
9. INTERPROCESS COMMUNICATION

Introduction
The operating system supports three types of Inter-Process Communication {IPC):

•messages

• semaphores

• shared memory

This chapter describes the system calls for each type of IPC.

Included in the chapter are several example programs that show the use of the
IPC system calls. All the example programs have been compiled and run.

Since there are many ways in the C Programming Language to accomplish the
same task or requirement, keep in mind that the example programs were written
for clarity and not for program efficiency. Usually, system calls are embedded
within a larger user-written program that makes use of a particular function that
the calls provide.

Messages
The message type of IPC allows processes (executing programs) to communicate
through the exchange of data stored in buffers. This data is transmitted between
processes in discrete portions called messages. Processes using this type of IPC
can perform two operations:

•sending

•receiving

Before a message can be sent or received by a process, a process must have the
operating system generate the necessary software mechanisms to handle these
operations. A process does this by using the msgget(2) system call. While doing
this, the process becomes the owner/creator of the message facility and specifies
the initial operation permissions for all other processes, including itself.
Subsequently, the owner/creator can relinquish ownership or change the
operation permissions using the msgctl(2) system call. However, the creator
remains the creator as long as the facility exists. Other processes with permission
can use msgctlQ to perform various other control functions.

MU43815PG/D2 9-1 12/01/87

II

II

INTERPROCESS COMMUNICATION

Processes that have permission and are attempting to send or receive a message
can suspend execution if they are unsuccessful at performing their operation.
That is, a process attempting to send a message can wait until the process which
is to receive the message is ready and vice versa. A process which specifies that
execution is to be suspended is performing a "blocking message operation." A
process which does not allow its execution to be suspended is performing a
"nonblocking message operation."

A process performing a blocking message operation can be suspended until one of
three conditions occurs:

• It is successful.

• It receives a signal.

• The facility is removed.

System calls make these message capabilities available to processes. The calling
process passes arguments to a system call, and the system call either successfully
·or unsuccessfully performs its function. If the system call is successful, it
performs its function and returns applicable information. Otherwise, a known
error code {-1) is returned to the process, and an external error number variable
errno is set accordingly.

Before a message can be sent or received, a uniquely identified message queue
and data structure must be created. The unique identifier created is called the
message queue identifier {msqid); it is used to identify or reference the associated
message queue and data structure.

The message queue is used to store header information about each message that
is being sent or received. This information includes the following for each
message:

• pointer to the next message on queue

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified message queue.
This data structure contains the following information related to the message
queue:

• operation permissions data (operation permission structure)

• pointer to first message on the queue

MU43815PG/D2 9-2 12/01/87

INTERPROCESS COMMUNICATION

• pointer to last message on the queue

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PIO) of last message sender

• PIO of last message receiver

• last message send time

• last message receive time

• last change time

NOTE

All include files discussed in this chapter are
located in the /usr/include or /usr/include/sys
directories.

The C Programming Language data structure definition for the message
information contained in the message queue is as follows:

•truct m•g
{

};

•truct m•g
long
•hort
•hort

•m•g_next;
m•g_type;
m•g_t•;
msg_spot;

I• ptr to
I• m•••ag•
I• m••sag•
I• mes sag•

next m•••age Oil q •/
type •I
text size •I
text map address •I

It is located in the /usr/include/sys/msg.h header file.

Likewise, the structure definition for the associated data structure is as follows.

MU43815PG/02 9-3 12/01/87

II

II

INTERPROCESS COMMUNICATION

atruct maqid_da
{

atruct ipc_perm mag_perm; I• operation permiaaion atruct •I
atruct mag •mag_firat; I• ptr to firat meaaage on q •/
atruct mag •mag_laat; I• ptr to laat meaaage on q •/
uahort mag_cbytea; I• current # bytea on q •/
uahort mag_qnum; I• # of meaaagea on q •/
uahort mag_qbytea; I• max # of byte a on q •/
uahort mag_lapid; I• pid of laat magand •/
uahort mag_lrpid; I• pid of laat magrcv •I
time_t mag_atime; I• la at mag and time •I
time_t mag__rtime; I• la at magrcv time •I
time_t mag_ctime; I• la at change time •I

};

It is located in the #include <sys/msg.h> header file also. Note that the
msg_perm member of this structure uses ipc_perm as a template. The breakout
for the operation permissions data structure is shown in Figure 9-1.

The definition of the ipc_perm data structure is as follows:

atruct ipc_perm
{

};

uahort uid;
uahort gid;
uahort cuid;
uahort cgid;
uahort mode;
uahort aeq;
key_t key;

I• owner·a user id •/
/• owner·s group id •/
/• creator·• user id •/
/• creator·a group id •/
I• acceas modes •/
I• alot usage aequence number •/
I• key •/

Figure 9-1. ipc_perm Data Structure

It is located in the #include <sys/ipc.h> header file; it is common for all IPC
facilities.

The msgget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the msgflg argument that it receives:

• to get a new msqid and create an associated message queue and data structure
for it

MU4381SPG/D2 9-4 12/01/87

INTERPROCESS COMMUNICATION

• to return an existing msqid that already has an associated message queue and
data structure

The task performed is determined by the value of the key argument passed to the
msgget() system call. For the first task, if the key is not already in use for an
existing msqid, a new msqid is returned with an associated message queue and
data structure created for the key. This occurs provided no system tunable
parameters would be exceeded.

There is also a provision for specifying a key of value zero which is known as the
private key (IPC_PRIV ATE = 0); when specified, a new msqid is always returned
with an associated message queue and data structure created for it unless a
system tunable parameter would be exceeded. When the ipcs command is
performed, for security reasons the KEY field for the msqid is all zeros.

For the second task, if a msqid exists for the key specified, the value of the
existing msqid is returned. If you do not desire to have an existing msqid
returned, a control command (IPC_EXCL) can be specified (set) in the msgflg
argument passed to the system call. The details of using this system call are
discussed in the ''Using msgget" section of this chapter.

When performing the first task, the process that calls msgget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always remains
the creator; see the "Controlling Message Queues" section in this chapter. The
creator of the message queue also determines the initial operation permissions for
it.

Once a uniquely identified message queue and data structure are created,
message operations [msgop()] and message control [msgctl()] can be used.

Message operations, as mentioned previously, consist of sending and receiving
messages. System calls are provided for each of these operations; they are
msgsnd() and msgrcv(). Refer to the "Operations for Messages" section in this
chapter for details of these system calls.

Message control is done by using the msgctl(2) system call. It permits you to
control the message facility in the following ways:

• to determine the associated data structure status for a message queue identifier
(msqid)

• to change operation permissions for a message queue

• to change the size (msg_qbytes) of the message queue for a particular msqid

• to remove a particular msqid from the operating system along with its
associated message queue and data structure

MU43815PG/D2 9-5 12/01/87

II

II

INTERPROCESS COMMUNICATION

Refer to the "Controlling Message Queues" section in this chapter for details of the
msgctl() system call.

Getting Message Queues
This section gives a detailed description of using the msgget(2) system call along
with an example program illustrating its use.

Using msgget

The synopsis found in the msgget(2) entry in the Programmer's Reference Manual is
as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

All these include files are located in the /usr/include/sys directory of the
operating system.

The following line in the synopsis:

int msgget (key, msgflg)

informs you that msgget() is a function with two formal arguments that returns
an integer type value on successful completion (msqid). The next two lines
declare the types of the formal arguments. key_t is declared by a typedef in the
types.h header file to be an integer.

key_t key;
int msgflg;

MU43815PG/D2 9-6 12101/87

INTERPROCESS COMMUNICATION

The integer returned from this function on successful completion is the message
queue identifier (msqid) that was discussed earlier.

As declared, the process calling the msgget() system call must supply two
arguments to be passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is provided if
either of the following is true:

• key is equal to IPC_PRIV ATE

• key is passed a unique hexadecimal integer, and msgflg ANDed with
IPC_CREAT is TRUE

The value passed to the msgflg argument must be an integer type octal value and
it will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes and execution modes
determine the user/group/other attributes of the msgflg argument. They are
collectively referred to as "operation permissions." Table 9-1 reflects the numeric
values (expressed in octal notation) for the valid operation permissions codes.

TABLE 9-1. Operation Permissions Codes

O_Q_eration Permissions Octal Value
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write b_y_ Others 00002

A specific octal value is derived by adding the octal values for the operation
permissions desired. That is, if read by user and read/write by others is desired,
the code value would be 00406 (00400 plus 00006). There are constants located in
the msg.h header file which can be used for the user (OWNER).

Control commands are predefined constants (represented by all uppercase,..letters).
Table 9-2 contains the names of the constants that apply to the msgget() system

MU43815PG/D2 9-7 12/01/87

II

II

INTERPROCESS COMMUNICATION

call along with their values. They are also referred to as flags and are defined in
the ipc.h header file.

TABLE 9-2. Control Commands (Flags)

Control Command Value
IPC_CREAT 0001000
IPC_EXCL 0002000

The value for msgflg is therefore a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This is accomplished by
bitwise ORing (I) them with the operation permissions; the bit positions and
values for the control commands in relation to those of the operation permissions
make this possible. It is illustrated as follows:

IPC_CREAT
I ORed by User

msgflg

Octal Value

01000
00400

01400

Bina Value

0 000 001000000 000
0 000 000 100 000 000

0 000 001 100 000 000

The msgflg value can be easily set by using the names of the flags in conjunction
with the octal operation permissions value:

m•qid = magget (key, (IPC_CREAT 0400));

m•qid = magget (key, (IPC_CREAT IPC_EXCL I 0400));

As specified by the msgget{2) page in the Programmer's Reference Manual, success
or failure of this system call depends on the argument values for key and msgflg
or system tunable parameters. The system call will attempt to return a new
msqid if one of the following conditions is true:

• Key is equal to IPC_PRIVATE (0)

• Key does not already have a msqid associated with it, and (msgflg &
IPC_CREAT) is "true" (not zero).

MU43815PG/D2 9-8 12/01/87

INTERPROCESS COMMUNICATION

The key argument can be set to IPC_PRIV ATE in the following ways:

msqid = msgget (IPC_J>RIVATE, msgflg);

or

msqid = msgget (0 , msgflg);

This alone will cause the system call to be attempted because it satisfies the first
condition specified. Exceeding the MSGMNI system tunable parameter always
causes a failure. The MSGMNI system tunable parameter determines the
maximum number of unique message queues (msqid's) in the operating system.

The second condition is satisfied if the value for key is not already associated with
a msqid and the bitwise ANDing of msgflg and IPC_CREAT is "true" (not zero).
This means that the key is unique (not in use) within the operating system for this
facility type and that the IPC_CREAT flag is set (msgflg I IPC_CREAT). The
bitwise ANDing (&), which is the logical way of testing if a flag is set, is
illustrated as follows:

msgflg
& IPC_CREAT

result

x 1 x x x (x = immaterial)
01000

O 1 O O O (not zero)

Since the result is not zero, the flag is set or "true."

IPC_EXCL is another control command used with IPC_CREAT to exclusively have
the system call fail if, and only if, a msqid exists for the specified key provided.
This is necessary to prevent the process from thinking that it has received a new
(unique) msqid when it has not. In other words, when both IPC_CREAT and
IPC_EXCL are specified, a new msqid is returned if the system call is successful.

Refer to the msgget(2) page in the Programmer's Reference Manual for specific
associated data structure initialization for successful completion. The specific
failure conditions with error names are contained there also.

Example Program

The example program in this section (Figure 9-2) is a menu-driven program which
allows all possible combinations of using the msgget(2) system call to be
exercised.

MU43815PG/D2 9-9 12/01/87

II

II

INTERPROCESS COMMUNICATION

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 4-8) by including the required header files as specified
by the msgget(2) entry in the Programmer's Reference Manual. Note that the
errno.h header file is included as opposed to declaring errno as an external
variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self-explanatory. These
names make the program more readable, and it is perfectly legal since they are
local to the program. The variables declared for this program and their purposes
are as follows:

• key-used to pass the value for the desired key

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm_flags-used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to pass the
msgflg argument

• msqid--used for returning the message queue identification number for a
successful system call or the error code (-1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags) which
are selected from a menu (lines 15-32). All possible combinations are allowed
even though they might not be valid. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags variable
(lines 36-51).

The system call is made next, and the result is stored at the address of the msqid
variable (line 53).

Since the msqid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 55). If msqid equals
-1, a message indicates that an error resulted, and the external errno variable is
displayed (lines 57, 58).

If no error occurred, the returned message queue identifier is displayed (line 62).

MU43815PG/D2 9-10 12/01/87

INTERPROCESS COMMUNICATION

The example program for the msgget(2) system call follows. It is suggested that
the source program file be named msgget.c and that the executable file be named
msgget. When compiling C programs that use floating point operations, the -f
option should be used on the cc command line. If this option is not used, the
program will compile successfully but fail when executed.

MU43815PG/D2 9-1~ 12101/87

II

II

INTERPROCESS COMMUNICATION

1
2
3

4
6
8
7
8

9
10
11
12
13
14
16
18
17

18
19
20
21
22

23
24
26
28
27
28
29
30

31
32

/•Thi• i• a program to illu•trate
••th• m•••ag• get, m•gg•t(),
•••7•t•m call capabiliti••.•/

#include
#include
#include
#include
#include

<stdio.h>
<s7s/t7pes.h>
<s7s/ipc.h>
<s7s/msg.h>
<err110.h>

/•Start of main C language program•/
main()
{

ke7_t ke7; /•declare a• 1011.g integer•/
i11t opperm, flags;
i11t msqid, opperm_flag•;
/•Enter the de•ired ke7•/
pri11tf(•E11ter th• d••ired ke7 i11 hex=•);
•ca11f("lx•, Ake7);

/•Enter th• de•ir•d octal operation
permissions.•/

pri11tf(•\11E11ter th• operatio11\11•);
pri11tf(•permis•io11• i11 octal=•);
sca11f(•lo•, Aopperm);

/•Set the desired flaga.•/
pri11tf(•\11E11ter correapo11di11g 11.umber to\11•);
pri11tf("••t the de•ired flag•:\11•);
pri11tf(•No flags
pri11tf("IPC_CREAT
pri11tf("IPC__EXCL
pri11tf("IPC_CREAT a11d IPC__EXCL
pri11tf(• Flag•

/•Get the flag(s) to be set.•/
sca11f("ld•, &flags);

0\11•);
= 1 \11•) ;
=2\11•);
=3\11•); .) ;

Figure 9-2. msgget() System Call Example (Sheet 1 of 2)

MU43815PG/D2 9-12 12/01/87

INTERPROCESS COMMUNICATION

33
34
36

/•Check the Talue•.•/
printf (•\nkey =Oxlx, opperm

key, opperm, flag•);
Olo, flag• = Olo\n•,

/•Incorporate the control field• (flag•) with
th• operation p•rmi••ion••/

•witch (flag•)
<
ca•• O: /•No flag• are to be ••t.•/

opperm_flag• = (opperm I O);
break;

ca•• 1: /•Set the IPC_CREAT flag.•/
opperm_flag• = (opperm I IPC_CREAT);
break;

ca•• 2: /•Set the IPC__EXCL flag.•/
opperm_flag• = (opperm I IPC__EXCL);
break;

36
37
38
39
40
41
42
43
44
46
46
47
48
49
60
61

ca•• 3: /•Set the IPC_CREAT and IPC__EXCL flag•.•/

62
63

opperm_flag• = (opperm I IPC_CREAT I IPC__EXCL);
}

/•Call the m•gget •y•t•m call.•/
m•qid = m•gget (key, opperm_flag•);

64
66
66
67
68
69

/•Perform the following if th• call i• un•ucc•••ful.•/
if(m•qid == -1)
<

}

printf (•\nTh• m•gget •Y•t•m call failed!\n•);
printf (•Th• error number= ld\n•, errno);

80 /•Return the m•qid on •ucc•••ful completion.•/
81 •l••
82 printf (•\nTh• m•qid = ld\n•, m•qid);
83 exit(O);
84 }

Figure 9-2. msgget() System Call Example (Sheet 2 of 2)

MU43815PG/D2 9-13 12/01/87

II

II

INTERPROCESS COMMUNICATION

Controlling Message Queues
This section gives a detailed description of using the msgctl system call along
with an example program which allows all its capabilities to be exercised.

Using msgctl

The synopsis found in the msgctl(2) entry in the Programmer's Reference Manual is
as follows.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_da *buf;

The msgctl() system call requires three arguments to be passed to it, and it
returns an integer value.

On successful completion, a zero value is returned; and when unsuccessful, it
returns a-1.

The msqid variable must be a valid, non-negative, integer value. In other words,
it must have already been created by using the msgget() system call.

The cmd argument can be replaced by one of the following control commands
(flags):

IPC_STAT return the status information contained in the associated data
structure for the specified msqid, and place it in the data structure
pointed to by the *buf pointer in the user memory area.

IPC_SET for the specified msqid, set the effective user and group
identification, operation permissions, and the number of bytes for
the message queue.

IPC_RMID remove the specified msqid along with its associated message
queue and data structure.

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID control command. Read
permission is required to perform the IPC_STAT control command.

MU43815PG/D2 9-14 12/01/87

INTERPROCESS COMMUNICATION

The details of this system call are discussed in the example program for it. If you
have problems understanding the logic manipulations in this program, read the
'Vsing msgget" section of this chapter; it goes into more detail than what would
be practical to do for every system call.

Example Program

The example program in this section (Figure 9-3) is a menu-driven program which
allows all possible combinations of using the msgctl(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the msgctl(2) entry in the Programmer's Reference Manual. Note in this program
that errno is declared as an external variable, and therefore, the errno.h header
file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those
in the synopsis for the system call. Their declarations are self-explanatory. These
names make the program more readable, and it is perfectly legal since they are
local to the program. The variables declared for this program and their purpose
are as follows:

uid

gid

mode

bytes

rtrn

msqid

used to store the IPC_SET value for the effective user
identification

used to store the IPC_SET value for the effective group
identification

used to store the IPC_SET value for the operation permissions

used to store the IPC_SET value for the number of bytes in the
message queue (msg_qbytes)

used to store the return integer value from the system call
I

used to store and pass the message queue identifier to the system
dill

command used to store the code for the desired control command so that
subsequent processing can be performed on it

choice

MU43815PG/D2

used to determine which member is to be changed for the
IPC_SET control command

9-15 12/01/87

II

II

INTERPROCESS COMMUNICATION

msqid_ds used to receive the specified message queue indentifier's data
structure when an IPC_STAT control command is performed

•buf a pointer passed to the system call which locates the data
structure in the user memory area where the IPC_STAT control
command is to place its return values or where the IPC_SET
command gets the values to set

Note that the msqld_ds data structure in this program (line 16) uses the data
structure located in the msg.h header file of the same name as a template for its
declaration. This is a perfect example of the advantage of local variables.

The next important thing to observe is that although the •buf pointer is declared
to be a pointer to a data structure of the msqld_ds type, it must also be initialized
to contain the address of the user memory area data structure (line 17). Now that
all the required declarations have been explained for this program, this is how it
works.

First, the program prompts for a valid message queue identifier which is stored at
the address of the msqid variable (lines 19, 20). This is required for every msgctl
system call.

Then the code for the desired control command must be entered (lines 21-27), and
it is stored at the address of the command variable. The code is tested to
determine the control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is
performed (lines 37, 38) and the status information returned is printed out (lines
39-46); only the members that can be set are printed out in this program. Note
that if the system call is unsuccessful (line 106), the status information of the last
successful call is printed out. In addition, an error message is displayed and the
errno variable is printed out (lines 108, 109). If the system call is successful, a
message indicates this along with the message queue identifier used (lines 111-
114).

If the IPC_SET control command is selected (code 2), the first thing done is to get
the current status information for the message queue identifier specified (lines 50-
52). This is necessary because this example program provides for changing only
one member at a time, and the system call changes all of them. Also, if an invalid
value happened to be stored in the user memory area for one of these members, it
would cause repetitive failures for this control command until corrected. The next
thing the program does is to prompt for a code corresponding to the member to
be changed (lines 53-59). This code is stored at the address of the choice variable
(line 60). Now, depending on the member picked, the program prompts for the
new value (lines 66-95). The value is placed at the address of the appropriate
member in the user memory area data structure, and the system call is made

MU43815PG/D2 9-16 12/01/87

INTERPROCESS COMMUNICATION

(lines 96-98). Depending on success or failure, the program returns the same
messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 100-103), and the msqid along with its associated message queue
and data structure are removed from the operating system. Note that the *bUf
pointer is not required as an argument to perform this control command, and its
value can be zero or NULL. Depending on the success or failure, the program
returns the same messages as for the other control commands.

The example program for the msgctl() system call follows. It is suggested that
the source program file be named msgctl.c and that the executable file be named
msgctl. When compiling C programs that use floating point operations, the -f
option should be used on the cc command line. If this option is not used, the
program will compile successfully but will fail when executed.

MU43815PG/D2 9-17 12/01/87

II

II

INTERPROCESS COMMUNICATION

1
2
a

"
&
8
7
8
9

10
11
12
13
14
1&
18
17

18
19
20
21
22
23
24
2&
28
27

28
29
30

/•Thi• i• a program to illu•trat•
••th• m•••ag• control, m•gctl().
•••7•t•m call capabiliti••·
•I

/•Include
#include
#include
#include
#include

n•c•••ar7 header file•.•/
<•tdio.h>
<•7•/t7p••.h>
<•7•/ipc.h>
<•7•/m•g.h>

/•Start of main C language program•/
ma:i.n()
{

extern int errno;
int uid, gid, mode, byte•;
int rtrn. m•qid, co1D1Dand, choice;
•truct m•qid_d• m•qid_d•, •buf;
buf = b•qid_d•;

/•O•t th• m•qid, and COIDIDand.•/
printf(•Em.t•r the m•qid • •);
•canf(•ld•, ltm•qid);
printf(•\nEnter the number for\n•);
printf(•th• d••ired co1D1Dand:\n•);
printf(•IPC_BTAT = 1\n•);
printf(•IPC_BET = 2\n•);
printf(•IPC_llUID = 3\n•);
printf(•Entr7 = •);
•canf(•ld•, &co1D1Dand);

/•Check th• value•.•/
printf (•\nm•qid =Id. co1D1Dand = ld\n•,

m•qid, COIDIDand);

Figure 9·3. msgctlQ System Call Example (Sheet 1 of 4)

MU43815PG/D2 9-18 12/01/87

31
32
33
34
36
38
37
38
39
40
41
42
43
44
46
48
47
48
49
60
61
62
63
64
66
68
67
68
69

80
81
82
83
84
86

•witch (command)
{

INTERPROCESS COMMUNICATION

ca•• 1: /•U•• magct1() to dup1icat•
th• data •tructur• for

msqld in th• maqid_d• area pointed
to by buf and then print it out.•/

rtrn = magctl(maqid, IPC_BTAT,
buf);

printf (•\nThe USER ID= ld\n•,
buf->mag_perm.uid);

printf (•The GROUP ID = ld\n•,
buf->mag_perm.gid);

printf (•Th• operation permi••ion• = Olo\n•,
buf->m•g_perm.mode);

printf (•Th• m•g_qbyt•• = ld\n•,
buf->mag_qbytea);

break;
ca•• 2: /•Select and change the desired

member(•) of th• data •tructure.•/
/•Get th• original data for this maqid

data •tructur• fir•t.•/
rtrn = msgctl(maqid, IPC_BTAT, buf);
printf(•\nEnter th• number for the\n•);
printf(•m•mber to be changed:\n•);
printf(•mag_perm.uid = 1\n•);
printf(•m•g_perm.gid = 2\n•);
printf(•mag_perm.mod• = 3\n•);
printf(•mag_qbytea = 4\n•);
printf(•Entry = •);

•canf(•ld•, &choice);
/•On1y one choice i• allowed per

pa•• a• an illegal entry will
cau•• repetitive failure• until

maqid_d• i• updated with
IPC_BTAT.•/

Figure 9-3. msgctlQ System Call Example (Sheet 2 of 4)

MU43815PG/D2 9-19 12/01/87

II

II

INTERPROCESS COMMUNICATION

66
67
68
69
70
71
72
73
74
76
76
77
78
79
80
81
82
83
84
86
86
87

88
89
90
91
92
93
94
96
96
97
98
99

awitch (choice) {
ca•• 1:

printf(•\nEnter USER ID=•);
acanf c•sd•, &uid);
buf->msg_perm.uid = uid;
printf(•\nUSER ID = Sd\n•,

buf->msg_perm.uid);
break;

case 2:
printf(•\nEnter GROUP ID=•);
acanf(•Sd•, &gid);
buf->mag_perm.gid = gid;
printf(•\nGROUP ID = Sd\n•,

buf->mag_perm.gid);
break;

ca•• 3:
printf(•\nEnter MODE=•);
acanf(•So•, &mode);
buf->mag_perm.mode = mode;
printf(•\nYODE = Olo\n•,

buf->mag_perm.mode);
break;

ca•• 4:

}

printf(•\nEnter maq_b7t•• = •);
acanf(•Sd•, &bytea);
buf->mag_qb7t•• = byte•;
printf(•\nmag_qb7t•• = Sd\n•,

buf->mag_qbytea);
break;

/•Do the change.•/
rtrn = magctl(maqid, IPC_SET,

buf);
break;

Figure 9-3. msgctlO System Call Example (Sheet 3 of 4)

MU43815PG/D2 9-20 12/01/87

100
101
102
103
104
106
106
107
108
109
110
111
112
113
114
116
116 }

INTERPROCESS COMMUNICATION

caae 3: /•Remove the maqid along with it•
aaaociated meaaage queue
and data atructure.•/

rtrn = magctl(maqid, IPC_llMID, NULL);
}

/•Perform the following if the call i• unaucceaaful.•/
if(rtrn == -1)
{

printf (•\nThe magctl ayatem call failed!\n•);
printf ("The error number= ld\n•, errno);

}

/•Return the maqid on aucceaaful completion.•/

•l••
printf (•\nMagctl waa aucceaaful for maqid

maqid);
exit (0);

"d\n•,

Figure 9-3. msgctl() System Call Example (Sheet 4 of 4)

Operations for Messages
This section gives a detailed description of using the msgsnd(2) and msgrcv(2)
system calls, along with an example program which allows all their capabilities to
be exercised.

Using msgop

The synopsis found in the msgop(2) entry in the Programmer's Reference Manual is
as follows.

MU43815PG/D2 9-21 12/01/87

II

II

INTERPROCESS COMMUNICATION

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct magbuf •magp;
int magaz, msgflg;

int msgrcv (maqid, magp, magaz, magtyp, magflg)
int maqid;
atruct magbuf •m•gp;
int magsz;
long msgtyp;
int magflg;

Sending a Message

The msgsnd system call requires four arguments to be passed to it. It returns an
integer value.

On successful completion, a zero value is returned; and when unsuccessful,
msgsnd() returns a -1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system call.

The msgp argument is a pointer to a structure in the user memory area that
contains the type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data
structure pointed to by the msgp argument. This is the length of the message.
The maximum size of this array is determined by the MSGMAX system tunable
parameter.

The msg_qbytes data structure member can be lowered from MSGMNB by using
the msgctl() IPC_SET control command, but only the super-user can raise it
afterwards.

The msgflg argument allows the ''blocking message operation" to be performed if
the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = O); this would occur
if the total number of bytes allowed on the specified message queue are in use
(msg_qbytes or MSGMNB), or the total system-wide number of messages on all
queues is equal to the system imposed limit (MSGTQL). If the IPC_NOW AIT flag
is set, the system call will fail and return a -1.

MU43815PG/D2 9-22 12/01/87

INTERPROCESS COMMUNICATION

Further details of this system call are discussed in the example program for it. If
you have problems understanding the logic manipulations in this program, read
the ''Using msgget" section of this chapter; it goes into more detail than what
would be practical to do for every system call.

Receiving Messages

The msgrcv() system call requires five arguments to be passed to it, and it returns
an integer value.

On successful completion, a value equal to the number of bytes received is
returned and when unsuccessful it returns a -1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system call.

The msgp argument is a pointer to a structure in the user memory area that will
receive the message type and the message text.

The msgsz argument specifies the length of the message to be received. If its
value is less than the message in the array, an error can be returned if desired; see
the msgflg argument.

The msgtyp argument is used to pick the first message on the message queue of
the particular type specified. If it is equal to zero, the first message on the queue
is received; if it is greater than zero, the first message of the same type is
received; if it is less than zero, the lowest type that is less than or equal to its
absolute value is received.

The msgflg argument allows the "blocking message operation" to be performed if
the IPC_NOW AIT flag is not set (msgflg & IPC_NOW AIT = O); this would occur
if there were not a message on the message queue of the desired type (msgtyp) to
be received. If the IPC_NOW AIT flag is set, the system call will fail immediately
when there is not a message of the desired type on the queue. Msgflg can also
specify that the system call fail if the message is longer than the size to be
received; this is done by not setting the MSG_NOERROR flag in the msgflg
argument (msgflg & MSG_NOERROR = 0). If the MSG_NOERROR flag is set,
the message is truncated to the length specified by the msgsz argument of
msgrcv().

Further details of this system call are discussed in the example program for it. If
you have problems understanding the logic manipulations in this program, read
the ''Using msgget" section of this chapter; it goes into more detail than what
would be practical to do for every system call.

MU43815PG/D2 9-23 12/01/87

II

II

INTERPROCESS COMMUNICATION

Example Program

The example program in this section (Figure 9-4) is a menu-driven program which
allows all possible combinations of using the msgsnd() and msgrcv(2) system
calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the msgop(2) entry in the Programmer's Reference Manual. Note that in this
program errno is declared as an external variable, and therefore, the errno.h
header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those
in the synopsis. Their declarations are self-explanatory. These names make the
program more readable, and this is perfectly legal since they are local to the
program. The variables declared for this program and their purposes are as
follows:

sndbuf

rcvbuf

used as a buffer to contain a message to be sent (line 13); it uses
the msgbuf1 data structure as a template (lines 10-13) The
msgbufl structure (lines 10-13) is almost an exact duplicate of the
msgbuf structure contained in the msg.h header file. The only
difference is that the character array for msgbuf1 contains the
maximum message size (MSGMAX) for the computer where in
msgbuf it is set to one (1) to satisfy the compiler. For this reason
msgbuf cannot be used directly as a template for the user-written
program. It is there so you can determine its members.

used as a buffer to receive a message (line 13); it uses the
msgbuf1 data structure as a template (lines 10-13)

used as a pointer (line 13) to both the sndbuf and rcvbuf buffers

used as a counter for inputting characters from the keyboard,
storing them in the array, and keeping track of the message length
for the msgsnd() system call; it is also used as a counter to output
the received message for the msgrcv() system call

c used to receive the input character from the getchar() function
(line 50)

flag used to store the code of IPC_NOW AIT for the msgsnd() system
call (line 61)

MU43815PG/D2 9-24 12/01/87

flags

choice

rtrn

msqid

msgsz

msgflg

msgtyp

INTERPROCESS COMMUNICATION

used to store the code of the IPC_NOW AIT or MSG_NOERROR
flags for the msgrcv() system call (line 117)

used to store the code for sending or receiving (line 30)

used to store the return values from all system calls

used to store and pass the desired message queue identifier for
both system calls

used to store and pass the size of the message to be sent or
received

used to pass the value of flag for sending or the value of flags for
receiving

used for specifying the message type for sending, or used to pick
a message type for receiving.

Note that a msqid_ds data structure is set up in the program (line 21) with a
pointer which is initialized to point to it (line 22); this will allow the data structure
members that are affected by message operations to be observed. They are
observed by using the msgctl() (IPC_STA1) system call to get them for the
program to print them out (lines 80-92 and lines 161-168).

The first thing the program prompts for is whether to send or receive a message.
A corresponding code must be entered for the desired operation, and it is stored
at the address of the choice variable (lines 23-30). Depending on the code, the
program proceeds as in the following msgsnd or msgrcv sections.

msgsnd

When the code is to send a message, the msgp pointer is initialized (line 33) to
the address of the send data structure, sndbuf. Next, a message type must be
entered for the message; it is stored at the address of the variable msgtyp (line
42), and then (line 43) it is put into the mtype member of the data structure
pointed to by msgp.

The program now prompts for a message to be entered from the keyboard and
enters a loop of getting and storing into the mtext array of the data structure (lines
48-51). This will continue until an end of file is recognized, which for the
getchar() function is a control-d (CTRL-D) immediately following a carriage return
(<CR>). When this happens, the size of the message is determined by adding
one to the i counter (lines 52, 53) as it stored the message beginning in the zero
array element of mtext. Keep in mind that the message also contains the
terminating characters, and the message will therefore appear to be three
characters short of msgsz.

MU43815PG/D2 9-25 12/01/87

II

II

INTERPROCESS COMMUNICATION

The message is immediately echoed from the mtext array of the sndbuf data
structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the IPC_NOW AIT
flag. The program does this by requesting that a code of a 1 be entered for yes or
anything else for no (lines 57-65). It is stored at the address of the flag variable.
If a 1 is entered, IPC_NOW AIT is logically ORed with msgflg; otherwise, msgflg
is set to zero.

The msgsndQ system call is performed (line 69). If it is unsuccessful, a failure
message is displayed along with the error number (lines 70-72). If it is successful,
the returned value (should be zero) is printed (lines 73-76).

Every time a message is successfully sent, there are three members of the
associated data structure which are updated. They are described as follows:

msg_qnum represents the total number of messages on the message queue; it
is incremented by one.

msg_lspld contains the Process Identification (PIO) number of the last
process sending a message; it is set accordingly.

msg_stlme contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) of the last message sent; it is set accordingly.

These members are displayed after every successful message send operation (lines
79-92).

msgrcv

If the code specifies that a message is to be received, the program continues
execution as in the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to receive
the message is requested, and it is stored at the address of msqid (lines 100-103).

The message type is requested, and it is stored at the address of msgtyp (lines
104-107).

The code for the desired combination of control flags is requested next, and it is
stored at the address of flags (lines 108-117). Depending on the selected
combination, msgflg is set accordingly (lines 118-133).

Finally, the number of bytes to be received is requested, and it is stored at the
address of msgsz (lines 134-137).

MU43815PG/D2 9-26 12/01/87

INTERPROCESS COMMUNICATION

The msgrcvQ system call is performed (line 144). If it is unsuccessful, a message
and error number is displayed (lines 145-148). If successful, a message indicates
so, and the number of bytes returned is displayed followed by the received
message (lines 153-159).

When a message is successfully received, three members of the associated data
structure are updated as follows:

msg_qnum contains the number of messages on the message queue; it is
decremented by one.

msg_lrpld contains the process identification (PIO) of the last process
receiving a message; it is set accordingly.

msg_rtime contains the time in seconds since January l, 1970, Greenwich
Mean Time (GMT) that the last process received a message; it is
set accordingly.

The example program for the msgop() system calls follows. It is suggested that
the program be put into a source file called msgop.c and then into an executable
file called msgop.

When compiling C programs that use floating point operations, the -f option
should be used on the cc command line. If this option is not used, the program
will compile successfully but fail when executed.

MU43815PG/D2 9-27 12/01/87

II

II

INTERPROCESS COMMUNICATION

1
2
3

"
6
6
7
8
9

10
11
12
13

14.
16
16
17
18
19
20
21
22

23
24.
26
26
27
28
29
30
31
32

/•Thi• i• a program to illu•trate
••the ••••age operation•, m•gop(),
•••7•t•m call capabiliti••·
•I

/•Include
#include
#include
#include
#include

n•c•••ar7 header
<•tdio.h>
<•7•/t7p••.h>
<•7•/ipc.h>
<•7•/m•g.h>

fil••.•/

•truct m•gbuf1 {
long mt7pe;
char mt•xt[8192];

} •ndbuf, rcTbuf, •m•gp;

/•Start of main C languag• program•/
main()
{

extern int errno;
int i, c, flag, flag•, choice;
int rtrn, m•qid, m•g••· m•gflg;
long mt7pe, m•gt7p;
•truct m•qid_d• m•qid_d•, •buf;
buf = b•qid_d•;

/•S•l•ct th• d••ired op•ration.•/
printf(•Ent•r th• corr••ponding\n•);
printf(•cod• to ••nd or\n•);
printf(•receiT• a ••••age:\n•);
printf(•Send = 1\n•);
printf(•ReceiT• = 2\n•);
printf(•Entr7 = •);
•canf(•ld•, Achoice);
if(choic• •• 1) /•Send a ••••age.•/
{

33 m•gp = A•ndbuf; /•Point to u••r ••nd •tructur•.•/

34.
36
H
37

printf(•\nEnter th• m•qid of\n•);
printf(•th• ••••age qu•u• to\n•);
printf(•handl• th• ••••age=•);
•canf(•ld•, b•qid);

Figure 9-4. msgopQ System Call Example (Sheet 1 of 5)

MU43815PG/D2 9-28 12/01/87

38
39
40
41
42
43

44
46

48
47

48
49
60
61

62
63

64
66
68

67
68
69
80
81
82
83
84
86
88
87

INTERPROCESS COMMUNICATION

/•Set the meaaage type.•/
printf(•\nEnter a poaitive integer\n•);
printf(•meaaage type (long) for the\n•);
printf(•meaaage = •);
acanf(•ld•, &magtyp);
magp->mtype = magtyp;

/•Enter the meaaage to aend.•/
printf(•\nEnter a meaaage: \n•);

/•A control-d (•d) terminate• aa
EOF.•/

/•Get each character of the meaaage
and put it in the mtext array.•/

for(i = O; ((c = getchar()) != EOF); i++)
andbuf.mtext[i] = c;

/•Determine the meaaage aize.•/
magaz = i + 1;

/•Echo the meaaage to aend.•/
for(i = O; i < magaz; i++)

putchar(andbuf.mtext[i]);

/•Set the IPC_NOWAIT flag if
deaired.•/

printf(•\nEnter a 1 if you want the\n•);
printf(•the IPC_NOWAIT flag aet: •);
acanf(•ld•, &flag);
if(flag == 1)

magflg I= IPC_NOWAIT;

•l••
magflg = O;

/•Check the magflg.•/
printf(•\nmagflg = Olo\n•, magflg);

Figure 9-4. msgop() System Call Example (Sheet 2 of 5)

MU43815PG/D2 9-29 12/01/87

II

II

INTERPROCESS COMMUNICATION

88
89
70
71
72
73
74
76
78

77
78
79

80
81

82

83
84
86
88
87
88
89
90
91
92
93
94

96
98
97
98
99

100
101
102
103

}

/•Send the m•••age.•/
rtrn = m•g•nd(m•qid, m•gp, m•g••, m•gflg);
if(rtrn == -1)
printf(•\nM•g•nd failed. Error= ld\n•,

errno);
•l•• {

}

/•Print the value of te•t which
•hould be sero for •ucc•••ful.•/

printf(•\nValu• returned= ld\n•, rtrn);

/•Print the •ize of the m•••ag•
••nt.•/

printf(•\nM•g•z = ld\n•, m•g•s);

/•Check the data •tructure update.•/
m•gctl(m•qid, IPC_STAT, buf);

/•Print out the affected member•.•/

/•Print the incremented number of
m•••as•• on th• queue.•/

printf(•\nTh• m•g_qnum = ld\n•,
buf->m•g_qnum);

/•Print the proc••• id of the la•t ••nder.•/
printf(•The m•g-l•pid = ld\n•,

buf->m•g_l•pid);
/•Print the la•t ••nd time.•/
printf(•Th• m•s-•tim• = ld\n•,

buf->m•g-•time);

if(choice == 2) /•Receive a m•••age.•/
{

/•Initialise the m•••age pointer
to the receive buffer.•/

m•gp = l;rcvbuf;
/•Specify the m•••age queue which contain•

the d••ired m•••age.•/
printf(•\nEnter the m•qid = •);
•canf(•ld•, &m•qid);

Figure 9-4. msgop() System Call Example (Sheet 3 of 5)

MU43815PG/D2 9-30 12/01187

104
106
106
107

108
109
110
111
112
113
114
116
116
117

118
119
120
121
122
123
124
126
126
127
128
129
130
131
132
133

134
136
136
137

138
139
140
141
142

INTERPROCESS COMMUNICATION

/•Specif7 th• •p•cific m•••ag• on th• queue
b7 u•ing it• t7p•.•/

printf(•\nEnter th• m•gtyp = •);
•canf(•ld•, Am•gtyp);

/•Configure the control flag• for th•
de•ired action•.•/

printf(•\nEnt•r th• corr••ponding code\n•);
printf(•to ••l•ct th• d••ired flag•: \n•);
printf(•No flag• = O\n•);
printf(•USG_NOERROR = 1\n•);
printf(•IPC_NOWAIT = 2\n•);
printf(•USG_NOERROR and IPC_NOWAIT = 3\n•);
printf(• Flag• = •);
•canf(•ld•, &flag•);

•witch (flag•) {
/•Set m•gflg by ORing it with the appropriate

flag• (con•tant•) .•/
ca•• O:

m•gf lg
break;

ca•• 1:

O;

m•gflg I= USG_NOERROR;
break;

ca•• 2:
m•gflg I= IPC_NOWAIT;
break;

ca•• 3:
m•gflg I= USG_NOERROR I IPC_NOWAIT;
break;

}

/•Specif7 the number of byte• to receive.•/
printf(•\nEnter the number of byt••\n•);
printf(•to receive (magaz) = •);
acanf(•ld•, Amagaz);

/•Check th• value• for the argument•.•/
printf(•\nm•qid =ld\n•, maqid);
printf(•\nmagtyp = ld\n•, magtyp);
printf(•\nm•g•z = ld\n•, magaz);
printf(•\nmagflg = Olo\n•, magflg);

Figure 9-4. msgopQ System Call Example (Sheet 4 of 5)

MU43815PG/D2 9-31 12/01/87

II

II

INTERPROCESS COMMUNICATION

143 /•Call msgrcT to r•c•iT• th• m•ssag•.•/
144 rtrn = msgrcT(msqid, msgp, msgsz, msgtyp, msgflg);

146
148
147
148
149
160
161
162

163
164
166
168

167
168
169
180
181
182
183
184
186
188
187
188
189 }

170 }

if(rtrn == -1) {
printf(•\nYsgrcT fail•d. •);
printf(•Error = ld\n•, •rrno);

}

•ls• {

}

printf (•\nYsgctl was succ•ssful\n•);
printf(•for msqid = ld\n•,

msqid);

/•Print th• numb•r of bytes r•ceiTed,
it is •qual to the return
Talue.•/

printf(•aytes receiTed = ld\n•, rtrn);

/•Print the receiTed messag•.•/
for(i = O; i<=rtrn; i++)

putchar(rcTbuf.mtext[i]);

/•Check th• associated data structur•.•/
msgctl(msqid, IPC_BTAT, buf);
/•Print th• decr•m•nted number of messages.•/
printf(•\nTh• msg_qnum = ld\n•, buf->msg_qnum);
/•Print the proc•ss id of the last r•ceiT•r.•/
printf(•Th• msg_lrpid = ld\n•, buf->msg_lrpid);
/•Print th• last messag• rec•iT• time•/
printf(•Th• msg__rtime = ld\n•, buf->msg__rtim•);

Figura 9-4. msgopO System Call Example (Sheet 5 of 5)

Semaphores
The semaphore type of IPC allows processes to communicate through the
exchange of semaphore values. A semaphore is a positive integer (0 through
32,767). Since many applications require the use of more than one semaphore,
the operating system can create sets or arrays of semaphores. A semaphore set
can contain one or more semaphores up to a limit set by the system administrator.
The tunable parameter, SEMMSL has a default value of 25. Semaphore sets are
created by using the semget(2) system call.

MU43815PG/D2 9-32 12/01/87

INTERPROCESS COMMUNICATION

The process performing the semget(2) system call becomes the owner/creator,
determines how many semaphores are in the set, and sets the operation
permissions for the set, including itself. This process can subsequently relinquish
ownership of the set or change the operation permissions using the semctl(),
semaphore control, system call. The creating process always remains the creator
as long as the facility exists. Other processes with permission can use semctl() to
perform other control functions.

Provided a process has alter permission, it can manipulate the semaphore(s).
Each semaphore within a set can be manipulated in two ways with the semop(2)
system call (which is documented in the Programmer's Reference Manual):

• incremented

• decremented

To increment a semaphore, an integer value of the desired magnitude is passed to
the aemop(2) system call. To decrement a semaphore, a minus (-) value of the
desired magnitude is passed.

The operating system ensures that only one process can manipulate a semaphore
set at any given time. Simultaneous requests are performed sequentially in an
arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by
attempting to decrement the semaphore by one more than that value. If the
process is successful, then the semaphore value is greater than that certain value.
Otherwise, the semaphore value is not. While doing this, the process can have
its execution suspended (IPC_NOW AIT flag not set) until the semaphore value
would permit the operation (other processes increment the semaphore), or the
semaphore facility is removed.

The ability to suspend execution is called a "blocking semaphore operation." This
ability is also available for a process which is testing for a semaphore to become
zero or equal to zero; only read permission is required for this test, and it is
accomplished by passing a value of zero to the semop(2) system call.

On the other hand, if the process is not successful and the process does not
request to have its execution suspended, it is called a "nonblocking semaphore
operation." In this case, the process is returned a known error code (-1), and the
external errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate based on the
values of semaphores at different points in time. Remember also that IPC
facilities remain in the operating system until removed by a permitted process or
until the system is reinitialized.

MU43815PG/D2 9-33 12/01/87

II

II

INTERPROCESS COMMUNICATION

Operating on a semaphore set is done by using the semop(2), semaphore
operation, system call.

When a set of semaphores is created, the first semaphore in the set is semaphore
number zero. The last semaphore number in the set is one less than the total in
the set.

An array of these ''blocking/nonblocking operations" can be performed on a set
containing more than one semaphore. When performing an array of operations,
the ''blocking/nonblocking operations" can be applied to any or all of the
semaphores in the set. Also, the operations can be applied in any order of
semaphore number. However, no operations are done until they can all be done
successfully. This requirement means that preceding changes made to semaphore
values in the set must be undone when a ''blocking semaphore operation" on a
semaphore in the set cannot be c9mpleted successfully; no changes are made until
they can all be made. For example, if a process has successfully completed three
of six operations on a set of ten semaphores but is ''blocked" from performing the
fourth operation, no changes are made to the set until the fourth and remaining
operations are successfully performed. Additionally, any operation preceding or
succeeding the ''blocked" operation, including the blocked operation, can specify
that at such time that all operations can be performed successfully, that the
operation be undone. Otherwise, the operations are performed and the
semaphores are changed or one "nonblocking operation" is unsuccessful and none
are changed. All this is commonly referred to as being "atomically performed."

The ability to undo operations requires the operating system to maintain an array
of "undo structures" corresponding to the array of semaphore operations to be
performed. Each semaphore operation which is to be undone has an associated
adjust variable used for undoing the operation, if necessary.

Remember, any unsuccessful "nonblocking operation" for a single semaphore or a
set of semaphores causes immediate return with no operations performed at all.
When this occurs, a known error code (-1) is returned to the process, and the
external variable errno is set accordingly.

System calls make these semaphore capabilities available to processes. The
calling process passes arguments to a system call, and the system call either
successfully or unsuccessfully performs its function. If the system call is
successful, it performs its function and returns the appropriate information.
Otherwise, a known error code (-1) is returned to the process, and the external
variable errno is set accordingly.

MU43815PG/D2 9-34 12/01/87

INTERPROCESS COMMUNICATION

Using Semaphores

Before semaphores can be used (operated on or controlled) a uniquely identified
data structure and semaphore set (array) must be created. The unique identifier
is called the semaphore identifier (semid); it is used to identify or reference a
particular data structure and semaphore set.

The semaphore set contains a predefined number of structures in an array, one
structure for each semaphore in the set. The number of semaphores (nsems) in a
semaphore set is user selectable. The following members are in each structure
within a semaphore set:

• semaphore text map address

• process identification (PIO) performing last operation

• number of processes awaiting the semaphore value to become greater than its
current value

• number of processes awaiting the semaphore value to equal zero

There is one associated data structure for the uniquely identified semaphore set.
This data structure contains information related to the semaphore set as follows:

• operation permissions data (operation permissions structure)

• pointer to first semaphore in the set (array)

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

The C Programming Language data structure definition for the semaphore set
(array member) is as follows.

struct sem
{

ushort
short
ushort
ushort

};

semval;
sempid;
semncnt;
semzcnt;

I• semaphore text map address •/
/• pid of last operation •/
/• # awaiting semval > cval •/
/• # awaiting semval = 0 •I

It is located in the #include <sys/sem.h> header file.

Likewise, the structure definition for the associated semaphore data structure is as
follows.

MU43815PG/D2 9-35 12/01/87

II

II

INTERPROCESS COMMUNICATION

•truct ••mid_d•
{

•truct ipc_perm ••m_perm;
•truct ••m •••m_ba••;
u•hort ••m_n••m•;
time_t ••m_otime;
time_t •em_ctime;

};

/• operation permi••ion •truct •/
/• ptr to f ir•t ••maphor• in ••t •/
I• # of ••maphor•• in ••t •/
/• la•t ••mop time •/
I• la•t change time •/

It is also located in the #include <sys/sem.h> header file. Note that the
sem_perm member of this structure uses ipc_perm as a template. The breakout
for the operation permissions data structure was shown in Figure 9-1.

The lpc_perm data structure is the same for all IPC facilities, and it is located in
the #include <sys/ipc.h> header file. It is shown in the ''Messages" section.

The semget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the semflg argument that it receives:

• to get a new semid and create an associated data structure and semaphore set
for it

• to return an existing semid that already has an associated data structure and
semaphore set

The task performed is determined by the value of the key argument passed to the
semget(2) system call. For the first task, if the key is not already in use for an
existing semid, a new semid is returned with an associated data structure and
semaphore set created for it provided no system tunable parameter would be
exceeded.

There is also a provision for specifying a key of value zero (0) which is known as
the private key (IPC_PRIV ATE = O); when specified, a new semid is always
returned with an associated data structure and semaphore set created for it unless
a system tunable parameter would be exceeded. When the ipcs command is
performed, the KEY field for the semid is all zeros.

When performing the first task, the process which calls semget() becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator; see the "Controlling Semaphores" section in this chapter. The creator
of the semaphore set also determines the initial operation permissions for the
facility.

For the second task, if a semid exists for the key specified, the value of the
existing semid is returned. If it is not desired to have an existing semid returned,

MU43815PG/D2 9-36 12/01/87

INTERPROCESS COMMUNICATION

a control command (IPC_EXCL) can be specified (set) in the semflg argument
passed to the system call. The system call will fail if it is passed a value for the
number of semaphores (nsems) that is greater than the number actually in the
set; if you do not know how many semaphores are in the set, use 0 for nsems.
The details of using this system call are discussed in the ''Using semget" section
of this chapter.

Once a uniquely identified semaphore set and data structure are created,
semaphore operations [semop(2)] and semaphore control [semctl()] can be used.

Semaphore operations consist of incrementing, decrementing, and testing for
zero. A single system call is used to perform these operations. It is called
semop(). Refer to the "Operations on Semaphores" section in this chapter for
details of this system call.

Semaphore control is done by using the semctl(2) system call. These control
operations permit you to control the semaphore facility in the following ways:

• to return the value of a semaphore

• to set the value of a semaphore

• to return the process identification (PIO) of the last process performing an
operation on a semaphore set

• to return the number of processes waiting for a semaphore value to become
greater than its current value

• to return the number of processes waiting for a semaphore value to equal zero

• to get all semaphore values in a set and place them in an array in user memory

• to set all semaphore values in a semaphore set from an array of values in user
memory

• to place all data structure member values, status, of a semaphore set into user
memory area

• to change operation permissions for a semaphore set

• to remove a particular semid from the operating system along with its
associated data structure and semaphore set

Refer to the "Controlling Semaphores" section in this chapter for details of the
semctl(2) system call.

MU43815PG/D2 9-37 12/01/87

II

II

INTERPROCESS COMMUNICATION

Getting Semaphores
This section contains a detailed description of using the semget(2) system call
along with an example program illustrating its use.

Using semget

The synopsis found in the semget(2) entry in the Programmer's Reference Manual is
as follows:

#includ• <•y•/typ••.h>
#includ• <•y•/ipc.h>
#include <•y•/••m.h>

int ••mg•t (k•y, n••m•, ••mg)
k•y_t k•7;
int n••m•, ••mg;

The following line in the synopsis:

int aemget (key, nsems, semf1g)

informs you that semget() is a function with three formal arguments that returns
an integer type value, on successful completion (semid). The next two lines:

key_t key;
int nsems, aemf1g;

declare the types of the formal arguments. key_t is declared by a typedef in the
types.h header file to be an integer.

The integer returned from this system call on successful completion is the
semaphore set identifier (semid) that was discussed above.

As declared, the process calling the semget() system call must supply three
arguments to be passed to the formal key, nsems, and semflg arguments.

A new semid with an associated semaphore set and data structure is provided if
either of the following is true:

• key is equal to IPC_PRIV ATE

• key is passed a unique hexadecimal integer, and semflg ANDed with
IPC_CREAT is TRUE

MU43815PG/D2 9-38 12/01/87

INTERPROCESS COMMUNICATION

The value passed to the semflg argument must be an integer type octal value and
will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/alter attributes and execution modes
determine the user/group/other attributes of the semflg argument. They are
collectively referred to as "operation permissions." Table 9-3 reflects the numeric
values (expressed in octal notation) for the valid operation permissions codes.

TABLE 9-3. Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400
Alter by User 00200
Read by Group 00040
Alter by Group 00020
Read by Others 00004
Alter by Others 00002

A specific octal value is derived by adding the octal values for the operation
permissions desired. That is, if read by user and read/alter by others is desired,
the code value would be 00406 (00400 plus 00006). There are constants #define'd
in the sem.h header file which can be used for the user (OWNER). They are as
follows:

SEM.....A 0200 /• a1ter permi••ion by owner •/
SEM_R 0400 /• read permission by owner •/

Control commands are predefined constants (represented by all uppercase letters).
Table 9-4 contains the names of the constants which apply to the semget(2)
system call along with their values. They are also referred to as flags and are
defined in the ipc.h header file.

MU43815PG/D2 9-39 12101187

II

II

INTERPROCESS COMMUNICATION

TABLE 9-4. Control Commands (Flags)

Control Command Value

IPC_CREAT 0001000
IPC_EXCL 0002000

The value for semflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This specification is
accomplished by bitwise ORing (I) them with the operation permissions; the bit
positions and values for the control commands in relation to those of the
operation permissions make this possible. It is illustrated as follows:

IPC_CREAT =
CWI ORed by User =

semflg

Octal Value Bina Value

01000
00400

01400

0 000 001 000 000 000
0 000 000 100 000 000

0 000 001100 000 000

The semflg value can be easily set by using the names of the flags with the octal
operation permissions value:

•em~d = •emget (key, n•em•. (IPC_CREAT 0400));

•em~d = •emget (key, n•em•. (IPC_CREAT IPC..>XCL I 0400));

As specified by the aemget(2) entry in the Programmer's Reference Manual, success
or failure of this system call depends on the argument values for key, nsems,
aemflg or system tunable parameters. The system call will attempt to return a
new semid if one of the following conditions is true:

• key is equal to IPCYRIV ATE (0)

• key does not already have a semid associated with it, and (semflg &
IPC_CREAT) is "true" (not zero).

MU43815PG/D2 9-40 12/01/87

INTERPROCESS COMMUNICATION

The key argument can be set to IPC_PRIV ATE in the following ways:

aemid = aemget (IPCJ>RIVATE, naema, aemflg);

or

aemid = aemget (0, nsems, semflg);

This alone will cause the system call to be attempted because it satisfies the first
condition specified.

Exceeding the SEMMNI, SEMMNS, or SEMMSL system tunable parameters will
always cause a failure. The SEMMNI system tunable parameter determines the
maximum number of unique semaphore sets (semid's) in the operating system.
The SEMMNS system tunable parameter determines the maximum number of
semaphores in all semaphore sets system wide. The SEMMSL system tunable
parameter determines the maximum number of semaphores in each semaphore
set.

The second condition is satisfied if the value for key is not already associated with
a semid, and the bitwise ANDing of semflg and IPC_CREAT is "true" (not zero).
This means that the key is unique (not in use) within the operating system for this
facility type and that the IPC_CREAT flag is set (semflg I IPC_CREAT). The
bitwise ANDing (&), which is the logical way of testing if a flag is set, is
illustrated as follows:

aemflg = x 1 x x x (x = immaterial)
~ IPC_CREAT = 0 1 0 0 0

result = 0 1 0 0 0 (not zero)

Since the result is not zero, the flag is set or "true." SEMMNI, SEMMNS, and
SEMMSL apply here also, just as for condition one.

IPC_EXCL is another control command used with IPC_CREAT to exclusively have
the system call fail if, and only if, a semid exists for the specified key provided.
This is necessary to prevent the process from thinking that it has received a new
(unique) semid when it has not. In other words, when both IPC_CREAT and
IPC_EXCL are specified, a new semid is returned if the system call is successful.
Any value for semflg returns a new semid if the key equals zero (IPC_PRIVATE)
and no system tunable parameters are exceeded.

Refer to the semget(2) manual page for specific associated data structure
initialization for successful completion.

MU43815PG/D2 9-41 12/01187

II

II

INTERPROCESS COMMUNICATION

Example Program

The example program in this section (Figure 9-5) is a menu-driven program which
allows all possible combinations of using the semget(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 4-8) by including the required header files as specified
by the semget(2) entry in the Programmer's Reference Manual. Note that the
errno.h header file is included as opposed to declaring errno as an external
variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self-explanatory. These names make the
program more readable, and this is perfectly legal since they are local to the
program. The variables declared for this program and their purpose are as
follows:

• key-used to pass the value for the desired key

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm_flags-used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to pass the
semflg argument

• semid--used for returning the semaphore set identification number for a
successful system call or the error code (-1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and the control command combinations (flags) which are
selected from a menu (lines 15-32). All possible combinations are allowed even
though they might not be valid. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags variable
(lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-57), and its
value is stored at the address of nsems.

The system call is made next, and the result is stored at the address of the semid
variable (lines 60, 61).

MU43815PG/D2 9-42 12/01/87

INTERPROCESS COMMUNICATION

Since the semid variable now contains a valid semaphore set identifier or the
error code (-1), it is tested to see if an error occurred (line 63). If semid equals -1,
a message indicates that an error resulted and the external errno variable is
displayed (lines 65, 66). Remember that the external errno variable is only set
when a system call fails; it should only be tested immediately following system
calls.

If no error occurred, the returned semaphore set identifier is displayed (line 70).

The example program for the semget(2) system call follows. It is suggested that
the source program file be named semget.c and that the executable file be named
semget.

MU43815PG/D2 9-43 12/01/87

II

II

INTERPROCESS COMMUNICATION

1
2
3

4
6
8
7
8

9
10
11
12
13
14

16
18
17

18
19
20
21
22

23
24
26
28
27
28
29
30
31
32

/•Thia ia a program to illuatrate
••the aemaphore get, aemget(),
••ayatem call capabilitiea.•/

#include
#include
#include
#include
#include

<atdio.h>
<aya/typea.h>
<aya/ipc.h>
<aya/aem.h>
<errno.h>

/•Start of main C language program•/
main()
{

key_t key; /•declare aa long integer•/
int opperm, flaga, naema;
int aemid, opp•rm.Jlaga;

/•Enter the deaired key•/
printf(•\nEnter th• deaired key in hex=•);
acanf(•Sx•, &key);

/•Enter the deaired octal operation
permiaaiona.•/

printf(•\nEnter the operation\n•);
printf(•permiaaiona in octal= •);
acanf(•So•, aopperm);

/•Set the deaired flaga.•/
printf(•\nEnter correaponding number to\n•);
printf(•aet the deaired flaga:\n•);
printf(•No flaga = O\n•);
printf(•IPC_CREAT = 1\n•);
printf(•IPC_EXCL = 2\n•);
printf(•IPC_CREAT and IPC_EXCL = 3\n•);
printf(• Flaga = •);
/•Get the flaga to be aet.•/
acanf(•Sd•, &flaga);

Figure 9-5. semget() System Call Example (Sheet 1 of 2)

MU43815PG/D2 9-44 12/01/87

INTERPROCESS COMMUNICATION

33
34
36
36
37
38
39
40
41
42
43
44
46
46
47
48
49
60
61
62

63
64
66
66
67

68
69

60
61

/•Error checking (debugging)•/
print:f (•\nk•y =Oxlx, opperm = Olo, flag• = Olo\n•,

key, opperm, flag•);
/•Incorporate the control field• (flag•) with

the operation permi••ion•.•/
•witch (flag•)
{
case 0: /•No flag• are to be ••t.•/

opperm_:flaga = (opperm I O);
break;

case 1: /•Set the IPC_CREAT flag.•/
opperm_flaga = (opperm I IPC_CREAT);
break;

ca•• 2: /•Set the IPC_EXCL flag.•/
opperm_:flag• = (opperm I IPC_EXCL);
break;

ca•• 3: /•Set the IPC_CREAT and IPC_EXCL
flag•.•/

opperm_flag• = (opperm I IPC_CREAT I IPC_EXCL);
}

/•Get th• number of ••maphor•• for thi• ••t.•/
print:f(•\nEnter th• number o:f\n•);
print:f(•d••ir•d semaphores :for\n•);
print:f(•thia ••t (26 max) = •);
•can:f(•ld•, an.ems);

/•Check the entry.•/
print:f(•\nNaema = ld\n•, na•m•);

/•Call th• ••mget •Y•t•m call.•/
••mid= ••mget(key, n••m•, opperm_flag•);

62
63
64
66
68
67

/•Perform th• :following if the call i• un•ucc•••ful.•/
i:f(••mid == -1)
{

}

print:f(•Th• ••mget •y•tem call :fail•d!\n•);
print:f(•The error number= ld\n•, errno);

68 /•Return th• ••mid on •ucc•••ful completion.•/
89 •l••
70 print:f(•\nTh• ••mid= ld\n•, ••mid);
71 exit(O);
72 }

Figure 9-5. semget() System Call Example (Sheet 2 of 2)

MU43815PG/D2 9-45 12/01/87

II

II

INTERPROCESS COMMUNICATION

Controlling Semaphores
This section contains a detailed description of using the semctl(2) system call
along with an example program which allows all its capabilities to be exercised.

Using semctl

The synopsis found in the semctl(2) entry in the Programmer's Reference Manual is
as follows.

#in.elude <•7•/t7pea.h>
#in.elude <•7•/ipe.h>
#in.elude <•7•/••m.h>

int aemetl (aemid, ••mnum, emd, arg)
int • Hiid, emd;
int ••mn.um;
union ••mun
<

} arg;

int T&l;
atruet ••mid_da •bu;
uahort arra7[];

The semctl(2) system call requires four arguments to be passed to it, and it
returns an integer value.

The semld argument must be a valid, non-negative, integer value that has already
been created by using the semget(2) system call.

The aemnum argument is used to select a semaphore by its number. This relates
to array (atomically performed) operations on the set. When a set of semaphores
is created, the first semaphore is number 0, and the last semaphore has the
number of one less than the total in the set.

The cmd argument can be replaced by one of the following control commands
(flags):

• GETV AL-return the value of a single semaphore within a semaphore set

• SETV AL-set the value of a single semaphore within a semaphore set

• GETPID-return the Process Identifier (PIO) of the process that performed the
last operation on the semaphore within a semaphore set

• GETNCNT-return the number of processes waiting for the value of a
particular semaphore to become greater than its current value

MU43815PG/D2 9-46 12/01/87

INTERPROCESS COMMUNICATION

• GETZCNT-retum the number of processes waiting for the value of a
particular semaphore to be equal to zero

• GETALL-retum the values for all semaphores in a semaphore set

• SETALL-set all semaphore values in a semaphore set

• IPC_STAT-retum the status information contained in the associated data
structure for the specified semid, and place it in the data structure pointed to
by the *bUf pointer in the user memory area; arg.buf is the union member that
contains the value of buf

• IPC_SET-for the specified semaphore set (semid), set the effective user/group
identification and operation permissions

• IPC_RMID-remove the specified (semid) semaphore set along with its
associated data structure.

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID control command. Read/alter
permission is required as applicable for the other control commands.

The arg argument is used to pass the system call the appropriate union member
for the control command to be performed:

• arg.val

• arg.buf

• arg.array

The details of this system call are discussed in the example program for it. If you
have problems understanding the logic manipulations in this program, read the
'Using semget" section of this chapter; it goes into more detail than what would
be practical to do for every system call.

Example Program

The example program in this section (Figure 9-6) is a menu-driven program which
allows all possible combinations of using the semctl(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

MU43815PG/D2 9-47 12101/87

II

II

INTERPROCESS COMMUNICATION

This program begins (lines 5-9) by including the required header files as specified
by the semctl(2) entry in the Programmer's Reference Manual Note that in this
program errno is declared as an external variable, and therefore the errno.h
header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as possible
to those in the synopsis. Their declarations are self-explanatory. These names
make the program more readable, and this is perfectly legal since they are local to
the program. Those declared for this program and their purpose are as follows:

• semld_ds-used to receive the specified semaphore set identifier's data
structure when an IPC_STAT control command is performed

• c-used to receive the input values from the scanf(3S) function (line 117),
when performing a SETALL control command

• 1--used as a counter to increment through the union erg.array when
displaying the semaphore values for a GETALL (lines 97-99) control command,
and when initializing the erg.array when performing a SETALL (lines 115-119)
control command

• length-used as a variable to test for the number of semaphores in a set
against the I counter variable (lines 97, 115)

• uld-used to store the IPC_SET value for the effective user identification

• gld-used to store the IPC_SET value for the effective group identification

• mode-used to store the IPC_SET value for the operation permissions

• rtrn-used to store the return integer from the system call which depends on
the control command or a-1 when unsuccessful

• semid-used to store and pass the semaphore set identifier to the system call

• semnum-used to store and pass the semaphore number to the system call

• cmd-used to store the code for the desired control command so that
subsequent processing can be performed on it

• choice-used to determine which member (uld, gid, mode) for the IPC_SET
control command that is to be changed

• erg.val-used to pass the system call a value to set (SETV AL) or to store
(GETV AL) a value returned from the system call for a single semaphore (union
member)

• arg.buf-a pointer passed to the system call which locates the data structure in
the user memory area where the IPC_STAT control command is to place its

MU43815PG/D2 9-48 12/01/87

INTERPROCESS COMMUNICATION

return values, or where the IPC_SET command gets the values to set (union
member)

• erg.array-used to store the set of semaphore values when getting (GETALL)
or initializing (SETALL) (union member).

Note that the semid_ds data structure in this program (line 14) uses the data
structure located in the sem.h header file of the same name as a template for its
declaration. This is a perfect example of the advantage of local variables.

The arg union (lines 18-22) serves three purposes in one. The compiler allocates
enough storage to hold its largest member. The program can then use the union
as any member by referencing union members as if they were regular structure
members. Note that the array is declared to have 25 elements (0 through 24).
This number corresponds to the maximum number of semaphores allowed per set
(SEMMSL), a system tunable parameter.

The next important program aspect to observe is that although the *bUf pointer
member (arg.buf) of the union is declared to be a pointer to a data structure of the
semid_ds type, it must also be initialized to contain the address of the user
memory area data structure (line 24). Because of the way this program is written,
the pointer does not need to be reinitialized later. If it was used to increment
through the array, it would need to be reinitialized just before calling the system
call.

Now that all the required declarations have been presented for this program, this
is how it works.

First, the program prompts for a valid semaphore set identifier, which is stored at
the address of the semid variable (lines 25-27). This is required for all semctl(2)
system calls.

Then, the code for the desired control command must be entered (lines 28-42),
and the code is stored at the address of the cmd variable. The code is tested to
determine the control command for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompting for a
semaphore number is displayed (lines 49, 50). When it is entered, it is stored at
the address of the semnum variable (line 51). Then, the system call is performed,
and the semaphore value is displayed (lines 52-55). If the system call is
successful, a message indicates this along with the semaphore set identifier used
(lines 195, 196); if the system call is unsuccessful, an error message is displayed
along with the value of the external errno variable (lines 191-193).

If the SETV AL control command is selected (code 2), a message prompting for a
semaphore number is displayed (lines 56, 57). When it is entered, it is stored at
the address of the semnum variable (line 58). Next, a message prompts for the

MU43815PG/D2 9-49 12101187

II

II

INTERPROCESS COMMUNICATION

value to which the semaphore is to be set, and it is stored as the erg.val member
of the union (lines 59, 60). Then, the system call is performed (lines 61, 63).
Depending on success or failure, the program returns the same messages as for
GETV AL above.

If the GETPID control command is selected (code 3), the system call is made
immediately since all required arguments are known (lines 64-67), and the PIO of
the process performing the last operation is displayed. Depending on success or
failure, the program returns the same messages as for GETV AL above.

If the GETNCNT control command is selected (code 4), a message prompting for a
semaphore number is displayed (lines 68-72). When entered, it is stored at the
address of the semnum variable (line 73). Then, the system call is performed,
and the number of processes waiting for the semaphore to become greater than its
current value is displayed (lines 74-77). Depending on success or failure, the
program returns the same messages as for GETV AL above.

If the GETZCNT control command is selected (code 5), a message prompting for a
semaphore number is displayed (lines 78-81). When it is entered, it is stored at
the address of the semnum variable (line 82). Then the system call is performed,
and the number of processes waiting for the semaphore value to become equal to
zero is displayed (lines 83, 86). Depending on success or failure, the program
returns the same messages as for GETV AL above.

If the GETALL control command is selected (code 6), the program first performs
an IPC_STAT control command to determine the number of semaphores in the set
(lines 88-93). The length variable is set to the number of semaphores in the set
(line 91). Next, the system call is made and, on s~ccess, the erg.array union
member contains the values of the semaphore set (line 96). Now, a loop is
entered which displays each element of the erg.array from zero to one less than
the value of length (lines 97-103). The semaphores in the set are displayed on a
single line, separated by a space. Depending on success or failure, the program
returns the same messages as for GETV AL above.

If the SETALL control command is selected (code 7), the program first performs
an IPC_STAT control command to determine the number of semaphores in the set
(lines 106-108). The length variable is set to the number of semaphores in the set
(line 109). Next, the program prompts for the values to be set and enters a loop
which takes values from the keyboard and initializes the erg.array union member
to contain the desired values of the semaphore set (lines 113-119). The loop puts
the first entry into the array position for semaphore number zero and ends when
the semaphore number that is filled in the array equals one less than the value of
length. The system call is then made (lines 120-122). Depending on success or
failure, the program returns the same messages as for GETV AL above.

MU43815PG/D2 9-50 12101/87

INTERPROCESS COMMUNICATION

If the IPC_STAT control command is selected (code 8), the system call is
performed (line 127), and the status information returned is printed out (lines
128-139); only the members that can be set are printed out in this program. Note
that if the system call is unsuccessful, the status information of the last successful
one is printed out. In addition, an error message is displayed, and the errno
variable is printed out (lines 191, 192).

If the IPC_SET control command is selected (code 9), the program gets the current
status information for the semaphore set identifier specified (lines 143-146). This
is necessary because this example program provides for changing only one
member at a time, and the semctl(2) system call changes all of them. Also, if an
invalid value happened to be stored in the user memory area for one of these
members, it would cause repetitive failures for this control command until
corrected. The next thing the program does is to prompt for a code corresponding
to the member to be changed (lines 147-153). This code is stored at the address of
the choice variable (line 154). Now, depending on the member picked, the
program prompts for the new value (lines 155-178). The value is placed at the
address of the appropriate member in the user memory area data structure, and
the system call is made (line 181). Depending on success or failure, the program
returns the same messages as for GETV AL above.

If the IPC_RMID control command (code 10) is selected, the system call is
performed (lines 183-185). The semid along with its associated data structure and
semaphore set is removed from the operating system. Depending on success or
failure, the program returns the same messages as for the other control
commands.

The example program for the semctl(2) system call follows. It is suggested that
the source program file be named semctl.c and that the executable file be named
semctl.

MU43815PG/D2 9-51 12/01/87

II

II

INTERPROCESS COMMUNICATION

1
2
3
4

6
6
7
8
9

10
11
12
13
14
16
16
17
18
19
20
21
22

23
24

26
26
27
28
29
30
31
32
33
34
36
38
37
38
39

/•Thi• i• a program to illu•trate
••th• ••maphore control, ••mctl(),
**•7•t•m call capabiliti••·
•/

/•Include n•c•••ar7 header fil••.•/
#include <•tdio.h>
#include <•7•/t7pe•.h>
#include <•7•/ipc.h>
#include <•7•/••m.h>

/•Start of main C language program•/
main()
{

extern int errno;
•truct ••mid_d• ••mid_d•;
int c, i, length;
int uid, gid, mode;
int retrn, ••mid, ••mnum, cmd, choice;
union ••mun {

int Tal;
•truct ••mid_d• •buf;
uahort arra7[26];

} arg;

/•Initialize the data •tructure pointer.•/
arg.buf = •••mid_d•;

/•Enter th• ••maphore ID.•/
printf(•Enter the ••mid=•);
•canf(•ld•, asemid);
/•Choose the desired command.•/
printf(•\nEnter the number for\n•);
printf(•the de•ired cmd:\n•);
printf(•GETVAL = 1\n•);
printf(•SETVAL = 2\n•);
printf(•GETPID = 3\n•);
printf(•GETNCNT = 4\n•);
printf(•GETZCNT = 6\n•);
printf(•GETALL = 6\n•);
printf(•SETALL = 7\n•);
printf(•IPC_STAT 8\n•);
printf(•IPC_SET = 9\n•);

Figure 9-6. semctl{) System Call Example (Sheet 1 of 5)

MU43815PG/D2 9-52 12/01/87

40
41
42
43
44
46

48
47
48

49
60
61
62
63
64
66
68
67
68
69
80
81
82
83
84
86
88
87
88
89
70
71
72
73
74
76
78
77

INTERPROCESS COMMUNICATION

printf(•IPC_llMID = 10\n•);
printf(•Entry •);
acanf(•ld", &cmd);
/•Check entries.•/
printf (•\naemid =Id, cmd = ld\n\n•,

••mid, cmd);

/•Set the command and do the call.•/
switch (cmd)
{

ca•• 1: /•Get a specified value.•/
printf(•\nEnter the ••mnum = •);
acanf("ld", &aemnum);
/•Do the system call.•/
retrn = aemctl(aemid, aemnum, GETVAL, O);
printf(•\nThe aemval = ld\n•, retrn);
break;

case 2: /•Set a specified value.•/
printf(•\nEnter the aemnum = •);
acanf("ld•, &aemnum);
printf(•\nEnter the value=•);
acanf("ld•, &arg.val);
/•Do the system call.•/
retrn = aemctl(aemid, aemnum, SETVAL, arg.val);
break;

case 3: /•Get the process ID.•/
retrn = aemctl(aemid, 0, GETPID, O);
printf(•\nThe aempid = ld\n•, retrn);
break;

case 4: /•Get the number of proc•••••
waiting for the semaphore to
become greater than its current

value.•/
printf(•\nEnter the aemnum = •);
acanf("ld•, &aemnum);
/•Do the system call.•/
retrn = aemctl(••mid, ••mnum, GETNCNT, O);
printf(•\nThe aemncnt =Id•, retrn);
break;

Figure 9-6. semctl() System Call Example (Sheet 2 of 5)

MU43815PG/D2 9-53 12101/87

II

II

INTERPROCESS COMMUNICATION

78
79
80
81
82
83
84
86
88

87
88
89
90
91
92
93
94
96
98
97
98
99

100
101
102
103
104

106
108
107
108
109
110
111
112
113
114
116
118
117
118
119

ca•• 6: /•Get th• number of proc•••••
waiting for the ••maphore

value to become zero.•/
printf(•\nEnter th• ••mnum = •);
•canf(•ld•, &••mnum);
/•Do th• •7•t•m call.•/
retrn = ••mctl(••mid, ••mnum, GETZCNT, O);
printf(•\nTh• ••mzcnt =Id•, retrn);
break;

ca•• 8: /•Get all th• ••maphor••.•/
/•Get the number of ••maphor•• in

th• ••maphor• ••t.•/
retrn = ••mctl(••mid, 0, IPC_EITAT, arg.buf);
length= arg.buf->••lll_ll••m•;
if(retrn == -1)

goto ERROR;
/•Oet and print all ••maphor•• in the

•p•cified ••t.•/
retrn = ••mctl(••mid, 0, GETALL, arg.arra7);
for Ci = O; i < length; i++)
{

}

printf(•ld•, arg.arra7[i]);
/•Separate eac:h

••maphore.•/
printf c•1c•. • •);

break;

ca•• 7: /•Bet all ••maphor•• 1n th• ••t.•/
/•O•t th• number of ••maphor•• in

th• ••t.•/
retrn = ••mctl(••mid, 0, IPCJITAT, arg.buf);
length= arg.buf->••m_n••m•;
printf(•Length = ld\n•, length);
if(retrn == -1)

goto ERROR;
/•Bet th• ••maphor• ••t value•.•/
printf(•\nEnter each value:\n•);
for(i = O; i < length ; i++)
{

}

•c:anf (•Id•, &c);
arg.arra7[i] = c;

Figure 9-6. semctlQ System Call Example (Sheet 3 of 5)

MU43815PG/D2 9-54 12/01/87

120
121
122
123
126
127
128
129
130
131
132
133
134
136
138
137

138
139
140

141
142
143
144
146
148
147
148
149
160
161
162
163
164
166

168
167
168
169
180
181
182

INTERPROCESS COMMUNICATION

/•Do th• •ystem ca11.•/
retrn = semctl(semid, 0, SETALL, arg.array);
break;

case 8: /•Get th• status for the semaphore ••t.•/
/•Get and print th• current statu• values.•/
retrn = ••mct1(••mid, 0, IPC_BTAT, arg.buf);
print! (•\nThe USER ID= ld\n•,

arg.buf->sem_perm.uid);
print! ("The GROUP ID= ld\n•,

arg.buf->sem._perm.gid);
print! ("Th• operation permissions = Olo\n•,

arg.buf->•em._perm.mode);
print! ("Th• number of ••maphores in ••t = ld\n•,

arg.buf->sem._nsem•);
print! ("Th• 1ast ••mop time = ld\n•,

arg.buf->sem._otime);

print! ("The 1a•t change time
arg.buf->•em._ctime);

break;

ld\n•,

case 9: /•Select and change th• desired
member of the data structure.•/

/•Get the current status values.•/
retrn = semctl(semid, 0, IPC_STAT, arg.buf);
if(retrn == -1)

goto ERROR;
/•Se1ect th• member to change.•/
printf("\nEnter the number for the\n•);
printf("member to be changed:\n•);
printf("•em._perm.uid 1\n•);
printf("••m._perm.gid 2\n•);
printf("••m_p•rm.mode = 3\n•);
printf("Entry •);
•canf("ld", &choice);
switch(choice){

case 1: /•Chang• the user ID.•/
printf("\nEnter USER ID=•);
scan! ("Id", &uid);
arg.buf->sem._perm.uid = uid;
printf("\nUSER ID= ld\n•,

arg.buf->sem_perm.uid);
break;

Figure 9-6. semctl() System Call Example (Sheet 4 of 5)

MU43815PG/D2 9-55 12/01/87

II

II

INTERPROCESS COMMUNICATION

183
184
186
188
187
188
189

170
171
172
173
174
176
178
177
178
179
180
181
182
183
184
186
186
187
188
189
190
191
192
193
194
196
196
197
198

ca•• 2: /•Chang• the group ID.•/
priDtf(•\nEDt•r GROUP ID=•);
8CaDf(•ld•, &gid);
arg.buf->••m_p•rm.gid = gid;
printf(•\nGROUP ID = ld\n•,

arg.buf->••m_p•rm.gid);
break;

ca•• 3: /•Chang• the mode portion of
th• operation

}

permi••ion•.•/
priDtf(•\nEnter MODE=•);
•canf(•lo•, &mode);
arg.buf->••m_perm.mode =mode;
priDtf(•\nMODE = Olo\n•,

arg.buf->••m_p•rm.mode);
break;

/•Do the change.•/
retrD • ••mctl(••mid, 0, IPC_BET, arg.buf);
break;

ca•• 10: /•Remove the ••mid along with it•
data •tructure.•/

retrD = ••mctl(•emid, 0, IPC_llMID, O);
}

/•Perform the following if the call i• un•ucc•••ful.•/
if(retrD == -1)
{

ERROR:

}

}

printf (•\n\nThe ••mctl •7•t•m call failed!\n•);
printf (•The error number= ld\n•, errno);
n:it(O);

printf (•\n\DThe ••mctl •7•t•m call wa• •ucc•••ful\n•);
printf (•for ••mid= ld\n•, ••mid);
exit (0);

Figure 9-6. semctlO System Call Example (Sheet 5 of 5)

MU43815PG/D2 9-56 12/01/87

INTERPROCESS COMMUNICATION

Operations on Semaphores
This section contains a detailed description of using the semop(2) system call
along with an example program which allows all its capabilities to be exercised.

Using semop

The synopsis found in the semop(2) entry in the Programmer's Reference Manual is
as follows:

#include <•y•/typ••.h>
#include <•y•/ipc.h>
#include <•y•/••m.h>

int ••mop (••mid, •op•, n•op•)
int ••mid;
•truct ••mbuf •••op•;
un•igned naop•;

The semop(2) system call requires three arguments to be passed to it, and it
returns an integer value.

On successful completion, a zero value is returned and when unsuccessful it
returns a-1.

The semid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the semget(2) system call.

The sops argument is a pointer to an array of structures in the user memory area
that contains the following for each semaphore to be changed:

• the semaphore number

• the operation to be performed

• the control command (flags)

The **SOPS declaration means that a pointer can be initialized to the address of
the array, or the array name can be used since it is the address of the first element
of the array. Sembuf is the tag name of the data structure used as the template
for the structure members in the array; it is located in the #include <sys/sem.h>
header file.

The nsops argument specifies the length of the array (the number of structures in
the array). The maximum size of this array is determined by the SEMOPM
system tunable parameter. Therefore, a maximum of SEMOPM operations can be
performed for each semop(2) system call.

MU43815PG/D2 9-57 12/01/87

II

II

INTERPROCESS COMMUNICATION

The semaphore number determines the particular semaphore within the set on
which the operation is to be performed.

The operation to be performed is determined by the following:

• a positive integer value means to increment the semaphore value by its value

• a negative integer value means to decrement the semaphore value by its value

• a value of zero means to test if the semaphore is equal to zero

The following operation commands (flags) can be used:

• IPC_NOWAIT-this operation command can be set for any operations in the
array. The system call will return unsuccessfully without changing any
semaphore values at all if any operation for which IPC_NOW AIT is set cannot
be performed successfully. The system call will be unsuccessful when trying
to decrement a semaphore more than its current value, or when testing for a
semaphore to be equal to zero when it is not.

• SEM_UNDO-this operation command allows any operations in the array to
be undone when any operation in the array is unsuccessful and does not have
the IPC_NOW AIT flag set. That is, the blocked operation waits until it can
perform its operation; and when it and all succeeding operations are
successful, all operations with the SEM_UNDO flag set are undone.
Remember, no operations are performed on any semaphores in a set until all
operations are successful. Undoing is accomplished by using an array of
adjust values for the operations that are to be undone when the blocked
operation and all subsequent operations are successful.

Example Program

The example program in this section (Figure 9-7) is a menu-driven program which
allows all possible combinations of using the semop(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the shmop(2) entry in the Programmer's Reference Manual Note that in this
program errno is declared as an external variable, and therefore, the errno.h
header file does not have to be included.

Variable and structure names have been chosen to be as dose as possible to those
in the synopsis. Their declarations are self-explanatory. These names make the
program more readable, and this is perfectly legal since the declarations are local

MU43815PG/02 9-58 12/01/87

INTERPROCESS COMMUNICATION

to the program. The variables declared for this program and their purpose are as
follows:

• sembuf[lO]-used as an array buffer (line 14) to contain a maximum of ten
sembuf type structures; ten equals SEMOPM, the maximum number of
operations on a semaphore set for each semop(2) system call

• •sops-used as a pointer (line 14) to sembuf[lO] for the system call and for
accessing the structure members within the array

• rtrn-used to store the return values from the system call

• flags-used to store the code of the IPC_NOW AIT or SEM_UNDO flags for
the semop(2) system call (line 60)

• i-used as a counter (line 32) for initializing the structure members in the
array, and used to print out each structure in the array (line 79)

• nsops-used to specify the number of semaphore operations for the system
call-must be less than or equal to SEMOPM

• semid-used to store the desired semaphore set identifier for the system call

First, the program prompts for a semaphore set identifier that the system call is to
perform operations on (lines 19-22). Semid is stored at the address of the semid
variable (line 23).

A message is displayed requesting the number of operations to be performed on
this set (lines 25-27). The number of operations is stored at the address of the
nsops variable (line 28).

Next, a loop is entered to initialize the array of structures (lines 30-77). The
semaphore number, operation, and operation command (flags) are entered for
each structure in the array. The number of structures equals the number of
semaphore operations (nsops) to be performed for the system call, so nsops is
tested against the i counter for loop control. Note that sops is used as a pointer
to each element (structure) in the array, and sops is incremented just like i. sops
is then used to point to each member in the structure for setting them.

After the array is initialized, all its elements are printed out for feedback (lines
78-85).

The sops pointer is set to the address of the array (lines 86, 87). Sembuf could be
used directly, if desired, instead of sops in the system call.

The system call is made (line 89), and depending on success or failure, a
corresponding message is displayed. The results of the operation(s) can be
viewed by using the semctl() GETALL control command.

MU43815PG/D2 9-59 12/01/87

II

II

INTERPROCESS COMMUNICATION

The example program for the semop(2) system call follows. It is suggested that
the source program file be named semop.c and that the executable file be named
semop.

1
2
3
4

6
8
7
8
9

10
11
12
13
14
16
18
17
18

19
20
21
22
23
24

26
28
27
28
29

30
31
32
33

/•Thi• i• a program. to illu•trate
••th• ••maphor• operation•, ••mop(),
•••7•t•m call capabiliti••·
•I

/•Include
#include
#include
#include
#include
/•Start of
main()

necessary header
<atdio.h>
<•7•/t7p••.h>
<•7•/ipc.h>
<•7•/••m.h>

main C language

files.•/

program•/

{

extern int errno;
•truct ••mbuf ••mbuf[10], ••op•;
char •tring [] ;
int retrn, flag•, ••Ill.JI.Um, i, ••mid;
un•igned naopa;
•op• = ••mbuf; /•Pointer to array ••mbuf .•/

/•Enter the ••maphore ID.•/
printf(•\nEnter the ••mid of\n•);
printf(•the semaphore ••t to\n•);
printf(•be operated on=•);
•canf(•ld•, &aemid);
printf(•\n•emid =Id•, ••mid);

/•Enter the number of operation•.•/
printf(•\nEnt•r the number of ••maphore\n•);
printf(•operation• for this ••t = •);
•canf(•ld•, &naopa);
printf(•\nnoaopa =Id•, naopa);

/•Initialize the array for the
number of operations to be performed.•/

for(i = O; i < naopa; i++, aop•++)
{

Figure 9-7. semop(2) System Call Example (Sheet 1 of 3)

MU43815PG/D2 9-60 12/01/87

34
36
36
37
38
39
40

41
42
43
44
46
46
47
48
49
60

61
62
63
64
66
66
67
68
69
60

61
62
63
64
66
66
67
68
69
70
71
72
73
74
76
76
77 }

INTERPROCESS COMMUNICATION

/•Thi• determine• th• ••maphore in
th• ••maphor• ••t.•/

printf(•\nEnter th• ••maphore\n•);
printf(•number (•em_num) = •);
•canf(•ld•, &•em_num);
•op•->•em_num = ••m_num;
printf(•\nTh• ••m_num =Id•, •opa->aem_num);

/•Enter a (-)number to decrement,
an unsigned number (no +) to increment,
or zero to test for zero. Th••• values
are entered into a string and converted
to integer values.•/

printf(•\nEnter the operation for\n•);
printf(•th• semaphore (sem._op) = •);
scanf(•I··· string);
sops->aem._op = atoi(string);
printf(•\nsem._op = ld\n•, sops->sem._op);

/•Specify the desired flags.•/
printf(•\nEnter the correaponding\n•);
printf(•number for th• deaired\n•);
printf("flags:\n•);
printf("No flags
printf("IPC_NOWAIT
printf ("SEll_UNDO
printf("IPC_NOWAIT and SEM_UNDO
printf(" Flags
scanf("ld", &flags);

switch (flags)
{
case 0:

sops->sem._flg = O;
break;

case 1:
aops->sem._flg IPC_NOWAIT;
break;

case 2:
sops->sem._flg = SEM_UNDO;
break;

case 3:

= O\n•);
1 \n•) ;
2\n•);

= 3\n•);
= •);

sops->sem._flg = IPC_NOWAIT I SEM_UNDO;
break;

}
printf("\nFlags = Olo\n•, sops->sem._flg);

Figure 9-7. semop(2) System Call Example (Sheet 2 of 3)

MU43815PG/D2 9-61 12/01/87

II

II

INTERPROCESS COMMUNICATION

78
79
80
81
82
83
84
86

86
87

88
89
90
91
92
93
94
96
96

97
98
99 }

/•Print out each etructure in the array.•/
for(i = O; i < neope; i++)
{

}

printf("\neem_num = ld\n•, eembuf[i].eem_num);
printf("eem_op = ld\n•, eembuf[i] .eem_op);
printf("sem_flg = lo\n•, aembuf[i] .sem_flg);
printf ("le•, • ');

eope = eembuf; /•Reset the pointer to
eembuf[O].•/

/•Do the eemop eyetem call.•/
retrn = eemop(eemid, eope, neope);
if(retrn == -1) {

}

printf("\nSemop failed. •);
printf("Error = ld\n•, errno);

•l•• {

}

printf (•\nSemop was successful\n•);
printf("for ••mid= ld\n•, eemid);

printf("Value returned= ld\n•, retrn);

Figure 9-7. semop(2) System Call Example (Sheet 3 of 3)

Shared Memory
The shared memory type of IPC allows two or more processes (executing
programs) to share memory and consequently the data contained there. This is
done by allowing processes to set up access to a common virtual memory address
space. This sharing occurs on a segment basis, which is memory management
hardware dependent.

This sharing of memory provides the fastest means of exchanging data between
processes.

A process initially creates a shared memory segment facility using the shmget(2)
system call. On creation, this process sets the overall operation permissions for
the shared memory segment facility, sets its size in bytes, and can specify that the
shared memory segment is for reference only (read-only) on attachment. If the

MU43815PG/D2 9-62 12/01/87

INTERPROCESS COMMUNICATION

memory segment is not specified to be for reference only, all other processes with
appropriate operation permissions can read from or write to the memory segment.

There are two operations that can be performed on a shared memory segment:

• shmat(2) - shared memory attach

• shmdt(2) - shared memory detach

Shared memory attach allows processes to associate themselves with the shared
memory segment if they have permission. They can then read or write as
allowed.

Shared memory detach allows processes to disassociate themselves from a shared
memory segment. Therefore, they lose the ability to read from or write to the
shared memory segment.

The original owner/creator of a shared memory segment can relinquish ownership
to another process using the shmctl(2) system call. However, the creating
process remains the creator until the facility is removed or the system is
reinitialized. Other processes with permission can perform other functions on the
shared memory segment using the shmctl(2) system call.

System calls, which are documented in the Programmer's Reference Manual, make
these shared memory capabilities available to processes. The calling process
passes arguments to a system call, and the system call either successfully or
unsuccessfully performs its function. If the system call is successful, it performs
its function and returns the appropriate information. Otherwise, a known error
code (-1) is returned to the process, and the external variable errno is set
accordingly.

Using Shared Memory

The sharing of memory between processes occurs on a virtual segment basis.
There is one and only one instance of an individual shared memory segment
existing in the operating system at any point in time.

Before sharing of memory can be realized, a uniquely identified shared memory
segment and data structure must be created. The unique identifier created is
called the shared memory identifier (shmid); it is used to identify or reference the
associated data structure. The data structure includes the following for each
shared memory segment:

• operation permissions

• segment size

MU43815PG/D2 9-63 12/01/87

II

II

INTERPROCESS COMMUNICATION

• segment descriptor

• process identification performing last operation

• process identification of creator

• current number of processes attached

• in memory number of processes attached

• last attach time

• last detach time

• last change time

The C Programming Language data structure definition for the shared memory
segment data structure is located in the /usr/include/sys/shm.h header file. It is
as follows:

** There i• a •hared mem id data •tructure for
** each ••gment in th• •Y•t•m.
•I

•truct •hmid_d• {

•truct ipc_perm •hm_perm;
int •hm_••gs.z;
•truct region ••hm_reg;
char pad [4];
u•hort •hm_lpid;
u•hort •hm_cpid;
u•hort •hm_nattch;
u•hort •hm_cnattch;
time_t •hm_atime;
time_t •hm_dtime;
time_t •hm_ctime;

};

I•
I•
I•
I•
I•
I•
I•
I•
/•
I•
I•

operation permi••ion •truct
••gment •i.ze •I
ptr to region structure •I
for awap compatibility •/
pid of la•t •hmop •I
pid of creator •/
u•ed only for •hminfo •I
u••d only for •hminfo •I
la•t ahmat time •I
la•t •hmdt time •I
la•t change time •I

•I

Note that the shm_perm member of this structure uses ipc_perm as a template.
The breakout for the operation permissions data structure is shown in Figure 9-1.

The ipc_perm data structure is the same for all IPC facilities, and it is located in
the #include <sys/ipc.h> header file. It is shown in the introduction section of
"Messages."

Table 9-5 shows the shared memory state information.

MU43815PG/02 9-64 12/01/87

INTERPROCESS COMMUNICATION

TABLE 9-5. Shared Memory State Information

Shared Memory States

Lock Bit Swa_E Bit Allocated Bit ImE.ied State

0 0 0 Unallocated Se_g_ment

0 0 1 In core

0 1 0 Unused

0 1 1 On Disk

1 0 1 Locked Incore

1 1 0 Unused

1 0 0 Unused

1 1 1 Unused

The implied states of Table 9-5 are as follows:

• Unallocated Segment-the segment associated with this segment descriptor
has not been allocated for use.

• lncore-the shared segment associated with this descriptor has been allocated
for use. Therefore, the segment does exist and is currently resident in
memory.

• On Disk-the shared segment associated with this segment descriptor is
currently resident on the

swap device.

• Locked lncore-the shared segment associated with this segment descriptor is
currently locked in memory and will not be a candidate for swapping until the
segment is unlocked. Only the super-user may lock and unlock a shared
segment.

• Unused-this state is currently unused and should never be encountered by
the normal user in shared memory handling.

MU43815PG/D2 9-65 12/01/87

II

II

INTERPROCESS COMMUNICATION

The shmget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the shmflg argument that it receives:

•to get a new shmid and create an associated shared memory segment data
structure for it

• to return an existing shmid that already has an associated shared memory
segment data structure

The task performed is determined by the value of the key argument passed to the
shmget(2) system call. For the first task, if the key is not already in use for an
existing shmid, a new shmid is returned with an associated shared memory
segment data structure created for it provided no system tunable parameters
would be exceeded.

There is also a provision for specifying a key of value zero which is known as the
private key (IPC_PRIV ATE = 0); when specified, a new shmid is always returned
with an associated shared memory segment data structure created for it unless a
system tunable parameter would be exceeded. When the ipcs command is
performed, the KEY field for the shmid is all zeros.

For the second task, if a shmid exists for the key specified, the value of the
existing shmid is returned. If it is not desired to have an existing shmid
returned, a control command (IPC_EXCL) can be specified (set) in the shmflg
argument passed to the system call. The details of using this system call are
discussed in the ''Using shmget" section of this chapter.

When performing the first task, the process that calls shmget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains
the creator; see the "Controlling Shared Memory" section in this chapter. The
creator of the shared memory segment also determines the initial operation
permissions for it.

Once a uniquely identified shared memory segment data structure is created,
shared memory segment operations [shmop()] and control [shmct1(2)] can be
used.

Shared memory segment operations consist of attaching and detaching shared
memory segments. System calls are provided for each of these operations; they
are shmat(2) and shmdt(2). Refer to the "Operations for Shared Memory" section
in this chapter for details of these system calls.

MU43815PG/D2 9-66 12/01/87

INTERPROCESS COMMUNICATION

Shared memory segment control is done by using the shmctl(2) system call. It
permits you to control the shared memory facility in the following ways:

• to determine the associated data structure status for a shared memory segment
(shmid)

• to change operation permissions for a shared memory segment

• to remove a particular shmid from the operating system along with its
associated shared memory segment data structure

• to lock a shared memory segment in memory

• to unlock a shared memory segment

Refer to the "Controlling Shared Memory" section in this chapter for details of the
shmctl(2) system call.

Getting Shared Memory Segments

This section gives a detailed description of using the shmget(2) system call along
with an example program illustrating its use.

Using shmget

The synopsis found in the shmget(2) entry in the Programmer's Reference Manual is
as follows:

#include <•y•/type•.h>
#include <•y•/ipc.h>
#include <•y•/•hm.h>

int •hmget (key, •ize, •hmflg)
key_t key;
int •ize, •hmflg;

All these include files are located in the /usr/include/sys directory of the
operating system. The following line in the synopsis:

int shmget (key, size, shmflg)

informs you that shmget(2) is a function with three formal arguments that returns
an integer type value, on successful completion (shmid). The next two lines:

key_t key;
int size, shmflg;

MU43815PG/D2 9-67 12/01/87

II

II

INTERPROCESS COMMUNICATION

declare the types of the formal arguments. The variable key_t is declared by a
typedef in the types.h header file to be an integer.

The integer returned from this function on successful completion is the shared
memory identifier (shmid) that was discussed earlier.

As declared, the process calling the shmget(2) system call must supply three
arguments to be passed to the formal key, size, and shmflg arguments.

A new shmid with an associated shared memory data structure is provided if
either of the following is true:

• key is equal to IPC_PRIV ATE

• key is passed a unique hexadecimal integer, and shmflg ANDed with
IPC_CREAT is TRUE

The value passed to the shmflg argument must be an integer type octal value and
will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes and execution modes
determine the user/group/other attributes of the shmflg argument. They are
collectively referred to as "operation permissions." Table 9-6 reflects the numeric
values (expressed in octal notation) for the valid operation permissions codes.

TABLE 9-6. Operation Permissions Codes

Operation Pe~issions Octal Value

Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

A specific octal value is derived by adding the octal values for the operation
permissions desired. That is, if read by user and read/write by others is desired,
the code value would be 00406 (00400 plus 00006). There are constants located in

MU43815PG/02 9-68 12/01/87

INTERPROCESS COMMUNICATION

the shm.h header file which can be used for the user (OWNER). They are as
follows:

SHMJt
SHM_W

0400
0200

Control commands are predefined constants (represented by all uppercase letters).
Table 9-7 contains the names of the constants that apply to the shmgetQ system
call along with their values. They are also referred to as flags and are defined in
the ipc.h header file.

TABLE 9-7. Control Commands (Flags)

Control Command Value

IPC_CREAT 0001000
IPC__EXCL 0002000

The value for shmflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This is accomplished by
bitwise ORing (I) them with the operation permissions; the bit positions and
values for the control commands in relation to those of the operation permissions
make this possible. It is illustrated as follows:

Octal Value Bina Value

IPC_CREAT 01000 0 000 001 000 000 000
I ORed by User 00400 o ooo ·ooo 100 ooo ooo

shmflg 01400 0 000 001100 000 000

The shmflg value can be easily set by using the names of the flags with the octal
operation permissions value:

•hmid = •hmget (key, •ize, (IPC_CREAT 0400));

•hmid = •hmget (key, •ize, (IPC_CREAT IPC__EXCL I 0400));

As specified by the shmget(2) entry in the Programmer's Reference Manual, success
or failure of this system call depends on the argument values for key, size, and

MU43815PG/D2 9-69 12101/87

II

II

INTERPROCESS COMMUNICATION

shmflg or system tunable parameters. The system call will attempt to return a
new shmid if one of the following conditions is true:

• Key is equal to IPC_PRIV ATE (0).

• Key does not already have a shmid associated with it, and (shmflg &
IPC_CREA1) is "true" (not zero).

The key argument can be set to IPC_PRIV ATE in the following ways:

shmid = shmget (IPC_F'RIVATE, size, shmflg);

or

shmid = shmget (0 , size, shmflg);

This alone will cause the system call to be attempted because it satisfies the first
condition specified. Exceeding the SHMMNI system tunable parameter always
causes a failure. The SHMMNI system tunable parameter determines the
maximum number of unique shared memory segments (shmids) in the operating
system.

The second condition is satisfied if the value for key is not already associated with
a shmid and the bitwise ANDing of shmflg and IPC_CREAT is "true" (not zero).
This means that the key is unique (not in use) within the operating system for this
facility type and that the IPC_CREAT flag is set (shmflg I IPC_CREA1). The
bitwise ANDing (&), which is the logical way of testing if a flag is set, is
illustrated as follows:

•hmf lg = x 1 x x x
& IPC_CREAT = 0 1 0 0 0

re•ult. = 0 1 0 0 0

Cx = immaterial)

(not. zero)

Because the result is not zero, the flag is set or "true." SHMMNI applies here
also, just as for condition one.

IPC_EXCL is another control command used with IPC_CREAT to exclusively have
the system call fail if, and only if, a shmid exists for the specified key provided.
This is necessary to prevent the process from thinking that it has received a new
(unique) shmid when it has not. In other words, when both IPC_CREAT and
IPC_EXCL are specified, a unique shmid is returned if the system call is
successful. Any value for shmflg returns a new shmid if the key equals zero
(IPC_PRIV ATE).

MU43815PG/D2 9-70 12/01/87

INTERPROCESS COMMUNICATION

The system call will fail if the value for the size argument is less than SHMMIN
or greater than SHMMAX. These tunable parameters specify the minimum and
maximum shared memory segment sizes.

Refer to the shmget(2) manual page for specific associated data structure
initialization for successful completion. The specific failure conditions with error
names are contained there also.

Example Program

The example program in this section (Figure 9-8) is a menu-driven program which
allows all possible combinations of using the shmget(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user.:.written program requirements are pointed
out.

This program begins (lines 4-7) by including the required header files as specified
by the shmget(2) entry in the Programmer's Reference Manual. Note that the
errno.h header file is included as opposed to declaring errno as an external
variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since they are
local to the program. The variables declared for this program and their purposes
are as follows:

• key-used to pass the value for the desired key

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm_flags-used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to pass the
shmflg argument ·

• shm id-used for returning the message queue identification number for a
successful system call or the error code (-1) for an unsuccessful one

• size-used to specify the shared memory segment size.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags) which
are selected from a menu (lines 14-31). All possible combinations are allowed

MU43815PG/D2 9-71 12/01/87

II

II

INTERPROCESS COMMUNICATION

even though they might not be valid. This allows observing the errors for illegal
combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the opperm_flags variable
(lines 35-50).

A display then prompts for the size of the shared memory segment, and it is
stored at the address of the size variable (lines 51-54).

The system call is made next, and the result is stored at the address of the shmid
variable (line 56).

Since the shmid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 58). If shmid equals
-1, a message indicates that an error resulted and the external errno variable is
displayed (lines 60, 61).

If no error occurred, the returned shared memory segment identifier is displayed
(line 65).

The example program for the shmget(2) system call follows. It is suggested that
the source program file be named shmget.c and that the executable file be named
shmget.

When compiling C programs that use floating point operations, the -f option
should be used on the cc command line. If this option is not used, the program
will compile successfully, but when the program is executed it will fail.

MU43815PG/02 9-72 12/01/87

INTERPROCESS COMMUNICATION

1 /•Thi• i• a program to illu•trate
2 ••the •hared memory get, •hmget(),
3 •••y•t•m call capabiliti••.•/

4
6
8
7

#i:a.clude
#i:a.clud•
#i:a.clude
#i:a.clude

<•7•/t7p••.h>
<•7•/ipc.h>
<•7•/•hm.h>
<err:a.o.h>

8 /•Start of mai:a. C la:a.guage program•/
9 mai:a.()

10 {
11 key_t ke7; /•declare a• long integer•/
12 int opperm, flag•;
13 i:a.t •hmid, •ize, opperm_flag•;
14 /•E:a.ter the de•ired ke7•/
16 pri:a.tf(•E:a.ter the de•ired ke7 i:a. hex=•);
18 •ca:a.f(•lx•, &ke7);

17 /•E:a.ter the de•ired octal operatio:a.
18 permi••io:a.•.•/
19 pri:a.tf(•\:a.E:a.ter the operatio:a.\:a.•);
20 pri:a.tf(•permi••io:a.• i:a. octal=•);
21 •ca:a.f(•lo•, &opperm);

22
23
24
26
28
27
28
29
30
31

32
33
34

/•Set the desired flag•.•/
pri:a.tf(•\:a.E:a.ter corre•pondi:a.g :a.umber to\:a.•);
pri:a.tf("•et the de•ired flag•:\:a.•);
pri:a.tf(•No flag• = O\:a.•);
pri:a.tf("IPC_CREAT = 1\:a.•);
pri:a.tf(•IPC__EXCL = 2\:a.•);
pri:a.tf(•IPC_CREAT a:a.d IPC__EXCL = 3\:a.•);
pri:a.tf(• Flag• = •);
/•Get the flag(•) to be •et.•/
•ca:a.f(•ld•, &flags);

/•Check the value•.•/
pri:a.tf (•\:a.ke7 =Oxlx, opperm = Olo, flags = Olo\n•,

ke7, opperm, flags);

Figura 9-8. shmgat(2) System Call Example (Sheet 1 of 2)

MU43815PG/D2 9-73 12/01/87

II

II

INTERPROCESS COMMUNICATION

36
36
37
38
39
40
41
42
43
44
46
46
47
48
49
60

61
62
63
64

66
66

67
68
69
60
61
62
63
64
66
66
67 }

/•Incorporate the control fields (flags) with
the operation permiasions•/

awitch (flags)
{

caae 0: /•No flaga are to be aet.•/
opperm_flaga = (opperm I O);
break;

case 1: /•Set the IPC_CREAT flag.•/
opperm_flaga = (opperm I IPC_CREAT);
break;

case 2: /•Set the IPC....EXCL flag.•/
opperm_flaga = (opperm I IPC....EXCL);
break;

caae 3: /•Set the IPC_CREAT and IPC....EXCL flags.•/
opperm_flaga = (opperm I IPC_CREAT I IPC....EXCL);

}

/•Get the aize of the aegment in bytea.•/
printf (•\nEnter the aegment•);
printf (•\naize in bytea = •);
scanf c•Sd•, &size);

/•Call the shmget ayatem call.•/
ahmid = ahmget (key, aize, opperm_flags);

/•Perform the following if the call ia unaucceaaful.•/
if (shmid == -1)
{

}

printf (•\nThe ahmget system call failed!\n•);
printf (•The error number= ld\n•, errno);

/•Return the ahmid on succeaaful completion.•/
else

printf (•\nThe ahmid = ld\n•, ahmid);
n:it(O);

Figure 9-8. shmget(2) System Call Example (Sheet 2 of 2)

MU43815PG/D2 9-74 12/01/87

INTERPROCESS COMMUNICATION

Controlling Shared Memory
This section gives a detailed description of using the shmctl(2) system call along
with an example program which allows all its capabilities to be exercised.

Using shmctl

The synopsis found in the shmctl(2) entry in the Programmer's Reference Manual is
as follows:

#inc1ude <•7•/t7p••.h>
#inc1ude <•7•/ipc.h>
#inc1ude <•7•/•hm.h>

int •hmct1 (•hmid, cmd, buf)
int •hmid, cmd;
•truct •hmid_d• •buf;

The shmctl(2) system call requires three arguments to be passed to it, and
shmctl(2) returns an integer value.

On successful completion, a zero value is returned; and when unsuccessful,
shmctl() returns a -1.

The shmid variable must be a valid, non-negative, integer value. In other words,
it must have already been created by using the shmget(2) system call.

The cmd argument can be replaced by one of following control commands (flags):

• IPC_STAT-return the status information contained in the associated data
structure for the specified shmid and place it in the data structure pointed to
by the •buf pointer in the user memory area

• IPC_SET-for the specified shmid, set the effective user and group
identification, and operation permissions

• IPC_RMID-remove the specified shmid along with its associated shared
memory segment data structure

• SHM_LOCK-lock the specified shared memory segment in memory, must be
super-user

• SHM_UNLOCK-unlock the shared memory segment from memory, must be
super-user.

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID control command. Only the

MU43815PG/D2 9-75 12/01/87

II

II

INTERPROCESS COMMUNICATION

super-user can perform a SHM_LOCK or SHM_UNLOCK control command. A
process must have read permission to perform the IPC_STAT control command.

The details of this system call are discussed in the example program for it. If you
have problems understanding the logic manipulations in this program, read the
"Using shmget" section of this chapter; it goes into more detail than what would
be practical to do for every system call.

Example Program

The example program in this section (Figure 9-9) is a menu-driven program that
allows all possible combinations of using the shmctl(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the shmctl(2) entry in the Programmer's Reference Manual. Note in this program
that errno is declared as an external variable, and therefore, the errno.h header
file does not have to be included.

Variable and structure names have been chosen to be as close as possible to those
in the synopsis for the system call. Their declarations are self-explanatory. These
names make the program more readable, and it is perfectly legal since they are
local to the program. The variables declared for this program and their purposes
are as follows:

• uid-used to store the IPC_SET value for the effective user identification

• gid-used to store the IPC_SET value for the effective group identification

• mode-used to store the IPC_SET value for the operation permissions

• rtrn-used to store the return integer value from the system call

• shmid-used to store and pass the shared memory segment identifier to the
system call

• command-used to store the code for the desired control command so that
subsequent processing can be performed on it

• choice-used to determine which member for the IPC_SET control command
that is to be changed

• shmid_ds--used to receive the specified shared memory segment identifier's
data structure when an IPC_STAT control command is performed

MU43815PG/D2 9-76 12/01/87

INTERPROCESS COMMUNICATION

• *bUf-a pointer passed to the system call which locates the data structure in
the user memory area where the IPC_STAT control command is to place its
return values or where the IPC_SET command gets the values to set.

Note that the shmid_ds data structure in this program (line 16) uses the data
structure located in the shm.h header file of the same name as a template for its
declaration. This is a perfect example of the advantage of local variables.

The next important thing to observe is that although the *bUf pointer is declared
to be a pointer to a data structure of the shmid_ds type, it must also be initialized
to contain the address of the user memory area data structure (line 17).

Now that all the required declarations have been explained for this program, this
is how it works.

First, the program prompts for a valid shared memory segment identifier which is
stored at the address of the shmid variable (lines 18-20). This is required for
every shmctl(2) system call.

Then, the code for the desired control command must be entered (lines 21-29),
and it is stored at the address of the command variable. The code is tested to
determine the control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is
performed (lines 39, 40) and the status information returned is printed out (lines
41-71). Note that if the system call is unsuccessful (line 146), the status
information of the last successful call is printed out. In addition, an error
message is displayed and the errno variable is printed out (lines 148, 149). If the II
system call is successful, a message indicates this along with the shared memory •
segment identifier used (lines 151-154).

If the IPC_SET control command is selected (code 2), the first thing done is to get
the current status information for the message queue identifier specified (lines 90-
92). This is necessary because this example program provides for changing only
one member at a time, and the system call changes all of them. Also, if an invalid
value happened to be stored in the user memory area for one of these members, it
would cause repetitive failures for this control command until corrected. The next
thing the program does is to prompt for a code corresponding to the member to
be changed (lines 93-98). This code is stored at the address of the choice variable
(line 99). Now, depending on the member picked, the program prompts for the
new value (lines 105-127). The value is placed at the address of the appropriate
member in the user memory area data structure, and the system call is made
(lines 128-130). Depending on success or failure, the program returns the same
messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 132-135), and the shmid along with its associated message queue

MU43815PG/D2 9-77 12/01/87

II

INTERPROCESS COMMUNICATION

and data structure are removed from the operating system. Note that the •buf
pointer is not required as an argument to perform this control command and its
value can be zero or NULL. Depending on the success or failure, the program
returns the same messages as for the other control commands.

If the SHM_LOCK control command (code 4) is selected, the system call is
performed (lines 137,138). Depending on the success or failure, the program
returns the same messages as for the other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system call is
performed (lines 140-142). Depending on the success or failure, the program
returns the same messages as for the other control commands.

The example program for the shmctl(2) system call follows. It is suggested that
the source program file be named shmctl.c and that the executable file be named
shmctl.

When compiling C programs that use floating point operations, the -f option
should be used on the cc command line. If this option is not used, the program
will compile successfully but will fail when executed.

MU43815PG/D2 9-78 12/01/87

INTERPROCESS COMMUNICATION

1 /•Thi• i• a program to illu•trat•
2 ••the •hared memory control, •hmctl(),
3 •••7•t•m call capabiliti••·
4 •/

6 /•Include n•c•••ar7 header file•.•/
6 #include <•tdio.h>
7 #include <•7•/t7p••.h>
8 #include <eye/ipc.h>
9 #include <•7e/ehm.h>

10 /•Start of main C language program•/
11 main()
12 {
13 extern int errno;
14 int uid, gid, mode;
16 int rtrn, •hmid, command, choice;
16 •truct •hmid_d• •hmid_de, •buf;
17 buf = &•hmid_d•;

18 /•Get the •hmid, and command.•/
19 printf(•Enter th• •hmid = •);
20 •canf(•ld•, &•hmid);
21 printf(•\nEnter the number for\n•);
22 printf(•th• d••ired command:\n•);

23
24
26
26
27
28
29

30
31
32

printf(•IPC_STAT = 1 \n•) ;
printf(•IPC_BET = 2\n•);
printf(•IPC_RMID = 3\n•);
printf(•SHM_.LOCK = 4\n•);
printf(•SHM_UNLOCK = 6\n•);
printf(•Entr7 = •) ;
•canf (•Id•, &command);

/•Check th• Taluee.•/
printf (•\n•hmid =Id, command

•hmid, command);
ld\n•,

Figure 9-9. shmctl(2) System Call Example (Sheet 1 of 4)

MU43815PG/D2 9-79 12/01/87

II

II

INTERPROCESS COMMUNICATION

33
34
36
36
37
38
39
40
41
42
43
44
46
46
47
48
49
60
61

62
63
64
66
66
67
68
69
60
61
62
63
64
66
66
67
68
69
70
71
72

awitch (command)
{

ca•• 1: /•Uae ahmctl() to duplicate
the data atructure for

ahmid in the shmid_ds area pointed
to by buf and then print it out.•/

rtrn = ahmctl(shmid, IPC_STAT,
buf);

printf (•\nThe USER ID= ld\n•,
buf->ahm_perm.uid);

printf (•The GROUP ID= ld\n•,
buf->shm_perm.gid);

printf (•The creator·• ID= ld\n•,
buf->shm_perm.cuid);

printf ("The creator·s group ID= ld\n•,
buf->shm_perm.cgid);

printf (•The operation permissions= Olo\n•,
buf->ahm_perm.mode);

printf ("The alot uaage aequence\n•);

printf (•number= Olx\n•,
buf->shm_perm.seq);

printf (•The key= Olx\n•,
buf->shm_perm.key);

printf ("The segment size= ld\n•,
buf->shm_aegsz);

printf (•The pid of last shmop = ld\n•,
buf->shm_lpid);

printf ("The pid of creator= ld\n•,
buf->shm_cpid);

printf ("The current# attached = ld\n•,
buf->ahm_nattch);

printf(•The in memory# attached= ld\n•,
buf->ahm_cnattach) ;

printf(•The laat shmat time ld\n•,
buf->shm_atime);

printf("The last ahmdt time = ld\n•,
buf->shm_dtime);

printf(•The last change time = ld\n•,
buf->ahm_ctime);

break;

I• Linea 73 - 87 deleted •/

Figure 9-9. shmctl(2) System Call Example (Sheet 2 of 4)

MU43815PG/D2 9-80 12/01/87

88
89

90
91
92

93
94
96
96
97
98
99

100
101
102
103
104

106
106
107
108
109
110
111
112

113
114
116
116
117
118
119

ca•• 2:

INTERPROCESS COMMUNICATION

/•Select and change the d••ired
member(•) of the data •tructure.•/

/•Get the original data for thi• •hmid
data •tructure fir•t.•/

rtrn = •hmctl(•hmid, IPC_BTAT, buf);

printf(•\nEnter the number for the\n•);
printf(•memb•r to be changed:\n•);
printf(••hm_perm.uid = 1\n•);
printf(••hm_perm.gid 2\n•);
printf(••hm_perm.mode 3\n•);
printf(•Entry = •);
•canf(•Sd•, &choice);
/•Only on• choice i• allowed per

pa•• a• an illegal entry will
cau•• repetitive failure• until

•hmid_d• i• updated with
IPC_BTAT. •/

•witch(choice){
ca•• 1:

printf(•\nEnter USER ID=•);
•canf C•Sd•, &uid);
buf->•hm_perm.uid = uid;
printf(•\nUSER ID= ld\n•,

buf->•hm_perm.uid);
break;

ca•• 2:
printf(•\nEnter GROUP ID •);
•canf(•Sd•, &gid);
buf->•hm_perm.gid = gid;
printf(•\nGROUP ID= ld\n•,

buf->•hm_perm.gid);
break;

Figure 9-9. shmctl(2) System Call Example (Sheet 3 of 4)

MU43815PG/D2 9-81 12/01/87

II

II

INTERPROCESS COMMUNICATION

120
121
122
123
124
126
128
127
128
129
130
131

132
133
134
136
138

137
138
139
140
141
142
143
144
146
148
147
148
149
160
161
162
163
164
166
168 }

case 3:

}

printf(•\nEnter MODE=•);
acanf(•lo•, &mode);
buf->ahm_perm.mode = mode;
printf(•\nMODE = Olo\n•,

buf->ahm_perm.mode);
break;

/•Do th• change.•/
rtrn = ahmctl(ahmid, IPC_SET,

buf);
break;

case 3: /•Remove th• ahmid along with its
associated
data structure.•/

rtrn = ahmctl(ahmid, IPC_RMID, NULL);
break;

case 4: /•Lock th• shared memory segment•/
rtrn = ahmctl(ahmid, SHMJ..OCK, NULL);
break;

case 6: /•Unlock th• shared memory
segment.•/

}

rtrn = ahmctl(ahmid, SHM_UNLOCK, NULL);
break;

/•Perform th• following if the call ia unsuccessful.•/
if(rtrn == -1)
{

printf (•\nTh• ahmctl system call failed!\n•);
printf (•The error number= ld\n•, errno);

}

/•Return the ahmid on successful completion.•/
.1 ••

printf (•\nShmctl was successful for ahmid
ahmid);

exit (O);

ld\n•,

Figure 9-9. shmctl(2) System Call Example (Sheet 4 of 4)

MU43815PG/D2 9-82 12/01/87

INTERPROCESS COMMUNICATION

Operations for Shared Memory
This section gives a detailed description of using the shmat(2) and shmdt(2)
system calls, along with an example program that allows all their capabilities to be
exercised.

Using shmop

The synopsis found in the shmop(2) entry in the Programmer's Reference Manual is
as follows:

#include <•y•/type•.h>
#include <•y•/ipc.h>
#include <•y•/•hm.h>

char ••hmat (•hmid, •hmaddr, •hmflg)
int •hmid;
char ••hmaddr;
int •hmflg;

int •hmdt (•hmaddr)
char ••hmaddr;

Attaching a Shared Memory Segment

The ahmat(2) system call requires three arguments to be passed to it, and it
returns a character pointer value.

The system call can be cast to return an integer value. On successful completion,
this value will be the address in core memory where the process is attached to the
shared memory segment and when unsuccessful it will be a-1.

The shmid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget(2) system call.

The shmaddr argument can be zero or user supplied when passed to the shmat(2)
system call. If it is zero, the operating system picks the address of where the
shared memory segment will be attached. If it is user supplied, the address must

MU43815PG/D2 9-83 12/01/87

II

II

INTERPROCESS COMMUNICATION

be a valid address that the operating system would pick. The following illustrates
some typical address ranges:

OxcOOcOOOO
OxcOOeOOOO
Oxc0100000
Oxc0120000

Note that these addresses are in chunks of 20,000 hexadecimal. To improve
portability, it would be wise to let the operating system pick addresses.

The shmflg argument is used to pass the SHM_RND and SHM__RDONLY flags to
the shmat() system call.

Further details are discussed in the example program for shmop{). If you have
problems understanding the logic manipulations in this program, read the "Using
shmget" section of this chapter; it goes into more detail than what would be
practical to do for every system call.

Detaching Shared Memory Segments

The shmdt(2) system call requires one argument to be passed to it, and shmdt(2)
returns an integer value.

On successful completion, zero is returned; and when unsuccessful, shmdt(2)
returns a-1.

Further details of this system call are discussed in the example program. If you
have problems understanding the logic manipulations in this program, read the
"Using shmget" section of this chapter; it goes into more detail than what would
be practical to do for every system call.

Example Program

The example program in this section (Figure 9-10) is a menu-driven program
which allows all possible combinations of using the shmat(2) and shmdt(2)
system calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as specified
by the shmop(2) entry in the Programmer's Reference Manual. Note that in this
program that errno is declared as an external variable, and therefore, the errno.h
header file does not have to be included.

MU43815PG/D2 9-84 12/01/87

INTERPROCESS COMMUNICATION

Variable and structure names have been chosen to be as close as possible to those
in the synopsis. Their declarations are self-explanatory. These names make the
program more readable, and this is perfectly legal since they are local to the
program. The variables declared for this program and their purposes are as
follows:

• flags-used to store the codes of SHM_RND or SHM_RDONLY for the
shmat(2) system call

• addr-used to store the address of the shared memory segment for the
shmat(2) and shmdt(2) system calls

• i-used as a loop counter for attaching and detaching

• attach-used to store the desired number of attach operations

• shmid--used to store and pass the desired shared memory segment identifier

• shmflg-used to pass the value of flags to the shmat(2) system call

• ratrn-used to store the return values from both system calls

• detach-used to store the desired number of detach operations

This example program combines both the shmat(2) and shmdt(2) system calls.
The program prompts for the number of attachments and enters a loop until they
are done for the specified shared memory identifiers. Then, the program prompts
for the number of detachments to be performed and enters a loop until they are
done for the specified shared memory segment addresses.

shmat

The program prompts for the number of attachments to be performed, and the
value is stored at the address of the attach variable (lines 17-21).

A loop is entered using the attach variable and the i counter (lines 23-70) to
perform the specified number of attachments.

In this loop, the program prompts for a shared memory segment identifier (lines
24-27) and it is stored at the address of the shmid variable (line 28). Next, the
program prompts for the address where the segment is to be attached (lines 30-
34), and it is stored at the address of the addr variable (line 35). Then, the
program prompts for the desired flags to be used for the attachment (lines 37-44),
and the code representing the flags is stored at the address of the flags variable
(line 45). The flags variable is tested to determine the code to be stored for the
shmflg variable used to pass them to the shmat(2) system call (lines 46-57). The
system call is made (line 60). If successful, a message stating so is displayed

MU43815PG/D2 9-85 12/01/87

II

INTERPROCESS COMMUNICATION

along with the attach address (lines 66-68). If unsuccessful, a message stating so
is displayed and the error code is displayed (lines 62, 63). The loop then
continues until it finishes.

shmdt

After the attach loop completes, the program prompts for the number of detach
operations to be performed (lines 71-75), and the value is stored at the address of
the detach variable (line 76).

A loop is entered using the detach variable and the i counter (lines 78-95) to
perform the specified number of detachments.

In this loop, the program prompts for the address of the shared memory segment
to be detached (lines 79-83), and it is stored at the address of the addr variable
(line 84). Then, the shmdt(2) system call is performed (line 87). If successful, a
message stating so is displayed along with the address that the segment was
detached from (lines 92,93). If unsuccessful, the error number is displayed (line
89). The loop continues until it finishes.

The example program for the shmop(2) system calls follows. It is suggested that
the program be put into a source file called shmop.c and then into an executable
file called shmop.

When compiling C programs that use floating point operations, the -f option
should be used on the cc command line. If this option is not used, the program
will compile successfully but will fail when executed.

MU43815PG/D2 9-86 12/01/87

INTERPROCESS COMMUNICATION

1 /•Thi• i• a program to illuatrate
2 ••the ahared memory operation•, ahmop(),
3 •••y•t•m call capabiliti••·
4 •/

6 /•Include n•c•••ary header file•.•/
8 #include <atdio.h>
7
8
9

10
11
12
13
1"
16

18
17
18
19
20

21
22

23
24
26
28
27
28
29

30
31
32
33
34
36
38

#include
#include
#include
/•Start
main()

<aya/typea.h>
<aya/ipc.h>
<•y•/•hm.h>

of main C language program•/

{
extern int errno;
int flaga, addr, i, attach;
int ahmid, ahmflg, retrn, detach;

/•Loop for attachment• by thi• proc•••.•/
printf("Enter the number of\n•);
printf("attachment• for thia\n•);
printf("proce•• (1-4) .\n•);
printf(" Attachment•=•);

acanf("ld", &attach);
printf("Number of attach•• = ld\n•, attach);

for(i = 1; i <= attach; i++) {
/•Enter th• ahared memory ID.•/
printf("\nEnter the ahmid of\n•);
printf("th• •hared memory ••gment to\n•);
printf("b• operated on= •);
acanf("ld", &ahmid);
printf(•\nahmid = ld\n•, ahmid);

/•Enter the Talue for •hmaddr.•/
printf("\nEnter the Talue for\n•);
printf("th• •hared memory addr•••\n•);
printf("in hexadecimal:\n•);
printf(" Shmaddr •);
acanf("lx", &addr);
printf("Th• deaired addr••• = Oxlx\n•, addr);

Figure 9-10. shmop() System Call Example (Sheet 1 of 3)

MU43815PG/D2 9-87 12101/87

II

II

INTERPROCESS COMMUNICATION

37
38
39
40
41
42
43
44
46

48
47
48
49
60
61
62
63
64
66
68
67
68

69
80
81
82
83
84
86
88
87
88
89
70

71
72
73
74
76

78
77
78

}

/•Specify the de•ir•d flag•.•/
printf(•\nEnter the corre•ponding\n•);
printf(•number for th• de•ired\n•);
printf(•flag•:\n•);

= 1\n•);
= 2\n•);

3\n•);

printf (•SHll_RND
printf(•SHM_,RDONLY
printf(•SHM_.RND and SHM_.RDONLY =
printf(• Flag• = •);
•canf(•ld•, &flag•);

•witch(flag•)
{

ca•• 1:
•hmflg SHM_.RND;
break;

ca•• 2:
•hmflg = SHM_.RDONLY;
break;

ca•• 3:
•hmflg = SHM_.RND I SHM_.RDONLY;
break;

}

printf(•\nFlag• = Olo\n•, •hmflg);

/•Do the •hmat •y•t•m call.•/
retrn = (int)•hmat(•hmid, addr, •hmflg);
if(retrn == -1) {

}

printf(•\nShmat failed. •);
printf(•Error = ld\n•, errno);

•l•• {

}

printf (•\nShmat wa• •ucce•aful\n•);
printf(•for •hmid = ld\n•, •hmid);
printf(•The address= Oxlx\n•, retrn);

/•Loop for detachment• by thi• process.•/
printf(•Enter the number of\n•);
printf(•detachment• for thi•\n•);
printf(•proceaa (1-4).\n•);
printf(• Detachments=•);

•canf(•ld•, &detach);
printf(•Number of attaches= ld\n•, detach);
for(i = 1; i <= detach; i++) {

Figure 9-10. shmop() System Call Example (Sheet 2 of 3)

MU43815PG/D2 9-88 12/01/87

79
80
81
82
83
84
86

88
87
88
89
90
91
92
93

94
96
98 }

}

INTERPROCESS COMMUNICATIO

/•Eater th• Yalu• for •hmaddr.•/
priatf(•\aEater th• Yalu• for\a•);
priatf(•th• •hared memor7 addr•••\a•);
priatf(•ia hexadecimal:\a•);
priatf(• Shmaddr = •);
•caaf(•lx•, Aaddr);
priatf(•Th• d••ired addr••• = Oxlx\a•, addr);

/•Do th• •hmdt •7•t•m call.•/
r•tra = (iat)•hmdt(addr);
if(retra == -1) {

priatf(•Error = ld\a•, errao);
}

•l•• {

}

priatf (•\aShmdt wa• •ucc•••ful\a•);
priatf(•for addr••• = Olx\a•, addr);

Figure 9·10. shmopO System Call Example (Sheet 3 of 3)

MU43815PG/D2 9-89 12/01/87

II

II

