
6. yacc 

Introduction 
yacc provides a general tool for imposing structure on the input to a computer 
program. The yacc user prepares a specification that includes: 

• a set of rules to describe the elements of the input 

• code to be invoked when a rule is recognized 

• either a definition or declaration of a low-level routine to examine the input 

yacc then turns the specification into a C language function that examines the II 
input stream. This function, called a parser, works by calling the low-level input 
scanner. The low-level input scanner, called a lexical analyzer, picks up items ' 
from the input stream. The selected items are known as tokens. Tokens are 
compared to the input construct rules, called grammar rules. When one of the 
rules is recognized, the user code supplied for this rule (an action), is invoked. 
Actions are fragments of C language code. They can return values and make use 
of values returned by other actions. 

The heart of the yacc specification is the collection of grammar rules. Each rule 
describes a construct and gives it a name. For example, one grammar rule might 
be: 

date month_name day •, • year 

where date, month_name, day, and year represent constructs of interest; 
presumably, month_name, day, and year are defined in greater detail elsewhere. 
In the example, the comma is enclosed in single quotes. This means that the 
comma is to appear literally in the input. The colon and semicolon merely serve 
as punctuation in the rule and have no significance in evaluating the input. With 
proper definitions, the input: 

July 4, 1776 

might be matched by the rule. 

The lexical analyzer is an important part of the parsing function. This user­
supplied routine reads the input stream, recognizes the lower-level constructs, 
and communicates these as tokens to the parser. The lexical analyzer recognizes 
constructs of the input stream as terminal symbols; the parser recognizes 
constructs as nonterminal symbols. To avoid confusion, we will refer to terminal 
symbols as tokens. 
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There is considerable leeway in deciding whether to recognize constructs using 
the lexical analyzer or grammar rules. For example, the rules: 

month....n-• 
month_name 

"J"' -.- ·11.· 

•F• •e • •b• 

month....n-• : ·o • •• • • c • 

might be used in the above example. While the lexical analyzer only needs to 
recognize individual letters, such low-level rules tend to waste time and space 
and may complicate the specification beyond the ability of yacc to deal with it. 
Usually, the lexical analyzer recognizes the month names and returns an 
indication that a month_name is seen. In this case, month_name is a token and 
the detailed rules are not needed. 

Literal characters such as a comma must also be passed through the lexical 
analyzer and are also considered tokens. 

Specification files are very flexible. It is relatively easy to add to the above 
example the rule: 

dat.e mont.h ·1· day ·1· year 

allowing the expression: 

7/4/1776 

as a synonym for: 

July 4, 1776 

on input. Usually, this new rule could be slipped into a working system with 
minimal effort and with little danger of disrupting existing input. 

The input being read may not conform to the specifications. Input errors are 
detected as early as is theoretically possible with a left-to-right scan. Not only is 
the chance of reading and computing with bad input data substantially reduced, 
but the bad data usually can be found quickly. Error handling, provided as part 
of the input specifications, permits the reentry of bad data or the continuation of 
the input process after skipping over the bad data. · 

In some cases, yacc fails to produce a parser when given a set of specifications. 
The specifications may be self-contradictory, or they may require a more powerful 
recognition mechanism than that available to yacc. The former cases represent 
design errors; the latter cases often can be corrected by making the lexical 
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analyzer more powerful or by rewriting some of the grammar rules. While yacc 
cannot handle all possible specifications, its power compares favorably with 
similar systems. Moreover, the constructs that are difficult for yacc to handle are 
also frequently difficult for human beings to handle. Some users have reported 
that the discipline of formulating valid yacc specifications for their input revealed 
errors of conception or design early in the program development. 

The remainder of this chapter describes the following subjects: 

• basic process of preparing a yacc specification 

• parser operation 

• handling ambiguities 

• handling operator precedences in arithmetic expressions 

• error detection and recovery 

• the operating environment and special features of the parsers yacc produces 

• suggestions to improve the style and efficiency of the specifications 

• advanced topics 

In addition, there are two examples and a summary of the yacc input syntax. 

Basic Specifications 
Names refer to either tokens or nonterminal symbols. yacc requires token names 
to be declared as such. While the lexical analyzer may be included as part of the 
specification file, it is perhaps more in keeping with modular design to maintain it 
as a separate file. Like the lexical analyzer, other subroutines may be included as 
well. Every specification file theoretically consists of three sections: the 
declarations, (grammar) rules, and subroutines. The sections are separated by 
double percent signs, % % (the percent sign is generally used in yacc 
specifications as an escape character). 

A full specification file has the general form: 

declarations 
%% 
rules 
%% 
subroutines 

when all sections are used. The declarations and subroutines sections are optional. 
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The smallest legal yacc specification is: 

%% 
rules 

Blanks, tabs, and newlines may not appear in names or multicharacter reserved 
symbols. They are ignored elsewhere. Comments may appear wherever a name 
is legal. They are enclosed in/• ... •/,as in the C language. 

The rules section is made up of one or more grammar rules. A grammar rule has 
the form: 

A BODY 

where A represents a nonterminal symbol and BODY represents a sequence of 
zero or more names and literals. The colon and the semicolon are yacc 
punctuation. 

Names may be of any length. They may be made up of letters, dots, underscores, 
and digits, although a digit may not be the first character of a name. Uppercase 
and lowercase letters are distinct. The names used in the body of a grammar rule 
may represent tokens or nonterminal symbols. 

A literal consists of a character enclosed in single quotes, '. As in the C language, 
the backslash, \, is an escape character within literals, and all the C language 
escapes are recognized. Thus, the escape characters: 

'\n' newline 
''¥' return 
... , ...... single quote ( ' ) 
'\\' backslash ( \ ) 
'\t' tab 
'\b' backspace 
'\f' form feed 
'\xxx' xxx in octal notation 

are understood by yacc. For technical reasons, the NULL character (\0 or 0) 
should never be used in grammar rules. 

If there are several grammar rules with the same left-hand side, the vertical bar, I, 
can be used to avoid rewriting the left-hand side. In addition, the semicolon at 
the end of a rule is dropped before a vertical bar. Thus, the grammar rules: 

A B C D 
A E F 
A G 
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can be given to yacc as: 

A B C D 
E F 
G 
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by using the vertical bar. It is not necessary for all grammar rules with the same 
left side to appear together in the grammar rules section, although this makes the 
input more readable and easier to change. 

If a nonterminal symbol matches the empty string, this condition can be indicated 
by: 

epai.lon : 

The blank space following the colon is understood by yacc to be a nonterminal 
symbol named epsilon. 

Names representing tokens must be declared. This is most simply done by 
writing: 

lt.oken nam.e1 name2 ... 

in the declarations section. Every name not defined in the declarations section is 
assumed to represent a nonterminal symbol. Every nonterminal symbol must 
appear on the left side of at least one rule. 

Of all the nonterminal symbols, the start symbol has particular importance. By 
default, the start symbol is taken to be the left-hand side of the first grammar rule 
in the rules section. It is possible and desirable to declare the start symbol 
explicitly in the declarations section using the %start keyword: 

lat.art. symbol 

The end of the input to the parser is signaled by a special token, called the end­
marker. The end-marker is represented by either a zero or a negative number. If 
the tokens up to but not including the end-marker form a construct that matches 
the start symbol, the parser function returns to its caller after the end-marker is 
seen and accepts the input. If the end-marker is seen in any other context, it is an 
error. 

It is the job of the user-supplied lexical analyzer to return the end-marker when 
appropriate. Usually the end-marker represents some reasonably obvious I/O 
status, such as end of file or end of record. 
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Actions 
With each grammar rule, the user may associate actions to be performed when 
the rule is recognized. Actions may return values and may obtain the values 
returned by previous actions. Moreover, the lexical analyzer can return values for 
tokens if desired. 

An action is an arbitrary C language statement. As such, it can do input and 
output, call subroutines, and alter arrays and variables. An action is specified by 
one or more statements enclosed in curly braces, { and }. For example: 

and: 

A "(" B ")" 

xxx 

{ 

} 

{ 

} 

hello( 1. "abc" ); 

yyy zzz 

(vo~d) pr~n~f("a meaaage\n"); 
flag = 25; 

are grammar rules with actions. 

The dollar sign symbol, $, is used to facilitate communication between the actions 
and the parser; the pseudo-variable $$ represents the value returned by the 
complete action. For example, the action: 

{ $$ = 1; } 

returns the value 1; in fact, that's all it does. 

To obtain the values returned by previous actions and by the lexical analyzer, the 
action may use the pseudo-variables $1, $2, ••• $n. These refer to the values 
returned by components 1 through n of the right side of a rule, with the 
components being numbered from left to right. If the rule is: 

A B C D 

then $2 has the value returned by C, and $3 the value returned by D. 

The following rule provides a common example: 

expr "(" expr ")" 

One would expect the value returned by this rule to be the value of the expr 
within the parentheses. 
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Since the first component of the action is the literal left parenthesis, the desired 
logical result can be indicated by: 

e:x:pr 
{ 

} 

• ( • e:x:pr • ) • 

$$ = $2 ; 

By default, the value of a rule is the value of the first element in it ($1). Thus, 
grammar rules of the form: 

A B 

frequently need not have an explicit action. In previous examples, all the actions 
came at the end of rules. Sometimes, it is desirable to get control before a rule is 
fully parsed. yacc permits an action to be written in the middle of a rule as well 
as at the end. This action is assumed to return a value accessible through the II 
usual $ mechanism by the actions to the right of it. In tum, it may access the • 
values returned by the symbols to its left. Thus, in the rule below the effect is to 
set x to 1 and y to the value returned by C: 

A B 
{ 

$$ = 1; 
} 

c 
{ 

:x: = $2; 
y = $3; 

} 

yacc handles actions that do not terminate a rule by manufacturing a new 
nonterminal symbol name and a new rule matching this name to the empty 
string. The interior action is the action triggered by recognizing this added rule. 
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yacc treats the above example as if it had been written: 

$ACT /* empt.y */ 
{ 

$$ = 1; 
} 

A B $ACT c 
{ 

lC = $2; 
y = $3; 

} 

where $ACT is an empty action. 

In many applications, output is not done directly by the actions. A data structure, 
such as a parse tree, is constructed in memory and transformations are applied to 
it before output is generated. Parse trees are particularly easy to construct given 
routines to build and maintain the tree structure desired. For example, suppose 
there is a C function node written so that the call: 

node( L, n1, n2 ) 

creates a node with label Land descendants n1 and n2 and returns the index of 
the newly created node. Then you can build a parse tree by supplying actions 
such as: 

e:xpr expr • + • e:xpr 
{ 

$$=node( ·+·, $1, $3 ); 
} 

in the specification. 

You may define other variables to be used by the actions. Declarations and 
definitions can appear in the declarations section enclosed in the marks %{ and 
%}. These declarations and definitions have global scope, so they are known to 
the action statements and can be made known to the lexical analyzer. For 
example, the declaration: 

int. variable = O; 

could be placed in the declarations section, making variable accessible to all the 
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actions. Users should avoid names beginning with yy because the yacc parser 
uses only such names. In the examples shown thus far, all the values are 
integers. A discussion of values of other types is in the section "Advanced 
Topics." 

Lexical Analysis 

The user must supply a lexical analyzer to read the input stream and 
communicate tokens (with values, if desired) to the parser. The lexical analyzer is 
an integer-valued function called yylex. The function returns an integer, the token 
number, representing the kind of token read. If there is a value associated with 
that token, it should be assigned to the external variable yylval. 

The parser and the lexical analyzer must agree on these token numbers in order 

yacc or the user. In either case, the #define mechanism of C language is used to , 
for communication between them to take place. The numbers may be chosen by II 
allow the lexical analyzer to return these numbers symbolically. For example, 
suppose that the token name DIGIT has been defined in the declarations section 
of the yacc specification file. To return the appropriate token, the relevant 
portion of the lexical analyzer might look like: 

int. yylex () 
{ 

} 

ext.ern int. yylval; 
int. c; 

c = get.char(); 

swit.ch (c) 
{ 

} 

case -o-: 
case -1-: 

case -g-: 
yylval = c - -o-; 
rat.urn (DIGIT); 
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The intent is to return a token number of DIGIT and a value equal to the 
numerical value of the digit. If the lexical analyzer code is placed in the 
subroutines section of the specification file, the identifier DIGIT is defined as the 
token number associated with the token DIGIT. 

This mechanism leads to clear, easily modified lexical analyzers. The only pitfall 
to avoid is using any token names in the grammar that are reserved or significant 
in C language or the parser. For example, the use of token names If or while will 
almost certainly cause severe difficulties when the lexical analyzer is compiled. 
The token name error is reserved for error handling and should not be used 
naively. 

In the default situation, token numbers are chosen by yacc. The default token 
number for a literal character is the numerical value of the character in the local 
character set. Other names are assigned token numbers starting at 257. If the 
yacc command is invoked with the -cl option, a file called y.tab.h is generated. 
The y.tab.h file contains #define statements for the tokens. 

If you prefer to assign the token numbers yourself, the first appearance of the 
token name or literal in the declarations section must be followed immediately by 
a nonnegative integer. This integer is taken to be the token number of the name 
or literal. Names and literals not defined this way are assigned default definitions 
by yacc. The potential for duplication exists here; make sure that all token 
numbers are distinct. 

For historical reasons, the end-marker must have token number 0 or a negative 
value. This token number cannot be redefined by the user. Thus, all lexical 
analyzers should be prepared to return 0 or a negative number as a token on 
reaching the end of their input. 

A useful tool for constructing lexical analyzers is the lax utility. Lexical analyzers 
produced by lax are designed to work in close harmony with yacc parsers. The 
specifications for these lexical analyzers use regular expressions instead of 
grammar rules. lax can be easily used to produce complicated lexical analyzers, 
but there remain some languages (such as FORTRAN), which do not fit any 
theoretical framework and whose lexical analyzers must be crafted by hand. 

Parser Operation 
yacc turns the specification file into a C language procedure, which parses the 
input according to the specification given. The algorithm used to go from the 
specification to the parser is complex and will not be discussed here. The parser 
itself, though, is relatively simple and understanding its usage will make 
treatment of error recovery and ambiguities easier. 
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The parser produced by yacc consists of a finite state machine with a stack. The 
parser is also capable of reading and remembering the next input token (called the 
look-ahead token). The current state is always the one on the top of the stack. 
The states of the finite state machine are given small integer labels. Initially, the 
machine is in state 0 (the stack contains only state 0) and no look-ahead token has 
been read. 

The machine has only four actions available-shift, reduce, accept, and error. A 
step of the parser is done as follows: 

1. Based on its current state, the parser decides if it needs a look-ahead token 
to choose the action to be taken. If it needs one and does not have one, it 
calls yylex to obtain the next token. 

2. Using the current state and the look-ahead token if needed, the parser 
decides on its next action and carries it out. This may result in states being 
pushed onto the stack or popped off the stack and in the look-ahead token 
being processed or left alone. 

The shift action is the most common action the parser takes. Whenever a shift 
action occurs, there is always a look-ahead token. For example, in state 56 there 
may be an action such as: 

IF shift 34 

which says: In state 56, if the look-ahead token is IF, the current state (56) is 
pushed down on the stack, and state 34 becomes the current state (on the top of 
the stack). The look-ahead token is cleared. 

The reduce action keeps the stack from growing without bounds. reduce actions 
are appropriate when the parser has seen the right-hand side of a grammar rule 
and is prepared to announce that it has seen an instance of the rule replacing the 
right-hand side by the left-hand side. It may be necessary to consult the look­
ahead token to decide whether to reduce (usually it is not necessary). In fact, the 
default action (represented by a dot) is often a reduce action. 

reduce actions are associated with individual grammar rules. Grammar rules are 
also given small integer numbers, and this leads to some confusion. The action: 

refers to grammar rule 18, while the action: 

IF shift 34 

refers to state 34. 

Suppose the rule: 

A :x: y z 

is being reduced. The reduce action depends on the left-hand symbol (A in this 
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case) and the number of symbols on the right-hand side (three in this case). To 
reduce, first pop off the top three states from the stack. (In general, the number 
of states popped equals the number of symbols on the right side of the rule.) In 
effect, these states were the ones put on the stack while recognizing x, y, and z 
and no longer serve any useful purpose. Popping these states uncovers the state 
the parser was in before beginning to process the rule. Using this uncovered state 
and the symbol on the left side of the rule, perform what is in effect a shift of A. 
A new state is obtained and pushed onto the stack, and parsing continues. There 
are significant differences between the processing of the left-hand symbol and an 
ordinary shift of a token, however, so this action is called a goto action. In 
particular, the look-ahead token is cleared by a shift but is not affected by a goto. 
In any case, the uncovered state contains an entry such as: 

A got.o 20 

causing state 20 to be pushed onto the stack and become the current state. 

In effect, the reduce action turns back the clock in the parse popping the states 
off the stack and goes back to the state where the right-hand side of the rule was 
first seen. The parser then behaves as if it had seen the left side at that time. If 
the right-hand side of the rule is empty, no states are popped off the stacks. The 
uncovered state is the current state. 

The reduce action is also important in the treatment of user-supplied actions and 
values. When a rule is reduced, the code supplied with the rule is executed 
before the stack is adjusted. In addition to the stack holding the states, another 
stack running in parallel with it holds the values returned from the lexical 
analyzer and the actions. When a shift takes place, the external variable yylval is 
copied onto the value stack. After the return from the user code, the reduction is 
carried out. When the goto action is done, the external variable yyval is copied 
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack. 

The other two parser actions are conceptually much simpler. The accept action 
indicates that the entire input has been seen and that it matches the specification. 
This action appears only when the look-ahead token is the end-marker and shows 
that the parser has successfully done. its job. The error action, on the other hand, 
represents a place where the parser can no longer continue parsing according to 
the specification. The input tokens it has seen (together with the look-ahead 
token) cannot be followed by anything that would result in a legal input. The 
parser reports an error and attempts to recover the situation and resume parsing. 
The error recovery (as opposed to the detection of error) will be discussed later. 
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Consider: 

%token DING DONG DELL 
%% 
rhyme sound place 

I 

sound DING DONG 

place : DELL 

as a yacc specification. 

yacc 

Invoking yacc with the -v option produces a file called y.output with a human­
readable description of the parser. The y.output file corresponding to the above 
grammar (with some statistics stripped off the end) follows. 
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ata.ta 0 
$accept _rhyme $and 

DING shift 3 
error 

rhyme goto 1 
sound goto 2 

a ta.ta 1 
$accept rhyma_$and 

$and accept 
error 

state 2 
rhyme aound_pla.ca 

DELL ahif t 6 
error 

place goto 4 

ata.ta 3 
sound DING_DONG 

DONG ahif t 6 
error 

•ta.ta 4 
rhyme sound place_ (1) 

reduce 1 

•ta.ta 6 
place DELL_ (3) 

reduce 3 

state 6 
sound DING DONG_ (2) 

reduce 2 

The actions for each state are specified and there is a description of the parsing 
rules being processed in each state. The _ character is used to indicate what has 
been seen and what is yet to come in each rule. 
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The following input can be used to track the operations of the parser: 

DING DONG DELL 

Initially, the current state is state 0. The parser needs to refer to the input to 
decide between the actions available in state 0, so the first token, DING, is read 
and becomes the look-ahead token. The action in state 0 on DING is shift 3, so 
state 3 is pushed onto the stack and the look-ahead token is cleared. State 3 
becomes the current state. The next token, DONG, is read and becomes the 
look-ahead token. The action in state 3 on the token DONG is shift 6, so state 6 
is pushed onto the stack and the look-ahead is cleared. The stack now contains 0, 
3, and 6. In state 6, without even consulting the look-ahead, the parser reduces 
by: 

sound DING DONG 

which is rule 2. Two states, 6 and 3, are popped off the stack uncovering state 0. 
Consulting the description of state 0 (looking for a goto on sound), produces: 

sound goto 2 

State 2 is pushed onto the stack and becomes the current state. 

In state 2, the next token, DELL, must be read. The action is shift 5, so state 5 is 
pushed onto the stack, which now has 0, 2, and 5 on it, and the look-ahead token 
is cleared. In state 5, the only action is to reduce by rule 3. This has one symbol 
on the right-hand side, so one state, 5, is popped off, and state 2 is uncovered. 
The goto in state 2 on place (the left side of rule 3) is state 4. Now, the stack 
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are 
two symbols on the right, so the top two states are popped off, uncovering state 0 
again. In state 0, there is a goto on rhyme causing the parser to enter state 1. In 
state 1, the input is read and the end-marker is obtained, indicated by $end in the 
y.output file. The action in state 1 (when the end-marker is seen) successfully 
ends the parse. 

It is worthwhile to consider how the parser works when confronted with such 
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL 
DELL, etc. A few minutes spent with this and other simple examples is repaid 
when problems arise in more complicated contexts. 

Ambiguity and Conflicts 
A set of grammar rules is ambiguous if there is some input string that can be 
structured in two or more different ways. For example, the grammar rule: 

expr expr expr 

is a natural way of expressing the fact that one way to form an arithmetic 
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expression is to put two other expressions together with a minus sign between 
them. Unfortunately, this grammar rule does not completely specify the way that 
all complex inputs should be structured. For example, if the input is: 

expr expr expr 

the rule allows this input to be structured either as: 

( expr expr ) expr 

or as: 

expr ( e:x:pr expr ) 

(The first is called left association, the second right association.) 

yacc detects such ambiguities when it is attempting to build the parser. Given 
the input: 

expr ex pr expr 

consider the problem that confronts the parser. When the parser has read the 
second expr, the input seen: 

expr e:x:pr 

matches the right side of the grammar rule above. The parser could reduce the 
input by applying this rule. After applying the rule, the input is reduced to expr 
{the left side of the rule). The parser would then read the final part of the input: 

expr 

and again reduce. The effect of this is to take the left associative interpretation. 

Alternatively, if the parser sees: 

ex pr ex pr 

it could defer the immediate application of the rule and continue reading the input 
until it sees: 

e:x:pr ex pr expr 

The parser could then apply the rule to the rightmost three symbols, reducing 
them to expr, which leaves: 

expr expr 

Now the rule can be reduced once more. The effect is to take the right associative 
interpretation. Thus, having read: 

ex pr e:x:pr 

the parser can do one of two legal things, a shift or a reduction. It has no way of 

MU43815PG/D2 6-16 12/01/87 



yacc 

deciding between them. This is called a shift-reduce conflict. It may also happen 
that the parser has a choice of two legal reductions. This is called a reduce­
reduce conflict. Note that there are never any shift-shift conflicts. 

When there are shift-reduce or reduce-reduce conflicts, yacc still produces a 
parser. It does this by selecting one of the valid steps wherever it has a choice. 
A rule describing the choice to make in a given situation is called a 
disambiguating rule. 

In situations calling for a default choice, yacc invokes two default disambiguating 
rules: 

1. In a shift-reduce conflict, the default is to do the shift. 

2. In a reduce-reduce conflict, the default is to reduce by the earlier grammar 
rule (in the yacc specification). 

Rule 1 implies that reductions are deferred in favor of shifts when there is a 
choice. Rule 2 gives the user crude control over the behavior of the parser in this 
situation, but reduce-reduce conflicts should be avoided when possible. 

Conflicts may arise because of mistakes in input or logic or because the grammar 
rules (while consistent) require a more complex parser than yacc can construct. 
The use of actions within rules can also cause conflicts if the action must be done 
before the parser can be sure which rule is being recognized. In these cases, the 
application of disambiguating rules is inappropriate and leads to an incorrect 
parser. For this reason, yacc always reports the number of shift-reduce and 
reduce-reduce conflicts resolved by Rule 1 and Rule 2. 

In general, whenever it is possible to apply disambiguating rules to produce a 
correct parser, it is also possible to rewrite the grammar rules so that the same 
inputs are read but there are no conflicts. Most previous parser generators have 
considered conflicts to be fatal errors. Our experience suggests that this rewriting 
is somewhat unnatural and produces slower parsers. Thus, yacc will produce 
parsers even in the presence of conflicts. 

As an example of the power of disambiguating rules, consider: 

stat IF • (' cond '). stat 
IF '(' cond •)• stat ELSE stat 

which is a fragment from a programming language involving an if-then-else 
statement. In these rules, IF and ELSE are tokens, cond is a nonterminal symbol 
describing conditional (logical) expressions, and stat is a nonterminal symbol 
describing statements. The first rule will be called the simple if rule and the 
second the if-else rule. 
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These two rules form an ambiguous construction because input of the form: 

IF ( C1 ) IF ( C2 ) S1 ELSE S2 

can be structured according to these rules in two ways, either as: 

IF ( C1 ) 
{ 

IF ( C2 ) 

S1 
} 

ELSE 
S2 

or as: 

IF ( C1 ) 
{ 

IF ( C2 ) 

S1 
ELSE 

S2 
} 

The second interpretation is the one given in most programming languages 
having this construct; each ELSE is associated with the last preceding un-ELSE' d 
IF. In this example, consider the case where the parser has seen: 

IF ( C1 ) IF ( C2 ) S1 

and is looking at the ELSE. It can immediately reduce by the simple if rule to get: 

IF ( C1 ) atat 

and then read the remaining input: 

ELSE S2 

and reduce: 

IF ( C1 ) atat ELSE S2 

by the if-else rule. This leads to the first of the above groupings of the input. 

On the other hand, the ELSE may be shifted, S2 read, and then the right-hand 
portion of: 

IF ( C1 ) IF ( C2 ) S1 ELSE S2 

can be reduced by the if-else rule to get: 
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IF ( C1 ) stat 

which can be reduced by the simple if rule. This leads to the second of the above 
input groupings, which is usually the desired one. 

Once again, the parser can do two valid things-there is a shift-reduce conflict. 
Here, the application of disambiguating rule 1 tells the parser to shift, which leads 
to the desired grouping. 

This shift-reduce conflict arises only when there is a particular current input 
symbol, ELSE, and particular inputs, such as: 

IF ( Cl ) IF ( C2 ) 81 

have already been seen. In general, there may be many conflicts, and each one 
will be associated with an input symbol and a set of previously read inputs. The 
previously read inputs are characterized by the_ state of the parser. 

The conflict messages of yacc are best understood by examining the verbose (-v) 
option output file. For example, the output corresponding to the above conflict 
state might be: 

23: •hift-reduce conflict (•hift 46, reduce 18) on ELSE 

•tat• 23 

•tat IF ( cond ) •tat_ (18) 
•tat IF C cond ) •tat_ELSE •tat 

ELSE •hif t 46 
reduce 18 

where the first line describes the conflict-giving the state and the input symbol. 
The ordinary state description gives the grammar rules active in the state and the 
parser actions. Recall that the underline marks the portion of the grammar rules, 
which has been seen. Thus in the example, in state 23 the parser has seen input 
corresponding to: 

IF ( cond ) stat 

and the two grammar rules shown are active at this time. The parser can do two 
possible things: remain in state 23 or shift into state 45. 

If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, 
as part of its description, the line: 

stat IF ( cond ) stat ELSE_stat 
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because the ELSE will have been shifted in this state. In state 23, the alternative 
action (describing a dot, .), is to be done if the input symbol is not mentioned 
explicitly in the actions. Here, if the input symbol is not ELSE, the parser reduces 
to: 

st.at. 

by grammar rule 18. 

Once again, notice that the numbers following shift commands refer to other 
states, while the numbers following reduce commands refer to grammar rule 
numbers. In the y.output file, the rule numbers are printed in parentheses after 
those rules, which can be reduced. In most states, there is a reduce action 
possible in the state and this is the default command. The user who encounters 
unexpected shift-reduce conflicts will probably want to look at the verbose output 
to decide whether the default actions are appropriate. 

Precedence 
One common situation exists where the above rules for resolving conflicts are not 
sufficient. This is in the parsing of arithmetic expressions. Most of the commonly 
used constructions for arithmetic expressions can be naturally described by the 
notion of precedence levels for operators, together with information about left or 
right associativity. It turns out that ambiguous grammars with appropriate 
disambiguating rules can be used to create parsers that are faster and easier to 
write than parsers constructed from unambiguous grammars. The basic notion is 
to write grammar rules of the forms: 

e:x:pr expr OP e:x:pr 

and: 

expr UNARY expr 

for all binary and unary operators desired. This creates an ambiguous grammar 
with many parsing conflicts. As disambiguating rules, the user specifies the 
precedence or binding strength of all the operators and the associativity of the 
binary operator5. This information allows yacc to resolve the parsing conflicts 
according to these rules and construct a parser that realizes the desired 
precedences and associativities. 

The precedences and associativities are attached to tokens in the declarations 
section. This is done by a series of lines beginning with a yacc keyword: o/oleft, 
o/oright, or o/ononassoc, followed by a list of tokens. All the tokens on the same 
line are assumed to have the same precedence level and associativity; the lines are 
listed in order of increasing precedence or binding strength. Thus, the segment 
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. / · 
describes the precedence and associativity of the four arithmetic operators. Plus 
and minus are left associative and have lower precedence than star and slash, 
which are also left associative. The keyword o/oright is used to describe right 
associative operators, and the keyword o/ononassoc is used to describe operators, 
like the operator .LT. in FORTRAN, that may not associate with themselves. 
Thus an expression like: 

A .LT. B .LT. C 

is illegal in FORTRAN and such an operator would be described with the 
keyword o/ononassoc in yacc. As an example of the behavior of these 
declarations, the description: 

lright. ·=-
I left. ·+. ·-. 
lleft. .•. · / · 
II 

expr expr ·=· expr 
expr ·+· expr 
expr ·-. expr 
expr .•. expr 
expr · / · expr 
NAME 

might be used to structure the input: 

a • b • c•d e :f •g 

as follows to perform the correct precedence of operators: 

a = ( b = ( ((c•d)-e) - (:f•g) ) ) 

When this mechanism is used, unary operators must, in general, be given a 
precedence. Sometimes a unary operator and a binary operator have the same 
symbolic representation but different precedences. An example is unary and 
binary minus, - . 

Unary minus may be given the same strength as multiplication, or even higher, 
while binary minus has a lower strength than multiplication. The keyword, 
o/oprec, changes the precedence level associated with a particular grammar rule. 
The keyword o/oprec appears immediately after the body of the grammar rule, 
before the action or closing semicolon, and is followed by a token name or literal. 
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It causes the precedence of the grammar rule to become that of the following 
token name or literal. For example, the rules below might be used to give unary 
minus the same precedence as multiplication: 

"left ·+· . -. 
"left ... . I. 

"" 
expr expr •+• expr 

expr . -. expr 
expr ... expr 
expr ·1· expr . -. expr "prec .•. 
NAME 

A token declared by %left, %right, and %nonassoc need not be, but may be, 
declared by %token as well. 

Precedences and associativities are used by yacc to resolve parsing conflicts. 
They cause the following disambiguating rules: 

1. Precedences and associativities are recorded for those tokens and literals that 
have them. 

2. A precedence and associativity is associated with each grammar rule. It is 
the precedence and associativity of the last token or literal in the body of the 
rule. If the %prec construction is used, it overrides this default. Some 
grammar rules may have no precedence and associativity associated with 
them. 

3. When there is a reduce-reduce conflict or there is a shift-reduce conflict 
and either the input symbol or the grammar rule has no precedence and 
associativity, then the two default disambiguating rules given at the 
beginning of the section are used, and the conflicts are reported. 

4. If there is a shift-reduce conflict and both the grammar rule and the input 
character have precedence and associativity associated with them, then the 
conflict is resolved in favor of the action-shift or reduc~ssociated with 
the higher precedence. If precedences are equal, then associativity is used. 
Left associative implies reduce; right associative implies shift; 
nonassociating implies error. 

Conflicts resolved by precedence are not counted in the number of shift-reduce 
and reduce-reduce conflicts reported by yacc. This means that mistakes in the 
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specification of precedences may disguise errors in the input grammar. It is a 
good idea to be sparing with precedences and use them in a cookbook fashion 
until some experience has been gained. The y.output file is useful in deciding 
whether the parser is actually doing what was intended. 

Error Handling 
Error handling is an extremely difficult area, and many of the problems are 
semantic ones. When an error is found, for example, it may be necessary to 
reclaim parse tree storage, delete or alter symbol table entries, and/or, typically, 
set switches to avoid generating any further output. 

It is seldom acceptable to stop all processing when an error is found. It is more 
useful to continue scanning the input to find further syntax errors. This leads to 
the problem of getting the parser restarted after an error. A general class of II 
algorithms to do this involves discarding a number of tokens from the input string 
and attempting to adjust the parser so that input can continue. • 

To allow the user some control over this process, yacc provides the token name 
error. This name can be used in grammar rules. In effect, it suggests places 
where errors are expected and recovery might take place. The parser pops its 
stack until it enters a state where the token error is legal. It then behaves as if 
the token error were the current look-ahead token and performs the action 
encountered. The look-ahead token is then reset to the token that caused the 
error. If no special error rules have been specified, the processing halts when an 
error is detected. 

To prevent a cascade of error messages, the parser, after detecting an error, 
remains in error state until three tokens have been successfully read and shifted. 
If an error is detected when the parser is already in error state, no message is 
given, and the input token is quietly deleted. 

As an example, a rule of the form: 

st.at. error 

means that on a syntax error, the parser attempts to skip over the statement in 
which the error is seen. More precisely, the parser scans ahead, looking for three 
tokens that might legally follow a statement, and starts processing at the first of 
these. If the beginnings of statements are not sufficiently distinctive, it may make 
a false start in the middle of a statement and report a second error where there is 
in fact no error. 

Actions may be used with these special error rules. These actions might attempt 
to reinitialize tables, reclaim symbol table space, etc. 
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Error rules such as the above are very general but difficult to control. Rules such 
as the following are somewhat easier: 

at.at. -. -, error 

Here, when there is an error, the parser attempts to skip over the statement but 
does so by skipping to the next semicolon. All tokens after the error and before 
the next semicolon cannot be shifted and are discarded. When the semicolon is 
seen, this rule will be reduced and any cleanup action associated with it 
performed. 

Another form of error rule arises in interactive applications where it may be 
desirable to permit a line to be reentered after an error. The following example is 
one way to do this: 

input. 

{ 

} 

{ 

} 
(void) print.f( •Reent.er la•t. line: • ); 

input. 

•• = .... ; 

There is one potential difficulty with this approach: The parser must correctly 
process three input tokens before it admits that it has correctly resynchronized 
after the error. If the reentered line contains an error in the first two tokens, the 
parser deletes the offending tokens and gives no message. This is clearly 
unacceptable so there is a mechanism that can force the parser to believe that 
error recovery has been accomplished. The statement: 

yyerrok : 

in an action resets the parser to its normal mode. 
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The last example can be rewritten as: 

input •rror •\n • 
{ 

77•rroll:; 
(void) printf( •R••nt•r la•t lin•: • ); 

} 

input 
{ 

} 
.. = $4; 

which is somewhat better. 

As previously mentioned, the token seen immediately after the error symbol is 
the input token at which the error was discovered. Sometimes, this is 
inappropriate. For example, an error recovery action might find the correct place 
to resume input. In such a case, the previous look-ahead token must be cleared. 
The statement: 

yyclearin ; 

in an action will have this effect. For example, suppose the action after error 
were to call some sophisticated resynchronization routine (supplied by the user) 
that attempted to advance the input to the beginning of the next valid statement. 
After this routine is called, the next token returned by yylex is presumably the 
first token in a legal statement. The old illegal token must be discarded and the 
error state reset. A rule similar to: 

•tat •rror 
{ 

} 

r••7nch(); 
n•rroll: 
77cl•arin; 

could perform this task. 

These mechanisms are admittedly crude but do allow for a simple, fairly effective 
recovery of the parser from many errors. Moreover, the user can get control to 
deal with the error actions required by other portions of the program. 
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The yacc Environment 
When you input a specification to yacc, the output is a file of C language 
subroutines, called y.tab.c. The function produced by yacc is called yyparse(); it 
is an integer valued function. When this function is called, it in tum repeatedly 
calls yylex(), the lexical analyzer supplied by the user (see ''Lexical Analysis'), to 
obtain input tokens. Eventually, an error is detected, yyparse() returns the value 
1, and no error recovery is possible, or the lexical analyzer returns the end-marker 
token and the parser accepts. In this case, yyparse() returns the value 0. 

The user must provide a certain amount of environment for this parser to obtain a 
working program. For example, as with every C language program, a routine 
called main() must be defined that eventually calls yparse(). In addition, a 
routine called yyerror() is needed to print a message when a syntax error is 
detected. 

These two routines must be supplied in one form or another by the user. To ease 
the initial effort of using yacc, a library has been provided with default versions 
of main() and yerror(). The library is accessed by a -ly argument to the cc(l) 
command or to the loader. The source codes: 

and: 

main() 
{ 

return (yyparse()); 
} 

# include <stdio.h> 

yyerror(s) 
char •s; 

{ 

(void) fprintf(stderr, "%s\n", s); 
} 

show the triviality of these default programs. The argument to yerror() is a string 
containing an error message, usually the string syntax error. The average 
application wants to do better than this. Ordinarily, the program should keep 
track of the input line number and print it along with the message when a syntax 
error is detected. The external integer variable yychar contains the look-ahead 
token number at the time the error was detected. This may be of some interest in 
giving better diagnostics. Since the main() routine is probably supplied by the 
user (to read arguments, etc.), the yacc library is useful only in small projects or 
in the earliest stages of larger ones. 
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The external integer variable yydebug is normally set to 0. If it is set to a nonzero 
value, the parser will output a verbose description of its actions including a 
discussion of the input symbols read and what the parser actions are. It is 
possible to set this variable by using sdb. 

Hints for Preparing Specifications 
This part of the chapter contains miscellaneous hints on preparing efficient, easy 
to change, and clear specifications. The individual subsections are more or less 
independent. 

Input Style 
It is difficult to provide rules with substantial actions and still have a readable 
specification file. The following are a few style hints. 

1. Use all uppercase letters for token names and all lowercase letters for 
nonterminal names. This is useful in debugging. 

2. Put grammar rules and actions on separate lines. It makes editing easier. 

3. Put all rules with the same left-hand side together. Put the left-hand side in 
only once and let all following rules begin with a vertical bar. 

4. Put a semicolon only after the last rule with a given left-hand side and put 
the semicolon on a separate line. This allows new rules to be easily added. 

5. Indent rule bodies by one tab stop and action bodies by two tab stops. 

6. Put complicated actions into subroutines defined in separate files. 

Example 1 is written following this style, as are the examples in this section 
(where space permits). The user must decide about these stylistic questions. The 
central problem, however, is to make the rules visible through the morass of 
action code. 

Left Recursion 
The algorithm used by the yacc parser encourages so-called left recursive 
grammar rules. Rules of the form: 

name name res~_of_;rule 

match this algorithm. 
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These rules, such as: 

l.ist. 

and: 

seq 

it.em 
l.ist. 

it.em 

, , 
• 

seq it.em 

it.em 

frequently arise when writing specifications of sequences and lists. In each of 
these cases, the first rule will be reduced for the first item only; and the second 
rule will be reduced for the second and all succeeding items. 

With right recursive rules, such as: 

seq it.em 
it.em seq 

the parser is a bit bigger and the items are seen and reduced from right to left. 
More seriously, an internal stack in the parser is in danger of overflowing if a very 
long sequence is read. Thus, the user should use left recursion wherever 
reasonable. 

It is worthwhile to consider whether a sequence with zero elements has any 
meaning, and if so, to consider writing the sequence specification as: 

seq /• empt.y •/ 
seq it.em 

using an empty rule. Once again, the first rule would always be reduced exactly 
once before the first item was read, and then the second rule would be reduced 
once for each item read. Permitting empty sequences often leads to increased 
generality. However, conflicts might arise if yacc is asked to decide which empty 
sequence it has seen when it hasn't seen enough to know! 

Lexical Tie-Ins 

Some lexical decisions depend on context. For example, the lexical analyzer 
might want to delete blanks normally, but not within quoted strings; or names 
might be entered into a symbol table in declarations but not in expressions. One 
way of handling these situations is to create a global flag that is examined by the 
lexical analyzer and set by actions. 
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I< 

u 
111.t dflag; 

other declaratio11.• 

prog decl• •tat• 

de cl• I• empty •/ 
{ 

dflag = 1; 
} 

I de cl• declaratio11. 

•tat• I• empty •/ 
{ 

dflag = O; 
} 

I •tat• •tatement 

other rule• ... 

yacc 

specifies a program that consists of zero or more declarations followed by zero or 
more statements. The flag dflag is now 0 when reading statements and 1 when 
reading declarations, except for the first token in the first statement. This token 
must be seen by the parser before it can tell that the declaration section has ended 
and the statements have begun. In many cases, this single token exception does 
not affect the lexical scan. 

This back-door approach can be elaborated to a noxious degree. Nevertheless, it 
represents a way of doing some things that are difficult, if not impossible, to do 
otherwise. 

Reserved Words 
Some programming languages permit you to use words like if, which are normally 
reserved as label or variable names, provided that such use does not conflict with 
the legal use of these names in the programming language. This is extremely 
hard to do in the framework of yacc. It is difficult to pass information to the 
lexical analyzer telling it this instance of if is a keyword and that instance is a 
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variable. You can try it using the mechanism described in the last subsection, but 
it is difficult. 

Ways of making this easier are under advisement. Until then, it is better that the 
keywords be reserved, i.e., forbidden for use as variable names. There are 
powerful stylistic reasons for preferring this. 

Advanced Topics 
This part discusses some advanced features of yacc. 

Simulating error and accept In Actions 
The parsing actions of error and accept can be simulated in an action by use of 
the macros YYACCEPT and YYERROR. The YYACCEPT macro causes yyparse() to 
return the value 0. YYERROR causes the parser to behave as if the current input 
symbol had been a syntax error; yyerror() is called, and error recovery takes place. 
These mechanisms can be used to simulate parsers with multiple end-markers or 
context sensitive syntax checking. 
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Accessing Values in Enclosing Rules 
An action may refer to values returned by actions to the left of the current rule. 
The mechanism is the same as with ordinary actions, a dollar sign followed by a 
digit: 

••nt adj noun Terb adj noun 
{ 

} 
look at th• ••ntenc• 

adj THE 
{ 

•• = THE; 
} 
I YOUNG 
{ 

•• = YOUNG; 
} 

noun DOG 
{ 

•• = DOG; 
:} 
I CRONE 
{ 

} 

if( $0 ==YOUNG ) 
{ 

(Toid) printf( •what?\n• ); 
} 

•• = CRONE; 

In this case, the digit may be 0 or negative. In the action following the word 
CRONE, a check is made that the preceding token shifted was not YOUNG. 

Obviously, this is only possible when a great deal is known about what might 
precede the symbol noun in the input. There is also a distinctly unstructured 
flavor about this. Nevertheless, at times this mechanism prevents much trouble, 
especially when a few combinations are to be excluded from an otherwise regular 
structure. 
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Support for Arbitrary Value Types 
By default, the values returned by actions and by the lexical analyzer are integers. 
yacc can also support values of other types, including structures. In addition, 
yacc keeps track of the types and inserts appropriate union member names so 
that the resulting parser is strictly type-checked. The yacc value stack is declared 
to be a union of the various types of values desired. The user declares the union 
and associates union member names with each token and nonterminal symbol 
having a value. When the value is referenced through a$$ or $n construction, 
yacc automatically inserts the appropriate union name so that no unwanted 
conversions take place. In addition, type checking commands such as lint are far 
more silent. 

Three mechanisms are used to provide for this typing. First, there is a way of 
defining the union. This must be done by the user since other subroutines, 
notably the lexical analyzer, must know about the union member names. Second, 
there is a way of associating a union member name with tokens and 
nonterminals. Finally, there is a mechanism for describing the type of those few 
values where yacc cannot easily determine the type. 

To declare the union, the user includes: 

"uni.on 
{ 

body of uni.on ... 
} 

in the declaration section. This declares the yacc value stack and the external 
variables yylval and yyval to have type equal to this union. If yacc was invoked 
with the -d option, the union declaration is copied onto the y.tab.h file as 
YYSTYPE. 

Once YYSTYPE is defined, the union member names must be associated with the 
various terminal and nonterminal names. The construction: 

<name> 

is used to indicate a union member name. If this follows one of the keywords 
%token, %left, %right, and %nonassoc, the union member name is associated 
with the tokens listed. Thus, saying: 

"left <optype> -+- --• 

causes any reference to values returned by these two tokens to be tagged with the 
union member name optype. 

Another keyword, %type, is used to associate union member names with 
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nonterminals. Thus, one might say: 

%type <nodetype> expr stat 

to associate the union member nodetype with the nonterminal symbols expr and 
stat. 

There remain a couple of cases where these mechanisms are insufficient. If there 
is an action within a rule, the value returned by this action has no a priori type. 
Similarly, reference to left context values (such as $0) leaves yacc with no easy 
way of knowing the type. In this case, a type can be imposed on the reference by 
inserting a union member name between < and > immediately after the first $. 
The example below shows this usage: 

rule &&& 
{ 

$<intval>$ 3; 
} 

bbb 
{ 

fun( $<intval>2, $<other>O ); 
} 

This syntax has little to recommend it, but the situation arises rarely. 

A sample specification is given in Example 2. The facilities in this subsection are 
not triggered until they are used. In particular, the use of %type will tum on 
these mechanisms. When they are used, there is a strict level of checking. For 
example, use of $nor$$ to refer to something with no defined type is diagnosed. 
If these facilities are not triggered, the yacc value stack is used to hold ints. 

yacc Input Syntax 

This section has a description of the yacc input syntax as a yacc specification. 
Context dependencies, etc. are not considered. Ironically, although yacc accepts 
an LALR(l) grammar, the yacc input specification language is most naturally 
specified as an LR(2) grammar; the sticky part comes when an identifier is seen in 
a rule immediately following an action. If this identifier is followed by a colon, it 
is the start of the next rule; otherwise, it is a continuation of the current rule, 
which just happens to have an action embedded in it. As implemented, the 
lexical analyzer looks ahead after seeing an identifier and decides whether the 
next token (skipping blanks, newlines, and comments, etc.) is a colon. If so, it 
returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals 
(quoted strings) are also returned as IDENTIFIERs but never as part of 
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C_IDENTIFIERs. 

I• grammar for the input to yacc •/ 

I• include• identifier• and literal• •/ 
I• 

I token 
I token 
ltoken 

ba•ic entri•• •/ 
IDENTIFIER 
C_IDENTIFIER 
NUMBER 

I• identifier (but not literal) followed by a 
I• C0-9]+ •/ 

I• r•••rved word•: ltype=>TYPE lleft=>LEFT,etc. •I 

ltok•n LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION 

ltoken MARK I• th• .. mark •I 
ltoken LCURL I• th• •< mark •I 
ltoken RCURL I• th• u mark •I 

I• ASCII character literal• •tand for th•m••lv•• •/ 

I token •p•c 

"" 
apec defa MARK rulea tail 

tail MARK 
{ 

In thi• action, eat up th• r••t of the file 
} 

I I• empty: th• ••cond MARK i• optional •/ 

def• I• empty •I 
defa def 

def START IDENTIFIER 
I UNION 
{ 

Copy union definition to output 
} 

I LCURL 
{ 

Copy C code to output file 
} 

RCURL 
rword tag nli•t 

rword TOKEN 
LEFT 
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:a.li•t 

:a.m:a.o 

RIGHT 
NONASSOC 
TYPE 

yacc 

I• empt7: u:a.io:a. tag i• optio:a.al •/ 
•c• IDENTIFIER •>• 

Jl.IDILO 

:a.li•t Jl.IDILO 

:a.li•t •, • :a.m:a.o 

IDENTIFIER 
IDENTIFIER NUMBER 

/• Note: literal illegal with I t7pe •/ 
I• Note: illegal with I t7pe •/ 

I• rule •ectio:a. •/ 

rul•• 

rule 

rbod7 

act 

prec 

C_IDENTIFIER rbod7 prec 
rule• rule 

C_IDENTIFIER rbod7 prec 
·1· rbod7 prec 

I• empt7 •/ 
rbod7 IDENTIFIER 
rbod7 act 

Cop7 actio:a. tra:a.•late $$ etc. 

I• empt7 •/ 
PREC IDENTIFIER 
PREC IDENTIFIER act 
prec -;-
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Examples 

1. A Simple Example 
This example gives the complete yacc applications for a small desk calculator. 
The calculator has 26 registers labeled a through z and accepts arithmetic 
expressions made up of the following operators and assignments: 

+, -, •, /,I (mod operator), a (bitwi•• and), I (bitwi•• or), 

If an expression at the top level is an assignment, only the assignment is done; 
otherwise, the expression is printed. As in the C language, an integer that begins 
with 0 (zero) is assumed to be octal; otherwise, it is assumed to be decimal. 

As an example of a yacc specification, the desk calculator does a reasonable job of 
showing how precedence and ambiguities are used and demonstrates simple 
recovery. The major oversimplifications are that the lexical analyzer is much 
simpler than for most applications, and the output is produced immediately line 
by line. Note the way that decimal and octal integers are read in by grammar 
rules. This job is probably better done by the lexical analyzer. 
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!H 
# include <•tdio.h> 
# include <ctype.h> 

int reg•[26]; 
int ba•e; 

l•tart li•t 

ltoken DIGIT LETTER 

Ile ft • I • 
lleft • a:. 
Ile ft •+. . - . 
llef t ... . /' ·1 • 
I left UM I NUS /• •upplie• precedence for unary minu• •/ 

"" 
li•t 

•tat 

expr 

I• beginning of rule• •ection •/ 

I• empty •/ 
I li•t •tat '\n• 
I li•t error '\n• 
{ 

} 

expr 
{ 

(void) printf( 
} 

I LETTER -=- expr 
{ 

reg• ($1] = $3; 
} 

. (. expr ') . 
{ 

.. = $2; 
} 

I expr ·+. expr 
{ 

•ld\n•, 

•• = $1 + $3; 
} 

I expr . -. expr 
{ 

.. = $1 - $3; 

$1 ) ; 
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{ 

I expr ••• expr 
{ 

.. = $1 • $3; 
} 
I expr •/• expr 
{ 

$$ = $1 I $3; 
} 

I exp •I• expr 
{ 

.. = $1 " $3; 
} 

I expr ·a· expr 
{ 

u = $1 a $3; 
} 
I expr ·1· expr 
{ 

$$ = $1 I $3; 
} 

I ·-· expr lprec UMINUS 
{ 

•• = -$2; 
} 

I LETTER 
{ 

$$ = reg[$1]; 
} 

I number 

number DIGIT 
{ 

$$ = $1; 'baae = ($1==0) ? 8 10; 
} 
I number DIGIT 
{ 

$$ = 'baa• • $1 + $2; 
} 

II /• 'beginning of aubroutinea aection •/ 

int 77lex( ) 
{ 

I• lexical anal7aia routine •/ 
I• return LETTER for lowercaae letter, •/ 
I• 77lval = 0 through 26 •/ 
/• returna DIGIT for digit, 77lval = 0 through 9 •/ 
/• all other charactera are returned immediately •/ 

int c; 
/•akip blanka•/ 

while ((c = getchar()) == • •) 
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I• c i• now nonblank •/ 

if (idower (c)) 
< 

77lT&l = c - "'a"'; 
return (LETTER); 

} 
if (hdigit(c)) 
} 

77lT&l = c - "'O"'; 
return (DIGIT); 

} 
return (c); 

} 

2. An Advanced Example 
This section gives an example of a grammar using some of the advanced features. 
The desk calculator example in Example 1 is modified to provide a desk calculator 
that does floating point interval arithmetic. The calculator understands floating 
point constants and supports the arithmetic operations +, - "', /, and unary - a 
through z. Moreover, it also understands intervals written: 

ex. Y> 
where X is less than or equal to Y. There are 26 interval valued variables A 
through Z that may also be used. The usage is similar to that in Example 1; 
assignments return no value and print nothing while expressions print the 
(floating or interval) value. 

This example explores several interesting features of yacc and C. Intervals are 
represented by a structure consisting of the left and right endpoint values stored 
as doubles. This structure is given a type name, INTERVAL, by using typedef. 
yacc value stack can also contain floating point scalars and integers (used to index 
into the arrays holding the variable values). Notice that the entire strategy 
depends strongly on being able to assign structures and unions in C language. In 
fact, many of the actions call functions that return structures as well. 

It is also worth noting the use of YYERROR to handle error conditions-division 
by an interval containing 0 and an interval presented in the wrong order. The 
error recovery mechanism of yacc is used to throw away the rest of the offending 
line. 
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In addition to the mixmg of types on the value stack, this grammar also 
demonstrates an interesting use of syntax to keep track of the type (for example, 
scalar or interval) of intermediate expressions. Note that scalar can be 
automatically promoted to an interval if the context demands an interval value. 
This causes many conflicts when the grammar is run through yacc: 18 shift­
reduce and 26 reduce-reduce. The problem can be seen by looking at the two 
input lines: 

2.5 + (3.5 - 4.) 

and: 

2.5 + (3.5. 4) 

Notice that the 2.5 is to be used in an interval value expression in the second 
example, but this fact is not known until the comma is read. By this time, 2.5 is 
finished, and the parser cannot go back and change its mind. More generally, it 
might be necessary to look ahead an arbitrary number of tokens to decide whether 
to convert a scalar to an interval. This problem is evaded by having two rules for 
each binary interval valued operator - one when the left operand is a scalar and 
one when the left operand is an interval. In the second case, the right operand 
must be an interval, so the conversion will be applied automatically. Despite this 
evasion, there are still many cases where the conversion may be applied or not, 
leading to the above conflicts. They are resolved by listing the rules that yield 
scalars first in the specification file; in this way, the conflict will be resolved in the 
direction of keeping scalar valued expressions scalar valued until they are forced 
to become intervals. 

This way of handling multiple types is instructive. If there were many kinds of 
expression types instead of just two, the number of rules needed would increase 
dramatically and the conflicts even more dramatically. Thus, while this example 
is instructive, it is better practice in a more normal programming language 
environment to keep the type information as part of the value and not as part of 
the grammar. 

Finally, a word about the lexical analysis. The only unusual feature is the 
treatment of floating point constants. The C language library routine atofO is 
used to do the conversion from a character string to a double-precision value. If 
the lexical analyzer detects an error, it responds by returning a token that is illegal 
in the grammar, provoking a syntax error in the parser and thence error recovery. 
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#include <stdio.h> 
#include <ctype.h> 

typedef struct interval 
{ 

double lo, hi; 
} INTERVAL; 

INTERVAL vmul(), vdiv(); 

double atof () ; 

double dreg[26]; 
INTERVAL vreg[26]; 

u 

lstart line 

lunion 
{ 

} 

int ival; 
double dval; 
INTERVAL vval; 

ltoken <ival> DREG VREG /• indices into dreg, vreg arrays •/ 

ltoken <dval> CONST /• floating point constant •/ 

ltype <dval> dezp /• ezpression •/ 

I• precedence information about the operators •/ 

I left 
I left 
I left 

line 

·+. ·-. .. . · / · 
UMINUS /• precedence for unary minus •/ 

I• beginning of rules section •/ 

I• empt7 •/ 
lines line 

dezp '\n' 
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{ 

(Toid) printf(•l16.8f\n",$1); 

(Toid) printf(•(l16.8f, l16.8f)\n•, $1.10, $1.hi); 

} 

I DREG .•. dezp "\n• 
{ 

dr•g[$1] = $3; 
} 

I VREG •=• Tezp •\n• 
{ 

Treg[$1] = $3; 
} 

I error •\n• 

II 
{ 

77erroll:; 
} 

dezp CONST 
I DREG 
{ 

$$ = dreg[$1]; 
} 

I d•zp •+• dezp 
{ .. -$1 + $3; 
} 

I dezp ·-· dezp 
{ 

•• = $1 - $3; 
} 

I dezp ... dezp 
{ .. -$1 • $3; 
} 

I dezp • 1· dezp 
{ 

•• = $1 I $3; 
} 

I . -· dezp lprec UllINUS 
{ 

•• = -$2; 
} 

I • c· dezp•) • 
{ 

•• = $2; 
} 
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T•XP dexp 
< 

••. hi = ••.10 = $1; 
} 

I ·c· dexp ·,· dexp •)• 
< 

} 

I VREG 
< 
} 

••.10 = $2; 
... hi = $4; 
if( $$.lo > $$.hi ) 

< 

} 

(Toid) printf(•interTal out of order \n•); 
YYERROR; 

$$ = Treg [$1] ; 

I T•xp •+• T•XP 
< 

} 

$$.hi • $1.hi + $3.hi; 
$$.lo = •1.10 + $3.lo; 

I dexp •+• Texp 

< 

} 

$$.hi = $1 + $3.hi; 
••.10 = $1 + $3.lo; 

I Texp ·-· Texp 
< 

} 

$$.hi s •1.hi - $3.lo; 
••.10 = $1.lo - $3.hi; 

I dT•P ·-· Td•p 
< 

} 

$$.hi = $1 - $3.lo; 
$$.lo = $1 - $3.hi 

I Texp ••• T•xp 
< •• = TlllUl( .1.lo,$.hi,$3 ) 
} 

I dexp ••• Texp 
< 

$$ = TlllUl( $1, $1, $3 ) 
} 
I T•Xp .,. T•Xp 

< 

} 

if( dcheck( $3 ) ) YYERROR; 
$$ = TdiT( .1.lo, $1.hi, $3 ) 

I dexp •/• Texp 

yacc 
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{ 
if( dcheck( $3 ) ) YYERROR; 
$$ = vdiv( $1.lo, $1.hi, $3 ) 

} 

I ·-. vexp lprec UMINUS 
{ 

$$.hi = -$2.10;$$.lo = -$2.hi 
} 

I . c. vexp •) . 
} 

.. = $2 
} 

H I• beginning of •ubroutine• •ection •/ 

# define BSZ 60 I• buff er •ize for floating point number •/ 

I• lexical anal7•i• •/ 

int 77lex( ) 
{ 

regi•ter int c; 

I• •kip over blank• •/ 
while ((c = getchar()) == • •) 
if (hupper Cc)) 
{ 

77lval.ival = c - •A• 

return (VREG); 
} 

if (i•lower (c)) 
{ 

77lval.ival = c - ....... 
return( DREG); 

} 

I• gobble up digit•, point•, exponent• •/ 

if (hdigit(c) 11 c == •. •) 
{ 

char buf[BSZ+1], •cp = buf; 
int dot = 0, exp = O; 

for(; (cp - buf) < BSZ 
{ 

•cp = c; 

{ 

if (hdigi t Cc)) 
continue; 

if Cc == •. •) 

++cp, c = getchar()) 
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if (dot++ I I exp) 
return c•.•); /•will cau•• •7ntax error•/ 
continue; 

} 
if c c == •• •) 
{ 

} 

if (exp++) 
return c·e•); 

continue; 
I• will cau•• •7ntax error •/ 

/• end of number •/ 
break; 

} 

•cp = • •; 
if (cp - buf >= BSZ) 

(void) printf(•con•tant too long - truncated\n•); 

•l•• 
ungetc(c, •tdin); /• pu•h back la•t char read•/ 

77lval.dval • atof(buf); 
return (CONST); 

return (c); 

hilo(a, b, c, d) 
double a, b, c, d; 

{ 

I• return• the •mall••t interval containing a, b, c, and d •/ 

I• u••d b7 •,/ routine •/ 
INTERVAL v; 

if Ca 
{ 

} 

•l•• 
{ 

} 

if Cc 
{ 

} 

•l•• 
} 
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> b) 

v.hi • a; 
v.lo = b; 

v.hi = b; 
v.lo = a; 

> d) 

if Cc > v.hi) 
v.hi = c; 

if (d < v. lo) 
v.lo = d; 
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} 

} 

if (d > v.hi) 
v.hi = d; 

i:f Cc < v. lo) 
v.lo = c; 

return (v); 

INTERVAL 
vmul(a, b, v) 

{ 

double a, b; 
INTERVAL v; 

return (hilo(a • v.hi, a• v,lo, b • v.hi, b • v.lo)); 
} 
dcheck(v) 

{ 

{ 

INTERVAL v; 

i:f (v.hi >= o. aa v.lo <= o.) 
{ 

} 

(void) print:f(•divi•or interval contain• O.\n•); 
return (1); 

return (O); 

INTERVAL 
vdiv(a, b, v) 

double a, b; 
INTERVAL v; 

{ 

} 
return (hilo(a Iv.hi, a I v,lo, b Iv.hi, b Iv.lo)); 
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