
13. make

Introduction
The trend toward increased modularity of programs means that a project may
have to cope with a large assortment of individual files. There may also be a wide
range of generation procedures needed to tum the assortment of individual files
into the final executable product.

make(l) provides a method for maintaining up-to-date versions of programs that
consist of a number of files that may be generated in a variety of ways.

An individual programmer can easily forget such things as:

• file-to-file dependencies

• files that were modified and the impact that has on other files

• the exact sequence of operations needed to generate a new version of the
program

In a description file, make keeps track of the commands that create files and the
relationship between files. Whenever a change is made in any of the files that
make up a program, the make command creates the finished program by
recompiling only those portions directly or indirectly affected by the change.

The basic operation of make is to:

• find the target in the description file

• ensure that all the files on which the target depends, the files needed to
generate the target, exist and are up to date

• create the target file if any of the generators have been modified more recently
than the target

The description file that holds the information on interfile dependencies and
command sequences is conventionally called makefile, Makefile, or
s.[mM]akefile. If this naming convention is followed, the simple command make
is usually enough to regenerate the target regardless of the number files edited
since the last make. Usually, the description file is not difficult to write and
changes infrequently. Even if only a single file has been edited, typing the make
command rather than typing all the commands to regenerate the target ensures
the regeneration is done in the prescribed way.

MU43815PG/D2 13-1 12/01/87

II

II

make

Basic Features
The basic operation of make is to update a target file by ensuring that all the files
on which the target file depends exist and are up to date. The target file is
regenerated if it has not been modified since the dependents were modified. The
make program searches the graph of dependencies. The operation of make
depends on its ability to find the date and time that a file was last modified.

The make program operates using three sources of information:

• a user-supplied description file

• filenames and last-modified times from the file system

• built-in rules to bridge some of the gaps

To illustrate, consider a simple example in which a program named prog is made
by compiling and loading three C language files x.c, y.c, and z.c with the math
library. By convention, the output of the C language compilations will be found
in files named x.o, y.o, and z.o. Assume that the files x.c and y.c share some
declarations in a file named defs.h, but that z.c does not. That is, x.c and y.c
have the line:

#inc1ude "defs.h"

The following specification describes the relationships and operations:

prog : x.o y.o z.o
cc x.o y.o z.o -1m -o prog

x.o y.o : defa.h

If this information were stored in a file named makefile, the command:

make

would perform the operations needed to regenerate prog after any changes had
been made to any of the four source files x.c, y.c, z.c, or defs.h. In the example
above, the first line states that prog depends on three .o files. Once these object
files are current, the second line describes how to load them to create prog. The
third line states that x.o and y.o depend on the file defs.h. From the file system,
make discovers that there are three .c files corresponding to the needed .o files
and uses built-in rules on how to generate an object from a C source file (i.e.,
issue a cc -c command).

MU43815PG/D2 13-2 12101/87

make

If make did not have the ability to determine automatically what needs to be
done, the following longer description file would be necessary:

prog : x. 0 y.o z.o
cc x.o y.o z.o -lm -o prog

x. 0 x.c defs.h
cc -c x.c

y.o y.c defs.h
cc -c y.c

z.o z.c
cc -c z.c

If none of the source or object files have changed since the last time prog was
made, and all the files are current, the command make announces this fact and
stops. If, however, the defs.h file has been edited, x.c and y.c (but not z.c) are
recompiled; and then prog is created from the new x.o and y.o files, and the
existing z.o file. If only the file y.c had changed, only it is recompiled; but it is
still necessary to reload prog. If no target name is given on the make command
line, the first target mentioned in the description is created; otherwise, the
specified targets are made. The command:

make x.o

would regenerate x.o if x.c or defs.h had changed.

A method often useful to programmers is to include rules with mnemonic names
and commands that do not actually produce a file with that name. These entries
can take advantage of make's ability to generate files and substitute macros (for
information about macros, see "Description Files and Substitutions" below.) Thus,
a "save" entry might be included to copy a certain set of files, or a "clean" entry
might be used to throw away unneeded intermediate files.

If a file exists after such commands are executed, the file's time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further decisions.

You can maintain a zero-length file purely to keep track of the time at which
certain actions were performed. This technique is useful for maintaining remote
archives and listings.

MU43815PG/D2 13-3 12101/87

II

make

A simple macro mechanism for substitution in dependency lines and· command
strings is used by make. Macros can either be defined by command-line
arguments or included in the description file. In either case, a macro consists of a
name followed by an equals sign followed by what the macro stands for. A
macro is invoked by preceding the name by a dollar sign. Macro names longer
than one character must be parenthesized. The following are valid macro
invocations:

$(CFLAGS)
$2
$ (:xy)
$Z
$(Z)

The last two are equivalent.

The $*, $@, $?, and $< are four special macros that change values during the
execution of the command. (These four macros are described later in this chapter
under ''Description Files and Substitutions.·~ The following fragment shows
assignment and use of some macros:

OBJECTS = :x.o y.o z.o
LIBES = -1m
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -o prog

The command:

make LIBES="-11-lm"

loads the three objects with both the lex (-II) and the math (-Im) libraries,
because macro definitions on the command line override definitions in the
description file. (In operating system commands, arguments with embedded
blanks must be quoted.)

MU43815PG/D2 13-4 12/01/87

make

As an example of the use of make, a description file that might be used to
maintain the make command itself is given. The code for make is spread over a
number of C language source files and has a yacc grammar. The description file
contains the following:

De•cription fil• for th• make command

FILES =Makefile d•f•.h main.c doname.c mi•c.c
fil••.c do•7•.c gram.7

OBJECTS = main.o doname.o mi•c.o fil••.o
do•7•.o gr-.o

LIBES= -lld
LINT • lint -p
CFLAGS = -0
LP = /u•r/bin/lp

make: $(OBJECTS)
$(CC) $(CFLAGS) $(OBJECTS) $(LIBES) -o make
O•iae make

$(OBJECTS): def•.h

cleanup:
-rm •.o gr-.c
-du

in•tall:
O•ize make /u•r/bin/make
cp make /u•r/bin/make && rm make

lint do•7•.c don-e.c file•.c main.c mi•c.c gram.c
$(LINT) do•7•.c doname.c fil••.c main.c miac.c \
gr-.c

print file• that are out-of-date
with r••p•ct to •print• file.

print: $(FILES)
pr $? I $(LP)
touch print

The make program prints out each command before issuing it.

MU43815PG/D2 13-5 12/01/87

II

II

make

The following output results from tr,Ping the command make in a directory
containing only the source and description Iiles:

cc -o -c mai11.c
cc -o -c doname.c
cc -o -c mi•c.c
cc -o -c fil••.c
cc -o -c do•y•.c
yacc gram.y
mv y.tab.c gram.c
cc -o -c gram.c
cc mai11.o doname.o mi•c.o fil••.o do•y•.o

gram.o -lld -o make
13188 + 3348 + 3044 = 19680

The string of digits results from the size make command. The printing of the
command line itself was suppressed by an at sign, @, in the description file.

Description Files and Substitutions
The following section will explain the customary elements of the description file.

Comments
The comment convention is that a sharp, #, and all characters on the same line
after a sharp are ignored. Blank lines and lines beginning with a sharp are totally
ignored.

Continuation Lines
If a noncomment line is too long, the line can be continued by using a backslash.
If the last character of a line is a backslash, then the backslash, the new line, and
all following blanks and tabs are replaced by a single blank.

MU43815PG/D2 13-6 12/01/87

make

Macro Definitions
A macro definition is an identifier followed by an equal sign. The identifier must
not be preceded by a colon or a tab. The name (string of letters and digits) to the
left of the equal sign (trailing blanks and tabs are stripped) is assigned the string
of characters following the equal sign (leading blanks and tabs are stripped). The
following are valid macro definitions:

2 = xyz
abc = -11 -ly -lm
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly
defined has the null string as its value. Remember, however, that some macros
are explicitly defined in make's own rules. (See Figure 13-2 at the end of the
chapter.)

General Form
The general form of an entry in a description file is:

target1 [target2 ...] : [:] [dependent1 ...] [; comm.and•] [# ...]
[\t comm.and•] [# ...]

Items inside brackets may be omitted and targets and dependents are strings of
letters, digits, periods, and slashes. Shell metacharacters such as • and ? are
expanded when the line is evaluated. Commands may appear either after a
semicolon on a dependency line or on lines beginning with a tab immediately
following a dependency line. A command is any string of characters not
including a sharp,#, except when the sharp is in quotes.

Dependency Information

A dependency line may have either a single or a double colon. A target name
may appear on more than one dependency line, but all those lines must be of the
same (single or double colon) type. For the more common single-colon case, a
command sequence may be associated with at most one dependency line. If the
target is out of date with any of the dependents on any of the lines and a
command sequence is specified (even a null one following a semicolon or tab), it II
is executed; otherwise, a default rule may be invoked. In the double-colon case, a
command sequence may be associated with more than one dependency line. If
the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. The double colon

MU43815PG/D2 13-7 12/01/87

II

make

form is particularly useful in updating archive-type files, where the target is the
archive library itself. {An example is included in the "Archive Libraries" section
later in this chapter.)

Executable Commands
If a target must be created, the sequence of commands is executed. Normally,
each command line is printed and then passed to a separate invocation of the
shell after substituting for macros. The printing is suppressed in the silent mode
{-s option of the make command) or if the command line in the description file
begins with an @ sign. make normally stops if any command signals an error by
returning a nonzero error code. Errors are ignored if the -i flag has been specified
on the make command line, if the fake target name .IGNORE appears in the
description file, or if the command string in the description file begins with a
hyphen. If a program is known to return a meaningless status, a hyphen in front
of the command that invokes it is appropriate. Because each command line is
passed to a separate invocation of the shell, care must be taken with certain
commands (e.g., cd and shell control commands) that have meaning only within
a single shell process. These results are forgotten before the next line is executed.

Before issuing any command, certain internally maintained macros are set. The
$@ macro is set to the full target name of the current target. The $@ macro is
evaluated only for explicitly named dependencies. The $? macro is set to the
string of names that were found to be younger than the target. The $? macro is
evaluated when explicit rules from the makefile are evaluated. If the command
was generated by an implicit rule, the $< macro is the name of the related file
that caused the action; and the $• macro is the prefix shared by the current and
the dependent filenames. If a file must be made but there are no explicit
commands or relevant built-in rules, the commands associated with the name
DEFAULT are used. If there is no such name, make prints a message and stops.

In addition, a description file may also use the following related macros: $(@0),
$(@F), $(•0), $(•F), $(<0), and $(<F) {see below).

Extensions of$•,$@, and$<
The internally generated macros $•, $@, and $< are useful generic terms for
current targets and out-of-date relatives. To this list has been added the following
related macros: $(@0), $(@F), $(•0), $(•F), $(<0), and $(<F). The 0 refers to
the directory part of the single character macro. The F refers to the filename part
of the single character macro. These additions are useful when building

MU43815PG/D2 13-8 12/01/87

make

hierarchical makefiles. They allow access to directory names for purposes of
using the cd command of the shell. Thus, a command can be:

cd $(<0); $(MAKE) $(<F)

Output Translations
Macros in shell commands are translated when evaluated. The form is as follows:

$(macro:string1=string2)

The meaning of $(macro) is evaluated. For each appearance of string1 in the
evaluated macro, string2 is substituted. The meaning of finding string1 in
$(macro) is that the evaluated $(macro) is considered as a series of strings each
delimited by white space (blanks or tabs). Thus, the occurrence of string1 in
$(macro) means that a regular expression of the following form has been found:

.•<atr~ng1>[TABIBLANK]

This particular form was chosen because make usually concerns itself with
suffixes. The usefulness of this type of translation occurs when maintaining
archive libraries. Now, all that is necessary is to accumulate the out-of-date
members and write a shell script, which can handle all the C language programs
(i.e., those files ending in .c). Thus, the following fragment optimizes the
executions of make for maintaining an archive library:

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)(c.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
$(AR) $(ARFLAGS) $(LIB) $?
rm $?

A dependency of the preceding form is necessary for each of the different types of
source files (suffixes) that define the archive library. These translations are added
in an effort to make more general use of the wealth of information that make
generates.

Recursive Makefiles
Another feature of make concerns the environment and recursive invocations. If
the sequence $(MAKE) appears anywhere in a shell command line, the line is
executed even if the -n flag is set. Since the -n flag is exported across
invocations of make (through the MAKEFLAGS variable), the only thing that is II
executed is the make command itself. This feature is useful when a hierarchy of
makefile(s) describes a set of software subsystems. For testing purposes, make
-n ... can be executed and everything that would have been done will be printed
including output from lower level invocations of make.

MU43815PG/D2 . 13-9 12101187

II

make

Suffixes and Transformation Rules
make uses an internal table of rules to learn how to transform a file with one
suffix into a file with another suffix. If the -r flag is used on the make command
line, the internal table is not used.

The list of suffixes is actually the dependency list for the name .SUFFIXES. make
searches for a file with any of the suffixes on the list. If it finds one, make
transforms it into a file with another suffix. The transformation rule names are
the concatenation of the before and after suffixes. The name of the rule to
transform a .r file to a .o file is thus .r.o. If the rule is present and no explicit
command sequence has been given in the user's description files, the command
sequence for the rule .r.o is used. If a command is generated by using one of
these suffixing rules, the macro$* is given the value of the stem (everything but
the suffix) of the name of the file to be made; and the macro $< is the full name
of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to right.
The first name formed that has both a file and a rule associated with it is used. If
new names are to be appended, the user can add an entry for .SUFFIXES in the
description file. The dependents are added to the usual list. A .SUFFIXES line
without any dependents deletes the current list. It is necessary to clear the
current list if the order of names is to be changed.

Implicit Rules

make uses a table of suffixes and a set of transformation rules to supply default
dependency information and implied commands. The default suffix list is as
follows:

.o Object file

.c C source file

.c- SCCS C source file

.f FORTRAN source file

.f- SCCS FORTRAN source file

.s Assembler source file

.s- SCCS Assembler source file

.y yacc source grammar

.y- SCCS yacc source grammar

MU43815PG/D2 13-10 12/01/87

make

.I lex source grammar

.I- SCCS ex source grammar

.h Header file

.h- SCCS header file

.sh Shell file

.sh- SCCS shell file

Figure 13-1 summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file
exists or is named in the description .

. o

.c

/1
.f .s .y .I

.y .I

Figure 13-1. Summary of Default Transformation Path

If the file x.o is needed and an x.c is found in the description or directory, the x.o
file would be compiled. If there is also an x.I, that source file would be run
through lex before compiling the result. However, if there is no x.c but there is
an x.I, make would discard the intermediate C language file and use the direct
link as shown in Figure 13-1.

It is possible to change the names of some of the compilers used in the default or
the flag arguments with which they are invoked by knowing the macro names
used. The compiler names are the macros AS, CC, F77, YACC, and LEX. The
command:

make CC=newcc

will cause the newcc command to be used instead of the usual C language
compiler. The macros ASFLAGS, CFLAGS, F77FLAGS, YFLAGS, and LFLAGS

MU43815PG/02 13-11 12/01/87

II

II

make

may be set to cause these commands to be issued with optional flags. Thus, the
command line:

make "CFLAGS=-g"

causes the cc command to include debugging information.

Archive Libraries
The make program has an interface to archive libraries. A user may name a
member of a library as follows:

projlib(object.o)
or

projlib((entrypt))

where the second method actually refers to an entry point of an object file within
the library. (make looks through the library, locates the entry point, and
translates it to the correct object filename.)

To use this procedure to maintain an archive library, the following type of
makefile is required:

projlib:: projlib(pfile1.o)
$(CC) -c -0 pfile1.c
$(AR) $(ARFLAGS) projlib pfile1.o
rm pfile1.o

projlib:: projlib(pfile2.o)
$(CC) -c -0 pfile2.c
$(AR) $(ARFLAGS) projlib pfile2.o
rm pfile2.o

... and so on for each object ...

This is tedious and error prone. Obviously, the command sequences for adding a
C language file to a library are the same for each invocation; the filename being
the only difference each time. (This is true in most cases.)

The make command also gives the user access to a rule for building libraries. The
handle for the rule is the .a suffix. Thus, a .c.a rule is the rule for compiling a C
language source file, adding it to the library, and removing the .o cadaver.
Similarly, the .y.a, the .s.a, and the .I.a rules rebuild yacc, assembler, and lex
files, respectively. The archive rules defined internally are .c.a, .c-.a, .f.a, .f-.a,
and .s-.a. (The tilde, -, syntax will be described shortly.) The user may define
other needed rules in the description file.

MU43815PG/D2 13-12 12/01/87

make

The above two-member library is then maintained with the following shorter
makefile:

projlib: projlib(pfile1.o) projlib(pfile2.o)
Qecho projlib up-to-date.

The internal rules are already defined to complete the preceding library
maintenance. The .c.a rule is as follows:

.c.a:
$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $Q $•.o
rm -f $•.o

Thus, the$@ macro is the .a target (projlib); the$< and$• macros are set to the
out-of-date C language file; and the filename minus the suffix, respectively
(pfile1.c and pfile1). The $< macro (in the preceding rule) could have been
changed to $•.c.

It might be useful to go into some detail about exactly what make does when it
sees the construction:

projlib: projlib(pfile1.o)
Qecho projlib up-to-date

Assume the object in the library is out of date with respect to pfile1 .c. Also,
there is no pfile1.o file.

1. make projlib.

2. Before makeing projlib, check each dependent of projlib.

3. projlib(pfile1.o) is a dependent of projlib and needs to be generated.

4. Before generating projlib(pfile1.o), check each dependent of
projlib(pfile1.o). (There are none.)

5. Use internal rules to try to create projlib(pfile1.o). (There is no explicit
rule.) Note that projlib(pfile1.o) has a parenthesis in the name to identify
the target suffix as .a. This is the key. There is no explicit .a at the end of
the projlib library name. The parenthesis implies the .a suffix. In this
sense, the .a is hard-wired into make.

6. Break the name projlib(pfile1.o) up into projlib and pfile1.o. Define two
macros,$@ (=projlib) and$• (=pfile1).

7. Look for a rule .X.a and a file $•.X. The first .X (in the .SUFFIXES list)
which fulfills these conditions is .c so the rule is .c.a, and the file is
pfile1.c. Set $< to be pfile1.c and execute the rule. make must then
compile pfile1 .c.

MU43815PG/D2 13-13 12/01/87

II

II

make

8. The library has been updated. Execute the command associated with the
projlib: dependency, namely:

Qecho projlib up-to-date

Note that to let pfile1.o have dependencies, the following syntax is required:

projlib(pfile1.o): $(INCDIR)/atdio.h pfile1.c

There is also a macro for referencing the archive member name when this form is
used. The $% macro is evaluated each time $@ is evaluated. If there is no
current archive member, $% is null. If an archive member exists, then $%
evaluates to the expression between the parenthesis.

Source Code Control System Filenames: the Tilde
The syntax of make does not directly permit referencing of prefixes. For most
types of files, this is acceptable since nearly everyone uses a suffix to distinguish
different types of files. The SCCS files are the exception. Here, s. precedes the
filename part of the complete path name.

To allow make easy access to the prefix s. the tilde, -, is used as an identifier of
SCCS files. Hence, .c-.o refers to the rule which transforms an SCCS C language
source file into an object file. Specifically, the internal rule is:

. c . 0:

$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $•.c
-rm -:f $•.c

Thus, the tilde appended to any suffix transforms the file search into an SCCS
filename search with the suffix named by the dot and all characters up to (but not
including) the tilde.

The following SCCS suffixes are internally defined:

.c-

.f

.y

.1-

.s-

.sh

.h-

MU43815PG/D2 13-14 12/01/87

The following rules involving SCCS transformations are internally defined:

.c-:
f-·
.sh-:
.c-.a:
.c-.c:
.c-.o:
.f-.a:
.f-.f:
.f-.o:
.s-.a:
.s-.s:
.s-.o:
.y-.c:
.y-.o:
.I-.I:
.1-.o:
.h-.h:

make

Obviously, the user can define other rules and suffixes, which may prove useful.
The tilde provides a handle on the SCCS filename format so that this is possible.

The Null Suffix
There are many programs that consist of a single source file. make handles this
case by the null suffix rule. Thus, to maintain the operating system program cat,
a rule in the makefile of the following form is needed:

. c:
$(CC) $(CFLAGS) $< -o $Q

In fact, this .c: rule is internally defined so no makefile is necessary at all. The
user only needs to type:

make cat dd echo date

(these are all operating system single-file programs) and all four C language
source files are passed through the above shell command line associated with the
.c: rule.

MU43815PG/D2 13-15 12/01/87

II

II

make

The internally defined single suffix rules are:

.c:

.c-:

.f:
f-·
.sh:
.sh-:

Others may be added in the makefile by the user.

include Files
The make program has a capability similar to the #include directive of the C
preprocessor. If the string include appears as the first seven letters of a line in a
makefile and is followed by a blank or a tab, the rest of the line is assumed to be
a filename, which the current invocation of make will read. Macros may be used
in filenames. The file descriptors are stacked for reading include files so that no
more than 16 levels of nested includes are supported.

SCCS Makefiles
Makefiles under SCCS control are accessible to make. That is, if make is typed
and only a file named a.makefile or a.Makefile exists, make will do a get on the
file, then read and remove the file.

Dynamic Dependency Parameters
The parameter has meaning only on the dependency line in a makefile. The$$@
refers to the current "thing" to the left of the colon (which is$@). Also the form
$$(@F) exists, which allows access to the file part of$@. Thus, in the following:

cat.: $$Q.c

the dependency is translated at execution time to the string cat.c. This is useful
for building a large number of executable files, each of which has only one source
file.

MU43815PG/D2 13-16 12101/87

make

For instance, the operating system command directory could have a makefile like:

CMDS = ca~ dd echo da~e cmp comm chown

$(CMDS): $$G.c
$(CC) -o $? -o $Q

Obviously, this is a subset of all the single file programs. For multiple file
programs, a directory is usually allocated and a separate makefile is made. For
any particular file that has a peculiar compilation procedure, a specific entry must
be made in the makefile.

The second useful form of the dependency parameter is $$(@F). It represents the
filename part of $$@. Again, it is evaluated at execution time. Its usefulness
becomes evident when trying to maintain the /usr/include directory from a
makefile in the /usr/src/head directory. Thus, the /usr/src/head/makefile would
look like:

INCDIR • /uar/include

INCLUDES = \
$(INCDIR)/a~dio.h \
$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.ou~.h

$(INCLUDES): $$(QF)
cp $? $Q
chmod 0444 $Q

This would completely maintain the /usr/lnclude directory whenever one of the
above files in /usr/src/head was updated.

Command Usage
The make command description is found under make(l) in the Programmer~s
Reference Manual.

MU43815PG/D2 13-17 12/01/87

II

II

make

The make Command
The make command takes macro definitions, options, description filenames, and
target filenames as arguments in the form:

make [options] [macro definitions] [targets]

The following summary of command operations explains how these arguments
are interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are
analyzed and the assignments made. Command-line macros override
corresponding definitions found in the description files. Next, the option
arguments are examined. The permissible options are as follows:

-I Ignore error codes returned by invoked commands. This mode is entered
if the fake target name .IGNORE appears in the description file.

-a Silent mode. Do not print command lines before executing. This mode is
also entered if the fake target name .SILENT appears in the description
file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even lines
beginning with an @ sign are printed.

-t Touch the target files (causing them to be up to date) rather than issue the
usual commands.

-q Question. The make command returns a zero or nonzero status code
depending on whether the target file is or is not up to date.

-p Print out the complete set of macro definitions and target descriptions.

-k Abandon work on the current entry if something goes wrong, but
continue on other branches that do not depend on the current entry.

-a Environment variables override assignments within makefiles.

-f Description filename. The next argument is assumed to be the name of a
description file. A filename of - denotes the standard input. If there are
no -f arguments, the file named makefile or Makefile or s.[mM]akefile in
the current directory is read. The contents of the description files override
the built-in rules if they are present.

MU43815PG/D2 13-18 12/01/87

make

The following two arguments are evaluated in the same way as flags:

.DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used if it exists .

. PREOOUS Dependents on this target are not removed when quit or
interrupt is pressed.

Finally, the remaining arguments are assumed to be the names of targets to be
made and the arguments are done in left-to-right order. If there are no such
arguments, the first name in the description file that does not begin with a period
is made.

Environment Variables
Environment variables are read and added to the macro definitions each time
make executes. Precedence is a prime consideration in doing this properly. The
following describes make's interaction with the environment. A macro,
MAKEFLAGS, is maintained by make. The macro is defined as the collection of
all input flag arguments into a string (without minus signs). The macro is
exported and thus accessible to further invocations of make. Command line flags
and assignments in the makefile update MAKEFLAGS. Thus, to describe how
the environment interacts with make, the MAKEFLAGS macro (environment
variable) must be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or null,
the internal make variable MAKEFLAGS is set to the null string.
Otherwise, each letter in MAKEFLAGS is assumed to be an input flag
argument and is processed as such. (The only exceptions are the -f, -p,
and-r flags.)

2. Read the internal list of macro definitions.

3. Read the environment. The environment variables are treated as macro
definitions and marked as exported (in the shell sense).

4. Read the makefile(s). The assignments in the makefile(s) overrides the
environment. This order is chosen so that when a makefile is read and
executed, you know what to expect. That is, you get what is seen unless
the -a flag is used. The -a is the line flag, which tells make to have the
environment override the makefile assignments. Thus, if make -e ... is
typed, the variables in the environment override the definitions in the
makefile. Also MAKEFLAGS override the environment if assigned. This
is useful for further invocations of make from the current makefile.

MU43815PG/D2 13-19 12/01/87

II

II

make

It may be clearer to list the precedence of assignments. Thus, in order from least
binding to most binding, the precedence of assignments is as follows:

1. internal definitions

2. environment

3. makefile{s)

4. command line

The -e flag has the effect of rearranging the order to:

1. internal definitions

2. makefile{s)

3. environment

4. command line

This order is general enough to allow a programmer to define a makefile or set of
makefiles whose parameters are dynamically definable.

Suggestions and Warnings
The most common difficulties arise from make's specific meaning of dependency.
If file x.c has a line that specifies:

#inc1ude "defa.h"

then the object file x.o depends on defs.h; the source file x.c does not. If defs.h
is changed, nothing is done to the file x.c while file x.o must be recreated.

To discover what make would do, the -n option is very useful. The command:

make-n

orders make to print out the commands that make would issue without actually
taking the time to execute them. If a change to a file is absolutely certain to be
mild in character {e.g., adding a comment to an include file), the -t {touch) option
can save a lot of time. Instead of issuing a large number of superfluous
recompilations, make updates the modification times on the affected file. Thus,
the command:

make-ts

{touch silently) causes the relevant files to appear up to date. Obvious care is
necessary because this mode of operation subverts the intention of make and
destroys all memory of the previous relationships.

MU43815PG/D2 13-20 12101/87

make

Internal Rules
The standard set of internal rules used by make are reproduced below.

SUFFIXES RECOGNIZED BY MAKE

.SUFFIXES: .o .c .c- .7 .7 .l .l- .• .• .h .h- .•h .• h- .f .f

PREDEFINED MACROS

MAKE=make
AR=ar
ARFLAGS=-rT
AS= a•
ASFLAGS=
CC=cc
CFLAGS=-0
F77sf 77
F77FLAGS=
GET=get
GFLAGS=
LEX= lex
LFLAGS=
LD=ld
LDFLAGS=
YACC=7acc
YFLAGS=

MU43815PG/D2

Figura 13-2. make Internal Rules (Sheet 1of5)

13-21 12/01/87

II

II

make

SINGLE SUFFIX RULES

.c:

. c :

.f:

.•h:

.• h-:

•ccc) •CcFLAGS) •CLDFLAGS) •< -o ••

•CGET) •CGFLAGS) •<
•ccc) •CCFLAGS) •CLDFLAGS) ••.c -o ••
-rm -f ••.c

•CF77) •CF77FLAGS) •CLDFLAGS) •< -o $0

$(GET) •CGFLAGS) •<
•CF77) •CF77FLAGS) $(LDFLAGS) •< -o ••
-rm -f $•.f

cp •< ••; chmod 0777 ••

•CGET) •CGFLAGS) •<
cp ••.•h ••; chmod 0777 ••
-rm -f ••.•h

Figure 13-2. make Internal Rules (Sheet 2 of 5)

MU43815PG/D2 13-22 12/01/87

DOUBLE SUFFIX RULES

. c . c

.c.a:

.c .a:

.c.o:

.c .o:

.f .a:

- -.f .f•h .• h
$(GET) $(GFLAGS) $<

$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $0 $•.o
rm -f $•.o

$(GET) $(GFLAGS) $<
$(CC) -c $(CFLAGS) $•.c
$(AR) $(ARFLAGS) SO $•.o
rm -f $•.[co]

$(CC) $(CFLAGS) -c S<

$(GET) $(GFLAGS) $<
$(CC) $(CFLAGS) -c $•.c
-rm -f $•.c

• 'T . .,.

$(F77) $(F77FLAGS) $(LDFLAGS) -c $•.f
$(AR) S(ARFLAGS) $0 $•.o
-rm -f $•.o

$(GET) $(GFLAGS) $<
$(F77) $(F77FLAGS) $(LDFLAGS) -c $•.f
$(AR) $(ARFLAGS) $0 $•.o
-rm -f $•. [fo]

Figure 13-2. make Internal Rules (Sheet 3 of 5)

MU43815PG/D2 13-23

make

II
12/01/87

II

make

.f .o:

-.f .o:

•• .. :
.•. o:

.. .o:

.1.c

.1-.c:

• CF77) • CF77FLAOB)

•caET> •CaFLAOB) •<
• CF77) • CF77FLAOB)
-rm -f ••.f

•caET> •caFLAOB) •<
•CAB) •CABFLAOB) -o
•CAR) •CARFLAOB) ••
-rm -f ••. [•o]

•CAB) •CABFLAOB) -o

•CaET) •CaFLAOB) •<
•CAB) •CABFLAOB) -o
-rm -f ••••
•CLEX) •CLFLAOB) •<
mT 1ez.77.c •o

•CLDFLAOB)

•CLDFLAOB)

••.o ••••
••.o

•• •<

••.o ••·•

•CaET) •CaFLAQB) •<
•CLEX) •CLFLAOB) ••.1
mT 1ez.77.c •o

-c ••.f

-c ••.f

Figure 13·2. make Internal Rules (Sheet 4 of 5)

MU43815PG/D2 13-24 12101/87

.1.o:

·7 .c

.7 .o:

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.77.c
rm lex.77.c
mv lex.77.0 $0
-rm -f $•.1

$(GET) $(GFLAGS) $<
$(LEX) $(LFLAGS) $•.1
•ccc) tCCFLAGS) -c lex.77.c
rm -f lex.77.c $•.1
mv lex.77.0 $•.o

$(YACC) $(YFLAGS) $<
mv 7.tab.c $0

$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $•.7
mv 7.tab.c $•.c
-rm -f $•.7

$(YACC) $(YFLAGS) $<
•ccc) $(CFLAGS) -c 7.tab.c
rm 7.tab.c
mv 7.tab.o $0

$(GET) $(GFLAGS) $<
$(YACC) $(YFLAGS) $•.7
$(CC) $(CFLAGS) -c 7.tab.c
rm -f 7.tab.c $•.7
mv 7.tab.o $•.o

Figure 13-2. make Internal Rules (Sheet 5 of 5)

MU43815PG/D2 13-25

make

II
12/01/87

II

