [-eilmnw] [-f makefile] [-C command] [-F patfile] [-P pdirname] [-T typexpr] [pattern
[file ...]]

DESCRIPTION
Pgrep searchs through the files in a project hierarchy for lines matching pattern. Normally,
each line found is printed to standard output. Alternatively, a command can be executed in
each project directory, with arguments that are the names of files containing pattern.

The names of files can be specified as arguments, or obtained from the 'HDRS' and 'SRCS'
macro definitions in a make file (-m option), or a combination of both. When pgrep is told to
use a makefile and the -f option is not present, the files 'makefile' and 'Makefile' are tried in
order.

Pgrep uses pexec to execute either the grep or egrep commands over a project hierarchy. Grep
patterns are limited to regular expressions in the style of ex(1). Egrep patterns are full regular
expressions. Care should be taken when using the characters $ • [I () and \ in pattern as
they are also meaningful to the command shell. It is safest to enclose the entire pattern in sin­
gle quotes.

OPTIONS
-e Use egrep instead of grep.

-f makefile
Specify an alternative makefile file name. This option also implies the -m option.

-i Ignore case of letters when making comparisons (i.e. upper and lower case are con­
sidered identical). Grep only.

-I List the names of files with matching lines. The file names are printed one per line.

-m Obtain the names of files to search from a makefile. If no -f option is present, the
makefiles 'makefile' and 'Makefile' are tried in order.

-n Precede each matching line by its relative line number in the file.

-w Treat pattern as a word (i.e. as if surrounded by '\<' and '\>'; see ex(l). Grep only.

-C command
Execute command in each project directory, with arguments that are the names of
files containing pattern.

-F patfile
The regular expression is taken from patfile. Egrep only.

-P pdirname
Specify a project other than the current working project. If pdirname is a project
directory, search files in that directory only.

-T typexpr

EXAMPLES

Only search files in project directories corresponding to boolean type label expression,
typexpr.

If all the directories in a project that contain source code have been labeled previously as type
'src', then, to search all the source code makefiles for the pattern 'VERSION =', type:

pgrep - Tsrc 'VERSION .• =' Makefile

4th Berkeley Distribution 22 June 1983

PGREP(1P) UNIX Programmer's Manual PGREP(1P)

FILES

where quotes surround the pattern to prevent file name expansion in the current directory.

To edit all the source code files that contain the pattern 'open(' using the vi editor, type:

pgrep -m -Cvi -Tsrc ~open('

where -m tells pgrep to get the names of the source code files from a makefile.

makefile
Makefile

Default makefile.
Alternative default makefile.

SEE AlSO
egrep(l), ex(l), grep(l), make(l), mkmf(lP), pexec(lP), pgrep(3P), vi(l)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files
and directories. .

AUTIIOR
Peter J. Nicklin

4th Berkeley Distribution 22 June 1983 2

PHELP(IP) UNIX Programmer's Manual PHELP(IP)

NAME
phelp - on-line help for a project

SYNOPSIS
pbelp [-P projectname] [topic [subtopic ...]]

DESCRIPTION
Phelp (pe'help) provides information about a project. There are two modes of operation:

Interactive

After the phelp command is typed, it will respond with '???' indicating that it is ready for a
command. The following commands are recognized:

Command

a topic name
index
help
?
q
P projectname

Response

Print help information on topic.
Display list of topics available at this level.
Display help on how to use pheip.
Display this command summary.
Exit from pheip.
Change to another project.
Return to the top level of help topics.

carriage return only Go up one level of help topics.

If a topic name is typed in reply, phelp will print a page of information and then wait until a
space is typed before it continues.

Command line topics

Information on a specific topic can be requested by giving the pheip command with the topic
name as an argument on the command line. If the last argument is index, the sUbtopics
corresponding to the previous argument are listed. Provided the information has not been
redirected to a file, pheip will prompt for further commands once it has finished printing.

Creating topics

Project help files reside in the 'help' directory located in the project root directory. Subtopics
are contained in subdirectories. A subtopic directory has the same name as a help file but
with a '.d' suffix. For example, if "bugftxes" is a SUbtopic of "news", it will be found in the
directory 'news.d', which itself is a subdirectory of the project 'help' directory.

Subtopics can be nested to any level.

Any filename beginning with a '.' is ignored by pheip.

OPTIONS
-P projectname

Specify a project other than the current working project.

EXAMPLES
In the following examples, bold script indicates what the user types.

To find out about topic "news":
% pbelp
(prints inIroduction to phelp and a list of topics available)
??? news
(prints "news")
???q
%

4th Berkeley Distribution 22 June 1983

PHELP(IP) UNIX Programmer's Manual

FILES

Using command line arguments instead:

% phelp news
(prints "news")
mq
%

To print topic "news" on the line printer:

% phelp news I Ipr
%

If "bugfixes" is a subtopic of "news", then to print "news", and
then "bugfixes":

% phelpnews
(prints "news")
news subtopics: bugfixes
news.-> m bugfixes
(prints "bugfixes")
news->??'? q
%

lusr/newllib/phelp.help
lusr/new/lib/phelp.cmd
project/helpl *
projecr/help/*.d

Introduction on how to use phelp.
Phelp command summary.
Help text files.
Subtopic directories.

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR
Peter J. Nicklin

4th Berkeley Distribution 22 June 1983

PHELP(IP)

2

PLOG(IP) UNIX Programmer's Manual PLOG(IP)

NAME
plog - record progress of a project

SYNOPSIS
plog [-e] [{ +-}h] [-p[low(-high]]] [-s] [projectname]

DESCRIPTION
Plog is an intelligent electronic notebook system based upon the Mail program.

Plog records messages by invoking the Mail program. After the Mail program starts up, you
are expected to type in your message, followed by a period or a CTRL-D at the beginning of a
line. If plog is invoked with a pr(Jjectname argument the message is appended to the 'project­
log' file in the root directory of that project; otherwise the current working project is assumed.

The 'projectlog' file can be edited via the Mail program, pretty-printed with subject headings,
and sorted into chronological order.

OPTIONS

FILES

-e Edit 'projectlog' via the Mail program.

h Print message headers only.

-h Suppress printing of subject headings.

-p (low[-high]]
Pretty-print messages in the range low to high. If high is omitted, printing continues
to the last message in 'projectlog'.

-s Sort 'projectlog' into chronological order.

projectlprojectlog Log file.

SEE ALSO
Mail(l)
K. Shoens TheMail Reference Manual

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR

BUGS

Peter J. Nicklin

When pretty-printing the 'projectlog' file, plog only looks for a 'Subject:' field in the first 5
lines following a 'From' field.

4th Berkeley Distribution 22 June 1983

PMAN(1P) UNIX Programmer's Manual PMAN(IP)

NAME
pman - print project manual

SYNOPSIS
pman [-P projectname] [section] topic ...

DESCRIPTION
Pman provides on-line access to the manual belonging to the current working project. If the
manual is being printed on a terminal, pman pauses after each screenful. Hit a space to con­
tinue.

Pman invokes the. man program to format and print the manual pages corresponding to
specified topics. If a section number is given, pman looks in that section of the manual for
the topics, otherwise all sections of the manual are searched until the topic is found.

The directories containing the project manual must be set up in the project root directory like
the '/usr/man' directory hierarchy. In particular, 'project/man/man!' contains the command
manual and 'project/man/man3' contains the manual for library utilities. Formatted manual
entries are created automatically in the corresponding 'project/man/cat' directories if they
exist.

OPTIONS
-P projectname

Specify a project other than the current working project.

EXAMPLES

FILES

To print the manual entry for the pgrep command from the command section (section 1) of
the 'spms' project manual, type:

pman pgrep

To print the manual entry for the pgrep library utility from section 3 of the 'spms' project
manual, type:

pman 3 pgrep

project/man/man? / *
project/man/cat?/*

Unformatted manual pages.
Formatted on-line manual.

SEE ALSO
man(l), man(7), more(1)

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR
Peter J. Nicklin

4th Berkeley Distribution 22 June 1983

PMKDIR(IP) UNIX Programmer's Manual PMKDIR(IP)

NAME
pmkdir - make a project directory

SYNOPSIS
pmkdir [{ +-}d] [{ +-}N alias] [(+-}T type[,type ...]] pdirname ...

DESCRIPTION
Pmkdir creates a directory called pdirname. The directory is known as a project directory.
After the directory has been created, pmkdir prompts the user for a line describing its pur­
pose.

If the name of the directory conflicts with an existing project directory, an al~ernative alias for
the project directory may be specified via the -N option. However, even if this option is used,
the name of the directory will be recognized as a project directory unless it is disguised as a
regular pathname. For example, to create another project directory called 'work' with alias
'morework', type: .

pmkdir -N morework .Iwork

Pmkdir may also be used to convert an existing regular directory to a project directory.

Pmkdir requires write permission in the parent directory.

OPTIONS
+d Change the description of an existing project directory.

FILES

-d Tum off prompting for the description of a new project directory.

N alias
Change the alias of the project directory.

-N alias
Specify an alternative alias for a new project directory.

T type Add a type label to an existing project directory. If the type label already exists but
has a different priority, then it must be removed using the prmdir command.

-T type
Specify a type label for a new project directory.

Project link directory.
Temporary project link directory.

UMITATIONS
Project directory descriptions can be no longer than 128 characters.

SEE AlSO
mkdir(2), prmdir(IP)

DIAGNOSTICS
The error message, "pmkdir: project/ ... temporarily unavailable", indicates that a ' ... _temp'
temporary project link directory exists. This could be because another user is altering the pro­
ject link directory, or because a system crash terminated pmkdir prematurely. If the latter
case, then removing the temporary file will fix the problem.

Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR

BUGS
Peter J. Nicklin

Directory aliases must not include the characters ':' or 'I'.

Type labels must not include the characters ':' or 'I'.

4th Berkeley Distribution 22 June 1983

PMV(lP) UNIX Programmer's Manual PMV(IP)

\

NAME
. pmv - move or rename files

SYNOPSIS
pmv [-fi] [-1 filel file2

pmv [-fil [-] file ... dirname

DESCRIPTION
Pmv moves (changes the name ot) file 1 to file2. If file2 already exists, it is removed before file 1
is moved. If file2 has a mode that forbids writing, pmv prints the mode and reads the stan­
dard input to obtain a line. The move takes place only if the l~ne begins with y. In the second
form, one or more files are moved todimame with their original file names.

File and dimame may be either regular or project pathnames. However, because pmv inter­
prets both file and dimame arguments as project pathnames, if file matchs the name of a pro­
ject directory within the same project, then pmv will print the error message 'pmv: can't move
project directory file', unless file is disguised as .lfile.

Pmv blindly supercedes existing files unless the -i option is specified.

Pmv refuses to move a file onto itself.

OPTIONS
-f Stands for force. This option overrides any mode restrictions and the ':'i· switch.

Interactive mode. Whenever a move is to supercede an existing file, the user is
prompted by the name of the file followed by a question mark. If answered with a line
starting with 'y', the move continues. Any other reply prevents the move from occur­
ring.

-i

Interpret all the following arguments to pmv as file names. This allows file names
starting with minus.

SEE ALSO
mv(1)

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR

BUGS
Peter J. Nicklin

If file 1 and file2 lie on different file systems, pmv must copy the file and delete the original. In
this case the owner name becomes that of the copying process ~d any linking relationship
with other files is lost.

4th Berkeley Distribution 22 June 1983

PPD(lP) UNIX Programmer's Manual PPD(lP)

NAME
ppd - list project directories

SYNOPSIS
ppd [-ladlmnpqrt] [-T typexpr] [pdimame ...]

DESCRIPTION
Ppd lists the project directories belonging to a project. If pdirname is a project root directory,
the contents of that project are listed. If pdirname is a project directory, the name of that
directory is repeated together with any other information requested. When no argument is
given, the current project is listed. The output is sorted alphabetically.

OPTIONS
-1 List one entry per line.

-a List all project directories. Usually' .. .' and •... .' are suppressed.

-d Print the description of each project directory.

-I List in long format, giving the full pathname of each project directory.

-m Mark each project root directory with a trailing 'A' .

. -0 List the alias corresponding to each project directory.

-p If pdirname is a project root directory, list only its name and not its contents. This
option is used often with -d and -t to get the description or type labels of a project
root directory.

-q Quiet mode. Do not print subproject titles. Mostly used with a combination of -I and
-r to get a list of pathnames for a project hierarchy.

-r Recursively list subprojects.

-t Print the type labels of each project directory.

-T typexpr
Only list project directories corresponding to boolean type label expression, typexpr.

DIAGNOSTICS
Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR
Peter J. Nicklin

4th Berkeley Distribution 22 June 1983

PRMOIR(lP) UNIX Programmer's Manual PRMDIR(IP)

NAME
prmdir - remove a project directory

SYNOPSIS
prmdir [-fru] [{ +-}T type[,type ... 11 pdimame .. ,

DESCRIPTION
Prmdir deletes a project directory called pdirname. The directory must be empty.

If the -r option is specified, prmdir recursively deletes the entire contents of a project direc­
tory, and the directory itself. The user is asked to confirm the generated rm -r command
before the directory is deleted. Subdirectories that are project root directories must be
removed using rmproject before attempting to remove pdirname. Write permission is required
in all subdirectories.

Prmdir may also be used to convert an existing project directory to a regular directory using
the -u option.

OPTIONS
-f Stands for force. No questions are asked. This option overrides any mode restrictions.

-r Recursively remove project directories.

-u Undefine a project directory and convert it to a regular directory.

-T type
Remove a type label from a project directory.

FILES
Project link directory .

... _temp Temporary project link directory.

SEE ALSO
pmkdir(1 P), rm(1), rmdir(1), rmproject(1 P)

DIAGNOSTICS
The error message, "prmdir: project/ ... temporarily unavailable", indicates that a ' ... _temp·
temporary project link directory exists. This could be because another user is altering the pro­
ject link directory, or because a system crash terminated prmdir prematurely. If the latter
case, then removing the temporary file will fix the problem.

Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR

BUGS

Peter J. Nicklin

If a project directory has already been removed by the rmdir or rm -r commands, that direc­
tory must be recreated using mkdir before prmdir will remove the directory from the project.

4th Berkeley Distribution 22 June 1983

PTEST(IP) UNIX Programmer's Manual PTEST(IP)

NAME
ptest - test a project module

SYNOPSIS
ptest [-d] [-F template] [-P projectname] [module ...]

DESCRIPTION
Ptest does regression testing on project modules. Individual modules can be selected for test­
ing, or if ptest is given without module arguments, all of the modules in a project are tested.
Modules can be programs, libraries, or functions.

For each module to be tested there must exist an archive containing a test program, input
data, and test results., Prest tests a module by extracting the archive, compiling the test pro­
gram, executing the test, and comparing the output with expected test results using the diff
program:

Ttest < Itest I diff - Otest

where test is the name of the module test. If the test output differs from expected results, the
test fails and error diagnostics are saved in a file named 'Etest'.

Compiling The Test Program

If an archive contains a compilable test program, ptest uses mkmfto edit the file name of the
test program into a makefile which is then used by make to compile the program. If there are
other source code file names in the current working directory, these are also included in the
makefile. This mechanism allows experimental versions of functions to be tested since they
will override any other occurrences of the functions (e.g. in a library).

Creating Test Archives

Archives containing module tests reside in the 'test' directory located in the project root direc­
tory. Each archive must be created by the aT command and given the name test. a where test is
the name of a module test. These archives include the following files:

(a) 'Ttest.lang' test program source code. The file name suffix, lang, identifies the pro­
gramming language in which the test program is written.

(b) 'Ttest.sh' shell command script. 'Ttest.sh' executes a test and compares the test output
with expected results stored in the archive. If the output matchs expected results,
'Ttest.sh' returns with exit code O. If the results differ, the exit code should be non­
zero.

Note: the shell command script must be made executable by doing:

chmod +x Ttest.sh

If a 'Ttest.sh' file is not found in the archive, prest executes the following command:

Ttest < Itest I diff - Otest

or if there is no 'Itest' data file:

Ttest I diff - Otest

(c) 'Itest' data file for test input.

(d) 'Otest' data file for validated test output. The output from a module test will be com­
pared against the information in this file. If no output is expected, this file should be
zero size.

The files 'TtesUang', 'Ttest.sh', and 'Itest' may be omitted from the archive.

OPTIONS
-d Leave the files that have been extracted from an archive, in the current directory for

debugging purposes.

4th Berkeley Distribution 22 June 1983

PTEST(IP) UNIX Programmer's Manual PTEST(1P)

FILES

-F template
Specify an alternative makefile template file name. The default file name is
't.Makefile' .

-P projectname
Specify a project other than the current working project.

lusr/new/lib/t.Makefile
projectllib/t.Makefile
projectltest/ •. a
test.a
Etest
Itest
Otest
Ttest
Ttest.sh
T_makefile

Standard test program makefile template.
U ser-defined test program makefile template.
Project test archives.
Module test archive.
Module error diagnostic file.
Module input data file.
Module validateq output data file.
Compiled module test program.
Module shell command script.
Test program makefile.

SEE AlSO
ar(1), chmod(I), diflt 1), make(1), mkmf(I P)

DIAGNOSTICS
Exit status 0 if the test succeeds. Exit status 1 if it fails.

AUTHOR
Peter J. Nicklin

BUGS
Since the PATH environment variable governs the order in which directories are searched for
executable commands, the production version of a command may be used instead of an
experimental version.

Any files beginning with 'T' (except those with suffix '.sh') are deleted prior to each test.

4th Berkeley Distribution 22 June 1983 2

PWP(IP) UNIX Programmer's Manual PWP(1P)

NAME
pwp,- print working project name

SYNOPSIS
pwp [-I]

DESCRIPTION
Pwp prints the name of the current working project.

OPTIONS
-I List in long format, giving the full pathname of the project root directory.

DIAGNOSTICS
The error message "pwp: .I ..• : No such file or directory", may occur if a project link directory
is missing, or the parent project ' ' cannot be found. The latter case can happen if the pro­
ject has been moved recently.

Exit status 0 is normal. Exit status 1 indicates an error.

AUTHOR
Peter J. Nicklin

4th Berkeley Distribution 22 June 1983

RMPROJECT (1 P) UNIX Programmer's Manual RMPROJECT(IP)

NAME
rmproject - remove a project root directory

SYNOPSIS
rmproject [-fru] [(+-}T type[,type ... n projectname ...

DESCRIPTION
Rmproject deletes a project called projectname. The project must be empty.

If the -r option is specified, rmproject recursively deletes the entire contents of a project root
directory, and the directory itself. The user is asked to confirm the generated rm -r command
before the project is deleted. Subdirectories that are project root directories must be removed
using rmproject prior to removing projectname. Write permission is required in all subdirec­
tories.

Rmproject may also be used to convert an existing project root directory to a regular directory
using the -u option. However, subdirectories that are project root directories must be
undefined using rmproject -u prior to undefining projectname.

OPTIONS
-f Stands for force. No questions are asked. This option overrides any mode restrictions.

-r Recursively remove project directories.

-u Undefine a project root directory and convert it to a regular directory.

-T type
Remove a type label from a project root directory.

FILES
Project link directory.
Temporary project link directory.

SEE ALSO
mkproject(1 P), rm(1), rmdir(1)

DIAGNOSTICS
The error message, "rmproject: project! ... temporarily unayailable", indicates that a ' ... _temp'
temporary project link directory exists. This could be because another user is altering the pro­
ject link directory, or because a system crash terminated rmproject prematurely. If the latter
case, then removing the temporary file will fix the problem.

When attempting to remove a project, error message "rmproject: project! ... : No such file or
directory" followed by error message "rmproject: force removal by typing 'rmproject -F pro­
jectname' " indicates that a project link directory is missing. In this case, projectname must
be an absolute project pathname.

When attempting to undefine a project, error message "rmproject: project! ... : No such file or
directory" followed by error message "rmproject: force conversion by typing 'rmproject -uF
projectname' " indicates that a project link directory is missing. In this case, projectname
must be an absolute project pathname.

Exit status 0 is normal. Exit status I indicates an error.

AUTHOR

BUGS

Peter J. Nicklin

There is no restriction on overlapping project hierarchies. A project root directory that is
part of another project hierarchy will be removed without complaint.

If a project root directory has already been removed by the rmdir or rm -r commands, that
directory must be recreated using mkdir before rmproject will remove the project.

4th Berkeley Distribution 22 June 1983

..

SUMACC
MAC INTOSH CROSS DEVELOPMENT SYSTEM

William Croft, Stanford

AS68 (1) UNIX Programmer's Manual

NAME
as68 - .a68 -> .b assembler component of cc68

SYNOPSIS
as68 [-gods pel] filename

DESCRIPTION

AS68 (1)

As68 is the 68000 assembler. The input is taken from filename.a68, if present, otherwise from
filename. The output is sent to filename.b. More than one input file can be specified, but
only a single output is generated. The available flags are

FILES

-g Undefined symbols are automatically declared global for later resolution by the loader.

-0

-d

-s

-p

-e

-1

filename
Direct output to filename.

Print info helpful for debugging the assembler

Put symbol table in list. out (relocatable values only)

Print listing on stdout

External symbols only in output

produces a listing, filename.list

lusrlsunla68 lusrlbinlas68 lusrlsunldoc/a68opcodes

SEE AISO
cc68 (1), pc68(1), Id68 (1).

7th Edition MC68000

CC68 (1) UNIX Programmer's Manual CC68(1)

NAME
cc68 - C compiler for the MC68000

SYNOPSIS
cc68 [option 1 ... file ...

DESCRIPTION
Cc68 is the UNIX C compiler modified for the MC68000. Cc68 is a flexible program for
translating between various types of files. The types catered for in order of appearance during
translation are '.c' (C source files), '.s' (assembly language files), '.b' (relocatable binary files),
'b.out' (absolute binary files), '.r' (byte-reversed files, cf. rev68(1). and' .dl' (Macsbug down­
load format, cf. dI68(l).

Arguments to cc68 are either flags or input files. The type of an input file is normally deter­
mined by its suffix. When an argument to cc68 is not a flag and has a suffix different from
any of the above suffixes, it is assumed to be of one of the types '.c', '.b', or 'b.out', namely
the latest of these three consistent with the type of the output (e.g. if the output type were '.s'
or '.b' then the input would have to be '.c'). If it has no suffix it is assumed to be of type
'b.out'.

Translation proceeds as follows. Each '.c' and '.s' program is translated to a '.b' relocatable
using cpp, ccorn68, and as68 as necessary. Then all .b files including those produced by trans­
lation are link edited into the one file, called 'b.out'. If the only input file was a single '.c'
program then the '.b' file is deleted, otherwise all '.b' files are preserved.

The amount of processing performed by cc68 may be decreased or increased with some of the
options. The -S option takes translation no further than '.s' files, i.e. only cpp and ccom68
are applied. The -c option takes translation up to '.b' files, omitting the link editing and not
deleting any '.b' files. The -d option goes beyond 'b.out' to produce a '.dl' file (using d168)
that may be downloaded by the Motorola MACSBUG monitor and the Sun! monitor. The-r
option similarly goes beyond 'b. out' to produce a '.r' file (using rev68) that may be loaded
directly by 68000 code based on Id68. Both -d and -r may be used together.

The output may be named explicitly with the -0 option; the output file's name should follow
-0. Otherwise the name is 'b.out' in the normal case, or 'filename.dl' for the -d option, or
'filename.r' for the -r option, where 'filename' is the first '.c', '.s', or '.b' file named as an
input. If the input is not in any of those three categories, the names 'd.out' and 'r.out' are
used respectively for -d and -r.

. The version of the target machine may be given as the flag -vn where n is the version. The
only recognized version at present is -vm, ~Version Macsbug. ~ The effect of giving the -vm
flag is to add lusrlsunldmlinclude to the include directories for cpp, to add lusrlsun/dmllib as
a library in which to look for -Ix libraries, and to load the symbol table if any into the region
starting at Ox6BA.

The file lusrlsunllib/crtO.b is passed to Id68, ahead of all other .b files. This has the effect of
defining the symbol _start to be at the text origin and having a routine that performs neces­
sary initialization, enters main, and exits cleanly to the monitor.

The following options are interpreted by cc. See Id68(1) for load-time options.

-d Produce a .dl file suitahle for downloading with the MACSBUG monitor of the
Motorola Design Module, cf. d168(I).

-r

-w

7th Edition

Produce a .r file suitable for direct loading by the 68000, cf. rev68(1).

Suppress the loading phase of the compilation, and force an object file to be pro­
duced even if only one program is compiled.

Suppress warning diagnostics. [Note: may not work.)

MC68000

CC68(l) UNIX Programmer's Manual CC68(l)

FILES

-0 Invoke an object-code improver.

-s Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed '.s'.

-E Run only the macro preprocessor on the named C programs, and send the result to
the standard output.

-L Produce an assembly listing for each source file, with the suffixes changed to ... Is".

-R Preserve relocation commands in b.out.

-C prevent the macro preprocessor from eliding comments.

-v Link for a V kernel environment. This is equivalent to specifying
-ilusrlsunllib/teamroot.b -T 10000 and -IV at the end.

-m Link for a Macintosh environment. This is equivalent to specifying
-ilusrlsunllib/crtmac.b -TO -e _start -r -d and -Imac -Ie at the end.

-0 output
Name the final output file output. If this option is used and the file 'b. out' already
exists it will be left undisturbed.

-Ix Include libx.a as a library Id68 should search in for undefined functions. x may be
more than one letter, as in -lpup.

- T org Org specifies in hexadecimal where to begin loading the program.

-e entry point
Entrypoint specifies where to begin execution.

-Dname=def
-Dname

. Define the name to the preprocessor, as if by '#define'. If no definition is given, the
name is defined as "1·.

-Uname
Remove any initial definition of name.

-Idir '#include' files whose names do not begin with 'I' are always sought first in the direc­
tory of the file argument, then in directories named in ... 1 options, then in directories
on a standard list. The standard list is (in order of search) /usr/sun/include and
/usr /inciude.

-Bstring Find substitute compiler passes in the files named string with the suffixes cpp, ccom
and c2. If string is empty, use a standard backup version. [Which doesn't work!]

-t[,o12]
Find only the designated compiler passes in the files whose names are constructed by
a -B option. In the absence of a -B option, the string is taken to be '/usr/ct'.

-x By default, cc68 passes a -x flag to Id68, in order to suppress local symbols from the
final symbol table. The -x flag inhibits this default.

Other arguments are taken to be either loader option arguments, or C-compatible object pro­
grams, typically produced by an earlier cc68 run, or perhaps libraries of C-compatible rou­
tines. These programs, together with the results of any compilations specified, are loaded (in
the order given) to produce an executable program with name b.oDt.

file.c
nle.b
b.out
/tmp/ctm?

input file
object file
loaded output
temporary

7th Edition MC68000 2

CC68 (1) UNIX Programmer's Manual CC68(l)

llib/cpp preprocessor
lusrlsun/c68/comp compiler
lusrlsunlc681068 optional optimizer
lusrlsun/lib/crtO.b runtime startoff
lusrlsunllib/libc.a standard library, see (3)
lusrlsunlinclude
lusr/include standard directories for '#include' files

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C-a tutorial
D. M. Ritchie, C Reference Manual
Id68(1)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader.

BUGS
This is hacked up from cc(1), and probably could be improved.

7th Edition MC68000 3

DDT68 (1) UNIX Programmer's Manual DDT68 (1)

NAME
ddt68, fddt68 - symbolic debugger for 68000

SYNOPSIS
fddt68 b.out
cc68 .•. -Iddt (Sun)

DESCRIPTION
fddt68 is a symbolic disassembler for b.out files created by the 68000 linker (ld68). Its main
purpose is to allow testing of ddt logic in a more hospitable environment than the 68000. It
also gives a way of inspecting the assembly language form of a program without having to
produce a .s file. In addition it gives a check on the operation of as68 and Id68. It is called
by typing:

fddt68 filename

on the Vax.

ddt68 is a symbolic debugger for the 68000. It is loaded at link edit time with the cc68 flag
-lddt. On starting a program with ddt loaded the user will be at the ddt command level.
Breakpoints may be set, and the program started, using the commands described below.

COMMANDS
ddt68 recognizes the following commands ($ is used for <esc»:

expression/

expression \
open the location at expression and display the contents in the current typeout mode.
The user may then optionally type an expression, whose value replaces the contents of
the open location. Finally the location is closed by typing one of return (to return to
ddt's main command loop), / (to open the next location), or \ (to open the previous
location).

expression$g
go - plant any breakpoints set with the $b command, load the registers, and start exe­
cution at expression. If expression is unspecified or zero, execution resumes starting
from the current value of $pc (normally the point where the program was last inter­
rupted).

expression$x
execute the next expression instructions, $tarting from the current value of $pc and
printing out all executed instructions. If expression is omitted, 1 is assumed.

expression$$x
same as above except execute subroutine calls and traps as single instructions, i.e. do
not descend into the called subroutine.

expression$p
proceed - like go with no argument, except that if we are presently at a breakpoint
then expression counts the number of times to pass this breakpoint before breaking.
J$p is synonymous with $g.

expression $bno b
set breakpoint bno (in the range 1-9) at expression. If bno is omitted the first unused
breakpoint number is assigned (the commonest usage). If expression is 0 the named
breakpoint is cleared, or if there is no named breakpoint (bno is omitted) all break­
points are cleared. If expression is omitted all breakpoints are printed, whether or not
bno is present.

MCn8000

DDT68 (1)

$rspecl

$rspec\

UNIX Programmer's Manual DDT68 (1)

examine register rspec where rspec is one of:

dO-d7 data registers 0-7

aO-a7 address registers 0-7

fp frame pointer (synonym for a6)

sp stack pointer (synonym for a7)

pc program counter

sr status register

expression$-
type out expression in current output radix.

lowlimit<highlimit>pattern?
search for pattern in the range lowlimit (inclusive) to highlimit (exclusive). The pat­
tern is interpreted as an object of the type in force as the current typeout mode, with
instructions and strings being treated as 2-byte words. Objects are assumed to be
aligned on word (2-byte) boundaries except for I-byte types and strings which are
aligned on byte boundaries. A mask (set with the following command) determines
how much of the pattern is significant in the search, except that if the pattern is a
string constant a separate mask matched to the length of the string is used. The three
arguments to the search command are sticky; thlis if lowlimit< (resp. highlimit» is
omitted, the most recent lowlimit (resp. highlimit) applies. While pattern may be
omitted, the final ? may not be omitted.

expression$m
set the search mask to expression. -1$m forces a complete match, f$m checks only the
low order 4 bits, O$m will make the search pattern match anything.

baseSir set input radix to base. (Note 10$i can never change the radix.) If base is omitted hex­
adecimal is assumed..

baseSor
set output radix to base. If base is omitted hexadecimal is assumed.

$typet temporarily set typeout mode to type where type is one of:

<space>
deduce type from type of nearest symbol

e type out bytes as ascii characters.

h type out bytes in current output radix.

w type out words in current radix.

type out longs in current radix.

s type out strings in current radix. (In this mode new values cannot be
entered.)

type out as 68000 symbolic instructions. (In this mode only the first two
bytes of the opened location may be changed; the new value is typed in as a
numeric expression rather than as a symbolic instruction.)

The new typeout mode stays in effect until a return is typed.

$$typet
permanently set typeout mode to type.

7th Edition MC68000 2
..

DDT68 (1) UNIX Programmer's Manual DDT68 (1)

An expression is composed of symbols, numeric constants, string constants, and the operators
+, -, and I representing 2's complement addition, subtraction, and inclusive bitwise or. Sym­
bols are delimited by operators or <esc>. A string constant has from I to 4 characters which
are packed right justified into one long to form a numeric constant; thus "did" =646A64.
String constants are particularly useful in conjunction witht the search command for searching
for a string. The single character. (dot) as a symbol on its own represents the address of the
currently open memory location. All operations are carried out using 32 bit arithmetic and
evaluated strictly left to right.

AtrnlORS
Jim Lawson and Vaughan Pratt

7th Edition MC68000 3

DL68 (1) UNIX Programmer's Manual DL68(l)

NAME
d168 - b.out -> .dl downloader component of cc68

SYNOPSIS
dl68 [-T -v -0 -s] filename

DESCRIPTION

FILES

Dl68 is a downloader for the Motorola 68000 Design Module. It takes· its input, a b.out for­
mat file, from filename and in the absence of the -0 option sends its output to stdout.

If there are any symbols these are loaded, starting at Ox6BA on vm (the Design Module) or
OxlFOOO on vI (the Sunl prototype). The start and end of the symbol table are stored at
Ox570 and Ox574 respectively on either board.

The options are:

- T textorigin
specifies where the text (code) is to be loaded.

-vn specifies the board version. Default is vi (Sunl prototype). v~ denotes the Motorola
Design Module.

-0 filename
specifies the output file. Defaults to stdout.

-sDE specifies the data/end record types to generate. The default is s28, 24 bit addresses.
The s 19 format, 16 bit addresses, is used by the Data 110 programmers.

/usr/sunlld68/down.c /usribinldl68

7th Edition MC68000
..

LD68(l) UNIX Programmer's Manual LD68 (1)

NAME
Id68 - .b -> b.out linker for the MC68000

SYNOPSIS
Id68 { option] ... file ...

DESCRIPTION
Ld68 combines several object programs into one, resolves external references, and searches
libraries. In the simplest case several object files are given, and Id68 combines them, produc­
ing an object module which can be either executed or become the input for a further Id68 run.
(In the latter case, the -r option must be given to preserve the relocation bits.) The output of
Id68 is left on b.out. This file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified.

The entry point of the output is determined by the first applicable item of the following list:
the -e option if given, the value of the symbol _start if defined, or the text origin (first
instruction). .

If any argument is a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. If a
routine from a library references another routine in the library, the referenced routine must
appear after the referencing routine In the library: Thus the order of programs within
libraries may be important.

The symbols' etext', ' edata' and' end' ('etext', 'edata' and 'end' in C) are reserved, and if
referred to, are set to the first location above the program, the first location above initialized
data, and the first location above all data respectively. It is erroneous to define these symbols.

Ld68 understands several options. Except for -I, they should appear before the file names.

-D Take the next argument as a decimal number and pad the data segment with zero
bytes to the indicated length.

-d Force definition of common storage even if the -r flag is present.

-e The following argument is taken to be the name of the entry point of the loaded pro-
gram; location Ox 1 000 is the default.

-c Fold case on identifiers. That is, upper and lower case letters are not distinguished.
U sed to link with Pascal routines, for example.

-Ix This option is an abbreviation for the library name '/usrlsunllib/libx.a', where x is a
string. A library is searched when its name is encountered, so the placement of a -1 is
significant.

-vx This denotes board version x which may at present only be 'm' for Motorola Design
Module. The default board version is the Sun 1 prototype, vi.

-M Create a human-readable list of symbols in "sym.out".

-0 Arrange (by giving the output file a 0410 "magic number") that when the output file is
executed, the text portion will be read-only and shared among all users executing the
file. This involves moving the data areas up to the first pcssible 64K byte boundary
following the end of the text (not really useful yet).

-0 The name argument after -0 is used as the name of the Id68 output file, instead of
b.out.

-q Quicksort symbols in b.out in ascending numerical order.

-r Generate relocation bits in the output file so that it can be the subject of another ld68

7th Edition

run. This flag also prevents final definitions from being given to common symbols,
and suppresses the 'undefined symbol' diagnostics.

LD68 (1) UNIX Programmer's Manual LD68 (1)

FILES

-8 'Strip' the output by removing all symbols except locals and globals.

-s 'Strip' the output, that is, remove the symbol table and relocation bits to save space
(but impair the usefulness of the debuggers). This infonilation can also be removed
by strip(l).

- T The next argument is a hexadecimal number which sets the text segment origin. The
default origin is Ox 1 000. If you intend to use the output as input to another run of
Id68, you must specify -T O.

-8 The next argument is a hexadecimal number which sets the commonlbss segment ori­
gin. The default origin is immediately after the data segment.

-u Take the following argument as a symbol and enter it as undefined in the symbol
table. This is useful for loading wholly from a library, since initially the symbol table
is empty and an unresolved reference is needed to force the loading of the first rou­
tine.

-X Save local symbols except for those whose names begin with 'L'. This option is used
by cc(1) to discard internally-generated labels while retaining symbols local to rou-
tines. .

-x Do not preserve local (non-.globl) symbols in the output symbol table; only enter
external symbols .. This option saves some space in the output file.

lusrlsunllibllib •. a libraries
b.out output file

SEE ALSO

BUGS

ar(1), cc68(1), a68(1)

The b.out format header does not contain any indication of the text segment origin, so if you
specify something other than the default origin -T 1000, you will have to remember this value
and specify it again to d168 when you download. The standard Sun monitor cannot netload
files with origins other than 1000, so you must either use d168 or write a special loader for
such programs.

7th Edition 2

MACGET (local) UNIX Programmer's Manual MACGET (local)

NAME
macget - receive file from macintosh via modem7/macterminal

SYNOPSIS
macget [-rdu] [file]

DESCRIPTION
Macget receives a file from a Macintosh running MacTerminal. The File Transfer settings
should specify the ·Modem7· transfer method and a "MacTerminal" remote system. This
program is designed for use with the 0.5 Beta and newer versions of MacTerminal, but
includes a compatibility option for the older -O.15X Almost-Alpha version.

To use this program, log into the unix system using MacTerminal, start macget with the
desired options, select ·Send File ... • from the ·File" menu, and open the file you wish to send.
If MacTerminal is properly configured, it will put up an indicator showing how much of the
file has been transfered. Several Control-X's may be used to force macget to give up if the
transfer fails.

The optional file parameter specifies the name to use when creating the unix files, otherwise
the Mac file name is used (with spaces converted to underscores).

If none of the -rdu flags are specified, macget receives three files from the Mac: file .info.
file .data, and file .rsrc. This mode is useful for storing Mac files so they can be restored later
using mac put .

The -r flag specifies resource mode. Only file.rsrc will be created, from the Mac file's resource
fork.

The -d flag specifies data mode. Only file .data will be created, containing the data fork of the
Mac file.

The -u flag requests unix mode, in which carriage returns are converted into unix newline
characters, and the unix file file.text is created. A file saved from Mac applications as "text
only· can be transfered using this option to convert it to a normal unix text file.

The -0 flag specifies "old" (version -O.15X) MacTerminal compatibility mode. You must
manually disable XON/XOFF flow control in this version to perform file transfer; this is done
automatically in the newer versions.

SEE ALSO
macput(local)

BUGS
Doesn't work over flow controlled communication lines, or when using dogin.

AUTIIOR
Dave Johnson, Brown 7/31/84

,

4th Berkeley Distribution 31 July 1984

MACPUT (lOcal) UNIX Programmer's Manual MACPUT (local)

NAME
macput - send file to macintosh via modem7/macterminal

SYNOPSIS
maC,at file
macpat [-rda] file [-t type] [-a author] [-0 name]

DESCRIPTION
Macput sends a file to a Macintosh running MacTerminal. The File Transfer settings should
specify the "Modem7" transfer method and a "MacTerminal" remote system. This program is
designed for use with the O.S Beta and newer versions of MacTerminal, but includes a compa­
tibility option for the older -O.lSX Almost-Alpha version.

To use this program, log into the unix system using MacTerminal, and run macput specifying
the desired options and one file to be sent. If MacT erminal is properly configured, it will
recognize that a file is arriving on the serial line and put up an indicator showing how much
of the file has been sent. Several Control-X's may be used to force macput to give up if the
transfer fails.

If none of the -rda flags are specified, macpul sends three files to the mac: file.info, file.data.
and .file.rsrc. This is useful for returning files to the mac which were stored using macget.

The -r flag specifies resource mode. Either.file.rsrc or .file will be sent to the Mac, along with
a forged Jnfo file and an empty .data file. The file setlt becomes the resource fork of the Mac
file. .

The -d flag specifies data mode. Either.file .data ,file .text or .file will be sent to the Mac, along
with a forged .info file and an empty .rsrc file. The file sent becomes the data fork of the Mac
file.

The -a flag requests unix mode. which is the same as data mode except unix newline charac­
ters are' converted into carriage returns. Human-readable unix text files sent to the Mac using
this option will be compatible with applications which expect "text only" files.

The -0 flag specifies "old" (version -O.lSX) MacTerminal compatibility mode. You must
manually disable XONIXOFF flow control in this version to perform file transfer; this is done
automatically in the newer versions.

The remaining options serve to override the default file type, author, and file name to be used
on the Mac. The default type and author for resource mode are "APPL" and "CCOM". data
mode defaults are "TEXr, "1m", and unix mode defaults 'are "TEXr and "MACA".

SEE ALSO
macget(local)

BUGS
Doesn't work over flow controlled communication lines, or when using dogin.

Doesn't set the bundle bit on resource files, to incorporate any icons into the Desk Top. Use
setfile to set the bundle bit.

FEATURES
Properly initializes the Creation Date.

AUTHOR
Dave Johnson, Brown 7/31184

4th Berkeley Distribution 31 July 1984

PC68 (I) UNIX Programmer's Manual PC68(l)

NAME
pc68 - Pascal compiler for the MC68000

SYNOPSIS
pc68 [option] name ...

DESCRIPTION

Pass

Pc68 is the version of the portable Pascal. compiler that generates code for the MC68000.
Pc68 is a flexible program for translating between various types of files. The types catered for
in order of appearance during translation are '.p' (Pascal source files), '.a68' or '.s' (assembly
language files), '.b' (relocatable binary files), 'b.out' (absolute binary files), '.r' (byte-reversed
files, cf. rev68(l). and '.dl' (Macsbug download format, cf. dI68(l).

Arguments to pc68 are either flags or input files. The type of an input file is normally deter­
mined by its suffix. When an argument to pc68 is not a flag and has none of the above
suffixes, it is assumed to be of one of the types '.p', '.b', or 'b.out', namely the latest of these
three consistent with the type of the output (e.g. if the output type were '.s' or '.b' then the
input would have to be '.p').

Translation proceeds as follows. Each '.p' and '.s' program is translated to a '.b' relocatable
using upas68, ugen68, and as68 as necessary. Then all .b files including those produced by

. translation are link edited into the one file, called 'b.out'. If the only input file was a single
'.p' program then the '.b' file is deleted, otherwise all '.b' files are preserved.

The amount of processing performed by cc68 may be decreased or increased with some of the
options. The -S option takes translation no further than '.s' files, i.e. only upas68 and ugen68
are applied. The -c option takes translation up to '.b' files, omitting the link-editing and not
deleting any '.b' files. The -d option goes beyond 'b. out' to produce a '.d!' file (using d168)
that may be downloaded by the Motorola MACSBUG monitor and the Sunl monitor. The-r
option similarly goes beyond 'b.out' to produce a '.r' file (using rev68) that may be loaded
directly by 68000 code based on Id68. Both -d and -r may be used together.

The output may be named explicitly with the -0 option; the output file's name should follow
-0. Otherwise the name is 'b.out' in the normal case, or 'filename.dl' for the -d option, or
'filename.r' for the -r option, where 'filename' is the first '.p', '.a68', '.s', or '.b' file named as
an input. If the input is not in any of those three categories, the names 'd.out' and 'r.out' are
used respectively for -d and -r.

The version of the target machine may be given as the flag -vn where n is the version. -vm is
"Version Macsbug: -vV means to run under the Vkernal. This is pretty much a hack: File I/O
is not supported and you can't refer to C routines containing upper-case letters in their
names. It's also rather minimally tested.

A complete list of options interpreted by pc68 follows:

flag to the compiler. See the SOURCE FLAGS section below.

-c Suppress loading and produce '.b' file(s) from source file(s).

-g Have the compiler produce additional symbol table information for pcdb68 (not imple-
mented).

-e entrypoint
Entrypoint specifies where to begin execution.

-0 output
Name the final output file output instead of b.out.

-s Accept standard Pascal only; non-standard constructs cause warning diagnostics (not
implemented - see internally controlled options).

7th Edition MC68000

PC68 (1) UNIX Programmer's Manual PC68 (1)

-v D Use the 'n' version of the runtime support.

-w Suppress warning messages (not implemented).

-x Suppress passing the '-x' flag to the loader, retaining local symbols.

-E Run only the preprocessor (not implemented).

-L Make an assembly listing in filename.ls for each file assembled.

-0 Invoke an object-code improver (not implemented).

-R Preserve relocation information in b.out.

-S Compile the named program, and leave the assembler-language output on the
corresponding file suffixed '.s'. (No '.b' is created.).

-T org
Org specifies in hexadecimal where to begin loading the program.

-V Show the various stages of the compilation by printing images of the processes forked
off to perform the actual work of the compilation.

-U Save the ucode associated with filname.p in filename.u (and filename.z, depending on
the -W option).

-W Invoke the global ucode-to-ucode optimizer. If -U option active, generates filename.z.

-p Save all intermediate files. Most useful in conjuntion with -v (so that it is possible to
find the intermediates).

Other arguments are taken to be loader option arguments, perhaps libraries of pc68 compati­
ble routines.

SEPARATE COMPILATION
Object files created by other language processors may be loaded together with object files
created by pc68. Calling conventions are as in C, with var parameters and arrays passed by
address. Don't pass structures except by V AR (pointer) if you call C, since here pc68 and
cc68 differ. As a convenience, string constants are followed by a zero byte, so that you can
use them as C strings when calling C routines.

To refer to a subroutine defined in a separate module, it must be declared. This follows the
same syntax as forward declarations, except that the keyword FORWARD is replaced by
EXTERN .

A file of subroutines is similar to a program except that there is no main program, and the
program statement at the beginning of the file is replaced by a statement:

MODULE modulename;
The 'end;' of the last function in the file is followed by a period - there is no main program
block.
The modulename will become significant in Pascal •. Note that in identifiers (such as subpro­
gram names) upper case is changed to lower case, and the linker is asked to ignore case.

OPENING FILES
To open a file for both input and output, use the standard procedure REVISE, which is analo­
gous with RESET and REWRITE. ~-lOT TESTED.

You can read and write files on machines which run a Leaf server. To open a file for reading
do:

reset(file,'[hostname:username:password]filename');

The same syntax applies to rewrite. You can of course also use a Pascal string variable.

7th Edition MC68000 2

PC68(l) UNIX Programmer's Manual PC68(1)

Terminating spaces in hostname, username and password are ignored. (This should make it
easier for a program to construct the appropriate filename string.)

You can leave out fields (or the entire second parameter), and the program will assume you
want the same as before . .If there is no "before", it will ask you.

Reset, Rewrite and Revise may have an optional third parameter, which is a string of
switches. E.g.:

Reset(Input,'datal.txt','Nofilter,Prompt:"Try again!"');

Standard switches are:
- Prompt: The string is used as a prompt (interactive systems only). If a file name is

NOT given, this prompt is used to get the file name from the user. If one IS given (like in
the example above), the prompt is used to get another file name from the user if the file can't
be opened.
- Default: The string is used are used as a default file name, which is used if the user types a

carriage return in response to the prompt. .
- Standard: If Reset, the standard input file is used. If Rewrite, the standard output is

used.
- Nofilter:. (Reset, Revise only.) Normally a text file is 'filtered' by the runtimes so that it

conforms to the standard Pascal definition of a text file. Most notably, any end-of-line
characters are changed into one space. The inclusion of Nofilter causes all characters
to be passed through exactly as they appear in the text file. Eoln, Eopage and Readln still
work as for standard files.

EXTENSIONS TO READ AND WRITE
For all field widths (if there are two field-width-type parameters, the first one only), a nega­
tive value will mean that the value written will be left-aligned instead of right-aligned.
For string variables, if Abs(Fieldwidth) < Length, then the last Length­
Abs(Fieldwidth) characters of the string will be written.

Variables of enumerated types may be read and written. The field width is interpreted the
same as for strings. Enumerated constant names are uppercased when they are read in.

Sets of readable and writeable types may also be read and written. They appear exactly as
set constants appear in Pascal programs. The field width is interpreted for each ele­
ment the same as it would be for the set element type.

Integers may be written in other bases beside base 10 by including an optional field­
width-type parameter, which may be anywhere from 1..16. The field width is the same as
for base 10. Integers may also be read from a file in other than base 10, by including a
field-width-type parameter in the call to Read or Readln.

Real numbers may have a capital "E" as well as the standard small "e" in the exponent
part.

MORE ABOUT INPUT-OUTPUT
Lazy lokahead is used for text files, so that terminal input works reasonably.

The procedure Eopage is true iff a page marker has just been read, and the corresponding
space in now in the file buffer.

Random-access in files is done with the standard procedure

7th Fclition MC68000 3

PC68 (1) UNIX Programmer's Manual PC68(l)

seek (File, N);
This positions the file so that the next read/write will apply to component no. N of the file.

To close a file immediately do: close(file);

Function Filesize (var Filevai: Anyfile): O .. Maxint returns the current number of components
in a file.

Function Curpos (var Filevar: Anyfile): O .. Maxint: Returns the current file position.

Procedure Filepos (var Filevar: Text; var Pagenum, Linenum, Charnum: O .. Maxint); Returns
page, line number, and column number of the next character that will be read from the file
(must be open for input). Does not work for random access.

TIME AND DATE ROUTINES
Oock -returns milli-seconds since the monitor was booted.

The following routines routines don't work if you want to run stand-alone, but need an
operating system (Y or Unix).

Ptime -returns (in theory) milli-seconds since midnight.
(under Y, actually returns seconds*lOOO)

Pdate(day, month, year) -set day, month & year (say 1982).

Time(string) -sets string to 'HH:MM:SS'

Date(string) -sets string to 'MM/DDIYY'.
For both time and date, the string is a packed array (1..n] of char, where n>=8. (Any overflow
is set to spaces.)

OTHER EXTENSIONS AND FEATURES
An • others " label in as CASE statement, indicates a default case.

To include a file as part of the program source do:
INCLUDE 'filename';

This is especially useful for declarations for seperately compiled modules.

Records declared as "packed" will be packed down to individual bits; however elements of
packed arrays are at least a byte.

Function Min (X,Y: T): T - returns the minimum of two arguments, which may be of any
ordinal or real type.

Function Max (X.Y: T): T - returns the maximum of two arguments.

Procedure Halt (Exitcode: Integer): Causes abnormal termaination of a program. Passes a
system-dependent exit code to the operating system.

The comment pairs '{ }' and '(* .) match independently, allowing limited nesting of com­
ments.

7th Edition MC68000 4

PC68 (1) UNIX Programmer's Manual PC68 (1)

SOURCE FLAGS

FILES

BUGS

These flags can be passed to the compiler either at the command level when invoking pc68, or
as comments within the program.. A sample option line is a comment with # as its first char­
acter:
Sample option line: (*#g+,tdpy I,tchk I,U-8 *)
WARNING: Only (* *)-style comments will work; {# ... } is ignored!
Sample command line: pc68 file.p #g:+ #tdpy:l #tchk:l #U:-8

Switch

B+
C+
D-
E+
G-
L-
116

0-
p-
RO

S-
T-
U+
V32
Wn
WI
WlO
z-

file.p·
file.b
file.a68
file.s
file.ls
file. err

Meaning (Note that the default value is shown)

Bounds and nil pointer checking
Print ucode
Load with debugger
Emit source code (for system debugging)
Write error messages only to listing file
Write full listing
Number of characters of identifiers that

are considered significant
Emit optimizer-compatible code
Keep execution profile
Put up to N local variables in (data) registers
(Register allocation should be done by the optimizer.)
Accept standard Pascal only
Code generator options
Leave procedure names exactly as is
Number of bits (16 or 32) to allocate for 'Integer'.
PRINT WARNINGS FOR:

unused variables, types, procs, etc.
nested comments

Optimizer switches

pascal source files
binary files
assembler files
assembler files
assembler listing
pascal listing

Displacements off a frame pointer is limited to 16 bits signed, so very large locally-defined
arrays will crash.

Some attempted bogus conversions (e.g. structure to real) aren't detected by the front end,
and result in messages about 'Illegal CVT datatypes' from the code generator.

Sometimes formfeeds in the source get passed to the assembler, causing it to crash.

There is no macro processor.

7th Edition MC68000 5

PC68(l) UNIX Programmer's Manual PC68(1)

GRIPES
Complaints should be sent to:

Per Bothner (mail to bothner@score)

There is also a pc68 mailing list. To add yourself to it, send a message to mailer@su-whitney.
TIle first line of the message body should say:

add me to pc68

To say messages to to list, mail to pc68 at shasta, diablo, navajo or whitney.

7th Edition MC68000 6

RMAKER (local) UNIX Programmer's Manual RMAKER (local)

NAME
rmaker - resource maker (compiler) for Macintosh

SYNOPSIS
rmaker file.rc
rmaker [-d type] file.rc

DESCRIPTION
Rmaker reads an ascii resource compiler input file "file.rc" and produces a Macintosh execut- .
able binary "file.rsrc". See the Inside Mac manual "Putting Together a Macintosh Applica­
tion" for a description of this format and process. It is also helpful to look at one of the
example '.rc' files in the SUMacC 'macl' source directory.

Most of the commonly used resource types-are implemented: STR, HEXA, CODE, DRVR,
ALRT, DITL, DLOG, WIND, MENU, CNTL, ICON, CURS, PAT, INIT and PACK. See
the BUGS section below for exceptions.

The optional-d (debug) switch will list out in hex the contents of all resources matching that
four letter type.

SEE ALSO

BUGS

"Putting Together a Macintosh Application"

If you have more than one resource of the same type, they must all be grouped together in the
file, and each resource must begin with the "Type" statement.

Types NOT implemented: ICN#, PAT#, STR#, FREF, BNDL, FONT, GNRL. You can
always use an "inherited type" of HEXA (e.g. Type BNDL = HEXA) to simulate unimple­
mented types. GNRL would be even better for this (if someone would only implement it!)

If you get the message "impossible relocation", it usually means your b.out had some
undefined external references; check the error output from 'ld', you probably misspelled some
global or routine name. .

4th Berkeley Distribution 10/20/84

SUNRPC
REMOTE PROCEDURE CALL PACKAGE

Sun Microsystems

PORTMAP (8C) UNIX Programmer's Manual PORTMAP (8C)

NAME
portmap - DARPA port to RPC program number mapper

SYNOPSIS
lusT I etc/rpc.portmap

DESCRIPTION
Portmap is a server that converts RPC program numbers into DARPA protocol port numbers.
It must be running in order to make RPC calls.

When an RPC server is started, it will tell portmap what port number it is listening to, and
what RPC program numbers it is prepared to serve. When a client wishes to make an RPC
call to a given program number, it will first contact portmap on the server machine to deter­
mine the port number where RPC packets should be sent.

Normally, standard RPC servers are started by inetd(8c), so portmap must be started before
inetd is invoked.

SEE ALSO
servers(5), rpcinfo(8), inetd(8)

BUGS
If portmap crashes, all servers must be restarted.

7th Edition 1 February 1985

RPCINFO(8) UNIX Programmer's Manual RPCINFO(8)

SEE ALSO
RPC Reference Manual. portmap(8)

7th Edition 1 February 1985

X WINDOW SYSTEM
M.LT.

X(1) UNIX Programmer's Manual X(1)

NAME
X - A network transparent window system for Unix

DESCRIPTION
X is a network transparent windowing system developed at MIT which runs under Ultrix-32
Version 1.2 and 4.3BSD Unix. '

X display servers_run on computers with bitmap terminals. The server distributes user input
to, and accepts output requests- from various client programs located either on the same
machine or elsewhere in the Internet. While a client normally runs on the same machine as
the X server it is talking to, this need not be the case.

X supports overlapping windows, fully recursive subwindows, text and graphics operations
within windows. For a full explanation of functions, see "Xlib - C Language X Interface"
document.

When you first log in on a display running X, you are using the xterm(l) terminal emulator
program. You need not learn anything extra to use a display running X as a terminal beyond
moving the mouse cursor into the login window to log in normally.

X attempts to provide hooks for your favorite style 'of user interface; feel free to write your
own if you don't like the style provided by existing window managers (see xwm(1), xnwm(1),
or uwm(1). These programs are used to manipulate existing top level windows, including
moving, resizing, and iconifying existing windows. You should start your favorite window
manager when you log in on a display running X.

Current client programs of X include a terminal emulator (xterm(1), window managers
(xwm(1) , xnwm(1) and uwm(1), bitmap editor (bitmap(1), access control program (xhost(1) ,
user preference setting program (xset(1), load monitor (x/oad(1), clock (xciock(1) , impress
previewer (ximpv(J), font displayer (xjd(1), demos (xdemo(J), and editors (e.g., xted). On
some systems, mail notification has been integrated (biJf(1).

OPTIONS
The following options can be given on the command line to the X server, usually started by
init(l) using information stored in the file letclttys. (see ttys(5), X(8c) for details):
-8 # sets mouse acceleration (pixels)
-c turns off key-click
c # sets key-click volume (0-8)
-f # sets feep(bell) volume (0-7)
-I sets LockUpDownMode
I sets LockToggleMode
m forces "monochrome" mode on a color display
-p # sets screen-saver pattern cycle time (minutes)
-r turns off auto-repeat
r turns on auto-repeat
-s # sets screen-saver timeout (minutes)
-t # sets mouse threshold (pixels)
v sets video-on screen-saver preference
-v sets video-off screen-saver preference
-0 color sets color map entry 0 (BlackPixel)
-1 color sets color map entry 1 (WhitePixel)
-D rgbdb sets RGB database file

The defaults are" -a 4 c 6 -f 3 I -p 60 r -s 10 -t 2 -0 #008 -1 #ffffif -D lusr/lib/rgb".

X Version 10 25 January 1986

X(1) UNIX Programmer's Manual X(1)

X DEFAULTS
Many X programs follow the convention of using a file called .Xdefaults in your home direc­
tory to allow tailoring the default values of many items on the display (default font, border
width, icon behavior, and so on). The format of this file is "programname.keyword:value",
where the default value for each keyword is set to the specified string. If the program name is
missing, the default "keyword" value is set to the value for all programs. Case is not
significant in keywords. Any whitespace before the value is ignored. Any global defaults
should precede program defaults in the file. See the manual pages for a list of what defaults
can be set in a given program. Here is an overblown· example -I.Xdefaults file.

X Version 1-0

Ois a comment
.BorderWidth: 2
.BitmapIcon:
.MakeWindow.Background:
:MakeWindow.Border:
.MakeWindow.BodyFont:
.MakeWindow.Foreground:
.MakeWindow.Freeze:
.MakeWindow.Mouse:
.MakeWindow.MouseMask:
.MakeWindow.ClipToScreen: on

on
#8e8
#f26
cor
medium slate blue
on
#e6f
black

.Menufreeze: .

.Menubackground:

.Panefont:

.SelectionFont:

.SelectionBorder:

.Paneborderwidth:
xterm.Panespread:
biff.Background:
biff.BodyFont:
biff.Border:
biff.Foreground:
biff.Mouse:
bitmap. Background:
bitmap. Border:
bitmap. Foreground:
bitmap. Highlight:
bitmap.Mouse:
xclock.Background:
xclock.Border:
xclock.Foreground:
xclock.Highlight:
xclock.Mode:
xshell.action.LeftButton:
xshell.action.MiddleButton:
xshell.action.RightButton:
xshell.action.$:
xshell.action. #:
xshell.Reverse Video:
xshell. WindowGeometry:
xshell.Quiet:
xdemo.Background:
xdemo.Border:
xdemo.balls.Background:

on
maroon
8x13
8x13
black
I
.25
violet red
9x15
black
green yellow
coral
forest green
salmon
white
red
black
plum
black
red
blue
analog
xterm =80x65-0+0 -fn 6xlO
xted =80x65+0-0
xterm =20x20-0-0 -fn 6xlO -e dc
xterm =80x65+0+0 -fn 6xlO -e sh
xterm =80x65+0+0 -fn 6xlO -e su

. on
=-0-0
on
white
black
maroon

25 January 1986 2

X(l) UNIX Programmer's Manual

xdemo.balls.Foreground: white
, xdemo.circles.Foreground: khaki
xdemo.draw.Background: light gray
xdemo.draw.BodyFont: oldeng
xdemo.draw.Foreground: midnight blue
xdemo.draw.Mouse: white
xdemo. menulife. Background: medium turquoise
xdemo.menulife.Foreground: orange red
xdemo.menulife.MenuBackground:light blue
xdemo.menulife.MenuFont: oldeng
xdemo.menulife.MenuForeground:dark orchid
xdemo.menulife.MenuMouse: orange
xdemo.menulife.Mouse: salmon
xdemo.plaid.Foreground: red
xdemo.qix.Foreground: violet red
xdemo.slide.Foreground: forest green
xdemo.wallpaper.Foreground: medium turquoise
xdemo.xor.Foreground: blue violet
ximpv.Background: dark green
ximpv.Border: red
ximpv.Foreground: cyan
ximpv.Mouse: white
xload.Background: #00068
xload.Border: black
xload.Foreground: slate blue
xload.Highlight: yellow
xload.Reverse Video: on
xted.Background: firebrick
xted.BodyFont: kiltercrn
xted.Border: tan
xted.Cursor: yellow
xted.Foreground: white
xted.Highlight: goldenrod
xted.Mouse: cyan
xterm.Background: #355
xterm.BodyFont: 6x13p
xterm.Cursor: green
xterm.Foreground: white
xfax.Background: white
xfax.Border: green
xfax.Foreground: red
xfax.Mouse: blue

X(1)

By default when you log in, only programs running on your local computer will be allowed to
interact with your display. If someone else on a different machine wants to show you some­
thing, you can use the xhost(l) program to allow access to your display.

SIZING WINDOWS
Many programs ask you to manually size their top-level window. When started, such a pro­
gram will typically popup an identification window in the upper left corner of the display.
The window can be created with the center button: press the button to define one corner of
the window, move the cursor to where the opposite corner of the window should be and
release the button. For text applications, the left and right buttons can also be used. Pressing
the left button typically produces an 80 by 24 window, which can then be moved around, and
placed by releasing the button. Similarly, the right button typically produces an 80 by full

X Version 10 25 January 1986 3 ..

X(l) UNIX Programmer's Manual X(1)

screen window. For graphics applications, the left button typically creates a default size win­
dow in a default location, while the right button creates a default size window at the position
of the cursor.

Most applications (e.g., xted, xdemo, and x/ax) read options to control sizing of initial win­
dows. The "MakeWindow.BodyFont" option controls the font for the popup window. The
"MakeWindow.BorderWidth" and "MakeWindow.InternalBorder" options control the outer
and inner borders. The "MakeWindow.ReverseVideo'· option can be set to "on" to reverse
colors. On color: displays, the "MakeWindow.Foreground", "MakeWindow.Background", and
"MakeWindow.Border" options control the color of the popup window, and the
"MakeWindow.Mouse" and "MakeWindow.MouseMask" options control the color of the
mouse cursor. The "MakeWindow.Freeze" option, when set to "on", will stop all other out­
put while the window is sized, and use a steady outline instead of continuously flashing the
window outline. The "MakeWindow.C1ipToScreen" option will clip the resulting window to
fit on the screen. (Currently only implemented in programs using the XCreateTerm subrou­
tine.)

GEOMETRY SPECIFICATION
Most programs accept a geometry specification. This allows automatic creation and place­
ment of windows on the screen at login and other convenient times.
=IWIDTH)(xHEIGHT}H -}XOFF({ -}YOFFJI The []'s denote optional parameters, the {}'s
surround alternatives. WIDTH and HEIGHT are in number of characters for text oriented
applications, and usually in pixels for graphics oriented -applications. - XOFF and YOFF are
in pixels. If you don't give XOFF and/or YOFF, then you must use the mouse to create the
window. If you give XOFF and/or YOFF, then a WIDTHxHEIGHT window will automati­
cally be creating without intervention. XOFF and YOFF specify deltas from a comer of the
screen to the corresponding comer of the window, as follows:

XOFF+ YOFF - upper left to upper left
-XOFF + YOFF upper right to upper right
XOFF-YOFF lower left to lower left

-XOFF-YOFF lower right to lower right

KEYBOARD
If you don't like the standard keyboard layout or the default definitions of keymap and func­
tion keys, the keyboards on most displays can be remapped to suit your taste. Many pro­
grams look for a file called .xkeymap in your home directory. This is a binary file, produced
from a source map with the keycomp(1) program.

COLORS
Many programs allow you to specify colors for background,border, text, etc. A color
specification can be given either as an english name (see lusrlliblrgb.txt for defined names), or
three hexadecimal values for the red, green, and blue components, in one of the following for­
mats:

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

DISPLAY SPECIFICATION
When you first log in, the environment variable "DISPLAY" will be set to a string
"machine:display" (for example, "mit-athena:O") which will determine which display an X
application will talk to by default.

Most applications will also interpret an argument with a ":" in it to be the display to use.

X Version 10 25 January 1986 4

X(1) UNIX Programmer's Manual X(1)

When using DECnet, the format "node::display" should be used.

MENU DEFAULTS
As there is now a standard menu package for X (XMenu(3x), you can tune the behavior of
menus in programs using this package with a set of Xdefaults. Xterm's 'Mode Menu' is con­
trolled by these defaults for example.

MenuFreeze
Determines whether or not to grab the X server while a menu is posted. One of: on,
off. The default value is off.

MenuStyle
Determines the menu display style. One of: left_hand, righChand, center. The
default value is righChand.

MenuMode
Determines the menu selection high light mode. One of: box, invert. If box mode is
chosen then the SelectionBorderWidth and SelectionBorderColor parameters effect
the box line width and color respectively. If invert mode is chose then the Selection­
Foreground and MenuBackground colors are used for the inversion. The default
value is invert.-

MenuMouse
Determines the color of the mouse cursor while it is within the menu. Any valid X

-color may be used. The default value is black.

MenuBackground
DetelJIlines the menu background color. Any valid X color may be used. The
default value is white.

MenuInactivePattern
Determines which of the five possible bitmap patterns will be used to tile inactive
panes. One of: dimplel, dimple3, grayl, gray 3 , cross_weave. The default value is
gray 3.

PaneStyle
Determines the display style of all menu panes. One of: flush_left, flush_right,
center. The default value is center.

PaneFont
Determines the font used for the label (heading text) of each pane. Any valid X font
may be used. The default value is 8x13.

PaneForeground
Determines the pane foreground color. This is the color used for the label (heading
text) in each pane. Any valid X color may be used. The default value is black.

PaneBorder
Determines the color of all menu pane borders. Any valid X color may be used. The
default value is black.

PaneBorderWidth
Determines the width (in pixels) of all menu pane borders. Any integer greater than
or .!qual to 0 may be used. The default value is 2.

PaneSpread

X Version 10

Determines the horizontal spread of menu panes. Any double greater than or equal
to 0.0 may be used. A value of 1.0 specifies a one to one ratio between horizontal
spread and vertical spread. A value less than 1.0 will compress the menu panes
inward and a value greater than 1.0 will expand them outward. The default value is
1.0.

25 January 1986

X(1) UNIX Programmer's Manual X(1)

SelectionStyle
Determines the display style of all menu selections. One of: flush_left, flush_right,
center. The default value is flush_left.

SelectionFont
Determines the font used for the text in each selection. Any valid X font may be
used. The default value is 6x 10.

SelectionForeground
Determines the selection foreground color. This is the color used for the text in each
selection. Any valid X color may be used. The default value is black.

SelectionBorder
Determines the color of all menu selection borders. Any valid X color may be used.
The default value is black.

SelectionBorderWidth
Determines the width (in pixels) of all menu selection borders. Any integer greater
than or equal to 0 may be used. The default value is 1.

SelectionSpread
Determines the inter-selection spread. Any double greater than or equal to 0.0 may
be used. A value of 1.0 specifies that 1.0 times the height of the current selection
font will be used for padding The default value is 0.25.

SEE ALSO
X(8c), xterm(1), bitmap(l), xwm(l), xnwm(l), xhost(l), xclock(1), xload(l), xset(1), key­
comp(1), xdemo(1), biff(1), qv(4), vs(4), init(8), ttys(5), uwm(l), xrefresh(l), xwininfo(l),
.ximpv(1), xdvi(l), pikapix(l), xwd(l), xwud(l), xinit(l), xted(1), xdemo(l), Xqvss(8c),
XvsI00(8c), Xsun(8c), Xnest(8c)
'Xlib - C Language X Interface'

AUTHORS
It is no longer feasible to list all people who have contributed something to X; below is a
short list of people who have added significant code to device independent parts of X.
Bob Scheifler (MIT-LCS), Jim Gettys (MIT-Project Athena, DEC), Mark Vandevoorde (MIT­
Project Athena, DEC), Tony Della Fera (MIT-Project Athena, DEC), Ron Newman (MIT­
Project Athena, MIT), Shane Hartman and Stuart Malone (MIT -LCS), Doug Mink (Smith­
sonian Astrophysical Observatory), Bob McNamara (DEC-MAD), and Stephen Sutphen
(University of Alberta).

Special thanks must go to Paul Asente (of DECWRL and Stanford University), who wrote
·W· which saved us much time and energy early in this project, and who is now an active X
contributor as well, and Chris Kent (of DECWRL and Purdue University) who both struggled
mightily (and won!) to tum the VsI00 into something useful under Unix.

We are very grateful for the interest shown by many groups in the country, which has
encouraged us to make X more than our personal toy. Great thanks must go to Digital's
Ultrix Engineering Group for the QDSS implementation, and to Digital's Workstations Group
for the QVSS implementation.

Copyright (c) 1984, 1985, 1986 by Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear in
all copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining

X Version 10 25 January 1986 6

X(1) UNIX Programmer's Manual X(1)

to distribution of the software without specific, written prior permission. M.I.T. makes no
representations about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty.

This software is not subject to any license of the American Telephone and Telegraph Com­
pany or of the Regents of the University of California.

X Version 10 25 January 1986 7

XMENU(3X) UNIX Programmer's Manual

NAME
XMenu - X Deck of cards Menu System

SYNOPSIS
#include <XlXMenu.h>

XMenu -XMenuCreate(paren4 xdeCenv)
Window parent;
char -xdeCenv;

int XMenuAddPane(men~ label, active)
XMenu -menu;
char -label;
int active;

int XMenuAddSelection(men~ pane, data, label, active)
XMenn -menu;
int pane;
char -data;
char -label;
int active;

int XMenuInsertPane(men~ pane, label, active)
XMenu -menu;
int pane;
char _label;
int active;

int XMenuInsertSelection(menu, pane,selection, data, label, active)
XMenu -menu;
int pane, selection;
caddr_d data;
char -label;
int active;

int XMenuFindPane(men~ label)
XMenu -menu;
char -label;

int XMenuFindSelection(menu, pane, label)
XMenu -menu;
int pane;
char -label;

int XMenuChangePane(men~ pane, label)
XMenu -menu;
int pane;
char -label;

int XMenuChangeSelection(men~ pane,selection, data,d_sw, label,Lsw)
XMenu -menu;
int pane, selection;
char -data;
int Lsw;
char _label;
int Lsw;

int XMenuSetPane(menu, pane, active)
XMenu -men'!;
int pane;

X Version 10 29 January 1986

XMENU(3X)

XMENU(3X) UNIX Programmer's Manual

int active;

int XMenuSetSelection(menu, pane, selection, active)
XMenu -menu;
int pane, selection;
int active;

int XMenuDeletePane(menu, pane)
XMenu -menu;
int pane;

int XMenuDeleteSelection(menu, pane, selection)
XMenu menu;
int pane, selection;

int XMenuRecompute(menu)
XMenu -menu;

XMenuEventHandler(bandler)
int (_bandler)();

int XMenuLocate(menu, pane,selection, x,y, ulx,u1y, widtb,beigbt)
XMenu -menu;
int pane, selection;
int X, y;
int -ulx, -uly;
int _widtb, -beigbt;

XMenuSetFreeze(menu, freeze)
XMenu _menu;
int freeze;

int XMenuActivate(menD, pane,selection, x,y, evenCmask, data)
XMenu -menu;
int -pane, _selection;
int X, y;
int evenCmask;
char .. data;

XMenuDestroy(menu)
XMenu -menu;

char -XMenuError()

DESCRIPTION

. XMENU(3X)

XMenu is an X Window System Utility Package that implements a 'deck of cards' menu sys­
tem. XMenu is intended for use in conjunction with X/ib. the C Language X Window System
Interface Library.

In a 'deck of cards' menu system a menu is composed of several cards or panes. The panes
are stacked as if they were a deck of playing cards that were fanned out. Each of these panes
has one or more selections. A user interacts with a 'deck of cards' menu by sliding the mouse
cursor across the panes of the menu. As the mouse cursor enters each pane it will rise to the
top of the deck and become 'current', If the current pane is an active pane it will be
'activated', or made available for selection. To indicate this its background will then change
from the patterned inactive background to a solid color and the selections on that pane will
be activated. If the current pane is not an active pane (a setable state) then it will not be
activated. To indicate this its background will continue to be the patterned inactive back­
ground and no selections on the pane will be activated. The pane previously containing the
mouse will lower (preserving its stacking order). If it was activated it will then become deac­
tivated, its background changing back to the inactive pattern. Because of this action it is not

X Version 10 29 January 1986 2

XMENU(3X) UNIX Programmer's Manual XMENU(3X)

possible to have more than one current pane at anyone time. When the mouse cursor enters
an active selection in a pane that has been activated then that selection will become activated
and be high lighted. If the selection is not active or the pane has not been activated then the
selection will not be activated and will not be high lighted. Selection high lighting is accom­
plished in one of two ways depending upon the state of the user's Xde/aults variables. If 'box'
mode high lighting is in effect, the menu selection will be activated by placing a high light box
around the selection as the mouse cursor enters the selection's active region and removing it
(deactivating the selection) as the cursor leaves. If 'invert' mode high lighting is in effect, the
menu selection will be activated by inverting the ba~kground and foreground colors within
the selection's active region as the mouse cursor enters it and reinverting them as the cursor
leaves.

The application specifies a mouse event that will signify that the user has made a selection.
Any time that the selection mouse event is received by XMenu one of several results will
occur, depending upon the state of the menu system at the time of the event. If the selection
event occurs while the mouse cursor is in an activated selection the data that has been stored
with that· selection will be returned to the application program. The data stored is in the
form of a generic pointer to memory (char .). This allows the application programmer to
completely define the interpretation of the selection data by recasting the data pointer as is
desired.

An application constructs a menu by first creating the XMenu object. Once the XMenu object
has been created then panes and selections are added in order as is needed. Typically panes
contain related selections that are 'described' by the pane's label. For example, you might
create a pane labeled 'Mail' that has selections labeled 'Read', 'Send', 'Forward', 'Refile' and
'Delete'. There is no real need for the panes in a menu to be related to each other but typi­
cally they are related by default by the fact that they are all being utilized the application that
created the menu.

The XMenu system is maintained (menus, panes and selections) via routines in the XMenu
library. The library contains the following routines:

XMenuCreate
In order for a process to create a menu, it is necessary for that process to have
opened a connection to an X display server and have a window in hand that will be
designated as the parent window of the menu being created (remember that X is
designed such that child windows of a parent window are clipped to the borders of
the parent). Typically the X root window (Root Window) is used for this purpose.
When the connection is open and a parent window chosen, the application calls
XMenuCreate passing it the parent window and a null-terminated string. The string
designates the default environment name that will be used by XMenu to read the
users Xde/aults variables. Typically the application name is used for this purpose (a
good software engineering practice is to use element zero of the applications argu­
ment vector, argv(O], as the default environment since this is the name by which the
application was called from the shell). All user setable parameters are set via the
Xdefaults mechanism. . If any parameters do not have Xdefaults values then they
default to preset XM enu internal values. The Xde/aults parameters are listed below
along with their preset internal values. If the create operation is successful XM enu­
Create will return an XM enu object. If it fails NULL will be returned.

XMenuAddPane

X Version 10

Once a menu has been created the application may then begin adding panes and sub­
sequently selections. Panes are added' by calling XMenuAddPane. XMenuAddPane
adds additional panes to a menu in call order. That is, panes will appear in the
menu with the first pane added being at the front of the pane stack and the last pane
added being at the back of the pane stack. XMenuAddPane takes the following

29 January 1986 3

XMENU(3X) UNIX Programmer's Manual XMENU(3X)

arguments: The menu to which the pane is being added; A null-terminated string that
will be the label for the new pane; and an flag that designates whether or not the
pane is to be considered active for selection. It is sometimes useful to add inactive
panes to indicate a currently unavailable but planned set of selections. If the add
operation is successful the index number of the pane just added will be returned. If
it fails XM_F AlLURE will be returned. Further panes may be added at a later time
but remember that when this routine is used to add panes -they are always added to
the back of the pane stack!

XMenuAddSelection
Once a pane has been added to a menu is it possible to begin adding selections to
that pane. Selections are added to panes in much the same way as panes are added
to menus. Selections are added by calling XMenuAddSelection. XMenuAddSelection
adds additional selections to a pane in call order. That is, selections will appear in
the pane with the first selection added being at the top of the pane and the last selec­
tion added being at the bottom of the pane. XMenuAddSelection takes the following
arguments: The menu containing the pane to which the selection is being added; The
index number of the pane to which the selection is being added; A null-terminated
string that will be the label for the new selection; A (char *) data value that will be
returned by XMenuActivate whenever the new selection is selected by the menu's
user, and a flag that designates whether or not the selection will be considered active.
It is sometimes useful to add inactive selections which may become active as the
application state changes. If the add operation is successful then the index number
of the selection just added will be returned. If it fails XM_F AlLURE will be
returned. Further selections may be added at a later time but remember when this
routine is used.to add selections they are always added to the bottom of a pane!

XMenuInse~ane
This routine allows the application to insert menu panes into a menu in random
order. If the index number of the pane being inserted matches the index number of
a pane that already exists, then the existing pane is displaced backward (its index
number and the index numbers of all following planes increased by one) in the menu
and the new pane inserted in its place. Panes may be inserted into any menu pro­
vided that the index number of the pane being inserted is no more than one greater
than the index number of the last pane in the menu. For example, if a menu con­
tains 4 panes with index numbers 0 through 3 then it is possible to insert a new pane
with an index number from 0 through 4 inclusive. It is possible to use XMenulnsert­
Pane in place of XMenuAddPane but in situations where panes are simply being
added to a menu one after another then the use of the simpler and more efficient
XMenuAddPane routine is encouraged. XMenuinsertPane takes the following argu­
ments: The menu into which the pane is being inserted; the index number of the new
pane; a null-terminated string that will be the label for the new pane; and an int that
designates whether or not the pane will to be considered active for selection. It is
sometimes useful to add inactive panes to indicate a currently unavailable but
planned set of selections. If the insert operation is successful the index number of
the pane just inserted will be returned. If it fails XM_F AlLURE will be returned.

XMenuInsertSelection

X Version 10

This routine allows the application to insert selections into a menu pane in random
order. If the index number of the selection being inserted matches the index number
of a selection that already exists in the specified pane, then the existing selection is
displaced downward (its index number and the index numbers of all following selec­
tions increased by one) in the pane and the new selection inserted in its place. Selec­
tions may be inserted into any pane provided that the index number of the selection
being inserted is no more than one greater than the index number of the last

29 January 1986 4

XMENU(3X) UNIX Programmer's Manual XMENU(3X)

selection in the pane. For example, if a pane contains 4 selections numbered 0
through 3 then it is possible to insert a new selection with an index number from 0
through 4 inclusive. It is possible to use XMenulnsertSelection in place of
XMenuAddSelection but in situations where selections are simply being added to a
pane one after another then the use of the simpler and more efficient
XMenuAddSelection routine is encouraged. XMenulnsertSelection takes the following
arguments: the menu containing the pane into which the selection is being inserted;
the index number of the pane to which the selection is being inserted; the desired
index number of the new selection; a null-terminated string that will be the label for
the new selection; A (char .) data value that will be returned by XMenuActivate
whenever the new selection is selected by a user; and an int that designates whether
or not the selection will be considered active for selection. It is sometimes useful to
insert inactive selections which may become active as the application state changes.
If the insert operation is successful the index number of the selection just inserted
will be returned. If it fails XM_F AlLURE will be returned.

XMenuFindPane
This routine allows the application to find the index number of a pane whose label
matches a given NULL terminated string. XMenuFindPane takes the following argu­
ments: the menu containing the pane whose index number is being searched for; and
a null terminated string to be searched for. If the find operation is successful then
the index number of the first pane whose label matches the given string will be
returned. If it fails XM_F AlLURE will be returned.

XMenuFindSelection
This routine allows the application to find the index number of a selection whose
label matches a given NULL terminated string. XMenuFindSelection takes the fol­
lowing arguments: the menu containing the pane which contains the selection being
searched for; the index number of the pane which contains the selection being
searched for; and a null terminated string to be searched for. If the find operation is
successful then the index number of the first selection whose label matched the given
string will be returned. If is fails XM_F AlLURE will be returned.

XMenuChangePane
This routine allows the application to change a pane's label on the fly. This is useful
for situations where a state change in the application must be reflected in the menu.
XMenuChangePane takes the following arguments: the menu containing the pane
whose label is being changed; the index number of that pane in the specified menu;
and a null-terminated string that will be the used as the new pane label. If the
change operation is successful the index number of the pane just changed will be
returned. If it fails XM_FAILURE will be returned. XMenuChangePane may be
called any time after the pane being changed has been added / inserted into the
specified menu.

XMenuChangeSelection

X Version 10

This routine allows the application to change a selection's data and label on the fly.
This is useful for situations where a state change in the application must be reflected
in the menu. XMenuChangeSelection takes the following arguments: the menu con­
taining the pane that contains the selection to be changed; the index number of that
pane in the menu; the index number of the selection to be changed; a (char *) new
data value for the selection; an int that indicates whether or not to actually store the
new data value (in case only the label is being changed); Aanull-terminated string
that will be the used as the new selection label; and an int that indicates whether or
not to actually store the new label (incase only the data value is being changed). If
the change operation is successful the index number of the selection just changed will
be returned. If it fails XM_FAILURE will be returned. XMenuChangeSelection may

29 January 1986 5

XMENU(3X) UNIX Programmer's Manual XMENU(3X)

be called anytime after the pane selection being changed has been added to the
specified pane and menu.

XMenuSetPane
XMenuSelPane allows the application to make an active pane inactive or an inactive
pane active. This provides the application with the ability to restrict the usage of
certain panes to times when the)! mayor may not have a valid purpose. In addition
this allows the application to activate and utilize dummy panes that were added at
menu creation time as place holders for future selections. XMenuSetPane takes the
following arguments: the menu containing the pane to be activated or deactivated;
the index number of that pane in the specified menu; and an int that designates
whether or not the pane is to be considered active for selection. If the set operation
is successful the index number of the pane just set will be returned. If it fails
XM_F AlLURE will be returned. XMenuSetPane may be called anytime after the
pane being set has been added / inserted into the specified menu.

XMenuSetSelection
XMenuSetSelection allows the application to make an active selection inactive or an
inactive selection active. This provides the application with the ability to restrict the
usage of certain selections to times when they mayor may not have a valid purpose.
In addition this allows the application to activate and utilize selections that were
added at menu creation time with a future purpose in mind. XMenuSetSelection
takes the following arguments: the menu containing the pane that contains the selec­
tion to be activated or deactivated; the index number of that pane in the menu; the
index number of the selection to be activated I deactivated; and an int that desig­
nates whether or not to make the specified selection active. If the set operation is
successful the index number of the selection just set will be returned. If it fails
XM_FAILURE will be returned. XMenuSetSelection may be called anytime after the
pane selection being set has been added to the specified pane and menu.

XMenuDeletePane
This routine allows the application to delete panes when they will no longer be
needed. XMenuDeletePane takes the following arguments: the menu containing the
pane to be deleted; and the index number of that pane in the specified menu.

XMenuDeleteSelection
This routine allows the application to delete selections when they will no longer be
needed. XMenuDeleteSelection takes the following arguments: the menu containing
the pane which contains the selection to be deleted; the index number of the pane
containing the selection to be deleted; and the index number of the selection to be
deleted in that pane.

XMenuRecompute

X Version 10

After the initial menu configuration has been constructed (in fact, anytime that the
menu configuration, a pane label or selection label is altered), the menu dependencies
need to be recomputed. XMenu will do this automatically if needed when XM:enuLo­
cate or XMenuActivate is called. In the interest of efficiency it is suggested that the
application call XMenuRecompute prior to any calls to XMenuLocate or XMenuAc­
tivate. This need only be done if XMenuAddPane, XMenuAddSelection. XMenulnsert­
Pane, XMenulnsertSelection, XMenuChangePane, XMenuChangeSeiection. XMenu­
DeletePane, or XMenuDeleteSelection have been called since the last call to
XMenuRecompute or XMenuActivate. If XMenuRecompute is called before the first
pane has been added to the menu a error will result indicating that the menu has not
been initialized. The most efficient state is achieved if a sequence of panes and selec­
tions are added or modified in order and then a single call is immediately made to
XMenuRecompute. In this way all operations will batched and all dependencies will

29 January 1986 6

XMENU(3X) UNIX Programmer's Manual XMENU(3X)

be up to date by the time the next XMenuActivate call occurs. If the recompute
operation is successful XM_SUCCESS will be be returned. If it fails XM_F AlLURE
will be returned.

XMenuEventHandler
Since XMenu shares the Xlib event queue with the application, it is possible that X
events selected by the application will arrive and be queued while a menu is posted.
Before a menu is posted, it is up to the application to decide what will happen to
events that do occur while the menu is posted. XMenuEventHandler allows the
application to specify an asynchronous event handling routine. XMenuEventHandler
takes only one argument which is a pointer to a routine which returns into This rou­
tine will be called by XMenuActivate if it encounters an event that it does not recog­
nize. The format of the handler should be as follows:
int handler(event)
XEvent -event;
If no action is taken by the application (i.e., no event handler is specified) XMenuAc­
tivate will discard any events that they do not recognize.

XMenuLocate
This routine provides an application will all the necessary data to properly locate and
position a menu with respect to the parent window. XMenuLocate takes the follow­
ing arguments: the menu that is being located; the index number of the current pane;
the index number of the current selection; the X and Y coordinates of where the
application would like the center of the current selection (in the current pane) to be;
and four return value pointers to int that will be filled in by the routine. The four
return value pointers are set to the following values (respectively): the upper left X
and Y coordinates of the entire menu (relative to the parent window); and the .overall
width and height of the entire menu. If the locate operation is successful
XM_SUCCESS will be be returned. If it fails XM_FAILURE will be returned.

XMenuSetFreeze
This routine allows the application to forcibly override the Xdefaults setting of the
'freeze' parameter. If freeze mode is turned on the bits under where the menu will
appear are saved by XMenu then the X server is frozen and remains frozed while the
menu is activated. Immediately after the menu is deactivated the bits under the
menu are restored to their original state and the server is unfrozen. This routine is
necessary for certain applications that must guarantee that the screen contents are
not damaged by XMenu. XMenuSetFreeze takes two arguments: The menu·to be set
and an int that indicates whether or not to place the menu in freeze mode.

XMenuActivate

X Version 10

XM enuActivate maps a given menu to user selection. Before XM enuActivate is called
it is suggested that the application synchronize the X connection and and process all
events in the Xlib internal event queue. This guarantees that a minimum of asyn­
chronous call-backs to the applications event handler routine (or discards if no appli­
cation event handler is specified). XMenuActivate guarantees that no unprocessed
events of its own will be left in the Xlib event queue upon its return. XMenuActivate
takes the following arguments: the menu that is to be posted; the desired current
pane and selection; the X and Y menu position; the mouse button event mask; and a
pointer to a pointer to char (char **). The menu is positioned within the menu's
parent window such that the specified X and Y location (relative to the parent win­
dow) is in the center of the specified current selection in the current pane. The
mouse button event mask provided by the application should be suitable for an
XGrabMouse operation. It provides the application with a way to indicate which
mouse events will be used to identify a selection request. Every time XMenuActivate
returns, the pane and selection indices are left at" their last known values (i.e., the last

29 January 1986 7

XMENU(3X) UNIX Programmer's Manual XMENU(3X)

. current pane and selection indices). The following are the defined return states for
this' routine:

1) If the selection that is current at the time a
selection request is made is active then the data
pointer will be set to the data associated with that
particular selection and XM_SUCCESS is returned.

2) If the selection that is current at the time a
selection request is made is not active then the data
pointer will be left untouched and XM_IA..SELECT will
be returned.

3) If there is no selection current at the time a
selection request is made then the data pointer will
be left untouched and XM_NO_SELECT will be returned.

4) If at any time an error occurs the data pointer is
left untouched and XM_FAILURE is returned.

XMenuDestroy
When the application is no longer intending to use a menu XMenuDestroy should be
called. XMenuDestroy frees all resources (both X resources and system resources)
that are being held by the menu. XMenuDestroy takes only one argument, the menu
to be destroyed. WARNING! Using a menu after it has been destroyed is to invite
disaster!

XMenuError
When called XMenuError will return a null-terminated string that describes the
current error state of the XMenu library. The string returned is static in the XMenu
library and should not be modified or freed. The error state is set every time an
XMenu routine returns a status condition. XM enuE"or takes no· arguments.

X DEFAULTS
MenuFreeze

Determines whether or not to grab the X server while a menu is posted. One of: on,
off. The default value is off.

MenuStyle
Determines the menu display style. One of: left_hand, righChand, center. The
default value is righchand.

MenuMode
Determines the menu selection high light mode. One of: box, invert. If box mode is
chosen then the SelectionBorderWidth and SelectionBorderColor parameters effect
the box line width and color respectively. If invert mode is chose then the Selection­
Foreground and MenuBackground colors are used for the inversion. The default
value is invert.

MenuMouse
Determines the color of the mouse cursor while it is within the menu. Any valid X
color may be used. The default value is black.

MenuBackground
Determines the menu background color. Any valid X color may be used. The
default value is white.

MenulnactivePattero

X Version 10

Determines which of the five possible bitmap patterns will be used to tile inactive
panes. One of: dimplet, dimple3, grayt, gray3, cross_weave. The default value is
gray3.

29 January 1986 8

XMENU(3X) UNIX Programmer's Manual XMENU(3X)

PaneStyle
Determines the display style of all menu panes. One of: flush_left, flush_right,
center. The default value is center.

PaneFont
Determines the font used for the label (heading text) of each pane. Any valid X font
may be used. The default value is 8x 13.

PaneForeground
Determines the pane foreground color. This is the color used for the label (heading
text) in each pane. Any valid X color may be used. The default value is black.

PaneBorder
Determines the color of all menu pane borders. Any valid X color may be used. The
default value is black.

PaneBorderWidth
Determines the width (in pixels) of all menu pane borders. Any integer greater than
or equal to 0 may be used. The default value is 2.

PaneSpread
Determines the horizontal spread of menu panes. Any double greater than or equal
to 0.0 may be used. A value of 1.0 specifies a one to one ratio between horizontal
spread and vertical spread. A value less than 1.0 will compress the menu panes
inward and a value greater than 1.0 will expand them outward. The default value is
1.0.

SelectionStyle
Determines the display style of all menu selections. One of: flush_left, flush_right,
center. The default value is flush_left.

SelectionFont
Determines the font used for the text in each selection. Any valid X font may be
used. The default value is 6x 1 O.

SelectionForeground
Determines the selection foreground color. This is the color used for the text in each
selection. Any valid X color may be used. The default value is black.

SelectionBorder
Determines the color of all menu selection borders. Any valid X color may be used.
The default value is black.

SelectionBorderWidth
Determines the width (in pixels) of all menu selection borders. Any integer greater
than or equal to 0 may be used. The default value is 1.

SelectionSpread

DIAGNOSTICS

Determines the inter-selection spread. Any double greater than or equal to 0.0 may
be used. A value of 1.0 specifies that 1.0 times the height of the current selection
font will be used for padding The default value is 0.25.

Since XMenu uses the Xlib library, the XIOError and XError Xlib routines may be set by the
application to change how asynchronous error reponing occurs.

Synchronous error reporting is primarily accomplished by examining the return values of rou­
tines and using the XMenuError routine. Although its use is discouraged, synchronous error
reporting may also be accomplished by having the application directly examine the value of
the _XMErrorCode global variable. _XMErrorCode is set every time an XMenu routine
returns a status condition. The following sequence of symbols is provided in XMenu.h and

X Version 10 29 January 1986 9

XMENU(3X) UNIX Programmer's Manual XMENU(3X)

FILES

may be used to index the null-terminated description strings in the global error string array
_XMErrorList.

XME_CODE_COUNT Total number of entries in _XMErrorList (17).

XME_NO_ERROR
XME_NOT _INIT
XME_ARG_BOUNDS
XME_P _NOT_FOUND
XME_S_NOT _FOUND
XME_STYLE_PARAM
XME_GRAB_MOUSE
XME_INTERP _LOC
XME_CALLOC
XME_CREA TE_ASSOC
XME_STORE_BITMAP
XME_MAKE_TILES
XME_MAKE_PIXMAP
XME_CREATE_CURSOR
XME_OPEN_FONT
XME_CREATE_ WINDOW
XME_CREATE_ TRANSP

-> "No error"
-> "Menu not initialized"
-> "Argument out of bounds"
-> "Pane not found"
-> "Selection not found"
-> "Invalid menu style parameter"
-> "Unable to grab mouse"
-> "Unable to interpret locator"
-> "Unable to calloc memory"
-> "Unable to create XAssocTable"
-> "Unable to store bitmap"
-> "Unable to make tile pixmaps"
-> "Unable to make pixmap"
-> "Unable to create cursor"
-> "Unable to open font"
-> "Unable to create windows"
-> "Unable to create transparencies"

lusr/includeIXlXMenu.h, lusr/lib/libXMenu.a, lusr/includeIXlXlib.h, lusrllib/libX.a

SEE ALSO
Xlib(3x), X(1), X(8c)

AUTIiOR

BUGS

Copyright 1985, 1986, Massachusetts Institute of Technology.

See X(l) for a complete copyright notice.

Tony Della Fera (MIT Project Athena, DEC)

There is a problem that necessitates an additional round trip time when panes are activated
and deactivated. In order for this to be fixed efficiently, a change needs to be made to the X
protocol.

X Version 10 29 January 1986 10

UWM(1) UNIX Programmer's Manual UWM(1)

NAME
uwm - Window Manager Client Application of X

SYNTAX
uwm [-f filename]

DESCRIPTION
The uwm command is a window manager client application of the window server.

When the command is invoked, it traces a predefined search path to locate any uwm startup
files. If no startup files exist, uwm initializes its built-in default file.

If startup files exist in any of the following locations, it adds the variables to the default vari­
ables. In the case of contention, the variables in the last file found override previous
specifications. Files in the uwm search path are:

lusr Inew l/ibl Xluwmlsystem. uwmrc
$HOMEI.uwmrc

To use only the settings defined in a single startup file, include the variables, resetbindings,
resetmenus, resetviuiables at the top of that specific startup file.

ARGUMENTS
-f filename

Names an alternate file as a uwm startup file.

STARTUP FILE VARIABLES
Variables are typically entered first, at the top of the startup file. By convention, resetbind­
ings, resetmenus, and resetvariables head the list.

autoselectlnoautoselect
places menu cursor in first menu item. If unspecified, menu cursor is placed
in the menu header when the menu is displayed.

delta=pixels indicates the number of pixels the cursor is moved before the action is inter­
preted by the window manager as a command. (Also refer to the delta mouse
action.)

freezelnofreeze locks all other client applications out of the server during certain window
manager tasks, such as move and resize.

grid/nogrid displays a finely-ruled grid to help you position an icon or window during
resize or move operations.

hiconpad=n indicates the number of pixels to pad an icon horizontally. The default is
five pixels.

hmenupad=n indicates the amount of space in pixels, that each menu item is padded above
and below the text.

iconfont= fontname
names the font that is displayed within icons. Font names are listed in the
font directory, lusrlnewllibIX/font.

maxcolors=n limits the number of colors the window manager can use in a given invoca­
tion. If set to zero, or not specified, uwm assumes no limit to the number of
colors it can take from the color map. maxcolors counts colors as they are
included in the file.

normali/nonormali

X Version 10

places icons created with r.newiconify within the root window, even if it is
placed partially off the screen. With nonormali the icon is placed exactly
where the cursor leaves it.

27 January 1986

UWM(1) UNIX Programmer's Manual UWM(l)

normalw/nonormalw
places window created with f.newiconify within the root window, even if it is
placed partially off' the screen. With nonormalw the window is placed exactly
where the cursor leaves it.

push=n moves a window n number of pixels or a relative amount of space, depending
on whether pushabsolute or pushrelative is specified. Use this variable in con­
junction with {.pushup, (.pushdown, (.pushright, or (.pushleft.

pushabsolute/pushrelative
pushabsolute indicates that the number entered with push is equivalent to
pixels. When an f.push (left, right, up, or down) function is called, the win­
dow is moved exactly that number of pixels.

pushrelative indicates that the number entered with the push variable
represents a relative number. When an f.push function is called, the window
is invisibly divided into the number of parts you entered with the push vari­
able, and the window is moved one part.

resetbindings, resetmenus, and resetvariables
resets all previous function bindings, menus, and variables entries, specified
in any startup file in the uwm search path, including those in the default
environment. By convention, these variables are entered first in the startup
file.

resize(ont= fontname
identifies the font of the indicator that displays in the corner of the window
as you resize windows. See the lusrlnewlliblXlfont directory for a list of
fonts.

reverse/noreverse
defines the display as black characters on a white background for the window
manager windows and icons.

viconpad=n indicates the number of pixels to pad an icon vertically. Default is five pixels.

vmenupad=n indicates the amount of space in pixels that the menu is padded on the right
and left of the text.

volume=n increases or decreases the base level volume set by the xset(l) command.
~nter an integer from 0 to 7, 7 being the loudest.

zap/nozap causes ghost lines to follow the window or icon from its previous default loca­
tion to its new location during a move or resize operation.

BINDING SYNTAX
"function = [control key(s)]:[context):mouse events:" menu name"

Function and mouse events are required input. Menu name is required with the J.menu func­
tion definition only.

Function
(.beep

f.circledown

f.circleup

(.continue

X Version 10

emits a beep from the keyboard. Loudness is determined by the volume vari­
able.

causes the top window that is obscuring another window to drop to the bot­
tom of the stack of windows.

exposes the lowest window that is obscured by other windows.

releases the window server display action after you stop action with the
(.pause function.

27 January 1986 2

UWM(l) UNIX Programmer's Manual UWM(1)

Uocus "directs all keyboard input to the selected window. To reset the focus to all
windows, invoke f.focus from the root window.

f.iconify when implemented from a window, this function converts the window to its
respective icon. When implemented from an icon, f.iconify converts the icon
to its respective window.

f.lower lowers a window that is obstructing a window below it.

f.menu invokes a menu. Enclose 'menu name' in quotes if it contains blank charac­
ters or parentheses,

f.menu=[control key(s)):[context):mouse events:" menu name"

f.move moves a window or icon to a new location, which becomes the default loca­
tion.

f.moveopaque moves a window or icon to a new screen location. When using this function,
the entire window or icon is moved to the new screen location. The grid
effect is not used with this function.

f.newiconify allows you to create a window or icon and then position the window or icon
in a new default location on the screen.

f.pause temporarily stops all display action. To release the screen and immediately
update all windows, use the f.continue function.

f.pushdown moves a window down. The distance of the push is determined by the push
variables.

f.pushleft moves a window to the left. The distance of the push is determined "by the
push variables.

f.pushright moves a window to the right. The distance of the push is determined by the
push variables.

f.pushup moves a window up. The distance of the push is determined by the push vari­
ables.

f.raise raises a window that is being obstructed by a window above it.

f.refresh results in exposure events being sent to the window server clients for all
unobscured or partially obscured windows. The windows will not refresh
correctly if the exposure events are not handled properly.

f.resize resizes an existing window. Note that some clients, notably editors, react
unpredictably if you resize the window while the client is running.

f.restartn causes the window manager application to restart, retracing the uwm search
path and initializing the variables it finds.

Control Keys
By default, the window manager uses meta as its control key. It can also use ctrl, shift, lock,
or null (no control key). Control keys must be entered in lower case, and can be abbreviated
as: c, 1, m, s for ctrl, lock, meta, and shift, respectively.

You can bind one, two, or no control keys to a function. Use the bar (I) character to combine
control keys.

Note that client applications other than the window manager use the shift as a control key. If
you bind the shift key to a window manager function, you can not use other client applica­
tions that require this key.

X Version 10 27 January 1986 3

UWM(1) UNIX Programmer's Manual UWM(l)

Context
The context refers to the screen location of the cursor when a command is initiated. When
you include a context entry in a binding, the cursor must be in that context or the function
will not be activated. The window manager recogni~es the following four contexts: icon, win­
dow, root, (null).

The root context refers to the root, or background window, A (null) context is indicated when
the context field is left blank, and allows a function to be invoked from any screen location.
Combine contexts using the bar (I) character.

Mouse Buttons
Any of the following mouse buttons are accepted in lower case and can be abbreviated as 1,
m, or r, respectively: left, middle, right.

With the specific button, you must identify the action of that button. Mouse actions can be:

down function occurs when the specified button is pressed down.

up

delta

function occurs when the specified button is released.

indicates that the mouse must be moved the number of pixels specified with the
delta variable before the specified function is invoked. The mouse can be moved
in any direction to satisfy the delta requirement.

MENU DEFINITION
After binding a set of function keys and a menu name to f.menu, you must define the menu to
be invoked, using the following syntax~

menu == • menu name· {
"item name" : "action"

}

Enter the menu name exactly the way it is entered with the f.menu function or the window
manager will not recognize the link. If the menu name contains blank strings, tabs or
parentheses, it must be quoted here and in the f.menu function entry. You can enter as many
menu items as your screen is long. You cannot scroll within menus.

Any menu entry that contains "quotes, special characters, parentheses, tabs, or strings of
blanks must be enclosed in double quotes. Follow the item name by a colon (:).

Menu Action
Window manager functions

Any function previously described. E.g., f.move or f.iconUy.

Shell commands
Begin with an exclamation point (\) and set to run in background. You cannot
include a new line character within a shell command.

Text strings

Color Menus

X Version 10

Text strings are placed in the window server's cut buffer.

Strings with a new line character must begin with an up arrow n, which is
stripped during the copy operation.

Strings without a new line must begin with the bar character (I), which is stripped
during the copy operation. .

27 January 1986 4

UWM(l) UNIX Programmer's Manual UWM(1)

Use the following syntax to add color. to menus:

menu - "menu name" (colorl:color2:color3:color4) (
"item name" : (color5 :color6) :" action·

}

Foreground color of the header.

Background color of the header.

colorl

color2

color3 Foreground color of the highlighter, the horizontal band of color that moves with
the cursor within the menu.

color4

color5

color6

Color Defaults

Background color of the highlighter.

Foreground color for the individual menu item.

Background color for the individual menu item.

Colors default to the colors of the root window under any of the following conditions:

l) If you run out of color map entries, either before or during an invocation of uwm. .

2) If you specify a foreground or background color that does not exist in the RGB color data­
base (lusrlliblrgb.txt) both the foreground and background colors default to the root window
colors.

3) If you omit a foreground or background color, both the foreground and background colors
default to the root window colors. .

4) If the total number of colors specified in the startup file exceeds the number specified in
the maxcolors variable. .

5) If you specify no colors in the startup file.

EXAMPLES
The following sample startup file shows the default window manager options:

'# Global variables
'#
resetbindings;resetvariables;resetmenus
autoselect
delta = 25
freeze
grid
hiconpad=5
hmenupad=6
konfont = oldeng
menufont= timrom 12b
resizefont= 9x 15
viconpad=5
vmenupad=3
volume = 7
'#
'# Mouse buttonlkey maps

X Version 10 27 January 1986 5

UWM(l) UNIX Programmer's Manual UWM(I)

'#
'# FUNCTION KEYS CONTEXT BUTTON MENU(if any)
#======== ==== ======= ====== ============
f.menu = meta: :left down :"WINDOW OPS·
f.menu = meta: :middle down :"EXTENDED WINDOW OPS·
f.move == meta:w I i :right down
f.circleup = meta :root :right down
'#
'# Menu specifications
'#
menu == "WINDOW OPS" {
"(De)Iconify": f.iconify
Move: (move
Resize: f.resize .
Lower: £.lower
Raise: f.raise
}

menu == "EXTENDED WINDOW OPS' (
Create Window: !"xterm &"
Iconify at New Position: f.lowericonify
Focus Keyboard on Window: f.focus
Freeze All Windows: f.pause
Unfreeze All Windows: f.continue
Circulate Windows Up: f.circleup
Circulate Windows Down: f.circledown
}

RESTRICfIONS

FILES

The color specifications have no effect on a monochrome system.

lusrllib/rgb. txt
lusr/newlliblXlfont
lusrlskell.uwmrc
lusr/newlliblXluwmlsystem. uwmrc
$HOME/.uwmrc

SEE ALSO
X(1), X(8C)

AUTHOR
"LICENSED FROM DIGITAL EQUIPMENT CORPORATION

COPYRIGHT (C) 1986
DIGITAL EQUIPMENT CORPORATION

MAYNARD, MA
ALL RIGHTS RESERVED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION. DIGITAL MAKES NO REPRESENTATIONS ABOUT
SUITABILITY OF THIS SOFTWARE FOR ANY PURPOSE. IT IS SUPPLIED "AS IS"
WITHOUT EXPRESS OR IMPLIED WARRANTY. IF THE UNIVERSITY OF CALIFOR­
NIA OR ITS LICENSEES MODIFY THE SOFTWARE IN A MANNER CREATING
DERIVATIVE COPYRIGHT RIGHTS APPROPRIATE COPYRIGHT LEGENDS MAY BE

X Version 10 27 January 1986 6 .

UWM(1) UNIX Programmer's Manual UWM(1)

PLACED ON THE DERIVATIVE WORK IN ADDITION TO THAT SET FORTH
ABOVE."

M. Gancarz, DEC Ultrix Engineering Group, Merrimack, New Hampshire, using some algo­
rithms originally by Bob Scheifler, MIT Laboratory for Computer Science

X Version 10 27 January 1986 7

XDVI(1) UNIX Programmer's Manual XDVI(l)

NAME
xdvi - DVI Previewer for the X Window System

SYNOPSIS
xdvi [-s shrink] [-p pixels] [-I] [-rv] [-fg color] [-bg color] [-hI color] [-bd color] [ems color]
[=geometry] [host:display] file

DESCRIPTION
Xdvi is a program which runs under the X window system. It is used to preview D VI files,
such as produced by TeX.

The -p option defines the pixels per inch for font selection. Default value is 300.

The -5 option defines the initial shrink factor. Default value is 4.

The -I option causes used fonts to be listed on diagnostic output.

MOUSE
Oicking the right button will display the next page. Oicking the left button will display the
previous page. Clicking the right button with the Shift key held down will display the next
window full to the right. Clicking the left button with the Shift key held down will display
the previous window full to the left. Clicking the middle button will display the next window
full down. Oicking the middle button with the Shift key held down will display the next win­
dow full up.

KEYBOARD
You can exit the program by typing 'q', control-C, or control-D. You can move to the next
page with 'n', 'f, or SPACE. You can move the the previous page with 'p', 'b', or control-H.
You can move up a window-full with "u', down with 'd', left with '1', and right with 'r'. You
can change the shrink factor by typing in the number (one or more digits), followed by's'. If
you type's' without a number, the smallest factor that makes the entire page fit in the window
will be used. You can force redisplay with control-L. You can move a relative number of
pages by typing an optional '-', a number (one or more digits) and then carriage return or line
feed. You can move to a specific page by typing a number (one or more digits) and then 'g'.
You can.move to the last page by typing 'g' without a number.

X DEFAULTS
Accepts the following defaults:

BorderWidtb
Set the border width of the window.

Reverse Video
If "on", reverse the definition of foreground and background color.

Foreground
Set the text/graphics color.

Background
Set the background color.

Border Set the border color.

Higbligbt
Set the page border color.

Mouse Set the mouse cursor color.

ENVIRONMENT
Uses the environment variable "DISPLAY" to specify which bit map display terminal to use.

SEE ALSO
X(l).

X Version 10 4 January 1986

XDVI(1) UNIX Programmer's Manual XDVI(l)

AUTHOR
Eric Cooper, CMU, did a version for direct output to a QVSS. Modified for X by Bob
Scheifier, MIT Laboratory for Computer Science.

X Version 10 4 Jan.uary 1986 2

XIMPV(1) UNIX Programmer's Manual XIMPV(1)

NAME
ximpv - Imprint (Impress) Previewer for the X Window System

SYNOPSIS
ximpv [=geometry] [-p#] [-rv] [-fg color] [-bg color] [-bd color] [-ms color] [host:display] file

DESCRIPTION
Ximpv is a program which runs under the X window system. It is used to preview images
which is destined for an Imagen laser printer.

The -p# option, if used, will set the number of pages you can back up to #. Default is five
pages. Zero (or no number) runs faster as the pages do not have to be transferred to disk.

If the file given to ximpv is correct a square will appear on the screen indicating text is about
to appear. If no file is given stdin must be from a pipe or an error message is printed and the
program aborted. .

The pages of the file are displayed in the order. Only about 2/3 of a page can be displayed at
once (this is because of aspect ratio differences).

ARGUMENTS
-bel color

Specify the border color.

-ms color
Specify the mouse color.

-fg color
Specify the foreground color.

-bg color
. Specify the background color.

-bw width
Specify the width of the border.

-rv Cause ximpv to produce all output in black-on-white instead of white-on-black.

= geometry

MOUSE

The previewer window is created with the specified size specified by the geometry
specification. See X(l) for details of this specification.

Clicking the right button will display the next window full, moving to the next page as
needed. Clicking the middle button will move to the opposite end of the current page. Click­
ing the left button will display the previous window full, moving to the previous page as
needed.

Clicking the right button with the Shift key held down will display the next window full to the
right. Clicking the middle button with the Shift key held down will move to the opposite side
of the current page. Clicking the left button with the Shift key held down will display the pre­
vious window full to the left ..

KEYBOARD
The user may move up and down the page with the numeric pad keys:

fine nledium coarse
up page 7 8 9

down page 2 3
The numeric pad keys can also be used for horizontal motion:

X Version 10 30 August 1985

XIMPV(1) UNIX Programmer's Manual

horizontal
left

4
center

5
right

6

You may also move forward or back in the document by using:
• for back a page,
up-arrow for back a window full,
. for forward a page,
down-arrow for forward a window full,
, or + for forward to next new page.

XIMPV(1)

You may also move left and right in the document by small amounts using the left and right
arrow keys.
The only other functional keys are the CNTRL -0 key and the CNTRL -C key, which exit the
program.

X DEFAULTS
Accepts the following defaults:

BorderWidth
Set the border width of the window.

Reverse Video
If "on", reverse the definition of foreground and background color.

Foreground
. Set the text/graphics color.

Background
Set the background color.

Border Set the border color.

Mouse Set the mouse cursor color.

SEE AlSO
X(1), xproof(1), xdvi(1)

ENVIRONMENT
Uses the environment variable "DISPLAY" to specify which bit map display terminal to use.

FILES
lusr/tmp/impv XXXXXX

SEE ALSO
X(l).

AUTHOR

circular buffer of screen images

Steven Sutphen and Ted Bentley, University of Alberta Changes and enhancements for X by
Bob Scheiiler, MIT Laboratory for Computer Science, and Jim Gettys, DEC, Project Athena.

X Version 10 30 August 1985 2

XINIT(1) UNIX Programmer's Manual XINIT(1)

NAME
xinit - X window system initializer

SYNOPSIS
xinit [[client] options] [- [server] [display] options]

DESCRIPTION
Xinit is intended to be used when the X window system server is not run automati~ally from
init(8), and the window system must be started from a shell running on the display. This
might be true, for example, if a normal login is run in a glass-tty emulator on a workstation
console, so that different window systems can easily be run on the display at different times.

Xinit starts up the server and a single client application, which is typically xterm(1). When
the client eventually terminates, xinit automatically kills off the server and then itself ter­
minates.

By default, xinit expects the server to exist in an executable named "X" in the search path,
and for xterm(1) to also exist in the search path. It starts up the X server on display 0, and
then starts up

xterm = + 1 + 1 -n login unix:O

A different client andlor server can be specified in the command line, and command line
options can be passed to both the server and the client. The client and its options come first
in the command line. The server and its options must be preceded by "-". If the first argu­
ment to xinit begins with 'I' or a letter, it is taken to be the client program to use instead of
xterm, and none of the default xterm options are used. Otherwise, the first and subsequent
arguments are simply appended as further options to the default xterm command line.

Following the "-" argument, if the next argument begins with'/, or a letter, it is taken to be
the server program to use instead of "X". If the next argument begins with a digit, it is taken
to be the display number, otherwise display 0 is assumed. The remaining arguments are
added as options to the server command line.

Examples:

xinit =80x65+10+10 -fn 8x13 -j -fg white -bg navy
xinit -e widgets - Xsun -I-c
xinit rsh fasthost cpupig workstation: 1 - 1 -a 2 .;t 5

AUTHOR
Copyright (c) 1986 by Massachusetts Institute of Technology.'
See X(1) for a complete copyright notice.
Bob Scheifler, MIT Laboratory for Computer Science

SEE ALSO
X(8C), xterm(1)

X Version 10 25 January 1986

XNWM(1) UNIX Programmer's Manual XNWM(l)

NAME
xnwm - X window system manager process

SYNOPSIS
XDwm [-cmsnftv2] [@border] [OfoiconDelta]

[fm-/ont] [ft=/ont] [fs=/ont]
[l=op] [m=op] [r=op]
[host:display] [= geometry]

DESCRIPTION
The window manager is a process that allows the user of a display running the X window sys­
tem to manipulate the windows on the screen. X implements the 'desktop model' of overlap­
ping windows; xnwm allows windows to be moved, iconified, and resized, allows the order of
the windows in the 'stack' of overlapping windows to be manipulated, and allows the key­
board focus to be attached to a window. X allows windows to contain other windows, but
xnwm only manipulates the top-level windows and not any of the subwindows.

Xnwm takes arguments host and display, which refer the the host and display number. For
example 'xnwm amadeus: I' would start up the window manager on display one on the
machine amadeus. By default, xnwm uses the host and display number stored in the environ­
ment variable DISPLAY, and therefore they are not normally specified.

Xnwm has 2 modes of operation, 'normal' and 'popup', In normal mode xnwm creates a
menu window across the top of the screen. To perform an action, you click any mouse but­
ton in the appropriate menu box and then click the same button" in the window you wish to
affect. Xnwm also reserves certain buttonlkey combinations and interprets them as operations
on existing windows. The key combination is specified in the command line with some subset
of the options: -c (Control), -m (Meta), and -5 (Shift). For example, if you specify the options
-em then the Control and Meta keys must "be down at the time a mouse button is depressed.
The option -D (None) means that no buttons need be held down. This is discouraged since it
means that applications will never receive unshifted mouse clicks. If no combination is
specified in the command line, Meta is assumed. Note: the key combination is not necessary
when using functions from the menu; it is only needed with the assigned button functions to
distinguish window manager operations from operations destined for the application running
within the window.

The window manager normally takes control of the screen at various times to assure that the
screen image remains correct while performing window manager operations. When this hap­
pens, requests from other applications are temporarily suspended until the window manager
finishes the operation. The option -((no freeze) disables this. If this option is specified, win­
dow outlines for Move and Resize will flicker rather than remaining solid, and the background
behind popup windows (see later) will take longer to redraw.

The options -t (thin), -l' (vertical), and -2 (2 rows) control the format of the menu bar. In the
absence of any of these, the menu extends across the entire screen. If the -t option is given,
the menu bar· will not extend fully across the screen; instead there will be room at the right
(convenient for, for example, a clock window). If the -v option is used, the menu windows
are stacked vertically instead of spread horizontally. The -2 option causes the menu windows
to be in two rows, allowing room for a terminal window the height of the screen while still
allowing menu access. Eith~r of the last two options automatically selects the -t option. The
menu is located in the upper left comer of the screen by default, but its location can be set
with the =geometry option as usual with X applications. (Notice that there is no size com­
ponent, position information is used only.)

Xnwm will use reverse video for the menu, the cursor, icon text, and the frame around
selected windows if the -r (reverse) option is used.

X Version 10 19 July 1985

XNWM(l) UNIX Programmer's Manual XNWM(1)

The border width around selected windows can be changed with the @ argument; the default
is 5 pixels.

The default font for displaying text is "8x13". You can specify a different font with the fm=
(Menu font), ft- (Icon font), and the fs- (Size window font) options.

Initially, the left, middle, and right mouse buttons are bound to the operations Select. Raise.
and Move. You can change these bindings with the 1- (left), m- (middle), and r- (right) argu­
ments. Each should be followed by one of the letters "srmilzc" , representing, respectively,
Select. Raise, Move, Iconify, Lower, resiZe, and Circulate. They may also be followed by noth­
ing, in which case no function is bound to that key.

Clicking any button that is not bound to the Select function in the background will cause the
menu window to become visible if it has become covered by other windows. Double clicking
the background will cause the menu to move back to its original position.

In popup mode, the menu window is not normally displayed, but instead 'pops up' when a
particular button'is pressed. To get popup mode, bind the letter "p" to any of the three but­
tons as described above. (You may also bind the other buttons as desired.) Whenever the
bound button is clicked while the appropriate combination of control, meta, and shift keys is
depressed, or any time a button that is not bound to the Select function is clicked in the back­
ground, the menu will appear beneath the cursor. You may then select any menu function
you wish; after the operatjon is completed the menu will disappear. To make the menu
disappear without performing any operation, just move the cursor out of the menu area.
Note: the mouse button bound to the popup function may not be rebound using Assign.
Using popup mode with complicated screen images and with no freeze (the -f option) may
cause some difficulties if the menu obscures the image, since the applications will have to
redraw their windows after the menu goes away.

The available commands are described below. For any of these commands, if you press a
button to start a command, and then want to abort the command, simply press one of the
other buttons before releasing the first button.

Select attaches the keyboard to a window, i.e., keyboard input will go to that window (hierar­
chy) even when the mouse is outside the window. It also Raises the selected window. Select­
ing the background will detach the keyboard from any window (actually, it attaches it to the
background window). If no window is selected the keyboard input will go to the window
which currently contains the mouse cursor. The selected window is highlighted by drawing a
partial frame around the window. Selecting an icon allows the icon name to be edited: the
delete key deletes the last character, control-U deletes the entire name, and other characters
are appended to the current name. Typing a return restores the input focus to the most
recent non-icon window selected.

Raise raises the window to the top of any stack of overlapping windows.

Move is used to move a window. If you apply it to a window, an outline will be moved with
the mouse; when you release the button, the window will be moved.

(De)Iconify will make a window into an icon. If the mouse is moved more than a threshold
amount, or this is the first time the window has been iconified, the icon will appear at the
location on the screen where the button is released. Otherwise, the icon will reappear at its
previous location. This threshold may be changed with the %iconDelta option. Giving a
negative value will disable this effect. The default is 5 pixels. (De)Iconify will make the origi­
nal window reappear at its former positi.;>n on the screen if it is applied to an icon. The name
displayed in the icon can be edited by Selecting the icon.

Lower will 'push' the window you point at to the bottom of any stack of overlapping win-
dows. .

X Version 10 19 July 1985 2

XNWM(l) UNIX Programmer's Manual XNWM(1)

Resize is used to resize a window by moving a comer or an edge. If you apply it to a win­
dow, a rubber banded outline of the window will be displayed and moving the mouse will
change its size, leaving the opposite comer or other edges fixed. The comer or edge to be
moved depends on the where the mouse is when the button is pressed. Imagine the window
divided with grid of nine rectangles. If the mouse is in one· of the four comer rectangles or
the center rectangle, then the comer closest to the mouse will be moved; otherwise, the closest
edge will be moved. When the button is released, the window will be resized.

Circulate causes the lowest window in the stack of overlapping windows to be Raised ; succes­
sive applications will reveal every window in tum.

Assign allows you to change the button bindings; to use it click any button in the Assign
menu window and then click the same button in any other function to assign that function to
that button. To remove the assignment from a button, double click the Assign window.

X DEFAULTS AND OPI'lON SUMMARY
MenuFont (fm-name)

Set the default font for the menu.

SizeFont (fs-name)
Set the default font for the size window.

IconFont (fi=name)
Set the default font for icons.

Frame Width (@value)
Set the width of the frame around selected windows.

IconifyDeita (%value)
Set the threshold for moving icons.

ReverseVideo (-r)
Sets reverse video for the menu, icons, selection border, and cursor.

MenuFormat (-tv2)
Sets the format of the menu; should be some subset of tv2 meaning thin, vertical, or
2 rows.

Freeze (-I)
If set to "off", disables xnwm taking control of the screen during operations.

KeyCombination (-amIn)
Sets the keys required to specify xnwm operations; should be some subset of csmln
meaning control, shift, meta, lock, and none.

LeftButton (l=value)
Sets the default left button function; should be one of srmilzcp

MiddieButton (m==vaIue)
Sets the default middle button function; should be one of srmilzcp

RightButton (r=value)
Sets the default right button function; should be one of srmilzcp

Geometry (= { +-} xoff{ +-} yofl)
Sets the location of the menu.

FILES
lusr/new/lib/X/font

ENVIRONMENT
DISPLAY

directory of fonts

- to get default host and display number

X Version 10 19 July 1985 3

XNWM(1)

SEE ALSO
X(8C)

AUTHOR

UNIX Programmer's Manual XNWM(1)

Paul Asente, Stanford University, using some algorithms originally by Bob Scheifler, MIT
Laboratory for Computer Science

X Version 10 19 July 1985 4

XSHELL(1) UNIX Programmer's Manual XSHELL(1)

NAME
xshell- X Window System, key/button command exec

SYNOPSIS
xshell [options] [host:display] ...

DESCRIPTION
Xshell is a program for starting up X applications with a single key or button stroke. It
displays a scallop shell icon in which button and key presses stand for different commands.
The user can bind a command string to any key or button by inserting a line like the follow­
ing in his or her

xshell.action.keyname: command to be exec'ed

Keynames are simply letters, numbers, and symbols as they appear on the keyboard (e.g. a, $,
9), or one of the following special names (taken from the X keyboard definitions):

KEYPADO FUNCl El
KEYPAD. FUNC2 E2
ENTER FUNC3 E3
KEYPAD 1 FUNC4 E4
KEYP AD2 FUNCS ES
KEYPAD3 FUNC6 E6
KEYPAD4 FUNC7 LEFTARROW
KEYPADS FUNC8 RIGHTARROW
KEYPAD6 FUNC9 DOWNARROW
KEYPAD, . FUNCIO UPARROW
KEYPAD7 FUNCll SHIFT
KEYPAD 8 FUNCl2 CONTROL
KEYPAD9 FUNCl3 LOCK
KEYPAD· FUNCl4 SYMBOL
PFl FUNClS
PF2 FUNC16
PF3 FUNCl7
PF4 FUNC18
LEFTBUTION FUNC19
MIDDLEBUTTON FUNC29
RIGHTBUTTON

Thus, the following '.Xdefaults' definitions specify that the Left Button will spawn a terminal
window, the Middle Button an editor, the Right Button a calculator, $ a Bourne shell, and "# a
superuser shell:

xshell.action.LeftButton: xterm =80x6S-0+0 -fn 6xlO
xshell.action.MiddleButton: xted =80x6S+0-0
xshell.action.RightButton: xterm =20x20-0-0 -fn 6xlO -e dc
xshell.action.$: xterm =80x65+0+0 -fn 6xlO -e sh
xshell.action."#: xterm =80x65+0+0 -fn 6xlO -e su

Xshell breaks the command string up into words by removing all white space (i.e. tabs and
spaces) and uses the vforkO and execvpO system calls to spawn off the command. A more
complicated parsing algorithm could easily be added, but the current method is adequate (and
fast and memory efficient).

One thing to keep in mind is that xshell is NOT a window manager. It was written to make
popping up frequently used utilities as painless as possible (how many times have you found
that you need just 1 more window). It might make a nice addition to some of the more
verbose window managers, but it runs quite nicely as a separate program.

X Version 10 31 October 1985

XSHELL(1) UNIX Programmer's Manual XSHELL(1)

ARGUMENTS
Xshell is designed to be somewhat compatible with xclock in the arguments that it takes.
However, xshell will allow you to abbreviate its longer flags to any length you chose. Thus,
the -reverse flag can be spelled out, given as -rev, or even just -r:

-fg color On color displays, determines the color of the foreground.

-bg color On color displays, determines the color of the background.

-bel color On color displays, determines the color of the border.

-bw pixels Specify the width in pixels of the border around the xshell window.

-v[olume) n
Volume for calls to XFeep, used when errors (such as unbound key) are found.

-tllash) n Number of times to flash the shell window to acknowledge a button or key press.

-dlelay) n One-hundredths of a second to wait between flashs (default is 5).

-r[everseJ

-q[uiet)

-s[mall)"

=geometry

Reverse video (swap foreground and background).

Do not 'feep' on errors (see volume).

Use a smaller (48x48) version of the shell icon. The default icon is 96x96.

By default xshell will create a window the size of whatever icon you select; the
standard X window geometry argument will override this. See X(1) for details.

host:display
specifies the display on which to put the xshell window. This overrides the
DISPLAY environment variable.

X DEFAULTS
To make invoking xshell easier, each of the flags listed above may be specified in the user's

Foreground
gives the foreground color.

Background
gives the background color.

Border gives the border color.

BorderWidth
gives the border width.

Reverse Video
if "on", the shell icon should be white on black instead of black on white.

Volume gives the volume to use in calls to XFeepO.

Flash gives the number of times to flash the shell window to acknowledge key or button
presses.

Delay gives hundredths of a second to wait in between flashes.

Quiet prevents xshell frrym feeping at you when you mistype.

IconSize if ·small", a halfsize (48x48) version of the scallopshell is used.

WindowGeometry
gives the shell window size using standard X = WxH + X + Y notation.

X Version 10 31 October 1985 2

XSHELL(1) UNIX Programmer's Manual XSHELL(1)

ENVIRONMENT
DISPLAY

To get the default host and display number.

SEE ALSO
xwm(l), xnwm(l), X(l), execl(3), vfork(2)

DIAGNOSTICS
If -quiet is not given on the command line or "xshell.Quiet: on" does not appear in the user's
.Xde/aults, xshell will 'feep' if a key or button is pressed for' which there is no definition in the
.Xde/aults file.

AUTHOR

BUGS

Copyright 1985, Cognition Inc.

Jim Fulton (Cognition Inc.)

Xshell uses the XGetDefault call to fetch the command string for a given key. Thus, you can­
not bind the colon (":") character to a command.

A more 'user-friendly' interface could include dialog boxes that the user could pop up to type
in a command directly so that a full shell doesn't have to be started. Then again, it is nice
and compact now and if you really need to do that more than once you should use a real
shell.

This program along with xwm(1) and xnwm have been mostly superceded by uwm(1).

X Version 10 31 October 1985 3

XTERM(1) UNIX Programmer's Manual XTERM(1)

NAME
xterm - X window system terminal emulator

SYNOPSIS
xterm [option] ...

DESCRIPTION
Xterm is the X window system terminal emulator. It attempts to emulate a DEC VTI02 ter­
minal (not yet completely implemented) to provide a standard terminal type for programs not
aware of the window system directly. Under 4.3BSD and Ultrix 1.2, xterm supports the ter­
minal resizing facilities built into the system.

When started, xterm pops a small window onto the upper left comer, with the size in charac­
ters and rows of the window as you size it. Once the window is created, a pseudo terminal is
allocated and a shell is started on the slave side of the pty pair.

Xterm understands the following options:

-j Xterm will 'jump scroll'; when xterm falls behind scrolling the screen, it will move
mUltiple lines up at once. This option is disabled by Tektronix mode. The VT 1 00
escape sequences for smooth scroll can be used to enable/disable this feature from a
program, or the 'Mode Menu' can be used to set it interactively.

-Cn font The specified font will be used instead of the default font (which is vtsingle). Any
fixed width font may be used.

-tb font The specified font will be used instead of the default bold font (which is vtbold).
This font must be the same height and width as the normal font.

= geometry
Xterm will take a normal· X geometry specification. This. takes the form of
"=widthxheight+xojJ+yojj". See X(l) for details of this specification.

host:display
Normally, xterm gets the host and display number to use from the environment vari­
able "DISPLAY". One can, however specify them explicitly. The host specifies
which machine to create the window on, and the display argument specifies the
display number. For example, "orpheus: 1" creates a shell window on display one on
the machine orpheus.

-D windowname
Allows you to set the name of the window for use by a window manager.

-bw borderwidth
Allows you to specify the width of the window border in pixels.

-b border
Xterm maintains an inner border (distance between characters and the window's
border) of one pixel. The -b option allows you to set the size of this border to
border.

-rv The screen will be displayed with white characters on a black background, rather
than the default black on white.

-Cg color
On color displays, determines the color of the text.

-bg color
On color displays, determines the color of the background.

-bd color
On color displays, determines the color of the border.

X Version 10 1 January 1985

XTERM(1) UNIX Programmer's Manual XTERM(l)

-cr color
. On color displays, determines the color of the text cursor; default is the text color.

-ms color
On color displays, determines the color of the mouse cursor; default is the text cursor
color.

-i asks xterm to maintain a bitmap icon, rather than relying on a window manager for
an icon (see xwm(1).

-t selects Tektronix 4010 emulation in addition to normal vtl02emulation. In this
mode, the default font is 6xlO and the default window size is 39x85. If a key is hit
during Tektronix graphics output, the display may become garbled Gust like a real
Tektronix). The default screen size using the default font is one-fourth the resolution
of a Tektronix 4010; therefore, some graphics may have discontinuities or may be
suppressed entirely. Furthermore, the font initially selected approximately represents
the standard Tektronix font, at best. If the window is subsequently enlarged or
reduced, the font appears to shrink or grow, respectively. Resizing the window also
affects resolution. and if the aspect ratio (height/width) is altered, Tektronix graphics
will be restricted to the largesi box with a 40 10's aspect ratio that will fit in the win­
dow. This box is located in the upper left area of the window. Text which is part of
Tektronix graphics output may not be cut (see MOUSE USAGE).

-e command arguments
The specified command will be executed in the window, rather than starting a shell.
The command and and . optional arguments must appear last on the xterm command
line.

-s When this option is specified, xterm no longer scrolls synchronously with the display ..
Xterm no longer attempts to keep the screen compietely up to date while scrolling,
but can then run faster when network latencies are very high. This is typically useful
when using xterm across a very large internet or many hops.

-L indicates that xterm is being called by init(8), and should presume that its file
descriptors are already open on a slave pseudo-tty, and that getty should be run
rather than the user's shell This option should only be ·used by init.

MOUSE USAGE
When using the mouse to create the window, a cursor and a rubber banding box will outline
where the window will be created on the display. If the left button is pressed, a
HEIGHTxWIDTH (default 24x80) size window will be created. If the right button is pressed,
a window the height of the display and WIDTH (default 80) characters wide will be created.
If the center button is pressed and held down, the upper left hand comer of the window will
be set to that point on the display, and (while continuing to depress the center button) an out­
line of the window will be displayed and the pop lip window in the upper left comer of the
screen will display the size in characters of the window.

Once the window is created, xterm allows you to save text and restore it within the same or
other windows. The button functions are enabled when holding down the "shift" key. The
left hand button takes the text from the cursor (at button release) through the end of line
(including the new line), saves it in the global cut buffer, and immediately 'retypes' the line,
inserting it as keyboard input. This provides a history mechanism. The center button is used
to save text into the cut buffer. Move the cursor to beginning of the text, and then hold the
button down while moving the cursor to the end of the region and releasing the button. The
saved text will not include the character pointed by the mouse. Furthermore, it is not possi­
ble to cut text which was part of Tektronix graphics output. The right hand button 'types' the
text from the cut buffer, inserting it as keyboard input. By cutting and pasting pieces of text
without trailing new lines, you can take text from several places in different windows and

X Version 10 1 January 1985 2

XTERM(l) UNIX Programmer's Manual XTERM(1)

form a command to the shell, for example, or take output from a program and insert it into
your favorite editor. Since the cut buffer is globally shared among different applications, you
should regard it as a 'file' whose contents you know. The terminal emulator and other text
programs should be treating it as if it were a text file, i.e. the text is delimited by new lines.

X DEFAULTS
Xterm allows you to preset defaults in a customization file in your home directory, called
.Xdefaults. The format of the file is "programname.keyword:string". See X(l) for more
details. Xterm obeys the convention for 'Make Window' defaults. Keywords recognized by
xterm are listed below.

JumpScroll
If "on" jump scroll is enabled.

BodyFont
Set the default font.

IntemalBorder
Set the space between the text and window border. This is called padding above.

BorderWidtb
Set the border width of the window.

Reverse Video
If 'on', reverse the definition of foreground and background color.

Foreground
Set the text color.

Background
Set the background color.

Border Set the border color.

Cursor Set the text cursor color.

Mouse Set the mouse cursor color.

BitmapIcon
If 'on', use a bitmap icon for this window.

BoldFont
Specify a default bold font.

MODE MENU
Xterm has a menu for changing the modes of the terminal. The appearance of the menu is
controlled by the defaults defined in the XMenu(3x) manual page. If you hold the "control"
key down and press the middle mouse button, a pop-up menu appears. When you let up on
the mouse button, the operation will be invoked. You can set the following modes of the
emulator: "Smooth Scroll" vs. "Jump Scroll", "Reverse Video" vs. "Normal Video", "no
wrap" vs. "auto wrap", "auto linefeed" vs. "normal linefeed" , "application cursors" vs. "nor­
mal cursors", "application pad" vs. "numeric pad", and you can either "soft reset" or "hard
reset" the emulator.

The scroll entry lets you control the scrolling behavior of the emulator as defined above. The
video entry lets you change from normal to reverse video and back. The wrap entry lets you
change to wrap at end of line or truncate at end of line. The linefeed entry lets you determine
whether the emulator should provide a linefeed when the line wraps. The cursors entry lets
you determine which escape sequences are generated by the cursor keys. The pad entry lets
you determine if the numeric keypad should generate escape sequences or if it should gen­
erate numbers. The soft reset entry will reset scroll regions. This can be convenient when
some program has left the scroll regions set incorrectly (often a problem when using VMS or

X Version 10 I January 1985 3

XTERM(1) UNIX Programmer's Manual XTERM(1)

TOPS-20). The full reset entry will clear the screen, reset tabs to every eight columns, and
reset the terminal modes to wrap and smooth scroll.

ENVIRONMENT
Xlerm sets the environment variables "TERM" and "TERM CAP" properly for the size win­
dow you have created. It also uses and sets the environment variable "DISPLAY" to specify
which bit map display terminal to use.

SEE ALSO
resize(l), xwm(l), X(l), pty(4), XMenu(3x)

DIAGNOSTICS

BUGS

The -d flag turns on reporting of not understood escape sequences.

Does not perfectly emulate a VT102 (though it is pretty close). While the 4010 emulation is
as complete as we wish to make it, the Tektronix 4014 emulation is incomplete. Manyappli­
cations will run. The display list for the Tektronix emulator needs more work.

AUTHORS
Mark Vandevoorde (MIT-Athena), Bob McNamara (DEC·MAD), Jim Gettys (MIT-Athena),
Bob Scheifler (MIT-LCS), Doug Mink (SAO), Jordan Hubbard (Berkeley).

VMS and TOPS-20 are trademarks of Digital Equipment Corporation.

Copyright (c) 1984, 1985, 1986 by Massachusetts Institute of Technology.
See X(l) for a full copyright notice.

X Version 10 1 January 1985 4

XTEXT(3X) UNIX Programmer's Manual XTEXT(3X)

NAME
Xtext - routines to provide simple text output windows

SYNOPSIS
#include <XIXlib.h>
#include <XlXtext.h>

TextWindow _TextCreate(width, height, x, y, parent,
fgpixe~ bgpixel, bordercolor, fastscroll);

int height, width, X, y, bwidth, fgpixel, bgpixe~ fastscroll;
Window parent;
char -fontname;
Pixmap bordercolor;

TextDestroy(t);
TextWindow -t;

TextClear(t);
TextWindow -t;

TextRedisplay(t);
TextWindow -t;

int TextEvent(t, e);
TextWindow -t;
XEvent -e;

TextPutString(t, str);
TextWindow -t;
char -str;

TextPutChar(t, ch);
TextWindow -t;
char ch;

TextPrintf(t, format (, arg] •••)
TextWindow -t;
char -format;

DESCRIPTION
These functions provide a simple interface to text output windows.

TextCreate creates a window that is width characters wide and height characters high. It is
located with its upper left hand comer located at the point x, y in the window parent. The
foreground (i.e. the characters) is in the color Jgpixel and the background is the color bgpixel.
The border is bwidth pixels wide and filled with the Pixmap bordercolor. If Jastscroll is
nonzero, text containing multiple new lines is displayed with a single jump scroll rather than
with a single scroll for each newline.

The structure Text Window is defined in lusrlincludeIXIXtext.h. The only field that should be
of interest to most applications is w, the X Window id of the created window. This is quite
useful if the application wishes to map the created window.

TextDestroy destroys the window described by its argument. The window is also destroyed
automatically if the process creating it is terminated.

TextClear clears the window described by its argument.

TextRedisplay redisplays the window described by its argument.

TextEvent handles the event passed to it. It returns 0 if it was an event the library knows
how to deal with, and 1 if it was an event of an unknown type; the latter should only happen
if the application has changed the event mask for the window. Any event that the application

X Version 10 August 12 1985.

XTEXT(3X) UNIX Programmer's Manual XTEXT(3X)

receives that has as its window the window id of the text window should be passed to Tex­
tEvent for handling. Scrolling text generates an event per line of events, so the application
should check for them frequently.

TextPutString prints its string in its window. The character '\n' (newline) is treated specially,
and any other character is taken from the font. If the string contains multiple newlines, a sine
gle scroll is done for each line unless the Jastscroll argument was non-zero in the call to
TextCreate.

TextPutChar is similar to TextPutString but only prints a single character. Again, newline is
treated specially.

TextPrint/ is similar to the standard function printf except that it prints its result in the
specified window. The resulting string is passed to TextPutString. See also the BUGS section
at the end of this page.

SEE ALSO
printf(3S), xterm(1), X(8C)

AUTHOR

BUGS

Paul Asente, Stanford University

TextPrintfwill truncate the output if the resulting string is more than 2048 characters long.

Since X operates asynchronously, it is possible to get way ahead of the serVer. This means
that it may be quite a while between when a scroll happens on the screen and when Xtext gets
around to filling in areas that couldn't be scrolled normally. This should only happen if the
application issues a great many output requests very quickly, or if it doesn't get 'around to
receiving the events Xtext needs to fill these areas in. Also, some strange TCP bugs are
invoked if an application which has gotten far ahead of the X server is stopped (as with a
control-Z).

X Version 10 August 12 1985 2

XWD(l) UNIX Programmer's Manual XWD(1)

NAME
xwd - X Window System, window image dumper.

SYNOPSIS
xwd [-debug] [-help] [-nobdrs] [-out file] [-z] [host:display]

DESCRIPTION
Xwd is an X Window System window image dumping utility. Xwd allows X users to store
window images in a specially formated window dump file. This file can then be read by
various other X utilities for redisplay, printing, editing, formatting, archiving, image process­
ing etc.. The target window is selected by clicking the mouse in the desired window.
The keyboard bell is rung once at the beginning of the dump and twice when the dump is
completed. This is a preliminary version of what promises to be a very useful utility. The
window dump file format is currently under development no guarantee of upward compatibil­
ity is made.

ARGUMENT SUMMARY
-help Print out the 'Usage:' command syntax summary.

-Dobdrs This argument specifies that the window dump should not include the pixels that
compose the X window border. This is useful in situations where you may wish to
include the window contents in a document as an illustration.

-out file This argument allows the user to explicitly specify the output file on the command
line. The default is to output to standard out.

-z This argument specifies that the output file should be in 'Z' pixmap format. The
default is 'XY' pix map format. 'Z' format is only valid on color displays.

host:display
This argument allow you to specify the host and display number on which to find
the target window. For example 'xwd orpheus: l' would ·specify that the target win­
dow is on display '1' on the machine 'orpheus'. By default, xwd uses the host and
display number stored in the environment variable DISPLAY, and therefore this
argument is not normally specified.

ENVIRONMENT
DISPLAY

To get default host and display number.

FILES
XWDFile.h

X Window Dump File format definition file.

FUTURE PLANS
If time ever presents itself...

1. Install complete color support.

2. Completely rework the 'XWDFile' dump file format.

3. Completely rework the corresponding xwud window undumper program.

SEE ALSO
xwud(1), xpr(1), xdpr(1), X(1)

AUTHOR
Copyright 1985, Massachusetts Institute of Technology.

Tony Della Fera, Digital Equipment Corp., MIT Project Athena

X Version 10 27 July 1985

XWININFO (1) UNIX Programmer's Manual XWININFO (1)

NAME
xwininfo - X Window System, window information summarizer.

SYNOPSIS
xwininfo [-children] [-help] [-id id] [-int] [-root] [host:display]

DESCRIPTION
Xwininfo is a utility for displaying X window information summaries. All pertinent win­
dow information is displayed in an easily readable format. The user has the option of
selecting the target window with the mouse (by clicking any mouse button in the desired win­
dow) or by specifying its' window id on the command line with the -id argument. There is
also a special -root argument to quickly obtain information on X's root window. The follow­
ing is a sample summary taken with the -children argument specified.

xwininfo ==> Please select the window you wish
= => information on by clicking the
==> mouse in that window.

xwininfo = = > Window name: ' X Root Window'
==> Window id: Oxl0031

X Version 10

= = > Parent window id: OxO
==> Number of children: 13 .
====> Child window id: Oxb00046
====> Child window id: Oxb2004f
====> Child window id: Ox630051
====> Child window id: Ox5ro055 .
====> Child window id: Ox5c0058
====> Child window id: Ox55005c
====> Child window id: Ox53005e
= = = = > Child window id: Ox51 0060
====> Child window id: Ox42000c
====> Child window id: Ox43000b
====> Child window id: Ox3dOOll
==="''''''> Child window id: Oxa0028
=====> Child window id: Ox500061
== = > Associated window id: OxO
==> Window type: IsOpaque
= => Window state: IsMapped
==> Upper left X: 0
==> Upper left Y: 0
===> Width: 1088
==> Height: 864
= == > Border width: 0
= ==> Resize base width: 0
= => Resize base height: 0
= => Resize width increment: 1
= = > Resize height increment: 1
= = > Root absolute mouse X Position: 691
= = > Root absolute mouse Y Position: 261
= => Target relative mouse X Position: 691
==> Target relative mouse Y Position: 261

27 July 1985

XWININFO (1) UNIX Programmer's Manual XWININFO (1)

ARGUMENT SUMMARY
-children

This argument specifies that xwininJo should list the window ids' of target
window's children. Only the first level of the window hierarchy is shown (i.e.,
immediate children of the target window).

-help Print out the 'Usage:' command syntax summary.

-id id This argument allows the user to specify a target window id on the command line
rather than using the mouse to select the target window. This is very useful in
debugging X applications where the target window is not mapped to the screen or
where the use of the mouse might be impossible or interfere with the application.

-int This argument specifies that all X window ids should be displayed as integer values.
The default is to display them as hexadecimal values.

-root This argument specifies that X's root window is the target window. This is useful
in situations where the root window is completely obscured.

host:display
This argument allow you to specify the host and display number on which to find
the target window. For example 'xwininfo orpheus: l' would specify that the target
window is on display '1' on the machine 'orpheus'. By default, xwininJo uses the
host and display number stored in the environment variable DISPLAY, and there·
fore this argument is not normally specified.

ENVIRONMENT
DISPLAY

To get default ~ost and display number.

SEE AlSO
X(l)

FUTURE PLANS
If time ever presents itself...

1. Provide a '-geometry' argument that prints out the window's dimensions in X win­
dow geometry format (Le., = WxH + X + Y)

2. Provide a '-depth' argument that allows recursive traversal of the window hierar­
chy to some arbitrary· depth.

Aurn:OR
Copyright 1985, Massachusetts Institute of Technology.

Tony Della Fera, Digital Equipment Corp., MIT Project Athena

X Version 10 27 July 1985 2

XWM(l) UNIX Programmer's Manual XWM(1)

NAME
xwm - X Window System, window manager process

SYNOPSIS
xwm [-cfgmrsz] [+/unction] [@deita] [fn=/ont] [fi=/ont] [host:display]

DESCRIPTION
The window manager allows you to use the mouse to push a window to the top or bottom of
the stack, turn a window into an icon, resize a window, move a window elsewhere on the
screen, attach the keyboard to a window (hierarchy) and circulate the window hierarchy. The
window manager only manipulates top-level windows (i.e., direct decendents of the root
window), not their subwindows, so in the following, references to window refer only to
top-level windows.

Since xwm does not have a window of its own it steals certain buttonlkey combinations
and interprets them as operations on existing windows. The key combination is specified
on the command line with some subset of the options: 'c' (control), 's' (shift), 'm' (meta) and
'u' (no-key). For example, if you specify the options -em then the Control and Meta keys must
be down at the time a mouse button is depressed. If no combination is specified in the
command line, Meta is the default. If 'u' is specified anywhere in the option list all keys will
be ignored.

For each mouse button, a different command is performed depending on whether the button
is 'clicked' or 'moved', i.e., whether the mouse is moved between the press and release of
the button. Some actual movement is allowed before the mouse is really considered to
have moved, the amount of movement is settable (see below). The mouse buttons per­
form the commands described below. For any of these commands, if you press a but­
ton to start a command, and then want to abort the command, simply press one of the
other buttons before releasing the first button. As each command is being performed the
mouse cursor will be changed to indicate which command is in effect.

If the left button is clicked in a window it will 'push' the window you are pointing at to the
bottom of any stack of overlapping windows. If clicked on the root window a 'circulate
down' operation will be performed on the root window moving the top most window in
the hierarchy to the bottom. Fo~ any of these operations the mouse cursor will be a 'dot'.

The left button will also 'iconify' the window you point at if it is pressed down and then
moved. When you release the button, the window will be made into an icon at the current
mouse location. If the window being iconified has its own icon, then that icon will be
used. If not xwm will create and maintain its own text icon using the name of the win­
dow as the initial text. For any of these operations the mouse cursor will be an 'icon' cur­
sor.

The name displayed in an xwm owned text icon can be edited at any time by placing the
mouse cursor in the icon and typing. Note: Modifying text displayed in an icon window
will modify the name of the window associated with that icon. The delete key deletes the
last character, Control-U deletes the entire name, any other printing characters are
appended to the current name. When the mouse cursor in an xwm text icon it will be a 'text'
cursor ('I bar' cursor).

If you click the middle button on an icon, the window you iconified will reappear in its pre­
vious position on the screen and the icon will disappear. For this operation the mouse
cursor will be an 'arrow cross' cursor.

The middle button is used to resize a window by moving a corner or an edge. If you press it
on a window, a rubber banded outline of the window will be displayed (and a grid if
you specify the 'g' option explained below) and moving the mouse will change its size, leav­
ing the opposite corner or other edges fixed. The corner or edge to be moved depends on
the where the mouse is when the button is pressed. Imagine the window divided with grid

X Version 10 14 July 1985

XWM(l) UNIX Programmer's Manual XWM(l)

of nine rectangles (the same grid that the 'g' option displays). If the mouse is in one of the
four comer rectangles or the center rectangle, then the comer closest to the mouse will. be
moved; otherwise, the closest edge will be moved. When the button is released, the win­
dow will be resized. For these operations the mouse cursor will be an 'arrow cross' cur­
sor.

The middle button can also be used to focus keyboard input to a specific window i.e.,
keyboard input will go to the specified window (hierarchy) even when the mouse is out­
side the window. If the 'r option is specified clicking the middle button twice on a window
will attach the keyboard to that window. Clicking the middle button on the background will
detach the keyboard from any window (actually, it attaches it to the background win­
dow). For this operation the mouse cursor will be an 'arrow cross' cursor.

The right button, if clicked in a window, will 'pull' the window you are pointing at to the
top of any stack of overlapping windows. If clicked on the root window a 'circulate up'
operation will be performed moving the bottom most window in the bierarchy to the top.
For these operations the mouse cursor will be a 'circle' cursor.

The right button will also move the window you are pointing at· if it is pressed down and
then moved. An outline of the window (and a grid if you specified the 'I' option) will appear,
and will move with the mouse cursor. When you release the right button, the window will
be moved to the current location of the outline. For this operation the mouse cursor will be
a 'circle' cursor.

OPTION SUMMARY:
c The 'c' (control) option specifies that the Control key must be held down for xwm to

listen to mouse button operations.

f The l' (focus) option specifies that a double-click on the middle button will focus
keyboard input events to the specified window.

g The (grid) option turns on a tick-tack-toe like grid that will be displayed inside
the 'window box' during window movement and resize operations.

m The 'm' (meta) option specifies that the Meta key must be held down for xwm to
listen to m~use button operations.

D The'll' (no-key) option specifies no keys may be down when performing mouse
button operation.

r The 'r' (reverse) option indicates that icons should be displayed as white text on
a black background, rather than black text on a white background.

s The's' (shift) options indicates. that the Shift key must be held down for xwm to
listen to mouse button operations.

z The 'z' (zap) option turns on a special 'zap' effect that is intended to draw your
attention to icons as they are created and windows as they are moved.

ARGUMENT SUMMARY:
+junction

This argument allows you to specify a cursor display function. It should be fol­
lowed by an integer specifying the code of the display function. See the Xlib docu­
ment for details of available functions. The default function is GXcopy.

@della This argument allows you to specify a mouse delta value. This value determines
how far the mouse must move with a button down before the iconify, move and
change operations begin. The default is 5 pixels. Note that if you define a large
delta, you can still make fine adjustments by first moving far away and then mov­
ing back.

X Version 10 14 July 1985 2

--,. - -

XWM(l) UNIX Programmer's Manual XWM(l)

fn=/ont This argument allow you to specify a text font to be used in pop up information
display. The default font is 6xlO.

fi-/ont This argument allow you to specify an icon text font. The default font is 6xlO.

host:display
This argument allow you to" specify the the host and display number on which xwm
will operate. For example 'xwm orpheus: l' would start up the window manager on
display one on the machine orpheus. By default, xwm uses the host and display
number stored in the environment variable DISPLAY, and therefore this argu­
ment is not normally specified. The window manager can be running anywhere, and
you can run more than one manager per display (provided that they do not attempt
to use the same mouse button / key combinations, see below).

X DEFAULTS
BodyFont

Set the default font for information display.

lconFont
Set the default font for text icons.

IntemalBorder
Set the space between the text and window border in text icons.

BorderWidth
Set the border width of text icons.

Reverse Video
Display text icons in reverse video?

ENVIRONMENT
DISPLAY

To get default host and display number.

SEE ALSO
X(l), X(8C)

AUTIfOR
Copyright 1985, Massachusetts Institute of Technology.

Tony Della Fera, DEC MIT Project Athena

Based upon previous 'xwm' by Bob Scheitler, MIT Laboratory for Computer Science

X Version 10 14 July 1985 3

XNS/COURIER USER CODE
J.Q. Johnson, Cornell

XNSFI'P(L) UNIX Programmer's Manual XNSFI'P(L)

NAME
xnsftp -file transfer program

SYNOPSIS
ftp [-v] [-d] [-i] [-8] [-g] [host]

DESCRIPTION
Xnsftp is a user interface to the XNS Courier Filing protocol. The program allows a user to
transfer files to and from a remote network site running Filing (version 4) server software,
typically a Xerox file server.

The server host with which xnsftp is to communicate may be specified on the command line.
If this is done, xnsftp will immediately attempt to establish a connection to a Filing server
server on that host; otherwise, xnsftp will enter its command interpreter and await instruc­
tions from the user. When xnsftp is awaiting commands from the user the prompt "xnsftp>"
is provided the user. The following commands are recognized by xnsftp:

Invoke a shell on the local machine.

append local-file [remote-file]
Not yet implemented! Append a local file to a file on the remote machine. If remote­
file is left unspecified, the local file name is used in naming the remote file. File
transfer uses the current settings for type, format, mode, and structure.

ascii Set the file transfer type to network ASCII. This is the default type, and is appropri­
ate for transferring 7 -bit ascii text files.

bell Arrange that a bell be sounded after each file transfer command is completed.

binary Set the file transfer type to support binary image transfer. This is the appropriate type
for transferring 8-bit binary data, e.g. Interlisp DCOM files.

bye Terminate the FTP session with the remote server and exit xnsftp.

cd remote-directory
Change the working directory on the remote machine to remote-directory.

close Terminate the FTP session with the remote server, and return to the command inter­
preter.

delete remote-file
Delete the file remote-./ile on the remote machine. If the remote file is a directory a
confirmation will be required.

debug [debug-value 1
Toggle debugging mode. If an optional debug-value is specified it is used to set the
debugging level.

dir [remote-directory 1 [local-file]
Print a listing of the directory contents in the directory, remote-directory, and, option­
ally, placing the output in local-file. If no directory is specified, the current working
directory on the remote machine is used. If no local file is specified, output comes to
the terminal.

form format
Set the file transfer form to format. The default format, and the only one currently
supported, is "file".

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file name is not
specified, it is given the same name it has on the. remote machine. The current set­
tings for type, form, mode, and structure are used while transferring the file.

4th Berkeley Distribution 20 June 1985

XNSFI'P(L) UNIX Programmer's Manual XNSFI'P(L)

hash Toggle hash-sign ("#") printing for each data block transferred. Data blocks vary
depending on implementation, but are typically 534 bytes long.

glob Toggle file name globbing. With file name globbing enabled, each local file or path­
name is processed for csh(l) metacharacters. These characters include ".?[ro".
Remote files specified in mutliple item commands, e.g. mput, are globbed by the
remote server. With globbing disabled all files and pathnames are treated literally.

help [command]
Print an informative message about the meaning of command. If no argument is
gi ven, xnsftp prints a list of the known commands.

led [directory]
Change the working directory on the local machine. If no directory is specified, the
user's home directory is used.

Is [remote-directory] [local-file]
Print an abbreviated listing (containing remote path names) of the contents of a direc­
tory on the remote machine. If remote-directory is left unspecified, the current work­
ing directory is used. If no local file is specified, the output is sent to the terminal.

mdelete remote-files
Delete the specified files on the remote machine. If globbing is enabled, the
specification of remote files will first be expanded using Is.

mdir remote-files local-file
Obtain a directory listing of multiple files on the remote machine and place the result
in local-file.

mget remote-/zles
Retrieve the specified files from the remote machine and place them in the current
local directory. If globbing is enabled, the specification of remote files will first be
expanding using Is. The local file names will be identical with the name attribute of
the remote file names i.e. with the last component of the remote pathname.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Obtain an abbreviated listing of multiple files on the remote machine and place the
result in local-/zle.

mode [mode-name]
Set the file transfer mode to mode-name. The default mode, and the only one
currently supported, is "stream" mode.

mput local-files
Transfer multiple local files from the current local directory to the current working
directory on the remote machine.

open host [port]
Establish a connection to the specified host Filing server. Note that host must be the
Clearinghouse name of a Filing server, e.g. "cornellfsl:computer science:cornell-univ":
if the domain and organization components of the name are not specified, they
default to the local domain and organization. If the auto-login option is on (default),
xnsftp will also attempt to automatically log the user in to the Filing server (see
below).

prompt Toggle interactive prompting. Interactive prompting occurs during multiple file
transfers to allow the user to selectively retrieve or store files. If prompting is turned
off (default), any mget or mput will transfer all files.

4th Berkeley Distribution 20 June 1985 2

XNSFTP(L) UNIX Programmer's Manual XNSFTP(L)

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is left unspecified, the local file
name is used in naming the remote file. File transfer uses the current settings for
type, format, mode, and structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

rename [from] [to]
Not yet implemented! Rename the file from on the remote machine, to the file to.

rmdir directory-name
Delete a directory on the remote machine.

send local-file [remote-file]
A synonym for put.

status Show the current status of xnsjip.

struct [struct-name]
Set the file transfer structure to struct-name. By default "stream" structure is used.
This is also the only structure currently supported.

trace Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name. If no type is specified, the current type is
printed. The default type is network ASCII. Only ASCII and BINARY types are
currently supported.

user user-name [password 1
Identify yourself to the remote Filing server. If the password is not specified and the
server requires it, xnsftp will prompt the user for it (after disabling local echo).
Unless xnsftp is invoked with "auto-login" disabled, this process is done automatically
on initial connection to the Filing server. The user name should be a standard XNS
Clearinghouse name or alias, e.g. "j.q. johnson:computer science:comell-univ"; if the
domain and organization components of the name are not specified, they default to
the local domain and organization.

verbose Toggle verbose mode. In verbose mode, all responses from the Filing server are
displayed to the user. In addition, if verbose is on, when a file transfer completes,
statistics regarding the efficiency of the transfer are reported. By default, verbose is
on.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.

FILE NAMING CONVENTIONS
Files specified as arguments to xnsftp commands are processed according to the following
rules.

1) If the file name "-" is specified. the stdin (for reading) or stdout (for writing) is used.

2) If the first character of the file name is "I", the remainder of the argument is inter­
preted as a shell command. Xnsjip then forks a shell, using popen(3) with the argu­
ment supplied, and reads (writes) from the stdout (stdin). If the shell command
includes spaces, the argument must be quoted; e.g. "n I Is -Ie'. A particularly useful
example of this mechanism is: "dir I more".

3) Failing the above checks, if "globbing" is enabled, local file names are expanded
according to the rules used in the csh(1); c.f. the glob command.

4th RpT'l{f·lev Distribution 20 June 1985 3

XNSFTP(L) UNIX Programmer's Manual XNSFTP(L)

4) Remote file names whose first character is "'" (slash) are interpreted as absolute path­
names. Other remote file names are interpreted as pathnames relative to the current
connected directory.

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters which may affect a file transfer. The type
may be one of "ascii", "binary" (image), "ebcdic", and "local byte size" (for PDP-tO's and
PDP-20's mostly). Xnsfip supports the ascii and binary types of file transfer. ASCII type is
appropriate for transferring text files; Unix EOL characters (\n) are translated to and from
Xerox EOL characters (\r), Xerox left arrow characters are translated to underscore, etc.
BINARY (image) type is appropriate for all other files.

Xnsfip supports only the default values for the remaining file transfer parameters: mode, form,
and struct.

OPTIONS

BUGS

Options may be specified at the command line, or to the command interpreter.

The -v (verbose on) option forces xnsfip to show all responses from the remote server, as well
as report on data transfer statistics.

The -D option restrains xnsfip from attempting "auto-login" upon initial. connection.

The -i option turns off interactive prompting during mutliple file transfers.

The -d option enables debugging.

The -g option disables file name globbing.

Append and Rename are not yet implemented.

Many interesting features of the Filing protocol, e.g. serialized files and remote searches using
the Find RPC, are not supported. Also, only version 4 of Filing is supported.

Aborting a file transfer does not work right; if one attempts this the connection to the remote
server will likely have to be reopened.

4th Berkeley Distribution 20 June 1985 4

CLEARlNGHOUSESUPPORT (3X) UNIX Programmer's Manual CLEARINGHOUSESUPPORT (3X)

NAME
CH_StringToName, CH_LookupAddr, CH_GetFirstCH, CH_GetOtherCH, CH_Enumerate,
CH _ EnumerateAliases - Clearinghouse support routines.

SYNOPSIS
'include <sysltypes.h> 1* used by ns.h *1
'include <netnslns.h> 1* for sockaddr ns *1
'include <XDSCourier/Clearinghouse2.h> -
#include <XDSCourier/CH.h>

Clearinghouse2 _ ObjectName CH _ StringToName(string, defaults)
char *string;
Clearinghouse2 _ ObjectName *deraults;

struct m_addr • CH_LookupAddr(pattern, property)
Clearinghouse2 _ ObjectName pattern;
Clearinghouse2 _Property property;

CourierConnection * CH _ GetFirstCH()

CourierConnection * CH _ GetOtherCH(conn, hint)
CourierConnection *conn;
Clearinghouse2 _ ObjectName hint;

int CH _ Enumerate(pattern, property, eachName)
Clearinghouse2 _ ObjectName pattern;
Clearinghouse2 _Property property;
int (*eachName)O;

CH _ EnumerateAliases(pattern, eachName)
Clearinghouse2 _ ObjectNamePattern pattern;
int (*eachName)O;

int eachName(name)
Clearinghouse2 _ ObjectName name;

Link with -lcourier.

DESCRIPTION
These functions provide a convenient interface to the XNS Clearinghouse built on Courier remote pro­
cedure calls. They all require the Maryland XNS kernel.

Given a string in standard format (e.g. "jqj:Computer Science:comell-univ"), CH StringToName
translates a string in standard format, e.g. "jqj:computer science:comell-univ" into a-Clearinghouse
ObjectName struct. The storage for the resulting 3 fields is dynamically allocated via mallocO. If the
argument string is incomplete, e.g. "jqj" or "::comell-univ", the unspecified values are filled in from
defaults. Defaults may be NULL, in which case O-length strings are used as defaults.

Given a Oearinghouse three part name (possibly containing wild cards in the local object part) desig­
nating an addressable resouce on the net, and the property number on which a NetworkAddressUst is
expected to occur, CHj.ookupAddr returns a pointer to an Xll_addr structure associated with that name.
Note that the Xll_addr structure is statically allocated! If property is given as 0, then the "addressUst"
property (actually 4) is used; this is the property typically used for storing Oearinghouse addresses of
objects. Returns 0 if any error occurs, if the name given is not registered, or if the name does not have
the specified property. If a name has several network addresses (e.g. a gateway machine), only the first
or primary address is returned; to obtain all addresses use the remote procedure
ClearinghouseZ _ RetrieveAddresses. Users who require greater control than is provided by
CH j.ookupAddress should call ClearinghouseZ _ Retrieve/tem directly. Example:

struct Xll_addr * pvaxaddr;
static struct Clearingbouse2 _ ObjectName pvaxname =

{"cornell-univ", "computer science", "pvax"};

7th Edition Cornell 1

a.EARlNGHOUSESUPPORT(3X) UNIX Programmer's Manual a.EARlNGHOUSESUPPORT (3X)

NOTES

FILES

pvaxaddr - CH _LDokupAddr(pvamame, 0);

The routine CH GetFirstCH returns an XNS Courier connection to a nearby clearinghouse, useful for
Clearinghouse remote procedure caDs. Since the Oearinghouse is disuibuted, that instance of the CH
may not contain the data desired; in such cases, a remote CH procedure call will return the error
• 'WrongServer" with a hint as to the cmect server, and the user may reery the operation after connect­
ing (using CH _ GetOtMrCH) to the clearinghouse specified by the hint. For example:

conn - CH GetFirstCH();
DURING objectname • Oearinghouse2 _LDokupObject{name, agent);
HANDLER {

if (Exception.Code -- Clearingbouse2 _ WrongServer) {
hint .. CourierErrArgs(Oearinghouse2_ WrongServerArgs, hint);
cb2conn - CH_GetOtherCH(conn. hint);
CourierClose(conn);
objectname - Oearingbouse2_LookupObject(name, agent);

} else exit(!);
} END HANDLER

CH _ EnlRM1'ate and CH _ EnumerateAliaus each accept a pointer to a user-supplied function eachProc.
This function is called once for each name in the local Oearinghouse satisfying the pattern (which may
contain wildcards in its local object part only) supplied; eachProc is called with a single argument, the
name of the CUIrellt object. CH_Enumerate enumerates over all distinguished objects (i.e. no aliases)
matching the specified pattern and having the specified property. To enumerate everything in a domain
which bas a given property, use in the object portion of the Pattern. To enumerate all names in a
domain which match a given pattern, use the property value O. Other useful property values are
specified in <courierICHEntries.h>.

CH_EnumerateAliases is similar to CH_Enumerate • except that eachProc is called once for each alias
in the clearinghouse matching the specified pattern.

A CourielConnection is an anonymous data structure used by the runtimes. Users should not derefer­
ence pointers to CourielConnection themselves.

Some useful definitions equivalent to those in the include file <courierIClearinghouse2.h> include:

typedef struct {
char .organization;
char .domain;
char .object;

} Clearinghouse2_0bjectName;

typedef unsigned long Clearinghouse2 _Property;

lusr/local/lib/libcourier.a -lcourier library.
lusr/new/lib/xnscourier/clearinghouse.addresses ' local clearinghouse address.

SEE ALSO
clearinghouse(3X)
"XNS Courier Under Unix" •
"Clearinghouse Protocol," XSIS 078404 (Apri11984).

DIAGNOSTICS
BUGS

Probably lots of them. This is an a -test version of Courier support routines and is guaranteed to have
bugs. Please report them to jqj@cornell.

7th Edition Cornell 2

~ --.--~---------.~ ---

CLEARINGHOUSESUPPORT(3X) UNIX Programmer's Manual CLEARINGHOUSESUPPORT (3X)

In particular, since Packet Exchange is not yet working in the kernel, CH _ GetFirstCH looks up the
local clearinghouse address in a file rather than doing an expanding ring broadcast. This will be fixed
soon.
CH j..oo/cupAddr returns a pointer to a static data structure. The other routines use rnallocO to dynami­
cally allocate their data (you may use the routine clear _Clearinghorue2_0bjectNQIM to free the suings
allocated by CH_StringToNQIM).

AUTHOR
J.Q. Johnson

7th Edition Cornell 3

EXCEPT(3) UNIX Programmer's Manual EXCEPT(3)

NAME
(except) raise, raise_sys() - C exception handling

SYNOPSIS
#include <xnscourier/except.h>

raise(code, msg)
int code;
char _msg;

cc ... -lexcept

EXTENDED C SYNTAX
DURING statementl HANDLER statement2 END_HANDLER

E_RETURN(expression)

E_RETURN_ VOID

DESCRIPTION
The macros and functions in this package provide a limited amount of exception handling for
programming in C. They provide the ability to associate an exception handler to be invoked
if an exception is raised during the execution of a statement.

C syntax is extended by several macros that allow the programmer to associate an exception
handler with a statement. The "syntax" for this is:

DURING statement! HANDLER statement2 END_HANDLER

Either or both statement may be a compound statement. If an exception is raised using the
raiseO function during statement) (or during any functions called by statementl), the stack
will be unwound and statement2 will be invoked in the current context. However, if the
exception handler is redeclared in a dynamically enclosed statement, the current exception
handler will be inactive during the execution of the enclosed statement.

During the execution of statement2, two predefined values may be used: Exception. Code, an
integer, is the value of code passed to the raiseO call which invoked the handler, and
Exception.Message is the value of msg. It is up to the user to define the values used for the
exception codes; by convention, small p()sitive integers are interpreted as Unix error codes.

As an example of the use of this package, the following "toy" code computes the quotient of
variables f1 and fl, unless fl is 0.0:

7th Edition

DURING {
if (fl = = 0.0)

raise(DIVIDE_BY _ZERO, "Division by zero attempted");
quotient = fll fl;

} HANDLER
switch (Exception.Code) {
case DIVIDE_BY _ZERO:

retum(HUGE);
break;

default:
printf("Unexpected error %s\n", Exception.Message);

}

Stanford

EXCEPT(3) UNIX Programmer's Manual EXCEPT(3)

END_HANDLER

If a handler does not want to take responsibility for an exception, it can "pass the buck" to
the dynamically enclosing exception handler by use of the RERAISE macro, which simply
raises the exception that invoked the handler. Of course, it is possible that there is no
higher-level handler. The programmer can control the action in this case by setting the exter­
nal int ExceptMode to some (bit-wise OR'd) combination of the following constants:

EX_MODE_REPORT Print a message on stderr if an exception is not caught. If this is not
set, no message is printed.

EX_MODE_ABORT Calls the abort(3) routine if an exception is not caught. If this is not
set, exit(3) is called, with the exception code as an argument.

The default value for ExceptMode is zero.

RESTRICTIONS
THESE RESTRIcrIONS ARE IMPORTANT; YOU WILL SUFFER IF YOU DISOBEY
THEM.

During the execution of statement}, no transfers out of the statement are allowed, except as
noted here. Execution of a compound statement} must "run off the end" of the block. This
means that statementl may not include a return or goto, or a break or continue that would
affect a loop enclosing the DURING ... END_HANDLER block. The statement} may include
a call to raiseO (but not RERAISE), exit(3), and any statement at all may be used in a func­
tion called.

If you wish to use a return within statementl, you must instead use E_RETURNO to return a
value, or E_RETURN_VOID if the enclosing function is declared void. These two macros
may be used only in the (lexically) outermost statement} of a function, and nowhere else.

There are no restrictions on what may be done inside the statement2 part of a handler block,
except that it is subject to the above constraints if it is lexically enclosed in the statement}
part of another handler.

As an aid to Unix programmers, the raise_sysO function is provided. It is used exactly as
raiseO is, except that it uses the global errno(3) to produce the exception code and message.

SEE AlSO
ermo(3), setjmp(3)

AUTHOR

BUGS

Jeffrey Mogul (Stanford)

Due to a limitation of the setjmp(3) implementation, register variables which are actually
stored in registers (and this is not always easy to determine, and especially is not portable) are
restored to the values they had upon entering statement} when the handler (statement2) is
invoked. All other data keeps whatever values they were assigned during the (interrupted)
execution of statementl. A good rule to follow is that you should not rely on the values of
variables declared register (in the current block) after an exception has been caught.

7th Edition Stanford 2

........... -

Courier(3) UNIX Programmer's Manual Courier(3)

NAME
CourierOpen, CourierClose, BDTread, BDTwrite, BDTabort, BDTclosewrite - public run­
times for Unix Courier

SYNOPSIS
#include <xnscourier/courier .h>
#include <xnscourier I courierconnection.h>

CourierConnection .CourierOpen(destaddr)
struct xn_addr .destaddr;

CourierClose(conn)
CourierConnection .conn;

int BDTread(conn, buffer, nbytes)
CourierConnection .conn;
char .buffer;
int nbytes;

int BDTwrite(conn, buffer, nbytes)
CourierConnection .conn;
char • buffer;
int nbytes;

BDTclosewrite(conn)
CourierConnection .conn;

BDTabort(conn)
CourierConnection .conn;

cc ... -lcourier

DESCRIPTION

FILES

These functions are part of the runtime library for XNS Courier remote procedure calls.
They all require the Maryland XNS kernel.

CourierOpen attempts to open an SPP connection to the address specified. It returns 0 on
failure.

CourierClose closes the SPP connection obtained by CourierOpen by means of the usual XNS
3-way ENO/END-REPL Y handshake.

BDTread and BDTwrite are similar to read(2) and write(2) except that they accept a Courier
connection instead of a file descriptor, and transmit or receive at most one SPP packet (max­
imum size is thus 534 bytes, which is also the recommended value of nbytes). These routines
should be used only in a Courier server to perform a BDT data transfer, or in a Courier client
from within a BOT callback routine.

BDTclosewrite and BDTabort provide a way for a BDT source (i.e. write) procedure to end a
data transfer, either successfully or unsuccessfully respectively. In addition, BDTabort may be
used to terminate a BDT sink (i.e. read) transfer.

SEE AlSO
all the Courier documentation

DIAGNOSTICS
None.

BUGS
Probably lots of them. Expanding ring broadcast is not yet implemented.

7th Edition Cornell

')

	000_UCS
	ucs0001_a
	ucs0001_b
	ucs0002_a
	ucs0002_b
	ucs0003_a
	ucs0003_b
	ucs0004_a
	ucs0004_b
	ucs0005_a
	ucs0005_b
	ucs0006_a
	ucs0006_b
	ucs0007_a
	ucs0007_b
	ucs0008_a
	ucs0008_b
	ucs0009_a
	ucs0009_b
	ucs0010_a
	ucs0010_b
	ucs0011_a
	ucs0011_b
	ucs0012_a
	ucs0012_b
	ucs0013_a
	ucs0013_b
	ucs0014_a
	ucs0014_b
	ucs0015_a
	ucs0015_b
	ucs0016_a
	ucs0016_b
	ucs0017_a
	ucs0017_b
	ucs0018_a
	ucs0018_b
	ucs0019_a
	ucs0019_b
	ucs0020_a
	ucs0020_b
	ucs0021_a
	ucs0021_b
	ucs0022_a
	ucs0022_b
	ucs0023_a
	ucs0023_b
	ucs0024_a
	ucs0024_b
	ucs0025_a
	ucs0025_b
	ucs0026_a
	ucs0026_b
	ucs0027_a
	ucs0027_b
	ucs0028_a
	ucs0028_b
	ucs0029_a
	ucs0029_b
	ucs0030_a
	ucs0030_b
	ucs0031_a
	ucs0031_b
	ucs0032_a
	ucs0032_b
	ucs0033_a
	ucs0033_b
	ucs0034_a
	ucs0034_b
	ucs0035_a
	ucs0035_b
	ucs0036_a
	ucs0036_b
	ucs0037_a
	ucs0037_b
	ucs0038_a
	ucs0038_b
	ucs0039_a
	ucs0039_b
	ucs0040_a
	ucs0040_b
	ucs0041_a
	ucs0041_b
	ucs0042_a
	ucs0042_b
	ucs0043_a
	ucs0043_b
	ucs0044_a
	ucs0044_b
	ucs0045_a
	ucs0045_b
	ucs0046_a
	ucs0046_b
	ucs0047_a
	ucs0047_b
	ucs0048_a
	ucs0048_b
	ucs0049_a
	ucs0049_b
	ucs0050_a
	ucs0050_b
	ucs0051_a
	ucs0051_b
	ucs0052_a
	ucs0052_b
	ucs0053_a
	ucs0053_b
	ucs0054_a
	ucs0054_b
	ucs0055_a
	ucs0055_b
	ucs0056_a
	ucs0056_b
	ucs0057_a
	ucs0057_b
	ucs0058_a
	ucs0058_b
	ucs0059_a
	ucs0059_b
	ucs0060_a
	ucs0060_b
	ucs0061_a
	ucs0061_b
	ucs0062_a
	ucs0062_b
	ucs0063_a
	ucs0063_b
	ucs0064_a
	ucs0064_b
	ucs0065_a
	ucs0065_b
	ucs0066_a
	ucs0066_b
	ucs0067_a
	ucs0067_b
	ucs0068_a
	ucs0068_b
	ucs0069_a
	ucs0069_b
	ucs0070_a
	ucs0070_b
	ucs0071_a
	ucs0071_b
	ucs0072_a
	ucs0072_b
	ucs0073_a
	ucs0073_b
	ucs0074_a
	ucs0074_b
	ucs0075_a
	ucs0075_b
	ucs0076_a
	ucs0076_b
	ucs0077_a
	ucs0077_b
	ucs0078_a
	ucs0078_b
	ucs0079_a
	ucs0079_b
	ucs0080_a
	ucs0080_b
	ucs0081_a
	ucs0081_b
	ucs0082_a
	ucs0082_b
	ucs0083_a
	ucs0083_b
	ucs0084_a
	ucs0084_b
	ucs0085_a
	ucs0085_b
	ucs0086_a
	ucs0086_b
	ucs0087_a
	ucs0087_b
	ucs0088_a
	ucs0088_b
	ucs0089_a
	ucs0089_b
	ucs0090_a
	ucs0090_b
	ucs0091_a
	ucs0091_b
	ucs0092_a
	ucs0092_b
	ucs0093_a
	ucs0093_b
	ucs0094_a
	ucs0094_b
	ucs0095_a
	ucs0095_b
	ucs0096_a
	ucs0096_b
	ucs0097_a
	ucs0097_b
	ucs0098_a
	ucs0098_b
	ucs0099_a
	ucs0099_b
	ucs0100_a
	ucs0100_b
	ucs0101_a
	ucs0101_b
	ucs0102_a
	ucs0102_b
	ucs0103_a
	ucs0103_b
	ucs0104_a
	ucs0104_b
	ucs0105_a
	ucs0105_b
	ucs0106_a
	ucs0106_b
	ucs0107_a
	ucs0107_b
	ucs0108_a
	ucs0108_b
	ucs0109_a
	ucs0109_b
	ucs0110_a
	ucs0110_b
	ucs0111_a
	ucs0111_b
	ucs0112_a
	ucs0112_b
	ucs0113_a
	ucs0113_b
	ucs0114_a
	ucs0114_b
	ucs0115_a
	ucs0115_b
	ucs0116_a
	ucs0116_b
	ucs0117_a
	ucs0117_b
	ucs0118_a
	ucs0118_b
	ucs0119_a
	ucs0119_b
	ucs0120_a
	ucs0120_b
	ucs0121_a
	ucs0121_b
	ucs0122_a
	ucs0122_b
	ucs0123_a
	ucs0123_b
	ucs0124_a
	ucs0124_b
	ucs0125_a
	ucs0125_b
	ucs0126_a
	ucs0126_b
	ucs0127_a
	ucs0127_b
	ucs0128_a
	ucs0128_b
	ucs0129_a
	ucs0129_b
	ucs0130_a
	ucs0130_b
	ucs0131_a
	ucs0131_b
	ucs0132_a
	ucs0132_b
	ucs0133_a
	ucs0133_b
	ucs0134_a
	ucs0134_b
	ucs0135_a
	ucs0135_b
	ucs0136_a
	ucs0136_b
	ucs0137_a
	ucs0137_b
	ucs0138_a
	ucs0138_b
	ucs0139_a
	ucs0139_b
	ucs0140_a
	ucs0140_b
	ucs0141_a
	ucs0141_b
	ucs0142_a
	ucs0142_b
	ucs0143_a
	ucs0143_b
	ucs0144_a
	ucs0144_b
	ucs0145_a
	ucs0145_b
	ucs0146_a
	ucs0146_b
	ucs0147_a
	ucs0147_b
	ucs0148_a
	ucs0148_b
	ucs0149_a
	ucs0149_b
	ucs0150_a
	ucs0150_b
	ucs0151_a
	ucs0151_b
	ucs0152_a
	ucs0152_b
	ucs0153_a
	ucs0153_b
	ucs0154_a
	ucs0154_b
	ucs0155_a
	ucs0155_b
	ucs0156_a
	ucs0156_b
	ucs0157_a
	ucs0157_b
	ucs0158_a
	ucs0158_b
	ucs0159_a
	ucs0159_b
	ucs0160_a
	ucs0160_b
	ucs0161_a
	ucs0161_b
	ucs0162_a
	ucs0162_b
	ucs0163_a
	ucs0163_b
	ucs0164_a
	ucs0164_b
	ucs0165_a
	ucs0165_b
	ucs0166_a
	ucs0166_b
	ucs0167_a
	ucs0167_b
	ucs0168_a
	ucs0168_b
	ucs0169_a
	ucs0169_b
	ucs0170_a
	ucs0170_b

