
18. SYSTEM ASSEMBLER

Introduction
This is a reference manual for the SYSTEM V/68 resident assembler, as. II
Programmers familiar with the M68XXX family of processors should be able to :
program in as by referring to this manual, but this is not a manual for the
processors. Details about the effects of instructions, the meanings of status
register bits, the handling of interrupts, and many other issues are not dealt with
here. This manual, therefore, should be used in conjunction with the following
reference manuals:

• M68000 8-/16-/32-Bit Microprocessors Programmer's Reference Manual, Fifth
Edition; Englewood Cliffs, NJ: PRENTICE-HALL, 1986. This manual is also
available from the Motorola Literature Distribution Center, part number
M68000UM/AD REV 4.

• MC68020 32-Bit Microprocessor User's Manual; Englewood Oiffs, NJ:
PRENTICE-HALL, 1984. This manual is also available from the Motorola
Literature Distribution Center, part number MC68020UM/AD REV 1.

• MC68030 Enhanced 32-Bit Microprocessor User's Manual; MOTOROLA, 1987. I
This manual is available from the Motorola Literature Distribution Center, part
number MC68030UM/AD.

• MC68881 Floating Point Coprocessor User's Manual, MC68881UM/AD;
MOTOROLA, 1985. This manual is available from the Motorola Literature
Distribution Center, part number MC68881UM/AD.

• MC68851 Paged Memory Management Unit User's Manual, MC68851UM/AD; I
Englewood Oiffs, NJ: PRENTICE-HALL, 1986. This manual is also available
from the Motorola Literature Distribution Center, part number
MC68851UM/AD.

• M68000 Family Resident Structured Assembler Reference Manual,
M68KMASM.

•SYSTEM V/68 User's Reference Manual, MU43810UR/D2.

For users of the SGS M68020 Cross Compilation System, references to as(l)
and cc(l) should be read as as20(1) and cc20(1) if you have a MC68020 I
processor system or as30(1) and cc30(1) if you have a MC68030 processor
system. Information about the MC68020 commands is provided in the SGS

MU43815PG/Al 18-1 4/01/88

II

SYSTEM ASSEMBLER

M68020 Cross Compilation System Reference Manual, M68KUNASX.

Warnings
A few important warnings to the as user should be emphasized at the outset.
Though for the most part there is a direct correspondence between as notation and
the notation used in the documents listed in the preceding section, several
exceptions exist that could lead the unsuspecting user to write incorrect code. In
addition to the exceptions described in the following paragraphs, refer also to the
"Address Mode Syntax" and ''Machine Instructions" sections later in this chapter
for further information.

Comparison Instructions

First, the order of the operands in compare instructions follows one convention in
the M68000 Programmer's Reference Manual and the opposite convention in as.
Using the convention of the M68000 Programmer's Reference Manual, one might
write:

CMP.W
BLE

05,03
IS_LESS

Using the as convention, one would write:

Is 03 less than 05?
Branch if less.

cmp.w %d3,%d5 #Is d3 less than d5?
ble is_less # Branch If less.

This convention makes for straightforward reading of compare-and-branch
instruction sequences, but does nonetheless lead to the peculiarity that if a
compare instruction is replaced by a subtract instruction, the effect on the condition
codes will be entirely different. This may be confusing to programmers who are
used to thinking of a comparison as a subtraction whose result is not stored.
Users of as who become accustomed to the convention will find that both the
compare and subtract notations make sense in their respective contexts.

Overloading of Opcodes

Another issue that users must be aware of arises from the M68000 processors' use
of several different instructions to do more or less the same thing. For example,
the M68000 Programmer's Reference Manual lists the instructions SUB, SUBA,
SUBI, and SUBQ, which all have the effect of subtracting their source operand
from their destination operand. As provides the convenience of allowing all these
operations to be specified by a single assembly instruction sub. Based on the
operands given to the sub instruction, the as assembler selects the appropriate

MU43815PG/Al 18-2 4/01/88

SYSTEM.ASSEMBLER

M68000 operation code. The danger created by this convenience is that it could
leave the misleading impression that all forms of the SUB operation are
semantically identical. In fact, they are not. The careful reader of the M68000
Programmer's Reference Manual will notice that whereas SUB, SUBI, and SUBQ all
affect the condition codes in a consistent way, SUBA does not affect the condition
codes at all. Consequently, the as user must be aware that when the destination
of a sub instruction is an address register (which causes the sub to be mapped
into the operation code for SUBA), the condition codes will not be affected.

Use of the Assembler
The SYSTEM V/68 command as invokes the assembler and has the following
syntax:

as [-o output] file

When "s is invoked with the -o output flag, the output of the assembly is put in
the file output. If the -o flag is not specified, the output is left in a file whose
name is formed by removing the .s suffix, if there is one, from the input filename
and appending a .o suffix.

The M68020 cross assembler, as20(1), is invoked with the same syntax as as(l).
For information about additional options for these commands, refer to the
SYSTEM V/68 Programmer's Reference Manual for as(l) and the SGS M68020 Cross I
Compilation System Reference Manual for as20(1).

General Syntax Rules

Format of Assembly Language Line
Typical lines of as assembly code look like these:

Clear a block of memor7 at location laS

text 2
moT.w

loop: clr.l
dbf

init2:

&con•t,ld1
(1&3)+
ld1,loop # go back for con•t

repetition•

clr.l count; clr.l credit; clr.l debit;

MU43815PG/ Al 18-3 4/01/88

II

SYSTEM ASSEMBLER

These general points about the example should be noted:

- An identifier occurring at the beginning of a line and followed by a colon(:) is
a label. One or more labels may precede any assembly language instruction or
pseudo-operation. Refer to ''Location Counters and Labels" later in this
chapter.

- A line of assembly code need not include an instruction. It may consist of a
comment alone (introduced by #), a label alone (terminated by :), or it may be
entirely blank.

- It is good practice to use tabs to align assembly language operations and their
operands into columns, but this is not a requirement of the assembler. An
opcode may appear at the beginning of the line, if desired, and spaces may
precede a label. A single blank or tab suffices to separate an opcode from its
operands. Additional blanks and tabs are ignored by the assembler.

- It is permissible to write several instructions on one line separating them by
semicolons. The semicolon is syntactically equivalent to a newline character;
however, a semicolon inside a comment is ignored.

Comments

Comments are introduced by the character# and continue to the end of the line.
Comments may appear anywhere and are completely disregarded by the
assembler.

Identifiers
An identifier is a string of characters taken from the set a-z, A-Z, _ , - , %, and 0-
9. The first character of an identifier must be a letter (uppercase or lowercase) or
an underscore. Uppercase and lowercase letters are distinguished; for example,
con35 and CON35 are two distinct identifiers.

There is no limit on the length of an identifier. The value of an identifier is
established by the set pseudo-operation (refer to "Symbol Definition Operations'~
or by using it as a label (refer to ''Location Counters and Labels').

The tilde character C) has special significance to the assembler. A - used alone,

I as an identifier, means "the current location." More specifically, a - used in an
instruction means the value of the program counter at the beginning of that
instruction and a tilde used in a pseudo-instruction means the current value of
the location counter for the current section. A - used as the first character in an
identifier becomes a period (.) in the symbol table, allowing symbols such as .eos
and .Ofake to be entered into the symbol table, as required by the Common Object
File Format (COFF). Information about file formats is provided in the

I Programmer's Reference Manual.

MU43815PG/Al 18-4 4/01/88

SYSTEM ASSEMBLER

Register Identifiers
A register identifier is an identifier preceded by the character %. It represents one
of the MC68000 processor's registers.
The predefined register identifiers are:

Notes:

%d0
%dl
%d2
%d3

%d4
%d5
%d6
%d7

%cc and o/occr are equivalent.

%a0
%al
%a2
%a3

%a4
%a5
%a6
%a7

%cc
%pc
%sp
%sr

%usp
%fp
%ccr

The identifiers o/oa7 and o/osp represent the same machine register. Likewise, %a6
and %fp are equivalent. Use of both %a7 and %sp, or %a6 and %fp, in the same
program may result in confusion.

With the proper option, the assembler will correctly assemble instructions I
intended for the M68010. The entire register set of the MC68000 is included in the
MC68010 register set. The following are new control registers for the MC68010.

REGISTERS ADDED FOR THE MC68010
NAME DESCRIPTION
%sfc,%sfcr Source Function Code Register
%dfc,%dfcr Destination Function Code R~ster
%vbr Vector Base R~ster

Notes:

o/osfc and o/osfcr are equivalent.
o/odfc and o/odfcr are equivalent.

The entire register set of the MC68010 is included in the MC68020 register set.
The following are new control registers for the MC68020.

MU43815PG/Al 18-5 4/01/88

II

II

SYSTEM ASSEMBLER

MC68020 REGISTERS
NAME DESCRIPTION
%caar Cache Address Register
%cacr Cache Control Register

%i~ Interru~ Stack Pointer
%m~ Master Stack Pointer

The entire register set of the MC68020 is included in the MC68030 register set.
The following are control registers for the MC68030:

MC68030 REGISTERS
NAME DESCRIPTION
%c
%s
%tc
%tt0
%ttl
%mmusr ister

Notes:

The new MC68030 registers are dedicated to memory management.

%mmusr is equivalent to the %psr on the MC68851.

The following are suppressed registers (zero registers) used in various MC68020
addressing modes.

MU43815PG/Al 18-6 4/01/88

SYSTEM ASSEMBLER

MC68020 ZERO REGISTERS
SUPPRESSED SUPPRESSED SUPPRESSED
ADDRESS REGISTERS DATA REGISTERS PROGRAM COUNTER

%za0 %zd0 %~
%zal %zdl
%za2 %zd2
%za3 %zd3
%za4 %zd4
%za5 %zd5
%za6 %zd6
%za7 %zd7

Constants

as deals only with integer constants. They may be entered in decimal, octal, or
hexadecimal, or they may be entered as character constants. Internally, as treats
all constants as 32-bit binary two's complement quantities.

Numerical Constants.

A decimal constant is a string of digits beginning with a non-zero digit. An octal
constant is a string of digits beginning with zero. A hexadecimal constant
consists of the characters Ox or OX followed by a string of characters from the set
0-9, a-f, and A-F. In hexadecimal constants, uppercase and lowercase letters are
not distinguished.

Examples:

set const,35
mov.w &035,%dl
set const, Ox35
mov.w &Oxff,%dl

Character Constants.

#Decimal 35
Octal 35 (decimal 29)
Hex 35 (decimal 53)
Hex ff (decimal 255)

An ordinary character constant consists of a single-quote character (') followed by
an arbitrary ASCII character other than the backslash (\). The value of the
constant is equal to the ASCII code for the character. Special meanings of
characters are overridden when used in character constants; for example, if'# is
used, the # is not treated as introducing a comment.

MU43815PG/ Al 18-7 4/01/88

Ill

II

SYSTEM ASSEMBLER

A special character constant consists of'\ followed by another character. All the
special character constants and examples of ordinary character constants are listed
in the following table.

CONSTANT VALUE MEANING
'\b Ox08 Backspace
'\t Ox09 Horizontal Tab
'\n OxOa Newline (Line Feed)
'\v OxOb Vertical Tab
'\f OxOc Form Feed
'\r OxOd Carriage Return
'\\ OxSc Backslash
I I Ox27 Single Quote
'O Ox30 Zero
'A Ox41 Uppercase A
'a Ox61 Lowercase a

Other Syntactic Details

For a discussion of expression syntax, see ''Expressions" in this chapter. For
information about the syntax of specific components of as instructions and
pseudo-operations, see ''Pseudo-Operations" and "Address Mode Syntax."

Segments, Location Counters, And Labels

Segments

A program in as assembly language may be broken into segments known as text,
data, and bss segments. The convention regarding the use of these segments is to
place instructions in text segments, initialized data in data segments, and
uninitialized data in bss segments. However, the assembler does not enforce this
convention; for example, it permits intermixing of instructions and data in a text
segment.

Primarily to simplify compiler code generation, the assembler permits up to four
separate text segments and four separate data segments named 0, 1, 2, and 3. The
assembly language program may switch freely between them by using assembler
pseudo-operations {refer to "Location Counter Control Operations"). When
generating the object file, the assembler concatenates the text segments to
generate a single text segment, and the data segments to generate a single data
segment. Thus, the object file contains only one text segment and only one data
segment. There is always only one bss segment and it maps directly into the
object file.

MU43815PG/Al 18-8 4/01/88

SYSTEM ASSEMBLER

Because the assembler keeps together everything from a given segment when
generating the object file, the order in which information appears in the object file
may not be the same as in the assembly language file. For example, if the data
for a program consisted of:

data
short
data
long
data
byte

1
Oxllll
0
Oxffffffff
1
Oxff

#segment 1

#segment 0

#segment 1

then equivalent object code would be generated by:

data 0
long Oxffffffff
short Oxllll
byte Oxff

Location Counters and Labels
The assembler maintains separate location counters for the bss segment and for each
of the text and data segments. The location counter for a given segment is
incremented by one for each byte generated in that segment.

The location counters allow values to be assigned to labels. When an identifier is
used as a label in the assembly language input, the current value of the current
location counter is assigned to the identifier. The assembler also keeps track of
which segment the label appeared in. Thus, the identifier represents a memory
location relative to the beginning of a particular segment. Any label relative to
the location counter should be within the text segment.

Types
Identifiers and expressions may have values of different types.

- In the simplest case, an expression (or identifier) may have an absolute value,
such as 29, -5000, or 262143.

- An expression (or identifier) may have a value relative to the start of a
particular segment. Such a value is known as a relocatable value. The memory
location represented by such an expression cannot be known at assembly time,
but the relative values of two such expressions (i.e., the difference between
them) can be known if they refer to the same segment.

MU43815PG/ Al 18-9 4/01/88

II

SYSTEM ASSEMBLER

Identifiers which appear as labels have relocatable values.

- If an identifier is never assigned a value, it is assumed to be an undefined
external. Such identifiers may be used with the expectation that their values
will be defined in another program, and therefore known at load time; but the
relative values of undefined externals cannot be known.

Expressions
For conciseness, the following abbreviations are useful:

abs absolute expression
rel relocatable expression
ext undefined external

All constants are absolute expressions. An identifier may be thought of as an
expression having the identifier's type. Expressions may be built up from lesser
expressions using the operators +, -, *, and /, according to the following type
rules:

abs + abs = abs
abs+rel=rel+abs=rel
abs + ext • ext + abs = ext

aba - abs = abs
rel-abs= rel
ext - abs = ext
rel-rel= abs
(provided that the two relocatable expressions are relative to the same segment)

abs• abs= abs

abs I abs = abs

-abs= abs

Note that rel - rel expressions are permitted only within the context of a switch
statement (refer to "Switch Table Operation"). Use of a rel - rel expression is
dangerous, particularly when dealing with identifiers from text segments. The
problem is that the assembler will determine the value of the expression before it
has resolved all questions concerning span-dependent optimizations.

The unary minus operator takes the highest precedence; the next highest
precedence is given to * and /, and lowest precedence is given to + and binary -.
Parentheses may be used to coerce the order of evaluation.

MU43815PG/Al 18-10 4/01/88

SYSTEM ASSEMBLER

If the result of a division is a positive non-integer, it will be truncated toward
zero. If the result is a negative non-integer, the direction of truncation cannot be
guaranteed.

Pseudo-Operations

Data Initialization Operations

byte abs,abs, ...
One or more arguments, separated ·by commas, may be given. The values
of the arguments are computed to produce successive bytes in the assembly
output.

short abs,abs, ...
One or more arguments, separated by commas, may be given. The values
of the arguments are computed to produce successive 16-bit words in the
assembly output.

long expr,expr, ...
One or more arguments, separated by commas, may be given. Each
expression may be absolute, relocatable, or undefined external. A 32-bit quantity
is generated for each such argument (in the case of relocatable or undefined
external expressions, the actual value may not be filled in until load time).

Alternatively, the arguments may be bit-field expressions. A bit-field
expression has the form:

n: value

where both n and value denote absolute expressions. The quantity n
represents a field width; the low-order n bits of value become the contents of
the bit-field. Successive bit-fields fill up 32-bit long quantities starting with
the high-order part. If the sum of the lengths of the bit-fields is less than 32
bits, the assembler creates a 32-bit long with zeros filling out the low-order
bits. For example:

long 4: -1, 16: Ox7f, 12:0, 6000

and:

long 4: -1, 16: Ox7f, 6000

are equivalent to:

MU43815PG/ Al 18-11 4/01/88

II

II

SYSTEM ASSEMBLER

long Oxf007f000, 6000

Bit-fields may not span pairs of 32-bit longs. Thus:

long 24: Oxa, 24: Oxb, 24:0xc

yields the same thing as:

long OxOOOOOaOO, OxOOOOObOO, OxOOOOOcOO

space abs
The value of abs is computed, and the resultant number of bytes of zero data
is generated.
For example:

space

is equivalent to:

byte

Symbol Definition Operations

set identifier,expr

6

o,o,o,o,o,o

The value of identifier is set equal to expr, which may be absolute or
relocatable.

comm identifier,abs
The named identifier is to be assigned to a common area of size abs bytes. If
identifier is not defined by another program, the loader will allocate space for
it.

lcomm identifier,abs
The named identifier is assigned to a local common of size abs bytes. This
results in allocation of space in the bss segment.

The type of identifier becomes relocatable.

global identifier
This causes identifier to be externally visible. If identifier is defined in the
current program, then declaring it global allows the loader to resolve
references to identifier in other programs.

MU43815PG/Al 18-12 4/01/88

SYSTEM ASSEMBLER

If identifier is not defined in the current program, the assembler expects an
external resolution; in this case, therefore, identifier is global by default.

Location Counter Control Operations

data abs

text abs

org expr

even

The argument, if present, must evaluate to 0, 1, 2, or 3; this
indicates the number of the data segment into which assembly is
to be directed. If no argument is present, assembly is directed
into data segment 0.

The argument, if present, must evaluate to 0, 1, 2, or 3; this
indicates the number of the text segment into which assembly is
to be directed. If no argument is present, assembly is directed
into text segment 0.

Before the first text or data operation is encountered, assembly is
directed by default into text segment 0.

The current location counter is set to expr. Expr must represent a
value in the current segment, and must not be less than the
current location counter.

The current location counter is rounded up to the next even
value.

Symbolic Debugging Operations

The assembler allows for symbolic debugging information to be placed into the
object code file with special pseudo-operations. The information typically
includes line numbers and information about C language symbols, such as their
type and storage class. The C compiler (cc(l)) generates symbolic debugging
information when the -g option is used. Assembler programmers may also
include such information in source files.

file and In

The file pseudo-operation passes the name of the source file into the object file
symbol table. It has the form:

file filename

MU43815PG/ Al 18-13 4/01/88

II

II

SYSTEM ASSEMBLER

where filename consists of one to 14 characters enclosed in quotation marks.

The In pseudo-operation makes a line number table entry in the object file. That
is, it associates a line number with a memory location. Usually the memory
location is the current location in text. The format is:

In line{,value]

where line is the line number. The optional value is the address in text, data, or
bss to associate with the line number. The default when value is omitted (which is
usually the case) is the current location in text.

Symbol Attribute Operations.

The basic symbolic testing pseudo-operations are def and endef. These
operations enclose other pseudo-operations that assign attributes to a symbol and
must be paired.

def name

en def

#Attribute
#Assigning
Operations

NOTES

•def does not define the symbol, although it does create a symbol table entry.
Because an undefined symbol is treated as external, a symbol which appears in
a def, but which never acquires a value, will ultimately result in an error at
link edit time.

• To allow the assembler to calculate the sizes of functions for other tools, each
def/endef pair that defines a function name must be matched by a def/endef
pair after the function in which a storage class of-1 is assigned.

The paragraphs below describe the attribute-assigning operations. Keep in mind
that all these operations apply to symbol name which appeared in the opening def
pseudo-operation.

val expr
Assigns the value expr to name. The type of the expression expr determines
with which section name is associated. If the value is - , the current location
in the text section is used.

sci expr
Declares a storage class for name. The expression expr must yield an
ABSOLUTE value that corresponds to the C compiler's internal

MU43815PG/Al 18-14 4/01/88

SYSTEM ASSEMBLER

representation of a storage class. The special value -1 designates the
physical end of a function.

type expr
Declares the C language type of name.
ABSOLUTE value that corresponds
representation of a basic or derived type.

The expression expr must yield an
to the C compiler's internal

tag str
Associates name with the structure, enumeration, or union named str which
must have already been declared with a def/endef pair.

line expr
Provides the line number of name, where name is a block symbol. The
expression expr should yield an ABSOLUTE value that represents a line
number.

size expr
Gives a size for name. The expression expr must yield an ABSOLUTE value.
When name is a structure or an array with a predetermined extent, expr gives
the size in bytes. For bit fields, the size is in bits.

dim expr1,expr2, ...
Indicates that name is an array. Each of the expressions must yield an
ABSOLUTE value that provides the corresponding array dimension.

Switch Table Operation

The C compiler generates a compact set of instructions for the C language switch
construct. An example is shown below.

L%22:

sub.I &1,%d0
cmp.I %d0,&4
bhi L%21
mov.w {%d0.w*2,L%22),%d0 I
jmp (%d0.w,L %22)
swbeg &5

short
short
short
short
short

L%15-L%22
L%21-L%22
L%16-L%22
L%21-L%22
L%17-L%22

The special swbeg pseudo-operation communicates to the assembler that the lines
following it contain rel-rel subtractions. Remember that ordinarily such

MU43815PG/Al 18-15 4/01/88

II

II

SYSTEM ASSEMBLER

subtractions are risky because of span-dependent optimization. In this case,
however, the assembler makes special allowances for the subtraction because the
compiler guarantees that both symbols will be defined in the current assembler
file, and that one of the symbols is a fixed distance away from the current
location.

The swbeg pseudo-operation takes an argument that looks like an immediate
operand. The argument is the number of lines that follow swbeg and that contain
switch table entries. Swbeg inserts two words into text. The first is the ILLEGAL
instruction code. The second is the number of table entries that follow. The
disassembler dis{l) needs the ILLEGAL instruction as a hint that what follows is a
switch table. Otherwise, it would get confused when it tried to decode the table
entries, differences between two symbols, as instructions.

Span-Dependent Optimization
The assembler makes certain choices about the object code it generates based on
the distance between an instruction and its operand(s). Choosing the smallest,
fastest form is called span-dependent optimization. Span-dependent optimization
occurs most obviously in the choice of object code for branches and jumps. It also
occurs when an operand may be represented by the program counter relative
address mode instead of as an absolute 2-word (long) address. The span
dependent optimization capability is normally enabled; the -n command line flag
disables it. When this capability is disabled, the assembler makes worst-case
assumptions about the types of object code that must be generated. Span
dependent optimizations are performed only within text segment 0. Any
reference outside text segment 0 is assumed to be worst-case.

The C compiler (cc(l)) generates branch instructions without a specific offset size.
When the optimizer is used, it identifies branches which could be represented by
the short form, and it changes the operation accordingly. The assembler chooses
only between word (16 bits) and long-word (32 bits) representations for branches.

For the MC68000 and MC68010 processors, branch instructions, e.g., bra, bsr, or
bgt, can have either a byte or a word pc-relative address operand. A byte or
word size specification should be used only when the user is sure that the address
intended can be represented in the byte or word allowed. The assembler will take
one of these instructions with a size specification and generate the byte or word
form of the instruction without asking questions.

Although the largest offset specification allowed for the MC68000 and MC68010
processors is a word, large programs could conceivably have need for a branch to
location not reachable by a word displacement. Therefore, equivalent long-word
forms of these instructions might be needed. When the assembler encounters a
branch instruction without a size specification, it tries to choose between the word

MU43815PG/ Al 18-16 4/01/88

SYSTEM ASSEMBLER

and long-word forms of the instruction. If the operand can be represented in a
word, then the word form of the instruction will be generated. Otherwise, the
long-word form will be generated. For unconditional branches, e.g., br, bra, and
bsr, the long-word form is just the equivalent jump (jmp and jsr) with an
absolute address operand (instead of pc-relative). For conditional branches, the
equivalent long-word form is a conditional branch around a jump, where the
conditional test has been reversed.

The following table summarizes span-dependent optimizations. The optimizer
chooses only between the word form and long-word forms for branches (but not
bsr).

Assembler Span-Dependent Optimizations

Instruction Word Form Lo'!S::word Form
br, bra, bar word offset jmp or jar with absolute

lo!!&_ address
conditional branch word offset short conditional branch

with reversed condition
around Jmp with
absolute long address

For the MC68020 and MC68030 processors, branch instructions can have either a I
byte, word, or long-word pc-relative address operand.

Address Mode Syntax
The following table summarizes the as syntax for MC68000, MC68010, MC68020
and MC68030 addressing modes. Addressing modes for the MC68020 and I
MC68030 are shown with "MC68020 Only" in parentheses beneath the MC68000
notation; modes not specified in this way are for all four processors.

In the table, the following abbreviations are used:

an Address register, where n is any digit from 0 through 7.

dn Data register, where n is any digit from 0 through 7.

ri Index register i may be any address or data register with an optional size
designation (i.e., ri.w for 16 bits or ri.I for 32 bits); default size is .w.

sci Optional scale factor that may be multiplied times index register in some
modes. Values for scl are 1, 2, 4, or 8; default is 1. Only MC68020 and
MC68030 instructions can have scale factors. I

MU43815PG/Al 18-17 4101188

II

I

SYSTEM ASSEMBLER

bd

od

pc

[)

()

{}

Two's complement base displacement that is added before indirection takes
place; size can be 16 or 32 bits. Only MC68020 and MC68030 instructions
can have scale factors.

Outer displacement that is added as part of effective address calculation
after memory indirection; size can be 16 or 32 bits. Only MC68020 and
MC68030 instructions can have scale factors.

Two's complement or sign-extended displacement that is added as part of
effective address calculation; size may be 8 or 16 bits; when omitted,
assembler uses value of zero.

Program counter

Grouping characters used to enclose an indirect expression; required
characters. Addressing arguments can occur in any order within the
brackets.

Grouping characters used to enclose an entire effective address; required
characters. Addressing arguments can occur in any order within the
parentheses.

Indicate that a scale factor is optional; not required characters.

It is important to note that expressions used for the absolute addressing modes
need not be absolute expressions in the sense described earlier under 'Types."
Although the addresses used in those addressing modes must ultimately be filled
in with constants, that can be done later by the loader. There is no need for the
assembler to be able to compute them. Indeed, the Absolute Long addressing
mode is commonly used for accessing undefined external addresses.

MU43815PG/Al 18-18 4/01/88

SYSTEM ASSEMBLER

Effective Address Modes

M68000 as EFFECTIVE
FAMILY NOTATION NOTATION ADDRESS MODE

On %dn Data Register Direct

An %an Address Register Direct

l_AI!l _{_%a'!l Address Register Indirect

(An)+ (%an)+ Address Register Indirect II
With Postincrement

-(An) -(%an) Address Register Indirect
With Predecrement

d(An) d(%an) Address Register Indirect
With Displacement (d
signifies a signed 16-bit
absolute ~lacemen!}_

d(An,Ri) d(%an,%ri.w) Address Register Indirect
d(%an,%ri.l) With Index Plus Displacement

(d signifies
a signed 8-bit absolute
~lacemen!}_

(bd,An,Ri{"'scl}) (bd, %an,% ri{"'scl}) Address Register Direct
(MC68020/MC68030 Only) With Index Plus Base

~lacement

([bd,An,Ri{•scl}],od) (bd, %an,% ri{•scl}],od) Memory Indirect With
(MC68020/MC68030 Only) Preindexing Plus Base

and Outer ~lacement
([bd,An],Ri{•scl},od) ([bd, %an], %ri{"'scl},od) Memory Indirect With
(MC68020/MC68030 Only) Postindexing Plus Base

and Outer Displacement
d(PC) d(%pc) Program Counter Indirect

With Displacement (d
signifies 16-bit
~lacemen!}_

d(PC,Ri) d(%pc,%m.l) Program Counter Direct
d(%pc,%m.w) With Index and Displace-

ment (d signifies 8-bit
~lacemen!}_

(bd,PC,Ri{'°scl}) (bd, %pc, %ri{ .. scl}) Program Counter Direct
(MC68020/MC68030 Only) With Index and Base

~lacement

([bd,PC],Ri{•scl},od) ([bd, % pc],% ri{,.scl},od) Program Counter Memory
(MC68020/MC68030 Only) Indirect With Post-

indexing Plus Base and
Outer Displacement

MU43815PG/ Al 18-19 4/01/88

II

SYSTEM ASSEMBLER

M68000 as EFFECTIVE
FAMILY NOTATION NOTATION ADDRESS MODE

I ([bd,PC,RWscl}],od) ([bd, %pc,% rl{*scl}],od) Program Counter Memory
(MC68020/MC68030 Only) Indirect With Prein-

dexing Plus Base and
Outer ~lacement

xxx.W xxx Absolute Short Address
(xxx signifies an
expression yielding a
16-bit mem~ addres~

xxx.L xxx Absolute Long Address
(xxx signifies an
expression yielding a
32-bit mem~ addres~

#xxx &xxx Immediate Data
(xxx signifies
an absolute constant
~ressiot1

In the table above, the index register notation should be understood as
ri.size*scale, where both size and scale are optional. Refer to Chapter 2 of the
M68000 Family Resident Structured Assembler Reference Manual for additional
information about effective address modes. Section 2 of the MC68020 32-Bit
Microprocessor User's Manual also provides information about generating effective
addresses and assembler syntax.

Note that suppressed address register %zan can be used in place of %an,
suppressed PC register o/oZpc can be used in place of %pc, and suppressed data
register %zdn can be used in place of %dn, if suppression is desired.

The address modes for the MC68020 and MC68030 use two different formats of
extension. The brief format provides fast indexed addressing, while the full
format provides a number of options in size of displacement and indirection. The
assembler will generate the brief format if the effective address expression is not
memory indirect, value of displacement is within a byte, and no base or index
suppression is specified; otherwise, the assembler will generate the full format.

Some source code variations of the new modes may be redundant with the
MC68000 address register indirect, address register indirect with displacement,
and program counter with displacement modes. The assembler will select the
more efficient mode when redundancy occurs. For example, when the assembler
sees the form (An), it will generate address register indirect mode (mode 2).

MU43815PG/ Al 18-20 4/01/88

SYSTEM ASSEMBLER

The assembler will generate address register indirect with displacement (mode 5)
when seeing any of the following forms (as long as bd fits in 16 bits or less):

bd(An)
(bd,An)
(An,bd)

Machine Instructions

Instructions For The MC68000/MC6801 O/MC68020/MC68030

The following table shows how MC68000/MC68010/MC68020/MC68030
instructions should be written in order to be understood correctly by the as
assembler. The entire instruction set for the MC68030 can be used. Instructions
that are MC68010/MC68020/MC68030-only, MC68020-only or MC68020/MC68030-
only are ndted as such in the "OPERATION" column. Additional MC68030-only
instructions which deal specifically with memory management are listed
separately as a subset of the MC68851 instructions.

Several abbreviations are used in the table:

S The letter S, as in add.S, stands for one of the operation size attribute letters
b, w, or I, representing a byte, word, or long operation.

A The letter A, as in add.A, stands for one of the address operation size
attribute letters w or I, representing a word or long operation.

CC In the contexts bCC, dbCC, and sCC, the letters CC represent any of the
following condition code designations (except that f and t may not be used
in the bCC instruction):

cc carry clear ls low or same
cs carry set It less than
eq equal mi minus
f false ne not equal
ge greater or equal pl plus
gt greater than t true
hi high vc overflow clear
hs high or same {=cc) vs overflow set
le less or equal
lo low {=cs)

EA This represents an arbitrary effective address.

MU43815PG/Al 18-21 4101188

II

II

SYSTEM ASSEMBLER

I An absolute expression, used as an immediate operand.

Q An absolute expression evaluating to a number from 1 to 8.

L A label reference, or any expression representing a memory address in the
current segment.

d Two's complement or sign-extended displacement that is added as part of
effective address calculation; size may be 8 or 16 bits; when omitted,
assembler uses value of zero.

o/odx, o/ody, o/odn Represent data registers.

o/oax, o/oay, o/oan Represent address registers.

o/orx, o/ory, o/orn Represent either data or address registers.

o/orc Represents control register (%sfc, o/odfc, o/ocacr, o/ovbr, o/ocaar, o/omsp,
o/oisp).

offset Either an immediate operand or a data register.

width Either an immediate operand or a data register.

MU43815PG/Al 18-22 4/01/88

SYSTEM ASSEMBLER

MC68000 INSlRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
ABCD abcd.b %dy,%dx Add Decimal with Extend

-(%ay).-{%ax)
ADD add.S EA,%dn Add Binary

%dn,EA

ADDA add.A EA,%an Add Address.
add a.A EA,%an Second form is PMMU-

supported as20 only. II
ADDI add.S &l,EA Add Immediate.

addl.S &l,EA Second form is PMMU-
supported as20 only.

ADDQ add.S &Q,EA Add Quick.
addq.S &Q,EA Second form is PMMU-

supported as20 only.

ADDX addx.S %dy,%dx Add Extended
-(%ay),-(%ax)

AND and.S EA,%dn AND Logical
%dn,EA

ANDI and.S &l,EA AND Immediate
andl.S &1,EA Second form is PMMU-

supported as20 only.

ANDI and.b &l,%cc AND Immediate
to CCR to Condition Codes

ANDI and.w &l,%sr AND Immediate
to SR to the Status Register
ASL asl.S %dx,%dy Arithmetic Shift (Left)

&Q,%dy

asl.w &1,EA

ASR asr.S %dx,%dy Arithmetic Shift (Right)
&Q,%dy

asr.w &1,EA

MU43815PG/Al 18-23 4/01/88

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
Bee bCC L Branch Conditionally

(16-bit Displacement)

bCC.b L Branch Conditionally (Short)
(8-bit Displacement)

II bCC.I L Branch Conditionally (Long)
(32-bit Displacement)
(MC68020/MC68030 Onl...Y)_

BCHG bchg %dn,EA Test a Bit and Change
&l,EA

Note: bchg should be written
with no suffix. If the second
operand is a data register, .I
is assumed; otherwise, .b is.

BCLR bclr %dn,EA Test a Bit and Clear
&1,EA

Note: bclr should be written
with no suffix. If the second
operand is a data register, .I
is assumed; otherwise, .b is.

BF CHG bfchg EA{offaet:wldth} Complement Bit Field
(MC68020/MC68030 Only)

BFCLR bfclr EA{offaet:wldth} Oear Bit Field
(MC68020/MC68030 Only)

BFEXTS bfexta EA{offaet:wldth},%dn Extract Bit Field (Signed)
(MC68020/MC68030 Only)

BFEXTU bfextu EA{offaet:wldth},%dn Extract Bit Field (Unsigned)
(MC68020/MC68030 Only)

BFFFO btHo EA{offset:wldth},%dn Find First One in Bit Field
(MC68020/MC68030 Only)

BFINS btlna %dn,EA{offaet:wldth} Insert Bit Field
(MC68020/MC68030 Only)

BFSET bfaet EA{offset:wldth} Set Bit Field
(MC68020/MC68030 Only)

MU43815PG/Al 18-24 4/01/88

MNEMONIC
BFTST bftat

BKPT bkpt

BRA bra

bra.b

br.I

br
br.b

BSET baet

BSR bar

bar.b

bar.I

BTST btat

CAUM callm

MU43815PG/ Al

SYSTEM ASSEMBLER

MC68000INSTRUCTIONFORMATS
ASSEMBLER SYNTAX OPERATION

EA{offaet:wldth} Test Bit Field
(MC68020/MC68030 Only)

&I Breakpoint
J_MC68020/MC68030 Only}_

L Branch Always
(16-bit Displacement)

L Branch Always (Short)
(8-bit Displacement)

L Branch Always (Long)
(32-bit Displacement)
(MC68020/MC68030 Only)

L Same as bra
L Same as bra.b

%dn,EA Test a Bit and Set
&l,EA

Note: baet should be written
with no suffix. If the second
operand is a data register, .I
is assumed; otherwise, .bis.

L Branch to Subroutine
(16-bit Displacement)

L Branch to Subroutine (Short)
(8-bit Displacement)

L Branch to Subroutine (Long)
(32-bit Displacement)
(MC68020/MC68030 Only}_

o/odn,EA Test a Bit and Set
&l,EA

Note: btat should be written with
no suffix. If the second operand
is a data register, .I is assumed;
otherwise, .b is.

&l,EA Call Module
. (MC68020 OnlJi

18-25 4/01/88

I
II
I

I

I
II

I

I

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION

CAS caa %dx,%dy,EA Compare and Swap Operands
(MC68020/MC68030 Only)

CAS2 cas2 %dx:%dy,%dx:%dy,%rx:%ry Compare and Swap Dual
O~ands (MC68020/MC68030 Onl_y}_

CHK chk.w EA,%dn Check Register Against
Bounds

chk.I EA,%dn Check Register Against
Bounds (Long)
(MC68020/MC68030 Only)

CHK2 chk2.S EA,%m Check Register Against
Bounds

Q.1:C68020/MC68030 On!Y}
CLR clr.S EA Oear an O~and
CMP cmp.S %dn,EA Compare

CMPA cmp.A %an,EA Compare Address.
cm pa.A %an, EA Second form is PMMU-

supported as20 only.

CMPI cmp.S EA,&I Compare Immediate.
cmpl.S EA,&I Second form is PMMU-

supported as20 only.

CMPM cmp.S (%ax)+ ,(%ay)+ Compare Memory.
cmpm.S (%ax)+ ,(%ay)+ Second form is PMMU-

supported as20 only.

CMP2 cmp.S %rn,EA Compare Register Against
cmp2.A %rn,EA Bounds (MC68020/MC68030 Only).1

Second form is PMMU-
supported as20 onl_y.

DBcc dbCC %dn,L Test Condition, Decrement,
and Branch

dbra %dn,L Decrement and Branch
Always

dbr %dn,L Same as dbra

1. Note: The order of operands in as is the reverse of that in the M68000
Programmer's Reference Manual.

MU43815PG/ Al 18-26 4/01/88

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION

DIVS dlva.w EA,%dx Signed Divide
32116-> 32

tdlva.I EA,%dx Signed Divide (Long)
diva.I EA,%dx 32132-> 32

(MC68020/MC68030 Only)

tdlva.I EA, '%dx:'%dy Signed Divide (Long)
diva I.I EA,~:'%dy 32132 -> 32r:32q2

(MC68020/MC68030 Only).
Second form is PMMU-
supported 11820 only.

diva.I EA, %dx:'%dy Signed Divide (Long)
64132 -> 32r:32cf
(MC68020/MC68030 0.E!Yl_

DIW dlvu.w EA,'%dn Unsigned Divide
32/16-> 32

tdlvu.I EA,'%dx Unsigned Divide (Long)
dlvu.I EA,%dx 32132-> 32

(MC68020/MC68030 Only)

tdlvu.I EA, '%dx:'%dy Unsigned Divide (Long)
dlvul.I EA,'%dx:'%dy 32132 -> 32r:32q

(MC68020/MC68030 Only)4
Second form is PMMU-supported
11820 only.

dlvu.I EA,'%dx:'%dy Unsigned Divide (Long)
64132 -> 32r:32q
(MC68020/MC68030 Onlfi

2. Whenever %dx and %dy are the same register, the form is equivalent to the
tdivs.l EA, %dx form {PMMU-supported asZO only).

3. Whenever %dx and ~dy ~ the same register, the form is equivalent to the
divs.I EA, %dx form V'MMU-supported as20 only).

"· Whenever %dx and %dy are the same register, then the form is equivalent to
the tdivu.l EA,%dx form.

s. Whenever %dx and %dy are the same register, then the form is equivalent to
the divu.l EA,%dx form.

MU43815PG/Al 18-27 4/01/88

II

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
EOR eor.S %dn,EA Exclusive OR Logical

EORI eor.S &l,EA Exclusive OR Immediate.
eort.S &l,EA Second form is PMMU-

supported ll820 only.

II EORI eor.b. &1,%cc Exclusive OR Immediate to
to CCR eorl.b &l,%cc Condition Code Register.

eorl.b &l,%ccr Second and third forms PMMU-
supported 11S20 only.

EORI
to SR eor.w &l,%ar Exclusive OR Immediate

eorl.w &l,%ar to the Status Register.
Second form is PMMU-
supported 11S20 ~

EXG 9XJl %rx, %_1'I_ Exchang_e Registers
EXT ext.w %dn Sign-Extend Low-Order

Byte of Data to Word

ext.I %dn Sign-Extend Low-Order
Word of Data to Long

extb.I %dn Sign-Extend Low-Order
Byte of Data to Long

I
(MC68020/MC68030 Only)

extw.I %dn Same as ext.I
(MC68020/MC68030 Only)

JMP)mp EA Jump

JSR jar EA Jum...e_ to Subroutine
LEA lea.I EA,%an Load Effective Address
LINK link %an,&I Unk and Allocate

MU43815PG/Al 18-28 4/01/88

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
LSL lal.S %dx,%dy Logical Shift (Left)

&Q,%dy

lal.w &1,EA

LSR lar.S %dx,%dy Logical Shift (Right)
&Q,&dy

lsr.w &l,EA

MOVE mov.S EA,EA Move Data from Source
move.S EA,EA to Destination.

move.S form is PMMU-
supported as20 only.

Note: If the destination is an
address register, the instruc-
tion generated is MOVEA.

MOVE mov.w EA,%cc Move to Condition Codes.
to CCR move.w EA,%ccr move. w form is PMMU-

supported as20 only.

MOVE mov.w %cc,EA Move from Condition
from CCR move.w %ccr,EA Codes.

(MC68010/MC68020/MC68030 Only)
move. w form is PMMU- I
supported as20 only.

MOVE mov.w EA,%ar Move to the Status Register.
to SR move.w EA,%sr move.w form is PMMU-

supported as20 only.

MOVE mov.w %sr,EA Move from the Status Register.
from SR move.w %ar,EA move.w form is PMMU-

supported as20 only.

MOVE mov.I %usp,%an Move User Stack Pointer.
USP %an,%usp move.I form is PMMU-

move.I %usp,%an supported as20 only.
%an,%usp

MU43815PG/Al 18-29 4101188

I

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
MO VEA mov.A EA,%an Move Address.

mova.A EA,%an movea.A and movea.A PMMU-
movea.A EA,%an supported 11820 only.

MOVEC mov.I &l,EA Move to Control Register.
to CR move.I %m,%rc (MC68010/MC68020/MC68030 Only)

movec.I %m,%rc movc.l and movec.l PMMU-
%m,%rc supported 11820 only.

MOVEC mov.I %rc,%m Move from Control Register.
from CR move.I %rc,%m (MC68010/MC68020/MC68030 Only)

movec.I %rc,%m movc.1 and movec.l PMMU-
supported 11820 only.

MOVEM movm.A EA,&I Move Multiple Registers6

(See footnote).
movem.A &l,EA movem.A form is PMMU-

EA,&I supported 11820 only.

MOVEP movp.A %clx,d(%ay) Move Peripheral Data.
d(%ay),%dx movep.A form is PMMU-

movep.A %dx,d(%ay) supported 11820 only.
d(%ay), %clx

Move Quick.
MOVEQ mov.I &l,%dn movq.l and moveq.l forms

movq.I &l,%dn PMMU-supported 11820 only.
moveq.I &l,%dn

Move to/from Address
MOVES movs.S %m,EA Space

movs.S EA,%m (MC68010/MC68020/MC68030 Only).
moves.S %m,EA moves.S forms PMMU-
moves.S EA,%1'11 supported 11820 only.

6. The immediate operand is a mask designating which registers are to be moved
to memory or which are to receive memory data. Not all addressing modes are
permitted, and the correspondence between mask bits and register numbers
depends on the addressing mode. Unlike the other M68000 family of
assemblers, only a mask is allowed for the as assembler (PMMU-supported as20
only).

MU43815PG/Al 18-30 4/01/88

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION

MULS muls.w EA,%dx Signed Multiply
16 .. 16-> 32

tmuls.I EA,%dx Signed Multiply (Long)
muls.I EA,%dx 32 .. 32-> 32

(MC68020/MC68030 Only)

muls.I EA,%dx:%dy Signed Multiply (Long)
32 .. 32-> 64
(MC68020/MC68030 Only)7

MULU mulu.w EA,%dx Unsigned Multiply
16 .. 16-> 32

tmulu.I EA,%dx Unsigned Multiply (Long)
mulu.I EA,%dx 32 .. 32-> 32

(MC68020/MC68030 Only)

mulu.I EA,%dx:%dy Unsigned Multiply (Long)
32 .. 32-> 64
~C68020/MC68030 Onl_y)8

NBCD nbcd.b EA N~ate Decimal with Extend
NEG neg.$ EA N~ate

NEGX nl!S_x.S EA N~ate with Extend
NOP nop NoO~ration

NOT not.S EA Lo_.8.!_cal Com_E!ement
OR or.S EA,%dn Inclusive OR Logical

%dn,EA

ORI or.S &1,EA Inclusive OR Immediate.
orl.S &l,EA ori.S form is PMMU-

supported as20 only.

ORI or.b &l,%cc Inclusive OR Immediate
to CCR orl.b &l,%cc to Condition Codes.

orl.b &l,%ccr ori.b forms are PMMU-
supported as20 on!Y:

1. Whenever %dx and %dY: are the same register, the form is equivalent to the
muls.l EA,%dx form (PMMU-supported asZO only).

s. Whenever %dx and %dy _are_ the same register, the form is equivalent to the
mulu.l DA, %dx form (PMMU-supported as20 only).

MU43815PG/ Al 18-31 4/01/88

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION

ORI or.w &l,%ar Inclusive OR Immediate
to SR orl.w &l,%ar to the Status Register.

ori.w form is PMMU-
supported as20 only.

PACK pack -(%ax),-(%ay},&I Pack BCD
pack %dx,%dy,&I (MC68020JMC68030 _Q!11y}_

PEA ~-· EA Push Effective Address

RESET reset Reset External Devices

ROL rol.S %dx,%dy Rotate (without Extend)
&Q,%dy (Left)

rol.w &l,EA

ROR ror.S %dx,%dy Rotate (without Extend)
&Q,%dy (Right)

ror.w &l,EA
ROXL roxl.S %dx,%dy Rotate with Extend (Left)

&Q,%dy

roxl.w &l,EA

ROXR roxr.S %dx,%dy Rotate with Extend (Right)
&Q,%dy

roxr.w &l,EA

RTD rtd •• Return and Deallocate

I
Parameters
(MC68010/MC68020/MC68030 Only)

RTE rte Return from Exception
c

RTM rtm %m Return from Module
.CMC68020~

RTR rtr Return and Restore
Condition Codes

RTS rts Return from Subroutine

MU43815PG/ Al 18-32 4/01/88

SYSTEM ASSEMBLER

MC68000 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION
SSCD sbcd.b %dy,%dx Subtract Decimal with Extend

-(%ay).-{%ax)
Sec sCC.b EA Set Accordi1:!8_ to Condition
STOP

··~
&I Load Status Register and St~

SUB sub.S EA,%dn Subtract Binary
%dn,EA

SUSA sub.A EA,%an Subtract Address.
suba.A EA,%an suba.A form is PMMU-

supported as20 only.

SUSI sub.S &l,EA Subtract Immediate.
subl.S &1,EA subi.S form is PMMU-

supported as20 only.

SUSQ sub.S &Q,EA Subtract Quick.
subq.S &Q,EA subq.S form is PMMU-

supported as20 only.

susx subx.S %dy,%dx Subtract with Extend
• ..::{_%ay),-(%ax)

SWAP SWl!e:W %dn Sw~ Register Halves
TAS tas.b EA Test and Set an O~rand
TRAP trap &I Trap

TRAPV trapv Trap on Overflow

TRAPcc tCC trapCC Trap on Condition
tpCC.A (MC68020/MC68030 Only)
trapCC.A &I I

&I
TST tst.S EA Test an O~rand
UNLK unlk %an Unlink
UNPK unpk -(%ax).-{%ay),&I Unpack BCD

%dx,%dy,&1 (MC68020/MC68030 O~ I

MU43815PG/Al 18-33 4/01/88

II

SYSTEM ASSEMBLER

Instructions For The MC68881
The following table shows how the floating point c<rprocessor (MC68881)
instructions should be written to be understood by the as assembler.

In the table, cc represents any of the following floating point condition code
designations:

MU43815PG/Al

TRAP ON UNORDERED

cc MEANING

ge greater than or equal
g1 greater or less than
gle greater or less than or equal
gt greater than
le less than or equal
It less than
ngt not greater than
nge not (greater than or equal)
nit not less than
ngl not (greater or less than)
nle not (less than or equal)
ngle not (greater or less than or equal)
sneq signaling not equal
·sf signaling false
seq signaling equal
st signali1!8_ true

18-34 4/01/88

SYSTEM ASSEMBLER

NO TRAP ON UNORDERED
cc MEANING

eq equal
oge ordered greater than or equal
ogl ordered greater or less than
ogt ordered greater than
ole ordered less than or equal
olt ordered less than
or ordered
t true
ule unordered or less or equal
ult unordered or less than
uge unordered or greater than or equal
ueq unordered or equal
ugt unordered or greater than
un unordered
neq not equal
f false

The designation ccc represents a group of constants in MC68881 constant ROM
which have the following values:

CCC VALUE CCC VALUE
00 pi 35 10**4
OB log10(2) 36 10 8
oc e 37 10**16
OD log2(e) 38 10**32
OD loglO(e) 39 10**64
OF 0.0 3A 10**128
10 ln(2) 3B 10**256
11 ln(lO} 3C 10M512
32 10**0 3D 10**1024
33 lQMl 3E 10**2048
34 10 2 3F 10**4096

MU43815PG/ Al 18-35 4/01/88

II

SYSTEM ASSEMBLER

Additional abbreviations used in the table are:

EA

L

I

%dn

%fpm, %fpn, %fpq

%control

%£per

%status

%fpsr

%iaddr

%fpiar

SF

A

B

represents an effective addresss

a label reference or any expression representing a memory
address in the current segment

represents an absolute expression, used as an immediate operand

represents data register

represent floating point data registers

represents floating point control register

represents floating point control register
(PMMU-supported as20 only)

represents floating point status register

represents floating point status register
(PMMU-supported as20 only)

represents floating point instruction address register

represents floating point instruction address register
(PMMU-supported as20 only)

represents source format letters:

b byte integer
w word integer
1 long word integer
s single precision
d double precision
x extended precision
p packed binary code decimal

represents source format letters w or 1

represents source format letters b, w, 1, s, or p

Note: The source format must be specified if more than one source format is
permitted or a default source format x is assumed. Source format need not be
specified if only one format is permitted by the operation.

MU43815PG/ Al 18-36 4/01/88

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION

FASS fabs.SF EA,%fpn absolute value function
fabs.x %fpm,%fpn
fabs.x %fpn

FACOS facoa.SF EA,%fpn arccosine function
facos.x %tpm,%fpn
facos.x %fpn

FADD fadd.SF EA,%fpn floating point add II
fadd.x %fpm,%fpn

fist form.sp
FASIN fas In.SF EA,%fpn arcsine function

fasln.x %fpm,%fpn
fasln.x %fpn

FAT AN fafan.SF EA,%fpn arctangent function
fafan.x %fpm,%fpn
fafan.x %fpn

FAT ANH fatanh.SF EA,%fpn hyperbolic arctangent
fafanh.x %fpm,%fpn function
fafanh.x %fpn

FBcc fbcc.A L co-processor branch
conditionally

FCMP temp.SF %fpn,EA floating point compare
tcmp.x %fpn,%fpm

FCOS tcos.SF EA,%fpn cosine function
tcos.x %fpm,%fpn
tcos.x %fpn

FCOSH tcosh.SF EA,%tpn hyperbolic cosine
tcosh.x %fpm,%fpn function
tcosh.x %fpn

FD Bee fdbcc.w %dn,L decrement and branch
on condition

FDIV fdlv.SF EA,%tpn floating point divide
fdlv.x %fpm,%tpn

MU43815PG/Al 18-37 4/01/88

SYSTEM ASSEMBLER

MC68881 INSTRUCilON FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION

FETOX fetox.SF EA,%tpn e"x function
fetox.x %fpm,%fpn
fetox.x %fpn

FETOXM1 fetoxm1.SF EA,%fpn e"x(x-1) function

II
fetoxm1.x %fpm,%fpn
fetoxm1.x %tpn

FGETEXP tgetexp.SF EA,%tpn get the exponent
tgetexp.x %fpm,%tpn function
tgetexp.x %tpn

FGETMAN tgetman.SF EA,%tpn get the mantissa
tgetman.x %fpm,%fpn function
tgetman.x %tpn

FINT tint.SF EA,%fpn integer part function
tlnt.x %fpm,%tpn
tlnt.x %fpn

FINTRZ tlntrz.SF EA,%fpn integer part, round-to-zero
tlntrz.x %fpm,%tpn function
tlntrz.x %fpn

FLOG2 flog2.SF EA,%fpn binary log function
tlog2.x %fpm,%fpn
tlog2.x %fpn

FLOG10 tlog10.SF EA,%tpn common log function
tlog10.x %tpm,%tpn
tlog10.x %!2_n

MU43815PG/Al 18-38 4/01/88

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION

FLOGN flogn.SF EA,%fpn natural log function
flogn.x %fpm,%fpn
flogn.x %fpn

FLOGNP1 flognp1.SF EA,%fpn natural log (x+l)
flognp1.x %fpm,%fpn function
flognp1.x %fpn

FMOD fmod.SF EA,%fpn floating point module
fmod.x %fpm,%~n

FMOVE fmov.SF EA,%fpn move to floating point
fmov.x %fpm,%fpn register (fmove.SF and
fmove.SF EA,%fpn fmove.x forms PMMU-
fmove.x %fpm,%fpn supported as20 only)

fmov.SF %fpn,EA move from floating point
fmov.p %fpn,EA{&I} register to memory (fmove.SF
tmov.p %fpn,EA{%dn} and fmove.p forms PMMU-
fmove.SF %fpn,EA supported as20 only)
fmove.p %fpn,EA{&I}
fmove.p %fpn,EA{%dn}

move from memory to
fmov.I EA, %control special register (fmove.l
fmov.t EA,%status forms PMMU-supported
fmov.I EA,%1addr as20 only)
fmove.I EA,%control
fmove.I EA,%1tatu1
fmove.I EA,%1addr move to memory from

special register (fmove.1
fmov.I %control, EA forms PMMU-supported
fmov.I %status,EA as20 only)
fmov.I %1addr,EA
fmove.I %control,EA
fmove.I %status,EA
fmove.I %1addr,EA

FMOVECR fmovcr.x &ccc,%fpn move a ROM-stored to a
floati~pointregister

MU43815PG/ Al 18-39 4/01/88

II

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION

FMOVEM tmovm.x EA,&I move to multiple float-
fmovem.x EA,&I ing point register (fmovem.x

form PMMU-supported as20
only)

fmovm.x &l,EA move from multiple
fmovem.x &1,EA registers to memory

(fmovem.x PMMU-supported
as20 only)

tmovm.x EA,%dn move to a data register
fmovem.x EA,%dn (fmovem.x form PMMU-

supported as20 only)

fmovm.x %dn,EA move a data register
fmovem.x %dn,EA to memory (fmovem.x

PMMU-supported as20 only)

move to special
fmovm.I EA, %control/%8ta· registers (fmovem.l form

tus/%1addr PMMU-supported as20 only)
fmovem.I EA, %controll'%sta-

tus/%1addr move from special
registers (fmovem.1 form

tmovm.I %control/%8tatu8/ PMMU-supported as20 only)
fmovem.I %1addr,EA

%control/%atatu8/
%1addr,EA

FMUL tmul.SF EA,%fpn floating point multiply
fmul.x %fpm,%fpn

FNEG tneg.SF EA,%fpn negate function
tneg.x %fpm,%fpn
tn~.x ""~"

NOTE: The immediate operand is a mask designating which registers are to be
moved to memory or which registers are to receive memory data. Not all
addressing modes are permitted and the correspondence between mask bits and
register numbers depends on the addressing mode used.

MU43815PG/Al 18-40 4/01/88

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION

FNOP fnop floating point no-op

FREM frem.SF EA,%fpn floating point remainder
frem.x %fpm,%fpn

FRESTORE treat ore EA restore internal state
of co-processor

FSAVE fsave EA co-processor save II
FSCALE tscale.SF EA,%fpn floating point scale

fscale.x %fpm,%fpn exponent

FScc tscc.b EA set on condition

FSGLOIV tsgldlv.B EA,%fpn floating point single
fsgldlv.s %fpm,%fpn precision divide

FSGLMUL fsglmul.B EA,%fpn floating point single
fsglmul.s %fpm,%fpn precision multiply

FSIN fain.SF EA,%fpn sine function
tsln.x %fpm,%fpn
tsln.x %fpn

FSINCOS tslncos.SF EA,%fpn:%fpq sine/cosine function
tslncos.x %fpm, %fpn:%fpq

FSINH tslnh.SF EA,%fpn hyperbolic sine
tslnh.x %fpm,%fpn function
fslnh.x %fpn

FSQRT fsqrt.SF EA,%fpn square root function
fsqrt.x %fpm,%fpn
tsqrt.x %fpn

FSUB fsub.SF EA,%fpn square root function
tsub.x %fpm,%fpn

MU43815PG/ Al 18-41 4/01/88

II

SYSTEM ASSEMBLER

MC68881 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION

FTAN flan.SF EA,%tpn tangent function
flan.x %tpm,%fpn
ttan.x %tpn

FT ANH ttanh.SF EA,%fpn hyperbolic tangent
ttanh.x %fpm,%fpn function
ttanh.x %tpn

FTENTOX flentox.SF EA,%tpn lO"x function
flentox.x %fpm,%fpn
ttentox.x %fpn

FTcc flee trap on condition
without a parameter'

FTRAPcc flrapcc trap on condition
without a parameter
(PMMU-supported as20
only)

FTPcc flpcc.A •• trap on condition with
a parameter

FTRAPcc flrapcc.A •• trap on condition with
a parameter (PMMU-
supported as20 only)

FTST fleet.SF EA floating point test
fleat.x %fpm an operand (ftst.SF
flat.SF EA and ftst.x forms PMMU-
ftat.x %fpm supported as20 only)

FlWOTOX ftwotox.SF EA,%fpn 2"x fµnction
ftwotox.x %fpm,%fpn
ftwotox.x %fpn

9. The ftst form (floating point trap on signal true) is no longer supported due to a
conflict with the FrST {floating point test and operand instruction) - PMMU
supported as20 only.

MU43815PG/Al 18-42 4/01/88

SYSTEM ASSEMBLER

Instructions For The MC68851

The following table shows how the paged memory management unit (PMMU)
(MC68851) instructions should be written to be understood by the as assembler.
Instructions that are MC68030-only or MC68851-only are noted as such in the
"OPERATION" column. Additional MC68030 instructions which do not deal
with memory management are listed separately with the MC68000 instructions.

In the table, cc represents any of the following floating point condition code
designations:

SETPSR BIT
cc/CC MEANING

bs bus error
ls limit violation
SS supervisor violation
as access level violation
ws write protected
is invalid
gs gate
cs global!Y_ shared

CLEAR PSR BIT

cc/CC MEANING

be bus error
le limit violation
sc supervisor violation
ac access level violation
wc write protected
ic invalid
gc gate
cc ~obal!Y_ shared

Additional abbreviations used in the table are:

EA represents an effective addresss
L a label reference or any expression representing a memory

address in the current segment
I represents an absolute expression, used as an immediate operand

MU43815PG/Al 18-43 4/01/88

II

II

SYSTEM ASSEMBLER

FC

M

D

PMRn
MRn
%dn
%an
%ac
%bac

%bad

%cal
%crp
%drp
%mmusr
%pcsr
%psr
%sec
%srp
%tc
%tt

%val

represents one of the following function codes:
I represents an absolute expression used as an immediate operand
%dn represents a data register
%sfc represents the source function code register
%sfcr represents the source function code register
%dfc represents the destination function code register
% dfcr represents the destination function code register
represents an absolute expression used as an immediate operand mask
in the PFLUSH/PFLUSHS instructions where 0 ::s M ::s 15
represents an absolute expression used as an immediate operand depth
level in the PI'ESTR/PIESTW instructions where 0 ::s D ::s7
represents any of the MC68881 registers
represents any of the MC68030 memory management registers
represents a data register 0 through 7
represents an address register 0 through 7
represents pmmu access control register (MC68851 only)
represents pmmu breakpoint acknowledge control

register 0 through 7 (MC68851 only)
represents pmmu breakpoint acknowledge data

register 0 through 7 (MC68851 only)
represents pmmu current access level register (MC68851 only)
represents pmmu CPU root pointer register
represents pmmu OMA root pointer register (MC68851 only)
represents pmmu status register
represents pmmu cache status register (MC68851 only)
represents pmmu status register
represents pmmu stack change control register (MC68851 only)
represents pmmu supervisor root pointer register
represents pmmu translation control register
represents pmmu transparent translation control

registers 0 or 1 (MC68030 only)
represents pmmu validate access level register (MC68851 only)

Note: The source format must be specified if more than one source format is
permitted or a default source format w is assumed. Source format need not be
specified if only one format is permitted by the operation.

MU43815PG/Al 18-44 4/01/88

SYSTEM ASSEMBLER

MC68851 INSTRUCTION FORMATS
MNEMONIC ASSEMBLER SYNTAX OPERATION

PB cc pbCC.A L Branch on PMMU Condition
(MC68851 only)

PD Bee pdbCC.w %dn,L Test, decrement, branch
(MC68851 only)

PFLUSH ptluah FC,&M Invalidate entries in ATC
ptluah FC,&M,EA

PFLUSHA ptluaha Invalidate all ATC entries

PFLUSHS pfluaha FC,&M Invalidate entries in ATC
II

ptluaha FC,&M,EA including shared entries
(MC68851 only)

PFLUSHR pfluahr EA Invalidate ATC and
RPT entries

PLOADR ploadr FC,EA Load an entry into ATC

PLOADW ploadw FC,EA Load an entry into ATC

PMOVE Move to/from MMU register
pmove EA,PMRn (MC68851 only)
pmove PMRn,EA (MC68851 only)w
pmove EA,MRn (MC68030 only)
pmove MRn,EA (MC68030 only)
pmove.d %crp,EA
pmove.d EA,%crp
pmove.d %arp,EA
pmove.d EA,%arp
pmove.d %drp,EA (MC68881 only)
pmove.d EA,%drp (MC68881 only)
pmove.I %tc,EA
pmove.I EA,%tc
pmove.I %tt,EA (MC68881 only)
pmove.I EA,%tt (MC68881 only)
pmove.w %bac,EA (MC68881 only)
pmove.w EA,%bac (MC68881 only)
pmove.w %bad,EA (MC68881 only)
pmove.w EA,%bad (MC68881 only)
pmove.w %ac,EA
pmove.w EA,%ac
pmove.w %par,EA (MC68881 only)
pmove.w EA,%par
pmove.w %pcar,EA

10.

Cannot move to %pcsr register.

MU43815PG/Al 18-45 4/01/88

SYSTEM ASSEMBLER

MC68851 INSTRUCTION FORMATS

MNEMONIC ASSEMBLER SYNTAX OPERATION

PMOVE (cont'd)
pmove.b .%cal,EA (MC68881 only)
pmove.b EA,%cal (MC68881 only)
pmove.b %val,EA (MC68881 only)
pmove.b EA,%val (MC68881 only)
pmove.b %scc,EA (MC68881 only)
pmove.b EA,%scc (MC68881 only)

PMOVEFD Move to MMU register, flush disabled
pmovefd EA,MRn (MC68030 only)

pmovefd.d EA,%crp (MC68030 only)
pmovefd.d EA,%srp (MC68030 only)

pmovefd.I EA,%tc (MC68030 only)
pmovefd.I EA,%tt (MC68030 only)

PRESTO RE prestore EA PMMU restore function
(MC68881 only)

PSAVE psave EA PMMU save function
(MC68881 only)

PScc psCC EA Set on PMMU condition
(MC68881 only)

PTESTR ptestr FC,EA,&D Get information about
ptestr FC,EA,&D,%an logical address

PTESTW ptestr FC,EA,&D Get information about
pt es tr FC,EA,&D,%an logical address

PTRAPcc ptrapCC Trap on PMMU condition
ptrapCC.A &I (MC68881 only)

PVAUD pvalld %val,EA Validate a pointer
..e!_alld %an,EA (MC68881 only)

MU43815PG/Al 18-46 4/01/88

