
5. lex

An Overview of lex Programming
lex is a software tool that lets you solve a wide class of problems drawn from text
processing, code enciphering, compiler writing, and other areas. In text
processing, you may check the spelling of words for errors; in code enciphering,
you may translate certain patterns of characters into others; and in compiler
writing, you may determine what the tokens (smallest meaningful sequences of II
characters) are in the program to be compiled. The problem common to all these
tasks is recognizing different strings of characters that satisfy certain
characteristics. In the compiler writing case, creating the ability to solve the
problem requires implementing the compiler's lexical analyzer. Hence the name
lex.

It is not essential to use lex to handle problems of this kind. You could write
programs in a standard language like C to handle them, too. In fact, what lex
does is produce such C programs. (lex is therefore called a program generator.)
What lex offers you, once you acquire a facility with it, is typically a faster, easier
way to create programs that perform these tasks. Its weakness is that it often
produces C programs that are longer than necessary for the task at hand and that
execute more slowly than they otherwise might. In many applications this is a
minor consideration, and the advantages of using lex considerably outweigh it.

To understand what lex does, see the diagram in Figure 5-1. We begin with the
lex source (often called the lex specification) that you, the programmer, write to
solve the problem at hand. This lex source consists of a list of rules specifying
sequences of characters (expressions) to be searched for in an input text, and the
actions to take when an expression is found. The source is read by the lex
program generator. The output of the program generator is a C program that, in
tum, must be compiled by a host language C compiler to generate the executable
object program that does the lexical analysis. Note that this procedure is not
typically automatic-user intervention is required. Finally, the lexical analyzer
program produced by this process takes as input any source file and produces the
desired output, such as altered text or a list of tokens.

MU43815PG/D2 5-1 12/01/87

II

lex

You can also use lex to collect statistical data on features of the input, such as
character count, word length, number of occurrences of a word, and so forth. In
later sections of this chapter, we will see:

• how to write lex source to do some of these tasks

• how to translate lex source

• how to compile, link, and execute the lexical analyzer in C

• how to run the lexical analyzer program

We will then be on our way to appreciating the power that lex provides.

lex
lex

lex Analyzer
Source inC

~

c
Compiler

~

Input Tex l:Jutput:
_,,, Analyzer _,,, Tokens, Text Program Text, etc.

Figure S-1. Creation and Use of a Lexical Analyzer with lex

Writing lex Programs
A lex specification consists of at most three sections: definitions, rules, and user
subroutines. The rules section is mandatory. Sections for definitions and user
subroutines are optional, but if present, must appear in the indicated order.

MU43815PG/D2 5-2 12/01/87

lex

The Fundamentals of lex Rules
The mandatory rules section opens with the delimiter %%. If a subroutines
section follows, another %% delimiter ends the rules section. If there is no
second delimiter, the rules section is presumed to continue to the end of the
program.

Each rule consists of a specification of the pattern sought and the action(s) to take
on finding it. (Note the dual meaning of the term specification-it may mean
either the entire lex source itself or, within it, a representation of a particular
pattern to be recognized.) Whenever the input consists of patterns not sought,
lex writes out the input exactly as it finds it. So, the simplest lex program is just II
the beginning rules delimiter, %%. It writes out the entire input to the output
with no changes at all. Typically, the rules are more elaborate than that.

Specifications

You specify the patterns you are interested in with a notation called regular
expressions. A regular expression is formed by stringing together characters with
or without operators. The simplest regular expressions are strings of text
characters with no operators at all, such as:

apple
orange
pluto

These three regular expressions match any occurrences of those character strings
in an input text. If you want to have your lexical analyzer a.out remove every
occurrence of orange, from the input text, you could specify the rule:

orange;

Because you did not specify an action on the right (before the semicolon), lex
does nothing but print out the original input text with every occurrence of this
regular expression removed, that is, without any occurrence of the string orange
at all.

Unlike orange above, most of the expressions that we want to search for cannot
be specified so easily. The expression itself might simply be too long. More
commonly, the class of desired expressions is too large; it may, in fact, be infinite.

Thanks to the use of operators, we can form regular expressions signifying any
expression of a certain class. The + operator, for instance, means one or more
occurrences of the preceding expression, the ? means 0 or 1 occurrence(s) of the
preceding expression (this is equivalent, of course, to saying that the preceding
expression is optional), and * means 0 or more occurrences of the preceding
expression. {It may seem odd to speak of 0 occurrences of an expression and to

MU43815PG/D2 5-3 12/01/87

II

lex

need an operator to capture the idea, but it is often helpful. We will see an
example in a moment.) Som+ is a regular expression matching any string of ms
such as each of the following:

mmm

m
mmmmm

mm

and 7* is a regular expression matching any string of zero or more 7s:

77
77777

777

The string of blanks on the third line matches simply because it has no 7s in it at
all.

Brackets, [], signify any one character from the string of characters specified
between the brackets. Thus, [dgka] matches a single d, g, k, or a. Note that
commas are not included within the brackets. Any comma here would be taken
as a character to be recognized in the input text. Ranges within a standard
alphabetic or numeric order are indicated with a hyphen, -. The sequence [a-z],
for instance, represents any lowercase letter. Somewhat more interestingly, the
expression:

[A-Za-z0-9•&#]

is a regular expression that matches any letter (whether upper- or lowercase), any
digit, an asterisk, an ampersand, or a sharp character. Given the input text:

$$$$?? ????!!!•$$ $$$$$$.t;+====r--# ((

the lexical analyzer with the previous specification in one of its rules will
recognize the*, &, r, and#, perform on each recognition whatever action the rule
specifies (we have not indicated an action here), and print out the rest of the text
as it stands.

The operators become especially powerful in combination. For example, the
regular expression to recognize an identifier in many programming languages is:

[a-zA-Z] [0-9a-zA-Z]*

An identifier in these languages is defined to be a letter followed by zero or more
letters or digits, and that is just what the regular expression says. The first pair of
brackets matches any letter. The second, if it were not followed by a *, would
match any digit or letter. The two pairs of brackets with their enclosed characters
would then match any letter followed by a digit or a letter. But with the asterisk,

MU43815PG/D2 5-4 12/01/87

lex

*, the example matches any letter followed by any number of letters or digits. In
particular, it would recognize the following as identifiers:

e
pay
distance
pH
EngineNo99
R2D2

Note that it would not recognize the following as identifiers:

not_idenTIFER
5times
$hello

because not_idenTIFER has an embedded underscore; 5times starts with a digit,
not a letter; and $hello starts with a special character. Of course, you may want
to write the specifications for these three examples as an exercise.

A potential problem with operator characters is how we can refer to them as
characters to look for in our search pattern. The last example, for instance, will
not recognize text with an * in it. The lex program solves the problem in one of
two ways: a character enclosed in quotation marks or a character preceded by a \
is taken literally, that is, as part of the text to be searched for. To use the
backslash method to recognize, say, an * followed by any number of digits, we
can use the pattern:

, ... (1-9] *
To recognize a\ itself, we need two backslashes: \\.

Actions

Once lex recognizes a string matching the regular expression at the start of a rule,
it looks to the right of the rule for the action to be performed. Kinds of actions
include recording the token type found and its value, if any; replacing one token
with another; and counting the number of instances of a token or token type.
What you want to do is write these actions as program fragments in the host
language C. An action may consist of as many statements as are needed for the
job at hand. You may want to print out a message noting that the text has been
found or a message transforming the text in some way. Thus, to recognize the
expression Amelia Earhart and to note such recognition, the rule:

"Amelia Earhart" printf("found Amelia");

would do. And to replace in a text lengthy medical terms with their equivalent

MU43815PG/D2 5-5 12/01/87

II

II

lex

acronyms, a rule such as:

E1ectroencepha1ogram printf("EEG");

would be called for. To count the lines in a text, we need to recognize end-of
lines and increment a linecounter. lex uses the standard escape sequences from C
like \n for end-of-line. To count lines, we might have:

\n 1ineno++;

where llneno, like other C variables, is declared in the definitions section that we
discuss later.

lex stores every character string that it recognizes in a character array called
yytext[]. You can print or manipulate the contents of this array as you want.
Sometimes your action may consist of two or more C statements and you must {or
for style and clarity, you choose to) write it on several lines. To inform lex that
the action is for one rule only, simply enclose the C code in braces. For example,
to count the total number of all digit strings in an in_put text, print the running
total of the number of digit strings {not their sum, here) and print out each one as
soon as it is found, your lex code might be:

+?[1-9]+ { dig•trngcount++;
printf("ld",dig•trngcount);
print:f("I•"• yytext); }

This specification matches digit strings whether they are preceded by a plus sign
or not, because the ? indicates that the preceding plus sign is optional. In
addition, it will catch negative digit strings because that portion following the
minus sign, -, will match the specification. The next section explains how to
distinguish negative from positive integers.

Advanced lex Usage
lex provides a suite of features that lets you process input text riddled with
complicated patterns. These include rules that decide what specification is
relevant, when more than one seems so at first; functions that transform one
matching pattern into another; and the use of definitions and subroutines. Before
considering these features, you may want to affirm your understanding thus far
by examining an example drawing together several of the points already covered.

MU43815PG/D2 5-6 12/01/87

"" - [0-9] +
+?[0-9]+
-o. [0-9] +
rail[]+road
crook
function
G[a-zA-Z]•

printf("negative integer•);
printf(•po•itive integer•);
printf(•negative fraction, no whole number part•);
printf("railroad i• one word•);
printf("Here'• a crook");
•ubprogcount++;

{ printf(•may have a G word here: • yytext);
G•tringcount++; }

lex

The first three rules recognize negative integers, positive integers, and negative II
fractions between 0 and -1. The use of the terminating + in each specification
ensures that one or more digits compose the number in question. Each of the
next three rules recognizes a specific pattern. The specification for railroad
matches cases where one or more blanks intervene between the two syllables of
the word. In the cases of railroad and crook, you may have simply printed a
synonym rather than the messages stated. The rule recognizing a function simply
increments a counter. The last rule illustrates several points:

• The braces specify an action sequence extending over several lines.

• Its action uses the lex array yytext[], which stores the recognized character
string.

• Its specification uses the * to indicate that zero or more letters may follow the
G.

Some Special Features

Besides storing the recognized character string in yytext[], lex automatically
counts the number of characters in a match and stores it in the variable yyleng.
You may use this variable to refer to any specific character just placed in the array
yytext[]. Remember that C numbers locations in an array starting with 0, so to
print out the third digit (if there is one) of an integer just recognized, you might
write:

[1-9] + {if (yyleng > 2)
printf("~c", yytext[2]); }

lex follows a number of high-level rules to resolve ambiguities that may arise
from the set of rules that you write. Prima facie, any reserved word, for instance,
could match two rules. In the lexical analyzer example developed later in the
section on lex and yacc, the reserved word end could match the second rule as
well as the seventh, the one for identifiers.

MU43815PG/D2 5-7 12/01/87

II

lex

NOTE

lex follows the rule that where there is a match
with two or more rules in a specification, the first
rule is the one whose action will be executed.

By placing the rule for end and the other reserved words before the rule for
identifiers, we ensure that our reserved words will be duly recognized.

Another potential problem arises from cases where one pattern you are searching
for is the prefix of another. For instance, the last two rules in the lexical analyzer
example above are designed to recognize > and > = . If the text has the string
> = at one point, you might worry that the lexical analyzer would stop as soon as
it recognized the > character to execute the rule for > rather than read the next
character and execute the rule for > =.

NOTE

lex follows the rule that it matches the longest
character string possible and executes the rule for
that.

Here it would recognize the > = and act accordingly. As a further example, the
rule would enable you to distinguish + from + + in a program in C.

Still another potential problem exists when the analyzer must read characters
beyond the string you are seeking because you cannot be sure you've found it
until you've read the additional characters. These cases reveal the importance of
trailing context. The classic example here is the DO statement in FORTRAN. In
the statement:

DO 50 k = 1 • 20, 1

we cannot be sure that the first 1 is the initial value of the index k until we read
the first comma. Until then, we might have the assignment statement:

D060k = 1

(Remember that FORTRAN ignores all blanks.) The way to handle this is to use
the forward slash, I (not the backslash, \), which signifies that what follows is
trailing context, something not to be stored in yytext[], because it is not part of
the to.Ken itself. So the rufe to recognize the FORTRAN DO statement could be:

30/[]•[0-9] []•[a-z A-Z0-9]+=[a-z A-Z0-9]+, printf(•found oo•);

MU43815PG/D2 5-8 12101/87

lex

Different versions of FORTRAN have limits on the size of identifiers, here the
index name. To simplify the example, the rule accepts an index name of any
length.

lex uses the $ as an operator to mark a special trailing context-the end of line.
(It is therefore equivalent to \n.) An example would be a rule to ignore all blanks
and tabs at the end of a line:

[\t.] +$

On the other hand, if you want to match a pattern only when it starts a line, lex
offers you the circumflex, A, as the operator. The formatter nroff, for example, 11 demands that you never start a line with a blank, so you might want to check
input to nroff with some such rule as:

A[] print.f("error: remove leading blank");

Finally, some of your action statements themselves may require your reading
another character, putting one back to be read again a moment later, or writing a
character on an output device. lex supplies three functions to handle these
tasks-Input(), unput(c), and output(c), respectively. One way to ignore all
characters between two special characters, say between a pair of double quotation
marks, would be to use input(), thus:

\" while (input.() != '"');

On finding the first double quotation mark, the generated a.out will simply
continue reading all subsequent characters so long as none is a quotation mark,
and not again look for a match until it finds a second double quotation mark.

To handle special 1/0 needs such as writing to several files, you may use standard
1/0 routines in C to rewrite the functions input(), unput(c), and output. These
and other programmer-defined functions should be placed in your subroutine
section. Your new routines will then replace the standard ones. The standard
input() is equivalent to getchar(), and the standard output(c) is equivalent to
putchar(c).

There are a number of lex routines that let you handle sequences of characters to
be processed in more than one way. These include yymore(), yyless(n), and
REJECT. Recall that the text matching a given specification is stored in the array
yytext[]. In general, once the action is performed for the specification, the
characters in yytext[] are overwritten with succeeding characters in the input
stream to form the next match. The function yymore(), by contrast, ensures that
the succeeding characters recognized are appended to those already in yytext[].
This lets you do one thing and then another, when one string of characters is

MU43815PG/D2 5-9 12/01/87

II

lex

significant and a longer one including the first is significant as well. Consider a
character string bound by Bs and interspersed with one at an arbitrary location:

B ••• B ••• B

In a simple code-deciphering situation, you may want to count the number of
characters between the first and second B's and add it to the number of characters
between the second and third B. (Only the last Bis not to be counted.) The code
to do this is:

B[.. B] * { if (flag = 0)
save = yyleng;
flag = 1;
yymore();

else {

}

importantno = save + yyleng;
flag = O; }

where flag, save, and importantno are declared (and at least flag initialized to 0)
in the definitions section. The flag distinguishes the character sequence
terminating just before the second B from that terminating just before the third.

The function yyless(n) lets you reset the end point of the string to be considered
to the nth character in the original yytextl]. Suppose you are again in the code
deciphering business and the gimmick here is to work with only half the
characters in a sequence ending with a certain one, say upper- or lowercase Z.
The code you want might be:

[a-yA-Y]+[Zz] { yyless(yyleng/2);
... process first half of atring ... }

Finally, the function REJECT lets you more easily process strings of characters
even when they overlap or contain one another as parts. REJECT does this by
immediately jumping to the next rule and its specification without changing the
contents of yytext[]. If you want to count the number of occurrences both of the
regular expression snapdragon and of its subexpression dragon in an input text,
the following will do:

anapdragon
dragon

{countflowers++; REJECT;}
countmonsters++;

As an example of one pattern overlapping another, the following counts the
number of occurrences of the expressions comedian and diana, even where the
input text has sequences such as comedians •• :

MU43815PG/D2 5-10 12/01/87

comedian
diana

{comiccount++; REJECT;}
princesscount++;

lex

Note that the actions here may be considerably more complicated than simply
incrementing a counter. Always, the counters and other necessary variables are
declared in the definitions section beginning the lex specification.

Definitions

The lex definitions section may contain any of several classes of items. The most
critical are external definitions, #include statements, and abbreviations. Recall
that for legal lex source this section is optional, but usually some of these items S
are necessary. External definitions have the form and function that they do in C.
They declare that variables globally defined elsewhere (perhaps in another source
file) will be accessed in your lex-generated a.out. Consider a declaration from an
example to be developed later.

extern int tokval;

When you store an integer value in a variable declared in this way, it will be
accessible in the routine, say a parser, that calls it. If, on the other hand, you
want to define a local variable for use within the action sequence of one rule (as
you might for the index variable for a loop), you can declare the variable at the
start of the action itself right after the left brace, { .

The purpose of the #include statement is the same as in C: to include files of
importance for your program. Some variable declarations and lex definitions
might be needed in more than one lex source file. It is then advantageous to
place them all in one file to be included in every file that needs them. One
example occurs in using lex with yacc, which generates parsers that call a lexical
analyzer. In this context, you should include the file y.tab.h, which may contain
#defines for token names. Like the declarations, #include statements should
come between %{ and }% , thus:

I{
#include "y.tab.h"
extern int tokval;
int lineno;
I}

In the definitions section, after the%} that ends your #include's and declarations,
you place your abbreviations for regular expressions to be used in the rules
section. The abbreviation appears on the left of the line and, separated by one or
more spaces, its definition or translation appears on the right. When you later
use abbreviations in your rules, be sure to enclose them within braces.

MU43815PG/D2 5-11 12/01/87

II

lex

NOTE

The purpose of abbreviations is to avoid needless
repetition in writing your specifications and to
provide clarity in reading them.

As an example, reconsider the lex source reviewed at the beginning of this section
on advanced lex usage. The use of definitions simplifies our later reference to
digits, letters, and blanks. This is especially true if the specifications appear
several times:

D
L
B
~~
-{D}+
+?{D}+
-0.{D}+
G{L}*
rai.l{B}+road
crook
\"\./{B}+

[0-9]
[a-zA-Z]
[]

pri.ntf("negati.ve i.nteger");
pri.ntf("poai.ti.ve i.nteger");
pri.ntf("negati.ve fracti.on");
pri.ntf("may have a G word here");
pri.ntf("rai.lroad i.a one word");

pri.ntf("cri.mi.nal");
pri.ntf(".\"");

The rule ensures that a period always precedes a quotation mark at the end of a
sentence. It would change example". to example."

Subroutines

You may want to use subroutines in lex for much the same reason that you do so
in other programming languages. Action code that is to be used for several rules
can be written once and called when needed. As with definitions, this can
simplify the writing and reading of programs. The function put_in_tabl(), to be
discussed in the next section on lex and yacc, is a good candidate for a
subroutine.

Another reason to place a routine in this section is to highlight some code of
interest or to simplify the rules section, even if the code is to be used for one rule
only. As an example, consider the following routine to ignore comments in a
language like C where comments occur between the /• and the •/ symbols.

MU43815PG/D2 5-12 12/01/87

"/*" skipcmnts 0;

/* rest of rules */
%%
skipcmnts()
{

}

for(;;)
{

}

while (input() != •••);
if (input() != ·I') {

unput(yytext[yyleng-1]);
else return;

lex

There are three points of interest in this example. First, the unput(c) function
(putting back the last character read) is necessary to avoid missing the final I if the
comment ends unusually with a **' . In this case, eventually having read an *,
the analyzer finds that the next character is not the terminal I and must read some
more. Second, the expression yytext[yyleng-1] picks out that last character read.
Third, this routine assumes that the comments are not nested. (This is indeed the
case with the C language.) If, unlike C, they are nested in the source text, after
input()ing the first */ ending the inner group of comments, the a.out will read the
rest of the comments as if they were part of the input to be searched for patterns.

Other examples of subroutines would be programmer-defined versions of the 1/0
routines input(), unput(c), and output(), discussed above. Subroutines such as
these that may be exploited by many different programs would probably do best
to be stored in their own individual file or library to be called as needed. The
appropriate #include statements would then be necessary in the definitions
section.

Using lex with yacc

If you work on a compiler project or develop a program to check the validity of an
input language, you may want to use the operating system program tool yacc.
yacc generates parsers, programs that analyze input to ensure that it is
syntactically correct. (yacc is discussed in detail in Chapter 6 of this guide.) lex
often forms a fruitful union with yacc in the compiler development context.
Whether or not you plan to use lex with yacc, be sure to read this section
because it covers information of interest to all lex programmers.

The lexical analyzer that lex generates (not the file that stores it) takes the name
yylex(). This name is convenient because yacc calls its lexical analyzer by this

MU43815PG/D2 5-13 12/01/87

II

II

lex

same name. To use lex to create the lexical analyzer for the parser of a compiler,
you want to end each lex action with the statement return token, where token is a
defined term whose value is an integer. The integer value of the token returned
indicates to the parser what the lexical analyzer has found. The parser, whose file
is called y.tab.c by yacc, then resumes control and makes another call to the
lexical analyzer when it needs another token.

In a compiler, the different values of the token indicate what, if any, reserved
word of the language has been found or whether an identifier, constant,
arithmetic operand, or relational operator has been found. In the latter cases, the
analyzer must also specify the exact value of the token: what the identifier is,
whether the constant, say, is 9 or 888, whether the operand is + or* {multiply),
and whether the relational operator is = or >. Consider the following portion of
lex source for a lexical analyzer for some programming language perhaps slightly
reminiscent of Ada:

begin
end
while
if
package
reverse
loop
[a-zA-Z] [a-zA-Z0-9]*

[0-9] +

\+

\-

>

>=

return(BEGIN);
return(END);
return(WHILE);
return(IF);
return(PACKAGE);
return(REVERSE);
return(LOOP);

{ tokval = put_;in_tabl();
return(IDENTIFIER); }

{ tokval = put_;in_tabl();
return(INTEGER); }

{ tokval = PLUS;
return(ARITHOP); }

{ tokval = MINUS;
return(ARITHOP); }

{ tokval = GREATER;
return(RELOP); }

{ tokval = GREATEREQL;
return(RELOP); }

Despite appearances, the tokens returned and the values assigned to tokval are
indeed integers. Good programming style dictates that we use informative terms
such as BEGIN, END, WHILE, and so forth to signify the integers the parser
understands, rather than use the integers themselves. You establish the
association by using #define statements in your parser calling routine in C.

MU43815PG/D2 5-14 12/01/87

For example:

#define BEGIN 1
#define END 2

#define PLUS 7

lex

If the need to change the integer for some token type arises, you then change the
#define statement in the parser rather than hunt through the entire program,
changing every occurrence of the particular integer. In using yacc to generate
your parser, it is helpful to insert the statement:

#include y.tab.h

into the definitions section of your lex source. The file y.tab.h provides #define
statements that associate token names such as BEGIN, END, and so on with the
integers of significance to the generated parser.

To indicate the reserved words in the example, the returned integer values
suffice. For the other token types, the integer value of the token type is stored in
the programmer-defined variable tokval. This variable, whose definition was an
example in the definitions section, is globally defined so that the parser as well as
the lexical analyzer can access it. yacc provides the variable yylval for the same
purpose.

Note that the example shows two ways to assign a value to tokval. First, a
function put_in_tabl() places the name and type of the identifier or constant in a
symbol table so that the compiler can refer to it in this or a later stage of the
compilation process. More to the present point, put_in_tabl() assigns a type value
to tokval so that the parser can use the information immediately to determine the
syntactic correctness of the input text. The function put_in_tabl() would be a
routine that the compiler writer might place in the subroutines section discussed
later. Second, in the last few actions of the example, tokval is assigned a specific
integer indicating which operand or relational operator the analyzer recognized.
If the variable PLUS, for instance, is associated with the integer 7 by means of the
#define statement above, then when a + sign is recognized, the action assigns to
tokval the value 7, which indicates the +. The analyzer indicates the general
class of operator by the value it returns to the parser (in the example, the integer
signified by ARITHOP or RELOP).

MU43815PG/D2 5-15 12/01/87

II

II

lex

Running lex under the Operating System
As you review the following few steps, you might recall Figure 5-1 at the start of
the chapter. To produce the lexical analyzer in C, run:

lex lex.I

where lex.I is the file containing your lex specification. The name lex.I is
conventionally the favorite, but you may use whatever name you want. The
output file that lex produces is automatically called lex.yy.c; this is the lexical
analyzer program that you created with l.ex. You then compile and link this as
you would any C program, making sure that you invoke the lex library with the
-11 option: ,

cc lex.yy.c -II

The lex library provides a default main() program that calls the lexical analyzer
under the name yylex(), so you need not supply your own main().

If you have the lex specification spread across several files, you can run lex with
each of them individually, but be sure to rename or move each lex.yy.c file (with
mv) before you run lex on the next one. Otherwise, each will overwrite the
previous one. Once you have all the generated .c files, you can compile all of
them, of course, in one command line.

With the executable a.out produced, you are ready to analyze any desired input
text. Suppose that the text is stored under the filename textin (this name is also
arbitrary). The lexical analyzer a.out by default takes input from your terminal.
To have it take the file textin as input, simply use redirection:

a.out < textin

By default, output will appear on your terminal, but you can redirect this as well:

a.out < textin > textout

In running lex with yacc, either may be run first. The segment:

yacc -d grammar.y
lex lex.I

spawns a parser in the file y.tab.c. (The -d option creates the file y.tab.h, which
contains the #define statements that associate the yacc assigned integer token
values with the user-defined token names.) To compile and link the output files
produced, run:

cc lex.yy.c y.tab.c -ly -II

The yacc library is loaded (with the -ly option) before the lex library (with the -II
option) to ensure that the main() program supplied will call the yacc parser.

MU43815PG/D2 5-16 12/01/87

lex

Several options are available with the lex command. If you use one or more of
them, place them between the command name lex and the filename argument. If
you care to see the C program, lex.yy.c, that lex generates on your terminal (the
default output device), use the -t option:

lex-t lex.I

The -v option prints out for you a small set of statistics describing the so-called
finite automata that lex produces with the C program lex.yy.c. (For a detailed
account of finite automata and their importance for lex, see the Aho, Sethi, and
Ullman text, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986.)

lex uses a table (a two-dimensional array in C) to represent its finite automaton.
The maximum number of states that the finite automaton requires is set by default
to 500. If your lex source has many rules or the rules are very complex, this
default value may be toQ small. You can enlarge the value by placing another
entry in the definitions section of your lex source, as follows:

%n 700

This entry tells lex to make the table large enough to handle as many as 700
states. (The -v option will indicate how large a number you should choose.) If
you have need to increase the maximum number of state transitions beyond 2000,
the designated parameter is a, thus:

%a 2800

Finally, check the Programmer's Reference Manual page on lex for a list of all the
options available with the lex command. In addition, review the paper by Lesk
(the originator of lex) and Schmidt, ''Lex-A Lexical Analyzer Generator," in
volume 5 of the UNIX Programmer's Manual, Holt, Rinehart, and Winston, 1986. It
is somewhat dated, but offers several interesting examples.

This tutorial has introduced you to lex programming. As with any programming
language, the way to master it is to write programs.

MU43815PG/D2 5-17 12/01187

II

II

