
16. lint

Introduction
The lint program examines C language source programs for a number of bugs and
obscurities. It enforces the type rules of C language more strictly than the C
compiler. It may also be used to enforce portability restrictions involved in
moving programs between different machines and/or operating systems. It
detects a number of legal but wasteful or error prone constructions. lint accepts
multiple input files and library specifications and checks them for consistency.

Usage
The lint command has the form:

lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages; files are the
files to be checked which end with .c or .In; and library-descriptors are the names
of libraries to be used in checking the program.

The options currently supported by the lint command are:

-a Suppress messages about assignments of long values to variables
that are not long.

-b Suppress messages about break statements that cannot be reached.

-c Only check for intra-file bugs; leave external information in files
suffixed with .In.

-h Do not apply heuristics (which attempt to detect bugs, improve
style, and reduce waste).

-n Do not check for compatibility with either the standard or the
portable lint library.

-o name Create a lint library from input files named llib-lname.ln.

-p Attempt to check portability.

-u Suppress messages about function and external variables used and
not defined or defined and not used.

-v Suppress messages about unused arguments in functions.

MU43815PG/D2 16-1 12/01/87

II

II
lint

-x Do not report variables referred to by external declarations but
never used.

When more than one option is used, they should be combined into a single
argument, such as -ab or -xha.

The names of files that contain C language programs should end with the suffix
.c, which is mandatory for lint and the C compiler.

lint accepts certain arguments, such as:

-Im

These arguments specify libraries that contain functions used in the C language
program. The source code is tested for compatibility with these libraries. This is
done by accessing library description files whose names are constructed from the
library arguments. These files all begin with the comment:

/• LINTLIBRARY •/

which is followed by a series of dummy function definitions. The critical parts of
these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to the
function. The V ARARGS and ARGSUSED comments can be used to specify
features of the library functions. The next section, "lint Message Types," describes
how it is done.

lint library files are processed almost exactly like ordinary source files. The only
difference is that functions that are defined in a library file but are not used in a
source file do not result in messages. lint does not simulate a full library search
algorithm and will print messages if the source files contain a redefinition of a
library routine.

By default, lint checks the programs it is given against a standard library file that
contains descriptions of the programs that are normally loaded when a C
language program is run. When the -p option is used, another file is checked
containing descriptions of the standard library routines which are expected to be
portable across various machines. The -n option can be used to suppress all
library checking.

MU43815PG/D2 16-2 12/01/87

lint

lint Message Types
The following paragraphs describe the major categories of messages printed by
lint.

Unused Variables and Functions
As sets of programs evolve and develop, previously used variables and arguments
to functions may become unused. It is common for external variables or even
entire functions to become unnecessary and yet not be removed from the source.
Although these types of errors rarely cause working programs to fail, they are a
source of inefficiency and make programs harder to understand and change.
Also, information about such unused variables and functions can occasionally
serve to discover bugs.

lint prints messages (unless suppressed by the -u or -x option) about variables
and functions which are defined but not otherwise mentioned.

Certain styles of programming may permit a function to be written with an
interface where some of the function's arguments are optional. Such a function
can be designed to accomplish a variety of tasks depending on which arguments
are used. Normally lint prints messages about unused arguments; however, the
-v option is available to suppress the printing of these messages. When -v is in
effect, no messages are produced about unused arguments except for those
arguments which are unused and also declared as register arguments. This can be
considered an active (and preventable) waste of the register resources of the
machine.

M~ages about unused arguments can be suppressed for one function by adding
the comment:

/rt. ARGSUSED rt./

to the source code before the ·function. This has the effect of the -v option for
only one function. Also, the comment:

/rt. VARARGS rt./

can be used to suppress messages about variable number of arguments in calls to
a function. The comment should be added before the function definition.
Sometimes, it is desirable to check the first several arguments and leave the later
arguments unchecked. This can be done with a digit giving the number of
arguments which should be checked. For example, the comment:

/rt. VARARGS2 rt./

will cause only the first two arguments to be checked.

MU43815PG/02 16-3 12/01/87

II

II
lint

When lint is applied to some but not all files out of a collection that are to be
loaded together, it issues complaints about unused or undefined variables. This
information is, of course, more distracting than helpful. Functions and variables
that are defined may not be used; conversely, functions and variables defined
elsewhere may be used. The -u option suppresses the spurious messages.

Set/Used Information
lint attempts to detect cases where a variable is used before it is set. lint detects
local variables (automatic and register storage classes) whose first use appears
physically earlier in the input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a "use" since the actual
use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the
algorithm simple and quick to implement since the true flow of control need not
be discovered. It does mean that lint can print error messages about program
fragments that are legal, but these programs would probably be considered bad
on stylistic grounds. Because static and external variables are initialized to zero,
no meaningful information can be discovered about their uses. The lint program
does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables that are
set and never used. These form a frequent source of inefficiencies and may also be
symptomatic of bugs.

Flow of Control

lint attempts to detect unreachable portions of a program. It will print messages
about unlabeled statements immediately following goto, break, continue, or
return statements. It attempts to detect loops that cannot be left at the bottom
and to recognize the special cases while(1) and for(;;) as infinite loops. lint also
prints messages about loops that cannot be entered at the top. Valid programs
may have such loops, but they are considered to be bad style. If you do not want
messages about unreached portions of the program, use the -b option.

lint has no way of detecting functions that are called and never return. Thus, a
call to exit may cause unreachable code which lint does not detect. The most
serious effects of this are in the determination of returned function values (see
''Function Values'~. If a particular place in the program is thought to be
unreachable in a way that is not apparent to lint, the comment:

/• NDTREACHED •/

can be added to the source code at the appropriate place. This comment will

MU43815PG/D2 16-4 12/01/87

lint

inform lint that a portion of the program cannot be reached, and lint will not print
a message about the unreachable portion.

Programs generated by yacc and especially lex may have hundreds of
unreachable break statements, but messages about them are of little importance.
There is typically nothing the user can do about them, and the resulting messages
would clutter up the lint output. The recommendation is to invoke lint with the
-b option when dealing with such input.

Function Values
Sometimes functions return values that are never used. Sometimes programs
incorrectly use function values that have never been returned. lint addresses this
problem in a number of ways.

Locally, within a function definition, the appearance of the statements:

return (expr);

and:

return ;

is cause for alarm; lint will give the message:

funct~on name has return(e) and return

The most serious difficulty with this is detecting when a function return is implied
by flow of control reaching the end of the function. This can be seen with a
simple example:

f (a) {

}

~f (a) return (3);
g ();

Notice that, if a tests false, f will call g and then return with no defined return
value; this will trigger a message from lint. If g, like exit, never returns, the
message will still be produced when in fact nothing is wrong. This comment in
the source code will cause the message to be suppressed:

/•NOTREACHED•/

In practice, some potentially serious bugs have been discovered by this feature.

On a global scale, lint detects cases where a function returns a value that is

MU43815PG/D2 16-5 12/01/87

II

II
lint

sometimes or never used. When the value is never used, it may constitute an
inefficiency in the function definition that can be overcome by specifying the
function as being of type (void), as in:

(void) fprintf(•tderr,•Fil• bu•7. Tr7 again later!\n•);

When the value is sometimes unused, it may represent bad style (e.g., not testing
for error conditions).

The opposite problem, using a function value when the function does not return
one, is also detected. This is a serious problem.

Type Checking
lint enforces the type checking rules of C language more strictly than the
compilers do. The additional checking is in four major areas:

• across certain binary operators and implied assignments

• at the structure selection operators

• between the definition and uses of functions

• in the use of enumerations

There are a number of operators which have an implied balancing between types
of the operands. The assignment, conditional (?:), and relational operators have
this property. The argument of a return statement and expressions used in
initialization suffer similar conversions. In these operations, char, short, int,
long, unsigned, float, and double types may be freely intermixed. The types of
pointers must agree exactly except that arrays of xs can, of course, be intermixed
with pointers to xs.

The type checking rules also require that, in structure references, the left operand
of the-> be a pointer to structure, the left operand of the . be a structure, and
the right operand of these operators be a member of the structure implied by the
left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int, and
unsigned. Also, pointers can be matched with the associated arrays. Aside from
this, all actual arguments must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are
not mixed with other types or other enumerations and that the only operations
applied are=, initialization, ==,!=,and function arguments and return values.

MU43815PG/D2 16-6 12/01/87

If it is desired to tum off strict type checking for an expression, the comment:

/• NDSTRICT */

lint

should be added to the source code immediately before the expression. This
comment will prevent strict type checking for only the next line in the program.

Type Casts
The type cast feature in C language was introduced largely as an aid to producing
more portable programs. Consider the assignment:

p = 1 ;

where p is a character pointer. lint will print a message as a result of detecting
this. Consider the assignment:

p = (char •)1 ;

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this and has clearly
signaled his intentions. Nevertheless, lint will continue to print messages about
this.

Nonportable Character Use
On some systems, characters are signed quantities with a range from -128 to 127.
On other C language implementations, characters take on only positive values.
Thus, lint will print messages about certain comparisons and assignments as
being illegal or nonportable. For example, the fragment:

char c;

if ((c • get.char()) < 0) ...

will work on one machine but will fail on machines where characters always take
on positive values. The real solution is to declare c as an integer since getchar is
actually returning integer values. In any case, lint will print the message:

nonport.able character comparison

A similar issue arises with bit fields. When assignments of constant values are
made to bit fields, the field may be too small to hold the value. This is especially
true because on some machines bit fields are considered as signed quantities.
While it may seem logical to consider that a two-bit field declared of type int
cannot hold the value 3, the problem disappears if the bit field is declared to have
type unsigned.

MU43815PG/D2 16-7 12/01/87

Ill

II
lint

Assignments of longs to ints
Bugs may arise from the assignment of long to an int, which will truncate the
contents. This may happen in programs which have been incompletely converted
to use typedefs. When a typedef variable is changed from int to long, the
program can stop working because some intermediate results may be assigned to
lnts, which are truncated. The -a option can be used to suppress messages about
the assignment of longs to ints.

Strange Constructions
Several perfectly legal, but somewhat strange, constructions are detected by lint.
It is hoped the messages encourage better code quality, clearer style, and may
even point out bugs. The -h option is used to suppress these checks. For
example, in the statement:

*p++ ;

the * does nothing. This provokes the message:

null effect.

from lint. The following program fragment:

unsigned :x: ;
if (:x: < 0) ..•

results in a test that will never succeed. Similarly, the test:

:Lf (:x: > 0) . . •

is equivalent to:

if (:x: ! = 0)

which may not be the intended action. lint will print the message:

degenerat.e unsigned comparison

in these cases. If a program contains something similar to:

if(1 I= 0) .

lint will print the message:

const.ant. in condit.ional cont.ext.

since the comparison of 1 with 0 gives a constant result.

MU43815PG/D2 16-8 12/01/87

lint

Another construction detected by lint involves operator precedence. Bugs which II
arise from misunderstandings about the precedence of operators can be
accentuated by spacing and formatting, making such bugs extremely hard to find. •
For example, the statements:

if (x..077 == 0) • • .

and:

x<<2 + 40

probably do not do what was intended. The best solution is to parenthesize such
expressions, and lint encourages this by an appropriate message.

Old Syntax
Several forms of older syntax are now illegal. These fall into two classes:
assignment operators and initialization.

The older forms of assignment operators (e.g., = +, =-, ...) could cause
ambiguous expressions, such as:

a =-1 ;

which could be taken as either of the following:

a =- 1

a = -1

The situation is especially perplexing if this kind of ambiguity arises as the result
of a macro substitution. The newer and preferred operators (e.g., +=, -=, ...)
have no such ambiguities. To encourage the abandonment of the older forms, lint
prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed:

int. x 1;

to initialize x to 1. This also caused syntactic difficulties. For example, the
initialization:

int. x (-1) ;

looks somewhat like the beginning of a function definition:

int. x (y) { . . •

MU43815PG/D2 16-9 12/01/87

II
lint

and the compiler must read past x to determine the correct meaning. Again, the
problem is even more perplexing when the initializer involves a macro. The
current syntax places an equals sign between the variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

Pointer Alignment
Certain pointer assignments may be reasonable on some machines and illegal on
others due entirely to alignment restrictions. lint tries to detect cases where
pointers are assigned to other pointers and such alignment problems might arise.
The message:

possible pointer alignment problem

results from this situation.

Multiple Uses and Side Effects
In complicated expressions, the best order in which to evaluate subexpressions
may be highly machine dependent. For example, on machines in which the stack
runs backwards, function arguments will probably be best evaluated from right to
left. On machines with a stack running forward, left to right seems most
attractive. Function calls embedded as arguments of other functions may or may
not be treated similarly to ordinary arguments. Similar issues arise with other
operators that have side effects, such as the assignment operators and the
increment and decrement operators.

So that the efficiency of C language on a particular machine is not unduly
compromised, the C language leaves the order of evaluation of complicated
expressions up to the local compiler. In fact, the various C compilers have
considerable differences in the order in which they will evaluate complicated
expressions. In particular, if any variable is changed by a side effect and also
used elsewhere in the same expression, the result is explicitly undefined.

lint checks for the important special case where a simple scalar variable is
affected. For example, the statement:

a[i] = b[i.++];

will cause lint to print the message:

warning: i evaluation order undefined

to call attention to this condition.

MU43815PG/D2 16-10 12101/87

