
6. yacc

Introduction
yacc provides a general tool for imposing structure on the input to a computer
program. The yacc user prepares a specification that includes:

• a set of rules to describe the elements of the input

• code to be invoked when a rule is recognized

• either a definition or declaration of a low-level routine to examine the input

yacc then turns the specification into a C language function that examines the II
input stream. This function, called a parser, works by calling the low-level input
scanner. The low-level input scanner, called a lexical analyzer, picks up items '
from the input stream. The selected items are known as tokens. Tokens are
compared to the input construct rules, called grammar rules. When one of the
rules is recognized, the user code supplied for this rule (an action), is invoked.
Actions are fragments of C language code. They can return values and make use
of values returned by other actions.

The heart of the yacc specification is the collection of grammar rules. Each rule
describes a construct and gives it a name. For example, one grammar rule might
be:

date month_name day •, • year

where date, month_name, day, and year represent constructs of interest;
presumably, month_name, day, and year are defined in greater detail elsewhere.
In the example, the comma is enclosed in single quotes. This means that the
comma is to appear literally in the input. The colon and semicolon merely serve
as punctuation in the rule and have no significance in evaluating the input. With
proper definitions, the input:

July 4, 1776

might be matched by the rule.

The lexical analyzer is an important part of the parsing function. This user­
supplied routine reads the input stream, recognizes the lower-level constructs,
and communicates these as tokens to the parser. The lexical analyzer recognizes
constructs of the input stream as terminal symbols; the parser recognizes
constructs as nonterminal symbols. To avoid confusion, we will refer to terminal
symbols as tokens.

MU43815PG/D2 6-1 12/01/87

II

yacc

There is considerable leeway in deciding whether to recognize constructs using
the lexical analyzer or grammar rules. For example, the rules:

month....n-•
month_name

"J"' -.- ·11.·

•F• •e • •b•

month....n-• : ·o • •• • • c •

might be used in the above example. While the lexical analyzer only needs to
recognize individual letters, such low-level rules tend to waste time and space
and may complicate the specification beyond the ability of yacc to deal with it.
Usually, the lexical analyzer recognizes the month names and returns an
indication that a month_name is seen. In this case, month_name is a token and
the detailed rules are not needed.

Literal characters such as a comma must also be passed through the lexical
analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example the rule:

dat.e mont.h ·1· day ·1· year

allowing the expression:

7/4/1776

as a synonym for:

July 4, 1776

on input. Usually, this new rule could be slipped into a working system with
minimal effort and with little danger of disrupting existing input.

The input being read may not conform to the specifications. Input errors are
detected as early as is theoretically possible with a left-to-right scan. Not only is
the chance of reading and computing with bad input data substantially reduced,
but the bad data usually can be found quickly. Error handling, provided as part
of the input specifications, permits the reentry of bad data or the continuation of
the input process after skipping over the bad data. ·

In some cases, yacc fails to produce a parser when given a set of specifications.
The specifications may be self-contradictory, or they may require a more powerful
recognition mechanism than that available to yacc. The former cases represent
design errors; the latter cases often can be corrected by making the lexical

MU43815PG/D2 6-2 12/01/87

yacc

analyzer more powerful or by rewriting some of the grammar rules. While yacc
cannot handle all possible specifications, its power compares favorably with
similar systems. Moreover, the constructs that are difficult for yacc to handle are
also frequently difficult for human beings to handle. Some users have reported
that the discipline of formulating valid yacc specifications for their input revealed
errors of conception or design early in the program development.

The remainder of this chapter describes the following subjects:

• basic process of preparing a yacc specification

• parser operation

• handling ambiguities

• handling operator precedences in arithmetic expressions

• error detection and recovery

• the operating environment and special features of the parsers yacc produces

• suggestions to improve the style and efficiency of the specifications

• advanced topics

In addition, there are two examples and a summary of the yacc input syntax.

Basic Specifications
Names refer to either tokens or nonterminal symbols. yacc requires token names
to be declared as such. While the lexical analyzer may be included as part of the
specification file, it is perhaps more in keeping with modular design to maintain it
as a separate file. Like the lexical analyzer, other subroutines may be included as
well. Every specification file theoretically consists of three sections: the
declarations, (grammar) rules, and subroutines. The sections are separated by
double percent signs, % % (the percent sign is generally used in yacc
specifications as an escape character).

A full specification file has the general form:

declarations
%%
rules
%%
subroutines

when all sections are used. The declarations and subroutines sections are optional.

MU43815PG/D2 6-3 12/01/87

II

II

yacc

The smallest legal yacc specification is:

%%
rules

Blanks, tabs, and newlines may not appear in names or multicharacter reserved
symbols. They are ignored elsewhere. Comments may appear wherever a name
is legal. They are enclosed in/• ... •/,as in the C language.

The rules section is made up of one or more grammar rules. A grammar rule has
the form:

A BODY

where A represents a nonterminal symbol and BODY represents a sequence of
zero or more names and literals. The colon and the semicolon are yacc
punctuation.

Names may be of any length. They may be made up of letters, dots, underscores,
and digits, although a digit may not be the first character of a name. Uppercase
and lowercase letters are distinct. The names used in the body of a grammar rule
may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes, '. As in the C language,
the backslash, \, is an escape character within literals, and all the C language
escapes are recognized. Thus, the escape characters:

'\n' newline
''¥' return
... , single quote (')
'\\' backslash (\)
'\t' tab
'\b' backspace
'\f' form feed
'\xxx' xxx in octal notation

are understood by yacc. For technical reasons, the NULL character (\0 or 0)
should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the vertical bar, I,
can be used to avoid rewriting the left-hand side. In addition, the semicolon at
the end of a rule is dropped before a vertical bar. Thus, the grammar rules:

A B C D
A E F
A G

MU43815PG/D2 6-4 12101/87

can be given to yacc as:

A B C D
E F
G

yacc

by using the vertical bar. It is not necessary for all grammar rules with the same
left side to appear together in the grammar rules section, although this makes the
input more readable and easier to change.

If a nonterminal symbol matches the empty string, this condition can be indicated
by:

epai.lon :

The blank space following the colon is understood by yacc to be a nonterminal
symbol named epsilon.

Names representing tokens must be declared. This is most simply done by
writing:

lt.oken nam.e1 name2 ...

in the declarations section. Every name not defined in the declarations section is
assumed to represent a nonterminal symbol. Every nonterminal symbol must
appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular importance. By
default, the start symbol is taken to be the left-hand side of the first grammar rule
in the rules section. It is possible and desirable to declare the start symbol
explicitly in the declarations section using the %start keyword:

lat.art. symbol

The end of the input to the parser is signaled by a special token, called the end­
marker. The end-marker is represented by either a zero or a negative number. If
the tokens up to but not including the end-marker form a construct that matches
the start symbol, the parser function returns to its caller after the end-marker is
seen and accepts the input. If the end-marker is seen in any other context, it is an
error.

It is the job of the user-supplied lexical analyzer to return the end-marker when
appropriate. Usually the end-marker represents some reasonably obvious I/O
status, such as end of file or end of record.

MU43815PG/D2 6-5 12/01/87

II

II

yacc

Actions
With each grammar rule, the user may associate actions to be performed when
the rule is recognized. Actions may return values and may obtain the values
returned by previous actions. Moreover, the lexical analyzer can return values for
tokens if desired.

An action is an arbitrary C language statement. As such, it can do input and
output, call subroutines, and alter arrays and variables. An action is specified by
one or more statements enclosed in curly braces, { and }. For example:

and:

A "(" B ")"

xxx

{

}

{

}

hello(1. "abc");

yyy zzz

(vo~d) pr~n~f("a meaaage\n");
flag = 25;

are grammar rules with actions.

The dollar sign symbol, $, is used to facilitate communication between the actions
and the parser; the pseudo-variable $$ represents the value returned by the
complete action. For example, the action:

{ $$ = 1; }

returns the value 1; in fact, that's all it does.

To obtain the values returned by previous actions and by the lexical analyzer, the
action may use the pseudo-variables $1, $2, ••• $n. These refer to the values
returned by components 1 through n of the right side of a rule, with the
components being numbered from left to right. If the rule is:

A B C D

then $2 has the value returned by C, and $3 the value returned by D.

The following rule provides a common example:

expr "(" expr ")"

One would expect the value returned by this rule to be the value of the expr
within the parentheses.

MU43815PG/D2 6-6 12101/87

yacc

Since the first component of the action is the literal left parenthesis, the desired
logical result can be indicated by:

e:x:pr
{

}

• (• e:x:pr •) •

$$ = $2 ;

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rules of the form:

A B

frequently need not have an explicit action. In previous examples, all the actions
came at the end of rules. Sometimes, it is desirable to get control before a rule is
fully parsed. yacc permits an action to be written in the middle of a rule as well
as at the end. This action is assumed to return a value accessible through the II
usual $ mechanism by the actions to the right of it. In tum, it may access the •
values returned by the symbols to its left. Thus, in the rule below the effect is to
set x to 1 and y to the value returned by C:

A B
{

$$ = 1;
}

c
{

:x: = $2;
y = $3;

}

yacc handles actions that do not terminate a rule by manufacturing a new
nonterminal symbol name and a new rule matching this name to the empty
string. The interior action is the action triggered by recognizing this added rule.

MU43815PG/D2 6-7 12/01/87

II

yacc

yacc treats the above example as if it had been written:

$ACT /* empt.y */
{

$$ = 1;
}

A B $ACT c
{

lC = $2;
y = $3;

}

where $ACT is an empty action.

In many applications, output is not done directly by the actions. A data structure,
such as a parse tree, is constructed in memory and transformations are applied to
it before output is generated. Parse trees are particularly easy to construct given
routines to build and maintain the tree structure desired. For example, suppose
there is a C function node written so that the call:

node(L, n1, n2)

creates a node with label Land descendants n1 and n2 and returns the index of
the newly created node. Then you can build a parse tree by supplying actions
such as:

e:xpr expr • + • e:xpr
{

$$=node(·+·, $1, $3);
}

in the specification.

You may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section enclosed in the marks %{ and
%}. These declarations and definitions have global scope, so they are known to
the action statements and can be made known to the lexical analyzer. For
example, the declaration:

int. variable = O;

could be placed in the declarations section, making variable accessible to all the

MU43815PG/D2 6-8 12/01/87

yacc

actions. Users should avoid names beginning with yy because the yacc parser
uses only such names. In the examples shown thus far, all the values are
integers. A discussion of values of other types is in the section "Advanced
Topics."

Lexical Analysis

The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical analyzer is
an integer-valued function called yylex. The function returns an integer, the token
number, representing the kind of token read. If there is a value associated with
that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in order

yacc or the user. In either case, the #define mechanism of C language is used to ,
for communication between them to take place. The numbers may be chosen by II
allow the lexical analyzer to return these numbers symbolically. For example,
suppose that the token name DIGIT has been defined in the declarations section
of the yacc specification file. To return the appropriate token, the relevant
portion of the lexical analyzer might look like:

int. yylex ()
{

}

ext.ern int. yylval;
int. c;

c = get.char();

swit.ch (c)
{

}

case -o-:
case -1-:

case -g-:
yylval = c - -o-;
rat.urn (DIGIT);

MU43815PG/D2 6-9 12/01/87

II

yacc

The intent is to return a token number of DIGIT and a value equal to the
numerical value of the digit. If the lexical analyzer code is placed in the
subroutines section of the specification file, the identifier DIGIT is defined as the
token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The only pitfall
to avoid is using any token names in the grammar that are reserved or significant
in C language or the parser. For example, the use of token names If or while will
almost certainly cause severe difficulties when the lexical analyzer is compiled.
The token name error is reserved for error handling and should not be used
naively.

In the default situation, token numbers are chosen by yacc. The default token
number for a literal character is the numerical value of the character in the local
character set. Other names are assigned token numbers starting at 257. If the
yacc command is invoked with the -cl option, a file called y.tab.h is generated.
The y.tab.h file contains #define statements for the tokens.

If you prefer to assign the token numbers yourself, the first appearance of the
token name or literal in the declarations section must be followed immediately by
a nonnegative integer. This integer is taken to be the token number of the name
or literal. Names and literals not defined this way are assigned default definitions
by yacc. The potential for duplication exists here; make sure that all token
numbers are distinct.

For historical reasons, the end-marker must have token number 0 or a negative
value. This token number cannot be redefined by the user. Thus, all lexical
analyzers should be prepared to return 0 or a negative number as a token on
reaching the end of their input.

A useful tool for constructing lexical analyzers is the lax utility. Lexical analyzers
produced by lax are designed to work in close harmony with yacc parsers. The
specifications for these lexical analyzers use regular expressions instead of
grammar rules. lax can be easily used to produce complicated lexical analyzers,
but there remain some languages (such as FORTRAN), which do not fit any
theoretical framework and whose lexical analyzers must be crafted by hand.

Parser Operation
yacc turns the specification file into a C language procedure, which parses the
input according to the specification given. The algorithm used to go from the
specification to the parser is complex and will not be discussed here. The parser
itself, though, is relatively simple and understanding its usage will make
treatment of error recovery and ambiguities easier.

MU43815PG/D2 6-10 12/01/87

yacc

The parser produced by yacc consists of a finite state machine with a stack. The
parser is also capable of reading and remembering the next input token (called the
look-ahead token). The current state is always the one on the top of the stack.
The states of the finite state machine are given small integer labels. Initially, the
machine is in state 0 (the stack contains only state 0) and no look-ahead token has
been read.

The machine has only four actions available-shift, reduce, accept, and error. A
step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look-ahead token
to choose the action to be taken. If it needs one and does not have one, it
calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the parser
decides on its next action and carries it out. This may result in states being
pushed onto the stack or popped off the stack and in the look-ahead token
being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift
action occurs, there is always a look-ahead token. For example, in state 56 there
may be an action such as:

IF shift 34

which says: In state 56, if the look-ahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top of
the stack). The look-ahead token is cleared.

The reduce action keeps the stack from growing without bounds. reduce actions
are appropriate when the parser has seen the right-hand side of a grammar rule
and is prepared to announce that it has seen an instance of the rule replacing the
right-hand side by the left-hand side. It may be necessary to consult the look­
ahead token to decide whether to reduce (usually it is not necessary). In fact, the
default action (represented by a dot) is often a reduce action.

reduce actions are associated with individual grammar rules. Grammar rules are
also given small integer numbers, and this leads to some confusion. The action:

refers to grammar rule 18, while the action:

IF shift 34

refers to state 34.

Suppose the rule:

A :x: y z

is being reduced. The reduce action depends on the left-hand symbol (A in this

MU43815PG/D2 6-11 12/01/87

II

II

yacc

case) and the number of symbols on the right-hand side (three in this case). To
reduce, first pop off the top three states from the stack. (In general, the number
of states popped equals the number of symbols on the right side of the rule.) In
effect, these states were the ones put on the stack while recognizing x, y, and z
and no longer serve any useful purpose. Popping these states uncovers the state
the parser was in before beginning to process the rule. Using this uncovered state
and the symbol on the left side of the rule, perform what is in effect a shift of A.
A new state is obtained and pushed onto the stack, and parsing continues. There
are significant differences between the processing of the left-hand symbol and an
ordinary shift of a token, however, so this action is called a goto action. In
particular, the look-ahead token is cleared by a shift but is not affected by a goto.
In any case, the uncovered state contains an entry such as:

A got.o 20

causing state 20 to be pushed onto the stack and become the current state.

In effect, the reduce action turns back the clock in the parse popping the states
off the stack and goes back to the state where the right-hand side of the rule was
first seen. The parser then behaves as if it had seen the left side at that time. If
the right-hand side of the rule is empty, no states are popped off the stacks. The
uncovered state is the current state.

The reduce action is also important in the treatment of user-supplied actions and
values. When a rule is reduced, the code supplied with the rule is executed
before the stack is adjusted. In addition to the stack holding the states, another
stack running in parallel with it holds the values returned from the lexical
analyzer and the actions. When a shift takes place, the external variable yylval is
copied onto the value stack. After the return from the user code, the reduction is
carried out. When the goto action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the specification.
This action appears only when the look-ahead token is the end-marker and shows
that the parser has successfully done. its job. The error action, on the other hand,
represents a place where the parser can no longer continue parsing according to
the specification. The input tokens it has seen (together with the look-ahead
token) cannot be followed by anything that would result in a legal input. The
parser reports an error and attempts to recover the situation and resume parsing.
The error recovery (as opposed to the detection of error) will be discussed later.

MU43815PG/D2 6-12 12/01/87

Consider:

%token DING DONG DELL
%%
rhyme sound place

I

sound DING DONG

place : DELL

as a yacc specification.

yacc

Invoking yacc with the -v option produces a file called y.output with a human­
readable description of the parser. The y.output file corresponding to the above
grammar (with some statistics stripped off the end) follows.

MU43815PG/D2 6-13 12/01/87

II

II

yacc

ata.ta 0
$accept _rhyme $and

DING shift 3
error

rhyme goto 1
sound goto 2

a ta.ta 1
$accept rhyma_$and

$and accept
error

state 2
rhyme aound_pla.ca

DELL ahif t 6
error

place goto 4

ata.ta 3
sound DING_DONG

DONG ahif t 6
error

•ta.ta 4
rhyme sound place_ (1)

reduce 1

•ta.ta 6
place DELL_ (3)

reduce 3

state 6
sound DING DONG_ (2)

reduce 2

The actions for each state are specified and there is a description of the parsing
rules being processed in each state. The _ character is used to indicate what has
been seen and what is yet to come in each rule.

MU43815PG/D2 6-14 12/01/87

yacc

The following input can be used to track the operations of the parser:

DING DONG DELL

Initially, the current state is state 0. The parser needs to refer to the input to
decide between the actions available in state 0, so the first token, DING, is read
and becomes the look-ahead token. The action in state 0 on DING is shift 3, so
state 3 is pushed onto the stack and the look-ahead token is cleared. State 3
becomes the current state. The next token, DONG, is read and becomes the
look-ahead token. The action in state 3 on the token DONG is shift 6, so state 6
is pushed onto the stack and the look-ahead is cleared. The stack now contains 0,
3, and 6. In state 6, without even consulting the look-ahead, the parser reduces
by:

sound DING DONG

which is rule 2. Two states, 6 and 3, are popped off the stack uncovering state 0.
Consulting the description of state 0 (looking for a goto on sound), produces:

sound goto 2

State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token, DELL, must be read. The action is shift 5, so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the look-ahead token
is cleared. In state 5, the only action is to reduce by rule 3. This has one symbol
on the right-hand side, so one state, 5, is popped off, and state 2 is uncovered.
The goto in state 2 on place (the left side of rule 3) is state 4. Now, the stack
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are
two symbols on the right, so the top two states are popped off, uncovering state 0
again. In state 0, there is a goto on rhyme causing the parser to enter state 1. In
state 1, the input is read and the end-marker is obtained, indicated by $end in the
y.output file. The action in state 1 (when the end-marker is seen) successfully
ends the parse.

It is worthwhile to consider how the parser works when confronted with such
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL
DELL, etc. A few minutes spent with this and other simple examples is repaid
when problems arise in more complicated contexts.

Ambiguity and Conflicts
A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule:

expr expr expr

is a natural way of expressing the fact that one way to form an arithmetic

MU43815PG/D2 6-15 12/01/87

II

II

yacc

expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not completely specify the way that
all complex inputs should be structured. For example, if the input is:

expr expr expr

the rule allows this input to be structured either as:

(expr expr) expr

or as:

expr (e:x:pr expr)

(The first is called left association, the second right association.)

yacc detects such ambiguities when it is attempting to build the parser. Given
the input:

expr ex pr expr

consider the problem that confronts the parser. When the parser has read the
second expr, the input seen:

expr e:x:pr

matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule. After applying the rule, the input is reduced to expr
{the left side of the rule). The parser would then read the final part of the input:

expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, if the parser sees:

ex pr ex pr

it could defer the immediate application of the rule and continue reading the input
until it sees:

e:x:pr ex pr expr

The parser could then apply the rule to the rightmost three symbols, reducing
them to expr, which leaves:

expr expr

Now the rule can be reduced once more. The effect is to take the right associative
interpretation. Thus, having read:

ex pr e:x:pr

the parser can do one of two legal things, a shift or a reduction. It has no way of

MU43815PG/D2 6-16 12/01/87

yacc

deciding between them. This is called a shift-reduce conflict. It may also happen
that the parser has a choice of two legal reductions. This is called a reduce­
reduce conflict. Note that there are never any shift-shift conflicts.

When there are shift-reduce or reduce-reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing the choice to make in a given situation is called a
disambiguating rule.

In situations calling for a default choice, yacc invokes two default disambiguating
rules:

1. In a shift-reduce conflict, the default is to do the shift.

2. In a reduce-reduce conflict, the default is to reduce by the earlier grammar
rule (in the yacc specification).

Rule 1 implies that reductions are deferred in favor of shifts when there is a
choice. Rule 2 gives the user crude control over the behavior of the parser in this
situation, but reduce-reduce conflicts should be avoided when possible.

Conflicts may arise because of mistakes in input or logic or because the grammar
rules (while consistent) require a more complex parser than yacc can construct.
The use of actions within rules can also cause conflicts if the action must be done
before the parser can be sure which rule is being recognized. In these cases, the
application of disambiguating rules is inappropriate and leads to an incorrect
parser. For this reason, yacc always reports the number of shift-reduce and
reduce-reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputs are read but there are no conflicts. Most previous parser generators have
considered conflicts to be fatal errors. Our experience suggests that this rewriting
is somewhat unnatural and produces slower parsers. Thus, yacc will produce
parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider:

stat IF • (' cond '). stat
IF '(' cond •)• stat ELSE stat

which is a fragment from a programming language involving an if-then-else
statement. In these rules, IF and ELSE are tokens, cond is a nonterminal symbol
describing conditional (logical) expressions, and stat is a nonterminal symbol
describing statements. The first rule will be called the simple if rule and the
second the if-else rule.

MU43815PG/D2 6-17 12/01/87

II

II

yacc

These two rules form an ambiguous construction because input of the form:

IF (C1) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways, either as:

IF (C1)
{

IF (C2)

S1
}

ELSE
S2

or as:

IF (C1)
{

IF (C2)

S1
ELSE

S2
}

The second interpretation is the one given in most programming languages
having this construct; each ELSE is associated with the last preceding un-ELSE' d
IF. In this example, consider the case where the parser has seen:

IF (C1) IF (C2) S1

and is looking at the ELSE. It can immediately reduce by the simple if rule to get:

IF (C1) atat

and then read the remaining input:

ELSE S2

and reduce:

IF (C1) atat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right-hand
portion of:

IF (C1) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get:

MU43815PG/D2 6-18 12/01/87

yacc

IF (C1) stat

which can be reduced by the simple if rule. This leads to the second of the above
input groupings, which is usually the desired one.

Once again, the parser can do two valid things-there is a shift-reduce conflict.
Here, the application of disambiguating rule 1 tells the parser to shift, which leads
to the desired grouping.

This shift-reduce conflict arises only when there is a particular current input
symbol, ELSE, and particular inputs, such as:

IF (Cl) IF (C2) 81

have already been seen. In general, there may be many conflicts, and each one
will be associated with an input symbol and a set of previously read inputs. The
previously read inputs are characterized by the_ state of the parser.

The conflict messages of yacc are best understood by examining the verbose (-v)
option output file. For example, the output corresponding to the above conflict
state might be:

23: •hift-reduce conflict (•hift 46, reduce 18) on ELSE

•tat• 23

•tat IF (cond) •tat_ (18)
•tat IF C cond) •tat_ELSE •tat

ELSE •hif t 46
reduce 18

where the first line describes the conflict-giving the state and the input symbol.
The ordinary state description gives the grammar rules active in the state and the
parser actions. Recall that the underline marks the portion of the grammar rules,
which has been seen. Thus in the example, in state 23 the parser has seen input
corresponding to:

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two
possible things: remain in state 23 or shift into state 45.

If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have,
as part of its description, the line:

stat IF (cond) stat ELSE_stat

MU43815PG/D2 6-19 12/01/87

II

II

yacc

because the ELSE will have been shifted in this state. In state 23, the alternative
action (describing a dot, .), is to be done if the input symbol is not mentioned
explicitly in the actions. Here, if the input symbol is not ELSE, the parser reduces
to:

st.at.

by grammar rule 18.

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed in parentheses after
those rules, which can be reduced. In most states, there is a reduce action
possible in the state and this is the default command. The user who encounters
unexpected shift-reduce conflicts will probably want to look at the verbose output
to decide whether the default actions are appropriate.

Precedence
One common situation exists where the above rules for resolving conflicts are not
sufficient. This is in the parsing of arithmetic expressions. Most of the commonly
used constructions for arithmetic expressions can be naturally described by the
notion of precedence levels for operators, together with information about left or
right associativity. It turns out that ambiguous grammars with appropriate
disambiguating rules can be used to create parsers that are faster and easier to
write than parsers constructed from unambiguous grammars. The basic notion is
to write grammar rules of the forms:

e:x:pr expr OP e:x:pr

and:

expr UNARY expr

for all binary and unary operators desired. This creates an ambiguous grammar
with many parsing conflicts. As disambiguating rules, the user specifies the
precedence or binding strength of all the operators and the associativity of the
binary operator5. This information allows yacc to resolve the parsing conflicts
according to these rules and construct a parser that realizes the desired
precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with a yacc keyword: o/oleft,
o/oright, or o/ononassoc, followed by a list of tokens. All the tokens on the same
line are assumed to have the same precedence level and associativity; the lines are
listed in order of increasing precedence or binding strength. Thus, the segment

MU43815PG/D2 6-20 12/01/87

"1e:ft. • + •
"1e:ft. • * •

yacc

. / ·
describes the precedence and associativity of the four arithmetic operators. Plus
and minus are left associative and have lower precedence than star and slash,
which are also left associative. The keyword o/oright is used to describe right
associative operators, and the keyword o/ononassoc is used to describe operators,
like the operator .LT. in FORTRAN, that may not associate with themselves.
Thus an expression like:

A .LT. B .LT. C

is illegal in FORTRAN and such an operator would be described with the
keyword o/ononassoc in yacc. As an example of the behavior of these
declarations, the description:

lright. ·=-
I left. ·+. ·-.
lleft. .•. · / ·
II

expr expr ·=· expr
expr ·+· expr
expr ·-. expr
expr .•. expr
expr · / · expr
NAME

might be used to structure the input:

a • b • c•d e :f •g

as follows to perform the correct precedence of operators:

a = (b = (((c•d)-e) - (:f•g)))

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the same
symbolic representation but different precedences. An example is unary and
binary minus, - .

Unary minus may be given the same strength as multiplication, or even higher,
while binary minus has a lower strength than multiplication. The keyword,
o/oprec, changes the precedence level associated with a particular grammar rule.
The keyword o/oprec appears immediately after the body of the grammar rule,
before the action or closing semicolon, and is followed by a token name or literal.

MU43815PG/D2 6-21 12/01/87

II

II

yacc

It causes the precedence of the grammar rule to become that of the following
token name or literal. For example, the rules below might be used to give unary
minus the same precedence as multiplication:

"left ·+· . -.
"left I.

""
expr expr •+• expr

expr . -. expr
expr ... expr
expr ·1· expr . -. expr "prec .•.
NAME

A token declared by %left, %right, and %nonassoc need not be, but may be,
declared by %token as well.

Precedences and associativities are used by yacc to resolve parsing conflicts.
They cause the following disambiguating rules:

1. Precedences and associativities are recorded for those tokens and literals that
have them.

2. A precedence and associativity is associated with each grammar rule. It is
the precedence and associativity of the last token or literal in the body of the
rule. If the %prec construction is used, it overrides this default. Some
grammar rules may have no precedence and associativity associated with
them.

3. When there is a reduce-reduce conflict or there is a shift-reduce conflict
and either the input symbol or the grammar rule has no precedence and
associativity, then the two default disambiguating rules given at the
beginning of the section are used, and the conflicts are reported.

4. If there is a shift-reduce conflict and both the grammar rule and the input
character have precedence and associativity associated with them, then the
conflict is resolved in favor of the action-shift or reduc~ssociated with
the higher precedence. If precedences are equal, then associativity is used.
Left associative implies reduce; right associative implies shift;
nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift-reduce
and reduce-reduce conflicts reported by yacc. This means that mistakes in the

MU43815PG/D2 6-22 12/01/87

yacc

specification of precedences may disguise errors in the input grammar. It is a
good idea to be sparing with precedences and use them in a cookbook fashion
until some experience has been gained. The y.output file is useful in deciding
whether the parser is actually doing what was intended.

Error Handling
Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and/or, typically,
set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is more
useful to continue scanning the input to find further syntax errors. This leads to
the problem of getting the parser restarted after an error. A general class of II
algorithms to do this involves discarding a number of tokens from the input string
and attempting to adjust the parser so that input can continue. •

To allow the user some control over this process, yacc provides the token name
error. This name can be used in grammar rules. In effect, it suggests places
where errors are expected and recovery might take place. The parser pops its
stack until it enters a state where the token error is legal. It then behaves as if
the token error were the current look-ahead token and performs the action
encountered. The look-ahead token is then reset to the token that caused the
error. If no special error rules have been specified, the processing halts when an
error is detected.

To prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted.
If an error is detected when the parser is already in error state, no message is
given, and the input token is quietly deleted.

As an example, a rule of the form:

st.at. error

means that on a syntax error, the parser attempts to skip over the statement in
which the error is seen. More precisely, the parser scans ahead, looking for three
tokens that might legally follow a statement, and starts processing at the first of
these. If the beginnings of statements are not sufficiently distinctive, it may make
a false start in the middle of a statement and report a second error where there is
in fact no error.

Actions may be used with these special error rules. These actions might attempt
to reinitialize tables, reclaim symbol table space, etc.

MU43815PG/D2 6-23 12/01/87

II

yacc

Error rules such as the above are very general but difficult to control. Rules such
as the following are somewhat easier:

at.at. -. -, error

Here, when there is an error, the parser attempts to skip over the statement but
does so by skipping to the next semicolon. All tokens after the error and before
the next semicolon cannot be shifted and are discarded. When the semicolon is
seen, this rule will be reduced and any cleanup action associated with it
performed.

Another form of error rule arises in interactive applications where it may be
desirable to permit a line to be reentered after an error. The following example is
one way to do this:

input.

{

}

{

}
(void) print.f(•Reent.er la•t. line: •);

input.

•• = ;

There is one potential difficulty with this approach: The parser must correctly
process three input tokens before it admits that it has correctly resynchronized
after the error. If the reentered line contains an error in the first two tokens, the
parser deletes the offending tokens and gives no message. This is clearly
unacceptable so there is a mechanism that can force the parser to believe that
error recovery has been accomplished. The statement:

yyerrok :

in an action resets the parser to its normal mode.

MU43815PG/D2 6-24 12/01/87

yacc

The last example can be rewritten as:

input •rror •\n •
{

77•rroll:;
(void) printf(•R••nt•r la•t lin•: •);

}

input
{

}
.. = $4;

which is somewhat better.

As previously mentioned, the token seen immediately after the error symbol is
the input token at which the error was discovered. Sometimes, this is
inappropriate. For example, an error recovery action might find the correct place
to resume input. In such a case, the previous look-ahead token must be cleared.
The statement:

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine (supplied by the user)
that attempted to advance the input to the beginning of the next valid statement.
After this routine is called, the next token returned by yylex is presumably the
first token in a legal statement. The old illegal token must be discarded and the
error state reset. A rule similar to:

•tat •rror
{

}

r••7nch();
n•rroll:
77cl•arin;

could perform this task.

These mechanisms are admittedly crude but do allow for a simple, fairly effective
recovery of the parser from many errors. Moreover, the user can get control to
deal with the error actions required by other portions of the program.

MU43815PG/D2 6-25 12/01/87

II

II

yacc

The yacc Environment
When you input a specification to yacc, the output is a file of C language
subroutines, called y.tab.c. The function produced by yacc is called yyparse(); it
is an integer valued function. When this function is called, it in tum repeatedly
calls yylex(), the lexical analyzer supplied by the user (see ''Lexical Analysis'), to
obtain input tokens. Eventually, an error is detected, yyparse() returns the value
1, and no error recovery is possible, or the lexical analyzer returns the end-marker
token and the parser accepts. In this case, yyparse() returns the value 0.

The user must provide a certain amount of environment for this parser to obtain a
working program. For example, as with every C language program, a routine
called main() must be defined that eventually calls yparse(). In addition, a
routine called yyerror() is needed to print a message when a syntax error is
detected.

These two routines must be supplied in one form or another by the user. To ease
the initial effort of using yacc, a library has been provided with default versions
of main() and yerror(). The library is accessed by a -ly argument to the cc(l)
command or to the loader. The source codes:

and:

main()
{

return (yyparse());
}

include <stdio.h>

yyerror(s)
char •s;

{

(void) fprintf(stderr, "%s\n", s);
}

show the triviality of these default programs. The argument to yerror() is a string
containing an error message, usually the string syntax error. The average
application wants to do better than this. Ordinarily, the program should keep
track of the input line number and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the look-ahead
token number at the time the error was detected. This may be of some interest in
giving better diagnostics. Since the main() routine is probably supplied by the
user (to read arguments, etc.), the yacc library is useful only in small projects or
in the earliest stages of larger ones.

MU43815PG/D2 6-26 12/01/87

yacc

The external integer variable yydebug is normally set to 0. If it is set to a nonzero
value, the parser will output a verbose description of its actions including a
discussion of the input symbols read and what the parser actions are. It is
possible to set this variable by using sdb.

Hints for Preparing Specifications
This part of the chapter contains miscellaneous hints on preparing efficient, easy
to change, and clear specifications. The individual subsections are more or less
independent.

Input Style
It is difficult to provide rules with substantial actions and still have a readable
specification file. The following are a few style hints.

1. Use all uppercase letters for token names and all lowercase letters for
nonterminal names. This is useful in debugging.

2. Put grammar rules and actions on separate lines. It makes editing easier.

3. Put all rules with the same left-hand side together. Put the left-hand side in
only once and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left-hand side and put
the semicolon on a separate line. This allows new rules to be easily added.

5. Indent rule bodies by one tab stop and action bodies by two tab stops.

6. Put complicated actions into subroutines defined in separate files.

Example 1 is written following this style, as are the examples in this section
(where space permits). The user must decide about these stylistic questions. The
central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion
The algorithm used by the yacc parser encourages so-called left recursive
grammar rules. Rules of the form:

name name res~_of_;rule

match this algorithm.

MU43815PG/D2 6-27 12/01/87

II

II

yacc

These rules, such as:

l.ist.

and:

seq

it.em
l.ist.

it.em

, ,
•

seq it.em

it.em

frequently arise when writing specifications of sequences and lists. In each of
these cases, the first rule will be reduced for the first item only; and the second
rule will be reduced for the second and all succeeding items.

With right recursive rules, such as:

seq it.em
it.em seq

the parser is a bit bigger and the items are seen and reduced from right to left.
More seriously, an internal stack in the parser is in danger of overflowing if a very
long sequence is read. Thus, the user should use left recursion wherever
reasonable.

It is worthwhile to consider whether a sequence with zero elements has any
meaning, and if so, to consider writing the sequence specification as:

seq /• empt.y •/
seq it.em

using an empty rule. Once again, the first rule would always be reduced exactly
once before the first item was read, and then the second rule would be reduced
once for each item read. Permitting empty sequences often leads to increased
generality. However, conflicts might arise if yacc is asked to decide which empty
sequence it has seen when it hasn't seen enough to know!

Lexical Tie-Ins

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks normally, but not within quoted strings; or names
might be entered into a symbol table in declarations but not in expressions. One
way of handling these situations is to create a global flag that is examined by the
lexical analyzer and set by actions.

MU43815PG/D2 6-28 12/01/87

For example, the segment:

I<

u
111.t dflag;

other declaratio11.•

prog decl• •tat•

de cl• I• empty •/
{

dflag = 1;
}

I de cl• declaratio11.

•tat• I• empty •/
{

dflag = O;
}

I •tat• •tatement

other rule• ...

yacc

specifies a program that consists of zero or more declarations followed by zero or
more statements. The flag dflag is now 0 when reading statements and 1 when
reading declarations, except for the first token in the first statement. This token
must be seen by the parser before it can tell that the declaration section has ended
and the statements have begun. In many cases, this single token exception does
not affect the lexical scan.

This back-door approach can be elaborated to a noxious degree. Nevertheless, it
represents a way of doing some things that are difficult, if not impossible, to do
otherwise.

Reserved Words
Some programming languages permit you to use words like if, which are normally
reserved as label or variable names, provided that such use does not conflict with
the legal use of these names in the programming language. This is extremely
hard to do in the framework of yacc. It is difficult to pass information to the
lexical analyzer telling it this instance of if is a keyword and that instance is a

MU43815PG/D2 6-29 12/01/87

II

II

yacc

variable. You can try it using the mechanism described in the last subsection, but
it is difficult.

Ways of making this easier are under advisement. Until then, it is better that the
keywords be reserved, i.e., forbidden for use as variable names. There are
powerful stylistic reasons for preferring this.

Advanced Topics
This part discusses some advanced features of yacc.

Simulating error and accept In Actions
The parsing actions of error and accept can be simulated in an action by use of
the macros YYACCEPT and YYERROR. The YYACCEPT macro causes yyparse() to
return the value 0. YYERROR causes the parser to behave as if the current input
symbol had been a syntax error; yyerror() is called, and error recovery takes place.
These mechanisms can be used to simulate parsers with multiple end-markers or
context sensitive syntax checking.

MU43815PG/D2 6-30 12101187

yacc

Accessing Values in Enclosing Rules
An action may refer to values returned by actions to the left of the current rule.
The mechanism is the same as with ordinary actions, a dollar sign followed by a
digit:

••nt adj noun Terb adj noun
{

}
look at th• ••ntenc•

adj THE
{

•• = THE;
}
I YOUNG
{

•• = YOUNG;
}

noun DOG
{

•• = DOG;
:}
I CRONE
{

}

if($0 ==YOUNG)
{

(Toid) printf(•what?\n•);
}

•• = CRONE;

In this case, the digit may be 0 or negative. In the action following the word
CRONE, a check is made that the preceding token shifted was not YOUNG.

Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured
flavor about this. Nevertheless, at times this mechanism prevents much trouble,
especially when a few combinations are to be excluded from an otherwise regular
structure.

MU43815PG/D2 6-31 12/01/87

II

II

yacc

Support for Arbitrary Value Types
By default, the values returned by actions and by the lexical analyzer are integers.
yacc can also support values of other types, including structures. In addition,
yacc keeps track of the types and inserts appropriate union member names so
that the resulting parser is strictly type-checked. The yacc value stack is declared
to be a union of the various types of values desired. The user declares the union
and associates union member names with each token and nonterminal symbol
having a value. When the value is referenced through a$$ or $n construction,
yacc automatically inserts the appropriate union name so that no unwanted
conversions take place. In addition, type checking commands such as lint are far
more silent.

Three mechanisms are used to provide for this typing. First, there is a way of
defining the union. This must be done by the user since other subroutines,
notably the lexical analyzer, must know about the union member names. Second,
there is a way of associating a union member name with tokens and
nonterminals. Finally, there is a mechanism for describing the type of those few
values where yacc cannot easily determine the type.

To declare the union, the user includes:

"uni.on
{

body of uni.on ...
}

in the declaration section. This declares the yacc value stack and the external
variables yylval and yyval to have type equal to this union. If yacc was invoked
with the -d option, the union declaration is copied onto the y.tab.h file as
YYSTYPE.

Once YYSTYPE is defined, the union member names must be associated with the
various terminal and nonterminal names. The construction:

<name>

is used to indicate a union member name. If this follows one of the keywords
%token, %left, %right, and %nonassoc, the union member name is associated
with the tokens listed. Thus, saying:

"left <optype> -+- --•

causes any reference to values returned by these two tokens to be tagged with the
union member name optype.

Another keyword, %type, is used to associate union member names with

MU43815PG/D2 6-32 12/01/87

yacc

nonterminals. Thus, one might say:

%type <nodetype> expr stat

to associate the union member nodetype with the nonterminal symbols expr and
stat.

There remain a couple of cases where these mechanisms are insufficient. If there
is an action within a rule, the value returned by this action has no a priori type.
Similarly, reference to left context values (such as $0) leaves yacc with no easy
way of knowing the type. In this case, a type can be imposed on the reference by
inserting a union member name between < and > immediately after the first $.
The example below shows this usage:

rule &&&
{

$<intval>$ 3;
}

bbb
{

fun($<intval>2, $<other>O);
}

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Example 2. The facilities in this subsection are
not triggered until they are used. In particular, the use of %type will tum on
these mechanisms. When they are used, there is a strict level of checking. For
example, use of $nor$$ to refer to something with no defined type is diagnosed.
If these facilities are not triggered, the yacc value stack is used to hold ints.

yacc Input Syntax

This section has a description of the yacc input syntax as a yacc specification.
Context dependencies, etc. are not considered. Ironically, although yacc accepts
an LALR(l) grammar, the yacc input specification language is most naturally
specified as an LR(2) grammar; the sticky part comes when an identifier is seen in
a rule immediately following an action. If this identifier is followed by a colon, it
is the start of the next rule; otherwise, it is a continuation of the current rule,
which just happens to have an action embedded in it. As implemented, the
lexical analyzer looks ahead after seeing an identifier and decides whether the
next token (skipping blanks, newlines, and comments, etc.) is a colon. If so, it
returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals
(quoted strings) are also returned as IDENTIFIERs but never as part of

MU43815PG/D2 6-33 12101/87

II

II

yacc

C_IDENTIFIERs.

I• grammar for the input to yacc •/

I• include• identifier• and literal• •/
I•

I token
I token
ltoken

ba•ic entri•• •/
IDENTIFIER
C_IDENTIFIER
NUMBER

I• identifier (but not literal) followed by a
I• C0-9]+ •/

I• r•••rved word•: ltype=>TYPE lleft=>LEFT,etc. •I

ltok•n LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

ltoken MARK I• th• .. mark •I
ltoken LCURL I• th• •< mark •I
ltoken RCURL I• th• u mark •I

I• ASCII character literal• •tand for th•m••lv•• •/

I token •p•c

""
apec defa MARK rulea tail

tail MARK
{

In thi• action, eat up th• r••t of the file
}

I I• empty: th• ••cond MARK i• optional •/

def• I• empty •I
defa def

def START IDENTIFIER
I UNION
{

Copy union definition to output
}

I LCURL
{

Copy C code to output file
}

RCURL
rword tag nli•t

rword TOKEN
LEFT

MU43815PG/D2 6-34 12/01/87

tag

:a.li•t

:a.m:a.o

RIGHT
NONASSOC
TYPE

yacc

I• empt7: u:a.io:a. tag i• optio:a.al •/
•c• IDENTIFIER •>•

Jl.IDILO

:a.li•t Jl.IDILO

:a.li•t •, • :a.m:a.o

IDENTIFIER
IDENTIFIER NUMBER

/• Note: literal illegal with I t7pe •/
I• Note: illegal with I t7pe •/

I• rule •ectio:a. •/

rul••

rule

rbod7

act

prec

C_IDENTIFIER rbod7 prec
rule• rule

C_IDENTIFIER rbod7 prec
·1· rbod7 prec

I• empt7 •/
rbod7 IDENTIFIER
rbod7 act

Cop7 actio:a. tra:a.•late $$ etc.

I• empt7 •/
PREC IDENTIFIER
PREC IDENTIFIER act
prec -;-

MU43815PG/D2 6-35 12/01/87

II

II

yacc

Examples

1. A Simple Example
This example gives the complete yacc applications for a small desk calculator.
The calculator has 26 registers labeled a through z and accepts arithmetic
expressions made up of the following operators and assignments:

+, -, •, /,I (mod operator), a (bitwi•• and), I (bitwi•• or),

If an expression at the top level is an assignment, only the assignment is done;
otherwise, the expression is printed. As in the C language, an integer that begins
with 0 (zero) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator does a reasonable job of
showing how precedence and ambiguities are used and demonstrates simple
recovery. The major oversimplifications are that the lexical analyzer is much
simpler than for most applications, and the output is produced immediately line
by line. Note the way that decimal and octal integers are read in by grammar
rules. This job is probably better done by the lexical analyzer.

MU43815PG/D2 6-36 12/01/87

!H
include <•tdio.h>
include <ctype.h>

int reg•[26];
int ba•e;

l•tart li•t

ltoken DIGIT LETTER

Ile ft • I •
lleft • a:.
Ile ft •+. . - .
llef t /' ·1 •
I left UM I NUS /• •upplie• precedence for unary minu• •/

""
li•t

•tat

expr

I• beginning of rule• •ection •/

I• empty •/
I li•t •tat '\n•
I li•t error '\n•
{

}

expr
{

(void) printf(
}

I LETTER -=- expr
{

reg• ($1] = $3;
}

. (. expr ') .
{

.. = $2;
}

I expr ·+. expr
{

•ld\n•,

•• = $1 + $3;
}

I expr . -. expr
{

.. = $1 - $3;

$1) ;

MU43815PG/D2 6-37

yacc

II

12/01/87

II

yacc

{

I expr ••• expr
{

.. = $1 • $3;
}
I expr •/• expr
{

$$ = $1 I $3;
}

I exp •I• expr
{

.. = $1 " $3;
}

I expr ·a· expr
{

u = $1 a $3;
}
I expr ·1· expr
{

$$ = $1 I $3;
}

I ·-· expr lprec UMINUS
{

•• = -$2;
}

I LETTER
{

$$ = reg[$1];
}

I number

number DIGIT
{

$$ = $1; 'baae = ($1==0) ? 8 10;
}
I number DIGIT
{

$$ = 'baa• • $1 + $2;
}

II /• 'beginning of aubroutinea aection •/

int 77lex()
{

I• lexical anal7aia routine •/
I• return LETTER for lowercaae letter, •/
I• 77lval = 0 through 26 •/
/• returna DIGIT for digit, 77lval = 0 through 9 •/
/• all other charactera are returned immediately •/

int c;
/•akip blanka•/

while ((c = getchar()) == • •)

MU43815PG/D2 6-38 12/01/87

yacc

I• c i• now nonblank •/

if (idower (c))
<

77lT&l = c - "'a"';
return (LETTER);

}
if (hdigit(c))
}

77lT&l = c - "'O"';
return (DIGIT);

}
return (c);

}

2. An Advanced Example
This section gives an example of a grammar using some of the advanced features.
The desk calculator example in Example 1 is modified to provide a desk calculator
that does floating point interval arithmetic. The calculator understands floating
point constants and supports the arithmetic operations +, - "', /, and unary - a
through z. Moreover, it also understands intervals written:

ex. Y>
where X is less than or equal to Y. There are 26 interval valued variables A
through Z that may also be used. The usage is similar to that in Example 1;
assignments return no value and print nothing while expressions print the
(floating or interval) value.

This example explores several interesting features of yacc and C. Intervals are
represented by a structure consisting of the left and right endpoint values stored
as doubles. This structure is given a type name, INTERVAL, by using typedef.
yacc value stack can also contain floating point scalars and integers (used to index
into the arrays holding the variable values). Notice that the entire strategy
depends strongly on being able to assign structures and unions in C language. In
fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions-division
by an interval containing 0 and an interval presented in the wrong order. The
error recovery mechanism of yacc is used to throw away the rest of the offending
line.

MU43815PG/D2 6-39 12/01/87

II

II

yacc

In addition to the mixmg of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (for example,
scalar or interval) of intermediate expressions. Note that scalar can be
automatically promoted to an interval if the context demands an interval value.
This causes many conflicts when the grammar is run through yacc: 18 shift­
reduce and 26 reduce-reduce. The problem can be seen by looking at the two
input lines:

2.5 + (3.5 - 4.)

and:

2.5 + (3.5. 4)

Notice that the 2.5 is to be used in an interval value expression in the second
example, but this fact is not known until the comma is read. By this time, 2.5 is
finished, and the parser cannot go back and change its mind. More generally, it
might be necessary to look ahead an arbitrary number of tokens to decide whether
to convert a scalar to an interval. This problem is evaded by having two rules for
each binary interval valued operator - one when the left operand is a scalar and
one when the left operand is an interval. In the second case, the right operand
must be an interval, so the conversion will be applied automatically. Despite this
evasion, there are still many cases where the conversion may be applied or not,
leading to the above conflicts. They are resolved by listing the rules that yield
scalars first in the specification file; in this way, the conflict will be resolved in the
direction of keeping scalar valued expressions scalar valued until they are forced
to become intervals.

This way of handling multiple types is instructive. If there were many kinds of
expression types instead of just two, the number of rules needed would increase
dramatically and the conflicts even more dramatically. Thus, while this example
is instructive, it is better practice in a more normal programming language
environment to keep the type information as part of the value and not as part of
the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the
treatment of floating point constants. The C language library routine atofO is
used to do the conversion from a character string to a double-precision value. If
the lexical analyzer detects an error, it responds by returning a token that is illegal
in the grammar, provoking a syntax error in the parser and thence error recovery.

MU43815PG/D2 6-40 12/01/87

I{

#include <stdio.h>
#include <ctype.h>

typedef struct interval
{

double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof () ;

double dreg[26];
INTERVAL vreg[26];

u

lstart line

lunion
{

}

int ival;
double dval;
INTERVAL vval;

ltoken <ival> DREG VREG /• indices into dreg, vreg arrays •/

ltoken <dval> CONST /• floating point constant •/

ltype <dval> dezp /• ezpression •/

I• precedence information about the operators •/

I left
I left
I left

line

·+. ·-. .. . · / ·
UMINUS /• precedence for unary minus •/

I• beginning of rules section •/

I• empt7 •/
lines line

dezp '\n'

MU43815PG/D2 6-41

yacc

II

12/01/87

yacc

{

(Toid) printf(•l16.8f\n",$1);

(Toid) printf(•(l16.8f, l16.8f)\n•, $1.10, $1.hi);

}

I DREG .•. dezp "\n•
{

dr•g[$1] = $3;
}

I VREG •=• Tezp •\n•
{

Treg[$1] = $3;
}

I error •\n•

II
{

77erroll:;
}

dezp CONST
I DREG
{

$$ = dreg[$1];
}

I d•zp •+• dezp
{ .. -$1 + $3;
}

I dezp ·-· dezp
{

•• = $1 - $3;
}

I dezp ... dezp
{ .. -$1 • $3;
}

I dezp • 1· dezp
{

•• = $1 I $3;
}

I . -· dezp lprec UllINUS
{

•• = -$2;
}

I • c· dezp•) •
{

•• = $2;
}

MU43815PG/D2 6-42 12/01/87

T•XP dexp
<

••. hi = ••.10 = $1;
}

I ·c· dexp ·,· dexp •)•
<

}

I VREG
<
}

••.10 = $2;
... hi = $4;
if($$.lo > $$.hi)

<

}

(Toid) printf(•interTal out of order \n•);
YYERROR;

$$ = Treg [$1] ;

I T•xp •+• T•XP
<

}

$$.hi • $1.hi + $3.hi;
$$.lo = •1.10 + $3.lo;

I dexp •+• Texp

<

}

$$.hi = $1 + $3.hi;
••.10 = $1 + $3.lo;

I Texp ·-· Texp
<

}

$$.hi s •1.hi - $3.lo;
••.10 = $1.lo - $3.hi;

I dT•P ·-· Td•p
<

}

$$.hi = $1 - $3.lo;
$$.lo = $1 - $3.hi

I Texp ••• T•xp
< •• = TlllUl(.1.lo,$.hi,$3)
}

I dexp ••• Texp
<

$$ = TlllUl($1, $1, $3)
}
I T•Xp .,. T•Xp

<

}

if(dcheck($3)) YYERROR;
$$ = TdiT(.1.lo, $1.hi, $3)

I dexp •/• Texp

yacc

MU43815PG/D2 6-43 12/01/87

II

II

yacc

{
if(dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3)

}

I ·-. vexp lprec UMINUS
{

$$.hi = -$2.10;$$.lo = -$2.hi
}

I . c. vexp •) .
}

.. = $2
}

H I• beginning of •ubroutine• •ection •/

define BSZ 60 I• buff er •ize for floating point number •/

I• lexical anal7•i• •/

int 77lex()
{

regi•ter int c;

I• •kip over blank• •/
while ((c = getchar()) == • •)
if (hupper Cc))
{

77lval.ival = c - •A•

return (VREG);
}

if (i•lower (c))
{

77lval.ival = c -
return(DREG);

}

I• gobble up digit•, point•, exponent• •/

if (hdigit(c) 11 c == •. •)
{

char buf[BSZ+1], •cp = buf;
int dot = 0, exp = O;

for(; (cp - buf) < BSZ
{

•cp = c;

{

if (hdigi t Cc))
continue;

if Cc == •. •)

++cp, c = getchar())

MU43815PG/D2 6-44 12/01/87

}
INTERVAL

}

yacc

if (dot++ I I exp)
return c•.•); /•will cau•• •7ntax error•/
continue;

}
if c c == •• •)
{

}

if (exp++)
return c·e•);

continue;
I• will cau•• •7ntax error •/

/• end of number •/
break;

}

•cp = • •;
if (cp - buf >= BSZ)

(void) printf(•con•tant too long - truncated\n•);

•l••
ungetc(c, •tdin); /• pu•h back la•t char read•/

77lval.dval • atof(buf);
return (CONST);

return (c);

hilo(a, b, c, d)
double a, b, c, d;

{

I• return• the •mall••t interval containing a, b, c, and d •/

I• u••d b7 •,/ routine •/
INTERVAL v;

if Ca
{

}

•l••
{

}

if Cc
{

}

•l••
}

MU43815PG/D2

> b)

v.hi • a;
v.lo = b;

v.hi = b;
v.lo = a;

> d)

if Cc > v.hi)
v.hi = c;

if (d < v. lo)
v.lo = d;

6-45 12101/87

II

II

yacc

}

}

if (d > v.hi)
v.hi = d;

i:f Cc < v. lo)
v.lo = c;

return (v);

INTERVAL
vmul(a, b, v)

{

double a, b;
INTERVAL v;

return (hilo(a • v.hi, a• v,lo, b • v.hi, b • v.lo));
}
dcheck(v)

{

{

INTERVAL v;

i:f (v.hi >= o. aa v.lo <= o.)
{

}

(void) print:f(•divi•or interval contain• O.\n•);
return (1);

return (O);

INTERVAL
vdiv(a, b, v)

double a, b;
INTERVAL v;

{

}
return (hilo(a Iv.hi, a I v,lo, b Iv.hi, b Iv.lo));

MU43815PG/D2 6-46 12101/87

