
4. awk PROGRAMMING LANGUAGE

Introduction
Suppose you want to tabulate some survey results stored in a file; print various II
reports summarizing the results; generate form letters; reformat a data file for one ,
application package to use with another package; count the occurrences of
particular strings in a file; or globally substitute a string in many files without ever
invoking an editor. The tasks common to all these examples are retrieving and
processing data in files. You can simplify such tasks with awk. awk is an
interpretive programming language designed to handle these tasks. It is also the
name of the operating system command you use to run awk programs. This
tutorial describes the language and command.

As the examples above suggest, awk is suited for various applications. It is
designed to retrieve and manipulate data efficiently from any files containing
mixtures of words and/or numbers. Although awk has been most commonly used
to generate reports, it has also been used to choose names randomly, to sort error
messages in a programmer's manual, and even to implement database systems
and compilers.

Why should you choose awk instead of another language to implement these
tasks? Because awk is a relatively easy language to learn. Its simple but powerful
syntax can be summarized in a few pages. For instance, unlike C, Pascal, and
some other languages, awk does not require that you explicitly initialize variables
in programs. However, it provides the same powerful flow-control statements
(like for and if-else) provided by these other languages. awk can also save you
some time, because you don't need to compile awk programs before running
them. This makes it a good language for prototyping.

This chapter is intended to make it easy for you to start writing and running your
own awk programs. The chapter begins with the basics of awk. The rest of the
chapter describes the complete language and is somewhat less tutorial. For the
experienced awk user, there's a summary of the language at the end of the
chapter.

To use this chapter, you should be familiar with the operating system and shell
programming. Although you don't need other programming experience, some
knowledge of C is beneficial because many constructs found in awk also occur in
c.

MU43815PG/D2 4-1 12/01/87

II

awk PROGRAMMING LANGUAGE

Basic awk
This section provides enough information for you to write and run some of your
own programs. Each topic presented below is discussed in more detail in later
sections.

Program Structure
The basic operation of awk(l) is to scan a set of input lines one after another,
searching for lines that match any of a set of patterns or conditions you specify.
For each pattern, you can specify an action; this action is performed on each line
that matches t~e pattern. Accordingly, an awk program is a sequence of pattem
action statements, as Figure 4-1 shows.

Structure:

pattern
pattern

Example:

{action}
{action}

$1 == "address" { pr~nt $2. $3 }

Figure 4-1. awk Program Structure and Example

The example in the figure is a typical awk program, consisting of one pattem
action statement. Each line of input is matched against each of the patterns in
tum. For each pattern that matches, the associated action (which may involve
multiple steps) is executed. Then the next line is read and the matching starts
over. This process typically continues until all the input has been read.

Either the pattern or the action in a pattern-action statement may be omitted. If
there is no action with a pattern, as in:

$1 == "name"

the matching line is printed. If there is no pattern with an action, as in:

{ pr~nt $1, $2 }

then the action is performed for every input line. Since patterns and actions are
both optional, actions are enclosed in braces to distinguish them from patterns.

MU43815PG/D2 4-2 12101/87

awkPROGRAMMINGLANGUAGE

Usage
There are two ways to run an awk program. First, you can type the command
line:

awk 'pattern-action statements' optional list of input files

to execute the pattern-action statements on the set of named input files. For
example, you could say:

awk '{ print $1, $2 }' file1 file2

Notice that the pattern-action statements are enclosed in single quotes. This
protects characters like $ from being interpreted by the shell and also allows the
program to be longer than one line.

If no files are mentioned on the command line, awk(l) reads from the standard
input. You can also specify that input comes from the standard input by using
the hyphen (-) as one of the input files. For example,

awk '{print $3, $4 }' file1 -

says to read input first from file1 and then from the standard input.

The arrangement above is convenient when the awk program is short (a few
lines). If the program is long, it is often more convenient to put it into a separate
file and use the -f option to fetch it:

awk -f program file optional list of input files

For example, the following command line says to fetch myprogram and read from
the file file1:

awk -f myprogram file1

Fields

An awk{l) program normally reads its input one line, or record, at a time; a
record is, by default, a sequence of characters ending with a newline. The awk
program then splits each record into fields, where, by default, a field is a string of
non-blank, non-tab characters.

As input for many of the awk programs in this chapter, we use the following file,
countries. Each record contains the name of a country, its area in thousands of
square miles, its population in millions, and the continent where it is, for the ten
largest countries in the world. (Data are from 1978; the U.S.S.R. has been
arbitrarily placed in Asia.) The wide space between fields is a tab in the original
input; a single blank separates North and South from America.

MU43815PG/D2 4-3 12/01/87

II

II

awk PROGRAMMING LANGUAGE

USSR 8650 262 Asia
Canada 3852 24 Nort.h America
China 3692 866 Asia
USA 3615 219 Nort.h America
Brazil 3286 116 Sout.h America
Aust.ralia 2968 14 Aust.ralia
India 1269 637 Asia
Argent.ina 1072 26 Sout.h America
Sudan 968 19 Africa
Algeria 920 18 Africa

Figure 4-2. The Sample Input File countries

This file is typical of the kind of data awk is good at processing - a mixture of
words and numbers separated into fields by blanks and tabs.

The number of fields in a record is determined by the field separator. Fields are
normally separated by sequences of blanks and/or tabs, in which case the first
record of countries would have four fields, the second five, and so on. It's
possible to set the field separator to just tab, so each line would have four fields,
matching the meaning of the data; we'll show how to do this shortly. For the
time being, we'll use the default: fields separated by blanks and/or tabs.

The first field within a line is called $1, the second $2, and so forth. An entire
record is called $0.

Printing

If the pattern in a pattern-action statement is omitted, the action is executed for all
input lines. The simplest action is to print each line; you can accomplish this with
an awk program consisting of a single print statement:

{ print. }

So the command line:

awk '{print}' countries

prints each line of countries, copying the file to the standard output. The print
statement can also be used to print parts of a record. The following program, for
instance, prints the first and third fields of each record:

{ print. $1. $3 }

MU43815PG/D2 4-4 12/01/87

awk PROGRAMMING LANGUAGE

Thus, the program:

awk '{ print $1, $3 }' countries

produces as output the sequence of lines:

USSR 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

When printed, items separated by a comma in the print statement are separated
by the output field separator, which is by default a single blank. Each line printed
is terminated by the output record separator, which is by default a newline.

NOTE

The remainder of this chapter shows only awk
programs, without the command line that invokes
them. Each complete program can be run either
by enclosing it in quotes as the first argument of
the awk command or by putting it in a file and
invoking awk with the -f flag, as discussed in
"awk Command Usage." If no input is mentioned
in an example, the input is assumed to be the file
countries.

Formatted Printing

For more carefully formatted output, awk provides a C-like printf statement:

printf format, exprv expr21 ••• , exprn

The printf statement prints the expr;'s according to the specification in the string
format. For example, the awk program:

{print.£ "l10a l6d\n", $1, $3}

prints the first field ($1) as a string of 10 characters (right justified), then a space,
then the third field ($3) as a decimal number in a six-character field, then a

MU43815PG/D2 4-5 12/01/87

II

II

awk PROGRAMMING LANGUAGE

newline (\n). With input from the file countries, this program prints an aligned
table:

USSR 262
Canada 24

China 866
USA 219

Brazil 116
Australia 14

India 637
Argentina 26

Sudan 19
Algeria 18

With printf, no output separators or newlines are produced automatically; you
must create them yourself. That is the purpose of the \n in the format
specification. A full description of prlntf can be found under 'The printf
Statement" in this chapter.

Simple Patterns

You can select specific records for printing or other processing with simple
patterns. The awk language has three kinds of patterns that you can use.

First, you can use patterns called "relational expressions" that make comparisons.
For example, the operator = = tests for equality. To print the lines in which the
fourth field equals the string Asia, we can use a program consisting of the
single pattern:

$4 == "Asia"

With the file countries as input, this program yields:

USSR 8660 262 Asia
Ch:lna
Ind:la

3692
1269

866
637

Asia
As:la

The complete set of comparisons is>, >=, <, <=, == (equal to) and I= (not
equal to). These comparisons can be used to test both numbers and strings. For
example, suppose we want to print only countries with more than 100 million
population. The program:

$3 > 100

is all that is needed. (Remember that the third field in the file countries is the
population in millions; the program prints all lines in which the third field

MU43815PG/D2 4-6 12/01/87

awk PROGRAMMING LANGUAGE

exceeds 100.)

Second, you can use patterns called "regular expressions" that select records by
searching for specified characters. The simplest form of a regular expression is a
string of characters enclosed in slashes, such as:

/US/

This program prints each line that contains the (adjacent) letters US anywhere.
With the file countries as input, it prints:

USSR
USA

8650
3615

262
219

Asia
Nort.h America

We will have a lot more to say about regular expressions later in this chapter.

Third, you can use two special patterns, BEGIN and END, that match before the
first record has been read and after the last record has been processed. This
program uses BEGIN to print a title:

BEGIN {print. "Count.ries of Asia:" }
/Asia/ {print. " "• $1 }

The output is:

Count.riea of Asia:
USSR
China
India

Slmple Actions
We have already seen the simplest action of an awk program: printing each input
line. Now let's consider how you can use built-in and user-defined variables and
functions for other simple actions in a program.

Built-In Variables

Besides reading the input and splitting it into fields, awk{l) counts the number of
records read and the number of fields within the current record; you can use these
counts in your awk programs. The variable NR is the number of the current
record, and NF is the number of fields. So the program:

{ print. NR, NF }

prints the number of each line and how many fields it has, while

{ print. NR, $0 }

MU43815PG/D2 4-7 12/01/87

II

II

awk PROGRAMMING LANGUAGE

prints each record preceded by its record number.

User-defined Variables

In addition to providing built-in variables like NF and NR, awk lets you define
your own variables, which you can use for storing data, doing arithmetic, and the
like. To illustrate, consider computing the total population and the average
population represented by the data in the file countries:

{ •um = •um + $3 }
END { print •Total population i••, •um, •million•

print •Average population of•, NR, •countrie• ia•, aum/NR }

The first action accumulates the population from the third field; the second action,
which is executed after the last input, prints the sum and average:

Total population is 2201 million
Average population of 10 countries is 220.1

Functions

The awk language has built-in functions that handle common arithmetic and
string operations for you. For example, there's an arithmetic function that
computes square roots. There is also a string function that substitutes one string
for another. The awk language also lets you define your own functions.
Functions are described in detail under "Actions" in this chapter.

Useful One-Line Programs

Although awk can be used to write large programs of some complexity, many
programs are not much more complicated than what we've seen so far. Here is a
collection of other short programs that you might find useful and instructive.
Most of the program constructs have been introduced earlier in this chapter. They
are not explained here, but any new constructs do appear later in this chapter.

MU43815PG/D2 4-8 12101/87

awkPROGRAMMINGLANGUAGE

Print last field of each input line:
{ print $NF }

Print 10th input line:
NR == 10

Print last input line:
{ 1ine = $0}
END{ print 1ine }

Print input lines that don't have 4 fields:
NF != 4 { print $0, " does not have 4 fields" }

Print input lines with more than 4 fields:
NF > 4

Print input lines with last field more than 4:
$NF > 4

Print total number of input lines:
END{ print NR }

Print total number of fields:
{ nf = nf + NF }
END{ print nf }

Print total number of input characters:
{ nc = nc + 1ength($0) }
END{ print nc + NR }

(Adding NR includes in the total the number of newlines.)

Print the total number of lines that contain the string Asia:
/Asia/{ n1ines++ }
END{ print n1ines }

(The statement n1ines++ has the same effect as n1ines = n1ines
+ 1.)

MU43815PG/D2 4-9 12/01/87

II

II

awk PROGRAMMING LANGUAGE

Error Messages
If you make an error in an awk program, you generally get messages like:

awk: syntax error near source line 2
awk: bailing out near source line 2

The first message means that you have made a grammatical error that was finally
detected near the line specified. The second message means that because of the
syntax errors awk(l) made no attempt to execute your program.

Sometimes you get a little more help about what the error is, such as a report of
missing braces or unbalanced parentheses. For example, running the program:

$3 < 200 { print $1, $3

that is missing a closing brace, generates the error messages:

awk: syntax error near line 2
awk: illegal statement near line 2

Some errors may be detected while your program is running. For example, if you
try to divide a number by zero, awk stops processing and reports the input record
number (NR) and the line number in the program.

Patterns
In a pattern-action statement, the pattern is an expression that selects the records
for which the associated action is executed. This section describes the kinds of
expressions that may be used as patterns.

BEGIN and END

BEGIN and END are two special patterns that give you a way to control
initialization and wrap-up in an awk program. BEGIN matches before the first
input record is read, so any statements in the action part of a BEGIN are done
before the awk command starts to read its first input record. The pattern END
matches the end of the input, after the last record has been processed.

The following awk program uses BEGIN to set the field separator to tab (\t) and to
put column headings on the output. The field separator is stored in a built-in
variable called FS. Although FS can be reset at any time, usually the only
sensible place is in a BEGIN section, before any input has been read. The
program's second prinH statement, which is executed for each input line, formats
the output into a table, neatly aligned under the column headings. The END

MU43815PG/D2 4-10 12/01/87

awkPROGRAMMINGLANGUAGE

action prints the totals. (Notice that a long line can be continued after a comma.)

BEGIN { FS = "\t"
printf "%10s %6s %5s %s\n",

"COUNTRY", "AREA", "POP", "CONTINENT" }
{ printf "%10s %6d %5d %s\n", $1, $2, $3, $4
area = area + $2; pop = pop + $3 }

END { printf "\n%10s %6d %5d\n", "TOTAL", area, pop }

With the file countries as input, this program produces:

COUNTRY AREA POP CONTINENT
USSR 8660 262 Asia

Canada 3862 24 North America
China 3692 866 Asia

USA 3616 219 North America
Brazil 3286 116 South America

Australia 2968 14 Australia
India 1269 637 Asia

Argentina 1072 26 South America
Sudan 968 19 Africa

Algeria 920 18 Africa

TOTAL 30292 2201

Relational Expressions

An awk pattern can be any expression involving comparisons between strings of
characters or numbers. The awk language has six relational operators (as well as
two regular expression matching operators, - (tilde) and r, which are discussed in
the next section) for making comparisons. Figure 4-3 shows these operators and
their meanings.

MU43815PG/D2 4-11 12/01/87

II

II

awk PROGRAMMING LANGUAGE

0 rator
<

<=

I=
>=
>

Mean In
less than

less than or equal to
equal to

not equal to
greater than or equal to

greater than
matches

does not match

Figure 4-3. awk Comparison Operators

In a comparison, if both operands are numeric, a numeric comparison is made;
otherwise, the operands are compared as strings. (Every value might be either a
number or a string; usually awk can tell what is intended. Refer to ''Number or
String?" in this chapter.) Thus, the pattern $3>100 selects lines where the third
field exceeds 100, and the program:

$1 >= "S"

selects lines that begin with the letters S, T, U, through Z, which are:

USA
Sudan

3616 219 Nort.h America
968 19 Africa

In the absence of any other information, awk treats fields as strings, so the
program:

$1 == $4

compares the first and fourth fields as strings of characters, and with the file
countries as input, prints the single line for which this test succeeds:

Aust.ra1ia 2968 14 Aust.ra1ia

If both fields appear to be numbers, the comparisons are done numerically.

Regular Expressions
The awk language provides more powerful patterns for searching for strings of
characters than the comparisons illustrated in the previous section. These
patterns,- called regular expressions, are like those in egrep(l) and lex(l). The
simplest regular expression is a string of characters enclosed in slashes, like:

/Asia/

This program prints all input records that contain any occurrence of Asia. (If~

MU43815PG/D2 4-12 12101/87

awk PROGRAMMING LANGUAGE

record contains Asi.a as part of a larger string like Asi.an or Pan-Asi.at.i.c, it
is also printed.) In general, if re is a regular expression, then the pattern:

Ire/

matches any line that contains a substring specified by the regular expression re.

To restrict a match to a specific field, you use the matching operators - (for
matches) and r (for does not match). The program: II

$4 - /Asi.a/ { pri.nt. $1 } ·

prints the first field of all lines in which the fourth field matches Asi.a, while the
program:

$4 1- /Asi.a/ { pri.nt. $1 }

prints the first field of all lines in which the fourth field does not match Asi.a.

In regular expressions, the symbols:

\A$.0*+?01

are metacharacters with special meanings like the metacharacters in the shell. For
example, the metacharacters A and $ respectively match the beginning and end of
a string, and the metacharacter • matches any single character. Thus, the
program:

, $/

matches all records that contain exactly one character.

A group of characters enclosed in brackets matches any one of the enclosed
characters; for example, /[ABC]/ matches records containing any one of A, B or C
anywhere. Ranges of letters or digits can be abbreviated within brackets: /[a-zA
Z]/ matches any single letter.

If the first character after the [is a A' this complements the class so it matches any
character not in the set: /[Aa-zA-Z]/ matches any non-letter. The program:

$2 ,- /""[0-9]+$/

prints all records in which the second field is not a string of one or more digits(""
for beginning of string, [0-9] + for one or more digits, and $for end of string).
Programs of this nature are often used for data validation.

Parentheses 0 are used for grouping and the pipe symbol I is used for
alternatives. The program:

/(applelcherry) (pi.alt.art.)/

MU43815PG/D2 4-13 12/01/87

II

awk PROGRAMMING LANGUAGE

matches lines containing any one of the four substrings apple pie, apple
tart, cherry pie, or cherry tart .

To ni.m off the special meaning of a metacharacter, precede it by a\ (backslash).
Thus, the program:

/a\$/

prints all lines containing a followed by a dollar sign.

In addition to recognizing metacharacters, the awk command recognizes the
following C escape sequences within regular expressions and strings:

\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\ddd octal value ddd
\" quotation mark
\c any other character c literally

For example, to print all lines containing a tab, use the program:

/\t/

awk interprets any string or variable on the right side of a - or r as a regular
expression. For example, we could have written the program:

s2 1- 1-ro-9J+$/

as:

BEGIN { digits= "-[o-9]+$" }
$2 1- digits

When a literal quoted string like '"'[0-9] + $ is used as a regular expression, one
extra level of backslashes is needed to protect regular expression metacharacters.
The reason may seem arcane, but it is merely that one level of backslashes is
removed when a string is originally parsed. If a backslash is needed in front of a
character to tum off its special meaning in a regular expression, then that
backslash needs a preceding backslash to protect it in a string.

For example, suppose we want to match strings containing the letter A followed
by a dollar sign. The regular expression for this pattern is a\$. If we want to
create a string to represent this regular expression, we must add one more
backslash: "a\\$". The regular expressions on each of the following lines are
equivalent.

MU43815PG/D2 4-14 12101/87

awkPROGRAMMINGLANGUAGE

x - "a\\$"
x - "a\$"
x - "a$"
J[- "\\t"

x - /a\$/
x - /a$/
x - /a$/
J[- /\t/

Of course, if the context of a matching operator is:

J[- $1

then the additional level of backslashes is not needed in the first field.

The precise form of regular expressions and the substrings they match is given in
Figure 4-4. The unary operators *, +, and ? have the highest precedence, then
concatenation, and then alternation I. All operators are left associative.

Ex ression Matches

c any non-metacharacter c
\c character c literally

beginning of string
$ end of string

any character but newline
[s] any character in set s
rs] any character not in set s
r* zero or more r's
r+ one or more r's
r? zero or oner
(r) r
rir2 r1 then r2 (concatenation)
r 11r2 r1 or r2 (alternation)

Figure 4-4. awk Regular Expressions

Combinations of Patterns

A compound pattern combines simpler patterns with parentheses and the logical
operators II (or), && (and), and I (not). For example, suppose we want to print
all countries in Asia with a population of more than 500 million. The following
program does this by selecting all lines in which the fourth field is As:ia and the
third field exceeds 500:

$4 == "Asia" && $3 > 500

The following program selects lines with As:ia or Afr:ica as the fourth field.

MU43815PG/D2 4-15 12/01/87

II

II

awk PROGRAMMING LANGUAGE

~

$4 =="Asia" II $4 =="Africa"

Another way to write the latter query is to use a regular expression with the
alternation operator I:

$4 - 1-CAsialAfrica)$/

The negation operator I has the highest precedence, then &&, and finally 11. The
operators && and 11 evaluate their operands from left to right; evaluation stops as
soon as truth or falsehood is determined.

Pattern Ranges
A pattern range consists of two patterns separated by a comma, as in:

pat11 pat2 { •.. }

In this case, the action is performed for each line between an occurrence of pat1
and the next occurrence of pat2 (inclusive). As an example, the pattern:

/Canada/, /Brazil/

matches lines starting with the first line that contains the, string Canada up
through the next occurrence of the string Brazil :

Canada
China
USA
Brazil

3862
3692
3615
3286

24
866
219
116

North America
Asia
North America
South America

Similarly, since FNR is the number of the current record in the current input file
(and FILENAME is the name of the current input file), the program:

FNR == 1, FNR == 5 { print FILENAME, $0 }

prints the first five records of each input file with the name of the current input
file prepended.

Actions
In a pattern-action statement, the action determines what is to be done with the
input records that the pattern selects. Actions frequently are simple printing or
assignment statements, but they may also be a combination of one or more
statements. This section describes the statements that can make up actions.

MU43815PG/D2 4-16 12/01/87

awkPROGRAMMINGLANGUAGE

Built-in Variables
Figure 4-5 lists the built-in variables that awk maintains. Some of these we have
already met; others are used in this and later sections.

Variable Meanin
ARGC number of command-line arguments
ARGV array of command-line arguments
FILENAME name of current input file
FNR record number in current file
FS input field separator
NF number of fields in current record
NR number of records read so far
OFMT output format for numbers
OFS output field separator
ORS output record separator
RS input record separator
RSTART set by match()
RLENGTH set by match()

Figure 4-5. awk Built-in Variables

Arithmetic

Default

blank&tab

". 69
blank

newline
newline

Actions use conventional arithmetic expressions to compute numeric values. As a
simple example, suppose we want to print the population density for each
country in the file countries. Since the second field is the area in thousands of
square miles and the third field is the population in millions, the expression 1000
* $3 I $2 gives the population density in people per square mile. This expression
can be an element of a program such as:

{print£ ""10s "6.1£\n", $1, 1000 * $3 I $2}

Applied to the file countries, the program prints the name of each country and its
population density.

MU43815PG/D2 4-17 12/01/87

II

II

awk PROGRAMMING LANGUAGE

USSR 30.3
Canada 6.2

China 234.6
USA 60.6

Brazil 35.3
Australia 4.7

India 502.0
Argentina 24.3

Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating-point format. The arithmetic operators
are +, -, *, I, % (remainder) and A (exponentiation; ** is a synonym). Arithmetic
expressions can be created by applying these operators to constants, variables,
field names, array elements, functions, and other expressions, all of which are
discussed later. Note that awk recognizes and produces scientific (exponential)
notation: 1e6, 1E6, 10e5, and 1000000 are numerically equal.

The awk language has assignment statements like those found in C. The simplest
form is the assignment statement

v = e

where v is a variable or field name, and e is an expression. For example, to
compute the total population and number of Asian countries, we could write:

$4 == "Asia" { pop = pop + $3; n = n + 1 }
END {print "population of", n,\

"Asian countries in millions is", pop }

(A long awk statement can also be split across several lines by continuing each
line with a \, as in the END action shown here. Applied to countries, this
program produces:

population of 3 Asian countries in millions is 1765

The action associated with the pattern $4 "Asia" contains two
assignment statements, one to accumulate population and the other to count
countries. The variables are not explicitly initialized, yet everything works
properly because awk initializes each variable with the string value "" and the
numeric value 0.

The assignments in the previous program can be written more concisely using the
operators + = and + +:

$4 == "Asia" { pop += $3; ++n }

The operator + = is borrowed from C. It has the same effect as the longer version

MU43815PG/D2 4-18 12/01/87

awkPROGRAMMINGLANGUAGE

(the variable on the left is incremented by the value of the expression on the
right), but + = is shorter and runs faster. The same is true of the + + operator,
which adds 1 to a variable.

The abbreviated assignment operators are +=, -=,*=,I=, o/o=, and A=. Their
meanings are similar; the expression:

vop= e

has the same effect as:

v = v ope.

The increment operators are + + and -. As in C, they may be used as prefix
operators (+ +x) or postfix (x+ +). If xis 1, then i= + +x increments x, then sets i
to 2, while l=x+ + sets I to l, then increments x. An analogous interpretation
applies to prefix and postfix -.

Assignment and increment and decrement operators may all be used in arithmetic
expressions.

We use default initialization to advantage in the following program, which finds
the country with the largest population:

maxpop < $3 { maxpop = $3; country = $1 }
END { print country, maxpop }

Note, however, that this program would not be correct if all values of $3 were
negative.

awk provides the built-in arithmetic functions shown in Figure 4-6.

Function
atan2(y ,x)
cos(x)
exp(x)
int(x)
log(x)
rand()
sin(x)
sqrt(x)
srand(x)

Value Returned
arctangent of y Ix in the range -11' to 11'

cosine of x, with x in radians
exponential function of x
integer part of x truncated towards 0
natural logarithm of x
random number between 0 and 1
sine of x, with x in radians
square root of x
x is new seed for rand()

Figure 4-6. awk Built-in Arithmetic Functions

x and y are arbitrary expressions. The function rand() returns a pseudo-random
floating point number in the range (0,1), and srand(x) can be used to set the seed

MU43815PG/D2 4-19 12/01/87

II

II

awk PROGRAMMING LANGUAGE

of the generator. If srandO has no argument, the seed is derived from the time of
day.

Strings and String Functions

A string constant is created by enclosing a sequence of characters inside quotation
marks, as in "abc" or ''hello, everyone" . String constants may contain the C
escape sequences for special characters listed in ''Regular Expressions" in this
chapter.

String expressions are created by concatenating constants, variables, field names,
array elements, functions, and other expressions. The program:

{ prin~ NR ":" $0}

prints each record preceded by its record number and a colon, with no blanks.
The three strings representing the record number, the colon, and the record are
concatenated and the resulting string is printed. The concatenation operator has
no explicit representation other than juxtaposition.

The awk language provides the built-in string functions shown in Figure 4-7. In
this table, r represents a regular expression (either as a string or as Ir/), s and t
string expressions, and n and p integers.

MU43815PG/D2 4-20 12/01/87

Function
gsub(r ,s)

gsub(r ,s ,t)

index(s ,t)
length
length(s)
match(s, r)
split(s ,a)
split(s ,a ,r)
sprintf(f mt ,expr-list)

sub(r ,s)

sub(r ,s,t)

substr(s ,p)
substr(s ,p ,n)

awkPROGRAMMINGLANGUAGE

Descri tion
substitute s for r globally in current record,
return number of substitutions
substitute s for r globally in string t, return
number of substitutions
return position of string t in s, 0 if not present
return length of $0
return length of s
return the position in s where r occurs
split s into array a on FS, return number of fields
split s into array a on r, return number of fields
return expr-list formatted according to format
string fmt
substitute s for first r in current record, return
number of substitutions
substitute s for first r in t, return number of
substitutions
return suffix of s starting at position p
return substring of s of length n starting at
position p

Figure 4-7. awk Built-in String Functions

The functions sub and gsub are patterned after the substitute command in the
text editor ed(l) . The function gsub(r ,s ,t) replaces successive occurrences of
substrings matched by the regular expression r with the replacement string s in
the target string t . (As in ed, leftmost longest matches are used.) It returns the
number of substitutions made. The function gsub(r ,s) is a synonym for
gsub(r ,s ,$0) . For example, the program:

{ gsub(/USA/, "United States"); print}

transcribes its input, replacing occurrences of USA by United States. The
sub functions are similar, except that they only replace the first matching
substring in the target string.

The function index(s ,t) returns the leftmost position where the string t begins in
s, or zero if t does not occur in s . The first character in a string is at position 1.
For example, the expression:

index("banana", "an")

returns 2.

MU43815PG/D2 4-21 12101/87

II

II

awk PROGRAMMING LANGUAGE

The length function returns the number of characters in its argument string; thus,
the expression:

{print 1ength($0), $0}

prints each record, preceded by its length.
separator.) The program:

{$0 does not include the input record

1ength($1) > m.ax
END

when applied to the file
Auat.ra1ia.

{ m.ax = 1engt.h($1); name= $1 }
{ print name }

countries, prints the longest country name:

The match(s, r) function returns the position in string s where regular expression r
occurs, or O if it does not occur. This function makes use of the two built-in
variables RSTART and RLENGTH. RSTART is set to the starting position of the
string; this is the same value as the returned value. RLENGTH is set to the length
of the matched string. For example, running the program:

{ m.atch($0, "ia")
if (RSTART != 0) print RSTART, RLENGTH

}

produces the following output:

17 2
18 2
8 2
4 2
6 2

The function sprinH(/ormat, expr11 expr2, ... , exprn) returns {without printing) a
string containing expr1, expr21 ... , exprn formatted according to the prinH
specifications in the string format. 'The prinH Statement" in this chapter contains
a complete specification of the format conventions. The statement:

x = aprintf("l10a l6d", $1, $2)

assigns to x the string produced by formatting the values of $1 and $2 as a
ten-character string and a decimal number in a field of width at least six; x may
be used in any subsequent computation.

The function substr(s ,p ,n) returns the substring of s that begins at position p and
is at most n characters long. If substr(s ,p) is used, the substring goes to the end
of s; that is, it consists of the suffix of s beginning at position p. For example, we
could abbreviate the country names in countries to their first three characters by
invoking the program.

MU43815PG/D2 4-22 12/01/87

awkPROGRAMMINGLANGUAGE

{ $1 = substr($1, 1, 3); print}

on this file to produce:

USS 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

Note that setting $1 in the program forces awk to recompute $0 and, therefore,
the fields are separated by blanks (the default value of OFS), not by tabs.

Strings are stuck together (concatenated) merely by writing them one after
another in an expression. For example, when invoked on the file countries, the
program:

END

prints:

{ s = s substr($1, 1, 3) " " }
{ print s }

USS Can Chi USA Bra Aus Ind Arg Sud Alg

by building s up a piece at a time from an initially empty string.

Field Variables

The fields of the current record can be referred to by the field variables $1, $2, ... ,
$NF. Field variables share all the properties of other variables - they may be
used in arithmetic or string operations, and may be assigned to. So, for example,
you can divide the second field of the file countries by 1000 to convert the area
from thousands to millions of square miles:

{ $2 /= 1000; print }

or assign a new string to a field:

BEGIN { FS = OFS = "\t" }

$4 -- "North America" { $4 = "NA" }

$4 -- "South America" { $4 = "SA" }

{ print }

The BEGIN action in this program resets the input field separator FS and the

MU43815PG/D2 4-23 12/01/87

II

II

awkPROGRAMMINGLANGUAGE

output field separator OFS to a tab. Notice that the print in the fourth line of
the program prints the value of $0 after it has been modified by previous
assignments.

Fields can be accessed by expressions. For example, $(NF-1) is the second last
field of the current record. The parentheses are needed: the value of $NF-1 is 1
less than the value in the last field.

A field variable referring to a nonexistent field, for example, $(NF+1), has as its
initial value the empty string. A new field can be created, however, by assigning
a value to it. For example, the following program invoked on the file countries
creates a fifth field giving the population density:

BEGIN { FS = OFS = "\t" }
{ $5 = 1000 * $3 I $2; print }

The number of fields can vary from record to record, but there is usually an
implementation limit of 100 fields per record.

Number or String?
Variables, fields, and expressions can have both a numeric value and a string
value. They take on numeric or string values according to context. For example,
in the context of an arithmetic expression like:

pop += $3

the pop and $3 must be treated numerically, so their values will be coerced to
numeric type if necessary.

In a string context like:

print $1 ":" $2

the $1 and $2 must be strings to be concatenated, so they will be coerced if
necessary.

In an assignment v = e or v op = e, the type of v becomes the type of e. In an
ambiguous context like:

$1 == $2

the type of the comparison depends on whether the fields are numeric or string,
and this can only be determined when the program runs; it may well differ from
record to record.

In comparisons, if both operands are numeric, the comparison is numeric;
otherwise, operands are coerced to strings, and the comparison is made on the
string values. All field variables are of type string; in addition, each field that

MU43815PG/D2 4-24 12/01/87

awkPROGRAMMINGLANGUAGE

contains only a number is also considered numeric. This determination is done at
run time. For example, the comparison "$1 == $2" will succeed on any pair
of the inputs:

1 1.0

but fail on the inputs:

(null)
(null)
Oa
1e50

+1 0.1•+1

0
0.0
0
1.0e50

10E-1 1•2 10.1 001

There are two idioms for coercing an expression of one type to the other:

number"''

string+ 0

concatenate a null string to a number to coerce it
to type string
add zero to a string to coerce it to type numeric

Thus, to force a string comparison between two fields, say:

$1 "" == $2 ""

The numeric value of a string is the value of any prefix of the string that looks
numeric; thus the value of 12.34x is 12.34, while the value of x12.34 is zero. The
string value of an arithmetic expression is computed by formatting the string with
the output format conversion OFMT.

Uninitialized variables have numeric value 0 and string value "". Nonexistent
fields and fields that are explicitly null have only the string value "''; they are not
numeric.

Control Flow Statements

The awk language provides if-else, while, do-while, and for statements as well
as statement grouping with braces, as in C.

The if statement syntax is:

if (expression) statement1 else statement2

The expression acting as the conditional has no restrictions; it can include any of
the following:

•The relational operators<,<=,>,>=,==, and I=

MU43815PG/D2 4-25 12/01/87

II

II

awk PROGRAMMING LANGUAGE

• The regular expression matching operators - and r
• The logical operators 11, &&, and I

• Juxtaposition for concatenation

• Parentheses for grouping

In the if statement, the expression is first evaluated. If it is non-zero and non-null,
statement1 is executed; otherwise statement2 is executed. The else part is optional.

A single statement can always be replaced by a statement list enclosed in braces.
The statements in the.statement list are terminated by newlines or semicolons.

Rewriting the maximum population program from "Arithmetic Functions" with an
if statement results in:

{

}

END

if (maxpop < $3) {
maxpop = $3
country = $1
}

{ print country, maxpop }

The while statement is exactly that of C:

while (expression) statement

The expression is evaluated; if it is non-zero and non-null the statement is executed
and the expression is tested again. The cycle repeats as long as the expression is
non-zero. For example, to print all input fields one per line,

{ i = 1
whi1e (i <= NF) {

print $i
i++
}

}

The for statement is like that of C:

for (expression 1; expression; expression2) statement

MU43815PG/D2 4-26 12/01/87

awk PROGRAMMING LANGUAGE

It has the same effect as:

expression 1

while {expression) {
statement
expression2

}

so the statement:

{ for (i = 1; i <= NF; i++) print $i }

does the same job as the while example above. An alternate version of the for
statement is described in the next section.

The do statement has the form:

do statement while {expression)

The statement is executed repeatedly until the value of the expression becomes zero.
Because the test takes place after the execution of the statement, it is always
executed at least once.

The do statement in the program:

{ i = O;

}

do { print $i++ }
while (i <= NF)

prints each field in a record in a vertical listing.

The break statement causes an immediate exit from an enclosing while or for; the
continue statement causes the next iteration to begin. The next statement causes
awk to skip immediately to the next record and begin matching patterns starting
from the first pattern-action statement.

The exit statement causes the program to behave as if the end of the input had
occurred; no more input is read, and the END action (if one has been specified) is
executed. Within the END action, the statement:

exit expr

causes the program to return the value of expr as its exit status. If there is no
expr, the exit status is zero.

MU43815PG/D2 4-27 12/01/87

II

II

awk PROGRAMMING LANGUAGE

Arrays
The awk language provides one-dimensional arrays. Arrays and array elements
need not be declared; like variables, they spring into existence by being
mentioned. An array subscript may be a number or a string.

As an example of a conventional numeric subscript, the statement:

:x:[NRJ = $0

assigns the current input line to the NPth element of the array :x: . In fact, it is
possible in principle (though perhaps slow) to read the entire input into an array
with the awk program:

{ :x:[NR] = $0 }
END { ... processing . . . }

The first action merely records each input line, indexed by line number, in the
array :x:; processing is done in the END statement.

Array elements may also be named by nonnumeric values. This facility gives awk
a capability rather like the associative memory of Snobol tables. For example, the
following program accumulates the total population of Asia and Africa into the
associative array pop . The END in the program action prints the total
population of these two continents.

/Ada/
/Africa/
END

{ pop[•A•ia•] += $3 }
{ pop[•Africa•] += $3 }
{print •A•ian population in million• i••, pop[•A•ia•]

print •African population in million• i••, pop[•Africa•] }

On the file countries, this program generates:

Asian population in millions is 1766
African population in millions is 37

If we had used pop [Asia) instead of pop ["Asia"] In this program, the
expression would have used the value of the variable Asia as the subscript.
Since the variable is uninitialized, the values would have been accumulated in
pop["") .

Suppose our task is to determine the total area in each continent of the file
countries. Any expression can be used as a subscript in an array reference.
Thus, the statement:

area[$4J += $2

uses the string in the fourth field of the current input record to index the array

MU43815PG/D2 4-28 12/01/87

awkPROGRAMMINGLANGUAGE

area and accumulates the value of the second field in that entry:

BEGIN { FS = "\t" }
{ area[$4] += $2 }

END { for (name in area)
print name, area[name] }

Invoked on the file countries, this program produces:

South America 4358
Africa 1888
Asia 13611
Australia 2968
North America 7467

This program uses a form of the for statement that iterates over all defined
subscripts of an array:

for (i in array) statement

The statement executes with the variable i set in tum to each value of i for which
array[i] has been defined. The loop is executed once for each defined subscript, in
a random order. A program does not run properly if i is altered during the loop.

The awk language does not provide multi-dimensional arrays, so you cannot write
x[i,j] or x[i][j]. You can, however, create your own subscripts by concatenating
row and column values with a suitable separator. For example, the segment:

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)
arr[i "•" j] = ...

creates an array whose subscripts have the form i, j, such as l, l or 1,2. (The
comma distinguishes a subscript like 1,12 from one like 11,2.)

You can determine whether a particular subscript i occurs in an array arr by
testing the condition i in arr, as in

if ("Africa" in area) ...

This condition performs the test without the side effect of creating
area ["Africa"], which would happen if we used

if (area["Africa"] != "") ...

Note that neither is a test of whether the array area contains an element with
value "Africa" .

It is also possible to split any string into fields in the elements of an array using
the built-in function split.

MU43815PG/D2 4-29 12/01/87

II

II

awkPROGRAMMINGLANGUAGE

The function:

split("s1:s2:s3", a, ":")

splits the string s1: s2: s3 into three fields, using the separator : and storing
s1 in a [1], s2 in a [2], and s3 in a [3] . The number of fields found,
here three, is returned as the value of split. The third argument of split is a
regular expression to be used as the field separator. If the third argument is
missing, FS is used as the field separator.

An array element may be deleted with the delete statement:

delete arrayname(subscript]

User-Defined Functions
The awk language provides user-defined functions. A function is defined as:

tune name(argument-list) {
statements

}

The definition can occur anywhere a pattern-action statement can. The argument
list is a list of variable names separated by commas; within the body of the
function, these variables refer to the actual parameters when the function is
called. There must be no space between the function name and the left
parenthesis of the argument list when the function is called; otherwise it looks
like a concatenation. For example, to define and test the usual recursive factorial
function, you could use:

func fact(n) {

}

if (n <= 1)
return 1
else
return n * fact(n-1)

{print $1 "! is " fact($1) }

Array arguments are passed by reference, as in C, so it is possible for the function
to alter array elements or create new ones. Scalar arguments are passed by value,
however; so the function cannot affect their values outside. Within a function,
formal parameters are local variables but all other variables are global. (You can
have any number of extra formal parameters that are used purely as local
variables; because arrays are passed by reference, however, the local variables can
only be scalars.) The return statement is optional, but the returned value is
undefined if execution falls off the end of the function.

MU43815PG/D2 4-30 12/01187

awk PROGRAMMING LANGUAGE

Comments
Comments may be placed in awk programs: they begin with the character # and
end at the end of the line, as in:

print x. y# this is a comment

Output
The print and printf statements are the two primary constructs that generate
output. The print statement is used to generate simple output; printf is used for
more carefully formatted output. Like the shell, awk lets you redirect output, so
that output from print and printf can be directed to files and pipes. This section
describes the use of these two statements.

The print Statement
The statement:

print expr11 expr2, ••• , exprn

prints the string value of each expression separated by the output field separator
followed by the output record separator. The statement:

print

is an abbreviation for:

print $0.

To print an empty line, use:

print "".

Output Separators

The output field separator and record separator are held in the built-in variables
OFS and ORS. Initially, OFS is set to a single blank and ORS to a single
newline, but these values can be changed at any time. For example, the following
program prints the first and second fields of each record with a colon between the
fields and two newlines after the second field:

BEGIN

MU43815PG/D2

{ OFS = ":"; ORS= "\n\n" }
{ print $1, $2 }

4-31 12/01187

II

II

awk PROGRAMMING LANGUAGE

Notice that:

{ print $1 $2 }

prints the first and second fields with no intervening output field separator,
because $1 $2 is a string consisting of the concatenation of the first two fields.

The printf Statement

The prinH statement in awk is the same as that in C, except that the c and *
format specifiers are not supported. The printf statement has the general form:

prinH fonnat, expr11 expr2, ••• , exprn

where fonnat is a string that contains both information to be printed and
specifications on what conversions are to be performed on the expressions in the
argument list, as in Figure 4-8. Each specification begins with a %, ends with a
letter that determines the conversion, and may include:

left-justify expression in its field
width pad field to this width as needed; leading 0

pads with zeros
.prec maximum string width or digits to right of

decimal point

Character
d
e
f
g

0

s
x
o/o

Prints Ex ression as
decimal number
[-]d.ddddddE[+-]dd
[-]ddd.dddddd
e or f conversion, whichever is shorter, with

nonsignificant zeros suppressed
unsigned octal number
string
unsigned hexadecimal number
print a % ; no argument is converted

Figure 4-8. awk Conversion Characters

Here are some examples of printf statements along with the corresponding
output:

MU43815PG/D2 4-32 12/01/87

awkPROGRAMMINGLANGUAGE

printf "%d", 99/2 49
printf "%e", 99/2 4.950000e+01
printf "%f", 99/2 49.500000
printf "%6.2f", 99/2 49.50
printf "%9", 99/2 49.5
printf "%0", 99 143
printf "%060", 99 000143
printf "%x", 99 63
printf "1%el", "January" IJanuaryl
printf "%d", 99/2 49
printf "l%10el", "January" I January!
printf "1%-10el", "January" !January I
printf "I%. 3e I", "January" I Jan I
printf "l%10.3el", "January" I
printf " I %-10. 3e I ", "January" I Jan
printf "%%" %

Jani
I

The default output format of numbers is %.6g; this can be changed by assigning a
new value to OFMT. OFMT also controls the conversion of numeric values to
strings for concatenation and creation of array subscripts.

Output into Files

It is possible to print output into files instead of to the standard output by using
the > and >> redirection operators. For example, the following program
invoked on the file countries prints all lines where the population (third field) is
bigger than 100 into a file called bigpop, and all other lines into emallpop :

$3 > 100 {print $1, $3 >"bigpop" }
$3 <= 100 { print $1, $3 >"emallpop" }

Notice that the filenames have to be quoted; without quotes, bigpop and
emallpop are merely uninitialized variables. If the output files were not literals,
they would also have to be enclosed in parentheses:

$4 - /North America/ { print $1 > ("tmp" FILENAME) }

This is because the > operator has higher precedence than concatenation; without
parentheses, the concatenation of tmp and FILENAME would not work.

MU43815PG/D2 4-33 12/01/87

II

II

awk PROGRAMMING LANGUAGE

NOTE

Files are opened once in an awk program; If > > is
used instead of > to open a file, output is
appended to the file rather than overwriting its
original contents. However, when the file is
subsequently written to, the two operators
function exactly the same.

Output into Pipes

It is also possible to direct printing into a pipe with a command on the other end,
instead of a file. The statement:

print I "command-line"

pipes the output of print into the command-line.

Although we have shown them here as literal strings enclosed in quotes, the
command-line and filenames can come from variables, etc., as well.

Suppose we want to create a list of continent-population pairs, sorted
alphabetically by continent. The awk program below accumulates, in an array
named pop, the population values in the third field for each of the distinct
continent names in the fourth field. The program then prints each continent and
its population and pipes this output into the sort command.

BEGIN { FS = "\t" }
{ pop[$4] += $3 }

END { for (c in pop)
print c ":" pop[c] "sort" }

Invoked on the file countries, this program yields:

Africa:37
Asia: 1765
Australia: 14
North America:243
South America:142

In all these print statements involving redirection of output, the files or pipes are
identified by their names (that is, the pipe above is literally named sort), but
they are created and opened only once in the entire run. So, in the last example,
for all c in pop, only one sort pipe is open.

MU43815PG/D2 4-34 12/01/87

awk PROGRAMMING LANGUAGE

However, let's say we use egrep(l) and the pipe command:

I ("egrep " c " file-name")
#note the need for parens here since
otherwise the I has higher precedence

Each iteration of this pipe is associated with a new pipe, because c changes in
each iteration. As a result, the program complains that it cannot open egrep
<value of c> file and stops. The entire pipe name needs to be closed to keep the II
program from failing. The loop needed is:

for (c in pop) {
I ("egrep " c " file-name")

close ("egrep " c " file-name")
. . . }

Given this requirement, your program would be clearer if you assigned the pipe
each time to a variable:

for (c in pop) {
pipe_cmd = "egrep " c " file-name"

I pipe_cmd
close (pipe_cmd)

}

There is a limit to the number of files that can be open simultaneously. The
statement close(file) closes a file or pipe; file is the string used to create it in the
first place, as in:

close ("sort")

Input
There are several ways to give input to an awk program. The most common way
is to name on the command line the file that contains the input your program
needs. In addition, you can use the getline function within a program to read in
lines. You can also use command line arguments and pipes to provide input.
This section describes each of these methods.

Files and Pipes

The most common way to provide input to an awk program is to put the data into
a file, say awkdata, and then execute:

awk 'program' awkdata

MU43815PG/D2 4-35 12/01/87

II

awk PROGRAMMING LANGUAGE

The awk program reads its standard input if no filenames are given {see ''Usage"
in this chapter); thus, a second common arrangement is to have another program
pipe its output into awk. For example, egrep{l) selects input lines containing a
specified regular expression, but it can do so faster than awk since this is the only
thing it does. We could, therefore, invoke the pipe:

egrep 'Asia' countries I awk ' ... '

The egrep command quickly finds the lines containing Asia and passes them on
to the awk program for subsequent processing.

Input Separators
With the default setting of the field separator FS, input fields are separated by
blanks or tabs, and leading blanks are discarded, so each of these lines has the
same first field:

fie1d1
fie1d1

fie1d1

fie1d2

When the field separator is a tab, however, leading blanks are not discarded.

The field separator can be set to any regular expression by assigning a value to
the built-in variable FS. For example, the statement:

BEGIN { FS = "(, [\\t]•)I([\\t]+)"} ... '

sets the field separator to an optional comma followed by any number of blanks
and tabs. FS can also be set on the command line with the -F argument:

awk -F'{,[\t]*)I{[\t]+)' ' ... '

This statement behaves the same as the previous example. Regular expressions
used as field separators do not match null strings.

Multi-Line Records
Records are normally separated by newlines, so that each line is a record, but this
too can be changed {though only in a limited way). If the built-in record separator
variable RS is set to the empty string, as in:

BEGIN { RS = "" }
then input records can be several lines long; a sequence of empty lines separates
records.

MU43815PG/D2 4'36 12/01/87

awkPROGRAMMINGLANGUAGE

A common way to process multiple-line records is to use:

BEGIN {RS= ""; FS = "\n" }

to set the record separator to an empty line and the field separator to a newline.
There is a limit, however, on how long a record can be; it is usually about 2500
characters. 'The getline Function" and "Cooperation with the Shell" in this
chapter show other examples of processing multi-line records.

The getline Function

The awk language's limited facility for automatically breaking its input into
records that are more than one line long is not adequate for some tasks. For
example, if records are separated not by blank lines but by something more
complicated, merely setting RS to null doesn't work. In such cases, it is
necessary to manage the splitting of each record into fields in the program. Here
are some suggestions.

The function getline can be used to read input either from the current input or
from a file or pipe, by redirection analogous to printf. By itself, getline fetches
the next input record and performs the normal field-splitting operations on it. It
sets NF, NR, and FNR. getline returns 1 if there was a record present, 0 if the
end-of-file was encountered, and -1 if some error occurred (such as failure to
open a file).

To illustrate, suppose we have input data consisting of multi-line records, each of
which begins with a line beginning with START and ends with a line beginning
with STOP. The following awk program processes these multi-line records a
line at a time, putting the lines of the record into consecutive entries of an array:

.f [1] f [2] . . . f [n.f]

Once the line containing STOP is encountered, the record can be processed from
the data in the array:

/-START/ {

}

.f [nf=1] = $0
while (getline && $0 1- ;-sTOP/)
f[++nf] = $0
#now process the data in .f[1] ... f[n.f]

Notice that this code uses the fact that && evaluates its operands left to right and
stops as soon as one is true.

MU43815PG/D2 4-37 12/01/87

II

II

awk PROGRAMMING LANGUAGE

The same job can be done by the following program:

/•START/ .!t.t; nf==O{ f[nf=l] = $0 }
nf > 1 { f[++nf] = $0 }
/•STOP/ {#now process the data in f[l] ... f[nf]

nf = 0
}

The statement:

getline :x:

reads the next record into the variable :x:. No splitting is done; NF is not set. The
statement:

getline <"file"

reads from file instead of the current input. It has no effect on NR or FNR, but
field splitting is performed and NF is set. The statement:

getline :x: <"file"

gets the next record from file into :x: no splitting is done, and NF, NR and
FNR are untouched.

Note that if you use the statement form:

getline :x: < "file"

to construct a file name of more than one literal or variable, the file name needs to
be placed in parentheses for correct evaluation:

while (getline x < (ARGV[1].ARGV[2])) { ... }

Without parentheses, a statement such as:

getline :x: < "tmp".FILENAME

sets :x: to read the file tmp and not tmp . <value of FILENAME>. For instance,
the statement:

while (getline :x: < "tmp" "file") { ... }

loops infinitely because :x: is always set to null.

It is also possible to pipe the output of another command directly into getline.
For example, the statement:

while ("who" I getline)
n++

executes who and pipes its output into getline. Each iteration of the while

MU43815PG/D2 4-38 12/01/87

awkPROGRAMMINGLANGUAGE

loop reads one more line and increments the variable n, so after the while
loop terminates, n contains a count of the number of users. Similarly, the
statement:

"date" getline d

pipes the output of date into the variable d, thus setting d to the current date.

Figure 4-9 summarizes the getline function.

Form
getline
getline var
getline <file
getline var <file
cmd I getline
cmd I getline var

Sets
$0, NF, NR, FNR
var, NR, FNR
$0, NF
var
$0, NF
var

Figure 4-9. getline Function

Command-line Arguments
The command-line arguments are available to an awk program: the array ARGV
contains the elements ARGV[O], ... , ARGV[ARGC-1]; as in C, ARGC is the count.
ARGV[O] is the name of the program (generally awk); the remaining arguments
are whatever was provided (excluding the program and any optional arguments).
The following command line contains an awk program that echoes the arguments
that appear after the program name:

awk'
BEGIN {

for (i = 1; i < ARGC; i++)
printf "o/os ", ARGV[i]

printf '\n"
exit

}' $*

The arguments may be modified or added to; ARGC may be altered. As each
input file ends, awk treats the next non-null element of ARGV (up to the current
value of ARGC-1) as the name of the next input file.

MU43815PG/D2 4-39 12/01/87

II

II

awk PROGRAMMING LANGUAGE

There is one exception to the rule that an argument is a filename. If an argument
is of the form:

var= value

then the variable var is set to the value value as if by assignment. Such an
argument is not treated as a filename. If value is a string, no quotes are needed.

Using awk With Other Commands and the Shell
An awk program gains its greatest power when used with other programs. Here
we describe some of the ways in which awk programs cooperate with other
commands.

The system Function
The built-in function system(command-line) executes the command command-line,
which may well be a string computed by, for example, the built-in function
sprintf. The value returned by system is the return status of the command
executed.

For example, the program:

$1 == •#include• { g•ub(/[<>•]/, ••, $2); •Y•t•m(•cat • $2) }

calls the command cat to print the file named in the second field of every input
record whose first field is #include, after stripping any <, > or " that might
be present.

Cooperation with the Shell
In all the examples so far, the awk program either was in a file from which it was
fetched with the -f flag, or it appeared on the command line enclosed in single
quotes, as in:

awk '{ print $1 }' ...

Since awk uses many of the same characters as the shell does, such as $ and ",
surrounding the awk program with single quotes ensures that the shell will pass
the entire program unchanged to the awk interpreter.

MU43815PG/D2 4-40 12/01/87

awkPROGRAMMINGLANGUAGE

Now, consider writing a command addr that will search a file addresslist for
name, address and telephone information. Suppose that addresslist contains
names and addresses in which a typical entry is a multi-line record such as:

G. R. Emlin
600 Mountain Avenue
Murray Hill, NJ 07974
201-555-1234

Records are separated by a single blank line.

We want to search the address list by issuing commands like:

addr Emlin

That is easily done by a program of the form:

awk •
BEGIN
/Emlin/
• addreeeliet

{ RS = "" }

The problem is how to get a different search pattern into the program each time it
is run.

There are several ways to do this. One way is to create a file called addr that
contains:

awk •
BEGIN
/•$1·1
• addreeeliet

{ RS = "" }

The quotes are critical here: the awk program is only one argument, even though
there are two sets of quotes, because quotes do not nest. The $1 is outside the
quotes, visible to the shell, which therefore replaces it by the pattern Emlin
when the command addr Emlin is invoked. The addr command can be made
executable by changing its mode with the following command: chmod +x addr.

A second way to implement addr relies on the fact that the shell substitutes for $
parameters within double quotes:

awk "
BEGIN
/$1/
" addreeeliet

{ RS = \"\" }

Here we must protect the quotes defining RS with backslashes, so that the shell
passes them on to awk, uninterpreted by the shell. The $1 is recognized as a

MU43815PG/D2 4-41 12101/87

II

II

awkPROGRAMMINGLANGUAGE

parameter, however, so the shell replaces it by the pattern when the command
addr pattern is invoked.

A third way to implement addr is to use ARGV to pass the regular expression to
an awk program that explicitly reads through the address list with getline:

awk •
BEGIN

} .

{ RS = ""
while (getline < "addresslist")

if ($0 - ARGV[1])
print $0

exit

All processing is done in the BEGIN action.

Notice that any regular expression can be passed to addr; in particular, it is
possible to retrieve by parts of an address or telephone number as well as by
name.

Example Applications
The awk language has been used in surprising ways. We have seen awk
programs that implement database systems and a variety of compilers and
assemblers, in addition to the more traditional tasks of information retrieval, data
manipulation, and report generation. Invariably, the awk programs are
significantly shorter than equivalent programs written in more conventional
programming languages such as Pascal or C. In this section, we will present a
few more examples to illustrate some additional awk programs.

Generating Reports
The awk language is especially useful for producing reports that summarize and
format information. Suppose we wish to produce a report from the file countries
in which we list the continents alphabetically, and after each continent its
countries in decreasing order of population.

MU43815PG/D2 4-42 12/01/87

awk PROGRAMMING LANGUAGE

Africa:
Sudan 19
Algeria 18

Asia:
China 866
India 637
USSR 262

Australia:
Australia 14

North America:
USA 219
Canada 24

South America:
Brazil 116
Argentina 26

As with many data processing tasks, it is much easier to produce this report in
several stages. First, we create a list of continent-country-population triples, in
which each field is separated by a colon. This can be done with the following
program, triples, which uses an array called pop indexed by subscripts of the
form "continent:country" to store the population of a given country. The print
statement in the END section of the program creates the list of continent-country
population triples that are piped to the sort routine:

BEGIN { FS = •\t• }
{ pop[$4 •:• $1] += $3 }

END { for (cc in pop)
print cc •:• pop[cc] I "•ort -t: +O -1 +2nr• }

The arguments for sort deserve special mention. The -t: argument tells
sort to use : as its field separator. The +O -1 arguments make the first field
the primary sort key. In general, +i -j makes fields i +l, i +2, ... , j the sort
key. If - j is omitted, the fields from i + 1 to the end of the record are used. The
+ 2nr argument makes the third field, numerically decreasing, the secondary sort
key (n is for numeric, r for reverse order). Invoked on the file countries, this
program produces as output

MU43815PG/D2 4-43 12/01/87

II

II

awk PROGRAMMING LANGUAGE

Africa:Sudan:19
Africa:A1geria:18
Aaia:China:866
Aaia:India:637
Aaia:USSR:262
Auatra1ia:Auatra1ia:14
North America:USA:219
North America:Canada:24
South America:Brazi1:116
South America:Argentina:26

This output is in the right order but the wrong format. To transform the output
into the desired form we run it through a second awk program format:

BEGIN { FS = ":" }
{ if ($1 != prev) {

print "\n" $1 ":"
prev = $1
}
printf "\t~-10a ~6d\n". $2, $3

}

This is a control-break program that prints only the first occurrence of a continent
name and formats the country-population lines associated with that continent in
the desired manner. The command line:

awk -f triples countries I awk -f format

gives the desired report. As this example suggests, complex data transformation
and formatting tasks can often be reduced to a few simple awk's and sort's.

As an exercise, add to the population report subtotals for each continent and a
grand total.

Additional Examples

1. Word frequencies.
The first example illustrates associative arrays for counting. Suppose we
want to count the number of times each word appears in the input, where a
word is any contiguous sequence of non-blank, non-tab characters. The
following program prints the word frequencies, sorted in decreasing order:

{ for Cw = 1; w <= NF; w++) count[$w]++ }
END {for Cw in count) print count[w], w I •sort -nr•}

The first statement uses the array count to accumulate the number of
times each word is used. Once the input has been read, the second for

MU43815PG/D2 4-44 12/01/87

awk PROGRAMMING LANGUAGE

loop pipes the final count along with each word into the sort command.

2. Accumulation.
Suppose we have two files, deposits and withdrawals, of records
containing a name field and an amount field. For each name we want to
print the net balance determined by subtracting the total withdrawals from
the total deposits for each name. The net balance can be computed by the
following program:

awk •
FILENAME
FILENAME
END

•deposits• { balance[$1] += $2 }
•withdrawals" { balance[$1] -= $2 }

{ for (name in balance)
print name, balance[name]

} • deposits withdrawals

The first statement uses the array balance to accumulate the total amount
for each name in the file deposits. The second statement subtracts
associated withdrawals from each total. If there are only withdrawals
associated with a name, an entry for that name will be created by the second
statement. The END action prints each name with its net balance.

3. Random choice.
The following function prints (in order) k random elements from the first n
elements of the array A. In the program, k is the number of entries that
still need to be printed, and n is the number of elements yet to be
examined. The decision of whether to print the ith element is determined
by the test rand() < k/n.

func choose(A, k, n) {

}

4. Shell facility.

for (i = 1; n > O; i++)
if (rand() < k/n--) {
print A[i]
k--
}
}

The following awk program simulates (crudely) the history facility of the
operating system shell. A line containing only = re-executes the last
command executed. A line beginning with = cmd re-executes the last
command whose invocation included the string cmd. Otherwise, the current
line is executed.

MU43815PG/D2 4-45 12/01/87

II

II

awk PROGRAMMING LANGUAGE

$1 == "=" { if (NF == 1)
system(x[NR] = x[NR-1))

/./

else
for (i = NR-1; i > O; i--)
i.f (x [i] - $2) {
system(x[NR] = x[i])
break
}

next }

{ system(x[NR] = $0) }

5. Fonn-letter generation.
The following program generates form letters, using a template stored in a
file called £form.letter :

This i• a form letter.
The first field i.a $1, the aecond $2, the third $3.
The third is $3, second is $2, and first is $1.

and replacement text of this form:

field 1lfield 2lfield 3
oneltwolthree
alb le

The BEGIN action stores the template in the array template ; the
remaining action cycles through the input data, using gaub to replace
template fields of the form $f2 with the corresponding data fields.

BEGIN { FS = "I"

}
{

}

while (getline <"form.letter")
line[++n] = $0

for (i = 1; i <= n; i++) {
s = line [i]
for (j = 1; j <= NF; j++)
gsub("\\$"j, $j. s)
print s
}

In all such examples, a prudent strategy is to start with a small version and
expand it, trying out each aspect before moving on to the next.

MU43815PG/D2 4-46 12101/87

awkPROGRAMMINGLANGUAGE

awk Summary

Command Line

awk program filenames
awk -f program-file filenames
awk -Fs set field separator to string s; -Ft set separator to tab

Patterns

BEGIN
END
I regular expression/
relational expression
pattern && pattern
pattern II pattern
(pattern)
I pattern
pattern, pattern
func name(parameter list) { statement }

Control Flow Statements

if (expr) statement [else statement]
if (subscript in array) statement [else statement]
while (expr) statement
for (expr; expr; expr) statement
for (var In array) statement
do statement while (expr)
break
continue
next
exit [expr]
function-name(expr, expr, •••)
return [expr]

Input-Output

close(filename)
getline
getline <file
getline var

MU43815PG/D2

close file
set $0 from next input record; set NF, NR, FNR
set $0 from next record of file; set NF
set var from next input record; set NR, FNR

4-47 12/01/87

II

II

awkPROGRAMMINGLANGUAGE

getline var <file
print
print expr-list
print expr-list >file
printf fmt, expr-list
printf fmt, expr-list >file
system{cmd-Zine)

set var from next record of file
print current record
print expressions
print expressions on file
format and print
format and print on file
execute command cmd-line, return status

In print and printf above, >>file appends to the file, and I command writes on a
pipe. Similarly, command I getline pipes into getline. getline returns 0 on end of
file, and-1 on error.

String Functions

gsub(r,s,t)

index{s,t)

length{s)

match{s, r)

split(s,a,r)

sprintf(fmt, expr-list)

sub{r,s,t)

substr{s,i,n)

MU43815PG/D2

substitute string s for each substring matching regular
expression r in string t, return number of substitutions; if t
omitted, use $0

return index of string t in string s, or 0 if not present

return length of string s

return position ins where regular expression r occurs, or 0
if r is not present

split string s into array a on regular expression r, return
number of fields; if r omitted, FS is used in its place

print expr-list according to fmt, return resulting string

like gsub except only the first matching substring is
replaced

return n-char substring of s starting at i; if n omitted, use
rest of s

4-48 12/01/87

awkPROGRAMMINGLANGUAGE

Arithmetic Functions

arctangent of y Ix in radians
cosine (angle in radians)
exponential
truncate to integer
natural logarithm
random number between 0 and 1
sine (angle in radians)
square root

atan2(y,x)
cos(expr)
axp(expr)
int(expr)
log(expr)
rand()
sin(expr)
sqrt(expr)
srand(expr) new seed for random number generator; use time of day if no expr

Operators (Increasing Precedence)

=+=-=*=/=%=A= assignment
logical OR
logical AND

II
&&
- r
< <= > >= != ==

regular expression match, negated match
relationals

blank
+
.. I%
+-!

++
$

string concatenation
add, subtract
multiply, divide, mod
unary plus, unary minus, logical negation
exponentiation (** is a synonym)
increment, decrement (prefix and postfix)
field

Regular Expressions (Increasing Precedence)

c
\c

$
[abc ...)
rabc ...]
r11r2
r1r2
r+
r*
r?
(r)

matches non-metacharacter c
matches literal character c
matches any character but newline
matches beginning of line or string
matches end of line or string
character class matches any of abc .. .
negated class matches any but abc ... and newline
matches either rl or r2
concatenation: matches rl, then r2
matches one or more r's
matches zero or more r's
matches zero or one r's
grouping: matches r

MU43815PG/D2 4-49 12/01/87

II

II

awk PROGRAMMING LANGUAGE

Built-In Variables

ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH

Limits

number of command-line arguments
array of command-line arguments (0 .. ARGC-1)
name of current input file
input record number in current file
input field separator (default blank)
number of fields in current input record
input record number since beginning
output format for numbers (default". 69)
output field separator (default blank)
output record separator (default newline)
input record separator (default newline)
set by matchQ
set by matchQ

Any particular implementation of awk enforces some limits. Here are typical
values:

100 fields
2500 characters per input record
2500 characters per output record
1024 characters per individual field
1024 characters per print£ string
400 characters maximum quoted string
400 characters in character class
15 open files
1 pipe
numbers are limited to what can be represented on the local
machine, e.g., le-38 .. le+38

Initialization, Comparison, and Type Coercion

Each variable and field can potentially be a string or a number or both at any
time. When a variable is set by the assignment:

var= expr

its type is set to that of the expression. (Assignment includes + =, -=, etc.) An
arithmetic expression is of type number, a concatenation is of type string, and so
on. If the assignment is a simple copy, as in

MU43815PG/D2 4-50 12/01/87

awkPROGRAMMINGLANGUAGE

v1 = v2

then the type of v1 becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to string if necessary, and the
comparison is made on strings. The type of any expression can be coerced to
numeric by subterfuges, such as:

e::x:pr + 0

and to string by:

e::x:pr ""

(i.e., concatenation with a null string).

Uninitialized variables have the numeric value 0 and the string value "'' .
Accordingly, if :x: is uninitialized, the statement:

i.f (::x:) •••

is false, and the statements:

i.f (!:x:) •••

i.f (:x: == 0) .. .
i.f (:x: == "") .. .

are all true. But note that the statement:

i.f (:x: == "0") ...

is false.

The type of a field is determined by context when possible; for example, the
statement:

$1++

clearly implies that $1 is to be numeric, and the statement:

$1 = $1 "•" $2

implies that $1 and $2 are both to be strings. Coercion is done as needed.

In contexts where types cannot be reliably determined, such as in the statement:

i.f ($1 == $2) ...

the type of each field is determined on input. All fields are strings; in addition,
each field that contains only a number is also considered numeric.

Fields that are explicitly null have the string value "'' ; they are not numeric.
Non-existent fields (i.e., fields past NF) are treated this way, too.

MU43815PG/D2 4-51 12/01/87

II

II

awk PROGRAMMING LANGUAGE

As it is for fields, so it is for array elements created by splitQ.

Mentioning a variable in an expression causes it to exist, with the value "" as
described above. Thus, if arr [i] does not currently exist, the statement:

if (arr[i] == "") ...
causes it to exist with the value "" so the if is satisfied. The special construction:

if (i in arr) ...

determines whether arr [i] exists, without the side effect of creating it if it does
not.

MU43815PG/D2 4-52 12/01/87

