
19. THE TRANSPORT INTERFACE

Introduction
This chapter provides detailed information, with various examples, on the
SYSTEM V/68 Transport Interface. It is intended for programmers who require
the services defined by this interface. Working knowledge of SYSTEM V/68
programming and data communication concepts is assumed. In particular,
working knowledge of the Reference Model of Open Systems Interconnection II
(OSI) is required. •

Background

To place the Transport Interface in perspective, a discussion of the OSI Reference
Model is first presented. The Reference Model partitions networking functions
into seven layers, as depicted in Figure 19-1.

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

application

presentation

session

transport

network

data link

physical

Figure 19-1. OSI Reference Model

Layer 1 The physical layer is responsible for the transmission of raw data
over a communication medium.

Layer 2 The data link layer provides the exchange of data between network
layer entities. It detects and corrects any errors that may occur in the
physical layer transmission.

MU43815PG/D2 19-1 12/01/87

II

THE TRANSPORT INTERFACE

Layer 3 The network layer manages the operation of the network. In
particular, it is responsible for the routing and management of data
exchange between transport layer entities within the network.

Layer 4 The transport layer provides transparent data transfer services
between session layer entities by relieving them from concerns of
how reliable and cost-effective transfer of data is achieved.

Layer 5 The session layer provides the services needed by presentation layer
entities that enable them to organize and synchronize their dialogue
and manage their data exchange.

Layer 6 The presentation layer manages the representation of information
that application layer entities either communicate or reference in their
communication.

Layer 7 The application layer serves as the window between corresponding
application processes that are exchanging information.

A basic principle of the Reference Model is that each layer provides services
needed by the next higher layer in a way that frees the upper layer from concern
about how these services are provided. This approach simplifies the design of
each particular layer.

Industry standards either have been or are being defined at each layer of the
Reference Model. Two standards are defined at each layer: one that specifies an
interface to the services of the layer, and one that defines the protocol by which
services are provided. A service interface standard at any layer frees users of the
service from details of how that layer's protocol is implemented, or even which
protocol is used to provide the service.

The transport layer is important because it is the lowest layer in the Reference
Model that provides the basic service of reliable, end-to-end data transfer needed
by applications and higher layer protocols. In doing so, this layer hides the
topology and characteristics of the underlying network from its users. More
important, however, the transport layer defines a set of services common to layers
of many contemporary protocol suites, including the International Standards
Organization {ISO) protocols, the Transmission Control Protocol and Internet
Protocol (TCP/IP) of the ARPANET, Xerox Network Systems (XNS), and the
Systems Network Architecture (SNA).

A transport service interface, then, could enable applications and higher layer
protocols to be implemented without knowledge of the underlying protocol suite.
That is a principle goal of the SYSTEM V/68 Transport Interface. Also, because an
inherent characteristic of the transport layer is that it hides details of the physical
medium being used, the Transport Interface offers both protocol and medium
independence to networking applications and higher layer protocols.

MU43815PG/D2 19-2 12/01/87

THE TRANSPORT INTERFACE

The SYSTEM V/68 Transport Interface was modeled after the industry standard
ISO Transport Service Definition (ISO 8072). As such, it is intended for those
applications and protocols that require transport services. It is not intended to
provide a generic networking interface for all SYSTEM V/68 applications, but is a
first step in providing networking services with SYSTEM V/68. Because the
Transport Interface provides reliable data transfer, and because its services are
common to several protocol suites, many networking applications will find these
services useful.

The Transport Interface is implemented as a user library using the STREAMS
input/output mechanism. Therefore, many services available to STREAMS
applications are also available to users of the Transport Interface. These services II
will be highlighted throughout this chapter. The STREAMS Primer and STREAMS •
Programmer's Guide contain more detailed information on STREAMS for the
interested reader.

About This Chapter
This chapter is organized into the following sections:

• Overview of the Transport Interface summarizes the basic set of services
available to Transport Interface users and presents the background information
needed for the remainder of the chapter.

• Connection-Mode Service describes the services associated with connection
based (or virtual circuit) communication.

• Connectionless-Mode Service describes the services associated with
connectionless (or datagram) communication.

• A Read/Write Interface describes how users can use the services of read(2) and
write(2) to communicate over a transport connection.

• Advanced Topics discusses important concepts that were not covered in earlier
sections. These include asynchronous event handling and processing of
multiple, simultaneous connect requests.

In addition, the following appendices pertain to the Transport Interface:

• Appendix A, State Transitions, defines the allowable state transitions
associated with the Transport Interface.

• Appendix B, Guidelines for Protocol Independence, establishes necessary
guidelines for developing software that may run without change over any
transport protocol developed for the Transport Interface.

MU43815PG/D2 19-3 12/01/87

II

THE TRANSPORT INTERFACE

• Appendix C, Examples, presents the full listing of each programming example
used throughout the chapter.

• The Glossary defines Transport Interface terms and acronyms used in this
chapter.

This chapter describes the more important and common facilities of the Transport
Interface, and is not meant to be exhaustive. Section 3N of the Programmer's
Reference Manual contains a complete description of each Transport Interface
routine.

Overview of the· Transport Interface
This section presents a high level overview of the services of the Transport
Interface, which supports the transfer of data between two user processes. Figure
19-2 illustrates the Transport Interface.

transport
user

~
ce servi

req uests

L · · · · · · · · · · · · · · · Transport Interface ······••t
servi ce events

ndications and i
w

transport
provider

Figure 19-2. Transport Interface

The transport provider is the entity that provides the services of the Transport
Interface, and the transport user is the entity that requires these services. An
example of a transport provider is the ISO transport protocol, while a transport
user may be a networking application or session layer protocol.

MU43815PG/D2 19-4 12/01/87

THE TRANSPORT INTERFACE

The transport user accesses the services of the transport provider by issuing the
appropriate service requests. One example is a request to transfer data over a
connection. Similarly, the transport provider notifies the user of various events,
such as the arrival of data on a connection.

The Network Services Library of SYSTEM V/68 includes a set of functions that
support the services of the Transport Interface for user processes [see intro(3)].
These functions enable a user to initiate requests to the provider and process
incoming events. Programs using the Transport Interface can link the appropriate
routines as follows:

cc prog.c -lnsl_s

Modes of Service

Two modes of service, connection-mode and connectionless-mode, are provided
by the Transport Interface. Connection-mode is circuit-oriented and enables data
to be transmitted over an established connection in a reliable, sequenced manner.
It also provides an identification mechanism that avoids the overhead of address
resolution and transmission during the data transfer phase. This service is
attractive for applications that require relatively long-lived, datastream-oriented
interactions.

Connectionless-mode, in contrast, is message-oriented and supports data transfer
in self-contained units with no logical relationship required among multiple units.
This service requires only a preexisting association between the peer users
involved, which determines the characteristics of the data to be transmitted. All
the information required to deliver a unit of data (for example, the destination
address) is presented to the transport provider, together with the data to be
transmitted, in one service access (which need not relate to any other service
access). Each unit of data transmitted is entirely self-contained. Connectionless
mode service is attractive for applications that:

• involve short-term request/response interactions

• exhibit a high level of redundancy

• are dynamically reconfigurable

• do not require guaranteed, in-sequence delivery of data

MU43815PG/D2 19-5 12/01/87

II

II

TIIE TRANSPORT INTERFACE

Connection-Mode Service

The connection-mode transport service is characterized by four phases: local
management, connection establishment, data transfer, and connection release.

Local Management

The local management phase defines local operations between a transport user
and a transport provider. For example, a user must establish a channel of
communication with the transport provider, as illustrated in Figure 19-3. Each
channel between a transport user and transport provider is a unique endpoint of
communication, and will be called the transport endpoint. The t_open(3N)
routine enables a user to choose a particular transport provider that will supply
the connection-mode services, and establishes the transport endpoint.

transport
user

~

--c_ transport endpoint

.......... · · · · · · · · · · · · · · · Transport Interface

~

transport
provider

Figure 19-3. Channel Between User and Provider

Another necessary local function for each user is to establish an identity with the
transport provider. Each user is identified by a transport address. More
accurately, a transport address is associated with each transport endpoint, and
one user process may manage several transport endpoints. In connection-mode
service, one user requests a connection to another user by specifying that user's
address. The structure of a transport address is defined by the address space of
the transport provider. An address may be as simple as a random character string
(for example, "file_server'~, or as complex as an encoded bit pattern that specifies
all information needed to route data through a network. Each transport provider
defines its own mechanism for identifying users. Addresses may be assigned to
each transport endpoint by t_bind(3N).

MU43815PG/D2 19-6 12/01/87

THE TRANSPORT INTERFACE

In addition to t_open and t_blnd, several routines are available to support local
operations. Figure 19-4 summarizes all local management routines of the
Transport Interface.

Command Description

t_alloc Allocates Transport Interface data structures.

t_bind Binds a transport address to a transport endpoint.

t_close Closes a transport endpoint.

t_error Prints a Transport Interface error message.

t_free Frees structures allocated using t_alloc.

t_getinfo Returns a set of parameters associated with a
particular transport provider.

t_getstate Returns the state of a transport endpoint.

t_look Returns the current event on a transport endpoint.

t_open Establishes a transport endpoint connected to a chosen
transport provider.

t_optmgmt Negotiates protocol-specific options with the transport
provider.

t_sync Synchronizes a transport endpoint with the transport
provider.

t_unbind Unbinds a transport address from a transport
endpoint.

Figure 19-4. Local Management Routines

MU43815PG/D2 19-7 12/01/87

II

II

THE TRANSPORT INTERFACE

Connection Establishment

The connection establishment phase enables two users to create a connection, or
virtual circuit, between them, as demonstrated in Figure 19-5.

user 1 user 2

. T ransport Interface

Tra

L
nsport Connection

+ L----------------
transport provider

Figure 19-5. Transport Connection

This phase is illustrated by a client-server relationship between two transport
users. One user, the server, typically advertises some service to a group of users,
and then listens for requests from those users. As each client requires the service,
it attempts to connect itself to the server using the server's advertised transport
address. The t_connact(3N) routine initiates the connect request. One argument
to t_connact, the transport address, identifies the server the client wishes to
access. The server is notified of each incoming request using t_listen(3N), and
may call t_accept(3N) to accept the client's request for access to the service. If
the request is accepted, the transport connection is established.

Figure 19-6 summarizes all routines available for establishing a transport
connection.

MU43815PG/D2 19-8 12/01/87

THE TRANSPORT INTERFACE

Command Description

t_accept Accepts a request for a transport connection.

t_connect Establishes a connection with the transport user at a
specified destination.

t_listen Retrieves an indication of a connect request from
another transport user.

t_rcvconnect Completes connection establishment if t_connect was
called in asynchronous mode (see the section,
"ADVANCED TOPICS'1·

Figure 19-6. Connection Establishment Routines

Data Transfer

The data transfer phase enables users to transfer data in both directions over an
established connection. Two routines, t_snd(3N) and t_rcv(3N), send and receive
data over this connection. All data sent by a user is guaranteed to be delivered to
the user on the other end of the connection in the order in which it was sent.
Figure 19-7 summarizes the connection mode data transfer routines.

Command Description

t_rcv Retrieves data that has arrived over a transport
connection.

t_snd Send data over an established transport connection.

Figure 19·7. Connection Mode Data Transfer Routines

MU43815PG/D2 19-9 12/01/87

II

II

THE TRANSPORT INTERFACE

Connection Release

The connection release phase provides a mechanism for breaking an established
connection. When you decide that the conversation should terminate, you can
request that the provider release the transport connection. Two types of
connection release are supported by the Transport Interface. The first is an
abortive release, which directs the transport provider to release the connection
immediately. Any previously sent data that has not yet reached the other
transport user may be discarded by the transport provider. The t_snddis(3N)
routine initiates this abortive disconnect, and t_rcvdis(3N) processes the incoming
indication of an abortive disconnect.

All transport providers must support the abortive release procedure. In addition,
some transport providers may also support an orderly release facility that enables
users to terminate communication gracefully with no data loss. The functions
t_sndrel(3N) and Lrcvrel(3N) support this capability. Figure 19-8 summarizes the
connection release routines.

Command Description

t_rcvdis Returns an indication of an aborted connection,
including a reason code and user data.

t_rcvrel Returns an indication that the remote user has
requested an orderly release of a connection.

t_snddis Aborts a connection or rejects a connect request.

t_sndrel Requests the orderly release of a connection.

Figure 19-8. Connection Release Routines

Connectionless-Mode Service

The connectionless-mode transport service is characterized by two phases: local
management and data transfer. The local management phase defines the same
local operations described above for the connection-mode service.

The data transfer phase enables a user to transfer data units (sometimes called
datagrams) to the specified peer user. Each data unit must be accompanied by

MU43815PG/D2 19-10 12/01/87

TIIE TRANSPORT INTERFACE

the transport address of the destination user. Two routines, Lsndudata(3N) and
Lrcvudata(3N) support this message-based data transfer facility. Figure 19-9
summarizes all routines associated with connectionless-mode data transfer.

Command Description

t_rcvudata Retrieves a message sent by another transport user.

t_rcvuderr Retrieves error information associated with a
previously sent message.

t_sndudata Sends a message to the specified destination user.

Figure 19-9. Connectionless-mode Data Transfer Routines

State Transitions

The Transport Interface has two components:

• the library routines that provide the transport services to users

• the state transition rules that define the sequence in which the transport
routines may be invoked

The state transition rules are presented in Appendix A of this guide in the form of
state tables. The state tables define the legal sequence of library calls based on
state information and the handling of events. These events include user
generated library calls, as well as provider-generated event indications.

MU43815PG/D2

Any user
completely
transitions
interface.

NOTE

of the Transport Interface must
understand all possible state

before writing software using the

19-11 12/01/87

II

II

THE TRANSPORT INTERFACE

Connection-Mode Service
This section describes the connection-mode service of the Transport Interface. As
discussed in the previous section, the connection-mode service can be illustrated
using a client-server paradigm. The important concepts of connection-mode
service will be presented using two programming examples. The examples are
related in that the first illustrates how a client establishes a connection to a server
and then communicates with the server. The second example shows the server's
side of the interaction. All examples are presented in their entirety in Appendix
c.
In the examples, the client establishes a connection with a server process. The
server then transfers a file to the client. The client, in tum, receives the data from
the server and writes it to its standard output file.

Local Management
Before the client and server can establish a transport connection, each must first
establish a local channel (the transport endpoint) to the transport provider using
t_open, and establish its identity (or address) using t_bind.

The set of services supported by the Transport Interface may not be implemented
by all transport protocols. Each transport provider has a set of characteristics
associated with it that determine the services it offers and the limits associated
with those services. This information is returned to the user by t_open, and
consists of the following:

addr maximum size of a transport address

options maximum bytes of protocol-specific options that may be
passed between the transport user and transport provider

tsdu

etsdu

connect

discon

servtype

MU43815PG/D2

maximum message size that may be transmitted in either
connection-mode or connectionless-mode

maximum expedited data message size that may be sent over
a transport connection

maximum number of bytes of user data that may be passed
between users during connection establishment

maximum bytes of user data that may be passed between
users during the abortive release of a connection

the type of service supported by the transport provider

19-12 12/01/87

THE TRANSPORT INTERFACE

The three service types defined by the Transport Interface are:

T_COTS The transport provider supports connection-mode service but
does not provide the optional orderly release facility.

T_COTS_ORD The transport provider supports connection-mode service with
the optional orderly release facility.

T_CLTS The transport provider supports connectionless-mode service.

Only one such service can be associated with the transport provider identified by
t_open.

NOTE

Lopen returns the default provider characteristics
associated with a transport endpoint. However,
some characteristics may change after an endpoint
has been opened. This will occur if the
characteristics are associated with negotiated
options (option negotiation is described later in
this section). For example, if the support of
expedited data transfer is a negotiated option, the
value of this characteristic may change. t_getlnfo
may be called to retrieve the current characteristics
of a transport endpoint.

Once a user establishes a transport endpoint with the chosen transport provider,
it must establish its identity. As mentioned earlier, t_bind accomplishes this by
binding a transport address to the transport endpoint. In addition, for servers,
this routine informs the transport provider that the endpoint will be used to listen
for incoming connect requests, also called connect indications.

An optional facility, Loptmgmt(3N), is also available during the local
management phase. It enables a user to negotiate the values of protocol options
with the transport provider. F.ach transport protocol is expected to define its own
set of negotiable protocol options, which may include such information as
Quality-of-Service parameters. Because of the protocol-specific nature of options,
only applications written for a particular protocol environment are expected to use
this facility.

MU43815PG/D2 19-13 12101/87

II

II

THE TRANSPORT INTERFACE

The Client

The local management requirements of the example client and server are used to
discuss details of these facilities. The following are the definitions needed by the
client program, followed by its necessary local management steps.

#include <•tdio.h>
#include <tiu•er.h>
#include <fcntl.h>

#define SRV....ADDR 1 /• Berver•• well known addre•• •/

main()
{

int fd, nbyte•, flag• = O;
char buf[1024];
•truct t_call ••ndcall;
extern int t_errno;

if ((fd = t_open(•/dev/tivc•, OJlDWR, NULL)) < 0) {
t_error(•t_open failed•);
exit(1);

}

if (t_bind(fd, NULL, NULL) < 0) {
t_error(•t_bind failed•);
exit(2);

}

The first argument to t_open is the pathname of a file system node that identifies
the transport protocol that will supply the transport service. In this example,
/dev/tivc is a STREAMS clone device node that identifies a generic, connection
based transport protocol [see clone(7)]. The clone device finds an available minor
device of the transport provider for the user. It is opened for both reading and
writing, as specified by the O_RDWR open flag. The third argument may be used
to return the service characteristics of the transport provider to the user. This
information is useful when writing protocol-independent software (discussed in
Appendix B). For simplicity, the client and server in this example ignore this
information and assume the transport provider has the following characteristics:

• The transport address is an integer value that uniquely identifies each user.

• The transport provider supports the T_COTS_ORD service type, and the
example will use the orderly release facility to release the connection.

• User data may not be passed between users during either connection
establishment or abortive release.

• The transport provider does not support protocol-specific options.

MU43815PG/D2 19-14 12/01187

THE TRANSPORT INTERFACE

Because these characteristics are not needed by the user, NULL is specified in the
third argument to t_open. If the user needed a service other than T_COTS_ORD,
another transport provider would be opened. An example of the T_CLTS service
invocation is presented in the section, "CONNECTIONLESS-MODE SERVICE."

The return value of Lopen is an identifier for the transport endpoint that will be
used by all subsequent Transport Interface function calls. This identifier is
actually a file descriptor obtained by opening the transport protocol file [see
open(2)]. The significance of this fact is highlighted in the section, "A
READ/WRITE INTERFACE."

After the transport endpoint is created, the client calls t_blnd to assign an address
to the endpoint. The first argument identifies the transport endpoint. The second
argument describes the address the user would like to bind to the endpoint, and
the third argument is set on return from t_bind to specify the address that the
provider bound.

The address associated with a server's transport endpoint is important, because
that is the address used by all clients to access the server. However, the typical
client does not care what its own address is, because no other process will try to
access it. That is the case in this example, where the second and third arguments
to t_bind are set to NULL. A NULL second argument will direct the transport
provider to choose an address for the user. A NULL third argument indicates that
the user does not care what address was assigned to the endpoint.

If either Lopen or t_bind fail, the program calls t_error(3N) to print an
appropriate error message to stderr. If any Transport Interface routine fails, the
global integer Lerrno is assigned an appropriate transport error value. A set of
such error values has been defined (in <tiuser.h>) for the Transport Interface,
and t_error will print an error message corresponding to the value in t_errno.
This routine is analogous to perror(3C), which prints an error message based on
the value of errno. If the error associated with a transport function is a system
error, t_errno is set to TSYSERR, and errno is set to the appropriate value.

The Server

The server in this example must take similar local management steps before
communication can begin. The server must establish a transport endpoint
through which it will listen for connect indications. The necessary definitions and
local management steps are shown below:

#include <tiu•er.h>
#include <•tropt•.h>
#include <fcntl.h>
#include <•tdio.h>
#include <•ignal.h>

MU43815PG/D2 19-15 12/01/87

II

II

THE TRANSPORT INTERFACE

#define DISCONNECT -1
#define SRV...ADDR 1 /• •erver•• well known addr••• •/

int conn_fd; /• connection e•tabli•hed here •/
eztern int t_errno;

main()
{

int li•ten_fd; /• li•t•ning tran•port endpoint •/
•truct t_bind •bind;
•truct t_call •call;

if ((li•t•n_fd = t_open(•/dev/tivc•, O_RDWR, NULL)) < 0) {
t_error(•t_open failed for li•ten_fd•);
ezit(1);

}

,..,,
• By a••uming that the addre•• i• an integer value,
• thi• program may not run over another protocol.
•I

if ((bind = C•truct t_bind •)t_alloc(li•ten_fd, T_BIND, T.....ALL))
== NULL) {

}

t_error(•t_alloc of t_bind •tructure failed•);
ezit(2);

bind->qlen = 1;
bind->addr.len = •izeof(int);
•(int •)bind->addr.buf = SRV...ADDR;

if (t_bind(li•ten_fd, bind, bind) < 0) {
t_error(•t_bind failed for li•ten_fd•);
ezit(3);

}

I•
• Wa• the correct addr••• bound?
•I

if (•(int •)bind->addr.buf I= SRV...ADDR) {
fprintf(•tderr, •t_bind bound wrong addr•••\n•);
ezit(4);

}

MU43815PG/D2 19-16 12/01187

THE TRANSPORT INTERFACE

As with the client, the first step is to call t_open to establish a transport endpoint
with the desired transport provider. This endpoint, listen_fd, will be used to listen
for connect indications. Next, the server must bind its well-known address to the
endpoint. This address is used by each client to access the server. The second
argument to Lblnd requests that a particular address be bound to the transport
endpoint. This argument points to a t_bind structure with the following format:

struct t_bind {
struct netbuf addr;
unsigned ql.en;

}

where addr describes the address to be bound, and qlen indicates the maximum
outstanding connect indications that may arrive at this endpoint. All Transport
Interface structure and constant definitions are found in <tiuser.h>.

The address is specified using a netbuf structure that contains the following
members:

struct netbuf {
unsigned int ma:x:l.en;
unsigned int l.en;
char •buf;

}

where bu/ points to a buffer containing the data, Zen specifies the bytes of data in
the buffer, and maxlen indicates the maximum bytes the buffer can hold (and need
only be set when data is returned to the user by a Transport Interface routine).
For the t_bind structure, the data pointed to by bu/ identifies a transport address.
It is expected that the structure of addresses will vary among each protocol
implementation under the Transport Interface. The netbuf structure is intended
to support any such structure.

If the value of qlen is greater than 0, the transport endpoint may be used to listen
for connect indications. In such cases, Lbind directs the transport provider to
immediately begin queueing connect indications destined for the bound address.
Furthermore, the value of qlen indicates the maximum outstanding connect
indications the server wishes to process. The server must respond to each
connect indication, either accepting or rejecting the request for connection. An
outstanding connect indication is one to which the server has not yet responded.
Often, a server will fully process a single connect indication and respond to it
before receiving the next indication. In this case, a value of 1 is appropriate for
qlen. However, some servers may wish to retrieve several connect indications
before responding to any of them. In such cases, qlen indicates the maximum
number of such outstanding indications the server will process. An example of a
server that manages multiple outstanding connect indications is presented in the

MU43815PG/D2 19-17 12/01/87

II

II

THE TRANSPORT INTERFACE

section, "ADV AN CED TOPICS."

Lalloc(3N) is called to allocate the t_blnd structure needed by t_blnd. Lalloc
takes three arguments. The first is a file descriptor that references a transport
endpoint. This is used to access the characteristics of the transport provider [see
t_open(3N)]. The second argument identifies the appropriate Transport Interface
structure to be allocated. The third argument specifies which, if any, netbuf
buffers should be allocated for that structure. T_ALL specifies that all netbuf
buffers associated with the structure should be allocated, and will cause the addr
buffer to be allocated in this example. The size of this buffer is determined from
the transport provider characteristic that defines the maximum address size. The
maxlen field of this netbuf structure will be set to the size of the newly allocated
buffer by Lalloc. The use of Lalloc will help ensure the compatibility of user
programs with future releases of the Transport Interface.

The server in this example will process connect indications one at a time, so qlen
is set to 1. The address information is then assigned to the newly allocated t_bind
structure. This t_blnd structure will be used to pass information to Lbind in the
second argument, and also will be used to return information to the user in the
third argument.

On return, the t_blnd structure will contain the address that was bound to the
transport endpoint. If the provider could not bind the requested address (perhaps
because it had been bound to another transport endpoint), it will choose another
appropriate address.

MU43815PG/D2

NOTE

Each transport provider will manage its address
space differently. Some transport providers may
allow a single transport address to be bound to
several transport endpoints, while others may
require a unique address per endpoint. The
Transport Interface supports either choice. Based
on its address management rules, a provider will
determine if it can bind the requested address. If
not, it will choose another valid address from its
address space and bind it to the transport
endpoint.

19-18 12/01/87

nrn TRANSPORT INTERFACE

The server must check the bound address to ensure that it is the one previously
advertised to clients. Otherwise, the clients will be unable to reach the server.

If t_bind succeeds, the provider will begin queueing connect indications. The
next phase of communication, connection establishment, is entered.

Connection Establishment
The connection establishment procedures highlight the distinction between clients
and servers. The Transport Interface imposes a different set of procedures in this
phase for each type of transport user. The client initiates the connection
establishment procedure by requesting a connection to a particular server using II
t_connact(3N). The server is then notified of the client's request by calling •
t_llsten(3N). The server may either accept or reject the client's request. It will
call t_accept(3N) to establish the connection, or call t_snddis(3N) to reject the
request. The client will be notified of the server's decision when t_connect
completes.

The Transport Interface supports two facilities during connection establishment
that may not be supported by all transport providers. The first is the ability to
transfer data between the client and server when establishing the connection.
The client may send data to the server when it requests a connection. This data
will be passed to the server by Lllsten. Similarly, the server can send data to the
client when it accepts or rejects the connection. The connect characteristic
returned by Lopen determines how much data, if any, two users may transfer
during connect establishment.

The second optional service supported by the Transport Interface during
connection establishment is the negotiation of protocol options. The client may
specify protocol options that it would like the transport provider and/or the
remote user. The Transport Interface supports both local and remote option
negotiation. As discussed earlier, option negotiation is inherently a protocol
specific function. Use of this facility is discouraged if protocol independent
software is a goal (see Appendix B).

The Client

Continuing with the client/server example, the steps needed by the client to
establish a connection are illustrated in the next program fragment.

I•
• 87 &••uming that the addr••• i• an integer va1ue,
• thi• program ma7 not run over another protoco1.
•I

MU43815PG/D2 19-19 12/01/87

II

THE TRANSPORT INTERFACE

if ((•ndcall = (•truct t_call •)t_alloc(fd, T_CALL, T_A.DDR)) == NULL) {
t_error(•t_alloc failed•);
exit(3);

}
•ndcall->addr.len = •izeof(int);
•(int •)•ndcall->addr.buf = SRV_A.DDR;

if (t_connect(fd, •ndcall, NULL) < 0) {
t_error(•t_connect failed for fd•);
exit(4);

}

The t_connect call establishes the connection with the server. The first argument
to t_connect identifies the transport endpoint through which the connection is
established, and the second argument identifies the destination server. This
argument is a pointer to a t_call structure, which has the following format:

•t.ruct. t._call {

}

•t.ruct. net.buf addr;
•t.ruct. net.buf opt;
•t.ruct. net.buf udata;
int sequence;

addr identifies the address of the server, opt may be used to specify protocol
specific options that the client would like to associate with the connection, and
udata identifies user data that may be sent with the connect request to the server.
The sequence field has no meaning for t_connect.

t_alloc is called above to allocate the t_call structure dynamically. Once
allocated, the appropriate values are assigned. In this example, no options or
user data are associated with the t_connect call, but the server's address must be
set. The third argument to t_alloc is set to T_ADDR to indicate that an
appropriate netbuf buffer should be allocated for the address. The server's
address is then assigned to buf, and Zen is set accordingly.

The third argument to t_connect can be used to return information about the
newly established connection to the user, and may retrieve any user data sent by
the server in its response to the connect request. It is set to NULL by the client
here to indicate that this information is not needed. The connection will be
established on successful return of t_connect. If the server rejects the connect
request, t_connect will fail and set t_errno to TLOOK.

MU43815PG/D2 19-20 12/01/87

1HE TRANSPORT INTERFACE

Event Handling

The TLOOK error has special significance in the Transport Interface. Some
Transport Interface routines may be interrupted by an unexpected asynchronous
transport event on the given transport endpoint, and TLOOK notifies the user
that an event has occurred. As such, TLOOK does not indicate an error with a
Transport Interface routine, but the normal processing of that routine will not be
performed because of the pending event. The events defined by the Transport
Interface are listed here:

T_USTEN

T_CONNECT

T_DATA

T_EXDATA

A request for a connection, called a connect indication,
has arrived at the transport endpoint.

The confirmation of a previously sent connect request,
called a connect confirmation, has arrived at the transport
endpoint. The confirmation is generated when a server
accepts a connect request.

User data has arrived at the transport endpoint.

Expedited user data has arrived at the transport endpoint.
Expedited data will be discussed later in this section.

T_DISCONNECT A notification that the connection was aborted or that the
server rejected a connect request, called a disconnect
indication, has arrived at the transport endpoint.

T_ORDREL A request for the orderly release of a connection, called an
orderly release indication, has arrived at the transport
endpoint.

T_UDERR The notification of an error in a previously sent datagram,
called a unitdata error indication, has arrived at the
transport endpoint {see the section,
"CONNECTION-LESS-MODE SERVICE'1·

As described in the state tables of Appendix A, it is possible in some states to
receive one of several asynchronous events. The Llook{3N) routine enables a
user to determine what event has occurred if a TLOOK error is returned. The
user can then process that event accordingly. In the example, if a connect request
is rejected, the event passed to the client will be a disconnect indication. The
client will exit if its request is rejected.

MU43815PG/D2 19-21 12/01/87

II

II

TiiE TRANSPORT INTERFACE

The Server

Returning to the example, when the client calls Lconnect, a connect indication
will be generated on the server's listening transport endpoint. The steps required
by the server to process the event are presented below. For each client, the server
o;s,.,.,0 1-~ A "''"""-A,... ..-A_.,.•11Artl-,,1 o ,._o ... Oft-J'AW' ,,.,,.,~00 .. _ - ... - ... ,,...- _ u."'"'"'"t'•g •••"" va.u.1."""'• .&"''fw."'g• u.a.1.w .;:iyu.•w.1.ag u. '"'"'.&. y.1."""~ao •v •.&~Ul.f)1i;; 1..1.1.-.;;

connection.

}

if ((call • (•truct t_call •)t_alloc(li•ten_fd, T_CALL, T..ALL)) == NULL) {
t_error(•t_alloc of t_call •tructure failed•);
exit(&);

}

while (1) {

}

if (t_li•ten(li•ten_fd, call) < 0) {
t_error(•t_li•ten failed for li•ten_fd•);
exit(8);

}

if ((CODD_fd • accept_call(li•ten_fd, call)) ,_ DISCONNECT)
run_•erTer(li•ten_fd);

The server will loop forever, processing each connect indication. First, the server
calls Lllsten to retrieve the next connect indication. When one arrives, the server
calls accepLcall to accept the connect request. accept_call accepts the
connection on an alternate transport endpoint (as discussed below) and returns
the value of that endpoint. conn..Jd is a global variable that identifies the transport
endpoint where the connection is established. Because the connection is accepted
on an alternate endpoint, the server may continue listening for connect
indications on the endpoint that was bound for listening. If the call is accepted
without error, run_aervar will spawn a process to manage the connection.

The server allocates a Lcall structure to be used by t_llsten. The third argument
to t_alloc, T_ALL, specifies that all necessary buffers should be allocated for
retrieving the caller's address, options, and user data. As mentioned earlier, the
transport provider in this example does not support the transfer of user data
during connection establishment, and also does not support any protocol options.
Therefore, t_alloc will not allocate buffers for the user data and options. It must,
however, allocate a buffer large enough to store the address of the caller. t_alloc
determines the buffer size from the addr characteristic returned by Lopen. The
maxlen field of each netbuf structure will be set to the size of the newly allocated
buffer by Lalloc (maxlen is 0 for the user data and options buffers).

MU43815PG/D2 19-22 12/01/87

THE TRANSPORT INTERFACE

Using the t_call structure, the server calls t_listen to retrieve the next connect
indication. If one is currently available, it is returned to the server immediately.
Otherwise, t_listen will block until a connect indication arrives.

NOTE

The Transport Interface supports an asynchronous
mode for such routines that will prevent a process
from blocking. This feature is discussed in the
section, "ADV AN CED TOPICS."

When a connect indication arrives, the server calls accept_call to accept the
client's request, as follows:

accept_call(li•ten_fd, call)
int li•ten_fd;
•truct t_call •call;
<

}

int re•fd;

if ((re•fd • t_open(•/dev/tivc•, DJlDWR, NULL)) < 0) {
t_error(•t_open for re•ponding fd failed•);
n:it(7);

}

if (t_bind(re•fd, NULL, NULL) < 0) {
t_error(•t_bind for reaponding fd failed•);
exit(&);

}

if (t_accept(liaten_fd, reafd, call) < O) {

}

if (t_errno == TI.DOK) { /• muat be a diaconnect •/
if (t_rcvdia(liaten_fd, NULL) < 0) {

t_error(•t.J"cvdi• failed for liaten_td•);
exit(9);

}

}

if (t_cloae(reafd) < 0) {

}

t_error(•t_cloae failed for re•ponding fd•);
exit(10);

I• go back up and liaten for other call• •/
return(DISCONNECT);

t_error(•t_accept failed•);
exit(11);

return(re•fd);

MU43815PG/D2 19-23 12/01/87

II

II

THE TRANSPORT INTERFACE

accept_call takes two arguments. listen_/d identifies the transport endpoint
where the connect indication arrived, and call is a pointer to a Lcall structure that
contains all information associated with the connect indication. The server will
first establish another transport endpoint by opening the clone device node of the
transport provider and binding an address. As with the client, a NULL value is
passed to Lblnd to specify that the user does not care what address is bound by
the provider. The newly established transport endpoint, resfd, is used to accept
the client's connect request.

The first two arguments of t_accept specify the listening transport endpoint and
the endpoint where the connection will be accepted respectively. A connection
may be accepted on the listening endpoint. However, this would prevent other
clients from accessing the server for the duration of that connection.

The third argument of Laccept points to the t_call structure associated with the
connect indication. This structure should contain the address of the calling user
and the sequence number returned by Llisten. The value of sequence has
particular significance if the server manages multiple outstanding connect
indications. The section, "ADVANCED TOPICS", presents such an example.
Also, the Lcall structure should identify protocol options the user would like to
specify, and user data that may be passed to the client. Because the transport
provider in this example does not support protocol options or the transfer of user
data during connection establishment, the Lcall structure returned by t_listen
may be passed without change to Laccept.

For simplicity in the example, the server will exit if either the Lopen or Lblnd
call fails. exit(2) will close the transport endpoint associated with listen_Jd,
causing the transport provider to pass a disconnect indication to the client that
requested the connection. This disconnect indication notifies the client that the
connection was not established; t_connect will fail, setting Lerrno to TLOOK.

Laccept may fail if an asynchronous event has occurred on the listening transport
endpoint before the connection is accepted, and Lerrno will be set to TLOOK.
The state transition table in Appendix A shows that the only event that may occur
in this state with only one outstanding connect indication is a disconnect
indication. This event may occur if the client decides to undo the connect request
it had previously initiated. If a disconnect indication arrives, the server must
retrieve the disconnect indication using Lrcvdls. This routine takes a pointer to a
t_dlscon structure as an argument, which is used to retrieve information
associated with a disconnect indication. In this example, however, the server
does not care to retrieve this information, so it sets the argument to NULL. After
receiving the disconnect indication, accepLcall closes the responding transport
endpoint and returns DISCONNECT, which informs the server that the
connection was disconnected by the client. The server then listens for further
connect indications.

MU43815PG/D2 19-24 12/01/87

THE TRANSPORT INTERFACE

Figure 19-10 illustrates how the server establishes connections.

client server

responding .. endpoint

..........

transport provider

listening
endpoint

........ Tr ansport Interface

transport
connection

Figure 19-10. Listening and Responding Transport Endpoints

The transport connection is established on the newly created responding
endpoint, and the listening endpoint is freed to retrieve further connect
indications.

Data Transfer
Once the connection has been established, both the client and server may begin
transferring data over the connection using Lsnd and Lrcv. In fact, the
Transport Interface does not differentiate the client from the server from this point
on. Either user may send and receive data, or release the connection. The
Transport Interface guarantees reliable, sequenced delivery of data over an
existing connection.

Two classes of data may be transferred over a transport connection: normal and
expedited. Expedited data is typically associated with information of an urgent
nature. The exact semantics of expedited data are subject to the interpretations of
the transport provider. Furthermore, all transport protocols do not support the
notion of an expedited data class [see Lopen(3N)].

All transport protocols support the transfer of data in byte stream mode, where
''byte stream" implies no concept of message boundaries on data that is
transferred over a connection. However, some transport protocols support the
preservation of message boundaries over a transport connection. This service is

MU43815PG/D2 19-25 12101/87

II

II

THE TRANSPORT INTERFACE

supported by the Transport Interface, but protocol-independent software must not
rely on its existence.

The message interface for data transfer is supported by a special flag of t_snd and
t_rcv called T_MORE. The messages, called Transport Service Data Units (TSOU),
may be transferred between two transport users as distinct units. The maximum
size of a TSOU is a characteristic of the underlying transport protocol. This
information is available to the user from t_open and t_getinfo. Because the
maximum TSOU size can be large (possibly unlimited), the Transport Interface
enables a user to transmit a message in multiple units.

To send a message in multiple units over a transport connection, the user must
set the T_MORE flag on every t_snd call except the last. This flag indicates that
the user will send more data associated with the message in a subsequent call to
t_snd. The last message unit should be transmitted with T_MORE turned off to
indicate that this is the end of the TSOU.

Similarly, a TSOU may be passed to the user on the receiving side in multiple
units. Again, if t_rcv returns with the T_MORE flag set, the user should continue
calling t_rcv to retrieve the remainder of the message. The last unit in the
message will be indicated by a call to t_rcv that does not set T_MORE.

CAUTION

The T_MORE flag implies nothing about how the
data may be packaged below the Transport
Interface. Furthermore, it implies nothing about
how the data may be delivered to the remote user.
Each transport protocol, and each implementation
of that protocol, may package and deliver the data
differently.

For example, if a user sends a complete message in a single call to t_snd, there is
no guarantee that the transport provider will deliver the data in a single unit to
the remote transport user. Similarly, a TSOU transmitted in two message units
may be delivered in a single unit to the remote transport user. The message
boundaries may only be preserved by noting the value of the T_MORE flag on
t_snd and t_rcv. This will guarantee that the receiving user will see a message
with the same contents and message boundaries as was sent by the remote user.

MU43815PG/D2 19-26 12/01/87

THE TRANSPORT INTERFACE

The Client

Continuing with the client/server example, the server will transfer a log file to the
client over the transport connection. The client receives this data and writes it to
its standard output file. A byte stream interface is used by the client and server,
where message boundaries (that is, the T_MORE flag) are ignored. The client
receives data using the following instructions:

while ((nb7t•• = t_rcv(fd, buf, 1024, &flag•)) != -1) {
if (fwrite(buf, 1, nbyte•, •tdout) < 0) {

fprintf(•tderr, •fwrite failed0);
exit (6) ;

}
}

The client continuously calls Lrcv to process incoming data. If no data is
currently available, t_rcv blocks until data arrives. t_rcv will retrieve the available
data up to 1024 bytes, which is the size of the client's input buffer, and will return
the number of bytes that were received. The client then writes this data to
standard output and continues. The data transfer phase will complete when t_rcv
fails. t_rcv will fail if an orderly release indication or disconnect indication arrives,
as will be discussed later in this section. If the fwrite(3S) call fails for any reason,
the client will exit, thereby closing the transport endpoint. If the transport
endpoint is closed (either by exit or t_close when it is in the data transfer phase,
the connection will be aborted and the remote user will receive a disconnect
indication.

The Server

Looking now at the other side of the connection, the server manages its data
transfer by spawning a child process to send the data to the client. The parent
process then loops back to listen for further connect indications. run_server is
called by the server to spawn this child process as follows:

connrel•a•• ()
{

/• conn_fd i• global becau•• needed h•r• •/
if (t_look(conn_fd) == TJ)ISCONNECT) {

fprintf(•tderr, •connection aborted\n•);
exit (12) ;

}

I• •l•• orderly r•l•a•• indication - normal exit •/
exit(O);

MU43815PG/D2 19-27 12101/87

II

II

THE TRANSPORT INTERFACE

}

run_•erTer(li•ten_fd)
int li•t•n_fd;
{

int nb;yte•;
FILE •logfp;
char buf[1024];

•witch (fork()) {

ca•• -1:

I• file pointer to log file •/

perror(•fork failed•);
exit(20);

default: /• parent •/

I• clo•• conn_fd and then go up and li•t•n again •/
if (t_clo•e(conn_fd) < 0) {

t_error(•t_clo•• failed for conn_fd•);
exit(21);

}

return;

ca•• O: I• child •/

/• clo•• li•t•n_fd and do ••rTice •/
if (t_clo•e(li•ten_fd) < 0) {

t_error(•t_clo•• failed for li•ten_fd•);
exit(22);

}
if ((logfp = fopen(•logfile•, •r•)) ==NULL) {

perror(•cannot open logfile•);
exit(23);

}

•ignal(SIOPOLL, connr•l•a••);
if (ioctl(conn_fd, I_BETSIO, S_INPUT) < 0) {

perror(•ioctl I_SETSIO failed•);
exit(24);

}
if (t_look(conn_fd) != 0) {/• wa• di•connect already there? •/

fprintf(•tderr, •t_look returned unexpected •T•nt\n•);
exit(26);

}

while ((nb;yt•• = fread(buf, 1, 1024, logfp)) > 0)
if (t_•nd(conn_td, buf, nb;yte•, 0) < 0) {

t_error(•t-•nd failed•);
exit(28);

}

After the fork, the parent process will return to the main processing loop and
listen for further connect indications. Meanwhile, the child process will manage

MU43815PG/D2 19-28 12/01/87

THE TRANSPORT INTERFACE

the newly established transport connection. If the fork call fails, exit will close
the transport endpoint associated with listen_Jd. This action will cause a
disconnect indication to be passed to the client, and the client's Lconnect call
will fail.

The server process reads 1024 bytes of the log file at a time and sends that data to
the client using Land. buf points to the start of the data buffer, and nllytes
specifies the number of bytes to be transmitted. The fourth argument is used to
specify optional flags. Two flags are currently supported: T_EXPEDITED may be
set to indicate that the data is expedited, and T_MORE may be set to define
message boundaries when transmitting messages over a connection. Neither flag
is set by the server in this example.

If the user begins to flood the transport provider with data, the provider may
exert back pressure to provide flow control. In such cases, Lsnd will block until
the flow control is relieved, and will then resume its operation. t_snd will not
complete until nllyte bytes have been passed to the transport provider.

The Land routine does not look for- a disconnect indication (signifying that the
connection was broken) before passing data to the provider. Also, because the
data traffic is flowing in one direction, the user will never look for incoming
events. If, for some reason, the connection is aborted, the user should be notified
because data may be lost. One option available to the user is to use t_look to
check for incoming events before each t_snd call. A more efficient solution is the
one presented in the example. The STREAMS LSETSIG ioctl enables a user to
request a signal when a given event occurs [see streamio(7) and signal(2)]. The
STREAMS event of concern here is SJNPUT, which will cause a signal to be sent
to the user if any input arrives on the Stream referenced by conn_Jd. If a
disconnect indication arrives, the signal catching routine (connrelease) will print
an appropriate error message and then exit.

If the data traffic flowed in both directions in this example, the user would not
have to monitor the connection for disconnects. If the client alternated t_snd and
t_rcv calls, it could rely on Lrcv to recognize an incoming disconnect indication.

Connection Release
At any point during data transfer, either user may release the transport
connection and end the conversation. As mentioned earlier, two forms of
connection release are supported by the Transport Interface. The first, abortive
release, breaks a connection immediately and may result in the loss of any data
that has not yet reached the destination user. t_snddis may be called by either
user to generate an abortive release. Also, the transport provider may abort a
connection if a problem occurs below the Transport Interface. t_snddis enables a
user to send data to the remote user when aborting a connection. Although the

MU43815PG/D2 19-29 12/01/87

II

II

THE TRANSPORT INTERFACE

abortive release is supported by all transport providers, the ability to send data
when aborting a connection is not.

When the remote user is notified of the aborted connection, t_rcvdis must be
called to retrieve the disconnect indication. This call will return a reason code
that indicates why the connection was aborted, and will return any user data that
may have accompanied the disconnect indication (if the abortive release was
initiated by the remote user). This reason code is specific to the underlying
transport protocol, and should not be interpreted by protocol-independent
software.

The second form of connection release is orderly release, which gracefully
terminates a connection and guarantees that no data will be lost. All transport
providers must support the abortive release procedure, but orderly release is an
optional facility that is not supported by all transport protocols.

The Sarver

The client-server example in this section assumes that the transport provider does
support the orderly release of a connection. When all the data has been
transferred by the server, the connection may be released as follows:

}
}

if (t_•ndrel(conn_fd) < O) {
t_error(•t-•ndrel failed•);
exit(27);

}
pau•e(); /• unti1 orderl7 re1ea•• indication arriT•• •/

The orderly release procedure consists of two steps by each user. The first user to
complete data transfer may initiate a release using t_sndrel, as illustrated in the
example. This routine informs the client that no more data will be sent by the
server. When the client receives such an indication, it may continue sending data
back to the server if desired. When all data has been transferred, however, the
client must also call t_sndrel to indicate that it is ready to release the connection.
The connection will be released only after both users have requested an orderly
release and received the corresponding indication from the other user.

In this example, data is transferred in one direction from the server to the client,
so the server does not expect to receive data from the client after it has initiated
the release procedure. Thus, the server simply calls pause(2) after initiating the
release. Eventually, the remote user will respond with its orderly release request,
and the indication will generate a signal that will be caught by connrelease.

MU43815PG/D2 19-30 12101/87

THE TRANSPORT INTERFACE

Remember that the server earlier issued an I_SETSIG ioctl call to generate a signal
on any incoming event. Since the only possible Transport Interface events that
can occur in this situation are a disconnect indication or orderly release indication,
connrelease will terminate normally when the orderly release indication arrives.
The exit call in connrelease will close the transport endpoint, thereby freeing the
bound address for use by another user. If a user process wants to close a
transport endpoint without exiting, it may call t_close.

The Client

The client's view of connection release is similar to that of the server. As II
mentioned earlier, the client continues to process incoming data until t_rcv fails. •
If the server releases the connection (using either t_snddis or t_sndrel), t_rcv will
fail and set t_errno to TLOOK. The client then processes the connection release
as follows:

}

if ((t_errno •• TLOOK) aa (t_look(fd) •= T_ORDREL)) {
if (t~cvrel(fd) < 0) {

}

t_error(•t~cvrel failed•);
exit(8);

}
if (t_•ndrel(fd) < 0) {

t_error(•t-•ndrel failed•);
exit(7);

}

exit(O);

t_error(•t~cv failed•);
exit(8);

Under normal circumstances, the client terminates the transfer of data by calling
t_sndrel to initiate the connection release. When the orderly release indication
arrives at the client's side of the connection, the client checks to make sure the
expected orderly release indication has arrived. If so, it proceeds with the release
procedures by calling Lrcvrel to process the indication and t_sndrel to inform the
server that it is also ready to release the connection. At this point the client exits,
thereby closing its transport endpoint.

Because all transport providers do not support the orderly release facility just
described, users may have to use the abortive release facility provided by
t_snddis and t_rcvdis. However, steps must be taken by each user to prevent
any loss of data. For example, a special byte pattern may be inserted in the data
stream to indicate the end of a conversation. Many mechanisms are possible for

MU43815PG/D2 19-31 12/01/87

II

THE TRANSPORT INTERFACE

preventing data loss. Each application and high level protocol must choose an
appropriate mechanism given the target protocol environment and requirements.

Connectionless-Mode Service
This section describes the connectionless-mode service of the Transport Interface.
Connectionless-mode service is appropriate for short-term request/response
interactions, such as transaction processing applications. Data are transferred in
self-contained units with no logical relationship required among multiple units.

The connectionless-mode services will be described using a transaction server as
an example. This server waits for incoming transaction queries, and processes
and responds to each query.

Local Management
Just as with connection-mode service, the transport users must perform
appropriate local management steps before data can be transferred. A user must
choose the appropriate connectionless service provider using t_open and establish
its identity using t_bind.

t_optmgmt may be used to negotiate protocol options that may be associated with
the transfer of each data unit. As with the connection-mode service, each
transport provider specifies the options, if any, that it supports. Option
negotiation is therefore a protocol-specific activity.

In the example, the definitions and local management calls needed by the
transaction server are as follows:

#include <atdio.h>
#include <fcntl.h>
#include <tiuaer.h>

#define SRV_.ADDR 2 /• server's well known address •/

main()
{

int fd;
int flags;

atruct t_bind •bind;
atruct t_unitdata •ud;
atruct t_uderr •uderr;

extern int t_errno;

if ((fd = t_open(•/dev/tidg•, O__RDWR, NULL)) < 0) {

MU43815PG/D2 19-32 12/01/87

TIIE TRANSPORT INTERFACE

}

t_error(•unabl• to open /dev/provider•);
n:it(1);

if ((bind • (•truct t_bind •)t_alloc(fd, T_BIND, T...ADDR)) == NULL) {
t_error(•t_alloc of t_bind •tructure failed•);
n:it(2);

}

bind->addr.l•n = •i••of(int);
•(int •)bind->addr.buf = SRV...ADDR;
bind->qlen = O;

if (t_bind(fd, bind, bind) < 0) {
t_error(•t_bind failed•);
n:it(3);

}

I•
• i• the bound addr••• correct?
•I

if (•(int •)bind->addr.buf I= SRV...ADDR) {
fprintf(•tderr. •t_bind bound wrong addr•••\n•);
e:dt(4);

}

The local management steps should look familiar by now. The server establishes
a transport endpoint with the desired transport provider using t_open. Each
provider has an associated service type, so the user may choose a particular
service by opening the appropriate transport provider file. This connectionless
mode server ignores the characteristics of the provider returned by t_open in the
same way as the users in the connection-mode example, setting the third
argument to NULL. For simplicity, the transaction server assumes the transport
provider has the following characteristics:

• The transport address is an integer value that uniquely identifies each user.

• The transport provider supports the T_CLTS service type (connectionless
transport service, or datagram).

• The transport provider does not support any protocol-specific options.

The connectionless server also binds a transport address to the endpoint, so that
potential clients may identify and access the server. A t_bind structure is
allocated using Lalloc and the buf and len fields of the address are set
accordingly.

MU43815PG/D2 19-33 12/01/87

II

II

THE TRANSPORT INTERFACE

One important difference between the connection-mode server and this
connectionless-mode server is that the qlen field of the t_bind structure has no
meaning for connectionless-mode service. That is because all users are capable of
receiving datagrams once they have bound an address. The Transport Interface
defines an inherent client-server relationship between two users while
establishing a transport connection in the connection-mode service. It is the
context of this example, not the Transport Interface, that defines one user as a
server and another as a client.

Because the address of the server is known by all potential clients, the server
checks the bound address returned by t_bind to ensure it is correct.

Data Transfer
Once a user has bound an address to the transport endpoint, datagrams may be
sent or received over that endpoint. Each outgoing message is accompanied by
the address of the destination user. In addition, the Transport Interface enables a
user to specify protocol options that should be associated with the transfer of the
data unit (for example, transit delay). As discussed earlier, each transport
provider defines the set of options, if any, that may accompany a datagram.
When the datagram is passed to the destination user, the associated protocol
options may be returned as well.

The following sequence of calls illustrates the data transfer phase of the
connectionless-mode server.

if ((ud = (•truct t_unitdata •)t_alloc(fd, T_UNITDATA, T_ALL)) == NULL) {
t_error(•t_alloc of t_unitdata •tructure failed•);
u:it(6);

}

if ((uderr = C•truct t_uderr •)t_alloc(fd, T_UDERROR, T_ALL))
t_error(•t_alloc of t_uderr •tructure failed•);
exit(6);

}

while (1) {
if (t_rcvudata(fd, ud, &flag•) < 0) {

if (t_errno == TLOOK) {

I•
• Error on previou•ly •ent datagram.
•I

MU43815PG/D2 19-34

NULL) {

12/01/87

}
}

}

}

if (t~cvuderr(fd, uderr) < 0) {
n:it(7);

}

1HE 1RANSPORT INTERFACE

fprintf(•tderr, •bad datagram, error = ld\n•,
uderr->error);

continue;
}

t_error(•t~cvudata failed•);
exit(B);

I•
• Quer7() proc••••• the reque•t and place• the
• r••pon•• in ud->udata.buf, ••tting ud->udata.len
•I

if (t_•ndudata(fd, ud, 0) < 0) {
t_error(•t-•ndudata failed•);
exit(9);

}

The server must first allocate a t_unitdata structure for storing datagrams, which
has the following format:

atruct t_unitdata {
atruct netbuf addr;
atruct netbuf opt;
atruct netbuf udata;

}

addr holds the source address of incoming datagrams and the destination address
of outgoing datagrams, opt identifies any protocol options associated with the
transfer of the datagram, and udata holds the data itself. The addr, opt, and udata
fields must all be allocated with buffers that are large enough to hold any possible
incoming values. As described in the previous section, the T_ALL argument to
t_alloc will ensure this and will set the maxlen field of each netbuf structure
accordingly. Because the provider does not support protocol options in this
example, no options buffer will be allocated, and maxlen will be set to zero in the

MU43815PG/D2 19-35 12/01/87

II

II

THE TRANSPORT INTERFACE

netbuf structure for options. A t_uderr structure is also allocated by the server for
processing any datagram errors, as will be discussed later in this section.

The transaction server loops forever, receiving queries, processing the queries,
and responding to the clients. It first calls t_rcvudata to receive the next query.
t_rcvudata will retrieve the next available incoming datagram. If none is
currently available, t_rcvudata will block, waiting for a datagram to arrive. The
second argument of t_rcvudata identifies the t_unitdata structure where the
datagram should be stored.

The third argument, flags, must point to an integer variable and may be set to
T_MORE on return from t_rcvudata to indicate that the user's udata buffer was
not large enough to store the full datagram. In this case, subsequent calls to
t_rcvudata will retrieve the remainder of the datagram. Because t_alloc allocates
a udata buffer large enough to store the maximum datagram size, the transaction
server does not have to check the value of flags.

If a datagram is received successfully, the transaction server calls the query routine
to process the request. This routine will store the response in the structure
pointed to by ud, and will set ud->udata.len to indicate the number of bytes in the
response. The source address returned by t_rcvudata in ud->addr will be used as
the destination address by t_sndudata.

When the response is ready, t_sndudata is called to return the response to the
client. The Transport Interface prevents a user from flooding the transport
provider with datagrams using the same flow control mechanism described for the
connection-mode service. In such cases, t_sndudata will block until the flow
control is relieved, and will then resume its operation.

Datagram Errors

If the transport provider cannot process a datagram that was passed to it by
t_sndudata, it will return a unit data error event, T_UDERR, to the user. This
event includes the destination address and options associated with the datagram,
plus a protocol-specific error value that describes what may be wrong with the
datagram. The reason a datagram could not be processed is protocol-specific.
One reason may be that the transport provider could not interpret the destination
address or options. Each transport protocol is expected to specify all reasons for
which it is unable to process a datagram.

MU43815PG/D2 19-36 12/01/87

THE TRANSPORT INTERFACE

NOTE

The unit data error indication is not necessarily
intended to indicate success or failure in delivering
the datagram to the specified destination. The
transport protocol decides how the indication will
be used. Remember, the connectionless service
does not guarantee reliable delivery of data.

The transaction server will be notified of this error event when it attempts to
receive another datagram. In this case, t_rcvudata will fail, setting t_errno to II
TLOOK. If TLOOK is set, the only possible event is T_UDERR, so the server calls •
t_rcvuderr to retrieve the event. The second argument to t_rcvuderr is the
t_uderr structure that was allocated earlier. This structure is filled in by
t_rcvuderr and has the following format.

at..ruct.. t.._uderr {
at..ruct.. net..buf addr;
at..ruct.. net..buf opt..;
1ong error;

}

where addr and opt identify the destination address and protocol options as
specified in the. bad datagram, and error is a protocol-specific error code that
indicates why the provider could not process the datagram. The transaction
server prints the error code and then continues by entering the processing loop
again.

A Read/Write Interface
A user may wish to establish a transport connection and then axec(2) an existing
user program such as cat{l) to process the data as it arrives over the connection.
However, existing programs use read(2) and write(2) for their input/output needs.
The Transport Interface does not directly support a read/write interface to a
transport provider, but one is available with the operating system. This interface
enables a user to issue read and write calls over a transport connection that is in
the data transfer phase. This section describes the read/write interface to the
connection-mode service of the Transport Interface. This interface is not available
with the connectionless-mode service.

The read/write interface is presented using the client example of the section,
"CONNECTION-MODE SERVICE," with some minor modifications. The clients
are identical until the data transfer phase is reached. At that point, this client will
use the read/write interface and cat(l) to process incoming data. cat can be run

MU43815PG/D2 19-37 12/01/87

II

THE TRANSPORT INTERFACE

without change over the transport connection. Only the differences between this
client and that of the example in the section, "CONNECTION-MODE SERVICE,"
are shown below.

#include <atropta.h>

}

I•
• Same local management and connection
• ••tabliahment •t•p•.
•I

if (ioctl(fd, I....PUSH, •tirdwr•) < 0) {
perror(•I....PUSH of tirdwr failed•);
exit(&);

}

clo•• (0);
dup(fd);
execl(•/bin/cat•, •/bin/cat•, O);
p•rror(•execl of /bin/cat failed•);
exit(8);

The client invokes the read/write interface by pushing the tirdwr(7) module onto
the Stream associated with the transport endpoint where the connection was
established [see !_PUSH in streamio(7)]. This module converts the Transport
Interface above the transport provider into a pure read/write interface. With the
module in place, the client calls close(2) and dup(2) to establish the transport
endpoint as its standard input file, and uses /bin/cat to process the input.
Because the transport endpoint identifier is a file descriptor, the facility for duping
the endpoint is available to users.

Because the Transport Interface has been implemented using STREAMS, the
facilities of this character input/output mechanism can be used to provide
enhanced user services. By pushing the tirdwr module above the transport
provider, the user's interface is effectively changed. The semantics of read and
write must be followed, and message boundaries will not be preserved.

MU43815PG/D2 19-38 12/01/87

THE TRANSPORT INTERFACE

CAUTION

The tlrdwr module may only be pushed onto a
STREAM when the transport endpoint is in the
data transfer phase. Once the module is pushed,
the user may not call any Transport Interface
routines. If a Transport Interface routine is
invoked, tirdwr will generate a fatal protocol error,
EPROTO, on that STREAM, rendering it unusable.
Furthermore, if the user pops the tirdwr module
off the STREAM (see LPOP in streamio(7)), the
transport connection will be aborted.

The exact semantics of write, read, and close using tirdwr are described below.
To summarize, tlrdwr enables a user to send and receive data over a transport
connection using read and write. This module will translate all Transport
Interface indications into the appropriate actions. The connection can be released
with the close system call.

write

The user may transmit data over the transport connection using write. The tlrdwr
module will pass data through to the transport provider. However, if a user
attempts to send a zero-length data packet, which the STREAMS mechanism
allows, tirdwr will discard the message. If for some reason the transport
connection is aborted (for example the remote user aborts the connection using
Lsnddis), a STREAMS hangup condition will be generated on that Stream, and
further write calls will fail and set errno to ENXIO. The user can still retrieve any
available data after a hangup, however.

read
read may be used to retrieve data that has arrived over the transport connection.
The tirdwr module will pass data through to the user from the transport provider.
However, any other event or indication passed to the user from the provider will
be processed by tlrdwr as follows:

• read cannot process expedited data because it cannot distinguish expedited
data from normal data for the user. If an expedited data indication is received,
tlrdwr will generate a fatal protocol error, EPROTO, on that Stream. This error
will cause further system calls to fail. You must therefore be aware that you
should not communicate with a process that is sending expedited data.

MU43815PG/D2 19-39 12/01/87

II

II

THE TRANSPORT INTERFACE

• If an abortive disconnect indication is received, tirdwr will discard the
indication and generate a STREAMS hangup condition on that Stream.
Subsequent read calls will retrieve any remaining data, and then read will
return zero for all further calls (indicating end-of-file).

• If an orderly release indication is received, tlrdwr will discard the indication
and deliver a zero-length STREAMS message to the user. As described in
read(2), this notifies the user of end-of-file by returning 0 to the user.

• If any other Transport Interface indication is received, tirdwr will generate a
fatal protocol error, EPROTO, on that Stream. This will cause further system
calls to fail. If a user pushes tlrdwr onto a Stream after the connection has
been established, such indications will not be generated.

Close
With tlrdwr on a Stream, the user can send and receive data over a transport
connection for the duration of that connection. Either user may terminate the
connection by closing the file descriptor associated with the transport endpoint or
by popping the tlrdwr module off the Stream. In either case, tirdwr will take the
following actions:

• If an orderly release indication had previously been received by tirdwr, an
orderly release request will be passed to the transport provider to complete the
orderly release of the connection. The remote user, who initiated the orderly
release procedure, will receive the expected indication when data transfer
completes.

• If a disconnect indication had previously been received by tlrdwr, no special
action is taken.

• If neither an orderly release indication nor disconnect indication had
previously been received by tlrdwr, a disconnect request will be passed to the
transport provider to abortively release the connection.

•If an error had previously occurred on the Stream and a disconnect indication
has not been received by tlrdwr, a disconnect request will be passed to the
transport provider.

A process may not initiate an orderly release after tlrdwr is pushed onto a Stream,
but tlrdwr will handle an orderly release properly if it is initiated by the user on
the other side of a transport connection. If the client in this section is
communicating with the server program in the section, "CONNECTION-MODE
SERVICE," that server will terminate the transfer of data with an orderly release
request. The server then waits for the corresponding indication from the client.
At that point, the client exits and the transport endpoint is closed. As explained

MU43815PG/D2 19-40 12/01/87

THE 1RANSPORT INTERFACE

in the first bullet item above, when the file descriptor is closed, tirdwr will initiate
the orderly release request from the client's side of the connection. This will
generate the indication that the server is expecting, and the connection will be
released properly.

Advanced Topics
This section presents important concepts of the Transport Interface that have not
been covered in the previous sections. First, an optional non-blocking
(asynchronous) mode for some library calls is described. Then, an advanced
programming example is presented that defines a server that supports multiple II
outstanding connect indications and operates in an event driven manner. •

Asynchronous Execution Mode

Many Transport Interface library routines may block waiting for an incoming
event or the relaxation of flow control. However, some time-critical applications
should not block for any reason. Similarly, an application may wish to do local
processing while waiting for some asynchronous transport interface event.

Support for asynchronous processing of Transport Interface events is available to
applications using a combination of the STREAMS asynchronous features and the
non-blocking mode of the Transport Interface library routines. Earlier examples in
this chapter have illustrated the use of the STREAMS poll system call and the
I_SETSIG ioctl command for processing events in an asynchronous manner.

In addition, each Transport Interface routine that may block waiting for some
event can be run in a special non-blocking mode. For example, t_listen will
normally block, waiting for a connect indication. However, a server can
periodically poll a transport endpoint for existing connect indications by calling
t_listen in the non-blocking (or asynchronous) mode. The asynchronous mode is
enabled by setting O_NDELAY on the file descriptor. This can be set as a flag on
t_open, or by calling fcntl(2) before calling the Transport Interface routine. fcntl
can be used to enable or disable this mode at any time. All programming
examples illustrated throughout this chapter use the default, synchronous mode
of processing.

O_NDELAY affects each Transport Interface routine in a different manner. To
determine the exact semantics of O_NDELAY for a particular routine, see the
appropriate pages in Section 3N of the Programmer's Reference Manual.

MU43815PG/D2 19-41 12/01/87

II

THE TRANSPORT INTERFACE

Advanced Programming Example

The following example demonstrates two important concepts. The first is a
server's ability to manage multiple outstanding connect indications. The second
is an illustration of the ability to write event-driven software using the Transport
Interface and the STREAMS system call interface.

The server example in the section, "CONNECTION-MODE SERVICE," was
capable of supporting only one outstanding connect indication, but the Transport
Interface supports the ability to manage multiple outstanding connect indications.
One reason a server might wish to receive several, simultaneous connect
indications is to impose a priority scheme on each client. A server may retrieve
several connect indications, and then accept them in an order based on a priority
associated with each client. A second reason for handling several outstanding
connect indications is that the single-threaded scheme has some limitations.
Depending on the implementation of the transport provider, it is possible that
while the server is processing the current connect indication, other clients will
find it busy. If, however, multiple connect indications can be processed
simultaneously, the server will be found to be busy only if the maximum allowed
number of clients attempt to call the server simultaneously.

The server example is event-driven: the process polls a transport endpoint for
incoming Transport Interface events, and then takes the appropriate actions for
the current event. The example demonstrates the ability to poll multiple transport
endpoints for incoming events.

The definitions and local management functions needed by this example are
similar to those of the server example in the section, "CONNECTION-MODE
SERVICE."

#iaclude <tiu•er.h>
#iaclude <fcatl.h>
#iaclude <•tdio.h>
#iaclude <poll.h>
#iaclude <•tropt•.h>
#iaclude <•igaal.h>

#defiae NUIL.FDS 1
#defiae llAX_CDNN_IND4
#defiae SRV...ADDR 1 /• ••rver•• well kaowa addr••• •/

iat coan_fd; /• ••rver connection here •/
•truct t_call •call•[NUIL.FDS][UA>C_CONN_IND];/• hold• connect indications•/
extera iat t_errao;

MU43815PG/D2 19-42 12101/87

THE TRANSPORT INTERFACE

main()
{

•truct pollfd pollfd•[NUM.....FDS];
•truct t_bind •bind;
int i;

I•
• Only opening and binding one tran•port endpoint,
• but more could be •upported
•I

if ((pollfd•[O].fd = t_open(•/dev/tivc•, O__RDWR, NULL)) < 0) {
t_error(•t_open failed•);
exit(1);

}

if ((bind= (•truct t_bind •)t_alloc(pollfd•[O] .fd, T_BIND, T_ALL)) ==NULL) {
t_error(•t_alloc of t_bind •tructure failed•);
exit(2);

}
bind->qlen • llAX_CONN_IND;
bind->addr.l•n = •izeof(int);
•(int •)bind->addr.buf = SRV_ADDR;

if (t_bind(pollfd•[O].fd, bind, bind) < 0) {
t_error(•t_bind failed•);
exit(3);

}

I•
• Wa• th• correct addr••• bound?
•I

if (•(int •)bind->addr.buf I= SRV_ADDR) {
fprintf(•tderr, •t_bind bound wrong addr•••\n•);
exit (4);

}

The file descriptor returned by Lopen is stored in a pollfd structure [see poll(2)]
that will be used to poll the transport endpoint for incoming data. Notice that
only one transport endpoint is established in this example. However, the
remainder of the example is written to manage multiple transport endpoints.
Several endpoints could be supported with minor changes to the above code.

An important aspect of this server is that it sets qlen to a value greater than 1 for
t_bind. This indicates that the server is willing to handle multiple outstanding
connect indications. Remember that the earlier examples single-threaded the
connect indications and responses. The server would accept the current connect
indication before retrieving additional connect indications. This example,
however, can retrieve up to MAX_CONN_IND connect indications at one time

MU43815PG/D2 19-43 12/01/87

II

THE TRANSPORT INTERFACE

before responding to any of them. The transport provider may negotiate the
value of qlen downward if it cannot support MAX_CONN_IND outstanding
connect indications.

Once the server has bound its address and is ready to process incoming connect
requests, it does the following:

}

pollfd•[O].event• = POLLIN;

while (1) {

}

if (poll(pollfd•, NUK_FDS, -1) < 0) {
perror(•poll failed•);
u:i t (6) ;

}

for (i = O; i < NUM_FDS; i++) {

•witch (pollfda[i].revent•) {

default:

}

perror(•poll returned error event•);
u:i t (8) ;

ca•• O:
continue;

caae POLLIN:

}

do_event(i, pollfda[i].fd);
••rvice_conn_ind(i, pollfda[i].fd);

The events field of the pollfd structure is set to POLLIN, which will notify the
server of any incoming Transport Interface events. The server then enters an
infinite loop, in which it will poll the transport endpoint(s) for events, and then
process those events as they occur.

The poll call will block indefinitely, waiting for an incoming event. On return,
each entry (corresponding to each transport endpoint) is checked for an existing
event. If revents is set to 0, no event has occurred on that endpoint. In this case,
the server continues to the next transport endpoint. If revents is set to POLLIN,
an event does exist on the endpoint. In this case, do_event is called to process
the event. If revents contains any other value, an error must have occurred on the
transport endpoint, and the server will exit.

MU43815PG/D2 19-44 12/01/87

THE TRANSPORT INTERFACE

For each iteration of the loop, if any event is found on the transport endpoint,
servlce_conn_lnd is called to process any outstanding connect indications.
However, if another connect indication is pending, servlce_conn_lnd will save
the current connect indication and respond to it later. This routine will be
explained shortly.

If an incoming event is discovered, the following routine is called to process it:

do_•T•Dt(•lot, fd)
{

•truct t_di•coD •di•coD;
iDt i;

•witch (t_look(fd)) {

default:
fprintf(•tderr,•t_look returned an uDexpected eTent\D•);
exit(7);

ca•• TJRRDR:
fprintf(•tderr,•t_look returned TJi:RRDR eTeDt\D•);
exit(B);

ca•• -1:
t_error(•t_look failed•);
exit(9);

ca•• 0:
I• •iDc• PDLLIN returned, thi• •hould not happ•D •/
fprintf(•tderr,•t_look returD•d DO •T•Dt\D•);
exit(10);

ca•• T.J.IBTEN:
I•

• fiDd fr•• •l•m•Dt in call• arra7
•I

for Ci = O; i < llAX_CONN_IND; i++) {
if (call•[•lot][i] ==NULL)

break;
}

II

if ((call•[•lot][i] = C•truct t_call •)t_alloc(fd, T_CALL. T_.t.LL)) ==NULL) {
t_error(•t_alloc of t_call •tructure failed•);
exit(11);

}

if (t_li•t•n(fd, call•[•lot] [i]) < 0) {
t_error(•t_li•t•• failed•);
exit(12);

}

break;

MU43815PG/D2 19-45 12/01/87

II

THE TRANSPORT INTERFACE

ca•e TJ)ISCONNECT:

}
}

di•con = C•truct t_di•con •)t_alloc(fd, TJ)IS, T....ALL);

if (t_rcTdi•(fd, di•con) < 0) {

}

I•

t_error(•t_rcTdi• failed•);
exit(13);

• find call ind in array and delete it
•I

for (i = O; i < MAX_CDNN_IND; i++) {

}

if (di•con->•equence == call•[•lot] [i]->•equence) {
t_free(call•[•lot] [i], T_CALL);
call•[•lot] [i] =NULL;

}

t_free(di•con, TJ)IS);
break;

This routine takes a number, slot, and a file descriptor, fd, as arguments. slot is
used as an index into the global array calls. This array contains an entry for each
polled transport endpoint, where each entry consists of an array of t_call
structures that hold incoming connect indications for that transport endpoint. The
value of slot is used to identify the transport endpoint of interest.

do_avant calls Llook to determine the Transport Interface event that has occurred
on the transport endpoint referenced by fd. If a connect indication {T_LISTEN
event) or disconnect indication {T_DISCONNECT event) has arrived, the event is
processed. Otherwise, the server prints an appropriate error message and exits.

For connect indications, do_avant scans the array of outstanding connect
indications looking for the first free entry. A t_call structure is then allocated for
that entry, and the connect indication is retrieved using t_listen. There must
always be at least one free entry in the connect indication array, because the array
is large enough to hold the maximum number of outstanding connect indications
as negotiated by t_blnd. The processing of the connect indication is deferred until
later.

If a disconnect indication arrives, it must correspond to a previously received
connect indication. This scenario arises if a client attempts to undo a previous
connect request. In this case, do_event allocates a Ldiscon structure to retrieve
the relevant disconnect information.

MU43815PG/D2 19-46 12/01/87

THE TRANSPORT INTERFACE

This structure has the following members:

struct t_discon {
struct netbuf udata;
int reason;
int sequence;

}

where udata identifies any user data that might have been sent with the
disconnect indication, reason contains a protocol-specific disconnect reason code,
and sequence identifies the outstanding connect indication that matches this
disconnect indication.

Next, t_rcvdis is called to retrieve the disconnect indication. The array of connect
indications for slot is then scanned for one that contains a sequence number that
matches the sequence number in the disconnect indication. When the connect
indication is found, it is freed and the corresponding entry is set to NULL.

As mentioned earlier, if any event is found on a transport endpoint,
service_conn_lnd is called to process all currently outstanding connect
indications associated with that endpoint as follows:

•ervice_coDD_iDd(•lot, fd)
{

iDt i;

for (i = O; i < llAX_CONN_IND; i++) {
if (call•[•lot][i] ==NULL)

CODtiDue;

if ((coDD_fd = t_opeD(•/dev/tivc•, O....RDWR, NULL)) < 0) {
t_error(•opeD failed•);
e:ii:it(U.);

}

if (t_biDd(coDD_fd, NULL, NULL) < 0) {
t_error(•t_biDd failed•);
exit(16);

}

if (t_accept(fd, coDn_fd, call•[•lot][i]) < 0) {
if (t_errno == TLOOK) {

}

MU43815PG/D2

t_clo••(conn_fd);
returD;

}
t_error(•t_accept failed•);
exit(18);

19-47 12/01/87

II

II

THE TRANSPORT INTERFACE

}
}

t_free(call•[•lot] [i], T_CALL);
call•[•lot][i] •NULL;

ru11._•er"f'er (fd) ;

For the given slot {the transport endpoint), the array of outstanding connect
indications is scanned. For each indication, the server will open a responding
transport endpoint, bind an address to the endpoint, and then accept the
connection on that endpoint. If another event {connect indication or disconnect
indication) arrives before the current indication is accepted, t_accept will fail and
set t_errno to TI.OOK.

NOTE

The user cannot accept an outstanding connect
indication if any pending connect indication events
or disconnect indication events exist on that
transport endpoint.

If this error occurs, the responding transport endpoint is closed and
servlce_conn_ind will return immediately {saving the current connect indication
for later processing). This causes the server's main processing loop to be entered,
and the new event will be discovered by the next call to poll. In this way,
multiple connect indications may be queued by the user.

Eventually, all events will be processed, and aervice_conn_lnd will be able to
accept each connect indication in tum. Once the connection has been established,
the run_aerver routine used by the server in the section, "CONNECTION-MODE
SERVICE," is called to manage the data transfer.

MU43815PG/D2 19-48 12/01/87

