
12. THE LINK EDITOR

The Link Editor
In Chapter 2 there was a discussion of link editor command line options (some of
which may also be provided on the cc(l) command line). This chapter contains
information on the Link Editor Command Language.

The command language enables you to:

• specify the memory configuration of the target machine

• combine the sections of an object file in arrangements other than the default

• bind sections to specific addresses or within specific portions of memory

• define or redefine global symbols

Under most normal circumstances there is no compelling need to have such tight
control over object files and their location in memory. When you do need to be
precise in controlling the link editor output, you do it via the command language.

Link editor command language directives are passed in a file named on the ld(l)
command line. Any file named on the command line that is not identifiable as an
object module or an archive library is assumed to contain directives. The
following paragraphs define terms and describe conditions with which you need
to be familiar before you begin to use the command language.

Memory Configuration

The virtual memory of the target machine is, for purposes of allocation,
partitioned into configured and unconfigured memory. The default condition is to
treat all memory as configured. It is common with microprocessor applications,
however, to have different types of memory at different addresses. For example,
an application might have 3K of PROM (Programmable Read-Only Memory)
beginning at address 0, and SK of ROM (Read-Only Memory) starting at 20K. II
Addresses in the range 3K to 20K-1 are then not configured. Unconfigured
memory is treated as reserved or unusable by ld{l). Nothing can ever be linked
into unconfigured memory. Thus, specifying a certain memory range to be
unconfigured is one way of marking the addresses (in that range) illegal or
nonexistent with respect to the linking process. Memory configurations other
than the default must be explicitly specified by you (the user).

MU43815PG/D2 12-1 12/01/87

II

THE LINK EDITOR

Unless otherwise specified, all discussion in this document of memory, addresses,
etc. are with respect to the configured sections of the address space.

Sections

A section of an object file is the smallest unit of relocation and must be a
contiguous block of memory. A section is identified by a starting address and a
size. Information describing all the sections in a file is stored in section headers
at the start of the file. Sections from input files are combined to form output
sections that contain executable text, data, or a mixture of both. Although there
may be holes or gaps between input sections and between output sections,
storage is allocated contiguously within each output section and may not overlap
a hole in memory.

Addresses
The physical address of a section or symbol is the relative offset from address zero
of the address space. The physical address of an object is not necessarily the
location at which it is placed when the process is executed. For example, on a
system with paging, the address is with respect to address zero of the virtual
space, and the system performs another address translation.

Binding

It is often necessary to have a section begin at a specific, predefined address in
the address space. The process of specifying this starting address is called
binding, and the section in question is said to be bound to or bound at the
required address. While binding is most commonly relevant to output sections, it
is also possible to bind special absolute global symbols with an assignment
statement in the ld{l) command language.

Object File

Object files are produced both by the assembler (typically as a result of calling the
compiler) and by ld(l). ld{l) accepts relocatable object files as input and produces
an output object file that may or may not be relocatable. Under certain special
circumstances, the input object files given to ld{l) can also be absolute files.

MU43815PG/D2 12-2 12/01/87

THE LINK EDITOR

Files produced from the compilation system may contain sections called .text and
.data. The .text section contains the instruction text (executable instructions),
.data contains initialized data variables. For example, if a C program contains the
global (i.e., not inside a function) declaration:

int i = 100;

and the assignment:

i = O;

then compiled code from the C assignment is stored in .text, and the variable i is
located in .data.

Link Editor Command Language

Expressions

Expressions may contain global symbols, constants, and most of the basic C
language operators. (See Figure 12-2, "Syntax Diagram for Input Directives.'')
Constants are, as in C, recognized as decimal numbers unless preceded with 0 for
octal or Ox for hexadecimal. All numbers are treated as long integers. Symbol
names may contain uppercase or lowercase letters, digits, and the underscore, _.
Symbols within an expression have the value of the address of the symbol only.
ld{l) does not do symbol table lookup to find the contents of a symbol, the
dimensionality of an array, structure elements declared in a C program, etc.

ld(l) uses a lex-generated input scanner to identify symbols, numbers, operators,
etc. The current scanner design makes the following names reserved and
unavailable as symbol names or section names:

ADDR BLOCK GROUP NEXT RANGE SPARE
ALIGN COMMON INFO NOLOAD REGIONS PHY
ASSIGN COPY LENGTH ORIGIN SECTIONS TV
BIND DSECT MEMORY OVERLAY SIZE OF

addr block length origin sizeof
align group next phy spare
assign I 0 range
bind len org s

MU43815PG/D2 12-3 12101/87

II

II

THE LINK EDITOR

The operators that are supported, in order of precedence from high to low, are
shown in Figure 12-1.

symbol

! - - (UNARY Minus)
* I %
+ -(BINARY Minus)
>> <<

&
I
&&
II

!= > < <= >=

= +=

Figure 12-1. Operator Symbols

The above operators have the same meaning as in the C language. Operators on
the same line have the same precedence.

Assignment Statements

External symbols may be defined and assigned addresses via the assignment
statement. The syntax of the assignment statement is:

symbol = expression;

or:

symbol op= expression;

where op is one of the operators +, -, *, or I . Assignment statements must be
terminated by a semicolon.

All assignment statements (except the one case described in the following
paragraph) are evaluated after allocation has been performed. This occurs after all
input-file-defined symbols are appropriately relocated but before the relocation of
the text and data itself. Therefore, if an assignment statement expression contains
any symbol name, the address used for that symbol in the evaluation of the
expression reflects the symbol address in the output object file. References within
text and data (to symbols given a value through an assignment statement) access
this latest assigned value. Assignment statements are processed in the same
order in which they are input to ld(l).

MU43815PG/D2 12-4 12/01/87

THE LINK EDITOR

Assignment statements are normally placed outside the scope of section-definition
directives (see "Section Definition Directives" under ''Link Editor Command
Language'1· However, there exists a special symbol, called dot, ., that can occur
only within a section-definition directive. This symbol refers to the current
address of ld(l)'s location counter. Thus, assignment expressions involving. are
evaluated during the allocation phase of ld(l). Assigning a value to the. symbol
within a section-definition directive can increment (but not decrement) ld(l)'s
location counter and can create holes within the section, as described in "Section
Definition Directives." Assigning the value of the . symbol to a conventional
symbol permits the final allocated address (of a particular point within the link
edit run) to be saved.

align is provided as a shorthand notation to allow alignment of a symbol to an n
byte boundary within an output section, where n is a power of 2. For example,
the expression:

align(n)

is equivalent to:

(. + n - 1) ~-(n - 1)

SIZEOF and ADDR are pseudo-functions that, given the name of a section, return
the size or address of the section respectively. They may be used in symbol
definitions outside section directives.

Link editor expressions may have either an absolute or a relocatable value. When
ld(l) creates a symbol through an assignment statement, the symbol's value takes
on that type of expression. That type depends on the following rules:

• An expression with a single relocatable symbol (and zero or more constants
or absolute symbols) is relocatable.

• The difference of two relocatable symbols from the same section is absolute.

• All other expressions are combinations of the above.

Specifying a Memory Configuration
MEMORY directives are used to specify:

1. The total size of the virtual space of the target machine.

2. The configured and unconfigured areas of the virtual space.

If no directives are supplied, ld(l) assumes that all memory is configured. The
size of the default memory is dependent on the target machine.

MU43815PG/D2 12-5 12/01/87

II

II

THE LINK EDITOR

Using MEMORY directives, an arbitrary name of up to eight characters is assigned
to a virtual address range. Output sections can then be forced to be bound to
virtual addresses within specifically named memory areas. Memory names may
contain uppercase or lowercase letters, digits, and the special characters $, ., or _.
Names of memory ranges are used by ld{l) only and are not carried in the output
file symbol table or headers.

When MEMORY directives are used, all virtual memory not described in a
MEMORY directive is considered to be unconfigured. Unconfigured memory is
not used in ld{l)'s allocation process; hence nothing except DSECT sections can be
link edited or bound to an address within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated with a
named memory area. In future releases this may be used to provide error
checking. Currently, error checking of this type is not implemented.

The attributes currently accepted are

1. R : readable memory

2. W : writable memory

3. X: executable, i.e., instructions may reside in this memory

4. I : initializable, i.e., stack areas are typically not initialized

Other attributes may be added in the future if necessary. If no attributes are
specified on a MEMORY directive or if no MEMORY directives are supplied,
memory areas assume the attributes of R, W, X, and I.

The syntax of the MEMORY directive is:

MEMORY
{

}

name1 (attr) :origin= n1, length= n2
name2 (attr) :origin= n3, length= n4
etc.

The keyword origin (or org or o) must precede the origin of a memory range, and
length (or len or I) must precede the length as shown in the above prototype.
The origin operand refers to the virtual address of the memory range. origin and
length are entered as long integer constants in either decimal, octal, or
hexadecimal (standard C syntax). origin and length specifications, as well as
individual MEMORY directives, may be separated by white space or a comma.

MU43815PG/D2 12-6 12/01/87

THE LINK EDITOR

By specifying MEMORY directives, ld(l) can be told that memory is configured in
some way other than the default. For example, if it is necessary to prevent
anything from being linked to the first OxlOOOO words of memory, a MEMORY
directive can accomplish this:

MEMORY
{

}
valid org = Ox10000, 1en = OxFEOOOO

Section Definition Directives

The purpose of the SECTIONS directive is to describe how input sections are to
be combined, to direct where to place output sections (both in relation to each
other and to the entire virtual memory space), and to permit the renaming of
output sections.

In the default case where no SECTIONS directives are given, all input sections of
the same name appear in an output section of that name. If two object files are
linked, one containing sections sl and s2 and the other containing sections s3 and
s4, the output object file contains the four sections sl, s2, s3, and s4. The order
of these sections would depend on the order in which the link editor sees the
input files.

The basic syntax of the SECTIONS directive is:

SECTIONS
{

etc.
}

secnamel
{

}

fi1e_specifications,
assignment_statements

secname2 :
{

}

file_specifications,
assignment_statements

The various types of section definition directives are discussed in the remainder of
this section.

MU43815PG/D2 12-7 12/01/87

II

THE LINK EDITOR

File Specifications

Within a section definition, the files and sections of files to be included in the
output section are listed in the order in which they are to appear in the output
section. Sections from an input file are specified by:

filename (aecname)

or:

filename (aecnam1 aecnam2 . . .)

Sections of an input file are separated either by white space or commas as are the
file specifications themselves.

filename [COMMON]

may be used in the same way to refer to all the uninitialized, unallocated global
symbols in a file.

If a file name appears with no sections listed, then all sections from the file (but
not the uninitialized, unallocated globals) are linked into the current output
section. For example:

SECTIONS
{

}

outsec1:
{

}

file1.o (sec1)
file2.o
file3.o (aec1, aec2)

According to this directive, the order in which the input sections appear in the
output section outsec1 would be

1. section sec1 from file file1 .o

2. all sections from file2.o, in the order they appear in the file

3. section sec1 from file file3.o, and then section sec2 from file file3.o

If there are any additional input files that contain input sections also named
outsec1, these sections are linked following the last section named in the
definition of outsec1. If there are any other input sections in file1 .o or file3.o,
they will be placed in output sections with the same names as the input sections
unless they are included in other file specifications.

MU43815PG/D2 12-8 12/01187

1HE LINK EDITOR

The code:

*(secname)

may be used to indicate all previously unallocated input sections of the given
name, regardless of what input file they are contained in.

Load a Section at a Specified Address

An output section is bonded to a specific virtual address by an ld(l) option as
shown m the following SECTIONS directive example:

SECTIONS
{

}

outsec addr:
{

}

etc.

The addr is the bonding address expressed as a C constant. If outsec does not fit
at addr (perhaps because of holes in the memory configuration or because outsec
is too large to fit without overlapping some other output section), ld(l) issues an
appropriate error message. addr may also be the word BIND, followed by a
parenthesized expression. The expression may use the pseudo-functions SIZEOF,
ADDR or NEXT. NEXT accepts a constant and returns the first multiple of that
value that falls into configured unallocated memory; SIZEOF and ADDR accept
previously defined sections.

As long as output sections do not overlap and there is enough space, they can be
bound anywhere in configured memory. The SECTIONS directives defining
output sections need not be given to ld(l) in any particular order, unless SIZEOF
or ADDR is used.

ld(l) does not ensure that each section's size consists of an even number of bytes
or that each section starts on an even byte boundary. The assembler ensures that
the size (in bytes) of a section is evenly divisible by 4. ld(l) directives can be used
to force a section to start on an odd byte boundary although this is not
recommended. If a section starts on an odd byte boundary, the section's contents
are either accessed incorrectly or are not executed properly. When a user
specifies an odd byte boundary, ld(l) issues a warning message.

MU43815PG/D2 12-9 12/01/87

II

THE LINK EDITOR

Aligning an Output Section

It is possible to request that an output section be bound to a virtual address that
falls on an n-byte boundary, where n is a power of 2. The ALIGN option of the
SECTIONS directive performs this function, so that the option:

ALIGN(n)

is equivalent to specifying a bonding address of:

(• + n - 1) &; - (n - 1)

For example:

SECTIONS
{

}

outsec ALIGN(Ox20000)
{

}

etc.

The output section outsec is not bound to any given address but is placed at
some virtual address that is a multiple of Ox20000 (e.g., at address OxO, Ox20000,
Ox40000, Ox60000, etc.).

Grouping Sections Together

The default allocation algorithm for ld(l) does the following:

1. Links all input .init sections together, followed by .text sections, into one
output section. This output section is called .text and is bound to an
address of Ox2000 plus the size of all headers in the output file.

2. Links all input .data sections together into one output section. This output
section is called .data and, in paging systems, is bound to an address
aligned to a machine dependent constant plus a number dependent on the
size of headers and text.

3. Links all input .bss sections together with all uninitialized, unallocated
global symbols, into one output section. This output section is called .bss
and is allocated to immediately follow the output section .data. Note that
the output section .bss is not given any particular address alignment.

Specifying any SECTIONS directives results in this default allocation not being
performed. Rather than relying on the ld(l) default algorithm, if you are

MU43815PG/D2 12-10 12/01/87

THE LINK EDITOR

manipulating COFF files, the one certain way of determining address and order
information is to take it from the file and section headers. The default allocation
of ld(l) is equivalent to supplying the following directive:

SECTIONS
{

{

}

.text •izeof_headera : { •(.init) •(.text) }
GROUP BIND(NEXT(align_value) +

((SIZEOF(.text) + ADDR(.text)) I Ox2000))

.data : { }
.bu {}

}

where align_value is a machine dependent constant. The GROUP command
ensures that the two output sections, .data and .bss, are allocated (e.g., grouped)
together. Bonding or alignment information is supplied only for the group and
not for the output sections contained within the group. The sections making up
the group are allocated in the order listed in the directive.

If .text, .data, and .bss are to be placed in the same segment, the following
SECTIONS directive is used:

SECTIONS
{

GROUP
{

.text { }

.data { }

.bes { }
}

}

Note that there are still three output sections (.text, .data, and .bss), but now
they are allocated into consecutive virtual memory.

MU43815PG/D2 12-11 12/01/87

II

THE LINK EDITOR

This entire group of output sections could be bound to a starting address or
aligned simply by adding a field to the GROUP directive. To bind to OxCOOOO,
use:

GROUP OxCOOOO : {

To align to OxlOOOO, use:

GROUP ALIGN(Ox10000) : {

With this addition, first the output section .text is bound at OxCOOOO (or is aligned
to OxlOOOO); then the remaining members of the group are allocated in order of
their appearance into the next available memory locations.

When the GROUP directive is not used, each output section is treated as an
independent entity:

SECTIONS
{

}

. t.ext. : { }

.dat.a ALIGN(Ox20000) { }

.bas : { }

The .text section starts at virtual address OxO (if it is in configured memory) and
the .data section at a virtual address aligned to Ox20000. The .bss section follows
immediately after the .text section if there is enough space. If there is not, it
follows the .data section. The order in which output sections are defined to ld(l)
cannot be used to force a certain allocation order in the output file.

Creating Holes Within Output Sections

The special symbol dot, ., appears only within section definitions and assignment
statements. When it appears on the left side of an assignment statement, .
causes ld(l)'s location counter to be incremented or reset and a hole left in the
output section. Holes built into output sections this way take up physical space
in the output file and are initialized using a fill character (either the default fill
character (OxOO) or a supplied fill character). See the definition of the -f option in
'Using the Link Editor" and the discussion of filling holes in '1nitialized Section
Holes" or ".bss Sections" in this chapter.

MU43815PG/D2 12-12 12/01/87

Consider the following section definition:

outsec:
{

}

. += Ox1000;
f1 .o (.text)
. += Ox100;
f2. o (.text)
. =align (4);
f3. o (.text)

The effect of this command is as follows:

THE LINK EDITOR

1. A OxlOOO byte hole, filled with the default fill character, is left at the
beginning of the section. Input section f1 .o (.text) is linked after this hole.

2. The .text section of input file f2.o begins at OxlOO bytes following the end of
f1 .o (.text).

3. The .text section of f3.o is linked to start at the next full word boundary
following the .text section of f2.o with respect to the beginning of outsec.

For the purposes of allocating and aligning addresses within an output section,
ld(l) treats the output section as if it began at address zero. As a result, if, in the
above example, outsec ultimately is linked to start at an odd address, then the
part of outsec built from f3.o (.text) also starts at an odd address-even though
f3.o (.text) is aligned to a full word boundary. This is prevented by specifying an
alignment factor for the entire output section.

outsec ALIGN(4) : {

Note that the assembler, as, always pads the sections it generates to a full word
length making explicit alignment specifications unnecessary. This also holds true
for the compiler.

Expressions that decrement • are illegal. For example, subtracting a value from
the location counter is not allowed since overwrites are not allowed. The most II
common operators in expressions that assign a value to. are + = and align.

MU43815PG/D2 12-13 12101/87

II

THE LINK EDITOR

Creating and Defining Symbols at Link-Edit Time

The assignment instruction of ld(l) can be used to give symbols a value that is
link-edit dependent. Typically, there are three types of assignments:

1. Use of. to adjust ld(l)'s location counter during allocation.

2. Use of • to assign an allocation-dependent value to a symbol.

3. Assigning an allocation-independent value to a symbol.

Case 1) has already been discussed in the previous section.

Case 2) provides a means to assign addresses (known only after allocation) to
symbols. For example:

SECTIONS
{

}

out.sci: { ... }
out.sc2:
{

}

filei. o (&1)
s2_st.art. = .
file2.o (s2)
s2_end = . - i ;

The symbol s2_start is defined to be the address of file2.o(s2), and s2_end is the
address of the last byte of file2.o(s2).

Consider the following example:

SECTIONS
{

}

MU43815PG/D2

out.sci:
{

}

filei. o (. dat.a)
mark = . ;
. += 4;
file2. o (. dat.a)

12-14 12/01/87

THE LINK EDITOR

In this example, the symbol mark is created and is equal to the address of the first
byte beyond the end of file1 .o's .data section. Four bytes are reserved for a
future run-time initialization of the symbol mark. The type of the symbol is a
long integer (32 bits).

Assignment instructions involving • must appear within SECTIONS definitions
since they are evaluated during allocation. Assignment instructions that do not
involve • can appear within SECTIONS definitions but typically do not. Such
instructions are evaluated after allocation is complete. Reassignment of a defined
symbol to a different address is dangerous. For example, if a symbol within .data
is defined, initialized, and referenced within a set of object files being link-edited,
the symbol table entry for that symbol is changed to reflect the new, reassigned
physical address. However, the associated initialized data is not moved to the
new address, and there may be references to the old address. The ld{l) issues
warning messages for each defined symbol that is being redefined within an ifile.
However, assignments of absolute values to new symbols are safe because there
are no references or initialized data associated with the symbol.

Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere) within a specific
named memory (as previously specified on a MEMORY directive). {The >
notation is borrowed from the operating system concept of redirected output.)
For example:

MEMORY
{

}

SECTIONS
{

}

mem1:
mem2 (RW):
mem3 (RW):
mem1:

o=OxOOOOOO
o=Ox020000
o=Ox070000
o=Ox120000

l=Ox10000
l=Ox40000
l=Ox40000
l=Ox04000

out•ec1: { f1.o(.data) } > mem1
out••c2: { f2.o(.data) } > mem3

MU43815PG/D2 12-15 12/01/87

II

II

THE LINK EDITOR

This directs ld(l) to place outsec1 anywhere within the memory area named
mem1 (i.e., somewhere within the address range OxO-OxFFFF or Ox120000-
0x123FFF). The outsec2 is to be placed somewhere in the address range Ox70000-
0xAFFFF.

Initialized Section Holes or .bss Sections

When holes are created within a section (as in the example in "Creating Holes
within Output Sections'), ld(l) normally puts out bytes of zero as fill. By default,
.bss sections are not initialized at all; that is, no initialized data is generated for
any .bss section by the assembler nor supplied by the link editor, not even zeros.

Initialization options can be used in a SECTIONS directive to set such holes or
output .bss sections to an arbitrary 2-byte pattern. Such initialization options
apply only to .bss sections or holes. As an example, an application might want
an uninitialized data table to be initialized to a constant value without recompiling
the .o file or a hole in the text area to be filled with a transfer to an error routine.

Either specific areas within an output section or the entire output section may be
specified as being initialized. However, since no text is generated for an
uninitialized .bss section, if part of such a section is initialized, then the entire
section is initialized. In other words, if a .bss section is to be combined with a
.text or .data section (both of which are initialized) or if part of an output .bss
section is to be initialized, then one of the following will hold:

a. Explicit initialization options must be used to initialize all .bss
sections in the output section.

b. ld{l) will use the default fill value to initialize all .bss sections in
the output section.

MU43815PG/D2 12-16 12/01/87

Consider the following ld{l) ifile:

SECTIONS
{

}

sect:
{

f1.o
. =+ O:x:200;
f2. o (. text)

} = O:x:DFFF
aec2:
{

ft. o (. bss)
f2.o (.bas) = O:x:1234

}
sec3:
{

f3.o (. bss)

} = OxFFFF
sec4: { f4.o (.bss) }

THE LINK EDITOR

In the example above, the Ox200 byte hole in section sec1 is filled with the value
OxDFFF. In section sec2, f1.o(.bss) is initialized to the default fill value of OxOO,
and f2.o(.bss) is initialized to Ox1234. All .bss sections within sec3 as well as all
holes are initialized to OxFFFF. Section sec4 is not initialized; that is, no data is
written to the object file for this section.

Notes and Special Considerations

Changing the Entry Point
The a.out optional header contains a field for the (primary) entry point of the file.
This field is set using one of the following rules (listed in the order they are
applied):

a. The value of the symbol specified with the -e option, if present, is used.

b. The value of the symbol _start, if present, is used.

MU43815PG/D2 12-17 12/01/87

II

II

THE LINK EDITOR

c. The value of the symbol main, if present, is used.

d. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header field through the
-e option or by using an assignment instruction in an ifile of the form

_start = e:x:pression;

If ld(l) is called through cc(l), a startup routine is automatically linked in. Then,
when the program is executed, the routine exit(l) is called after the main routine
finishes to close file descriptors and do other cleanup. The user must therefore be
careful when calling ld(l) directly or when changing the entry point. The user
must supply the startup routine or make sure that the program always calls exit
rather than falling through the end. Otherwise, the program will dump core.

Use of Archive Libraries
Each member of an archive library (e.g., libc.a) is a complete object file. Archive
libraries are created with the ar(l) command from object files generated by cc or
as. An archive library is always processed using selective inclusion: only those
members that resolve existing undefined-symbol references are taken from the
library for link editing. Libraries can be placed both inside and outside section
definitions. In both cases, a member of a library is included for linking whenever:

a. There exists a reference to a symbol defined in that member.

b. The reference is found by ld(l) before the scanning of the library.

When a library member is included by searching the library inside a SECTIONS
directive, all input sections from the library member are included in the output
section being defined. When a library member is included by searching the
library outside a SECTIONS directive, all input sections from the library member
are included into the output section with the same name. If necessary, new
output sections are defined to provide a place to put the input sections. Note,
however, that:

1. Specific members of a library cannot be referenced explicitly in an ifile.

2. The default rules for the placement of members and sections cannot be
overridden when they apply to archive library members.

The -I option is a shorthand notation for specifying an input file coming from a
predefined set of directories and having a predefined name. By convention, such
files are archive libraries. However, they need not be so. Furthermore, archive
libraries can be specified without using the -1 option by simply giving the (full or
relative) file path.

MU43815PG/D2 12-18 12/01/87

THE LINK EDITOR

The ordering of archive libraries is important since for a member to be extracted
from the library it must satisfy a reference that is known to be unresolved at the
time the library is searched. Archive libraries can be specified more than once.
They are searched every time they are encountered. Archive files have a symbol
table at the beginning of the archive. ld(l) will cycle through this symbol table
until it has determined that it cannot resolve any more references from that
library.

Consider the following example:

1. The input files file1.o and file2.o each contain a reference to the external
function FCN.

2. Input file1 .o contains a reference to symbol ABC.

3. Input file2.o contains a reference to symbol XYZ.

4. Library liba.a, member 0, contains a definition of XYZ.

5. Library libe.a, member 0, contains a definition of ABC.

6. Both libraries have a member 1 that defines FCN.

If the ld(l) command were entered as:

Id file1 .o -la file2.o -le

then the FCN references are satisfied by liba.a, member 1, ABC is obtained from
libe.a, member 0, and XYZ remains undefined (because the library liba.a is
searched before file2.o is specified). If the ld(l) command were entered as:

Id file1 .o file2.o -la -le

then the FCN references is satisfied by liba.a, member 1, ABC is obtained from
libe.a, member 0, and XYZ is obtained from liba.a, member 0. If the ld(l)
command were entered as:

Id file1.o file2.o -le -la

then the FCN references is satisfied by libe.a, member 1, ABC is obtained from
libe~a, member 0, and XYZ is obtained from liba.a, member 0.

The -u option is used to force the linking of library members when the link edit
run does not contain an external reference to the members. For example, the
command:

Id -u rout1 -la

creates an undefined symbol called rout1 in ld(l)'s global symbol table. If any
member of library liba.a defines this symbol, it (and perhaps other members as

MU43815PG/D2 12-19 12/01/87

II

II

THE LINK EDITOR

well) is extracted. Without the -u option, there would have been no unresolved
references or undefined symbols to cause ld(l) to search the archive library.

Dealing With Holes in Physical Memory
When memory configurations are defined such that unconfigured areas exist in
the virtual memory, each application or user must assume the responsibility of
forming output sections that will fit into memory. For example, assume that
memory is configured as follows:

MEMORY
{

mem1: o = OxOOOOO l Ox02000
mem2: 0 = Ox40000 l = Ox06000
mem3: o = Ox20000 l Ox10000

}

Let the files f1.o, f2.o, ... fn.o each contain three sections .text, .data, and .bss,
and suppose the combined .text section is Ox12000 bytes. There is no configured
area of memory in which this section can be placed. Appropriate directives must
be supplied to break up the .text output section so ld{l) may do allocation. For
exampfe:

SECTIONS
{

t:x:t1:
{

f1.o (. te:x:t)
f2.o (. te:x:t)
f3.o (.text)

}

t:x:t2:
{

f4.o (.text)
f5.o (.text)
f6.o (.text)

}
etc.

}

MU43815PG/D2 12-20 12/01/87

THE LINK EDITOR

Allocation Algorithm
An output section is formed either as a result of a SECTIONS directive, by
combining input sections of the same name, or by combining .text and .init into
.text. An output section can comprise zero or more input sections. After the
composition of an output section is determined, it must then be allocated into
configured virtual memory. ld(l) uses an algorithm that attempts to minimize
fragmentation of memory, and hence increases the possibility that a link edit run
will be able to allocate all output sections within the specified virtual memory
configuration. The algorithm proceeds as follows:

1. Any output sections for which explicit bonding addresses were specified are
allocated.

2. Any output sections to be included in a specific named memory are
allocated. In both this and the succeeding step, each output section is
placed into the first available space within the (named) memory with any
alignment taken into consideration.

3. Output sections not handled by one of the above steps are allocated.

If all memory is contiguous and configured (the default case), and no SECTIONS
directives are given, then output sections are allocated in the order they appear to
ld(l). Otherwise, output sections are allocated in the order they were defined or
made known to ld(l) into the first available space they fit.

Incremental Link Editing

As previously mentioned, the output of ld(l) can be used as an input file to
subsequent ld(l) runs providing that the relocation information is retained (-r
option). Large applications may find it desirable to partition their C programs
into subsystems, link each subsystem independently, and then link edit the entire
application.

MU43815PG/D2 12-21 12101/87

II

II

THE LINK EDITOR

For example, Step 1:

Step 2:

Step 3:

.
Id -r -o outfile1 ifile1 infile1 .o

I* ifilel */
SECTIONS
{

ssl:
{

}
}

f1.o
f2.o

fn.o

Id -r -0 outfile2 ifile2 lnfile2.o

I* ifile2 */
SECTIONS
{

ss2:
{

}
}

91.0
92.o

9n.o

Id -a -o final.out outfile1 outfile2

By judiciously forming subsystems, applications may achieve a form of
incremental link editing whereby it is necessary to relink only a portion of the
total link edit when a few files are recompiled.

MU43815PG/D2 12-22 12/01/87

THE lJNK EDITOR

To apply this technique, there are two simple rules:

1. Intermediate link edits should contain only SECTIONS declarations and be
concerned only with the formation of output sections from input files and
input sections. No binding of output sections should be done in these runs.

2. All allocation and memory directives, as well as any assignment statements,
are included only in the final ld{l) call.

DSECT, COPY, NOLOAD, INFO, and OVERLAY Sections

Sections may be given a type in a section definition as shown in the following
example:

SECTIONS
{

:a.-•1 Oz200000 (DSECT) { fi1e1.o }

:a.-•2 Oz400000 (COPY) { fi1e2.o }

:a.-•3 Oz800000 (NOLOAD) { fi1e3.o }

:a.-•4 (INFO) { fi1e4.o }

:a.-•6 Oz900000 (OVERLAY) { fi1•6.o }

}

The DSECT option creates what is called a dummy section. A dummy section has
the following properties:

1. It does not participate in the memory allocation for output sections. As a
result, it takes up no memory and does not show up in the memory map
generated by ld{l).

2. It may overlay other output sections and even unconfigured memory.
DSECTs may \,verlay other DSECTs.

3. The global symbols defined within the dummy section are relocated
normally. That is, they appear in the output file's symbol table with the
same value they would have had if the DSECT were actually loaded at its
virtual address. DSECT-defined symbols may be referenced by other input
sections. Undefined external symbols found within a DSECT cause specified
archive libraries to be searched and any members which define such
symbols are link edited normally (i.e., not as a DSECT).

4. None of the section contents, relocation information, or line number
information associated with the section is written to the output file.

MU43815PG/D2 12-23 12/01/87

II

II

THE LlNK EDITOR

In the above example, none of the sections from file1 .o are allocated, but all
symbols are relocated as though the sections were link edited at the specified
address. Other sections could refer to any of the global symbols and they are
resolved correctly.

A copy section created by the COPY option is similar to a dummy section. The
only difference between a copy section and a dummy section is that the contents
of a copy section and all associated information is written to the output file.

An INFO section is the same as a COPY section but its purpose is to carry
information about the object file whereas the COPY section may contain valid text
and data. INFO sections are usually used to contain file version identification
information.

A section with the type of NOLOAD differs in only one respect from a normal
output section: its text and/or data is not written to the output file. A NOLOAD
section is allocated virtual space, appears in the memory map, etc.

An OVERLAY section is relocated and written to the output file. It is different
from a normal section in that it is not allocated and may overlay other sections or
unconfigured memory.

Output File Blocking

The BLOCK option (applied to any output section or GROUP directive) is used to
direct ld(l) to align a section at a specified byte offset in the output file. It has no
effect on the address at which the section is allocated nor on any part of the link
edit process. It is used purely to adjust the physical position of the section in the
output file:

SECTIONS
{

}

.text BLOCK(Ox200) : { }

.data ALIGN(Ox20000) BLOCK(Ox200) : { }

With this SECTIONS directive, ld(l) assures that each section, .text and .data, is
physically written at a file offset, which is a multiple of Ox200 (e.g., at an offset of
0, Ox200, Ox400, and so forth, in the file).

MU43815PG/D2 12-24 12/01/87

THE LINK EDITOR

Nonrelocatable Input Files
If a file produced by ld(l) is intended to be used in a subsequent ld(l) run, the
first ld(l) run should have the -r option set. This preserves relocation information
and permits the sections of the file to be relocated by the subsequent run.

If an input file to ld(l) does not have relocation or symbol table information
(perhaps from the action of a strip(l) command, or from being link edited without
a -r option or with a -s option), the link edit run continues using the
nonrelocatable input file.

For such a link edit to be successful (i.e., to actually and correctly link edit all
input files, relocate all symbols, resolve unresolved references, etc.), two
conditions on the nonrelocatable input files must be met:

1. Each input file must have no unresolved external references.

2. Each input file must be bound to the exact same virtual address as it was
bound to in the ld(l) run that created it.

NOTE

If these two conditions are not met for all
nonrelocatable input files, no error messages are
issued. Because of this fact, extreme care must be
taken when supplying such input files to ld(l).

Syntax Diagram for Input Directives
Figure 12-2 summarizes the system requirements for input directives. Note that
two punctuation symbols, square brackets and curly braces, do double duty in
this diagram.

Where the symbols [] and {} are used, they are part of the syntax and must be
present when the directive is specified.

Where you see the symbols and (larger and in bold), it means the material II
enclosed is optional.

Where you see the symbols { and } (larger and in bold), it means multiple
occurrences of the material enclosed are permitted.

MU43815PG/D2 12-25 12/01/87

II

THE LINK EDITOR

Directives

<ifile>
<cmd>

<memory>

<memory _spec>

<attributes>
<origin_spec>
<lenth_spec>
<origin>
<length>

Expanded Directives

{<cmd>}
<memory>
<sections>
<assignment>
<filename>
<flags>
MEMORY { <memory_spec>

<name> [<attributes>] :

({RIWIXII})
<origin> =<long>
<length> = <long>
ORIGIN I o I org I origin
LENGTH I 1 I len I length

Figure 12-2. Syntax Diagram for Input Directives (Sheet 1of4)

MU43815PG/D2 12-26 12/01/87

Directives

<sections>

< sec_or_group>
<group>

< section_list>

<section>

<group_options>

<sec_ options>

<addr>
<alignoption>
<align>
<block_ option>
<block>
<type_ option>

<fill>
<mem_spec>

<statement>

Expanded Directives

SECTIONS { { <sec_or_group>} }

<section> I <group> I <library>
GROUP <group_options> : {

<section> { [,] <section>}

<name> <sec_options>:

THE LINK EDITOR

[<addr>] I [<align_option>] [<block_option>]

[<addr>] I [<align_option>]

<long> I <bind>(<expr>)
<align> (<expr>)
ALIGN I align
<block> (<long>)
BLOCK I block
(DSECT) I (NOLOAD) I (COPY)

=<long>
><name>
> <attributes>
<filename>
<filename> (<name_list>) I [COMMON]
* (<name_list>) I [COMMON]
<assignment>
<library>
null

Figure 12-2. Syntax Diagram for Input Directives (Sheet 2 of 4)

MU43815PG/D2 12-27 12/01/87

a

II

THE LINK EDITOR

Directives

<name_list>

<library>
<bind>
<assignment>
<lside>
<assign_op>
<end>
<expr>

<binary_op>

<term>

<unary_op>
<phy>
<sizeof>

Expanded Directives

<section_name> [,] { <section_name> }

-l<name>
BIND I bind
<lside> <assign_op> <expr> <end>
<name> I.
= I + = I -= I * = I/ =
; I ,
<expr> <binary_op> <expr>
<term>
*I I I%
+1-
>>1<<
== I!= I> I< I<= I>=
&
I
&&
II
<long>
<name>
<align> (<term>)
(<expr>)
<unary_op> <term>
<phy> (<lside>)
<sizeof>(<sectionname>)
<next>(<long>)
<addr>(<sectionname>)
!1-
PHY I phy
SIZEOF I sizeof

Figure 12-2. Syntax Diagram for Input Directives (Sheet 3 of 4)

MU43815PG/D2 12-28 12/01/87

Directives

<next>
<addr>
<flags>

<name>
<long>
<wht_space>
<filename>

<sectionname>

<path_name>

Expanded Directives

NEXT I next
ADDR I addr
--e<wht_space><name>
-f<wht_space><long>
-h<wht_space><long>
-l<name>
-m

THE LINK EDITOR

--o<wht_space> <filename>
-r
-s
-t
-u<wht_space><name>
-z
-H
-L<path_name>
-M
-N
-S
-V
-VS<wht_space><long>
-a
-x
Any valid symbol name
Any valid long integer constant
Blanks, tabs, and newlines
Any valid operating system

Any valid section name,

Any valid operating system

Figure 12·2. Syntax Diagram for Input Directives (Sheet 4 of 4)

MU43815PG/D2 12-29 12/01/87

II

II

