
14. SOURCE CODE CONTROL SYSTEM {SCCS)

Introduction
The Source Code Control System (SCCS) is a maintenance and enhancement
tracking tool that runs under the operating system. SCCS takes custody of a file
and, when changes are made, identifies and stores them in the file with the
original source code and/or documentation. As other changes are made, they too
are identified and retained in the file.

Retrieval of the original or any set of changes is possible. Any version of the file
as it develops can be reconstructed for inspection or additional modification.
History data can be stored with each version: why the changes were made, who
made them, when they were made.

This guide covers the following:

•SCCS for Beginners: how to make, retrieve, and update an SCCS file

• Delta Numbering: how versions of an SCCS file are named

• SCCS Command Conventions: what rules apply to SCCS commands

• SCCS Commands: the fourteen SCCS commands and their more useful
arguments

• SCCS Files: protection, format, and auditing of SCCS files

Neither the implementation of SCCS nor the installation procedure for SCCS is
described in this guide.

SCCS For Beginners
Several terminal session fragments are presented in this section. Try them all.
The best way to learn SCCS is to use it.

Terminology

A delta is a set of changes made to a file under SCCS custody. To identify and
keep track of a delta, it is assigned an SID (SCCS IDentification) number. The SID
for any original file turned over to SCCS is composed of release number 1 and
level number 1, stated as 1.1. The SID for the first set of changes made to that

MU43815PG/D2 14-1 12/01/87
II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

file, that is, its first delta is release 1 version 2, or 1.2. The next delta would be
1.3, the next 1.4, and so on. More on delta numbering later. At this point, it is
enough to know that by default SCCS assigns SIDs automatically.

Creating an SCCS File via admin
Suppose, for example, you have a file called lang that is simply a list of five
programming language names. Use a text editor to create file lang containing the
following list.

c
PU1
FORTRAN
COBOL
ALGOL

Custody of your lang file can be given to SCCS using the admin command (i.e.,
administer SCCS file). The following creates an SCCS file from the lang file:

admln -ilang s.lang

All SCCS files must have names that begin with s., hence s.lang. The -1
keyletter, together with its value lang, means admln is to create an SCCS file and
initialize it with the contents of the file lang.

The admin command replies

No id keywords (cm7)

This is a warning message that may also be issued by other SCCS commands.
Ignore it for now. Its significance is described later with the get command under
''SCCS Commands." In the following examples, this warning message is not
shown although it may be issued.

The lang file is no longer needed because it exists now under SCCS as s.lang.
Remove the lang file:

rm lang

Retrieving a Fiie via get

Use the get command as follows:

get s.lang

MU43815PG/D2 14-2 12101187

SOURCE CODE CONTROL SYSTEM (SCCS)

This retrieves s.lang and prints:

1.1
6 1i.nea

This tells you that get retrieved version 1.1 of the file, which is made up of five
lines of text.

The retrieved text has been placed in a new file known as a "g.file." SCCS forms
the g.file name by deleting the prefix s. from the name of the SCCS file. Thus,
the original lang file has been recreated.

If you list, ls(l), the contents of your directory, you will see both lang and s.lang.
SCCS retains s.lang for use by other users.

The get s.lang command creates lang as read-only and keeps no information
regarding its creation. Because you are going to make changes to it, get must be
informed of your intention to do so. This is done as follows:

get -e s.lang

get -e causes SCCS to create lang for both reading and writing (editing). It also
places certain information about lang in another new file, called the "p.file"
(p.lang here), which is needed later by the delta command.

get -e prints the same messages as get, except that now the SID for the first delta
you will create is issued:

1.1
new de1t.a 1.2
6 1i.nea

Change lang by adding two more programming languages:

SNOBOL
ADA

Recording Changes via delta

Next, use the delta command as follows:

delta s.lang

delta then prompts with:

comment.a?

MU43815PG/D2 14-3 12/01/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

Your response should be an explanation of why the changes were made. For
example:

added more languages

delta now reads the p.file, p.lang, and determines what changes you made to
lang. It does this by doing its own get to retrieve the original version and
applying the diff(l) command to the original version and the edited version.
Next, delta stores the changes in s.lang and destroys the no longer needed p.lang
and lang files.

When this process is complete, delta outputs:

1.2
2 inserted
0 deleted
5 unchanged

The number 1.2 is the SID of the delta you just created, and the next three lines
summarize what was done to s.lang.

Additional Information about get
The command:

get s.lang

retrieves the latest version of the file s.lang, now 1.2. SCCS does this by starting
with the original version of the file and applying the delta you made. If you use
the get command now, you can retrieve version 1.2. with any of the following:

get s.lang
get -r1 s.lang
get -r1 .2 s.lang

The numbers following-rare SIDs. When you omit the level number of the SID
(as in get -r1 s.lang), the default is the highest level number that exists within
the specified release. Thus, the second command requests the retrieval of the
latest version in release 1, namely 1.2. The third command specifically requests
the retrieval of a particular version, in this case also 1.2.

Whenever a major change is made to a file, you may want to signify it by
changing the release number, the first number of the SID. This, too, is done with
the get command:

get -e -r2 s.lang

MU43815PG/D2 14-4 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

Because release 2 does not exist, get retrieves the latest version before release 2.
get also interprets this as a request to change the release number of the new delta
to 2, thereby naming it 2.1 rather than 1.3. The output is:

1.2
new de1ta 2.1
7 1ines

which means version 1.2 has been retrieved, and 2.1 is the version delta will
create. If the file is now edited (for example, by deleting COBOL from the list of
languages), and delta is executed:

delta s.lang
comments? deleted cobol from list of languages

you will see by delta's output that version 2.1 is indeed created:

2.1
0 inserted
1 de1eted
6 unchanged

Deltas can now be created in release 2 (deltas 2.2, 2.3, etc.), or another new
release can be created in a similar manner.

The help Command
If the command:

get lang

is now executed, the following message will be output:

ERROR [1ang] : not an SCCS fi1e (col)

The code co1 can be used with help to print a fuller explanation of the message:

help co1

This gives the following explanation of why get lang produced an error message:

col:
"not an SCCS fi1e"
A fi1e that you think is an SCCS fi1e
does not begin with the characters "s.".

help is useful whenever there is doubt about the meaning of almost any SCCS
message.

MU43815PG/D2 14-5 12/01/87
II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

Delta Numbering
Think of deltas as the nodes of a tree in which the root node is the original
version of the file. The root is normally named 1.1 and deltas (nodes) are named
1.2, 1.3, etc. The components of these SIDs are called release and level numbers,
respectively. Thus, normal naming of new deltas proceeds by incrementing the
level number. This is done automatically by SCCS whenever a delta is made.

Because the user may change the release number to indicate a major change, the
release number then applies to all new deltas unless specifically changed again.
Thus, the evolution of a particular file could be represented by Figure 14-1.

Figure 14-1. Evolution of an SCCS File

This is the normal sequential development of an SCCS file, with each delta
dependent on the preceding deltas. Such a structure is called the trunk of an
SCCS tree.

There are situations that require branching an SCCS tree. That is, changes are
planned to a given delta that will not be dependent on all previous deltas. For
example, consider a program in production use at version 1.3 and for which
development work on release 2 is already in progress. Release 2 may already
have a delta in progress as shown in Figure 14-1. Assume that a production user
reports a problem in version 1.3 that cannot wait to be repaired in release 2. The
changes necessary to repair the trouble will be applied as a delta to version 1.3
(the version in production use). This creates a new version that will then be
released to the user but will not affect the changes being applied for release 2
(i.e., deltas 1.4, 2.1, 2.2, etc.). This new delta is the first node of a new branch of
the tree.

Branch delta names always have four SID components: the same release number
and level number as the trunk delta, plus a branch number and sequence number.
The format is as follows:

release.level.branch.sequence

The branch number of the first delta branching off any trunk delta is always l,
and its sequence number is also 1. For example, the full SID for a delta branching
off trunk delta 1.3 will be 1.3.1.1. As other deltas on that same branch are
created, only the sequence number changes: 1.3.1.2, 1.3.1.3, etc. This is shown in
Figure 14-2.

MU43815PG/D2 14-6 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

Figure 14-2. Tree Structure with Branch Deltas

The branch number is incremented only when a delta is created that starts a new
branch off an existing branch, as shown in Figure 14-3. As this secondary branch
develops, the sequence numbers of its deltas are incremented (1.3.2.1, 1.3.2.2,
etc.), but the secondary branch number remains the same.

Figure 14-3. Extended Branching Concept

The concept of branching may be extended to any delta in the tree, and the
numbering of the resulting deltas proceeds as shown above. SCCS allows the -
generation of complex tree structures. Although this capability has been provided 1111
MU43815PG/D2 14-7 12/01/87

II

SOURCE CODE CONTROL SYSTEM (SCCS)

for certain specialized uses, the SCCS tree should be kept as simple as possible.
Comprehension of its structure becomes difficult as the tree becomes complex.

SCCS Command Conventions
SCCS commands accept two types of arguments:

• keyletters

•filenames

Keyletters are options that begin with a minus sign, -, followed by a lowercase
letter and, in some cases, a value.

File and/or directory names specify the file(s) the command is to process. Naming
a directory is equivalent to naming all the SCCS files within the directory. Non
SCCS files and unreadable files (because of permission modes via chmod(l)) in
the named directories are silently ignored.

In general, filename arguments may not begin with a minus sign. If a filename of
- (a lone minus sign) is specified, the command will read the standard input
(usually your terminal) for lines and take each line as the name of an secs file to
be processed. The standard input is read until end-of-file. This feature is often
used in pipelines with, for example, the commands find(l) or ls(l).

Keyletters are processed before filenames. Therefore, the placement of keyletters
is arbitrary-that is, they may be interspersed with filenames. Filenames,
however, are processed left to right. Somewhat different conventions apply to
help(l), what(l), sccsdiff(l), and val(l), detailed later under ''SCCS Commands."

Certain actions of various SCCS commands are controlled by flags appearing in
SCCS files. Some of these flags will be discussed, but for a complete description
see admin{l) in the Programmer's Reference Manual.

The distinction between real user (see passwd(l)) and effective user will be of
concern in discussing various actions of SCCS commands. For now, assume that
the real and effective users are the same-the person logged into the operating
system.

x.files and z.files

All SCCS commands that modify an SCCS file do so by writing a copy called the
"x.file." This is done to ensure that the SCCS file is not damaged if processing
terminates abnormally. SCCS names the x.file by replacing the s. of the SCCS
filename with x.. The x.file is created in the same directory as the SCCS file,

MU43815PG/D2 14-8 12/01187

SOURCE CODE CONTROL SYSTEM (SCCS)

given the same mode (see chmod(l)), and is owned by the effective user. When
processing is complete, the old SCCS file is destroyed and the modified x.file is
renamed (x. is replaced bys.) and becomes the new SCCS file.

To prevent simultaneous updates to an SCCS file, the same modifying commands
also create a lock-file called the "z.file." SCCS forms its name by replacing the s.
of the SCCS filename with a z. prefix. The z.file contains the process number of
the command that creates it, and its existence prevents other commands from
processing the SCCS file. The z.file is created with access permission mode 444
(read only) in the same directory as the SCCS file and is owned by the effective
user. It exists only for the duration of the execution of the command that creates
it.

In general, users can ignore x.files and z.files. They are useful only in the event
of system crashes or similar situations.

Error Messages
SCCS commands produce error messages on the diagnostic output in this format:

ERROR [name-of-file-being-proc••••d]: ••••age text (code)

The code in parentheses can be used as an argument to the help command to
obtain a further explanation of the message. Detection of a fatal error during the
processing of a file causes the SCCS command to stop processing that file and
proceed with the next file specified.

SCCS Commands
This section describes the major features of the fourteen SCCS commands and
their most common arguments. Full descriptions with details of all arguments are
in the Programmer's Reference Manual.

Here is a quick-reference overview of the commands:

get retrieves versions of SCCS files

unget

delta

admin

prs

MU43815PG/D2

undoes the effect of a get -e prior to the file being deltaed

applies deltas (changes) to SCCS files and creates new versions

initializes SCCS files, manipulates their descriptive text, and
controls delta creation rights

prints portions of an SCCS file in user specified format

14-9 12/01/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

sact prints information about files that are currently out for edit

help gives explanations of error messages

rmdel removes a delta from an SCCS file allows removal of deltas
created by mistake

cdc changes the commentary associated with a delta

what searches any operating system file(s) for all occurrences of a
special pattern and prints out what follows it useful in finding
identifying information inserted by the get command

sccsdiff shows differences between any two versions of an secs file

comb combines consecutive deltas into one to reduce the size of an
SCCS file

val validates an SCCS file

vc a filter that may be used for version control

The get Command
The get(l) command creates a file that contains a specified version of an SCCS
file. The version is retrieved by beginning with the initial version and then
applying deltas, in order, until the desired version is obtained. The resulting file
is called the "g.file." It is created in the current directory and is owned by the real
user. The mode assigned to the g.file depends on how the get command is used.

The most common use of get is:

get s.abc

which normally retrieves the latest version of file abc from the SCCS file tree
trunk and produces (for example) on the standard output:

1.3
67 lines
No id keywords (cm7)

meaning version 1.3 of file s.abc was retrieved (assuming 1.3 is the latest trunk
delta), it has 67 lines of text, and no ID keywords were substituted in the file.

The generated g.file (file abc) is given access permission mode 444 (read only).
This particular way of using get is intended to produce g.files only for inspection,
compilation, etc. It is not intended for editing (making deltas).

MU43815PG/D2 14-10 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

When several files are specified, the same information is output for each one. For
example, the command:

get s.abc s.xyz

produces:

s.abc:
1.3
6.7 11.nes
No id keywords (cm7)

s.xyz:
1.7
86 11.nes
No id keywords (cm7)

ID Keywords

In generating a g.file for compilation, it is useful to record the date and time of
creation, the version retrieved, the module's name, etc. within the g.file. This
information appears in a load module when one is eventually created. secs
provides a convenient mechanism for doing this automatically. Identification {ID)
keywords appearing anywhere in the generated file are replaced by appropriate
values according to the definitions of those ID keywords. The format of an ID
keyword is an uppercase letter enclosed by percent signs, % . For example, the ID
keyword replaced by the SID of the retrieved version of a file is:

%1%

Similarly, %H% and %M% are the names of the g.file. Thus, executing get on an
SCCS file that contains the PUI declaration,

DCL ID CHAR(lOO) VAR INIT('%M% %1% %H%');

gives (for example) the following:

DCL ID CHAR{lOO) VAR INIT{' MODNAME 2.3 07/18/85');

When no ID keywords are substituted by get, the following message is issued:

No id keywords (cm7)

This message is normally treated as a warning by get although the presence of the
i flag in the SCCS file causes it to be treated as an error. For a complete list of the
approximately twenty ID keywords provided, see get{l) in the Programmer's
Reference Manual.

MU43815PG/D2 14-11 12101/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

Retrieval of Different Versions

The version of an SCCS file that get retrieves is the most recently created delta of
the highest numbered trunk release. However, any other version can be retrieved
with get-r by specifying the version's SID. Thus, the command:

get -r1 .3 s.abc

retrieves version 1.3 of file s.abc and produces (for example) on the standard
output:

1.3
64 lines

A branch delta may be retrieved similarly, with a command such as:

get -r1 .S.2.3 s.abc

which produces (for example) on the standard output:

1.5.2.3
234 line•

When a SID is specified and the particular version does not exist in the SCCS file,
an error message results.

Omitting the level number, as in:

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the given
release. Thus, the above command might output:

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the highest
level number within the highest-numbered existing release that is lower than the
given release. For example, assume release 9 does not exist in file s.abc and
release 7 is the highest-numbered release below 9. Executing the command:

get -r9 s.abc

might produce:

7.6
420 lines

MU43815PG/D2 14-12 12/01/87

SOURCE CODE CONTROL SYSTEM {SCCS)

which indicates that trunk delta 7.6 is the latest version of file s.abc below release
9. Similarly, omitting the sequence number, as in:

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on
the given branch. {If the given branch does not exist, an error message results.)
This might result in the following output:

4.3.2.8
89 1i.nea

get -t will retrieve the latest {top) version of a particular release when no -r is
used or when its value is simply a release number. The latest version is the delta
produced most recently, independent of its location on the SCCS file tree. Thus,
if the most recent delta in release 3 is 3.5, the command:

get -r3 -t s.abc

might produce:

3.6
69 1i.nea

However, if branch delta 3.2.1.5 were the latest delta {created after delta 3.5), the
same command might produce:

3.2.1.6
46 1i.nea

Retrieval With Intent to Make a Delta

get -e indicates an intent to make a delta. First, get checks the following items:

1. The user list to determine whether the login name or group ID of the
person executing get is present. The login name or group ID must be
present for the user to be allowed to make deltas. {See 'The admin
Command" for a discussion of making user lists.)

2. Whether the release number {R) of the version being retrieved satisfies the
relation:

floor is less than or equal to R, which is
less than or equal to ceiling

to determine if the release being accessed is a protected release. The floor
and ceiling are flags in the SCCS file representing start and end of range.

3. That the R is not locked against editing. The lock is a flag in the SCCS
file.

MU43815PG/D2 14-13 12/01/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

4. Whether multiple concurrent edits are allowed for the SCCS file by the j
flag in the SCCS file.

A failure of any of the first three conditions causes the processing of the
corresponding SCCS file to terminate.

If the above checks succeed, get -e causes the creation of a g.file in the current
directory with mode 644 (readable by everyone, writable only by the owner)
owned by the real user. If a writable g.file already exists, get terminates with an
error. This is to prevent inadvertent destruction of a g.file being edited to make a
delta.

Any ID keywords appearing in the g.file are not substituted by get -e because the
generated g.file is subsequently used to create another delta. Replacement of ID
keywords causes them to be permanently changed in the SCCS file. Because of
this, get does not need to check for their presence in the g.file. Thus, the
message:

No id keyword• (cm7)

is never output when get -e is used.

ln addition, get -e causes the creation (or updating) of a p.file that is used to pass
information to the delta command.

The command:

get -e s.abc

produces (for example) on the standard output:

1.3
new del.t.a 1.4
67 l.ine•

Undoing a get -e

There may be times when a file is retrieved for editing in error; there is really no
editing that needs to be done at this time. In such cases, the unget command can
be used to cancel the delta reservation that was set up.

Additional get Options

If get-rand/or-tare used together with -e, the version retrieved for editing is
the one specified with -r and/or -t.

get -I and -x are used to specify a list (see get(l) in the Programmer's Reference
Manual for the syntax of such a list) of deltas to be included and excluded,

MU43815PG/D2 14-14 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

respectively. Including a delta means forcing its changes to be included in the
retrieved version. This is useful in applying the same changes to more than one
version of the SCCS file. Excluding a delta means forcing it not to be applied.
This may be used to undo the effects of a previous delta in the version to be
created.

Whenever deltas are included or excluded, get checks for possible interference
with other deltas. Two deltas can interfere, for example, when each one changes
the same line of the retrieved g.file. A warning shows the range of lines within
the retrieved g.file where the problem may exist. The user should examine the
g.file to determine what the problem is and take corrective steps (e.g., edit the
file).

CAUTION

get -I and get -x should be used with extreme
care.

get -k is used either to regenerate a g.file that may have been accidentally
removed or ruined after get -e, or simply to generate a g.file in which the
replacement of ID keywords has been suppressed. A g.file generated by get -k is
identical to one produced by get -e, but no processing related to the p.file takes
place.

Concurrent Edits of Different SID

The ability to retrieve different versions of an SCCS file allows several deltas to be
in progress at any given time. This means that several get -e commands may be
executed on the same file as long as no two executions retrieve the same version
(unless multiple concurrent edits are allowed).

The p.file created by get -e is named by automatic replacement of the SCCS
filename's prefix s. with p .. It is created in the same directory as the SCCS file,
given mode 644 (readable by everyone, writable only by the owner), and owned
by the effective user. The p.file contains the following information for each delta
that is still in progress:

• the SID of the retrieved version

• the SID given to the new delta when it is created

• the login name of the real user executing get

MU43815PG/D2 14-15 12/01/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

The first execution of get -e causes the creation of a p.file for the corresponding
SCCS file. Subsequent executions only update the p.file with a line containing the
above information. Before updating, however, get checks to assure that no entry
already in the p.file specifies that the SID of the version to be retrieved is already
retrieved (unless multiple concurrent edits are allowed). If the check succeeds,
the user is informed that other deltas are in progress and processing continues. If
the check fails, an error message results.

Note that concurrent executions of get must be carried out from different
directories. Subsequent executions from the same directory will attempt to
overwrite the g.file, which is an SCCS error condition. In practice, this problem
does not arise since each user normally has a different working directory. See
''Protection" under "SCCS Files" for a discussion of how different users are
permitted to use SCCS commands on the same files.

Figure 14-4 shows the possible SID components a user can specify with get (left
most column), the version that will then be retrieved by get, and the resulting SID
for the delta, which delta will create (right-most column).

SID -b Key- SID SID of Delta
Specified Letter Other Retrieved To be Created

in get• Usedt Conditions by get by delta

none:j: no R defaults to mR mR.mL mR.(mL+l)

none:j: yes R defaults to mR mR.mL mR.mL.(mB+ 1)

R no R>mR mR.mL R.1§

R no R=mR mR.mL mR.(mL+l)

R yes R>mR mR.mL mR.mL.(mB+l).1

R yes R=mR mR.mL mR.mL.(mB+ 1).1

Figure 14-4. Determination of New SID (sheet 1 of 2)

MU43815PG/D2 14-16 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

SID -b Key- SID SID of Delta
Specified Letter Other Retrieved To be Created

in get• Usedt Conditions by get by delta

R R< mRandR hR.mL** hR.mL.(mB+ 1).1
does not exist

R Trunk successor R.mL R.mL.(mB+ 1).1
number in
release> R
and R exists

R.L. no No trunk R.L R.(L+l)
successor

R.L. yes No trunk R.L R.L.(mB+ 1).1
successor

R.L Trunk successor R.L R.L.(mS+ 1).1.
in release ::=:: R

R.L.B no No branch R.L.B.mS R.L.B.(mS+ 1)
successor

R.L.B yes No branch R.L.B.mS R.L.(mB+l).1
successor

R.L.B.S no No branch R.L.B.S R.L.B.(S+ 1)
successor

R.L.B.S yes No branch R.L.B.S R.L.(mB+l).1
successor

R.L.B.S Branch successor R.L.B.S R.L.(mB+l).1

Figure 14-4. Determination of New SID (sheet 2 of 2)

Footnotes to Figure 14-4:

* R, L, B, and S mean release, level, branch, and sequence numbers in the
SID, and m means maximum. Thus, for example, R.mL means the

II maximum level number within release R. R.L.(mB+l).1 means the first

MU43815PG/D2 14-17 12/01/87

II

SOURCE CODE CONTROL SYSTEM (SCCS)

sequence number on the new branch (i.e., maximum branch number plus
1) of level L within release R. Note that if the SID specified is R.L, R.L.B,
or R.L.B.S, each of these specified SID numbers must exist.

t The -b keyletter is effective only if the b flag (see admin(1}) is present in
the file. An entry of - means irrelevant.

:j: This case applies if the d (default SID) flag is not present. If the d flag is
present in the file, the SID is interpreted as if specified on the command
line. Thus, one of the other cases in this figure applies.

§ This is used to force the creation of the first delta in a new release.

** hR is the highest existing release that is lower than the specified,
nonexistent release R.

Concurrent Edits of Same SID

Under normal conditions, more than one get -e for the same SID is not
permitted. That is, delta must be executed before a subsequent get -e is executed
on the same SID.

Multiple concurrent edits are allowed if the j flag is set in the SCCS file. Thus,
the command and output:

get -e s.abc
1.1
new delta 1.2
5 li.nes

may be immediately followed by:

get -e s.abc
1.1
new delta 1.1.1.1
5 li.nes

without an intervening delta. In this case, a delta after the first get will produce
delta 1.2 (assuming 1.1 is the most recent trunk delta), and a delta after the
second get will produce delta 1.1.1.1.

Keyletters That Affect Output

get -p causes the retrieved text to be written to the standard output rather than to
a g.file. In addition, all output normally directed to the standard output (such as

MU43815PG/D2 14-18 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

the SID of the version retrieved and the number of lines retrieved) is directed
instead to the diagnostic output. get -p is used, for example, to create a g.file
with an arbitrary name, as in:

get -p s.abc > arbitrary-file-name

get -s suppresses output normally directed to the standard output, such as the
SID of the retrieved version and the number of lines retrieved, but it does not
affect messages normally directed to the diagnostic output. get -s is used to
prevent nondiagnostic messages from appearing on the user's terminal and is
often used with -p to pipe the output, as in:

get -p -s s.abc I pg

get -g suppresses the retrieval of the text of an SCCS file. This is useful in
several ways. For example, to verify a particular SID in an SCCS file, the
command:

get -g -r4.3 s.abc

outputs the SID 4.3 if it exists in the SCCS file s.abc or an error message if it does
not. Another use of get -g is in regenerating a p.file that may have been
accidentally destroyed, as in:

get -e -g s.abc

get -I causes SCCS to create an '1.file." It is named by replacing the s. of the
SCCS filename with I., created in the current directory with mode 444 (read only)
and owned by the real user. The I.file contains a table (whose format is described
under get(l) in the Programmer's Reference Manual) showing the deltas used in
constructing a particular version of the SCCS file. For example, the command:

get -r2.3 -I s.abc

generates an I.file showing the deltas applied to retrieve version 2.3 of file s.abc.
Specifying p with -I, as in:

get -Ip -r2.3 s.abc

causes the output to be written to the standard output rather than to the I.file.
get -g can be used with -I to suppress the retrieval of the text.

get -m identifies the changes applied to an SCCS file. Each line of the g.file is
preceded by the SID of the delta that caused the line to be inserted. The SID is
separated from the text of the line by a tab character.

get -n causes each line of a g.file to be preceded by the value of the ID keyword

MU43815PG/D2 14-19 12/01/87
II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

and a tab character. This is most often used in a pipeline with grep(l). For
example, to find all lines that match a given pattern in the latest version of each
SCCS file in a directory, the following may be executed:

get -p -n -s directory I grep pattern

If both -m and -n are specified, each line of the generated g.file is preceded by
the value of the chap3.13 ID keyword and a tab (this is the effect of -n) and is
followed by the line in the format produced by-m. Because use of-m and/or-n
causes the contents of the g.file to be modified, such a g.file must not be used for
creating a delta. Therefore, neither -m nor -n may be specified together with get
-e.

NOTE

See get(l) in the Programmer's Reference Manual for
a full description of additional keyletters.

The delta Command
The delta(l) command is used to incorporate changes made to a g.file into the
corresponding SCCS file-that is, to create a delta and, therefore, a new version
of the file.

The delta command requires the existence of a p.file (created via get -e). It
examines the p.file to verify the presence of an entry containing the user's login
name. If none is found, an error message results.

get -e performs. If all checks are successful, delta determines what has been
changed in the g.file by comparing it via diff(l) with its own temporary copy of
the g.file as it was before editing. This temporary copy of the g.file is called the
d.file and is obtained by performing an internal get on the SID specified in the
p.file entry.

The required p.file entry is the one containing the login name of the user
executing delta, because the user who retrieved the g.file must be the one who
creates the delta. However, if the login name of the user appears in more than
one entry, the same user has executed get -e more than once on the same secs
file. Then, delta -r must be used to specify the SID that uniquely identifies the
p.file entry. This entry is then the one used to obtain the SID of the delta to be
created.

MU43815PG/D2 14-20 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

In practice, the most common use of delta is:

delta s.abc

which prompts:

comments?

to which the user replies with a description of why the delta is being made,
ending the reply with a newline character. The user's response may be up to 512
characters long with newlines (not intended to terminate the response) escaped by
backslashes,\.

If the SCCS file has a v flag, delta first prompts with:

MRs?

(Modification Requests), on the standard output. The standard input is then read
for MR numbers, separated by blanks and/or tabs, ended with a newline
character. A Modification Request is a formal way of asking for a correction or
enhancement to the file. In some controlled environments where changes to
source files are tracked, deltas are permitted only when initiated by a trouble
report, change request, trouble ticket, etc., collectively called MRs. Recording MR
numbers within deltas is a way of enforcing the rules of the change management
process.

delta -y and/or -m can be used to enter comments and MR numbers on the
command line rather than through the standard input, as in:

delta -y"descriptive comment" -m"mrnum1 mrnum2" s.abc

In this case, the prompts for comments and MRs are not printed, and the
standard input is not read. These two keyletters are useful when delta is
executed from within a shell procedure (see sh{l) in the Programmer's Reference
Manual).

NOTE

delta -m is allowed only if the SCCS file has a v
flag.

No matter how comments and MR numbers are entered with delta, they are
recorded as part of the entry for the delta being created. Also, they apply to all
SCCS files specified with the delta.

If delta is used with more than one file argument and the first file named has a v
flag, all files named must have this flag. Similarly, if the first file named does not
have the flag, none of the files named may have it.

MU43815PG/D2 14-21 12101/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

When delta processing is complete, the standard output displays the SID of the
new delta (from the p.file) and the number of lines inserted, deleted, and left
unchanged. For example:

1.4
14 inserted
7 de1eted
345 unchanged

If line counts do not agree with the user's perception of the changes made to a
g.file, it may be because there are various ways to describe a set of changes,
especially if lines are moved around in the g.file. However, the total number of
lines of the new delta (the number inserted plus the number left unchanged)
should always agree with the number of lines in the edited g.file.

If you are in the process of making a delta, the delta command finds no ID
keywords in the edited g.file, the message:

No id keywords (cm7)

is issued after the prompts for commentary but before any other output. This
means that any ID keywords that may have existed in the SCCS file have been
replaced by their values or deleted during the editing process. This could be
caused by making a delta from a g.file that was created by a get without -e (ID
keywords are replaced by get in such a case). It could also be caused by
accidentally deleting or changing ID keywords while editing the g.file. Or, it is
possible that the file had no ID keywords. In any case, the delta will be created
unless there is an I flag in the SCCS file (meaning the error should be treated as
fatal), in which case the delta will not be created.

After the processing of an SCCS file is complete, the corresponding p.file entry is
removed from the p.file. All updates to the p.file are made to a temporary copy,
the "q.file," whose use is similar to the use of the x.file described earlier under
"SCCS Command Conventions." If there is only one entry in the p.file, then the
p.file itself is removed.

In addition, delta removes the edited g.file unless -n is specified. For example,
the command:

delta -n s.abc

will keep the g.file after processing.

delta -s suppresses all output normally directed to the standard output, other
than comments? and MRs?. Thus, use of -s with -y (and/or -m) causes delta
to neither read the standard input nor write the standard output.

MU43815PG/D2 14-22 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

The differences between the g.file and the d.file constitute the delta and may be
printed on the standard output by using delta -p. The format of this output is
similar to that produced by diff(l).

The admin Command
The admin{l) command is used to administer SCCS files-that is, to create new
SCCS files and change the parameters of existing ones. When an SCCS file is
created, its parameters are initialized by use of keyletters with admin or are
assigned default values if no keyletters are supplied. The same keyletters are
used to change the parameters of existing SCCS files.

Two keyletters are used in detecting and correcting corrupted SCCS files (see
"Auditing" under "SCCS Files').

Newly created SCCS files are given access permission mode 444 (read only) and
are owned by the effective user. Only a user with write permission in the
directory containing the SCCS file may use the admin command on that file.

Creation of SCCS Files

An SCCS file can be created by executing the command:

admin -ifirst s.abc

in which the value first with -i is the name of a file from which the text of the
initial delta of the SCCS file s.abc is to be taken. Omission of a value with -i
means admin is to read the standard input for the text of the initial delta.

The command:

admin -i s.abc < first

is equivalent to the previous example.

If the text of the initial delta does not contain ID keywords, the message:

No id keywords (cm7)

is issued by admin as a warning. However, if the command also sets the i flag
(not to be confused with the -i keyletter), the message is treated as an error and
the SCCS file is not created. Only one SCCS file may be created at a time using
admin-i.

MU43815PG/D2 14-23 12/01/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

admin -r is used to specify a release number for the first delta. Thus, the
command:

admln -lflrst -r3 s.abc

means the first delta should be named 3.1 rather than the normal 1.1. Because -r
has meaning only when creating the first delta, its use is permitted only with -1.

Inserting Commentary for the Initial Delta

When an SCCS file is created, the user may want to record why this was done.
Comments (admln -y) and/or MR numbers (-m) can be entered in exactly the
same way as a delta.

If -y is omitted, a comment line of the form:

date and time created YY/MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (admln -m), the v flag must be set via -f.
The v flag simply determines whether MR numbers must be supplied when using
any SCCS command that modifies a delta commentary (see sccsfile(4) in the
Programmer's Reference Manual) in the SCCS file. Thus:

admln ..;.!first -mmmuml -fv s.abc

Note that -y and -m are effective only if a new SCCS file is being created.

Initialization and Modification of SCCS File Parameters

Part of an SCCS file is reserved for descriptive text, usually a summary of the
file's contents and purpose. It can be initialized or changed by using admin -t.

When an SCCS file is first being created and -t is used, it must be followed by the
name of a file from which the descriptive text is to be taken. For example, the
command:

admin -lfirst -tdesc s.abc

specifies that the descriptive text is to be taken from file desc.

When processing an existing SCCS file, -t specifies that the descriptive text (if
any) currently in the file is to be replaced with the text in the named file. Thus,
the command:

admin -tdesc s.abc

specifies that the descriptive text of the SCCS file is to be replaced by the contents
of desc.

MU43815PG/D2 14-24 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

Omission of the filename after the -t keyletter, as in:

adm In -t s.abc

causes the removal of the descriptive text from the SCCS file.

The flags of an SCCS file may be initialized or changed by admin -f, or deleted
via-d.

SCCS file flags are used to direct certain actions of the various commands. (See
admin(l) in the Programmer's Reference Manual for a description of all the flags.)
For example, the I flag specifies that a warning message (stating that there are no
ID keywords contained in the SCCS file) should be treated as an error. The d
(default SID) flag specifies the default version of the SCCS file to be retrieved by
the get command.

admin -f is used to set flags and, if desired, their values. For example, the
command:

admin -ifirst -fl -fmmodname s.abc

sets the I and m (module name) flags. The value modname specified for them flag
is the value that the get command will use to replace the %M% ID keyword. (In
the absence of them flag, the name of the g.file is used as the replacement for the
%M% ID keyword.) Several -f keyletters may be supplied on a single admin, and
they may be used whether the command is creating a new SCCS file or processing
an existing one.

admin -dis used to delete a flag from an existing SCCS file. As an example, the
command:

admin -dm s.abc

removes the m flag from the SCCS file. Several -cl keyletters may be used with
one admin and may be intermixed with-f.

SCCS files contain a list of login names and/or group IDs of users who are
allowed to create deltas. This list is empty by default, allowing anyone to create
deltas. To create a user list (or add to an existing one), admin -a is used. For
example, the command:

admin -axyz -awql -a1234 s.abc

adds the login names xyz and wql and the group ID 1234 to the list. admin -a
may be used whether creating a new SCCS file or processing an existing one.

admin -e (erase) is used to remove login names or group IDs from the list.

MU43815PG/D2 14-25 12/01/87
II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

The prs Command
The prs(l) command is used to print all or part of an SCCS file on the standard
output. If prs -d is used, the output will be in a format called data specification.
Data specification is a string of SCCS file data keywords (not to be confused with
get ID keywords) interspersed with optional user text.

Data keywords are replaced by appropriate values according to their definitions.
For example, the symbol:

:I:

is defined as the data keyword replaced by the SID of a specified delta. Similarly,
:F: is the data keyword for the SCCS filename currently being processed, and :C:
is the comment line associated with a specified delta. All parts of an SCCS file
have an associated data keyword. For a complete list, see prs(l) in the
Programmer's Reference Manual.

There is no limit to the number of times a data keyword may appear in a data
specification. Thus, for example, the command line:

prs -d":I: this is the top delta for :F: :I:" s.abc

may produce on the standard output:

2.1 this is the top de1ta for s.abc 2.1

Information may be obtained from a single delta by specifying its SID using prs
-r. For example, the command line:

prs -d":F:: :I: comment line is: :C:" -r1.4 s.abc

may produce the following output:

• . abc: 1.4 comment line is: THIS IS A COMMENT

If -r is not specified, the value of the SID defaults to the most recently created
delta.

In addition, information from a range of deltas may be obtained with -I or -e.
The use of prs -e substitutes data keywords for the SID designated via -r and all
deltas created earlier, while prs -I substitutes data keywords for the SID
designated via -r and all deltas created later. Thus, the command:

prs -d:I: -r1.4 -e s.abc

MU43815PG/D2 14-26 12/01/87

may output:

1.4
1.3
1.2.1.1
1.2
1.1

and the command:

prs -cl: I: -r1 .4 -1 s.abc

may produce:

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

SOURCE CODE CONTROL SYSTEM (SCCS)

Substitution of data keywords for all deltas of the SCCS file may be obtained by
specifying both -e and -1.

The sact Command
sact{l) is like a special form of the prs command that produces a report about
files that are out for edit. The command takes only one type of argument: a list of
file or directory names. The report shows the SID of any file in the list that is out
for edit, the SID of the impending delta, the login of the user who executed the
get -e command, and the date and time the get -e was executed. It is a useful
command for an administrator.

The help Command
The help(l) command prints the syntax of SCCS commands and of messages that
may appear on the user's terminal. Arguments to help are simply secs
commands or the code numbers that appear in parentheses after SCCS messages.
(If no argument is given, help prompts for one.) Explanatory information is
printed on the standard output. If no information is found, an error message is
printed. When more than one argument is used, each is processed
independently, and an error resulting from one will not stop the processing of the
others.

MU43815PG/D2 14-27 12/01/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

NOTE

There is no conflict between the help(l) command
of SCCS and the operating system help(l) utilities.
The installation procedure for each package checks
for the prior existence of the other.

Explanatory information related to a command is a synopsis of the command. For
example, the command:

help geS rmdel

produces:

ge6:
"nonexistent aid"
The specified aid doea not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name

The rmdel Command
The rmdel{l) command allows removal of a delta from an SCCS file. Its use
should be reserved for deltas in which incorrect global changes were made. The
delta to be removed must be a leaf delta. That is, it must be the most recently
created delta on its branch or on the trunk of the SCCS file tree. In Figure 14-3,
only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed. Only after they are removed
can deltas 1.3.2.1 and 2.1 be removed.

To be allowed to remove a delta, the effective user must have write permission in
the directory containing the SCCS file. In addition, the real user must be either
the one who created the delta being removed or the owner of the SCCS file and
its directory.

The -r keyletter is mandatory with rmdel. It is used to specify the complete SID
of the delta to be removed. Thus, the command:

rmdel -r2.3 s.abc

specifies the removal of trunk delta 2.3.

MU43815PG/D2 14-28 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

Before removing the delta, rmdel checks that the release number (R) of the given
SID satisfies the relation:

floor less than or equal to R less than or equal to ceiling

The rmdel command also checks the SID to make sure it is not for a version on
which a get for editing has been executed and whose associated delta has not yet
been made. In addition, the login name or group ID of the user must appear in
the file's user list (or the user list must be empty). Also, the release specified
cannot be locked against editing. That is, if the I flag is set (see admln(l) in the
Programmer's Reference Manual), the release must not be contained in the list. If
these conditions are not satisfied, processing is terminated, and the delta is not
removed.

Once a specified delta has been removed, its type indicator in the delta table of
the SCCS file is changed from D (delta) to R (removed).

The cdc Command
The cdc{l) command is used to change the commentary made when the delta was
created. It is similar to the rmdel command (e.g., -rand full SID are necessary),
although the delta need not be a leaf delta. For example, the command:

cdc -r3.4 s.abc

specifies that the commentary of delta 3.4 is to be changed. New commentary is
then prompted for as with delta.

The old commentary is kept, but it is preceded by a comment line indicating that
it has been superseded, and the new commentary is entered ahead of the
comment line. The inserted comment line records the login name of the user
executing cdc and the time of its execution.

The cdc command also allows for the insertion of new and deletion of old ("!"
prefix) MR numbers. Thus, the command:

cdc -r1 .4 s.abc
MRs'i' mrnum3 lmrnum1 (The MRs? prompt appears only

if the v flag has been set.)
comment.a? deleted wrong MR number and inserted correct MR number

inserts mrnum3 and deletes mrnum1 for delta 1.4.

MU43815PG/D2 14-29 12/01/87
II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

NOTE

An MR (Modification Request) is described above
under the delta command.

The what Command
The what(l) command is used to find identifying information within any file
whose name is given as an argument. No keyletters are accepted. The what
command searches the given file(s) for all occurrences of the string@(#), which is
the replacement for the %Zo/o ID keyword (see get(l)). It prints on the standard
output whatever follows the string until the first double quote, ", greater than, >,
backslash,\, newline, or nonprinting NUL character.

For example, if an SCCS file called s.prog.c (a C language program) contains the
following line:

char id[]• "IWI";
and if the command:

get -r3.4 s.prog.c

is used, the resulting g.file is compiled to produce prog.o and a.out. Then, the
command:

what prog.c prog.o a.out

produces:

prog.c:
prog.c: 3.4

prog.o:
prog.c: 3.4

a.out.:
prog.c: 3.4

The string searched for by what need not be inserted via an ID keyword of get; it
may be inserted in any convenient manner.

The sccsdiff Command

The sccsdiff(l) command determines (and prints on the standard output) the
differences between any two versions of an secs file. The versions to be
compared are specified with sccsdiff -r in the same way as with get -r. SID
numbers must be specified as the first two arguments. Any following keyletters

MU43815PG/D2 14-30 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

are interpreted as arguments to the pr(l) command (which prints the differences)
and must appear before any filenames. The SCCS file(s) to be processed are
named last. Directory names and a name of - (a lone minus sign) are not
acceptable to sccsdlff.

The following is an example of the format of sccsdiff:

sccsdiff -r3.4 -rS.6 s.abc

The differences are printed the same way as by dlff(l).

The comb Command
The comb(l) command lets the user try to reduce the size of an SCCS file. It
generates a shell procedure (see sh(l) in the Programmer's Reference Manual) on the
standard output, which reconstructs the file by discarding unwanted deltas and
combining other specified deltas. (It is not recommended that comb be used as a
matter of routine.)

In the absence of any keyletters, comb preserves only leaf deltas and the
minimum number of ancestor deltas necessary to preserve the shape of an SCCS
tree. The effect of this is to eliminate middle deltas on the trunk and on all
branches of the tree. Thus, in Figure 14-3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would
be eliminated.

Some of the keyletters used with this command are:

comb -s This option generates a shell procedure that produces a report of
the percentage space (if any) the user will save. This is often
useful as an advance step.

comb -p This option is used to specify the oldest delta the user wants
preserved.

comb-c This option is used to specify a list (see get{l) in the Programmer's
Reference Manual for its syntax) of deltas the user wants preserved.
All other deltas will be discarded.

The shell procedure generated by comb is not guaranteed to save space. A
reconstructed file may even be larger than the original. Note, too, that the shape
of an SCCS file tree may be altered by the reconstruction process.

MU43815PG/D2 14-31 12/01/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

The val Command
The val(l) command is used to determine whether a file is an SCCS file meeting
the characteristics specified by certain keyletters. It checks for the existence of a
particular delta when the SID for that delta is specified with -r.

The string following -y or -m is used to check the value set by the t or m fla~
respectively. See admin(l) in the Programmer's Reference Manual for descriptions of
these flags.

The val command treats the special argument - differently from other SCCS
commands. It allows val to read the argument list from the standard input
instead of from the command line, and the standard input is read until an end-of
file (CTRL-D) is entered. This permits one val command with different values for
keyletters and file arguments. For example, the command:

val - -ye -mabc s.abc -mxyz -ypl1 s.xyz

first checks if file s.abc has a value c for its type flag and value abc for the
module name flag. Once this is done, val processes the remaining file, in this
case s.xyz.

The val command returns an 8-bit code. Each bit set shows a specific error (see
val(l) for a description of errors and codes). In addition, an appropriate
diagnostic is printed unless suppressed by -s. A return code of 0 means all files
met the characteristics specified.

The vc Command
The vc(l) command is an awk-like tool used for version control of sets of files.
While it is distributed as part of the SCCS package, it does not require the files it
operates on to be under SCCS control. A complete description of vc may be
found in the Programmer's Reference Manual.

SCCS Files
This section covers protection mechanisms used by SCCS, the format of SCCS
files, and the recommended procedures for auditing SCCS files.

MU43815PG/D2 14-32 12/01/87

SOURCE CODE CONTROL SYSTEM (SCCS)

Protection
SCCS relies on the capabilities of the operating system for most of the protection
mechanisms required to prevent unauthorized changes to SCCS files-that is,
changes by non-SCCS commands. Protection features provided directly by SCCS
are the release lock flag, the release floor and ceiling flags, and the user list.

Files created by the admln command are given access permission mode 444 (read
only). This mode should remain unchanged because it prevents modification of
SCCS files by non-SCCS commands. Directories containing SCCS files should be
given mode 755, which allows only the owner of the directory to modify it.

SCCS files should be kept in directories that contain only SCCS files and any
temporary files created by SCCS commands. This simplifies their protection and
auditing. The contents of directories should be logical groupings-subsystems of
the same large project, for example.

SCCS files should have only one link (name) because commands that modify them
do so by creating a copy of the file (the x.file; see ''SCCS Command
Conventions'1· When processing is done, the old file is automatically removed
and the x.file renamed (s. prefix). If the old file had additional links, this breaks
them. Then, rather than process such files, SCCS commands will produce an
error message.

When only one person uses SCCS, the real and effective user IDs are the same;
and the user ID owns the directories containing SCCS files. Therefore, SCCS may
be used directly without any preliminary preparation.

When several users with unique user IDs are assigned SCCS responsibilities (e.g.,
on large development projects), one user-that is, one user ID-must be chosen
as the owner of the SCCS files. This person will administer the files (e.g. use the
admln command) and will be SCCS administrator for the project. Because other
users do not have the same privileges and permissions as the SCCS administrator,
they are not able to execute directly those commands that require write
permission in the directory containing the SCCS files. Therefore, a project
dependent program is required to provide an interface to the get, delta, and, if
desired, rmdel and cdc commands.

The interface program must be owned by the SCCS administrator and must have
the set user ID on execution bit on (see chmod(l) in the User's Reference Manual).
This assures that the effective user ID is the user ID of the SCCS administrator.
With the privileges of the interface program during command execution, the
owner of an SCCS file can modify it at will. Other users whose login names or
group IDs are in the user list for that file (but are not the owner) are given the

MU43815PG/D2 14-33 12/01/87

II

II

SOURCE CODE CONTROL SYSTEM (SCCS)

necessary perm1ss1ons only for the duration of the execution of the interface
program. Thus, they may modify SCCS only with delta and, possibly, rmdel and
cdc.

A project-dependent interface program, as its name implies, can be custom built
for each project. Its creation is discussed later under "An SCCS Interface
Program."

Formatting
SCCS files are composed of lines of ASCII text arranged in six parts as follows:

Checksum a line containing the logical sum of all the characters of the
file (not including the checksum itself)

Delta Table information about each delta, such as type, SID, date and
time of creation, and commentary

User Names list of login names and/or group IDs of users who are
allowed to modify the file by adding or removing deltas

Flags indicators that control certain actions of secs commands

Descriptive Text usually a summary of the contents and purpose of the file

Body the text administered by SCCS, intermixed with internal
SCCS control lines

Details on these file sections may be found in accsflle(4). The checksum is
discussed below under "Auditing."

Since SCCS files are ASCII files they can be processed by non-SCCS commands
like ed(l), grep(l), and cat{l). This is convenient when an SCCS file must be
modified manually (e.g., a delta's time and date were recorded incorrectly
because the system clock was set incorrectly), or when a user wants simply to
look at the file.

MU43815PG/D2

CAUTION

Extreme care should be exercised when modifying
SCCS files with non-SCCS commands.

14-34 12/01187

SOURCE CODE CONTROL SYSTEM (SCCS)

Auditing
When a system or hardware malfunction destroys an SCCS file, any command
will issue an error message. Commands also use the checksum stored in an SCCS
file to determine whether the file has been corrupted since it was last accessed
(possibly by having lost one or more blocks or by having been modified with
ed(l)). No SCCS command will process a corrupted SCCS file except the admin
command with -h or -z, as described below.

SCCS files should be audited for possible corruptions on a regular basis. The
simplest and fastest way to do an audit is to use admin -hand specify all SCCS
files, as in:

admin -h s.file1 s.file2 ...
or

admin -h directory1 directory2

If the new checksum of any file is not equal to the checksum in the first line of
that file, the message:

corrupted file (co6)

is produced for that file. The process continues until all specified files have been
examined. When examining directories (as in the second example above), the
checksum process will not detect missing files. A simple way to learn whether
files are missing from a directory is to execute the ls{l) command periodically,
and compare the outputs. Any file whose name appeared in a previous output
but not in the current one no longer exists.

When a file has been corrupted, the way to restore it depends on the extent of the
corruption. If damage is extensive, the best solution is to contact the local system
administrator and request that the file be restored from a backup copy. If the
damage is minor, repair through editing may be possible. After such a repair, the
admin command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum and bring it into agreement
with the contents of the file. After this command is executed, any corruption that
existed in the file will no longer be detectable.

MU43815PG/D2 14-35 12/01/87

II

II

