
1. INTRODUCTION 

This manual describes the programming features of SYSTEM V/68. It provides 
neither a general overview of the operating system nor details of the 
implementation of the system. Not all of the features described are contained in 
the basic operating system; some are provided with unbundled utility packages. 
These may usually be identified by the page header; for example, ''Networking 
Support Utilities" or ''Security Administration Utilities." 

This manual is divided into five sections, some containing interfiled subclasses: 

1. Commands 

2. System Calls 

3. Subroutines 

3C. C Programming Language Libraries 

3S. Standard 110 Library Routines 

3M. Mathematical Library Routines 

3N. Networking Support Utilities 

3X. Specialized Libraries 

4. File Formats 

5. Miscellaneous Facilities. 

Section 1 (Commands) describes commands that support C and other 
programming languages. 

Section 2 (System Calls) describes the access to the services provided by the 
operating system kernel, including the C language interface. 

Section 3 (Subroutines) describes the available subroutines. Their binary versions 
reside in various system libraries in the directories /lib and /usr/lib. See intro(3) 
for descriptions of these libraries and the files in which they are stored. 

Section 4 (File Formats) documents the structure of particular kinds of files; for 
example, the format of the output of the link editor is given in a.out(4). Excluded 

MU43814PR/D2 1-1 12/01/87 



INTRODUCTION 

are files used by only one command (for example, the assembler's intermediate 
files). In general, the C language structures corresponding to these formats can 
be found in the directories /usr/include and /usr/include/sys. 

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are 
descriptions of character sets, macro packages, etc. 

References with numbers other than those above mean that the utility is 
contained in the appropriate section of another manual. References with (1) 
following the command mean that the utility is contained in this manual or the 
User's Reference Manual. Those followed by (1M), (7), or (8) are contained in the 
System Administrator's Reference Manual. 

Each section consists of a number of independent entries of a page or so each. 
Entries within each section are alphabetized, with the exception of the 
introductory entry that begins each section (also Section 3 is in alphabetical order 
by suffixes). Some entries may describe several routines, commands, etc. In such 
cases, the entry appears only once, alphabetized under its "primary" name, the 
name that appears at the upper comers of each manual page. 

All entries are based on a common format, not all of whose parts always appear: 

• The NAME part gives the name(s) of the entry and briefly states its purpose. 

• The SYNOPSIS part summarizes the use of the program being described. A 
few conventions are used, particularly in Section 2 (System Calls): 

• Boldface strings are literals and are to be typed just as they appear. 

• Italic strings usually represent substitutable argument prototypes and 
program names found elsewhere in the manual. 

• Square brackets [ ] around an argument prototype indicate that the 
argument is optional. When an argument prototype is given as "name" or 
"file," it always refers to a file name. 

• Ellipses .•. are used to show that the previous argument prototype may be 
repeated. 

• A final convention is used by the commands themselves. An argument 
beginning with a minus, plus, or equal sign{-, +, =) is often taken to be 
some sort of flag argument, even if it appears in a position where a file 
name could appear. Therefore, it is unwise to have filenames beginning 
with-, +,or=. 

• The DESCRIPTION part describes the utility. 

MU43814PR/02 1-2 12/01/87 



INTRODUCTION 

• The EXAMPLES part gives examples of usage, where appropriate. 

• The FILES part gives the file names that are built into the program. 

• The SEE ALSO part gives pointers to related information. 

• The DIAGNOSTICS part discusses the diagnostic indications that may be 
produced. Messages that are intended to be self-explanatory are not listed. 

• The NOTES part gives generally helpful hints about the use of the utility. 

• The WARNINGS part points out potential pitfalls. 

• The BUGS part gives known bugs and sometimes deficiencies. 

• The CAVEATS part gives details of the implementation that might affect 
usage. 

A Permuted Index is provided at the back of this manual. This is a list of 
keywords, given in the second of three columns, together with the context in 
which each keyword is found. The right column lists the name of the manual 
page on which each keyword may be found. The left column contains useful 
information about the keyword. 

Some of the manual pages refer to the MC68881, which is a Motorola Floating 
Point Coprocessor Acceleration Unit. This unit is a high performance floating 
point support processor chip that supports a large subset of IEEE P754 Draft 10 
requirements for Binary Floating Point Arithmetic. 

MU43814PR/D2 1-3 12/01/87 



INTRO(l) INTRO(l) 

NAME 
intro - introduction to commands and application programs 

DESCRIPTION 
This section describes, in alphabetical order, commands available for the 
Motorola VME-based computers. Certain distinctions of purpose are 
made in the headings. 

The following Utility packages are delivered with the computer: 

Basic Networking Utilities 
Cartridge Tape Controller Utilities 
Directory and File Management Utilities 
Editing Utilities 
Essential Utilities 
Help Utilities 
Inter-process Communications 
Line Printer Spooling Utilities 
Performance Measurement Utilities 
Spell Utilities 
Terminal Filters Utilities 
Terminal Information Utilities 
User Environment Utilities 

The following Utility Packages are {or will be) available for purchase: 

Board Software Extension Package 
Document Processing Package 
International Support Package 
Networking Support Utilities 
Remote File Sharing Utilities 
Security Administration Utilities 

Manual Page Command Syntax 
Unless otherwise noted, commands described in the SYNOPSIS section of 
a manual page accept options and other arguments according to the fol­
lowing syntax and should be interpreted as explained below. 

MU43814PR/D2 -1- 12/01/87 



Ill INTRO(l) INTRO(l) 

name [-option .. . ] [ cmdarg ... ] 
where: 

[ ] 

name 

option 

noargletter 

argletter 

optarg 

Surround an option or cmdarg that is not required. 

Indicates multiple occurrences of the option or cmdarg. 

The name of an executable file. 

(Always preceded by a"-".) 
noargletter... or, 
argletter optarg [, ... ] 

A single letter representing an option without an option­
argument. Note that more than one noargletter option can 
be grouped after one"-" (Rule 5, below). 

A single letter representing an option requiring an option­
argument. 

An option-argument (character string) satisfying a preced­
ing argletter. Note that groups of optargs following an 
argletter must be separated by commas, or separated by 
white space and quoted (Rule 8, below). 

cmdarg Path name (or other command argument) not beginning 
with"-", or"-.!' by itself indicating the standard input. 

Command Syntax Standard: Rules 
These command syntax rules are not followed by all current commands, 
but all new commands will obey them. getopts(l) should be used by all 
shell procedures to parse positional parameters and to check for legal 
options. It supports Rules 3-10 below. The enforcement of the other rules 
must be done by the command itself. 

MU43814PR/D2 

1. Command names (name above) must be between two and 
nine characters long. 

2. Command names must include only lower-case letters and 
digits. 

3. Option names (option above) must be one character long. 

- 2 - 12101/87 



INTRO(l) INTRO(l) 

4. All options must be preceded by "-". 

5. Options with no arguments may be grouped after a single 
II 11 

6. The first option-argument (optarg above) following an option 
must be preceded by white space. 

7. Option-arguments cannot be optional. 

8. Groups of option-arguments following an option must either 
be separated by commas or separated by white space and 
quoted (e.g., -o xxx, z, yy or -o "xxx z yy"). 

9. All options must precede operands (cmdarg above) on the 
command line. 

10. "-" may be used to indicate the end of the options. 

11. The order of the options relative to one another should not 
matter. 

12. The relative order of the operands (cmdarg above) may affect 
their significance in ways determined by the command with 
which they appear. 

13. "-" preceded and followed by white space should only be 
used to mean standard input. 

SEE ALSO 
getopts(l). 
exit(2), wait(2), getopt(3C) in the Programmer's Reference Manual. 
How to Get Started, at the front of this document. 

DIAGNOSTICS 
Upon termination, each command returns two bytes of status, one sup­
plied by the system and giving the cause for termination, and (in the case 
of "normal" termination) one supplied by the program [see wait(2) and 
exit(2)]. The former byte is 0 for normal termination; the latter is cus­
tomarily 0 for successful execution and non-zero to indicate troubles such 
as erroneous parameters, or bad or inaccessible data. It is called variously 
"exit code", "exit status", or "return code", and is described only where 
special conventions are involved. 

MU43814PR/D2 - 3 - 12/01/87 

II 



• 
INTRO(l) INTRO(l) 

WARNINGS 
Some commands produce unexpected results when processing files con­
taining null characters. These commands often treat text input lines as 
strings and therefore become confused upon encountering a null character 
(the string terminator) within a line. 

MU43814PR/D2 -4- 12/01/87 



ADMIN(l) (Source Code Control System Utilities) ADMIN(l) 

NAME 
admin - create and administer SCCS files 

SYNOPSIS 
admin [-n] [-i[name]] [-rrel] [-t[name]] [-fflag[flag-val]][-dflag[flag-val]] 
[-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files 

DESCRIPTION 
admin is used to create new SCCS files and change parameters of existing 
ones. Arguments to admin, which may appear in any order, consist of 
keyletter arguments, which begin with-, and named files (note that SCCS 
file names must begin with the characters s.). If a named file does not 
exist, it is created, and its parameters are initialized according to the 
specified keyletter arguments. Parameters not initialized by a keyletter 
argument are assigned a default value. If a named file does exist, parame­
ters corresponding to specified keyletter arguments are changed, and 
other parameters are left as is. 

If a directory is named, admin behaves as though each file in the directory 
were specified as a named file, except that non-SCCS files (last component 
of the path name does not begin withs.) and unreadable files are silently 
ignored. If a name of - is given, the standard input is read; each line of 
the standard input is taken to be the name of an SCCS file to be processed. 
Again, non-SCCS files and unreadable files are silently ignored. 

The keyletter arguments are as follows. Each is explained as though only 
one named file is to be processed since the effects of the arguments apply 
independently to each named file. 

-n 

-i[name] 

MU43814PR/D2 

This keyletter indicates that a new secs file is to be 
created. 

The name of a file from which the text for a new 
SCCS file is to be taken. The text constitutes the 
first delta of the file (see -r keyletter for delta 
numbering scheme). If the i keyletter is used, but 
the file name is omitted, the text is obtained by 
reading the standard input until an end-of-file is 
encountered. If this keyletter is omitted, then the 
SCCS file is created empty. Only one SCCS file may 
be created by an admin command on which the i 
keyletter is supplied. Using a single admin to create 

- 1 - 12101/87 

II 



• 
ADMIN(l) 

-rrel 

(Source Code Control System Utilities) ADMIN(l) 

two or more SCCS files requires that they be created 
empty (no -i keyletter). Note that the -i keyletter 
implies the -n keyletter. 

The release into which the initial delta is inserted. 
This keyletter may be used only if the -i keyletter is 
also used. If the -r keyletter is not used, the initial 
delta is inserted into release 1. The level of the ini­
tial delta is always 1 (by default initial deltas are 
named 1.1). 

-t[name] The name of a file from which descriptive text for the 
SCCS file is to be taken. If the -t keyletter is used 
and admin is creating a new SCCS file (the -n and/or 
-i keyletters also used), the descriptive text file 
name must also be supplied. In the case of existing 
SCCS files: (1) a -t keyletter without a file name 
causes removal of descriptive text (if any) currently 
in the secs file, and (2) a -t keyletter with a file 
name causes text (if any) in the named file to 
replace the descriptive text (if any) currently in the 
SCCS file. 

-£flag 

MU43814PR/D2 

b 

This keyletter specifies a flag, and, possibly, a value 
for the flag, to be placed in the secs file. Several f 
keyletters may be supplied on a single admin com­
mand line. The allowable flags and their values are: 

Allows use of the -b keyletter on a get(l) command 
to create branch deltas. 

cceil The highest release (i.e., "ceiling"), a number 
greater than 0 but less than or equal to 9999, which 
may be retrieved by a get(l) command for editing. 
The default value for an unspecified c flag is 9999. 

£floor The lowest release (i.e., "floor"), a number greater 
than 0 but less than 9999, which may be retrieved 
by a get(l) command for editing. The default value 
for an unspecified f flag is 1. 

- 2 - 12/01/87 



ADMIN(l) 

MU43814PR/D2 

(Source Code Control System Utilities) ADMIN(l) 

dSID The default delta number (SIDs+ 1) to be used by a 
get(l) command. 

i[str] Causes the ''No id keywords (ge6)" message issued 
by get(l) or delta(l) to be treated as a fatal error. In 
the absence of this flag, the message is only a warn­
ing. The message is issued if no SCCS identification 
keywords [see get(l)] are found in the text retrieved 
or stored in the SCCS file. If a value is supplied, the 
keywords must exactly match the given string, how­
ever the string must contain a keyword, and no 
embedded newlines. 

Allows concurrent get(l) commands for editing on 
the same SIDs+ 1 of an secs file. This allows multiple 
concurrent updates to the same version of the SCCS file. 

llist A list of releases to which deltas can no longer be 
made (get -e against one of these "locked" releases 
fails). The list has the following syntax: 

<list> ::= <range> I <list>, <range> 
<range>-::= I a 

The character a in the list is equivalent to specifying 
all releases for the named SCCS file. 

n Causes delta(l) to create a "null" delta in each of 
those releases (if any) being skipped when a delta is 
made in a new release (e.g., in making delta 5.1 
after delta 2.7, releases 3 and 4 are skipped). These 
null deltas serve as "anchor points" so that branch 
deltas may later be created from them. The absence 
of this flag causes skipped releases to be non­
existent in the SCCS file, preventing branch deltas 
from being created from them in the future. 

qtext User definable text substituted for all occurrences of 
the %Q% keyword in secs file text retrieved by 
get(l). 

- 3 - . 12/01/87 

Ill 



Ill ADMIN(l) (Source Code Control System Utilities) ADMIN(l) 

mmod 

ttype 

vpgm 

-dfiag 

llist 

-alogin 

-elogin 

MU43814PR/D2 

Module name of the SCCS file substituted for all 
occurrences of the %M% keyword in SCCS file text 
retrieved by get(l). If the m flag is not specified, 
the value assigned is the name of the SCCS file with 
the leading s. removed. 

Type of module in the SCCS file substituted for all 
occurrences of % Y% keyword in SCCS file text 
retrieved by get(l). 

Causes delta(l) to prompt for Modification Request 
{MR) numbers as the reason for creating a delta. 
The optional value specifies the name of an MR 
number validity checking program [see delta(l)]. (If 
this flag is set when creating an SCCS file, the m 
keyletter must also be used even if its value is null). 

Causes removal (deletion) of the specified fiag from 
an SCCS file. The -d keyletter may be specified only 
when processing existing SCCS files. Several -d 
keyletters may be supplied on a single admin com­
mand. See the -f keyletter for allowable fiag names. 

A list of releases to be "unlocked". See the -f 
keyletter for a description of the I flag and the syn­
tax of a list. 

A login name, or numerical system group ID, to be 
added to the list of users which may make deltas 
(changes) to the SCCS file. A group ID is equivalent 
to specifying all login names common to that group 
ID. Several a keyletters may be used on a single 
admin command line. As many logins, or numerical 
group IDs, as desired may be on the list simultane­
ously. If the list of users is empty, then anyone 
may add deltas. If login or group ID is preceded by 
a! they are to be denied permission to make deltas. 

A login name, or numerical group ID, to be erased 
from the list of users allowed to make deltas 
(changes) to the SCCS file. Specifying a group ID is 
equivalent to specifying all login names common to 
that group ID. Several e keyletters may be used on 
a single admin command line. 

... 4 - 12/01/87 



ADMIN(l) (Source Code Control System Utilities) ADMIN(l) 

-m[mrlist] 

-y[comment] 

-h 

-z 

The list of Modification Requests (MR) numbers is 
inserted into the SCCS file as the reason for creating 
the initial delta in a manner identical to delta(l). 
The v flag must be set and the MR numbers are vali­
dated if the v flag has a value (the name of an MR 
number validation program). Diagnostics will occur 
if the v flag is not set or MR validation fails. 

The comment text is inserted into the SCCS file as a 
comment for the initial delta in a manner identical 
to that of delta(l.). Omission of the -y keyletter 
results in a default comment line being inserted in 
the form: 

date and time created YY/MM/DD HH:MM:SS by 
login 

The -y keyletter is valid only if the -i and/or -n 
keyletters are specified (i.e., a new SCCS file is 
being created). 

Causes admin to check the structure of the SCCS file 
[see sccsfile(S)], and to compare a newly computed 
check-sum (the sum of all the characters in the SCCS 
file except those in the first line) with the check-sum 
that is stored in the first line of the SCCS file. 
Appropriate error diagnostics are produced. 
keyletter inhibits writing on the file, so that it nulli­
fies the effect of any other keyletters supplied, and 
is, therefore, only meaningful when processing 
existing files. 

The SCCS file check-sum is recomputed and stored 
in the first line of the SCCS file (see -h, above). 

Note that use of this keyletter on a truly corrupted 
file may prevent future detection of the corruption. 

The last component of all SCCS file names must be of the forms.file­
name. New SCCS files are given mode 444 [see chmod(1)]. Write per­
mission in the pertinent directory is, of course, required to create a 
file. All writing done by admin is to a temporary x-file, called x.file­
name, [see get(1)], created with mode 444 if the admin command is 
creating a new SCCS file, or with the same mode as the SCCS file if it 
exists. After successful execution of admin, the SCCS file is removed 

MU43814PR/D2 - 5 - 12101/87 

Ill 



II ADMIN(l) (Source Code Control System Utilities) ADMIN(l) 

FILES 

(if it exists), and the x-file is renamed with the name of the SCCS file. 
This ensures that changes are made to the SCCS file only if no errors 
occurred. 

It is recommended that directories containing SCCS files be mode 755 
and that SCCS files themselves be mode 444. The mode of the direc­
tories allows only the owner to modify secs files contained in the 
directories. The mode of the secs files prevents any modification at 
all except by SCCS commands. 

If it should be necessary to patch an SCCS file for any reason, the 
mode may be changed to 644 by the owner allowing use of ed(l). 
Care must be taken! The edited file should always be processed by an 
ad.min -h to check for corruption followed by an ad.min -z to gen­
erate a proper check-sum. Another ad.min -h is recommended to 
ensure the SCCS file is valid. 

admin also makes use of a transient lock file (called z.file-name), 
which is used to prevent simultaneous updates to the SCCS file by 
different users. See get(l) for further information. 

g-file Existed before the execution of delta; removed after comple­
tion of delta. 

p-file Existed before the execution of delta; may exist after com­
pletion of delta. 

q-file Created during the execution of delta; removed after com­
pletion of delta. 

x-file Created during the execution of delta; renamed to SCCS file 
after completion of delta. 

z-file Created during the execution of delta; removed during the 
execution of delta. 

d-file Created during the execution of delta; removed after com­
pletion of delta . 

/usr/bin/bdiff Program to compute differences between the "gotten" file 
and the g-file. 

SEE ALSO 
delta(l), get(l), prs(l), what(l), sccsfile(4). 
ed(l), help(l) in the User's Reference Manual. 

DIAGNOSTICS 
Use help(l) for explanations. 

MU43814PR/D2 - 6 - 12/01/87 



AR(l) (Directory and File Management Utilities) AR(t) I 
SEE ALSO 

NOTES 

ld(l), lorder(l), strip(l), tmpnam(3S), a.out(4), ar(4) in the Programmer's 
Reference Manual. 

If the same file is mentioned twice in an argument list, it may be put in 
the archive twice. 

MU43814PR/Al -3- 06/01/88 



I 

I 

AS(l) (Software Generation System Utilities-68xxx) AS(l) 

NAME 
as, asOO, aslO, as20, as30 - common MC68.xxx series processor assembler 

SYNOPSIS 
as [options] filename 
as[name] [options] filename 
where [name] may be 00, 10, 20, or 30 

DESCRIPTION 
The as command assembles the named file. The coprocessor MC68881 
instructions are always legal. The coprocessor MC68851 instructions are 
always legal except when the MC68030 is selected, in which case only the 
MC68030 memory management instructions are recognized and the other 
MC68851 instructions are given warnings. For explanations of the name 
variations of the assember, see the -p option below. 

The following flags may be specified in any order: 

-o objfile Put the output of the assembly in objfile. By default, the output 
file name is formed by removing the .s suffix, if there is one, 
from the input file name and appending a .o suffix. 

-p name Specify processor prejudice or exlusivity: name may be 000, 010, 
020, or 030 for the MC68000, MC68010, MC68020, or MC68030, 
respectively. Note: The command asOO a.s is equivalent to the 
command as -p 000 a.s. 

More than one -p option will cause all but the last -p option to 
be ignored. 

If the unadorned as command is used, no -p option is given. 
The assembler looks at the shell environment variable PROCES­
SOR for one of the values M68030, M68020, M68010 or M68000 
and defaults to a prejudice toward that processor. However, if 
the PROCESSOR environment variable is missing or set to an 
unrecognized value, the default built into the assembler is to the 
native processor. 

-n or -j Tum off long/short address optimization. By default, address 
optimization takes place. 

MU43814PR/ Al - 1 - 06/01/88 



AS(l) 

FILES 

(Software Generation System Utilities-68xxx) AS(l) I 
-m Run the m4 macro processor on the input to the assembler. 

-R Remove (unlink) the input file after assembly is completed. 

-di Do not produce line number information in the object file. 

-V Write the version number of the assembler being run on the 
standard error output. 

-x Assemble instructions and address modes for the designated (or 
default) processor only. Give errors instead of warnings for 
instructions and addressing modes not available on the desig­
nated processor. This option does not apply to M68881 instruc­
tions but will give errors to some M68851 instructions and 
addressing modes when the M68030 is selected. 

TMPDIR/• temporary files 

TMPDIR is usually /usr/tmp but can be redefined by setting the environ­
ment variable TMPDIR {see tempnamO in tmpnam(3S)]. 

The assembler will create as many as sixteen (16) temporary files in 
TMPDIR which will be named according to a convention most easily 
described by the regular expression 

as[1-9A-F][A-O]AAa[0-3][0-91{4} 

some examples of which follow: 

as1AAAa03232 
asAAAAa29455 
asFOAAa01011 

The last five digits are the process number of the as command which 
created the temporary file. 

SEE ALSO 
cc(l), ld(l), m4(1), nm(l), strip(l), tmpnam(3S); a.out(4) 
Chapter 18, SYSTEM V/68 Programmer's Guide, MU43815PG/D2. 

WARNINGS 
If the -m (m4 macro processor invocation) option is used, keywords for 
m4 {see m4(1)] cannot be used as symbols (variables, functions, labels) in 
the input file since m4 cannot determine which are assembler symbols and 
which are real m4 macros. 

Arithmetic expressions may only have one forward referenced symbol per 
expression. 

MU43814PR/Al -2- 06/01/88 



II AS(l) 

BUGS 

NOTES 

(Software Generation System Utilities-68xxx) AS(l) 

The .align assembler directive may not work in the .text section when 
optimization is performed. 

Wherever possible, the assembler should be accessed through a compila­
tion system interface program [such as cc(l)]. 

MU43814PR/Al -3- 06/01/88 



CB(l) (Advanced C Utilities) CB(l) 

NAME 
cb - C program beautifier 

SYNOPSIS 
cb [ -s ] [ -j ] [ -1 Ieng ] [ file ... ] 

DESCRIPTION 
The cb comand reads C programs either from its arguments or from the 
standard input, and writes them on the standard output with spacing and 
indentation that display the structure of the code. Under default options, 
cb preserves all user new-lines. 

cb accepts the following options. 

-s 

-j 

-1 Ieng 

Canonizes the code to the style of Kernighan and Ritchie in 
The C Programming Language. 

Causes split lines to be put back together. 

Causes cb to split lines that are longer than Ieng . 

SEE ALSO 
cc(l). 

BUGS 

Kernighan, B. W., and Ritchie, D. M., The C Programming Language, 
Prentice-Hall, 1978. 

Punctuation that is hidden in preprocessor statements will cause indenta­
tion errors. 

MU43814PR/D2 - 1 - 12101/87 

II 



a CC(l) (C Programming Language Utilities) CC(l) 

NAME 
cc - C compiler 

SYNOPSIS 
cc [ options ] files 

DESCRIPTION 
The cc command is the interface to the C Compilation System. The com­
pilation tools consist of a preprocessor, compiler, optimizer, assembler 
and link editor. The cc command processes the supplied options and then 
executes the various tools with the proper arguments. The cc command 
accepts several types of files as arguments: 

Files whose names end with .c are taken to be C source programs and 
may be preprocessed, compiled, optimized, assembled and link edited. 
The compilation process may be stopped after the completion of any pass 
if the appropriate options are supplied. If the compilation process runs 
through the assembler then an object program is produced and is left in 
the file whose name is that of the source with .o substituted for .c. How­
ever, the .o file is normally deleted if a single C program is compiled and 
then immediately link edited. In the same way, files whose names end in 
.s are taken to be assembly source programs, and may be assembled and 
link edited; and files whose names end in .i are taken to be preprocessed 
C source programs and may be compiled, optimized, assembled and link 
edited. Files whose names do not end in .c, .s or .i are handed to the link 
editor. 

Since the cc command usually creates files in the current directory during 
the compilation process, it is necessary to run the cc command in a direc­
tory in which a file can be created. 

The following options are interpreted by cc: . 

-c Suppress the link editing phase of the compilation, and do not 
remove any produced object files. 

-g Cause the compiler to generate additional information needed for 
the use of sdb (1). 

-o outfile 

MU43814PR/D2 

Produce an output object file by the name outfile. The name of the 
default file is a.out. This is a link editor option. 

- 1 - 12101/87 



CC(l) (C Programming Language Utilities) CC(l) 

-p Arrange for the compiler to produce code that counts the number 
of times each routine is called; also, if link editing takes place, 
profiled versions of libc.a and libm.a (with -Im option) are linked 
and monitor (3C) is automatically called. Amon.out file will then 
be produced at normal termination of execution of the object pro­
gram. An execution profile can then be generated by use of prof 
(1). 

-Bstring 
-t[p02alJ 

These options will be removed in the next release. Use the -Y 
option. 

-E Run only cpp (1) on the named C programs, and send the result to 
the standard output. 

-H Print out on stderr the pathname of each file included during the 
current compilation. 

-0 Invoke an intermediate-code and/or object-code optimizer. The 
environment variable OPTIM controls which of these optimizers 
will be invoked. If OPTIM=HL (High Level), then only the 
intermediate-code optimizer will be invoked. If OPTIM =BOTH, 
then both optimizers will be invoked. If OPTIM is not set to 
either of these values, then only the object-code optimizer will be 
invoked. This flag cannot be used with the -g flag. 

-P Run only cpp (1) on the named C programs and and leave the 
result in corresponding files suffixed .i. This option is passed to 
cpp (1). 

-S Compile and do not assemble the named C programs, and leave 
the assembler-language output in corresponding files suffixed .s. 

-V Print the version of the compiler, optimizer, assembler and/or link 
editor that is invoked. 

-Wc,argl[,arg2 ... ] 
Hand off the argument[s] argi to pass c where c is one of [p0o12al] 
interpreted as for -Y, below. For example: -Wa,-m passes -m to 
the assembler. 

MU43814PR/D2 -2- 12/01/87 

II 



Ill CC(l) ( C Programming Language Utilities) CC(l) 

-Y [p0o12alSILUJ,dirname 
Specify a new pathname, dirname, for the locations of the tools 
and directories designated in the first argument. [polalSILUJ 
represents: 

p preprocessor 
0 compiler - first pass 
o optional intermediate code (high-level) optimizer 
1 compiler - second pass 
2 object-code (peephole) optimizer 
a assembler 
I link editor 
S directory containing the start-up routines 
I default include directory searched by cpp (1) 
L first default library directory searched by Id (1) 
U second default library directory searched by ld (1) 

If the location of a tool is being specified, then the new pathname 
for the tool will be dirname/tool. If more than one -Y option is 
applied to any one tool or directory, then the last occurrence 
holds. 

The cc command also recognizes -C, -D, -H, -I and -U and passes these 
options and their arguments directly to the preprocessor without using 
the -W option. Similarly, the cc command recognizes -a, -1, -m, -o, -r, 
-s, -t, -u, -x, -z, -L, -Mand -V and passes these options and their argu­
ments directly to the loader. See the manual pages for cpp (1) and ld (1) 
for descriptions. 

In addition, cc provides the ability to align most variables on double word 
(four-byte) boundaries. This is done to improve performance by eliminat­
ing double memory accesses required to obtain data that straddles a dou­
ble word boundary. Setting environment variable DBLALIGN to YES and 
exporting it provides this feature. This is the recommended setting for 
DBLALIGN. The user may override this alignment by setting 
DBLALIGN to NO and exporting it. Programs compiled with 
DBLALIGN set to NO will have their non-character variables aligned on 
word (two-byte) boundaries, which is what cc(l) does on MC68000 and 
MC68010 systems. 

The environment variable ST ALIGN is closely allied to the environment 
variable DBLALIGN. Setting DBLALIGN=YES aligns most variables to 
double word (multiple of 4 byte) boundaries. However, variables within 

MU43814PR/D2 -3- 12101187 



CC(l) (C Programming Language Utilities) CC(l) 

structures are still only single-aligned to provide compatibility with exist­
ing file header formats and 1/0 data structures. Persons who want long­
alignment within structures can set environment variable STALIGN=YES 
along with DBLALIGN=YES, but the C compiler generated code in this 
case will not be compatible with existing file headers or with standard 
libraries, such as libc.a. Obviously, the STALIGN=YES setting is of very 
limited use. 

Users who have the MC68881 floating point chip may also set environ­
ment variable FP to M68881 and export it. This will enable MC68881 code 
generation in the compiler and also automatically select appropriate 
MC68881 runtime routines at link time. In addition, the two floating 
point libraries must be linked with the object code; refer to the -1 option 
of ld(l). 

Other arguments are taken to be either link editor option arguments or C­
compatible object programs, typically produced by an earlier cc run, or 
perhaps libraries of C-compatible routines. These programs, together 
with the results of any compilations specified, are link-edited (in the order 
given) to produce an executable program with the name a.out unless the 
-o option of the link editor is used. 

Other arguments are taken to be C compatible object programs, typically 
produced by an earlier cc run, or perhaps libraries of C compatible rou­
tines and are passed directly to the link editor. These programs, together 
with the results of any compilations specified, are link edited (in the order 
given) to produce an executable program with name a.out unless the -o 
option of the link editor is used. 

The user should be aware that floating point object code built with 
FP=M68881 is incompatible with prior floating point object code. This is 
because the 68881 code returns "float" and "double" function return 
values in MC68881 register 3fp0, rather than in 3d0 and 3d1 as non-
68881 object did. 

This incompatibility can be remedied at the expense of greater code size 
and longer execution time by setting environment variable FP=M68881U. 
This setting allows function return values to be returned in both floating 
point register 3fp0 and in M68000 family registers 3d0/3d1 during C 
compiler code generation. This allows new 68881-specific object to be 
linked with old (non-68881) C compiler floating point code. CAUTION: 
This setting is available only on the C compiler. The f77 compiler does 
not support FP=M68881U. 

MU43814PR/Al -4- 06/01/88 



I CC(l) 

FILES 

(C Programming Language Utilities) CC(t) 

Several versions of Ube.a and Ubm.a are provided depending on the type 
of object code required. For systems without an MC68881 floating point 
unit, the libraries Ube.a and Ubm.a have been built without 68881 code 
generation enabled. For users compiling C programs with FP=M68881, 
the compatible libraries libc881.a and libm881.a are available. When com­
piling C programs with FP=M68881U, the libraries libc881u.a and 
libm881u.a should be used. 

If the cc command is put in a file prefixcc the prefix will be parsed off the 
command and used to call the tools, i.e., prefixtool. For example, OLDcc 
will call OLDcpp, OLDcomp, OLDoptim, OLDas, and OLDld and will 
link OLDcrtl.o. Therefore, one MUST be careful when moving the cc 
command around. The prefix will apply to the preprocessor, compiler, 
optimizer, assembler, link editor, and the start-up routines. 

The C language standard was extended to allow arbitrary length variable 
names. The option pair "-Wp,-T -WO,-XT" will cause cc to truncate 
arbitrary length variable names. 

file.c 
file.i 
file.o 
file.s 
a.out 
UBDIRl*crtO.o 
UBDIR/mcrtO.o 
TMPDIRI* 
UBDIR!cpp 
UBDIR/c[ 01 ] 
LIBDIR/optim 
LIBDIR/coptim 
BINDIR/as 
BINDIR/ld 
LIBDIR/libc.a 

C source file 
preprocessed C source file 
object file 
assembly language file 
link edited output 
start-up routine 
profiling start-up routine 
temporary files 
preprocessor, cpp(l) 
compiler 
optional peephole optimizer 
optional high-level optimizer 
assembler, as(l) 
link editor, ld{l) 
standard C library 

... ... 

MU43814PR/Al - 5 - 06/01/88 



CC(l) (C Programming Language Utilities) 

TMPDIRI* 
LIBDIR/cpp 
LIBDIR/c[ 01 ] 
LIBDIR/optim 
LIBDIR/coptim 
BIND IR/as 
BINDIR/ld 
LIBDIR/libc.a 
LIBDIR/libc_s.a 
LIBDIR/libm.a 
LIBDIR/libc881.a 
LIBDIR/libc881u.a 
LIBDIR/libm881.a 
LIBDIR/libm881 u.a 
LIBDIR/libp/lib* .a 

LIBDIR is usually nib 
BINDIR is usually /bin 

temporary files 
preprocessor, cpp{l) 
compiler 
optional peephole optimizer 
optional high-level optimizer 
assembler, as{l) 
link editor, Zd{l) 
standard C library 
standard C shared library 
standard math library 
floating point library 
floating point library 
floating point math library 
floating point math library 
profiled versions of !ibraries 

CC(t) 

TMPDIR is usually /usr/tmp but can be redefined by setting the environ­
ment variable TMPDIR [see tempnam() in tmpnam(3S)]. 

SEE ALSO 
as{l), ld(l), cpp{l), gencc{l), lint{l), prof(l), sdb(l), tmpnam(3S). 
Kernighan, B. W., and Ritchie, D. M., The C Programming Language, 
Prentice-Hall, 1978. 

DIAGNOSTICS 

NOTES 

The diagnostics produced by the C compiler are sometimes cryptic. Occa­
sional messages may be produced by the assembler or link editor. 

By default, the return value from a compiled C program is completely ran­
dom. The only two guaranteed ways to return a specific value is to expli­
citly call exit(2) or to leave the function main() with a "return expression;" 
construct. 

MU43814PR/D2 -6- 12/01/87 

II 



Ill CDC(l) (Source Code Control System Utilities) CDC(l) 

NAME 
cdc - change the delta commentary of an SCCS delta 

SYNOPSIS 
cdc -rSID [-m[mrlist]] [-y[comment]] files 

DESCRIPTION 
cdc changes the delta commentary, for the SID (SCCS IDentification string) 
specified by the -r keyletter, of each named SCCS file. 

Delta commentary is defined to be the Modification Request (MR) and com­
ment information normally specified via the delta(l) command (-m and-y 
keyletters). 

If a directory is named, cdc behaves as though each file in the directory 
were specified as a named file, except that non-SCCS files (last component 
of the path name does not begin withs.) and unreadable files are silently 
ignored. If a name of - is given, the standard input is read (see WARN­
INGS) and each line of the standard input is taken to be the name of an 
SCCS file to be processed. 

Arguments to cdc, which may appear in any order, consist of keyletter 
arguments and file names. 

All the described keyletter arguments apply independently to each named 
file: 

-rSID 

-mmrlist 

MU43814PR/D2 

Used to specify the SCCS IDentification (SID) string 
of a delta for which the delta commentary is to be 
changed. 

If the SCCS file has the v flag set [see admin(l)] then 
a list of MR numbers to be added and/or deleted in 
the delta commentary of the SID specified by the -r 
keyletter may be supplied. A null MR list has no 
effect. 

MR entries are added to the list of MRs in the same 
manner as that of delta(l). In order to delete an MR, 
precede the MR number with the character ! (see 
EXAMPLES). If the MR to be deleted is currently in 
the list of MRs, it is removed and changed into a 
"comment" line. A list of all deleted MRs is placed 
in the comment section of the delta commentary 
and preceded by a comment line stating that they 
were deleted. 

- 1 - 12/01/87 



CDC(l) (Source Code Control System Utilities) CDC(l) 

-y[comment] 

If -m is not used and the standard input is a termi­
nal, the prompt MRs? is issued on the standard out­
put before the standard input is read; if the standard 
input is not a terminal, no prompt is issued. The 
MRs? prompt always precedes the comments? 
prompt (see -y keyletter). 

MRs in a list are separated by blanks and/or tab 
characters. An unescaped new-line character ter­
minates the MR list. 

Note that if the v flag has a value [see admin(1)], it 
is taken to be the name of a program (or shell pro­
cedure) which validates the correctness of the MR 
numbers. If a non-zero exit status is returned from 
the MR number validation program, cdc terminates 
and the delta commentary remains unchanged. 

Arbitrary text used to replace the comment(s) already 
existing for the delta specified by the -r keyletter. 
The previous comments are kept and preceded by a 
comment line stating that they were changed. A 
null comment has no effect. 

If -y is not specified and the standard input is a ter­
minal, the prompt comments? is issued on the stan­
dard output before the standard input is read; if the 
standard input is not a terminal, no prompt is 
issued. An unescaped new-line character ter­
minates the comment text. 

Simply stated, the keyletter arguments are either (1) if you made the 
delta, you can change its delta commentary; or (2) if you own the file and 

MU43814PR/D2 -2- 12/01/87 



Ill CDC(l) (Source Code Control System Utilities) CDC(l) 

directory you can modify the delta commentary. 

EXAMPLES 
cdc -rl.6 -m''bl78-12345 !bl77-54321 bl79-00001" -ytrouble s.file 

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from 
the MR list, and adds the comment trouble to delta 1.6 of s.file. 

cdc -rl.6 s.file 
MRs? !bl77-54321 bl78-12345 bl79-00001 
comments? trouble 

does the same thing. 

WARNINGS 
If SCCS file names are supplied to the cdc command via the standard input 
(- on the command line), then the -m and -y keyletters must also be 
used. 

FILES 
x-file [see delta(l)] 
z-file [see delta(l)] 

SEE ALSO 
admin(l), delta(l), get{l), prs(l), sccsfile(4). 
help{l) in the User's Reference Manual. 

DIAGNOSTICS 
Use help(l) for explanations. 

MU43814PR/D2 -3- 12/01/87 



CFLOW(l) (Advanced C Utilities) CFLOW(l) 

NAME 
cflow - generate C flowgraph 

SYNOPSIS 
cflow [-r] [-ix] [-i_ ] [-dnum] files 

DESCRIPTION 
The cflow command analyzes a collection of C, yacc, lex, assembler, and 
object files and attempts to build a graph charting the external references. 
Files suffixed with .y, .I, and .c are yacced, lexed, and C-preprocessed as 
appropriate. The results of the preprocessed files, and files suffixed with 
.i, are then run through the first pass of lint(l). Files suffixed with .s are 
assembled. Assembled files, and files suffixed with .o, have information 
extracted from their symbol tables. The results are collected and turned 
into a graph of external references which is displayed upon the standard 
output. 

Each line of output begins with a reference number, followed by a suitable 
number of tabs indicating the level, then the name of the global symbol 
followed by a colon and its definition. Normally only function names that 
do not begin with an underscore are listed (see the -i options below). For 
information extracted from C source, the definition consists of an abstract 
type declaration (e.g., char*), and, delimited by angle brackets, the name 
of the source file and the line number where the definition was found. 
Definitions extracted from object files indicate the file name and location 
counter under which the symbol appeared (e.g., text). Leading under­
scores in C-style external names are deleted. 

Once a definition of a name has been printed, subsequent references to 
that name contain only the reference number of the line where the defini­
tion may be found. For undefined references, only < > is printed. 

As an example, given the following in file.c: 

MU43814PR/D2 

int i; 

main() 
{ 

} 

f(); 
g(); 
f(); 

- 1 - 12/01/87 

II 



II CFLOW(l) 

f() 
{ 

} 

(Advanced C Utilities) 

i = h(); 

the command 

cflow -ix file. c 

produces the output 

1 main: int(), <file.c 4> 
2 f: int(), <file.c 11> 
3 h: <> 
4 i: int, <file.c 1> 
5 g: <> 

CFLOW(l) 

When the nesting level becomes too deep, the output of cflow can be 
piped to pr(l), using the -e option, to compress the tab expansion to 
something less than every eight spaces. 

In addition to the -D, -I, and -U options [which are interpreted just as 
they are by cc(l) and cpp(l)], the following options are interpreted by 
cflow: 

-r Reverse the "caller:callee" relationship producing an inverted list­
ing showing the callers of each function. The listing is also sorted 
in lexicographical order by callee. 

-ix Include external and static data symbols. The default is to include 
only functions in the flowgraph. 

-i_ Include names that begin with an underscore. The default is to 
exclude these functions (and data if -ix is used). 

-dnum The num decimal integer indicates the depth at which the flow­
graph is cut off. By default this is a very large number. Attempts 
to set the cutoff depth to a nonpositive integer will be ignored. 

DIAGNOSTICS 
Complains about bad options. Complains about multiple definitions and 
only believes the first. Other messages may come from the various pro­
grams used (e.g., the C-preprocessor). 

MU43814PR/D2 -2- 12/01/87 



CFLOW(t) (Advanced C Utilities) 

SEE ALSO 
as{l), cc{l), cpp(l), lex(l), lint(l), nm(l), yacc(l). 
pr{l) in the User's Reference Manual. 

BUGS 

CFLOW(t) 

Files produced by lex(l) and yacc(l) cause the reordering of line number 
declarations which can confuse cflow. To get proper results, feed cflow the 
yacc or lex input. 

MU43814PR/D2 -3- 12/01/87 

II 



II COMB(l) (Source Code Control System Utilities) COMB(t) 

NAME 
comb - combine SCCS deltas 

SYNOPSIS 
comb files 

DESCRIPTION 
comb generates a shell procedure [see sh(l)] which, when run, will recon­
struct the given SCCS files. The reconstructed files will, hopefully, be 
smaller than the original files. The arguments may be specified in any 
order, but all keyletter arguments apply to all named SCCS files. If a 
directory is named, comb behaves as though each file in the directory were 
specified as a named flle, except that non-SCCS files (last component of 
the path name does not begin with s.) and unreadable files are silently 
ignored. If a name of - is given, the standard input is read; each line of 
the input is taken to be the name of an SCCS file to be processed; non­
SCCS files and unreadable files are silently ignored. The generated shell 
procedure is written on the standard output. 

The keyletter arguments are as follows. Each is explained as though only 
one named file is to be processed, but the effects of any keyletter argu­
ment apply independently to each named file. each get -e generated, this 
argument causes the reconstructed file to be accessed at the release of the 
delta to be created, otherwise the reconstructed file would be accessed at 
the most recent ancestor. Use of the -o keyletter may decrease the size of 
the reconstructed SCCS file. It may also alter the shape of the delta tree of 
the original file. argument causes comb to generate a shell procedure 
which, when run, will produce a report giving, for each file: the file 
name, size (in blocks) after combining, original size (also in blocks), and 
percentage change computed by: 

100 *(original - combined) I original 

It is recommended that before any SCCS files are actually combined, one 
should use this option to determine exactly how much space is saved by 
the combining process. SCCS IDentification string (SID) of the oldest delta 
to be preserved. All older deltas are discarded in the reconstructed file. 
list (see get(l) for the syntax of a list) of deltas to be preserved. All other 
deltas are discarded. 

MU43814PR/D2 -1- 12101/87 



COMB(l) (Source Code Control System Utilities) COMB(l) 

FILES 

If no keyletter arguments are specified, comb will preserve only leaf deltas 
and the minimal number of ancestors needed to preserve the tree. 

s.COMB 
comb????? 

The name of the reconstructed SCCS file. 
Temporary. 

SEE ALSO 
admin(l), delta(l), get(l), prs(l), sccsfile(4). 
help(l), sh(l) in the User's Reference Manual. 

DIAGNOSTICS 

BUGS 

Use help(l) for explanations. 

comb may rearrange the shape of the tree of deltas. It may not save any 
space; in fact, it is possible for the reconstructed file to actually be larger 
than the original. 

MU43814PR/D2 -2- 12/01/87 

Ill 



II CPP(t) (C Programming Language Utilities) CPP(t) 

NAME 
cpp - the C language preprocessor 

SYNOPSIS 
UBDIR/cpp [ option ... ] [ ifile [ ofile J J 

DESCRIPTION 
The C language preprocessor, cpp 1 is invoked as the first pass of any C 
compilation by the cc(l) command. Thus cpp's output is designed to be in 
a form acceptable as input to the next pass of the C compiler. As the C 
language evolves, cpp and the rest of the C compilation package will be 
modified to follow these changes. Therefore, the use of cpp other than 
through the cc(l) command is not suggested, since the functionality of cpp 
may someday be moved elsewhere. See m4(1) for a general macro proces­
sor. 

cpp optionally accepts two file names as arguments. lfile and ofile are 
respectively the input and output for the preprocessor. They default to 
standard input and standard output if not supplied. 

The following options to cpp are recognized: 

-P Preprocess the input without producing the line control informa­
tion used by the next pass of the C compiler. 

-C By default, cpp strips C-style comments. If the -C option is speci­
fied, all comments (except those found on cpp directive lines) are 
passed along. 

-Uname 

MU43814PR/D2 

Remove any initial definition of name 1 where name is a reserved 
symbol that is predefined by the particular preprocessor. Follow­
ing is the current list of these possibly reserved symbols. In SYS­
TEM V/68, sysV68, unix and m68k are defined. 

operating system: unix, sysV68, dmert, gcos, ibm, os, 

hardware: 

system variant: 
lint{l): 

- 1-

tss 
interdata, pdpll, u370, u3b, u3b5, 
u3b2,u3b20d,vax, m68k 
RES, RT 
lint 

12/01/87 



CPP(l) (C Programming Language Utilities) CPP(l) 

-Dname 
-Dname=def 

Define name with value def as if by a #define. If no =def is given, 
name is defined with value 1. The -D option has lower pre­
cedence than the -U option. That is, if the same name is used in 
both a -U option and a -D option, the name will be undefined 
regardless of the order of the options. 

-T The -T option forces cpp to use only the first eight characters to 
distinguish preprocessor symbols and is included for backward 
compatibility. 

-Idir Change the algorithm for searching for #include files whose 
names do not begin with I to look in dir before looking in the 
directories on the standard list. Thus, #include files whose 
names are enclosed in "" will be searched for first in the directory 
of the file with the #include line, then in directories named in -I 
options, and last in directories on a standard list. For #include 
files whose names are enclosed in <>, the directory of the file 
with the #include line is not searched. 

-Ydir Use directory dir in place of the standard list of directories when 
searching for #include files. 

-H Print, one per line on standard error, the path names of included 
files. 

Two special names are understood by cpp. The name __ LINE__ is 
defined as the current line number (as a decimal integer) as known by 
cpp, and __ FILE __ is defined as the current file name (as a C string) as 
known by cpp. They can be used anywhere (including in macros) just as 
any other defined name. 

All cpp directive lines start with # in column 1. Any number of blanks 
and tabs is allowed between the# and the directive. The directives are: 

#define name token-string 
Replace subsequent instances of name with token-string. 

#define name( arg, •.. , arg) token-string 
Notice that there can be no space between name and the (. 
Replace subsequent instances of name followed by a (, a list of 
comma-separated sets of tokens, and a ) followed by token-string, 
where each occurrence of an arg in the token-string is replaced by 
the corresponding set of tokens in the comma-separated list. 

MU43814PR/D2 - 2 - 12101/87 

II 



Ill CPP(l) (C Programming Language Utilities) CPP(l) 

When a macro with arguments is expanded, the arguments are 
placed into the expanded token-string unchanged. After the entire 
token-string has been expanded, cpp re-starts its scan for names to 
expand at the beginning of the newly created token-string. 

#undef name 
Cause the definition of name (if any) to be forgotten from now on. 
No additional tokens are permitted on the directive line after 
name. 

#ident "string" 
Put string into the .comment section of an object file. 

#include ''filename" 
#include <filename> 

Include at this point the contents of filename (which will then be 
run through cpp). When the <filename> notation is used, filename 
is only searched for in the standard places. See the -I and -Y 
options above for more detail. No additional tokens are permitted 
on the directive line after the final " or >. 

#line integer-constant ''filename" 

#endif 

Causes cpp to generate line control information for the next pass 
of the C compiler. Integer-constant is the line number of the next 
line and filename is the file from which it comes. If ''filename" is not 
given, the current file name is unchanged. No additional tokens 
are permitted on the directive line after the optional filename. 

Ends a section of lines begun by a test directive (#if, #ifdef, or 
#ifndef). Each test directive must have a matching #endif. No 
additional tokens are permitted on the directive line. 

#ifdef name 
The lines following will appear in the output if and only if name 
has been the subjed of a previous #define without being the sub­
ject of an intervening #undef. No additional tokens are permitted 
on the directive line after name. 

#ifndef name 
The lines following will appear in the output if and only if name 
has not been the subject of a previous #define. No additional 
tokens are permitted on the directive line after name. 

MU43814PR/D2 -3- 12/01/87 



CPP(l) (C Programming Language Utilities) CPP(l) 

#if constant-expression 
Lines following will appear in the output if and only if the 
constant-expression evaluates to non-zero. All binary non­
assignment C operators, the ?: operator, the unary - , !, and -
operators are all legal in constant-expression. The precedence of the 
operators is the same as defined by the C language. There is also 
a unary operator defined, which can be used in constant-expression 
in these two forms: defined ( name ) or defined name. This 
allows the utility of #ifdef and #ifndef in a #if directive. Only 
these operators, integer constants, and names which are known 
by cpp should be used in constant-expression. In particular, the 
sizeof operator is not available. 

To test whether either of two symbols, foo and furn, are defined, 
use 

#if defined(foo) I defined(fum) 

#elif constant-expression 
An arbitrary number of #elif directives is allowed between a #if, 
#ifdef, or #ifndef directive and a #else or #endif directive. The 
lines following the #elif directive will appear in the output if and 
only if the preceding test directive evaluates to zero, all interven­
ing #elif directives evaluate to zero, and the constant-expression 
evaluates to non-zero. If constant-expression evaluates to non-zero, 
all succeeding #elif and #else directives will be ignored. Any 
constant-expression allowed in a #if directive is allowed in a #elif 
directive. 

#else The lines following will appear in the output if and only if the 
preceding test directive evaluates to zero, and all intervening 
#elif directives evaluate to zero. No additional tokens are permit­
ted on the directive line. 

The test directives and the possible #else directives can be nested. 

MU43814PR/D2 -4- 12/01/87 



II CPP(l) 

FILES 
INCDIR 

( C Programming Language Utilities) CPP(l) 

standard directory list for #include files, usually 
/usr/include 

UBDIR 

SEE ALSO 

usually /lib 

cc{l), lint{l), m4(1). 

DIAGNOSTICS 

NOTES 

The error messages produced by cpp are intended to be self-explanatory. 
The line number and file name where the error occurred are printed along 
with the diagnostic. 

The unsupported -W option enables the #class directive. If it encounters 
a #class directive, cpp will exit with code 27 after finishing all other pro­
cessing. This option provides support for "C with classes". 

Because the standard directory for included files may be different in dif­
ferent environments, this form of #include directive: 

#include <file.h> 

should be used, rather than one with an absolute path, like: 

#include "/usr/include/file.h" 

cpp warns about the use of the absolute pathname. 

MU43814PR/D2 -5- 12/01/87 



CPRS(l) (Software Generation System Utilities) 

NAME 
cprs - compress a common object file 

SYNOPSIS 
cprs I-p] filel file2 

DESCRIPTION 

CPRS(l) 

The cprs command reduces the size of a common object file, file1, by 
removing duplicate structure and union descriptors. The reduced file, 
file2, is produced as output. 

The sole option to cprs is: 
-p Print statistical messages including: total number of tags, total 

duplicate tags, and total reduction of file1. 

SEE ALSO 
strip(l), a.out(4), syms(4). 

MU43814PR/D2 - 1 - 12/01/87 

Ill 



II CREATE(l) (Motorola Inc. Only) CREATE(t) 

NAME 
create - create master release media utility, R3.1 

DESCRIPTION 
The create program creates a set of master distribution media for applica­
tion software products. The new version, R3. l, is similar to previous ver­
sions but is more robust and tolerant of operator errors. 

One new feature of create is the automatic creation of a file containing the 
cyclic redundancy checksum (ere), length, and modification time for each 
file included on the distribution media. A copy of this file is put on the 
media and transferred to a customer's system, while another version is 
derived from upgrade(lM) for cross-checking purposes. 

EXAMPLE 

MEDIA CREATED WITH THIS RELEASE OF CREATE CAN 
ONLY BE READ BY R3.1 AND LATER VERSIONS OF UPGRADE! 

This section describes the interactive dialogue between a user and create. 
Indented text represents the program display screens; indented boldface 
text represents sample user input; italicized text represents variable items. 
Text shown in braces (for example, {Yes, No}) represents a choice of 
responses to the prompts. Any response that is too long is truncated; you 
are then prompted to verify what was entered. Text shown in square 
brackets ([ l) is commentary that never appears on the screen. 

To execute the create program, type: 

$ create 

The screen is now cleared via 'tput clear'. 

Create Master Release Media Utility, R3. l 
Copyright 1984,86 by Motorola, Inc. 

What type of media is this product distributed on? 
{Floppy disk, 1.2MB floppy, Tape cartridge, Cartridge disk, 9-track tape} 
->xxx 

Choose the appropriate device name from the list shown in braces; type 
the device name (or the first character of the name), followed by 

MU43814PR/D2 - 1 - 12/01/87 



CREATE(l) (Motorola Inc. Only) CREATE(l) 

RETURN. Pressing only RETURN causes the program to select the first 
item in the list. An invalid input, such as xxx shown here, produces the 
following error message: 

You must enter the first letter of one of the choices and a RETURN, 
or just RETURN to select the first choice. 

The previous message is then redisplayed. 

What type of media is this product distributed on? 
{Floppy disk, 1.2MB floppy, Tape cartridge, Cartridge disk, 9-track tape} 
-->c [for a cartridge disk] 

If the media needs to be formatted before it can be used, the following 
questions are asked: 

If you like, I will automatically format the media for you. 
Would you like this? 
{Yes, No} 
--> y 

Enter the shell command needed to format this type of media: 
--> 

The particular command needed here will vary, depending upon the dev­
ice type, the system in use, its configuration, etc. The following virtual 
device names are normally linked to their respective raw device names in 
/dev, and should be allowable in the response: 

/dev/FLOPPY 
/dev/FLOPPY .MB 
/dev/IOMEGA 

for 640K floppy disk 
for 1.2MB floppy disk 
for 5MB Iomega cartridge disks 

If specified, this command is issued to the shell each time a new volume 
of media is mounted. 

Mount media volume #1, then hit RETURN ... 

If automatic formatting was requested, the specified format command is 
displayed now (not shown here) as it is invoked. 

MU43814PR/D2 -2- 12/01/87 

Ill 



Ill CREATE(l) (Motorola Inc. Only) CREATE(l) 

What is the name of this product? --> example 

What is this product's new release identifier?--> EXAMPLE3.0 

Enter a file name (<11 chars; similar to the product name) for auditing need 
-> example (#2) 

This name is used for auditing purposes and must conform to file system 
naming conventions. It is a good idea to use some variant of the 
product's name here with no embedded spaces or special characters. If 
illegal characters are entered, the following warning message is displayed 
and the prompt is re-issued: 

This name must conform to SYSTEM V/68 file naming conventions!!! 

Enter a file name (<11 chars; similar to the product name) for auditing need 
-->example 

Enter the pathname for the directory where this product is found 
(you're now in <name-of-current-working-directory>) 
--> xyz 

Any absolute or valid relative pathname is legal here. If you are already 
in the root directory for the product, just enter a period (.). If an invalid 
directory name is entered, such as the xyz shown, the following message 
is displayed: 

create: warning-- 'xyz' is an invalid directory path!!! 
(errno = 2) 

Enter the pathname for the directory where this product is found 
(you're now in /usr/local/srdexample/common) 
-> .. 
(The product's root pathname is /usr/local/srdexample) 

Into what directory (on the TARGET SYSTEM) should Upgrade copy this pro 
--> 

MU43814PR/D2 - 3 - 12/01/87 



CREATE(l) (Motorola Inc. Only) CREATE(l) Ill 
This is where the product will be installed in a user's system when 
upgrade is run. A null response is not allowed, and causes the prompt to 
be repeated. There are two other types of invalid responses which cause 
the following error messages to appear on the screen: 

create: warning -- The target directory name must begin with a '/' ! 

create: warning -- The target directory name cannot be just'/'! 

Into what directory (on the TARGET SYSTEM) should Upgrade copy this product? 
--> /d.31/work/example [A valid response] 

Note that if this directory path doesn't exist in the USER'S SYSTEM, 
upgrade will create it, if possible. 

Enter a command string (<128 chars) to be executed at START of upgrade: 
-->date 

This command, if specified, is submitted to the shell by upgrade before any 
of the product's files are read from the distribution media. In this exam­
ple, the date command is given although any sequence of commands 
and/or scripts is legal. 

Enter a command string (<128 chars) to be executed at END of upgrade: 
--> 

Similarly, this optional command string is executed by upgrade after all of 
the product's files have been copied into the specified TARGET SYSTEM 
directory. For either command string, a null response is accepted, as in 
this example. 

Please stand-by for a moment while I figure some things out ... 

(nnnn media blocks needed) . . . [updated periodically] 
(deriving an audit file now) . . . [displayed when create generates a ere file] 

The audit files are placed into the /usr/AUDITS directory for use by 
upgrade. Specifically, the *.crO file is copied to the distribution media for 
later installation into a user's system for auditing needs. 

MU43814PR/D2 - 4 - 12101/87 



Ill CREATE(l) (Motorola Inc. Only) CREATE(l) 

When this phase is finished, the screen is cleared via 'tput clear'. 

Create Master Release Media Utility, R3.1 

This product's name is 'example' 
It's release identifier is: EXAMPLE 3.0 
(Auditing facilities will use the name: example) 
It is located in the directory rooted at '/usr/local/srdexample'. 
It occupies about 292 x 1024-byte disk blocks in the file system, 

and requires 268 (1024-byte) blocks of distribution media. 

The distribution media was specified as Cartridge disk. 
So, 1 volume(s) of this media will be needed to distribute this product. 

Upgrade will execute this command string prior to installation: 
date 

It will then install the product into the directory named: 
/d3/work/example 

Finally, this command string will be invoked after installation: 
--- none specified ---

Are these input parameters correct? 
{Yes, No} 
--> 

A no (n) response will allow the user to re-define everything. A yes (y) or 
null response will start the creation of the distribution media. 

Note that the byte count shown in the fourth line above (i.e., "292 x 
1024-byte blocks') will vary depending on whether the file system contain­
ing the product's files uses 512 or 1024 byte blocks. Both create and 
upgrade select the appropriate number for the system. The distribution 
media is always written with 1024 byte blocks. 

-- FILE COPY IN PROGRESS ------

nnnn blocks written to vol #1 from /usr/local/srdexample. 
nnnn blocks being verified on media . . . 

The two lines above show create's progress as it copies the product's files 

MU43814PR/D2 -5- 12/01/87 



CREATE(l) (Motorola Inc. Only) CREATE(l) 

to the media and re-reads the media to verify its integrity. 

If more than one media volume is needed, the following prompt is issued 
after each volume has been filled: 

Mount media volume #n, then hit RETURN ... 

Automatic formatting is performed now, if specified (not shown here). 

nnnn blocks written to volume #n from <source_ directory> ... 
nnnn blocks being verified on media ... 

and so on, until the entire product has been written to media. 

Now creating an audit file for this product ... 

Finished creating master(s) for 'example (EXAMPLE 3.0)'. 

(A table-of-contents listing of this product with crc's is contained in: 
'<audit_file_name>' 

Do you wish to create a master copy of another product? 
{No, Yes} 
-> 

If you're done, you can just hit RETURN now. 

Pressing RETURN terminates program execution. 

DIAGNOSTICS 
Most parameters are validated before being committed for use, either by 
the program or by the user via the status display. It is possible, however, 
for an internally executed shell command to die, in which case an error 
message may or may not be produced. Known error conditions fall into 
two categories: warnings and fatal errors. Warnings produce a message, 
but allow for continued execution. Fatal errors include any error that 
would prevent a complete creation of the distribution media. Warning 
and fatal error messages are shown below. 

Note that if the /usrlbin/crc program is missing, create should be aborted 
and re-run after crc{lM) is located and installed. 

MU43814PR/D2 -6- 12/01/87 

II 



CREATE(l) (Motorola Inc. Only) 

WARNINGS 
Common warnings: 

The target directory name must begin with a '/' 
The target directory cannot be just a '/' 
The media failed verification 
'<pathname>' is an invalid directory path 

Less common warnings: 

can't determine size of audit file 
can't read/verify end-of-volume flag from media 
can't read/verify checksum block from media 

FATAL ERRORS 
Common fatal error: 

CREATE(l) 

You must be logged in as root or have root's setuid permission set! 

FILES 

Less common fatal errors: 

can't open device {<dev_name>} for writing 
error encountered while writing header info 
error writing to output media 
error reading from input data stream 
error encountered while writing end-of-volume flag 
error encountered while writing checksum to the media 
unable to open output media for reading 
error encountered while reading header 
error occurred attempting to read data from media 
The end-of-volume flag block is corrupted 
cannot chdir to '<source_root_directory>' 

tput 
/usr/bin/crc 
/usr/ AUDITS/* 

SEE ALSO 
create(4). 
upgrade(lM), crc(lM) in the System Administrator's Reference Manual. 
tput(l) in the User's Reference Manual. 

MU43814PR/D2 -7- 12/01/87 



CTRACE(t) (Advanced C Utilities) CTRACE(t) 

NAME 
ctrace - C program debugger 

SYNOPSIS 
drace [options] [file] 

DESCRIPTION 
The ctrace command allows you to follow the execution of a C program, 
statement-by-statement. The effect is similar to executing a shell pro­
cedure with the -x option. ctrace reads the C program in file (or from stan­
dard input if you do not specify file), inserts statements to print the text of 
each executable statement and the values of all variables referenced or 
modified, and writes the modified program to the standard output. You 
must put the output of drace into a temporary file because the cc(l) com­
mand does not allow the use of a pipe. You then compile and execute 
this file. 

As each statement in the program executes it will be listed at the terminal, 
followed by the name and value of any variables referenced or modified in 
the statement, followed by any output from the statement. Loops in the 
trace output are detected and tracing is stopped until the loop is exited or 
a different sequence of statements within the loop is executed. A warning 
message is printed every 1000 times through the loop to help you detect 
infinite loops. The trace output goes to the standard output so you can 
put it into a file for examination with an editor or the bfs(l) or tail(l) com­
mands. 

The options commonly used are: 

-f fu.nctions Trace only these fu.ndions. 
-v fu.ndions Trace all but these fu.ndions. 

You may want to add to the default formats for printing variables. Long 
and pointer variables are always printed as signed integers. Pointers to 
character arrays are also printed as strings if appropriate. Char, short, 
and int variables are also printed as signed integers and, if appropriate, as 
characters. Double variables are printed as floating point numbers in 
scientific notation. You can request that variables be printed in additional 
formats, if appropriate, with these options: 

MU43814PR/D2 - 1 - 12/01/87 



II CTRACE(l) (Advanced C Utilities) CTRACE(l) 

-o Octal 
-x Hexadecimal 
-u Unsigned 
-e Floating point 

These options are used only in special circumstances: 

-1 n Check n consecutively executed statements for looping trace out­
put, instead of the default of 20. Use 0 to get all the trace output 
from loops. 

-s Suppress redundant trace output from simple assignment state­
ments and string copy function calls. This option can hide a bug 
caused by use of the = operator in place of the = = operator. 

-t n Trace n variables per statement instead of the default of 10 (the 
maximum number is 20). The Diagnostics section explains when 
to use this option. 

-P Run the C preprocessor on the input before tracing it. You can 
also use the-D, -I, and -U cpp(l) options. 

These options are used to tailor the run-time trace package when the 
traced program will run in a non-SYSTEM V/68 System environment: 

-b Use only basic functions in the trace code, that is, those in 
ctype(3C), printf(3S), and string(3C). These are usually available 
even in cross-compilers for microprocessors. In particular, this 
option is needed when the traced program runs under an operat­
ing system that does not have signal(2), ffiush(3S), longjmp(3C), or 
setjmp(3C). 

-p string 
Change the trace print function from the default of 'printf('. For 
example, 'fprintf(stderr,' would send the trace to the standard 
error output. 

-r f Use file fin place of the runtime.c trace function package. This lets 
you change the entire print function, instead of just the name and 
leading arguments (see the -p option). 

EXAMPLE 
If the file lc.c contains this C program: 

1 #include <stdio.h> 
2 main() /* count lines in input */ 
3{ 
4 int c, nl; 

MU43814PR/D2 - 2 - 12/01/87 



CTRACE(l) 

5 
6 
7 
8 
9 

10 
11} 

(Advanced C Utilities) 

nl = 0; 
while ((c = getchar()) != EOF) 

if (c = '\n') 
++nl; 

printf("%d\n", nl); 

and you enter these commands and test data: 
cc lc.c 
a.out 
1 
(cntl-d) 

CTRACE(t) 

the program will be compiled and executed. The output of the program 
will be the number 2, which is not correct because there is only one line 
in the test data. The error in this program is common, but subtle. If you 
invoke ctrace with these commands: 

ctrace lc.c >temp.c 
cc temp.c 
a.out 

the output will be: 
2mainO 
6 nl = 0; 

I• nl == O •I 
7 while ((c = getchar()) != EOF) 

The program is now waiting for input. If you enter the same test data as 
before, the output will be: 

I• c = = 49 or '1' •/ 
8 if (c = '\n') 

I• c = = 10 or '\n' •/ 
9 ++nl; 

I• nl == 1 •/ 
7 while ((c = getcharQ) != EOF) 

I• c == 10 or '\n' •/ 
8 if (c = '\n') 

I• c = = 10 or '\n' •/ 
9 ++nl; 

I• nl == 2 •/ 
7 while ((c = getchar()) != EOF) 

If you now enter an end of file character (cntl-d) the final output will be: 
I• c == -1 •/ 

MU43814PR/D2 - 3 - 12101/87 



Ill CTRACE(l) (Advanced C Utilities) 

10 printf("%d\n", nl); 
'* nl == 2 */2 
return 

CTRACE(l) 

Note that the program output printed at the end of the trace line for the nl 
variable. Also note the return comment added by ctrace at the end of the 
trace output. This shows the implicit return at the terminating brace in 
the function. 

The trace output shows that variable c is assigned the value '1' in line 7, 
but in line 8 it has the value '\n'. Once your attention is drawn to this if 
statement, you will probably realize that you used the assignment opera­
tor(=) in place of the equality operator(==). You can easily miss this 
error during code reading. 

EXECUTION-TIME TRACE CONTROL 
The default operation for ctrace is to trace the entire program file, unless 
you use the -f or -v options to trace specific functions. This does not give 
you statement-by-statement control of the tracing, nor does it let you tum 
the tracing off and on when executing the traced program. 

You can do both of these by adding ctroff() and ctron() function calls to 
your program to tum the tracing off and on, respectively, at execution 
time. Thus, you can code arbitrarily complex criteria for trace control with 
if statements, and you can even conditionally include this code because 
ctrace defines the CTRACE preprocessor variable. For example: 

#ifdef CTRACE 

#endif 

if (c == '!' && i > 1000) 
ctron(); 

You can also call these functions from sdb(l) if you compile with the -g 
option. For example, to trace all but lines 7 to 10 in the main function, 
enter: 

sdb a.out 
main:7b ctroff() 
main: 1 lb ctron() 
r 

You can also turn the trace off and on by setting static variable tr_ct_ to O 
and 1, respectively. This is useful if you are using a debugger that cannot 

MU43814PR/D2 -4- 12/01/87 



CTRACE(t) (Advanced C Utilities) CTRACE(t) 

call these functions directly. 

DIAGNOSTICS 
This section contains diagnostic messages from both ctrace and cc(l), since 
the traced code often gets some cc warning messages. You can get cc 
error messages in some rare cases, all of which can be avoided. 

ctrace Diagnostics 
warning: some variables are not traced in this statement 

Only 10 variables are traced in a statement to prevent the C com­
piler "out of tree space; simplify expression" error. Use the -t 
option to increase this number. 

warning: statement too long to trace 
This statement is over 400 characters long. Make sure that you 
are using tabs to indent your code, not spaces. 

cannot handle preprocessor code, use -P option 
This is usually caused by #ifdef/#endif preprocessor statements in 
the middle of a C statement, or by a semicolon at the end of a 
#define preprocessor statement. 

'if . . . else if sequence too long 
Split the sequence by removing an else from the middle. 

possible syntax error, try -P option 
Use the -P option to preprocess the ctrace input, along with any 
appropriate -D, -I, and -U preprocessor options. If you still get 
the error message, check the Warnings section below. 

Cc Diagnostics 
warning: illegal combination of pointer and integer 
warning: statement not reached 
warning: sizeof returns 0 

Ignore these messages. 

compiler takes size of fu,nction 
See the ctrace "possible syntax error" message above. 

yacc stack overflow 
See the ctrace '"if ... else if' sequence too long" message above. 

out of tree space; simplify expression 

MU43814PR/D2 

Use the -t option to reduce the number of traced variables per 
statement from the default of 10. Ignore the "ctrace: too many 
variables to trace" warnings you will now get. 

-5- 12/01/87 



Ill CTRACE(l) (Advanced C Utilities) CTRACE(l) 

redeclaration of signal 
Either correct this declaration of signal(2), or remove it and 
#include <signal.h>. 

SEE ALSO 
signal(2), ctype(3C), fclose(3S), printf(3S), setjmp(3C), string(3C). 
bfs(l), tail(l) in the User's Reference Manual. 

WARNINGS 

BUGS 

FILES 

You will get a ctrace syntax error if you omit the semicolon at the end of 
the last element declaration in a structure or union, just before the right 
brace 0). This is optional in some C compilers. 

Defining a function with the same name as a system function may cause a 
syntax error if the number of arguments is changed. Just use a different 
name. 

ctrace assumes that BADMAG is a preprocessor macro, and that EOF and 
NULL are #defined constants. Declaring any of these to be variables, 
e.g., "int EOF;", will cause a syntax error. 

ctrace does not know about the components of aggregates like structures, 
unions, and arrays. It cannot choose a format to print all the components 
of an aggregate when an assignment is made to the entire aggregate. 
ctrace may choose to print the address of an aggregate or use the wrong 
format (e.g., 3.149050e-311 for a structure with two integer members) 
when printing the value of an aggregate. 

Pointer values are always treated as pointers to character strings. 

The loop trace output elimination is done separately for each file of a 
multi-file program. This can result in functions called from a loop still 
being traced, or the elimination of trace output from one function in a file 
until another in the same file is called. 

/usr/lib/ ctrace/runtime .c run-time trace package 

MU43814PR/D2 - 6 - 12/01/87 



CXREF(l) (Advanced C Utilities) CXREF(l) 

NAME 
cxref - generate C program cross-reference 

SYNOPSIS 
cxref [ options ] files 

DESCRIPTION 

FILES 

The cxref command analyzes a collection of C files and attempts to build a 
cross-reference table. cxref uses a special version of cpp to include 
#define'd information in its symbol table. It produces a listing on stan­
dard output of all symbols (auto, static, and global) in each file separately, 
or, with the -c option, in combination. Each symbol contains an asterisk 
( *) before the declaring reference. 

In addition to the -D, -I and -U options [which are interpreted just as 
they are by cc(l) and cpp(l)], the following options are interpreted by cxref: 

-c Print a combined cross-reference of all input files. 

-w<num> 
Width option which formats output no wider than <num> 
(decimal) columns. This option will default to 80 if <num> is 
not specified or is less than 51. 

-o file Direct output to file. 

-s Operate silently; do not print input file names. 

-t Format listing for 80-column width. 

LLIBDIR usually /usr/lib 

LLIBDIR/xcpp special version of the C preprocessor. 

SEE ALSO 
cc(l), cpp(l). 

DIAGNOSTICS 

BUGS 

Error messages are unusually cryptic, but usually mean that you cannot 
compile these files. 

cxref considers a formal argument in a #define macro definition to be a 
declaration of that symbol. For example, a program that #includes ctype.h, 
will contain many declarations of the variable c. 

MU43814PR/D2 - 1 - 12/01/87 

Ill 



Ill 



DELTA(l) (Source Code Control System Utilities) DELTA(l) 

NAME 
delta - make a delta (change) to an SCCS file 

SYNOPSIS 
delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files 

DESCRIPTION 
delta is used to permanently introduce into the named SCCS file changes 
that were made to the file retrieved by get(l) (called the g-file, or gen­
erated file). 

delta makes a delta to each named SCCS file. If a directory is named, delta 
behaves as though each file in the directory were specified as a named 
file, except that non-SCCS files (last component of the path name does not 
begin with s.) and unreadable files are silently ignored. If a name of - is 
given, the standard input is read (see WARNINGS); each line of the stan­
dard input is taken to be the name of an secs file to be processed. 

delta may issue prompts on the standard output depending upon certain 
keyletters specified and flags [see admin(l)] that may be present in the 
SCCS file (see -m and -y keyletters below). 

Keyletter arguments apply independently to each named file. 

-rSID Uniquely identifies which delta is to be made to the 
SCCS file. The use of this keyletter is necessary 
only if two or more outstanding gets for editing (get 
-e) on the same SCCS file were done by the same 
person (login name). The SID value specified with 
the -r keyletter can be either the SID specified on 
the get command line or the SID to be made as 
reported by the get command [see get(l)]. A diag­
nostic results if the specified SID is ambiguous, or, if 
necessary and omitted on the command line. 

-s Suppresses the issue, on the standard output, of the 
created delta's SID, as well as the number of lines 
inserted, deleted and unchanged in the SCCS file. 

-n 

MU43814PR/D2 

Specifies retention of the edited g-file (normally 
removed at completion of delta processing). 

- 1 - 12/01/87 

Ill 



II DELTA(l) (Source Code Control System Utilities) DELTA(l) 

-glist 

-m[mrlist] 

-y[comment] 

-p 

MU43814PR/D2 

a list (see get(l) for the definition of list) of deltas 
which are to be ignored when the file is accessed at 
the change level {SID) created by this delta. 

If the SCCS file has the v flag set [see admin(l)] then 
a Modification Request {MR) number must be sup­
plied as the reason for creating the new delta. 

If -m is not used and the standard input is a termi­
nal, the prompt MRs? is issued on the standard out­
put before the standard input is read; if the standard 
input is not a terminal, no prompt is issued. The 
MRs? prompt always precedes the comments? 
prompt (see -y keyletter). 

MRs in a list are separated by blanks and/or tab 
characters. An unescaped new-line character ter­
minates the MR list. 

Note that if the v flag has a value [see admin(l)], it 
is taken to be the name of a program (or shell pro­
cedure) which will validate the correctness of the 
MR numbers. If a non-zero exit status is returned 
from the MR number validation program, delta ter­
minates. (It is assumed that the MR numbers were 
not all valid.) 

Arbitrary text used to describe the reason for mak­
ing the delta. A null string is considered a valid 
comment. 

If -y is not specified and the standard input is a ter­
minal, the prompt comments? is issued on the stan­
dard output before the standard input is read; if the 
standard input is not a terminal, no prompt is 
issued. An unescaped new-line character ter­
minates the comment text. 

Causes delta to print (on the standard output) the 
SCCS file differences before and after the delta is 
applied in a diff(l) format. 

-2- 12/01/87 



DELTA(l) (Source Code Control System Utilities) DELTA(l) 

FILES 
g-file Existed before the execution of delta; removed after comple­

tion of delta . 
p-file Existed before the execution of delta; may exist after com­

pletion of delta. 
q-file Created during the execution of delta; removed after com­

pletion of delta . 
x-file Created during the execution of delta; renamed to SCCS file 

after completion of delta. 
z-file Created during the execution of delta; removed during the 

execution of delta. 
d-file Created during the execution of delta; removed after com­

pletion of delta. 
/usr/bin/bdiff Program to compute differences between the "gotten" file 

and the g-file. 

WARNINGS 
Lines beginning with an SOH ASCII character (binary 001) cannot be 
placed in the SCCS file unless the SOH is escaped. This character has spe­
cial meaning to SCCS [see sccsfile(4) (5)] and will cause an error. 

A get of many SCCS files, followed by a delta of those files, should be 
avoided when the get generates a large amount of data. Instead, multiple 
get/delta sequences should be used. 

If the standard input(-) is specified on the delta command line, the -m (if 
necessary) and -y keyletters must also be present. Omission of these 
keyletters causes an error to occur. 

Comments are limited to text strings of at most 512 characters. 

SEE ALSO 
admin(l), cdc(l), get(l), prs(l), rmdel(l), sccsfile(4). 
bdiff(l), help(l) in the User's Reference Manual. 

DIAGNOSTICS 
Use help(l) for explanations. 

MU43814PR/D2 - 3 - 12/01/87 

Ill 



II DIS(l) (Software Generation System Utilities) DIS(l) 

NAME 
dis - object code disassembler 

SYNOPSIS 
dis [-o] [-VJ [-L] [-d sec] [-da sec ] [-F function ] [-t sec] [-1 string] 
file ... 

DESCRIPTION 
The dis command produces an assembly language listing of file, which 
may be an object file or an archive of object files. The listing includes 
assembly statements and an octal or hexadecimal representation of the 
binary that produced those statements. 

The following options are interpreted by the disassembler and may be 
specified in any order. 

-o Print numbers in octal. The default is hexadecimal. 

-V Print, on standard error, the version number of the 
disassembler being executed. 

-L Lookup source labels in the symbol table for subsequent 
printing. This option works only if the file was compiled 
with additional debugging information [e.g., the -g option of 
cc(l)]. 

-d sec Disassemble the named section as data, printing the offset of 
the data from the beginning of the section. 

-da sec Disassemble the named section as data, printing the actual 
address of the data. 

-F function Disassemble only the named function in each object file 
specified on the command line. The -F option may be speci­
fied multiple times on the command line. 

-t sec Disassemble the named section as text. 

-1 string Disassemble the library file specified by string. For example, 
one would issue the command dis -1 x -1 z to disassemble 
libx.a and libz.a. All libraries are assumed to be in LIBDIR. 

If the -d, -da or -t options are specified, only those named sections from 
each user-supplied file name will be disassembled. Otherwise, all sec­
tions containing text will be disassembled. 

On output, a number enclosed in brackets at the beginning of a line, such 
as [5], represents that the break-pointable line number starts with the 

MU43814PR/D2 -1- 12/01/87 



DIS(l) 

FILES 

(Software Generation System Utilities) DIS(l) 

following instruction. These line numbers will be printed only if the file 
was compiled with additional debugging information [e.g., the -g option 
of cc(l)]. An expression such as <40> in the operand field or in the sym­
bolic disassembly, following a relative displacement for control transfer 
instructions, is the computed address within the section to which control 
will be transferred. A function name will appear in the first column, fol­
lowed by(). 

UBDIR usually /lib. 

SEE ALSO 
as{l), cc{l), ld{l), a.out(4). 

DIAGNOSTICS 
The self-explanatory diagnostics indicate errors in the command line or 
problems encountered with the specified files. 

MU43814PR/D2 -2- 12/01/87 

II 



Ill DUMP(l) (Software Generation System Utilities) DUMP(l) 

NAME 
dump- dump selected parts of an object file 

SYNOPSIS 
dump [ options ] files 

DESCRIPTION 
The dump command dumps selected parts of each of its object file argu­
ments. 

This command will accept both object files and archives of object files. It 
processes each file argument according to one or more of the following 
options: 

-a 

-g 
-f 

-0 

-h 

-s 

-r 

-1 

-t 

-z name 

-c 

Dump the archive header of each member of each archive file 
argument. 

Dump the global symbols in the symbol table of an archive. 

Dump each file header. 

Dump each optional header. 

Dump section headers. 

Dump section contents. 

Dump relocation information. 

Dump line number information. 

Dump symbol table entries. Do not use this option on purely 
executable object code. 

Dump line number entries for the named function. 

Dump the string table. 

-L Interpret and print the contents of the .lib sections. 

The following modifiers are used in conjunction with the options listed 
above to modify their capabilities. 

-d number Dump the section number, number, or the range of sections 
starting at number and ending at the number specified by + d. 

MU43814PR/D2 - 1- 12/01/87 



DUMP(l) 

+d number 

(Software Generation System Utilities) DUMP(l) 

Dump sections in the range either beginning with first section 
or beginning with section specified by -d. 

-n name Dump information pertaining only to the named entity. This 
modifier applies to -h, -s, -r, -1, and -t. 

-p Suppress printing of the headers. 

-t index Dump only the indexed symbol table entry. The -t used in 
conjunction with +t, specifies a range of symbol table entries. 

+ t index Dump the symbol table entries in the range ending with the 
indexed entry. The range begins at the first symbol table 
entry or at the entry specified by the -t option. 

-u Underline the name of the file for emphasis. 

-v Dump information in symbolic representation rather than 
numeric (e.g., C_STATIC instead of oxo2). This modifier can be 
used with all the above options except -s and -o options of 
dump. 

-z name,number 
Dump line number entry or range of line numbers starting at 
number for the named function. 

+ z number Dump line numbers starting at either function name or number 
specified by -z, up to number specified by + z. 

Blanks separating an option and its modifier are optional. The comma 
separating the name from the number modifying the -z option may be 
replaced by a blank. 

The dump command attempts to format the information it dumps in a 
meaningful way, printing certain information in character, hex, octal or 
decimal representation as appropriate. 

SEE ALSO 
a.out(4), ar(4). 

MU43814PR/D2 -2- 12/01/87 

Ill 



II 



GCC(l) (Green Hills C-68000) GCC(l) I 
NAME 

gee - Green Hills C-68000 compiler 

SYNOPSIS 
gee [ option ] .. . file ... 

DESCRIPTION 
gee is an optimizing SYSTEM V/68-compatible C compiler, optionally avail­
able for a Motorola VME-based computer system. gee accepts several 
types of arguments: 

Arguments whose names end with .c are C source programs; they are 
compiled and left in a .o file in the working directory. 

Arguments whose names end with .s are assembly source programs; they 
are assembled and left in a .o file in the working directory. 

Other arguments are taken to be loader option arguments, C­
compatible object programs, or object program libraries. 

The .o file is deleted if a single source file is compiled and linked. 

The .s files which are created for each module are normally deleted. 

gee accepts many options; those listed below are of particular interest. 
Additional options are supported by ld(l). 

# C "options" 

-c Compile to the '.o' level only; do not load. 

-v Verbose mode. The compiler driver will echo each command and 
options before exection. 

-w Suppress warning messages. 

-p Generate profiling code and link the code with routines which 
support prof(1). 

-pg Generate profiling code similar to -p, but link with a more 
involved profiling mechanism which supports gprof(l). This 
option forces the generation of frame pointers. 

MU43814PR/Al - 1 - 06/01/88 



I GCC(l) (Green Hills C-68000) GCC(l) 

-g Generate symbolic debugger information in the assembly file, for 
use with a debugger such as dbx(1) or cdb(1). 

-ga Generate a frame for every routine, regardless of need. This often 
generates more compact code for medium and large routines. 

-0 Perform various speed optimizations, such as moving constant 
expressions out of loops. Generally this will make your programs 
somewhat larger; if their performance is not loop bound, they 
may become slower as well. 

-OLM Allow the optimizer to assume that memory locations do not 
change except by explicit stores. That is, the optimizer is 
guaranteed that no memory locations are 1/0 device registers that 
can be changed by external hardware and no memory locations 
are being shared with other processes which can change them 
asynchronously with respect to the current process. This compile 
time option must be used with extreme caution (or not at all) in 
device drivers, operating systems, shared memory environments, 
and when interrupts (or SYSTEM V/68 signals) are present. 

-R Make initialized variables part of the text segment; passed on to 
as. 

-E Do not compile the program, instead place the output of the 
preprocessor on the standard output file. This is useful for 
debugging preprocessor macros. The integrated preprocessor can­
not generate output as fast as cpp{l) , so use cpp(1) for big jobs. 

-C Do not strip comments from the preprocessor output. 

-S Compile the named programs, and leave the assembler-language 
output on corresponding files suffixed .s. 

-o output 
Name the final output file output. If this option is used the file 
a.out will be left undisturbed. This does not apply to assembly 
output. 

-Dname=def 
-Dname Define the name to the preprocessor, as if by '#define'. If no 

definition is given, the name is defined as "1". 

MU43814PR/Al -2- 06/01/88 



GCC(l) (Green Hills C-68000) GCC(l) 

-Uname Remove any initial definition of name. 

-Idir '#include' files whose names do not begin with I are always 
sought first in the directory of the file argument, then in direc­
tories named in -I options, then in /usrlinclude. 

-Xn Where n is an integer constant. Tum on option number n. 
There are numerous options available for such things as signed 
bit fields, short return types, etc. 
Many of these by nature should be performed on all programs 
which are linked together, and should therefore be built in to the 
compiler driver. Descriptions of these options can be found in 
the User's Manual. The following list may be used for quick refer­
ence. 

-Zn Tum off option number n. This is the reverse of the X option. 
This option is useful for turning off options which are on by 
default. 

-Bstring Use the compiler in the directory string, or use the default old 
version if string is blank. 

-X14 Prepend underscores to all identifiers. 

-X18 Only declared register variables are allocated in registers. 

-X20 With -X35 , no leading underscores. 

-X21 With-X35, uppercase only. 

-Z22 VAX format arithmetic. · 

-X23 Clear the stack after each routine call. 

-X25 Display procedure sizes as compilation proceeds. 

-X29 Output file should have a .asm suffix. 

-X35 Generate Motorola format output, for cross development. 

-X42 No single precision arithmetic calls. 

-X92 SYSTEM V/68 style output. 

MU43814PR/D2 - 3 - 12/01/87 

Ill 



II GCC(l) 

FILES 

(Green Hills C-68000) GCC(l) 

-X96 Use space instead of blkb. 

-X97 No .ascii statements in output. 

-Z98 Disable 68020 code generation. 

-Z99 Disable 68881 code generation. 

-X120 Hunter and Ready position independence. 

-X122 Generate binary for 68020/68881 instructions. 

-X125 Activate -X18 if there is a call to setjmp. 

-Z129 Disable 68881 transcendental support. Calls to functions will not 
be mapped to instructions. 

-Z130 Generate 68881 instructions in a manner compatible with old 
compilers. 

-Z136 Disable Integrated Solutions assembler modifications. 

-X138 Do not use .lcomm , use default space generation. 

-X168 Do not move invariant floating point expressions out of loops. 

-X211 Call the strcpy() library function. 

-X243 Do not generate fsgldiv or fsglmul instructions. 

file.c 
file.o 
file.s 
a.out 
/usr/bin/gcc 
/usr/lib/ccom68 
/usr/lib/crtO.o 
/usr/lib/mcrtO.o 
/usr/lib/gcrtO.o 
/lib/020/libc.a 
/usr/include 
man.out 
gmon.out 

C input file 
object file 
assembly file 
loaded output 

compiler 
runtime startoff 
startoff for profiling 
startoff for graph profiling 
standard C library 
standard directory for '#include' files 
profile output for use by prof(l) 
profile output for use by gprof(l) 

SEE ALSO 
B. W. Kernighan and D. M. Ritchie, The C Programming Language, 
Prentice-Hall, 1978 
B. W. Kernighan, Programming in C, Manual tutorial 

MU43814PR/D2 -4- 12/01/87 



GCC(l) (Green Hills C-68000) 

D. M. Ritchie, C Reference Manual 
C-68000 User's Manual 
as(l), prof(l), gprof(l), adb(l), cdb(l), ld(l) 

GCC(l) 

DIAGNOSTICS 

BUGS 

The diagnostics produced by the C compiler are intended to be self­
explanatory, and similar to those produced by the SYSTEM V/68 C com­
piler. Occasional messages may be produced by the assembler or loader. 

Routines with over a thousand lines of code may require large amounts of 
memory to compile. If memory constraints are a problem do not use "-
0" and break large routines into several smaller routines. Certain 
features may not be supported; see the System Release Guide. 

MU43814PR/02 - 5 - 12/01/87 

Ill 



II GENCC(l) (C Programming Language Utilities) GENCC(l) 

NAME 
gencc - create a front-end to the cc command 

SYNOPSIS 
gencc 

DESCRIPTION 
The gencc command is an interactive command designed to aid in the crea­
tion of a front-end to the cc command. Since hard-coded pathnames have 
been eliminated from the C Compilation System (CCS), it is possible to 
move pieces of the CCS to new locations without recompiling the CCS. 
The new locations of moved pieces can be specified through the -Y option 
to the cc command. However, it is inconvenient to supply the proper -Y 
options with every invocation of the cc command. Further, if a system 
administrator moves pieces of the CCS, such movement should be invisi­
ble to users. 

The front-end to the cc command which gencc generates is a one-line shell 
script which calls the cc command with the proper -Y options specified. 
The front-end to the cc command will also pass all user supplied options 
to the cc command. 

gencc prompts for the location of each tool and directory which can be 
respecified by a -Y option to the cc command. If no location is specified, 
it assumes that that piece of the CCS has not been relocated. After all the 
locations have been prompted for, gencc will create the front-end to the cc 
command. 

gencc creates the front-end to the cc command in the current working 
directory and gives the file the same name as the cc command. Thus, 
gencc can not be run in the same directory containing the actual cc com­
mand. Further, if a system administrator has redistributed the CCS, the 
actual cc command should be placed somewhere which is not typically in 
a user's PATH (e.g., /lib). This will prevent users from accidentally invok­
ing the cc command without using the front-end. 

MU43814PR/D2 - 1 - 12101187 



GENCC(l) (C Programming Language Utilities) GENCC(l) 

"WARNINGS 
gencc does not produce any warnings if a tool or directory does not exist at 
the specified location. Also, gencc does not actually move any files to new 
locations. 

FILES 
.Ice 

SEE ALSO 
cc(l). 

MU43814PR/D2 

front-end to cc 

-2- 12/01/87 

Ill 



Ill GET(l) (Source Code Control System Utilities) GET(l) 

NAME 
get - get a version of an SCCS file 

SYNOPSIS 
get [-rSID] [-ccutoff] [-ilist] [-xlist] [-wstring] [-aseq-no.] [-k] [-e] 
[-l[p] [-p] [-m] [-n] [-s] [-b] [-g] [-t] file ... 

DESCRIPTION 
get generates an ASCII text file from each named SCCS file according to the 
specifications given by its keyletter arguments, which begin with -. The 
arguments may be specified in any order, but all keyletter arguments 
apply to all named SCCS files. If a directory is named, get behaves as 
though each file in the directory were specified as a named file, except 
that non-SCCS files (last component of the path name does not begin with 
s.) and unreadable files are silently ignored. If a name of - is given, the 
standard input is read; each line of the standard input is taken to be the 
name of an SCCS file to be processed. Again, non-SCCS files and unread­
able files are silently ignored. 

The generated text is normally written into a file called the g-file whose 
name is derived from the SCCS file name by simply removing the leading 
s.; (see also FILES, below). 

Each of the keyletter arguments is explained below as though only one 
secs file is to be processed, but the effects of any keyletter argument 
applies independently to each named file. 

-rSID The SCCS IDentification string (SID) of the version {delta) 
of an SCCS file to be retrieved. Table-1 below shows, for 
the most useful cases, what version of an SCCS file is 
retrieved {as well as the SID of the version to be eventually 
created by delta(l) if the -e keyletter is also used), as a 
function of the SID specified. 

-ccutoff Cutoff date-time, in the form: 

MU43814PR/D2 

YY[MM[DD[HH[MM[SS]]]]] 

No changes (deltas) to the SCCS file which were created 
after the specified cutoff date-time are included in the gen­
erated ASCII text file. Units omitted from the date-time 
default to their maximum possible values; that is, -c7502 is 
equivalent to -c750228235959. Any number of non­
numeric characters may separate the various 2-digit pieces 
of the cutoff date-time. This feature allows one to specify a 

- 1 - 12/01/87 



GET(l) (Source Code Control System Utilities) GET(l) 

cutoff date in the form: "-c77/2/2 9:22:25". Note that this 
implies that one may use the %E% and %U% identifica­
tion keywords (see below) for nested gets within, say the 
input to a send(lC) command: 

·iget "-c%E% %U%" s.file 

-ilist A list of deltas to be included (forced to be applied) in the 
creation of the generated file. The list has the following 
syntax: 

<list> ::= <range> I <list>, <range> 
<range> ::=SID I SID- SID 

SID, the SCCS Identification of a delta, may be in any form 
shown in the "SID Specified" column of Table 1. 

-xlist A list of deltas to be excluded in the creation of the gen­
erated file. See the -i keyletter for the list format. 

-e Indicates that the get is for the purpose of editing or mak­
ing a change (delta) to the SCCS file via a subsequent use 
of delta(!). The -e keyletter used in a get for a particular 
version {SID) of the SCCS file prevents further gets for edit­
ing on the same SID until delta is executed or the j Goint 
edit) flag is set in the SCCS file {see admin(l)]. Concurrent 
use of get -e for different SIDs is always allowed. 

If the g-file generated by get with an -e keyletter is 
accidentally ruined in the process of editing it, it may be 
regenerated by re-executing the get command with the -k 
keyletter in place of the -e keyletter. 

SCCS file protection specified via the ceiling, floor, and 
authorized user list stored in the SCCS file {see admin(l)] 
are enforced when the -e keyletter is used. 

-b Used with the -e keyletter to indicate that the new delta 
should have an SID in a new branch as shown in Table 1. 
This keyletter is ignored if the b flag is not present in the 
file {see admin(l)] or if the retrieved delta is not a leaf delta. 
(A leaf delta is one that has no successors on the SCCS file 
tree.) 
Note: A branch delta may always be created from a non­
leaf delta. Partial SIDs are interpreted as shown in the 
"SID Retrieved" column of Table 1. 

MU43814PR/D2 -2- 12/01/87 

II 



II GET(l) (Source Code Control System Utilities) GET(l) 

-k Suppresses replacement of identification keywords (see 
below) in the retrieved text by their value. The -k 
keyletter is implied by the -e keyletter. 

-l[p] Causes a delta summary to be written into an l-file. If -Ip 
is used then an l-file is not created; the delta summary is 
written on the standard output instead. See FILES for the 
format of the l-file. 

-p Causes the text retrieved from the SCCS file to be written 
on the standard output. No g-file is created. All output 
which normally goes to the standard output goes to file 
descriptor 2 instead, unless the -s keyletter is used, in 
which case it disappears. 

-s Suppresses all output normally written on the standard 
output. However, fatal error messages (which always go 
to file descriptor 2) remain unaffected. 

-m Causes each text line retrieved from the SCCS file to be 
preceded by the SID of the delta that inserted the text line 
in the SCCS file. The format is: SID, followed by a hor­
izontal tab, followed by the text line. 

-n Causes each generated text line to be preceded with the 
%M% identification keyword value (see below). The for­
mat is: %M% value, followed by a horizontal tab, fol­
lowed by the text line. When both the -m and -n 
keyletters are used, the format is: %M% value, followed 
by a horizontal tab, followed by the -m keyletter gen­
erated format. 

-g Suppresses the actual retrieval of text from the SCCS file. 
It is primarily used to generate an I-file, or to verify the 
existence of a particular SID. 

-t Used to access the most recently created delta in a given 
release (e.g., -rl), or release and level (e.g., -rl.2). 

-w string Substitute string for all occurrences of % W% when getting 
the file. 

MU43814PR/D2 - 3 - 12/01/87 



GET(l) (Source Code Control System Utilities) GET(l) 

-aseq-no. The delta sequence number of the SCCS file delta (version) 
to be retrieved [see sccsfile(5)]. This keyletter is used by 
the comb(l) command; it is not a generally useful keyletter. 
If both the -r and -a keyletters are specified, only the -a 
keyletter is used. Care should be taken when using the -a 
keyletter in conjunction with the -e keyletter, as the SID of 
the delta to be created may not be what one expects. The 
-r keyletter can be used with the -a and -e keyletters to 
control the naming of the SID of the delta to be created. 

For each file processed, get responds (on the standard output) with the 
SID being accessed and with the number of lines retrieved from the SCCS 
file. 

If the -e keyletter is used, the SID of the delta to be made appears after 
the SID accessed and before the number of lines generated. If there is 
more than one named file or if a directory or standard input is named, 
each file name is printed (preceded by a new-line) before it is processed. 
If the -i keyletter is used included deltas are listed following the notation 
"Included"; if the -x keyletter is used, excluded deltas are listed following 
the notation "Excluded". 

MU43814PR/02 -4- 12/01/87 

Ill 



II GET(l) 

sro• 
Specified 

none* 

none* 

R 

R 

R 

R 

R 

R 

R.L 

R.L 

R.L 

R.L.B 

R.L.B 

R.L.B.S 

R.L.B.S 

R.L.B.S 

... 

(Source Code Control System Utilities) 

TABLE 1. Determination of SCCS Identification String 

-b Keyletter 

Used+ 

no 

yes 

no 

no 

yes 

yes 

no 

yes 

no 

yes 

no 

yes 

Other 

Conditions 

R defaults to mR 

R defaults to mR 

R>mR 

R= mR 

R>mR 

R=mR 

R<mRand 

R does not exist 

Trunk succ.# 

in release > R 

and R exists 

No trunk succ. 

No trunk succ. 

Trunk succ. 

in release ~ R 

No branch succ. 

No branch succ. 

No branch succ. 

No branch succ. 

Branch succ. 

SID 

Retrieved 

mR.mL 

mR.mL 

mR.mL 

mR.mL 

mR.mL 

mR.mL 

hR.mL" 

R.mL 

R.L 

R.L 

R.L 

R.L.B.mS 

R.L.B.mS 

R.L.B.S 

R.L.B.S 

R.L.B.S 

GET(l) 

SID of Delta 

to be Created 

mR.(mL+l) 

mR.mL.(mB+l).1 

R.1••• 

mR.(mL+l) 

mR.mL.(mB+l).1 

mR.mL.(mB + 1).1 

hR.mL.(mB+l).1 

R.mL.(mB+l).1 

R.(L+l) 

R.L.(mB+l).1 

R.L.(mB+l).1 

R.L.B.(mS + 1) 

R.L.(mB+l).1 

R.L.B.(S+l) 

R.L.(mB+l).1 

R.L.(mB+l).1 

"R", "L", "B", and "S" are the "release", "level", "branch", and 
"sequence" components of the SID, respectively; "m" means "max­
imum". Thus, for example, "R.mL" means "the maximum level 
number within release R"; "R.L.(mB+l).1" means "the first sequence 
number on the new branch (i.e., maximum branch number plus one) 
of level L within release R". Note that if the SID specified is of the 
form "R.L", "R.L.B", or "R.L.B.S", each of the specified components 
must exist. 

MU43814PR/D2 -5- 12/01/87 



GET(l) (Source Code Control System Utilities) GET(l) 

** "hR" is the highest existing release that is lower than the specified, 
nonexistent, release R. 

*** This is used to force creation of the first delta in a new release. 
# Successor. 
t The -b keyletter is effective only if the b flag [see admin (l)] is present 

in the file. An entry of - means "irrelevant". 
:j: This case applies if the d (default SID) flag is not present in the file. If 

the d flag is present in the file, then the SID obtained from the d flag 
is interpreted as if it had been specified on the command line. Thus, 
one of the other cases in this table applies. 

IDENTIFICATION KEYWORDS 
Identifying information is inserted into the text retrieved from the SCCS 
file by replacing identification keywords with their value wherever they 
occur. The following keywords may be used in the text stored in an SCCS 
file: 

Keyword 
%M% 

%1% 

%R% 
%L% 
%B% 
%5% 
%D% 
%H% 
%T% 
%E% 
%G% 
%U% 
%Y% 
%F% 
%P% 
3Q3 

MU43814PR/D2 

Value 
Module name: either the value of the m flag in the file [see 
admin(l)], or if absent, the name of the SCCS file with the lead­
ing s. removed. 
SCCS identification (SID) (%R%.%L%.%B%.%S%) of the 
retrieved text. 
Release. 
Level. 
Branch. 
Sequence. 
Current date {YY/MM/DD). 
Current date {MM!DD!YY). 
Current time {HH:MM:SS). 
Date newest applied delta was created {YY/MM/DD). 
Date newest applied delta was created {MM!DD/YY). 
Time newest applied delta was created {HH:MM:SS). 
Module type: value of the t flag in the SCCS file [see admin(l)]. 
SCCS file name. 
Fully qualified SCCS file name. 
The value of the q flag in the file [see admin(l)]. 

-6- 12/01/87 

II 



Ill GET(l) 

%C% 

%Z% 
%W% 

%A% 

(Source Code Control System Utilities) GET(l) 

Current line number. This keyword is intended for identifying 
messages output by the program such as "this should not have 
happened" type errors. It is not intended to be used on every 
line to provide sequence numbers. 
The 4-character string @(#) recognizable by what(l). 
A shorthand notation for constructing what(l) strings for SYS­
TEM V/68 program files. %W% = %Z%%M%<horizontal-
tab>%I% 
Another shorthand notation for constructing what(l) strings for 
non-SYSTEM V/68 program files. 
%A%= %Z%%Y% %M% %I%%Z% 

Several auxiliary files may be created by get. These files are known gener­
ically as the g-file, l-file, p-file, and z-file. The letter before the hyphen is 
called the tag. An auxiliary file name is formed from the SCCS file name: 
the last component of all SCCS file names must be of the form s.module­
name, the auxiliary files are named by replacing the leading s with the tag. 
The g-file is an exception to this scheme: the g-file is named by removing 
the s. prefix. For example, s.xyz.c, the auxiliary file names would be 
xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively. 

The g-file, which contains the generated text, is created in the current 
directory (unless the -p keyletter is used). Ag-file is created in all cases, 
whether or not any lines of text were generated by the get. It is owned by 
the real user. If the -k keyletter is used or implied its mode is 644; other­
wise its mode is 444. Only the real user need have write permission in 
the current directory. 

The l-file contains a table showing which deltas were applied in generat­
ing the retrieved text. The I-file is created in the current directory if the -1 
keyletter is used; its mode is 444 and it is owned by the real user. Only 
the real user need have write permission in the current directory. 

Lines in the I-file have the following format: 

a. A blank character if the delta was applied; 
• otherwise. 

b. A blank character if the delta was applied or was not 
applied and ignored; 
• if the delta was not applied and was not ignored. 

MU43814PR/D2 -7- 12/01187 



GET(l) (Source Code Control System Utilities) GET(l) 

c. A code indicating a "special" reason why the delta was or 
was not applied: 

"I": Included. 
"X": Excluded. 
"C": Cut off (by a -c keyletter). 

d. Blank. 
e. SCCS identification (SID). 
f. Tab character. 
g. Date and time (in the form YY/MM/DD HH:MM:SS) of crea-

tion. 
h. Blank. 
i. Login name of person who created delta. 

The comments and MR data follow on subsequent lines, indented 
one horizontal tab character. A blank line terminates each entry. 

The p-file is used to pass information resulting from a get with an -e 
keyletter along to delta. Its contents are also used to prevent a subsequent 
execution of get with an -e keyletter for the same SID until delta is exe­
cuted or the joint edit flag, j, [see admin(l)] is set in the SCCS file. The p­
file is created in the directory containing the SCCS file and the effective 
user must have write permission in that directory. Its mode is 644 and it 
is owned by the effective user. The format of the p-file is: the gotten SID, 
followed by a blank, followed by the SID that the new delta will have 
when it is made, followed by a blank, followed by the login name of the 
real user, followed by a blank, followed by the date-time the get was exe­
cuted, followed by a blank and the -i keyletter argument if it was present, 
followed by a blank and the -x keyletter argument if it was present, fol­
lowed by a new-line. There can be an arbitrary number of lines in the p­
file at any time; no two lines can have the same new delta SID. 

The z-file serves as a lock-out mechanism against simultaneous updates. 
Its contents are the binary (2 bytes) process ID of the command (i.e., get) 
that created it. The z-file is created in the directory containing the SCCS 
file for the duration of get. The same protection restrictions as those for 
the p-file apply for the z-file. The z-file is created mode 444. 

MU43814PR/D2 -8- 12/01/87 



II GET(l) 

FILES 

(Source Code Control System Utilities) GET(l) 

g-file Existed before the execution of delta; removed after comple­
tion of delta . 

p-file Existed before the execution of delta; may exist after com­
pletion of delta. 

q-file Created during the execution of delta; removed after com­
pletion of delta. 

x-file Created during the execution of delta; renamed to SCCS file 
after completion of delta. 

z-file Created during the execution of delta; removed during the 
execution of delta. 

d-file Created during the execution of delta; removed after com­
pletion of delta . 

/usr/bin/bdiff Program to compute differences between the "gotten" file 
and the g-file. 

SEE ALSO 
admin{l), delta{l), prs(l), what(l). 
help(l) in the User's Reference Manual. 

DIAGNOSTICS 

BUGS 

Use help(l) for explanations. 

If the effective user has write permission (either explicitly or implicitly) in 
the directory containing the SCCS files, but the real user does not, then 
only one file may be named when the -e keyletter is used. 

MU43814PR/D2 -9- 12/01/87 



INFOCMP(lM) (Terminal Information Utilities) INFOCMP(lM) 

NAME 
infocmp - compare or print out terminfo descriptions 

SYNOPSIS 
infocmp I-dl I-cl I-n] I-I] I-L] I-Cl I-r] I-u] I-s dlilllc] I-v] I-V] I-1] 
I-w width] I-A directory] I-B directory] {termname ... ] 

DESCRIPTION 
infocmp can be used to compare a binary terminfo(4) entry with other ter­
minfo entries, rewrite a terminfo(4) description to take advantage of the 
use= terminfo field, or print out a terminfo(4) description from the binary 
file (term(4)) in a variety of formats. In all cases, the boolean fields will be 
printed first, followed by the numeric fields, followed by the string fields. 

Default Options 
If no options are specified and zero or one termnames are specified, the -I 
option will be assumed. If more than one termname is specified, the -d 
option will be assumed. 

Comparison Options [-d] [-c] [-n] 
infocmp compares the terminfo(4) description of the first terminal termname 
with each of the descriptions given by the entries for the other terminal's 
termnames. If a capability is defined for only one of the terminals, the 
value returned will depend on the type of the capability: F for boolean 
variables, -1 for integer variables, and NULL for string variables. 

-d produce a list of each capability that is different. In this manner, 
if one has two entries for the same terminal or similar terminals, 
using infocmp will show what is different between the two 
entries. This is sometimes necessary when more than one per­
son produces an entry for the same terminal and one wants to 
see what is different between the two. 

-c produce a list of each capability that is common between the two 
entries. Capabilities that are not set are ignored. This option can 
be used as a quick check to see if the -u option is worth using. 

-n produce a list of each capability that is in neither entry. If no 
termnames are given, the environment variable TERM will be used 
for both of the termnames. This can be used as a quick check to 
see if anything was left out of the description. 

MU43814PR/D2 - 1 - 12101/87 



II INFOCMP(lM) (Terminal Information Utilities) INFOCMP(lM) 

Source Listing Options [-I] [-L] [-C] [-r] 
The -I, -L, and -C options will produce a source listing for each terminal 
named. 

-I use the terminfo(4) names 

-L use the long C variable name listed in <term.h> 

-C use the termcap names 

-r when using -C, put out all capabilities in termcap form 

If no termnames are given, the environment variable TERM will be used for 
the terminal name. 

The source produced by the -C option may be used directly as a termcap 
entry, but not all of the parameterized strings may be changed to the 
termcap format. infocmp will attempt to convert most of the parameterized 
information, but that which it doesn't will be plainly marked in the output 
and commented out. These should be edited by hand. 

All padding information for strings will be collected together and placed 
at the beginning of the string where termcap expects it. Mandatory pad­
ding (padding information with a trailing '/') will become optional. 

All termcap variables no longer supported by terminfo(4), but which are 
derivable from other terminfo(4) variables, will be output. Not all ter­
minfo(4) capabilities will be translated; only those variables which were 
part of termcap will normally be output. Specifying the -r option will take 
off this restriction, allowing all capabilities to be output in termcap form. 

Note that because padding is collected to the beginning of the capability, 
not all capabilities are output, mandatory padding is not supported, and 
termcap strings were not as flexible, it is not always possible to convert a 
terminfo(4) string capability into an equivalent termcap format. Not all of 
these strings will be able to be converted. A subsequent conversion of the 
termcap file back into terminfo(4) format will not necessarily reproduce the 
original terminfo(4) source. 

MU43814PR/D2 - 2 - 12/01/87 



INFOCMP(tM) (Terminal Information Utilities) INFOCMP(tM) 

Some common terminfo parameter sequences, their termcap equivalents, 
and some terminal types which commonly have such sequences, are: 

Terminfo 

%pl%c 
%pl%d 
%pl%'x'%+%c 
%i 
%pl% ?%'x'%>%t%pl %'y'% + %; 
%p2 is printed before %pl 

Use= Option [-u] 

Termcap Representative Terminals 

%. 
%d 
%+x 
%i 
%>xy 
%r 

adm 
hp, ANSI standard, vtlOO 
concept 
ANSI standard, vtlOO 
concept 
hp 

-u produce a terminfo(4) source description of the first terminal term­
name which is relative to the sum of the descriptions given by the 
entries for the other terminals termnames. It does this by analyz­
ing the differences between the first termname and the other term­
names and producing a description with use= fields for the other 
terminals. In this manner, it is possible to retrofit generic ter­
minfo entries into a terminal's description. Or, if two similar ter­
minals exist, but were coded at different times or by different 
people so that each description is a full description, using infocmp 
will show what can be done to change one description to be rela­
tive to the other. 

A capability will get printed with an at-sign (@) if it no longer exists in 
the first termname, but one of the other termname entries contains a value 
for it. A capability's value gets printed if the value in the first termname is 
not found in any of the other termname entries, or if the first of the other 
termname entries that has this capability gives a different value for the 
capability than that in the first termname. 

The order of the other termname entries is significant. Since the terminfo 
compiler tic(lM) does a left-to-right scan of the capabilities, specifying 
two use= entries that contain differing entries for the same capabilities 
will produce different results depending on the order that the entries are 
given in. infocmp will flag any such inconsistencies between the other 
termname entries as they are found. 

Alternatively, specifying a capability after a use= entry that contains that 
capability will cause the second specification to be ignored. Using infocmp 
to recreate a description can be a useful check to make sure that every­
thing was specified correctly in the original source description. 

MU43814PR/D2 - 3 - 12/01/87 

II 



II INFOCMP(lM) (Terminal Information Utilities) INFOCMP(lM) 

Another error that does not cause incorrect compiled files, but will slow 
down the compilation time, is specifying extra use= fields that are super­
fluous. infocmp will flag any other termname use= fields that were not 
needed. 

Other Options [-s dlilllc] [-v] [-VJ [-1] [-w width] 
-s sort the fields within each type according to the argument below: 

d leave fields in the order that they are stored in the terminfo 
database. 

i sort by terminfo name. 

1 sort by the long C variable name. 

c sort by the termcap name. 

If no -s option is given, the fields printed out will be sorted 
alphabetically by the terminfo name within each type, except in 
the case of the -C or the -L options, which cause the sorting to 
be done by the termcap name or the long C variable name, respec­
tively. 

-v print out tracing information on standard error as the program 
runs. 

-V print out the version of the program in use on standard error and 
exit. 

-1 cause the fields to printed out one to a line. Otherwise, the 
fields will be printed several to a line to a maximum width of 60 
characters. 

-w change the output to width characters. 

Changing Databases [-A directory] [-B directory] 
The location of the compiled terminfo(4) database is taken from the 
environment variable TERMINFO. If the variable is not defined, or the ter­
minal is not found in that location, the system terminfo(4) database, usu­
ally in /usrlliblterminfo, will be used. The options -A and -B may be used 
to override this location. The -A option will set TERMINFO for the first 
termname and the -B option will set TERMINFO for the other termnames. 
With this, it is possible to compare descriptions for a terminal with the 
same name located in two different databases. This is useful for compar­
ing descriptions for the same terminal created by different people. Other­
wise the terminals would have to be named differently in the terminfo(4) 
database for a comparison to be made. 

MU43814PR/D2 -4- 12/01/87 



INFOCMP(1M) (Terminal Information Utilities) INFOCMP(1M) 

FILES 
/usr/lib/terminfo/71"' compiled terminal description database 

DIAGNOSTICS 
malloc is out of space! 

There was not enough memory available to process all the 
terminal descriptions requested. Run infocmp several 
times, each time including a subset of the desired term­
names. 

use= order dependency found: 
A value specified in one relative terminal specification was 
different from that in another relative terminal specifica­
tion. 

'use= term' did not add anything to the description. 
A relative terminal name did not contribute anything to 
the final description. 

must have at least two terminal names for a comparison to be done. 
The -u, -d and -c options require at least two terminal 
names. 

SEE ALSO 
captoinfo(lM). 

NOTE 

tic(lM), curses(3X), term(4), terminfo(4) 

The curses/terminfo chapter in the Programmer's Guide. 

The termcap database (from earlier releases of SYSTEM V/68) may not be 
supplied in future releases. 

MU43814PR/02 - 5 - 12/01/87 

II 



II INSTALL(lM) (Extended Software Generation System Utilities) INSTALL(lM) 

NAME 
install - install commands 

SYNOPSIS 
/etc/install [-c dira] [-£ dirb] [-i] [-n dire] [-m mode] [-u user] [-g 
group] [-o] [-s] file [dine ... ] 

DESCRIPTION 
The install command is most commonly used in "makefiles" [See make(l)] 
to install a file (updated target file) in a specific place within a file system. 
Each file is installed by copying it into the appropriate directory, thereby 
retaining the mode and owner of the original command. The program 
prints messages telling the user exactly what files it is replacing or creat­
ing and where they are going. 

If no options or directories (dirx ... ) are given, install will search a set of 
default directories (/bin, /usr/bin, /etc, /lib, and /usr/lib, in that order) for 
a file with the same name as file. When the first occurrence is found, 
install issues a message saying that it is overwriting that file with file, and 
proceeds to do so. If the file is not found, the program states this and 
exits without further action. 

If one or more directories (dirx ... ) are specified after file, those direc­
tories will be searched before the directories specified in the default list. 

The meanings of the options are: 

-c dira Installs a new command (file) in the directory speci­
fied by dira, only if it is not found. If it is found, 
install issues a message saying that the file already 
exists, and exits without overwriting it. May be 
used alone or with the -s option. 

-£ dirb 

MU43814PR/D2 

Forces file to be installed in given directory, whether 
or not one already exists. If the file being installed 
does not already exist, the mode and owner of the 
new file will be set to 755 and bin, respectively. If 
the file already exists, the mode and owner will be 
that of the already existing file. May be used alone 
or with the -o or -s options. 

- 1 - 12/01/87 



INSTALL(lM) (Extended Software Generation System Utilities) INSTALL(lM) 

-i 

-n dire 

-m mode 

-u user 

-g group 

-0 

SEE ALSO 
make(l). 

MU43814PR/D2 

Ignores default directory list, searching only 
through the given directories (dirx ... ). May be 
used alone or with any other options except -c and 
-f. 

If file is not found in any of the searched directories, 
it is put in the directory specified in dire. The mode 
and owner of the new file will be set to 755 and bin, 
respectively. May be used alone or with any other 
options except -c and -f. 

The mode of the new file is set to mode. Only avail­
able to the superuser. 

The owner of the new file is set to user. Only avail­
able to the superuser. 

The group id of the new file is set to group. Only 
available to the superuser. 

If file is found, this option saves the "found" file by 
copying it to OLDfile in the directory in which it was 
found. This option is useful when installing a fre­
quently used file such as /bin/sh or /etclgetty, where 
the existing file cannot be removed. May be used 
alone or with any other options except -c. 

Suppresses printing of messages other than error 
messages. May be used alone or with any other 
options. 

-2- 12/01/87 

II 



II 



LD(l) (Software Generation System Utilities) LD(t) 

NAME 
ld - link editor for common object files 

SYNOPSIS 
Id [options] filename 

DESCRIPTION 
The ld command combines several object files into one, performs reloca­
tion, resolves external symbols, and supports symbol table information for 
symbolic debugging. In the simplest case, the names of several object 
programs are given, and ld combines the objects, producing an object 
module that can either be executed or, if the -r option is specified, used 
as input for a subsequent ld run. The output of ld is left in a.out. By 
default this file is executable if no errors occurred during the load. If any 
input file, filename, is not an object file, ld assumes it is either an archive 
library or a text file containing link editor directives. [See Link Editor 
Directives in the Programmer's Guide for a discussion of input directives.] 

If any argument is a library, it is searched exactly once at the point it is 
encountered in the argument list. The library may be either a relocatable 
archive library or a shared library. [See Shared LilJraries in the Programmer's 
Guide for a discussion of shared libraries.] Only those routines defining 
an unresolved external reference are loaded. The library (archive) symbol 
table [see ar(4)] is searched sequentially with as many passes as are neces­
sary to resolve external references which can be satisfied by library 
members. Thus, the ordering of library members is functionally unimpor­
tant, unless there exist multiple library members defining the same exter­
nal symbol. 

The following options are recognized by ld: 

-e epsym 
Set the default entry point address for the output file to be that of 
the symbol epsym. 

-f fill Set the default fill pattern for "holes" within an output section as 
well as initialized bss sections. The argument fill is a two-byte 
constant. 

-Ix Search a library libx.a, where xis up to nine characters. A library 
is searched when its name is encountered, so the placement of a 
-1 is significant. By default, libraries are located in LIBDIR or 
LLIBDIR. 

MU43814PR/D2 - 1 - 12/01/87 

Ill 



II LD(l) (Software Generation System Utilities) LD(l) 

-m Produce a map or listing of the input/output sections on the stan­
dard output. 

-o outfile 
Produce an output object file by the name outfile. The name of the 
default object file is a.out. 

-r Retain relocation entries in the output object file. Relocation 
entries must be saved if the output file is to become an input file 
in a subsequent ld run. The link editor will not complain about 
unresolved references, and the output file will not be executable. 

-a Create an absolute file. This is the default if the -r option is not 
used. Used with the -r option, -a allocates memory for common 
symbols. 

-s Strip line number entries and symbol table information from the 
output object file. 

-t Tum off the warning about multiply-defined symbols that are not 
the same size. 

-usymname 
Enter symname as an undefined symbol in the symbol table. This 
is useful for loading entirely from a library, since initially the sym­
bol table is empty and an unresolved reference is needed to force 
the loading of the first routine. The placement of this option on 
the ld line is significant; it must be placed before the library which 
will define the symbol. 

-x Do not preserve local symbols in the output symbol table; enter 
external and static symbols only. This option saves some space in 
the output file. 

-z Do not bind anything to address zero. This option will allow run­
time detection of null pointers. 

-L dir Change the algorithm of searching for libx .a to look in dir before 
looking in UBDIR and LLIBDIR. This option is effective only if it 
precedes the -l option on the command line. 

-M Output a message for each multiply-defined external definition. 

MU43814PR/D2 - 2 - 12/01/87 



LD(l) 

FILES 

(Software Generation System Utilities) LD(l) 

-N Put the text section at the beginning of the text segment rather 
than after all header information, and put the data section 
immediately following text in the core image. 

-V Output a message giving information about the version of Id being 
used. 

-VS num 
Use num as a decimal version stamp identifying the a.out file that 
is produced. The version stamp is stored in the optional header. 

-Y[LU],dir 
Change the default directory used for finding libraries. If L is 
specified the first default directory which ld searches, LIBDIR, is 
replaced by dir. If U is specified and Id has been built with a 
second default directory, LLIBDIR, then that directory is replaced 
by dir. If Id was built with only one default directory and U is 
specified a warning is printed and the option is ignored. 

LIBDIR/libx .a 
LLIBDIR/libx .a 
a.out 
LIB DIR 
LLIBDIR 

libraries 
libraries 
output file 
usually /lib 
usually /usr/lib 

SEE ALSO 
as(l), cc(l), mkshlib(l), exit(2), end(3C), a.out(4), ar(4), and Link Editor 
Directives and Shared Libraries in the Programmer's Guide. 

WARNING 
Through its options and input directives, the common link editor gives 
users great flexibility; however, those who use the input directives must 
assume some added responsibilities. Input directives and options should 
insure the following properties for programs: 

C defines a zero pointer as null. A pointer to which zero has been 
assigned must not point to any object. To satisfy this, users must 
not place any object at virtual address zero in the program's address 
space. 

MU43814PR/D2 -3- 12/01/87 

II 



II LD(l) (Software Generation System Utilities) LD(l) 

When the link editor is called through cc(l), a startup routine is 
linked with the user's program. This routine calls exit() [see exit(2)] 
after execution of the main program. If the user calls the link editor 
directly, then the user must insure that the program always calls 
exit() rather than falling through the end of the entry routine. 

The symbols etext, edata, and end [see end(3C)] are reserved and are 
defined by the link editor. It is incorrect for a user program to redefine 
them. 

If the link editor does not recognize an input file as an object file or an 
archive file, it will assume that it contains link editor directives and will 
attempt to parse it. This will occasionally produce an error message com­
plaining about "syntax errors". 

Arithmetic expressions may only have one forward referenced symbol per 
expression. 

MU43814PR/D2 -4- 12101/87 



LEX(l) (Extended Software Generation System Utilities) LEX(l) 

NAME 
lex - generate programs for simple lexical tasks 

SYNOPSIS 
lex I -rctvn ] I file ] ... 

DESCRIPTION 
The lex command generates programs to be used in simple lexical analysis 
of text. 

The input files (standard input default) contain strings and expressions to 
be searched for, and C text to be executed when strings are found. 

A file lex.yy.c is generated which, when loaded with the library, copies 
the input to the output except when a string specified in the file is found; 
then the corresponding program text is executed. The actual string 
matched is left in yytext, an external character array. Matching is done in 
order of the strings in the file. The strings may contain square brackets to 
indicate character classes, as in [abx-z] to indicate a, b, x, y, and z; and 
the operators *, +, and 1 mean respectively any non-negative number of, 
any positive number of, and either zero or one occurrence of, the previous 
character or character class. The character . is the class of all ASCII char­
acters except new-line. Parentheses for grouping and vertical bar for 
alternation are also supported. The notation r{d,e} in a rule indicates 
between d and e instances of regular expression r. It has higher pre­
cedence than I, but lower than *, ? , +, and concatenation. Thus 
[a-zA-Z] + matches a string of letters. The character A at the beginning of 
an expression permits a successful match only immediately after a new­
line, and the character $ at the end of an expression requires a trailing 
new-line. The character I in an expression indicates trailing context; only 
the part of the expression up to the slash is returned in yytext, but the 
remainder of the expression must follow in the input stream. An operator 
character may be used as an ordinary symbol if it is within " symbols or 
preceded by \. 

Three subroutines defined as macros are expected: input() to read a char­
acter; unput(c) to replace a character read; and output(c) to place an out­
put character. They are defined in terms of the standard streams, but you 
can override them. The program generated is named yylexO, and the 
library contains a main() which calls it. The action REJECT on the right 
side of the rule causes this match to be rejected and the next suitable 
match executed; the function yymore() accumulates additional characters 
into the same yytext; and the function yyless(p) pushes back the portion of 

MU43814PR/02 - 1 - 12/01/87 



II LEX(l) (Extended Software Generation System Utilities) LEX(l) 

the string matched beginning at p, which should be between yytext and 
yytext + yyleng. The macros input and output use files yyin and yyout to 
read from and write to, defaulted to stdin and stdout, respectively. 

Any line beginning with a blank is assumed to contain only C text and is 
copied; if it precedes % % it is copied into the external definition area of 
the lex.yy.c file. All rules should follow a%%, as in YACC. Lines preced­
ing %% which begin with a non-blank character define the string on the 
left to be the remainder of the line; it can be called out later by surround­
ing it with {}. Note that curly brackets do not imply parentheses; only 
string substitution is done. 

EXAMPLE 
D 
%% 
if 
[a-z]+ 
O{D}+ 
{D}+ 
"++" 
"+" 
"/*" 

[0-9] 

printf{''IF statement\n"); 
printf("tag, value % s\n ", yytext); 
printf("octal number %s\n",yytext); 
printf("decimal number %s\n",yytext); 
printf("unary op\n"); 
printf("binary op\n'1; 

skipcommnts(); 
%% 
skipcommnts() 
{ 

} 

for (;;) 
{ 

} 

while (input() != '*') 

if (input()!= '/') 
unput(yytext[yyleng-1 ]); 

else 
return; 

The external names generated by lex all begin with the prefix yy or YY. 

The flags must appear before any files. The flag -r indicates RATFOR 
actions, -c indicates C actions and is the default, -t causes the lex.yy.c 
program to be written instead to standard output, -v provides a one-line 
summary of statistics, -n will not print out the -v summary. Multiple 
files are treated as a single file. If no files are specified, standard input is 

MU43814PR/D2 - 2 - 12/01/87 



LEX(l) (Extended Software Generation System Utilities) LEX(l) 

used. 

Certain table sizes for the resulting finite state machine can be set in the 
definitions section: 

3p n number of positions is n (default 2500) 

3n n number of states is n (500) 

3e n number of parse tree nodes is n (1000) 

3a n number of transitions is n (2000) 

3k n number of packed character classes is n (1000) 

3o n size of output array is n (3000) 

The use of one or more of the above automatically implies the -v option, 
unless the -n option is used. 

SEE ALSO 
yacc(l). 
The chapter, "yacc," in the Programmer's Guide. 

BUGS 
The -r option is not yet fully operational. 

MU43814PR/D2 - 3 - 12/01/87 



Ill LINT(l) (Advanced C Utilities) LINT(l) 

NAME 
lint - a C program checker 

SYNOPSIS 
lint [ option ] . . . file ... 

DESCRIPTION 
The lint command attempts to detect features of the C program files that 
are likely to be bugs, non-portable, or wasteful. It also checks type usage 
more strictly than the compilers. Among the things that are currently 
detected are unreachable statements, loops not entered at the top, 
automatic variables declared and not used, and logical expressions whose 
value is constant. Moreover, the usage of functions is checked to find 
functions that return values in some places and not in others, functions 
called with varying numbers or types of arguments, and functions whose 
values are not used or whose values are used but none returned. 

Arguments whose names end with .c are taken to be C source files. 
Arguments whose names end with .In are taken to be the result of an ear­
lier invocation of lint with either the -c or the -o option used. The .In 
files are analogous to .o (object) files that are produced by the cc(l) com­
mand when given a .c file as input. Files with other suffixes are warned 
about and ignored. 

lint will take all the .c, .In, and llib-lx.ln (specified by -Ix) files and pro­
cess them in their command line order. By default, lint appends the stan­
dard C lint library (llib-lc.ln) to the end of the list of files. However, if 
the -p option is used, the portable C lint library (llib-port.ln) is appended 
instead. When the -c option is not used, the second pass of lint checks 
this list of files for mutual compatibility. When the -c option is used, the 
.In and the llib-lx .In files are ignored. 

Any number of lint options may be used, in any order, intermixed with 
file-name arguments. The following options are used to suppress certain 
kinds of complaints: 

-a Suppress complaints about assignments of long values to variables 
that are not long. 

-b Suppress complaints about break statements that cannot be 
reached. (Programs produced by lex or yacc will often result in 
many such complaints). 

MU43814PR/D2 - 1 - 12/01/87 



LINT(l) (Advanced C Utilities) LINT(l) 

-h Do not apply heuristic tests that attempt to intuit bugs, improve 
style, and reduce waste. 

-u Suppress complaints about functions and external variables used 
and not defined, or defined and not used. {This option is suitable 
for running lint on a subset of files of a larger program). 

-v Suppress complaints about unused arguments in functions. 

-x Do not report variables referred to by external declarations but 
never used. 

The following arguments alter lint's behavior: 

-Ix Include additional lint library llib-lx.In. For example, you can 
include a lint version of the math library llib-Im.In by inserting 
-Im on the command line. This argument does not suppress the 
default use of llib-lc.In. These lint libraries must be in the 
assumed directory. This option can be used to reference local lint 
libraries and is useful in the development of multi-file projects. 

-n Do not check compatibility against either the standard or the port­
able lint library. 

-p Attempt to check portability to other dialects {IBM and GCOS) of 
C. Along with stricter checking, this option causes all non­
external names to be truncated to eight characters and all external 
names to be truncated to six characters and one case. 

-c Cause lint to produce a .In file for every .c file on the command 
line. These .In files are the product of lint's first pass only, and 
are not checked for inter-function compatibility. 

-o lib Cause lint to create a lint library with the name llib-llib .In. The 
-c option nullifies any use of the -o option. The lint library pro-
duced is the input that is given to lint's second pass. The -o 
option simply causes this file to be saved in the named lint 
library. To produce a llib-llib.In without extraneous messages, 
use of the -x option is suggested. The -v option is useful if the 
source file(s) for the lint library are just external interfaces (for 
example, the way the file llib-lc is written). These option settings 
are also available through the use of "lint comments" (see below). 

The -D, -U, and -I options of cpp{l) and the -g and -0 options of cc{l) 
are also recognized as separate arguments. The -g and -0 options are 
ignored, but, by recognizing these options, lint's behavior is closer to that 

MU43814PR/D2 - 2 - 12/01/87 



Ill LINT(l) (Advanced C Utilities) LINT(l) 

of the cc(l) command. Other options are warned about and ignored. The 
pre-processor symbol "lint'' is defined to allow certain questionable code 
to be altered or removed for lint. Therefore, the symbol "lint'' should be 
thought of as a reserved word for all code that is planned to be checked 
by lint. 

Certain conventional comments in the C source will change the behavior 
of lint: 

/*NOTREACHED*/ 
at appropriate points stops comments about unreachable 
code. [This comment is typically placed just after calls to 
functions like exit(2)]. 

/*V ARARGSn*I 
suppresses the usual checking for variable numbers of 
arguments in the following function declaration. The data 
types of the first n arguments are checked; a missing n is 
taken to be 0. 

/*ARGSUSED*/ 
turns on the -v option for the next function. 

I* LINTLIBRARY*/ 
at the beginning of a file shuts off complaints about 
unused functions and function arguments in this file. 
This is equivalent to using the -v and -x options. 

lint produces its first output on a per-source-file basis. Complaints 
regarding included files are collected and printed after all source files have 
been processed. Finally, if the -c option is not used, information gathered 
from all input files is collected and checked for consistency. At this point, 
if it is not clear whether a complaint stems from a given source file or 
from one of its included files, the source file name will be printed fol­
lowed ·bycr·quesflon mark::---

The behavior of the -c and the -o options allows for incremental use of 
lint on a set of C source files. Generally, one invokes lint once for each 
source file with the -c option. Each of these invocations produces a .In 
file which corresponds to the .c file, and prints all messages that are about 
just that source file. After all the source files have been separately run 
through lint, it is invoked once more (without the -c option), listing all 
the .In files with the needed -Ix options. This will print all the inter-file 

MU43814PR/D2 -3- 12/01/87 



LINT(l) 

FILES 

(Advanced C Utilities) LINT(l) 

inconsistencies. This scheme works well with make(l); it allows make to 
be used to lint only the source files that have been modified since the last 
time the set of source files were linted. 

LLIBDIR 

LLIBDIR/lint[12] 
LLIBDIR/llib-lc. ln 

LLIBDIR/llib-port.ln 

LLIBDIR/llib-lm.ln 

TMPDIRI* lint* 
TMPDIR 

the directory where the lint libraries specified by the 
-Ix option must exist, usually /usr/lib 
first and second passes 
declarations for C Library functions (binary format; 
source is in LLIBDIR/llib-k ) 
declarations for portable functions (binary format; 
source is in LLIBDIR/llib-port ) 
declarations for Math Library functions (binary for­
mat; source is in LLIBDIR/llib-lm ) 
temporaries 
usually /usr/tmp but can be redefined by setting the 
environment variable TMPDIR [see tempnam() in 
tmpnam(3S)]. 

SEE ALSO 

BUGS 
cc(l), cpp(l), make(l). 

exit(2), setjmp(3C), and other functions that do not return are not under­
stood; this causes various lies. 

MU43814PR/D2 -4- 12/01/87 

Ill 



Ill LIST(l) (C Programming Language Utilities) LIST(l) 

NAME 
list - produce C source listing from a common object file 

SYNOPSIS 
list [ -V ] [-h] [-F function] source-file • . • [object-file] 

DESCRIPTION 
The list command produces a C source listing with line number informa­
tion attached. If multiple C source files were used to create the object file, 
list will accept multiple file names. The object file is taken to be the last 
non-C source file argument. If no object file is specifie~, the default 
object file, a.out, will be used. 

Line numbers will be printed for each line marked as breakpoint inserted 
by the compiler (generally, each executable C statement that begins a new 
line of source). Line numbering begins anew for each function. Line 
number 1 is always the line containing the left curly brace ( {) that begins 
the function body. Line numbers will also be supplied for inner block 
redeclarations of local variables so that they can be distinguished by the 
symbolic debugger. 

The following options are interpreted by list and may be given in any 
order: 

-V Print, on standard error, the version number of the list com­
mand executing. 

-h Suppress heading output. 

-Ffunction List only the named function. The -F option may be speci-
fied multiple times on the command line. 

SEE ALSO 
as(l), cc(l), ld(l). 

WARNING 
Object files given to list must have been compiled with the -g option of 
cc(l). 

Since list does not use the C preprocessor, it may be unable to recognize 
function definitions whose syntax has been distorted by the use of C 
preprocessor macro substitutions. 

DIAGNOSTICS 
list will produce the error message "list: name: cannot open" if name can­
not be read. If the source file names do not end in .c , the message is 
"list: name: invalid C source name". An invalid object file will cause the 

MU43814PR/D2 - 1 - 12/01/87 



LIST(t) (C Programming Language Utilities) LIST(t) 

message "list: name: bad magic" to be produced. 

If some or all of the symbolic debugging information is missing, one of 
the following messages will be printed: 
"list: name: symbols have been stripped, cannot proceed", 
"list: name: cannot read line numbers", and 
"list: name: not in symbol table". 

The following messages are produced when list has become confused by 
#ifdef's in the source file: 
"list: name: cannot find function in symbol table", 
"list: name: out of sync: too many }", and 
"list: name: unexpected end-of-file". 

The error message "list: name: missing or inappropriate line numbers" 
means that either symbol debugging information is missing, or list has 
been confused by C preprocessor statements. 

MU43814PR/D2 -2- 12/01/87 



Ill LORDER(l) (Software Generation System Utilities) LORDER(l) 

NAME 
lorder - find ordering relation for an object library 

SYNOPSIS 
lorder file ... 

DESCRIPTION 

FILES 

The input is one or more object or library archive files [see ar{l)]. The 
standard output is a list of pairs of object file or archive member names, 
meaning that the first file of the pair refers to external identifiers defined 
in the second. The output may be processed by tsort(l) to find an order­
ing of a library suitable for one-pass access by ld(l). Note that the link 
editor Zd{l) is capable of multiple passes over an archive in the portable 
archive format [see ar(4)] and does not require that lorder(l) be used when 
building an archive. The usage of the lorder(l) command may, however, 
allow for a slightly more efficient access of the archive during the link edit 
process. 

The following example builds a new library from existing .o files. 

ar -er library ' lorder * .o I tsort' 

TMPDIRl*symref 

TMPDIRl*symdef 

temporary files 

temporary files 

TMPDIR is usually /usr/tmp but can be redefined by setting the environ­
ment variable TMPDIR [see tempnam() in tmpnam(3S)]. 

SEE ALSO 
ar{l), ld(l), tsort(l), ar(4). 

WARNING 
lorder will accept as input any object or archive file, regardless of its suffix, 
provided there is more than one input file. If there is but a single input 
file, its suffix must be .o. 

MU43814PR/D2 - 1 - 12/01/87 



M4(1) (Software Generation System Utilities) M4(1) 

NAME 
rn4-macroprocessor 

SYNOPSIS 
m4 [ options ] [ files ] 

DESCRIPTION 
The m4 command is a macro processor intended as a front end for Ratfor, 
C, and other languages. Each of the argument files is processed in order; 
if there are no files, or if a file narne is -, the standard input is read. The 
processed text is written on the standard output. 

The options and their effects are as follows: 

-e Operate interactively. Interrupts are ignored and the output is 
unbuffered. 

-s Enable line sync output for the C preprocessor (#line ... ) 

-Bint Change the size of the push-back and argument collection buffers 
from the default of 4,096. 

-Hint Change the size of the symbol table hash array from the default 
of 199. The size should be prime. 

-Sint Change the size of the call stack from the default of 100 slots. 
Macros take three slots, and non-macro arguments take one. 

-Tint Change the size of the token buffer from the default of 512 bytes. 

To be effective, these flags must appear before any file names and before 
any -D or -U flags: 

-Dname [=val] 
Defines name to val or to null in val's absence. 

-Uname 
undefines name. 

Macro calls have the form: 

name(argl,arg2, ... , argn) 

The ( rnust imrnediately follow the name of the macro. If the narne of a 
defined rnacro is not followed by a (, it is deemed to be a call of that 
macro with no arguments. Potential macro names consist of alphabetic 
letters, digits, and underscore _, where the first character is not a digit. 

MU43S14PR/D2 - 1 - 12/01/87 



Ill 
M4(1) (Software Generation System Utilities) M4(1) 

Leading unquoted blanks, tabs, and new-lines are ignored while collecting 
arguments. Left and right single quotes are used to quote strings. The 
value of a quoted string is the string stripped of the quotes. 

When a macro name is recognized, its arguments are collected by search­
ing for a matching right parenthesis. If fewer arguments are supplied 
than are in the macro definition, the trailing arguments are taken to be 
null. Macro evaluation proceeds normally during the collection of the 
arguments, and any commas or right parentheses which happen to tum 
up within the value of a nested call are as effective as those in the original 
input text. After argument collection, the value of the macro is pushed 
back onto the input stream and rescanned. 

m4 makes available the following built-in macros. They may be redefined, 
but once this is done the original meaning is lost. Their values are null 
unless otherwise stated. 

define 

undefine 

defn 

pushdef 

popdef 

if def 

the second argument is installed as the value of the macro 
whose name is the first argument. Each occurrence of $n in 
the replacement text, where n is a digit, is replaced by the 
n-th argument. Argument 0 is the name of the macro; 
missing arguments are replaced by the null string; $# is 
replaced by the number of arguments; $• is replaced by a 
list of all the arguments separated by commas; $@ is like 
$•,but each argument is quoted (with the current quotes). 

removes the definition of the macro named in its argument. 

returns the quoted definition of its argument(s). It is useful 
for renaming macros, especially built-ins. 

like define, but saves any previous definition. 

removes current definition of its argument(s), exposing the 
previous one, if any. 

if the first argument is defined, the value is the second 
argument, otherwise the third. If there is no third argu­
ment, the .value is null. The word unix is predefined on 
SYSTEM V/68 versions of m4. 

MU43814PR/D2 - 2 - 12/01/87 



M4(1) (Software Generation System Utilities) M4(1) 

shift returns all but its first argument. The other arguments are 
quoted and pushed back with commas in between. The 
quoting nullifies the effect of the extra scan that will subse­
quently be performed. 

changequote change quote symbols to the first and second arguments. 
The symbols may be up to five characters long. Changequote 
without arguments restores the original values (i.e., ' "). 

changecom change left and right comment markers from the default # 
and new-line. With no arguments, the comment mechan­
ism is effectively disabled. With one argument, the left 
marker becomes the argument and the right marker 
becomes new-line. With two arguments, both markers are 
affected. Comment markers may be up to five characters 
long. 

divert m4 maintains 10 output streams, numbered 0-9. The final 
output is the concatenation of the streams in numerical 
order; initially stream 0 is the current stream. The divert 
.macro changes the current output stream to its (digit-string) 
argument. Output diverted to a stream other than 0 
through 9 is discarded. 

undivert causes immediate output of text from diversions named as 
arguments, or all diversions if no argument. Text may be 
undiverted into another diversion. Undiverting discards the 
diverted text. 

divnum returns the value of the current output stream. 

dnl reads and discards characters up to and including the next 
new-line. 

ifelse has three or more arguments. If the first argument is the 
same string as the second, then the value is the third argu­
ment. If not, and if there are more than four arguments, 
the process is repeated with arguments 4, 5, 6 and 7. Oth­
erwise, the value is either the fourth string, or, if it is not 
present, null. 

MU43814PR/D2 -3- 12/01/87 

II 



II M4(1) 

incr 

deer 

eval 

len 

index 

subs tr 

translit 

include 

sinclude 

syscmd 

sysval 

maketemp 

MU43814PR/D2 

(Software Generation System Utilities) M4(1) 

returns the value of its argument incremented by 1. The 
value of the argument is calculated by interpreting an initial 
digit-string as a decimal number. 

returns the value of its argument decremented by 1. 

evaluates its argument as an arithmetic expression, using 
32-bit arithmetic. Operators include +, -, *, /, % , A 

(exponentiation), bitwise &, I, A, and -; relationals; 
parentheses. Octal and nex numbers may be specified as in 
C. The second argument specifies the radix for the result; 
the default is 10. The third argument may be used to 
specify the minimum number of digits in the result. 

returns the number of characters in its argument. 

returns the position in its first argument where the second 
argument begins (zero origin), or -1 if the second argument 
does not occur. 

returns a substring of its first argument. The second argu­
ment is a zero origin number selecting the first character; 
the third argument indicates the length of the substring. A 
missing third argument is taken to be large enough to 
extend to the end of the first string. 

transliterates the characters in its first argument from the 
set given by the second argument to the set given by the 
third. No abbreviations are permitted. 

returns the contents of the file named in the argument. 

is identical to include, except that it says nothing if the file is 
inaccessible. 

executes the SYSTEM V/68 command given in the first argu­
ment. No value is returned. 

is the return code from the last call to syscmd. 

fills in a string of XXXXX in its argument with the current 
process ID. 

-4- 12/01/87 



M4(1) 

m4exit 

m4wrap 

errprint 

dumpdef 

traceon 

traceoff 

SEE ALSO 
cc(l), cpp(l). 

MU43814PR/D2 

(Software Generation System Utilities) M4(1) 

causes immediate exit from m4. Argument 1, if given, is 
the exit code; the default is 0. 

argument 1 will be pushed back at final EOF; example: 
m4wrap('cleanup() ') . 
prints its argument on the diagnostic output file. 

prints current names and definitions, for the named items, 
or for all if no arguments are given. 

with no arguments, turns on tracing for all macros (includ­
ing built-ins). Otherwise, turns on tracing for named mac­
ros. 

turns off trace globally and for any macros specified. Mac­
ros specifically traced by traceon can be untraced only by 
specific calls to traceoff. 

- 5 - 12/01/87 

II 



Ill MAKE(l) (Extended Software Generation System Utilities) MAKE(l) 

NAME 
make - maintain, update, and regenerate groups of programs 

SYNOPSIS 
make I-£ makefile] I-Pl I-il I-kl I-s] I-rl I-n] I-bl I-el I-u] I-tl I-q] 
[names] 

DESCRIPTION 
The make command allows the programmer to maintain, update, and 
regenerate groups of computer programs. The following is a brief descrip­
tion of all options and some special names: 

-f makefile Description file name. makefile is assumed to be the name of 
a description file. 

-p Print out the complete set of macro definitions and target 
descriptions. 

-i Ignore error codes returned by invoked commands. This 
mode is entered if the fake target name .IGNORE appears in 
the description file. 

-k Abandon work on the current entry if it fails, but continue on 
other branches that do not depend on that entry. 

-s Silent mode. Do not print command lines before executing. 
This mode is also entered if the fake target name .SILENT 
appears in the description file. 

-r Do not use the built-in rules. 

-n No execute mode. Print commands, but do not execute them. 
Even lines beginning with an @ are printed. 

-b Compatibility mode for old makefiles. 

-e Environment variables override assignments within 
makefiles. 

-u Force an unconditional update. 

-t Touch the target files (causing them to be up-to-date) rather 
than issue the usual commands. 

MU43814PR/D2 - 1 - 12/01/87 



MAKE(l) (Extended Software Generation System Utilities) MAKE(l) 

-q Question. The make command returns a zero or non-zero 
status code depending on whether the target file is or is not 
up-to-date . 

• DEFAULT If a file must be made but there are no explicit commands or 
relevant built-in rules, the commands associated with the 
name .DEFAULT are used if it exists . 

. PRECIOUS Dependents of this target will not be removed when quit or 
interrupt are hit . 

• SILENT Same effect as the -s option . 

• IGNORE Same effect as the -i option. 

make executes commands in makefile to update one or more target names. 
Name is typically a program. If no -f option is present, makefile, 
Makefile, and the Source Code Control System(SCCS) files s.makefile, 
and s.Makefile are tried in order. If makefile is -, the standard input is 
taken. More than one- makefile argument pair may appear. 

make updates a target only if its dependents are newer than the target 
(unless the -u option is used to force an unconditional update). All prere­
quisite files of a target are added recursively to the list of targets. Missing 
files are deemed to be out-of-date. 

makefile contains a sequence of entries that specify dependencies. The 
first line of an entry is a blank-separated, non-null list of targets, then a :, 
then a (possibly null) list of prerequisite files or dependencies. Text fol­
lowing a ; and all following lines that begin with a tab are shell com­
mands to be executed to update the target. The first non-empty line that 
does not begin with a tab or # begins a new dependency or macro defini­
tion. Shell commands may be continued across lines with the 
<backslash><new-line> sequence. Everything printed by make (except 
the initial tab) is passed directly to the shell as is. Thus, 

echo a\ 
b 

will produce 

ab 

exactly the same as the shell would. 

Sharp(#) and new-line surround comments. 

MU43814PR/D2 - 2 - 12101/87 

II 



Ill 
MAKE(l) (Extended Software Generation System Utilities) MAKE(l) 

The following makefile says that pgm depends on two files a.o and b.o, 
and that they in tum depend on their corresponding source files (a.c and 
b.c) and a common file incl.h: 

pgm: a.o b.o 
cc a.o b.o -o pgm 

a.o: incl.h a.c 
cc-<: a.c 

b.o: incl.h b.c 
cc-<: b.c 

Command lines are executed one at a time, each by its own shell. The 
SHELL environment variable can be used to specify which shell make 
should use to execute commands. The default is /bin/sh. The first one or 
two characters in a command can be the following: -, @, -@, or @-. If 
@ is present, printing of the command is suppressed. If - is present, 
make ignores an error. A line is printed when it is executed unless the -s 
option is present, or the entry .SILENT: is in makefile, or unless the initial 
character sequence contains a @. The -n option specifies printing without 
execution; however, if the command line has the string $(MAKE) in it, the 
line is always executed (see discussion of the MAKEFLAGS macro under 
Environment). The -t (touch) option updates the modified date of a file 
without executing any commands. 

Commands returning non-zero status normally terminate make. If the -i 
option is present, or the entry .IGNORE: appears in makefile, or the initial 
character sequence of the command contains -. the error is ignored. If 
the -k option is present, work is abandoned on the current entry, but con­
tinues on other branches that do not depend on that entry. 

The -b option allows old makefiles (those written for the old version of 
make) to run without errors. 

Interrupt and quit cause the target to be deleted unless the target is a 
dependent of the special name .PRECIOUS. 

Environment 
The environment is read by make. All variables are assumed to be macro 
definitions and processed as such. The environment variables are pro­
cessed before any makefile and after the internal rules; thus, macro 
assignments in a makefile override environment variables. The -e option 
causes the environment to override the macro assignments in a makefile. 
Suffixes and their associated rules in the makefile will override any identi­
cal suffixes in the built-in rules. 

MU43814PR/D2 - 3 - 12/01/87 



MAKE(l) (Extended Software Generation System Utilities) MAKE(l) 

The MAKEFLAGS environment variable is processed by make as containing 
any legal input option (except -f and -p) defined for the command line. 
Further, upon invocation, make "invents" the variable if it is not in the 
environment, puts the current options into it, and passes it on to invoca­
tions of commands. Thus, MAKEFLAGS always contains the current input 
options. This proves very useful for "super-makes". In fact, as noted 
above, when the -n option is used, the command $(MAKE) is executed 
anyway; hence, one can perform a make -n recursively on a whole 
software system to see what would have been executed. This is because 
the -n is put in MAKEFLAGS and passed to further invocations of 
$(MAKE). This is one way of debugging all of the makefiles for a software 
project without actually doing anything. 

Include Files 
If the string include appears as the first seven letters of a line in a makefile, 
and is followed by a blank or a tab, the rest of the line is assumed to be a 
file name and will be read by the current invocation, after substituting for 
any macros. 

Macros 
Entries of the form string1 = string2 are macro definitions. String2 is 
defined as all characters up to a comment character or an unescaped 
new-line. Subsequent appearances of $(string1 [:substl =[subst2]]) are 
replaced by string2. The parentheses are optional if a single character 
macro name is used and there is no substitute sequence. The optional 
:substl =subst2 is a substitute sequence. If it is specified, all non­
overlapping occurrences of substl in the named macro are replaced by 
subst2. Strings (for the purposes of this type of substitution) are delimited 
by blanks, tabs, new-line characters, and beginnings of lines. An example 
of the use of the substitute sequence is shown under Libraries. 

Internal Macros 
There are five internally maintained macros which are useful for writing 
rules for building targets. 

$• The macro $• stands for the file name part of the current dependent 
with the suffix deleted. It is evaluated only for inference rules. 

$@ The $@ macro stands for the full target name of the current target. 
It is evaluated only for explicitly named dependencies. 

MU43814PR/D2 -4- 12/01/87 

Ill 



II MAKE(l) (Extended Software Generation System Utilities) MAKE(l) 

$< The$< macro is only evaluated for inference rules or the .DEFAULT 
rule. It is the module which is out-of-date with respect to the target 
(i.e., the "manufactured" dependent file name). Thus, in the .c.o 
rule, the $< macro would evaluate to the .c file. An example for 
making optimized .o files from .c files is: 

.c.o: 

or: 

.c.o: 
cc -c -0 $< 

$? The $? macro is evaluated when explicit rules from the makefile are 
evaluated. It is the list of prerequisites that are out-of-date with 
respect to the target; essentially, those modules which must be 
rebuilt. 

$% The $% macro is only evaluated when the target is an archive library 
member of the form lib(file.o). In this case, $@evaluates to lib and 
$% evaluates to the library member, file.o. 

Four of the five macros can have alternative forms. When an upper case 
D or F is appended to any of the four macros, the meaning is changed to 
"directory part'' for D and "file part'' for F. Thus, $(@0) refers to the 
directory part of the string $@. If there is no directory part, ./ is gen­
erated. The only macro excluded from this alternative form is $?. 

Suffixes 
Certain names (for instance, those ending with .o) have inferable prere­
quisites such as .c, .s, etc. If no update commands for such a file appear 
in makefile, and if an inferable prerequisite exists, that prerequisite is com­
piled to make the target. In this case, make has inference rules which 
allow building files from other files by examining the suffixes and deter­
mining an appropriate inference rule to use. The current default inference 
rules are: 

MU43814PR/D2 

.c .c- .f .r .sh .sh-

.c.o .c.a .c-.o .c-.c .c-.a 

.f.o .f.a .r.o .r.f .r.a 

.h-.h .s.o .s-.o .s-.s .s-.a .sh-.sh 

.l.o .l.c .r.o S.l .r.c 

.y.o .y.c .y-.o .y-.y .y-.c 

-5- 12/01/87 



MAKE(t) (Extended Software Generation System Utilities) MAKE(t) 

The internal rules for make are contained in the source file rules.c for the 
make program. These rules can be locally modified. To print out the rules 
compiled into the make on any machine in a form suitable for recompila­
tion, the following command is used: 

make -fp - 2>/dev/null </dev/null 

A tilde in the above rules refers to an SCCS file [see sccsfile(4)]. Thus, the 
rule .c-.o would transform an SCCS C source file into an object file (.o). 
Because the s. of the SCCS files is a prefix, it is incompatible with make's 
suffix point of view. Hence, the tilde is a way of changing any file refer­
ence into an secs file reference. 

A rule with only one suffix (i.e., .c:) is the definition of how to build x 
from x .c. In effect, the other suffix is null. This is useful for building tar­
gets from only one source file (e.g., shell procedures, simple C programs). 

Additional suffixes are given as the dependency list for .SUFFIXES. Order 
is significant; the first possible name for which both a file and a rule exist 
is inferred as a prerequisite. The default list is: 

.SUFFIXES: .o .c .c- ·Y .y- .1 .r .s .s- .sh .sh- .h .h- .f .r 
Here again, the above command for printing the internal rules will display 
the list of suffixes implemented on the current machine. Multiple suffix 
lists accumulate; .SUFFIXES: with no dependencies clears the list of suf­
fixes. 

Inference Rules 
The first example can be done more briefly. 

pgm: a.o b.o 
cc a.o b.o -o pgm 

a.o b.o: incl.h 

This is because make has a set of internal rules for building files. The user 
may add rules to this list by simply putting them in the makefile. 

Certain macros are used by the default inference rules to permit the inclu­
sion of optional matter in any resulting commands. For example, 
CFLAGS, LFLAGS, and YFLAGS are used for compiler options to cc(l), 
lex(1), and yacc(l), respectively. Again, the previous method for examin­
ing the current rules is recommended. 

The inference of prerequisites can be controlled. The rule to create a file 
with suffix .o from a file with suffix .c is specified as an entry with .c.o: as 
the target and no dependents. Shell commands associated with the target 

MU43814PR/D2 -6- 12/01/87 

Ill 



II MAKE(l) (Extended Software Generation System Utilities) MAKE(l) 

define the rule for making a .o file from a .c file. Any target that has no 
slashes in it and starts with a dot is identified as a rule and not a true tar­
get. 

Libraries 
If a target or dependency name contains parentheses, it is assumed to be 
an archive library, the string within parentheses referring to a member 
within the library. Thus lib(file.o) and $(LIB)(file.o) both refer to an 
archive library which contains file.o. (This assumes the LIB macro has 
been previously defined.) The expression $(LIB)(file1.o file2.o) is not 
legal. Rules pertaining to archive libraries have the form .XX .a where the 
XX is the suffix from which the archive member is to be made. An unfor­
tunate byproduct of the current implementation requires the XX to be dif­
ferent from the suffix of the archive member. Thus, one cannot have 
lib(file.o) depend upon file.o explicitly. The most common use of the 
archive interface follows. Here, we assume the source files are all C type 
source: 

lib: lib(filel.o) lib(file2.o) lib(file3.o) 
@echo lib is now up-to-date 

.c.a: 
$(CC) -c $(CFLAGS) $< 
$(AR) $(ARFLAGS) $@ $* .o 
rm -f $*.o 

In fact, the .c.a rule listed above is built into make and is unnecessary in 
this example. A more interesting, but more limited example of an archive 
library maintenance construction follows: 

lib: lib(filel.o) lib(file2.o) lib(file3.o) 
$(CC) -c $(CFLAGS) $(?:.o=.c) 
$(AR) $(ARFLAGS) lib $? 
rm $? @echo lib is now up-to-date 

.c.a:; 

Here the substitution mode of the macro expansions is used. The $? list 
is defined to be the set of object file names (inside lib) whose C source 
files are out-of-date. The substitution mode translates the .o to .c. 
(Unfortunately, one cannot as yet transform to .c-; . however, this may 
become possible in the future.) NC\)te also, the disabling of the .c.a: rule, 

MU43814PR/D2 - 7 - 12/01/87 



MAKE(l) (Extended Software Generation System Utilities) MAKE(l) 

FILES 

which would have created each object file, one by one. This particular 
construct speeds up archive library maintenance considerably. This type 
of construct becomes very cumbersome if the archive library contains a 
mix of assembly programs and C programs. 

[Mm]akefile and s.[Mm]akefile 
/bin/sh 

SEE ALSO 

NOTES 

BUGS 

cc(l), lex(l), yacc(l), printf(3S), sccsfile(4). 
cd{l), sh(l) in the User's Reference Manual. 

Some commands return non-zero status inappropriately; use -i to over­
come the difficulty. 

File names with the characters = : @ will not work. Commands that are 
directly executed by the shell, notably cd(l), are ineffectual across new­
lines in make. The syntax (llb(filel.o file2.o file3.o) is illegal. You cannot 
build lib(file.o) from file.o. The macro $(a:.o=.c:·) does not work. 
Named pipes are not handled well. 

MU43814PR/D2 -8- 12/01/87 

Ill 



1111 MCS(l) (Software Generation System Utilities) MCS(l) 

NAME 
mes - manipulate the object file comment section 

SYNOPSIS 
mes [options] object-file ... 

DESCRIPTION 
The mes command manipulates the comment section, normally the ".com­
ment" section, in an object file. It is used to add to, delete, print, and 
compress the contents of the comment section in a SYSTEM V/68 object 
file. mes must be given one or more of the options described below. It 
takes each of the options given and applies them in order to the object­
files. 

If the object file is an archive, the file is treated as a set of individual 
object files. For example, if the -a option is specified, the string is 
appended to the comment section of each archive element. 

The following options are available. 

-a string 
Append string to the comment section of the object-files. If string 
contains embedded blanks, it must be enclosed in quotation 
marks. 

-c Compress the contents of the comment section. All duplicate 
entries are removed. The ordering of the remaining entries is not 
disturbed. 

-d Delete the contents of the comment section from the object file. 
The object file comment section header is removed also. 

-n name 
Specify the name of the section to access. By default, mes deals 
with the section named .comment. This option can be used to 
specify another section. 

-p Print the contents of the comment section on the standard output. 

EXAMPLES 

MU43814PR/D2 

If more than one name is specified, each entry printed is tagged 
by the name of the file from which it was extracted, using the for­
mat "filename:string." 

mes -p file # Print file's comment section. 

mes -a string file# Append string to file's comment section 

-1- 12/01/87 



MCS(l) 

FILES 
TMPDIR/mcs• 

TMPDIRI• 

(Software Generation System Utilities) 

temporary files 

temporary files 

MCS(l) 

TMPDIR is usually /usr/tmp but can be redefined by setting the environ­
ment variable TMPDIR [see tempnam() in tmpnam(3S)]. 

SEE ALSO 
cpp{l), a.out(4). 

MU43814PR/D2 -2- 12/01/87 

Ill 



II MKMENUS(l) (Essential Utilities) MKMENUS(l) 

NAME 
mkmenus - extracts menus from labels stored in command shell scripts 

SYNOPSIS 
mkmenus menudirectory pid ... 

DESCRIPTION 
mkmenus generates menus, reads the user's response to these menus, then 
generates the next menu or performs the function listed in the menu. 
Features include menu headings, access to help information, and the abil­
ity to go back to a previous menu. 

mkmenus permits sub-menus and sub-commands to be added and deleted 
easily. The menu hierarchy is defined or modified simply by placing com­
mand shell scripts in appropriate directories and inserting menu labels in 
the shell scripts. Subcommands "stubs" (place holders for as yet 
undelivered functions) are provided by setting up command shell scripts 
that contain only menu information. Code is easy to locate because the 
menu structure and file structure are identical. 

Invocation 
The menudirectory argument specifies the starting menu directory. The 
user of mkmenus does not provide the argument pid. This argument is 
passed by mkmenus to itself recursively. It is used to terminate earlier 
invocations of mkmenus when the user wishes to quit the entire menu sys­
tem. 

File Naming Conventions 
In the menudirectory, and every directory under it, mkmenus expects to find 
a file named DESC. DESC files provide menu information for directories 
through the menu labels discussed below. 

Other files in the directories are taken as sub-commands, provided they 
have the appropriate menu labels. The file name becomes the menu 
name of the sub-command. 

Directories without DESC files and files without menu labels are quietly 
ignored. 

Menu Labels 
All menu labels are of the form #<word># and must be at the beginning 
of a line. 

mkmenus searches the current directory for files (and directories with 
DESC files) for lines with #menu# labels. The labels are removed and 
the remainder of the line is placed in a menu. Files can contain only one 

MU43814PR/D2 -1- 12/01/87 



MKMENUS(l) (Essential Utilities) MKMENUS(l) 

#menu# line. Tabs and spaces following #menu# labels are ignored. 
Any shell scripts that do not have #menu# labels will not appear in a 
menu. mkmenus automatically numbers each menu item. 

Heading Labels 
Lines with #head# labels are used to add headings to menus. These 
lines are only meaningful when placed in DESC files. Headings may con­
tain as many lines as desired, allowing the developer to place an introduc­
tion above a menu as shown in the DESC file below: 
#head# ED-GAMES MENU 
#head# 
#head# These games are designed to teach children basic math 
#head# and reading skills. They work only on a CRT. 

#menu# educational games 

Help Labels 
Lines with #help# labels are used by mkmenus to provide users with help 
information. Users request help by typing ? (question mark) alone on a 
line or n? where n is a menu item number. The? alone is meant to pro­
duce a summary description of all commands in one menu and is taken 
from the DESC file. Then? response is meant to produce help specific to 
a single menu item and is taken from the appropriate shell file. mkmenus 
will print the message "No help available" if it cannot find #help# labels. 

Returning to Previous Menu 
A A (circumflex) in response to the prompt causes mkmenus to "go back" to 
the previous menu. There is no A available at the top-level menu. 

Leaving the Menu System 

General 

Users can exit the mkmenus menu system by typing q at the ''Enter a 
number" prompt. 

Labels can be placed anywhere in a DESC or shell script file. The order of 
the 3 different types of labels does not matter. If a sub-directory accessed 
by mkmenus contains no #menu# labeled files, the message "{directory} 
(No functions available yet)" is printed and mkmenus terminates with an 
exit code if 1. 

In addition to generating menus, mkmenus prompts the user for a numeric 
response, validates this response, and then determines what to do next: 
print help information, print next menu, or execute a command. 

MU43814PR/D2 -2- 12/01/87 

Ill 



II MKMENUS(l) (Essential Utilities) 

EXAMPLES 
Shell Script Format 

A command shell script for cat might read: 
#menu# prints files 
#help# The cat command concatenates and prints files. 
#help# After prompting you for file names, cat prints 
#help# the contents of the files at your terminal. 

<<code to execute cat command>> 

Directory Structure 

MKMENUS(l) 

A typical directory layout for use by mkmenus is shown below. Names 
marked with • are directories. Each indentation indicates the next lower 
level of directories. 

menudirectory• 

MU43814PR/D2 

DESC 
machinemgm~ 

DESC 

softwaremgm~ 
DESC 

syssetup* 
DESC 
datetime 
node name 

userserv* 
DESC 
addgroup 
add user 
deluser 
mod user* 

DESC 
chgloginid 
chgpasswd 
chgshell 

- 3 - 12/01/87 



MKMENUS(l) (Essential Utilities) 

Sample Menu 

BUGS 

A typical menu generated by mkmenus would look like: 
SYS1EM ADMINISTRATION 

1 machinemgmt machine management menu 
2 softwaremgmt software management menu 
3 syssetup system setup menu 
4 userserv user services menu 
Enter a number or ... 
? or <number>? for HELP, q to QUIT: 

MKMENUS(l) 

If a file contains more than one #menu# line, the extra lines are quietly 
ignored. 

If a file contains more than 22 help lines, the top lines may scroll off the 
user's screen (depending on the terminal type). 

SEE ALSO 
sysadm{l). 

MU43814PR/D2 -4- 12/01/87 

Ill 



1111 



NM(l) (Software Generation System Utilities) NM(l) 

NAME 
nm - print name list of common object file 

SYNOPSIS 
nm [-oxhvnefurpVT] filename ... 

DESCRIPTION 
The nm command displays the symbol table of each common object file, 
filename. Filename may be a relocatable or absolute common object file; or 
it may be an archive of relocatable or absolute common object files. For 
each symbol, the following information will be printed: 

Name The name of the symbol. 

Value Its value expressed as an offset or an address depending on its 
storage class. 

Oass Its storage class. 

Type Its type and derived type. If the symbol is an instance of a 
structure or of a union then the structure or union tag will be 
given following the type (e.g., struct-tag). If the symbol is an 
array, then the array dimensions will be given following the 
type (e.g., char[ n ][ m ] ). Note that the object file must have 
been compiled with the -g option of the cc(l) command for this 
information to appear. 

Size Its size in bytes, if available. Note that the object file must have 
been compiled with the -g option of the cc(l) command for this 
information to appear. 

Line The source line number at which it is defined, if available. Note 
that the object file must have been compiled with the -g option 
of the cc(l) command for this information to appear. 

Section For storage classes static and external, the object file section 
containing the symbol (e.g., text, data or bss). 

The output of nm may be controlled using the following options: 

-o Print the value and size of a symbol in octal instead of decimal. 

-x Print the value and size of a symbol in hexadecimal instead of 
decimal. 

MU43814PR/D2 - 1 - 12/01/87 

Ill 



II NM(l) 

FILES 

(Software Generation System Utilities) NM(l) 

-h Do not display the output header data. 

-v Sort external symbols by value before they are printed. 

-n Sort external symbols by name before they are printed. 

-e Print only external and static symbols. 

-f Produce full output. Print redundant symbols (.text, .data, .lib, 
and .bss), normally suppressed. 

-u Print undefined symbols only. 

-r Prepend the name of the object file or archive to each output 
line. 

-p Produce easily parsable, terse output. Each symbol name is pre­
ceded by its value {blanks if undefined) and one of the letters U 
(undefined), A (absolute), T (text segment symbol), D (data seg­
ment symbol), S (user defined segment symbol), R (register 
symbol), F (file symbol), or C (common symbol). If the symbol 
is local (non-external), the type letter is in lower case. 

-V Print the version of the nm command executing on the standard 
error output. 

-T By default, nm prints the entire name of the symbols listed. 
Since object files can have symbols names with an arbitrary 
number of characters, a name that is longer than the width of 
the column set aside for names will overflow its column, forcing 
every column after the name to be misaligned. The -T option 
causes nm to truncate every name which would otherwise over­
flow its column and place an asterisk as the last character in the 
displayed name to mark it as truncated. 

Options may be used in any order, either singly or in combination, and 
may appear anywhere in the command line. Therefore, both nm name -e 
-v and nm -ve name print the static and external symbols in name, with 
external symbols sorted by value. 

TMPDIR/• temporary files 

TMPDIR is usually /usr/tmp but can be redefined by setting the environ­
ment variable TMPDIR [see tempnam() in tmpnam(3S)]. 

MU43814PR/D2 -2- 12/01/87 



NM(l) 

BUGS 

(Software Generation System Utilities) NM(l) 

When all the symbols are printed, they must be printed in the order they 
appear in the symbol table in order to preserve scoping information. 
Therefore, the -v and -n options should be used only in conjunction with 
the -e option. 

SEE ALSO 
as(l), cc(l), ld(l), tmpnam(3S), a.out(4), ar(4). 

DIAGNOSTICS 
"nm: name: cannot open" 

if name cannot be read. 

"nm: name: bad magic'' 
if name is not a common object file. 

"nm: name: no symbols" 
if the symbols have been stripped from name. 

MU43814PR/D2 -3- 12/01/87 

II 



II 



PROF(l) (Extended Software Generation Utilities) PROF(l) 

NAME 
prof - display profile data 

SYNOPSIS 
prof I-tcan] I-ox] I-gl I-z] I-h] I-s] I-m mdata] Iprog] 

DESCRIPTION 
The prof command interprets a profile file produced by the monitor(3C) 
function. The symbol table in the object file prog (a.out by default) is read 
and correlated with a profile file (mon.out by default). For each external 
text symbol the percentage of time spent executing between the address 
of that symbol and the address of the next is printed, together with the 
number of times that function was called and the average number of mil­
liseconds per call. 

The mutually exclusive options t, c, a, and n determine the type of sort­
ing of the output lines: 

-t Sort by decreasing percentage of total time (default). 

--c Sort by decreasing number of calls. 

-a Sort by increasing symbol address. 

-n Sort lexically by symbol name. 

The mutually exclusive options o and x specify the printing of the address 
of each symbol monitored: 

-o Print each symbol address (in octal) along with the symbol name. 

-x Print each symbol address (in hexadecimal) along with the symbol 
name. 

The following options may be used in any combination: 

-g Include non-global symbols (static functions). 

-z Include all symbols in the profile range Isee monitor(3C)], even if 
associated with zero number of calls and zero time. 

-h Suppress the heading normally printed on the report. (This is 
useful if the report is to be processed further.) 

-s Print a summary of several of the monitoring parameters and 
statistics on the standard error output. 

MU43814PR/D2 - 1 - 12/01/87 

Ill 



Ill PROF(l) (Extended Software Generation Utilities) PROF(l) 

FILES 

-m mdata 
Use file mdata instead of mon.out as the input profile file. 

A program creates a profile file if it has been loaded with the -p option of 
cc(l). This option to the cc command arranges for calls to monitor(3C) at 
the beginning and end of execution. It is the call to monitor at the end of 
execution that causes a profile file to be written. The number of calls to a 
function is tallied if the -p option was used when the file containing the 
function was compiled. 

The name of the file created by a profiled program is controlled by the 
environment variable PROFDIR. If PROFDIR does not exist, "mon.out" is 
produced in the directory that is current when the program terminates. If 
PROFDIR = string, "stringlpid. progname" is produced, where progname 
consists of argv[O] with any path prefix removed, and pid is the program's 
process id. If PROFDIR is the null string, no profiling output is produced. 

A single function may be split into subfunctions for profiling by means of 
the MARK macro [see pro/(5)]. 

mon.out for profile 
a.out for namelist 

SEE ALSO 
cc(l), exit(2), profil(2), monitor(3C), prof(S). 

WARNING 
The times reported in successive identical runs may show variances of 
20% or more, because of varying cache-hit ratios due to sharing of the 
cache with other processes. Even if a program seems to be the only one 
using the machine, hidden background or asynchronous processes may 
blur the data. In rare cases, the clock ticks initiating recording of the pro­
gram counter may "beat" with loops in a program, grossly distorting 
measurements. 

Call counts are always recorded precisely. 

The times for static functions are attributed to the preceding external text 
symbol if the -g option is not used. However, the call counts for the 
preceding function are still correct, i.e., the static function call counts are 
not added in with the call counts of the external function. 

WARNING 
Only programs that call exit(2) or return from main will cause a profile file 
to be produced, unless a final call to monitor is explicitly coded. 

MU43814PR/02 - 2 - 12/01/87 



PROF(l) (Extended Software Generation Utilities) PROF(l) 

The use of the -p option to cc(l) to invoke profiling imposes a limit of 600 
functions that may have call counters established during program execu­
tion. For more counters you must call monitor(3C) directly. If this limit is 
exceeded, other data will be overwritten and the mon.out file will be cor­
rupted. The number of call counters used will be reported automatically 
by the prof command whenever the number exceeds 5/6 of the maximum. 

MU43814PR/D2 -3- 12101/87 

II 



II PRS(l) (Source Code Control System Utilities) PRS(l) 

NAME 
prs - print an secs file 

SYNOPSIS 
prs [-d[dataspec]] [-r[SID]] [-e] [-1] [-c[date-time]] [-a] files 

DESCRIPTION 
prs prints, on the standard output, parts or all of an secs file [see 
sccsfile(4)] in a user-supplied format. If a directory is named, prs behaves 
as though each file in the directory were specified as a named file, except 
that non-SCCS files (last component of the path name does not begin with 
s.), and unreadable files are silently ignored. If a name of - is given, the 
standard input is read; each line of the standard input is taken to be the 
name of an SCCS file or directory to be processed; non-SCCS files and 
unreadable files are silently ignored. 

Arguments to prs, which may appear in any order, consist of keyletter 
arguments, and file names. 

All the described keyletter arguments apply independently to each named 
file: 

-d{dataspec] 

-r[SID] 

-e 

-1 

MU43814PR/D2 

Used to specify the output data specification. The 
dataspec is a string consisting of SCCS file data key­
words (see DAT A KEYWORDS) interspersed with 
optional user supplied text. 

Used to specify the SCCS IDentification (SID) string of 
a delta for which information is desired. If no SID is 
specified, the SID of the most recently created delta 
is assumed. 

Requests information for all deltas created earlier 
than and including the delta designated via the -r 
keyletter or the date given by the -c option. 

Requests information for all deltas created later than 
and including the delta designated via the -r 
keyletter or the date given by the -c option. 

c date-time The cutoff date-time -dcutoff]] is in the 
form: 

YY[MM[DD[HH[MM[SS]]]]] 

- 1 - 12/01187 



PRS(l) (Source Code Control System Utilities) PRS(l) 

-c[ date-time] 

-a 

Units omitted from the date-time default to their 
maximum possible values; that is, -c7502 is 
equivalent to -c750228235959. Any number of non­
numeric characters may separate the various 2-digit 
pieces of the cutoff date in the form: "-c77/2/2 
9:22:25". 

Requests printing of information for both removed, 
i.e., delta type = R, [see rmdel(l)] and existing, i.e., 
delta type = D, deltas. If the -a keyletter is not 
specified, information for existing deltas only is pro­
vided. 

DATA KEYWORDS 
Data keywords specify which parts of an SCCS file are to be retrieved and 
output. All parts of an SCCS file [see sccsfile(4)] have an associated data 
keyword. There is no limit on the number of times a data keyword may 
appear in a dataspec. 

The information printed by prs consists of: (1) the user-supplied text; and 
(2) appropriate values (extracted from the SCCS file) substituted for the 
recognized data keywords in the order of appearance in the dataspec. The 
format of a data keyword value is either Simple (S), in which keyword 
substitution is direct, or Multi-line (M), in which keyword substitution is 
followed by a carriage return. 

User-supplied text is any text other than recognized data keywords. 
A tab is specified by \t and carriage return/new-line is specified by \n. 
The default data keywords are: 

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:" 

MU43814PR/D2 -2- 12/01187 

II 



1111 PRS(l) (Source Code Control System Utilities) PRS(l) 

TABLE 1. SCCS Files Data Keywords 
Keyword Data Item File Section Value Format 

:Dt: Delta information Delta Table See below" s 
:DL: Delta line statistics :Li:/:Ld:/:Lu: s 
:Li: Lines inserted by Delta nnnnn s 
:Ld: Lines deleted by Delta nnnnn s 
:Lu: Lines unchanged by Delta nnnnn s 
:DT: Delta type D-or-R s 

:I: SCCS ID string (SID) :R:.:L:.:B:.:S: s 
:R: Release number nnnn s 
:L: Level number nnnn s 
:B: Branch number nnnn s 
:S: Sequence number nnnn s 
:D: Date Delta created :Dy:/:Dm:/:Dd: s 
:Dy: Year Delta created nn s 
:Dm: Month Delta created nn s 
:Dd: Day Delta created nn s 
:T: Time Delta created :Th:::Tm:::Ts: s 

:Th: Hour Delta created nn s 
:Tm: Minutes Delta created nn s 
:Ts: Seconds Delta created nn s 
:P: Programmer who created Delta logname s 

:DS: Delta sequence number nnnn s 
:DP: Predecessor Delta seq-no. nnnn s 
:DI: Seq-no. of deltas ind., exd., ignored :Dn:/:Dx:/:Dg: s 
:Dn: Deltas included (seq #) :DS:-:DS: ••• s 
:Dx: Deltas excluded (seq #) :DS:-:DS: ... s 
:Dg: Deltas ignored (seq #) :DS:-:DS: .•. s 
:MR: MR numbers for delta text M 
:C: Comments for delta text M 

:UN: User names User Names text M 
:FL: Flag list Flags text M 
:Y: Module type flag text s 

:MF: MR validation flag yes-or-no s 

MU43814PR/D2 -3- 12101/87 



PRS(l) (Source Code Control System Utilities) PRS(l) 

TABLE 1. SCCS Files Data Keywords (continued) 
Keyword Data Item File Section Value Format 

:MP: MR validation pgm name text s 
:KF: Keyword error/warning flag yes-or-no s 
:KV: Keyword validation string text s 
:BF: Branch flag yes-or-no s 
:J: Joint edit flag yes"or-no s 

:LK: Locked releases :R: ..• s 
:Q: User-defined keyword text s 
:M: Module name text s 
:FB: Floor boundary :R: s 
:CB: Ceiling boundary :R: s 
:Ds: Default SID :I: s 
:ND: Null delta flag yes"or-no s 
:FD: File descriptive text Comments text M 
:BD: Body Body text M 
:GB: Gotten body text M 
:W: A form of what(l) string NIA :Z::M:\t:I: s 
:A: A form of what(l) string NIA :Z::Y:-:M:-:I::Z: s 
:Z: what(l) string delimiter NIA @(#) s 
:F: secs file name NIA text s 

:PN: secs file path name NIA text s 
• :Dt:-=-:DT:-:1:-:D:-:T:-:P:-:DS:-:DP: 

EXAMPLES 
prs -d''Users and/or user IDs for :F: are:\n:UN:" s.file 

may produce on the standard output: 

Users and/or user IDs for s.file are: 
xyz 
131 
abc 

prs -d'Newest delta for pgm :M:: :I: Created :D: By :P:" -r s.file 

may produce on the standard output: 

Newest delta for pgm main.c: 3.7 Created 77/1211 By cas 

MU43814PR/D2 -4- 12101/87 

II 



II PRS(l) (Source Code Control System Utilities) 

As a special case: 

prs s.file 

may produce on the standard output: 

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000 
MRs: 
bl78-12345 
bl79-54321 
COMMENTS: 
this is the comment line for s.file initial delta 

PRS(l) 

for each delta table entry of the "D" type. The only keyletter argument 
allowed to be used with the special case is the -a keyletter. 

FILES 
/tmp/pr????? 

SEE ALSO 
admin(l), delta(l), get(l), sccsfile(4). 
help(l) in the User's Reference Manual. 

DIAGNOSTICS 
Use help(l) for explanations. 

MU43814PR/D2 -5- 12/01/87 



REGCMP(l) (Advanced C Utilities) REGCMP(l) 

NAME 
regcmp - regular expression compile 

SYNOPSIS 
regcmp [ - ] files 

DESCRIPTION 
The regcmp command performs a function similar to regcmp(3X) and, in 
most cases, precludes the need for calling regcmp(3X) from C programs. 
This saves on both execution time and program size. The command 
regcmp compiles the regular expressions in file and places the output in 
file.i. If the - option is used, the output will be placed in file.c. The for­
mat of entries in file is a name (C variable) followed by one or more 
blanks followed by a regular expression enclosed in double quotes. The 
output of regcmp is C source code. Compiled regular expressions are 
represented as extern char vectors. File.i files may thus be included in C 
programs, or file.c files may be compiled and later loaded. In the C pro­
gram which uses the regcmp output, regex(abc,line) will apply the regular 
expression named abc to line. Diagnostics are self-explanatory. 

EXAMPLES 
name "([ A-Za-z ][ A-Za-z0-9 _]* )$0" 

telno '\({0,1}([2-9][01][1-9])$0\){0,1} *" 
"([2-9][0-9]{2})$1[ -]{0,1}" 
"([0-9]{4})$2" 

In the C program that uses the regcmp output, 

regex(telno, line, area, exch, rest) 

will apply the regular expression named telno to line. 

SEE ALSO 
regcmp(3X). 

MU43814PR/D2 - 1 - 12/01/87 

Ill 



II RMDEL(l) (Source Code Control System Utilities) RMDEL(l) 

NAME 
rmdel - remove a delta from an SCCS file 

SYNOPSIS 
rmdel -rSID files 

DESCRIPTION 

FILES 

rmdel removes the delta specified by the SID from each named SCCS file. 
The delta to be removed must be the newest (most recent) delta in its 
branch in the delta chain of each named SCCS file. In addition, the speci­
fied must not be that of a version being edited for the purpose of making a 
delta (i. e., if a p-file [see get(l)] exists for the named SCCS file, the speci­
fied must not appear in any entry of the p-file). 

The -r option is used for specifying the SID (SCCS IDentification) level of 
the delta to be removed. 

If a directory is named, rmdel behaves as though each file in the directory 
were specified as a named file, except that non-SCCS files (last component 
of the path name does not begin withs.) and unreadable files are silently 
ignored. If a name of - is given, the standard input is read; each line of 
the standard input is taken to be the name of an secs file to be processed; 
non-SCCS files and unreadable files are silently ignored. 

Simply stated, they are either (1) if you make a delta you can remove it; or 
(2) if you own the file and directory you can remove a delta. 

x.file [see delta(l)] 
z.file [see delta(l)] 

SEE ALSO 
delta(l), get(l), prs(l), sccsfile(4). 
help(l) in the User's Reference Manual. 

DIAGNOSTICS 
Use help(l) for explanations. 

MU43814PR/D2 - 1 - 12/01/87 



SACT(l) (Source Code Control System Utilities) SACT(l) 

NAME 
sact - print current SCCS file editing activity 

SYNOPSIS 
sact files 

DESCRIPTION 
sact informs the user of any impending deltas to a named SCCS file. This 
situation occurs when get(l) with the -e option has been previously exe­
cuted without a subsequent execution of delta(l). If a directory is named 
on the command line, sact behaves as though each file in the directory 
were specified as a named file, except that non-SCCS files and unreadable 
files are silently ignored. If a name of - is given, the standard input is 
read with each line being taken as the name of an SCCS file to be pro­
cessed. 

The output for each named file consists of five fields separated by spaces. 

SEE ALSO 

Field 1 specifies the SID of a delta that currently exists in the 
SCCS file to which changes will be made to make the 
new delta. 

Field 2 

Field 3 

Field 4 

Field 5 

specifies the SID for the new delta to be created. 

contains the logname of the user who will make the 
delta (i.e., executed a get for editing). 

contains the date that get -e was executed. 

contains the time that get -e was executed. 

delta(l), get{l), unget{l). 

DIAGNOSTICS 
Use help(l) for explanations. 

MU43814PR/D2 - 1 - 12/01/87 

II 



II SCCSDIFF(l) (Source Code Control System Utilities) 

NAME 
sccsdiff - compare two versions of an SCCS file 

SYNOPSIS 
sccsdiff -rSIDl -rSID2 [-p] [-sn] files 

DESCRIPTION 

SCCSDIFF(l) 

sccsdiff compares two versions of an SCCS file and generates the differ­
ences between the two versions. Any number of SCCS files may be speci­
fied, but arguments apply to all files. 

FILES 

-rSID? SID1 and SID2 specify the deltas of an SCCS file that are 
to be compared. Versions are passed to bdiff(l) in the 
order given. 

-p pipe output for each file through pr(l). 

-sn n is the file segment size that bdiff will pass to diff(l). 
This is useful when diff fails due to a high system load. 

/tmp/get????? Temporary files 

SEE ALSO 
get(l). 
bdiff(l), help(l), pr(l) in the User's Reference Manual. 

DIAGNOSTICS 
"file: No differences" If the two versions are the same. 
Use help(l) for explanations. 

MU43814PR/D2 - 1 - 12101/87 



SDB(l) (Extended Software Generation System Utilities) SDB(l) 

NAME 
sdb - symbolic debugger 

SYNOPSIS 
sdb [-w] [-W] [objfil [corfil [directory-list]]] 

DESCRIPTION 
The sdb command calls a symbolic debugger that can be used with C and 
F77 programs. It may be used to examine their object files and core files 
and to provide a controlled environment for their execution. 

Objfil is an executable program file which has been compiled with the -g 
(debug) option. If it has not been compiled with the -g option the sym­
bolic capabilities of sdb will be limited, but the file can still be examined 
and the program debugged. The default for objfil is a.out. Corfil is 
assumed to be a core image file produced after executing objfil; the default 
for corfil is core. The core file need not be present. A - in place of corfil 
will force sdb to ignore any core image file. The colon separated list of 
directories (directory-list) is used to locate the source files used to build 
objfil. 

It is useful to know that at any time there is a current line and current file. 
If corfil exists then they are initially set to the line and file containing the 
source statement at which the process terminated. Otherwise, they are 
set to the first line in main(). The current line and file may be changed 
with the source file examination commands. 

By default, warnings are provided if the source files used in producing 
objfil cannot be found, or are newer than objfil. This checking feature and 
the accompanying warnings may be disabled by the use of the -W flag. 

Names of variables are written just as they are in C or F77. ·sdb does not 
truncate names. Variables local to a procedure may be accessed using the 
form procedure:variable. If no procedure name is given, the procedure con­
taining the current line is used by default. 

It is also possible to refer to structure members as variable.member, 
pointers to structure members as variable->member and array elements as 
variable[number]. Pointers may be dereferenced by using the form 
pointer[O]. Combinations of these forms may also be used. F77 common 
variables may be referenced by using the name of the common block 
instead of the structure name. Blank common variables may be named by 
the form .variable. A number may be used in place of a structure variable 
name, in which case the number is viewed as the address of the structure, 
and the template used for the structure is that of the last structure 

MU43814PR/D2 -1- 12/01/87 

• 



• 
SDB(l) (Extended Software Generation System Utilities) SDB(l) 

referenced by sdb. An unqualified structure variable may also be used with 
various commands. Generally, sdb will interpret a structure as a set of 
variables. Thus, sdb will display the values of all the elements of a struc­
ture when it is requested to display a structure. An exception to this 
interpretation occurs when displaying variable addresses. An entire struc­
ture does have an address, and it is this value sdb displays, not the 
addresses of individual elements. 

Elements of a multidimensional array may be referenced as variable 
[number][number} ... , or as variable [number,number, ... }. In place of number, 
the form number;number may be used to indicate a range of values, •may 
be used to indicate all legitimate values for that subscript, or subscripts 
may be omitted entirely if they are the last subscripts and the full range of 
values is desired. As with structures, sdb displays all the values of an 
array or of the section of an array if trailing subscripts are omitted. It 
displays only the address of the array itself or of the section specified by 
the user if subscripts are omitted. A multidimensional parameter in an 
F77 program cannot be displayed as an array, but it is actually a pointer, 
whose value is the location of the array. The array itself can be accessed 
symbolically from the calling function. 

A particular instance of a variable on the stack may be referenced by using 
the form procedure:variable,number. All the variations mentioned in nam­
ing variables may be used. Number is the occurrence of the specified pro­
cedure on the stack, counting the top, or most current, as the first. If no 
procedure is specified, the procedure currently executing is used by 
default. 

It is also possible to specify a variable by its address. All forms of integer 
constants which are valid in C may be used, so that addresses may be 
input in decimal, octal or hexadecimal. 

Line numbers in the source program are referred to as file-name:number or 
procedure:number. In either case the number is relative to the beginning of 
the file. If no procedure or file name is given, the current file is used by 
default. If no number is given, the first line of the named procedure or 
file is used. 

While a process is running under sdb, all addresses refer to the executing 
program; otherwise they refer to objfil or corfil. An initial argument of -w 
permits overwriting locations in objfil. 

MU43814PR/D2 - 2 - 12/01/87 



SDB(l) (Extended Software Generation System Utilities) SDB(l) 

Addresses 
The address in a file associated with a written address is determined by a 
mapping associated with that file. E.ach mapping is represented by two 
triples (bl, e1, fl) and (b2, e2, /2) and the file address corresponding to a 
written address is calculated as follows: 

b1 < =address<e1 

file address =address+ f1-b1 
otherwise 

b2 <=address <e2 

file address=address+f2-b2, 

otherwise, the requested address is not legal. In some cases (e.g., for pro­
grams with separated I and D space) the two segments for a file may 
overlap. 

The initial setting of both mappings is suitable for normal a.out and core 
files. If either file is not of the kind expected then, for that file, b1 is set 
to 0, e1 is set to the maximum file size, and f1 is set to O; in this way the 
whole file can be examined with no address translation. 

In order for sdb to be used on large files, all appropriate values are kept as 
signed 32-bit integers. 

Commands 
The commands for examining data in the program are: 

t Print a stack trace of the terminated or halted program. 

T Print the top line of the stack trace. 

variable/elm 
Print the value of variable according to length l and format m. A 
numeric count c indicates that a region of memory, beginning at the 
address implied by variable, is to be displayed. The length specifiers 
are: 

b one byte 
h two bytes (half word) 

MU43814PR/D2 -3- 12/01/87 

II 



Ill SDB(l) (Extended Software Generation System Utilities) SDB(l) 

1 four bytes (long word) 

Legal values for m are: 
c character 
d decimal 
u decimal, unsigned 
o octal 
x hexadecimal 
f 32-bit single precision floating point 
g 64-bit double precision floating point 
s Assume variable is a string pointer and print charac­

ters starting at the address pointed to by the vari­
able. 

a Print characters starting at the variable's address. 
This format may not be used with register variables. 

p pointer to procedure 
i disassemble machine-language instruction with 

addresses printed numerically and symbolically. 
I disassemble machine-language instruction with 

addresses just printed numerically. 

Length specifiers are only effective with the c, d, u, o and x formats. 
Any of the specifiers, c, l, and m, may be omitted. If all are omitted, 
sdb chooses a length and a format suitable for the variable's type as 
declared in the program. If m is specified, then this format is used 
for displaying the variable. A length specifier determines the output 
length of the value to be displayed, sometimes resulting in trunca­
tion. A count specifier c tells sdb to display that many units of 
memory, beginning at the address of variable. The number of bytes 
in one such unit of memory is determined by the length specifier l, 
or if no length is given, by the size associated with the variable. If a 
count specifier is used for the s or a command, then that many char­
acters are printed. Otherwise successive characters are printed until 
either a null byte is reached or 128 characters are printed. The last 
variable may be redisplayed with the command./. 

The sh(l) metacharacters * and ? may be used within procedure and 
variable names, providing a limited form of pattern matching. If no 
procedure name is given, variables local to the current procedure 
and global variables are matched; if a procedure name is specified 
then only variables local to that procedure are matched. To match 
only global variables, the form :pattern is used. 

MU43814PR/D2 -4- 12/01/87 



SDB(l) (Extended Software Generation System Utilities) 

linenumber?lm 
variable:?lm 

SDB(l) 

Print the value at the address from a.out or I space given by 
linenumber or variable (procedure name), according to the format lm. 
The default format is 'i'. 

variable= lm 
linenumber = lm 
number=lm 

Print the address of variable or linen umber, or the value of number, in 
the format specified by lm. If no format is given, then lx is used. 
The last variant of this command provides a convenient way to con­
vert between decimal, octal and hexadecimal. 

variable !value 
Set variable to the given value. The value may be a number, a char­
acter constant or a variable. The value must be well defined; expres­
sions which produce more than one value, such as structures, are 
not allowed. Character constants are denoted 'character. Numbers 
are viewed as integers unless a decimal point or exponent is used. 
In this case, they are treated as having the type double. Registers 
are viewed as integers. The variable may be an expression which 
indicates more than one variable, such as an array or structure 
name. If the address of a variable is given, it is regarded as the 
address of a variable of type int. C conventions are used in any type 
conversions necessary to perform the indicated assignment. 

x Print the machine registers and the current machine-language 
instruction. 

X Print the current machine-language instruction. 

The commands for examining source files are: 

e procedure 
e file-name 
e directory! 
e directory file-name 

The first two forms set the current file to the file containing procedure 
or to file-name. The current line is set to the first line in the named 
procedure or file. Source files are assumed to be in directory. The 
default is the current working directory. The latter two forms 
change the value of directory. If no procedure, file name, or direc­
tory is given, the current procedure name and file name are 

MU43814PR/D2 -5- 12/01/87 

Ill 



II SDB(l) (Extended Software Generation System Utilities) 

reported. 

/regular expression/ 

SDB(l) 

Search forward from the current line for a line containing a string 
matching regular expression as in ed(l). The trailing I may be deleted. 

?regular expression? 
Search backward from the current line for a line containing a string 
matching regular expression as in ed(l). The trailing? may be deleted. 

p Print the current line. 

z Print the current line followed by the next 9 lines. Set the current 
line to the last line printed. 

w Window. Print the 10 lines around the current line. 

number 
Set the current line to the given line number. Print the new current 
line. 

count+ 
Advance the current line by count lines. Print the new current line. 

count-
Retreat the current line by count lines. Print the new current line. 

The commands for controlling the execution of the source program are: 

count r args 
count R 

Run the program with the given arguments. The r command with 
no arguments reuses the previous arguments to the program while 
the R command runs the program with no arguments. An argument 
beginning with < or > causes redirection for the standard input or 
output, respectively. If count is given, it specifies the number of 
breakpoints to be ignored. 

linenumber c count 
linenumber C count 

Continue after a breakpoint or interrupt. If count is given, the pro­
gram will stop when count breakpoints have been encountered. The 
signal which caused the program to stop is reactivated with the C 
command and ignored with the c command. If a line number is 
specified then a temporary breakpoint is placed at the line and exe­
cution is continued. The breakpoint is deleted when the command 
finishes. 

MU43814PR/D2 -6- 12/01/87 



SDB(l) (Extended Software Generation System Utilities) SDB(l) 

linenumber g count 
Continue after a breakpoint with execution resumed at the given 
line. If count is given, it specifies the number of breakpoints to be 
ignored. 

s count 
S count 

i 

Single step the program through count lines. If no count is given 
then the program is run for one line. S is equivalent to s except it 
steps through procedure calls. 

I Single step by one machine-language instruction. The signal which 
caused the program to stop is reactivated with the I command and 
ignored with the i command. 

variable$m count 
address:m count 

Single step (as with s) until the specified location is modified with a 
new value. If count is omitted, it is effectively infinity. Variable 
must be accessible from the current procedure. Since this command 
is done by software, it can be very slow. 

level v 
Toggle verbose mode, for use when single stepping with S, s or m. 
If level is omitted, then just the current source file and/or subroutine 
name is printed when either changes. If level is 1 or greater, each C 
source line is printed before it is executed; if level is 2 or greater, 
each assembler statement is also printed. A v turns verbose mode 
off if it is on for any level. 

k Kill the program being debugged. 

procedure(argl,arg2, ... ) 
procedure(argl,arg2, ... )/m 

Execute the named procedure with the given arguments. Argu­
ments can be integer, character or string constants or names of vari­
ables accessible from the current procedure. The second form 
causes the value returned by the procedure to be printed according 
to format m. If no format is given, it defaults to d. This facility is 
only available if the program was loaded with the -g option. 

MU43814PR/D2 -7- 12/01/87 

II 



II SDB(l) (Extended Software Generation System Utilities) SDB(t) 

linenumber b commands 
Set a breakpoint at the given line. If a procedure name without a 
line number is given (e.g., "proc:"), a breakpoint is placed at the 
first line in the procedure even if it was not compiled with the -g 
option. If no linenumber is given, a breakpoint is placed at the 
current line. If no commands are given, execution stops just before 
the breakpoint and control is returned to sdb. Otherwise the com­
mands are executed when the breakpoint is encountered and execu­
tion continues. Multiple commands are specified by separating 
them with semicolons. If k is used as a command to execute at a 
breakpoint, control returns to sdb, instead of continuing execution. 

B Print a list of the currently active breakpoints. 

linenumber d 
Delete a breakpoint at the given line. If no linenumber is given then 
the breakpoints are deleted interactively. Each breakpoint location is 
printed and a line is read from the standard input. If the line begins 
with a y or d then the breakpoint is deleted. 

D Delete all breakpoints. 

I Print the last executed line. 

linenumber a 
Announce. If linenumber is of the form proc:number, the command 
effectively does a linenumber b I. If linenumber is of the form proc:, 
the command effectively does a proc: b T. 

Miscellaneous commands: 

!command 
The command is interpreted by sh(l). 

new-line 
If the previous command printed a source line, then advance the 
current line by one line and print the new current line. If the previ­
ous command displayed a memory location, then display the next 
memory location. 

end-of-file character 
Scroll. Print the next 10 lines of instructions, source or data depend­
ing on which was printed last. The end-of-file character is usually 
control-D. 

MU43814PR/02 -8- 12/01/87 



SDB(l) 

FILES 

(Extended Software Generation System Utilities) SDB(l) 

<filename 
Read commands from filename until the end of file is reached, and 
then continue to accept commands from standard input. When sdb 
is told to display a variable by a command in such a file, the variable 
name is displayed along with the value. This command may not be 
nested;< may not appear as a command in a file. 

M Print the address maps. 

M [? /] [ * l b e f 
Record new values for the address map. The arguments ? and I 
specify the text and data maps, respectively. The first segment (bl, 
e1, f1) is changed unless * is specified, in which case the second 
segment (b2, e2, f2) of the mapping is changed. If fewer than three 
values are given, the remaining map parameters are left unchanged. 

"string 
Print the given string. The C escape sequences of the form \character 
are recognized, where character is a nonnumeric character. 

q Exit the debugger. 

The following commands also exist and are intended only for debugging 
the debugger: 

V Print the version number. 
Q Print a list of procedures and files being debugged. 
Y Toggle debug output. 

a.out 
core 

SEE ALSO 
cc(l), f77(1), a.out(4), core(4), syms(4). 
sh(l) in the User's Reference Manual. 

WARNINGS 
Breakpoints do not work with older 0410 (non-page-aligned) objects. 

When sdb prints the value of an external variable for which there is no 
debugging information, a warning is printed before the value. The size is 
assumed to be int (integer). 

Data which are stored in text sections are indistinguishable from func­
tions. 

MU43814PR/D2 - 9 - 12/01/87 

II 



SDB(l) 

BUGS 

(Extended Software Generation System Utilities) SDB(l) 

Line number information in optimized functions is unreliable, and some 
information may be missing. 

If a procedure is called when the program is not stopped at a breakpoint 
(such as when a core image is being debugged), all variables are initial­
ized before the procedure is started. This makes it impossible to use a 
procedure which formats data from a core image. 

MU43814PR/D2 - 10 - 12/01/87 



SIZE(t) (Software Generation System Utilities) SIZE(t) 

NAME 
size - print section sizes in bytes of common object files 

SYNOPSIS 
size [-n] [-f] [-o] [-x] [-V] files 

DESCRIPTION 
The size command produces section size information in bytes for each 
loaded section in the common object files. The size of the text, data, and 
bss (uninitialized data) sections is printed, as well as the sum of the sizes 
of these sections. If an archive file is input to the size command the infor­
mation for all archive members is displayed. 

The -n option includes NOLOAD sections in the size. 

The -f option produces full output, that is, it prints the size of every 
loaded section, followed by the section name in parentheses. 

Numbers will be printed in decimal unless either the -o or the -x option is 
used, in which case they will be printed in octal or in hexadecimal, 
respectively. 

The -V flag will supply the version information on the size command. 

SEE ALSO 
as(l), cc(l), ld(l), a.out(4), ar(4). 

WARNING 
Since the size of bss sections is not known until link-edit time, the size 
command will not give the true total size of pre-linked objects. 

DIAGNOSTICS 
size: name: cannot open 

if name cannot be read. 

size: name: bad magic 
if name is not an appropriate common object file. 

MU43814PR/D2 -1- 12/01/87 

Ill 



Ill STRIP(l) (Software Generation System Utilities) STRIP(l) 

NAME 
strip - strip symbol and line number information from a common object 
file 

SYNOPSIS 
strip [-1] [-x] [-b] [-r] [-V] filename 

DESCRIPTION 
The strip command strips the symbol table and line number information 
from common object files, including archives. Once this has been done, 
no symbolic debugging access will be available for that file; therefore, this 
command is normally run only on production modules that have been 
debugged and tested. 

The amount of information stripped from the symbol table can be con­
trolled by using any of the following options: 

-1 Strip line number information only; do not strip any symbol 
table information. 

-x Do not strip static or external symbol information. 

-b Same as the -x option, but also do not strip scoping information 
(e.g., beginning and end of block delimiters). 

-r Do not strip static or external symbol information, or relocation 
information. 

-V Print the version of the strip command executing on the stan-
dard error output. 

If there are any relocation entries in the object file and any symbol table 
information is to be stripped, strip will complain and terminate without 
stripping filename unless the -r option is used. 

If the strip command is executed on a common archive file [see ar(4)] the 
archive symbol table will be removed. The archive symbol table must be 
restored by executing the ar(l) command with the s option before the 
archive can be link-edited by the ld(l) command. strip will produce 
appropriate warning messages when this situation arises. 

strip is used to reduce the file storage overhead taken by the object file. 

MU43814PR/D2 - 1 - 12/01/87 



STRIP(l) (Software Generation System Utilities) STRIP(l) 

FILES 
TMPDIR/strp* temporary files 

TMPDIR is usually /usr/tmp but can be redefined by setting the environ­
ment variable TMPDIR [see tempnam() in tmpnam(3S)]. 

SEE ALSO 
ar(l), as(l), cc(l), ld(l), tmpnam(3S), a.out(4), ar(4). 

DIAGNOSTICS 
strip: name: cannot open 

if name cannot be read. 

strip: name: bad magic 
if name is not an appropriate common object 

file. 

strip: name: relocation entries present; cannot strip 

flag 

MU43814PR/D2 

if name contains relocation entries and the -r 

is not used, the symbol table information 
cannot be stripped. 

-2- 12/01/87 

II 



II 



TIC(l) (Terminal Information Utilities) TIC(l) 

NAME 
tic - terminfo compiler 

SYNOPSIS 
tic [-v[n]] [-c] file 

DESCRIPTION 

FILES 

tic translates a tenninfo(4) file from the source format into the compiled 
format. The results are placed in the directory /usrllibltenninfo. The com­
piled format is necessary for use with the library routines described in 
curses(3X). 

-vn (verbose) output to standard error trace information showing tic's 
progress. The optional integer n is a number from 1 to 10, 
inclusive, indicating the desired level of detail of information. If 
n is omitted, the default level is 1. If n is specified and greater 
than 1, the level of detail is increased. 

-c only check file for errors. Errors in use= links are not detected. 

file contains one or more tenninfo(4) terminal descriptions in source 
format (see tenninfo(4)). Each description in the file describes the 
capabilities of a particular terminal. When a use=entry-name field 
is discovered in a terminal entry currently being compiled, tic 
reads in the binary from /usrllibltenninfo to complete the entry. 
(Entries created from file will be used first. If the environment 
variable TERMINFO is set, that directory is searched instead of 
/usrllibltenninfo.) tic duplicates the capabilities in entry-name for 
the current entry, with the exception of those capabilities that 
explicitly are defined in the current entry. 

If the environment variable TERMINFO is set, the compiled results are 
placed there instead of /usrllibltenninfo. 

/usr/lib/terminfo/? I* compiled terminal description data base 

SEE ALSO 
curses(3X), term(4), terminfo(4) 
The curses/terminfo chapter in the Programmer's Guide. 

WARNINGS 
Total compiled entries cannot exceed 4096 bytes. The name field cannot 
exceed 128 bytes. 

MU43814PR/D2 -1- 12101/87 

• 



• 
TIC(l) 

BUGS 

(Terminal Information Utilities) TIC(l) 

Terminal names exceeding 14 characters will be truncated to 14 characters 
and a warning message will be printed. 

When the -c option is used, duplicate terminal names will not be diag­
nosed; however, when -c is not used, they will be. 

To allow existing executables from the previous release of SYSTEM V/68 to 
continue to run with the compiled terminfo entries created by the new ter­
minfo compiler, cancelled capabilities will not be marked as cancelled 
within the terminfo binary unless the entry name has a '+' within it. 
(Such terminal names are only used for inclusion within other entries via 
a use= entry. Such names would not be used for real terminal names.) 

For example: 

4415+nl, kfl@, kf2@, .... 

4415+base, kfl=\EOc, kf2=\E0d, .... 

4415-nl14415 terminal without keys, 
use=4415+nl, use=4415+base, 

The above example works as expected; the definitions for the keys do not 
show up in the 4415-nl entry. However, if the entry 4415+nl did not 
have a plus sign within its name, the cancellations would not be marked 
within the compiled file and the definitions for the function keys would 
not be cancelled within 4415-nl. 

DIAGNOSTICS 
Most diagnostic messages produced by tic during the compilation of the 
source file are preceded with the approximate line number and the name 
of the terminal currently being worked on. 

mkdir ... returned bad status 
The named directory could not be created. 

File does not start with terminal names in column one 

MU43814PR/D2 

The first thing seen in the file, after comments, must be the list of 
terminal names. 

-2- 12/01/87 



TIC(l) (Terminal Information Utilities) TIC(l) 

Token after a seek(2) not NAMES 
Somehow the file being compiled changed during the compilation. 

Not enough memory for use_list element 
or 

Out of memory 
Not enough free memory was available (malloc(3) failed). 

Can't open ... 
The named file could not be created. 

Error in writing ... 
The named file could not be written to. 

Can't link . . . to ... 
A link failed. 

Error in re-reading compiled file ... 
The compiled file could not be read back in. 

Premature EOF 
The current entry ended prematurely. 

Backspaced off beginning of line 
This error indicates something wrong happened within tic. 

Unknown Capability - " ... " 
The named invalid capability was found within the file. 

Wrong type used for capability" ... " 
For example, a string capability was given a numeric value. 

Unknown token type 
Tokens must be followed by '@' to cancel, ',' for booleans, '#'for 
numbers, or'=' for strings. 

" ... ":bad term name 
or 

Line ... : Illegal terminal name - " ... " 
Terminal names must start with a letter or digit 

The given name was invalid. Names must not contain white space 
or slashes, and must begin with a letter or digit. 

MU43814PR/D2 - 3 - 12/01/87 

II 



TIC(l) (Terminal Information Utilities) TIC(l) 

" ... ":terminal name too long. 
An extremely long terminal name was found. 

" ... ": terminal name too short. 
A one-letter name was found. 

" ... "filename too long, truncating to" ... " 
The given name was truncated to 14 characters due to SYSTEM 
V/68 file name length limitations. 

" ... "defined in more than one entry. Entry being used is" ... ". 
An entry was found more than once. 

Terminal name " ... " synonym for itself 
A name was listed twice in the list of synonyms. 

At least one synonym should begin with a letter. 
At least one of the names of the terminal should begin with a 
letter. 

Illegal character - " ... " 
The given invalid character was found in the input file. 

Newline in middle of terminal name 
The trailing comma was probably left off of the list of names. 

Missing comma 
A comma was missing. 

Missing numeric value 
The number was missing after a numeric capability. 

NULL string value 
The proper way to say that a string capability does not exist is to 
cancel it. 

Very long string found. Missing comma? 
self-explanatory 

Unknown option. Usage is: 
An invalid option was entered. 

Too many file names. Usage is: 
self-explanatory 

MU43814PR/D2 -4- 12/01/87 



TIC(l) (Terminal Information Utilities) TIC(l) 

" ... " non-existant or permission denied 
The given directory could not be written into. 

" ... " is not a directory 
self-explanatory 

" ... ": Permission denied 
access denied. 

" ... ": Not a directory 
tic wanted to use the given name as a directory, but it already 
exists as a file 

SYSTEM ERROR!! Fork failed!!! 
A fork(2) failed. 

Error in following up use-links. Either there is a loop in the links or they 
reference non-existant terminals. The following is a list of the entries 
involved: 

A terminfo(4) entry with a use=name capability either referenced a 
non-existant terminal called name or name somehow referred back 
to the given entry. 

MU43814PR/D2 -5- 12/01/87 

II 



II 
TSORT(l) (Software Generation System Utilities) 

NAME 
tsort - topological sort 

SYNOPSIS 
tsort [file] 

DESCRIPTION 

TSORT(l) 

The tsort command produces on the standard output a totally ordered list 
of items consistent with a partial ordering of items mentioned in the input 
file. If no file is specified, the standard input is understood. 

The input consists of pairs of items (nonempty strings) separated by 
blanks. Pairs of different items indicate ordering. Pairs of identical items 
indicate presence, but not ordering. 

SEE ALSO 
lorder{l). 

DIAGNOSTICS 
Odd data: there is an odd number of fields in the input file. 

MU43814PR/D2 - 1 - 12/01/87 



UNGET(l) (Source Code Control System Utilities) UNGET(l) 

NAME 
unget - undo a previous get of an SCCS file 

SYNOPSIS 
unget [-rSID] [-s] [-n] files 

DESCRIPTION 
unget undoes the effect of a get -e done prior to creating the intended new 
delta. If a directory is named, unget behaves as though each file in the 
directory were specified as a named file, except that non-SCCS files and 
unreadable files are silently ignored. If a name of - is given, the standard 
input is read with each line being taken as the name of an SCCS file to be 
processed. 

Keyletter arguments apply independently to each named file. 

SEE ALSO 

-rSID Uniquely identifies which delta is no longer intended. 
(This would have been specified by get as the "new 
delta"). The use of this keyletter is necessary only if 
two or more outstanding gets for editing on the same 
SCCS file were done by the same person (login name). 
A diagnostic results if the specified SID is ambiguous, 
or if it is necessary and omitted on the command line. 

-s Suppresses the printout, on the standard output, of the 
intended delta's SID. 

-n Causes the retention of the gotten file which would 
normally be removed from the current directory. 

delta(l), get{l), sact{l). 
help(l) in the User's Reference Manual. 

DIAGNOSTICS 
Use help(l) for explanations. 

MU43814PR/D2 - 1 - 12/01/87 

Ill 



Ill 



VAL(l) (Source Code Control System Utilities) VAL(l) 

NAME 
val - validate SCCS file 

SYNOPSIS 
val -
val [-s] [-rSID] [-mname] [-ytype] files 

DESCRIPTION 
val determines if the specified file is an SCCS file meeting the characteris­
tics specified by the optional argument list. Arguments to val may appear 
in any order. The arguments consist of keyletter arguments, which begin 
with a -, and named files. 

val has a special argument, -, which causes reading of the standard input 
until an end-of-file condition is detected. Each line read is independently 
processed as if it were a command line argument list. 

val generates diagnostic messages on the standard output for each com­
mand line and file processed, and also returns a single 8-bit code upon 
exit as described below. 

The keyletter arguments are defined as follows. The effects of any 
keyletter argument apply independently to each named file on the com­
mand line. 

-s 

-rSID 

-mname 

MU43814PR/D2 

The presence of this argument silences the diagnostic mes­
sage normally generated on the standard output for any error 
that is detected while processing each named file on a given 
command line. 

The argument value SID {SCCS JDentification String) is an 
SCCS delta number. A check is made to determine if the SID 
is ambiguous (e. g., r1 is ambiguous because it physically 
does not exist but implies 1.1, 1.2, etc., which may exist) or 
invalid (e. g., rl.O or rl.1.0 are invalid because neither case 
can exist as a valid delta number). If the SID is valid and not 
ambiguous, a check is made to determine if it actually exists. 

The argument value name is compared with the s-lSCCS 
%M% keyword in file. 

- 1 - 12/01/87 

II 



II VAL(l) 

-ytype 

(Source Code Control System Utilities) VAL(l) 

The argument value type is compared with the SCCS % Y% 
keyword in file. 

The 8-bit code returned by val is a disjunction of the possible errors, i. e., 
can be interpreted as a bit string where (moving from left to right) set bits 
are interpreted as follows: 

bit 0 = missing file argument; 
bit 1 = unknown or duplicate keyletter argument; 
bit 2 = corrupted SCCS file; 
bit 3 = cannot open file or file not SCCS; 
bit 4 = SID is invalid or ambiguous; 
bit 5 = SID does not exist; 
bit 6 = %Y%, -y mismatch; 
bit 7 = %M%, -m mismatch; 

Note that val can process two or more files on a given command line and 
in turn can process multiple command lines (when reading the standard 
input). In these cases an aggregate code is returned - a logical OR of the 
codes generated for each command line and file processed. 

SEE ALSO 
admin(l), delta(l), get(l), prs(l). 
help(l) in the User's Reference Manual. 

DIAGNOSTICS 

BUGS 

Use help(l) for explanations. 

val can process up to 50 files on a single command line. Any number 
above 50 will produce a core dump. 

MU43814PR/D2 -2- 12/01/87 



VC(l) (Source Code Control System Utilities) VC(t) 

NAME 
vc - version control 

SYNOPSIS 
vc [-a] [-t] [-cchar] [-s] [keyword=value ... keyword=value] 

DESCRIPTION 
The vc command copies lines from the standard input to the standard out­
put under control of its arguments and control statements encountered in the 
standard input. In the process of performing the copy operation, user 
declared keywords may be replaced by their string value when they appear 
in plain text and/or control statements. 

The copying of lines from the standard input to the standard output is 
conditional, based on tests (in control statements) of keyword values 
specified in control statements or as vc command arguments. 

A control statement is a single line beginning with a control character, 
except as modified by the -t keyletter (see below). The default control 
character is colon (:), except as modified by the -c keyletter (see below). 
Input lines beginning with a backslash (\) followed by a control character 
are not control lines and are copied to the standard output with the 
backslash removed. Lines beginning with a backslash followed by a non­
control character are copied in their entirety. 

A keyword is composed of 9 or less alphanumerics; the first must be 
alphabetic. A value is any ASCII string that can be created with ed(l); a 
numeric value is an unsigned string of digits. Keyword values may not 
contain blanks or tabs. 

Replacement of keywords by values is done whenever a keyword sur­
rounded by control characters is encountered on a version control state­
ment. The -a keyletter (see below) forces replacement of keywords in all 
lines of text. An uninterpreted control character may be included in a 
value by preceding it with \. If a literal \ is desired, then it too must be 
preceded by \. 

Keyletter Arguments 

-a 

MU43814PR/D2 

Forces replacement of keywords surrounded by control char­
acters with their assigned value in all text lines and not just 
in vc statements. 

- 1 - 12101/87 

1111 



• 
VC(l) 

-t 

-cchar 

-s 

(Source Code Control System Utilities) VC(l) 

All characters from the beginning of a line up to and includ­
ing the first tab character are ignored for the purpose of 
detecting a control statement. If one is found, all characters 
up to and including the tab are discarded. 

Specifies a control character to be used in place of :. 

Silences warning messages (not error) that are normally 
printed on the diagnostic output. 

Version Control Statements 

:dcl keyword[, ... , keyword] 
Used to declare keywords. All keywords must be declared. 

:asg keyword=value 
Used to assign values to keywords. An asg statement overrides the 
assignment for the corresponding keyword on the vc command line 
and all previous asg' s for that keyword. Keywords declared, but not 
assigned values have null values. 

:if condition 

:end 
Used to skip lines of the standard input. If the condition is true all 
lines between the if statement and the matching end statement are 
copied to the standard output. If the condition is false, all interven­
ing lines are discarded, including control statements. Note that 
intervening if statements and matching end statements are recog­
nized solely for the purpose of maintaining the proper if-end match­
ing. 
The syntax of a condition is: 

<cond> 
<or> 
<and> 
<exp> 
<op> 
<value> 

::= ["not"] <or> 
::=<and> I <and> "I" <or> 
::=<exp> I <exp>"&" <and> 
::="("<or> '1" I <value> <op> <value> 
::= "="I"!=" I"<" I">" 
::= <arbitrary ASCII string> I <numeric string> 

The available operators and their meanings are: 

equal 
!= not equal 

MU43814PR/D2 - 2 - 12101/87 



VC(l) 

::text 

:on 

:off 

& 

> 
< 
{) 

(Source Code Control System Utilities) 

and 
or 
greater than 
less than 
used for logical groupings 

VC(l) 

not may only occur immediately after the if, and 
when present, inverts the value of the 
entire condition 

The> and< operate only on unsigned integer values (e.g., : 012 > 
12 is false). All other operators take strings as arguments (e.g., : 012 
!= 12 is true). The precedence of the operators (from highest to 
lowest) is: 

= ! = > < all of equal precedence 
& 

Parentheses may be used to alter the order of precedence. 
Values must be separated from operators or parentheses by at least 
one blank or tab. 

Used for keyword replacement on lines that are copied to the stan­
dard output. The two leading control characters are removed, and 
keywords surrounded by control characters in text are replaced by 
their value before the line is copied to the output file. This action is 
independent of the -a keyletter. 

Tum on or off keyword replacement on all lines. 

:ctl char 
Change the control character to char. 

:msg message 
Prints the given message on the diagnostic output. 

:err message 
Prints the given message followed by: 

ERROR: err statement on line ••• (915) 
on the diagnostic output. vc halts execution, and returns an exit 
code of 1. 

MU43814PR/D2 - 3 - 12/01/87 

Ill 



Ill VC(l) (Source Code Control System Utilities) 

SEE ALSO 
ed(l), help(l) in the User's Reference Manual. 

DIAGNOSTICS 
Use help(l) for explanations. 

EXIT CODES 
0-normal 
1- any error 

MU43814PR/D2 -4-

VC(l) 

12/01/87 



WHAT(l) (Source Code Control System Utilities) WHAT(l) 

NAME 
what - identify SCCS files 

SYNOPSIS 
what [-s] files 

DESCRIPTION 
what searches the given files for all occurrences of the pattern that get{l) 
substitutes for %Z% (this is @(#) at this printing) and prints out what fol­
lows until the first -, >, new-line, \, or null character. For example, if the 
C program in file f.c contains 

char ident[] = "@(#)identification information"; 

and f.c is compiled to yield f.o and a.out, then the command 

what f.c f.o a.out 

will print 

f.c: 
identification information 

f.o: 
identification information 

a.out: 
identification information 

what is intended to be used in conjunction with the command get(l), 
which automatically inserts identifying information, but it can also be 
used where the information is inserted manually. Only one option exists: 

-s Quit after finding the first occurrence of pattern in each file. 

SEE ALSO 
get{l). 
help{l) in the User's Reference Manual. 

DIAGNOSTICS 

BUGS 

Exit status is 0 if any matches are found, otherwise 1. Use help(l) for 
explanations. 

It is possible that an unintended occurrence of the pattern@(#) could be 
found just by chance, but this causes no harm in nearly all cases. 

MU43814PR/02 - 1 - 12/01/87 

II 



1111 



YACC(l) (Extended Software Generation System Utilities) YACC(l) 

NAME 
yacc - yet another compiler-compiler 

SYNOPSIS 
yacc [ -vdlt ] grammar 

DESCRIPTION 
The yacc command converts a context-free grammar into a set of tables for 
a simple automaton which executes an LR(l) parsing algorithm. The 
grammar may be ambiguous; specified precedence rules are used to break 
ambiguities. 

The output file, y.tab.c, must be compiled by the C compiler to produce a 
program yyparse. This program must be loaded with the lexical analyzer 
program, yylex, as well as main and yyerror, an error handling routine. 
These routines must be supplied by the user; lex(l) is useful for creating 
lexical analyzers usable by yacc. 

If the -v flag is given, the file y.output is prepared, which contains a 
description of the parsing tables and a report on conflicts generated by 
ambiguities in the grammar. 

If the -d flag is used, the file y.tab.h is generated with the #define state­
ments that associate the yacc-assigned "token codes" with the user­
declared "token names". This allows source files other than y.tab.c to 
access the token codes. 

If the -1 flag is given, the code produced in y.tab.c will not contain any 
#line constructs. This should only be used after the grammar and the 
associated actions are fully debugged. 

Runtime debugging code is always generated in y.tab.c under conditional 
compilation control. By default, this code is not included when y.tab.c is 
compiled. However, when yacc's -t option is used, this debugging code 
will be compiled by default. Independent of whether the -t option was 
used, the runtime debugging code is under the control of YYDEBUG, a 
preprocessor symbol. If YYDEBUG has a non-zero value, then the debug­
ging code is included. If its value is zero, then the code will not be 
included. The size and execution time of a program produced without the 
runtime debugging code will be smaller and slightly faster. 

MU43814PR/D2 - 1 - 12/01/87 

Ill 



II YACC(l) 

FILES 
y.output 
y.tab.c 

(Extended Software Generation System Utilities) 

y.tab.h defines for token names 
yacc.tmp, 
yacc.debug, yacc.acts temporary files 
/usr/lib/yaccpar parser prototype for C programs 

SEE ALSO 
lex{l). 
The yacc chapter of the Programmer's Guide. 

DIAGNOSTICS 

YACC(l) 

The number of reduce-reduce and shift-reduce conflicts is reported on the 
standard error output; a more detailed report is found in they.output file. 
Similarly, if some rules are not reachable from the start symbol, this is 
also reported. 

WARNING 
Because file names are fixed, at most one yacc process can be active in a 
given directory at a given time. 

MU43814PR/D2 -2- 12/01/87 


