
INTR0(4) INTR0(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C structure declara­
tions for the file formats are given where applicable. Usually, the header
files containing these structure declarations can be found in the directories
/usr/include or /usr/include/sys. For inclusion in C language programs,
however, the syntax #include <filename.h> or #include
<sys/filename.h> should be used.

MU43814PR/D2 - 1 - 12/01/87

II

II

A.OUT(4) A.OUT(4)

NAME
a.out - common assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
The file name a.out is the default output file name from the link editor
ld(l). The link editor will make a.out executable if there were no errors in
linking. The output file of the assembler as(l), also follows the common
object file format of the a.out file although the default file name is dif­
ferent.

A common object file consists of a file header, a SYSTEM V/68 system
header (if the file is link editor output), a table of section headers, reloca­
tion information, (optional) line numbers, a symbol table, and a string
table. The order is given below.

File header.
SYSTEM V/68 system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts of an object file (line numbers, symbol table and string
table) may be missing if the program was linked with the -s option of
ld(l) or if they were removed by strip(l). Also note that the relocation
information will be absent after linking unless the -r option of ld(l) was
used. The string table exists only if the symbol table contains symbols
with names longer than eight characters.

MU43814PR/D2 - 1 - 12/01/87

Ill

II

A.OUT(4) A.OUT(4)

The sizes of each section (contained in the header, discussed below) are in
bytes.

When an a.out file is loaded into memory for execution, three logical seg­
ments are set up: the text segment, the data segment (initialized data fol­
lowed by uninitialized, the latter actually being initialized to all O's), and a
stack. On the M68000 Family processors, the text segment starts at location
0 .

. The a.out file produced by ld(1) has the magic number 0413 in the first
field of the SYSTEM V/68 system header. The headers (file header, SYSTEM
V/68 system header, and section headers) are loaded at the beginning of
the text segment and the text immediately follows the headers in the user
address space. The first text address will equal Ox2000 plus the size of the
headers, and will vary depending upon the number of section headers in
the a.out file. (The first Bk is unused; see ld(1).) In an a.out file with three
sections (.text, .data, and .bss), the first text address is at Ox20A8 on the
M68000 Family processors. The text segment is not writable by the pro­
gram; if other processes are executing the same a.out file, the processes
will share a single text segment.

The data segment starts at the next 4Mb boundary past the last text
address. The first data address is determined by the following: If an
a.out file were split into SK chunks, one of the chunks would contain both
the end of text and the beginning of data. When the core image is
created, that chunk will appear twice; once at the end of text and once at
the beginning of data (with some unused space in between). The dupli­
cated chunk of text that appears at the beginning of data is never exe­
cuted; it is duplicated so that the operating system may bring in pieces of
the file in multiples of the page size without having to realign the begin­
ning of the data section to a page boundary. Therefore the first data
address is the sum of the next segment boundary past the end of text plus
the remainder of the last text address divided by SK. If the last text
address is a multiple of SK no duplication is necessary.

On M68000 Family processors, the stack begins at location OxlFFFFFF and
grows toward lower addresses. The stack is automatically extended as
required. The data segment is extended only as requested by the brk(2)
system call.

For relocatable files the value of a word in the text or data portions that is
not a reference to an undefined external symbol is exactly the value that
will appear in memory when the file is executed. If a word in the text

MU43814PR/D2 -2- 12/01/87

A.OUT(4) A.OUT(4)

involves a reference to an undefined external symbol, there will be a relo­
cation entry for the word, the storage class of the symbol-table entry for
the symbol will be marked as an "external symbol", and the value and
section number of the symbol-table entry will be undefined. When the
file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the word in the file.

File Header
The format of the filehdr header is

struct filehdr
{

};

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic;
f_nscns;
f_timdat;
f_symptr;
f_nsyms;
f_opthdr;
f_flags;

I* magic number */
I* number of sections */
I* time and date stamp •/
I* file ptr to symtab */
I* # symtab entries */
I* sizeof(opt hdr) •/
I* flags*/

SYSTEM V/68 System Header
The format of the SYSTEM V/68 system header is

typedef struct aouthdr
{

short
short
long
long
long
long
long
long

} AOUTHDR;

MU43814PR/D2

magic;
vs tamp;
tsize;
dsize;
bsize;
entry;
text_start;
data_start;

-3-

I* magic number *I
I* version stamp *I
I* text size in bytes, padded •/
I* initialized data (.data) *I
I* uninitialized data (.bss) *I
I* entry point */
I* base of text used for this file •/
I* base of data used for this file •/

12/01/87

II

II

A.OUT(4)

Section Header
The format of the section header is

struct scnhdr
{

};

char
long
long
long
long
long
long
unsigned short
unsigned short
long

Relocation

s_name[SYMNMLEN];
s_paddr;
s_vaddr;
s_size;
s_scnptr;
s_relptr;
s_lnnoptr;
s_nreloc;
s_nlnno;
s_flags;

A.OUT(4)

I* section name *'
I* physical address *'
I* virtual address *'
I* section size *'
I* file ptr to raw data */
I* file ptr to relocation *I
I* file ptr to line numbers *'
I* # reloc entries */
I* # line number entries *'
I* flags*'

Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the follow­
ing format:

struct reloc
{

};

long
long
us ho rt

r_vaddr;
r_symndx;
r_type;

I* (virtual) address of reference *'
I* index into symbol table *'
I* relocation type *'

The start of the relocation information is s_relptr from the section header.
If there is no relocation information, s_relptr is 0.

MU43814PR/D2 -4- 12101/87

A.OUT(4) A.OUT(4)

Symbol Table
The format of each symbol in the symbol table is

#define
#define
#define

struct syment
{

union

char
struct
{

long
long

} _n_n;

char
}_n;

long
short

SYMNMLEN8
FILNMLEN 14
DIMNUM 4

_n_name[SYMNMLEN];

_n_zeroes;
_n_offset;

• _n_nptr[2];

n_value;

n_scnum;

unsigned short
char

n_type;
n_sclass;
n_numaux; char

};

#define
#define
#define
#define

n_name
n_zeroes
n_offset
n_nptr

_n._n_name
_n._n_n._n_zeroes
_n._n_n._n_offset
_n._n_nptr[l]

I• all ways to get a symbol name •/

I• name of symbol •/

I• = = OL if in string table •/
I• location in string table •/

I• allows overlaying •/

I• value of symbol •/

I• section number •/
I• type and derived type •/
I• storage class •/
I• number of aux entries •/

Some symbols require more information than a single entry; they are fol­
lowed by auxiliary entries that are the same size as a symbol entry. The
format follows.

MU43814PR/D2 -5- 12/01/87

II

Ill

A.OUT(4) A.OUT(4)

union auxent {
struct {

};

}x_sym;

struct {

} x_file;

struct {

} x_scn;
struct {

} x_tv;

long
union {

} x_misc;

union {

} x_fcnary;
unsigned short x_tvndx;

char

long x_scnlen;

unsigned short x_nreloc;
unsigned short x_nlinno;

long
unsigned short x_tvlen;

unsigned short x_tvran[2];

x_tagndx;

struct {

} x_lnsz;

long

struct {

} x_fcn;
struct {

} x_ary;

x_fname[FILNMLEN);

x_tvfill;

unsigned short xJnno;

unsigned short x_size;

x_fsize;

long xJnnoptr;
long x_endndx;

unsigned short x_dimen[DIMNUM);

Indexes of symbol table entries begin at zero. The start of the symbol
table is f_symptr (from the file header) bytes from the beginning of the file.
If the symbol table is stripped, f_symptr is 0. The string table (if one
exists) begins at f_symptr + <J_nsyms * SYMESZ) bytes from the beginning
of the file.

MU43814PR/D2 -6- 12/01/87

A.OUT(4) A.OUT(4)

SEE ALSO
as(l}, cc(l), ld(l}, brk(2), filehdr(4}, ldfcn(4}, linenum(4), reloc(4),
scnhdr(4}, syms(4).

MU43814PR/D2 - 7 - 12/01/87

II

II

ACCT(4) ACCT(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form
defined by <sys/acct.h>, whose contents are:

typedef ushort comp_t; I* "floating point" *'
I* 13-bit fraction, 3-bit exponent •/

struct acct
{

char ac_flag;
char ac_stat;
ushort ac_uid;
ushort ac_gid;
dev _t ac_tty;

I* Accounting flag •/
I• Exit status *'

time_t ac_btime; /• Beginning time •/
comp_t ac_utime; /• acctng user time in clock ticks •/
comp_t ac_stime; /• acctng system time in clock ticks •/
comp_t ac_etime; /• acctng elapsed time in clock ticks •/
comp_t ac_mem; /• memory usage in clicks •/
comp_t ac_io; /• chars trnsfrd by read/write •/
comp_t ac_rw; /• number of block reads/writes •/
char ac_comm[8]; /•command name•/

};

acctbuf; extern struct acct
extern struct inode •acctp; I• inode of accounting file •/

#define AFORK 01 /• has executed fork, but no exec *I
#define ASU 02 /• used super-user privileges •/
#define ACCTF 0300 /• record type: 00 = acct •/

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by
an exec(2). The ac_comm field is inherited from the parent process and is
reset by any exec. Each time the system charges the process with a clock
tick, it also adds to ac_mem the current process size, computed as follows:

MU43814PR/D2 - 1 - 12101187

ACCT(4) ACCT(4)

(data size) + (text size) I (number of in-core processes using text)

The value of ac_mem/ (ac_stime + ac_utime) can be viewed as an approxima­
tion to the mean process size, as modified by text-sharing.

The structure tacct.h, which resides with the source files of the accounting
commands, represents the total accounting format used by the various
accounting commands:

I•
* total accounting (for acct period), also for day
•I

struct tacct {
uid_t ta_uid; /• userid •/
char ta_name[8]; /• login name •/
float ta_cpu[2]; /• cum. cpu time, p/np (mins) •/
float ta_kcore[2]; /• cum kcore-minutes, p/np •/
float ta_con[2]; /• cum. connect time, p/np, mins •/
float ta_du; /• cum. disk usage •/
long ta_pc; /• count of processes •/
unsigned short ta_sc; /• count of login sessions •/
unsigned short ta_dc; /• count of disk samples •/
unsigned short ta_fee; I• fee for special services •/

};

SEE ALSO

BUGS

acct(2), exec(2), fork(2).
acct(lM) in the System Administrator's Reference Manual.
acctcom(l) in the User's Reference Manual.

The ac_mem value for a short-lived command gives little information about
the actual size of the command, because ac_mem may be incremented
while a different command (e.g., the shell) is being executed by the pro­
cess.

MU43814PR/D2 - 2 - 12/01/87

II

II

AR(4) AR(4)

NAME
ar - common archive file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar(l) is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link editor
ld(l).

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n"
#define SARMAG 8

I* magic string *I
I* length of magic string *I

Each archive which contains common object files [see a.out(4)] includes an
archive symbol table. This symbol table is used by the link editor ld(l) to
determine which archive members must be loaded during the link edit
process. The archive symbol table (if it exists) is always the first file in
the archive (but is never listed) and is automatically created and/or
updated by ar.

Following the archive magic string are the archive file members. Each file
member is preceded by a file member header which is of the following
format:

#define ARFMAG '"\n"

struct ar_hdr
{

};

char
char
char
char
char
char
char

ar_name[16];
ar_date[12];
ar_uid[6];
ar_gid[6];
ar_mode[8];
ar_size[lO];
ar_fmag[2];

I* header trailer string *I

I* file member header *I

I* '/' terminated file member name *I
I* file member date */
I* file member user identification *I
I* file member group identification *I
I* file member mode (octal) *I
I* file member size */
I* header trailer string */

All information in the file member headers is in printable ASCII. The
numeric information contained in the headers is stored as decimal

MU43814PR/D2 - 1 - 12/01/87

AR(4) AR(4)

numbers (except for ar_mode which is in octal). Thus, if the archive con­
tains printable files, the archive itself is printable.

The ar _name field is blank-padded and slash (/) terminated. The ar _date
field is the modification date of the file at the time of its insertion into the
archive. Common format archives can be moved from system to system
as long as the portable archive command ar(l) is used. Conversion tools
such as convert(!) exist to aid in the transportation of non-common format
archives to this format.

Each archive file member begins on an even byte boundary; a newline is
inserted between files if necessary. Nevertheless the size given reflects
the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a zero
length name (i.e., ar_name[O] == '/'). The contents of this file are as fol­
lows:

• The number of symbols. Length: 4 bytes.

• The array of offsets into the archive file. Length: 4 bytes * "the
number of symbols".

• The name string table. Length: ar_size - (4 bytes* ("the number
of symbols" + 1)).

The number of symbols and the array of offsets are managed with sgetl
and sputl. The string table contains exactly as many null terminated
strings as there are elements in the offsets array. Each offset from the
array is associated with the corresponding name from the string table (in
order). The names in the string table are all the defined global symbols
found in the common object files in the archive. Each offset is the loca­
tion of the archive header for the associated symbol.

SEE ALSO
ar(l), ld(l), strip(l), sputl(3X), a.out(4).

WARNINGS
Strip(l) will remove all archive symbol entries from the header. The
archive symbol entries must be restored via the ts option of the ar(l) com­
mand before the archive can be used with the link editor ld(l).

MU43814PR/D2 - 2 - 12/01/87

II

II

CHECKLIST(4) CHECKLIST(4)

NAME
checklist - list of file systems processed by fsck and ncheck

DESCRIPTION
checklist resides in directory /etc and contains a list of, at most, 15 special
file names. Each special file name is contained on a separate line and
corresponds to a file system. Each file system will then be automatically
processed by the fsck(lM) command.

FILES
/etdchecklist

SEE ALSO
fsck(lM), ncheck(lM) in the System Administrator's Reference Manual.

MU43814PR/D2 - 1 - 12/01/87

II

II

CORE(4) CORE(4)

NAME
core - format of core image file

DESCRIPTION
The system writes out a core image of a terminated process when any of
various errors occur. signal(2) describes reasons for errors. The most
common errors are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The core image is called core and is written
in the working directory of the process (provided it can be; normal access
controls apply). A process with an effective user ID different from the
real user ID will not produce a core image.

The first section of the core image is a copy of the system's per-user data
for the process, including the registers as they were at the time of the
fault. The size of this section depends on the parameter usize, which is
defined in /usr/include/sys/param.h. The remainder represents the actual
contents of the user's core area when the core image was written. If the
text segment is read-only and shared, or separated from data space, it is
not dumped.

The format of the information in the first section is described by the user
structure of the system, defined in /usr/indude/sys/user.h. The locations
of the registers are outlined in /usr/include/sys/reg.h.

SEE ALSO
crash(1M),sdb(l),setuid(2),signal(2).

MU43814PR/D2 -1- 12/01/87

CPl0(4) CPI0(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio(1) is not used, is:

struct {

} Hdr;

short h_magic,
h_dev;

ushort h_ino,
h_mode,
h_uid,
h_gid;

short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to word];

When the -c option is used, the header information is described by:

sscanf(Chdr, "%6o%60%60%60%6o%60%60%60% 1110%60% lllo%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr .h_namesize, &Longfile,Hdr .h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize,
respectively. The contents of each file are recorded in an element of the
array of varying length structures, archive, together with other items
describing the file. Every instance of h_magic contains the constant 070707
(octal). The items h_dev through h_mtime have meanings explained in
stat(2). The length of the null-terminated path name h_name, including
the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!!. Special
files, directories, and the trailer are recorded with h_filesize equal to zero.

SEE ALSO
stat(2).
cpio(l), find(l) in the User's Reference Manual.

MU43814PR/D2 -1- 12/01/87

II

II

DFILE(4) DFILE(4)

NAME
dfile - device information file

DESCRIPTION
The user must supply a description file, dfile, containing device informa­
tion for the user's system. The file is divided into three parts. The first
part contains physical device specifications. The second part contains
system-dependent information. The third part contains microprocessor­
specific information. The first two parts are required, the third part is
optional. A line with an asterisk(*) in column 1 is a comment. Any ker­
nel can be used to generate the dfile used to configure that kernel. Refer
to the utility sysdef(lM).

FIRST PART OF dfile
Each line contains four or five fields, delimited by blanks and/or tabs in
the following format:

devname vector address bus number

The first field, devname, is the name of the device as it appears in the
/etc/master device table. The device name is Field 1 of Part 1 and has a
maximum of eight characters (refer to master(4). The second field, vector,
is the interrupt vector location (hexadecimal), which can be calculated as
the vector number times 4; this value is also used in the interrupt vector
array created by setting the 004000 bit of Field 4 in the master(4) file. The
third field, address, is the device address (hexadecimal); the array for dev­
ice addresses is automatically created (e.g., vm323_addr[]). The fourth
field, bus, is the bus request level, or interrupt level (1 through 7), and is
used in the interrupt level array (e.g., vm323_ilev[]) that is created by the
001000 bit in Field 4 of master. The fifth field, number, is the number
(decimal) of devices associated with the corresponding controller; number
is optional, and if omitted, a default value which is the maximum value
for that controller is used. This field is the same as Field 9 in Part 1 of the
master(4) file and overrides the master field if specified in dfile.

There are certain drivers which may be provided with the system that are
actually pseudo-device drivers; that is, there is no real hardware associ­
ated with the driver. Drivers of this type are identified on their respective
manual entries. When these devices are specified in the description file,
the interrupt vector, device address, and bus request level must all be zero.

SECOND PART OF dfile II
The second part contains three different types of lines. Note that all ~

specifications of this part are required, although their order is arbitrary.

MU43814PR/D2 - 1 - 12/01/87

II

DFILE(4) DFILE(4)

1. Root/pipe/dump device specification

Three lines of three fields each:

root devnameminor [,minor] .. .
pipe devnameminor [,minor] .. .
dump devnameminor [,minor] .. .

where minor is the minor device number (in octal). For certain
Motorola Inc. disk controllers, it is possible to have a single SYS­
TEM V/68 capable of executing on any device on the controller.
For such devices, minor can be repeated (separated by commas).
The first reference to minor specifies the root (pipe, dump) to be
used for disk 0, the second minor for disk l, etc. The same
number of minor references must be present for root, pipe,
dump, and swap. Currently, eight minor numbers may be speci­
fied, with the restriction that they must fit on the 100-character
line given for each of root, pipe, dump, and swap.

2. Swap device specification

One line that contains five fields as follows:

swap devnameminor swplo nswap [,minor swplo nswap] ...

where swplo is the lowest disk block (decimal) in the swap area
and nswap is the number of disk blocks (decimal) in the swap
area. Multiple minor, swplo, and nswap specifications can be
given; refer to the restrictions described above for multiple minor
specifications.

3. Parameter specification

Several lines of two fields each as follows (number is decimal):

buffers number
in odes number
files number
mounts number
coremap number
swapmap number
calls number

MU43814PR/D2 - 2 - 12/01187

DFILE(4) DFILE(4)

procs number
maxproc number
texts number
clists number
hashbuf number
physbuf number
power 0or1
mesg 0or1
sema 0or1
shmem 0or1

THIRD PART OF dfile
The third part contains lines identified by a keyword. The format of each
line differs for each keyword. The ordering of the third part is significant.

1. Non-unique driver specifications

Several lines of two fields:

force identifier

where identifier is the name of a unique identifier defined within
a driver, located in the kernel 1/0 library file. This forces the
correct linking of non-table driven drivers, such as those for the
clock, console, and mmu.

2. Memory probe specifications

Several lines of three fields:

probe address value

where address is the hexadecimal number specifying a memory­
mapped 1/0 location that must be reset for SYSTEM V/68 to exe­
cute properly. The intent is to provide a means by which non­
standard (or unsupported) devices can be set to a harmless state.
Value is a hexadecimal number (OxOO-Oxff) to be written in address,
or -1, indicating that the address is to be "read only''.

3. Alien handler entry specifications

Several lines of three fields:

alien vector _address alien_address

where vector _address is the hexadecimal address of the normal II
exception vector for the alien entry point, and alien_address is the ~

hexadecimal entry point for the non-SYSTEM V/68 handler. If no

MU43814PR/D2 -3- 12/01/87

II

DFILE(4) DFILE(4)

SYSTEM V/68 handler is associated with the vector _address, then
alien_address is entered into the vector. Otherwise, code is pro­
duced in low.s (refer to config(lM)) so that the alien handler is
entered only when the exception occurs in the processor's super­
visor state.

4. Multiple handler specifications

Several lines of four or five fields:

dup flag vector _address handler [argument]

where flag is a bit mask. The bits are interpreted as:

1 - if handler returns 0, go to the normal interrupt
return point ("intret").

2 - if handler returns 0, go to the normal trap
return point ("alltraps").

4 - if handler returns 0, go to the branch equal return point
("beq return").

10 - argument is to be passed to handler.

Vector_address is the hexadecimal address of the exception vector.
Handler is the name of an exception handling routine, with the
optional argument passed to it. The intent is to provide a means
of specifying multiple handlers for a single exception. These
handlers are called in the order given in dfile(4); then the normal
handler is called. If bits 1, 2 or 4 of flag are set and the handler
returns zero, then the remainder of the handlers are not called.

5. Memory configuration specifications

Several lines of four or five fields:

MU43814PR/D2

ram flag low high [size]

where flag is an octal bit mask, which is interpreted as follows:

1 - memory has no parity check and, therefore,
need not be initialized after power up.

2 - a single memory block may exist, ranging from
low through high-l.

-4- 12/01/87

DFILE(4)

4 - multiple memory blocks may be located in the
range and are of size bytes.

10 - private memory will not be used for general
purpose ram.

20 - cache inhibited ~emory will not be cached like
general purpose ram.

DFILE(4)

Low and high are hexadecimal memory addresses, and size is a
hexadecimal number. The intent is to provide information to
SYSTEM V/68 about noncontiguous memory. Low specifies the
low memory address where memory may be located, and
which may extend through high-1. If the range consists of
multiple boards, which may or may not be present, they are of
size bytes.

For flag 2 ranges, SYSTEM V/68 writes sequential memory loca­
tions, starting at low, until a memory fault occurs. For flag 4
ranges, SYSTEM V/68 performs a test for each size-sized
subrange. If memory need not be initialized, only the first byte
of the range (flag 2) or subrange (flag 4) is tested to determine
the presence of the memory.

It is essential that ram lines be ordered in ascending low
addresses.

If no ram specifier is present, the default is:

ram 2 0 FOOOOO

6. Header file specifications

MU43814PR/ Al

Several lines of two fields:
include include_file

where include-file is the name of a file to be inserted into the C
program, conf.c, at the time it is generated by config
(config.68(1M)). It is inserted after all pre-generated #include
text, creating a line of the form:

#include include_file

Because the line is inserted exactly as typed, bracketing charac­
ters (such as " " and < >) must be a part of the string.

- 5 - 06/01/88

I

DFILE(4) DFILE(4)

For example:
include < sys/space/newdevspace.h >

SEE ALSO
master(4), config(lM).

I

MU43814PR/ Al -6- 06/01/88

DIR(4) DIR(4)

NAME
dir - format of directories

SYNOPSIS
#include <sys/s5dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a
bit in the flag word of its i-node entry [see fs(4)]. The structure of a direc- I
tory entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

ushort d_ino;
char d_name[DIRSIZ];

};

By convention, the first two entries in each directory are for • and . . . The
first is an entry for the directory itself. The second is for the parent direc­
tory. The meaning of .. is modified for the root directory of the master
file system; there is no parent, so .. has the same meaning as •.

SEE ALSO
fs(4).

MU43814PR/ Al - 1 - 06101188

I

DIRENT(4) DIRENT(4)

NAME
dirent - file system independent directory entry

SYNOPSIS
#include <sys/dirent.h>
#include <sys/types.h>

DESCRIPTION

FILES

Different file system types may have different directory entries. The
dirent structure defines a file system independent directory entry, which
contains information common to directory entries in different file system
types. A set of these structures is returned by the getdents(2) system call.

The dirent structure is defined below.
struct dirent {

};

long
off_t
unsigned short
char

d_ino;
d_off;
d_reclen;
d_name[l];

The d_ino is a number which is unique for each file in the file system.
The field d_off is the offset of that directory entry in the actual file system
directory. The field d_name is the beginning of the character array giving
the name of the directory entry. This name is null terminated and may
have at most MAXNAMLEN characters. This results in file system
independent directory entries being variable length entities. The value of
d_reclen is the record length of this entry. This length is defined to be the
number of bytes between the current entry and the next one, so that it
will always result in the next entry being on a long boundary.

/usr/include/sys/dirent.h

SEE ALSO
getdents(2).

MU43814PR/Al -1- 06/01/88

ERRFILE(4) ERRFILE(4)

NAME
errfile - error-log file format

DESCRIPTION
When hardware errors are detected by the system, an error record is gen­
erated and passed to the error-logging daemon for recording in the error
log for later analysis. The default error log is /usr/adm/errfile.

The format of an error record depends on the type of error that was
encountered. Every record, however, has a header with the following for­
mat:

struct errhdr {
short

};

short
time_t

e_type; I* record type *I
e_len; I* bytes in record (inc hdr) *I

e_time; I* time of day *I

The permissible record types are as follows:

I* start *I
I* start for RT *I
I* stop *I
I* time change *I

#define E_GOTS
#define E_GORT
#define E_STOP
#define E_TCHG
#define E_CCHG
#define E_BLK
#define E_STRAY
#define E_PRTY

010
011
012
013
014
020

I* configuration change */
I* block device error *I

030
031

I* stray interrupt *I
I* memory parity *I

Some records in the error file are of an administrative nature. These
include the startup record that is entered into the file when logging is
activated, the stop record that is written if the daemon is terminated
"gracefully'', and the time-change record that is used to account for
changes in the system's time-of-day. These records have the following
formats:

struct

};

estart {
short
struct utsname

e_cpu; I* CPU type *I
e_name; I* system names *I

#define eend errhdr I* record header *I
struct etimchg {

time_t e_ntime; I* new time *I
};

MU43814PR/D2 - 1 - 12/01/87

II

II

ERRFILE(4) ERRFILE(4)

Stray interrupts cause a record with the following format to be logged:

struct estray {
uint e_saddr; I* stray loc or device addr *'

};

Generation of memory subsystem errors is not supported in this release.

Error records for block devices have the following format:

struct eblock {

};

dev_t
physadr
short
struct iostat {

long

}

long
ushort

short
short
daddr_t
ushort
paddr_t
ushort
short

e_dev;
e_regloc;
e_bacty;

io_ops;
io_misc;
io_unlog;
e_stats;
e_bflags;
e_cyloff;
e_bnum;
e_bytes;
e_memadd;
e_rtry;
e_nreg;

I* "true" major + minor dev no *'
I* controller address *'
I* other block 1/0 activity *I

I* number read/writes */
I* number "other" operations *'
I* number unlogged errors *'

I* read/write, error, etc *'
I* logical dev start cyl *'
I* logical block number *'
I* number bytes to transfer */
I* buffer memory address *'
I* number retries *'
I* number device registers *I

The following values are used in the e_bflags word:

#define E_WRITE O I* write operation*'
#define E_READ 1 /* read operation *'
#define E_NOIO 02 /* no 1/0 pending */
#define E_PHYS 04 /*physical 1/0 *I
#define E_FORMAT 010 I* Formatting Disk*/
#define E_ERROR 020 /* IJO failed */

SEE ALSO
errdemon(lM).

MU43814PR/D2 - 2 - 12/01/87

FILEHDR(4) FILEHDR(4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include <filehdr.h>

DESCRIPTION
Every common object file begins with a 20-byte header. The following C
struct declaration is used:

strtlct filehdr
{

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic;
f_nscns;
f_timdat;
f_symptr;
f_nsyms;
f_opthdr;
f_flags;

I* magic number */
I* number of sections *I
I* time & date stamp *I
I* file ptr to symtab */
I* # symtab entries *I
I* sizeof(opt hdr) */
I* flags*/

} ;

F _symptr is the byte offset into the file at which the symbol table can be
found. Its value can be used as the offset in fseek(3S) to position an I/O
stream to the symbol table. The SYSTEM V/68 system optional header is
28-bytes. The valid magic numbers are given below:

#define MC68MAGIC 0520 /• SYSTEM V/68 magic number •/

The value in f_timdat is obtained from the time(2) system call. Flag bits
currently defined are:

#define F _RELFLG 0000001 I* relocation entries stripped *I
#define F _EXEC 0000002 I* file is executable *I
#define F _LNNO 0000004
#define F _LSYMS 0000010
#define F _MINMAL 0000020
#define F _UPDATE 0000040
#define F _SW ABO 0000100
#define F _AR16WR 0000200
#define F _AR32WR 0000400
#define F _AR32W 0001000
#define F_pATCH 0002000
#define F _BM32ID 0160000
#define F _BM32B 0020000

MU43814PR/D2 - 1 -

/* line numbers stripped *'
I* local symbols stripped *I
I* minimal object file •/
I* update file, ogen produced */
I* file is "pre-swabbed" *I
I* 16-bit DEC host *I
I* 32-bit DEC host */
I* non-DEC host *I
I* "patch" list in opt hdr *I
I* WE32000 family ID field */
I* file contains WE 32100 code *I

12/01/87

II

FILEHDR(4) FILEHDR(4)

SEE ALSO
time(2), fseek(3S), a.out(4) .

•
MU43814PR/D2 - 2 - 12/01/87

FS(4) FS(4)

NAME
fs: file system - format of system volume

SYNOPSIS
#include <sys/fs/sSfilsys.h>
#include <sys/types.h>
#include <sys/sSparam.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital
information. Every such volume is divided into a certain number of 512-
byte long sectors. Sector 0 is unused and is available to contain a
bootstrap program or other information.

Sector 1 is the super-block. The format of a super-block is:

struct filsys
{

ushort s_isize; I• size in blocks of i-list •/
daddr_t sJsize; I• size in blocks of entire volume •/
short s_nfree; I• number of addresses in s_free •/
daddr_t s_free[NICFREE]; I• free block list •/
short s_ninode; I• number of i-nodes in s_inode •/
ushort s_inode[NICINOD]; I• free i-node list •/
char s_flock; I• lock during free list manipulation •/
char s_ilock; I• lock during i-list manipulation •/
char s_fmod; I• super block modified flag •/
char s_ronly; I• mounted read-only flag •/
time_t s_time; I• last super block update •/
short s_dinfo[4]; I• device information •/
daddr_t s_tfree; I• total free blocks•/
ushort s_tinode; I• total free i-nodes •/
char s_fname[6]; I• file system name •/
char s_fpack[6]; I• file system pack name •/
long s_fill[14]; I• ADJUST to make sizeof filsys

be 512 •/
long s_state; I• file system state •/
long s_magic; I• magic number to denote new

file system •/
long s_type; I• type of new file system •/

};

MU43814PR/D2 - 1 - 12/01/87

II

II

FS(4) FS(4)

#define FsMAGIC Oxfd187e20 I• s_magic number •I

#define Fslb 1 I• 512-byte block •/
#define Fs2b 2 I• 1024-byte block •/
#define Fs16b 5 f* 8192-byte block (option)*/

#define FsOKAY Ox7c269d38 f* s_state: dean *f
#define FsACTIVE Ox5e72d8la f* s_state: active *f
#define FsBAD Oxcb096f43 f* s_state: bad root *f
#define FsBADBLK Oxbadbc14b /* s_state: bad block corrupted it •/

S_type indicates the file system type. Currently, three types of file sys­
tems are supported: the original 512-byte logical block, the default 1024-
byte logical block, and an 8192-byte logical block version for improved
throughput. S_magic is used to distinguish the original 512-byte oriented
file systems from the newer file systems. If this field is not equal to the
magic number, fsMAGIC, the type is assumed to be fs1b, otherwise the
s_type field is used. In the following description, a block is then deter­
mined by the type. For the original 512-byte oriented file system, a block
is 512-bytes. For the 1024-byte oriented file system, a block is 1024-bytes
or two physical blocks. For the 8192-byte oriented file system, a block is
8192-bytes or 16 physical blocks. The operating system takes care of all
conversions from logical block numbers to physical block numbers.

S_state indicates the state of the file system. A cleanly unmounted, not
damaged file system is indicated by the FsOKAY state. After a file system
has been mounted for update, the state changes to FsACTIVE. A special
case is used for the root file system. If the root file system appears dam­
aged at boot time, it is mounted but marked FsBAD. Lastly, after a file
system has been unmounted, the state reverts to FsOKAY.

S_isize is the address of the first data block after the i-list; the i-list starts
just after the super-block, namely in block 2; thus the i-list is s_isize-2
blocks long. S_fsize is the first block not potentially available for alloca­
tion to a file. These numbers are used by the system to check for bad
block numbers; if an "impossible" block number is allocated from the free
list or is freed, a diagnostic is written on the on-line console. Moreover,
the free array is cleared, so as to prevent further allocation from a presum­
ably corrupted free list.

The free list for each volume is maintained as follows. The s_jree array
contains, in s_jree[l], ... , s_jree[s_nfree-l], up to 49 numbers of free
blocks. S_jree[O] is the block number of the head of a chain of blocks

MU43814PR/D2 - 2 - 12101187

FS(4) FS(4)

constituting the free list. The first long in each free-chain block is the
number (up to 50) of free-block numbers listed in the next 50 longs of this
chain member. The first of these 50 blocks is the link to the next member
of the chain. To allocate a block: decrement s_nfree, and the new block is
s_free[s_nfree]. If the new block number is 0, there are no blocks left, so
give an error. If s_nfree became 0, read in the block named by the new
block number, replace s_nfree by its first word, and copy the block
numbers in the next 50 longs into the s_free array. To free a block, check
if s_nfree is 50; if so, copy s_nfree and the s_free array into it, write it out,
and set s_nfree to 0. In any event set s_free[s_nfree] to the freed block's
number and increment s_nfree.

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s_inode array. To allocate
an i-node: if s_ninode is greater than 0, decrement it and return
s_inode[s_ninode]. If it was 0, read the i-list and place the numbers of all
free i-nodes (up to 100) into the s_inode array, then try again. To free an
i-node, provided s_ninode is less than 100, place its number into
s_inode [s_ninode] and increment s_ninode. If s_ninode is already 100, do not
bother to enter the freed i-node into any table. This list of i-nodes is only
to speed up the allocation process; the information as to whether the i­
node is really free or not is maintained in the i-node itself.

S_tinode is the total free i-nodes available in the file system.

S_flock and s_ilock are flags maintained in the core copy of the file system
while it is mounted and their values on disk are immaterial. The value of
s_jmod on disk is likewise immaterial; it is used as a flag to indicate that
the super-block has changed and should be copied to the disk during the
next periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was changed, and
is the number of seconds that have elapsed since 00:00 Jan. 1, 1970 {GMT).
During a reboot, the s_time of the super-block for the root file system is
used to set the system's idea of the time.

S...fname is the name of the file system and s_fpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also,
i-nodes are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is II
reserved for the root directory of the file system, but no other i-number
has a built-in meaning. Each i-node represents one file. For the format of "

MU43814PR/D2 -3- 12/01/87

•

FS(4) FS(4)

an i-node and its flags, see inode(4).

SEE ALSO
mount(2), inode(4).
fsck(lM), fsdb(lM), mkfs(lM) in the System Administrator's Reference
Manual.

MU43814PR/D2 -4- 12/01/87

FSPEC(4) FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the system with non­
standard tabs, (i.e., tabs which are not set at every eighth column). Such
files must generally be converted to a standard format, frequently by
replacing all tabs with the appropriate number of spaces, before they can
be processed by the system commands. A format specification occurring
in the first line of a text file specifies how tabs are to be expanded in the
remainder of the file.

A format specification consists of a sequence of parameters separated by
blanks and surrounded by the brackets <: and :>. Each parameter con­
sists of a keyletter, possibly followed immediately by a value. The follow­
ing parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The
value of tabs must be one of the following:

1. a list of column numbers separated by commas, indicat­
ing tabs set at the specified columns;

2. a - followed immediately by an integer n, indicating tabs
at intervals of n columns;

3. a - followed by the name of a "canned" tab specifica-
tion.

Standard tabs are specified by t-8, or equivalently,
tl,9,17,25,etc. The canned tabs which are recognized are
defined by the tabs(l) command.

ssize The s parameter specifies a maximum line size. The value of
size must be an integer. Size checking is performed after tabs
have been expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be
prepended to each line. The value of margin must be an
integer.

d The d parameter takes no value. Its presence indicates that
the line containing the format specification is to be deleted
from the converted file.

MU43814PR/D2 - 1 - 12/01/87

Ill

•

FSPEC(4) FSPEC(4)

e The e parameter takes no value. Its presence indicates that
the current format is to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8
and mo. If the s parameter is not specified, no size checking is per­
formed. If the first line of a file does not contain a format specification,
the above defaults are assumed for the entire file. The following is an
example of a line containing a format specification:

* <:tS,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary
to code the d parameter.

SEE ALSO
ed{l), newform{l), tabs{l) in the User's Reference Manual .

MU43814PR/D2 - 2 - 12/01/87

FSTAB(4) FSTAB(4)

NAME
fstab - file-system-table

DESCRIPTION

FILES

The /etc/fstab file contains information about file systems for use by
mount (lM) and mountall(lM). Each entry in /etc/fstab has the following
format:

column 1

column 2

column 3

column 4

column 5+

block special file name of file system or advertised
remote resource

mount-point directory

"-r" if to be mounted read-only; "-d[r]" if remote

(optional) file system type string

ignored

White-space separates columns. Lines beginning with "# " are comments.
Empty lines are ignored.

A file-system-table might read:

/dev/dsk/cld0s2 /usr S51K
/dev/dsk/cldls2 /usr/src -r
adv _resource /mnt -d

/etc/fstab

SEE ALSO
mount(lM), mountall(lM), rmountall(lM) in the System Administrator's
Reference Manual.

MU43814PR/D2 - 1 - 12/01/87

II

•

GETTYDEFS(4) GETTYDEFS(4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty(lM) to set up the
speed and terminal settings for a line. It supplies information on what
the login prompt should look like. It also supplies the speed to try next if
the user indicates the current speed is not correct by typing a <break>
character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain
quoted characters of the form \b, \n, \c, etc., as well as \nnn, where nnn is
the octal value of the desired character. The various fields are:

label

initial-flags

final-flags

MU43814PR/D2

This is the string against which getty tries to match its
second argument. It is often the speed, such as 1200, at
which the terminal is supposed to run, but it need not be
(see below).

These flags are the initial ioctl(2) settings to which the ter­
minal is to be set if a terminal type is not specified to getty.
The flags that getty understands are the same as the ones
listed in /usr/include/sys/termio.h [see termio(7)]. Nor­
mally only the speed flag is required in the initial-flags.
Getty automatically sets the terminal to raw input mode
and takes care of most of the other flags. The initial-flag
settings remain in effect until getty executes login(l).

These flags take the same values as the initial-flags and are
set just prior to getty executes login. The speed flag is
again required. The composite flag SANE takes care of
most of the other flags that need to be set so that the pro­
cessor and terminal are communicating in a rational
fashion. The other two commonly specified final-flags are
TAB3, so that tabs are sent to the terminal as spaces, and
HUPCL, so that the line is hung up on the final close.

- 1 - 12/01/87

II

II

GETTYDEFS(4) GETTYDEFS(4)

FILES

login-prompt This entire field is printed as the login-prompt. Unlike the
above fields where white space is ignored (a space, tab or
new-line), they are included in the login-prompt field.

next-label If this entry does not specify the desired speed, indicated
by the user typing a <break> character, then getty will
search for the entry with next-label as its label field and set
up the terminal for those settings. Usually, a series of
speeds are linked together in this fashion, into a closed set.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs the
default entry. It is also used if getty can not find the specified label. If
/etc/gettydefs itself is missing, there is one entry built into the command
which will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs,
it be run through getty with the check option to be sure there are no
errors.

/etc/gettydefs

SEE ALSO
ioctl(2).
getty(lM), termio{7) in the System Administrator's Reference Manual.
login(l) in the User's Reference Manual.

MU43814PR/D2 -2- 12/01/87

GROUP(4) GROUP(4)

NAME
group - group file

DESCRIPTION

FILES

group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no
password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical group ID's to names.

/etdgroup

SEE ALSO
passwd(4).
passwd(l) in the User's Reference Manual.
newgrp(lM) in the System Administrator's Reference Manual.

MU43814PR/02 - 1 - 12/01/87

II

II

HOST(4) HOST(4)

NAME
host - system host name.

DESCRIPTION
The file /etc/host contains the system host name as an ASCII string. It is
read by gethostname(3N) to determine the system host name when
uname(3N) fails.

FILES
/etc/host

SEE ALSO
gethostname(3N)

MU43814PR/D2 - 1 - 12/01/87

II

HOSTS(4) HOSTS(4)

NAME
hosts - host name data base.

DESCRIPTION

FILES

The hosts file contains information regarding the known hosts on the
DARPA Internet. For each host a single line should be present with the
following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A #
indicates the beginning of a comment; characters up to the end of the line
are not interpreted by routines which search the file. This file is normally
created from the official host data base maintained at the Network Infor­
mation Control Center (NIC), though local changes may be required to
bring it up to date regarding unofficial aliases and/or unknown hosts.
Network addresses are specified in the conventional "." notation using
the inet_addr() routine from the Internet address manipulation library,
inet(3N). Host names may contain any printable character other than a
field delimiter, newline, or comment character.

As a convenience, the RFS setup menu, rfsmgmt tcpip, adds and deletes
entries in /etc/hosts. RFS commands, however, do not make use of the
entries in this file. Hosts with a period (.) in their names cannot share
files via RFS.

/etdhosts

SEE ALSO
gethostent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed
file format should be available for fast access.

MU43814PR/D2 - 1 - 12/01/87

HOSTS.EQUIV(4) HOSTS.EQUIV(4)

NAME
hosts.equiv - names of hosts with "equivalent" users.

DESCRIPTION

FILES

This file is used by rep, remsh, and rlogin to determine a set of hosts whose
users are considered to be "equivalent" to the users of the same name on
this system. In an environment where a single organization might have
many systems used by a common set of users, it is often the case that a
single user will have the same name on many different systems. The use
of /etc/hosts.equiv to specify the list of systems with common users, and
common user manes, allows users access to the local system from each of
these remote systems without requiring passwords. Further, remsh and
rep require that the user be considered equivalent on the local and remote
systems, or the operation is rejected.

remshd, used to support remsh and rep requests, uses /etc/hosts.equiv in the
following way. When the connection is made, remshd gets the name of
the user on the remote ("calling") system. It then looks up the remote
user name in the local /etclpasswd file. If the remote user is not the super­
user, then !etc/hosts.equiv is checked for the name of the remote host. If it
is found, the user is considered to be equivalent to the user of the same
local name, and the command proceeds. If the host name is not found,
or if the remote user is the super-user, then remshd checks the file .rhosts
in the login directory found in /etclpasswd. If an entry is found for the
remote host, or for this local user name and remote host combination,
then the user is considered equivalent and the command proceeds. If
this test fails, the command is terminated. rlogin uses these files in an
analogous fashion.

The format of !etc/hosts.equiv is a list of host names, one per line. (See
rhosts(4)). The host name here must match the first name listed for a host
in /etc/hosts, not one of its aliases.

As a convenience, the RFS setup menu, rfsmgmt tcpip, adds and deletes
entries in /etc/hosts.equiv. RFS commands, however, do not make use of
the entries in this file.

/etdhosts.equiv

SEE ALSO
rcp(l), rlogin(l), remsh(l), rlogind(lM), remshd(lM), rhosts(4)

MU43814PR/D2 - 1 - 12/01/87

II

II

HOSTS.EQUIV(4) HOSTS.EQUIV(4)

NOTES
On most System V systems, users are required to enter their password (if
they have one) on the remote system. This is due to the operation of
login on these systems.

MU43814PR/D2 -2- 12/01/87

INITTAB(4) INITTAB(4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process
dispatcher. The process that constitutes the majority of init's process
dispatching activities is the line process /etc/getty that initiates individual
terminal lines. Other processes typically dispatched by init are daemons
and the shell.

The inittab file is composed of entries that are position dependent and
have the following format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding a
newline indicates a continuation of the entry. Up to 512 characters per
entry are permitted. Comments may be inserted in the process field using
the sh(l) convention for comments. Comments for lines that spawn gettys
are displayed by the who(l) command. It is expected that they will con­
tain some information about the line such as the location. There are no
limits (other than maximum entry size) imposed on the number of entries
within the inittab file. The entry fields are:

id This is one or two characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed.

MU43814PR/D2

Run-levels effectively correspond to a configuration of processes
in the system. That is, each process spawned by init is assigned
a run-level or run-levels in which it is allowed to exist. The run­
levels are represented by a number ranging from 0 through 6. As
an example, if the system is in run-level 1, only those entries
having a 1 in the rstate field will be processed. When init is
requested to change run-levels, all processes which do not have
an entry in the rstate field for the target run-level will be sent the
warning signal {SIGTERM) and allowed a 20-second grace period
before being forcibly terminated by a kill signal {SIGKILL). The
rstate field can define multiple run-levels for a process by select­
ing more than one run-level in any combination from 0-6. If no
run-level is specified, then the process is assumed to be valid at
all run-levels 0-6. There are three other values, a, b and c, which
can appear in the rstate field, even though they are not true run­
levels. Entries which have these characters in the rstate field are
processed only when the telinit [see init(lM)] process requests

- 1 - 12101/87

II

INITTAB(4)

action

II
MU43814PR/02

INITTAB(4)

them to be run (regardless of the current run-level of the system).
They differ from run-levels in that init can never enter run-level a,
b or c. Also, a request for the execution of any of these
processes does not change the current run-level. Furthermore, a
process started by an a, b or c command is not killed when init
changes levels. They are only killed if their line in /etc/inittab is
marked off in the action field, their line is deleted entirely from
/etc/inittab, or init goes into the SINGLE USER state.

Key words in this field tell init how to treat the process specified
in the process field. The actions recognized by init are as follows:

resp awn

wait

once

boot

If the process does not exist then start the process,
do not wait for its termination (continue scanning
the inittab file), and when it dies restart the process.
If the process currently exists then do nothing and
continue scanning the inittab file.

Upon init's entering the run-level that matches the
entry's rstate, start the process and wait for its ter­
mination. All subsequent reads of the inittab file
while init is in the same run-level will cause init to
ignore this entry.

Upon init's entering a run-level that matches the
entry's rstate, start the process, do not wait for its
termination. When it dies, do not restart the pro­
cess. If upon entering a new run-level, where the
process is still running from a previous run-level
change, the program will not be restarted.

The entry is to be processed only at init's boot-time
read of the inittab file. Init is to start the process,
not wait for its termination; and when it dies, not
restart the process. In order for this instruction to
be meaningful, the rstate should be the default or it
must match init's run-level at boot time. This action
is useful for an initialization function following a
hardware reboot of the system.

- 2 - 12/01/87

INITTAB(4) INITTAB(4)

MU43814PR/02

bootwait The entry is to be processed the first time init goes
from single-user to multi-user state after the system
is booted. (If initdefault is set to 2, the process will
run right after the boot.) Init starts the process,
waits for its termination and, when it dies, does not
restart the process.

powerfail Execute the process associated with this entry only
when init receives a power fail signal [SIGPWR see
signal(2)].

powerwait Execute the process associated with this entry only
when init receives a power fail signal {SIGPWR) and
wait until it terminates before continuing any pro­
cessing of inittab.

off If the process associated with this entry is currently
running, send the warning signal {SIGTERM) and
wait 20 seconds before forcibly terminating the pro­
cess via the kill signal {SIGKILL). If the process is
nonexistent, ignore the entry.

ondemand This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is
given a different keyword in order to divorce its
association with run-levels. This is used only with
the a, b or c values described in the rstate field.

initdefault An entry with this action is only scanned when init
initially invoked. Init uses this entry, if it exists, to
determine which run-level to enter initially. It does
this by taking the highest run-level specified in the
rstate field and using that as its initial state. If the
rstate field is empty, this is interpreted as 0123456
and so init will enter run-level 6. Additionally, if init
does not find an initdefault entry in /etc/inittab,
then it will request an initial run-level from the user
at reboot time.

-3- 12101/87

II

II

INIITAB(4) INIITAB(4)

FILES

sysinit Entries of this type are executed before init tries to
access the console (i.e., before the Console Login:
prompt). It is expected that this entry will be only
used to initialize devices on which init might try to
ask the run-level question. These entries are exe­
cuted and waited for before continuing.

process This is a sh command to be executed. The entire process field is
prefixed with exec and passed to a forked sh as sh -c 'exec com­
mand'. For this reason, any legal sh syntax can appear in the
process field. Comments can be inserted with the ; #comment
syntax.

/etc/inittab

SEE ALSO
exec(2), open(2), signal(2).
getty(lM), init(lM) in the System Administrator's Reference Manual.
sh(l), who(l) in the User's Reference Manual.

MU43814PR/D2 -4- 12/01/87

INODE(4)

NAME
inode - format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION

INODE(4)

An i-node for a plain file or directory in a file system has the following
structure defined by <sys/ino.h>.

f* !node structure as. it appears on a disk block. *f
struct dinode
{

di_mode; I* mode and type of file */
di_nlink; /* number of links to file */
di_uid; f * owner's user id *I
di_gid; I* owner's group id *I
di_size; f* number of bytes in file *f
di_addr[40]; f * disk block addresses *f
di_atime; I* time last accessed *I
di_mtime; f* time last modified */

ushort
short
us ho rt
us ho rt
off_t
char
time_t
time_t
time_t di_ctime; /* time of last file status change *I

};
f *
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
•I

For the meaning of the defined types off_t and time_t see types(S).

SEE ALSO
stat(2), fs(4), types(S).

MU43814PR/D2 - 1 - 12/01/87

II

II

ISSUE(4) ISSUE(4)

NAME
issue - issue identification file

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed
as a login prompt. This is an ASOI file which is read by program getty
and then written to any terminal spawned or respawned from the lines
file.

FILES
/etdissue

SEE ALSO
login{l) in the User's Reference Manual.

MU43814PR/D2 -1- 12101/87

LDFCN(4) LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

DESCRIPTION
The common object file access routines are a collection of functions for
reading common object files and archives containing common object files.
Although the calling program must know the detailed structure of the
parts of the object file that it processes, the routines effectively insulate
the calling program from knowledge of the overall structure of the object
file.

The interface between the calling program and the object file access rou­
tines is based on the defined type LDFILE, defined as struct ldfile,
declared in the header file ldfcn.h. The primary purpose of this structure
is to provide uniform access to both simple object files and to object files
that are members of an archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through macros defined in
ldfcn.h and contain the following information:

LDFILE *ldptr;

TYPE(ldptr) The file magic number used to distinguish between
archive members and simple object files.

IOPTR{ldptr) The file pointer returned by fopen and used by the stan­
dard input/output functions.

OFFSET(ldptr) The file address of the beginning of the object file; the
offset is non-zero if the object file is a member of an
archive file.

HEADER(ldptr) The file header structure of the object file.

MU43814PR/D2 - 1 - 12/01/87

II

II

LDFCN(4) LDFCN(4)

MU43814PR/D2

The object file access functions themselves may be
divided into four categories:

{l) functions that open or close an object file

ldopen(3X) and ldaopen[see ldopen(3X)]
open a common object file

ldclose(3X) and ldaclose[see ldclose(3X)]
close a common object file

(2) functions that read header or symbol table informa­
tion

ldahread (3X)
read the archive header of a member of
an archive file

ldfhread(3X)
read the file header of a common object
file

ldshread(3X) and ldnshread[see ldshread(3X)]
read a section header of a common object
file

ldtbread (3X)
read a symbol table entry of a common
object file

ldgetname(3X)
retrieve a symbol name from a symbol
table entry or from the string table

(3) functions that position an object file at (seek to) the
start of the section, relocation, or line number informa­
tion for a particular section.

ldohseek(3X)
seek to the optional file header of a com­
mon object file

ldsseek(3X) and ldnsseek[see ldsseek(3X)]
seek to a section of a common object file

ldrseek(3X) and ldnrseek[see ldrseek(3X)]
seek to the relocation information for a
section of a common object file

ldlseek(3X) and ldnlseek[see ldlseek(3X)]
seek to the line number information for a
section of a common object file

- 2 - 12/01/87

LDFCN(4) LDFCN(4)

ldtbseek(3X)
seek to the symbol table of a common
object file

(4) the function ldtbindex(3X) which returns the index of a
particular common object file symbol table entry.

These functions are described in detail on their respective manual pages.

All the functions except ldopen(3X), ldgetname(3X), ldtbindex(3X) return
either SUCCESS or FAILURE, both constants defined in ldfcn.h.
Ldopen(3X) and ldaopenf(see ldopen(3X)] both return pointers to an LDFILE
structure.

Additional access to an object file is provided through a set of macros
defined in ldfcn.h. These macros parallel the standard input/output file
reading and manipulating functions, translating a reference of the LDFILE
structure into a reference to its file descriptor field.

The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c, ldptr)
FGETS(s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the string table. See the
manual entries for the corresponding standard input/output library func­
tions for details on the use of the rest of the macros.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
fseek(3S), ldahread(3X),
ldlread(3X), ldlseek(3X},

MU43814PR/D2

ldclose(3X), ldgetname(3X},
ldohseek(3X), ldopen(3X),

-3-

ldfhread(3X),
ldrseek(3X),

12/01/87

II

Ill

LDFCN(4) LDFCN(4)

ldlseek(3X), ldshread(3X), ldtbindex(3X), ldtbread(3X), ldtbseek(3X),
stdio(3S), intro(5).

WARNING
The macro FSEEK defined in the header file ldfcn.h translates into a call to
the standard input/output function fseek(3S). FSEEK should not be used to
seek from the end of an archive file since the end of an archive file may
not be the same as the end of one of its object file members!

MU43814PR/D2 -4- 12/01/87

LIMITS(4) LIMITS(4)

NAME
limits - file header for implementation-specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION
The header file <limits.h> is a list of magnitude limitations imposed by a
specific implementation of the operating system. All values are specified
in decimal.

#define ARG_MAX5120
#define CHAR_BITS
#define CHAR_MAX

I• max length of arguments to exec •/
I• # of bits in a "char" •/
127 I• max integer value of a "char" •/

#define CHAR_MIN -128 I• min integer value of a "char"•/

#define CHILD_MAX 25 I• max# of processes per user id•/
#define CLK_TCK 100 /• # of clock ticks per second •/
#define DBL_DIG 16 /• digits of precision of a "double" •/
#define DBL_MAX 1.79769313486231470e+308 /•max decimal value of a "double"•/
#define DBL_MIN 4.94065645841246544e-324 /•min decimal value of a "double"•/
#define FCHR_MAX 1048576 I• max size of a file in bytes •/
#define FLT_DIG 7 I• digits of precision of a "float"•/
#define FLT_MAX 3.40282346638528860e+38 /•max decimal value of a "float" •/
#define FLT_MIN 1.40129846432481707e-45 /•min decimal value of a "float" •/
#define HUGE_ VAL 3.40282346638528860e+38 /•error value returned by Math lib•/
#define INT_MAX 2147483647 /•max decimal value of an "int"•/
#define INT_MIN -2147483648 I• min decimal value of an "int"•/
#define LINK_MAX
#define LONG_MAX
#define LONG_MIN
#define NAME_MAX
#define OPEN_MAX
#define PASS_MAX
#define PA TH_MAX

32767 I• max # of links to a single file •/
2147483647 I• max decimal value of a '1ong" •/
-2147483648 /• min decimal value of a '1ong" •/
14 /• max # of characters in a file name •/
20

8

256

I• max # of files a process can have open •/
I• max # of characters in a password •/

I• max # of characters in a path name •/
#define PID_MAX 30000 /•max value for a process ID •I
#define PIPE_BUF 5120

#define PIPE_MAX5120

#define SHRT_MAX
#define SHRT_MIN
#define STD_BLK 1024
#define SYS_NMLN
#define UID_MAX 30000

MU43814PR/D2

I• max # bytes atomic in write to a pipe •/

I• max # bytes written to a pipe in a write •/

32767 I• max decimal value of a "short" •/
-32767 I• min decimal value of a "short" •/

I• # bytes in a physical 1/0 block •/
9 /• # of chars in uname-retumed strings •/

I• max value for a user or group ID •/

-1 - 12/01/87

II

LIMITS(4)

#define USI_MAX 4294967296

#define WORD_BIT 32

•
MU43814PR/D2

I• max decimal value of an "unsigned" •/
I• # of bits in a "word" or ''int" •/

- 2 -

LIMITS(4)

12/01/87

LINENUM(4) LINENUM(4)

NAME
linenum - line number entries in a common object file

SYNOPSIS
#include <linenum.h>

DESCRIPTION
The cc command generates an entry in the object file for each C source
line on which a breakpoint is possible [when invoked with the -g option;
see cc(l)]. Users can then reference line numbers when using the
appropriate software test system [see sdb(l)]. The structure of these line
number entries appears below.

struct lineno
{

union
{

long l_symndx;
long l_paddr;

} l_addr;
unsigned short l_lnno;

};

Numbering starts with one for each function. The initial line number
entry for a function has l_lnno equal to zero, and the symbol table index of
the function's entry is in l_symndx. Otherwise, l_lnno is non-zero, and
l_paddr is the physical address of the code for the referenced line. Thus
the overall structure is the following:

l_addr l_lnno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

MU43814PR/02 - 1 - 12/01/87

II

LINENUM(4) LINENUM(4)

SEE ALSO
cc(l), sdb(l), a.out(4).

II
MU43814PR/D2 - 2 - 12/01/87

MASTER(4) MASTER(4)

NAME
master - master device information table

DESCRIPTION
The master file is used by the config(1M) program to obtain device informa­
tion that enables it to generate the configuration files, low.s, conf.c, and
m68kvec.s. Config reads dfile and places information from each Part 1
entry into the arrays provided by master. Refer to config(lM) for informa­
tion about the files produced and to dfile(4) for information about the
fields in the first part of the user-supplied dfile.

Master has 5 parts, each separated by a line with a dollar sign ($) in
column 1. Any line with an asterisk (*) in column 1 is treated as a com­
ment. Part 1 contains device information; part 2 contains names of dev­
ices that have aliases; part 3 contains tunable parameter information.
Parts 4 and 5 contain information related to configuring the M68000 family
systems only. Part 4, the microprocessor specification, must appear in
master and cannot be in the user-specified dfile. Part 5 contains lines
exactly like those for the M68000-specific portion of dfile. Refer to dfile(4)
for a description of these lines.

The following paragraphs describe the 5 parts of the master file. In this
description, the VME323 disk controller is used as an example.

PARTl

Part 1 contains lines consisting of at least 10 fields and at most 13 fields.
The fields are delimited by tabs and/or blanks.

Field 1: device name (8 characters maximum).

Field 2: interrupt vectors size (decimal); the size is the number
of vectors multiplied by four. Refer to Table 6-2 in the
M68020 32-Bit Microprocessor User's Manual
(M68020UM/AD) for information on the memory map
for exception vectors.

'Field 3: device mask (octal) - each "on" bit indicates that the
handler exists.

001000 device has a stream handler

MU43814PR/D2 - 1 - 12/01/87

II

II

MASTER(4)

000400

000200
000100
000040
000020
000010
000004
000002
000001

separate open and close for block and
character devices; setting the 000400
bit and the 000020 bit results, for
example, in m323bopen for opening
the block device and m323copen for
opening the character device.
device has a tty structure
initialization handler
power-failure handler
open handler
close handler
read handler
write handler
ioctl handler

Field 4: device type indicator (octal):
004000 create interrupt vector array; e.g.,

m323_ivec[); each vector (hexade­
cimal) specified in dfile (vector number

002000

001000

000200
000100
000040
000020
000010
000004
000002

000001

multiplied by 4) is placed in this array.
create character major number or block
major number for the device (e.g.,
m323_cmaj or m323_bmaj).
create interrupt level array; e.g.,
m323_ilev[l ; interrupt levels are speci-
fied in the fourth field ("bus") of each
line in the first part of the dfile.
allow only one of these devices
suppress count field in the conf.c file
suppress interrupt vector
required device
block device
character device
interrupt driven device other than
block or char. device
allow for a single vector definition
with multiple addresses

MASTER(4)

Field 5: handler prefix (4 chars. maximum); e.g., m323.

~AU43814PR/D2 -2- 12/01/87

MASTER(4)

Field 6:

Field 7:

Field 8:

Field 9:

Field 10:

Fields 11-13:

MASTER(4)

page registers size (decimal); the span of memory for
all the device registers on the device page, starting at
the dfile address.

major device number for block-type device.

major device number for character-type device.

maximum number of devices per controller (decimal);
e.g., m323_cnt; cnt is the optional fifth field on each
line in the first part of dfile. If more than one con­
troller is listed in dfile, however, then example will be
the sum of the devices for all the controllers (e.g., A
number specified in dfile overrides this field in master.

maximum bus request level (1 through 7).

optional configuration table structure declarations (8
chars. maximum)

Devices that are not interrupt-driven have an interrupt vector size of zero.
The 040 bit in Field 4 causes config(lM) to record the interrupt vectors
although the m68kvec.s file will show no interrupt vector assignment at
those locations (interrupts here will be treated as strays).

PART2

Part 2 contains lines with 2 fields each:

Field 1: alias name of device (8 chars. maximum). ·

Field 2: reference name of device (8 chars. maximum; specified in part 1).

PART3

Part 3 contains lines with 2 or 3 fields each:

Field 1:

Field 2:

Field 3:

MU43814PR/D2

parameter name (as it appears in dfile; 30 chars. maximum)

parameter name (as it appears in the conf.c file; 30 chars.
maximum)

default parameter value (30 chars. maximum; parameter
specification is required if this field is omitted)

-3- 12/01/87

II

II

MASTER(4) MASTER(4)

PART4

Part 4 contains one line with two fields for the microprocessor specifica­
tion.

Field 1 mpu

Field 2 number where number is
68000, 68010, or
68020. The default
is 68020.

PARTS

Part 5 contains M68000-specific lines exactly like those for the M68000-
specific portion of the dfile. Refer to dfile(4) for a description of these
lines.

SEE ALSO
config(lM), sysdef(lM), dfile(4).

FILES
/etdmaster

MU43814PR/D2 - 4 - 12/01/87

MNTTAB(4) MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <mnttab.h>

DESCRIPTION
mnttab resides in directory /etc and contains a table of devices, mounted
by the mount(lM) command, in the following structure as defined by
<mnttab.h>:

struct mnttab {

};

char
char
short
time_t

mt_dev[32];
mt_filsys[32];

mt_ro_flg;
mt_ time;

Each entry is 70 bytes in length; the first 32 bytes are the null-padded
name of the place where the special file is mounted; the next 32 bytes
represent the null-padded root name of the mounted special file; the
remaining 6 bytes contain the mounted special file's read/write permissions
and the date on which it was mounted.

The maximum number of entries in mnttab is based on the system param­
eter NMOUNT located in /usr/lib/sysgen/description/kernel which defines
the number of allowable mounted special files.

SEE ALSO
mount(lM), setmnt(lM), sysgen(lM) in the System Administrator's Reference
Manual.

MU43814PR/D2 - 1 - 12101/87

Ill

II

-· --·•-•• ·----•··~~~·-·-L~-~---~---'---- ·-~-

PASSWD(4) PASSWD(4)

NAME
passwd - password file

DESCRIPTION
passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
GCOS job number, box number, optional GCOS user ID
initial working directory
program to use as shell

This is an ASCII file. Each field within each user's entry is separated from
the next by a colon. The GCOS field is used only when communicating
with that system, and in other installations can contain any desired infor­
mation. Each user is separated from the next by a new-line. If the pass­
word field is null, no password is demanded; if the shell field is null, the
shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-
character alphabet(.,/, 0-9, A-Z, a-z), except when the password is null,
in which case the encrypted password is also null. Password aging is
effected for a particular user if his encrypted password in the password
file is followed by a comma and a non-null string of characters from the
above alphabet. (Such a string must be introduced in the first instance by
the super-user.)

The first character of the age, M say, denotes the maximum number of
weeks for which a password is valid. A user who attempts to login after
his password has expired will be forced to supply a new one. The next
character, m say, denotes the minimum period in weeks which must
expire before the password may be changed. The remaining characters
define the week (counted from the beginning of 1970) when the password
was last changed. (A null string is equivalent to zero.) M and m have
numerical values in the range ~3 that correspond to the 64-character
alphabet shown above (i.e., I = 1 week; z = 63 weeks). If m = M = 0 Ill
(derived from the string. or ..) the user will be forced to change his pass- ~
word the next time he logs in (and the "age" will disappear from his

MU43814PR/D2 - 1 - 12/01/87

II

PASSWD(4) PASSWD(4)

entry in the password file). If m > M (signified, e.g., by the string ./)
only the super-user will be able to change the password.

FILES
/etdpasswd

SEE ALSO
a641(3q, getpwent(3q, group(4).
login(l), passwd(l) in the User's Reference Manual.

MU43814PR/D2 -2- 12/01/87

PERMS(4) PERMS(4)

NAME
perms - permissions file used by the value-added disk access utilities

DESCRIPTION
The file /mot/etc/perms contains information used by the value-added disk
access utilities to determine if a user has access permission to certain
disks.

Each entry has the following format:

real_dev alias mntpt /size format_pgm

The fields are:

real_dev
This is the block device to be accessed by value-added disk access
utilities. Some of these utilities, such as dcpy(lM) may actually
use the raw device. The utility fmt(l) uses the raw device slice 7.
These utilities generate the necessary name from the block device
name.

alias This is a nickname for the entry. When a user asks to access a
specific device, the real device or the alias may be requested. Note
that if a user does not specify a device, the first line with the alias
of default will be used.

mntpt The default mount point (e.g. /flp) when alias or real device is used
as an argument to the mnt(l) command.

/size The maximum and/or default size of a file system on this device as
created by /s(l). This field may contain a ':' separated subfield
which is the number of inodes to allocate (see mkfs(lM)).

perms The permissions field actually contains two subfields. The first
subfield is optional and is used only for the tt(l) command. This
field is the largest amount of data that may be transferred to or
from the disk. Note that this number may actually be larger than
the disk capacity, to allow a larger and therefore faster block size
to be used in the transfer. The size is specified as a number of
bytes. A number may end with k, b, or w to specify multiplica­
tion by 1024, 512, or 2, respectively; a pair of numbers may be
separated by x to indicate a product. If the first subfield is
present, the semicolon character is used to delimit the first and II
second subfields.

MU43814PR/D2 - 1 - 12/01/87

II

PERMS(4) PERMS(4)

The second subfield specifies which actions are allowed, for each
specific disk.

Flag_ Permissible Action
R The disk may be mounted read only, or read from.
W The disk may be mounted read/write, or written to.
F The disk m'!Y_ be formatted.

format_pgm
This is the actual program that fmt(l) calls to format the disk.
Fmt(l) uses the raw device slice 7. An entry of NONE will prohi­
bit formatting.

EXAMPLE
real_dev alias mntpt £size perms format_pgm

/dev/02s0 default /flp 1264:144 20x32k:RWF /etc/fmtflp

FILES
/mot/etdperms permissions file

SEE ALSO
chk(lM), dcpy(lM), fmt(l), fs(l), mnt(l), getnum(3X), getperms(3X),
real(l), tt(l).

MU43814PR/D2 - 2 - 12/01/87

\
)

PROFILE(4) PROFILE(4)

NAME
profile - setting up an environment at login time

SYNOPSIS
/etc/profile
$HOME/. profile

DESCRIPTION
All users who have the shell, sh(l), as their login command have the com­
mands in these files executed as part of their login sequence.

/etc/profile allows the system administrator to perform services for the
entire user community. Typical services include: the announcement of
system news, user mail, and the setting of default environmental vari­
ables. It is not unusual for /etc/profile to execute special actions for the
root login or the su(l) command. Computers running outside the Eastern
time zone should have the line

. /etc!TIMEZONE

included early in /etc/profile (see timezone(4)).

The file $HOME/. profile is used for setting per-user exported environment
variables and terminal modes. The following example is typical (except
for the comments):

MU43814PR/D2

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask027
Tell me when new mail comes in
MAIL=/usr/maiV$LOGNAME
Add my /bin directory to the shell search sequence
PATH=$PATH:$HOMFJbin
Set terminal type
TERM=${LO:-$TERM}
TERM='Termls'
Initialize Terminal
Term Setup

Term Funes
Set Erase Character to Backspace
CERASE='AH'
normal

-1 - 12/01/87

II

II

PROFILE(4) PROFILE(4)

FILES
/etdTIMEZONE timezone environment
$HOME/. profile user-specific environment
/etdprofile system-wide environment

SEE ALSO

NOTES

terminfo(4), timezone(4), environ(S), term(S).
env(l), login(l), mail(l), sh(l), stty(l), su(l), tput(l) in the User's Reference
Manual.
su(lM) in the System Administrator's Reference Manual.
User's Guide.
Chapter 10 in the Programmer's Guide.

Care must be taken in providing system-wide services in /etc/profile. Per­
sonal .profile files are better for serving all but the most global needs.

MU43814PR/D2 - 2 - 12/01/87

\
I

PROTOCOLS(4) PROTOCOLS(4)

NAME
protocols - protocol name data base.

DESCRIPTION

FILES

The protocols file contains information regarding the known protocols used
in the DARPA Internet. For each protocol, a single line should be present
with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A#
indicates the beginning of a comment; characters up to the end of the line
are not interpreted by routines which search the file.

Protocol names may contain any printable character other than a field
delimiter, newline, or comment character.

/etdprotocols

SEE ALSO
getprotoent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed
file format should be available for fast access.

MU43814PR/D2 - 1 - 12/01/87

II

II

RELOC(4) RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#include <reloc.h>

DESCRIPTION
Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the follow­
ing format.

struct reloc
{

};

#define
#define
#define
#define
#define
#define
#define

long r_ vaddr ; I• (virtual) address of reference •/
long r_symndx ; I• index into symbol table •/
ushort r_type ; I• relocation type •/

R__ABS 0
R_RELBYTE
R_RELWORD
R_RELLONG
R_PCRBYTE
R_PCRWORD
R_PCRLONG

017
020
021

022
023
024

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the
input section are treated.

R_ABS The reference is absolute and no relocation is neces­
sary. The entry will be ignored.

R_RELBYTE A direct 8-bit reference to the symbol's virtual
address.

R_RELWORD

R_RELLONG

MU43814PR/D2

A direct 16-bit reference to the symbol's virtual
address.

A direct 32-bit reference to the symbol's virtual
address.

-1- 12/01/87

1111

II

RELOC(4)

R_PCRBYTE

R_PCRWORD

R_PCRLONG

RELOC(4)

A "PC-relative" 8-bit reference to the symbol's virtual
address. The actual address is calculated by adding a
constant to the PC value.

A "PC-relative" 16-bit reference to the symbol's vir­
tual address. The actual address is calculated by
adding a constant to the PC value.

A "PC-relative" 32-bit reference to the symbol's vir­
tual address. The actual address is calculated by
adding a constant to the PC value.

More relocation types exist for other proces.sors. Equivalent relocation
types on different processors have equal values and meanings. New relo­
cation types will be defined {with new values) as they are needed.

Relocation entries are generated automatically by the assembler and
automatically used by the link editor. Link editor options exist for both
preserving and removing the relocation entries from object files.

SEE ALSO
as(l), ld(l), a.out(4), syms(4).

MU43814PR/D2 -2- 12/01/87

RFMASTER(4) RFMASTER(4)

NAME
rfmaster - Remote File Sharing name server master file

DESCRIPTION
The rfmaster file is an ASCII file that identifies the hosts that are responsi­
ble for providing primary and secondary domain name service for Remote
File Sharing domains. This file contains a series of records, each ter­
minated by a newline; a record may be extended over more than one line
by escaping the newline character with a backslash ('\'). The fields in
each record are separated by one or more tabs or spaces. Each record has
three fields:

name type data

The type field, which defines the meaning of the name and data fields, has
three possible values:

p The p type defines the primary domain name server. For this type,
name is the domain name and data is the full host name of the
machine that is the primary name server. The full host name is
specified as domain.nodename. There can be only one primary name
server per domain.

s The s type defines a secondary name server for a domain. Name
and data are the same as for the p type. The order of the s entries
in the rfmaster file determines the order in which secondary name
servers take over when the current domain name server fails.

a The a type defines a network address for a machine. Name is the
full domain name for the machine and data is the network address
of the machine. The network address can be in plain ASCII text or
it can be preceded by a \x to be interpreted as hexadecimal nota­
tion. (See the documentation for the particular network you are
using to determine the network addresses you need.)

There are at least two lines in the rfmaster file per domain name server:
one p and one a line, to define the primary and its network address.
There should also be at least one secondary name server in each domain.

This file is created and maintained on the primary domain name server.
When a machine other than the primary tries to start Remote File Sharing,
this file is read to determine the address of the primary. If rfmaster is
missing, the -p option of rfstart must be used to identify the primary.
After that, a copy of the primary's rfmaster file is automatically placed on
the machine.

MU43814PR/02 - 1 - 12/01187

II

II

RFMASTER(4) RFMASTER(4)

Domains not served by the primary can also be listed in the rfrnaster file.
By adding primary, secondary, and address information for other domains
on a network, machines served by the primary will be able to share
resources with machines in other domains.

A primary name server may be a primary for more than one domain.
However, the secondaries must then also be the same for each domain
served by the primary.

Example

FILES

An example of an rfmaster file is shown below. (The network address
examples, comp1.serve and comp2.serve, are STARLAN network addresses.)

ccs p ccs.compl
ccs s ccs.comp2
ccs.comp2 a comp2.serve
ccs.compl a compl.serve

NOTE: If a line in the rfrnaster file begins with a # character, the entire
line will be treated as a comment.

/usr/nserve/rfmaster

SEE ALSO
rfstart(lM) in the System Administrator's Reference Manual.

MU43814PR/D2 - 2 - 12/01/87

\

RHOSTS(4) RHOSTS(4)

NAME
rhosts - user-specified file of equivalent hosts and users.

DESCRIPTION
The rhosts file resides in a user's login directory. It contains entries, one
per line, which are of the form:

hostname

or

hostname username

It allows a user to specify a set of users of other systems who are allowed
equivalent capabilities to himself on this system.

In an environment where a single organization might have many systems
used by a common set of users, it is often the case that a single user will
have a login account on many different systems. In the common case
where the login names are the same for each user on all systems, then
user authentication is provided by the list of host names in /etc/hosts.equiv.
In the case where a host is not in /etc/hosts.equiv, or the user has a dif­
ferent name on another system, the user can provide individual authenti­
cation by adding entries in his personal .rhosts file. Users who connect to
the system, via rep, remsh, or rlogin and are authorized via
.rhosts, will have privileges on this system exactly equivalent to the user

granting authorization.

remshd, used to support remsh and rep requests, uses .rhosts in the follow­
ing way. When the connection is made, remshd gets the name of the user
on the remote (calling) system. It then looks up the remote user in the
local /etclpasswd file. If the remote user is not the super-user, then
/etc/hosts.equiv is checked for the name of the remote host. If it is found,
the user is considered to be equivalent to the user of the same local name,
and the command proceeds. If the host name is not found, or if the
remote user is the super-user, then remshd checks the file .rhosts in the
login directory found in /etclpasswd. If an entry is found for the remote
host, or this local user name and remote host combination, then the user
is considered equivalent and the command proceeds. If this test fails, the
command is terminated. rlogin uses these files in an analogous fashion.

The host name here must match the first name listed for a host in
/etc/hosts, not one of its aliases. As a convenience, the RFS setup menu,
rfsmgmt tcpip, adds and deletes entries in letclrhosts. RFS commands,
however, do not make use of the entries in this file.

MU43814PR/D2 - 1 - 12/01/87

II

II

RHOSTS(4)

FILES
$HOME' .rhos ts

SEE ALSO

RHOSTS(4)

rcp(l), rlogin(l), remsh(l), rlogind(lM), remshd(lM), hosts.equiv(4)

NOTES
On most System V systems, users are required to enter their password (if
they have one) on the remote system. This is due to the operation of
login on these systems.

MU43814PR/D2 - 2 - 12/01/87

SCCSFILE (4) SCCSFILE(4)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An SCCS (Source Code Control System) file is an ASCII file. It consists of
six logical parts: the checksum, the delta table (contains information about
each delta), user names (contains login names and/or numerical group IDs
of users who may add deltas), flags (contains definitions of internal key­
words), comments (contains arbitrary descriptive information about the
file), and the body (contains the actual text lines intermixed with control
lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH
(start of heading) character (octal 001). This character is hereafter referred
to as the control character and will be represented graphically as @. Any
line described below which is not depicted as beginning with the control
character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number
between 00000 and 99999).

Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of
the first line. The @h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:
@s DDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DODOO .. .
@x DDDDD .. .
@g DDDDD .•.
@m <MR number>

@c <comments> ...

MU43814PR/D2 - 1 - 12/01/87

II

II

SCCSFILE(4) SCCSFILE(4)

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line (@d) con­
tains the type of the delta (currently, normal: D, and removed: R), the
secs ID of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor,
respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the delta.

The @e line ends the delta table entry.

User names

Flags

MU43814PR/D2

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines con­
taining these login names and/or numerical group IDs are sur­
rounded by the bracketing lines @u and @U. An empty list
allows anyone to make a delta. Any line starting with a ! prohi­
bits the succeeding group or user from making deltas.

Keywords used internally. [See admin(l) for more information on
their use.] Each flag line takes the form:

@£<flag> <optional text>

The following flags are defined:
@£ t <type of program>
@£ v <program name>
@£ i <keyword string>
@fb
@£ m <module name>
@£ f <floor>

- 2 - 12/01/87

SCCSFILE(4)

MU43814PR/D2

@fc
@fd
@fn
@f j
@fl
@fq
@fz

<ceiling>
<default-sid>

<lock-releases>
<user defined>
<reserved for use in interfaces>

SCCSFILE(4)

The t flag defines the replacement for the % Y% identification key­
word. The v flag controls prompting for MR numbers in addition
to comments; if the optional text is present it defines an MR
number validity checking program. The i flag controls the
warning/error aspect of the "No id keywords" message. When
the i flag is not present, this message is only a warning; when the
i flag is present, this message will cause a "fatal" error (the file
will not be gotten, or the delta will not be made). When the b
flag is present the -b keyletter may be used on the get command
to cause a branch in the delta tree. The m flag defines the first
choice for the replacement text of the %M% identification key­
word. The f flag defines the "floor" release; the release below
which no deltas may be added. The c flag defines the "ceiling''
release; the release above which no deltas may be added. The d
flag defines the default SID to be used when none is specified on a
get command. The n flag causes delta to insert a "null" delta (a
delta that applies no changes) in those releases that are skipped
when a delta is made in a new release (e.g., when delta 5.1 is
made after delta 2.7, releases 3 and 4 are skipped). The absence
of then flag causes skipped releases to be completely empty. The
j flag causes get to allow concurrent edits of the same base SID.
The I flag defines a list of releases that are locked against editing
[get(l) with the -e keyletter]. The q flag defines the replacement
for the %Q% identification,}<eyword. The z flag is used in certain
specialized interface programs. Comments Arbitrary text is sur­
rounded by the bracketing lines @t and @r. The comments sec­
tion typically will contain a description of the file's purpose.

-3- 12/01/87

II

II

SCCSFILE(4)

Body

SEE ALSO

SCCSFILE(4)

The body consists of text lines and control lines. Text lines do not
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding
to the delta for the control line.

admin(l), delta{l), get(l), prs{l).

MU43814PR/D2 -4- 12101187

SCNHDR(4) SCNHDR(4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
#include <scnhdr.h>

DESCRIPTION
Every common object file has a table of section headers to specify the lay­
out of the data within the file. Each section within an object file has its
own header. The C structure appears below.

struct scnhdr
{

} ;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN]; I* section name */
s_paddr; I* physical address *I
s_ vaddr; I* virtual address *I
s_size;
s_scnptr;
s_relptr;
s_lnnoptr;
s_nreloc;
s_nlnno;
s_flags;

I* section size */
I* file ptr to raw data */
I* file ptr to relocation */
I* file ptr to line numbers *I
I* # reloc entries */
I* # line number entries *I
I* flags*/

File pointers are byte offsets into the file; they can be used as the offset in
a call to FSEEK [see ldfcn(4)]. If a section is initialized, the file contains
the actual bytes. An uninitialized section is somewhat different. It has a
size, symbols defined in it, and symbols that refer to it. But it can have
no relocation entries, line numbers, or data. Consequently, an uninitial­
ized section has no raw data in the object file, and the values for s_scnptr,
s_relptr, s_lnnoptr, s_nreloc, and s_nlnno are zero.

SEE ALSO
ld(l), fseek(3S), a.out(4).

MU43814PR/D2 - 1 - 12/01/87

II

II

SCR_DUMP(4) (Terminal Information Utilities) SCR_DUMP(4)

NAME
scr_dump- format of curses screen image file.

SYNOPSIS
scr_dump(file)

DESCRIPTION
The curses(3X) function scr _dumpO will copy the contents of the screen into
a file. The format of the screen image is as described below.

The name of the tty is 20 characters long and the modification time (the
mtime of the tty that this is an image of) is of the type time_t. All other
numbers and characters are stored as chtype (see <curses.h>). No new­
lines are stored between fields.

<magic number: octal 0433>
<name of tty>
<mod time of tty>
<columns> <lines>
<line length> <chars in line> for each line on the screen
<line length> <chars in line>

<labels?> 1, if soft screen labels are present
<cursor row> <cursor column>

Only as many characters as are in a line will be listed. For example, if the
<line length> is 0, there will be no characters following <line length>. If
<labels?> is TRUE, following it will be

<number of labels>
<label width>
<chars in label 1>
<chars in label 2>

SEE ALSO
curses(3X).

MU43814PR/D2 - 1 - 12/01/87

\
)

SERVICES(4) SERVICES(4)

NAME
services - service name data base.

DESCRIPTION

FILES

The services file contains information regarding the known services avail­
able in the DARPA Internet. For each service, a single line should be
present with the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The
port number and protocol name are considered a single item; a "/" is used
to separate the port and protocol (e.g., "512/tcp'1· A # indicates the
beginning of a comment; characters up to the end of the line are not inter­
preted by routines which search the file.

Service names may contain any printable character other than a field del­
imiter, newline, or comment character.

/etdservices

SEE ALSO
getservent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed
file format should be available for fast access.

MU43814PR/D2 -1- 12/01/87

II

SYMS(4) SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include <syms.h>

DESCRIPTION
Common object files contain information to support symbolic software
testing [see sdb(l)]. Line number entries, linenum(4), and extensive sym­
bolic information permit testing at the C source level. Every object file's
symbol table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static extems for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static extems for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the
structure hold the name (null padded), its value, and other information.
The C structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

struct syment
{

union I* all ways to get symbol name *I

MU43814PR/D2 - 1 - 12101/87

SYMS(4)

};

{
char
struct
{

long
long

} _n_n;
char

} _n;
long
short
unsigned short
char
char

SYMS(4)

_n_name[SYMNMLEN); I* symbol name *I

_n_zeroes;
_n_offset;

I* = = OL when in string table */
I* location of name in table *I

* _n_nptr[2); /* allows overlaying */

n_value;
n_scnum;
n_type;
n_sclass;
n_numaux;

I* value of symbol *I
I* section number *I
I* type and derived type *I
I* storage class */
/* number of aux entries */

#define n_name _n._n_name
#define n_zeroes _n._n_n._n_zeroes
#define n_offset _n._n_n._n_offset
#define n_nptr _n._n_nptr[l]

Meaningful values and explanations for them are given in both syms.h
and Common Object File Format. Anyone who needs to interpret the entries
should seek more information in these sources. Some symbols require
more information than a single entry; they are followed by auxiliary entries
that are the same size as a symbol entry. The format follows.

MU43814PR/D2 -2- 12/01/87

SYMS(4)

II
MU43814PR/D2

union auxent
{

struct
{

long
union
{

x_tagndx;

struct
{

unsigned short x_lnno;
unsigned short x_size;

} x_lnsz;
long x_fsize;

} x_misc;
union
{

struct
{

}
struct
{

long
long
x_fcn;

x_lnnoptr;
x_endndx;

SYMS(4)

unsigned short x_dimen[DIMNUM];
} x_ary;

} x_fcnary;
unsigned short x_tvndx;

} x_sym;
struct
{

char x_fname[FILNMLEN];
} x_file;

struct
{

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct

- 3 - 12/01/87

SYMS(4)

{

}
};

long
unsigned short
unsigned short
x_tv;

x_tvfill;
x_tvlen;
x_tvran[2];

Indexes of symbol table entries begin at zero.

SEE ALSO
sdb(l), a.out(4), linenum(4).
"Common Object File Format" in the Programming Guide.

WARNINGS

SYMS(4)

On machines on which ints are equivalent to longs, all longs have their
type changed to int. Thus the information about which symbols are
declared as longs and which as ints does not show up in the symbol
table.

MU43814PR/D2 - 4 - 12101/87

II

TERM(4) TERM(4)

NAME
term - format of compiled term file.

SYNOPSIS
/usr/lib/terminfo/?/•

DESCRIPTION
Compiled terminfo(4) descriptions are placed under the directory
/usr/lib/terminfo. In order to avoid a linear search of a huge system direc­
tory, a two-level scheme is used: /usrlliblterminfolclname where name is the
name of the terminal, and c is the first character of name. Thus, att4425
can be found in the file /usrlliblterminfola/att4425. Synonyms for the same
terminal are implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all hardware.
An 8-bit byte is assumed, but no assumptions about byte ordering or sign
extension are made. Thus, these binary terminfo(4) files can be tran­
sported to other hardware with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the
least significant 8 bits of the value, and the second byte contains the most
significant 8 bits. (Thus, the value represented is 256*second+first.) The
value -1 is represented by 0377,0377, and the value -2 is represented by
0376,0377; other negative values are illegal. Computers where this does
not correspond to the hardware read the integers as two bytes and com­
pute the result, making the compiled entries portable between machine
types. The -1 generally means that a capability is missing from this termi­
nal. The -2 means that the capability has been cancelled in the terminfo(4)
source and also is to be considered missing.

The compiled file is created from the source file descriptions of the termi­
nals (see the -I option of infocmp(lM)) by using the terminfo(4) compiler,
tic(lM), and read by the routine setupterm(). (See curses(3X).) The file is
divided into six parts: the header, terminal names, boolean flags,
numbers, strings, and string table.

The header section begins the file. This section contains six short integers
in the format described below. These integers are (1) the magic number
(octal 0432); (2) the size, in bytes, of the names section; (3) the number of
bytes in the boolean section; (4) the number of short integers in the
numbers section; (5) the number of offsets (short integers) in the strings
section; (6) the size, in bytes, of the string table.

The terminal names section comes next. It contains the first line of the
terminfo(4) description, listing the various names for the terminal,

MU43814PR/D2 -1 - 12/01187

II

TERM(4) TERM(4)

separated by the bar (I) character (see term(S)). The section is terminated
with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as
the flag is present or absent. The value of 2 means that the flag has been
cancelled. The capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null byte will be
inserted, if necessary, to ensure that the number section begins on an
even byte. All short integers are aligned on a short word boundary.

The numbers section is similar to the boolean flags section. Each capabil­
ity takes up two bytes, and is stored as a short integer. If the value
represented is -1 or -2, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short
integer, in the format above. A value of -1 or -2 means the capability is
missing. Otherwise, the value is taken as an offset from the beginning of
the string table. Special characters in AX or \c notation are stored in their
interpreted form, not the printing representation. Padding information
($<nn>) and parameter information (%x) are stored intact in uninter­
preted form.

The final section is the string table. It contains all the values of string
capabilities referenced in the string section. Each string is null ter­
minated.

Note that it is possible for setupterm() to expect a different set of capabili­
ties than are actually present in the file. Either the database may have
been updated since setupterm() has been recompiled (resulting in extra
unrecognized entries in the file) or the program may have been recom­
piled more recently than the database was updated (resulting in missing
entries). The routine setupterm() must be prepared for both possibilities -
this is why the numbers and sizes are included. Also, new capabilities
must always be added at the end of the lists of boolean, number, and
string capabilities.

MU43814PR/D2 -2- 12/01/87

TERM(4) TERM(4)

FILES

As an example, an octal dump of the description for the AT&T Model 37
KSR is included:

37 I tty37 I AT&T model 37 teletype,
he, os, xon,
bel=AG, cr=\r, cubl=\b, cudl=\n, cuul=\E7, hd=\E9,
hu=\ES, ind=\n,

0000000 032 001 \0 032 \0 013 \0 021 001 3 \0 3 7 I t
0000020 t y 3 7 I A T & T m o d e 1
0000040 3 7 t e 1 et y p e\0\0\0\0\0
0000060 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 001 \0 \0 \0 \0
0000100 001 \0 \0 \0 \0 \0 377 377 377 377 377 377 377 377 377 377
0000120 377 377 377 377 377 377 377 377 377 377 377 377 377 377 & \0
0000~ \Ommmmmmmmmmmmmm
0000160 377 377 II \0 377 377 377 377 (\0 377 377 377 377 377 377
0000200 377 377 0 \0 377 377 377 377 377 377 377 377 - \0 377 377
0000220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 ..
oooo~mmmmmmmmmmmmmm$\O

0000540 377 377 377 377 377 377 377 377 377 377 377 377 377 377 .. \0
0000560 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 ..
~~mmmmmmmmmmmmmm37
0001200 I t t y 3 7 I A T & T m o d e
0001220 1 3 7 t e 1 e t y p e \0 \r \0
0001240 \n \0 \n \0 007 \0 \b \0 033 8 \0 033 9 \0 033 7
0001260 \0 \0
0001261

Some limitations: total compiled entries cannot exceed 4096 bytes; all
entries in the name field cannot exceed 128 bytes.

/usr/lib/terminfo/?/• compiled terminal description database
/usr/include/term.h terminfo(4) header file

SEE ALSO
curses(3X), terminfo(4), term(5).
infocmp(lM) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

MU43814PR/D2 - 3 - 12101/87

II

II

TERMINF0(4) TERMINF0(4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usrnib/terminfo/?/•

DESCRIPTION
terminfo is a compiled database (see tic(lM)) describing the capabilities of
terminals. Terminals are described in tenninfo source descriptions by giv­
ing a set of capabilities which they have, by describing how operations are
performed, by describing padding requirements, and by specifying initiali­
zation sequences. This database is used by applications programs, such
as vi(l) and curses(3X), so they can work with a variety of terminals
without changes to the programs. To obtain the source description for a
terminal, use the -I option of infocmp(lM).

Entries in tenninfo source files consist of a number of comma-separated
fields. White space after each comma is ignored. The first line of each
terminal description in the tenninfo database gives the name by which ter­
minfo knows the terminal, separated by bar (I) characters. The first name
given is the most common abbreviation for the terminal (this is the one to
use to set the environment variable TERM in $HOMEl.profile; see profile(4)),
the last name given should be a long name fully identifying the terminal,
and all others are understood as synonyms for the terminal name. All
names but the last should contain no blanks and must be unique in the
first 14 characters; the last name may contain blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen
using the following conventions. The particular piece of hardware making
up the terminal should have a root name chosen, for example, for the
AT&T 4425 terminal, att4425. Modes that the hardware can be in, or user
preferences, should be indicated by appending a hyphen and an indicator
of the mode. See term(S) for examples and more information on choosing
names and synonyms.

CAP ABILITIES
In the table below, the Variable is the name by which the C programmer
(at the tenninfo level) accesses the capability. The Capname is the short
name for this variable used in the text of the database. It is used by a per­
son updating the database and by the tput(l) command when asking what
the value of the capability is for a particular terminal. The Termcap Code
is a two-letter code that corresponds to the old termcap capability name.

MU43814PR/D2 - 1 - 12/01/87

i"~

TERMINF0(4) TERMINF0(4)

Capability names have no hard length limit, but an informal limit of 5
characters has been adopted to keep them short. Whenever possible,
names are chosen to be the same as or similar to the ANSI X3.64-1979
standard. Semantics are also intended to match those of the specification.

All string capabilities listed below may have padding specified, with the
exception of those used for input. Input capabilities, listed under the
Strings section in the table below, have names beginning with key_. The
following indicators may appear at the end of the Description for a vari­
able.

(G) indicates that the string is passed through tparm() with parame­
ters (parms) as given(#;)·

(*) indicates that padding may be based on the number of lines
affected.

(#;) indicates the ith parameter.

Variable

Booleans:
auto_left_margin
au to_right_margin
no_esc_ctlc
ceol_standout_glitch
eat_newline_glitch
erase_overstrike
generic_ type
hard_ copy
hard_ cursor
has_meta_key
has_status_line
insert_null_glitch
memory _above
memory _below
move_insert_mode
move_standout_mode
needs_xon_xoff
non_rev _rmcup
no_pad_char
over_strike

MU43814PR/D2

Cap­
name

bw
am
xsb
xhp
xenl
eo
gn
he
ch ts
km
hs
in
da
db
rnir
ms gr
nxon
nrrmc
npc
OS

Termcap
Code

bw
am
xb
XS

xn
eo
gn
he
HC
km
hs
in
da
db
mi
ms
nx
NR
NP
OS

- 2 -

Description

cubl wraps from column 0 to last column
Terminal has automatic margins
Beehive (fl=escape, f2=ctrl C)
Standout not erased by overwriting (hp)
Newline ignored after 80 cols (Concept)
Can erase overstrikes with a blank
Generic line type (e.g. dialup, switch).
Hardcopy terminal
Cursor is hard to see.
Has a meta key (shift, sets parity bit)
Has extra "status line"
Insert mode distinguishes nulls
Display may be retained above the screen
Display may be retained below the screen
Safe to move while in insert mode
Safe to move in standout modes
Padding won't work, xon/xoff required
smcup does not reverse rmcup
Pad character doesn't exist
Terminal overstrikes on hard-copy terminal

12/01/87

Ill

TERMINF0(4) TERMINF0(4)

prtr_silent mc5i Si Printer won't echo on screen.

status_line_esc_ok eslok es Escape can be used on the status line

dest_tabs_magic_smso xt xt Destructive tabs, magic smso char (t1061)

tilde_glitch hz hz Hazeltine; can't print tildes(

transparent_ underline ul ul Underline character overstrikes

xon_xoff xon XO Terminal uses xon/xoff handshaking

Numbers:
columns cols co Number of columns in a line
init_tabs it it Tabs initially every # spaces.
label_height lh lh Number of rows in each label

labeLwidth lw lw Number of cols in each label

lines lines Ii Number of lines on screen or page

lines_of_memory Im Im Unes of memory if > lines; O means varies

magic_cookie_glitch xmc sg Number blank chars left by smso or rmso

numJabels nlab NI Number of labels on screen (start at 1)

padding_baud_rate pb pb Lowest baud rate where padding needed

virtual_terminal vt vt Virtual terminal number (operating system)

width_statusJine wsl ws Number of columns in status line

Strings:
acs_chars acsc ac Graphic charset pairs aAbBcC - def=vtlOO+

back_ tab cbt bt Back tab

bell bel bl Audible signal (bell) .
carriage_retum er er Carriage return (•)
change_scroll_region csr cs Change to lines #1 thru #2 (vtlOO) (G)

char_padding rmp rP Like ip but when in replace mode
clear_all_tabs tbc ct Clear all tab stops
clear_margins mgc MC Clear left and right soft margins
clear_screen clear cl Clear screen and home cursor(*)
clr_bol ell cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display(*)
columl\....address hpa ch Horizontal position absolute (G)
command_character cmdch cc Term. settable cmd char in prototype
cursor_address cup cm Cursor motion to row #1 col #2 (G)
cursor_down cudl do Down one line

II
cursor_home home ho Home cursor (if no cup)
cursorjnvisible dvis vi Make cursor invisible

cursorJeft cubl le Move cursor left one space.

MU43814PR/D2 -3- 12/01/87

TERMINF0(4) TERMINF0(4)

cursor_mem_address mrcup CM Memory relative cursor addressing (G)

cursor_normal cnorm ve Make cursor appear normal (undo vs/vi)

cursor_right cuf1 nd Non-destructive space (cursor right)

cursor_toJI ll ll Last line, first column (if no cup)

cursor_up cuul up Upline (cursor up)

cursor_ visible cvvis VS Make cursor very visible

delete_character dchl de Delete character(•)
delete_line dll dl Delete line (•)
c:lis_status_line dsl ds Disable status line

down._half_Jine hd hd Half-line down (forward lfl linefeed)
ena_acs enllcs eA Enable alternate char set

enter_alt_charset_mode smacs as Start alternate character set
enter_am_mode smam SA Tum on automatic margins

enter_blink_mode blink mb Tum on blinking
enter_bold_mode bold md Tum on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_c:lim_mode dim mh Tum on half-bright mode
enter_insert_mode smir im Insert mode (enter);
enter_protected_mode prot mp Tum on protected mode
enter_reverse_mode rev mr Tum on reverse video mode
enter_secure_mode in vis mk Tum on blank mode (chars invisible)
enter_standout_mode smso so Begin standout mode
enter_underline_mode smul us Start underscore mode
enter_xon....mode smxon sx Tum on xon/xoff handshaking
erase_chars ech ec Erase #1 characters (G)
exit_alt_charset_mode rmacs ae End alternate character set
exit_am_mode rmam RA Tum off automatic margins
exit_attribute_mode sgrO me Tum off all attributes
exit_ca_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_insert_mode rmir ei End insert mode;
exit_standout_mode rmso se End standout mode
exit_underline_mode rmul ue End underscore mode
exit_xon....mode rmxon RX Tum off xon/xoff handshaking
flash_screen flash vb Visible bell (may not move cursor)
fonn_feed ff ff Hardcopy terminal page eject(•)
from_status_line fsl fs Return from status line

II iniUstring isl il Terminal initialization string
init...2.string is2 is Terminal initialization string

MU43814PR/D2 -4- 12/01/87

TERMINF0(4) TERMINF0(4)

init_3string is3 i3 Terminal initialization string
init_file if if Name of initialization file containing is

init_prog iprog iP Path name of program for init.

insert_ character ichl ic I~rt character
insert_ line ill al Add new blank line(*)

insert_padding ip ip Insert pad after character inserted(*)

key_al kal Kl KEY_Al, 0534, Upper left of keypad

key_a3 ka3 K3 KEY_A3, 0535, Upper right of keypad

key_b2 kb2 K2 KEY_B2, 0536, Center of keypad

key_backspace kbs kb KEY_BACKSPACE, 0407, Sent by backspace key
key_beg kbeg @l KEY_BEG, 0542, Sent by beg(inning) key
key_btab ·kcbt kB KEY_BTAB, 0541, Sent by back-tab key

key_cl kcl K4 KEY_Cl, 0537, Lower left of keypad

key_c3 kc3 KS KEY_C3,0540,Lowerrightofkeypad

key_cancel kcan @fl. KEY_ CANCEL, 0543, Sent by cancel key
key_catab ktbc ka KEY_CATAB, 0526, Sent by clear-all-tabs key
key_clear kclr kC KEY_CLEAR, 0515, Sent by clear-screen or erase key

key_close kclo @3 KEY_CLOSE, 0544, Sent by close key

key _command kcmd @4 KEY_COMMAND, 0545, Sent by cmd (command) key

key_copy kcpy @5 KEY_COPY, 0546, Sent by copy key
key_create kcrt @6 KEY_CREATE, 0547, Sent by create key
key_ctab kc tab kt KEY_CTAB, 0525, Sent by clear-tab key
key_dc kdchl kD KEY_DC, 0512, Sent by delete-character key
key_dl kdll kL KEY_DL, 0510, Sent by delete-line key
key_down kcudl kd KEY_OOWN, 0402, Sent by terminal down-arrow key
key_eic krmir kM KEY_EIC, 0514, Sent by rmir or smir in insert mode
key_end kend @7 KEY_END, 0550, Sent by end key
key_enter kent @8 KEY_ENTER, 0527, Sent by enter/send key
key_eol kel kE KEY_EOL, 0517, Sent by clear-to-end-of-line key
key_eos ked kS KEY_EOS, 0516, Sent by clear-to-end-of-screen key
key_exit kext @8 KEY_EXIT, 0551, Sent by exit key
key_fO kfO kO KEY_F(O), 0410, Sent by function key fO
key_fl kfl kl KEY_F(l), 0411, Sent by function key fl
key_f2 kf2 k2 KEY_F(2), 0412, Sent by function key f2
key_f3 kf3 k3 KEY_F(3), 0413, Sent by function key f3
key_f4 kf4 k4 KEY_F(4), 0414, Sent by function key f4
key_fS kfS k5 KEY_F(5), 0415, Sent by function key f5

II
key_f6 kf6 k6 KEY_F(6), 0416, Sent by function key f6
key_t7 kt7 k7 KEY_F(7), 0417, Sent by function key t7
key_f8 kf8 k8 KEY_F(S), 0420, Sent by function key f8

MU43814PR/D2 -5- 12/01/87

TERMINF0(4) TERMINF0(4)

key.J9 ld9 k9 KEY...F(9), 0421, Sent by function key f9
key_flO kflO k; KEYJ'(lO), 0422, Sent by function key flO
key_fll kfll Fl KEYJ'(ll), 0423, Sent by function key f11

key_f12 kf12 F2 KEYJ'(12), 0424, Sent by function key f12

key_f13 kf13 F3 KEYJ(13), 0425, Sent by function key f13
key_f14 kf14 F4 KEY...F(14), 0426, Sent by function key f14
key_flS kflS FS KEYJ'(lS), 0427, Sent by function key flS
key_f16 kf16 F6 KEYJ'(16), 0430, Sent by function key f16
key_f17 kf17 F7 KEYJ'(17), 0431, Sent by function key f17
key_flS kflS FS KEYJ'(lS), 0432, Sent by function key flS
key_f19 kf19 F9 KEYJ'(19), 0433, Sent by function key f19
key_f20 kf20 FA KEYJ'(20), 0434, Sent by function key t20
key_fll kt21 FB KEYJ'(21), 0435, Sent by function key t21
key_fl2 kt22 FC KEYJ'(22), 0436, Sent by function key t22

key_fl3 kt23 FD KEYJ'(23), 0437, Sent by function key f23
key_fl4 kt24 FE KEYJ'(24), 0440, Sent by function key t24
key_flS kt2S FF KEYJ'(2S), 0441, Sent by function key t2S
key_fl6 kt26 FG KEYJ'(26), 0442, Sent by function key t26
key_fl7 kt27 FH KEYJ'(27), 0443, Sent by function key t27
key_flS kt28 Fl KEYJ'(28), 0444, Sent by function key t28
key_t29 kt29 FJ KEYJ'(29), 0445, Sent by function key t29
key_f30 kf30 FK KEYJ'(30), 0446, Sent by function key f30
key_f31 kf31 FL KEYJ'(31), 0447, Sent by function key f31
key_f32 kf32 FM KEYJ'(32), 0450, Sent by function key t32
key_f33 kf33 FN KEYJ'(13), 0451, Sent by function key f13
key_f34 kt34 FO KEYJ'(34), 0452, Sent by function key t34
key_f35 kt35 FP KEYJ'(3S), 0453, Sent by function key t3S
key_f36 kt36 FQ KEYJ'(36), 0454, Sent by function key t36
key_f37 kt37 FR KEY...F(37), 0455, Sent by function key t37
key_t38 kt38 FS KEY...F(38), 0456, Sent by function key t38
key_f39 kt39 Fr KEYJ'(39), 0457, Sent by function key t39
key_f40 kf40 FU KEYJ(40), 0460, Sent by function key f40
key_f41 kf41 FV KEYJ'(41), 0461, Sent by function key £41
key_f42 kf42 FW KEYJ'(42), 0462, Sent by function key f42
key_f43 kf43 FX KEYJ'(43), 0463, Sent by function key f43
keyJ44 kf44 FY KEYJ'(44), 0464, Sent by function key f44

' keyJ45 kf4S FZ KEY...F(4S), 0465, Sent by function key f4S i
keyJ46 kf46 Fa KEYJ'(46), 0466, Sent by function key £46

II keyJ47 kf47 Fb KEYJ'(47), 0467, Sent by function key f47
key_f48 kf48 Fe KEYJ'(48), 0470, Sent by function key f48

MU43814PR/02 -6- 12/01/87

TERMINF0(4) TERMINF0(4)

key_f49 kf49 Fd KEY_F(49), 0471, Sent by function key £49

key_f50 kf50 Fe KEY_F(SO), 0472, Sent by function key £50

key_f51 kf51 Ff KEY_F(51), 0473, Sent by function key £51

key_f52 kf52 Fg KEY_F(52), 0474, Sent by function key £52

key_f53 kf53 Fh KEY_F(53), 0475, Sent by function key f53

key_f54 kf54 Fi KEY_F(54), 0476, Sent by function key f54

key_f55 kf55 Fj KEY_F(55), 0477, Sent by function key f55

key_f56 kf56 Fk KEY_F(56), 0500, Sent by function key f56

key_f57 kf57 Fl KEY_F(57), 0501, Sent by function key £57

key_f58 kf58 Fm KEY_F(58), 0502, Sent by function key f58

key_f59 kf59 Fn KEY_F(59), 0503, Sent by function key £59

key_f60 kf60 Fo KEY_F(60), 0504, Sent by function key f60

key_f61 kf61 Fp KEY_F(61), 0505, Sent by function key f61

key_f62 kf62 Fq KEY_F(62), 0506, Sent by function key £62

key_f63 kf63 Fr KEY_F(63), 0507, Sent by function key f63

key_find kfnd @Cl KEY_FIND, 0552, Sent by find key

key_help khlp %1 KEY_HELP, 0553, Sent by help key

key_home khome kh KEY_HOME, 0406, Sent by home key

key_ic kichl kl KEY_IC, 0513, Sent by ins-char/enter ins-mode key
key_il kill kA KEY_IL, 0511, Sent by insert-line key

keyJeft kcubl kl KEY_LEFr, 0404, Sent by terminal left-arrow key

key_ll kll kH KEY_LL, 0533, Sent by home-down key
key_mark kmrk %2 KEY_MARK, 0554, Sent by mark key

key _message kmsg %3 KEY_MESSAGE, 0555, Sent by message key
key_move kmov %4 KEY_MOVE, 0556, Sent by move key
key_next knxt %5 KEY_NEXT, 0557, Sent by next-object key
key_npage knp kN KEY_NPAGE, 0522, Sent by next-page key
key_open kopn %6 KEY_OPEN, 0560, Sent by open key

key_options kopt %7 KEY_OPTIONS, 0561, Sent by options key
key_ppage kpp kP KEY_PPAGE, 0523, Sent by previous-page key
key _previous kprv %8 KEY_PREVIOUS, 0562, Sent by previous-object key
key_print kprt %9 KEY_PRINT, 0532, Sent by print or copy key

key_redo krdo %0 KEY_REOO, 0563, Sent by redo key
key _reference kref &:1 KEY_REFERENCE, 0564, Sent by ref(erence) key
key _refresh krfr &:2 KEY_REFRESH, 0565, Sent by refresh key
key _replace krpl &:3 KEY_REPLACE, 0566, Sent by replace key
key _restart krst &:4 KEY_RESTART, 0567, Sent by restart key

II
key_resume kres &:5 KEY_RESUME, 0570, Sent by resume key

key...:right kcufl kr KEY_RIGHT, 0405, Sent by terminal right-arrow key
key_save ksav &:6 KEY_SA VE, 0571, Sent by save key

MU43814PR/D2 -7- 12/01/87

TERMINF0(4) TERMINF0(4)

key_sbeg kBEG &:9 KEY_SBEG, 05'72, Sent by shifted beginning key

key _scancel kCAN &tO KEY_SCANCEL, 0573, Sent by shifted cancel key

key_scommand kCMD •1 KEY_SCOMMAND, 0574, Sent by shifted command key

key_scopy kCPY •2 KEY_SCOPY, 0575, Sent by shifted copy key

key _screate kCRT •3 KEY_SCREATE, 0576, Sent by shifted create key

key_sdc kDC *4 KEY_5DC, 0577, Sent by shifted delete-char key

key_sdl kDL •5 KEY_SDL, 0600, Sent by shifted delete-line key

key_select kslt •6 KEY_SELECT, 0601, Sent by select key

key__send kEND •1 KEY_SEND, 0602, Sent by shifted end key

key__seol kEOL •8 KEY_SEOL, 0603, Sent by shifted clear-line key

key_sexit kEXT •9 KEY_SEXIT, 0604, Sent by shifted exit key

key__sf kind kF KEY_SF, 0520, Sent by scroll-forward/down key

key__sfind kFND *O KEY_SFIND, 0605, Sent by shifted find key

key_shelp kHLP #1 KEY_SHELP, 0606, Sent by shifted help key

key__shome kHOM #2 KEY_5HOME, 0607, Sent by shifted home key
key_sic kIC #3 KEY_SIC, 0610, Sent by shifted input key

key__sleft kLFr #4 KEY_5LEFT, 0611, Sent by shifted left-arrow key

key__smessage kMSG %a KEY_SMESSAGE, 0612, Sent by shifted message key

key_smove kMOV %b KEY_SMOVE, 0613, Sent by shifted move key

key_snext kNXT %c KEY_SNEXT, 0614, Sent by shifted next key

key_soplions kOPr %d KEY_50PTIONS, 0615, Sent by shifted options key

key _sprevious kPRV %e KEY_SPREVIOUS, 0616, Sent by shifted prev key

key_sprint kPRT %f KEY_5PRINT, 0617, Sent by shifted print key
key_sr kri kR KEY_SR, 0521, Sent by scroll-backward/up key
key_sredo kRDO %g KEY_SREDO, 0620, Sent by shifted redo key

key _sreplace kRPL %h KEY_SREPLACE, 0621, Sent by shifted replace key
key_sright kRIT %i KEY_SRIGHT, 0622, Sent by shifted right-arrow key
key_srsume kRES %j KEY_SRSUME, 0623, Sent by shifted resume key
key_ssave kSAV 11 KEY_SSA VE, 0624, Sent by shifted save key
key _ssuspend kSPD 12 KEY_SSUSPEND, 0625, Sent by shifted suspend key
key_stab khts kT KEY_STAB, 0524, Sent by set-tab key
key_sundo kUND 13 KEY_SUNDO, 0626, Sent by shifted undo key
key_suspend ks pd &:7 KEY_SUSPEND, 0627, Sent by suspend key
key_undo kund &:8 KEY_UNDO, 0630, Sent by undo key
key_up kcuul ku KEY_UP, 0403, Sent by terminal up-arrow key

keypadJocal rmkx ke Out of ''keypad-transmit" mode
\ keypad_xmit smkx ks Put terminal in "keypad-transmit" mode
)

lab_fO lfO 10 Labels on function key fO if not fO

1111 lab_fl lf1 11 Labels on function key fl if not fl
Jab_fl lf2 12 Labels on function key f2 if not f2

MU43814PR/D2 -8- 12101/87

TERMINF0(4) TERMINF0(4)

lab_f3 lf3 13 Labels on function key f3 if not f3

lab_f4 1£4 14 Labels on function key f4 if not £4

lab_f5 lf5 l5 Labels on function key fS if not f5

lab_f6 lf6 16 Labels on function key f6 if not f6
lab_f7 lf7 17 Labels on function key f7 if not f7
lab_f8 lf8 18 Labels on function key f8 if not f8

lab_f9 lf9 19 Labels on function key f9 if not f9

lab_flO lflO la Labels on function key flO if not flO

label_ off rmln LF Turn off soft labels
label_ on smln LO Turn on soft labels
meta_off rmm mo Turn off "meta mode"

meta_ on smm mm Turn on "meta mode" (8th bit)

newline nel nw Newline (behaves like er followed by If)
pad_ char pad pc Pad character (rather than null)

parm_dch dch DC Delete #1 chars (G•)
parm_delete_line di DL Delete #1 lines (G•)
parm_down_cursor cud DO Move cursor down #1 lines. (G•)

parm_ich ich IC Insert #1 blank chars (G•)
parm_index indn SF Scroll forward #1 lines. (G)
parm_insert_line il AL Add #1 new blank lines (G•)
parm_left_cursor cub LE Move cursor left #1 spaces (G)

parm_right_cursor cuf RI Move cursor right #1 spaces. (G•)

parm_rindex rin SR Scroll backward #1 lines. (G)
parm_up_cursor cuu UP Move cursor up #1 lines. (G•)
pkey_key pfkey pk Prog funct key #1 to type string #2
pkeyJocal pfloc pl Prog funct key #1 to execute string #2
pkey_xmit pfx px Prog funct key #1 to xmit string #2
plab_norm pin pn Prog label #1 to show string #2
print_screen mcO ps Print contents of the screen
prtr_non mcSp pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtr_on mcS po Turn on the printer
repeat_ char rep rp Repeat char #1 #2 times (G•)
req_for_input rfi RF Send next input char (for ptys)
reset_lstring rsl r1 Reset terminal completely to sane modes
reset_2string rs2 r2 Reset terminal completely to sane modes
reset_3string rs3 r3 Reset terminal completely to sane modes

II
reset_file rf rf Name of file containing reset string
restore_ cursor re re Restore cursor to position of last sc
row _address vpa CV Vertical position absolute (G)

MU43814PR/D2 - 9 - 12/01/87

TERMINF0(4) TERMINF0(4)

save_cursor SC SC Save cursor position.

scroll_forward ind sf Scroll text up

scroll_reverse ri sr Scroll text down

set_attributes sgr sa Define the video attributes #1-#9 (G)

set_left_margin smgl ML Set soft left margin

set_right_margin smgr MR Set soft right margin

set_ tab hts st Set a tab in all rows, current column.

set_ window wind wi Current window is lines #1-#2 cols #3-#4 (G)

tab ht ta Tab to next 8 space hardware tab stop.

to_statusJine tsl ts Go to status line, col #1 (G)

underline_char UC UC Underscore one char and move past it

up_half_line hu hu Half-line up (reverse 1/2 linefeed)

xoff_character xoffc XF X-off character

xon....character xonc XN X-on character

SAMPLE ENTRY
The following entry, which describes the Concept-100 terminal, is among
the more complex entries in the terminfo file as of this writing.

conceptlOO I clOOI concept I cl04 I c100-4p I concept 100,
- am, db, eo, in, mir, ul, xenl,
- cols#80, lines#24, pb#9600, vt#8,
- bet=·G, blank=\EH, blink=\EC, clear=·L$<2•>,
- cnorm=\Ew, cr=·M$<9>, cubl=·H, cudt=·J,
- cufl=\E=, cup=\Ea%p1%' '%+%c%p2%' '%+%c,
- cuul=\E;, cvvis=\EW, dchl=\E.A$<16•>, dim=\EE,
- dll=\E.B$<3•>, ed=\E.C$<16•>, el=\E.U$<16>,
- flash=\Ek$<20>\EK, ht=\t$<8>, ill=\E.R$<3•>,
- ind=·r, .ind=.J$<9>, ip=$<16•>,
- is2=\EU\Ef\E7'\E5\E8\El\ENH\EK\E\O\Eo&\O\Eo\47\E,
- kbs=·h, kcubl=\E>, kcudl=\E<, kcufl=\E=, kcuul=\E;,
- kfl=\ES, kf2=\E6, kf3=\E7, khome=\E?,
- prot=\EI, rep=\Er%pl %c%p2%' '% + %c$< .2•>,
- rev=\ED, rmcup=\Ev\s\s\s\s$<6>\Ep\r\n,
- rmir=\E\0, rmkx=\Ex, rmso=\Ed\Ee, rmul=\Eg,
- rmul=\Eg, sgrO=\EN\0, smcup=\EU\Ev\s\s8p\Ep\r,
- smir=\E·P, smkx=\EX, smso=\EE\ED, smul=\EG,

Entries may continue onto multiple lines by placing white space at the
beginning of each line except the first. Lines beginning with "#" are II
taken as comment lines. Capabilities in tenninfo are of three types: •
boolean capabilities which indicate that the terminal has some particular

MU43814PR/D2 - 10 - 12/01/87

II

TERMINF0(4) TERMINF0(4)

feature, numeric capabilities giving the size of the terminal or particular
features, and string capabilities, which give a sequence which can be used
to perform particular terminal operations.

Types of Capabilities
All capabilities have names. For instance, the fact that the Concept has
automatic margins (i.e., an automatic return and linefeed when the end of a
line is reached) is indicated by the capability am. Hence the description
of the Concept includes am. Numeric capabilities are followed by the char­
acter '#' and then the value. Thus cols, which indicates the number of
columns the terminal has, gives the value 80 for the Concept. The value
may be specified in decimal, octal or hexadecimal using normal C conven­
tions.

Finally, string-valued capabilities, such as el (clear to end of line
sequence) are given by the two- to five-character capname, an '=', and
then a string ending at the next following comma. A delay in mil­
liseconds may appear anywhere in such a capability, enclosed in $< .. >
brackets, as in el=\EK$<3>, and padding characters are supplied by
tputs() (see curses(3X)) to provide this delay. The delay can be either a
number, e.g., 20, or a number followed by an '*' (i.e., 3•), a '/' (i.e., 5/),
or both (i.e., 10•/). A '*' indicates that the padding required is propor­
tional to the number of lines affected by the operation, and the amount
given is the per-affected-unit padding required. (In the case of insert
character, the factor is still the number of lines affected. This is always
one unless the terminal has in and the software uses it.) When a '*' is
specified, it is sometimes useful to give a delay of the form 3.5 to specify
a delay per unit to tenths of milliseconds. (Only one decimal place is
allowed.) A'/' indicates that the padding is mandatory. Otherwise, if the
terminal has xon defined, the padding information is advisory and will
only be used for cost estimates or when the terminal is in raw mode.
Mandatory padding will be transmitted regardless of the setting of xon.

A number of escape sequences are provided in the string valued capabili­
ties for easy encoding of characters there. Both \E and \e map to an
ESCAPE character, Ax maps to a control-x for any appropriate x, and the
sequences \n, \1, \r, \t, \b, \f, and \s give a newline, linefeed, return, tab,
backspace, formfeed, and space, respectively. Other escapes include: \A
for caret C); \\for backslash (\); \, for comma {,); \: for colon (:); and \0 for
null. (\0 will actually produce \200, which does not terminate a string but
behaves as a null character on most terminals.) Finally, characters may be
given as three octal digits after a backslash (e.g., \123).

MU43814PR/D2 -11 - 12/01/87

TERMINF0(4) TERMINF0(4)

Sometimes individual capabilities must be commented out. To do this,
put a period before the capability name. For example, see the second ind
in the example above. Note that capabilities are defined in a left-to-right
order and, therefore, a prior definition will override a later definition.

Preparing Descriptions
The most effective way to prepare a terminal description is by imitating
the description of a similar terminal in terminfo and to build up a descrip­
tion gradually, using partial descriptions with vi(l) to check that they are
correct. Be aware that a very unusual terminal may expose deficiencies in
the ability of the terminfo file to describe it or the inability of vi(l) to work
with that terminal. To test a new terminal description, set the environ­
ment variable TERMINFO to a pathname of a directory containing the
compiled description you are working on and programs will look there
rather than in lusr/liblterminfo. To get the padding for insert-line correct (if
the terminal manufacturer did not document it) a severe test is to com­
ment out xon, edit a large file at 9600 baud with vi(l), delete 16 or so lines
from the middle of the screen, then hit the u key several times quickly. If
the display is corrupted, more padding is usually needed. A similar test
can be used for insert-character.

Basic Capabilities
The number of columns on each line for the terminal is given by the cols
numeric capability. If the terminal has a screen, then the number of lines
on the screen is given by the lines capability. If the terminal wraps
around to the beginning of the next line when it reaches the right margin,
then it should have the am capability. If the terminal can clear its screen,
leaving the cursor in the home position, then this is given by the clear
string capability. If the terminal overstrikes (rather than clearing a posi­
tion when a character is struck over) then it should have the os capability.
If the terminal is a printing terminal, with no soft copy unit, give it both
he and os. (os applies to storage scope terminals, such as Tektronix 4010
series, as well as hard-copy and APL terminals.) If there is a code to move
the cursor to the left edge of the c.urrent row, give this as er. (Normally
this will be carriage return, control M.) If there is a code to produce an
audible signal (bell, beep, etc) give this as bel. If the terminal uses the
xon-xoff flow-control protocol, like most terminals, specify xon.

If there is a code to move the cursor one position to the left (such as back­
space) that capability should be given as cubl. Similarly, codes to move
to the right, up, and down should be given as cufl, cuul, and cudl.
These local cursor motions should not alter the text they pass over; for

MU43814PR/D2 - 12 - 12/01/87

II

II

TERMINF0(4) TERMINF0(4)

example, you would not normally use "cufl=\s" because the space would
erase the character moved over.

A very important point here is that the local cursor motions encoded in
terminfo are undefined at the left and top edges of a screen terminal. Pro­
grams should never attempt to backspace around the left edge, unless bw
is given, and should never attempt to go up locally off the top. In order
to scroll text up, a program will go to the bottom left comer of the screen
and send the ind (index) string.

To scroll text down, a program goes to the top left comer of the screen
and sends the ri (reverse index) string. The strings ind and ri are unde­
fined when not on their respective comers of the screen.

Parameterized versions of the scrolling sequences are indn and rin which
have the same semantics as ind and ri except that they take one parame­
ter, and scroll that many lines. They are also undefined except at the
appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the
screen when text is output, but this does not necessarily apply to a cufl
from the last column. The only local motion which is defined from the
left edge is if bw is given, then a cubl from the left edge will move to the
right edge of the previous row. If bw is not given, the effect is undefined.
This is useful for drawing a box around the edge of the screen, for exam­
ple. If the terminal has switch selectable automatic margins, the terminfo
file usually assumes that this is on; i.e., am. If the terminal has a com­
mand which moves to the first column of the next line, that command can
be given as nel (newline). It does not matter if the command clears the
remainder of the current line, so if the terminal has no er and If it may
still be possible to craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus
the model 33 teletype is described as

331 tty33 J tty I model 33 teletype, - bel=AG, cols#72, cr=AM, cudl=AJ, he,
ind=AJ, os,

while the Lear Siegler ADM-3 is described as

adm3 J lsi adm3, - am, bel=AG, clear=AZ, cols#BO, cr=AM, cubl=AH,
cudl=AJ, - ind=AJ, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in the terminal
are described by a parameterized string capability, with printf(3S)-like

MU43814PR/D2 - 13 - 12101/87

TERMINF0(4) TERMINF0(4)

%%

escapes (%x) in it. For example, to address the cursor, the cup capability
is given, using two parameters: the row and column to address to.
(Rows and columns are numbered from zero and refer to the physical
screen visible to the user, not to any unseen memory.) If the terminal has
memory relative cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special% codes to manipulate
it in the manner of a Reverse Polish Notation (postfix) calculator. Typi­
cally a sequence will push one of the parameters onto the stack and then
print it in some format. Often more complex operations are necessary.
Binary operations are in postfix form with the operands in the usual
order. That is, to get x-5 one would use %gx%{5}%-.

The % encodings have the following meanings:

% [[:]flags][width[.precision]][doxXs]
outputs'%'
as in print£,

% c print pop{)
%p[l-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}
%1
%+ %-%• %/ %m

%&%1 %A
%= %> %<
%A%0
%! %'
%i

% ? expr %t thenpart %e elsepart %;

flags are [-+#]and space
gives o/'J.f
push it parm
set variable [a-z] to pop{)
get variable [a-z] and push it
push char constant c
push decimal constant nn
push strlen(pop())
arithmetic (%m is mod):
push(pop() op pop{))
bit operations: push(pop() op pop())
logical operations: push(pop() op pop())
logical operations: and, or
unary operations: push(op pop())
(for ANSI terminals)

add 1 to first parm, if one parm present,
or first two parms, if more than one
parm present

if-then-else, %e elsepart is optional;
else-if' s are possible ala Algol 68:
%? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e b5%;

c. are conditions, b. are bodies. Ill
l l

•

MU43814PR/D2 - 14 - 12/01/87

II

TERMINF0(4) TERMINF0(4)

If the "-" flag is used with "%[doxXs]", then a colon (:) must be placed
between the "%" and the "-" to differentiate the flag from the binary
"%-" operator, .e.g "% :-16.16s".

Consider the Hewlett-Packard 2645, which, to get to row 3 and column
12, needs to be sent \E&a12c03Y padded for 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row and
column are zero-padded as two digits. Thus its cup capability is
"cup=\E&a%p2%2.2dc%pl %2.2dY$<6>".

The Micro-Term ACT-N needs the current row and column sent preceded
by a AT, with the row and column simply encoded in binary,
"cup=AT%pl %c%p2%c". Terminals which use "%c" need to be able to

, backspace the cursor (cubl), and to move the cursor up one line on the
screen (cuul). This is necessary because it is not always safe to transmit
\n, AD, and \r, as the system may change or discard them. (The library
routines dealing with terminfo set tty modes so that tabs are never
expanded, so \t is safe to send. This turns out to be essential for the Ann
Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus "cup=\E= %pl %'\s'% + %c%p2%'\s'% + %c". After
sending "\E=", this pushes the first parameter, pushes the ASCII value
for a space (32), adds them (pushing the sum on the stack in place of the
two previous values), and outputs that value as a character. Then the
same is done for the second parameter. More complex arithmetic is possi­
ble using the stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left comer
of screen) then this can be given as home; similarly a fast way of getting
to the lower left-hand comer can be given as 11; this may involve going up
with cuul from the home position, but a program should never do this
itself (unless 11 does) because it can make no assumption about the effect
of moving up from the home position. Note that the home position is the
same as addressing to (0,0): to the top left comer of the screen, not of
memory. (Thus, the \EH sequence on Hewlett-Packard terminals cannot
be used for home without losing some of the other features on the termi­
nal.)

If the terminal has row or column absolute-cursor addressing, these can
be given as single parameter capabilities hpa (horizontal position absolute)
and vpa (vertical position absolute). Sometimes these are shorter than the

MU43814PR/D2 - 15 - 12101/87

TERMINF0(4) TERMINF0(4)

more general two-parameter sequence (as with the Hewlett-Packard 2645)
and can be used in preference to cup. If there are parameterized local
motions (e.g., move n spaces to the right) these can be given as cud, cub,
cuf, and cuu with a single parameter indicating how many spaces to
move. These are primarily useful if the terminal does not have cup, such
as the Tektronix 4025.

Area Clears
If the terminal can clear from the current position to the end of the line,
leaving the cursor where it is, this should be given as el. If the terminal
can clear from the beginning of the line to the current position inclusive,
leaving the cursor where it is, this should be given as ell. If the terminal
can clear from the current position to the end of the display, then this
should be given as ed. ed is only defined from the first column ofa line.
(Thus, it can be simulated by a request to delete a large number of liQes, if
a true ed is not available.)

Insert/delete line
If the terminal can open a new blank line before the line where the cursor
is, this should be given as ill; this is done only from the first position of a
line. The cursor must then appear on the newly blank line. If the termi­
nal can delete the line which the cursor is on, then this should be given as
dll; this is done only from the first position on the line to be deleted.
Versions of ill and dll which take a single parameter and insert or delete
that many lines can be given as ii and di.

If the terminal has a settable destructive scrolling region (like the VTlOO)
the command to set this can be described with the csr capability, which
takes two parameters: the top and bottom lines of the scrolling region.
The cursor position is, alas, undefined after using this command. It is
possible to get the effect of insert or delete line using this command - the
sc and re (save and restore cursor) commands are also useful. Inserting
lines at the top or bottom of the screen can also be done using ri or ind on
many terminals without a true insert/delete line, and is often faster even
on terminals with those features.

To determine whether a terminal has destructive scrolling regions or non­
destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the
cursor to the top line of the scrolling region, and do a reverse index (ri)
followed by a delete line (dll) or index (ind). If the data that was origi- II
nally on the bottom line of the scrolling region was restored into the scrol- •
ling region by the dll or ind, then the terminal has non-destructive

MU43814PR/D2 -16 - 12/01/87

II

TERMINF0(4) TERMINF0(4)

scrolling regions. Otherwise, it has destructive scrolling regions. Do not
specify csr if the terminal has non-destructive scrolling regions, unless
ind, ri, indn, rin, dl, and dll all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory,
which all commands affect, it should be given as the parameterized string
wind. The four parameters are the starting and ending lines in memory
and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability
should be given; if display memory can be retained below, then db should
be given. These indicate that deleting a line or scrolling a full screen may
bring non-blank lines up from below or that scrolling back with ri may
bring down non-blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to
insert/delete character operations which can be described using terminfo.
The most common insert/delete character operations affect only the char­
acters on the current line and shift characters off the end of the line
rigidly. Other terminals, such as the Concept 100 and the Perkin Elmer
Owl, make a distinction between typed and untyped blanks on the
screen, shifting upon an insert or delete only to an untyped blank on the
screen which is either eliminated, or expanded to two untyped blanks.
You can determine the kind of terminal you have by clearing the screen
and then typing text separated by cursor motions. Type "abc def"
using local cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the terminal in insert
mode. If typing characters causes the rest of the line to shift rigidly and
characters to fall off the end, then your terminal does not distinguish
between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the
next as you insert, you have the second type of terminal, and should give
the capability in, which stands for "insert null". While these are two log­
ically separate attributes (one line versus multiline insert mode, and spe­
cial treatment of untyped spaces) we have seen no terminals whose insert
mode cannot be described with the single attribute.

terminfo can describe both terminals which have an insert mode and termi­
nals which send a simple sequence to open a blank position on the
current line. Give as smir the sequence to get into insert mode. Give as
rmir the sequence to leave insert mode. Now give as ichl any sequence
needed to be sent just before sending the character to be inserted. Most

MU43814PR/D2 - 17 - 12/01/87

TERMINF0(4) TERMINF0(4)

terminals with a true insert mode will not give ichl; terminals which send
a sequence to open a screen position should give it here. (If your terminal
has both, insert mode is usually preferable to ichl. Do not give both
unless the terminal actually requires both to be used in combination.) If
post-insert padding is needed, give this as a number of milliseconds pad­
ding in ip (a string option). Any other sequence which may need to be
sent after an insert of a single character may also be given in ip. If your
terminal needs both to be placed into an 'insert mode' and a special code
to precede each inserted character, then both smir/rmir and ichl can be
given, and both will be used. The ich capability, with one parameter, n,
will repeat the effects of ichl n times.

If padding is necessary between characters typed while not in insert
mode, give this as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (e.g., if there is a tab after the insertion posi­
tion). If your terminal allows motion while in insert mode you can give
the capability mir to speed up inserting in this case. Omitting mir will
affect only speed. Some terminals (notably Datamedia's) must not have
mir because of the way their insert mode works.

Finally, you can specify dchl to delete a single character, dch with one
parameter, n, to delete n characters, and delete mode by giving smdc and
rmdc to enter and exit delete mode (any mode the terminal needs to be
placed in for dchl to work).

A command to erase n characters (equivalent to outputting n blanks
without moving the cursor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these can be
represented in a number of different ways. You should choose one
display form as standout mode (see curses(3X)), representing a good, high
contrast, easy-on-the-eyes, format for highlighting error messages and
other attention getters. (If you have a choice, reverse-video plus half­
bright is good, or reverse-video alone; however, different users have dif­
ferent preferences on different terminals.) The sequences to enter and exit
standout mode are given as smso and rmso, respectively. If the code to
change into or out of standout mode leaves one or even two blank spaces
on the screen, as the TVI 912 and Teleray 1061 do, then xmc should be
given to tell how many spaces are left.

MU43814PR/D2 - 18 - 12/01/87

II

TERMINF0(4) TERMINF0(4)

Codes to begin underlining and end underlining can be given as smul and
rmul respectively. If the terminal has a code to underline the current
character and move the cursor one space to the right, such as the Micro­
Term MIME, this can be given as uc.

Other capabilities to enter various highlighting modes include blink
(blinking), bold (bold or extra-bright), dim (dim or half-bright), invis
(blanking or invisible text), prot (protected), rev (reverse-video), sgrO (tum
off all attribute modes), smacs (enter alternate-character-set mode), and
rmacs (exit alternate-character-set mode). Turning on any of these modes
singly may or may not tum off other modes. If a command is necessary
before alternate character set mode is entered, give the sequence in enacs
(enable alternate-character-set mode).

If there is a sequence to set arbitrary combinations of modes, this should
be given as sgr (set attributes), taking nine parameters. Each parameter is
either 0 or non-zero, as the corresponding attribute is on or off. The nine
parameters are, in order: standout, underline, reverse, blink, dim, bold,
blank, protect, alternate character set. Not all modes need be supported
by sgr, only those for which corresponding separate attribute commands
exist. (See the example at the end of this section.)

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies"
when they receive mode-setting sequences, which affect the display algo­
rithm rather than having extra bits for each character. Some terminals,
such as the Hewlett-Packard 2621, automatically leave standout mode
when they move to a new line or the cursor is addressed. Programs using
standout mode should exit standout mode before moving the cursor or
sending a newline, unless the msgr capability, asserting that it is safe to
move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly
(a bell replacement), then this can be given as flash; it must not move the
cursor. A good flash can be done by changing the screen into reverse
video, pad for 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on
the bottom line (to make, for example, a non-blinking underline into an
easier to find block or blinking underline) give this sequence as cvvis.
The boolean chts should also be given. If there is a way to make the cur­
sor completely invisible, give that as civis. The capability cnorm should
be given which undoes the effects of either of these modes.

MU43814PR/D2 -19 - 12/01/87

TERMINF0(4) TERMINF0(4)

If the terminal needs to be in a special mode when running a program
that uses these capabilities, the codes to enter and exit this mode can be
given as smcup and rmcup. This arises, for example, from terminals like
the Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor address­
ing, a one screen-sized window must be fixed into the terminal for cursor
addressing to work properly. This is also used for the Tektronix 4025,
where smcup sets the command character to be the one used by terminfo.
If the smcup sequence will not restore the screen after an rmcup sequence
is output (to the state prior to outputting rmcup), specify nrrmc.

If your terminal generates underlined characters by using the underline
character (with no special codes needed) even though it does not other­
wise overstrike characters, then you should give the capability ul. For ter­
minals where a character overstriking another leaves both characters on
the screen, give the capability os. If overstrikes are erasable with a blank,
then this should be indicated by giving eo.

Example of highlighting: assume that the terminal under question needs
the following escape sequences to tum on various modes.

tparm attribute escape sequence
parameter

none \E[Om
pl standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
pS dim \E[0;7m
p6 bold \E[0;3;4m
p7 in vis \E[0;8m
p8 protect not available
p9 altcharset AO (off) AN(on)

Note that each escape sequence requires a 0 to tum off other modes
before turning on its own mode. Also note that, as suggested above, stan­
dout is set up to be the combination of reverse and dim. Also, since this
terminal has no bold mode, bold is set up as the combination of reverse and
underline. In addition, to allow combinations, such as underline+ blink, the
sequence to use would be \EI0;3;5m. The terminal doesn't have protect
mode, either, but that cannot be simulated in any way, so p8 is ignored.
The altcharset mode is different in that it is either AO or AN depending on

MU43814PR/D2 - 20 - 12/01/87

Ill

II

TERMINF0(4) TERMINF0(4)

whether it is off or on. If all modes were to be turned on, the sequence
would be \E[0;3;4;5;7;8mAN.

Now look at when different sequences are output. For example, ;3 is out­
put when either p2 or p6 is true, that is, if either underline or bold modes
are turned on. Writing out the above sequences, along with their depen­
dencies, gives the following:

sequence

\E[O
;3
;4
;5
;7
;8
m
AN or AO

when to output

always
if p2 or p6
if pl or p3 or p6
if p4
if pl or pS
if p7
always
if p9 AN, else AO

terminfo translation

\E[O
%?%p2%p6%1%t;3%;
%?%pl%p3%1%p6%1%t;4%;
%?%p4%t;5%;
%?%pl%p5%1%t;7%;
%?%p7%t;8%;
m
%?%p9%tAN%eA0%;

Putting this all together into the sgr sequence gives:

sgr=\E[O%?%p2%p6%1%t;3%;%?%pl%p3%1%p6%1%t;4%;%?%p5%t;5%;%?%pl~
1%t;7%;%?%p7%t;8%;m%?%p9%tAN%eAO%;,

Keypad
If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to han­
dle terminals where the keypad only works in local (this applies, for
example, to the unshifted Hewlett-Packard 2621 keys). If the keypad can
be set to transmit or not transmit, give these codes as smkx and rmkx.
Otherwise the keypad is assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcubl, kcufl, kcuul, kcudl, and khome
respectively. If there are function keys such as fO, fl, ... , f63, the codes
they send can be given as kfO, kfl, ... , kf63. If the first 11 keys have
labels other than the default fO through flO, the labels can be given as lfO,
1£1, ••• , 1£10. The codes transmitted by certain other special keys can be
given: kll (home down), kbs (backspace), ktbc (clear all tabs), kctab
(clear the tab stop in this column), kclr (clear screen or erase key), kdchl
(delete character), kdll {delete line), krmir (exit insert mode), kel (clear to
end of line), ked (clear to end of screen), kichl (insert character or enter
insert mode), kill (insert line), knp (next page), kpp (previous page),
kind (scroll forward/down), kri (scroll backward/up), khts (set a tab stop

MU43814PR/D2 - 21 - 12/01/87

TERMINF0(4) TERMINF0(4)

in this column). In addition, if the keypad has a 3 by 3 array of keys
including the four arrow keys, the other five keys can be given as kat,
ka3, kb2, kct, and kc3. These keys are useful when the effects of a 3 by 3
directional pad are needed. Further keys are defined above in the capabil­
ities list.

Strings to program function keys can be given as pfkey, pfloc, and pfx. A
string to program their soft-screen labels can be given as pin. Each of
these strings takes two parameters: the function key number to program
(from 0 to 10) and the string to program it with. Function key numbers
out of this range may program undefined keys in a terminal-dependent
manner. The difference between the capabilities is that pfkey causes
pressing the given key to be the same as the user typing the given string;
pfloc causes the string to be executed by the terminal in local mode; and
pfx causes the string to be transmitted to the computer. The capabilities
nlab, lw and lh define how many soft labels there are and their width and
height. If there are commands to tum the labels on and off, give them in
smln and rmln. smln is normally output after one or more pin sequences
to make sure that the change becomes visible.

Tabs and Initialization
If the terminal has hardware tabs, the command to advance to the next
tab stop can be given as ht (usually control I). A "backtab" command
which moves leftward to the next tab stop can be given as cbt. By con­
vention, if the teletype modes indicate that tabs are being expanded by
the computer rather than being sent to the terminal, programs should not
use ht or cbt even if they are present, since the user may not have the tab
stops properly set. If the terminal has hardware tabs which are initially
set every n spaces when the terminal is powered up, the numeric parame­
ter it is given, showing the number of spaces the tabs are set to. This is
normally used by tput init (see tput(l)) to determine whether to set the
mode for hardware tab expansion and whether to set the tab stops. If the
terminal has tab stops that can be saved in nonvolatile memory, the ter­
minfo description can assume that they are properly set. If there are com­
mands to set and clear tab stops, they can be given as tbc (clear all tab
stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: isl, is2, and is3, initialization strings for the
terminal; iprog, the path name of a program to be run to initialize the ter-
minal; and if, the name of a file containing long initialization strings. II
These strings are expected to set the terminal into modes consistent with ·
the rest of the terminfo description. They must be sent to the terminal

MU43814PR/D2 - 22- 12/01/87

II

TERMINF0(4) TERMINF0(4)

each time the user logs in and be output in the following order: run the
program iprog; output isl; output is2; set the margins using mgc, smgl
and smgr; set the tabs using tbc and hts; print the file if; and finally out­
put is3. This is usually done using the init option of tput(l); see profile(4).

Most initialization is done with is2. Special terminal modes can be set up
without duplicating strings by putting the common sequences in is2 and
special cases in isl and is3. Sequences that do a harder reset from a
totally unknown state can be given as rsl, rs2, rf, and rs3, analogous to
isl, is2, is3, and if. (The method using files, if and rf, is used for a few
terminals, from /usrllibltabsetl*; however, the recommended method is to
use the initialization and reset strings.) These strings are output by tput
reset, which is used when the terminal gets into a wedged state. Com­
mands are normally placed in rsl, rs2, rs3, and rf only if they produce
annoying effects on the screen and are not necessary when logging in.
For example, the command to set a terminal into SO-column mode would
normally be part of is2, but on some terminals it causes an annoying
glitch on the screen and is not normally needed since the terminal is usu­
ally already in SO-column mode.

If a more complex sequence is needed to set the tabs than can be
described by using tbc and hts, the sequence can be placed in is2 or if.

If there are commands to set and clear margins, they can be given as mgc
(clear all margins), smgl (set left margin), and smgr (set right margin).

Delays
Certain capabilities control padding in the tty(7) driver. These are pri­
marily needed by hard-copy terminals, and are used by tput init to set tty
modes appropriately. Delays embedded in the capabilities er, ind, cubl,
ff, and tab can be used to set the appropriate delay bits to be set in the tty
driver. If pb (padding baud rate) is given, these values can be ignored at
baud rates below the value of pb.

Status Lines
If the terminal has an extra "status line" that is not normally used by
software, this fact can be indicated. If the status line is viewed as an extra
line below the bottom line, into which one can cursor address normally
(such as the Heathkit h19's 25th line, or the 24th line of a VTlOO which is
set to a 23-line scrolling region), the capability hs should be given. Spe­
cial strings that go to a given column of the status line and return from
the status line can be given as tsl and fsl. (fsl must leave the cursor posi­
tion in the same place it was before tsl. If necessary, the sc and re strings

MU43814PR/D2 - 23 - 12/01/87

TERMINF0(4) TERMINF0(4)

can be included in tsl and fsl to get this effect.) The capability tsl takes
one parameter, which is the column number of the status line the cursor
is to be moved to.

If escape sequences and other special commands, such as tab, work while
in the status line, the flag eslok can be given. A string which turns off
the status line (or otherwise erases its contents) should be given as dsl. If
the terminal has commands to save and restore the position of the cursor,
give them as sc and re. The status line is normally assumed to be the
same width as the rest of the screen, e.g., cols. If the status line is a dif­
ferent width (possibly because the terminal does not allow an entire line
to be loaded) the width, in columns, can be indicated with the numeric
parameter wsl.

Line Graphics
If the terminal has a line drawing alternate character set, the mapping of
glyph to character would be given in acsc. The definition of this string is
based on the alternate character set used in the DEC VTlOO terminal,
extended slightly with some characters from the AT&T 4410vl terminal.

MU43814PR/D2

glyph name vtlOO+

arrow pointing right
arrow pointing left
arrow pointing down
solid square block
lantern symbol
arrow pointing up
diamond
checker board (stipple)
degree symbol
plus/minus
board of squares
lower right comer
upper right comer
upper left comer·
lower left comer
plus
scan line 1
horizontal line
scan line 9
left tee(~)

- 24 -

character

+

0
I

a
f
g
h
j
k
l

m
n
0

q
s
t

12101/87

II

II

TERMINF0(4) TERMINF0(4)

right tee (~) u
bottom tee (l) v
top tee (T) w
vertical line x
bullet

The best way to describe a new terminal's line graphics set is to add a
third column to the above table with the characters for the new terminal
that produce the appropriate glyph when the terminal is in the alternate
character set mode. For example,

glyph name vtlOO+ new tty
- char char

upper left corner 1 R
lower left corner m F
upper right corner k-T
lower right corner rG
horizontal line-q-,
vertical line-x .

Now write down the characters left to right, as in "acsc=lRmFkTjGq\,x.".

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then
this can be given as pad. Only the first character of the pad string is
used. If the terminal does not have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with
hu (half-line up) and hd (half-line down). This is primarily useful for
superscripts and subscripts on hardcopy terminals. If a hardcopy terminal
can eject to the next page (form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times
(to save time transmitting a large number of identical characters) this can
be indicated with the parameterized string rep. The first parameter is the
character to be repeated and the second is the number of times to repeat
it. Thus, tparm(repeat_char, 'x', 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix
4025, this can be indicated with cmdch. A prototype command character
is chosen which is used in all capabilities. This character is given in the

MU43814PR/02 - 25 - 12/01/87

TERMINF0(4) TERMINF0(4)

cmdch capability to identify it. The following convention is supported on
some systems: If the environment variable CC exists, all occurrences of
the prototype character are replaced with the character in CC.

Terminal descriptions that do not represent a specific kind of known ter­
minal, such as switch, dialup, patch, and network, should include the gn
(generic) capability so that programs can complain that they do not know
how to talk to the terminal. (This capability does not apply to virtual ter­
minal descriptions for which the escape sequences are known.) If the ter­
minal is one of those supported by the system virtual terminal protocol,
the terminal number can be given as vt. A line-tum-around sequence to
be transmitted before doing reads should be specified in rfi.

If the terminal uses xon/xoff handshaking for flow control, give xon. Pad­
ding information should still be included so that routines can make better
decisions about costs, but actual pad characters will not be transmitted.
Sequences to tum on and off xon/xoff handshaking may be given in
smxon and rmxon. If the characters used for handshaking are not AS and
AQ, they may be specified with xonc and xoffc.

If the terminal has a "meta key'' which acts as a shift key, setting the 8th
bit of any character transmitted, this fact can be indicated with km. Oth­
erwise, software will assume that the 8th bit is parity and it will usually
be cleared. If strings exist to tum this "meta mode" on and off, they can
be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at
once, the number of lines of memory can be indicated with Im. A value
of lm#O indicates that the number of lines is not fixed, but that there is
still more memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the ter­
minal can be given as mcO: print the contents of the screen, mc4: tum off
the printer, and mcS: tum on the printer. When the printer is on, all text
sent to the terminal will be sent to the printer. A variation, mc5p, takes
one parameter, and leaves the printer on for as many characters as the
value of the parameter, then turns the printer off. The parameter should
not exceed 255. If the text is not displayed on the terminal screen when
the printer is on, specify mcSi (silent printer). All text, including mc4, is
transparently passed to the printer while an mc5p is in effect.

Special Cases
The working model used by terminfo fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring

MU43814PR/D2 - 26 - 12/01/87

II

II

TERMINF0(4) TERMINF0(4)

special support by terminfo. These are not meant to be construed as defi­
ciencies in the terminals; they are just differences between the working
model and the actual hardware. They may be unusual devices or, for
some reason, do not have all the features of the terminfo model imple­
mented.

Terminals which can not display tilde C) characters, such as certain Hazel­
tine terminals, should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as
the Concept 100, should indicate xenl. Those terminals whose cursor
remains on the right-most column until another character has been
received, rather than wrapping immediately upon receiving the right-most
character, such as the VTlOO, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on
top of it), xhp should be given.

Those Teleray terminals whose tabs tum all characters moved over to
blanks, should indicate xt (destructive tabs). This capability is also taken
to mean that it is not possible to position the cursor on top of a "magic
cookie" therefore, to erase standout mode, it is instead necessary to use
delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or
control-C characters, should specify xsb, indicating that the fl key is to be
used for escape and the f2 key for control-C.

Similar Terminals
If there are two very similar terminals, one can be defined as being just
like the other with certain exceptions. The string capability use can be
given with the name of the similar terminal. The capabilities given before
use override those in the terminal type invoked by use. A capability can
be canceled by placing xx@ to the left of the capability definition, where
xx is the capability. For example, the entry

att4424-2 I Teletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul
capabilities, and hence cannot do highlighting. This is useful for different
modes for a terminal, or for different user preferences. More than one
use capability may be given.

MU43814PR/D2 - 27 - 12/01/87

TERMINF0(4) TERMINF0(4)

FILES
/usr/lib/terminfo/? /•
/usr/lib/tabset/•

compiled terminal description database
tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and tabs)

SEE ALSO
curses(3X), printf{3S), term(S).
captoinfo(lM), infocmp(lM), tic(lM), tty(7) in the System Administrator's
Reference Manual .
tput{l) in the User's Reference Manual.
Chapter 10 of the Programmer's Guide.

WARNING

NOTE

As described in the 'Tabs and Initialization" section above, a terminal's
initialization strings, isl, is2, and is3, if defined, must be output before a
curses(3X) program is run. An available mechanism for outputting such
strings is tput init (see tput(l) and profile(4)).

Tampering with entries in /usr/liblterminfol?I• (for example, changing or
removing an entry) can affect programs such as vi(l) that expect the entry
to be present and correct. In particular, removing the description for the
"dumb" terminal will cause unexpected problems.

The termcap database (from earlier releases of SYSTEM V/68) may not be
supplied in future releases.

MU43814PR/D2 - 28- 12/01/87

II

II

TIMEZONE(4) TIMEZONE(4)

NAME
timezone - set default system time zone

SYNOPSIS
/etc!I'IMEZONE

DESCRIPTION
This file sets and exports the time zone environmental variable TZ.

This file is "dotted" into other files that must know the time zone.

EXAMPLES
/etc!I'IMEZONE for the east coast:

SEE ALSO

#Time Zone
TZ=ESTSEDT
export TZ

ctime(3C), profile(4).
rc2(1M), rc3(1M) in the System Administrator's Reference Manual.

MU43814PR/D2 - 1 - 12/01/87

UNISTD(4) UNISTD(4)

NAME
unistd - file header for symbolic constants

SYNOPSIS
#include <unistd.h>

DESCRIPTION
The header file <unistd.h> lists the symbolic constants and structures not
already defined or declared in some other header file.

I• Symbolic constants for the "access" routine: •/

#define R_OK
#define W_OK
#define X_OK
#define F_OK

4
2
1
0

#define F_ULOCK 0
#define F _LOCK 1
#define F_TLOCK 2
#define F _1EST 3

/•Test for Read permission •/
/•Test for Write permission •/
/•Test for eXecute permission •/
/•Test for existence of File •/

I• Unlock a previously locked region •/
/•Lock a region for exclusive use•/
/•Test and lock a region for exclusive use •/
/•Test a region for other processes locks •/

/•Symbolic constants for the '1seek" routine: •/

#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2

I• Pathnames:•/

I• Set file pointer to "offset" •/
I• Set file pointer to current plus "offset" •/
I• Set file pointer to EOF plus "offset" •/

#define GFYATH /etdgroup /•Pathname of the group file•/
#define PF_PATH /etdpasswd/•Pathname of the passwd file•/

MU43814PR/D2 -1 - 12/01/87

II

II

UTMP(4) UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such com­
mands as who(l), write(l), and login(l), have the following structure as
defined by <utmp.h>:

#define
#define
#define

UTMP_FILE
WTMP_FILE
ut_name

"/etdutmp"
"/etdwtmp"
ut_user

struct utmp {
char
char
char
short
short
struct

};

short
short

} ut_exit;

time_t

MU43814PR/D2

ut_user[8];
ut_id[4];
ut_line[12];
ut_pid;
ut_type;
exit_status {

e_termination;
e_exit;

ut_time;

I• User login name •/
I• /etdinittab id (usually line #) •/
I• device name (console, lnxx) •/
I• process id •/
I• type of entry •/

I• Process termination status •/
I• Process exit status •/
I• The exit status of a process
* marked as DEAD_pROCESS. •/

I• time entry was made •/

- 1 - 12/01/87

UTMP(4) UTMP(4)

I• Definitions for ut_type •/
#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 I• Process spawned by "init" •/
#define LOGIN_FROCESS

#define USER_PROCESS

6
7

I• A "getty" process waiting for login •/
I• A user process •/

#define OEAD_PROCESS 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING I• Largest legal value of ut_type •/

FILES

/• Special strings or formats used in the "ut_line" field when •/
I• accounting for something other than a process •/
I• No string for the ut_line field can be more than 11 chars + •I
I• a NULL in length •/
#define RUNLVL_MSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME_MSG "new time"

/etdutmp
/etdwtmp

SEE ALSO
getut(3C).
login{l), who{l), write{l) in the User's Reference Manual.

MU43814PR/D2 - 2 - 12/01/87

II

II

