
2. PROGRAMMING BASICS

Introduction
The information in this chapteris for anyone just learning to write programs to
run in a SYSTEM V/68 environment. In Chapter 1 we identified one group of
users as single-user programmers. People in that category, particularly those who
are not deeply interested in programming, may find this chapter (plus related
reference manuals) tells them as much as they need to know about coding and
running programs in the SYSTEM V/68 environment.

Programmers whose interest runs deeper, who are part of an application
development project, or who are producing programs on one computer that are
being ported to another should view this chapter as a starter package.

Choosing a Programming Language
How do you decide which programming language to use in a given situation?
One answer could be, "I always code in HAIRBOL, because that's the language I
know best." Actually, in some circumstances that's a legitimate answer. But
assuming more than one programming language is available to you, that different
programming languages have their strengths and weaknesses, and that once
you've learned to use one programming language it becomes relatively easy to
learn to use another, you might approach the problem of language selection by
asking yourself questions like the following:

• What is the nature of the job this program is to do?

Does the task call for the development of a complex algorithm, or is this a
simple procedure that has to be done on many records?

• Does the programming task have many separate parts?

Can the program be subdivided into separately compilable functions, or is it
one module?

• How soon does the program have to be available?

Is it needed right now, or do I have enough time to work out the most
efficient process possible?

MU43815PG/D2 2-1 12/01/87

II
PROGRAMMING BASICS

• What is the scope of its use?

Am I the only person who will use this program, or is it going to be
distributed to the whole world?

• Is there a possibility the program will be ported to other systems?

•What is the life expectancy of the program?

Is it going to be used just a few times, or will it still be going strong five years
from now?

Supported Languages in an Operating System Environment

By "supported languages," we mean those offered for use on VME-based
computers running the SYSTEM V/68 operating system Release 3. Since these are
separately purchasable items, not all of them will necessarily be installed on your
machine. On the other hand, you may have languages available on your machine
that came from another source and are not mentioned in this discussion. In this
section and the one to follow we give brief descriptions of the nature of a) six
full-scale programming languages and b) several special-purpose languages. (As
an adjunct to these supported languages, of course, don't overlook the
considerable capabilities of shell procedures.)

C Language

The C language is intimately associated with the operating system. If you need to
use many function calls for low-level I/O, memory or device management, or
inter-process communication, C language is a logical first choice. Since most
programs don't require such direct interfaces with the operating system, however,
the decision to choose C might better be based on one or more of the following
characteristics:

• a variety of data types: character, integer, long integer, float, and double

• low-level constructs (most of the operating system kernel is written in C)

• derived data types, such as arrays, functions, pointers, structures, and unions

• multi-dimensional arrays

• scaled pointers and the ability to do pointer arithmetic

• bit-wise operators

MU43815PG/D2 2-2 12101/87

PROGRAMMING BASICS

• a variety of flow-of-control statements: if, if-else, switch, while, do-while, and
for

• a high degree of portability

C is a language that lends itself readily to structured programming. It is natural
in C to think in terms of functions. The next logical step is to view each function
as a separately compilable unit. This approach (coding a program in: small pieces)
eases the job of making changes and/or improvements. As you create functions
for one program you will surely find that many can be picked up, or quickly
revised, for another program.

A difficulty with C is that it takes a fairly concentrated use of the language over a
period of several months to reach your full potential as a C programmer. If you
are a casual programmer, you might want to choose a less demanding language.

FORTRAN
The oldest of the high-level programming languages, FORTRAN is still highly
prized for its variety of mathematical functions. If you are writing a program for
statistical analysis or other scientific applications, FORTRAN is a good choice. An
original design objective was to produce a language with good operating
efficiency. This has been achieved at the expense of some flexibility in the area of
type definition and data abstraction. There is, for example, only a single form of
the iteration statement. FORTRAN also requires using a somewhat rigid format
for input of lines of source code. This shortcoming may be overcome by using
one of the tools designed to make FORTRAN more flexible.

Pascal

Originally designed as a teaching tool for block-structured progr•mming, Pascal
has gained a wide acceptance because of its straightforward style. Pascal is
highly structured and allows system-level calls (characteristics it shares with C).
Since the intent of the developers, however, was to produce a language to teach
people about programming, it is perhaps best suited to small projects. Among its
inconveniences are its lack of facilities for specifying initial values for variables
and limited file-processing capability.

COBOL

Probably more programmers are familiar with COBOL than with any other single
programming language. It is frequently used in business applications because its
strengths lie in the management of input/output and in defining record layouts.

MU43815PG/D2 2-3 12/01/87

II
PROGRAMMING BASICS

It is somewhat cumbersome to use COBOL for complex algorithms, but it works
well in cases where many records have to be passed through a simple process (a
payroll withholding tax calculation, for example). It is a rather tedious language
to work with, because each program requires a lengthy amount of text merely to
describe record layouts, processing environment, and variables used in the code.
The COBOL language is wordy, so the compilation process is often complex.
Once written and put into production, COBOL programs have a way of staying in
use for years; and what might be thought of by some as wordiness comes to be
considered self-documentation. The investment in programmer time often makes
them resistant to change.

BASIC

The most commonly heard comment about BASIC is that it is easy to learn. With
the spread of personal microcomputers many people have learned BASIC because
it is simple to produce runnable programs in very little time. It is difficult,
however, to use BASIC for large programming projects. It lacks the provision for
structured flow-of-control, requires that every variable used be defined for the
entire program, and has no way of transferring values between functions and
calling programs. Most versions of BASIC run as interpreted rather than
compiled code. That makes for slower-running programs. Despite its limitations,
however, it is useful for getting simple procedures into operation quickly.

Assembly Language

The closest approach to machine language, assembly language is specific to the
particular computer on which your program is to run. High-level languages are
translated into the assembly language for a specific processor as one step of the
compilation. The most common need to work in assembly language arises when
you want to do some task that is not within the scope of a high-level language.
Since assembly language is machine-specific, programs written in it are not
portable.

Special-Purpose Languages

In addition to the above formal programming languages, the operating system
may offer one or more of the special-purpose languages described below.

MU43815PG/D2 2-4 12101/87

PROGRAMMING BASICS

awk

NOTE

Since SYSTEM V/68 utilities and commands are
packaged in functional groupings, it is possible
that not all the facilities mentioned will be
available on all systems.

awk (its name is an acronym constructed from the initials of its developers) scans
an input file for lines that match pattem(s) described in a specification file. On
finding a line that matches a pattern, awk performs actions also described in the
specification. It is not uncommon that an awk program can be written in a couple
of lines to do functions that would take a couple of pages to describe in a
programming language like FORTRAN or C. For example, consider a case where
you have a set of records that consist of a key field and a second field that
represents a quantity. You have sorted the records by the key field, and you now
want to add the quantities for records with duplicate keys and output a file in
which no keys are duplicated. The pseudo-code for such a program might look
like this:

Read the first record into a hold area;
Read additional records until EOF;
{
If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;
If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

}
At EOF, write out the last record from the hold area.

An awk program to accomplish this task would look like this:

{ qty[$1] += $2 }
END { for (key in qty) print key, qty[key] }

This illustrates only one characteristic of awk: its ability to work with associative
arrays. With awk, the input file does not have to be sorted, which is a
requirement of the pseudo-program.

MU43815PG/D2 2-5 12/01/87

II
PROGRAMMING BASICS

lex

lex is a lexical analyzer that can be added to C or FORTRAN programs. A lexical
analyzer is interested in the vocabulary of a language rather than its grammar,
which is a system of rules defining the structure of a language. lex can produce C
language subroutines that recognize regular expressions specified by the user,
take some action when a regular expression is recognized, and pass the output
stream on to the next program.

yacc

yacc (Yet Another Compiler Compiler) is a tool for describing an input language
to a computer program. yacc produces a C language subroutine that parses an
input stream according to rules laid down in a specification file. The yacc
specification file establishes a set of grammar rules together with actions to be
taken when tokens in the input match the rules. lex may be used with yacc to
control the input process and pass tokens to the parser that applies the grammar
rules.

M4

M4 is a macro processor that can be used as a preprocessor for assembly language
and C programs. It is described in Section (1) of the Programmer's Reference
Manual.

be and de

be enables you to use a computer terminal as you would a programmable
calculator. You can edit a file of mathematical computations and call be to
execute them. The be program uses de. You can use de directly, if you want to;
but it takes a little getting used to since it works with reverse Polish notation.
That means you enter numbers into a stack followed by the operator. Both be
and de are described in Section (1) of the User's Reference Manual.

curses

Actually a library of C functions, curses is included in this list because the set of
functions just about amounts to a sub-language for dealing with terminal screens.
If you are writing programs that include interactive user screens, you will want to
become familiar with this group of functions.

MU43815PG/D2 2-6 12/01/87

PROGRAMMING BASICS

After Your Code Is Written
The last two steps in most compilation systems in the SYSTEM V/68 environment
are the assembler and the link editor. The compilation system produces assembly
language code. The assembler translates that code into the machine language of
the computer the program is to run on. The link editor resolves all undefined
references and makes the object module executable. With most languages on
SYSTEM V/68, the assembler and link editor produce files in what is known as the
Common Object File Format (COFF). A common format makes it easier for
utilities that depend on information in the object file to work on different
machines running different versions of the operating system.

In the Common Object File Format an object file contains:

• a file header

• optional secondary header

• a table of section headers

• data corresponding to the section headers

• relocation information

• line numbers

• a symbol table

• a string table

An object file is made up of sections. Usually, there are at least two: .text, and
.data. Some object files contain a section called .bss. (.bss is an assembly
language pseudo-op that originally stood for ''block started by symbol.'') The .bss
section, when present, holds uninitialized data. Options of the compilers cause
different items of information to be included in the Common Object File Format.
For example, compiling a program with the -g option adds line numbers and
other symbolic information that is needed for the sdb (Symbolic Debugger)
command to be fully effective. You can spend many years programming without
having to worry too much about the contents and organization of the Common
Object File Format, so we are not going into any further depth of detail at this
point. Detailed information is available in Chapter 11 of this guide.

Compiling and Link Editing

The command used for compiling depends on the language used;

• for C programs, cc both compiles and link edits

MU43815PG/D2 2-7 12/01/87

II
PROGRAMMING BASICS

• for FORTRAN programs, 177 both compiles and link edits

Compiling C Programs

To use the C compilation system you must have your source code in a file with a
filename that ends in the characters .c, as in mycode.c. The command to invoke
the compiler is:

cc mycode.c

If the compilation is successful, the process proceeds through the link edit stage.
The result will be an executable file named a.out.

Several options to the cc command are available to control its operation. The
most used options are:

-c causes the compilation system to suppress the link edit phase.

-g

-0

-p

-o outfile

This produces an object file (mycode.o) that can be link edited
at a later time with a cc command without the -c option.

causes the compilation system to generate special information
about variables and language statements used by the symbolic
debugger sdb. If you are going through the stage of
debugging your program, use this option.

causes the inclusion of an additional optimization phase. This
option is logically incompatible with the -g option. You would
normally use -0 after the program has been debugged, to
reduce the size of the object file and increase execution speed.

causes the compilation system to produce code that works with
the prof{l) command to produce a runtime profile of where the
program is spending its time. Useful in identifying which
routines are candidates for improved code.

tells cc to tell the link editor to use the specified name for the
executable file rather than the default a.out.

Other options can be used with cc. Check the Programmer's Reference Manual.

If you enter the cc command using a file name that ends in .s, the compilation
system treats it as assembly language source code and bypasses all the steps
ahead of the assembly step.

MU43815PG/D2 2-8 12/01/87

PROGRAMMING BASICS

Compiling FORTRAN Programs

The m command invokes the. FORTRAN compilation system. The operation of
the command is similar to that of the cc command, except the source code files
must have a .f suffix. The f77 command compiles your source code and calls in
the link editor to produce an executable file named a.out.

The following command line options have the same meaning as they do for the cc
command:

-c, -p, -0, -g, and -o outfile

Loading and Running BASIC Programs

BASIC programs can be invoked in two ways:

• With the command

basic bscpgm.b

where bscpgm.b is the name of the file that holds your BASIC statements.
This tells the operating system to load and run the program. If the program
includes a run statement naming another program, you will chain from one to
the other. Variables specified in the first can be preserved for the second with
the common statement.

• By setting up a shell script.

Compiler Diagnostic Messages

The. C compiler generates error messages for statements that don't compile. The.
messages are generally quite understandable, but in common with most language
compilers they sometimes point several statements beyond where the error
occurred. For example, if you inadvertently put an extra ; at the end of an if
statement, a subsequent else will be flagged as a syntax error. In the case where
a block of several statements follows the if, the line number of the syntax error
caused by the else will start you looking for the error well past where it is.
Unbalanced curly braces, { }, are another common producer of syntax errors.

Link Editing

The Id command invokes the link editor directly. The typical user, however,
seldom invokes Id directly. A more common practice is to use a language
compilation control command (such as cc) that invokes Id. The link editor
combines several object files into one, performs relocation, resolves external
symbols, incorporates startup routines, and supports symbol table information

MU43815PG/D2 2-9 12/01/87

II

II
PROGRAMMING BASICS

used by sdb. You may, of course, start with a single object file rather than
several. The resulting executable module is left in a file named a.out.

Any file named on the Id command line that is not an object file (typically, a
name ending in o) is assumed to be an archive library or a file of link editor
directives. The Id command has some 16 options. We are going to describe four
of them. These options should be fed to the link editor by specifying them on the
cc command line if you are doing both jobs with the single command, which is
the usual case.

-o outfile

·Ix

·L dir

·u symname

MU43815PG/D2

provides a name to be used to replace a.out as the name of the
output file. Obviously, the name a.out is of only temporary
usefulness. If you know the name you want use to invoke
your program, you can provide it here. Of course, it may be
equally convenient to do this:

mv a.out prognama

when you want to give your program a less-temporary name.

directs the link editor to search a library libx.a, where x is up
to nine characters. For C programs, libc.a is automatically
searched if the cc command is used. The ·Ix option is used to
bring in libraries not normally in the search path, such as
libm.a, the math library. The ·Ix option can occur more than
once on a command line, with different values for the x. A
library is searched when its name is encountered, so the
placement of the option on the command line is important.
The safest place to put it is at the end of the command line.
The ·Ix option is related to the ·L option.

changes the libx.a search sequence to search in the specified
directory before looking in the default library directories,
usually /lib or /usr/lib. This is useful if you have different
versions of a library and you want to point the link editor to
the correct one. It works on the assumption that once a library
has been found no further searching for that library is
necessary. Because ·L diverts the search for the libraries
specified by ·Ix options, it must precede such options on the
command line.

enters symname as an undefined symbol in the symbol table.
This is useful if you are loading entirely from an archive
library, because initially the symbol table is empty and needs
an unresolved reference to force the loading of the first routine.

2-10 12/01/87

PROGRAMMING BASICS

When the link editor is called through cc, a startup routine (typically /lib/crtO.o
for C programs) is linked with your program. This routine calls exit(2) after
execution of the main program.

The link editor accepts a file containing link editor directives. The details of the
link editor command language can be found in Chapter 12.

MU43815PG/D2 2-11 12101/87

II
PROGRAMMING BASICS

The Operating System/Programming Language
Interface
When a program is run in a computer it depends on the operating system for a
variety of services. Some of the services such as bringing the program into main
memory and starting the execution are completely transparent to the program.
They are, in effect, arranged for in advance by the link editor when it marks an
object module as executable. As a programmer you seldom need to be concerned
about such matters.

Other services, however, such as input/output, file management, and storage
allocation do require work on the part of the programmer. These connections
between a program and the operating system are what is meant by the term
"operating system/language interface." The topics included in this section are:

• How arguments are passed to a program

• System calls and subroutines

• Header files and libraries

• Input/Output

•Processes

• Error Handling, Signals, and Interrupts

Why C Is Used to Illustrate the Interface

Throughout this section, C programs are used to illustrate the interface between
the operating system and programming languages because C programs make
more use of the interface mechanisms than other high-level languages. What is
really being covered in this section, then, is the operating system/C Language
interface. The way that other languages deal with these topics is described in the
user's guides for those languages.

How Arguments Are Passed to a Program

Information or control data can be passed to a C program as arguments on the
command line. When the program is run as a command, arguments on the
command line are made available to the function main in two parameters, an
argument count and an array of pointers to character strings. (Every C program is
required to have an entry module by the name of main.) Since the argument
count is always given, the program does not have to know in advance how many
arguments to expect. The character strings pointed at by elements of the array of
pointers contain the argument information.

MU43815PG/D2 2-12 12/01/87

PROGRAMMING BASICS

The arguments are presented to the program traditionally as argc and argv,
although any names you choose will work. argc is an integer that gives the count
of the number of arguments. Since the command itself is considered to be the
first argument, argv[O], the count is always at least one. argv is an array of
pointers to character strings (arrays of characters terminated by the null character
\0).

If you plan to pass runtime parameters to your program, you need to include code
to deal with the information. Two possible uses of runtime parameters are:

• as control data. Use the information to set internal flags that control the
operation of the program.

• to provide a variable filename to the program.

Figures 2-1and2-2 show program fragments that illustrate these uses.

MU43815PG/D2 2-13 12/01/87

II
PROGRAMMING BASICS

#include <•tdio.h>

main(argc, argv)
int argc;
char •argv[];

{
void exit();
int oflag = FALSE;
int pflag = FALSE; /• Function Flag• •/
int rflag = FALSE;
int ch;

while ((ch = getopt(argc,argv, •opr•)) != EOF)
{

/• For option• pre•ent, •et flag to TRUE •/
I• If no option• pre•ent, print error me••age •/

>

•witch (ch)
{

ca•• '""o'"":
oflag = 1;
break;
ca•e •p•:
pflag = 1;
break;
ca•• ·r'"":
rflag = 1;
break;
default:
(void)fprintf(•tderr,
•U•age: la [-opr]\n•, argv[O]);
exit(2);
>
>

Figure 2-1. Using Command Line Arguments to Set Flags

MU43815PG/D2 2-14 12/01/87

PROGRAMMING BASICS

#include <atdio.h>

main(argc, argv)
int argc;
char • argv [] ;

{

}

FILE •fopen(), •fin;
void perror(), exit();

if (argc > 1)
{
if ((fin
{

fopen(argv[1], •r•)) ==NULL)

/• Firat atring Cle) ia program name (argv[O]) •/
/• Second atring Cl•) ia name of file that could •/
/• not be opened (argv[1]) •/

(void)fprintf(atderr,
•la: cannot open la: •
argv[O], argv[1]);

perror(••);
exit(2);
}
}

Figura 2·2. Using argv[n] Pointers to Pass a Filename

The shell, which makes arguments available to your program, considers an
argument to be any nonblank character string separated by blanks or tabs from
any adjacent nonblank character strings. Characters enclosed in double quotes
("abc def'1 are passed to the program as one argument, even if blanks or tabs are
among the characters. You are responsible for error checking and otherwise
making sure the argument received is what your program expects it to be.

A third argument is also present, in addition to argc and argv. The third
argument, known as anvp, is an array of pointers to environment variables. You
can find more information on envp in the Programmer's Reference Manual under
exec(2) and environ(S).

MU43815PG/D2 2-15 12/01/87

II
PROGRAMMING BASICS

System Calls and Subroutines
System calls are requests from a program for an action to be performed by the
operating system kernel. Subroutines are precoded modules used to supplement
the functionality of a programming language.

Both system calls and subroutines look like functions such as those you might
code for the individual parts of your program. There are, however, differences
between them:

• At link edit time, the code for subroutines is copied into the object file for your
program; the code invoked by a system call remains in the kernel.

• At execution time, subroutine code is executed as if it were code you had
written yourself; a system function ,call is executed· by switching from your
process area to the kernel.

This means that, while subroutines make your executable object file larger,
runtime overhead for context switching may be less and execution may be faster.

Categories of System Calls and Subroutines

System calls divide fairly neatly into the following categories:

• file access

• file and directory manipulation

• process control

• environment control and status information

You can generally tell the category of a subroutine by the section of the
Programmer's Reference Manual in which you find its manual page. However, the
first part of Section 3 (3C and 3S) covers such a variety of subroutines it might be
helpful to classify them further.

• The subroutines of subclass 3S constitute the operating system/C Language
standard I/O, an efficient I/O buffering scheme for C.

• The subroutines of subclass 3C perform a variety of tasks. They have in
common the fact that their object code is stored in Ube.a. They can be divided
into the following categories:

- string manipulation

- character conversion

- character classification

MU43815PG/D2 2-16 12/01/87

PROGRAMMING BASICS

- environment management

- memory management

Table 2-1 lists the functions that compose the standard 110 subroutines in 3S.
Since a manual page often describes several related functions, the leftmost column
in a row shows the function name that appears at the top of the manual page; any
other names in the row are related functions described on the same page. (For all
functions: #include <stdio.h>.)

Table 2-2 lists string-handling functions that are grouped under the heading
string(3C) in the Programmer's Reference Manual. Extern definitions of the string
functions are provided by string.h. (For all functions: #include <string.h>.)

Table 2-3 lists macros that classify ASOI character-coded integer values. These
macros are described under the heading ctype(3C) in Section 3 of the Programmer's
Reference Manual. Nonzero return = = true; zero return = = false. (For all
functions: #include <ctype.h>.)

Table 2-4 lists functions that are used to convert integers or strings from one
representation to another. Since a manual page often describes several related
functions, the leftmost column in a row shows the function name that appears at
the top of the manual page; any other names in the row are related functions
described on the same page.

Table 2-5 lists functions and macros that are used to translate characters (see
conv(3C)). For the two macros: #include <ctype.h>.

MU43815PG/D2 2-17 12/01/87

PROGRAMMING BASICS

II
TABLE 2-1. C Language Standard 1/0 Subroutines

Function Nam•• Purpoee

fcloee ffluah Cose or flush a stream.

terror feof clearerr flleno Stream status inquiries.

fopen freopen fdopen Open a stream.

tread twrlt• Binary input/output.

taeek rewind ftell Reposition a file pointer in a stream.

getc getchar tgetc getw Get a character or word from a stream.

get• tgete Get a string from a stream.

po pen pcloae Begin or end a pipe to/from a process.

prlntf fprlntf eprlntf Print formatted output.

putc putchar tputc putw Put a character or word on a stream.

put• fpute Put a string on a stream.

ecant tacant secant Convert formatted input.

aetbuf ••tvbuf Assign buffering to a stream.

system Issue a command through the shell.

tmpflle Create a temporary file.

tmpnam tempnam Create a name for a temporary file.

ungetc Push character back into input stream.

vprlntf vtprlntf vaprlntf Print formatted output of a varargs argument
list.

MU43815PG/D2 2-18 12/01/87

Function Name

strcat(s1, s2)

stmcat(s1, s2, n)

strcmp(s1, s2)

strncmp(s1, s2, n)

strcpy(s1, s2)

strncpy(s1, s2, n)

strdup(s)

strchr(s, c)

strrchr(s, c)

strlen(s)

strpbrk(s1, s2)

strspn(s1, s2)

strcspn(s1, s2)

strtok(s1, s2)

MU43815PG/D2

PROGRAMMING BASICS

TABLE 2·2. String Operations

Operation

Append a copy of s2 to the end of sl.

Append n characters from s2 to the end of sl.

Compare two strings. Return an integer less than, greater
than, or equal to 0 to show that sl is lexicographically less
than, greater than, or equal to s2.

Compare n characters from two strings. Results are
otherwise identical to strcmp.

Copy s2 to sl, stopping after the null character (\0) has
been copied.

Copy n characters from s2 to sl. Truncate s2 if it is
longer than n, or pad it with null characters if it is shorter
than n.

Return a pointer to a new string that is a duplicate of the
string pointed to by s.

Return a pointer to the first occurrence of character c in
string s, or return a NULL pointer if c is not in s.

Return a pointer to the last occurrence of character c in
string s, or return a NULL pointer if c is not in s.

Return the number of characters in s up to the first null
character.

Return a pointer to the first occurrence in sl of any
character from s2, or return a NULL pointer if no
character from s2 occurs in sl.

Return the length of the initial segment of sl, which
consists entirely of characters from s2.

Return the length of the initial segment of sl, which
consists entirely of characters not from s2.

Look for occurrences of s2 within sl.

2-19 12/01/87

II

II
PROGRAMMING BASICS

TABLE 2-3. Classifying ASCII Character-Coded Integer Values

Macro Name

isalpha{c)

lsupper(c)

islower(c)

lsdiglt(c)

lsxdigit(c)

isalnum(c)

lsspace(c)

lspunct(c)

isprint(c)

isgraph(c)

iscntrl(c)

lsascii(c)

MU43815PG/D2

Class Defined

Is c a letter?

Is c an upper-case letter?

Is c a lower-case letter?

Is c a digit [0-9)?

Is ca hexadecimal digit [0-9), [A-F] or [a-£]?

Is c an alphanumeric {letter or digit)?

Is ca space, tab, carriage return, new line, vertical tab
or form feed?

Is c a punctuation character {neither control nor
alphanumeric)?

Is ca printing character, code 040 (space) through 0176
{tilde)?

Same as isprint except false for 040 {space)?

Is c a control character (less than 040) or a delete
character? (0177)

Is can ASCII character {code less than 0200)?

2-20 12/01/87

PROGRAMMING BASICS

TABLE 2-4. Conversion Functions for Integers and Strings

Function Names

a641 164a

ecvt fcvt

13tol ltol3

strtod at of

strtol atol

gcvt

atoi

Conversion

Between long integer and base-64
ASCII string.

Floating-point number to string.

Between 3-byte integer and long
integer.

String to double-precision number.

String to integer.

TABLE 2-5. Character Translation Functions and Macros

Function
or Macro

toupper

_toupper

tolower

_tolower

toascil

Translation

Lowercase to uppercase.

Macro version of toupper.

Uppercase to lowercase.

Macro version of tolower.

Other system to ASCII. (Tums off all bits that are not
part of a standard ASCII character; intended for
compatibility with other systems.)

Where to Find Manual Pages

System calls are listed alphabetically in Section 2 of the Programmer's Reference
Manual. Subroutines are listed in Section 3.

MU43815PG/D2 2-21 12/01/87

II
PROGRAMMING BASICS

We have described above what is in the first subsection of Section 3. The
remaining subsections of Section 3 are:

• 3M-functions that make up the Math Library, libm

• 3X-various specialized functions

• 3F-the FORTRAN intrinsic function library, libF77

• 3N-Networking Support Utilities

Using System Calls and Subroutines in C Programs

Information about the proper way to use a system call or subroutine is given on
its manual page, but you have to know what you are looking for before it begins
to make sense. To illustrate, a typical manual page (for gets(3S)) is shown in
Figure 2-3.

MU43815PG/D2 2-22 12101/87

PROGRAMMING BASICS

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#Include <stdlo.h>

char •gets (s)
char •s;

char •fgets (s, n, stream)

char •s;
Int n;
FILE •stream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the array pointed to by s,
until a new-line character is read or an end-of-file condition is encountered. The new-line

character is discarded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to bys, until n-1 characters are
read, or a new-line character is read and transferred to s, or an end-of-file condition is

encountered. The string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters are transferred

to s and a NULL pointer is returned. If a read error occurs, such as trying to use these
functions on a file that has not been opened for reading, a NULL pointer is returned.

Otherwise s is returned.

Figure 2-3. Manual Page for gets(3S)

As you can see from the illustration, two related functions are described on this
page: gets and fgets. Each function gets a string from a stream in a slightly
different way. The DESCRIPTION section tells how each operates.

MU43815PG/D2 2-23 12/01/87

II
PROGRAMMING BASICS

It is the SYNOPSIS section, however, that contains the critical information about
how the function {or macro) is used in your program. Notice that the first line in
the SYNOPSIS is:

#include <stdio.h>

This means that to use gets or fgets you must bring the standard 1/0 header file
into your program {generally right at the top of the file). There is something in
stdio.h that is needed when you use the described functions. Figure 2'....4 shows a
version of stdio.h. Check it to see if you can understand what gets or fgets uses.

The next thing shown in the SYNOPSIS section of a page for system calls or
subroutines is the formal declaration of the function. The formal declaration tells
you:

• the type of object returned by the function

In our example, both gets and fgets return a character pointer.

• the object or objects the function expects to receive when called

These are the things enclosed in the parentheses of the function. gets expects
a character pointer. {The DESCRIPTION section sheds light on what the
tokens of the formal declaration stand for.)

• how the function is going to treat those objects

The declaration:

char •s;

in gets means that the token s enclosed in the parentheses will be considered
to be a pointer to a character string. Bear in mind that in C language the name
of an array, when passed as an argument, is converted to a pointer to the
beginning of the array.

We have chosen a simple example here in gets. If you want to test yourself on
something a little more complex, try working out the meaning of the elements of
the fgets declaration. ·

While we're on the subject of fgets, there is another piece of C esoterica that we'll
explain. Notice that the third parameter in the fgets declaration is i;eferred to as
stream. A stream, in this context, is a file with its associated buffering. It is
declared to be a pointer to a defined type FILE. Where is FILE defined? Right! In
stdio.h. {See Figure 2-4.)

MU43815PG/D2 2-24 12/01/87

PROGRAMMING BASICS

#ifndef _NFILE
#define _NFILE 20

#define BUFSIZ 1024
#define _SBFSIZ 8

typedef •truct {

} FILE;

#define _IOFBF
#define _IO READ

int _cnt;
un•igned char •_ptr;
un•igned char •_ba•e;
char _flag;
char _file;

0000 I• _IOLBF mean• that a file·• output
0001 I• will be buffered line by line.

•I
•I

#define _IOWRT 0002 I• In addition to being flag•, _IONBF,•/
#define _IONBF 0004 I• _IOLBF and IOFBF are po••ible •I
#define _IOMYBUF 0010 I• value• for •type• in •etvbuf. •/
#define _IOEOF 0020
#define _IOERR 0040
#define _IOLBF 0100
#define _IORW 0200

#ifndef NULL
#define NULL 0
#endif
#ifndef EOF
#define EOF (-1)
#endif

Figure 2-4. A Version of stdio.h (part 1of2)

MU43815PG/D2 2-25 12/01/87

II

II
PROGRAMMING BASICS

#define at.din
#define at.dout.
#define at.derr

#define _buf end (p)
#define _bufaiz(p)

#ifndef lill t.
#define get.c (p)
#define put.c(x, p)

#define get.char()
#define put.char(x)
#define clearerr(p)
#define hof (p)
#define ferror (p)
#define file110 (p)
#e11dif

(l:_iob [O])
(l:_iob [1])
(l:_iob [2])

_bufendt.ab[(p)->_file]
(_bufend(p) - (p)->_baae)

c--(p)->_cnt. < 0 ? _filbuf(p) : (int.) •(p)->_ptr++)
c--(p)->_cnt. < 0 ?

_flabuf((u11aig11ed char) (x), (p)) :
(int.) (•(p)->_pt.r++ = (u11aig11ed char) (x)))

get.c (at.din)
put.c((x), at.dout.)
((void) ((p)->_flag I:= (_IOERR I _IOEOF)))
((p)->_flag I: _IOEOF)
((p)->_flag I: _IOERR)
(p)->_file

ext.er11 FILE _iob[_NFILE];
extern FILE •fope11(), •fdope11(), •freope11(), •pope11(), •t.mpfile();
ext.er11 long ft.ell();
ext.er11 void rewind(), aetbuf();
ext.er11 char •ct.ermid(), •cuaerid(), •fget.a(), •get.a(), •t.empnam(), •t.mpnam();
ext.ern unaigned char •_bufendt.ab[];

#define L_ct.ermid
#define L_cuaerid
#define P_t.mpdir
#define L_t.mpnam
#endif

9
9
•/uar/t.mp/•
(aizeof(P_t.mpdir) + 16)

Figure 2-4. A Version of stdio.h (part 2 of 2)

To finish off this discussion of the way you use functions described in the
Programmer's Reference Manual in your own code, Figure 2-5 shows a program
fragment in which gets is used.

MU43815PG/D2 2-26 12101/87

PROGRAMMING BASICS

#include <•tdio.h>

main()
{

}

char •array[80];

for (; ;)
{
if (get•(•array) != NULL)

/• Do •omething with th• •tring •/

}

Figure 2·5. How gets Is Used in a Program

You might ask, 'Where is gets reading from?" The answer is, "From the standard
input." That generally means 1) from something being keyed in from the terminal
where the command was entered to get the program running, or 2) from output of
another command that was piped to gets. How do we know that? The
DESCRIPTION section of the gets manual page says, "Gets reads characters from
the standard input " Where is the standard input defined? In stdio.h.

Header Files and Object File Libraries

The following paragraphs discuss header files and object file libraries.

Header Files

In the earlier parts of this chapter there have been frequent references to stdio.h,
and a version of the file itself is shown in Figure 2-4. This is the most commonly
used header file in the C environment, but there are many others.

Header files carry definitions and declarations that are used by more than one
function. Header file names traditionally have the suffix .h and are brought into a
program at compile time by the C-preprocessor. The preprocessor does this
because it interprets the #include statement in your program as a directive, as
indeed it is. All keywords preceded by a pound sign(#) at the beginning of the
line are treated as preprocessor directives. The two most commonly used
directives are #include and #define. We have already seen that the #include
directive is used to call in (and process) the contents of the named file. The

MU43815PG/D2 2-27 12/01/87

II
PROGRAMMING BASICS

#define directive is used to replace a name with a token-string. For example,

#define _NFILE 20

sets to 20 the number of files a program can have open at one time. See cpp(l)
for the complete list.

In the pages of the Programmer's Reference Manual there are about 45 different .h
files named. The format of the #include statement for all these shows the file
name enclosed in angle brackets(<>), as in:

#include <stdio.h>

The angle brackets tell the C preprocessor to look in the standard places for the
file. In most systems the standard place is in the /usr/include directory. If you
have some definitions or external declarations that you want to make available in
several files, you can create a .h file with any editor, store it in a convenient
directory and make it the subject of a #include statement such as the following:

#include " .. /defs/rec.h"

It is necessary, in this case, to provide the relative pathname of the file and
enclose it in quotation marks (" ·~. Fully-qualified pathnames (those that begin
with /) can create portability and organizational problems. An alternative to long
or fully-qualified pathnames is to use the ·ldir preprocessor option when you
compile the program. This option directs the preprocessor to search for #include
files whose names are enclosed in quotation marks, first in the directory of the file
being compiled, then in the directories named in the ·I options, and finally in
directories on the standard list. In addition, all #include files whose names are
enclosed in angle brackets are first searched for in the list of directories named in
the ·I option and finally in the directories on the standard list.

Object File Libraries
It is common practice in the SYSTEM V/68 operating system to keep modules of
compiled code (object files) in archives that are, by convention, designated by a .a
suffix. System calls from Section 2 and the subroutines in subsections 3C and 3S
of the Programmer's Reference Manual that are functions (as distinct from macros)
are kept in archive file libc.a. In most systems, libc.a is found in the directory
/lib. Many systems also have a directory /usr/lib. Where both /lib and /usr/lib
occur, /usr/lib is apt to be used to hold archives that are related to specific
applications.

During the link edit phase of the compilation and link edit process, copies of
some of the object modules in an archive file are loaded with your executable
code. By default the cc command that invokes the C compilation system causes
the link editor to search libc.a. If you need to point the link editor to other

MU43815PG/D2 2-28 12101/87

PROGRAMMING BASICS

libraries that are not searched by default, you do it by naming them explicitly on
the command line with the ·I option. The format of the ·I option is ·Ix, where xis
the library name (9 characters maximum). For example, if your program includes
functions from the curses screen control package, the option:

-I curses

will cause the link editor to search for /lib/libcurses.a or /usr/lib/libcurses.a and
use the first one it finds to resolve references in your program.

When you want to direct the order in which archive libraries are searched, you
may use the ·L dir option. Assuming the ·L option appears on the command line
ahead of the ·I option, it directs the link editor to search the named directory for
libx.a before looking in /lib and /usr/lib. This is particularly useful if you are
testing out a new version of a function that already exists in an archive in a
standard directory. Its success is because, once having resolved a reference, the
link editor stops looking. That's why the ·L option, if used, should appear on the
command line ahead of any ·I specification.

Input/Output

We talked some about 1/0 earlier in this chapter in connection with system calls
and subroutines. A whole set of subroutines constitutes the C language standard
1/0 package, and there are several system calls that deal with the same area. In
this section we want to get into the subject in a little more detail and describe for
you how to deal with input and output concerns in your C programs. First, let's
briefly define 1/0 functions:

• creating and sometimes removing files

• opening and closing files used by your program

• transferring information from a file to your program (reading)

• transferring information from your program to a file (writing)

In this section we will describe some of the subroutines you might choose for
transferring information, but the heaviest emphasis will be on dealing with files.

Three Files You Always Have

Programs are permitted to have several files open simultaneously. The number
may vary from system to system; the most common maximum is 20. _NFILE in
stdio.h specifies the number of standard 1/0 FILEs a program is permitted to have
open.

MU43815PG/D2 2-29 12101/87

II

II
PROGRAMMING BASICS

Any program automatically starts off with three files. If you look again at Figure
2-4, about midway through you will see that stdio.h contains three #define
directives that equate stdin, stdout, and stderr to the address of _iob[O], _iob[l],
and _iob[2], respectively. The array _iob holds information dealing with the way
standard 1/0 handles streams. It is a representation of the open file table in the
control block for your program. The position in the array is a digit that is also
known as the file descriptor. The default in SYSTEM V/68 is to associate all three
of these files with your terminal.

The real significance is that functions and macros that deal with stdin or stdout
can be used in your program with no further need to open or close files. For
example, gets, cited above, reads a string from stdin; puts writes a null­
terminated string to stdout. There are others that do the same (in slightly
different ways: character at a time, formatted, etc.). You can specify that output
be directed to stderr by using a function such as fprintf. This function works the
same as prlntf except that it delivers its formatted output to a named stream, such
as stderr. You can use the shell's redirection feature on the command line to read
from or write into a named file. If you want to separate error messages from
ordinary output being sent to stdout and thence possibly piped by the shell to a
succeeding program, you can do it by using a function to handle the ordinary
output and using a variation of the same function, one that names the stream, to
handle error messages.

Named Files

Any files other than stdin, stdout, and stderr that are to be used by your program
must be explicitly connected by you before the file can be read from or written to.
This can be done using the standard library routine fopen. fopen takes a
pathname (which is the name by which the file is known to the file system), asks
the system to keep track of the connection, and returns a pointer that you then
use in functions that do the reads and writes.

A structure is defined in stdio.h with a type of FILE. In your program you need
to have a declaration such as:

FILE *fin;

The declaration says that fin is a pointer to a FILE. You can then assign the name
of a particular file to the pointer with a statement in your program like this:

fin= fopen("filename", "r");

where filename is the pathname to open. The "r" means that the file is to be
opened for reading. This argument is known as the mode. As you might
suspect, there are modes for reading, writing, and both reading and writing.

MU43815PG/D2 2-30 12/01/87

PROGRAMMING BASICS

Actually, the file open function is often included in an if statement such as:

if ((fin = fopen("filename•, •r•)) == NULL)
(void)fprintf(•tderr,"I•: Unable to open input file l•\n•,

argv[O],"filename•);

that takes advantage of the fact that fopen returns a NULL pointer if it can't open
the file.

Once the file has been successfully opened, the pointer fin is used in functions (or
macros) to refer to the file. For example:

:Lnt c;
c = getc(f:Ln);

brings in a character at a time from the file into an integer variable called c. The
variable c is declared as an integer, even though we are reading characters,
because the function getc{) returns an integer. Getting a character is often
incorporated into some flow-of-control mechanism such as:

wh:Lle ((c = getc(f:Ln)) I= EOF)

that reads through the file until EOF is returned. EOF, NULL, and the macro
getc are all defined in stdio.h. The getc macro and others that make up the
standard 1/0 package keep advancing a pointer through the buffer associated with
the file; the operating system and the standard 1/0 subroutines are responsible for
seeing that the buffer is refilled (or written to the output file if you are producing
output) when the pointer reaches the end of the buffer. All these mechanics are
mercifully invisible to the program and the programmer.

The function fclose is used to break the connection between the pointer in your
program and the pathname. The pointer may then be associated with another file
by another call to fopen. This reuse of a file descriptor for a different stream may
be necessary if your program has many files to open. For output files it is good to
issue an fclose call, because the call makes sure that all output has been sent
from the output buffer before disconnecting the file. The system call exit closes
all open files for you. It also gets you completely out of your process, however;
so it is safe to use only when you are sure you are completely finished.

MU43815PG/D2 2-31 12/01/87

II
PROGRAMMING BASICS

Low-level 1/0 and Why You Shouldn't Use It

The term '1ow-level I/O" is used to refer to the process of using system calls from
Section 2 of the Programmer's Reference Manual rather than the functions and
subroutines of the standard I/O package. We are going to postpone until Chapter
3 any discussion of when this might be advantageous. If you find as you go
through the information in this chapter that it is a good fit with the objectives you
have as a programmer, it is a safe assumption that you can work with C language
programs in SYSTEM V/68 for a good many years without ever having a real need
to use system calls to handle your I/O and file-accessing problems. Using low­
level I/O is perilous because it is more system-dependent. Your programs are less
portable and probably no more efficient.

System Calls for Environment or Status Information

Under some circumstances you might want to be able to monitor or control the
environment in your computer. There are system calls that can be used for this
purpose. Some of them are shown in Table 2-6. Since a manual page sometimes
describes several related functions, the leftmost column in a row shows the
function name that appears at the top of the manual page; any other names in the
row are related functions described on the same page.

As you can see, many of the functions shown in Table 2-6 have equivalent shell
commands. Shell commands can easily be incorporated into shell scripts to
accomplish the monitoring and control tasks you may need to do. The functions
are available, however, and may be used in C programs as part of the operating
system/C Language interface. They are documented in Section 2 of the
Programmers' Reference Manual.

MU43815PG/D2 2-32 12/01/87

PROGRAMMING BASICS

TABLE 2-6. Environment and Status System Calls

chdir

chmod

ch own

getpid

getuld

ioctl

link

mount

nice

stat

time

ulimit

uname

Function Names

getpgrp

geteuid

unlink

umount

f stat

Processes

getppid

getgld

Purpose

Change working directory.

Change access permission of a file.

Change owner and group of a file.

Get process IDs.

Get user IDs.

Control device.

Add or remove a directory entry.

Mount or unmount a file system.

Change priority of a process.

Get file status.

Get time.

Get and set user limits.

Get name of current operating system.

Whenever you execute an operating system command, you are initiating a process
that is numbered and tracked by the operating system. A flexible feature of
SYSTEM V/68 is that processes can be generated by other processes. This
happens more often than you might be aware of. For example, when you log in
to your system you are running a process, probably the shell. If you then use an
editor such as vi, take the option of invoking the shell from vi, and execute the ps
command, you will see a display something like that in Figure 2-6 (which shows
the results of a ps -f command):

MU43815PG/D2 2-33 12/01/87

II
PROGRAMMING BASICS

UID PID PPID c ST I ME TTY TIME COMMAND
abc 24210 1 0 06:13:14 tt;y29 0:06 -ah
abc 24631 24210 0 06:59:07 tt;y29 0:13 vi c2.uli
abc 28441 28368 80 09:17:22 tt;y29 0:01 pa -f
abc 28368 24631 2 09:16:14 tt;y29 0:01 ah -i

Figure 2-6. Process Status Display

As you can see, user abc (who went through the steps described above) now has
four processes active. It is an interesting exercise to trace the chain that is shown
in the Process ID {PIO) and Parent Process ID (PPID) columns. The shell that was
started when user abc logged on is Process 24210; its parent is the initialization
process (Process ID 1). Process 24210 is the parent of Process 24631, and so on.

The four processes in the example above are all shell-level commands, but you
can spawn new processes from your own program. (Actually, when you issue
the command from your terminal to execute a program you are asking the shell to
start another process: your executable object module with all the functions and
subroutines that were made a part of it by the link editor.)

You might think, 'Well, it's one thing to switch from one program to another
when I'm at my terminal working interactively with the computer; but why would
a program want to run other programs; and if one does, why wouldn't I just put
everything together into one big executable module?"

Overlooking the case where your program is itself an interactive application with
diverse choices for the user, your program may need to run one or more other
programs based on conditions it encounters in its own processing (making a trial
balance at the end of the month, for example). The usual reasons why it might
not be practical to create one monster executable are:

• The load module may get too big to fit in the maximum process size for your
system.

• You may not have control over the object code of all the other modules you
want to include.

Thus, there are legitimate reasons why new processes might need to be created.
There are three ways to do it (described in the following subsections):

• system(3S)-request the shell to execute a command

• exec(2)-stop this process and start another

• fork(2)-start an additional copy of this process

MU43815PG/D2 2-34 12/01/87

PROGRAMMING BASICS

system(3S)

The formal declaration of the system function looks like this:

#include <stdio.h>

int system(string)
char *string;

The function asks the shell to treat the string as a command line. The string can
therefore be the name and arguments of any executable program or the operating
system shell command. If the exact arguments vary from one execution to the
next, you may want to use sprintf to format the string before issuing the system
command. When the command has finished running, system returns the shell
exit status to your program. Execution of your program waits for the completion
of the command initiated by system and then picks up again at the next
executable statement.

exec(2)

The name exec refers to a family of functions that includes execv, execle,
execve, execlp, and execvp. They all have the function of transforming the
calling process into a new process. The reason for the variety is to provide
different ways of pulling together and presenting the arguments of the function.
An example of one version (execl) follows:

execl("/bin/prog2", •prog•, progarg1, progarg2, (char •)O);

For execl, the argument list is:

/bin/prog2

prog

progarg1,
progarg2

(char *)O

MU43815PG/D2

path name of new process file

name the new process gets in its argv[O]

arguments to prog2 as char *' s

null char pointer to mark end of arguments

2-35 12/01/87

II

II
PROGRAMMING BASICS

Check the manual page in the Programmer's Reference Manual for the rest of the
details. The key point of the exec family is that there is no return from a
successful execution: the calling process is finished, the new process overlays the
old. The new process also takes over the Process ID and other attributes of the
old process. If the call to exec is unsuccessful, control is returned to your
program with a return value of -1. You can check errno to learn why it failed.
(See ''Error Handling" later in this chapter.)

fork{2)

The fork system call creates a new process that is an exact copy of the calling
process. The new process is known as the child process; the caller is known as
the parent process. The one major difference between the two processes is that
the child gets its unique process ID. When the fork process has completed
successfully, it returns a 0 to the child process and the child's process ID to the
parent. If the idea of having two identical processes seems strange, consider this:

• Because the return value is different between the child process and the parent,
the program can contain the logic to determine different paths.

• The child process could say, "Okay, I'm the child. I'm supposed to issue an
exec for an entirely different program."

• The parent process could say, ''My child is going to be execing a new process.
I'll issue a wait until I get word that the new process is finished."

To take this out of the storybook world where programs talk like people and into
the world of C programming (where people talk like programs), your code might
include statements like those shown in Figure 2-7.

MU43815PG/D2 2-36 12/01/87

PROGRAMMING BA.SICS

#include <errno.h>

int ch_atat, ch_pid, atatua;
char •progarg1;
char •progarg2;
void exit();
extern int errno;

if ((ch_pid = fork()) < 0)
{

I• Could not fork ...
check errno

elae if (ch_pid == 0)
{

I• child •/

(void)execl(•/bin/prog2•,•prog•,progarg1,progarg2,(char •)O);
exit(2); /• execl() failed•/

}

elae I• parent •/
{

while ((atatua = wa.i t (&ch_atat)) ! = ch_pid)
{

}
}

if (atatua < O aa errno == ECHILD)
break;

errno = O;

Figure 2-7. Example of fork

Because the child process ID is taken over by the new exec' d process, the parent
knows the ID. What this boils down to is a way of leaving one program to run
another, returning to the point in the first program where processing ceased. This
is exactly what the system(3S) function does, using this same procedure of
forking and execing, with a wait in the parent.

MU43815PG/02 2-37 12/01/87

II
PROGRAMMING BASICS

Keep in mind that the fragment of code above includes a minimum amount of
checking for error conditions. There is also potential confusion about open files
and which program is writing to a file. Leaving out the possibility of named files,
the new process created by the fork or exec has the three standard files that are
automatically opened: stdin, stdout, and stderr. If the parent has buffered
output that should appear before output from the child, the buffers must be
flushed before the fork. Also, if the parent and the child process both read input
from a stream, whatever is read by one process will be lost to the other. That is,
once something has been delivered from the input buffer to a process the pointer
has moved on.

Pipes

The idea of using pipes, a connection between the output of one program and the
input of another, when working with commands executed by the shell is common
in the SYSTEM V/68 operating system environment. For example, to learn the
number of archive files in your system you might enter a command like:

echo /libr.a /usr/libr.a 1 we -w

that first echoes all the files in /lib and /usr/lib that end in .a, then pipes the
results to the we command, which counts their number.

A feature of the operating system/C Language interface is the ability to establish
pipe connections between your process and a command to be executed by the
shell or between two cooperating processes. The first uses the popen(3S)
subroutine that is part of the standard 110 package; the second requires the
system call pipe(2).

popen is similar in concept to the system subroutine in that it causes the shell to
execute a command. The difference is that once having invoked popen from your
program, you have established an open line to a concurrently running process
through a stream. You can send characters or strings to this stream with standard
1/0 subroutines just as you would to stdout or to a named file. The connection
remains open until your program invokes the companion pclose subroutine. A
common application of this technique is a pipe to a printer spooler, as shown in
Figure 2-8.

MU43815PG/D2 2-38 12/01/87

PROGRAMMING BASICS

#include <•tdio.h>

main()
{

}

FILE •pptr;
char •out•tring;

if ((pptr = popen(•1p•,•w•)) !=NULL)
{

for(;;)
{

I• Organize output •/

(Toid)fprintf(pptr, •l•\n•, out•tring);

}

pclo•e(pptr);
}

Figure 2-8. Example of a popen Pipe

Error Handling
Within your C programs you must determine the appropriate level of checking for
valid data and for acceptable return codes from functions and subroutines. If you
use any of the system calls described in Section 2 of the Programmer's Reference
Manual, you have a way in which you can find out the probable cause of a bad
return value.

Operating system calls that are not able to complete successfully almost always
return a value of -1 to your program. (If you look through the system calls in
Section 2, you will see that there are a few calls for which no return value is
defined; but they are the exceptions.) In addition to the -1 that is returned to the
program, the unsuccessful system call places an integer in an externally declared
variable, errno. You can determine the value in errno if your program contains

MU43815PG/D2 2-39 12/01/87

II
PROGRAMMING BASICS

the statement:

#inc1ude <errno.h>

The value in errno is not cleared on successful calls, so your program should
check it only if the system call returned a -1. The errors are described in intro{2)
of the Programmer's Reference Manual.

The subroutine perror(3q can be used to print an error message (on stderr) based
on the value of errno.

Signals and Interrupts
Signals and interrupts are two words for the same thing. Both words refer to
messages passed by the operating system to running processes. Generally, the
effect is to cause the process to stop running. Some signals are generated if the
process attempts to do something illegal; others can be initiated by a user against
his or her own processes, or by the superuser against any process.

You can include the system call kill in your program to send signals to other
processes running under your user-id. The format for the kill call is:

ki11 (pid. • ig)

where pid is the process number against which the call is directed, and sig is an
integer from 1 to 19 that shows the intent of the message. The name "kill" is
something of an overstatement; not all the messages have a "drop dead" meaning.
Some of the available signals are shown in Figure 2-9 as they are defined in
<sys/signal.h>.

MU43815PG/D2 2-40 12/01/87

1
2

#de:f ine SIGHUP
#define SIGINT
#define SIGQUIT 3
#de:f ine SIGILL 4
#de:f ine SIGTRAP 6
#define SIGIOT 6
#define SIGABRT 6
#de:f ine SIGEMT 7
#define SIGFPE 8
#de:f ine SIGKILL 9

I•
I•
I•
I•
I•
I•
I•
I•
I•
I•

#define SIGBUS
#define SIGSEGV 11

10 /•
I•
I•
I•
I•
I•
I•
I•
I•
I•

#de:f ine SIGSYS 12
#de:f ine SIGPIPE 13
#de:f ine SIGALRM 14
#define SIGTERM 16
#define SIGUSR1 16
#define SIGUSR2 17
#define SIGCLD 18
#de:f ine SIGPWR 19

hangup •/
interrupt (rubout) •/
quit (ASCII FS) •/

PROGRAMMING BASICS

illegal instruction (not reset when caught)•/
trace trap (not reset when caught) •/
IDT instruction •/
used by abort, replace SIGIOT in the :future •/
EMT instruction •/
:floating point exception •/
kill (cannot be caught or ignored) •/
bus error •/
segmentation violation •/
bad argument to system call •/
writ• on a pip• with no one to read it •/
alarm clock •/
software termination signal :from kill •/
user de:f ined signal 1 •/
user defined signal 2 •/
death o:f a child •/
power-fail restart •/

/• SIGWIND and SIGPHONE only used in SYSTEM V/68/PC •/
/•#de:fin• SIGWIND 20•/ /• window change •/
/•#define SIGPHONE 21•/ /• handset, line status change •/

#define SIGPOLL 22 /• pollable event occurred •/

#define NSIG 23 I• The valid signal number is :from 1 to NSIG-1 •I
#define MAXSIG 32 I• size o:f u_aignal [], NSIG-1 <= MAXSIG•/

I• MAXSIG is larger than we need now. •I
I• In the :future, we can add more signal •I
I• number without changing uaer.h •I

Figure 2-9. Signal Numbers Defined in /usr/include/sys/signal.h

The signal(2) system call is designed to let you code methods of dealing with
incoming signals. You have a three-way choice. You can a) accept whatever the
default action is for the signal, b) have your program ignore the signal, or c) write
a function of your own to deal with it.

MU43815PG/D2 2-41 12/01/87

II
PROGRAMMING BASICS

Analysis/Debugging
SYSTEM V/68 provides several commands designed to help you discover the
causes of problems in programs and to learn about potential problems.

To illustrate how these commands are used and the type of output they produce,
we have constructed a sample program that opens and reads an input file and
performs one to three subroutines according to options specified on the command
line. This program does not do anything you couldn't do easily on your pocket
calculator, but it does serve to illustrate some points. The source code is shown
in Figure 2-10. The header file, recdef.h, is shown at the end of the source code.

The output produced by the various analysis and debugging tools illustrated in
this section may vary slightly from one installation to another. The Programmer's
~erence Manual is a good source of additional information about the contents of
the reports produced.

I• Maiu. module -- reatate.c •/

#iu.clude <•tdio.h>
#iu.clude •recdef.h•

#def iu.e TRUE 1
#def iu.e FALSE 0

maiu. (argc, argv)
iu.t argc;
char •argv [] ;
{

FILE •fopeu.(), •fiu.;
void exit();
iu.t getopt ();
iu.t oflag = FALSE;
iu.t pflag = FALSE;
iu.t rflag = FALSE;
iu.t ch;
•truct rec fir•t;
exteru. iu.t opterr;
exteru. float oppt7(), pft(), rfe();

I• restate.c i• cou.tiu.ued on th• next page •/

Figura 2·10. Source Code for Sample Program (part 1of4)

MU43815PG/D2 2-42 12/01/87

PROGRAMMING BASICS

if (argc < 2)
{

I• restate.c continued •/

(void) fprintf(atderr, •la: Mu•t apecify option\n•,argv[O]);
(void) fprintf(atderr, •uaage: I• -rpo\n•, argv[O]);
n:it(2);

}

opt.err = FALSE;
while ((ch= getopt(argc,argv,•opr•)) != EOF)
{

}

awitch(ch)
{

ca•• •o •:
oflag = TRUE;
break;

ca•• •p•:
pf lag
break;

ca•• ·r •:
rflag
break;

default:

= TRUE;

= TRUE;

(void) fprintf(atderr, •uaage: I• -rpo\n•,argv[O]);
exit(2);

}

if ((fin= fopen(•info•,•r•)) ==NULL)
{

(void) fprintf(atderr, •I•: cannot open input file l•\n•,argv[O],•info");
exit(2);
}

Figure 2-10. Source Code for Sample Program (part 2 of 4)

MU43815PG/D2 2-43 12/01/87

II

II
PROGRAMMING BASICS

I• restate.c continued •/

if (f•canf(fin, •l•lflflflflflf•,firat.pnama,afirat.ppx,
&firat.dp,&fir•t.i,&firat.c,&firat.t,&first.spx) != 7)
{

(void) fprintf(atdarr,•la: cannot read first record from ls\n•,
argv[O], •info•);

axit(2);
}

printf(•Proparty: l•\n•,first.pnama);

if (oflag)
printf(" Opportunity Coat: $l#6.2f\n•,oppty(&first));

if (pflag)
printf(• Anticipated Profit(loss): $l#7.2f\n•,pft(&fir•t));

if(rflag)
printf(" Return on Funds Employed: l#3.2fll\n•,rfa(&first));

}

I• End of Main Modula -- restate.c •/

/• Opportunity Co•t -- oppty.c •/
#include •racdaf.h•

float
oppty(pa)
atruct rec •p•;
{

raturn(pa->i/12 • ps->t • pa->dp);
}

Figure 2·10. Source Code for Sample Program (part 3 of 4)

MU43815PG/D2 2-44 12/01/87

PROGRAMMING BASICS

#include •recdef.h•

float.
pft. (pa)
at.ruct. rec •pa;

I• Profit. -- pft.c •/

{

}
ret.urn(pa->apx - pa->ppx + p•->c);

/• Ret.urn on Fund• Employed -- rfe.c •/

#include •recdef.h•

float.
rf• (pa)
•t.ruct. rec •pa;
{

}
ret.urn(100 • (p•->•px - pa->c) I pa->apx);

/• Header Fil• -- recdef.h •/

•t.ruct. rec { /• To hold input. •/
char pname [26] ;
float. ppx;
float. dp;
float. i;
float. c;
float. t.;
float. apx;

}

Figure 2-10. Source Code for Sample Program {part 4 of 4)

Discussions of the analysis/debugging commands follow, using examples based
on the program shown in Figure 2-10.

The cflow Command

The cflow command produces a chart of the external references in C, yacc, lex,
and assembly language files. Using the modules of our sample program, the

MU43815PG/D2 2-45 12/01/87

II
PROGRAMMING BASICS

command:

cflow restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-11.

1 main: int(), <re•tate.c 11>
2 fprintf: <>
3 exit: <>
4 getopt: <>
6 fopen: <>
8 f•canf: <>
7 printf: <>
8 oppt7: float(), <oppt7.c
9 pft: float(), <pft.c 7>
10 rfe: float(), <rfe.c 8>

7>

Figure 2-11. cflow Output, No Options

The -r option looks at the caller-callee relationship from the other side. It
produces the output shown in Figure 2-12.

1 exit: <>
2 main <>
3 fopen: <>
4 main 2
6 fprintf: <>
8 main : 2
7 f•canf: <>
8 main : 2
9 getopt: <>
10 main : 2
11 main: int(). <re•tate.c 11>
12 oppt7: float(), <oppty.c 7>
13 ma.in : 2
14 pft: float(), <pft.c 7>
16 ma.in : 2
18 printf: <>
17 ·main : 2
18 rfe: float() , <rfe.c 8>
19 ma.in : 2

Figure 2-12. cflow Output, Using-r Option

MU43815PG/D2 2-46 12101/87

PROGRAMMING BASICS

The ·ix option causes external and static data symbols to be included. Our
sample program has only one such symbol, opterr. The output is shown in
Figure 2-13.

1 main: int(), <reatate.c 11>
2 fprintf: <>
3 exit: <>
4 opterr: <>
6 getopt: <>
6 fopen: <>
7 facanf: <>
8 printf: <>
9 oppty: float(), <oppty.c 7>
10 pft: float(), <pft.c 7>
11 rfe: float(), <rfe.c 8>

Figura 2·13. cflow Output, Using -ix Option

Combining the-rand the ·Ix options produces the output shown in Figure 2-14.

1 exit: <>
2 main <>
3 fopen: <>
4 main 2
6 fprintf: <>
6 main : 2
7 facanf: <>
8 main : 2
9 getopt: <>
10 main : 2
11 main: int(), <reatate.c 11>
12 oppty: float(), <oppty.c 7>
13 main : 2
14 opterr: <>
16 main : 2
16 pft: float(), <pft.c 7>
17 main : 2
18 printf: <>
19 main : 2
20 rfe: float(), <rfe.c 8>
21 main : 2

Figura 2·14. cflow Output, Using-rand -ix Options

MU43815PG/D2 · 2-47 12101/87

II
PROGRAMMING BASICS

The ctrace Command
The ctrace command lets you follow the execution of a C program statement by
statement. It takes a .c file as input and inserts statements in the source code to
print out variables as each program statement is executed. You must direct the
output of this process to a temporary .c file. The temporary file is then used as
input to cc. When the resulting a.out file is executed, it produces output that can
tell you a lot abqut what is going on in your program.

Options give you the ability to limit the number of times through loops. You can
also include functions in your source file that tum the trace off and on so you can
limit the output to portions of the program that are of particular interest.

The ctraca command accepts only one source code file as input. To use our
sample program to illustrate, it is necessary to execute the following four
commands:

ctrace restate.c > ct.main.c
ctrace oppty.c > ct.op.c
ctrace pft.c > ct.p.c
ctrace rfe.c > ct.r.c

The names of the output files are completely arbitrary. Use any names that are
convenient for you. The names must end in .c, since the files are used as input to
the C compilation system.

cc -o ct.run ct.main.c ct.op.c ct.p.c ct.r.c

Now the command:

ct.run -opr

produces the output shown in Figure 2-15. The command above will cause the
output to be directed to your terminal (stdout). It is probably a good idea to
direct it to a file or to a printer so you can refer to it.

MU43815PG/D2 2-48 12/01/87

PROGRAMMING BASICS

8 main(argc, argv)
23 if (argc < 2)

I• argc == 2 •/
30 opterr = FALSE;

/• FALSE == 0 •/
I• opterr == 0 •/

31 while ((ch= getopt(argc,argv,•opr•)) != EOF)
/• argc == 2 •/
I• argv == 16729316 •/
I• ch == 111 or ·o· or •t• •/

32 {
33 switch(ch)

/• ch == 111 or ·o· or •t• •/
36 ca•• ·o·:
36 of lag = TRUE;

/• TRUE == 1 or •h• •/
I• of lag == 1 or •h• •/

37 break;
48 }
31 while ((ch= g•topt(argc,argv,•opr•)) != EOF)

I• argc == 2 •/
/• argv == 16729316 •/
/• ch == 112 or ·p· •/

32 {
33 •witch(ch)

I• ch == 112 or ·p· •/
38 ca•• •p•:
39 pflag = TRUE;

/• TRUE == 1 or •h• •/
I• pflag == 1 or •h• •/

40 break;
48 }
31 while ((ch= getopt(argc,argv,•opr•)) != EOF)

I• argc == 2 •/
I• argv == 16729316 •/
I• ch == 114 or ·r· •/

32 {
33 •witch(ch)

/• ch == 114 or •r• •/
41 ca•• ·r·:
42 rflag = TRUE;

I• TRUE == 1 or •h• •/
I• rflag == 1 or •h• •/

43 break;
48 }

Figure 2·15. ctrace Output (part 1 of 2)

MU43815PG/D2 2-49 12/01/87

II

II
PROGRAMMING BASICS

31 while ((ch= getopt(argc,argv,•opr•)) != EOF)
/• argc == 2 •/
/• argv == 16729318 •/
I• ch == -1 •/

49 if ((fin= fopen("info•,•r•)) ==NULL)
!• tin == 140200 •/

64 if (facanf(fin, "lalflflflflflf",firat.pname,afirat.ppx,
&firat.dp,&firat.i,&firat.c,&firat.t,&firat.apx) != 7)
!• fin == 140200 •/
/• firat.pname == 16729628 •/

81 printf("Property: laO,firat.pname);
/• firat.pname == 16729628 or "Linden_place• •/ Property: Linden_place

83 if (oflag)
/• oflag == 1 or "h" •/

84 printf(" Opportunity Coat: $l#6.2f0,oppty(&firat));
6 oppty(pa)
8 return(pa->i/12 • pa->t • pa->dp);

I• pa->i == 1089044203 •/
I• pa->t == 1078494338 •/
I• pa->dp == 1088786312 •/ Opportunity Coat: $4476.87

88 if (pf lag)
/• pf lag == 1 or "h" •/

87 printf(• Anticipated Profit(loaa): $l#7.2f0,pft(&firat));
6 pft(pa)
8 return(pa->apx - pa->ppx + pa->c);

I• pa->apx == 1091649040 •/
I• pa->ppx == 1091178464 •/
I• pa->c == 1087409638 •/ Anticipated Profit(loaa): $86960.00

89 if (rflag)
I• rflag == 1 or "h" •/

70 printf(" Return on Funda Employed: l#3.2fll0,rfe(&firat));
6 rh (pa)
9 return(100 • (pa->apx - pa->c) I pa->apx);

I• pa->apx == 1091649040 •/
/• pa->c -- 1087409636 •/ Return on Fund• Employed: 94.00I

I• return •/

Figure 2·15. ctrace Output (part 2 of 2)

Using a program that runs successfully is not the optimal way to demonstrate
ctrace. It would be more helpful to have an error in the operation that could be
detected by ctrace. It would seem that this utility might be most useful in cases
where the program runs to completion but the output is not as expected.

MU43815PG/D2 2-50 12/01/87

PROGRAMMING BASICS

The cxref Command
The exref command analyzes a group of C source code files and builds a cross­
reference table of the automatic, static, and global symbols in each file.

The command:

exref -c -o ex.op restate.e oppty.e pft.e rfe.e

produces the output shown in Figure 2-16 in a file named ex.op. The -c option
causes the reports for the four .e files to be combined in one cross-reference file.

re•tate.c:

oppt;r.c:

pft.c:

rfe.c:

SYMBOL

BUFSIZ
EDF

FALSE
FILE

L_cterm.id

L_cu••rid
L_tm.pn­
NULL

P_tm.pdir

TRUE
_IOEOF
_IOERR
_IOFBF
_IOLBF
_IOMYBUF

FILE

/u•r/include/•tdio.h

/u•r/include/•tdio.h
r••tate.c
re•tate.c

/u•r/include/•tdio.h

r••tate.c
/u•r/include/•tdio.h

/u•r/include/•tdio.h
/u•r/includ•/•tdio.h
/u•r/include/•tdio.h
re•tate.c
/u•r/include/•tdio.h

r••tate.c
/u•r/include/•tdio.h

/u•r/include/•tdio.h

/u•r/includ•/•tdio.h
/u•r/includ•/•tdio.h

/u•r/include/•tdio.h

FUNCTION

main

LINE

•9

49 •60
31

•8 16 18

•29 73 74

12

•80

•81

•83

48 •47

49

•82

17

•6 38 39 42

•41

•42

•38

•43

•40

30

Figure 2·16. exref Output, Using-c Option (part 1of5)

MU43815PG/D2 2-51 12/01/87

II

PROGRAMMING BASICS

II SYMBOL FILE FUNCTION LINE

_IONBF /uar/include/atdio.h •39

_IOREAD /uar/include/atdio.h •37

_IORW /uar/include/atdio.h •44
_IOWRT /uar/include/atdio.h •38
_NFILE /uar/include/atdio.h 2 •3 73
_SBFSIZ /uar/include/atdio.h •16

_baa• /uar/include/atdio.h •26
_buhnd()

/uar/include/atdio.h •67
_bufendtab /uar/include/atdio.h •78
_bufaiz ()

/uar/include/atdio.h •68
_cnt /uar/include/atdio.h •20
_file /uar/include/atdio.h •28
_flag /uar/include/atdio.h •27
_io'b /uar/include/atdio.h •73

reatate.c ma.in 26 26 46 61 67
_ptr /uar/include/atdio.h •21
argc reatate.c 8

reata.te.c ma.in •9 23 31
a.rgv reatate.c 8

reata.te.c ma.in •10 26 26 31 46 61 67
c ./recdef .h •6

pft.c pft 8
reatate.c ma.in 66
rfe.c rfe 9

ch reatate.c ma.in •18 31 33
clearerr()

/uar/include/atdio.h •67
ctermid()

/uar/include/atdio.h •77
cuaerid()

/uar/include/atdio.h •77
dp ./recdef.h •4

oppt;r.c oppt;r 8
reatate.c ma.in 66

exit()

reatate.c ma.in •13 27 46 62 68

Figure 2·16. cxref Output, Using ·C Option (part 2 of 5)

MU43815PG/D2 2-52 12/01/87

PROGRAMMING BASICS

SYMBOL FILE FUNCTION LINE

fdopen()

/u•r/include/•tdio.h •74

feof()

/u•r/include/•tdio.h •68

ferror()

/u•r/include/•tdio.h •69

fget• ()

/u•r/include/•tdio.h •77

filenoO

/u•r/include/•tdio.h •70

:fin re•tate.c main •12 49 64

:fir•t re•tate.c main •19 64 66 61 64 67 70

:fopen ()

/u•r/include/•tdio.h •74

re•tat.e.c main 12 49

:fprin t.:f re•t.ate.c main 26 26 46 61 67

:freopenO

/u•r/include/•t.dio.h •74

f•can:f re•t.at.e.c main 64

:ft.ell()

/u•r/include/•t.dio.h •76
get.c ()

/u•r/include/•t.dio.h •61

get.char()

/u•r/include/•t.dio.h •66

get.opt.()

re•t.at.e.c main •14 31

get.• 0
/u•r/include/•t.dio.h •77

i ./recde:f.h •6
oppt.:y.c oppt.:y 8

re•t.at.e.c main 66
lint /u•r/include/•t.dio.h 60
main()

re•tat.e.c •8

Figura 2·16. cxraf Output, Using -c Option (part 3 of 5)

MU43815PG/D2 2-53 12/01/87

PROGRAMMING BASICS

II
SYMBOL FILE FUNCTION LINE

of lag re•tate.c ma111. •16 36 63

oppt:y()
oppt:y.c •6

re•t&te.c ma.111. •21 64

opterr r••tate.c ma.111. •20 30

p /u•r/111.clud•/•td1o.h •67 •68 •61 62

•62 63 64 87 •87 88 •88 89 •89 70 •70

pdp11 /u•r/111.clud•/•td1o.h 11
pf lag r••tate.c ma.111. •16 39 86

pft()
pft.c •6

re•tate.c ma111. •21 67

pll.&m• ./recdef.h •2

re•tate.c ma111. 64 81

popeu.O
/u•r/111.clud•/•td1o.h •74

ppx ./recdef .h •3
pft.c pft 8

r••tate.c ma111. 64
pr111.tf r••tate.c ma111. 61 64 67 70

P• oppt:y.c 6
oppt:y.c oppt:y •8 8
pft.c 6
pft.c pft •8 8
rfe.c 8
rfe.c rfe •7 9

putc()

/u•r/111.clud•/•td1o.h •62
putcharO

/u•r/111.clud•/•td1o.h •88
rec ./recdef.h •1

oppt:y.c oppt:y 6
pft.c pft 8
r••tate.c ma111. 19
rfe.c rfe 7

Figure 2-16. cxref Output, Using -c Option (part 4 of 5)

MU43815PG/D2 2-54 12101/87

PROGRAMMING BASICS

SYMBOL FILE FUNCTION LINE

II rewind()
/u•r/include/•tdio.h •76

rf• ()
re•tate.c main •21 70

rfe.c •6

rflag re•tate.c main •17 42 69

.. tbuf()
/u•r/include/•tdio.h •76

•px ./recdef.h •8

pft.c pft 8

r'••tate. c main 66

rfe.c rf• 9

•tderr /u•r/includ•/•tdio.h •66
re•tate.c 26 26 46 61 67

•tdin /u•r/include/•tdio.h •63

•tdout /u•r/include/•tdio.h •64
t ./recdef.h •7

oppty.c oppty 8

re•tate.c main 66
tempnam()

/u•r/include/•tdio.h •77
tmpfile ()

/u•r/include/•tdio.h •74
tmpnam()

/u•r/include/•tdio.h •77
u370 /u•r/include/•tdio.h 6
u3b /u•r/includ•/•tdio.h 8 19
u3b6 /u•r/includ•/•tdio.h 8 19
'Y&X /u•r/include/•tdio.h 8 19
x /u•r/includ•/•tdio.h •62 63 64 66 •66

Figura 2-16. cxraf Output, Using -c Option (part 5 of 5)

MU43815PG/D2 2-55 12/01/87

II
PROGRAMMING BASICS

The lint Command
The lint command looks for features in a C program that are apt to cause
execution errors, that are wasteful of resources, or that create problems of
portability.

The command:

lint restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-17.

r••tate.c:

r••tat.e.c
==============
(71) warning: main() return• random value t.o invocation environment
oppt7.c:
pft.c:
rfe.c:

==============
function return• value which i• alway• ignored

printf

Figure 2-17. lint Output

This command has options that will produce additional information. Check the
User's Reference Manual. The error messages give you the line numbers of some
items you may want to review.

MU43815PG/D2 2-56 12/01/87

PROGRAMMING BASICS

The prof Command
The prof command produces a report on the amount of execution time spent in
various portions of your program and the number of times each function is called.
The program must be compiled with the -p option. When a program that was
compiled with that option is run, a file called mon.out is produced. mon.out and
a.out (or whatever name identifies your executable file) are input to the prof
command.

The sequence of steps needed to produce a profile report for our sample program
is as follows:

Step 1: Compile the programs with the -p option:

cc -p restate.c oppty.c pft.c rfe.c

Step 2: Run the program to produce a file mon.out.

a.out -opr

Step 3: Execute the prof command:

prof a.out

The example of the output of this last step is shown in Figure 2-18. The figures
may vary from one run to another. You will also notice that programs of small
size, like that used in the example, produce statistics that are not overly helpful.

MU43815PG/D2 2-57 12/01/87

PROGRAMMING BASICS

II ITim• Second• Cum••c• #Call• m••c/call Name

60.0 0.03 0.03 3 8. fCTt
20.0 0.01 0.04 8 2. atof
20.0 0.01 0.06 6 2. writ•
10.0 0.00 0.06 1 6. fwrite
o.o 0.00 0.06 1 0. monitor
0.0 0.00 0.06 1 0. creat
0.0 0.00 0.06 ... 0 . printf
o.o 0.00 0.06 2 0. profil
0.0 0.00 0.06 1 0. f•canf
o.o 0.00 0.06 1 o. _do•can
o.o o·.oo 0.06 1 o. oppty
o.o 0.00 0.06 1 o. _filbuf
0.0 0.00 0.06 3 0. •trchr
0.0 0.00 0.06 1 0. •trcmp
0.0 0.00 0.06 1 0. ldexp
0.0 o.oo 0.06 1 o. getenv
0.0 o.oo 0.06 1 o. fopen
0.0 0.00 0.06 1 o. Jindiop
0.0 0.00 0.06 1 0. open
0.0 o.oo 0.06 1 0. main
0.0 0.00 0.06 1 0. read
o.o 0.00 0.06 1 o. •trcpy
0.0 o.oo 0.06 14 0. ungetc
o.o 0.00 0.06 4 0. _doprnt
0.0 o.oo 0.06 1 0. pft
0.0 0.00 0.06 1 0. rf•
0.0 0.00 0.06 ... 0 . --"fl•buf
0.0 0.00 0.06 1 o. _wrtchk
o.o o.oo 0.06 2 0. Jindbuf
0.0 0.00 0.06 2 0. i•atty
0.0 0.00 0.06 2 o. ioctl
0.0 o.oo 0.06 1 0. malloc
0.0 0.00 0.06 1 0. memchr
0.0 0.00 0.06 1 0. memcpy
0.0 0.00 0.06 2 0. •brk
0.0 o.oo 0.06 4 o. getopt

Figure 2·18. prof Output

MU43815PG/D2 2-58 12101/87

PROGRAMMING BASICS

The size Command
The size command produces information on the number of bytes occupied by the
three sections (text, data, and bss) of a common object file when the program is
brought into main memory to be run. Here are the results of one invocation of
the size command with our object file as an argument.

11832 + 3872 + 2240 = 17944

Don't confuse this number with the number of characters in the object file that
appears when you do an Is ·I command. That figure includes the symbol table
and other header information that is not used at run time.

The strip Command

The strip command removes the symbol and line-number information from a
common object file. When you issue this command the number of characters
shown by the Is ·I command approaches the figure shown by the size command,
but still includes some header information that is not counted as part of the . text,
.data, or .bss section. After the strip command has been executed, it is no longer
possible to use the file with the sdb command.

The sdb Command

The sdb command stands for ''Symbolic Debugger," which means you can use the
symbolic names in your program to pinpoint where a problem has occurred. You
can use sdb to debug C, FORTRAN 77, or PASCAL programs. There are two
basic ways to use sdb: by running your program under control of sdb or by using
sdb to rummage through a core image file left by a program that failed. The first
way lets you see what the program is doing up to the point at which it fails (or
lets you skip around the failure point and proceed with the run). The second
method lets you check the status at the moment of failure, which may or may not
disclose the reason the program failed.

Chapter 15 contains a tutorial on sdb that describes the interactive commands you
can use to work your way through your program. There are two key things you
need to do when using it:

1. Compile your programs with the -g option, which causes additional
information to be generated for use by sdb.

2. Run your program under sdb with the command:

sdb myprog • srcdir

where myprog is the name of your executable file (a.out is the default) and

MU43815PG/D2 2-59 12/01/87

II

II
PROGRAMMING BASICS

srcdlr is an optional list of the directories where source code for your
modules may be found. The hyphen between the two arguments keeps sdb
from looking for a core image file.

MU43815PG/D2 2-60 12/01/87

PROGRAMMING BASICS

Program-Organizing Utilities
The following three utilities are helpful in keeping your programming work
organized effectively. ·'·

The make Command
When you have a program that is made up of more than one module of code, you
begin to run into problems of keeping track of which modules are up to date and
which need to be recompiled when changes are made in another module. The
make command is used to ensure that dependencies between modules are
recorded, so that a change in a module results in the recompilation of its
dependent programs. Even control of a program as simple as the sample shown
in Figure 2-10 is made easier by using make.

The make utility requires a description file that you create with an editor. The
description file (also referred to by its default name: makefile) contains the
information used by make to keep a target file current. The target file is typically
an executable program. A description file contains three types of information:

dependency information tells the make utility the relationships among the
modules that constitute the target program.

executable commands

macro definitions

generate the target program. The make command
uses the dependency information to determine which
executable commands should be passed to the shell
for execution.

provide a shorthand notation within the description
file to make maintenance easier. Macro definitions
can be overridden by information from the command
line when the make command is entered.

The make command works by checking the '1ast changed" time of the modules
named in the description file. When make finds a component that has been
changed more recently than modules that depend on it, the specified commands
(usually compilations) are passed to the shell for execution.

The make command takes three kinds of arguments: options, macro definitions,
and target filenames. If no description filename is given as an option on the
command line, make searches the current directory for a file named makefile or
Makefile. Figure 2-19 shows a makefile for our sample program.

MU43815PG/D2 2-61 12/01/87

II

II
PROGRAMMING BASICS

OBJECTS = re•tate.o oppty.o pft.o rfe.o
all: re•tate
re•tate: $(OBJECTS)

$(CC) $(CFLAGS) $(LDFLAGS) $(OBJECTS) -o re•tate

$(OBJECTS): ./recdef.h

clean:
rm -f $(OBJECTS)

clobber: clean
rm -f re•tate

Figure 2·19. make Description File

The following things are worth noticing in this description file:

• It identifies the target, restate, as being dependent on the four object modules.
Each of the object modules in tum is defined as being dependent on the
header file, recdef.h, and by default, on its corresponding source file.

• A macro, OBJEC1S, is defined as a convenient shorthand reference to the
component modules.

Whenever testing or debugging results in a change to one of the components of
restate, for example, a command such as the following should be entered:

make CFLAGS=-g restate

This has been a very brief overview of the make utility. More on make appears in
Chapter 3, and a detailed description of make can be found in Chapter 13.

The Archive

The most common use of an archive file, although not the only one, is to hold
object modules that make up a library. The library can be named on the link
editor command line (or with a link editor option on the cc command line). This
procedure causes the link editor to search the symbol table of the archive file
when attempting to resolve references.

The ar command is used to create an archive file, to manipulate its contents, and
to maintain its symbol table. The structure of the ar command is a little different
from the normal arrangement of command line options. When you enter the ar
command, you include a one-character key from the set drqtpmx that defines the
type of action you intend. The key may be combined with one or more additional

MU43815PG/D2 2-62 12/01/87

PROGRAMMING BASICS

characters from the set vuaibcls that modify the way the requested operation is
performed. The makeup of the command line is:

ar -key [posname] afile [name] ...

where posname is the name of a member of the archive and may be used with
some optional key characters to make sure that the files in your archive are in a
particular order. The afile argument is the name of your archive file. By
convention, the suffix .a is used to indicate the named file is an archive file. (The
file Ube.a, for example, is the archive file that contains many of the object files of
the standard C subroutines.) One or more names may be furnished. These
identify files that are subjected to the action specified in the key.

We can make an archive file to contain the modules used in our sample program,
restate. The command to do this is:

ar -rv rste.a restate.o oppty .o pft.o rfe.o

If these are the only .o files in the current directory, you can use shell
metacharacters as follows:

ar -rv rste.a *.o

Either command will produce this feedback:

a - reatate.o
a - oppty.o
a - pft.o
a - rfe.o
ar: creat~ng rate.a

The nm command is used to get a variety of information from the symbol table of
common object files. The object files can be, but don't have to be, in an archive
file. Figure 2-20 shows the output of this command when executed with the ·f
(for "full'~ option on the archive we just created. The object files were compiled
with the -g option.

MU43815PG/D2 2-63 12101187

PROGRAMMING BASICS

II
Symbol• from rate.a[reatate.o]

N-• Value Claaa Type Size Line Section

.Ofake atrtag atruct 18

r••tate.c file
_cnt 0 atrmem int

_ptr 4 atrmem •Uchar

_ba•• 8 atrmem •Uchar
_flag 12 atrm•m char

Jil• 13 atrmem char

.eo• end a tr 18
rec atrtag atruct 62

pn-• 0 atrm•m char [26] 26
ppx 28 atrmem float

dp 32 atrmem float
i 38 atrmem float
c 40 atrm•m float
t 44 atrmem float
apx 48 atrmem float

.•o• end a tr 62
main 0 extern int() 620 .text
.bf 10 fen 11 .text
argc 0 argm•t int
argT 4 argm•t ••char
fin 0 auto ••truct-.Ofak• 18
of lag 4 auto int
pf lag 8 auto int
rflag 12 auto int
ch us auto int

Figure 2·20. nm Output, with ·f Option (part 1 of 5)

MU43815PG/D2 2-64 12/01/87

PROGRAMMING BASICS

Symbol• from rate.a[reatate.o]

Name Value Cla•a Type Size Line Section

fir•t 20 auto •truct-rec 62

.ef 618 fen 61 .text
FILE typdef •truct-.Ofake 18

.text 0 •tatic 31 39 .text

.data 620 •tatic 4 .data

.b•• 824 •tatic .baa
_iob 0 extern
fprintf 0 extern

exit 0 extern

opt err 0 extern

getopt 0 extern

fop en 0 extern
f•canf 0 extern

printf 0 extern

oppty 0 extern

pft 0 extern
rfe 0 extern

Figure 2-20. nm Output, with -f Option {part 2 of 5)

MU43815PG/D2 2-65 12/01/87

PROGRAMMING BASICS

II
S;rmbol• from r•t•. a [oppt7. o]

Name Value Cl&•• T7P• Size Line Section

oppt7.c fil•
rec •trtag •truct 62
pnam• 0 •trmem char[26] 26
ppx 28 •trmem float
dp 32 •trmem float
i 36 •trmem float
c 40 •trmem float
t 44 •trmem float
•px 48 •trm•m float
.eo• •nd•tr 62
oppt7 0 extern float() 64 .text
.bf 10 fen 7 .text

P• 0 argm•t ••truct-r•c 62
.ef 62 fen 3 .text
.text 0 •ta.tic 4 1 .text
.data 84 •ta.tic .data
.b•• 72 •ta.tic .b••

Figure 2-20. nm Output, with -f Option (part 3 of 5)

MU43815PG/D2 2-66 12/01/87

PROGRAMMING BASICS

S7mbol• from r•te.a[pft.o]

N-• Value Cl&•• T7P• Sia• Line Section

pft.c file
rec •trtag •truct 62
pn-• 0 •trmem char [26] 26
ppx 28 •trmem float
dp 32 •trmem float
i 38 •trmem float
c 40 •trmem float
t 44 •trmem float
•px 48 •trmem float
.. •o• end•tr 62
pf t 0 extern float() 80 .text
.. bf 10 fen 7 .text
P• 0 argm•t ••truct-rec 62
.. •f 68 fCD 3 .text
.. text 0 •tatic 4 .text
.. data 80 •tatic .data
.. ba• 80 a ta tic .baa

Figure 2-20. nm Output, with -f Option {part 4 of 5)

MU43815PG/D2 2-67 12/01/87

II
PROGRAMMING BASICS

Symbols from rste.a[rfe.o]

Name Value Class Type Size Line Section

rfe.c file

rec strtag struct 62

pname 0 strmem char [26] 26

ppx 28 strmem float

dp 32 strmem float

i 38 strmem float

c 40 strmem float

t 44 strmem float

spx 48 strmem float

.eos ends tr 62

rfe 0 extern float() 88 .text

.bf 10 fen 8 .text

ps 0 argm•t •struct-rec 62

.ef 84 fen 3 .text

.text 0 static 4 1 .text

.data 88 static .data

.bas 78 static .bas

Figure 2-20. nm Output, with ·f Option (part 5 of 5)

For nm to work on an archive file, all of the contents of the archive have to be
object modules. If you have stored other things in the archive, you will get the
message:

nm: rate.a bad magic

when you try to execute the command.

Use of SCCS by Single-User Programmers
The Source Code Control System (SCCS) is a set of programs designed to keep
track of different versions of programs. When a program has been placed under
control of SCCS, only a single copy of any one version of the code can be
retrieved for editing at a given time. When program code is changed and the
program returned to SCCS, only the changes are recorded. Each version of the
code is identified by its SID, or SCCS IDentifying number. By specifying the SID
when the code is extracted from the SCCS file, it is possible to return to an earlier
version. If an early version is extracted with the intent of editing it and returning

MU43815PG/D2 2-68 12/01/87

PROGRAMMING BASICS

it to secs, a new branch of the development tree is started. The set of programs
that make up SCCS appear as operating system commands. The commands are:

admin
get
delta
prs
rmdel
cdc
what
sccsdiff
comb
val

It is most common to think of SCCS as a tool for control of large programming
projects. It is, however, entirely possible for any individual user of the operating
system to set up a private SCCS system. Chapter 14 is an SCCS user's guide.

MU43815PG/D2 2-69 12101187

II

