
1 o. curses/term info

Introduction
Screen management programs are a common component of many commercial
computer applications. These programs handle input and output at a video
display terminal. A screen program might move a cursor, print a menu, divide a
terminal screen into windows, or draw a display on the screen to help users enter
and retrieve information from a database.

This tutorial explains how to use the Terminal Information Utilities package,
commonly called curses/terminfo, to write screen management programs on
SYSTEM V/68. This package includes a library of C routines, a database, and a set
of operating system support tools. To start you writing screen management
programs as soon as possible, the tutorial does not attempt to cover every part of
the package. For instance, it covers only the most frequently used routines and
then points you to curses(3X) and terminfo(4) in the Programmer's Reference
Manual for more information. Keep the manual close at hand; you'll find it
invaluable when you want to know more about one of these routines or about
other routines not discussed here.

Because the routines are compiled C functions, you should be familiar with the C
programming language before using curses/terminfo. You should also be familiar
with the operating systemic language standard 1/0 package (see ''System Calls
and Subroutines" and '1nput/Output" in Chapter 2 and stdio(3S)). With that
knowledge, you can design screen management programs for many purposes.

This chapter has five sections:

•Overview

This section briefly describes curses, terminfo, and the other components of
the Terminal Information Utilities package.

• Working with curses Routines

This section describes the basic routines making up the curses(3X) library. It
covers the routines for writing to a screen, reading from a screen, and building
windows. It also covers routines for more advanced screen management
programs that draw line graphics, use a terminal's soft labels, and work with
more than one terminal at the same time. Many examples are included to
show the effect of using these routines.

MU43815PG/D2 10-1 12/01/87

II

II

curses/terminfo

• Working with term info Routines

This section describes the routines in the curses library that deal directly with
the terminfo database to handle certain terminal capabilities, such as
programming function keys.

•Working with the terminfo Database

This section describes the terminfo database, related support tools, and their
relationship to the curses library.

• curses Program Examples

This section includes six programs that illustrate uses of curses routines.

Overview

curses
curses(3X) is the library of routines that you use to write screen management
programs on the operating system. The routines are C functions and macros;
many of them resemble routines in the standard C library. For example, there's a
routine printw() that behaves much like printf(3S) and another routine getch() that
behaves like getc(3S). The automatic teller program at your bank might use
printw() to print its menus and getch() to accept your requests for deposits or
withdrawals. A visual screen editor like the operating system screen editor vi(l)
might also use these and other curses routines.

The curses routines are usually located in /usr/lib/libcurses.a. To compile a
program using these routines, you must use the cc(l) command and include
- lcurses on the command line so that the link editor can locate and load them:

cc file.c -lcurses -o file

The name curses comes from the cursor optimization that this library of routines
provides. Cursor optimization minimizes the amount a cursor has to move
around a screen to update it. For example, if you designed a screen editor
program with curses routines and edited the sentence:

curaea/terminfo i• a great package for creating acreena.

to read:

curaea/terminfo is the beat package for creating screens.

MU43815PG/D2 10-2 12/01/87

curses/terminfo

the program would output only t.ha bast. in place of a great.. The other
characters would be preserved. Because the amount of data transmitted-the
output-is minimized, cursor optimization is also referred to as output
optimization.

Cursor optimization takes care of updating the screen appropriately for the
terminal on which a curses program is run. This means that the curses library
can do whatever is required to update many different terminal types. It searches
the terminfo database (described below) to find the correct description for a
terminal.

How does cursor optimization help you and those who use your programs? First,
it saves you time in describing in a program how you want to update screens.
Second, it saves a user's time when the screen is updated. Third, it reduces the
load on your operating system's communication lines when the updating takes
place. Fourth, you don't have to worry about the myriad of terminals on which
your program might be run.

Here's a simple curses program. It uses some of the basic curses routines to
move a cursor to the middle of a terminal screen and print the character string
Bu11sEye. Each of these routines is described in the following section 'Working
with curses Routines" in this chapter. For now, just look at their names and you
will get an idea of what each of them does.

•include <cur•e•.h>

main()
{

init•crO;

move(LINES/2 - 1, COLS/2 - 4);
add•tr(•Bull••);
ref re ah();
add•tr(•E7e•);
ref're•h ();
endwin();

}

Figure 10-1. A Simple curses Program

MU43815PG/D2 1()..3 12/01/87

II

II

curses/terminfo

term info

terminfo refers to both of the following:

• It is a group of routines within the curses library that handles certain terminal
capabilities. For example, you can use these routines to program function keys
(if your terminal has programmable keys) or to write filters. Shell
programmers, as well as C programmers, can use the terminfo routines in
their programs.

• It is a database containing the descriptions of many terminals that can be used
with curses programs. These descriptions specify the capabilities of a
terminal and the way it performs various operations-for example, how many
lines and columns it has and how its control characters are interpreted.

Each terminal description in the database is a separate, compiled file. You use
the source code that terminfo(4) describes to create these files and the
command tic(lM) to compile them.

The compiled files are normally located in the directories /usr/lib/terminfo/?.
These directories have single-character names, each of which is the first
character in the name of a terminal. For example, an entry for the DEC vtlOO
is normally located in the file /usr/lib/terminfo/v/vt100.

Here's a simple shell script that uses the terminfo database:

C1ear the screen and show the 0,0 position.

tput c1ear
tput cup 0 0
echo "<- this is 0 0"

or tput home

Show the 5,10 position.

tput cup 5 10
echo "<- this is 5 10"

Figure 10-2. A She11 Script Using terminfo Routines

MU43815PG/D2 10-4 12/01/87

curses/terminfo

How curses and terminfo Work Together
A screen management program with curses routines refers to the terminfo
database at run time to obtain the information it needs about the terminal being
used-what we'll call the current terminal from here on.

For example, suppose you are using a DEC vtlOO terminal to run the simple
curses program shown in Figure 10-1. To execute properly, the program needs to
know how many lines and columns the terminal screen has to print the
BullaEye in the middle of it. The description of the DEC vtlOO in the terminfo
database has this information. All the curses program needs to know before it
goes looking for the information is the name of your terminal. You tell the
program the name by putting it in the environment variable $TERM when you log
in or by setting and exporting $TERM in your .profile file (see profile(4)).
Knowing $TERM, a curses program run on the current terminal can search the
terminfo database to find the correct terminal description.

For example, assume that the following example lines are in a .profile:

TERM=vt.100
export. TERM
t.put. init.

The first line names the terminal type, and the second line exports it. (See
profile(4) in the Programmer's Reference Manual.) The third line of the example tells
the operating system to initialize the current terminal. That is, it makes sure that
the terminal is set up according to its description in the terminfo database. (The
order of these lines is important. $TERM must be defined and exported first, so
that when tput is called the proper initialization for the current terminal takes
place.) If you had these lines in your .profile and you ran a curses program, the
program would get the information that it needs about your terminal from the file II
/usr/lib/terminfo/vM100. which provides a match for $TERM.

Other Components of the Terminal Information Utilities

We said earlier that the Terminal Information Utilities package is commonly
referred to as curses/terminfo. The package, however, has other components.
We've mentioned some of them, tic(lM) for instance. Here's a complete list of
the components discussed in this tutorial:

captoinfo{lM) a tool for converting terminal descriptions developed
on earlier releases of the operating system to terminfo
descriptions

curses(3X)

MU43815PG/D2 10-5 12/01/87

II

curses/terminfo

lnfocmp(lM)

tabs(l)

termlnfo(4)

tlc(lM)

tput(l)

a tool for printing and comparing compiled terminal
descriptions

a tool for setting non-standard tab stops

a tool for compiling terminal descriptions for the
terminfo database

a tool for initializing the tab stops on a terminal and for
outputting the value of a terminal capability

We also refer to profile(4), scr_dump(4), term(4), and term(5). For more
information about any of these components, see the Programmer's Reference Manual
and the User's Reference Manual.

Working with curses Routines
This section describes the basic curses routines for creating interactive screen
management programs. It begins by describing the routines and other program
components that every curses program needs to work properly. Then it tells you
how to compile and run a curses program. Finally, it describes the most
frequently used curses routines that:

• write output to and read input from a terminal screen

• control the data output and input - for example, to print output in bold type
or prevent it from echoing (printing back on a screen)

• manipulate multiple screen images (windows)

• draw simple graphics

• manipulate soft labels on a terminal screen

• send output to and accept input from more than one terminal.

To illustrate the effect of using these routines, we include simple example
programs as the routines are introduced. We also refer to a group of larger
examples located in the section "curses Program Examples" in this chapter.
These larger examples are more challenging; they sometimes make use of routines
not discussed here. Keep the curses(3X) manual page handy.

MU43815PG/D2 10-6 12/01/87

curses/terminfo

What Every curses Program Needs
All curses programs need to include the header file <curses.h> and call the
routines lnltscrQ, refresh() or similar related routines, and endwin().

The Header File <curses.h>

The header file <curses.h> defines several global variables and data structures
and defines several curses routines as macros.

To begin, let's consider the variables and data structures defined. <curses.h>
defines all the parameters used by curses routines. It also defines the integer
variables LINES and COLS; when a curses program is run on a particular
terminal, these variables are assigned the vertical and horizontal dimensions of
the terminal screen, respectively, by the routine initscrQ described below. The
header file defines the constants OK and ERR, too. Most curses routines have
return values; the OK value is returned if a routine is properly completed, and the
ERR value if some error occurs.

NOTE

LINES and COLS are external (global) variables
that represent the size of a terminal screen. Two
similar variables, $LINES and $COLUMNS, may
be set in a user's shell environment; a curses
program uses the environment variables to
determine the size of a screen. Whenever we refer
to the environment variables in this chapter, we
will use the $ to distinguish them from the C
declarations in the <curses.h> header file.

For more information about these variables, see
the following sections 'The Routines lnltscr(),
refreshQ, and endwin()" and "More about lnitscr()
and Lines and Columns."

Now let's consider the macro definitions. <curses.h> defines many curses
routines as macros that call other macros or curses routines. For instance, the
simple routine refresh() is a macro. The line

#def~ne refresh() wrefresh(stdscr)

shows when refresh is called, it is expanded to call the curses routine
wrefresh(). The latter routine in tum calls the two curses routines

MU4381SPG/D2 10-7 12/01/87

II

II

curses/terminfo

wnoutrefreshO and doupdateQ. Many other routines also group two or three
routines together to achieve a particular result.

CAUTION

Macro expansion in curses programs may cause
problems with certain sophisticated C features,
such as the use of automatic incrementing
variables.

One final point about <curses.h>: it automatically includes <stdio.h> and the
<termio.h> tty driver interface file. Including either file again in a program is
harmless but wasteful.

The Routines lnltscrQ, refreshQ, endwlnO

The routines lnltscrQ, refreshO, and endwinO initialize a terminal screen to an "in
curses state," update the contents of the screen, and restore the terminal to an
"out of curses state," res~ctively. Use the shnple program that we introduced
earlier to learn about each of these routines:

#include <cur•e•.h>

main()
{

}

init•cr(); I• initialize terminal •etting• and <cur•e•.h>
data •tructure• and variable• •/

move(LINES/2 - 1. COLS/2 - 4);
add•tr(•Bull••);
refre•h(); /••end output to (update) terminal •creen •/
add•tr(•E:ye•);
refre•hO;
endwin () ;

I• •end more output to terminal •creen •/
I• re•tore all terminal •etting• •/

Figure 10-3. The Purposes of lnltscrQ, refreshQ, and endwln() in a Program

A curses program usually starts by calling initscrO; the program should call
initscrO only once. Using the environment variable $TERM as the section 'How
curses and terminfo Work Together" describes, this routine determines what

MU43815PG/D2 10-8 12/01/87

curses/terminfo

terminal is being used. It then initializes all the declared data structures and
other variables from <curses.h>. For example, lnitscr() would initialize LINES
and COLS for the sample program on whatever terminal it was run. If the
Teletype 5425 were used, this routine would initialize LINES to 24 and COLS to
80. Finally, this routine writes error messages to stderr and exits if errors occur.

During the execution of the program, output and input is handled by routines like
move() and addstr() in the sample program. For example,

move(LINES/2 - 1, COLS/2 - 4);

says to move the cursor to the left of the middle of the screen. Then the line:

addstr("Bu1ls");

says to write the character string Bu11s. For example, if the Teletype 5425 were
used, these routines would position the cursor and write the character string at
(11,36).

NOTE

All curses routines that move the cursor move it
from its home position in the upper left comer of a
screen. The (LINES,COLS) coordinate at this
position is (0,0) not (1,1). Notice that the vertical
coordinate is given first and the horizontal second,
which is the opposite of the more common 'x,y'
order of screen (or graph) coordinates. The -1 in
the sample program takes the (0,0) position into
account to place the cursor on the center line of
the terminal screen.

Routines like move() and addstr() do not actually change a physical terminal
screen when they are called. The screen is updated only when refresh() is called.
Before this, an internal representation of the screen called a window is updated.
This is an important concept, which we discuss below under "More about
refresh() and Windows."

Finally, a curses program ends by calling endwin(). This routine restores all
terminal settings and positions the cursor at the lower left comer of the screen.

MU43815PG/D2 10-9 12/01/87

II

II

curses/terminfo

Compiling a curses Program
You compile programs that include curses routines as C language programs using
the cc{l) command (documented in the Programmer's Reference Manual), which
invokes the C compiler (see Chapter 2 in this guide for details).

The routines are usually stored in the library /usr/lib/libcurses.a. To direct the
link editor to search this library, you must use the -I option with the cc
command.

The general command line for compiling a curses program follows:

cc file.c -!curses -o file

file.c is the name of the source program; and file is the executable object module.

Running a curses Program
curses programs count on certain information being in a user's environment to
run properly. Specifically, users of a curses program should usually include the
following three lines in their .profile files:

TERM=current terminal type
export TERM
tput init

For an explanation of these lines, see the section 'How curses and terminfo Work
Together" in this chapter. Users of a curses program could also define the
environment variables $LINES, $COLUMNS, and $TERMINFO in their .profile
files. However, unlike $TERM, these variables do not have to be defined.

If a curses program does not run as expected, you might want to debug it with
sdb(l), which is documented in the Programmer's Reference Manual). When using
sdb, you have to keep a few points in mind. First, a curses program is
interactive and always has knowledge of where the cursor is located. An
interactive debugger like sdb, however, may cause changes to the contents of the
screen of which the curses program is not aware.

Second, a curses program outputs to a window until refresh() or a similar routine
is called. Because output from the program may be delayed, debugging the
output for consistency may be difficult.

Third, setting break points on curses routines that are macros, such as refresh(),
does not work. You have to use the routines defined for these macros, instead;
for example, you have to use wrefresh() instead of refresh(). See the above
section, 'The Header File <curses.h>," for more information about macros.

MU43815PG/D2 10-10 12/01/87

curses/terminfo

More about lnitscr() and Lines and Columns
After determining a terminal's screen dimensions, lnitscrO sets the variables
LINES and COLS. These variables are set from the terminfo variables lines and
columns. These, in tum, are set from the values in the terminfo database, unless
these values are overridden by the values of the environment $LINES and
$COLUMNS.

More about refresh() and Windows
As mentioned above, curses routines do not update a terminal until refresh() is
called. Instead, they write to an internal representation of the screen called a
window. When refreshO is called, all the accumulated output is sent from the
window to the current terminal screen.

A window acts a lot like a buffer does when you use an operating system editor.
When you invoke vi{l), for instance, to edit a file, the changes you make to the
contents of the file are reflected in the buffer. The changes become part of the
permanent file only when you use thew or ZZ command. Similarly, when you
invoke a screen program made up of curses routines, they change the contents of
a window. The changes become part of the current terminal screen only when
refresh() is called.

<curses.h> supplies a default window named stdscr (standard screen), which is
the size of the current terminal's screen, for all programs using curses routines.
The header file defines stdscr to be of the type WINDOW•, a pointer to a C
structure that you might think of as a two-dimensional array of characters
representing a terminal screen. The program always keeps track of what is on the
physical screen, as well as what is in stdscr. When refresh() is called, it
compares the two screen images and sends a stream of characters to the terminal II
that make the current screen look like stdscr. A curses program considers many I
different ways to do this, taking into account the various capabilities of the
terminal and similarities between what is on the screen and what is on the
window. It optimizes output by printing as few characters as possible. Figure
10-4 illustrates what happens when you execute the sample curses program that.
prints Bu11sEye at the center of a terminal screen (see Figure 10-1). Notice in
the figure that the terminal screen retains whatever garbage is on it until the first
refresh() is called. This refresh() clears the screen and updates it with the current
contents of stdscr.

MU43815PG/D2 10-11 12/01/87

II

curses/terminfo

initscr()

move(LINES I 2 - l,
COLS I 1-4)

{2, 3)

addstr(''Bulls'~

refresh()

D

stdscr physical screen

(garbage)

stdscr physical screen

D
(garbage)

stdscr physical screen

Bulls o (garbage)

stdscr physical screen

Bulls o Bulls o

Figure 1o-4. Relationship Between stdscr and a Terminal Screen (Sheet 1of2)

MU43815PG/D2 10-12 12101/87

curses/terminfo

stdscr physical screen
addstr(''Eye'1

BullsEyeo BullsD

stdscr physical screen
refresh()

BullsEyeo BullsEyeo

stdscr h sical screen
endwin()

BullsEyeo Bulls Eye

D

Figure 1<>-4. Relationship Between stdscr and a Terminal Screen (Sheet 2 of 2)

You can create other windows and use them instead of stdscr. Windows are
useful for maintaining several different screen images. For example, many data II
entry and retrieval applications use two windows: one to control input and
output and one to print error messages that don't mess up the other window.

It's possible to subdivide a screen into many windows, refreshing each one of
them as desired. When windows overlap, the contents of the current screen
show the most recently refreshed window. It's also possible to create a window
within a window; the smaller window is called a subwindow. Assume that you
are designing an application that uses forms, for example, an expense voucher, as
a user interface. You could use subwindows to control access to certain fields on
the form.

Some curses routines are designed to work with a special type of window called
a pad. A pad is a window whose size is not restricted by the size of a screen or
associated with a particular part of a screen. You can use a pad when you have a

MU43815PG/D2 10-13 12/01/87

II

curses/terminfo

particularly large window or only need part of the window on the screen at any
one time. For example, you might use a pad for an application with a spread
sheet.

Figure 10-5 represents what a pad, a subwindow, and some other windows could
look like in comparison to a terminal screen.

terminal screen

window window

.-- pad

pad D ~

~window

l window J

Figure 10-5. Multiple Windows and Pads Mapped to a Terminal Screen

The section ''Building Windows and Pads" in this chapter describes the routines
you use to create and use them. If you'd like to see a curses program with
windows now, you can tum to the window program under the section "curses
Program Examples" in this chapter.

MU43815PG/D2 10-14 12/01/87

curses/terminfo

Getting Simple Output and Input

Output

The routines that curses provides for writing to stdscr are similar to those
provided by the stdio(3S) library for writing to a file. They let you

• write a character at a time - addchQ

• write a string - addstrO

• format a string from a variety of input arguments - prlntwQ

•move a cursor or move a cursor and print character(s) - moveQ, mvaddchQ,
mvaddstrQ, mvprintwQ

• clear a screen or a part of it - clearQ, eraseQ, clrtoeolQ, clrtobotO

Following are descriptions and examples of these routines.

MU43815PG/D2

CAUTION

The curses library provides its own set of output
and input functions. You should not use other 1/0
routines or system calls, like read(2) and wrlte(2),
in a curses program. They may cause undesirable
results when you run the program.

10-15 12/01/87

II

II

curses/terminfo

add ch()

SYNOPSIS

#include <curses.h>

int addch(ch)
chtype ch;

NOTES

• addch() writes a single ,character to stdscr.

• The character is of the type chtype, which is defined in <curses.h>. chtype
contains data and attributes (see "Output Attributes" in this chapter for
information about attributes).

•When working with variables of this type, make sure you declare them as
chtype and not as the basic type (for example, short) that chtype is declared
to be in <curses.h>. This will ensure future compatibility.

• addch() does some translations. For example, it converts

• the <NL> character to a clear to end of line and a move to the next line

• the tab character to an appropriate number of blanks

• other control characters to their AX notation

• addch() normally returns OK. The only time addch() returns ERR is after
adding a character to the lower right-hand comer of a window that does not
scroll.

• addch() is a macro.

MU43815PG/D2 10-16 12/01/87

EXAMPLE

#include <curses.h>

main()
{

}

initscr();
addch(' a');
refresh();
end win();

curses/terminfo

The output from this program will appear as follows:

a

$0

Also see the show program under "curses Example Programs" in this chapter.

MU43815PG/D2 10-17 12/01/87

II

II

curses/terminfo

addstrO

SYNOPSIS

#include <curses.h>

int addstr(str)
char •str;

NOTES

• addstr() writes a string of characters to stdscr.

• addstr() calls addch() to write each character.

• addstrO follows the same translation rules as addchQ.

• addstr() returns OK on success and ERR on error.

• addstr() is a macro.

EXAMPLE

Recall the sample program that prints the character string BullsEye. See
Figures 10-1, 10-2, and 10-4.

MU43815PG/D2 10-18 12/01/87

printwQ

SYNOPSIS

#include <curses.h>

int printw(fmt [,arg •••])
char *fmt

NOTES

• printw() handles formatted printing on stdscr.

curses/terminfo

• Like printf, printw() takes a format string and a variable number of arguments.

• Like addstr(), printw() calls addch() to write the string.

• printw() returns OK on success and ERR on error.

MU43815PG/D2 10-19 12/01/87

II

curses/terminfo

EXAMPLE

#include <cur•••.h>

main()
{

char• title
int no = O;

•Not •p•cified";

I• Ki••ing code. •/

init•crO;

/• Kiaaing code. •/

printw("I• i• not in •tock.\n•, title);
printw("Pl•a•• a•k th• cashier to order Id for you.\n•, no);

}

refr••hO;
endwin ();

The output from this program will appear as follows:

Not specified is not in stock.
Please ask the cashier to order 0 for you.

$ D

MU43815PG/D2 10-20 12/01/87

moveo

SYNOPSIS

#Include <curses.h>

Int move(y, x);
Int y, x;

NOTES

curses/terminfo

• moveo positions the cursor for stdscr at the given row y and the given
columnx.

• Notice that moveQ takes they coordinate before the x coordinate. The upper
left-hand coordinates for stdscr are (0,0), the lower right-hand (LINES - 1,
COLS - 1). See the section titled 'The Routines lnltscrQ, refresh{), and
endwlnO" for more information.

• move() may be combined with the write functions to form:

- mvaddch(y, x, ch), which moves to a given position and prints a
character

- mvaddstr(y, x, str), which moves to a given position and prints a string of
characters

- mvprlntw(y, x, fmt [,arg ..•]),
which moves to a given position and prints a formatted string.

• moveO returns OK on success and ERR on error. Trying to move to a screen
position of less than (0,0) or more than (LINES - 1, COLS - 1) causes an error .

• moveo is a macro.

MU43815PG/D2 10-21 12/01/87

II

curses/terminfo

EXAMPLE

#include <cur•••.h>

main()
{

}

init•cr();
add•tr(•Cur•or •hould be here--> if move() work•.•);
printw(•\n\n\nPr••• <CR> to end te•t.•);
move(0,26);
refre•h ();
getch(); /•Get• <CR>; di•cu••ed below. •/
endwin ();

Here's the output generated by running this program:

Cursor shou1d be here -->Dif move() works.

Press <CR> to end test.

After you press <CR>, the screen looks like this:

Cursor should be here -->

Press <CR> to end test.
$ D

See the scatter program under "curses Program Examples" in this chapter for
another example of using move().

MU43815PG/D2 10-22 12/01/87

clear() and erase()

SYNOPSIS

#include <curses.h>

int clearO
int erase()

NOTES

• Both routines change stdscr to all blanks.

curses/term.info

• clear() also assumes that the screen may have garbage that it doesn't know
about; this routine first calls erase() and then clearok() which clears the
physical screen completely on the next call to refresh{) for stdscr. See the
curses(3X) manual page for more information about clearok{).

• lnitscr() automatically calls clear().

• clear() always returns OK; erase{) returns no useful value.

• Both routines are macros.

MU43815PG/D2 10-23 12/01/87

II

II

curses/terminfo

clrtoeolO and clrtobot()

SYNOPSIS

#include <curses.h>

int clrtoeolO
int clrtobot()

NOTES

• clrtoeol() changes the remainder of a line to all blanks.

• clrtobot() changes· the remainder of a screen to all blanks.

• Both begin at the current cursor position inclusive.

• Neither returns any useful value.

MU43815PG/D2 10-24 12/01/87

curses/terminto

EXAMPLE

The following sample program uses clrtobot().

#include <cur•••.h>

main()
{

init•cr();
add•tr(•Pr••• <CR> to delete from here to th• end of the line and on.•);
add•tr(•\nD•l•t• thi• too.\nAnd thi•.•);
move (0, 30);
refr••hO;
getch();
clrtobot () ;
refr••hO;
endwin();

}

Here's the output generated by running this program:

Pr••• <CR> to delete from herecto th• end of the line and on.
Delete t.hi• too.
And thi•.

Notice the two calls to refresh(): one to send the full screen of text to a terminal,
the other to clear from the position indicated to the bottom of a screen.

Here's what the screen looks like when you press <CR>:

Pre•• <CR> ~o de1e~e from here

$ D

See the show and two programs under "curses Example Programs" for examples
of uses for clrtoeol().

MU43815PG/D2 10-25 12/01/87

II

II

curses/terminfo

Input

curses routines for reading from the current terminal are similar to those
provided by the stdio(3S) library for reading from a file. They let you:

• read a character at a time - getchO

• read a <NL>-terminated string- getstr()

• parse input, converting and assigning selected data to an argument list -
scanw()

The primary routine is getch(), which processes a single input character and then
returns that character. This routine is like the C library routine getchar{)(3S)
except that it makes several terminal- or system-dependent options available that
are not possible with getchar(). For example, you can use getch() with the
curses routine keypad(), which allows a curses program to interpret extra keys
on a user's terminal, such as arrow keys, function keys, and other special keys
that transmit escape sequences, and treat them as just another key. See the
descriptions of getch{) and keypad() on the curses(3X). manual page for more
information about keypad().

The following pages describe the basic routines for getting input in a screen
program.

MU43815PG/D2 10-26 12/01/87

get ch()

SYNOPSIS

#Include <curses.h>

Int getch()

NOTES

• getch() reads a single character from the current terminal.

curses/terminfo

• getch() returns the value of the character or ERR on 'end of file,' receipt of
signals, or non-blocking read with no input.

• getch() is a macro.

• See the discussions about echo{), noecho(), cbreak(), nocbreak(), raw(),
noraw{), halfdelay{), nodelay{), and keypad() below and in curses(3X).

MU43815PG/D2 10-27 12/01/87

II

II

curses/terminfo

EXAMPLE

#include <curses.h>

ma.in()
{

int ch;

initscr();
cbreak(); /•Explained later in the section "Input Options"•/

}

addstr(•Press any character: •);
refresh();
ch = getchO;
printw(•\n\n\nThe character entered was a ·1c·.\n•, ch);
refresh();
endwinO;

The output from this program follows. The first refresh() sends the addstr()
character string from stdscr to the terminal:

Press any character: D

Then assume that a w is typed at the keyboard. getch() accepts the character and
assigns it to ch. Finally, the second refresh() is called and the screen appears as
follows:

Presa any character: w

The character entered was a ·w·.

$0

For another example of getch{), see the show program under "curses Example
Programs" in this chapter.

MU43815PG/D2 10-28 12/01/87

getstr()

SYNOPSIS

#include <curses.h>

int getstr(str)
char *Str;

NOTES

curses/terminfo

• getstr() reads characters and stores them in a buffer until a <CR>, <NL>, or
<ENTER> is received from stdscr. getstr() does not check for buffer
overflow.

• The characters read and stored are in a character string.

• getstr() is a macro; it calls getch() to read each character.

• getstr() returns ERR if getch() returns ERR to it. Otherwise it returns OK.

• See the discussions about echo{), noecho{), cbreak(), nocbreak{), raw{),
noraw{), halfdelay{), nodelay(), and keypad() below and in curses(3X).

MU43815PG/D2 · 10-29 12/01/87

curses/terminfo

EXAMPLE

#include <cur•••.h>

main()
{
char •tr[258];

init•crO;
cbreak(}; /•Explained later in the ••ction •Input Option•• •/

}

add•tr(•Ent•r a character •tring terminated by <CR>:\n\n•);
refre•h ()
g•t•tr(•tr);
printw(•\n\n\nTh• •tring entered wa• \n•l••\n•, •tr);
r•fre•h();
endwin ();

Assume you entered the string 'I enjoy learning about the operating system.' The
final screen (after entering <CR>) would appear as follows:

Enter a character string terminated by <CR>:

I enjoy learning about the operating system.

The string entered was
·r enjoy learning about the operating system.·

11~•-o ____________________ _,

MU43815PG/D2 10-30 12/01187

scanwo

SYNOPSIS

#Include <cursas.h>

Int scanw(fmt [, arg •••])
char •fmt;

NOTES

• scanwO calls gatstrO and parses an input line.

curses/terminfo

• Like scanf(3S), scanw() uses a format string to convert and assign to a variable
number of arguments .

• scanwo returns the same values as scanf().

• See scanf(3S) for more information.

MU43815PG/D2 10-31 12/01/87

II

curses/terminfo

EXAMPLE

#iDclude <cur•••.h>

maiDO
<

char •triDg[100];
float Dumber;

iDit•cr();
cbrealc ();
echo();

I• Expl&iD•d later iD the •/
I• ••ctioD •Input Option•• •/

add•tr(•Enter a Dumber and a •tring ••pa.rated by a comma: •);
re:rre•hO;
•caDw(•lf,l••,aDumber,•triDg);
clear();
printw(•Th• •triDg wa• \•I•\• &Dd the Dumber wa• l:r.•,•triDg,Dumber);
rdr••hO;
endwinC>;

}

Notice the two calls to refreshQ. The first call updates the screen with the
character string passed to addstrQ, the second with the string returned from
scanwQ. Also notice the call to clearQ. Assume you entered the following when
prompted: 2,twin. After running this program, your terminal screen would
appear, as follows:

The •tring waa "twin" and the number waa 2.000000.

Controlling Output and Input

Output Attributes

When we talked about addch(), we said that it writes a single character of the
type chtype to stdscr. chtype has two parts: a part with information about the
character itself and another part with information about a set of attributes
associated with the character. The attributes allow a character to be printed in
reverse video, bold, underlined, and so on.

MU43815PG/D2 10-32 12/01/87

curses/terminfo

stdscr always has a set of current attributes that it associates with each character
· as it is written. However, using the routine attrsetQ and related curses routines

described below, you can change the current attributes. Below is a list of the
attributes and what they mean:

• A_BLINK - blinking

• A_BOLD - extra bright or bold

• A_DIM - half bright

• A_REVERSE - reverse video

• A_STANOOUT-a terminal's best highlighting mode

• A_UNDERLINE - underlining

• A_ALTCHARSET - alternate character set (see the section 'Drawing Lines
and Other Graphics" in this chapter)

To use these attributes, you must pass them as arguments to attrsetO and related
routines; they can also be ORed with the bitwise OR {I) to addch().

NOTE

Not all terminals are capable of displaying all
attributes. If a particular terminal cannot display a
requested attribute, a curses program attempts to
find a substitute attribute. If none is possible, the
attribute is ignored.

Let's consider a use of one of these attributes. To display a word in bold, you "'
would use the following code: -

printw("A word in");
attraet(A_J30LD);
printw("boldface");
attraet(O);
printw(" really atanda out.\n");

refresh();

Attributes can be turned on singly, such as attrset(A_BOLD) in the example, or in
combination. To tum on blinking bold text, for example, you would use

MU43815PG/D2 10-33 12101/87

II

curses/terminfo

attrset(A_BLlNK I A_BOLD). Individual attributes can be turned on and off with
the curses routines attronO and attroffO without affecting other attributes.
attrset(O) turns all attributes off.

Notice the attribute called A_STANDOUT. You might use it to make text attract
the attention of a user. The particular hardware attribute used for standout is the
most visually pleasing attribute a terminal has. Standout is typically implemented
as reverse video or bold. Many programs don't really need a specific attribute,
such as bold or reverse video, but instead just need to highlight some text. For
such applications, the A_STANDOUT attribute is recommended. Two convenient
functions, standout() and standend() can be used to tum this attribute on and off;
standendO turns off all attributes.

In addition to the attribµtes listed above, there are two bit masks called
A_CHARTEXT and A_ATTRIBUTES. You can use these bit masks with the
curses function inch() and the C logical AND (&) operator to extract the

· character or attributes of a position on a terminal screen. See the discussion of
inchO on the curses(3X) manual page.

Following are descriptions of attrset() and the other curses routines that you can
use to manipulate attributes.

MU43815PG/D2 10-34 12/01/87

attron(), attrset(), and attroff()

SYNOPSIS

#include <curses.h>

int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attroff(attrs)
chtype attrs;

NOTES

curses/terminfo

• attron() turns on the requested attribute attrs in addition to any that are
currently on. attrs is of the type chtype and is defined in <curses.h>.

• attrset() turns on the requested attributes attrs instead of any that are
currently turned on.

• attroff() turns off the requested attributes attrs if they are on.

• The attributes may be combined using the bitwise OR (I).

• All return OK.

EXAMPLE

See the highlight program under "curses Example Programs" in this chapter.

MU43815PG/D2 10-35 12/01/87

II

curses/terminfo

standoutQ and standendQ

SYNOPSIS

#Include <curses.h>

Int standoutQ
Int standend()

NOTES

• standoutQ turns on the preferred highlighting attribute, A_STANDOUT, for
the current terminal. This routine is equivalent to attron(A....STANDOUT).

• standendO turns off all attributes. This routine is equivalent to attrset(O).

• Both always return OK.

EXAMPLE

See the highlight program under "curses Example Programs" in this chapter.

MU43815PGID2 10-36 12/01/87

curses/term.info

Bells and Flashing Screens

Occasionally, you may want to get a user's attention. Two curses routines were
designed to help you do this. They let you ring the terminal's chimes and flash
its screen.

flash() flashes the screen if possible, and otherwise rings the bell. Flashing the
screen is intended as a bell replacement, and is particularly useful if the bell
bothers someone within earshot of the user. The routine beep{) can be called
when a real beep is desired. (If for some reason the terminal is unable to beep,
but able to flash, a call to beep{) will flash the screen.)

beep() and flash()

SYNOPSIS

#include <curses.h>

int flashO
int beep()

NOTES

• flash() tries to flash the terminals screen, if possible, and, if not, tries to ring
the terminal bell.

• beep() tries to ring the terminal bell, if possible, and, if not, tries to flash the
terminal screen.

• Neither returns any useful value.

MU43815PG/D2 10-37 12/01/87

II

II

curses/terminfo

Input Options

The operating system does a considerable amount of processing on input before
an application ever sees a character. For example, it does the following:

• echoes (prints back) characters to a terminal as they are typed

• interprets an erase character (typically#) and a line kill character (typically@)

• interprets a CTRL-D (control d) as end of file (EOF)

• interprets interrupt and quit characters

• strips the character's parity bit

• translates <CR> to <NL>

Because a curses program maintains total control over the screen, curses turns
off echoing on the operating system and does echoing itself. At times, you may
not want the operating system to process other characters in the standard way in
an interactive screen management program. Some curses routines, noechoO and
cbreak(), for example, have been designed so that you can change the standard
character processing. Using these routines in an application controls how input is
interpreted. Table 10-1 shows some of the major routines for controlling input.

Every curses program accepting input should set some input options. This is
because when the program starts running, the terminal on which it runs may be
in cbreakQ, raw(), nocbreak(), or noraw() mode. Although the curses program
starts up in echo() mode, as Table 10-1 shows, none of the other modes are
guaranteed.

The combination of noecho() and cbreak() is most common in interactive screen
management programs. Suppose, for instance, that you don't want the characters
sent to your application program to be echoed wherever the cursor currently
happens to be; instead, you want them echoed at the bottom of the screen. The
curses routine noecho() is designed for this purpose. However, when noecho()
turns off echoing, normal erase and kill processing is still on. Using the routine
cbreak() causes these characters to be uninterpreted.

MU43815PG/D2 10-38 12/01/87

curses/terminfo

TABLE 10-1. Input Option Settings for curses Programs

Input Characters
Options Interpreted Uninterpreted

Normal interrupt, quit
'out of curses stripping
state' <CR> to <NL>

echoing
erase, kill
EOF

Normal echoing All else
curses 'start up (simulated) undefined.
state'

cbreakO interrupt, quit erase, kill
and echo() stripping EOF

echoing

cbreak() interrupt, quit echoing
and noecho() stripping erase, kill

EOF

nocbreak() break, quit echoing
and noecho() stripping

erase, kill
EOF II

nocbreak() See caution below.
and echo()

nl() <CR> to <NL>

non I() <CR> to <NL>

raw() break, quit
(instead of stripping
cbreak())

MU43815PG/D2 10-39 12/01/87

II

curses/terminfo

CAUTION

Do not use the combination nocbreakQ and
noechoQ. If you use it in a program and also use
getchQ, the program will go in and out of cbreakQ
mode to get each character. Depending on the
state of the tty driver when each character is
typed, the program may produce undesirable
output.

In addition to the routines noted in Table 10-1, you can use the curses routines
norawO, halfdelayQ, and nodelayQ to control input. See the curses(3X) manual
page for discussions of these routines.

The. next few pages describe noechoQ, cbreakQ and the related routines echoQ
and nocbreakQ in more detail.

MU43815PG/D2 10-40 12101/87

echo() and noecho()

SYNOPSIS

#include <curses.h>

int echo{)
int noecho()

NOTES

curses/terminfo

• echo() turns on echoing of characters by curses as they are read in. This is
the initial setting.

• noecho() turns off the echoing.

• Neither returns any useful value.

• curses programs may not run properly if you tum on echoing with
nocbreak(). See Table 10-1 and accompanying caution. After you turn
echoing off, you can still echo characters with addch().

EXAMPLE

See the editor and show programs under "curses Program Examples" in this
chapter.

MU43815PG/D2 10-41 12/01/87

II

curses/terminfo

cbreak() and nocbreak()

SYNOPSIS

#Include < curses.h >
int cbreak()
Int nocbreak()

NOTES

• cbreak() turns on 'break for each character' processing. A program gets each
character as soon as it is typed, but the erase, line kill, and CTRL-D characters
are not interpreted.

• nocbreak() returns to normal 'line at a time' processing. This is typically the
initial setting.

• Neither returns any useful value.

• A curses program may not run properly if cbreak() is turned on and off
within the same program or if the combination nocbreak() and echo() is used.

• See Table 10-1 and accompanying caution.

EXAMPLE

See the editor and show programs under "curses Program Examples" in this
chapter.

MU43815PG/D2 10-42 12/01/87

curses/terminfo

Building Windows and Pads
An earlier section in this chapter, ''More about refresh() and Windows" explained
what windows and pads are and why you might want to use them. This section
describes the curses routines you use to manipulate and create windows and
pads.

Output and Input

The routines that you use to send output to and get input from windows and
pads are similar to those you use with stdscr. The only difference is that you
have to give the name of the window to receive the action. Generally, these
functions have names formed by putting the letter w at the beginning of the name
of a stdscr routine and adding the window name as the first parameter. For
example, addch('c') would become waddch(mywin, 'c') if you wanted to write
the character c to the window mywin. Here's a list of the window (or w) versions
of the output routines discussed in "Getting Simple Output and Input."

• waddch{win, ch)

• mvwaddch{win, y, x, ch)

• waddstr(win, str)

• mvwaddstr(win, y, x, str)

• wprintw(win, fmt [, arg ... n
• mvwprintw(win, y, x, fmt [, arg ... n
• wmove(win, y, x)

• wclear(win) and werase(win)

• wclrtoeol(win) and wclrtobot(win)

• wrefresh()

You can see from their declarations that these routines differ from the versions
that manipulate stdscr only in their names and the addition of a win argument.
Notice that the routines whose names begin with mvw take the win argument
before the y, x coordinates, which is contrary to what the names imply. See
curses(3X) for more information about these routines or the versions of the input
routines getch, getstr(), and so on that you should use with windows.

All w routines can be used with pads except for wrefresh() and wnoutrefresh()
(see below). In place of these two routines, you have to use prefresh() and
pnoutrefresh() with pads.

MU43815PG/D2 10-43 12/01/87

II

curses/terminfo

The Routines wnoutrefresh() and doupdate()

If you recall from the earlier discussion about refresh(), we said that it sends the
output from stdscr to the terminal screen. We also said that it was a macro that
expands to wrefresh(stdscr) (see 'What Every curses Program Needs" and ''More
about refresh() and Windows'~.

The wrefresh() routine is used to send the contents of a window (stdscr or one
that you create) to a screen; it calls the routines wnoutrefresh() and doupdate().
Similarly, prefresh() sends the contents of a pad to a screen by calling
pnoutrefresh() and doupdate().

Using wnoutrefresh()-or pnoutrefresh() (this discussion will be limited to the
former routine for simplicity)--and doupdate(), you can update terminal screens
with more efficiency than using wrefresh() by itself. wrefresh() works by first
calling wnoutrefresh(), which copies the named window to a data structure
referred to as the virtual screen. The virtual screen contains what a program
intends to display at a terminal. After calling wnoutrefresh(), wrefresh() then
calls doupdate(), which compares the virtual screen to the physical screen and
does the update. If you want to output several windows at once, calling
wrefresh() will result in alternating calls to wnoutrefresh() and doupdate(),
causing several bursts of output to a screen. However, by calling wnoutrefresh()
for each window and then doupdate() only once, you can minimize the total
number of characters transmitted and the processor time used. The following
sample program uses only one doupdate():

#include <cur•e•.h>

main()
{

}

WINDOW •w1, •w2;

init.•cr();
w1 = newwin(2,6,0,3);
w2 = newwin(1,4,6,4);
wadd•t.r(w1, •eull••);
wnout.refre•h(w1);
waddet.r(w2, •Eye•);
wnout.refreeh(w2);
doupdat.e ();
endwin();

MU43815PG/D2 10-44 12/01/87

curses/terminfo

Notice from the sample that you declare a new window at the beginning of a
curses program. The lines

w1 = newwin(2,6,0,3);
w2 = newwin(1,4,6,4);

declare two windows named w1 and w2 with the routine newwinQ according to
certain specifications. newwinO is discussed in more detail below.

Figure 10-7 illustrates the effect of wnoutrefresh() and doupdateQ on these two
windows, the virtual screen, and the physical screen.

MU43815PG/D2 lo-45 12/01/87

II

II

initscr ()

wl = newwin
(2,6,0,3,)

w2 = newwin
{l,4,5,4)

stdscr@ (0,0)
0

stdscr@ (0,0)
0

wl@{0,3)

D
stdscr@ (0,0)
0

virtual screen
0

virtual screen
0

virtual screen
0

wl@ (0,3) w2@ (5,4)

DLl

£hysical screen

(garbage)

physical screen

(garbage)

£._hysical screen

(garbage)

Figure 10-6. Relationship Between a Window and a Terminal Screen (Sheet 1of3)

MU43815PG/D2 10-46 12/01/87

waddstr (wl,
"Bulls'1

wnoutrefresh (wl)

waddstr (w2,
''Eye'1

stdscr@ (0,0)
0

virtual screen
0

wl@{0,3) w2@{5,4)

I Bulls o I Ll
stdscr@ (0,0) virtual screen

0 0

wl@{0,3) w2@{5,4)

I Bulls o I Ll
stdscr@ (0,0) virtual screen

D 0

wl@{0,3) w2@(5,4)

I Bulls o I I Eyeo I

physical screen

(garbage)

physical screen

(garbage)

physical screen

(garbage)

Figure 10·6. Relationship Between a Window and a Terminal Screen (Sheet 2 of 3)

MU43815PG/D2 lQ-47 12/01/87

II

II

wnoutrefresh (w2)

doupdate ()

endwin ()

stdscr@ (0,0) virtual screen
D Bulls

Eyeo

wl@{0,3) w2@{5,4)

I Bulls o I I Eyeo I
stdscr@ (0,0) virtual screen
D u s

Eye D

wl@{0,3) w2@{5,4)

I Bulls o I I Eye o I
stdscr@ (0,0) virtual screen

Bulls D

Eyeo

wl@{0,3) w2@{5,4)

I Bulls o I j Eye o I

physical screen

(garbage)

Eyeo

physical screen
Bu1fs

Eye D

Figure 1G-6. Relationship Between a Window and a Terminal Screen (Sheet 3 of 3)

MU43815PG/D2 1()-48 12/01/87

curses/terminfo

New Windows

Following are descriptions of the routines newwin() and subwln(), which you use
to create new windows. For information about creating new pads with newpad()
and subpad(), see the curses(3X) manual page.

newwin()

SYNOPSIS

#include <curses.h>

WINDOW 111newwin(nlines, ncols, begin_y, begin_x)
int nlines, ncols, begin_y, begin_x;

NOTES

• newwin() returns a pointer to a new window with a new data area.

• The variables nlines and ncols give the size of the new window.

• begin_y and begin_x give the screen coordinates from (0,0) of the upper left
comer of the window as it is refreshed to the current screen.

EXAMPLE

Recall the sample program using two windows; see Figure 10-6. Also see the
window program under "curses Program Examples" in this chapter.

MU43815PG/D2 10-49 12101/87

II

II

subwlnO

SYNOPSIS

waddstr (wl,
"Bulls'?

wnoutrefresh (wl)

waddstr (w2,
"Eye'?

MU43815PG/D2

stdscr@ (0,0)
0

virtual screen
0

wl@ (0,3) w2@ (5,4)

I Bullso I Ll
stdscr@ (0,0) virtual screen
0 D

wl@{0,3) w2@{5,4)

I Bulls o I Ll
stdscr@ (0,0)
0

virtual screen
D

wl@(0,3) w2@{5,4)

I Bulls o I I Eyeo I

10-50

physical screen

(garbage)

physical screen

(garbage)

physical screen

(garbage)

12/01/87

#Include <curses.h>

WINDOW •subwln(orlg, nlines, ncols, begin_y, begin_x)
WINDOW •orig;
int nlines, ncols, begin_y, begin_x;

NOTES

curses/terminfo

• subwin() returns a new window that points to a section of another window,
orig.

• nlines and ncols give the size of the new window.

• begin_y and begin_x give the screen coordinates of the upper left comer of
the window as it is refreshed to the current screen.

• Subwindows and original windows can accidentally overwrite one another.

EXAMPLE

CAurION

Subwindows of subwindows do not work (as of
the copyright date of this Programmer's Guide).

#include <cur•e•.h>

main()
{

WIJIDOW ••ub;

init.•cr();
box(•t.d•cr,•w•,•w•); /•Bee t.h•
mvwadd•t.r(at.dacr,7,10,•------- t.hi•
mvwaddch(•t.d•cr,8,10,"I");
mvwaddch(•t.d•cr,9,10,"T");

cur•e•(3X) manual
i• 10,10•);

page for box() •/

}

•ub = •ubwin(•t.d•cr,10,20,10,10);
box(•ub,"•","•");
wnout.refre•h(•t.d•cr);
wrefre•h(aub);
endwin();

This program prints a border of ws around the stdscr (the sides of your terminal
screen) and a border of s's around the subwindow sub when it is run. For
another example, see the window program under "curses Program Examples" in
this chapter.

MU43815PG/D2 10-51 12/01/87

II

II

curses/terminfo

Using Advanced curses Features
Knowing how to use the basic curses routines to get output and input and to
work with windows, you can design screen management programs that meet the
needs of many users. The curses library, however, has routines that let you do
more in a program than handle IJO and multiple windows. The following few
pages briefly describe some of these routines and what they can help you do-
namely, draw simple graphics, use a terminal's soft labels, and work with more
than one terminal in a single curses program.

You should be comfortable using the routines previously discussed in this chapter
and the other routinf;!s for IJO and window manipulation discussed on the
curses(3X) manual page before you try to use the advanced curses features.

CAUTION

The routines described under ''Routines for
Drawing Lines and Other Graphics" and ''Routines
for Using Soft Labels" are features that are new for
Release 3. If a program uses any of these
routines, it may not run on earlier releases of the
operating system. You must use the Release 3
version of the curses library on Release 3 to work
with these routines.

Routines for Drawing Lines and Other Graphics

Many terminals have an alternate character set for drawing simple graphics (or
glyphs or graphic symbols). You can use this character set in curses programs.
curses use the same names for glyphs as the VTlOO line drawing character set.

To use the alternate character set in a curses program, you pass a set of variables
whose names begin with ACS_ to the curses routine waddchQ or a related
routine. For example, ACS_ULCORNER is the variable for the upper left comer
glyph. If a terminal has a line drawing character for this glyph,
ACS_ULCORNER's value is the terminal's character for that glyph OR'd (I) with
the bit-mask A....ALTCHARSET. If no line drawing character is available for that
glyph, a standard ASCII character that approximates the glyph is stored in its
place. For example, the default character for ACS_HLINE, a horizontal line, is a -
(minus sign). When a close approximation is not available, a + (plus sign) is
used. All the standard ACS_ names and their defaults are listed on the
curses(3X) manual page.

MU43815PG/D2 10-52 12/01/87

curses/terminfo

Part of an example program that uses line drawing characters follows. The
example uses the curses routine box() to draw a box around a menu on a screen.
box() uses the line drawing characters by default or when I (the pipe) and - are
chosen. (See curses(3X).) Up and down more indicators are drawn on the box
border (using ACS_UARROW and ACS_DARROW) if the menu contained within
the box continues above or below the screen:

box(menuwin, ACS_VLINE, ACS.JILINE);

/* output the up/down arrows •/
wmove(menuwin, maxy, maxx - 6);

/* output up arrow or horizontal line •/
if (moreabove)

waddch(menuwin, ACS_UARROW);
else

addch(menuwin, ACS.JILINE);

/•output down arrow or horizontal line */
if (morebelow)

waddch(menuwin, ACSJ)ARROW);
else

waddch(menuwin, ACS.JILINE);

Here's another example. Because a default down arrow (like the lowercase letter
v) isn't clearly discernible on a screen with many lowercase characters on it, you II
can change it to an uppercase V.

if (I (ACSJ)ARROW & .A_.ALTCHARSET))
ACSJ)ARROW = 'V';

For more information, see curses(3X) in the Programmer's Reference Manual.

MU43815PG/D2 10-53 12/01187

II

curses/terminfo

Routines for Using Soft Labels

Another feature available on most terminals is a set of soft labels across the
bottom of their screens. A terminal's soft labels are usually matched with a set of
hard function keys on the keyboard. There are usually eight of these labels, each
of which is usually eight characters wide and one or two lines high.

The curses library has routines that provide a uniform model of eight soft labels
on the screen. If a terminal does not have soft labels, the bottom line of its screen
is converted into a soft label area. It is not necessary for the keyboard to have
hard function keys to match the soft labels for a curses program to make use of
them.

Let's briefly discuss most of the curses routines needed to use soft labels:
slk_lnit(), slk_set(), slk_refresh() and slk_noutrefresh(), slk_clear, and
slk_restore.

When you use soft labels in a curses program, you have~to call the routine
slk_lnt() before lnltscr(). This sets an internal flag for lnltscr() tolook at that says
to use the soft labels. If lnltscr() discovers that there are fewer than eight soft
labels on the screen, that their size is less than eight characters, or that there is no
way to program them, then it will remove a line from the bottom of stdscr to use
for the soft labels. The size of stdscr and the LINES variable will be reduced by 1
to reflect this change. A properly written program, one that is written to use the
LINES and COLS variables, will continue to run as if the line had never existed
on the screen.

slk_lnlt() takes a single argument. It determines how the labels are grouped on
the screen should a line get removed from stdscr. The choices are between a 3-
2-3 arrangement as appears on AT&T terminals, or a 4-4 arrangement as appears
on Hewlett-Packard terminals. The curses routines adjust the width and
placement of the labels to maintain the pattern. The widest label generated is
eight characters.

The routine slk_set() takes three arguments, the label number (1-8), the string to
go on the label (up to eight characters), and the justification within the label (0 =
left justified, 1 = centered, and 2 = right justified).

The routine slk_noutrefresh() is comparable to wnoutrefresh() in that it copies
the label information onto the internal screen image, but it does not cause the
screen to be updated. Since a wrefresh() commonly follows, slk_noutrefresh() is
the function that is most commonly used to output the labels.

Just as wrefresh() is equivalent to a wnoutrefresh() followed by a doupdate{), so
too the function slk_refresh() is equivalent to a slk_noutrefresh() followed by a
doupdate().

MU43815PG/D2 10-54 12/01/87

curses/terminfo

To prevent the soft labels from getting in the way of a shell escape, slk_clear()
may be called before doing the endwin(). This clears the soft labels off the screen
and does a doupdate(). The function slk_restore() may be used to restore them
to the screen. See the curses(3X) manual page for more information about the
routines for using soft labels.

Working with More than One Terminal

A curses program can produce output on more than one terminal at the same
time. This is useful for single process programs that access a common database,
such as multi-player games.

Writing programs that output to multiple terminals is a difficult business, and the
curses library does not solve all the problems you might encounter. For instance,
the programs-not the library routines-must determine the file name of each
terminal line, and the kind of terminal on each of those lines. The standard
method, checking $TERM in the environment, does not work, because each
process can only examine its own environment.

Another problem you might face is that of multiple programs reading from one
line. This situation produces a race condition and should be avoided. However,
a program trying to take over another terminal cannot just shut off whatever
program is currently running on that line. (Usually, security reasons would also
make this inappropriate. But, for some applications, such as an inter-terminal
communication program, or a program that takes over unused terminal lines, it
would be appropriate.) A typical solution to this problem requires each user
logged in on a line to run a program that notifies a master program that the user
is interested in joining the master program and tells it the notification program's

the program goes to sleep until the master program finishes. When done, the 1

process ID, the name of the tty line, and the type of terminal being used. Then II
master program wakes up the notification program and all programs exit.

A curses program handles multiple terminals by always having a current
terminal. All function calls always affect the current terminal. The master
program should set up each terminal, saving a reference to the terminals in its
own variables. When it wishes to affect a terminal, it should set the current
terminal as desired, and then call ordinary curses routines.

References to terminals in a curses program have the type SCREEN•. A new
terminal is initialized by calling newterm(type, outfd, infd). newterm returns a
screen reference to the terminal being set up. type is a character string, naming
the kind of terminal being used. outfd is a stdio(3S) file pointer (FILE•) used for
output to the terminal and infd a file pointer for input from the terminal. This call
replaces the normal call to lnltscr(), which calls newterm(getenv("TERM"),
stdout, stdin).

MU43815PG/D2 10-55 12/01/87

II

curses/terminfo

To change the current terminal, call set_term(sp) where sp is the screen reference
to be made current. set_term() returns a reference to the previous terminal.

It is important to realize that each terminal has its own set of windows and
options. Each terminal must be initialized separately with newterm(). Options
such as cbreak() and noecho() must be set separately for each terminal. The
functions endwin() and refresh() must be called separately for each terminal.
Figure 10-7 shows a typical scenario to output a message to several terminals.

for (i=O; i<nterm; i++)
{

}

aet_term(terma[i]);
mvaddatr(O, 0, "Important message");
refresh();

Figure 10-7. Sending a Message to Several Terminals

See the two program under "curses Program Examples" in this chapter for a more
complete example.

Working with terminfo Routines
Some programs need to use lower-level routines {i.e., primitives) than those
offered by the curses routines. For such programs, the termlnfo routines are
offered. They do not manage your terminal screen, but rather give you access to
strings and capabilities which you can use to manipulate the terminal.

There are three circumstances when it is proper to use terminfo routines. The
first is when you need only some screen management capabilities, for example,
making text standout on a screen. The second is when writing a filter. A typical
filter does one transformation on an input stream without clearing the screen or
addressing the cursor. If this transformation is terminal dependent and clearing
the screen is inappropriate, use of the terminfo routines is worthwhile. The third
is when you are writing a special purpose tool that sends a special purpose string
to the terminal, such as programming a function key, setting tab stops, sending
output to a printer port, or dealing with the status line. Otherwise, you are
discouraged from using these routines: the higher-level curses routines make
your program more portable to other operating systems and to a wider class of
terminals.

MU43815PG/02 10-56 12/01/87

NOTE

You are discouraged from using terminfo routines,
except for the purposes noted, because curses
routines take care of all the glitches present in
physical terminals. When you use the terminfo
routines, you must deal with the glitches yourself.
Also, these routines may change and be
incompatible with previous releases.

What Every terminfo Program Needs

curses/terminfo

A terminfo program typically includes the header files and routines shown in
Figure 10-8.

#inc1ude <curaea.h>
#inc1ude <term.h>

aetupterm((char•)O. 1. (int•)O);

putp(c1ear_acreen);

reaet_ahe11.Jllode();
e:x:i t (0) ;

Figure 10·8. Typical Framework of a terminfo Program

The header files <curses.h> and <term.h> are required because they contain
the definitions of the strings, numbers, and flags used by the terminfo routines.
setupterm{) takes care of initialization. Passing this routine the values (char•)O,
1, and (int•)O invokes reasonable defaults. If setupterm{) can't determine the
kind of terminal you are on, it prints an error message and exits.
reset_shell_mode{) performs functions similar to endwin() and should be called
before a terminfo program exits.

A global variable like clear_screen is defined by the call to setupterm{). It can be
output using the terminfo routines putp{) or tputs(), which gives a user more
control. This string should not be directly output to the terminal using the C
library routine printf(3S), because it contains padding information. A program

MU43815PG/D2 10-57 12/01/87

II

curses/terminfo

that directly outputs strings will fail on terminals that require padding or that use
the xon/xoff flow control protocol.

At the termlnfo level, the higher level routines like addchO and getchO are not
available. It is up to you to output whatever is needed. For a list of capabilities
and a description of what they do, see terminfo(4); see curses(3X) for a list of all
the termlnfo routines.

Compiling and Running a terminfo Program
The general command line for compiling and the guidelines for running a
program with terminfo routines are the same as those for compiling any other
curses prograll\. See the sections "Compiling a curses Program" and ''Running a
curses Program" in this chapter for more information.

An Example terminfo Program
The example program termhl shows a simple use of termlnfo routines. It is a
version of the highlight program (see "curses Program Examples'1 that does not
use the higher level curses routines. termhl can be used as a filter. It includes
the strings to enter bold and underline mode and to tum off all attributes.

I•
• A terminfo 1eve1 ver•ion of th• high1ight program.
•I

#inc1ud• <cur•••.h>
#inc1ud• <term.h>

int u1mod• = O;

main(argc, argv)
int argc;

<
char ••argv;

FILE •fd;
int c, c2;
int outch ();

if Cargc > 2)
<

/• Current17 under1ining •/

fprintf(•tderr, •U•age: termh1 [fi1•]\n•);
e:ii:it(1);

>

MU43815PG/D2 10-58 12/01/87

}

if (argc == 2)
<

}

fd = fopen(argv[1], •r•);
if (f d == NULL)

<

}

perror(argv[1]);
exit(2);

•l••
<

fd = •tdin;
}
••tupterm((char•)O, 1, (int•)O);

for (;;)

<

}

c = getc(fd);
if (c == EDF)
break;
if (c •• •\ •)

<

}

c2 = getc(fd);
•witch (c2)

<

}

ca•• ·e·:
tput•(•nter_bold..JDode, 1, outch);
continue;
ca•• ·u·:
tput•(•nter_underlin•..JDode, 1, outch);
ulmode = 1;
continue;
ca•• "N":
tput•(•xit_attribute..JDode, 1, outch);
ulmode = O;
continue;

putch(c);
putch(c2);

•l••
putch(c);

fclo••(fd);
ffluah(atdout);
r•••ttermO;
exit(O);

MU43815PG/D2 10-59

curses/terminfo

12/01/87

II

curses/terminfo

I•
"' Thi• function i• like putchar, but it check• for underlining.
•I

putch (c)

{

}

int c;

outch(c);
if (ulmode aa underline_char)
{

outch (•\b •) ;
tput•(underline_char, 1, outch);

}

I•
"' Outchar i• a function ver•ion of putchar that can be pa••ed to
• tput• a• a routine to call.
•I

outch(c)

{

}

int c;

putchar(c);

A discussion of the use of the function tputs(cap, affcnt, outc) in this program will
provide some insight into the terminfo routines. tputs() applies padding
information. Some terminals have the capability to delay output. Their terminal
descriptions in the term info database probably contain strings like $<20>, which
means to pad for 20 milliseconds (see the following section "Specify Capabilities"
in this chapter). tputs generates enough pad characters to delay for the
appropriate time.

tput() has three parameters. The first parameter is the string capability to be
output. The second is the number of lines affected by the capability. (Some
capabilities may require padding that depends on the number of lines affected.
For example, inserUine may have to copy all lines below the current line, and
may require time proportional to the number of lines copied. By convention affcnt
is 1 if no lines are affected. The value 1 is used, rather than 0, for safety, since
affcnt is multiplied by the amount of time per item, and anything multiplied by 0
is 0.) The third parameter is a routine to be called with each character.

For many simple programs, affcnt is always 1 and outc always calls putchar. For
these programs, the routine putp(cap) is a convenient abbreviation. termhl could
be simplified by using putp().

MU43815PG/D2 10-60 12/01/87

curses/terminfo

Now to understand why you should use the curses level routines instead of
termlnfo level routines whenever possible, note the special check for the
underline_char capability in this sample program. Some terminals, rather than
having a code to start underlining and a code to stop underlining, have a code to
underline the current character. termhl keeps track of the current mode, and if
the current character is supposed to be underlined, outputs underline_char, if
necessary. Low-level details such as this are precisely why the curses level is
recommended over the terminfo level. curses takes care of terminals with
different methods of underlining and other terminal functions. Programs at the
terminfo level must handle such details themselves.

termhl was written to illustrate a typical use of the terminfo routines. It is more
complex than it need be in order to illustrate some properties of terminfo
programs. The routine vidattr {see curses{3X)) could have been used instead of
directly outputting enter_bold_mode, enter_underline_mode, and
exit_attribute_mode. In fact, the program would be more robust if it did, since
there are several ways to change video attribute modes.

Working with the terminfo Database
The terminfo database describes the many terminals with which curses
programs, as well as some operating system tools, like vl{l), can be used. F.ach
terminal description is a compiled file containing the names that the terminal is
known by and a group of comma-separated fields describing the actions and
capabilities of the terminal. This section describes the terminfo database, related
support tools, and their relationship to the curses library.

Writing Terminal Descriptions

Descriptions of many popular terminals are already included in the terminfo
database. However, it is possible that you'll want to run a curses program on a
terminal for which there is not currently a description. In that case, you'll have to
build the description.

The general procedure for building a terminal description is as follows:

1. Give the known names of the terminal.

2. Learn about, list, and define the known capabilities.

3. Compile the newly-created description entry.

4. Test the entry for correct operation.

5. Go back to step 2, add more capabilities, and repeat, as necessary.

MU43815PG/D2 10-61 12/01/87

II

II

curses/terminfo

Building a terminal description is sometimes easier when you build small parts of
the description and test them as you go along. These tests can expose
deficiencies in the ability to describe the terminal. Also, modifying an existing
description of a similar terminal can make the building task easier.

In the next few pages, we follow each step required to build a terminal
description for the fictitious terminal named "myterm."

Name the Terminal

The name of a terminal is the first information given in a terminfo terminal
description. This string of names, assuming there is more than one name, is
separated by pipe symbols (I). The first name given should be the most common
abbreviation for the terminal. The last name given should be a long name that
fully identifies the terminal. The long name is usually the manufacturer's formal
name for the terminal. All names between the first and last entries should be
known synonyms for the terminal name. All names but the formal name should
be typed in lowercase letters and contain no blanks. Naturally, the formal name
is entered as closely as possible to the manufacturer's name.

Here is the name string from the description of the AT&T Teletype 5420 Buffered
Display Terminal:

6420latt6420IATAT Teletype 6420,

Notice that the first name is the most commonly used abbreviation and the last is
the long name. Also notice the comma at the end of the name string.

Here's the name string for our fictitious terminal, myterm:

mytermlmytmlminelfancylterminallMy FANCY Terminal,

Terminal names should follow common naming conventions. These conventions
start with a root name, like 5425 or myterm, for example. The root name should
not contain odd characters, like hyphens, that may not be recognized as a
synonym for the terminal name. Possible hardware modes or user preferences
should be shown by adding a hyphen and a 'mode indicator' at the end of the
name. For example, the 'wide mode' (which is shown by a -w) version of our
fictitious terminal would be described as myterm-w. term{5) describes mode
indicators in greater detail.

MU43815PG/D2 10-62 12/01/87

curses/terminfo

Learn About the Capabilities

After you complete the string of terminal names for your description, you have to
learn about the terminal's capabilities so that you can properly describe them. To
learn about the capabilities your terminal has, you should do the following:

•See the owner's manual for your terminal. It should have information about
the capabilities available and the character strings that make up the sequence
transmitted from the keyboard for each capability.

• Test the keys on your terminal to see what they transmit, if this information is
not available in the manual. You can test the keys in one of the following
ways-type:

or:

stty -echo; cat -vu
Type in the keys you want to test;
for example, see what right arrow(....) transmits.
<CR>
<CTRL-D>
atty echo

cat >dev/null
Type in the escape sequences you want to test;
for example, see what \E [H transmits.
<CTRL·D>

• The first line in each of these testing methods sets up the terminal to carry out
the tests. The <CTRL-D> helps return the terminal to its normal settings.

• See the terminfo(4) manual page. It lists all the capability names you have to
use in a terminal description. The following section, ''Specify Capabilities,"
gives details.

Specify Capabilities

Once you know the capabilities of your terminal, you have to describe them in
your terminal description. You describe them with a string of comma-separated
fields that contain the abbreviated termlnfo name and, in some cases, the
terminal's value for each capability. For example, bel is the abbreviated name for
the beeping or ringing capability. On most terminals, a CTRL-G is the instruction
that produces a beeping sound. Therefore, the beeping capability would be
shown in the terminal description as bel="G,.

MU43815PG/D2 lC>-63 12101/87

II

II

curses/terminfo

The list of capabilities may continue onto multiple lines as long as white space
(that is, tabs and spaces) begins every line but the first of the description.
Comments can be included in the description by putting a # at the beginning of
the line.

The termlnfo(4) manual page has a complete list of the capabilities you can use in
a terminal description. This list contains the name of the capability, the
abbreviated name used in the database, the two-letter code that corresponds to
the old termcap database name, and a short description of the capability. The
abbreviated name that you will use in your database descriptions is shown in the
column titled "Capname."

NOTE

For a curses program to run on any given
terminal, its description in the terminfo database
must include, at least, the capabilities to move a
cursor in all four directions and to clear the screen.

A terminal's character sequence (value) for a capability can be a keyed operation
(like CTRL-G), a numeric value, or a parameter string containing the sequence of
operations required to achieve the particular capability. In a terminal description,
certain characters are used after the capability name to show what type of
character sequence is required. Explanations of these characters follow:

This shows a numeric value is to follow. This character follows a capability
that needs a number as a value. For example, the number of columns is
defined as cols#SO,.

= This shows that the capability value is the character string that follows. This
string instructs the terminal how to act and may actually be a sequence of
commands. There are certain characters used in the instruction strings that
have special meanings. These special characters follow:

This shows a control character is to be used. For example, the
beeping sound is produced by a CTRL-G. This would be shown as
AG.

\E or \e These characters followed by another character show an escape
instruction. An entry of \EC would transmit to the terminal as
ESCAPE-C.

\n These characters provide a <NL> character sequence.

\1 These characters provide a linefeed character sequence.

MU43815PG/D2 10-64 12/01/87

\r

\t

\b

\f

\s

\nnn

$< >

curses/terminfo

These characters provide a return character sequence.

These characters provide a tab character sequence.

These characters provide a backspace character sequence.

These characters provide a formfeed character sequence.

These characters provide a space character sequence.

This is a character whose three-digit octal is nnn, where nnn can
be one to three digits.

These symbols are used to show a delay in\ milliseconds. The
desired length of delay is enclosed inside the '1ess than/greater
than" symbols (< >). The amount of delay may be a whole
number, a numeric value to one decimal place (tenths), or either
form followed by an asterisk (*). The* shows that the delay will
be proportional to the number of lines affected by the operation.
For example, a 20-millisecond delay per line would appear as
$<20*>. See the terminfo(4) manual page for more information
about delays and padding.

Sometimes, it may be necessary to comment out a capability so that the terminal
ignores this particular field. This is done by placing a period (.) in front of the
abbreviated name for the capability. For example, if you would like to comment
out the beeping capability, the description entry would appear as:

.bal=AQ,

With this background information about specifying capabilities, let's add the
capability string to our description of myterm. We'll consider basic, screen
oriented, keyboard-entered, and parameter string capabilities.

Basic Capabilities

Some capabilities common to most terminals are bells, columns, lines on the
screen, and overstriking of characters, if necessary. Suppose our fictitious
terminal has these and a few other capabilities, as listed below. Note that the list
gives the abbreviated tarmlnfo name for each capability in the parentheses
following the capability description:

• An automatic wrap around to the beginning of the next line whenever the
cursor reaches the right-hand margin (am).

• The ability to produce a beeping sound. The instruction required to produce
the beeping sound is AG (bel).

MU43815PG/D2 lo-65 12/01/87

II

curses/terminfo

• An 80-column wide screen (cols).

• A 30-line long screen (lines).

• Use of xon/xoff protocol (xon).

By combining the name string (see the section 'Name the Terminal') and the
capability descriptions that we now have, we get the following general terminfo
database entry:

mytermlmytmlminelfancylterminallMy FANCY terminal,
am, bel=·a. cola#80, linea#30, xon,

Screen-Oriented Capabilities

Screen-oriented capabilities manipulate the contents of a screen. Our example
terminal myterm has the following screen-oriented capabilities. Again, the
abbreviated command associated with the given capability is shown in
parentheses.

• A <CR> is a CTRL-M (er).

• A cursor up one line motion is a CTRL-K (cuu1).

• A cursor down one line motion is a CTRL-J (cud1).

• Moving the cursor to the left one space is a CTRL-H (cub1).

• Moving the cursor to the right one space is a CTRL-L (cuf1).

• Entering reverse video mode is an ESCAPE-D (smso).

• Exiting reverse video mode is an ESCAPE-Z (rmso).

• A clear to the end of a line sequence is an ESCAPE-Kand should have a 3-
millisecond delay (el).

• A terminal scrolls when receiving a <NL> at the bottom of a page (ind).

The revised terminal description for myterm including these screen-oriented
capabilities follows:

mytermlmytmlminelfancylterminallMy FANCY Terminal,
am, bel=·a, cola#80, linea#30, xon,
cr=·M, cuu1=·K, cud1=·J, cub1=·H. cuf1=·L.
amao=\ED, rmao=\EZ, el=\EK$<3>, ind=\n,

MU43815PG/D2 10-66 12/01/87

curses/terminfo

Keyboard-Entered Capabilities

Keyboard-entered capabilities are sequences generated when a key is typed on a
terminal keyboard. Most terminals have, at least, a few special keys on their
keyboard, such as arrow keys and the backspace key. Our example terminal has
several of these keys whose sequences are, as follows:

•The backspace key generates a CTRL-H (kbs).

• The up arrow key generates an ESCAPE-[A (kcuu1).

•The down arrow key generates an ESCAPE-[B (kcud1).

•The right arrow key generates an ESCAPE-[C (kcuf1).

• The left arrow key generates an ESCAPE-[D (kcub1).

•The home key generates an ESCAPE-[H (khome).

Adding this new information to our database entry for myterm produces:

mytermlmytmlminelfancylterminalfMy FANCY Terminal,
am, bel=·c, cols#80, lines#30, xon,
cr=·M, cuu1=·K, cud1=•J, cub1=·H, cuf1=·L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs=·H, kcuu1=\E[A, kcud1=\E[B, kcuf1=\E[C,
kcub1=\E[D, khome=\E[H,

Parameter String Capabilities

Parameter string capabilities are capabilities that can take parameters - for
example, those used to position a cursor on a screen or tum on a combination of
video modes. To address a cursor, the cup capability is used and is passed two
parameters: the row and column to address. String capabilities, such as cup and
set attributes (sgr) capabilities, are passed arguments in a terminfo program by
the tparm() routine.

The arguments to string capabilities are manipulated with special '%' sequences
similar to those found in a printf(3S) statement. In addition, many of the features
found on a simple stack-based RPN calculator are available. cup, as noted above,
takes two arguments: the row and column. sgr, takes nine arguments, one for
each of the nine video attributes. See terminfo(4) for the list and order of the
attributes and further examples of sgr.

Our fancy terminal's cursor position sequence requires a row and column to be
output as numbers separated by a semicolon, preceded by ESCAPE-[and followed

MU43815PG/D2 10-67 12/01/87

II

curses/terminfo

with H. The coordinate numbers are 1-based rather than 0-based. Thus, to move
to row 5, column 18, from (0,0), the sequence 'ESCAPE-[6; 19 H' would be
output.

Integer arguments are pushed onto the stack with a '%p' sequence followed by
the argument number, such as '%p2' to push the second argument. A shorthand
sequence to increment the first two arguments is '%i'. To output the top number
on the stack as a decimal, a '%d' sequence is used, exactly as in printf. Our
terminal's cup sequence is built up as follows:

cup=\E[lilp1ld;lp2ldH.

The elements of the sequence have the meanings listed below:

Cl!P_= Meanin_g_
\E[output ESCAPE-[
%i increment the two arguments

%pl push the first argument (the row) onto the stack
%d output the row as a decimal

i output a semicolon
%p2 push the second argument (the column) onto the stack
%d output the column as a decimal
H ou_!£._ut the trailin_g_ letter

Adding this new information to our database entry for myterm produces:

my~ermlmyt.mlminelfancyl~erminallMy FANCY Terminal.
am. bel=·a. cola#BO, linea#30. xon.
cr=·M, cuu1=·K, cud1=•J, cub1=·H, cuf1=·L,
amso=\ED. rmao=\EZ, el=\EK$<3>. ind=O
kba=·H, kcuu1=\E[A, kcud1=\E[B. kcuf1=\E[C,
kcub1=\E[D, khome=\E[H,
cup=\E[lilp1ld;lp2ldH,

See terminfo(4) for more information about parameter string capabilities.

Compile the Description

The terminfo database entries are compiled using the tic compiler. This compiler
translates terminfo database entries from the source format into the compiled
format.

MU43815PG/D2 10-68 12/01/87

curses/terminfo

The source file for the description is usually in a file suffixed with .ti. For
example, the description of myterm would be in a source file named myterm.tl.
The compiled description of myterm would usually be placed in
/usrnib/termlnfo/m/myterm, since the first letter in the description entry is m.
Links would also be made to synonyms of myterm, for example, to If/fancy. If
the environment variable $TERMINFO were set to a directory and exported before
the entry was compiled, the compiled entry would be placed in the $TERMINFO
directory. All programs using the entry would then look in the new directory for
the description file if $TERMINFO were set, before looking in the default
/usr/llb/termlnfo. The general format for the tic compiler is as follows:

tic [-v] [-c] file

The -v option causes the compiler to trace its actions and output information
about its progress. The -c option causes a check for errors; it may be combined
with the -v option. file shows what file is to be compiled. If you want to compile
more than one file at the same time, you have to first use cat(l) to join them
together. The following command line shows how to compile the terminfo source
file for our fictitious terminal:

tic -v myterm.tl<CR>
('The trace information appears as the compilation
proceeds.)

Refer to the tlc(lM) manual page in the System Administrator's Reference Manual for
more information about the compiler.

Test the Description

Let's consider three ways to test a terminal description. First, you can test it by II
setting the environment variable $TERMINFO to the path name of the directory
containing the description. If programs run the same on the new terminal as they
did on the older known terminals, then the new description is functional.

Second, you can test for correct insert line padding by commenting out xon in the
description and then editing {using vl{l)) a large file {over 100 lines) at 9600 baud
{if possible), and deleting about 15 lines from the middle of the screen. Type u
{undo) several times quickly. If the terminal messes up, then more padding is
usually required. A similar test can be used for inserting a character.

Third, you can use the tput{l) command. This command outputs a string or an
integer according to the type of capability being described. If the capability is a
Boolean expression, then tput sets the exit code {O for TRUE, 1 for FAISE) and

MU43815PG/D2 10-69 12/01/87

II

curses/terminfo

produces no output. The general format for the tput command is as follows:

tput [-Ttype] capname

The type of terminal you are requesting information about is identified with the
-Ttype option. Usually, this option is not necessary because the default terminal
name is taken from the environment variable $TERM. The capname field is used
to show what capability to output from the termlnfo database.

The following command line shows how to output the "clear screen" character
sequence for the terminal being used.

tput clear
(The screen is cleared.)

The following command line shows how to output the number of columns for the
terminal being used:

tput cola
(The number of columns used by the terminal appears here.)

The tput(l) manual page found in the User's &ference Manual contains more
information on the usage and possible messages associated with this command.

Comparing or Printing termlnfo Descriptions

Sometime you may want to compare two terminal descriptions or quickly look at
a description without going to the termlnfo source directory. The infocmp(lM)
command was designed to help you with both of these tasks. For example:

mkdlr /tmp/old /tmp/new
TERMINFO=/tmp/old tic old5420.ti
TERMINFO=/tmp/new tic new5420.ti
lnfocmp -A /tmp/old -B /tmp/new -cl 5420 5420

compares the old and new 5420 entries.

To print out the terminfo source for the 5420, type:

lnfocmp -I 5420

MU43815PG/D2 10-70 12/01/87

curses/terminfo

Converting a termcap Description to a terminfo Description

CAUTION

The terminfo database is designed to take the
place of the termcap database. Because of the
many programs and processes that have been
written with and for the termcap database, it is
not feasible to do a complete cutover at one time.
Any conversion from termcap to terminfo requires
some experience with both databases. All entries
into the databases should be handled with extreme
caution. These files are important to the operation
of your terminal.

The captoinfo{lM) command converts termcap(4) descriptions to terminfo(4)
descriptions. When a file is passed to captoinfo, it looks for termcap descriptions
and writes the equivalent terminfo descriptions on the standard output. For
example, the command line:

captoinfo /etc/termcap

converts the file /etc/termcap to terminfo source, preserving comments and other
extraneous information within the file. The command line:

captoinfo

looks up the current terminal in the termcap database, as specified by the $TERM
and $TERMCAP environment variables and converts it to term info.

If you must have both termcap and termlnfo terminal descriptions, keep the
terminfo description only and use infocmp-C to get the termcap descriptions.

If you have been using cursor optimization programs with the -!termcap or
-ltermlib option in the cc command line, those programs will still be functional.
However, these options should be replaced with the -lcurses option.

MU43815PG/D2 10-71 12/01/87

II

II

curses/terminfo

curses Program Examples
The following examples demonstrate uses of curses routines.

The editor Program
This program illustrates how to use curses routines to write a screen editor. For
simplicity, editor keeps the buffer in stdscr; obviously, a real screen editor would
have a separate data structure for the buffer. This program has many other
simplifications: no provision is made for files of any length other than the size of
the screen, for lines longer than the width of the screen, or for control characters
in the file.

Several points about this program are worth making. First, it uses the moveQ,
mvaddstrQ, flashO, wnoutrefresh() and clrtoeolO routines. These routines are all
discussed in this chapter under 'Working with curses Routines."

Second, it also uses some curses routines that we have not discussed. For
example, the function to write out a file uses the mvinch() routine, which returns
a character in a window at a given position. The data structure used to write out
a file does not keep track of the number of characters in a line or the number of
lines in the file, so trailing blanks are eliminated when the file is written. The
program also uses the lnsch(), delch(), lnsertln(), and deleteln() routines. These
functions insert and delete a character or line. See curses(3X) for more
information about these routines.

Third, the editor command interpreter accepts spedal keys, as well as ASOI
characters. On one hand, new users find an editor that handles special keys
easier to leam about. For example, it's easier for new users to use the arrow keys
to move a cursor than it is to memorize that the letter h means left, j means
down, k means up, and 1 means right. On the other hand, experienced users
usually like having the ASOI characters to avoid moving their hands from the
home row position to use spedal keys.

NOTE

Because not all terminals have arrow keys, your
curses programs will work on more terminals if
there is an ASCII character associated with each
spedal key.

Fourth, the CI'RL-L command illustrates a feature most programs using curses
routines should have. Often some program beyond the control of the routines
writes something to the screen (for instance, a broadcast message) or some line

MU43815PG/D2 10-72 12/01/87

curses/terminfo

noise affects the screen so much that the routines cannot keep track of it. A user
invoking editor can type CTRL-L, causing the screen to be cleared and redrawn
with a call to wrefresh(curscr).

Finally, another important point is that the input command is terminated by
CTRL-D, not the escape key. It is tempting to use escape as a command, since
escape is one of the few special keys available on every keyboard. (Return and
break are the only others.) However, using escape as a separate key introduces
an ambiguity. Most terminals use sequences of characters beginning with escape
(i.e., escape sequences) to control the terminal and have special keys that send
escape sequences to the computer. If a computer receives an escape from a
terminal, it cannot tell whether the user depressed the escape key or whether a
special key was pressed.

editor and other curses programs handle the ambiguity by setting a timer. If
another character is received during this time, and if that character might be the
beginning of a special key, the program reads more input until either a full special
key is read, the time out is reached, or a character is received that could not have
been generated by a special key. While this strategy works most of the time, it is
not foolproof. It is possible for the user to press escape, then to type another key
quickly, which causes the curses program to think a special key has been
pressed. Also, a pause occurs until the escape can be passed to the user program,
resulting in a slower response to the escape key.

Many existing programs use escape as a fundamental command, which cannot be
changed without infuriating a large class of users. These programs cannot make
use of special keys without dealing with this ambiguity, and at best must resort to
a ti~e-out solution. The moral is clear: when designing your curses programs,
avoid the escape key.

/• editor: A •creen-oriented editor. The u••r
* interface i• •imilar to a •ub•et of Ti.
* Th• buffer i• kept in •td•cr to •implif7
• th• progr-.
•I

#include <•tdio.h>
#include <cur•••.h>

#define CTRL(c) ((c) a 037)

main(argc, argT)
int argc;
char ••argT;
{

extern Toid perror(), exit();
int i, n, l;

MU43815PG/D2 10-73 12/01/87

II

II

curses/terminfo

}

int. c;
int. line = O;
FILE •fd;

if (argc I= 2)
{

fprint.f(•tderr, •U•age: I• file\n•, argv[O]);
exit. (1) ;

}

fd = fopen(argv[1], •r•);
if (f d == NULL)
{

}

perror(argv[1]);
exit. (2);

init•cr();
cbrealc();
nonlO;
noecho();
idlolc(•t.d•cr, TRUE);
Jce7pad(•t.d•cr, TRUE);
I• Read in the f il• •/
while ((c = get.c(fd)) I= EOF)
{

}

if Cc == •\n •)
line++;

if (line > LINES - 2)
break;

addch(c);

fcloH (fd);

move(O,O);
refr••hO;
edit.();

I• Writ.• out. t.h• file •/
fd = fopen(argv[1], •w•);
for (l = O; l < LINES - 1; l++)
{

}

n = len (l) ;
for Ci = O; i < n; i++)

put.c(mvinch(l, i) a A_CHARTEXT, fd);
put.c C •\n •, fd) ;

fclo••(fd);

end win() ;
exit(O);

MU43815PG/D2 10-74 12/01/87

len(lineno)
int lineno;
{

}

int linelen = COLS - 1;

while (linelen >= 0 AA mvinch(lineno, linelen)
linelen--;

return linelen + 1;

I• Global value of current cur•or po•ition •/
int row, col;

editO
{

int c;

for (;;)
{

move(row, col);
refr••hO;
c = getch();

I• Editor command• •/
•witch (c)
{

I• hjkl and arrow k•7•: move cur•or
• in direction indicated •/

ca•• •h •:
ca•• KEYJ,.EFT:

if (col > 0)
col--;

•l••
fla.h();

break;

ca•• • j • :
ca•• KEYJ>OW!f:

if (row < LINES - 1)
row++;

•l••
fla•hO;

break;

ca•• .k.:
ca•e KEY_UP:

if (row > 0)
row--;

•l••
fla.h();

break;

MU43815PG/D2 10-75

curses/terminfo

. .)

II

12/01/87

curses/terminfo

II

}
}

MU43815PG/D2

ca•• ·1 ·:
caee KEYJlIGHT:

if (col < COLS - 1)
col++;

•l••
flaeh();

break;
I• i: enter input mode •/
ca•• KEY_IC:
ca•• •i •:

input();
break;

I• x: delete current character •/
ca•• KEYJ)C:
ca•• ·x·:

delch();
break;

I• o: open up a new line and enter input mode •/
ca•• KEY_IL:
ca•• "o":

move(++row, col= O);
in••rtln();
input();
break;

I• d: delete current line •/
caee KEYJ)L:
ca•• •d •:

d•l•t•ln () ;
break;

/• AL: redraw •creen •/
caee KEY_CLEAR:
caee CTRL (•L •) :

wrefreeh(cur•cr);
break;

I• w: write and quit •/
ca•• ·w·:

return;
/• q: quit without writing •/
ca•• •q•:

endwin();
exit(2);

default:

}

flaeh();
break;

10-76 12/01/87

I•
* Insert mode: accept characters and insert them.
• End with -o or EIC
•I

input()
{

}

int c;

standout();
mvaddstr(LINES - 1, COLS - 20, •INPUT MOOE•);
standendO;
move(row, col);
refresh();
for(;;)
{

}

c = getch();
if Cc == CTRL(•o•) I I c == KEY_EIC)

break;
insch(c);
move(row, ++col);
refresh();

move(LINES - 1, COLS - 20);
clrtoeol () ;
move(row, col);
refresh();

The highlight Program

curses/terminfo

This program illustrates a use of the routine attrset(). highlight reads a text file
and uses embedded escape sequences to control attributes. \U turns on
underlining, \B turns on bold, and \N restores the default output attributes.

Note the first call to scrollok{), a routine that we have not previously discussed
(see curses(3X)). This routine allows the terminal to scroll if the file is longer
than one screen. When an attempt is made to draw past the bottom of the
screen, scrollok() automatically scrolls the terminal up a line and calls refresh().

MU43815PG/D2 10-77 12101/87

II

II

curses/terminfo

I•
• highlight: a program to turn \U, \B, and
* \N ••quanc•• into highlighted
* output, allowing word• to be
* di•pla7ed underlined or in bold.
•I

#include <•tdio.h>
#include <cur•••.h>

main(argc, argv)
int argc;
char ••argv;
{

FILE •fd;
int c, c2;
void exit(), parror();

if (argc I= 2)
{

>

fprintf(•tdarr, •U•aga: highlight fila\n•);
axit(1);

if (fd == NULL)
{

>

perror(argv[1]);
axit(2);

init•cr();
•crollok(•td•cr, TRUE);
nonl();
while ((c = getc(fd)) != EOF)
{

if (c == •\ \ •)
{

c2 = getc(fd);
•witch (c2)
{

ca•• ·e·:
attr•at(A_BOLD);
continue;

ca•• ·u·:
attr•et(A_UNDERLINE);
continue;

ca•• •ff•:
attrHt(O);
continua;

>

MU43815PG/D2 10-78 12/01/87

curses/tenninfo

}

}

•l••
}
fcloH (fd);
refreahO;
endwin () ;
exit. (0) ;

The scatter Program

addch(c);
addch(c2);

addch(c);

This program takes the first LINES - 1 lines of characters from the standard input
and displays the characters on a terminal screen in a random order. For this
program to work properly, the input file should not contain tabs or non-printing
characters.

* Th• acat.t.•r program.

#include
#include

<curaea.h>
<•y•/t.ypea.h>

ext.ern t.ime_t. t.ime();

#define lilAXLINES 120
#define llAXCOLS 180
char •[MAXLINES] [llAXCOLS]; /*Screen Array•/
int. T[MAXLINES] [MAXCOLS]; /*Tag Array - Keepa t.rack of *

main()
{

* t.he number of charact.era *
* print.ed and t.heir poait.ion•. •/

regi•t.•r int. row= 0,col = O;
regi•t.•r int. c;
int. char_count. = O;
t.ime_t. t.;
Toid exit.(), •rand();

ini t.• er() ;
for(row = O;row < MAXLINES;row++)

for(col = O;col < llAXCOLS;col++)
• [row] [col]=• •;

MU43815PG/D2 10-79 12/01/87

II

II

curses/terminfo

}

col = row = O;
I• Read •creen in •/
while ((c=getchar()) != EOF aa row < LINES) {

}

if Cc I= •\n •)
{

}

•l••
{

}

I• Place char in •creen array •/
•[row] [col++] = c;
if(c I= • •)

char_count++;

col = O;
row++;

time(&t); /•Seed th• random number generator•/
•rand((un•igned)t);

while (char_count)
{

}

row = rand() I LINES;
col = (rand() >> 2) I COLS;
if (T[row] [col] != 1 aa •[row] [col] I= • •)
{

}

move(row, col);
addch(•[row][col]);
T [row] [col] = 1;
char_count--;
refr••h();

endwin();
exit(O);

MU43815PG/D2 10-80 12101187

curses/terminfo

The show Program
show pages through a file, showing one screen of its contents each time you
depress the space bar. The program calls cbreakO so that you can depress the
space bar without having to hit return; it calls noechoO to prevent the space from
echoing on the screen. The nonlO routine, which we have not previously
discussed, is called to enable more cursor optimization. The idlokO routine,
which we also have not discussed, is called to allow insert and delete line. (See
curses(3X) for more information about these routines). Also notice that clrtoeol()
and clrtobotO are called. ·

By creating an input file for show made up of screen-sized (about 24 lines) pages,
each varying slightly from the previous page, nearly any exercise for a curses()
program can be created. This type of input file is called a show script.

#include <cur•e•.h>
#include <•ignal.h>

main (argc, argv)
int argc;
char •argv [] ;
<

FILE •td;
char linebut[BUFSIZ];
int line;
void done(), perror(), exit();

it (argc I• 2)
<

tprintt(•tderr, •u•age: I• tile\n•, argv[O]);
exit(1);

}

it ((td=topen(argv[1], •r•)) ==NULL)
<

}

perror(argv[1]);
exit(2);

•ignal(SIGINT, done);

init•cr();
noecho();
cbreall:();
nonl();
idloll:(•td•cr, TRUE);

while (1)

<

MU43815PG/D2 10-81 12/01/87

II

II

curses/terminfo

}
}

moYe(O,O);
for (line = O; line < LINES; line++)
{

}

if (!fget•(linebuf, •izeof linebuf, fd))
{

}

clrtobot () ;
done();

moye(line, 0);
printw(•I••, linebuf);

refr••hO:
if (getch() == •q•)

don•();

Yo id done()
{

}

moye(LINES - 1, O);
clrtoeol () ;
refre•hO;
endwin();
exit(O);

The two Program
This program pages through a file, writing one page to the terminal from which
the program is invoked and the next page to the terminal named on the command
line. It then waits for a space to be typed on either terminal and writes the next
page to the terminal at which the space is typed.

two is just a simple example of a two-terminal curses program. It does not
handle notification; instead, it requires the name and type of the second terminal
on the command line. As written, the command "sleep 100000" must be typed at
the second terminal to put it to sleep while the program runs, and the user of the
first terminal must have both read and write permission on the second terminal.

#include <cur•••.h>
#include <•ignal.h>

SCREEN •me, •you;
SCREEN *••t_term();

FILE •fd, •fdyou;
char linebuf[612];

MU43815PG/D2 10-82 12/01/87

main.(argc, argv)
int argc;
char ••argv;
{

void done(), exit();
un.•ign.ed •l••p();
char •geten.v();
int c;

if (argc I= 4)
{

curses/terminfo

fprin.tf(•tderr, •U•age: two othertt7 othertt7t7p• in.putfile\n.•);

(d = '~i:~t'~gT[3), •r•);
fd7ou = fopen.(argv[1], •w+•);
•ign.al(SIGINT, done);/• di• gracefull7 •/

m• = n.ewterm(geten.v(•TERU•), •tdout, •tdin.); /• initialize m7 tt7 •/
7ou • n.ewterm(argv[2], fd7ou, fd7ou);/• Initialize the other terminal•/

••t_term(me); /•
n.oecho(); /•

Set mod•• for m7 terminal •/
turn. off tt7 echo •/

cbreak(); /• enter cbreak mode •/
D.OD.l () ;
n.odela7(•td•cr,

I• Allow lin.•f ••d •/
TRUE);/• No hang OD. in.put•/

••t_term(7ou); /•Set mod•• for other terminal•/
n.oecho();
cbreak();
D.OD.l () ;
n.odela7(•td•cr,TRUE);

I• Dump fir•t •cr••D. full on. m7 terminal •/
dump_page(me);

I• Dump ••con.d •creen. full on. the other terminal •/
dump_page(7ou);

for (; ;)
{

I• for each •creen. full •/

••t_term(me);
c = getch();
if Cc == •q•) /• wait for u••r to read it •/
don.•();
if Cc == • •)
dump_page(me);

••t_t.erm(7ou);
c = getch();
if Cc == •q•) /• wait. for u••r t.o read it •/
don.•();
if Cc == • ·>
dump_page(7ou);

MU43815PG/D2 10-83

II

12/01/87

II

curses/terminfo

•lHp(1);
}

}

dump_page(term)
SCREEN •term;

{

}

I•

111.t li11.e;

••t_term(term);
moTe(O, O);
for (li11.• = O; li11.e < LINES - 1; li11.e++) {

}

if (fget•(li11.ebuf, •iaeof li11.ebuf, fd) == NULL) {
clrtobot () ;
do11.e () ;
}
mTadd•tr(li11.e, 0, li11.ebuf);

•ta11.dout () ;
mTpri11.tw(LINES - 1, 0, •--Kore--•);
•ta11.de11.d () ;
refr••b(); /• •711.c •cr••11. •/

• Clea11. up a11.d exit.
•I

TOid do11.e ()
{

}

I• Clea11. up fir•t termi11.al •/
••t_term(7ou);
moTe(LINES - 1,0); /•to lower left cor11.er •/

clrtoeol () ;
refr••bO;
e11.dwi11. () ;

I• clear bottom li11.• •/
I• flu•b out •T•r7tbi11.g •/
I• cur••• clea11.up •/

I• Clea11. up ••co11.d termi11.al •/
••t_term(me);
moTe(LINES - 1,0); /•to lower left cor11.er •/
clrtoeol(); /•clear bottom li11.• •/
refr••b(); /• flu•b out •T•r7tbi11.g •/
e11.dwi11.(); /•cur••• clea11.up •/
exit(O);

MU43815PG/D2 10-84 12/01/87

curses/terminfo

The window Program
This example program demonstrates the use of multiple windows. The main
display is kept in stdscr. When you want to put something other than what is in
stdscr on the physical terminal screen temporarily, a new window is created
covering part of the screen. A call to wrefresh() for that window causes it to be
written over the stdscr image on the terminal screen. Calling refresh() on stdscr
results in the original window being redrawn on the screen. Note the calls to the
touchwin() routine (which we have not discussed - see curses(3X)) that occur
before writing out a window over an existing window on the terminal screen.
This routine prevents screen optimization in a curses program. If you have
trouble refreshing a new window that overlaps an old window, it may be
necessary to call touchwin() for the new window to get it completely written out.

#include <cur•e•.h>

WINDOW •cmdwin;

main()

{

int i, c;
char buf[120];
Toid exit();

init•cr();
nonlO;
noecho ();
cbreall:();

cmdwin = newwin(3, COLS, 0, O);/• top 3 line• •/
for (i = O; i < LINES; i++)

mTprintw(i, 0, •Thi• i• line Id of •td•cr•, i);

for (; ;)

{

refre•hO;
c = getch();
••itch Cc)

{

ca•e •c•: /• Enter command from keyboard •/
wera•e (cmdwin) ;
wprintw(cmdwin, "Enter command:•);
wmoTe(cmdwin, 2, O);
for (i = O; i < COLS; i++)

MU43815PG/D2 10-85 12/01/87

curses/terminfo

}

}

II

MU43815PG/D2

waddch(cmdwin, ·-·);
wmove(cmdwin, 1, O);
touchwin(cmdwin);
wrefreah(cmdwin);
wgetatr(cmdwin, buf);
touchwin(atdacr);

'"' "'The command ia now in buf.
* It should be proceaaed here.

"''
caae •q•:

}

end win();
exit(O);

10-86 12/01/87

