68NW9209F46A

Graphic Services Extension
Programmer’s Reference Manual

@ MOTOROLA

3‘%“;{);‘/ 2




GRAPHIC SERVICES EXTENSION
PROGRAMMER’S REFERENCE MANUAL

Part Number 6BNW9209F46A

Version 1



SYSTEM V/68™ is a trademark of Motorola Inc. UNIX® is a registered trademark
of AT&T. The X Window System™ is a registered trademark of MIT.

The information contained in this manual is based partially on Xlib - C Language X
Interface, Protocol Version 11 and the X Window System Protocol, Version 11. The X
Window System software and these documents were written under the auspices
of Project Athena at MIT.

Under the terms of the copyright notice for the MIT X documentation on which
portions of this document are based, we are required to include the following
statement:

"Portions of this document are copyright © 1985, 1986, 1987, Massachusetts
Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation (i.e. the original
MIT-DEC documentation) for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of M.L.T. or Digital not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. M.LT. and Digital make no representations about the suitability of
the software described herein for any purpose. It is provided "as is" without
expressed or implied warranty."

Note however, that those portions of this document that are based on the original
MIT documentation have been significantly revised, and that all such revisions are
copyright © 1987 O’Reilly & Associates, Inc. Inasmuch as the proprietary
revisions cannot be separated from the freely copyable MIT source material,
copying of this document is strictly forbidden.

Copyright © 1988 Motorola Inc. All rights reserved. No part of this manual may
be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, without
the prior written permission of Motorola Inc.

Portions of this document are reprinted from
copyrighted documents by permission of O’Reilly & Associates, Inc., 1987



PREFACE

The Graphics Services Extension Programmer’s Reference Manual (Part Number
68NW9209F46A) describes the C Language programming interface to the X
Window System, the X library (Xlib). Note that the Resource Manager manual
pages (Xrmname(3X)) are grouped after the main body of Xlib manual pages and
before the permuted index.

While reasonable efforts have been made to assure the accuracy of this document,
Motorola assumes no liability resulting from any omissions in this document or
from the use of the information obtained therein. Motorola reserves the right to
revise this document and to make changes from time to time in its content
without being obligated to notify any person of such revision or changes.



CONTENTS

1. INTRODUCTION .....ccuiiuiiunimnienirnmeeorinneuneriernieeeeeisenssassessssssasssssasses 1-1

LA+ ) S T a window manager for X
b e 1o 1 T P analog/digital clock for X
D {1 51 P font displayer for X
XISfONtS(1) tevevnreniniiiiiiiiiiieinr server font list displayer for X
b1y o3 1 1 RN property displayer for X
XrefresSh(1) coeeveiiniiiiiiiiiiiiriiiiiiiiiiiieeeneeeinnninniann, refresh all or part of an X screen
DT 4 1 ) N user preference utility for X
XSetroot(1) ..evveriiiiiiiiiiiiiiie root window parameter setting utility for X
B4 (=) ¢ ¢ X0 1 T terminal emulator for X
'’ 1 01100 (o7 0 ) I window information utility for X

XActivateScreenSaver(3X) ....ccoevveeernriiineneetinniiiiiiiiiiieiiian, activate screen blanking
XAAAHOSE(3X) vovvverinrninininininiiriiieiieiseranneenneiene, add a host to the access control list
XAddHOSES(3X) ..evvvrrnrnininiienenieieieiaennnnss add multiple hosts to the access control list
XAddPixel(3X) ..covvrvinrniiicniiiinninnnnns add constant value to every pixel value in image
XAddToSaveSet(3X) ..couvrvrnrnerirneenernennennnnes add window’s children to client’s save-set
XAllocColor(3X) ... allocate read-only colormap cell with closest hardware-supported color
XAllocColorCells(3X) .....cevvirinrniininineenrennnns allocate read/write (non-shared) colorcells
XAllocColorPlanes(3X) ......c..cuceuuiennines allocate read/write (non-sharable) color planes
XAllocNamedColor(3X) ......ccovvuieeniinrnnnness allocate read-only colorcell from color name
XAllowEvents(3X) .....coceevneeniernnnes control the behavior of keyboard and pointer events
XAutoRepeatOff(3X) .....oeevrurierenrerirnruencnrennnn. turn off the keyboard auto-repeat keys
XAutoRepeatOn(3X) ......ccceuvininiiniinineeniennnnnn, turn on the keyboard auto-repeat keys
D412 11 ), 4 gt ring the bell (Control G)
XChangeActivePointerGrab(3X) .........cccceenenens change parameters of active pointer grab
XChangeGC(3X) v.vvvrerinrirunenrenineneeanennnnnnns change components of a graphics context
XChangeKeyboardControl(3X) ............... change keyboard preferences such as key click
XChangeKeyboardMapping(3X) .......ccoveeeeernnirnninninninninen. change keyboard mapping
XChangePointerControl(3X) .......cceeueeireerueriinnreninnenninnine, change pointer acceleration
XChangeProperty (3X) ....ceoverevernenrnreenennas change a property associated with a window
XChangeSaveSet(3X) ......cocoeneeen add or remove a subwindow from the client’s save-set



XChangeWindowAttributes(3X) .......ccoevrrenriniiiieneniiiiiiinnanens. set window attributes

XCheckIfEvent(3X) ....ccoceeeieninieiininieiiieninnennnes check event queue for matching event
XCheckMaskEvent(3X) ............... remove next event that matches mask but do not wait

XCheckTypedEvent(3X) .. return next event in queue that matching event type; don't wait
XCheckTypedWindowEvent(3X) .. return next event in queue matching type and window

XCheckWindowEvent(3X) ..... remove next event matching passed window, passed mask
XCirculateSubwindows(3X) ........... circulate stacking order of children up or down order
XCirculateSubwindowsDown(3X) ............. circulate bottom child to top of stacking order
XCirculateSubwindowsUp(3X) .......c.cceueee circulate top child to bottom of stacking order
XClearArea(3X) ....ceoevrneiiniriiininiieneieniniiennnenens clear a rectangular area in a window
XClearWindow (3X) ...cceeeeveruiniieineiiiuineirinieiecseieiecasnenscacenes clear an entire window
XCHPBOX(3X) .eeeecenrnreeninrnennnnrnruenencannes generate smallest rectangle enclosing region
XCloseDisplay(3X) ..coceveerenrnrnnencneannnne. disconnect client from an X server and display
XConfigureWindow (3X) ... change window position, size, border width, or stacking order
XConvertSelection(3X) ...coevevueiererniieiniierereieiiieiececneneens use the value of a selection
XCOPYArea(3X) ..cevecernnrnriirininieiiineeeieneneieeeneeernnaennns copy an area of a drawable
XCopyColormapAndFree(3X) ................. copy a colormap and return new colormap ID
XCOPYGC(3X) terrrernrrrurrnrunrnnenreneeennenneneeneeerneeeeiesaeneennees copy a graphics context
XCopyPlane(3X) ....cuvertnrnrnieniuiiiiiiniiieeenennenenenns copy and color bit-plane of drawable
XCreateAssocTable(3X) .ocveveenrinriniinrierneieinennennees create a new association table (X10)
XCreateBitmapFromData(3X) ........c.cccceeeeees create bitmap from X11 bitmap format data
XCreateColormap(3X) ..ccoeeiverururienriierruiiiiieiiieniriieeiracesennaennns create a colormap
XCreateFontCursor(3X) ....cccceeeerienennecnnnnnns create a cursor from standard cursor font
XCreateGC(3X) .evvevrrnrrnrinrinriarierecnecnnnnnes create new graphics context for a drawable
XCreateGlyphCursor(3X) ......cc.eeeeeeeiinenieneniuennennnnnns create a cursor from font glyphs
XCreateImage(3X) ....c.ceeevininnnriiienncnnnnnnnn. allocate memory for an XImage structure
XCreatePixmap(3X) ..coevereriuiniienerinienenineietieiicncieenrniintasarsscncsnnnns create a pixmap
XCreatePixmapCursor(3X) ....cccceevurureenreiernnnrenanannen, create a cursor from two bitmaps
XCreatePixmapFromBitmapData(3X) ......... create a pixmap with depth from bitmap data
XCreateRegion(3X) ...cceeeeeriniieniiiieiiniiiiieiiiiiiiiiiiieneennne, create a new empty region
XCreateSimpleWindow(3X) ......cceveinininnnnnn. creates an unmapped InputOutput window
XCreateWindow(3X) ...ccceeverennrieirinrcinsennrnnrenscenss create a window and set attributes
XDefineCursor(3X) ....cccevererniieieiiiininciieiiiieieeiceininann, assign a cursor to a window
XDeleteAssoc(3X) wveerrrnrniniiiiiiiiiiiiiiinieiennnn, delete an entry from an association table
XDeleteContext(3X) .......cceveeunennennennans delete context entry for given window and type
XDeleteModifiermapEntry (3X) ........... delete an entry from an XModifierKeymap structure
XDeleteProperty(3X) .ccceeeeeiireiiiiiiiiiiiineiiieciieiiencienenaenaes delete a window property
XDestroyAssocTable(3X) ...........c.ceeents free the memory allocated for association table
XDestroyImage(3X) .....ccoevvieiiiiiiiiinann, deallocate memory associated with an image
XDestroyRegion(3X) ....cceoevveeninininininnninnnn. deallocate storage associated with a region
XDestroySubwindows(3X) .....ccccceieiiiiiiiiiininnnen., destroy all subwindows of a window
XDestroyWindow (3X) ............ceeuenes unmap and destroy a window and all subwindows

-vi-



XDisableAccessControl(3X) ........cccecieinineenns prevent modification to the host access list

XDisplayName (3X) .......... reports the display name when connecting to that display fails
XDraw(3X) ..cccveinieiiiiniiiiniinenenns draw polyline or curve between vertex list (from X10)
XDrawArc(3X) coveeernreriremimiennieaeieasieieiisnceceanes draws an arc fitting inside a rectangle
XDrawArcs(3X) voceeererereusasucurerereraraensnressossorennsasuossnsasnsasnsasases draw multiple arcs
XDrawFilled(3X) ...c.ccevvvernvnnnnns draw filled polygon or curve from vertex list (from V10)
XDrawImageString(3X) .....ccoeveienrecenenrinioeiniciiinninn, draw 8-bit image text characters
XDrawImageString16(3X) .....ccccecereeeiucicnrnraceniniinaes draw 16-bit image text characters
XDrawLine(3X) ...ccoeeeernieeieriiiiiiiereiniiecssisssiiiiiinaias draw a line between two points
XDrawLines(3X) c.c.ceereeieiniiiiuiuiiiiniiiiireenensseeiiiiiien, draw multiple connected lines
XDrawPoint(3X) ..ccceviirrereiucniiiniuiieeieieetentntiiiiieiieiiiestistsscncnecncaces draw a point
XDrawPoints(3X) ..coviveieenriiinrerireniineensorieciietiiiiiiiiasaisesasenons draw multiple points
XDrawRectangle(3X) ....coeuvuiiruiininiirereiiisiitiiiriiiiiioiiinae, draw outline of rectangle
XDrawRectangles(3X) .......ccoveenieiiniiinnieiienns draw the outlines of multiple rectangles
XDrawSegments(3X) ....coeveernrineieiieniiiiieiiiiiiiiiiiiiii. draw multiple disjoint lines
XDrawString(3X) ...coeveeriiniiinieiiiiiiiiiinene. draw 8-bit text string, foreground only
XDrawStringl6(3X) ...cevervriiereiiiiiiiiieniiiisiiiiiiiiiiiiiiiiiiina, draw two-byte text strings
XDrawText(3X) coueeeerenrieieenrsnrurnrreenrnrneonsetsocioesnensonas draw 8-bit polytext characters
XDrawText16(3X) v.ovuveeeuienrerunruarnnnieeerensssinenneneenenenanns draw 16-bit polytext strings
XEmptyRegion(3X) ....cuvuiinininiiiiiinniiinioniniiiiiiiiiiiiiinn, determine if region is empty
XEnableAccessControl(3X) ........ccceivneieeniiaeens enable changes to the access control list
XEqualRegion(3X) .......... determine if two regions have the same size, offset, and shape
XEventsQueued(3X) .....oovvuviriiniiannnnnns check the number of events in the event queue
XFetchBuffer(3X) .....ccceceeetineinrinniiiiecnececnnannnan, beessencnes return data from cut buffer
XFetchBytes(3X) ..coveveiiniiiniiiieniineniiensoiiiniiiiiiiiinenn, return data from cut buffer 0
XFetchName(3X) ...ocevvvneniinineniiacieninarnennenes get window name (WM_NAME property)
XFIALC(3X) tovvneinrieiinrinriniieiiiiieieeneessncsetieeieeietessseesesssenceassnssnsnnsnnns fill an arc
XFILATCS(3X) teverrnruenenruruieiiiiiiiiesersnroraeteiesesesesisesssesssssssasaes fill multiple arcs
XFillPolygon (3X) ...c.cereieninruruniueniininrueeetosteeniiiinniniiietieeeareseneesannes fill a polygon
XFillRectangle(3X) ....cocoeuiuriiiienreeinieinieiieietinineniieiciieinennenn, fill rectangular area
XFillRectangles(3X) «..c.ovuvuruirinieiiiiareniiensiercrinniinnnnannns fill multiple rectangular areas
XFindContext(3X) .c.cevevverininninnnns get data from context manager (not graphics context)
XFlush(3X) .ceveveriierninrniniiieninnnens flush the output buffer (display all queued requests)
XForceScreenSaver(3X) ...ceeeeeieiiniiniieciarentoneieniiciioiencnnns turn screen saver on or off
XFree(3X) .eocvvevnrniiiininenennnes free specified in-memory data created by an Xlib function
XFreeColormap(3X) .....ccceeeerinruennnnnns delete colormap and install the default colormap
XFreeColors(3X) .ccceuiuiieiiiniiiiiiniiiiiiiiieessiiisiiiiiiennennnn., free colormap cells or planes
XFreeCursor(3X) ..coeeeieieiueieiiineieiuieciesseresntuiiecnenineiesninesnssesnsnses destroy a cursor
XFreeExtensionList(3X) ........... free memory allocated for list of installed extensions to X
XFreeFont(3X) ..ccevvreeiniininniiiininninnenens unload font and free storage for font structure
XFreeFontInfo(3X) ......ccoveviieviiiiiniiinininnnnennnnnn, free multiple font information arrays
XFreeFontNames(3X) ....ccceveiiiinriniinrinennrnieieiiiiniiiieisssasinsonss free font name array



XFreeFontPath(3X) ....cccocevviieiiiiiiiiiinnnininnnnns free memory allocated by XGetFontPath

XFreeGC(3X) .evuvneniniuieieniiiiiiiiiiiiiiiiniicice e s s saseaes free a graphics context
XFreeModifiermap(3X) ...........c.cceunes destroy and free keyboard modifier mapping table
XFreePixmap(3X) ..o.cvvvueiiiiiiiiiiiiiiiiiiiiiiiiiii e eaes free pixmap ID
XGContextFromGC(3X) ......... obtain the GContext (ID) associated with the specified GC
XGeometry(3X) .. calculate window geometry with user geometry string, default geometry
XGetAtomName(3X) ..c.ivvrruriiiiiiiiiiiiiiiiiiiiiieee e eaeeaes get name for atom
XGetClassHint(3X) ......ccevvvvineniniicieninnnnene, get the WM_CLASS property of a window
XGetDefault(3X) ......ccceeuvnennnns scan user preference file for program name and options
XGetErrorDatabaseText(3X) ......cccvvvnnenns obtain ecrror messages from the error data base
D, (€711 23 ¢ (s J {51 { € ), 4 [N obtain description of error code
XGetFontPath(3X) ..c.ceevvvinininininineniniiiiininineneninnae, get the current font search path
XGetFontProperty (3X) ..ceoeervieninininniiiieiiininnininnnians get a font property given its atom
XGetGeometry(3X) ..ccocvverriiienriiiieiiiniinineienen, obtain current geometry of drawable
XGetIconName(3X) ...ceoveereirneieieieiiseieniieneiesniecncenns get name to be displayed in icon
XGetIcONSIZES(3X) tovevreersrnerernrrsarerneserascsasnessencssissnsssnnnss get preferred icon sizes
XGetImage(3X) ..cvvvverninnniininnnnns place contents of rectangle from drawable into image
XGetInputFocus(3X) .....cceevverininiininiiiiiiiinenninn, discover current input focus window
XGetKeyboardControl(3X) ......coevvuinerineninnnennnnes obtain list of current keyboard contro
XGetKeyboardMapping(3X) ......cocvvvrreniiiiinniiinnenninnnnen, return symbols for keycodes
XGetModifierMapping (3X) ..........ceeuuet obtains modifier key mapping (Shift, Control, etc
XGetMotionEvents(3X) ...ccceovieriininiiiiiniiiiiiiiiiineneniniiinen, get pointer motion events
XGetNormalHints(3X) .....ocevvuveninninninnennann, get size hints for window in normal state
XGetPixel(3X) .oevvvrrrvenriiiiiieniiiiiiiniiiinninnenn, obtain a single pixel value from an image
XGetPointerControl(3X) ......ccceeevieneennnnnnne. get current pointer acceleration parameters
XGetPointerMapping(3X) ...c.ccveiinieiiiinenniiiniiienininnnnn, get the pointer button mapping
XGetScreenSaver(3X) c..ceveivriiniiieiiiniiniiieieiieinen, get current screen saver parameters
XGetSelectioNOWNEr(3X) vuvieveeenrecrienurcssonnsronssessssnssasssncannens return selection owner
XGetSizeHints(3X) .....covvvniiiiinininnininnnnn, read any property of type WM_SIZE_HINTS
XGetStandardColormap(3X) ....cccveevuiieuenniiniuinnenenne get standard colormap structure
XGetSubImage (3X) ........ copy rectangle in drawable to location within pre-existing image
XGetTransientForHint(3X) ........ccccuuune get WM_TRANSIENT_FOR property of window
XGetVisualInfo(3X) ....cceovvnvennnn. find visual information structure that matches template
XGetWindowAttributes(3X) ....cceevvvrecneneennennennennns obtain current attributes of window
XGetWindowProperty (3X) ......... obtain the atom type and property format for a window
XGetWMHINtS (3X) tuceuviierieiniiieiieiiiiiiiiiesininaiiecsecisanees read window manager hints
XGetZoomHints(3X) ..ecevvviiiinieniiniiniierecccrsnacnaens read size hints for zoomed window
XGrabButton(3X) c...eeeeieeniniiiiiiiiiiiiiiiriiiiiiiiiiiiiiiiisisiiaeienies grab a pointer button
D@ 1) 3 (<3, R grab a key
XGrabKeyboard(3X) ....covveiuiiiiniiiniiiiiiiniiiiiiiiineeeeens grab the keyboard
XGrabPointer(3X) ..ccccveeriiureecisnrrsnciiersnesiscterecessonssansesnsesnsasnssnnes grab the pointer
XGrabServer(3X) ..cceveiiriieiiiiniiniiiiiiiiieiiiiiiiiiiiiiiitiiiiiieeeneeseasiassnns grab the server

- viii -



b4 1353750 (1T (). o T T wait for matching event

XInsertModifiermapEntry (3X) ............. add a new entry to an XModifierKeymap structure
XInstallColormap(3X) ...ceereereernnenrnerassacestecasiasiisiisiiteceannieacnnaes install a colormap
XInternAtom(3X) ...cceeeceeieiirririncnennennsrcscerieiaiainnes return an atom for a name string
XIntersectRegion(3X) .....coeureeinrnceniiacacnnannne. compute the intersection of two regions
XKeycodeToKeysym(3X) ....cceeueenenrnrasrsrscacissineienenianiacee convert key code to keysym
XKeysymToKeycode(3X) ....cevueurearnennennns convert a keysym to the appropriate keycode
XKeysymToString(3X) ....ceovuveuernrenreiresienesinieiiaians convert KeySym symbol to ASCII
XKillClient(3X) «.coevereeinracnieiraonniniasanenennnes destroy a client or its remaining resources
XListExtensions(3X) ........ccceueee return list of all extensions to X supported by the server
XListFonts(3X) .ccceeerrernrcieseiacsensonccsncennsoncnnae return a list of the available font names
XListFontsWithInfo(3X) ............... obtain the names and information about loaded fonts
XListHo8tS(3X) ceverureininruianeninennnnns obtain a list of hosts having access to this display
XListInstalledColormaps(3X) ......coveereracenssesinranannennnnne. get list of installed colormaps
XListProperties(3X) .....coceviuvreiennnnrnieurronersnateiiiieieannnee, get property list for window
XLoadFont(3X) ..c.ceveeeirnruencinnnceninanasncees load font if not already loaded; get font ID
XLoadQueryPFont(3X) .....ceevniuininrnrncnnnnaiecnens load a font and fill information structure
XLookUpASSOC(3X) ceveerrrreriuerunnnennraneaciaceinnniaan, obtain data from an association table
XLookupColor(3X) ...... get database, closest HW-supported RGB values from color name
XLookupKeysym(3X) .......coeeevunennnnne get KeySym corresponding to keycode in structure
XLookupString(3X) ........... map key event to ASCII string, keysym, and ComposeStatus
XLowerWindow (3X) .....cccceuveruiieenranenenionsninnane, lower a window in the stacking order
XMakeASSOC(3X) cvevrrriuinrneiniiinieiincnnenisirnsneenianes create entry in an association table
XMapRaised(3X) ....coveeriiiiniriiiniinnnnnne cecsesrnensaran map a window on top of its siblings
XMapSubwindows(3X) ...cceceerirrieneneieieneneeraeiiieriierereieienenenenss map all subwindows
XMapWindow(3X) ..ceeeieriiinrrieiiruesiearieertnteeiiciiieincerisieroscacseonssess map a window
XMaskEvent(3X) ......ccceevereieiiienineneneneens remove next event that matches passed mask
XMatchVisuallnfo(3X) .......... obtain visual information matching desired depth and class
XMoveResizeWindow(3X) ......cccocviiuenriecncernnenn, change size and location of window
XMoveWindow(3X) ....cccvceenruenieinrnencnrerecncncuricuccnessiosenssseesseenss move a window
XNewModifiermap(3X) .......ccceceeveennnenecs create a keyboard modifier mapping structure
XNextEvent(3X) c..oeeveerneieiiiieinreinceiieineenennenes get next event of any type or window
XNOOPBX) teeereeneiereieieiriecereeienennens send a NoOp to exercise connection with server
XOffsetRegion(3X) ...cceerueinreiriiiniiniirniienieneriniiuiiininiueeee, change offset of region
XOpenDisplay(3X) .....ccevveivuiinninreniuiincennennans connect a client program to an X server
XParseColor(3X) ...cccvevreinrincncnrncnnnnens lookup or translate RGB values from ASCII colo
XParseGeometry(3X) ... generate position and size from standard window geometry string
XPeekEvent(3X) ..ccooeevenrieinrieininrinnananans get event without removing it from the queue
XPeekIfEvent(3X) ........c.euuen get event without removing it from the queue; do not wait
XPending(3X) ..... flush the output buffer and return the number of pending input events
XPointInRegion(3X) ........cceviuieniinieiinincenacnnnn, determine if a point is inside a region
XPolygonRegion(3X) ....ccccevruvrnrinreeuiinsenccenieniniinenne, generate a region from points



XPutBackEvent(3X) .....cccoveiirniireninciiiineeeniennnes push event back on the input queue

XPutImage(3X) ..c.ocoveveiinniniininiecineninracinennenens draw an image on window or pixmap
XPutPixel(3X) ..ccveeniieiiieiiiiiiiiiinineieieieciinieneninasasennnenss set a pixel value in an image
XQueryBestCursor(3X) .....cccceuverereciaceireirnieacannnes get closest supported cursor sizes
XQueryBestSize(3X) ....ovevuinnennes obtain the "best" supported cursor, tile, or stipple size
XQueryBestStipple(3X) ....cccovuieiiiiiriiiiiniininn.. obtain the best supported stipple shape
XQueryBestTile(3X) ....cccceeveiriiniiireiiincnnecennes obtain the best supported fill tile shape
XQueryColor(3X) .....cocvererereenennnns obtains the RGB values for the specified pixel value
XQueryColors(3X) ..cceeeuenrueruennenracacannns obtain RGB values for an array of pixel values
XQueryExtension(3X) .....ccceeiiiiiiiiiiieniieniiriniennne, crererseenenes get extension information
XQueryFont(3X) ....c.cevvvriniiiririiiiininiiienieninaniane. return information about loaded font
XQueryKeymap(3X) ....cccovvvernerninnnnannnnn, obtain bit vector for current state of keyboard
XQueryPointer(3X) ...cccevviniuiiiiiiniiiiiiiiiniiriiiiiieneeeiaene., get current pointer location
XQueryTextExtents(3X) ......ccoeviieieieininnnnannnnn. query server for string and font metrics
XQueryTextExtents16(3X) ......... query server for string, font metrics of 16-bit char string
XQueryTree(3X) ..ccceeevrverrvnninnreneeeenenennennns obtains a list of children, parent, and root
XRaiseWindow(3X) ....cceereruenrnrncnrnrnecnennnnnnns raise a window to top of stacking order
XReadBitmapFile(3X) ...ccocvvviirririrriiiiniiiiiiiiiieieneniiiieiiien read a bitmap from disk
XRebindKeysym(3X) .c.coverernencnrirnrerreenennrnnnennnenens rebind KeySym to string for client
XRecolorCursor(3X) ....ceceereeineiicerneiirerieiarecsecisessesarocsscncsnns change color of cursor
XRectInRegion(3X) ...ccoeuvuveniniiiininrniniinninaninnns determine if rectangle resides in region
XRefreshKeyboardMapping(3X) ....... update the stored modifier and keymap information
XRemoveFromSaveSet(3X) .......... removes a window’s children from the client’s save-set
XRemoveHOst(3X) ...ccevrviirruriiiieiiiicneninniniiinnianns remove host from access control list
XRemoveHosts(3X) .....cceuvnniuiennnnnnns remove multiple hosts from the access control list
XReparentWindow (3X) ......cceeeeeriniiiricinniiiieinececrinnnnnae, change a window’s parent
XResetScreenSaver(3X) ...oceviiierierieiiniiiiiiiieiioieesiscinsoies cerenees reset the screen saver
XResizeWindow (3X) .iceeeiriieeninereeniiesnrersesasiiesasoesesoesacesnans change a window’s size
XRestackWindows(3X) ....cevuieuieninniniinenieniuninnenaan, change stacking order of siblings
XRotateBuffers(3X) .....oceeveiriiiineiiiiiiiinineniiiiiiisesiiecssasisecssacns rotate the cut buffers
XRotateWindowProperties(3X) ........ccceevinenennes rotate properties in the properties array
XSaveContext(3X) ............... save data value corresponding to window and context type
XSelectInput(3X) ....ccoeeeeniiiiniiiiiiiinann select the event types to be sent to a window
XSendEvent(3X) .oveeeeerieieieiieiniriecseiesesntessscersssessssacnssssasessssrsosanss send an event
XSetAccessControl(3X) ....c.evviriecneiurnrncinnriiiiencacnnne, disable or enable access control
XSetAfterFunction(3X) ...ocevienieinincncninrninrincniriiienines set function called after all Xli
XSetArcMode(3X) ..ceceeriniiiiiiniiiiiiiceiiniieiiiniieenae. set arc mode in graphics context
XSetBackground(3X) .......cceeirieiiiennnenns set background pixel value in graphics context
XSetClassHINt(3X) ...ovvvvereriricnsnrerniecnrerecacececanns set WM_CLASS property of window
XSetClipMask(3X) ...ocoveverinniriiniiininenenannnnnn. set clip_mask pixmap in graphics context
XSetCHpOrigin(3X) ...covvvrienirninruiiiiimniniieniieeninennne set clip origin in graphics context
XSetClipRectangles(3X) ......ccccoeevenveercniaiunennnans change clip_mask in graphics context



XSetCloseDownMode(3X) .....cecernerrracneonsereenanannenns change close down mode of client

XSetCommand(3X) ....ccevvervenennnnens set the WM_COMMAND atom (command line args)
XSetDashes(3X) .ucevverenruinniiriernnenisenieniieieeiees set dash_offset and dash_list of graphic
XSetErrorHandler(3X) ....cocveereiirnrnienrnecssnsannicenaineas set non-fatal error event handler
XSetFillRule(3X) c..vvvvenieiiienrunrarniurenanensecenianeiiniein, set fill rule in graphics context
XSetFillStyle(3X) «.vuvrrureirninriiiiiiiininiieieciiniiiiiiieeee, set fill style in graphics context
XSetFont(3X) .eeevenrieiniinrueieniiieiiieeieineesiiiiiiin, set current font in graphics context
XSetFontPath(3X) ....cccveiririiiiiieiienieineenistiioaiiecnnieerneeenens set the font search path
XSetForeground (3X) ......cceveviesnneinnaeens set foreground pixel value in graphics context
XSetFunction(3X) ......ccceevveeiinniniiennenens set bitwise logical operation in graphics context
XSetGraphicsExposures(3X) .................. set graphics-exposures flag in graphics context
XSetlconName(3X) ....cevenrneneernancnniasnenens set name to be displayed in a window’s icon
XSetIconSizes(3X) ...coveverriiiiiiiiiiiaiiiiiienaen, set value of the WM_ICON_SIZE property
XSetInputFocus(3X) ..c.cevieiniiiiniieiniirnesiniciiiiiininenninn, set the input focus window
XSetIOErrorHandler(3X) ....c.ocevvenininreinenercnrrireeeneeneenenenes handle fatal I/O errors
XSetLineAttributes(3X) .......cocoeveennnnnne set line drawing components in graphics context
XSetModifierMapping(3X) ......cccoevvieenienrcenenennnns set keycodes to be used as modifiers
XSetNormalHints(3X) ......ccoevveninrninencninnnnnns set size hints for window in normal state
XSetPlaneMask(3X) .....ccevvvneniiniiniinininieiniiiinin, set plane mask in graphics context
XSetPointerMapping(3X) «.covoveriiiiiiiiieniiiiiiiieiiiinininan.. set pointer button mapping
XSetRegion(3X) ...ccceveen. set the clip_mask of the graphics context to the specified region
XSetScreenSaver(3X) .....oeeeeriiiiiiiiiiiiiiieneieieiiii., set parameters of the screen saver
XSetSelectionOWnNer(3X) ...ovevvrrrererenrnreeneienniieieieinieienenenene, set owner of a selection
XSetSizeHints (3X) ...vvvenviiriinnnnnnnnnns set the value of any property of type SIZE_HINTS
XSetStandardColormap(3X) ....cocoeviieiinieceereninininnininnnnna., create a standard colormap
XSetStandardProperties(3X) ............ set minimum set of properties for window manager
XSetState(3X) .......... set foreground, background, logical function and plane mask in GC
XSetStipple(3X) euvevrniiiiiiiiiiiiiir set stipple in graphics context
XSetSubwindowMode(3X) .....covvieeniiiiniennennes set subwindow mode in graphics context
XSetTile(3X) vvuverrurrnrunrnriiiiuninieiiuirinrenieienineninennene, set fill tile in graphics context
XSetTransientForHint (3X) .........cceeveee. set WM_TRANSIENT_FOR property for window
XSetTSOrigin(3X) ..ceveernrneurenenrerinnracannnnnne. set tile/stipple origin in graphics context
XSetWindowBackground (3X) ................ set the background pixel attribute of a window
XSetWindowBackgroundPixmap(3X) ......... change background tile attribute of a window
XSetWindowBorder(3X) ........coeeeeuineninnns change window border attribute to pixel valu
XSetWindowBorderPixmap (3X) .........cccoeveeeenen. change window border tile attribute an
XSetWindowBorderWidth(3X) ............ceeevnennnne, change the border width of a window
XSetWindowColormap(3X) .......ccceeuveiinenennnnns set the colormap for a specified window
XSetWMHINts (3X) ...ccovvvnveinvnienininieiinenennnne, set the window manager hints property
XSetZoomHints (3X) ....eovvrnriinininininiininnns set size hints property for zoomed windows
XShrinkRegion(3X) ....cccevviniininininiiiiennonnennnn, reduce or expand the size of a region
XStoreBuffer(3X) .ocveerieriinieerneoerrinirasoscieiiissesiarnecenaennens store data in a cut buffer

-xi-



XStoreBytes(3X) ..ccvvuruiiniininieiiiiiiiieiiiiiiiiiiiiiiiiiiiiiensesaaenes store data in cut buffer 0

XStoreColor(3X) ............. set or change read/write entry of colormap to closest HW color
XStoreColors(3X) .......cceeueneee change read/write colorcells to closest available HW colors
XStoreName(3X) ....ovverurennininiennninnennns assign name to window for window manager
XStoreNamedColor(3X) ......coeveerenniennnennnes allocate read/write colorcell by color name
XStringToKeysym(3X) ....cceevvuruneninrniinnnnennennes convert keysym name to keysym code
XSubImage(3X) ..ccovverrieininieiiiiiiiiiiiiieiiiiiieeienees create subimage from part of image
XSubtractRegion(3X) ...ccoeueeiinrnriienininciinnecncineennnes subtract one region from another
XSync(3X) «eeverennnn flush output buffer and wait for all events and errors to be processed
XSynchronize(3X) .....ocovvevniiiiiniennnnnnn. enable or disable synchronization for debugging
XTextExtents(3X) ..c.cereruriiiruiiiriiiiienriiecireciiineecnneennas get string and font metrics
XTextExtents16(3X) ......ccceeverurnnens get string and font metrics of 16-bit character string
XTextWidth(3X) ceeevvenrneneiiiiiiii get width in pixels of 8-bit character string
XTextWidth16(3X) c.ceerrnrrernrnrnnneneennnenns get width in pixels of 16-bit character string
XTranslateCoordinates(3X) ......... change coordinate system from one window to another
XUndefineCursor(3X) ....cceceeereerneinrinecercessosincensnnnes disassociate cursor from window
XUngrabButton(3X) ......ccccvuiireiiiiiiiicniiinciieicciieninenane, release a button from grab
XUnGrabKey(3X) ..c.ccereeeiruieniniiiniiiinreneirceciiicnctneesaeens release a key from grab
XUngrabKeyboard(3X) ......cccecieeuieniinciiinnnceiinincecnennnene, release keyboard from grab
XUngrabPointer(3X) ......ccoeveieeieiininieiecniiniicneienene, release the pointer from grab
XUngrabServer(3X) ....coeevveriiiieiiiiieiiieiiiiieiiieiiiitieiceiacenns release server from grab
XUninstallColormap(3X) .......... uninstall colormap, install default if not already installed
XUnionRectWithRegion(3X) ......cccoeeeieieieiiininieiirerereiececnnnenns add rectangle to region
XUnionRegion(3X) .....cceeevirernininiiiniiereieiiiecenennnnns compute the union of two regions
XUniqueContext(3X) ...coeveveirrnrnnarnnanns create a new context ID (not graphics context)
XUNIoadFONt(3X) t.cvevrenrenriacinesesssssaceossssssossesonsssssassssssssssassssssncens unload a font
XUnmapSubwindows(3X) .......c.ccovuiinrinnnnnns unmap all subwindows of a given window
XUnmapWindow(3X) ...cceeviiiniiiiiniiiniiiiiiiiniiieniiecesieiiessecesnnns unmaps a window
XWarpPointer(3X) ....ccoeeerrneeiiinnecenionnnnns move the pointer to another point on screen
XWindowEvent(3X) .....ccceceverieriniinnnnns remove next event matching mask and window
XWriteBitmapFile(3X) .cccccoiuiuiniiriiiiiiiiiuiiiiiiniiiieiiniiiieiiiiienene, write bitmap to file
XXorRegion(3X) ............. calculate difference between union, intersection of two regions

3. Resource Manager Subroutines

Xpermalloc(3X) ..ceeeerniiiiiiiiiiiiieiiieiiiiiieinraeaenens allocate memory never to be freed
XrmGetFileDatabase(3X) ......ccevevureinenrieinnnrininrncnnenass retrieve a database from a file
XrmGetResource(3X) .....ceeveeiuiniinnninienaens get resource from name and class as strings
XrmGetStringDatabase(3X) ....cccoviuviiiniiiiieiirnniiininnen, create a database from a string
XrmiInitialize(3X) ...oveenrnreeniiniiieniiiiiiniieiiniiiinen.. initialize the resource manager
XrmMergeDatabases(3X) .........cccueennnns merge the contents of one database into another
XrmParseCommand(3X) ............. load resource data base from command line arguments

- xii -



XrmPutFileDatabase(3X) .....cceevereecerneraceroncnsieentnriecercssncnccecnses store database in file

XrmPutLineResource(3X) .........cccceuuees add resource entry given as string of name, value
XrmPutResource(3X) ....ccoeeececeiaceriecnncsessssssesecanens store a resource into a database
XrmPutStringResource(3X) .....ccceeenerienennnns add a resource that is specified as a string
XrmQGetResource(3X) .....oeeevernennineannenes get resource from name and class as quarks
XrmQGetSearchList(3X) ....ccevrerueerernrnreronennanninienennne, return a list of database levels
XrmQGetSearchResource(3X) .......... search resource database levels for a given resource
XrmQPutResource(3X) ....cecevecrrnrcerriacsoriatcienacneenes store a resource into a database
XrmQPutStringResource(3X) ............ add string resource value to database using quarks
XrmQuarkToString(3X) ...ccovviuenrenininriecicereniiineneiennannannes convert a quark to a string
XrmStringToBindingQuarkList (3X) .............. convert key string to binding list, quark list
XrmStringToQuark(3X) «.ceveueerinrinennineiesesiiiennnniineeneennnns convert a string to a quark
XrmStringToQuarkList(3X) ...cccovverneinieeniiceniinnannianane, convert key string to quark list
XrmUniqueQuark(3X) ..coceeverriiieiiiicuinrererecnrucieieieenenecenesenees allocate a new quark
PERMUTED INDEX .....ccoiutimiieieinieniunenienienieniaiesesessessssesssssssesanssssassens PI-1

- xiii -



1. INTRODUCTION

This manual describes the C Language programming interface to the X Window
System, the X library (Xlib). This library enables a programmer to write
applications with complete network transparency, using an advanced user
interface based on windows on the screen.

The X library is the lowest level of programming interface to the X Window
System. It is powerful enough to allow you to write effective applications without
additional programming tools. The X library is required for certain tasks even in
applications written with higher-level "toolkits."

This manual does not deal with toolkits. Nonetheless, all the information
described in this book is essential for using toolkits because the toolkits
themselves are written using Xlib, and Xlib will be used together with a toolkit in
virtually all applications.

The major change between Release 1 and Release 2 of X is the resource manager.
The resource manager allows you to easily parse the command line and then
merge these preferences with the defaults for the program and the defaults for the
user. These operations are standard practice for thoroughly written applications.
In Release 1 of Xlib, the resource manager was a separate library, which had been
developed as part of the Xtk toolkit. As of Release 2, it has been incorporated
into Xlib. This manual describes both the Release 1 and Release 2 resource
managers.

Some Assumptions About Experience

This manual assumes that readers are proficient in the C programming language,
although examples are provided for infrequently used features of the language
that are necessary or useful when programming with X. In addition, general
familiarity with the principles of raster graphics is assumed.

How To Use This Manual

The reference pages in Section 1 describe programs intended to be invoked
directly by the user. The reference pages in Section 3X describe the calling
sequences of all the Xlib functions. The pages describe briefly how the function is
normally used when there is a specific, non-obvious technique involved. Note
that the resource manager manual pages (Xrmname(3X)) are included after the
main body of Xlib functions and before the permuted index.

1-1



INTRODUCTION

The function entries (3X) in this manual are based on the following format; the
command entries (1) follow a similar format. Some entries do not include all the
sections listed here or include sections that are specific to the entry (e.g.,
STARTUP FILE VARIABLES).

NAME
Gives the name of the entry and briefly states its purpose.

SYNOPSIS
Summarizes the use of the program being described.

ARGUMENTS
Explains the nature of the variables and constants passed to the subroutine.
The following conventions are observed in the ARGUMENTS section.

o The display argument, where used, is always first in the argument list.

e Resource objects (Window, Drawable, Font, Pixmap, Cursor, Colormap,
GContext, and KeySym), where used, occur at the beginning of the argument
list, immediately after the display variable.

e Drawables come before all other resources in the argument list.

e Source arguments always precede the destination arguments in the
argument list.

e The x argument always precedes the y argument, and the width argument
always precedes the height argument in the argument list. Where the x, y,
width, and height arguments are used together, the x and y arguments
always precede the width and height arguments.

e Where an array occurs with a count in the argument list (number of
elements in the array), the array always precedes the count.

e Where a structure is accompanied by a mask indicating which members of
the structure are to be read, the mask always precedes the pointer to the
structure in the argument list.

DESCRIPTION
Details what the function does, what it returns, and what events or side-effects
it causes. It also contains miscellaneous information such as examples of
usage, special error cases, and references to the Graphics Services Extension
(GSE) Programmer’s Guide.

STRUCTURES
Contains the C definitions of the X-specific data types used by the functions as

arguments or return values. It also contains definitions of important constants
used by the function.



INTRODUCTION

ERRORS
Lists the error event types that may be generated by a particular function and
identifies the cause of certain errors.

BUGS
Lists known faults in software that have not been rectified. Occasionally, a
suggested short term remedy is also described.

EXAMPLES
Gives examples of usage, where appropriate.

SEE ALSO
Gives pointers to related functions in the manual and to related macros
covered in the Graphics Services Extension Programmer’s Guide.

A permuted index is provided at the end of this manual. This is a list of
keywords, given in the second of three columns, together with the context in
which each keyword is found. The right column lists the name of the manual
page on which each keyword may be found. The left column contains useful
information about the keyword.

Conventions Used in This Manual

¢ Boldface strings represents pathnames or literals and are to be typed just as
they appear.

e Italic strings usually represent substitutable argument prototypes, resource
objects, or program names found elsewhere in the manual.

e Constant Width strings are used for examples of source code.

e Square brackets [ ] around an argument prototype indicate that the argument is
optional.

Related Documentation

Graphics Services Extension Programmer’s Guide (6BNW9209F47A)
This manual provides tutorial information, examples, and appendices that will
be useful for X programmers.



UWM(1) UWM(@1)

NAME

uwm - a window manager for X

SYNOPSIS

uwm [-display display) [-f filename]

DESCRIPTION

The uwm program is a window manager client application of the window
server.

When uwm is invoked, it searches a predefined search path to locate any
uwm startup files. If no startup files exist, uwm initializes its built-in
default file.

If startup files exist in any of the following locations, it adds the variables
to the default variables. In the case of contention, the variables in the last
file found override previous specifications. Files in the uwm search path
are:

lusr/lib/X11/uwm/system.uwmrc
$HOME/.uwmrc

To use only the settings defined in a single startup file include the vari-
ables, resetbindings, resetmenus, and resetvariables at the top of that
specific startup file.

OPTIONS

-f filename
Names an alternate file as a uwm startup file.

STARTUP FILE VARIABLES

Variables are typically entered first at the top of the startup file. By con-
vention, resetbindings, resetmenus, and resetvariables head the list.

autoselect/noautoselect
Places menu cursor in first menu item. If unspecified,
menu cursor is placed in the menu header when the
menu is displayed.

delta=pixels  Indicates the number of pixels the cursor is moved before
the action is interpreted by the window manager as a
command. (Also refer to the delta mouse action.)




UWM(1)

UWM(1)

freeze/nofreeze Locks all other client applications out of the server during

grid/nogrid
hiconpad=n

hmenupad=n

certain window manager tasks, such as move and resize.
Displays a finely-ruled grid to help you position an icon
or window during resize or move operations.

Indicates the number of pixels to pad an icon horizon-
tally. The default is five pixels.

Indicates the amount of space in pixels, that each menu
item is padded to the left and right of the text.

iconfont=fontname

maxcolors=n

Names the font that is displayed within icons. Font
names for a given server can be obtained using xIsfonts(1).

Limits the number of colors the window manager can use
in a given invocation. If set to zero, or not specified, uwm
assumes no limit to the number of colors it can take from
the color map. maxcolors counts colors as they are
included in the file.

normali/nonormali

Places icons created with f.newiconify within the root
window, even if it is placed partially off the screen. With
nonormali the icon is placed exactly where the cursor
leaves it.

normalw/nonormalw

push=n

Places window created with f.newiconify within the root
window, even if it is placed partially off the screen. With
nonormalw the window is placed exactly where the cur-
sor leaves it.

Moves a window n number of pixels or a relative amount
of space, depending on whether pushabsolute or pushre-
lative is specified. Use this variable in conjunction with
f.pushup, f.pushdown, f.pushright, or f.pushleft.

pushabsolute/pushrelative

pushabsolute indicates that the number entered with
push is equivalent to pixels. When an f.push (left, right,
up, or down) function is called, the window is moved
exactly that number of pixels.



UWM(@) UWM(1)

pushrelative indicates that the number entered with the
push variable represents a relative number. When an
f.push function is called, the window is invisibly divided
into the number of parts you entered with the push vari-
able, and the window is moved one part.

resetbindings, resetmenus, and resetvariables
Resets all previous function bindings, menus, and vari-
ables entries, specified in any startup file in the uwm
search path, including those in the default environment.
By convention, these variables are entered first in the
startup file.

resizefont=fontname
Identifies the font of the indicator that displays in the
corner of the window as you resize windows. See
xlsfonts(1) for obtaining font names.

resizerelative/noresizerelative
Indicates whether or not resize operations should be done
relative to moving edge or edges. By default, the
dynamic rectangle uses the actual pointer location to
define the new size.

reverse/noreverse
Defines the display as black characters on a white back-
ground for the window manager windows and icons.

viconpad=n  Indicates the number of pixels to pad an icon vertically.
Default is five pixels.

vmenupad=n Indicates the amount of space in pixels that the menu is
padded above and below the text.

volume=n Increases or decreases the base level volume set by the
xset(1) command. Enter an integer from 0 to 7, 7 being
the loudest.

zap/nozap Causes ghost lines to follow the window or icon from its

previous default location to its new location during a
move or resize operation.

BINDING SYNTAX

"function=[control key(s)):[context):mouse events:" menu name "




UWM(1)

UWM(1)

Function and mouse events are required input. Menu name is required
with the f.menu function definition only.

Function

f.beep
f.circledown
f.circleup
f.continue

f.focus

f.iconify

f.lower

f.menu

Emits a beep from the keyboard. Loudness is determined
by the volume variable.

Causes the top window that is obscuring another window
to drop to the bottom of the stack of windows.

Exposes the lowest window that is obscured by other
windows.

Releases the window server display action after you stop
action with the f.pause function.

Directs all keyboard input to the selected window. To
reset the focus to all windows, invoke f.focus from the
root window.

When implemented from a window, this function con-
verts the window to its respective icon. When imple-
mented from an icon, f.iconify converts the icon to its
respective window.

Lowers a window that is obstructing a window below it.

Invokes a menu. Enclose menu name in quotes if it con-
tains blank characters or parentheses.

f.menu=|[control key(s)l:[context l:mouse events:" menu name "

f.move Moves a window or icon to a new location, which becomes the
default location.

f.moveopaque

Moves a window or icon to a new screen location. When using
this function, the entire window or icon is moved to the new
screen location. The grid effect is not used with this function.

f.newiconify

Allows you to create a window or icon and then position the win-
dow or icon in a new default location on the screen.



UWM(1) UWM(1)

f.pause
Temporarily stops all display action. To release the screen and
immediately update all windows, use the f.continue function.

f.pushdown
Moves a window down. The distance of the push is determined
by the push variables.

f.pushleft
Moves a window to the left. The distance of the push is deter-
mined by the push variables.

f.pushright
Moves a window to the right. The distance of the push is deter-
mined by the push variables.

f.pushup
Moves a window up. The distance of the push is determined by
the push variables.

f.raise Raises a window that is being obstructed by a window above it.

f.refresh
Results in exposure events being sent to the window server clients
for all unobscured or partially obscured windows. The windows
will not refresh correctly if the exposure events are not handled
properly.

f.resize
Resizes an existing window. Note that some clients, notably edi-
tors, react unpredictably if you resize the window while the client
is running.

f.restart

Causes the window manager application to restart, retracing the
uwm search path and initializing the variables it finds.

Control Keys
By default, the window manager uses meta as its control key. It can also
use ctrl, shift, lock, or null (no control key). Control keys must be entered
in lower case, and can be abbreviated as: ¢, I, m, s for ctrl, lock, meta,
and shift, respectively.

You can bind one, two, or no control keys to a function. Use the bar (1)
character to combine control keys.




UWM(1) UWM(1)

Note that client applications other than the window manager use the shift
as a control key. If you bind the shift key to a window manager function,
you can not use other client applications that require this key.

Context
The context refers to the screen location of the cursor when a command is
initiated. When you include a context entry in a binding, the cursor must
be in that context or the function will not be activated. The window
manager recognizes the following four contexts: icon, window, root,
(null).

The root context refers to the root, or background window, A (null) con-
text is indicated when the context field is left blank, and allows a function
to be invoked from any screen location. Combine contexts using the bar
() character.

Mouse Buttons
Any of the following mouse buttons are accepted in lower case and can be
abbreviated as 1, m, or r, respectively: left, middle, right.

With the specific button, you must identify the action of that button.
Mouse actions can be:

down Function occurs when the specified button is pressed down.
up Function occurs when the specified button is released.
delta Indicates that the mouse must be moved the number of pixels

specified with the delta variable before the specified function is
invoked. The mouse can be moved in any direction to satisfy
the delta requirement.

Some applications use the mouse buttons in their tasks. If uwm has
bound any of the mouse buttons without modifier keys, then these will be
unavailable to the application. In other words, if a uwm function or menu
is invoked by just pressing a mouse key without a keyboard modifier,
then that mouse key will be unavailable to the application regardless of
context.

MENU DEFINITION
After binding a set of function keys and a menu name to f.menu, you



UWM(1) UWM(1)

must define the menu to be invoked, using the following syntax:

menu = " menu name " {
"item name" : "action”

}

Enter the menu name exactly the way it is entered with the f.menu func-
tion or the window manager will not recognize the link. If the menu
name contains blank strings, tabs or parentheses, it must be quoted here
and in the f.menu function entry. You can enter as many menu items as
your screen is long. You cannot scroll within menus.

Any menu entry that contains quotes, special characters, parentheses,
tabs, or strings of blanks must be enclosed in double quotes. Follow the
item name by a colon (:).

Menu Action
Window manager functions
Any function previously described. E.g., f.move or f.iconify.

Shell commands
Begin with an exclamation point (!) and set to run in back-
ground. You cannot include a new line character within a shell
command.

Text strings
Text strings are placed in the window server’s cut buffer.

Strings starting with an up arrow (*) will have a new line char-

acter appended to the string after the up arrow (%) has been
stripped from it.

Strings starting with a bar character (I) will be copied as is after
the bar character (1) has been stripped.




UWM(1) UWM(1)

Color Menus
Use the following syntax to add color to menus:

menu = "menu name" (color1:color2:color3:color4) {
"item name" : (color5 :color6) : " action"

colorl Foreground color of the header.
color2 Background color of the header.

color3 Foreground color of the highlighter, the horizontal band of
color that moves with the cursor within the menu.

color4 Background color of the highlighter.
color5 Foreground color for the individual menu item.
color6 Background color for the individual menu item.

Color Defaults
Colors default to the colors of the root window under any of the following
conditions:

1) If you run out of color map entries either before or during an invoca-
tion of uwm.

2) If you specify a foreground or background color that does not exist in
the RGB color database of the server both the foreground and background
colors default to the root window colors.

3) If you omit a foreground or background color, both the foreground and
background colors default to the root window colors.

4) If the total number of colors specified in the startup file exceeds the
number specified in the maxcolors variable.

5) If you specify no colors in the startup file.



UWM(1)

EXAMPLES

UWM(1)

The following sample startup file shows the default window manager
options:

# Global variables
#
resetbindings;resetvariables;resetmenus
autoselect
delta=256

freeze

grid

hiconpad=5b
hmenupad=6
iconfont=oldeng
menufont=timromi2b
resizefont=9x1b6

viconpad=b

vmenupad=3

volume=7

#

# Mouse button/key maps

#

# FUNCTION KEYS CONTEXT BUTTON MENU(if any)
#

f .menu = meta :left down :“"WINDOW OPS*
£ .menu = meta :middle down :"EXTENDED WINDOW
f.move = meta :wl|i :right down

f.circleup = meta :root :right down

#

# Menu specifications

#

menu = “WINDOW OP8* {

* (De) Iconify": f.iconify

Move: f .move

Resize: f.resize

Lower: f.lower

Raise: f.raise

}

oPs*




UWM(1) UWM(@1)

menu = "EXTENDED WINDOW OPS* {

Create Window: I“xterm &*
Iconify at New Position: f.lowericonity
Focus Keyboard on Window: f.focus
Freeze All Windows: f.pause
Unfreeze All Windows: f.continue
Circulate Windows Up: f.circleup
Circulate Windows Down: f£.circledown
}
RESTRICTIONS
The color specifications have no effect on a monochrome system.
FILES
/usr/lib/X11/uwm/system.uwmrc
$HOME/.uwmrc
SEE ALSO
xset(1), xIsfonts(1).
COPYRIGHT

Copyright 1985, 1986, 1987, 1988
Digital Equipment Corporation
Maynard, Massachusetts
All rights reserved.

The information in this software is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corpora-
tion. Digital makes no representations about the suitability of this
software for any purpose. It is supplied "as is" without express or implied
warranty.

If the software is modified in a manner creating derivative copyright
rights, appropriate legends may be placed on the derivative work in addi-
tion to that set forth above.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, pro-
vided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting
documentation, and that the name of Digital Equipment Corporation not
be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.

-10 -



UWM(1) UWM(1)

AUTHOR
M. Gancarz, DEC Ultrix Engineering Group, Merrimack, New Hampshire,
using some algorithms originally by Bob Scheifler, MIT Laboratory for
Computer Science.

-11 -



XCLOCK(1) XCLOCK(1)

NAME

xclock - analog / digital clock for X
SYNOPSIS

xclock [-toolkitoption ...] [-option ...]
DESCRIPTION

The xclock program displays the time in analog or digital form. The time
is continuously updated at a frequency which may be specified by the
user. This program is nothing more than a wrapper around the Athena
Clock widget.

OPTIONS
xclock accepts all of the standard X Toolkit command line options along
with the additional options listed below:

-help Indicates that a brief summary of the allowed options should be
printed on the standard error.

—analog Indicates that a conventional 12-hour clock face with tick marks
and hands should be used. This is the default.

—digital Indicates that a 24-hour digital clock should be used.

—chime Indicates that the clock should chime once on the half hour and
once on the hour.

-hd color
Specifies the color of the hands on an analog clock. The default
is “‘black”.

~hl color Specifies the color of the edges of the hands on an analog clock,
and is only useful on color displays. The default is “‘black”.

—update seconds
Specifies the frequency in seconds at which xclock should update
its display. If the clock is obscured and then exposed, it will be
updated immediately. A value of less than 30 seconds will
enable a second hand on an analog clock. The default is 60
seconds.

—padding number
Specifies the width in pixels of the padding between the window
border and clock text or picture. The default is 10 on a digital
clock and 8 on an analog clock.




XCLOCK(1) XCLOCK(1)

The following standard X Toolkit command line arguments are commonly
used with xclock:

-bg color
Specifies the color to use for the background of the window. The
default is “‘white.”

-bd color
Specifies the color to use for the border of the window. The
default is “‘black.”

-bw number
Specifies the width in pixels of the border surrounding the win-
dow.

—fg color Specifies the color to use for displaying text. The default is
“black”.

—fn font Specifies the font to be used for displaying normal text. The
default is ““6x10.”

-tv Indicates that reverse video should be simulated by swapping the
foreground and background colors.

—geometry geometry

Specifies the preferred size and position of the clock window.
—display host:display

Specifies the X server to contact.
—xrm resourcestring

Specifies a resource string to be used. This is especially useful

for setting resources that do not have separate command line
options.



XCLOCK(1) XCLOCK(1)

X DEFAULTS
This program uses the Clock widget in the X Toolkit. It understands all of
the core resource names and classes as well as:

width (class Width)
Specifies the width of the clock.

height (class Height)
Specifies the height of the clock.

update (class Interval)
Specifies the frequency in seconds at which the time should be
redisplayed.

foreground (class Foreground)
Specifies the color for the tick marks. Using the class specifies
the color for all things that normally would appear in the fore-
ground color. The default is ““black” since the core default for
background is ““white.”

hand (class Foreground)
Specifies the color of the insides of the clock’s hands.

high (class Foreground)
Specifies the color used to highlight the clock’s hands.

analog (class Boolean)
Specifies whether or not an analog clock should be used instead
of a digital one. The default is True.

chime (class Boolean)

Specifies whether or not a bell should be rung on the hour and
half hour.

padding (class Margin)
Specifies the amount of internal padding in pixels to be used.
The default is 8.

font (class Font)

Specifies the font to be used for the digital clock. Note that vari-
able width fonts currently will not always display correctly.




XCLOCK(1) XCLOCK(1)

reverseVideo (class ReverseVideo)
Specifies that the foreground and background colors should be
reversed.

ENVIRONMENT
DISPLAY
Get the default host and display number.

XENVIRONMENT
Get the name of a resource file that overrides the global resources
stored in the RESOURCE_MANAGER property.

BUGS
xclock believes the system clock.
When in digital mode, the string should be centered automatically.

When specifying an offset, the grammar requires an hours field; but, if
only minutes are given, they will be quietly ignored. A negative offset of
less than 1 hour is treated as a positive offset.

Digital clock windows default to the analog clock size.
Border color has to be explicitly specified when reverse video is used.

When the update is an even divisor of 60 seconds, the second hand
should always be on a multiple of the update time.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.

AUTHORS
Tony Della Fera (MIT-Athena, DEC)
Dave Mankins (MIT-Athena, BBN)
Ed Moy (UC Berkeley)



XFD(1) XFD(1)

NAME

xfd - font displayer for X
SYNOPSIS

xfd [-options ...] [fontname]
OPTIONS

—bw number

Allows you to specify the width of the window border in pixels.

-1v The foreground and background colors will be switched. The
default colors are black on white.

—fw Overrides a previous choice of reverse video. The foreground
and background colors will not be switched.

—fg color On color displays, determines the foreground color (the color of
the text).

-bg color
On color displays, determines the background color.

=bd color
On color displays, determines the color of the border.

=bf fontname
Specifies the font to be used for the messages at the bottom of
the window.

~tl title Specifies the name of an xfd icon.

—in iconname
Specifies that the name of the icon should be iconname.
—icon filename
Specifies that the bitmap in file filename should be used for the
icon.
—verbose
Specifies that verbose mode should be used.

-gray  Specifies that a gray background should be used. This produces
a distracting display when used with a background color.




XFD(1) XFD(1)

—start charnum :
Specifies that character number charnum should be the first char-
acter displayed.

—geometry geometry

Specifies an initial window geometry.
~display display

Specifies the display to use.

DESCRIPTION
xfd creates a window in which the characters in the named font are
displayed. The characters are shown in increasing order from left to right,
top to bottom. The first character displayed at the top left will be charac-
ter number 0 unless the -start option has been supplied, in which case the
character with the number given in the -start option will be used.

The characters are displayed in a grid of boxes, each large enough to hold
any character of the font. If the -gray option has been supplied, the char-
acters will be displayed using XDrawImageString using the foreground and
background colors on a gray background. This permits determining
exactly how XDrawlmageString will draw any given character. If -gray has
not been supplied, the characters will simply be drawn using the fore-
ground color on the background color.

All the characters in the font may not fit in the window at once. To see
additional characters, click the right mouse button on the window. This
will cause the next window full of characters to be displayed. Clicking
the left mouse button on the window will cause the previous window full
of characters to be displayed. xfd will beep if an attempt is made to go
back past the Oth character.

Note that if the font is an 8-bit font, the characters 256-511 (0x100-Ox1ff),
512-767 (0x200-0x2ff), ... will display exactly the same as the characters 0-
255 (0x00-0xff). xfd by default creates a window of size sufficient to
display the first 256 characters using a 16 by 16 grid. In this case, there is
no need to scroll forward or backward whole windows in order to see the
entire contents of a 8-bit font. Of course, this window may not fit on the
screen.

Clicking the middle button on a character will cause that character's
number to be displayed in both decimal and hexadecimal at the bottom of
the window. If verbose mode is selected, additional information about
that particular character will be displayed as well. The displayed informa-
tion includes the width of the character, its left bearing, right bearing,

-2-



XFD(1) XFD(1)

ascent, and its descent. If verbose mode is selected, typing ‘<’ or ’>’ into
the window will display the minimum or maximum values, respectively
taken on by each of these fields over the entire font.

The font name is interpreted by the X server. To obtain a list of all the
fonts available, use xIsfonts(1).

If no font name is given on the command line, xfd displays the font
“fixed”’.

The window stays around until the xfd process is killed or until 'q’, 'Q’, ’
!, or ctrl-c is typed into the xfd window.

X DEFAULTS
The xfd program uses the routine XGetDefault(3X) to read defaults, so its
resource names are all capitalized.

BorderWidth
Set the border width of the window.

BorderColor
Set the border color of the window.

ReverseVideo
If “on”, reverse the definition of foreground and background
color.

Foreground
Set the foreground color.

Background
Set the background color.

BodyFont
Set the font to be used in the body of the window (i.e., for mes-
sages, etc.). This is not the font that xfd displays, just the font it
uses to display information about the font being displayed.

IconName
Set the name of the icon.

IconBitmap
Set the file we should look in to get the bitmap for the icon.



XFD(1) XFD(1)

Title  Set the title to be used.
SEE ALSO
xlsfonts(1).

ENVIRONMENT
DISPLAY
Get the default host and display to use.

XENVIRONMENT
Get the name of a resource file that overrides the global resources
stored in the RESOURCE_MANGER property.
COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.

AUTHOR
Mark Lillibridge, MIT Project Athena



XLSFONTS(1) XLSFONTS(1)

NAME

xlsfonts - server font list displayer for X
SYNOPSIS

xIsfonts [-options ...] [pattern]
DESCRIPTION

xIsfonts lists the fonts that match the given pattern. The wildcard character
™" may be used to match any sequence of characters (including none),
and "?" to match any single character. If no pattern is given, ™" is
assumed.

The ™" and "?" characters must be quoted to prevent them from being
expanded by the shell.

OPTIONS
—display host:dpy
Specifies the X server to contact.

-1 Indicates that a long listing should be generated for each font.

-m Indicates that long listings should also print the minimum and
maximum bounds of each font.

-C Indicates that listings should use multiple columns.

-1 Indicates that listings should use a single column.
SEE ALSO

xfd(1), xset(1).

ENVIRONMENT

DISPLAY

to get the default host and display to use.

BUGS

Invoking xIsfonts -1 can tie up your server for a very long time. This is a

bug with single-threaded non-preemptable servers, not with this program.
COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.

AUTHOR
Mark Lillibridge, MIT Project Athena




XPROP(1) XPROP(1)

NAME
xprop - property displayer for X

SYNOPSIS
xprop [-help] [-grammar] [-id id] [-root] [-name name] [-font font] [-
display display] [-len n] [-notype] [-fs file] [-f atom format [dformat]]* [for-
mat [dformat] atom]*

SUMMARY
The xprop utility is used to display window and font properties in an X
server. One window or font is selected using the command line argu-
ments or, in the case of a window, by clicking on the desired window. A
list of properties is then given, possibly with formatting information.

OPTIONS
-help  Prints out a summary of command line options.

-grammar
Prints out a detailed grammar for all command line options.

-<idid  Allows the user to select window id on the command line
rather than using the pointer to select the target window. This is
very useful in debugging X applications when the target window
is not mapped to the screen or when the use of the pointer might
be impossible or interfere with the application.

-name name
Allows the user to specify that the window named name is the
target window on the command line rather than using the
pointer to select the target window.

-font font
Allows the user to specify that the properties of font font should
be displayed.

-root  Specifies that X’s root window is the target window. This is
useful when the root window is completely obscured.

-display display
Allows the user to specify the server to connect to.

-lenn  Specifies that at most n bytes of any property should be read or
displayed.




XPROP(1) XPROP(1)

-notype Specifies that the type of each property should not be displayed.

-fs file Specifies that file file should be used as a source of more formats
for properties.

-f name format [dformat]
Specifies that the format for name should be format and that the
dformat for name should be dformat. If dformat is missing, " =
$0+\n" is assumed.

DESCRIPTION
For each of these properties, its value on the selected window or font is
printed using the supplied formatting information, if any. If no format-
ting information is supplied, internal defaults are used. If a property is
not defined on the selected window or font, "not defined" is printed as the
value for that property. If no property list is given, all the properties pos-
sessed by the selected window or font are printed.

A window may be selected in one of four ways. First, if the desired win-
dow is the root window, the -root argument may be used. If the desired
window is not the root window, it may be selected in two ways on the
command line, either by id number such as might be obtained from
xwininfo(1), or by name if the window possesses a name. The -id argu-
ment selects a window by id number in either decimal or hex (must start
with Ox) while the -name argument selects a window by name.

The last way to select a window does not involve the command line at all.
If none of -font, -id, -name, and -root are specified, a crosshairs cursor is
displayed and the user allowed to choose any visible window by pressing
any pointer button in the desired window. If it is desired to display pro-
perties of a font as opposed to a window, the -font argument may be
used.

Except for the above four arguments, the -help argument for obtaining
help, and the -grammar argument for listing the full grammar for the com-
mand line, the command line arguments are used in specifying both the
format of the properties to be displayed and how to display them. The
-len n argument specifies that at most n bytes of any given property will
be read and displayed. This is useful for example when displaying the cut
buffer on the root window which could run to several pages if displayed
in full.

Normally each property name is displayed by printing first the property
name then its type (if it has one) in parentheses followed by its value.
The -notype argument specifies that property types should not be

-2-



XPROP(1) XPROP(1)

displayed. The -fs argument is used to specify a file containing a list of
formats for properties while the -f argument is used to specify the format
for one property.

The formatting information for a property actually consists of two parts, a
format and a dformat. The format specifies the actual formatting of the pro-
perty (i.e., is it made up of words, bytes, or longs?, etc.) while the dformat
specifies how the property should be displayed.

The following paragraphs describe how to construct formats and dformats.
However, for the vast majority of users and uses, this should not be
necessary as the built in defaults contain the formats and dformats neces-
sary to display all the standard properties. It should only be necessary to
specify formats and dformats if a new property is being dealt with or the
user dislikes the standard display format. New users especially are
encouraged to skip this part.

A format consists of one of 0, 8, 16, or 32 followed by a sequence of one or
more format characters. The 0, 8, 16, or 32 specifies how many bits per
field there are in the property. Zero is a special case that specifies using
the field size information associated with the property itself. (This is only
needed for special cases like type INTEGER which is actually three dif-
ferent types depending on the size of the fields of the property.)

A value of 8 means that the property is a sequence of bytes while a value
of 16 would mean that the property is a sequence of words. A sequence
of words is byte swapped while a sequence of bytes is not when read by a
machine of the opposite byte order of the machine that originally wrote
the property.

Once the size of the fields has been specified, it is necessary to specify the
type of each field (i.e., integer, string, atom, etc.) This is done using one
format character per field. If there are more fields in the property than
format characters supplied, the last character will be repeated as many
times as necessary for the extra fields. The format characters and their
meaning are as follows:

a The field holds an atom number. A field of this type should be of
size 32.




XPROP(1) XPROP(1)
b The field is a boolean. A 0 means false while anything else means
true.
c The field is an unsigned number, a cardinal.
i The field is a signed integer.
m The field is a set of bit flags, 1 meaning on.
s This field and the next ones (until either a 0 or the end of the pro-

perty) represent a sequence of bytes. This format character is only
usable with a field size of 8 and is most often used to represent a
string.

X The field is a hex number (like ‘¢’ but displayed in hex - most use-
ful for displaying window ids and the like)

An example format is 32ica which is the format for a property of three
fields of 32 bits each, the first holding a signed integer, the second an
unsigned integer, and the third an atom.

The format of a dformat unlike that of a format is not so rigid. The only
limitations on a dformat is that one may not start with a letter or a dash.
This is so that it can be distinguished from a property name or an argu-
ment. A dformat is a text string containing special characters instructing
that various fields be printed at various points in a manner similar to the
formatting string used by printf. For example, the dformat " is ( $0, $1 \\n"
would render the POINT 3, -4 which has a format of 32ii as " is ( 3, -4 )\n".

Any character other than a §, ?, \, or a (in a dformat prints as itself. To
print one of the following characters: $, ?, \, or (, precede it by a \. For
example, to print out a $, use \$. Several special backslash sequences are
provided as shortcuts. \n will cause a newline to be displayed while \t
will cause a tab to be displayed. \o where o0 is an octal number will
display character number o.

A $ followed by a number n causes field number 7 to be displayed. The
format of the displayed field depends on the formatting character used to
describe it in the corresponding format. For example, if a cardinal is
described by ‘c’, it will print in decimal; if it is described by a ’x, it is
displayed in hex.

If the field is not present in the property (this is possible with some pro-
perties), <field not available> is displayed instead. $n+ will display
field number n, then a comma, then field number n+1, then another
comma and so on until the last field defined. If field n is not defined,



XPROP(1) XPROP(1)

nothing is displayed. This is useful for a property that is a list of values.

A ? is used to start a conditional expression, a kind of if-then statement.
exp(text) will display text if and only if exp evaluates to non-zero. This is
useful for two reasons. First, it allows fields to be displayed if and only if
a flag is set. And second, it allows a value to such as a state number to
be displayed as a name rather than as just a number. The syntax of exp is
as follows:

exp 1= term | term=exp | lexp
term  u=n|%n|mn

The ! operator is a logical “not”, changing 0 to 1 and any non-zero value
to 0. = is an equality operator. Note that internally all expressions are
evaluated as 32-bit numbers, so -1 is not equal to 65535. = returns 1 if the
two values are equal and 0 if not. n represents the constant value n while
$n represents the value of field number n. mn is 1 if flag number n in the
first field having format character ‘m’ in the corresponding format is 1, 0
otherwise.

Examples: ?m3(count: $3\n) displays field 3 with a label of count if and
only if flag number 3 (count starts at 0!) is on. ?$2=0(True)?!$2=0(False)
displays the inverted value of field 2 as a boolean.

In order to display a property, xprop needs both a format and a dformat.
Before xprop uses its default values of a format of 32x and a dformat of " =
$0+ hn", it searches several places in an attempt to find more specific for-
mats. First, a search is made using the name of the property. If this fails,
a search is made using the type of the property. This allows type STRING
to be defined with one set of formats while allowing property WM_NAME
which is of type STRING to be defined with a different format. In this
way, the display formats for a given type can be overridden for specific
properties.

The locations searched are in order: the format if any specified with the
property name (as in 8x WM_NAME), the formats defined by -f options in
last to first order, the contents of the file specified by the -fs option if any,

the contents of the file specified by the environmental variable XPROP-
FORMATS if any, and finally xprop’s built in file of formats.

The format of the files referred to by the -fs argument and the XPROP-
FORMATS variable is one or more lines of the following form:

name format [dformat)




XPROP(1) XPROP(1)

Where name is either the name of a property or the name of a type, format
is the format to be used with name and dformat is the dformat to be used
with name. If dformat is not present, " = $0+\n" is assumed.

EXAMPLES
To display the name of the root window: xprop -root WM_NAME

To display the window manager hints for the clock: xprop -name xclock
WM_HINTS

To display the point size of the fixed font: xprop -font fixed POINT_SIZE
To display all the properties of window # 0x200007: xprop -id 0x200007

ENVIRONMENT
DISPLAY
Get default display.

XPROPFORMATS
Specify the name of a file from which additional formats are to be
obtained.
SEE ALSO
xwininfo(1).
COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.

AUTHOR
Mark Lillibridge, MIT Project Athena



XREFRESH(1) XREFRESH(1)

NAME

xrefresh - refresh all or part of an X screen
SYNOPSIS

xrefresh [-option ...]
DESCRIPTION

xrefresh is a simple X program that causes all or part of the screen to be
repainted. xrefresh maps a window on top of the desired area of the
screen and then immediately unmaps it, causing refresh events to be sent
to all applications. By default, a window with no background is used,
causing all applications to repaint ‘‘smoothly.” However, the various
options can be used to indicate that a solid background (of any color) or
the root window background should be used instead.

OPTIONS
-white  Use a white background. The screen just appears to flash
quickly and then repaint.

-black  Use a black background (in effect, turning off all of the electron
guns to the tube). This can be somewhat disorienting as every-
thing goes black for a moment.

-solid color
Use a solid background of the specified color. Try green.

-root Use the root window background.
-none This is the default. All of the windows simply repaint.

-geometry WxH+X+Y

Specifies the portion of the screen to be repainted. This super-
cedes the old style =WxH+X+Y.

—display display
This argument allows you to specify the server and screen
to refresh.
X DEFAULTS

The xrefresh program uses the routine XGetDefault(3X) to read defaults, so
its resource names are all capitalized.




XREFRESH(1) XREFRESH(1)

Black, White, Solid, None, Root
Determines what sort of window background to use.

Geometry
Determines the area to refresh. Not very useful.

ENVIRONMENT

DISPLAY

To get default host and display number.

BUGS

It should have just one default type for the background.
COPYRIGHT

Copyright 1988, Massachusetts Institute of Technology.
AUTHORS

Jim Gettys, Digital Equipment Corp., MIT Project Athena



XSET(1) XSET(1)

NAME
xset - user preference utility for X

SYNOPSIS
xset [-display display] [-b] [b on/off] [b [volume [pitch [duration]]] [-c] [c
on/off] [c [volume]] [fp path[path],...]]] [fp default] [[-]led [integer]] [led
on/off] [m[ouse] [acceleration [threshold]]] [m[ouse] default] [p pixel color]
[[-]r] [r on/off] [s [length [period]]] [s blank/noblank] [s expose/noexpose]
[s on/off] [s default] [q]

DESCRIPTION
This program is used to set various user preference options of the display.

OPTIONS
—display display
Specifies the server to use.

b Controls bell volume, pitch, and duration. This option accepts
up to three numerical parameters, a preceding dash(-), or an
‘on/off’ flag. If no parameters are given, or the ‘on’ flag is used,
the system defaults will be used. If the dash or ‘off’ are given,
the bell will be turned off. If only one numerical parameter is
given, the bell volume will be set to that value, as a percentage of
its maximum. Likewise, the second numerical parameter speci-
fies the bell pitch, in hertz, and the third numerical parameter
specifies the duration in milliseconds. Note that not all hardware
can vary the bell characteristics. The X server will set the charac-
teristics of the bell as closely as it can to the user’s specifications.

c Controls key click. This option can take an optional value, a
preceding dash(-), or an ‘on/off’ flag. If no parameter or the "on’
flag is given, the system defaults will be used. If the dash or ’'off’
flag is used, keyclick will be disabled. If a value from 0 to 100 is
given, it is used to indicate volume as a percentage of the max-
imum. The X server will set the volume to the nearest value that
the hardware can support.

fp Sets the font path. It must be followed by a comma-separated
list of directories or the flag ‘default’. The indicated path will be
used to find fonts for clients. To restore the default font path,
use fp default.




XSET(1)

led

XSET(1)

Controls the keyboard LEDs. This controls the turning on or off
of one or all of the LEDs. It accepts an optional integer, a
preceding dash(-) or an ‘on/off’ flag. If no parameter or the ‘on’
flag is given, all LEDs are turned on. If a preceding dash or the
flag ‘off’ is given, all LEDs are turned off. If a value between 1
and 32 is given, that LED will be turned on or off depending on
the existence of a preceding dash. A common LED which can be
controlled is the “‘Caps Lock” LED. ‘“’xset led 3" would turn led
#3 on. ‘“xset -led 3” would turn it off. The particular LED
values may refer to different LEDs on different hardware.

Controls the mouse parameters. The parameters for the mouse
are ‘acceleration’ and ‘threshold’. The mouse, or whatever
pointer the machine is connected to, will go ‘acceleration’ times
as fast when it travels more than ‘threshold’ pixels in a short
time. This way, the mouse can be used for precise alignment
when it is moved slowly, yet it can be set to travel across the
screen with a flick of the wrist when desired. One or both
parameters for the m option can be omitted, but if only one is
given, it will be interpreted as the acceleration. If no parameters
or the flag ‘default’ is used, the system defaults will be set.

Controls pixel color values. The parameters are the color map
entry number in decimal and a color specification. The root back-
ground colors may be changed on some servers by altering the
entries for BlackPixel and WhitePixel. Although these are often 0
and 1, they need not be. Also, a server may choose to allocate
those colors privately, in which case an error will be generated.
The map entry must not be a read-only color, or an error will
result.

Controls the autorepeat. If a preceding dash or the ‘off’ flag is
used, autorepeat will be disabled. If no parameters or the ‘on’
flag is used, autorepeat will be enabled.

Allows the user to set the screen saver parameters. This option
accepts up to two numerical parameters, a ‘blank/noblank’ flag,
an "expose/noexpose’ flag, an ‘on/off’ flag, or the 'default’ flag. If
no parameters or the ‘default’ flag is used, the system will be set
to its default screen saver characteristics. The ‘on/off’ flags sim-
ply turn the screen saver functions on or off. The ’blank’ flag
sets the preference to blank the video (if the hardware can do so)
rather than display a background pattern, while ‘noblank’ sets



XSET(1) XSET(1)

the preference to display a pattern rather than blank the video.
The “expose’ flag sets the preference to allow window exposures
(the server can freely discard window contents), while ‘noexpose’
sets the preference to disable screen saver unless the server can
regenerate the screens without causing exposure events. The
length and period parameters for the screen saver function deter-
mines how long the server must be inactive for screen saving to
activate, and the period to chgnge the background pattern to
avoid burn in. The arguments are specified in seconds. If only
one numerical parameter is given, it will be used for the length.

q Gives information on the current settings.
These settings will be reset to default values when you log out.

Note that not all X implementations are guaranteed to honor all of these
options.

SEE ALSO
xsetroot(1).

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
AUTHOR

Bob Scheifler, MIT Laboratory for Computet~Science
David Krikorian, MIT Project Athena (X11 version)




XSETROOT(1) XSETROOT(1)

NAME
xsetroot — root window parameter setting utility for X

SYNOPSIS
xsetroot [-help] [-def] [-display display] [-cursor cursorfile maskfile] [-
bitmap filename] [-mod x y] [-gray] [-grey] [-fg color] [-bg color] [-rv] [-
solid color] [-name string]

DESCRIPTION
The setroot program allows you to tailor the appearance of the background
("root”) window on a workstation display running X. Normally, you
experiment with xsetroot until you find a background that you like, then
put the xsetroot command that produces it into your X startup file. If no
options are specified, or if -def is specified, the window is reset to its
default state. the -def option can be specified along with other options
and only the non-specified characteristics will be reset to the default state.

Only one of the background color/tiling change options (-solid, -gray,
-grey, -bitmap, and -mod) may be specified at a time.

OPTIONS
The various options are as follows:

-help Prints a usage message and exit.

-def  Resets unspecified attributes to the default values. (Restores the
background to the familiar gray mesh and the cursor to the hollow
x shape.)

-cursor cursorfile maskfile
Allows you to change the pointer cursor to whatever you want
when the pointer cursor is outside of any window. Cursor and
mask files are bitmaps (little pictures). You may want the mask
file to be all black until you get used to the way masks work.

-bitmap filename
Uses the bitmap specified in the file to set the window pattern.
The entire background will be made up of repeated "tiles" of the
bitmap.

-mod x y
Creates a plaid-like grid pattern on your screen. x and y are

integers ranging from 1 to 16. Try the different combinations.
Zero and negative numbers are taken as 1.




XSETROOT(1) XSETROOT(1)

-gray Makes the entire background gray. (Easier on the eyes.)
-grey Makes the entire background grey.

-fg color
Uses color as the foreground color when setting attributes.

-bg color
Uses color as the background color when setting attributes.

rv Exchanges the foreground and background colors. Normally the
foreground color is black and the background color is white.

-solid color
Sets the window color to color.

-name string
Sets the name of the root window to string. There is no default
value. Usually a name is assigned to a window so that the win-
dow manager can use a text representation when the window is
iconified. This option is unused since you can’t iconify the back-
ground.

-display display
Specifies the server to connect to.

SEE ALSO
xset(1).

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.

AUTHOR
Mark Lillibridge, MIT Project Athena



XTERM(1) XTERM(1)

NAME

xterm — terminal emulator for X

SYNOPSIS

xterm [-toolkitoption ...] [-option ...]

DESCRIPTION

The xterm program is a terminal emulator for the Graphics Services Exten-
sion. It provides DEC VT102-compatible terminals for programs that can-
not use the window system directly. If the underlying operating system
supports terminal resizing capabilities (for example, the SIGWINCH signal
in systems derived from 4.3bsd), xterm will use the facilities to notify pro-
grams running in the window whenever it is resized.

OPTIONS

The xterm terminal emulator accepts all of the standard X Toolkit com-
mand line options along with the additional options listed below (if the

option begins with a ‘+’ instead of a ‘~/, the option is restored to its
default value):

-132  Normally, the VT102 DECCOLM escape sequence that switches
between 80 and 132 column mode is ignored. This option causes
the DECCOLM escape sequence to be recognized, and the xterm
window will resize appropriately.

~b number
Specifies the size of the inner border (the distance between the
outer edge of the characters and the window border) in pixels.
The default is 2.

—cr color Specifies the color to use for text cursor. The default is to use the
same foreground color that is used for text.

—cu Indicates that xterm should work around a bug in the curses(3x)
cursor motion package that causes the more program to display
lines that are exactly the width of the window and are followed
by line beginning with a tab to be displayed incorrectly (the lead-
ing tabs are not displayed).

+cu Indicates that that xterm should not work around the curses(3x)
bug mentioned above.




XTERM(1)

XTERM(1)

—e program [arguments ...]

~fb font

+j

-1

+1

Specifies the program (and its command line arguments) to be
run in the xterm window. The default is to start the user’s shell.
This must be the last option on the command line.

Specifies a font to be used when displaying bold text. This font
must be the same height and width as the normal font. If only
one of the normal or bold fonts is specified, it will be used as the
normal font and the bold font will be produced by overstriking
this font. The default bold font is “vtbold.”

Indicates that xterm should not do jump scrolling.

Indicates that xterm should do jump scrolling. Normally, text is
scrolled one line at a time; this option allows xterm to move mul-
tiple lines at a time so that it doesn’t fall as far behind. Its use is
strongly recommended since it make xterm much faster when
scanning through large amounts of text. The VT100 escape
sequences for enabling and disabling smooth scroll as well as the
“‘Modes”” menu can be used to turn this feature on or off.

Indicates that xterm should send all terminal output to a log file
as well as to the screen. This option can be enabled or disabled
using the “xterm X11” menu.

Indicates that xterm should not do logging.

-If filename

-Is

Specifies the name of the file to which the output log described
above is written. If file begins with a pipe symbol (l), the rest of
the string is assumed to be a command to be used as the end-
point of a pipe. The default filename is XtermLog.XXXXX
(where XXXXX is the process id of xterm) and is created in the
directory from which xterm was started (or the user’'s home direc-
tory in the case of a login window.

Indicates the shell that is started in the xterm window be a login
shell (i.e. the first character of argv[0] will be a dash, indicating
to the shell that it should read the user’s .login or .profile).



XTERM(1)

+l1s

+mb

XTERM(1)

Indicates that the shell that is started should not be a login shell
(i.e., it will be normal “subshell”’).

Indicates that xterm should ring a margin bell when the user
types near the right end of a line. This option can be turned on
and off from the “Modes” menu.

Indicates that margin bell should not be rung.

-ms color

Specifies the color to be used for the pointer cursor. The default
is to use the foreground color.

-nb number

-Iw

+rw

+s
-sb

+sb

Specifies the number of characters from the right end of a line at
which the margin bell, if enabled, will ring. The default is 10.

Indicates that reverse-wraparound should be allowed. This
allows the cursor to back up from the leftmost column of one line
to the rightmost column of the previous line. This is very useful
for editing long shell command lines and is encouraged. This
option can be turned on and off from the ‘“Modes” menu.

Indicates that reverse-wraparound should not be allowed.

Indicates that xterm may scroll asynchronously, meaning that the
screen does not have to be kept completely up to date while
scrolling. This allows xterm to run faster when network latencies
are very high and is typically useful when running across a very
large internet or many gateways.

Indicates that xterm should scroll synchronously.

Indicates that some number of lines that are scrolled off the top
of the window should be saved and that a scrollbar should be
displayed so that those lines can be viewed. This option may be
turned on and off from the “Modes” menu.

Indicates that a scrollbar should not be displayed.

Indicates that output to a window should not automatically repo-
sition the screen to the bottom of the scrolling region. This option
can be turned on and off from the “Modes” menu.




XTERM(1) XTERM(1)
+si Indicates that output to a window should cause it to scroll to the
bottom.

-sk Indicates that pressing a key while using the scrollbar to review
previous lines of text should cause the window to be repositioned
automatically in the normal position at the bottom of the scroll
region.

+sk  Indicates that pressing a key while using the scrollbar should not
cause the window to be repositioned.

—sl number
Specifies the number of lines to save that have been scrolled off
the top of the screen. The default is 64.

+t Indicates that xterm should start in VT102 mode.

-vb Indicates that a visual bell is preferred over an audible one.
Instead of ringing the terminal bell whenever a Control-G is
received, the window will be flashed.

+vb  Indicates that a visual bell should not be used.

-C Indicates that this window should receive console output. This is
not supported on all systems.

-L Indicates that xterm was started by init. In this mode, xterm does
not try to allocate a new pseudoterminal as init has already done
so. In addition, the system program getty is run instead of the
user’s shell. This option should never be used by users when
starting terminal windows.

—-Sccn Specifies the last two letters of the name of a pseudoterminal to

use in slave mode. This allows xterm to be used as an input and
output channel for an existing program and is sometimes used in
specialized applications.

The following command line arguments are provided for compatibility
with older versions. They may not be supported in the next release as the
X Toolkit provides standard options that accomplish the same task.

#geom Specifies the preferred position of the icon window. It is short-

hand for specifying the "™iconGeometry" resource.



XTERM(1) XTERM(1)

=T string
Specifies the title for xterm’s icons. It is equivalent to -title.

-nstring Specifies the icon name for xterm’s windows. It is shorthand for
specifying the "™iconName" resource.

-r Indicates that reverse video should be simulated by swapping the
foreground and background colors. It is equivalent to -reversevi-
deo or -rv.

—w number

Specifies the width in pixels of the border surrounding the win-
dow. It is equivalent to -borderwidth or -bw.

The following standard X Toolkit command line arguments are commonly
used with xterm:

-bg color
Specifies the color to use for the background of the window. The
default is “white.”

~bd color
Specifies the color to use for the border of the window. The
default is “black.”

~bw number
Specifies the width in pixels of the border surrounding the win-
dow.

—fg color Specifies the color to use for displaying text. The default is
“black”.

—fn font Specifies the font to be used for displaying normal text. The
default is “vtsingle.”

=name name

Specifies the application name under which resources are to be
obtained, rather than the default executable file name.

—-v Indicates that reverse video should be simulated by swapping the
foreground and background colors.

—geometry geometry
Specifies the preferred size and position of the VT102 window.



XTERM(1) XTERM(1)

—display display
Specifies the X server to contact.
—xrm resourcestring
Specifies a resource string to be used. This is especially useful
for setting resources that do not have separate command line
options.
X DEFAULTS

The program understands all of the core X Toolkit resource names and
classes as well as:

name (class Name)
Specifies the name of this instance of the program. The default is
“xterm.”

iconGeometry (class IconGeometry)
Specifies the preferred size and position of the application when
iconified. It is not necessarily obeyed by all window managers.
title (class Title)

Specifies a string that may be used by the window manager
when displaying this application.

The following resources are specified as part of the “vt100” widget (class
“VT100"):
font (class Font)

Specifies the name of the normal font. The default is ‘“vtsingle.”
boldFont (class Font)

Specifies the name of the bold font. The default is “vtbold.”

¢132 (class C132)
Specifies whether or not the VT102 DECCOLM escape sequence
should be honored. The default is “false.”

curses (class Curses)

Specifies whether or not the last column bug in cursor should be
worked around. The default is “false.”



XTERM(1) XTERM(1)

background (class Background)
Specifies the color to use for the background of the window. The
default is “white.”

foreground (class Foreground)
Specifies the color to use for displaying text in the window. Set-
ting the class name instead of the instance name is an easy way
to have everything that would normally appear in the "text” color
change color. The default is “black.”

cursorColor (class Foreground)
Specifies the color to use for the text cursor. The default is
“black.”

geometry (class Geometry)
Specifies the preferred size and position of the VT102 window.

internalBorder (class BorderWidth)
Specifies the number of pixels between the characters and the
window border. The default is 2.

jumpScroll (class JumpScroll)
Specifies whether or not jump scroll should be used. The default
is ““false”.

logFile (class Logfile)
Specifies the name of the file to which a terminal session is
logged. The default is XtermLog.XXXXX (where XXXXX is the
process id of xterm).

logging (class Logging)
Specifies whether or not a terminal session should be logged.
The default is ““false.”

logInhibit (class LogInhibit)
Specifies whether or not terminal session logging should be inhi-
bited. The default is “false.”

loginShell (class LoginShell)
Specifies whether or not the shell to be run in the window
should be started as a login shell. The default is ““false.”




XTERM(1) XTERM(1)

marginBell (class MarginBell)
Specifies whether or not the bell should be run when the user
types near the right margin. The default is ‘“false.”

multiScroll (class MultiScroll)
Specifies whether or not asynchronous scrolling is allowed. The
default is “false.”

nMarginBell (class Column)
Specifies the number of characters from the right margin at which
the margin bell should be run when enabled.

pointerColor (class Foreground)
Specifies the color of the pointer. The default is “‘black.”

pointerShape (class Cursor)
Specifies the name of the shape of the pointer. The default is
“xterm.”

reverseVideo (class ReverseVideo)
Specifies whether or not reverse video should be simulated. The
default is “false.”

reverseWrap (class ReverseWrap)
Specifies whether or not reverse-wraparound should be enabled.
The default is ““false.”

saveLines (class SaveLines)
Specifies the number of lines to save beyond the top of the screen
when a scrollbar is turned on. The default is 64.

scrollBar (class ScrollBar)

Specifies whether or not the scrollbar should be displayed. The
default is ““false.”

scrollInput (class ScrollCond)
Specifies whether or not output to the terminal should automati-
cally cause the scrollbar to go to the bottom of the scrolling
region. The default is “true.”

scrollKey (class ScrollCond)
Specifies whether or not pressing a key should automatically

cause the scrollbar to go to the bottom of the scrolling region.
The default is ““false.”



XTERM(1) XTERM(1)

signalInhibit (class SignalInhibit)
Specifies whether or not the entries in the “xterm X11"” menu for
sending signals to xterm should be disallowed. The default is
“false.”

visualBell (class VisualBell)
Specifies whether or not a visible bell (i.e., flashing) should be
used instead of an audible bell when Control-G is received. The
default is “false.”

The following resources are specified as part of the “menu” widget:

menuBorder (class MenuBorder)
Specifies thesize in pixels of the border surrounding menus. The
default is 2.

menuFont (class Font)
Specifies the name of the font to use for displaying menu items.

menuPad (class MenuPad)
Specifies the number of pixels between menu items and the
menu border. The default is 3.

EMULATIONS

The VT102 emulation is fairly complete, but does not support the blinking
character attribute nor the double-wide and double-size character sets.
Termcap entries that work with xterm include ‘xterm”, ‘‘vt102”, “‘vt100”
and “ansi”’, and xterm automatically searches the termcap file in this order
for these entries and then sets the ““TERM” and the “TERMCAP” environ-
ment variables.

Many of the special xterm features (like logging) may be modified under
program control through a set of escape sequences different from the stan-
dard VT102 escape sequences.

POINTER USAGE

Once the VT102 window is created, xterm allows you to select text and
copy it within the same or other windows.

The selection functions are invoked when the pointer buttons are used
with no modifiers, and when they are used with the “shift”” key.

Pointer button one (left) is used to save text into the cut buffer. Move the
cursor to the beginning of the text, and then hold the button down while
moving the cursor to the end of the region and releasing the button. The
selected text is highlighted and is saved in the global cut buffer when the




XTERM(1) XTERM(1)

button is released. Double-clicking selects by words. Triple-clicking
selects by lines. Quadruple-clicking goes back to characters, etc.
Multiple-click is determined by the time from button up to button down,
so you can change the selection unit in the middle of a selection.

Pointer button two (middle) ‘types’ (pastes) the text from the cut buffer,
inserting it as keyboard input.

Pointer button three (right) extends the current selection. (“right” and
“left’” are interchangeable in the rest of this paragraph.) If pressed while
closer to the right edge of the selection than the left, it extends/contracts
the right edge of the selection. If you contract the selection past the left
edge of the selection, xterm assumes you really meant the left edge,
restores the original selection, then extends/contracts the left edge of the
selection. Extension starts in the selection unit mode that the last selec-
tion or extension was performed in; you can multiple-click to cycle
through them.

By cutting and pasting pieces of text without trailing new lines, you can
take text from several places in different windows and form a command to
the shell, for example, or take output from a program and insert it into
your favorite editor. Since the cut buffer is globally shared among dif-
ferent applications, you should regard it as a ‘file’ whose contents you
know. The terminal emulator and other text programs should treat the
cut buffer as if it were a text file, i.e., the text is delimited by new lines.

The scroll region displays the position and amount of text currently show-
ing in the window (highlighted) relative to the amount of text actually
saved. As more text is saved (up to the maximum), the size of the
highlighted area decreases.

Clicking button one with the pointer in the scroll region moves the adja-
cent line to the top of the display window.

Clicking button three moves the top line of the display window down to
the pointer position.

Clicking button two moves the display to a position in the saved text that
corresponds to the pointer’s position in the scrollbar.

MENUS

xterm has two different menus, named xterm and Modes. Each menu
pops up under the correct combinations of key and button presses. Most
menus are divided into two sections, separated by a horizontal line. The
top portion contains various modes that can be altered. A check mark

-10-



XTERM(1) XTERM(1)

appears next to a mode that is currently active. Selecting one of these
modes toggles its state. At the bottom portion of the menu are command
entries; selecting one of these performs the indicated function.

The xterm menu pops up when the “control” key and pointer button one
are pressed in a window. Notable entries in the command section of the
menu are the Continue, Suspend, Interrupt, Hangup, Terminate and Kill
which send the SIGCONT, SIGTSTP, SIGINT, SIGHUP, SIGTERM and
SIGKILL signals, respectively, to the process group of the process running
under xterm (usually the shell). The Continue function is especially useful
if the user has accidentally typed CTRL-Z, suspending the process.

The Modes menu sets various modes in the VT102 emulation, and is
popped up when the “control” key and pointer button two are pressed in
the VT102 window. In the command section of this menu, the soft reset
entry will reset scroll regions. This can be convenient when some pro-
gram has left the scroll regions set incorrectly (often a problem when
using VMS or TOPS-20). The full reset entry will clear the screen, reset
tabs to every eight columns, and reset the terminal modes (such as wrap
and smooth scroll) to their initial states just after xterm has finished pro-
cessing the command line options.

OTHER FEATURES

xterm automatically highlights the window border and text cursor when
the pointer enters the window (selected) and unhighlights them when the
pointer leaves the window (unselected). If the window is the focus win-
dow, then the window is highlighted no matter where the pointer is.

In VT102 mode, there are escape sequences to activate and deactivate an
alternate screen buffer, which is the same size as the display area of the
window. When activated, the current screen is saved and replaced with
the alternate screen. Saving of lines scrolled off the top of the window is
disabled until the normal screen is restored. The termcap entry for xterm
allows the visual editor vi(1) to switch to the alternate screen for editing,
and restore the screen on exit.

There are escape sequences in VI102 mode to change the name of the
windows and to specify a new log file name.

ENVIRONMENT

xterm sets the environment variables “TERM” and “TERMCAP” properly
for the size window you have created. It also uses and sets the environ-
ment variable “DISPLAY” to specify which bit map display terminal to
use. The environment variable “WINDOWID” is set to the X window id

-11-




XTERM(1) XTERM(1)

number of the xterm window.

BUGS
xterm will hang forever if you try to paste too much text at one time. It is
both producer and consumer for the pty and can deadlock.
Variable-width fonts are not handled reasonably.
The focus is considered lost if some other client (e.g., the window
manager) grabs the pointer; it is difficult to do better without an addition
to the protocol.
There needs to be a dialog box to allow entry of log file name and the
COPY file name.
Many of the options are not resettable after xterm starts.

NOTE
If any of the keys used within xterm are bound by the window manager
(uwm) without keyboard modifiers (e.g., Alt, Shift, Cntl), the key func-
tions are unavailable to xterm.

COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.

AUTHORS

Loretta Guarino Reid (DEC-UEG-WSL), Joel McCormack (DEC-UEG-WSL),
Terry Weissman (DEC-UEG-WSL), Edward Moy (Berkeley), Ralph R.
Swick (MIT-Athena), Mark Vandevoorde (MIT-Athena), Bob McNamara
(DEC-MAD), Jim Gettys (MIT-Athena), Bob Scheifler (MIT X Consortium),
Doug Mink (SAO), Steve Pitschke (Stellar), Ron Newman (MIT-Athena),
Jim Fulton (MIT X Consortium), et al.

-12-



XWININFO(1)

NAME

XWININFO(1)

xwininfo - window information utility for X

SYNOPSIS

xwininfo [-help] [-id id] [-root] [-name name] [-int] [-tree] [-stats] [-bits]
[-events] [-size] [-wm ] [-all] [-display display]

DESCRIPTION

xwininfo is a utility for displaying information about windows. Depending
on which options are chosen, various information is displayed. If no
options are chosen, -stats is assumed.

The user has the option of selecting the target window with the mouse
(by clicking any mouse button in the desired window) or by specifying
its window id on the command line with the -id option. In addition, if it
is easier, instead of specifying the window by its id number, the -name
option may be used to specify which window is desired by name. There
is also a special -root option to quickly obtain information on X’s root win-

dow.
OPTIONS

-help  Prints out the 'Usage:” command syntax summary.

-idid  Allows the user to specify a target window id on the command
line rather than using the mouse to select the target window.
This is very useful in debugging X applications when the target
window is not mapped to the screen or when the use of the
mouse might be impossible or interfere with the application.

-name name
Allows the user to specify that the window named name is the
target window on the command line rather than using the mouse
to select the target window.

-root  Specifies that X’s root window is the target window. This is
useful in situations where the root window is completely
obscured.

-int Specifies that all X window ids should be displayed as integer

values. The default is to display them as hexadecimal values.




XWININFO(1)

-tree

-stats

-bits

-events

-size

-wm

-all

XWININFO(1)

Causes the root, parent, and children windows’ ids and the
names of the selected window to be displayed.

Causes various attributes of the selected window having to do
with its location and appearance to be displayed. Information
displayed includes the location of the window, its width and
height, its depth, border width, class, and map state.

Causes various attributes of the selected window having to do
with its raw bits and how it is to be stored to be displayed.
Information displayed includes the window’s window and bit
gravities, the window’s backing store hint and backing_planes
value, its backing pixel, and whether or not the window has
save-under set.

Causes the selected window’s event masks to be displayed. Both
the event mask of events wanted by some client and the event
mask of events not to prograte are displayed.

Causes the selected window’s sizing hints to be displayed. Infor-
mation displayed (for both the normal size hints and the zoom
size hints) includes the user-supplied location if any, the
program-supplied location if any, the user-supplied size if any,
the program-supplied size if any, the minimum size if any, the
maximum size if any, the resize increments if any, and the
minimum and maximum aspect ratios if any.

Causes the selected window’s window manager hints to be
displayed. Information displayed may include whether or not
the application accepts input, what the window’s icon window
number and name is, where the window’s icon should go, and
what the window’s initial state should be.

A quick way to ask for all information possible.

-display display

EXAMPLE

Allow the user to specify the server to connect to.

The following is a sample summary taken with no options specified:
xwininfo == Please select the window you wish

>  information on by clicking the
> mouse in that window.

xwininfo == Window id: 0x8006b (fred)



XWININFO(1)

==> Upper left X: 0
==>  Upper left Y: 0
==>  Width: 1024
==>  Height: 864
==> Depth: 1
==>  Border width: 0
==>  Window class: InputOutput
==>  Window Map State: IsUnviewable
ENVIRONMENT
DISPLAY
Get default host and display number.
SEE ALSO
xprop(1).
COPYRIGHT
Copyright 1988, Massachusetts Institute of Technology.
AUTHOR

Mark Lillibridge, MIT Project Athena



XActivateScreenSaver(3X) (X1ib - Screen Saver) XActivateScreenSaver(3X)

NAME
XActivateScreenSaver — activate screen blanking.
SYNOPSIS
XActivateScreenSaver (display)
Display *display;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
DESCRIPTION

XActivateScreenSaver turns on the screen saver using the parameters set
with XSetScreenSaver. This means that the screen may go blank, or some
random change to the display will take place to save the phosphors from
burnout.

SEE ALSO
XForceScreenSaver, XResetScreenSaver, XGetScreenSaver, XSetScreenSaver.



XAddHost(3X) (X1ib - Host Access) XAddHost(3X)

NAME
XAddHost — add a host to the access control list.

SYNOPSIS
XAddHost (display, host)
Display *display;
XHostAddress *host;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
host Specifies the network address of the host machine to be
added.
DESCRIPTION

XAddHost adds the specified host to the access control list for the specified
display. The display hardware associated with the program that issues
this command must be on the host whose list is being updated. The
access control list is a primitive security feature.

The address data must be a valid address for the type of network in which
the server operates, as specified in the family member.

STRUCTURES
typedef struct {
int family; /* for example AF_DNET »/
int length; /* length of address, in bytes */
char *address; /* pointer to where to find the bytes 1

} XHostAddress;

/* The following constants for fumily member */
#define FamilyInternet o
#define FamilyDECnet i
#define FamilyChaos 2

ERRORS
BadAlloc
BadValue

SEE ALSO
XAddHosts, XListHosts, XRemoveHost, XRemoveHosts, XDisableAccessControl,
XEnableAccessControl, XSetAccessControl.



XAddHosts(3X) (X1ib - Host Access) XAddHosts(3X)

NAME
XAddHosts — add multiple hosts to the access control list.

SYNOPSIS
XAddHosts (display, hosts, num_hosts)
Display *display;
XHostAddress *hosts;
int num_hosts;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
hosts Specifies each host that is to be added.

num_hosts Specifies the number of hosts that is to be added.

DESCRIPTION
XAddHosts adds each specified host to the access control list for the
display. The display hardware associated with the program that issues
this command must be on the host whose list is being updated. The
access control list is a primitive security feature.

The address data must be a valid address for the type of network in which
the server operates, as specified by the family member.

STRUCTURES
typedef struct {
int family; /* for example AF_DNET */
int length; /% length of address, in bytes =/
char *address; /* pointer to where to find the bytes */

} XHostAddress;

/* The following constants for family member */

#define FamilyInternet /]

#define FamilyDECnet 1

#define FamilyChaos 2
ERRORS

BadAlloc

BadValue



XAddHosts(3X) (X1ib - Host Access) XAddHosts(3X)

SEE ALSO
XAddHost, XListHosts, XRemoveHost, XRemoveHosts, XDisableAccessControl,
XEnableAccessControl, XSetAccessControl, XAddHost, XListHosts,
XRemoveHost, XRemoveHosts, XDisableAccessControl, XEnableAccessControl,
XSetAccessControl.



XAddPixel (3X) (X1ib - Images) XAddPixel(3X)

NAME
XAddPixel — add constant value to every pixel value in image.

SYNOPSIS
int XAddPixel (ximage, value)
XImage *ximage;

int value;
ARGUMENTS
ximage Specifies a pointer to the image.
value Specifies the constant value that is to be added. Valid
pixel value ranges depend on the visual used to create the
image. If this value added to the existing value overflows,
extra bits in the result are truncated.
DESCRIPTION

XAddPixel adds a constant value to every pixel value in an image. This
function is useful when you have a base pixel value derived from the allo-
cation of color resources and need to manipulate an image so that the
pixel values are in the same range.

STRUCTURES
typedef struct _XImage {
int width, height; /* size of image */
int xoffset; /* number of pixels offset in X direction */
int format; /* XYBitmap, XYPixmap, ZPixmap */
char *data; /* pointer to image data */
int byte_order; /* data byte order, LSBFirst, MSBFirst =/
int bitmap_unit; /* quant. of scanline 8, 18, 32 =/
int bitmap_bit_order; /* LSBFirst, MSBFirst */
int bitmap_pad; /* 8, 18, 32 either XY or ZPixmap */
int depth; /* depth of image */
int bytes_per_line; /* accelarator to next line */
int bits_per_pixel; /* bits per pixel (ZPixmap) */

unsigned long red_mask; /* bits in z arrangment */

unsigned long green_mask;

unsigned long blue_mask;

char *obdata; /* hook for the object routines to hang on */
struct funcs { /* image manipulation routines */

struct _XImage *(*create_image) ();

int (*destroy_image) ():

unsigned long (*get_pixel) ();



XAddPixel(3X) (X1ib - Images) XAddPixel(3X)

int (*put_pixel) ();
struct _XImage *(*sub_image) ();
int (*add_pixel) ();
) I H
} XImage;

SEE ALSO
XDestroylmage, XPutlmage, XGetlmage, XCreateImage, XSubImage,
XGetSublmage, XPutPixel, XGetPixel, ImageByteOrder.



XAddToSaveSet(3X) (Xlib - Save Set) XAddToSaveSet(3X)

NAME
XAddToSaveSet — add window’s children to client’s save-set.

SYNOPSIS
XAddToSaveSet (display, w)
Display x*display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID of the window whose children
you want to add to the client’s save-set.
DESCRIPTION
XAddToSaveSet adds the children of the specified window to client’s save-
set.

The save-set is a safety net for windows that have been reparented by the
window manager, usually to provide a shadow or other background for
each window. When the window manager dies unexpectedly, the win-
dows in the save-set are reparented to their closest living ancestor, so that
they remain alive. Refer to the GSE Programmer’s Guide for more informa-
tion about save-sets.

Use XRemoveFromSaveSet to remove a window’s children from the client’s
save-set.

ERRORS
BadMatch w not created by some other client.

BadWindow

SEE ALSO
XRemoveFromSaveSet, XChangeSaveSet.



XAllocColor(3X) (X1ib - Color Cells) XAllocColor(3X)

NAME
XAllocColor — allocate a read-only colormap cell with closest hardware-
supported color.

SYNOPSIS
Status XAllocColor (display, cmap, colorcell_def)
Display =*display;
Colormap cmap;

XColor *colorcell_def ; /* reads and RETURNs */
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap ID.

colorcell_def  Specifies desired RGB values, and also returns the pixel
value and the RGB values actually used in the colormap.

DESCRIPTION
XAllocColor returns in the XColor structure the pixel value of a read-only
(shareable) colorcell with the closest RGB values available in cmap. XAlloc-
Color also returns the red, green, and blue values actually used.

If the display hardware has an immutable hardware colormap, the entire
colormap will be read-only, and the closest cell that exists will be
returned. Otherwise, the colormap is read/write, and may have some
read/write cells, some read-only cells, and some unallocated. If a read-
only cell exists that matches the requested RGB values, that cell is
returned. If no matching cell exists but there are unallocated cells, a cell
is allocated to match the specified RGB values. If no matching cell exists
and there are no unallocated cells, the closest available colorcell that has
already been allocated (by this or any other client) is returned. Note that
colorcell_def stores both the requested color when XAllocColor is called and
the result when XAllocColor returns.

XAllocColor returns 0 if there is a problem (typically all cells are allocated
and read/write), or 1 if it succeeds.



XAllocColor(3X) (X1ib - Color Cells) XAllocColor(3X)

STRUCTURES
typedef struct {
unsigned long pixel;
unsigned short red, greemn, blue;

char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} XColor;

ERRORS
BadAlloc

BadColor

SEE ALSO
XAllocColorCells, XAllocColorPlanes, XAllocNamedColor, XLookupColor,

XParseColor, XQueryColor, XQueryColors, XStoreColor, XStoreColors,
XFreeColors, XStoreNamedColor, BlackPixel, WhitePixel.



XAllocColorCells(3X) (X1ib - Color Cells) XAllocColorCells(3X)

NAME
XAllocColorCells — allocate read/write (non-shared) colorcells.

SYNOPSIS
Status XAllocColorCells (display, cmap, contig, plane_masks,
nplanes, pixels, ncolors)
Display *display;
Colormap cmap;
Bool contig;
unsigned 1long plane_masks[nplanes] ; /* RETURN x*/
unsigned int nplanes;
unsigned long pixels[ncolors] ; /* RETURN pixel valuesx*/
unsigned int ncolors;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap.
contig Specifies a boolean value. Pass True if the planes must be

contiguous or False if the planes need not be contiguous.
plane_mask Returns an array of plane masks.

nplanes Specifies the number of plane masks returned in the plane
masks array. Must be non-negative.

pixels Returns an array of pixel values.

ncolors Specifies the number of pixel values returned in the pixels

array. Must be positive.

DESCRIPTION

XAllocColCells allocates read/write colorcells in a read/write colormap. If
ncolors and nplanes are requested, then ncolors pixels and nplanes plane
masks are returned. No mask will have any bits in common with any
other mask, or with any of the pixels. By ORing together each of the pix-
els with any combination of the plane_masks, ncolors * 2 mplanes distinct pixels
can be produced. For GrayScale or PseudoColor, each mask will have
exactly one bit, and for DirectColor each will have exactly three bits. If
contig is True, then if all plane masks are ORed together, a single contigu-
ous set of bits will be formed for GrayScale or PseudoColor and three con-
tiguous sets of bits (one within each pixel subfield) for DirectColor. The
RGB values of the allocated entries are undefined until set with
XStoreColor or like functions.



XAllocColorCells(3X) (X1ib - Color Cells) XAllocColorCells(3X)

Status is 0 on failure.
ERRORS
BadAlloc
BadColor
BadValue nplanes not non-negative.

ncolors not positive.

SEE ALSO
XAllocColorPlanes, XAllocColor, XAllocNamedColor, XLookupColor,
XParseColor, XQueryColor, XQueryColors, XStoreColor, XStoreColors,
XFreeColors, XStoreNamedColor, BlackPixel, WhitePixel.



. XAllocColorPlanes (3X) (X1ib - Color Cells) XAllocColorPlanes(3X)

NAME
XAllocColorPlanes — allocate read/write (non-sharable) color planes.

SYNOPSIS
Status XAllocColorPlanes (display, cmap, contig, pixels,
ncolors, nreds, ngreens, nblues, rmask, gmask, bmask)
Display *display;
Colormap cmap;
Bool contig;
unsigned 1long pixels [ncolors] ; /* RETURN x*/
int ncolors;
int nreds, ngreens, nblues;
unsigned long *rmask, x*gmask, *bmask;- /* RETURN =*/

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

cmap Specifies the colormap ID.

contig Specifies a boolean value. Pass True if the planes must be
contiguous or False if the planes do not need to be contigu-
ous.

pixels Returns an array of pixel values.

ncolors Specifies the number of pixel values returned in the pixels
array. Must be positive.

nreds

ngreens

nblues Specify the number of red, green, and blue colors
(shades). Must be non-negative.

rmask

gmask

bmask Return bit masks for the red, green, and blue planes.



XAllocColorPlanes(3X) (X1ib - Color Cells) XAllocColorPlanes(3X)

DESCRIPTION

If ncolors, nreds, ngreens, and nblues are requested, then ncolors pixels are
returned, and the masks have nreds, ngreens, and nblues bits set respec-
tively. If contig is True, then each mask will have a contiguous set of bits.
No mask will have any bits in common with any other mask, or with any
of the pixels. For DirectColor, each mask will lie within the corresponding
pixel subfield. By ORing together subsets of masks with pixels, ncolors*(
2 (nreds+ngreens+nblues) ) distinct pixels can be produced. All of these are allo-
cated by the request. However, in the colormap there are only
ncolors*(2™e ) independent red entries, ncolors*(2"s™m ) independent
green entries, and ncolors*(2 "' ) independent blue entries. This is true
even for PseudoColor. When the colormap entry for a pixel value is
changed using XStoreColors or XStoreNamedColor, the pixel is decomposed
according to the masks and the corresponding pixel subfield entries are
updated.

Status is 0 on failure.
ERRORS
BadAlloc
BadColor
BadValue ncolors not positive.
nreds, ngreens, nblues not non-negative.

SEE ALSO
XAllocColorCells, XAllocColor, XAllocNamedColor, XLookupColor,
XParseColor, XQueryColor, XQueryColors, XStoreColor, XStoreColors,
XFreeColors, XStoreNamedColor, BlackPixel, WhitePixel.



XAllocNamedColor(3X)

NAME

(X1ib - Color Cells) XAllocNamedColor(3X)

XAllocNamedColor — allocate read-only colorcell from color name.

SYNOPSIS

Status XAllocNamedColor (display, cmap, colorname,
colorcell_def , rgb_db_def)

Display *display;

Colormap cmap;

char *colorname;

XColoxr *colorcell_def ; /* RETURN =*/
XColor *rgb_db_def; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap.
colorname Specifies the color name string (for example, "red”) you

colorcell_def

rgb_db_def

DESCRIPTION

want. ISO Latin-1 encoding, upper/lower case does not
matter.

Returns the pixel value and RGB values actually used in
the colormap. This is the closest color supported by the
hardware.

Returns the exact RGB values from the database
corresponding to the colorname supplied.

XAllocNamedColor determines the RGB values for the specified colorname
from the color database, and then allocates a read-only color cell with the
closest color available, as described under XAllocColor. Both the ‘exact’
data base definition of the color, and the color actually allocated are
returned. If the colormap is not full, the RGB values allocated are the
closest supported by the hardware. If the colormap is full, it returns the
closest read-only colorcell already allocated, and does not actually create
or set any new colorcell.

XAllocNamedColor returns a Status of 0 when it encounters an error or 1
when it succeeds.



XAllocNamedColor(3X) (X1ib - Color Cells) XAllocNamedColor(3X)

STRUCTURES
typedef struct {
unsigned loang pixel;
unsigned short red, greenm, blue;
char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} XColor;

ERRORS
BadAlloc
BadColor
BadName

SEE ALSO
XAllocColorCells, XAllocColorPlanes, XAllocColor, XLookupColor, XParseColor,

XQueryColor, XQueryColors, XStoreColor, XStoreColors, XFreeColors,
XStoreNamedColor, BlackPixel, WhitePixel.



XAllowEvents(3X) (X1ib - Input Handling) XAllowEvents(3X)

NAME
XAllowEvents — control the behavior of keyboard and pointer events
when these resources are grabbed.

SYNOPSIS
XAllowEvents (display, event_mode, time)
Display *display;
int eveni_mode;

Time time;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
event_mode Specifies the event mode. Pass one of these constants:

AsyncPointer, SyncPointer, AsyncKeyboard, SyncKeyboard,
ReplayPointer, ReplayKeyboard, AsyncBoth, or SyncBoth.

time Specifies the time when the grab should take place. Pass
either a timestamp, expressed in milliseconds, or the con-
stant CurrentTime.

DESCRIPTION
XAllowEvents releases the events queued in the server since the last XAl-
lowEvents call for the same device and by the same client. Events are
queued in the server only when the client has caused a device to "freeze"
(by grabbing the device with mode GrabModeSync). The request has no
effect if time is earlier than the last-grab time or later than the current
server time.

The event_mode argument controls what device events are released for and
just how and when they are released. The event_mode is interpreted as fol-
lows:

AsyncPointer  If XAllowEvents is called with AsyncPointer while the
pointer is frozen by the client, pointer event processing
resumes normally, even if the pointer is frozen twice by
the client on behalf of two separate grabs. AsyncPointer
has no effect if the pointer is not frozen by the client, but
the pointer need not be grabbed by the client.



XAllowEvents(3X)

(Xl1ib - Input Handling) XAllowEvents(3X)

AsyncKeyboard 1f XAllowEvents is called with AsyncKeyboard while the key-

SyncPointer

SyncKeyboard

ReplayPointer

board is frozen by the client, the keyboard event process-
ing resumes normally, even if the keyboard is frozen twice
by the client on behalf of two separate grabs. AsyncKey-
board has no effect if the keyboard is not frozen by the
client, but the keyboard need not be grabbed by the client.

If XAllowEvents is called with SyncPointer while the pointer
is frozen by the client, normal pointer event processing
continues until the next ButtonPress or ButtonRelease event
is reported to the client. At this time, the pointer again
appears to freeze. However, if the reported event causes
the pointer grab to be released, then the pointer does not
freeze, which is the case when an automatic grab is
released by a ButtonRelease or when XGrabButton or XGrab-
Key has been called and the specified key or button is
released. SyncPointer has no effect if the pointer is not
frozen or not grabbed by the client.

If XAllowEvents is called with SyncKeyboard while the key-
board is frozen by the client, normal keyboard event pro-
cessing continues until the next KeyPress or KeyRelease
event is reported to the client. At this time, the keyboard
again appears to freeze. However, if the reported event
causes the keyboard grab to be released, then the key-
board does not freeze, which is the case when an
automatic grab is released by a ButtonRelease or when
XGrabButton or XGrabKey has been called and the specified
key or button is released. SyncKeyboard has no effect if the
keyboard is not frozen or not grabbed by the client.

This symbol has an effect only if the pointer is grabbed by
the client and thereby frozen as the result of an event. In
other words, XGrabButton must have been called and the
selected buttorvkey combination pressed, or an automatic
grab (initiated by a ButtonPress) must be in effect, or a pre-
vious XAllowEvents must have been called with mode
SyncPointer. If the pointer_mode of the XGrabPointer was
GrabModeSync, then the grab is released and the releasing
event is processed as if it had occured after the release,
ignoring any passive grabs at or above in the hierarchy
(towards the root) on the grab-window of the grab just



XAllowEvents(3X)

(X1ib - Input Handling) XAllowEvents(3X)

released.

ReplayKeyboard This symbol has an effect only if the keyboard is grabbed

SyncBoth

AsyncBoth

by the client and if the keyboard is frozen as the result of
an event. In other words, XGrabKey must have been
called and the selected key combination pressed, or a pre-
vious XAllowEvents must have been called with mode
SyncKeyboard. If the pointer_mode or keyboard_mode of the
XGrabKey was GrabModeSync, then the grab is released and
the releasing event is processed as if it had occured after
the release, ignoring any passive grabs at or above in the
hierarchy (towards the root)

SyncBoth has the effect described for both SyncKeyboard
and SyncPointer. SyncBoth has no effect unless both
pointer and keyboard are frozen by the client. If the
pointer or keyboard is frozen twice by the client on behalf
of two separate grabs, SyncBoth "thaws" for both (but a
subsequent freeze for SyncBoth will only freeze each device
once).

AsyncBoth has the effect described for both AsyncKeyboard
and AsyncPointer. AsyncBoth has no effect unless both
pointer and keyboard are frozen by the client. If the
pointer and the keyboard were frozen by the client, or if
both are frozen twice by two separate grabs, event pro-
cessing (for both devices) continues normally. If a device
is frozen twice by the client on behalf of the two separate
grabs, AsyncBoth releases events for both.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on the process-

ing of keyboard events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard
have no effect on the processing of pointer events.

It is possible for both a pointer grab and a keyboard grab (by the same or
different clients) to be active simultaneously. If a device is frozen on
behalf of either grab, no event processing is performed for the device. It
is also possible for a single device to be frozen because of both grabs. In
this case, the freeze must be released on behalf of both grabs before
events can again be processed.



XAllowEvents(3X) (X1ib - Input Handling) XAllowEvents(3X)

ERRORS
BadValue Invalid mode constant.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XEventsQueued,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeeklIfEvent,
XPutBackEvent, XPending, XSynchronize, XSendEvent, QLength.



XAutoRepeatOff(3X) (Xlib - User Preferences) XAutoRepeatO£f(3X)

NAME
XAutoRepeatOff — turn off the keyboard auto-repeat keys.
SYNOPSIS

XAutoRepeatO£f £ (display)
Display *display;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
DESCRIPTION

XAutoRepeatOff turns off auto-repeat for the keyboard. It sets the key-
board so that holding a key down will not result in multiple events.
SEE ALSO

XGetDefault, XAutoRepeatOn, XBell, XGetKeyboardControl,
XChangeKeyboardControl, XGetPointerControl.



XAutoRepeatOn(3X) (Xlib - User Preferences) XAutoRepeatOn(3X)

NAME
XAutoRepeatOn — turn on the keyboard auto-repeat keys.

SYNOPSIS

XAutoRepeatOn (display)
Display *display;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
DESCRIPTION

XAutoRepeatOn sets the keyboard to auto-repeat; that is, holding a key
down will result in multiple KeyPress and KeyRelease event pairs with the
same keycode member.

SEE ALSO

XGetDefault, XAutoRepeatOff, XBell, XGetKeyboardControl,
XChangeKeyboardControl, XGetPointerControl.



XBell(3X) (X1ib - User Preferences) XBell(3X)

NAME
XBell — ring the bell (Control G).

SYNOPSIS
XBell (display, percent)
Display *display;

int percent;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
percent Specifies the volume for the bell, relative to the base
volume set with XChangeKeyboardControl. Possible values
are -100 (off), through O (base volume), to 100 (loudest)
inclusive.
DESCRIPTION

Rings the bell on the keyboard at a volume relative to the base volume for
the keyboard, if possible. percent can range from -100 to 100 inclusive
(else a BadValue error). The volume at which the bell is rung when percent
is non-negative is:

volume = base - [(base * percent) / 100] + percent

and when percent is negative:

volume = base + [(base * percent) / 100]

To change the base volume of the bell, set the bell_percent variable of

XChangeKeyboardControl.
ERRORS

BadValue percent < —-100 or percent >100.
SEE ALSO

XGetDefault, XAutoRepeatOff, XAutoRepeatOn, XGetKeyboardControl,
XChangeKeyboardControl, XGetPointerControl.



XChangeActivePointerGrab(3X) (Xlib - Pointer) XChangeActivePointerGrab (3X)

NAME
XChangeActivePointerGrab — change parameters of active pointer grab.

SYNOPSIS
XChangeActivePointerGrab (display, event_mask, cursor, time)
Display *display;
unsigned 1int event_mask;
Cursor cursor;
Time time;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

event_mask Specifies which pointer events are reported to the client.
This mask is the bitwise OR of one or more of these
pointer event masks:
ButtonPressMask, ButtonReleaseMask, EnterWindowMask,
LeaveWindowMask, PointerMotionMask, PointerMo-
tionHintMask, ButtonlMotionMask, Button2-Motion-Mask,
Button5-Motion-Mask, Button-Motion-Mask,
Button2MotionMask, Button3MotionMask,
ButtondMotionMask, Button5MotionMask, ButtonMotionMask,
KeyMapStateMask.

cursor Specifies the cursor that is displayed. A possible value
you can pass is None, which will keep the current cursor.

time Specifies the time when the grab should take place. Pass
either a timestamp, expressed in milliseconds, or the con-
stant CurrentTime.

DESCRIPTION
XChangeActivePointerGrab changes the specified dynamic parameters if the
pointer is actively grabbed by the client and the specified time is no earlier
than the last pointer grab time and no later than the current X server time.
XChangeActivePointerGrab has no effect on the passive parameters of
XGrabButton, or the automatic grab that occurs between ButtonPress and
ButtonRelease.

event_mask is always augmented to include ButtonPress and ButtonRelease.

ERRORS
BadCursor



XChangeActivePointerGrab(3X) (X1ib - Pointer) XChangeActivePointerGrab (3X)

SEE ALSO
XQueryPointer, XWarpPointer, XGrabPointer, XUngrabPointer,
XGetPointerMapping, XSetPointerMapping, XGetPointerControl,
XChangePointerControl.



XChangeGC(3X) (X1ib - Graphics Context) XChangeGC(3X)

NAME
XChangeGC — change components of a graphics context.

SYNOPSIS
XChangeGC (display, gc, valuemask, values)
Display =*display;
GC gc;
unsigned 1long valuemask;
XGCValues *uvalues;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
8¢ Specifies the graphics context.
valuemask Specifies the components in the graphics context that you
want to change. This argument is the bitwise OR of one
or more of the GC component masks.
values Specifies a pointer to the XGCValues structure.
DESCRIPTION

XChangeGC changes any or all of the components of a GC. The valuemask
specifies which components are to be changed. The wvalues structure con-
tains the values to be set. These two arguments operate just like they do
in XCreateGC. Changing the clip_mask overrides any previous XSetClipRec-
tangles request for this GC. Changing the dash_offset or dash_list overrides
any previous XSetDashes request on this GC.

Since consecutive changes to the same GC are buffered, there is no advan-
tage to using this routine over the routines that set individual members of
the GC.

Even if an error occurs, a subset of the components may have already
been altered.

STRUCTURES
typedef struct {
int functionm; /* logical operation */
unsigned long plane_mask; /* plane mask */
unsigned long foreground; /* foreground pixel =/
unsigned long background; /* background pixel #»/

int line_width; /* line width */
int line_style; /* LineSolid, LineOnOffDash, LineDoubleDash */
int cap_styls; /* CapNotLast, CapButt, CapRound, CapProjecting */



XChangeGC(3X)

int join_style;
int £1l11_style;
int £ill_rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;

/*
/*
/*
/*
/*
int ts_x_origin; /*
int te_y_origin;

Font font; /*
int subwindow_mode; /*
Bool graphics_exposures; /=*

int clip_x_origin; /*
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;
char dashes;

} XGCValues;

/*

(X1ib -

Graphics Context) XChangeGC(3X)

JoinMiter, JoinRound, JoinBevel */
FillSolid, FillTiled, FillStippled »/
EvenOddRule, WindingRule */

ArcChord, ArcPieSlice */

tile pixmap for tiling operations */
stipple 1 plane pixmap for stipping */
offset for tile or stipple operations */

default text font for text operations */
ClipByChildren, IncludelInferiors */

generate events on XCopy, Area, XCopyPlane*/

origin for clipping »*/

bitmap clipping; other calls for rects */
patterned/dashed line information */

#define GCFunction (1L<<0)
#define GCPlaneMask (1L<<1)
#define GCForeground (1L<<2)
#define GCBackground (1L<<3)
#define GCLineWidth (1L<<4)
#define GCLineStyle (1L<<B)
#define GCCapStyle (1L<<8)
#define GCJoinStyle (1L<<7)
#define GCFillStyle (1L<«8)
#define GCFillRule (1L<<9)
#define GCTile (1L<<10)
#define GCStipple (1L<<11)
#define GCTileStipXOrigin (1L<<12)
#define GCTileStipYOrigin (1L<<13)
#define GCFont (1L<<14)
#define GCSubwindowMode (1L<<16B)
#define GCGraphicsExposures (1L<<18)
#define GCClipXOrigin (1L<<17)
#define GCClipYOrigin (1L<<18)
#define GCClipMask (1L<<19)
#define GCDashOffset (1L<<20)
#define GCDashList (1L<<21)
#define GCArcMode (1L<<22)



XChangeGC(3X) (X1ib - Graphics Context) XChangeGC(3X)

ERRORS
BadAlloc
BadFont
BadGC
BadMatch
BadPixmap
BadValue

SEE ALSO
XCopyGC, XCreateGC, XFreeGC, XGContextFromGC, XSetStipple,
XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes, XSetFillRule,
XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetRegion, XSetState, XSetSubwindowMode, DefaultGC.



XChangeKeyboardControl(3X) (Xlib - User Preferences) XChangeKeyboardControl (3X)

NAME

XChangeKeyboardControl — change keyboard preferences such as key
click.

SYNOPSIS
XChangeKeyboardControl (display, value_mask, values)
Display =*display;
unsigned 1long value_mask;
XKeyboardControl *uvalues;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
value_mask Specifies a mask composed of ORed symbols from the

table at the end of this page, specifying which fields to
set.

values Specifies the settings for the keyboard preferences.

DESCRIPTION
XChangeKeyboardControl sets user preferences such as key click, bell
volume and duration, LED state, and keyboard autorepeat.

The value_mask argument specifies which values are to be changed; the
values structure contains the values to be set.

key_click_percent sets the volume for key clicks between 0 (off) and 100
(loud) inclusive, if possible. Setting to —1 restores the default.

The bell_percent sets the base volume for the bell between 0 (off) and 100
(loud) inclusive, if possible. Setting to -1 restores the default. The
bell_pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to
-1 restores the default. The bell_duration sets the duration (specified in
milliseconds) of the bell, if possible. Setting to -1 restores the default. A
bell generator connected with the console but not directly on a keyboard
is treated as if it were part of the main keyboard.

If both led_mode and led are specified, then the state of that LED is
changed, if possible. If only led_mode is specified, then the state of all
LEDs are changed, if possible. At most 32 LEDs are supported, numbered
starting from 1.

If both auto_repeat_mode and key are specified, then the auto_repeat mode of
that key is changed, if possible. If only auto_repeat_mode is specified, then
the global auto_repeat mode for the entire keyboard is changed, if possible,



XChangeKeyboardControl(3X) (Xlib - User Preferences) XChangeKeyboardControl(3X)

without affecting the per_key settings.

The order in which the changes are performed is server dependent, and
some may be completed when another causes an error.

STRUCTURES

/* masks for ChangeKeyboardControl */

#define KBKeyClickPercent (1L<<0)
#define KBBellPercent (1L<<1)
#define KBBellPitch (1L<<2)
#define KBBellDuration (1L<<3)
#define KBLed (1L<<4)
#define KBLedMode (1L<<B)
#define KBKey (1L<<86)
#define KBAutoRepeatMode (1L<<7)

/* structure for ChangeKeyboardControl »/

typedef struct {

int
int
int
int
int
int
int
int

key_click_percent;

bell_percent;

bell_pitch;

bell_duration;

led;

led_mode

key;

auto_repeat_mode; /* AutoRepeatModeOff, AutoRepeatModeOn,
AutoRepeatModeDefault *»/

} XKeyboardControl;

ERRORS

BadMatch values.key specified but values.auto.repeat.mode not speci-

fied.
values.led specified but values.led_mode not specified.

BadValue values.key_click_percent < 1.

values.bell_percent < -1.
values.bell_pitch < -1.
values.bell_duration <-1.



XChangeKeyboardControl(3X) (Xlib - User Preferences) XChangeKeyboardControl(3X)

SEE ALSO
XGetDefault, XAutoRepeatOff, XAutoRepeatOn, XBell, XGetKeyboardControl,
XGetPointerControl.



XChangeKeyboardMapping(3X)  (Xlib - Keyboard)  XChangeKeyboardMapping(3X)

NAME
XChangeKeyboardMapping — change keyboard mapping.
SYNOPSIS
XChangeKeyboardMapping (display, first_code, keysyms_per_code,
keysyms, num_codes)  °
Display *display;
int first_keycode ;
int keysyms_per_keycode ;

KeySym *keysyms ;
int num_keycodes ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
first_keycode  Specifies the first keycode that is to be changed.
keysyms_per_keycode

Specifies the number of keysyms that the caller is supply-
ing for each keycode.

keysyms Specifies a pointer to the list of KeySyms.

num_keycodes  Specifies the number of keycodes that are to be changed.

DESCRIPTION
Starting with first_keycode, XChangeKeyboardMapping defines the symbols
for the specified number of keycodes. The symbols for keycodes outside
this range remained unchanged. The number of elements in the keysyms
list must be a multiple of keysyms_per_keycode (else a BadLength error). The
specified first_keycode must be greater than or equal to min_keycode sup-
plied at connection setup and stored in the display structure (else a Bad-
Value error). In addition, the following expression must be less than or
equal to max_keycode as returned in the connection setup (else a BadValue
error).

max_keycode >= first_keycode + (num_keycodes / keysyms_per_keycode) - 1

The KeySym number N (counting from zero) for keycode K has an index
(counting from zero) of the following (in keysym:s).

index = (K - first_keycode) * keysyms_per_keycode + N



XChangeKeyboardMapping(3X)  (Xlib - Keyboard) = XChangeKeyboardMapping(3X)

The specified keysyms_per_keycode can be chosen arbitrarily by the client to
be large enough to hold all desired symbols. A special KeySym value of
NoSymbol should be used to fill in unused elements for individual key-
codes. It is legal for NoSymbol to appear in nontrailing positions of the
effective list for a keycode.

XChangeKeyboardMapping generates a MappingNotify event.

ERRORS
BadAlloc
BadLength Number of elements in keysyms not multiple of
keysyms_per_keycode.
BadValue first.keycode less than display->min_keycode.
display->max_keycode exceeded (see above).
SEE ALSO

XCeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XKeysymToString,
XNewModifierMap, XQueryKeymap, XStringToKeysym, XLookupKeysym,
XRebindKeySym, XGetKeyboardMapping, XRefreshKeyboardMapping,
XLookupString, XSetModifierMapping, XGetModifierMapping.



XChangePointerControl (3X) (Xlib - Pointers) XChangePointerControl (3X)

NAME
XChangePointerControl — change pointer acceleration.

SYNOPSIS
XChangePointerControl (display, do_accel, do_threshold,
accel_numerator, accel_denominator, threshold)
Display *display;
Bool do_accel, do_threshold ;
int accel_numerator, accel_denominator ;
int threshold ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
do_accel Specifies a boolean value that controls whether the values

for the accel_numerator or accel_denominator are set. You
can pass one of these constants: True or False.

do_threshold  Specifies a boolean value that controls whether the value
for the threshold is set. You can pass one of these con-
stants: True or False.

accel_numerator Specifies the numerator for the acceleration multiplier.

accel_denominator
Specifies the denominator for the acceleration multiplier.
threshold Specifies the acceleration threshold.
DESCRIPTION

XChangePointerControl defines how the pointing device moves. The
acceleration is a fraction (accel_numerator/accel_denominator) which specifies
how many times faster than normal the pointer moves compared to how
fast it normally moves. Acceleration takes affect only when a particular
pointer motion is greater than threshold pixels at once, and only applies to
the motion beyond threshold pixels. The values for do_accel and
do_threshold must be non-zero for the pointer values to be set; otherwise,
the parameters will be unchanged. Setting any argument to -1 restores
the default for that argument.

The fraction may be rounded arbitrarily by the server.



XChangePointerControl (3X) (X1ib - Pointers) XChangePointerControl (3X)

ERRORS
BadValue accel_denominator is zero.
Negative value for do_accel or do_threshold.
SEE ALSO

XQueryPointer, XWarpPointer, XGrabPointer, XChangeActivePointerGrab,
XUngrabPointer, XGetPointerMapping, XSetPointerMapping,
XGetPointerControl.



XChangeProperty(3X)

NAME

(X1ib - Properties) XChangeProperty (3X)

XChangeProperty — change a property associated with a window.

SYNOPSIS

XChangeProperty (display, w, property, type, format, mode, data,

nelements)

Display *display;

Window w;

Atom property » type;

int format;
int mode;
unsigned

char *data;

int nelements;

ARGUMENTS
display

w

property
type

format

mode

data
nelements
DESCRIPTION

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the window ID of the window whose property
you want to change.

Specifies the property atom.

Specifies the type of the property. X does not interpret
the type, but simply passes it back to an application that
later calls XGetProperty.

Specifies whether the data should be viewed as a list of 8-
bit, 16-bit, or 32-bit quantities. This information allows
the X server to correctly perform byte-swap operations as
necessary. If the format is 16-bit or 32-bit, you must expli-
citly cast your data pointer to a (char *) in the call to
XChangeProperty. Possible values are 8, 16, and 32.

Specifies the mode of the operation. Possible values are
PropModeReplace, PropModePrepend, PropModeAppend, or no
value.

Specifies the property data.
Specifies the number of elements in the property.

XChangeProperty changes a property and generates PropertyNotify events if
they have been selected.



. XChangeProperty (3X) (Xl1ib - Properties) XChangeProperty(3X)

XChangeProperty does the following according to the mode argument:

PropModeReplace — Discards the previous property value.

PropModePrepend — Inserts the data before the beginning of the exist-
ing data. If the property is undefined, it is treated as defined with
the correct type and format with zero length data. type and format

arguments must match the existing property value, otherwise a Bad-
Match error occurs.

PropModeAppend — Appends the data onto the end of the existing
data. If the property is undefined, it is treated as defined with the
correct type and format with zero length data. type and format argu-
ments must match the existing property value, otherwise a BadMatch
error occurs.

The property may remain defined even after the client which defined it

exits.

The property becomes undefined only if the application calls

XDeleteProperty, destroys the specified window, or closes the last connec-
tion to the X server.

The maximum size of a property is server dependent and can vary dynam-
ically if the server has sufficient memory.

ERRORS

BadAlloc
BadAtom
BadMatch
BadValue
BadWindow

SEE ALSO

XSetStandardProperties, XGetFontProperty, XRotateWindowProperties,

XDeleteProperty, XGetWindowProperty, XListProperties, XGetAtomName,
XInternAtom.



XChangeSaveSet(3X) (Xlib - Window Save Set) XChangeSaveSet(3X)

NAME
XChangeSaveSet — add or remove a subwindow from the client’s save-

set.

SYNOPSIS
XChangeSaveSet (display, w, change_mode)
Display *display;
Window w;
int change_mode;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

w Specifies the window ID. This is the window whose chil-
dren you want to add or remove from the client’s save-set;
it must have been created by some other client.

change_mode  Specifies the mode. Pass one of these constants: SetMo-
deInsert (adds the window to this client’s save-set) or Set-
ModeDelete (deletes the window from this client's save-
set).

DESCRIPTION
XChangeSaveSet controls the longevity of subwindows, which are normally
destroyed when the parent is destroyed.

The save-set of a client is a list of other client’s windows which, if they
are inferiors of one of the client’s windows at connection close, should not
be destroyed and should be remapped if they are unmapped. For exam-
ple, a window manager which wants to add decoration to a window by
adding a "frame,"” might reparent an application’s window to the "frame
window." When the frame is destroyed, the application’s window should
not also be destroyed, but should be returned to its previous place in the
window hierarchy. Refer to the GSE Programmer’s Guide for more informa-
tion about save-sets.

Windows are removed automatically from the save-set by the server when
they are destroyed. For each window in the client’s save-set, if the win-
dow is an inferior of a window created by the client, the save-set window
is reparented to the closest ancestor such that the save-set window is not
an inferior of a window created by the client. If the save-set window is
unmapped, a MapWindow request is performed on it. After save-set pro-
cessing, all windows created by the client are destroyed. For each non-
window resource created by the client, the appropriate Free request is

-1-



XChangeSaveSet(3X) (X1ib - Window Save Set) XChangeSaveSet(3X)

performed. All colors and colormap entries allocated by the client are
freed.

ERRORS
BadMatch w not created by some other client.

BadValue
BadWindow

SEE ALSO
XAddToSaveSet, XRemoveFromSaveSet.



XChangeWindowA ttributes (3X) (X1ib - Window Attributes) XChangeWindowAttributes(3X)

XChangeWindowAttributes — set window attributes.

SYNOPSIS

XChangeWindowAttributes (display, w, valuemask, attributes)
Display =*display;
Window w;
unsigned 1long valuemask;
XSetWindowAttributes *atiributes;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

w Specifies the window ID.

valuemask Specifies which window attributes are defined in the attri-

butes argument. If valuemask is 0, the rest is ignored, and
attributes is not referenced. The values and restrictions are
the same as for XCreateSimpleWindow and XCreateWindow.

attributes Window attributes to be changed. The valuemask indicates
which members in this structure are referenced.

DESCRIPTION

XChangeWindowAttributes changes any or all of the window attributes that
can be changed. For descriptions of the window attributes, refer to the
GSE Programmer’s Guide.

Changing the background does not cause the window contents to be
changed. Use XClearWindow to cause the background to be repainted.
Setting the border, or changing the background such that the border tile
origin changes, causes the border to be repainted. Changing the back-
ground of a root window to None or ParentRelative restores the default
background pixmap. Changing the border of a root window to CopyFrom-
Parent restores the default border pixmap.

Changing the win_gravity does not affect the current position of the win-
dow. Changing the backing_store of an obscured window to WhenMapped
or Always may have no immediate effect. Also changing the backing_planes,
backing_pixel, or save_under of a mapped window may have no immediate
effect.

Multiple clients can select input on the same window; the event_mask
passed are disjoint. When an event is generated it will be reported to all
interested clients. Therefore, the setting of the event_mask attribute by one

-1-



XChangeWindowAttributes(3X) (xtib - Window Attributes) XChangeWindowAttributes (3X)

client will not affect the event_mask of others on the same window. How-
ever, at most, one client at a time can select each of Substruc-
tureRedirectMask, ReSizeRedirectMask, and ButtonPressMask on any one win-
dow. If a client attempts to select on SubtructureRedirectMask, Resiz-
eRedirectMask, or ButtonPressMask and some other client has already
selected it on the same window, the X server generates a BadAccess error.

There is only one do_not_propagate_mask for a window, not one per client.

Changing the colormap attribute of a window generates a ColormapNotify
event. Changing the colormap attribute of a visible window may have no
immediate effect on the screen (because the map may not be installed
until the window manager or client calls XInstallColormap).

Changing the cursor of a root window to None restores the default cursor.

STRUCTURES
/*

* Data structure for setting window attributes.

*/
typedef struct {
Pixmap background_pixmap;

/*backgrnd pixmap, None, orParentRelative*/

unsigned long background_pixel;/* background pixel */

Pixmap border_pixmap; /*
unsigned long border_pixel; /#*
int bit_gravity:; /»

int win_gravity; /*
int backing_store; /*
unsigned long backing_planes;/#
unsigned long backing_pixel; /*
Bool save_under; /*

long event_mask; /*
long do_not_propagate_mask; /»
Bool override_redirect; /*
Colormap colormap; /*
Cursor cursor; /*

)} XSetWindowAttributes;

border of the window »/

border pixel value */

one of bit gravity values »/

one of the window gravity values */
NotUseful, WhenMapped, Always */

Planes to be preseved if possible */
value to use in restoring planes */
should bits under be saved (popups) */
set of events that should be saved »/
set of events that should not propagate */
override redirected config request */
colormap to be associated with window */
cursor to be displayed (or None) =/



XChangeWindowAttributes (3X)

/* Window attributes for CreateWindow and ChangeWindowAttributes */

/*Definitions for valuemask argument */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

ERRORS

CWBackPixmap
C'BnckPixol'
CWBorderPixmap
CWBorderPixel
CWBitGravity
CWWinGravity
CWBackingStore
CWBackingPlanes
CWBackingPixel
CWOverrideRedirect
CWSaveUnder
CWEventMask
CWDontPropagate
CWColormap
CWCursor

BadAccess

BadColor

BadCursor

BadMatch

BadPixmap

BadValue

BadWindow

SEE ALSO

XGetWindowAttributes, XSetWindowBackground,

(Xlib - Window Attributes)

(1L<<0)
(1L<<1)
(1L<<2)
(1L<<3)
(1L<<4)
(1L<<B)
(1L<<8)
(1L<<7)
(1L<<8)
(1L<<9)
(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)

XChangeWindowA ttributes (3X)

XSetWindowBackgroundPixmap, XSetWindowBorder,
XSetWindowBorderPixmap, XGetGeometry.



XCheckIfEvent(3X) (X1ib - Input Handling) XCheckIfEvent(3X)

NAME
XCheckIfEvent — check event queue for matching event.

SYNOPSIS
int XCheckIfEvent (display, event, predicate, args)
Display *display;
XEvent *event; /* RETURN %/
Bool (*predicate) () ;
char *args;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
event Returns the matched event.
predicate Specifies the procedure that is called to determine if the
next event matches your criteria.
args Specifies the user-specified arguments that will be passed
to the predicate procedure.
DESCRIPTION

XCheckIfEvent returns the next event in the queue that is matched by the
specified predicate procedure. That event is removed from the queue. If
no match is found, XChecklfEvent returns False and flushes the output
buffer. No other events are removed from the queue. Later events in the
queue are not searched.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XPeckEvent, XPeekIfEvent, XPutBackEvent,
XPending, XSynchronize, XSendEvent, QLength.



XCheckMaskEvent(3X) (Xl1ib - Input Handling) XCheckMaskEvent(3X)

NAME
XCheckMaskEvent — remove next event that matches mask but do not
wait.

SYNOPSIS
Bool XCheckMaskEvent (display, mask_event, event)
Display *display;
long mask_event ;

XEvent *event; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
event_mask Specifies the event types to be returned. See list under
XSelectInput.
event Returns a copy of the matched event’s XEvent structure.
DESCRIPTION

XCheckMaskEvent removes the next event in the queue which matches the
passed mask. The event is copied into an XEvent supplied by the caller
and XCheckMaskEvent returns True. Other events earlier in the queue are
not discarded. If no such event has been queued, XCheckMaskEvent
flushes the output buffer and immediately returns False, without waiting.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XNextEvent, XEventsQueued, XAllowEvents, XGetMotionEvents,
XIfEvent, XCheckIfEvent, XPeekEvent, XPeeklfEvent, XPutBackEvent,
XPending, XSynchronize, XSendEvent, QLength.



XCheckTypedEvent(3X) (X1ib - Input Handling) XCheckTypedEvent(3X)

NAME

XCheckTypedEvent — return next event in queue that matches event type
but do not wait.

SYNOPSIS
Bool XCheckTypedEvent (display, event_type, report)
Display *display;
int event_type;

XEvent *report; /* RETURN %/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
event_type Specifies the event type to be compared.
report Returns a copy of the matched event structure.
DESCRIPTION

XCheckTypedEvent searches first the event queue, then the events available
on the server connection, for the specified event_type. If there is a match,
it returns the associated event structure. Events searched but not
matched are not discarded. XCheckTypedEvent returns True if the event is
found. If the event is not found, XCheckTypedEvent flushes the output
buffer and returns False.

This command is similar to XCheckMaskEvent, but it searches through the
queue instead of inspecting only the last item on the queue. It also
matches only a single event type instead of multiple event types as speci-
fied by a mask.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedWindowEvent, XMaskEvent,
XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeekIfEvent,
XPutBackEvent, XPending, XSynchronize, XSendEvent, QLength.



XCheckTypedWindowEvent(3X) (Xlib - Input Handling) XCheckTypedWindowEvent(3X)

NAME
XCheckTypedWindowEvent — return next event in queue matching type
and window.

SYNOPSIS
Bool XCheckTypedWindowEvent (display, w, event_type, report)
Display *display;

Window w;
int event_type;
XEvent *report; /* RETURN x/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
event_type Specifies the event type to be compared.
report Returns the matched event’s associated structure into this

client-supplied structure.

DESCRIPTION
XCheckTypedWindowEvent searches first the event queue, then any events
available on the server connection for an event that matches the specified
window and the specified event type. Events searched but not matched
are not discarded.

XCheckTypedWindowEvent returns True if the event is found; it flushes the
output buffer and returns False if the event is not found.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XMaskEvent, XCheckMaskEvent,
XNextEvent, XEventsQueued, XAllowEvents, XGetMotionEvents, XIfEvent,
XCheckIfEvent, XPeekEvent, XPeekIfEvent, XPutBackEvent, XPending,
XSynchronize, XSendEvent, QLength.



XCheckWindowEvent(3X) (X1ib - Input Handling) XCheckWindowEvent(3X)

NAME
XCheckWindowEvent — remove next event matching both passed win-
dow and passed mask, but do not wait.

SYNOPSIS
Bool XCheckWindowEvent (display, w, event_mask, event)
Display *display;
Window w;
long event_mask ;
XEvent *event; /* RETURN */

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

w Specifies the window ID. The event must match both the
passed window and the passed event mask.

event_mask Specifies the event mask. See XSelectInput for a list of
mask elements.

event Returns the XEvent structure.

DESCRIPTION
XCheckWindowEvent removes the next event in the queue which matches
both the passed window and the passed mask. If such an event exists, it
is copied into an XEvent supplied by the caller. Other events earlier in the
queue are not discarded.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

RETURNED VALUE
If a matching event is found, XCheckWindowEvent returns True. If no such
event has been queued, it flushes the output buffer and returns False,
without waiting.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckTypedEvent, XCheckTypedWindowEvent, XMaskEvent,
XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XChecklfEvent, XPeekEvent, XPeekIfEvent,
XPutBackEvent, XPending, XSynchronize, XSendEvent, QLength.



XCirculateSubwindows(3X) (Xlib - Window Manipulation) XCirculateSubwindows(3X)

NAME
XCirculateSubwindows — circulate stacking order of children up or down
order.

SYNOPSIS
XCirculateSubwindows (display, w, direction)
Display *display;
Window w;
int direction;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from

XOpenDisplay.
w Specifies the window ID of the parent of the subwindows
to be circulated.

direction Specifies the direction (up or down) that you want to cir-
culate the children. Pass either RaiseLowest or LowerHighest.

DESCRIPTION

XCirculateSubwindows circulates the children of the specified window in
the specified direction, either RaiseLowest or LowerHighest. If some other
client has selected SubstructureRedirectMask on the specified window, then
a CirculateRequest event is generated, and no further processing is per-
formed. If you specify RaiseLowest, this function raises the lowest
mapped child (if any) that is occluded by another child to the top of the
stack. If you specify LowerHighest, this function lowers the highest
mapped child (if any) that occludes another child to the bottom of the
stack. Exposure processing is performed on formerly obscured windows.

ERRORS
BadValue
BadWindow

SEE ALSO
XLowerWindow, XRaiseWindow, XCirculateSubwindowsDown,
XCirculateSubwindowsUp, XRestackWindows, XMoveWindow, XResizeWindow,
XMoveResizeWindow, XReparentWindow, XConfigureWindow, XQueryTree.



XCirculateSubwindowsDown(3X) (Xlib - Window Manipulation) XCirculateSubwindowsDown(3X)

NAME
XCirculateSubwindowsDown — circulate bottom child to top of stacking
order.

SYNOPSIS
XCirculateSubwindowsDown (display, w)
Display *display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID of the parent of the windows to
be circulated.
DESCRIPTION

XCirculateSubwindowsDown lowers the highest mapped child of the speci-
fied window that partially or completely obscures another child. The
lowered child goes to the bottom of the stack. Completely unobscured
children are not affected. Generates exposure events on any window
formerly obscured. Repeated executions lead to round-robin lowering.
This is equivalent to XCirculateSubwindows (display, w, LowerHighest).

If some other client has selected SubstructureRedirectMask on the window,
then a CirculateRequest event is generated, and no further processing is
performed.

ERRORS
BadWindow

SEE ALSO
XLowerWindow, XRaiseWindow, XCirculateSubwindows,
XCirculateSubwindowsUp, XRestackWindows, XMoveWindow, XResizeWindow,
XMoveResizeWindow, XReparentWindow, XConfigureWindow, XQueryTree.



XCirculateSubwindowsUp(3X) (Window Manipulation) XCirculateSubwindowsUp(3X)

NAME
XCirculateSubwindowsUp — circulate top child to bottom of stacking
order.

SYNOPSIS
XCirculateSubwindowsUp (display, w)
Display *display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID of the parent of the windows to
be circulated.
DESCRIPTION

XCirculateSubwindowsUp raises the lowest mapped child of the specified
window that is partially or completely obscured by another child. The
raised child goes to the top of the stack. Completely unobscured children
are not affected. This generates exposure events on the raised child (and
its descendents, if any). Repeated executions lead to round robin-raising.
This is equivalent to XCirculateSubwindows (display, w, RaiseLowest).

If some other client has selected SubstructureRedirectMask on the window,
then a CirculateRequest event is generated, and no further processing is
performed.

ERRORS
BadWindow

SEE ALSO
XLowerWindow, XRaiseWindow, XCirculateSubwindows,
XCirculateSubwindowsDown, XRestackWindows, XMoveWindow,
XResizeWindow, XMoveResizeWindow, XReparentWindow, XConfigureWindow,
XQueryTree.



XClearArea(3X) (X1ib - Drawing Primitives) XClearArea(3X)

NAME
XClearArea — clear a rectangular area in a window.

SYNOPSIS
XClearArea (display, w, x, y, width, height, exposures)
Display *display;
Window w;
int x, y;
unsigned int width, height;
Bool exposures ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
Specifies the window ID of an InputOutput window.
x
v Specify the x and y coordinates. These coordinates are
relative to the origin of the window and specify the upper
left corner of the rectangle.
width
height Specify the dimensions of the rectangle to be cleared.
exposures Specifies whether exposure events are generated. Must be
either True or False.
DESCRIPTION

XClearArea clears a rectangular area in a window.

If width is zero, the window is cleared from x to the right edge of the win-
dow. If height is zero, the window is cleared from y to the bottom of the
window.

If the window has a defined background tile or it is ParentRelative, the rec-
tangle is tiled with a plane_mask of all ones and function of GXCopy. If the
window has background None, the contents of the window are not
changed. In either case, if exposures is True, then one or more exposure
events are generated for regions of the rectangle that are either visible or
are being retained in a backing store.



XClearArea(3X) (X1ib - Drawing Primitives) XClearArea(3X)

ERRORS
BadMatch Window is an InputOnly class window.

BadValue
BadWindow

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles,
XDrawSegments, XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon,
XFillRectangle, XFillRectangles, XClearWindow.



XClearWindow(3X) (X1ib - Drawing Primitives) XClearWindow(3X)

NAME
XClearWindow — clear an entire window.

SYNOPSIS
XClearWindow (display, w)
Display *display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
DESCRIPTION

XClearWindow clears a window, but does not cause exposure events. This
function is equivalent to XClearArea(display, w, 0, 0, 0, O, False).

If the window has a defined background tile or it is ParentRelative,
the rectangle is tiled with a plane_mask of all ones and function of GXCopy.
If the window has background None, the contents of the window are not
changed.

ERRORS
BadMatch If w is an InputOnly class window.

BadValue
BadWindow

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles,
XDrawSegments, XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon,
XFillRectangle, XFillRectangles, XClearArea.



XClipBox(3X) (Xlib - Regions) XClipBox(3X)

NAME
XClipBox — generate smallest rectangle enclosing region.
SYNOPSIS
XClipBox (r, rect)
Region r;
XRectangle *rect; /* RETURN */
ARGUMENTS
r Specifies the region.
rect Returns the smallest rectangle enclosing region.
DESCRIPTION

XClipBox returns the smallest rectangle that encloses the given region.

STRUCTURES

typedef struct {
short x, y:
unsigned short width, height;
unsigned short width, height;

} XRectangle;

/%
* opaque reference to Region data type.
* user won"t need contents, only pointer.
*/

typedef struct _XRegion *Region;

SEE ALSO
XXorRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XShrinkRegion, XSetRegion, XRectInRegion, XPolygonRegion, XPointInRegion,
XOffsetRegion, XIntersectRegion, XEmptyRegion, XCreateRegion,
XDestroyRegion, XEqualRegion.



XCloseDisplay(3X) (Xlib - HouseKeeping) XCloseDisplay (3X)

NAME

XCloseDisplay — disconnect client from an X server and display.
SYNOPSIS

XCloseDisplay (display)

Display *display;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from

XOpenDisplay.

DESCRIPTION

XCloseDisplay closes the connection between the current client and the X
server specified by the Display argument.

The XCloseDisplay routine destroys all windows, resource IDs (Window,
Font, Pixmap, Colormap, Cursor, and GContext), or other resources (GCs)
that the client application has created on this display, unless the
CloseDownMode of the client’s resources has been changed by
XSetCloseDownMode. Therefore, these windows, resource IDs, and other
resources should not be referenced again. In addition, this routine dis-
cards any output that has been buffered but not yet sent. Although these
operations automatically (implicitly) occur when a process exits, you
should call XCloseDisplay anyway.

SEE ALSO

XFree, XOpenDisplay, XNoOp,



XConfigureWindow (3X) (X1ib - Window Manipulation) XConfigureWindow(3X)

NAME

XConfigureWindow — change window position, size, border width, or
stacking order.

SYNOPSIS

XConfigureWindow (display, w, value_mask, values)
Display *display;
Window w;
unsigned int value_mask;
XWindowChanges *uvalues;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID of window to be reconfigured.
value_mask Specifies which values are to be set using information in
the values structure. value_mask is the bitwise inclusive OR
of the valid change window value bits. See their defini-
tions in the Structures section below.
values Specifies a pointer to the XWindowChanges structure con-
taining new configuration information. See the Structures
section below.
DESCRIPTION

XConfigureWindow changes the window position, size, border width,
and/or the stacking order. This call should not be made without prepar-
ing for interaction with the window manager. A ConfigureNotify event is
generated to announce any changes.

If the override_redirect attribute of the window is False, and if some other
client has selected SubstructureRedirectMask on the parent, then the X
server generates a ConfigureRequest event, and no further processing is
performed. If some other client has selected ResizeRedirectMask on the
window and width or height is being changed, then a ResizeRequest event is
generated and the actual size of the window is not changed. The Resiz-
eRequest event will be received by the other client (the window manager)
and some action taken. The client should wait for the ConfigureNotify
event to find out the size of the window. Note that the override_redirect
attribute of the window has no effect on ResizeRedirectMask and that Sub-
structureRedirectMask on the parent has precedence over ResizeRedirectMask
on the window.



XConfigureWindow(3X) (X1ib - Window Manipulation) XConfigureWindow(3X)

When the geometry of the window is changed as specified, the window is
restacked among siblings, and a ConfigureNotify event is generated if the
state of the window actually changes. X generates GravityNotify events
after generating ConfigureNotify events.

If a window’s size actually changes, the window’s subwindows may move
according to their window gravity. Depending on the window’s bit grav-
ity, the contents of the window also may be moved. Refer to the GSE
Programmer’s Guide for further information.

Exposure processing is performed on formerly obscured windows, includ-
ing the window itself and its inferiors, if regions of them were obscured
but now are not. As a result of increasing the width or height, exposure
processing is also performed on any new regions of the window and any
regions where window contents are lost.

The members of XWindowChanges that you specify in values are:

x

y Specify the x and y coordinates relative to the parent’s ori-
gin and the position of the upper left outer corner of the
window.

width

height Specify the inside size of the window, not including the

border. These arguments must be positive.
border_width  Specifies the width of the border in pixels.

sibling Specifies the sibling window for stacking operations. If
not specified, no change in the stacking order will be
made. If specified, stack_mode must also be specified.

stack_mode The stack mode can be any of these constants: Above,
Below, Toplf, Bottomlf, or Opposite.

The computation for the Bottomlf, Toplf, and Opposite stacking modes is
performed with respect to the w’s final size and position (as controlled by
the other arguments to XConfigureWindow, not its initial position.) It is an
error if sibling is specified without stack_mode. If sibling and stack_mode are
specified, the window is restacked as follows:

Stacking Flag Position

Above w is placed just above sibling
Below w is placed just below sibling
Toplf if sibling obscures w, then w



XConfigureWindow(3X)

Bottomlf

Opposite

(X1ib - Window Manipulation) XConfigureWindow(3X)

is placed at the top of the stack

if w obscures sibling, then w

is placed at the bottom of the stack

if sibling occludes w, then w

is placed at the top of the stack, else if
w occludes sibling, then w

is placed at the bottom of the stack

If a stack_mode is specified but no sibling is specified, the window is res-
tacked as follows:

Stacking Flag

Above
Below

Toplf

Bottomlf

Opposite

STRUCTURES
typedef
iat x,

struct {
Y.

int width, height;
int border_width;
Window sibling;
int stack_mode;

} XWindowChanges;

Position

w is placed at the top of the stack

w is placed at the bottom of the stack

if any sibling obscures w, then w

is placed at the top of the stack

if w obscures any sibling, then window
is placed at the bottom of the stack

if any sibling occludes w, then w

is placed at the top of the stack, else if
w occludes any sibling, then w is placed
at the bottom of the stack

/* ConfigureWindow structure */
/* ChangeWindow value bits definitions for ovaluemask =/

#define
#define
#define
#define
#define
#define
#define

cwX

cwy

CWWidth
CWHeight
CWBorderWidth
CW8ibling
CWStackMode

(1<<0)
(1<<1)
(1<<2)
(1<<3)
(1<<4)
(1<<B)
(1<<8)



XConfigureWindow(3X) (Xlib - Window Manipulation) XConfigureWindow(3X)

ERRORS
BadMatch Non-zero border-width of InputOnly window.
sibling specified without a stack_mode.
The sibling window is not actually a sibling.

BadValue width or height is zero.
BadWindow

SEE ALSO
XLowerWindow, XRaiseWindow, XCirculateSubwindows,
XCirculateSubwindowsDown, XCirculateSubwindowsUp, XRestackWindows,
XMoveWindow, XResizeWindow, XMoveResizeWindow, XReparentWindow,

XQueryTree.



XConvertSelection(3X) (X1ib - Selections) XConvertSelection(3X)

NAME
XConvertSelection — use the value of a selection.
SYNOPSIS
XConvertSelection (display, selection, target, property, requestor,
time)
Display *display;
Atom selection, target;
Atom property ; /* may be None */
Window requestor;
Time time;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
selection Specifies the selection atom. XA_PRIMARY and
XA_SECONDARY are the standard selection atoms.
target Specifies the atom of the target type property.
property Specifies a property describing the requested data. None is
also valid.
requestor Specifies the requesting window.
time Specifies the time when the conversion should take place.
Pass either a timestamp, expressed in milliseconds, or the
constant CurrentTime.
DESCRIPTION

XConvertSelection causes a SelectionRequest event to be sent to the current
selection owner if there is one, specifying the property to store the data in
(selection), the format to convert that data into before storing it (target), the
specific information requested (property), the window that wants the infor-
mation (requestor), and the time to make the conversion (time).

The selection owner responds by sending a SelectionNotify event, which
confirms the selected atom and type. If no owner for the specified selec-
tion exists, or if the owner could not convert to the type specified by
requestor, the X server generates a SelectionNotify event to the requestor
with property None. Refer to the GSE Programmer’ s Guide for a description
of selection events and selection conventions.



XConvertSelection (3X) (X1ib - Selections) XConvertSelection(3X)

ERRORS
BadAtom
BadWindow

SEE ALSO
XSetSelectionOwner, XGetSelectionOwner.



XCopyArea(3X) (X1ib - Drawing Primitives) XCopyArea(3X)

NAME
XCopyArea — copy an area of a drawable.

SYNOPSIS
XCopyArea (display, src, dest, gc, src_x, src_y, width, height,
dest_x, dest_y)
Display *display;
Drawable src, dest;
GC gc;
int src x, src_y;
unsigned int width, height;
int dest_x, dest_y;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
src
dest Specify the source and destination rectangles to be com-
bined. src and dest must have the same root and depth.
g Specifies the graphics context.
src_x
src_y Specify the x and y coordinates of the source rectangle
relative to its origin. These coordinates specify the upper
left corner of the source rectangle.
width
height Specify the dimensions of both the source and destination
rectangles.
dest_x
dest_y Specify the x and y coordinates within the destination
window.
DESCRIPTION

XCopyArea combines the specified rectangle of src with the specified rec-
tangle of dest. src and dest must have the same root and depth.

If regions of the source rectangle are obscured and have not been retained
in backing_store, or if regions outside the boundaries of the source draw-
able are specified, then those regions are not copied. Instead, the follow-
ing occurs on all corresponding destination regions that are either visible
or are retained in backing_store. If dest is a window with a background
other than None, the corresponding regions of the destination are tiled

-1-



XCopyArea(3X) (Xl1ib - Drawing Primitives) XCopyArea(3X)

(with plane_mask of all ones and function XGCopy) with that background.
Regardless of tiling, if the destination is a window and graphics_exposure in
gc is True, then GraphicsExpose events for all corresponding destination
regions are generated. If graphics_exposure is True but no regions are
exposed, then a NoExpose event is generated.

If regions of the source rectangle are not obscured and graphics_exposure is
False, one NoExpose event is generated on the destination.

XCopyArea uses these graphics context components: function, plane_mask,
subwindow_mode,  graphics_exposures, clip_x_origin, clip_y_origin, and
clip_mask.

ERRORS

BadMatch The src and dest rectangles do not have the same root and
depth.

BadDrawable

BadGC

SEE ALSO

XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles,
XDrawSegments, XCopyPlane, XFillArc, XFillArcs, XFillPolygon,
XFillRectangle, XFillRectangles, XClearArea, XClearWindow.



XCopyColormapAndFree(3X) (Xlib - Colormaps) XCopyColormapAndFree(3X)

NAME
XCopyColormapAndFree — copy a colormap and return new colormap
ID.

SYNOPSIS
Colormap XCopyColormapAndFree (display, cmap)
Display *display;
Colormap cmap;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap you are moving out of.
DESCRIPTION

XCopyColormapAndFree is used to obtain a new virtual color map when
allocating out of a previous colormap has failed due to resource exhaus-
tion (that is, too many cells or planes were in use in the original color-
map).

XCopyColormapAndFree moves all of the client’s existing allocations from
cmap to the returned Colormap and frees those entries in cmap. Values in
other entries of the new colormap are undefined. The visual type and
screen for the new colormap is the same as for the old.

If cmap was created by the client with the alloc argument set to AllocAll,
the new colormap is also created with AllocAll, all color values for all
entries are copied from cmap, and then all entries in cmap are freed.

If cmap was created with AllocNone, the allocations to be moved are all
those pixels and planes that have been allocated by the client using XAl-
locColor, XAllocNamedColor, XAllocColorCells, or XAllocColorPlanes and
which have not been freed since they were allocated.

ERRORS
BadAlloc
BadColor

SEE ALSO
XCreateColormap, XFreeColormap, XGetStandardColormap, XInstallColormap,
XUninstallColormap, XSetStandardColormap, XListInstalledColormaps,
XSetWindowColormap, DefaultColormap, DisplayCells.



XCopyGC(3X)

NAME

XCopyGC — copy a graphics context.

SYNOPSIS

(Xlib - Graphics Context) XCopyGC(3X)

XCopyGC (display, src, valuemask, dest)

Display *display;

GC src, dest;

unsigned long valuemask;

ARGUMENTS
display

src

valuemask

dest
DESCRIPTION

Specifies a pointer to the Display structure; returned from

XOpenDisplay.

Specifies the components of the source graphics context.

Specifies the components in the source GC structure to be

copied into the destination GC.

Specifies the destination graphics context.

XCopyGC copies the selected elements of one Graphics Context to
another. Refer to the GSE Programmer’s Guide for a description of the
graphics context.

STRUCTURES

The GC structure contains the following elements:

/*

* Data structure for setting graphics context.

*/
typede
int

unsigned long plane_mask;
unsigned long foreground;
unsigned long background;

int
int
int
int
int
int
int

£ struct {
function;

line_width;
line_style;
cap_style;
join_style;
£il1ll_style;
£il1l_rule;
arc_mode;

Pixmap tile;

Pixm

ap stipple;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

logical operation */

plane mask */

foreground pixel */

background pixel */

line width */

S8olid, OnOffDash, DoubleDash */
NotLast, Butt, Round, Projecting »/
Miter, Round, Bevel #/

Solid, Tiled, Stippled */

EvenOdd, Winding */

PieSlice */

tile pixmap for tiling operations =/
stipple 1 plane pixmap for stipping



XCopyGC(3X)

(X1ib - Graphics Context) XCopyGC(3X)

int ts_x_origin;
int ts_y_origin;
Font font;

int subwindow_mode;

Bool graphics_exposures;
int clip_x_origin;
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;
char dashes;

} XGCValues;

/* offset for tile or stipple operations */

/* default text font for text operations */
/* ClipByChildren, IncludeInferiors */

/* boolean, should exposures be generated */
/* origin for clipping */

/* bitmap clipping; other calls for rects */
/% patterned/dashed line information */

/* GC components: masks used in XCreateGC, XCopyGC, XChangeGC, OR“ed into
GC.stateChanges */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

GCFunction
GCPlaneMask
GCForeground
GCBackground
GCLineWidth
GCLineStyle
GCCapStyle
GCJoinBtyle
GCFill8tyle
GCFillRule

GCTile

GCStipple
GCTileStipXOrigin
GCTileS8tipYOrigin
GCFont
GCSubwindowMode
GCGraphicsExposures
GCClipXOrigin
GCClipYOrigin
GCClipMask
GCDashOffmet
GCDashList
GCArcMode

(1L<<0)
(1L<<1)
(1L<<2)
(1L<<3)
(1L<<4)
(1L<<5)
(1L<<8)
(1L<<7)
(1L<<8)
(1L<<9)
(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)
(1L<<1B)
(1L<<18)
(1L<<17)
(1L<<18)
(1L<<19)
(1L<<20)
(1L<<21)
(1L<<22)



XCopyGC(3X) (X1ib - Graphics Context) XCopyGC(3X)

ERRORS
BadMatch src and dest do not have the same root and depth.

BadAlloc
BadGC
BadValue

SEE ALSO
XChangeGC, XCreateGC, XFreeGC, XGContextFromGC, XSetStipple,
XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes, XSetFillRule,
XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XCopyPlane(3X) (Xlib - Drawing Primitives) XCopyPlane(3X)

NAME
XCopyPlane — copy and color bit-plane of drawable.

SYNOPSIS
XCopyPlane (display, src, dest, gc, src_x, src_y, width, height,
dest_x, dest_y, plane)
Display *display;
Drawable src, dest;
GC gc;
int src x, srcy;
unsigned int width, height;
int dest_x, dest_y;
unsigned long plane;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
src
dest Specify the source and destination drawables.
8¢ Specifies the graphics context.
src_x
src_y Specify the x and y coordinates of the source rectangle
relative to its origin. These coordinates specify the upper
left corner of the source rectangle.
width
height Specify the width and height. These are the dimensions
of both the source and destination rectangles.
dest_x
dest_y Specify the x and y coordinates of the copied area relative
to the origin of the destination drawable.
plane Specifies the source bit-plane. You must set exactly one
bit.
DESCRIPTION

XCopyPlane copies a single plane of a rectangle in the source into the
entire depth of a corresponding rectangle in the destination. The plane of
the source drawable and the foreground/background pixel values in gc are
combined to form a pixmap of the same depth as the destination draw-
able, and the equivalent of an XCopyArea is performed, with all the same
exposure semantics.



XCopyPlane(3X) (XIib - Drawing Primitives) XCopyPlane(3X)

XCopyPlane uses these graphics context components: function, plane_mask,
foreground, background, subwindow_mode, graphics_exposures, clip_x_origin,
clip_y_origin, and clip_mask.

src and dest must have the same root, but need not have the same depth.

ERRORS
BadDrawable

BadGC
BadMatch src and dest do not have the same root.
BadValue plane does not have exactly one bit set.

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles,
XDrawSegments, XCopyArea, XFillArc, XFillArcs, XFillPolygon,
XFillRectangle, XFillRectangles, XClearArea, XClearWindow.



XCreateAssocTable(3X) (X1ib - Association Tables) XCreateAssocTable(3X)

NAME

XCreateAssocTable — create a new association table (X10).
SYNOPSIS

XAssocTable *XCreateAssocTable (size)

int size;

ARGUMENTS

size Specifies the number of buckets in the hashed association

table.

DESCRIPTION

XCreateAssocTable creates an association table, which allows you to associ-
ate your own structures with X resources in a fast lookup table. This
function is provided for compatibility with X Version 10. To use it you
must include the file <X11/X10.h> and link with the library -loldX.

The size argument specifies the number of buckets in the hash system of
XAssocTable. For reasons of efficiency the number of buckets should be
a power of two. Some size suggestions might be: use 32 buckets per
100 objects; a reasonable maximum number of object per buckets is 8. If
there is an error allocating memory for the XAssocTable, a NULL
pointer is returned.

STRUCTURES
typede? struct {
XAssoc *buckets; /* pointer to first bucket in array */
int size; /* table size (number of buckets) »/
}XAssocTable;

SEE ALSO
XDeleteAssoc, XDestroyAssocTable, XLookUpAssoc, XMakeAssoc.



XCreateBitmapFromData(3X) (Xlib - Pixmaps and Tiles) XCreateBitmapFromData(3X)

NAME
XCreateBitmapFromData — create bitmap from X11 bitmap format data.

SYNOPSIS
Pixmap XCreateBitmapFromData (display, d, data, width,
height)
Display *display;
Drawable d;
char =*data;
unsigned int width, height;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable. This determines which screen to
create the bitmap on.
data Specifies the location of the bitmap data.
width
height Specify the dimensions of the created bitmap. If smaller
than the original bitmap, the upper left corner is used.
DESCRIPTION

XCreateBitmapFromData creates a single plane pixmap from an array of
hexadecimal data. This data may be defined in the program or included.
The bitmap data must be in X version 11 format. XCreateBitmapFromData
creates an image with the specified data and copies it into the created pix-
map. The following format is assumed for the data:

format=XYPixmap
bit_order=L8BFirst
byte_order=L8BFirst
bitmap_unit=8
bitmap_pad=8

xoffset=0

no extra bytes per line

The following is an example of creating a bitmap:

#define gray_width 186
#define gray_height 186
#define gray_x_hot 8
#define gray_y_hot 8



XCreateBitmapFromData(3X) (Xlib - Pixmaps and Tiles) XCreateBitmapFromData(3X)

static char gray_bitsl[] =
{
Oxf81if, Oxe3c7, Oxcff3, Ox9ff9,
Oxbffd, Ox33cc, Ox7ffe, Ox7ffe,
O0x7e7e, Ox7ffe, 0x37ec, Oxbbdd,
0x9c39, Oxcff3, Oxe3c7, OxfBif
)

Pixmap XCreateBitmapFromData(display, window, gray_bits, gray_width, gray_height) ;

If insufficient working storage was allocated, XCreateBitmapFromData
returns NULL. The user should free the bitmap using XFreePixmap when it
is no longer needed.

SEE ALSO
XSetTile, XQueryBestTile, XSetWindowBorderPixmap,
XSetWindowBackgroundPixmap, XCreatePixmap,
XCreatePixmapFromBitmapData, XFreePixmap, XQueryBestSize,
XQueryBestStipple, XWriteBitmapFile, XReadBitmapFile,
XCreatePixmapFromBitmapData.



XCreateColormap (3X) (Xl1ib - Colormaps) XCreateColormap (3X)

NAME

XCreateColormap — create a colormap.

SYNOPSIS

Colormap XCreateColormap (display, w, visual, alloc)
Display *display;

Window w;
Visual *visual;
int alloc;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies a window ID. The colormap created will be
associated with the same screen as the window.
visual Specifies a pointer to the Visual structure for the color-
map. The visual class and depth must be supported by
the screen.
alloc Specifies how many colormap entries to allocate. Pass

either AllocNone or AllocAll.

DESCRIPTION

XCreateColormap creates a colormap of the specified visual type and allo-
cates either none or all of its entries, and returns the colormap ID.

It is legal to specify any visual class in the structure pointed to by the
visual argument. If the class is StaticColor, StaticGray, or TrueColor, the
colorcells will have pre-allocated read-only values defined by the indivi-
dual server but unspecified by the X11 protocol. In these cases, alloc must
be specified as AllocNone (else a BadMatch error).

For the other visual classes, PseudoColor, DirectColor, and GrayScale, you
can pass either AllocAll or AllocNone to the alloc argument. If you pass
AllocNone, the colormap has no allocated entries. This allows your client
programs to allocate read-only colorcells with XAllocColor or read/write
cells with XAllocColorCells, AllocColorPlanes and XStoreColors. If you pass
the constant AllocAll, the entire colormap is allocated writable (all the
entries are read/write, non-shareable and have undefined initial values),
and the colors can be set with XStoreColors. However, you cannot free
these entries with XFreeColors, and no relationships between the entries
are defined.



XCreateColormap(3X) (X1ib - Colormaps) XCreateColormap (3X)

If the visual class is PseudoColor or GrayScale and alloc is AllocAll, this func-
tion simulates many calls to the function XAllocColor returning all pixel
values from 1 to (map_entries - 1). For a visual class of
DirectColor, the processing for AllocAll simulates a call to the function XAI-
locColorPlanes, returning a pixel value of zero and mask values the same as
the red_mask, green_mask, and blue_mask members in visual.

The visual structure should be as returned from the DefaultVisual macro,
XMatchVisuallnfo, or XGetVisuallnfo. The red_mask, green_mask, and
blue_mask members specify which bits of the pixel value are allocated to
each primary color. The map_entries member specifies the number of color
map entries.

ERRORS
BadMatch Didn’t use AllocNone for StaticColor, StaticGrey or TrueColor.
visual type not supported on screen.

BadAlloc
BadValue
BadWindow

SEE ALSO
XCopyColormapAndFree, XFreeColormap, XGetStandardColormap,
XInstallColormap, XUninstallColormap, XSetStandardColormap,
XListInstalledColormaps, XSetWindowColormap, DefaultColormap, DisplayCells.



XCreateFontCursor(3X) (Xl1ib - Cursors) XCreateFontCursor(3X)

NAME
XCreateFontCursor — create a cursor from standard cursor font.

SYNOPSIS
#include <X11/cursorfont.h>
Cursor XCreateFontCursor (display, shape)
Display *display;
unsigned int shape;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
shape Specifies which character in the standard cursor font
should be used for the cursor.
DESCRIPTION

X provides a set of standard cursor shapes in a special font named "cur-
sorfont”. Programs are encouraged to use this interface for their cursors,
as the font can be customized for the individual display type and swapped
between clients.

The hotspot comes from the information stored in the font. The initial
colors of the cursor are black for the foreground and white for the back-
ground. XRecolorCursor can be used to change the colors of the cursor to
those desired.

For further information about cursors and their shapes in fonts refer to the
GSE Programmer’s Guide.

ERRORS
BadAlloc
BadMatch
BadValue

SEE ALSO
XDefineCursor, XUndefineCursor, XCreateGlyphCursor, XCreatePixmapCursor,
XFreeCursor, XRecolorCursor, XQueryBestCursor, XQueryBestSize.



XCreateGC(3X) (X1ib - Graphics Context) XCreateGC(3X)

NAME
XCreateGC — create new graphics context for a drawable.

SYNOPSIS
GC XCreateGC (display, d, valuemask, values)
Display =*display;
Drawable d;
unsigned long valuemask;
XGCValues *values;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable.
valuemask Specifies the components in the graphics context. This
argument indicates which values are to be set using infor-
mation in the values structure.
values Specifies a pointer to an XGCValues structure which will
provide components for the new GC.
DESCRIPTION

This function creates a new GC, replacing the old one if there was one.
The specified components of the new graphics context in valuemask are set
to the values passed in the values argument. Unset components default as

follows:

Component Value

function : GXcopy
plane_mask:: all ones
foreground : o

background : 1

line_width : (¢]

line_style: LineSolid
cap_style: CapButt
join_style: JoinMiter
fill style: FillSolid
fill_rule: EvenOddRule
arc_mode: ArcPieSlice



tile:

stipple:
ts_x_origin:
ts_y_origin:

font:
subwindow_mode:
graphics_exposures:
clip_x_origin:
clip_y_origin:
clip_mask :
dash_offset :
dash_list :

STRUCTURES

typedef struct {
iat fuanction;
unsigned long plane_mask:;
unsigned long foreground;
unsigned long background;
int line_width;
int line_styls;
int cap_style;
int join_style;
int £ill_style;
int £ill_rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int te_x_origin;
int ts_y_origin;
Font font;
int subwindow_mode;
Bool graphics_exposures;
int clip_x_origin;
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;
char dashes;

} XGCValues;

XCreateGC(3X) (X1ib - Graphics Context) XCreateGC(3X)

Pixmap of unspecified size filled
with foreground pixel

Pixmap of unspecified size filled with ones

0

0

<implementation dependent>

ClipByChildren

True

0

[

None

[}

4 (i.e., the list [4, 4])

/* logical operation */

/* plane mask */

/* foreground pixel */

/* background pixel */

/* line width =/

/* LineSolid, LineOnOffDash, LineDoubleDash */
/* CapNotLast, CapButt, CapRound, CapProjectir
/% JoinMiter, JoinRound, JoinBevel x*/

/% FillSolid, FillTiled, FillStippled */

/* EvenOddRule, WindingRule */

/* ArcPieSlice, ArcChord »/

/% tile pixmap for tiling operations */

/* stipple 1 plane pixmap for stipping */

/* offset for tile or stipple operations */

/* default text font for text operations */
/* ClipByChildren, IncludeInferiors »*/

/* generate events on XCopyArea, XCopyPlane */
/* origin for clipping */

/* bitmap clipping; other calls for rects */
/* patterned/dashed line information */



XCreateGC(3X) (X1ib - Graphics Context)

#define GCFunction
#define GCPlaneMask
#define GCForeground
#define GCBackground
#define GCLineWidth
#define GCLineSBtyle
#define GCCapStyle
#define GCJoinStyle
#define GCFillBtyle
#define GCFillRule
#define GCTile

#define GCStipple

#define GCTileStipXOrigin
#define GCTileStipYOrigin
#define GCFont

#define GCSubwindowMode
#define GCGraphicsExposures
#define GCClipXOrigin
#define GCClipYOrigin
#define GCClipMask
#define GCDashOffset
#define GCDashList
#define GCArcMode

ERRORS
BadAlloc
BadDrawable
BadFont
BadMatch
BadPixmap
BadValue

SEE ALSO

(1L<<0)
(1L<<1)
(1L<<2)
(1L<<3)
(1L<<4)
(1L<<B)
(1L<<8)
(1L<<7)
(1L<<8)
(1L<<9)
(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)
(1L<<1B)
(1L<<18)
(1L<<17)
(1L<<18)
(1L<<19)
(1L<<20)
(1L<<21)
(1L<<22)

XCreateGC(3X)

XChangeGC, XCopyGC, XFreeGC, XGContextFromGC, XSetStipple,
XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes, XSetFillRule,

XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,

XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XCreateGlyphCursor(3X) (X1ib - Cursors) XCreateGlyphCursor(3X)

NAME
XCreateGlyphCursor — create a cursor from font glyphs.

SYNOPSIS
Cursor XCreateGlyphCursor (display, source_font, mask_font,
source_char, mask_char, foreground_color,  background_color)
Display *display;
Font source_font, mask_font ;
unsigned int source_char, mask_char;
XColor *foreground_color;
XColor *background_color ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
source_font Specifies the font glyph for the cursor.
mask_font Specifies the mask font. Optional.
source_char Specifies the index into the cursor shape font.
mask_char Specifies the index into the mask shape font. Optional.

foreground_color
Specifies the red, green, and blue (RGB) values for the
foreground.

background_color
Specifies the red, green, and blue (RGB) values for the
background.

DESCRIPTION
XCreateGlyphCursor is similar to XCreatePixmapCursor, but the source and
mask bitmaps are obtained from separate font glyphs. The mask font and
character are optional. If mask_char is not specified, all pixels of the
source are displayed.

The origin of the character is the hotspot of the created cursor. In other
words, the x offset for the hotspot is the left-bearing for the source charac-
ter, and the y offset is the ascent.

The origins of the source and mask (if it is defined) glyphs are positioned
coincidently and define the hotspot. The source and mask need not have
the same bounding box metrics, and there is no restriction on the place-
ment of the hotspot relative to the bounding boxes.



XCreateGlyphCursor(3X) (Xlib - Cursors) XCreateGlyphCursor(3X)

Note that source_char and mask_char are of type unsigned int, not of
type XChar2b. For two-byte matrix fonts, the 16-bit value should be
formed with the bytel member in the most significant byte and the byte2
member in the least significant byte.

You can free the fonts with XFreeFont if they are no longer needed after
creating the glyph cursor.

STRUCTURES
typedef struct {
unsigned long pixel;
unsigned short red, green, blue;

char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} XColor;

ERRORS
BadAlloc

BadFont
BadValue source_char not defined in source_font.
mask_char not defined in mask_font (if mask_font defined).
SEE ALSO

XDefineCursor, XUndefineCursor, XCreateFontCursor, XCreatePixmapCursor,
XFreeCursor, XRecolorCursor, XQueryBestCursor, XQueryBestSize.



XCreateImage(3X) (X1ib - Images) XCreateImage(3X)

NAME
XCreateImage — allocate memory for an XImage structure.

SYNOPSIS
#include <X11/Xutil.h>
XImage *XCreateImage (display, visual, depth, format, offset,
data, width, height, bitmap_pad, bytes_per_line)
Display *display;
Visual *visual;
unsigned int depth;
int format;
int offset;
char *data;
unsigned int width;
unsigned int height;
int bitmap_pad ;
int bytes_per_line;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

visual Specifies a pointer to the visual.

depth Specifies the depth of the image.

format Specifies the format for the image. Pass one of these con-
stants: XYPixmap, or ZPixmap.

offset Specifies the number of pixels beyond the first address of
a scanline where the image actually begins. This is useful
if the image is not aligned on an even addressable boun-
dary.

data Specifies a pointer to the image data.

width Specifies the width (in pixels) of the image.

height Specifies the height (in pixels) of the image.

bitmap_pad Specifies the quantum of a scanline. In other words, the
start of one scanline is separated in client memory from
the start of the next scanline by an integer multiple of this
many bits. You must pass one of these values: 8, 16, or
32.



XCreateImage(3X) (Xlib - Images) XCreateImage (3X)

bytes_per_line  Specifies the number of bytes in the client image between
the start of one scanline and the start of the next. If you
pass a value of 0 here, Xlib assumes that the scanlines are
contiguous in memory and thus calculates the value of
bytes_per_line itself.

DESCRIPTION

XCreatelmage allocates the memory needed for an XImage structure for the
specified display and visual. This function does not allocate space for the
image itself. Rather, it initializes the structure with ““default” values and
returns a pointer to the XImage structure. The red, green and blue mask
values are defined for Z format images only and are derived from the
Visual structure passed in. Refer to the GSE Programmer’s Guide for a
description of images.

SEE ALSO

XDestroylmage, XPutlmage, XGetImage, XSubImage, XGetSublmage,
XAddPixel, XPutPixel, XGetPixel, ImageByteOrder.



XCreatePixmap (3X) (X1ib - Pixmaps and Tiles) XCreatePixmap (3X)

NAME
XCreatePixmap — create a pixmap.

SYNOPSIS
Pixmap XCreatePixmap (display, d, width, height, depth)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int depth;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable. May be an InputOnly window.
width
height Specify the width and height. These dimensions define
the width and height of the pixmap. The values must be
non-zero.
depth Specifies the depth of the pixmap. The depth must be
supported by the root of the specified drawable.
DESCRIPTION

XCreatePixmap creates a pixmap resource and returns its Pixmap ID. The
initial contents of the pixmap are undefined.

The server uses the drawable argument to determine which screen the pix-
map is stored on. The pixmap can only be used on this screen. The pix-
map can only be used with other drawables of the same depth, except in
XCopyPlane.

A bitmap is a single plane pixmap. There is no separate bitmap type in X
version 11.

If this routine returns 0, there was insufficient space for the pixmap.

ERRORS
BadAlloc

BadDrawable



XCreatePixmap (3X) (X1ib - Pixmaps and Tiles) XCreatePixmap (3X)

BadValue width or height is zero.
depth is not supported by root window.

SEE ALSO
XSetTile, XQueryBestTile, XSetWindowBorderPixmap,
XSetWindowBackgroundPixmap, XCreatePixmapFromBitmapData, XFreePixmap,
XQueryBestSize, XQueryBestStipple, XWriteBitmapFile, XReadBitmapFile,
XCreateBitmapFromData.



XCreatePixmapCursor(3X) (Xl1ib - Pixmaps and Tiles) XCreatePixmapCursor(3X)

NAME

XCreatePixmapCursor — create a cursor from two bitmaps.

SYNOPSIS

Cursor XCreatePixmapCursor (display, source, mask,
foreground_color, background_color, x_hot, y_hot)

Display *display;

Pixmap source;

Pixmap mask;

XColor *foreground_color ;

XColor *background_color ;

unsigned int x_hot, y_hot;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
source Specifies the shape of the source cursor. Pixmap of depth
1.
mask Specifies the bits of the cursor that are to be displayed (the

mask or stipple). Pixmap of depth 1.

foreground_color
Specifies the red, green, and blue (RGB) values for the
foreground.

background_color
Specifies the red, green, and blue (RGB) values for the

background.
x_hot
y_hot These coordinates indicate the hot spot relative to the
source’s origin, and must be a point within the source.
DESCRIPTION

XCreatePixmapCursor creates a cursor and returns a cursor ID. Foreground
and background RGB values must be specified using foreground_color and
background_color, even if the server only has a monochrome screen. The
foreground_color is used for the one bits in the source, and the background
is used for the zero bits. Both source and mask (if specified) must have
depth one, but can have any root. The mask pixmap defines the shape of
the cursor; that is, the one bits in the mask define which source pixels will
be displayed. If no mask is given, all pixels of the source are displayed.
The mask, if present, must be the same size as source.



XCreatePixmap Cursor (3X) (X1ib - Pixmaps and Tiles) XCreatePixmapCursor(3X)

The pixmaps can be freed immediately if no further explicit references to
them are to be made.

STRUCTURES
typedef struct {
unsigned loang pixel;
unsigned short red, green, blue;

char flags; /* DoRed, DoGreen, DoBlue */
char pad;
)} XColor;

ERRORS
BadAlloc

BadMatch
BadPixmap
SEE ALSO
XSetTile, XQueryBestTile, XSetWindowBorderPixmap,

XSetWindowBackgroundPixmap, XCreatePixmap, XFreePixmap,

XQueryBestSize, XQueryBestStipple, XWriteBitmapFile, XReadBitmapFile,
XCreateBitmapFromData.



XCreatePixmapFromBitmapData (3X)(Xlib - Pixmaps and Bitmaps) XCreatePixmapFromBitmapData (3X)

NAME

XCreatePixmapFromBitmapData — create a pixmap with depth from bit-

map data.

SYNOPSIS

Pixmap XCreatePixmapFromBitmapData (display, drawable,
data, width, height, fg, bg, depth)

Display

*display ;

Drawable drawable;

char *data;

unsigned int width, height;
unsigned long fg, bg;
unsigned int depth;

ARGUMENTS
display

drawable
data

width
height

f8
bg

depth

DESCRIPTION

Specifies a pointer to the Display structure, returned from
XOpenDisplay.

Specifies a drawable ID which indicates which screen the
pixmap is to be used on.

Specifies the data in bitmap format.

Specify the width and height in pixels of the pixmap to
Create.

Specifies the foreground and background pixel values to
use.

Specifies the depth of the pixmap. Must be valid on the
screen specified by drawable.

XCreatePixmapFromBitmapData creates a pixmap of the given depth using
bitmap data and foreground and background pixel values.

The following format for the data is assigned by default, where the vari-
ables are members of the XImage structure described in the GSE
Programmer’s Guide.

format=XYPixmap
bit_order=LSBFirst
byte_order=LSBFirst

bitmap_unit=8



XCreatePixmapFromBitmapData (3X)(Xlib - Pixmaps and Bitmaps) XCreatePixmapFromBitmapData(3X)

bitmap_pad=8
xoffset=0
no extra bytes per line

XCreatePixmapFromBitmapData creates an image from the data and uses
XPutImage to place the data into the pixmap. For example:

#define gray_width 186

#define gray_height 18

#define gray_x_hot 8

#define gray_y_hot 8

static char gray_bits[] =
{
Oxf81f, Oxe3c7, Oxcff3, Ox9ff9,
Oxbffd, Ox33cc, Ox7ffe, Ox7ffe,
Ox7e7e, Ox7ffe, O0x37ec, Oxbbdd,
0x9c39, Oxcff3, Oxe3c7, Oxf81if/* example data */
}:

unsigned long foreground, background;

unsigned int depth;

/* open display, determine colors and depth */

Pixmap XCreatePixmapFromBitmapData(display, window, gray_bits, gray_width,
gray_height, foreground, background, depth);

If you want to use data of a different format, it is straightforward to write
a routine that does this yourself. See the Xlib code or the MakePixmap rou-
tine described in the GSE Programmer’s Guide for an example.

SEE ALSO
XSetTile, XQueryBestTile, XSetWindowBorderPixmap,
XSetWindowBackgroundPixmap, XCreatePixmap, XFreePixmap,
XQueryBestSize, XQueryBestStipple, XWriteBitmapFile, XReadBitmapFile,
XCreateBitmapFromData.



XCreateRegion(3X) (X1ib - Regions) XCreateRegion(3X)

NAME

XCreateRegion — create a new empty region.
SYNOPSIS

Region XCreateRegion ()
DESCRIPTION

XCreateRegion creates a new region of undefined size. XPolygonRegion can
be used to create a region with defined shape and size. Many of the func-
tions that perform operations on regions can also create regions.

For a description of Regions refer to the GSE Programmer’s Guide.

STRUCTURES
typedef struct _XREGION *Region;/* opaque reference
to region type */

SEE ALSO
XXorRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XShrinkRegion, XSetRegion, XRectInRegion, XPolygonRegion, XPointInRegion,
XOffsetRegion, XIntersectRegion, XEmptyRegion, XDestroyRegion,
XEqualRegion, XClipBox.



XCreateSimpleWindow(3X)  (Xlib - Window Existence) ~ XCreateSimpleWindow(3X)

NAME

XCreateSimpleWindow — creates an unmapped InputOutput window.

SYNOPSIS

Window XCreateSimpleWindow (display, parent, x, y, width,
height , border_width, border, background)

Display

*display ;

Window parent;

int x, y;
unsigned
unsigned
unsigned

ARGUMENTS
display
parent

x
y

width
height

border_width

border
background

DESCRIPTION

int width, height, border_width ;
long border;
long background ;

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the parent window ID. Must be an InputOutput
window.

Specify the x and y coordinates of the top left outside
corner of the new window’s border relative to the inside
of the parent window’s border.

Specify the width and height of the new window. These
are the inside dimensions, not including the new
window’s borders, which are entirely outside of the win-
dow. Must be nonzero. Any part of the window that
extends outside its parent window is clipped.

Specifies the width, in pixels, of the new window’s
border.

Specifies the pixel value for the border of the window.

Specifies the pixel value for the background of the win-
dow.

XCreateSimpleWindow creates an unmapped InputOutput subwindow of the
specified parent window. Use XCreateWindow to set the attributes to
create an InputOnly window while creating a window.



XCreateSimpleWindow(3X)  (Xlib - Window Existence) = XCreateSimpleWindow(3X)
BX

XCreateSimpleWindow returns the window ID of the created window. The
new window is placed on top of the stacking order relative to its siblings.
Note that the window is unmapped when it is created—use XMapWindow
to display it. This function generates a CreateNotify event.

The initial conditions of the window are as follows:

The window inherits its depth, class, and visual from its parent. All other
window attributes have their default values.

All properties have undefined values.

The new window will not have a cursor defined; the cursor will be that of
the window’s parent until the cursor attribute is set with XDefineCursor.

If no background or border is specified, CopyFromParent is implied.

ERRORS
BadAlloc

BadMatch
BadValue width and/or height is zero.
BadWindow Specified parent is an InputOnly window.

SEE ALSO
XCreateWindow, XDestroySubwindows, XDestroyWindow.



XCreateWindow(3X) (X1ib - Window Existence) XCreateWindow(3X)

NAME
XCreateWindow — create a window and set attributes.

SYNOPSIS
Window XCreateWindow (display, parent, x, y, width, height,
border_width, depth, class, visual, valuemask, attributes)
Display =*display;
Window parent;
int x, y;
unsigned int width, height;
unsigned int border_width ;
int depth;
unsigned int class;
Visual *visual
unsigned 1long valuemask;
XSetWindowAttributes *atiributes;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

parent Specifies the parent window. Parent must be InputOutput
if class of window created is to be InputOutput.

x

y Specify the x and y coordinates. These coordinates are the
top left outside corner of the new window’s borders rela-
tive to the inside of the parent window’s borders. (x = 0,
y = 0) is the origin of the parent window.

width

height Specify the width and height. These are the new

window’s inside dimensions. These dimensions do not
include the new window’s borders, which are entirely out-
side of the window. Must be nonzero, otherwise
XCreateWindow generates a BadValue error.

border_width  Specifies the width, in pixels, of the new window’s
border. Must be zero for InputOnly windows, otherwise a
BadMatch error is returned.



2

XCreateWindow(3X) (X1ib - Window Existence) XCreateWindow(3X)

depth Specifies the depth of the window, not necessarily the
same as the parent’s depth. A depth of zero for class
InputOutput or CopyFromParent means the depth is taken
from the parent.

class Specifies the new window’s class. Pass one of these con-
stants: InputOutput, InputOnly, or CopyFromParent.

visual Specifies the visual type. CopyFromParent is valid.

valuemask Specifies which window attributes are defined in the attri-

butes argument. If valuemask is 0, the rest is ignored, and
attributes is not referenced. This mask is the inclusive OR
of the valid attribute mask bits.

attributes Attributes of the window to be set at creation time should
be set in this structure. The wvaluemask should have the
appropriate bits set to indicate which attributes have been
set in the structure.

DESCRIPTION

To create an unmapped subwindow for a specified parent window from
an application, you can use XCreateWindow or XCreateSimpleWindow.
XCreateWindow is a more general function that allows you to set specific
window attributes when you create it. If you do not want to set specific
attributes when you create a window, use XCreateSimpleWindow, which
creates a window that inherits its attributes from its parent. XCreateSim-
pleWindow creates InputOutput windows only.

XCreateWindow returns the window ID of the created window.
XCreateWindow causes the X server to generate a CreateNotify event. The
newly created window is placed on top of its siblings in the stacking
order.

Extension packages may define other classes of windows. XCreateWindow
returns the window ID of the created window and generates a CreateNotify
event.

The visual should be DefaultVisual or one returned by XGetVisuallnfo or
XMatchVisuallnfo.



XCreateWindow(3X) (Xlib - Window Existence) XCreateWindow(3X)

STRUCTURES

/*
* Data structure for setting window attributes.
*/

typedef struct {
Pixmap background_pixmap: /* background or None or ParentRelative */
unsigned long background_pixel;/* background pixel */
Pixmap border_pixmap; /* border of the window »*/
unsigned long border_pixel; /* border pixel value #*/
int bit_gravity; /* one of bit gravity values */
int win_gravity; /* one of the window gravity values */
int backing_store; /% NotUseful, WhenMapped, Always */

unsigned long backing_planes;/* planes to be preseved if possible */
unsigned long backing_pixel; /* value to use in restoring planes */

Bool save_under; /* should bits under be saved (popups) */
long event_mask; /* set of events that should be saved */

long do_not_propagate_mask; /* set of events that should not propagate */
Bool override_redirect; /* boolean value for override-redirect */
Colormap colormap:; /* colormap to be associated with window */
Cursor cursor; /* cursor to be displayed (or Nomne) »*/

} XSetWindowAttributes;
/* Window attributes for CreateWindow and ChangeWindowAttributes */

/% Definitions for valuemask argument */

#define CWBackPixmap (1L<<0)
#define CWBackPixel (1L<<1)
#define CWBorderPixmap (1L<<2)
#define CWBorderPixel (1L<<3)
#define CWBitGravity (1L<<4)
#define CWWinGravity (1L<<B)
#define CWBackingStore (1L<<8)
#define CWBackingPlanes (1L<<7)
#define CWBackingPixel (1L<<8)
#define CWOverrideRedirect (1L<<9)
#define CWSaveUnder (1L<<10)
#define CWEventMask (1L<<11)
#define CWDontPropagate (1L<<12)
#define CWColormap (1L<<13)
#define CWCursor (1L<<14)



XCreateWindow(3X)

ERRORS
BadAlloc

BadColor
BadCursor
BadMatch
BadPixmap
BadValue
BadWindow

SEE ALSO

(Xlib - Window Existence) XCreateWindow(3X)

Attribute  besides  win_gravity, event_mask, cursor,
do_not_propagate_mask, or override_redirect specified for
InputOnly.

depth non-zero for InputOnly.

Parent of InputOutput is InputOnly.
border_width is non-zero for InputOnly.

depth not supported on screen for InputOutput.
width and/or height is zero.

visual type not supported on screen (either InputOnly or
InputOutput).

XCreateSimpleWindow, XDestroySubwindows, XDestroyWindow.



XDefineCursor(3X) (Xl1ib - Cursors) XDefineCursor(3X)

NAME
XDefineCursor — assign a cursor to a window.

SYNOPSIS
XDefineCursor (display, w, cursor)
Display *display;
Window w;
Cursor cursor;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
cursor Specifies the cursor. The function displays this cursor
when the pointer is in the specified window. Pass None
to have the parent’s cursor displayed in the window. If it
is the root window, then the default cursor is displayed.
DESCRIPTION

Sets the cursor attribute of a window, so that the specified cursor is
shown whenever this window is visible and the pointer is inside. If XDe-
fineCursor is not called, the parent’s cursor is used by default.

ERRORS
BadAlloc

BadCursor
BadWindow

SEE ALSO
XUndefineCursor, XCreateFontCursor, XCreateGlyphCursor,

XCreatePixmapCursor, XFreeCursor, XRecolorCursor, XQueryBestCursor,
XQueryBestSize.



XDeleteAssoc(3X) (X1ib - Association Tables) XDeleteAssoc(3X)

NAME
XDeleteAssoc — delete an entry from an association table.

SYNOPSIS
XDeleteAssoc (display, table, x_id)
Display =*display;
XAssocTable *table;

XID x_id;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
table Specifies the assoc table.
x_id Specifies the X resource ID.
DESCRIPTION

This function is provided for compatibility with X Version 10. To use it
you must include the file <X11/X10.h> and link with the library
-loldX.

XDeleteAssoc deletes an association in an XAssocTable keyed on its XID.
Redundant deletes (and deletes of non-existent XID’s) are meaningless
and cause no problems. Deleting associations in no way impairs the per-
formance of an XAssocTable.

STRUCTURES
typedef struct {
XAssoc *buckets; /* pointer to first bucket in array */

int size; /* table size (number of buckets) */
}XAssocTable;

SEE ALSO
XCreateAssocTable, XDestroyAssocTable, XLookUpAssoc, XMakeAssoc.



XDeleteContext(3X) (Xl1ib - Context Manager) XDeleteContext(3X)

NAME
XDeleteContext — delete context entry for given window and type.

SYNOPSIS
int XDeleteContext (display, w, context)
Display x*display;
Window w;
XContext context;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window with which the data is associated.
context Specifies the context type to which the data belongs.
DESCRIPTION

XDeleteContext deletes the entry for the given window and type from the
context data structure defined in <X11/Xutil.h>. This returns XCNOENT
if the context could not be found, or zero if it succeeds.

Refer to the GSE Programmer’s Guide for a description of context manage-
ment.

STRUCTURES
typedef int XContext;

SEE ALSO
XFindContext, XSaveContext, XUniqueContext.



XDeleteModifiermapEntry(3X) (Xlib - Resource Manager) XDeleteModifiermapEntry (3X)

NAME
XDeleteModifiermapEntry — delete an entry from an XModifierKeymap
structure.

SYNOPSIS
XModifierKeymap *XDeleteModifiermapEntry (modmap,

keysym_entry, modifier)
XModifierKeymap *modmap;
KeyCode keysym_entry ;
int modifier ;

ARGUMENTS
modmap Specifies a pointer to an XModifierKeymap structure.
keysym_entry  Specifies the KeyCode of the key to be deleted from mod-
map.
modifier Specifies the modifier you no longer want mapped to the
keycode specified in keysym_entry. This should be one of
the constants: ShiftMapIndex, LockMaplndex, ControlMapIn-
dex, ModlMapIndex, Mod2MapIndex, Mod3Maplndex,
Mod4MaplIndex, or Mod5Maplndex.
DESCRIPTION

XDeleteModifiermapEntry returns an XModifierKeymap structure suitable for
calling XSetModifierMapping, in which the specified keycode is deleted
from the set of keycodes that is mapped to the specified modifier (like
Shift or Control). XDeleteModifiermapEntry does not change the mapping
itself.

This function is normally used by calling XGetModifierMapping to get a
pointer to the current XModifierKeymap structure for use as the modmap
argument to XDeleteModifiermapEntry.

Note that the structure pointed to by modmap is freed by XDeleteModifier-
mapEntry. It should not be freed or otherwise used by applications.

For a description of the modifier map, see XSetModifierMapping.



XDeleteModifiermapEntry(3X) (Xlib - Resource Manager) XDeleteModifiermapEntry (3X)

STRUCTURES
typedef struct {
int max_keypermod; /* server’s max number of keys per modifier »*/
KeyCode *modifiermap; /* an 8 by max_keypermod array of

* keycodes to be used as modifiers */
} XModifierKeymap:

#define BhiftMapIndex
#define LockMapIndex
#define ControlMaplndex
#define ModiMapIndex
#define Mod2MapIndex
#define Mod3MapIndex
#define Mod4MapIndex
#define ModbMapIndex

N o 0 h WN O

SEE ALSO
InsertModifiermapEntry, XGetModifierMapping, XSetModifierMapping,
XNewModifiermap, XFreeModifiermap, XKeycodeToKeysym,
XKeysymToKeycode, XKeysymToString, XQueryKeymap, XStringToKeysym,
XLookupKeysym, XRebindKeySym, XGetKeyboardMapping,
XRefreshKeyboardMapping, XLookupString.



XDeleteProperty (3X) (X1ib - Properties) XDeleteProperty (3X)

NAME
XDeleteProperty — delete a window property.
SYNOPSIS
XDeleteProperty (display, w, property)
Display *display;

Window w;
Atom property ;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID. This is the window whose pro-
perty you want to delete.
property Specifies the property atom.
DESCRIPTION

XDeleteProperty deletes a window property, so that it no longer contains
any data. Its atom, specified by property, still exists after the call so that it
can be used again later by any application that knows the ID of the win-
dow the property is defined on. If the property was defined on the speci-
fied window, XDeleteProperty generates a PropertyNotify event.

Refer to the GSE Programmer’s Guide.

ERRORS
BadAtom
BadWindow

SEE ALSO
XSetStandardProperties, XGetFontProperty, XRotateWindowProperties,
XChangeProperty, XGetWindowProperty, XListProperties, XGetAtomName,
XInternAtom.



XDestroyAssocTable(3X) (X1ib - Association Tables) XDestroyAssocTable(3X)

NAME
XDestroyAssocTable — free the memory allocated for association table.

SYNOPSIS
XDestroyAssocTable (iable)
XAssocTable *table;

ARGUMENTS
table Specifies the assoc table.

DESCRIPTION
This function is provided for compatibility with X Version 10. To use it
you must include the file <X11/X10.h> and link with the library
=loldX.

Using an XAssocTable after it has been destroyed will have unpredictable
and probably disastrous consequences.

STRUCTURES
typedef struct {

XAssoc *buckets; / *pointer to first bucket in array */

int size; / *table size (number of buckets) */
}XAssocTable;

SEE ALSO
XCreateAssocTable, XDeleteAssoc, XLookUpAssoc, XMakeAssoc.



XDestroyImage(3X) (X1ib - Images) XDestroyImage (3X)

NAME
XDestroyImage — deallocate memory associated with an image.

SYNOPSIS
int XDestroyImage (ximage)
XImage *Xximage;
ARGUMENTS
ximage Specifies a pointer to the image.
DESCRIPTION
XDestroylmage deallocates the memory associated with an XImage struc-

ture. This memory includes both the memory holding the XImage struc-
ture, and the memory holding the actual image data.

SEE ALSO
XPutlmage, XGetImage, XCreateImage, XSublmage, XGetSublmage, XAddPixel,
XPutPixel, XGetPixel, ImageByteOrder.



XDestroyRegion(3X) (XIib - Regions) XDestroyRegion(3X)

NAME
XDestroyRegion — deallocate storage associated with a region.

SYNOPSIS
XDestroyRegion (r)
Region 7;

ARGUMENTS
r Specifies the region.

DESCRIPTION
XDestroyRegion frees the memory associated with a region.

Refer to the GSE Programmer’s Guide for a description of regions.

SEE ALSO
XXorRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XShrinkRegion, XSetRegion, XRectInRegion, XPolygonRegion, XPointInRegion,
XOffsetRegion, XIntersectRegion, XEmptyRegion, XCreateRegion,
XEqualRegion, XClipBox.



XDestroySubwindows(3X) (Xlib - Window Existence) XDestroySubwindows (3X)

NAME
XDestroySubwindows — destroy all subwindows of a window.

SYNOPSIS
XDestroySubwindows (display, w)
Display =*display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
DESCRIPTION

This function destroys all descendants of the specified window, in bottom
to top stacking order.

XDestroySubwindows generates exposure events on w, if any mapped
subwindows were actually destroyed. This is much more efficient than
deleting many subwindows one at a time, as much of the work need only
be performed once for all of the windows rather than for each window. It
also saves multiple exposure events on the windows about to be des-
troyed. The subwindows should never again be referenced.

XCloseDisplay automatically destroys all windows that have been created
by that client on the specified display (unless called after a fork system
call-see note under XCloseDisplay).

ERRORS
BadWindow

SEE ALSO
XCreateSimpleWindow, XCreateWindow, XDestroyWindow.



XDestroyWindow(3X) (X1ib - Window Existence) XDestroyWindow (3X)

NAME
XDestroyWindow — unmap and destroy a window and all subwindows.

SYNOPSIS
XDestroyWindow (display, window)
Display *display;
Window window ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
window Specifies the window ID.
DESCRIPTION

If window is mapped, an UnmapWindow request is performed automati-
cally. The window and all inferiors are then destroyed, and a DestroyNo-
tify event is generated for each window. The ordering of the DestroyNotify
events is such that for any given window, DestroyNotify is generated on all
inferiors of the window before being generated on the window itself. The
ordering among siblings and across subhierarchies is not otherwise con-
strained.

The windows should never again be referenced. Destroying a mapped
window will generate exposure events on other windows that were
obscured by the windows being destroyed.

No windows are destroyed if you try to destroy the root window.

XDestroyWindow may generate EnterWindow events if window was mapped
and contained the pointer.

ERRORS
BadWindow

SEE ALSO
XCreateSimpleWindow, XCreateWindow, XDestroySubwindows.



XDisableA ccessControl (3X) (X1ib - Host Access) XDisableAccessControl (3X)

NAME
XDisableAccessControl — prevent modification to the host access list.
SYNOPSIS

XDisableAccessControl (display)
Display *display;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
DESCRIPTION

XDisableAccessControl prevents any other client that subsequently connects
to the server from changing the access control list.

ERRORS
BadAccess

SEE ALSO

XAddHost, XAddHosts, XListHosts, XRemoveHost, XRemoveHosts,
XEnableAccessControl, XSetAccessControl.



XDisplayName (3X) (X1ib - Error Handling) XDisplayName(3X)

NAME
XDisplayName — reports the display name when connecting to that
display fails.
SYNOPSIS
char *XDisplayName (string)
char s*string;

ARGUMENTS
string Specifies the character string.

DESCRIPTION
XDisplayName is normally used to report the name of the display the pro-
gram attempted to open with OpenDisplay. This is necessary because X
error handling begins only after the connection to the server succeeds. If
a NULL string is specified, XDisplayName looks in the environment for the
display and returns the display name that the user was requesting. Oth-
erwise, XDisplayName returns its own argument. This makes it easier to
report to the user precisely which display the program attempted to open.

SEE ALSO

XGetErrorDatabaseText, XGetErrorText, XSetErrorHandler,
XSetlOErrorHandler, XSynchronize, XSetAfterFunction.



XDraw(3X) (X1ib - Drawing Primitives) XDraw(3X)

NAME

XDraw — draw polyline or curve between vertex list (from X10).
SYNOPSIS

Status XDraw(display, d, gc, vlist, vcount)

Display *display;
Drawable d;

GC gc;
Vertex *vlist;
int vcount;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable.
gc Specifies the graphics context.
vlist Specifies a pointer to the list of vertices which indicate
what to draw.
veount Specifies how many vertices are in vlist.
DESCRIPTION

This function is provided for compatibility with X Version 10. To use it
you must include the file <X11/X10.h> and link with the library
-loldX.

XDraw achieves the effects of the V10 XDraw, XDrawDashed, and
XDrawPatterned functions.

XDraw draws an arbitrary polygon or curve. The figure drawn is defined
by the specified list of vertices (vlist). The points are connected by lines
as specified in the flags each the Vertex structure.

The Vertex structure contains an x,y coordinate and a bitmask called flags
that specifies the drawing parameters.

The x and y elements of Vertex are the coordinates of the vertex that are
relative to either the previous vertex (if VertexRelative is 1) or the upper left
inside corner of the drawable (if VertexRelative is 0). If VertexRelative is 0
the coordinates are said to be absolute. The first vertex must be an abso-
lute vertex.

If the VertexDontDraw bit is 1, no line or curve is drawn from the previous
vertex to this one. This is analogous to picking up the pen and moving to
another place before drawing another line.

-1-



XDraw(3X) (X1ib - Drawing Primitives) XDraw(3X)

If the VertexCurved bit is 1, a spline algorithm is used to draw a smooth
curve from the previous vertex, through this one, to the next vertex. Oth-
erwise, a straight line is drawn from the previous vertex to this one. It
makes sense to set VertexCurved to 1 only if a previous and next vertex are
both defined (either explicitly in the array, or through the definition of a
closed curve--see below.)

It is permissible for VertexDontDraw bits and VertexCurved bits to both be
1. This is useful if you want to define the previous point for the smooth
curve, but you do not want an actual curve drawing to start until this
point.

If VertexStartClosed bit is 1, then this point marks the beginning of a closed
curve. This vertex must be followed later in the array by another vertex
whose absolute coordinates are identical and which has VertexEndClosed
bit of 1. The points in between form a cycle for the purpose of determin-
ing predecessor and successor vertices for the spline algorithm.

XDraw uses the following graphics context components: function,
plane_mask, line_width, line_style, cap_style, join_style, fill_style,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. This function
also uses these graphics context mode-dependent components: foreground,
background, tile, stipple, ts_s_origin, ts_y_origin, dash_offset, and dash_list.

Status of 0 on failure.
STRUCTURES
typedef struct _Vertex {
short x,y;
unsigned short flags;
} Vertex;

/% defined constants for use as flags *»/

#define VertexRelative 0x0001 /* else absolute */
#define VertexDontDraw 0x0002 /% else draw =/
#define VertexCurved 0x0004 /* else straight =/
#define VertexStartClosed 0x0008 /% else not =/
#define VertexEndClosed 0x0010 /* else not »/



XDraw(3X) (X1ib - Drawing Primitives) XDraw(3X)

SEE ALSO
XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines, XDrawPoint,
XDrawPoints, XDrawRectangle, XDrawRectangles, XDrawSegments,
XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawArc(3X)

NAME

(X1ib - Drawing Primitives) XDrawArc(3X)

XDrawArc — draws an arc fitting inside a rectangle.

SYNOPSIS

XDrawArc (display, d, gc, x, y, width, height, anglel, angle2)
Display *display;
Drawable d;

GC gc;
int x, y;

unsigned int width, height;
int anglel, angle2;

ARGUMENTS
display

d

8c
x
y

width
height

anglel

angle2

DESCRIPTION

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the drawable.

Specifies the graphics context.

Specify the x and y coordinates relative to the drawable.
These coordinates specify the upper left corner of the rec-
tangle that contains the arc.

Specify the width and height. These are the major and
minor axes of the arc.

Specifies the start of the arc relative to the three o’clock
position from the center. Angles are specified in degrees,
multiplied by 64 (360 * 64 is a complete circle).

Specifies the path and extent of the arc relative to the start
of the arc. Angles are specified in degrees, multiplied by
64 (360 * 64 is a complete circle).

XDrawArc draws a circular or elliptical arc. An arc is specified by a rec-
tangle and two angles. The x and y coordinates are relative to the origin
of the drawable and define the upper left corner of the rectangle. The
center of the circle or ellipse is the center of the rectangle; the major and
minor axes are specified by the width and height, respectively. The angles
are signed integers in degrees multiplied by 64, with positive indicating
counterclockwise motion and negative indicating clockwise motion, trun-
cated to a maximum of 360 degrees. The start of the arc is specified by

-1-



XDrawArc(3X) (X1ib - Drawing Primitives) XDrawArc(3X)

anglel relative to the three o’clock position from the center; the path and
extent of the arc is specified by angle2 relative to the start of the arc.

By specifying one axis to be zero, a horizontal or vertical line can be
drawn. Angles are computed based solely on the coordinate system and
ignore the aspect ratio.

XDrawArc uses these graphics context components: function, plane_mask,
line_width, line_style, cap_style, join_style, fill_style, subwindow_mode,
clip_x_origin, clip_y_origin, and clip_mask. This function also uses these
graphics context mode-dependent components: foreground, background, tile,
stipple, ts_x_origin, ts_y_origin, dash_offset, and dash_list. XDrawArc is not
affected by the tile or stipple in the GC.

ERRORS
BadDrawable
BadGC
BadMaich

SEE ALSO
XDraw, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines, XDrawPoint,
XDrawPoints, XDrawRectangle, XDrawRectangles, XDrawSegments,

XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawArgs(3X) (X1ib - Drawing Primitives) XDrawArcs(3X)

NAME
XDrawArcs — draw multiple arcs.

SYNOPSIS
XDrawArcs (display, d, gc, arcs, narcs)
Display *display;
Drawable d;

GC gc;
XArc *arcs;
int narcs;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable.
gc Specifies the graphics context.
arcs Specifies a pointer to an array of arcs.
narcs Specifies the number of arcs in the array.
DESCRIPTION

This is the plural version of XDrawArc. See XDrawArc for details of draw-
ing a single arc.

The arcs are drawn in the order listed in the arcs array. For any given arc,
no pixel is drawn more than once. If arcs intersect, pixels will be drawn
multiple times. If the last point in one arc coincides with the first point in
the following arc, the two arcs will join correctly according to the GC. If
the first point in the first arc coincides with the last point in the last arc,
the two arcs will join correctly according to the GC.

By specifying one axis to be zero, a horizontal or vertical line can be
drawn. Angles are computed based solely on the coordinate system and
ignore the aspect ratio.

For any given arc, no pixel is drawn more than once. If two arcs join
correctly and if line_width is greater than zero and the arcs intersect, no
pixel is drawn more than once. Otherwise, the intersecting pixels of
intersecting arcs are drawn multiple times. Specifying an arc with one
endpoint and a clockwise extent draws the same pixels as specifying the
other endpoint and an equivalent counterclockwise extent, except as it
affects joins.



XDrawArcs(3X) (X1ib - Drawing Primitives) XDrawArcs(3X)

If the last point in one arc coincides with the first point in the following
arc, the two arcs will join correctly. If the first point in the first arc coin-
cides with the last point in the last arc, the two arcs will join correctly.

XDrawArcs uses these graphics context components: function, plane_mask,
line_width, line_style, cap_style, join_style, fill_style, subwindow_mode,
clip_x_origin, clip_y_origin, and clip_mask. This function also uses these
graphics context mode-dependent components: foreground, background, tile,
stipple, ts_x_origin, ts_y_origin, dash_offset, and dash_list. XDrawArcs is not
affected by the tile or stipple in the GC.

The following is a technical explanation of the points drawn by
XDrawArcs. For an arc specified as [x,y,widthheight,anglel,angle2],
the origin of the major and minor axes is at
[x+(width/2) ,y+(height/2)], and the infinitely thin path describing
the entire circle or ellipse intersects the horizontal axis at
[x,y+(height/2)] and [x+width,y+(height/2)] and intersects the
vertical axis at [x+(width/2),y] and [x+(width/2),y+height].
These coordinates can be fractional. That is, they are not truncated to
discrete coordinates. The path should be defined by the ideal mathemati-
cal path. For a wide line with line width line_width, the bounding outlines
for filling are given by the infinitely thin paths describing the arcs:

[x+dx/2, y+dy/2, width-dx, height-dy, anglel, angle2]

and

[x-line_width/2, y-line_width/2, width+line_width, height+line_width,
anglei, angle2]

where

dx=min (line_width,width)
dy=min(line_width,height)

If (height != width) the angles must be specified in the effectively
skewed coordinate system of the ellipse (for a circle, the angles and coor-
dinate systems are identical). The relationship between these angles and
angles expressed in the normal coordinate system of the screen (as meas-
ured with a protractor) is as follows.



XDrawAres (3X) (X1ib - Drawing Primitives) XDrawArcs(3X)

skewed-angle = atan(tan(normal-angle) * width/height) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than
in degrees scaled by 64) in the range [0,2*PI), and where atan returns
a value in the range [-PI/2,PI/2], and where adjust is:

(] for normal-angle in the range [0,PI/2)

PI for normal-angle in the range [PI/2, (3*PI)/2)

2%PI for normal-angle in the range [(3*PI)/2,2*PI)
STRUCTURES

typedef struct {

short x, y;

unsigned short width, height;

short anglei, angle2; /* Degrees * 84 »/
} XArc;

ERRORS
BadDrawable
BadGC
BadMatch

SEE ALSO
XDraw, XDrawArc, XDrawFilled, XDrawLine, XDrawLines, XDrawPoint,

XDrawPoints, XDrawRectangle, XDrawRectangles, XDrawSegments,
XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawFilled(3X) (X1ib - Drawing Primitives) XDrawFilled (3X)

NAME
XDrawFilled — draw filled polygon or curve from vertex list (from V10).

SYNOPSIS
Status XDrawFilled(display, d, gc, vlist, vcount)
Display *display;
Drawable d;
GC gc;
Vertex *ulist;
int vcount;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable.
g Specifies the graphics context.
vlist Specifies a pointer to the list of vertices.
vcount Specifies how many vertices are in vlist.
DESCRIPTION

This function is provided for compatibility with X Version 10. To use it
you must include the file <X11/X10.h> and link with the library
-loldX. XDrawFilled achieves the effects of the V10 XDrawTiled and
XDrawFilled functions.

XDrawFilled draws arbitrary polygons or curves, according to the same
rules as XDraw, and then fills them.

XDrawFilled uses the following graphics context components: function,
plane_mask,  line_width, line_style, cap_style, join_style, fill_style,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. This function
also uses these graphics context mode-dependent components: foreground,
background, tile, stipple, ts_s_origin, ts_y_origin, dash_offset, dash_list,
fill_style and fill_rule.

XDrawFilled returns status of 0 on failure.

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawLine, XDrawLines, XDrawPoint,
XDrawPoints, XDrawRectangle, XDrawRectangles, XDrawSegments,
XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawlImageString(3X) (X1ib - Text) XDrawImageString (3X)

NAME
XDrawImageString — draw 8-bit image text characters.

SYNOPSIS
XDrawImageString (display, d, gc, x, y, string, length)
Display *display;
Drawable d;

GC gc;
int x, y;
char *string;
int length;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable.
gc Specifies the graphics context.
x
y Specify the x and y coordinates. These coordinates define
the baseline starting position for the image text character
and are relative to the origin of the specified drawable.
string Specifies the character string.
length Specifies the number of characters in the string argument.
DESCRIPTION

XDrawlmageString draws a string, but unlike XDrawString it can draw both
the foreground and the background of the characters, if the GC is set
accordingly.

XDrawlImageString uses these graphics context components: plane_mask,
foreground, background, font, subwindow_mode, clip_x_origin, clip_y_origin,
and clip_mask. The function and fill_style defined in gc are ignored; the
effective function is GXcopy and the effective fill_style is FillSolid.

XDrawlmageString first fills a destination rectangle with the background
pixel defined in gc, and then paints the text with the foreground pixel. The
upper left corner of the filled rectangle is at [x, y - font_ascent], the width
is overall->width, and the height is Xascent + descent.

The overall->width, ascent, and descent are as would be returned by
XQueryTextExtents using gc and string.



XDrawImageString(3X) (X1ib - Text) XDrawImageString(3X)

ERRORS
BadDrawable
BadGC
BadMatch

SEE ALSO
XQueryTextExtents, XQueryTextExtents16, XDrawImageString16,
XDrawString, XDrawString16, XDrawText, XDrawText16, XTextExtents,
XTextExtents16, XTextWidth, XTextWidth16.



XDrawImageString16(3X) (X1ib - Text) XDrawImageString16(3X)

NAME
XDrawImageString16 — draw 16-bit image text characters.

SYNOPSIS
XDrawImageString16 (display, d, gc, x, y, string, length)
Display *display;
Drawable d;

GC gc;
int x, y;
XChar2b *string;
int length;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable.
g Specifies the graphics context.
x
y Specify the x and y coordinates. These coordinates define
the baseline starting position for the image text character
and are relative to the origin of the specified drawable.
string Specifies the character string.
length Specifies the number of characters in the string argument.
DESCRIPTION

XDrawlmageStringl6 draws a string, but unlike XDrawString16 it can draw
both the foreground and the background of the characters, if the GC is set
accordingly.

XDrawlmageString16 uses these graphics context components: plane_mask,
foreground, background, font, subwindow_mode, clip_x_origin, clip_y_origin,
and clip_mask. The function and fill_style defined in gc are ignored; the
effective function is GXcopy and the effective fill_style is FillSolid.

XDrawlmageString16 first fills a destination rectangle with the background
pixel defined in gc, and then paints the text with the foreground pixel. The
upper left corner of the filled rectangle is at [x, y - font_ascent], the width
is overall->width, and the height is ascent + descent.

The overall->width, ascent, and descent are as would be returned by
XQueryTextExtents16 using gc and string.



XDrawImageString16(3X) (X1ib - Text)

STRUCTURES
typedef struct {
unsigned char bytel;
unsigned char byte2;
} XChar2b;

ERRORS
BadDrawable
BadGC
BadMatch

SEE ALSO

XDrawImageString16(3X)

XQueryTextExtents, XQueryTextExtents16, XDrawlImageString, XDrawString,
XDrawString16, XDrawText, XDrawText16, XTextExtents, XTextExtents16,

XTextWidth, XTextWidth16.



XDrawLine(3X) (X1ib - Drawing Primitives) XDrawLine(3X)

NAME
XDrawLine — draw a line between two points.

SYNOPSIS
XDrawLine (display, d, gc, x1, y1, x2, y2)
Display *display;
Drawable d;

GC gc;
int x1, y1, x2, y2;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
gc Specifies the graphics context.
x1
yl
x2
y2 Specify the end points of the line relative to the drawable
origin. XLine connects point (x1, y1) to point (x2, y2).
DESCRIPTION

XDrawLine uses the components of the specified graphics context to draw
a line between two points in the specified drawable. No pixel is drawn
more than once.

XDrawLine uses these graphics context components: function, plane_mask,
line_width, line_style, cap_style, fill_style, subwindow_mode, clip_x_origin,
clip_y_origin, and clip_mask. XDrawLine also uses these graphics context
mode-dependent components: foreground, background, tile, stipple,
ts_x_origin, ts_y_origin, dash_offset, and dash_list.

XDrawLine is not affected by tile or stipple in the GC.

ERRORS
BadDrawable
BadGC
BadMatch



XDrawLine(3X) (X1ib - Drawing Primitives) XDrawLine(3X)

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLines, XDrawPoint,
XDrawPoints, XDrawRectangle, XDrawRectangles, XDrawSegments,
XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawLines(3X) (X1ib - Drawing Primitives) XDrawLines(3X)

NAME

XDrawLines — draw multiple connected lines.

SYNOPSIS

XDrawLines (display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *poinis;
int npoints;

int mode;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
gc Specifies the graphics context.
points Specifies a pointer to an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mode. Pass either CoordModeOri-
gin or CoordModePrevious.
DESCRIPTION
XDrawLines does the following:
® Draws lines connecting each point in the list (points array) to the

next point in the list. The lines are drawn in the order listed in the
points array. For any given line, no pixel is drawn more than once.
If thin (zero line width) lines intersect, pixels will be drawn multiple
times. If the first and last points coincide, the first and last lines will
join correctly. If wide lines intersect, the intersecting pixels are
drawn only once, as though the entire multi-line request were a sin-
gle filled shape.

Uses the components of the specified graphics context to draw mul-
tiple connected lines in the specified drawable. Specifically, XDraw-
Lines uses these graphics context components: function, plane_mask,
line_width, line_style, cap_style, join_style, fill_style, subwindow_mode,
clip_x_origin, clip_y_origin, and clip_mask. This function also uses
these graphics context mode-dependent components: foreground,
background, tile, stipple, ts_x_origin, ts_y_origin, dash_offset, and



XDrawLines (3X) (X1ib - Drawing Primitives) XDrawLines(3X)
2

dash_list.
The mode argument may have two values:

®  CoordModeOrigin indicates that all points are relative to the
drawable’s origin.

®  CoordModePrevious indicates that all points after the first are relative
to the previous point. (The first point is always relative to the
drawable’s origin.)

XDrawLines is not affected by the tile or stipple in the GC.

STRUCTURES
typedef struct {
short x, y;
unsigned short width, height;
} XPoint;

ERRORS
BadDrawable
BadGC
BadMatch
BadValue

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawPoint,
XDrawPoints, XDrawRectangle, XDrawRectangles, XDrawSegments,
XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawPoint(3X) (Xlib - Drawing Primitives) XDrawPoint(3X)

" NAME

XDrawPoint — draw a point.

SYNOPSIS
XDrawPoint (display, d, gc, x, y)
Display *display;
Drawable d;

GC gc;
int x, y;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
g Specifies the graphics context.
x
y Specify the x and y coordinates of the point, relative to the
corner of the drawable.
DESCRIPTION

XDrawPoint uses the foreground pixel and function components of the
graphics context to draw a single point into the specified drawable.
XDrawPoint uses these graphics context components: function, plane_mask,
foreground, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. Use
XDrawPoints to draw multiple points.

ERRORS
BadDrawable
BadGC
BadMatch

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoints, XDrawRectangle, XDrawRectangles, XDrawSegments,
XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawPoints(3X)

NAME

(X1ib - Drawing Primitives) XDrawPoints (3X)

XDrawPoints — draw multiple points.

SYNOPSIS

XDrawPoints (display, d, gc, points, npoints, mode)
Display *display;
Drawable d;

GC gc;

XPoint *points;

int npoints;

int mode;

ARGUMENTS
display

d

8
points

npoints
mode

DESCRIPTION

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the drawable, a pixmap, or window.
Specifies the graphics context.

Specifies a pointer to an array of XPoint structures contain-
ing the positions of the points.

Specifies the number of points to be drawn.

Specifies the coordinate mode. CoordModeOrigin treats all
coordinates as relative to the origin, while CoordModePrevi-

ous treats all coordinates after the first as relative to the
previous point, while the first is still relative to the origin.

XDrawPoints uses the foreground pixel and function components of the
graphics context to draw one or more points into the specified drawable.

XDrawPoints uses these graphics context components: function, plane_mask,
foreground, subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask.

STRUCTURES

typedef struct {

short x,

Yy

unsigned short width, height;

} XPoint;



XDrawPoints(3X) (X1ib - Drawing Primitives) XDrawPoints(3X)

ERRORS
BadDrawable
BadGC
BadMatch
BadValue

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoints, XDrawRectangle, XDrawRectangles, XDrawSegments,
XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawRectangle(3X) (X1ib - Drawing Primitives) XDrawRectangle(3X)

NAME

XDrawRectangle — draw outline of rectangle.

SYNOPSIS

XDrawRectangle (display, d, gc, x, y, width, height)
Display =*display;
Drawable d;

GC gc;
int x, y;
unsigned int width, height;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
gc Specifies the graphics context.
x
y Specify the x and y coordinates. These coordinates define
the upper left corner of the rectangle relative to the
drawable’s origin.
width
height Specify the width and height. These dimensions define
the outline of the rectangle.
DESCRIPTION

XDrawRectangle draws the outline of the rectangle by using the x and y
coordinates, width and height, and graphics context you specify. Specifi-
cally, XDrawRectangle uses these graphics context components: function,
plane_mask,  line_width, line_style, cap_style, join_style, fill_style,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. This function
also uses these graphics context mode-dependent components: foreground,
background, tile, stipple, ts_x_origin, ts_x_origin, ts_y_origin, dash_offset, and
dash_list.

XDrawRectangle is not affected by the tile or stipple in the GC. For the
specified rectangle, no pixel is drawn more than once.



XDrawRectangle(3X) (Xlib - Drawing Primitives)

STRUCTURE
typedef struct {
short x, y;
unsigned short width, height;
} XRectangles;

ERRORS
BadDrawable
BadGC
BadMatch

SEE ALSO

XDrawRectangle(3X)

XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangles, XDrawSegments, XCopyArea,
XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,

XFillRectangles, XClearArea, XClearWindow.



XDrawRectangles(3X) (X1ib - Drawing Primitives) XDrawRectangles(3X)

NAME

XDrawRectangles — draw the outlines of multiple rectangles.

SYNOPSIS

XDrawRectangles (display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle rectangles[] ;
int nrectangles ;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from

XOpenDisplay.

d Specifies the drawable, a pixmap, or window.

g Specifies the graphics context.

rectangles Specifies a pointer to an array of rectangles.

nrectangles Specifies the number of rectangles in the array.
DESCRIPTION

XDrawRectangles draws the outlines of the specified rectangles by using
the position and size values in the array of rectangles. The x and y coor-
dinates of each rectangle are relative to the drawable’s origin, and define
the upper left corner of the rectangle. This function uses these graphics
context components: function, plane_mask, line_width, line_style, cap_style,
join_style, fill_style, subwindow_mode, clip_x_origin, clip_y_origin, and
clip_mask. XDrawRectangles also uses these graphics context mode-
dependent components: foreground, background, tile, stipple, ts_x_origin,
ts_y_origin, dash_offset, and dash_list.

The rectangles are drawn in the order listed. For any given rectangle, no
pixel is drawn more than once. If rectangles intersect, pixels are drawn
multiple times.

XDrawRectangles is not affected by tile or stipple in the GC.

STRUCTURES

typedef struct {
short x, y:
unsigned short width, height;
unsigned short width, height;
} XRectangles;



XDrawRectangles (3X) (X1ib - Drawing Primitives) XDrawRectangles(3X)

ERRORS
BadDrawable
BadGC
BadMatich

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawSegments, XCopyArea,
XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawSegments(3X) (X1ib - Drawing Primitives) XDrawSegments (3X)

NAME
XDrawSegments — draw multiple disjoint lines.

SYNOPSIS
XDrawSegments (display, d, gc, segments, nsegments)
Display =*display;
Drawable d;
GC gc;
XSegment ksegmenis;
int nsegments;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
g Specifies the graphics context.
segments Specifies a pointer to an array of segments.

nsegments Specifies the number of segments in the array.

DESCRIPTION

XDrawSegments draws multiple line segments into the specified drawable.
Each line is specified by a pair of points, so the line may be connected or
disjoint.

For each segment, XDrawSegments draws a line between (x1, y1) and (x2,
y2). The lines are drawn in the order listed in segments. For any given
line, no pixel is drawn more than once. If lines intersect, pixels will be
drawn multiple times. The lines will be drawn separately, without regard
to the join_style.

XDrawSegments uses these graphics context components: function,
plane_mask, line_width, line_style, cap_style, fill_style, subwindow_mode,
clip_x_origin, clip_y_origin, and clip_mask. XDrawSegments also uses these
graphics context mode-dependent components: foreground, background, tile,
stipple, ts_x_origin, ts_y_origin, dash_offset, and dash_list.

XDrawSegments is not affected by the tile or stipple in the GC.



XDrawSegments(3X) (X1ib - Drawing Primitives) XDrawSegments(3X)

STRUCTURES
typedef struct {
short x1, yi, x2, y2;
} XSegment;

ERRORS
BadDrawable
BadGC
BadMatch

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles, XCopyArea,
XCopyPlane, XFillArc, XFillArcs, XFillPolygon, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XDrawString(3X) (X1ib - Text) XDrawString(3X)

NAME

XDrawString — draw 8-bit text string, foreground only.
SYNOPSIS

XDrawString (display, d, gc, x, y, string, length)

Display *display;
Drawable d;

GC gc;
int x, y;
char *string;
int length;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
gc Specifies the graphics context.
x
y Specify the x and y coordinates. These coordinates define
the baseline starting position for the character and are
relative to the origin of the specified drawable.
string Specifies the character string.
length Specifies the number of characters in the string argument.
DESCRIPTION

XDrawString draws the given string into a drawable using the foreground
only to draw set bits in the font. It does not affect any other pixels in the
bounding box for each character.

The y coordinate defines the baseline row of pixels while the x coordinate
is the point for measuring the lbearing, rbearing, and width from.

XDrawString uses these graphics context components: function,
plane_mask, fill_style, font, subwindow_mode, clip_x_origin, clip_y_origin, and
clip_mask. This function also uses these graphics context mode-dependent
components: foreground, tile, stipple, ts_x_origin, and ts_y_origin. Each
character image, as defined by the font in gc, is treated as an additional
mask for a fill operation on the drawable.



XDrawString(3X) (X1ib - Text) XDrawString(3X)

ERRORS
BadDrawable
BadFont
BadGC
BadMaich

SEE ALSO
XQueryTextExtents, XQueryTextExtents16, XDrawlmageString,
XDrawlmageString16, XDrawString16, XDrawText, XDrawText16,
XTextExtents, XTextExtents16, XTextWidth, XTextWidth16.



XDrawString16(3X) (X1ib - Text) XDrawString16(3X)

NAME
XDrawString16 — draw two-byte text strings.

SYNOPSIS
XDrawString16 (display, d, gc, x, y, string, length)
Display *display;
Drawable d;

GC gc;
int x, y;
XChar2b *string;
int length;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
gc Specifies the graphics context.
x
y Specify the x and y coordinates. These coordinates define
the baseline starting position for the character, and are
relative to the origin of the specified drawable.
string Specifies the character string. Characters are two bytes
wide.
length Specifies the number of characters in the string argument.
DESCRIPTION

XDrawString16 draws a string in the foreground pixel value without draw-
ing the surrounding pixels.

The y coordinate defines the baseline row of pixels while the x coordinate
is the point for measuring the lbearing, rbearing, and width from.

XDrawStringl6 uses these graphics context components: function,
plane_mask, fill_style, font, subwindow_mode, clip_x_origin, clip_y_origin, and
clip_mask. This function also uses these graphics context mode-dependent
components: foreground, tile, stipple, ts_x_origin, and ts_y_origin. Each
character image, as defined by the font in gc, is treated as an additional
mask for a fill operation on the drawable.



XDrawString16(3X) (X1ib - Text) XDrawString16(3X)

STRUCTURES
typedef struct {
unsigned char bytel;
unsigned char byte2;
} XChar2b;

ERRORS
BadDrawable
BadFont
BadGC
BadMatch

SEE ALSO
XQueryTextExtents, XQueryTextExtents16, XDrawImageString,

XDrawlmageString16, XDrawString, XDrawText, XDrawText16, XTextExtents,
XTextExtents16, XTextWidth, XTextWidth16.



XDrawText(3X) (Xl1ib - Text) XDrawText(3X)

NAME

XDrawText — draw 8-bit polytext characters.

SYNOPSIS

XDrawText (display, d, gc, x, y, items, nitems)
Display *display;
Drawable d;
GC gc;
int x, y;
XTextItem *items;
int nitems;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
gc Specifies the graphics context.
x
y Specify the x and y coordinates. These coordinates define
the baseline starting position for the initial string, relative
to the origin of the specified drawable.
items Specifies a pointer to an array of text items.
nitems Specifies the number of text items in the array.
DESCRIPTION

XDrawText is capable of drawing multiple strings and changing fonts
between strings. Each XTextltem structure contains a string, the number
of characters in the string, the delta offset from the starting position for the
string, and the font. Each text item is processed in turn. The font in each
XTextltem is stored in the specified GC and used for subsequent text. If
the XTextltem.font is None, the font in the GC is used for drawing and is
not changed. Switching between fonts with different drawing directions
is permitted.

The delta in each XTextltem specifies the change in horizontal position
before the string is drawn. The delta is always added to the character ori-
gin and is not dependent on the draw direction of the font. For example,
if x = 40, y = 20, and items[0].delta = 8, the string specified by
items[0].chars would be drawn starting at x = 48, y = 20. The delta for the
second string begins at the rbearing of the last character in the first string.
A negative delta would tend to overlay subsequent strings on the end of

-1-



XDrawText(3X) (X1ib - Text) XDrawText(3X)

the previous string.

Only the pixels selected in the font are drawn (the background member of
the GC is not used).

XDrawText uses the following elements in the specified GC: function,
plane_mask, fill_style, font, subwindow_mode, clip_x_origin, clip_y_origin, and
clip_mask. This function also uses these graphics context mode-dependent
components: foreground, tile, stipple, ts_x_origin, and ts_y_origin.

STRUCTURES
typedef struct {
char *chars; /* pointer to string */
int nchars; /* number of characters */
int delta; /% delta between stringse »*/
Font font; /% font to primt it in, None

* doesn’t change »/
} XTextItem;

ERRORS
BadDrawable
BadFont
BadGC
BadMatch

SEE ALSO
XQueryTextExtents, XQueryTextExtents16, XDrawlmageString,
XDrawlmageString16, XDrawString, XDrawString16, XDrawText16,
XTextExtents, XTextExtents16, XTextWidth, XTextWidth16.



XDrawText16(3X) (X1ib - Text) XDrawText16(3X)

NAME
XDrawText16 — draw 16-bit polytext strings.

SYNOPSIS
XDrawText16 (display, d, gc, x, y, items, nitems)
Display =*display;
Drawable d;

GC gc;
int x, y;
XTextIteml8 =xilems;
int nitems;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
g Specifies the graphics context.
x
y Specify the x and y coordinates. These coordinates define
the baseline starting position for the initial string relative
to the origin of the specified drawable.
items Specifies a pointer to an array of text items using 2-byte
characters.
nitems Specifies the number of text items in the array.
DESCRIPTION

XDrawText16 is capable of drawing multiple strings and changing fonts
between strings. Each XTextltem structure contains a string, the number
of characters in the string, the delta offset from the starting position for the
string, and the font. Each text item is processed in turn. The font in each
XTextItem is stored in the specified GC and used for subsequent text. If
the XTextItem16.font is None, the font in the GC is used for drawing and is
not changed. Switching between fonts with different drawing directions
is permitted.

The delta in each XTextltem specifies the change in horizontal position
before the string is drawn. The delta is always added to the character ori-
gin and is not dependent on the draw direction of the font. For example,
if x = 40, y = 20, and items[0].delta = 8, the string specified by
items[0].chars would be drawn starting at x = 48, y = 20. The delta for the
second string begins at the rbearing of the last character in the first string.

-1-



XDrawText16(3X) (X1ib - Text) XDrawText16(3X)

A negative delta would tend to overlay subsequent strings on the end of
the previous string,.

Only the pixels selected in the font are drawn (the background member of
the GC is not used).

XDrawText16 uses the following elements in the specified GC: function,
plane_mask, fill_style, font, subwindow_mode, clip_x_origin, clip_y_origin, and
clip_mask. This function also uses these graphics context mode-dependent
components: foreground, tile, stipple, ts_x_origin, and ts_y_origin.

Note that the chars member of the XTextlteml6 structure is of type
XChar2b, rather than of type char as it is in the XTextltem structure. For
fonts defined with linear indexing rather than two-byte matrix indexing,
the X server will interpret each member of the XChar2b structure as a 16-
bit number that has been transmitted most significant byte first. In other
words, the bytel member of the XChar2b structure is taken as the most sig-
nificant byte.

STRUCTURES

typedef struct {
XChar2b #chars; /* 2 byte characters */
int nchars; /* number of characters »/
int delta; /* delta between strings */
Font font; /* font to primt it in, None

* doesnt change »/
} XTextItemiS8;

typedef struct { /* normal 18 bit characters are two bytes */

unsigned char bytel;
unsigned char byte2;
} XChar2b;

ERRORS

BadDrawable
BadFont
BadGC
BadMatch

SEE ALSO

XQueryTextExtents, XQueryTextExtents16, XDrawlmageString,
XDrawlmageString16, XDrawString, XDrawString16, XDrawText,
XTextExtents, XTextExtents16, XTextWidth, XTextWidth16.



XEmptyRegion (3X) (Xlib - Regions) XEmptyRegion(3X)

NAME
XEmptyRegion — determine if region is empty.
SYNOPSIS
int XEmptyRegion (r)
Region r;
ARGUMENTS
r Specifies the region.
DESCRIPTION
XEmptyRegion will return non-zero if the region is empty.
STRUCTURES
/*
* opaque reference to Region data type.
* user won“t need contents, only pointer.
*/
typedef struct _XRegion *Region;
SEE ALSO

XXorRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XShrinkRegion, XSetRegion, XRectInRegion, XPolygonRegion, XPointInRegion,
XOffsetRegion, XIntersectRegion, XCreateRegion, XDestroyRegion,
XEqualRegion, XClipBox.



XEnableA ccessControl (3X) (X1ib - Host Access) XEnableAccessControl (3X)

NAME
XEnableAccessControl — enable changes to the access control list.
SYNOPSIS

XEnableAccessControl (display)
Display *display;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
DESCRIPTION

XEnableAccessControl allows other clients that connect to the server after
this call to modify the access control list. If access has not been disabled
with XDisableAccessControl or XSetAccessControl, this does nothing.

As always, the access control list can only be modified by clients con-
nected to a display on the host whose list is to be modified. In other
words, you must have access to change access.

SEE ALSO
XAddHost, XAddHosts, XListHosts, XRemoveHost, XRemoveHosts,
XDisableAccessControl, XSetAccessControl.



XEqualRegion(3X) (X1ib - Regions) XEqualRegion(3X)

NAME
XEqualRegion — determine if two regions have the same size, offset, and
shape.
SYNOPSIS
int XEqualRegion(rl, r2)
Region 71, 72;

ARGUMENTS
r1
r2 Specify the two regions you want to compare.

DESCRIPTION
XEqualRegion returns non-zero if the two regions are identical, i.e. have
the same offset, size and shape.

Regions are located using an offset from an arbitrarily chosen point (the
“region origin") which is common to all regions. It is up to the application
to interpret the location of the region relative to a drawable.

STRUCTURES
/*
* opaque reference to Regiondata type.
* uger won“t need contents, only pointer.
*/
typedef struct _XRegion *Region;

SEE ALSO
XXorRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XShrinkRegion, XSetRegion, XRectInRegion, XPolygonRegion, XPointInRegion,
XOffsetRegion, XIntersectRegion, XEmptyRegion, XCreateRegion,
XDestroyRegion, XClipBox.



XEventsQueued(3X) (X1ib - Resource Manager) XEventsQueued (3X)

NAME
XEventsQueued — check the number of events in the event queue.
SYNOPSIS
int XEventsQueued (display, mode)
Display *display;
int mode;
ARGUMENTS
display Specifies a pointer to the Display structure, returned from
XOpenDisplay.
mode Specifies whether the output buffer is flushed if there are
no events in Xlib’s queue. You can specify one of these
constants: QueuedAlready, QueuedAfterFlush, QueuedAfter-
Reading.
DESCRIPTION

XEventsQueued checks whether events are queued. If there are events in
Xlib’s queue, the routine returns immediately to the calling routine. Its
return value is the number of events regardless of mode.

mode specifies what happens if no events are found on Xlib’s queue.

If mode is QueuedAlready, and there are no events in the queue,
XEventsQueued returns 0 (it does not flush the output buffer or
attempt to read more events from the connection).

If mode is QueuedAfterFlush, and there are no events in the queue,
XEventsQueued flushes the output buffer, attempts to read more
events out of the application’s connection, and returns the number
read.

If mode is Queued AfterReading, and there are no events in.the queue,
XEventsQueued attempts to read more events out of the application’s
connection without flushing the output buffer and returns the
number read.

Note that XEventsQueued always returns immediately without /O if there
are events already in the queue.

XEventsQueued with mode QueuedAfterFlush is identical in behavior to
XPending. XEventsQueued with mode QueuedAlready is identical to the
QLength macro.

For more information, refer to the GSE Programmer’s Guide.



XEventsQueued(3X) (XIib - Resource Manager) XEventsQueued(3X)

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeekIfEvent,
XPutBackEvent, XSynchronize, XSendEvent, QLength, XPending.



XFetchBuffer(3X) (X1ib - Cut Buffers) XFetchBuffer(3X)

NAME
XFetchBuffer — return data from cut buffer.

SYNOPSIS
char *XFetchBuffer (display, nbytes, buffer)
Display *display;

int *nbytes; /* RETURN x*/
int buffer;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
nbytes Returns the number of bytes in buffer returned by
XFetchBuffer. If there is no data in the buffer, nbytes
is set to 0.
buffer Specifies which buffer you want data from.
DESCRIPTION

XFetchBuffer returns data from one of the 8 buffers provided for inter-client
communication. If the buffer contains data, XFetchBuffer returns the
number of bytes in nbytes, otherwise it returns NULL and sets nbytes to 0.
The appropriate amount of storage is allocated and the pointer returned;
the client must free this storage when finished with it. Note that the cut
buffer does not necessarily contain text, so it may contain embedded null
bytes and may not terminate with a null byte.

Selections are the preferred communication scheme.

SEE ALSO
XStoreBuffer, XStoreBytes, XFetchBytes, XRotateBuffers.



XFetchBytes(3X) (X1ib - Cut Buffers) XFetchBytes(3X)

NAME
XFetchBytes — return data from cut buffer 0.

SYNOPSIS
char *XFetchBytes (display, nbytes)
Display *display;

int *nbytes; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
nbytes Returns the number of bytes in the string returned by
XFetchBytes. If there is no data in the buffer, nbytes is set
to 0.
DESCRIPTION

XFetchBytes returns data from cut buffer 0 of the 8 buffers provided for
inter-client communication. If the buffer contains data, XFetchBytes returns
the number of bytes in nbytes, otherwise it returns NULL and sets nbytes to
0. The appropriate amount of storage is allocated and the pointer
returned; the client must free this storage when finished with it. Note
that the cut buffer does not necessarily contain text, so it may contain
embedded null bytes and may not terminate with a null byte.

Use XFetchBuffer to fetch data from any specified cut buffer.
Selections are the preferred communication method.

SEE ALSO
XStoreBuffer, XStoreBytes, XFetchBuffer, XRotateBuffers.



XFetchName(3X) (X1ib - Window Manager Hints) XFetchName(3X)

NAME
XFetchName — get window name (WM_NAME property).

SYNOPSIS
Status XFetchName (display, w, window_name)
Display *display;
Window w;
char x*window_name; /* RETURN */

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID. This is the window whose
name you want a pointer set to.

window_name Returns a pointer to the window name, which will be a
null-terminated string. If the WM_NAME property has
not been set for this window, XFetchName sets windowname
to NULL. When finished with it, a client must free the
name string using XFree.

DESCRIPTION
XFetchName returns the current value of the WM_NAME property for the
specified window. XFetchName return value is non-zero if it succeeds, and
0 if the property has not been set for the argument window.

ERRORS
BadWindow

SEE ALSO
XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints,
XSetWMHints, XGetZoomHints, XSetZoomHints, XGetNormalHints,
XSetNormalHints, XGetTransientForHint, XSetTransientForHint,
XGetlconName, XSetlconName, XStoreName, XGetlconSizes, XSetlconSizes,
XSetCommand.



XFillArc(3X)

NAME

(Xlib - Drawing Primitives) XFillArc(3X)

XFillArc — fill an arc.

SYNOPSIS

XFillArc (display, d, gc, x, y, width, height, anglel, angle2)
Display =*display;
Drawable d;

GC gc;
int x, y;

unsigned int width, height;
int anglel, angle2;

ARGUMENTS
display

d

8¢
x
y

width
height

anglel

angle2

DESCRIPTION

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the drawable, a pixmap, or window.

Specifies the graphics context.

Specify the x and y coordinates. These coordinates are
relative to the origin of the drawable and specify the
upper left corner of the rectangle.

Specify the width and height. These are the major and
minor axes of the arc.

Specifies the start of the arc relative to the three o’clock
position from the center. Angles are specified in degrees,
multiplied by 64.

Specifies the path and extent of the arc relative to the start
of the arc. Angles are specified in degrees, multiplied by
64.

XFillArc fills an arc according to the arc_mode in the GC. The x, y, width,
and height arguments specify the bounding box for the arc. See XDrawArc
for the description of how this bounding box is used to compute the arc.
Some, but not all, of the pixels drawn with XDrawArc will be drawn with
XFillArc with the same arguments.

The arc forms one boundary of the area to be filled. The other boundary
is determined by the arc_mode in the GC. If the arc_mode in the GC is



XFillArc(3X) (X1ib - Drawing Primitives) XFillArc(3X)

ArcChord, the single line segment joining the endpoints of the arc is used.
If ArcPieSlice, the two line segments joining the endpoints of the arc with
the center point are used.

XFillArc uses these graphics context components: function, plane_mask,
fill_style, arc_mode, subwindow_mode, clip_x_origin, clip_y_origin, and
clip_mask. This function also uses these graphics context mode-dependent
components: foreground, background, tile, stipple, ts_x_origin, and
ts_y_origin.

ERRORS
BadDrawable
BadGC
BadMatch

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles,
XDrawSegments, XCopyArea, XCopyPlane, XFill Arcs, XFillPolygon,
XFillRectangle, XFillRectangles, XClearArea, XClearWindow.



XFillArcs(3X) (X1ib - Drawing Primitives) XFillArcs(3X)

NAME
XFillArcs — fill multiple arcs.

SYNOPSIS
XFillArcs (display, d, gc, arcs, narcs)
Display =*display;
Drawable d;

GC gc;
XArc *arcs;
int narcs;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
g Specifies the graphics context.
arcs Specifies a pointer to an array of arc definitions.
narcs Specifies the number of arcs in the array.
DESCRIPTION

For each arc, XFillArcs fills the region closed by the specified arc and one
or two line segments, depending on the arc_mode specified in the GC. It
does not draw the complete outlines of the arcs, but some pixels may
overlap.

The arc forms one boundary of the area to be filled. The other boundary
is determined by the arc_mode in the GC. If the arc_mode in the GC is
ArcChord, the single line segment joining the endpoints of the arc is used.
If ArcPieSlice, the two line segments joining the endpoints of the arc with
the center point are used. The arcs are filled in the order listed in the
array. For any given arc, no pixel is drawn more than once. If regions
intersect, pixels will be drawn multiple times.

XFillArcs use these graphics context components: function, plane_mask,
fill_style, arc_mode, subwindow_mode, clip_x_origin, clip_y_origin, and
clip_mask. This function also uses these graphics context mode-dependent
components: foreground, background, tile, stipple, ts_x_origin, and
ts_y_origin.



XFillArcs(3X) (X1ib - Drawing Primitives) XFillArcs(3X)

STRUCTURES
typedef struct {
short x, y:
unsigned short width, height;
unsigned short width, height;
short anglei, angle2; /% Degrees * 84 */
} XArc;

ERRORS
BadDrawable
BadGC
BadMatch

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles,
XDrawSegments, XCopyArea, XCopyPlane, XFillArc, XFillPolygon,
XFillRectangle, XFillRectangles, XClearArea, XClearWindow.



XFillPolygon(3X)

NAME

(X1ib - Drawing Primitives) XFillPolygon(3X)

XFillPolygon — fill a polygon.

SYNOPSIS

XFillPolygon (display, d, gc, points, npoints, shape, mode)
Display =*display;
Drawable d;

GC gc;

XPoint *points;

int npoints;
int shape;

int mode;
ARGUMENTS

display
d

gc
points
npoints
shape

mode

DESCRIPTION

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the drawable, a pixmap, or window.

Specifies the graphics context.

Specifies a pointer to an array of points.

Specifies the number of points in the array.

Specifies an argument that helps the server to improve
performance. Pass the last constant in this list that is
valid for the polygon to be filled: Complex, Nonconvex, or
Convex.

Specifies the coordinate mode. Pass either CoordModeOri-
gin or CoordModePrevious.

XFillPolygon fills the region closed by the specified path. Some but not all
of the path itself will be drawn. The path is closed automatically if the
last point in the list does not coincide with the first point. No pixel of the
region is drawn more than once.



XFillPolygon(3X) (Xlib - Drawing Primitives) XFillPolygon(3X)

The mode argument affects the interpretation of the points that define the
polygon:

CoordModeOrigin indicates that all points are relative to the
drawable’s origin.

CoordModePrevious indicates that all points after the first are relative
to the previous point. (The first point is always relative to the
drawable’s origin.)

The shape argument allows the fill routine to optimize its performance
given tips on the configuration of the area.

Complex indicates the path may self-intersect. The fill_rule of the GC
must be consulted to determine which areas are filled. Refer to the
GSE Programmer’s Guide for a discussion of the fill rules EvenOddRule
and WindingRule.

Nonconvex indicates the path does not self-intersect, but the shape is
not wholly convex. If known by the client, specifying Nonconvex
instead of Complex may improve performance. If you specify Non-
convex for a self-intersecting path, the graphics results are undefined.

Convex indicates the path is wholly convex. This can improve per-
formance even more, but if the path is not convex, the graphics
results are undefined.

XFillPolygon uses these graphics context components when filling the
polygon area: function, plane_mask, fill_style, fill_rule, subwindow_mode,
clip_x_origin, clip_y_origin, and clip_mask. This function also uses these
mode-dependent components of the GC: foreground, background, tile, stip-
ple, ts_x_origin, and ts_y_origin.

STRUCTURES
typedef struct {

short x, y;
unsigned short width, height;

} XPoint;

ERRORS

BadDrawable
BadGC
BadMatch
BadValue



XFillPolygon(3X) (Xlib - Drawing Primitives) XFillPolygon (3X)

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles,
XDrawSegments, XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillRectangle,
XFillRectangles, XClearArea, XClearWindow.



XFillRectangle(3X) (X1ib - Drawing Primitives) XFillRectangle (3X)

NAME
XFillRectangle — fill rectangular area.

SYNOPSIS
XFillRectangle (display, d, gc, x, y, width, height)
Display *display;
Drawable d;

GC gc;
int x, y;
unsigned int width, height;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
d Specifies the drawable, a pixmap, or window.
gc Specifies the graphics context.
x
y Specify the x and y coordinates. These coordinates are
relative to the origin of the drawable and specify the
upper left corner of the rectangle.
width
height Specify the dimensions of the rectangle to be filled.
DESCRIPTION

XFillRectangle fills the rectangular area in the specified drawable using the
x and y coordinates, width and height dimensions, and graphics context
you specify. XFillRectangle draws some but not all of the path drawn by
XDrawRectangle with the same arguments.

XFillRectangle uses these graphics context components: function,
plane_mask, fill_style, subwindow_mode, clip_x_origin, clip_y_origin, and
clip_mask. This function also uses these graphics context components
depending on the fill_style: foreground, background tile, stipple, ts_x_origin,
and ts_y_origin.

ERRORS
BadDrawable
BadGC
BadMatch



XFillRectangle(3X) (X1ib - Drawing Primitives) XFillRectangle(3X)

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles,
XDrawSegments, XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon,
XFillRectangles, XClearArea, XClearWindow.



XFillRectangles (3X) (X1ib - Drawing Primitives) XFillRectangles (3X)

NAME
XFillRectangles — fill multiple rectangular areas.

SYNOPSIS
XFillRectangles (display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle *rectangles;
int nrectangles;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from

XOpenDisplay.

d Specifies the drawable, a pixmap, or window.

g Specifies the graphics context.

rectangles Specifies a pointer to an array of rectangles.

nrectangles Specifies the number of rectangles in the array.
DESCRIRTION

XFillRectangles fills multiple rectangular areas in the specified drawable
using the graphics context.

The x and y coordinates of each rectangle are relative to the drawable’s
origin, and define the upper left corner of the rectangle. The rectangles
are drawn in the order listed. For any given rectangle, no pixel is drawn
more than once. If rectangles intersect, the intersecting pixels will be
drawn multiple times.

XFillRectangles uses these graphics context components: function,
plane_mask, fill_style, subwindow_mode, clip_x_origin, clip_y_origin, and
clip_mask. This function also uses these graphics context components
depending on the fill_style: foreground, background tile, stipple, ts_x_origin,
and ts_y_origin.
STRUCTURES

typedef struct {

short x, y;

unsigned short width, height;

unsigned short width, height;
} XRectangle;



XFillRectangles(3X) (X1ib - Drawing Primitives) XFillRectangles(3X)

ERRORS
BadDrawable
BadGC
BadMatch

SEE ALSO
XDraw, XDrawArc, XDrawArcs, XDrawkFilled, XDrawLine, XDrawLines,
XDrawPoint, XDrawPoints, XDrawRectangle, XDrawRectangles,
XDrawSegments, XCopyArea, XCopyPlane, XFillArc, XFillArcs, XFillPolygon,
XFillRectangle, XFillRectangles, XClearArea, XClearWindow.



XFindContext(3X) (Xlib - Context Manager) XFindContext(3X)

NAME
XFindContext — get data from context manager (not graphics context).

SYNOPSIS
int XFindContext (display, w, context, data)
Display *display;
Window w;
XContext context;

caddr_t *data; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window with which the data is associated.
context Specifies the context type to which the data corresponds.
data Returns the data.
DESCRIPTION

XFindContext gets data that has been assigned to the specified window
and context ID. The context manager is used to associate data with win-
dows for use within an application.

This application should have called XUniqueContext to get a unique ID,
and then XSaveContext to save the data into the array. The meaning of the
data is indicated by the context ID, but is completely up to the client.

XFindContext returns XCNOENT (a nonzero error code) if the context could
not be found and zero (0) otherwise.

STRUCTURES
typedef int XContext

SEE ALSO
XDeleteContext, XSaveContext, XUniqueContext.



XFlush(3X) (X1ib - Output Buffer) XFlush(3X)

NAME
XFlush — flush the output buffer (display all queued requests).
SYNOPSIS
XF1lush (display)
Display *display;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
DESCRIPTION
XFlush sends to the display ("flushes”) all output requests that have been
buffered but not yet sent.
Flushing is done automatically when input is read if no matching events
are in Xlib’'s queue (with XPending, XNextEvent, or XWindowEvent), or
when a call is made that gets information from the server (such as

XQueryPointer, XGetFontInfo) so XFlush is seldom needed. It is used when
the buffer must be flushed before any of these calls are reached.

SEE ALSO
XSync



XForceScreenSaver(3X) (X1ib - Screen Saver) XForceScreenSaver(3X)

NAME
XForceScreenSaver — turn screen saver on or off.
SYNOPSIS
XForceScreenSaver (display, mode)
Display =*display;

int mode;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
mode Specifies whether screen saver is active or reset. The pos-
sible modes are: ScreenSaverActive or ScreenSaverReset.
DESCRIPTION

XForceScreenSaver resets or activates the screen saver. If the specified
mode is ScreenSaverActive and the screen saver currently is disabled, the
screen saver is activated, even if the screen saver had been disabled with
a timeout of zero (0). This means that the screen may go blank or have
some random change take place to save the phosphors. If the specified
mode is ScreenSaverReset and the screen saver currently is enabled, the
screen is returned to normal, the screen saver is deactivated and the
activation timer is reset to its initial state (as if device input had been
received). Expose events may be generated on all visible windows if the
server cannot save the entire screen contents.

ERRORS
BadValue

SEE ALSO
XActivateScreenSaver, XResetScreenSaver, XGetScreenSaver, XSetScreenSaver.



XFree(3X) (X1ib - HouseKeeping) XFree(3X)

NAME
XFree — free specified in-memory data created by an Xlib function.
SYNOPSIS

XFree (data)
char *data;

ARGUMENTS
data Specifies a pointer to the data that is to be freed.

DESCRIPTION
XFree is a general purpose routine for freeing data allocated by Xlib calls.

SEE ALSO
XOpenDisplay, XCloseDisplay, XNoOp, DefaultScreen.



XFreeColormap{(3X) (X1ib - Colormaps) XFreeColormap (3X)

NAME
XFreeColormap — delete colormap and install the default colormap.

SYNOPSIS
XFreeColormap (display, cmap)
Display *display;
Colormap cmap;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap to delete.
DESCRIPTION

XFreeColormap destroys the colormap, unless it is the default colormap for
a screen. That is, it not only uninstalls cmap from the hardware colormap
if it is installed, but also frees the associated memory and removes all
trace.

XFreeColormap performs the following processing:

® If cmap is an installed map for a screen, it uninstalls the colormap
and installs the default if not already installed.

® If cmap is defined as the colormap attribute for a window (by
XCreateWindow or XChangeWindowAttributes), it changes the colormap
associated with the window to the constant None, generates a Color-
mapNotify event, and frees the colormap. The colors displayed with
a colormap of None are server-dependent as the default colormap is
normally used.

ERRORS
BadColor

SEE ALSO
XCopyColormapAndFree, XCreateColormap, XGetStandardColormap,
XInstallColormap, XUninstallColormap, XSetStandardColormap,
XListInstalledColormaps, XSetWindowColormap, DefaultColormap, DisplayCells.



XFreeColors(3X) (X1ib - Color Cells) XFreeColors(3X)

NAME
XFreeColors — free colormap cells or planes.

SYNOPSIS
XFreeColors (display, cmap, pixels, npixels, planes)
Display *display;
Colormap cmap;
unsigned 1long pixels[];
int npixels;
unsigned 1long planes;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap.
pixels Specifies an array of pixel values. These pixel values map
to the cells in the specified colormap.
npixels Specifies the number of pixels.
planes Specifies the planes you want to free.
DESCRIPTION

XFreeColors frees the cells whose values are computed by ORing together
subsets of the planes argument with each pixel value in the pixels array.

If the cells are read/write, they become available for reuse, unless they
were allocated with XAllocColorPlanes, in which case all the related pixels
may need to be freed before any become available.

If the cells were read-only, they become available only if this is the last
client who had allocated those shared cells.

ERRORS
BadAccess A colorcell allocated by client (either unallocated or allo-
cated by another client).
BadColor
BadValue A pixel value is not a valid index into cmap.

If more than one pixel value is in error, the one reported is arbitrary.

SEE ALSO
XAllocColorCells, XAllocColorPlanes, XAllocColor, XAllocNamedColor,
XLookupColor, XParseColor, XQueryColor, XQueryColors, XStoreColor,
XStoreColors, XStoreNamedColor, BlackPixel, WhitePixel.



XFreeCursor(3X) (X1ib - Cursors) XFreeCursor(3X)

NAME
XFreeCursor — destroy a cursor.

SYNOPSIS
XFreeCursor (display, cursor)
Display *display;
Cursor cursor;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cursor Specifies the cursor ID.
DESCRIPTION

XFreeCursor deletes the association between the cursor ID and the speci-
fied cursor. The cursor storage is freed when all other clients have freed
it. Windows with their cursor attribute set to this cursor will be changed
to None (which implies CopyFromParent). The specified cursor should not
be referred to again or an error will be generated.

ERRORS
BadCursor
SEE ALSO

XDefineCursor, XUndefineCursor, XCreateFontCursor, XCreateGlyphCursor,
XCreatePixmapCursor, XRecolorCursor, XQueryBestCursor, XQueryBestSize.



XFreeExtensionList(3X) (X1ib - Extensions) XFreeExtensionList(3X)

NAME
XFreeExtensionList — free memory allocated for list of installed exten-
sions to X.

SYNOPSIS

XFreeExtensionList (list)
char *x[ist;

ARGUMENTS
list Specifies the list of extensions returned from XListExten-
sions.
DESCRIPTION

XFreeExtensionList frees the memory allocated by XListExtensions.

SEE ALSO
XListExtensions, XQueryExtension.



XFreeFont(3X) (X1ib - Fonts) XFreeFont(3X)

NAME
XFreeFont — unload font and free storage for font structure.

SYNOPSIS
XFreeFont (display, font_struct)
Display *display;
XFontStruct *font_struct;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
font_struct Specifies the storage associated with the font.
DESCRIPTION

XFreeFont frees the memory allocated for the font_struct font information
structure (XFontStruct) filled by XQueryFont or XLoadQueryFont. XFreeFont
frees all storage associated with the font_struct argument. Neither the
data nor the font should be referenced again.

The font itself is unloaded if no other client has loaded it.

STRUCTURES
typedef struct {
XExtData *ext_data; /*hook for extemnsion to hang datax*/
Font fid; /*font id for this font*/
unsigned direction; /*hint about direction the font is painted*/

unsigned min_char_or_byte2;/*first characters*/
unsigned max_char_or_byte2;/*last characters*/

unsigned min_bytel; /*first row that existsx*/
unsigned max_bytel; /*last row that exists*/
Bool all_chars_exist; /#*flag if all characters have non-zero size*/

unsigned default_char; /*char to print for undefined character*/

int n_properties; /*how many properties there arex*/

XFontProp *properties; /*pointer to array of additional properties#*/

XCharStruct min_bounds; /*minimum bounds over all existing char=*/
XCharStruct max_bounds; /*minimum bounds over all existing char*/

XCharStruct *per_char; /*first_char to last_char information=*/

int ascent; /*logical extent above baseline for spacing*/
int descent; /*logical descent below baseline for spacing */

} XFontStruct;

ERRORS
BadFont



XFreeFont(3X) (X1ib - Fonts) XFreeFont(3X)

SEE ALSO
XLoadFont, XLoadQueryFont, XFreeFontInfo, XListFonts, XListFontsWithInfo,
XFreeFontNames, XFreeFontPath, XGetFontPath, XQueryFont, XSetFont,
XSetFontPath, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XFreeFontInfo(3X) (X1ib - Fonts) XFreeFontInfo(3X)
NAME

XFreeFontInfo — free multiple font information arrays.
SYNOPSIS

XFreeFontInfo (names, info, actual_count)
char **xnames;
XFontStruct *info;
int actual_count;

ARGUMENTS
names Specifies a pointer to the list of font names that were
returned by XListFontsWithInfo.
info Specifies a pointer to the list of font information that was

returned by XListFontWithInfo.

Specifies the number of matched font names returned by
XListFontWithInfo.

actual_count

DESCRIPTION
XFreeFontInfo frees all resources allocated by XListFontsWithInfo. It does
not unload the specified fonts.

STRUCTURES
typedef struct {
XExtData *ext_data;
Font fid;
unsigned direction;

/*hook for extension to hang data*/
/*font id for this fontx*/

unsigned min_char_or_byte2; /*first character*/
unsigned max_char_or_byte2; /*last character*/
unsigned min_bytel; /*first row that exists*/

unsigned max_bytel; /*last row that exists»*/

/*hint about direction the font is painted*/

Bool all_chars_exist;
unsigned default_char;
int n_properties;
XFontProp *properties;
XCharS8truct min_bounds;
XCharStruct max_bounds;
XCharStruct *per_char;
int ascent;

int descent;

} XFontStruct;

/*flag if all characters have non-zero sizex*/
/*char to print for undefined character*/
/*how many properties there are*/

/*pointer to array of additional properties*/
/*minimum bounds over all existing char*/
/*minimum bounds over all existing charx*/
/*first_char to last_char information*/
/*logical extent above baseline for spacing*/
/*logical descent below baseline for spacing*/



XFreeFontInfo(3X) (X1ib - Fonts) XFreeFontInfo(3X)

SEE ALSO
XLoadFont, XLoadQueryFont, XFreeFont, XListFonts, XListFontsWithInfo,
XFreeFontNames, XGetFontPath, XQueryFont, XSetFont, XSetFontPath,
XUnloadFont, XGetFontProperty, XCreateFontCursor.



XFreeFontNames(3X) (X1ib - Fonts) XFreeFontNames(3X)

NAME
XFreeFontNames — free font name array.

SYNOPSIS
XFreeFontNames (list)
char =*list(];

ARGUMENTS
list Specifies the array of font name strings to be freed.

DESCRIPTION
XFreeFontNames frees the array of strings returned by XListFonts.

SEE ALSO
XLoadFont, XLoadQueryFont, XFreeFont, XFreeFontInfo, XListFonts,
XListFontsWithInfo, XFreeFontPath, XGetFontPath, XQueryFont, XSetFont,
XSetFontPath, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XFreeFontPath(3X) (X1ib - Fonts) XFreeFontPath (3X)

NAME

XFreeFontPath — free memory allocated by XGetFontPath.
SYNOPSIS

XFreeFontPath (list)

char *xlist;

ARGUMENTS

list Specifies the array of strings allocated by XGetFontPath.
DESCRIPTION

Frees the data used by the array of directories returned by XGetFontPath.

SEE ALSO
XLoadFont, XLoadQueryFont, XFreeFont, XFreeFontInfo, XListFonts,
XListFontsWithInfo, XFreeFontNames, XGetFontPath, XQueryFont, XSetFont,
XSetFontPath, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XFreeGC(3X) (X1ib - Graphics Context) XFreeGC(3X)

NAME
XFreeGC — free a graphics context.

SYNOPSIS
XFreeGC (display, gc)
Display *display;

GC gc;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
8c Specifies the graphics context.
DESCRIPTION

Frees all memory associated with a graphics context, and removes the GC
from the server and display hardware.

ERRORS
BadGC

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XGContextFromGC, XSetStipple,
XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes, XSetFillRule,
XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XFreeModifiermap (3X) (X1ib - Keyboard) XFreeModifiermap (3X)

NAME
XFreeModifiermap — destroy and free keyboard modifier mapping table.
SYNOPSIS

XFreeModifiermap (modmap)
XModifierKeymap *modmap;

ARGUMENTS

modmap Specifies a pointer to the XModifierKeymap structure.
DESCRIPTION

XFreeModifiermap frees the specified XModifierKeymap structure.
STRUCTURES

typedef struct {

int max_keypermod; /*server s max number of keys per modifie:

KeyCode *modifiermap;/*an 8 by max_keypermod array of

* keycodes to be used as modifiers

} XModifierKeymap;

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XKeycodeToKeysym,
XKeysymToKeycode, XKeysymToString, XNewModifierMap, XQueryKeymap,
XStringToKeysym, XLookupKeysym, XRebindKeySym, XGetKeyboardMapping,
XChangeKeyboardMapping, XRefreshKeyboardMapping, XLookupString,
XSetModifierMapping, XGetModifierMapping.



XFreePixmap (3X) (X1ib - Pixmaps and Tiles) XFreePixmap (3X)

NAME
XFreePixmap — free pixmap ID.
SYNOPSIS
XFreePixmap (display, pixmap)
Display *display;
Pixmap pixmap;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
pixmap Specifies the pixmap.
DESCRIPTION

XFreePixmap disassociates a pixmap ID from its resource. If no other
client has an ID for that resource, it is freed. The Pixmap should never be
referenced again by this client. If it is, the ID will be unknown and a Bad-
Pixmap error will result.

ERRORS
BadPixmap

SEE ALSO
XSetTile, XQueryBestTile, XSetWindowBorderPixmap,
XSetWindowBackgroundPixmap, XCreatePixmap,
XCreatePixmapFromBitmapData, XQueryBestSize, XQueryBestStipple,
XWriteBitmapFile, XReadBitmapFile, XCreateBitmapFromData.



XGContextFromGC(3X) (X1ib - Graphics Context) XGContextFromGC(3X)

NAME
XGContextFromGC — obtain the GContext (ID) associated with the speci-
fied GC.
SYNOPSIS
GContext XGContextFromGC (gc)
GC gc;
ARGUMENTS
g Specifies the graphics context that you want the resource
ID for.
DESCRIPTION

XGContextFromGC extracts the resource ID from the GC structure. Using
the gc argument, gc->gid, does the same thing.

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XSetStipple, XSetTSOrigin,
XSetPlaneMask, XSetDashes, XSetLineAttributes, XSetFillRule, XSetFillStyle,
XSetForeground, XSetBackground, XSetFunction, XSetGraphicsExposures,
XSetArcMode, XSetClipMask, XSetClipOrigin, XSetClipRectangles, XSetState,
XSetSubwindowMode, DefaultGC.



XGeometry(3X)

(X1ib - Standard Geometry) XGeometry(3X)

NAME
XGeometry — calculate window geometry given user geometry string and
default geometry.

SYNOPSIS

int XGeometry (display, screen, user_geom, default_geom, bwidth,
fwidth, fheight, xadder, yadder, x, y, width, height)

Display

*display;

int screen;

char *user_geom, *default_geom ;
unsigned int bwidth;
unsigned int fwidth, fheight;
int xadder, yadder;

int *x,

ARGUMENTS
display

screen
user_geom

default_geom
bwidth
fheight
fwidth

xadder
yadder

width
height
x

y
DESCRIPTION

*y, *width, *height;/* RETURN */

Specifies a pointer to the Display structure; returned from
XOpenDisplay.
Specifies which screen the window is on.

Specifies the user- or program-supplied geometry string,
perhaps incomplete.

Specifies the default geometry string.
Specifies the border width.

Specify the font height and width in pixels (increment
size).

Specify additional interior padding needed in the window.
Return the window dimensions.

Return the window placement.

XGeometry returns the position and size of a window placement given a
user-supplied geometry (allowed to be partial) and a default geometry.
Each user-supplied specification is copied into the appropriate returned
argument, unless it is not present, in which case the default specification



XGeometry(3X) (X1ib - Standard Geometry) XGeometry(3X)

is used. The default geometry should be complete while the user-
supplied one may not be.

XGeometry is useful for processing command line and /. Xdefaults options.
These geometry strings are of the form:

=<width>x<height>{+-} <xoffset>{+-} <yoffset>

The "=" at the beginning of the string is now optional.

The XGeometry return value is a bitmask which indicates which values
were present in user_geom. This bitmask is composed of the exclusive OR
of the symbols XValue, YValue, WidthValue, HeightValue, XNegative, or
YNegative.

If the function returns either XValue or YValue, you should place the win-
dow at the requested position. The border width (bwidth), size of the
width and height increments (typically fwidth and fheight), and any addi-
tional interior space (xadder and yadder) are passed in to make it easy to
compute the resulting size.

SEE ALSO
XParseGeometry, XTranslateCoordinates.



XGetAtomName (3X) (X1ib - Properties) XGetAtomName(3X)

NAME
XGetAtomName — get name for atom.

SYNOPSIS
char *XGetAtomName (display, atom)
Display *display;

Atom atom;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
atom Specifies the atom whose string name you want returned.
DESCRIPTION

An atom is a symbol (actually a number) identifying a property. XGetA-
tomName returns a string version of the atom name. XA_WM_CLASS (a
symbol) is returned as "XA_WM_CLASS" (a string). If the specified atom
name is not defined, XGetAtomName returns NULL.

XInternAtom performs the inverse function.

ERRORS
BadAtom

SEE ALSO
XSetStandardProperties, XGetFontProperty, XRotateWindowProperties,

XDeleteProperty, XChangeProperty, XGetWindowProperty, XListProperties,
XInternAtom.



XGetClassHint(3X) (Xlib - Window Manager Hints) XGetClassHint(3X)

NAME
XGetClassHint — get the WM_CLASS property of a window.

SYNOPSIS
Status XGetClassHint (display, w, class_hints)
Display *display;

Window w;
XClassHint *class_hints; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
class_hints Returns the XClassHints structure.
DESCRIPTION
XGetClassHint obtains the XA_WM_CLASS property for the specified win-
dow.

XGetClassHint returns a status of 0 on failure, non-zero on success.

The XClassHint structure returned contains res_class, which is the
name of the client such as "emacs", and res_name, which is the first of the
following that applies:

®  command line option (-rn name)
®  a specific environment variable (e.g., RESOURCE_NAME)
® the trailing component of argv [0]

STRUCTURES
typedef struct {
char *res_name;
char *res_class;
} XClassHint;

ERRORS
BadWindow

SEE ALSO
XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints, XSetWMHints,
XGetZoomHints, XSetZoomHints, XGetNormalHints, XSetNormalHints,
XGetTransientForHint, XSetTransientForHint, XFetchName, XGetlconName,
XSetlconName, XStoreName, XGetlconSizes, XSetlIconSizes, XSetCommand.



XGetDefault(3X) (X1ib - User Preferences) XGetDefault(3X)

NAME
XGetDefault — scan user preference file for program name and options.

SYNOPSIS
char *XGetDefault (display, program, option)
Display *display;
char *program;
char *option;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
program Specifies the program name to be looked for in /. Xdefaults.
The program name is usually argv[0], the first argument
on the SYSTEM V/68 command line.
option Specifies the option name or keyword. Lines containing
both the program name and the option name will be
matched.
DESCRIPTION

XGetDefault returns a character string containing the value at the end of
line that contains both the program name and the option name specified.
The strings returned by XGetDefault are owned by Xlib and should not be
modified or freed by the client.

Lines in “/. Xdefaults look like this:

xterm.foreground: #cOcOf?t
xterm.geometry: =81x28
xterm.savelLines: 268

xterm.font: 8x13
xterm.keyMapFile: /usr/black/.keymap
xterm.activelIcon: on

Upper and lower case is important. In some programs the standard is to
capitalize only the second and successive words in each option, if any. In
others, the first word is also capitalized.

Defaults are usually loaded into the RESOURCE_MANAGER property on
the root window at login. If no such property exists, a resource file in the
user’'s home directory is loaded. On a SYSTEM V/68-based system, this
file is $HOME/. Xdefaults. After loading these defaults, XGetDefault
merges additional defaults specified by the XENVIRONMENT



XGetDefault(3X) (X1ib - User Preferences) XGetDefault(3X)

environment variable. If XENVIRONMENT is defined, it contains a full
path name for the additional resource file. If XENVIRONMENT is not
defined, XGetDefault looks for SHOME/.Xdefaults-name, where name
specifies the name of the machine on which the application is running.

The first invocation of XGetDefault reads the defaults into memory so that
subsequent requests are fast. Therefore, changes to the defaults files from
the program will not be felt until the next invocation.

XGetDefault returns the value NULL if the option name specified in this
argument does not exist for the program.
SEE ALSO

XAutoRepeatOff, XAutoRepeatOn, XBell, XGetKeyboardControl,
XChangeKeyboardControl, XGetPointerControl.



XGetErrorDatabaseText(3X) (X1ib - Error Handling) XGetErrorDatabaseText(3X)

NAME
XGetErrorDatabaseText — obtain error messages from the error data base.

SYNOPSIS
XGetErrorDatabaseText (display, name, message, default_string,
buffer, length)
Display display;
char *name, *message;
char *default_string ;

char *buffer; /* RETURN x*/
int length;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
name Specifies the name of the application.
message Specifies the type of the error message. One of XProtoEr-

ror, XlibMessage, or XRequestMajor (see Description below).
default_string  Specifies the default error message.

buffer Returns the error description.
length Specifies the size of the return buffer.
DESCRIPTION

XGetErrorDatabaseText returns a message from the error message database.
Given name and message as keys, XGetErrorDatabaseText uses the resource
manager to look up a string and returns it in the buffer argument. Xlib
uses this function internally to look up its error messages. On a SYSTEM
V/68-based system, the error message database is /usr/lib/XerrorDB.

The name argument should generally be the name of your application.
The message argument should indicate which type of error message you
want. Three predefined message types are used by Xlib to report errors:

®  XProtoError
The protocol error number is used as a string for the message argument.
®  XlibMessage



XGetErrorDatabaseText(3X) (X1ib - Error Handling) XGetErrorDatabaseText(3X)

These are the message strings that are used internally by the library.
®  XRequestMajor
The major request protocol number is used for the message argument.

If no string is found in the error data base, XGetErrorDatabaseText returns
the default_string that you specify to the buffer.
The string in buffer will be of length length.

SEE ALSO

XDisplayName, XGetErrorText, XSetErrorHandler, XSetIOErrorHandler,
XSynchronize, XSetAfterFunction.



XGetErrorText(3X) (X1ib - Error Handling) XGetErrorText(3X)

NAME
XGetErrorText — obtain description of error code.

SYNOPSIS
XGetErrorText (display, code, buffer, length)
Display *display;

int code;
char *buffer; /* RETURN x*/
int length;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
code Specifies the error code for which you want to obtain a
description.
buffer Returns a pointer to the error description text.
length Specifies the size of the buffer.
DESCRIPTION

XGetErrorText obtains textual descriptions of errors. XGetErrorText returns
a pointer to a null-terminated string describing the specified error code
with length length. This string is copied from static data and therefore
may be freed. This routine allows extensions to the Xlib library to define
their own error codes and error strings, which can be accessed easily.

SEE ALSO

XDisplayName, XGetErrorDatabaseText, XSetErrorHandler,
XSetlOErrorHandler, XSynchronize, XSetAfterFunction.



XGetFontPath(3X) (X1ib - Fonts) XGetFontPath(3X)

NAME
XGetFontPath — get the current font search path.

SYNOPSIS
char **XGetFontPath (display, npaths)
Display *display;

int *npaths; /* RETURN number of ele-
ments */
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
npaths Returns the number of strings in the font path array.
DESCRIPTION

XGetFontPath allocates and returns an array of strings containing the
search path. The data in the font path should be freed when no longer
needed.

SEE ALSO
XLoadFont, XLoadQueryFont, XFreeFont, XFreeFontInfo, XListFonts,

XListFontsWithInfo, XFreeFontNames, XFreeFontPath, XQueryFont, XSetFont,
XSetFontPath, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XGetFontProperty (3X) (Xlib - Properties) XGetFontProperty (3X)

NAME
XGetFontProperty — get a font property given its atom.

SYNOPSIS
Bool XGetFontProperty (font_struct, atom, value)
XFontStruct *font_struct;
Atom atom;
unsigned long *value; /* RETURN */

ARGUMENTS
font_struct Specifies the storage associated with the font.

atom Specifies the atom associated with the property name you
want returned.
value Returns the value of the font property.
DESCRIPTION

XGetFontProperty returns the value of the specified font property, given
the atom for that property. The function returns 0 if the atom was not
defined, or 1 if was defined.

There are a set of predefined atoms for font properties which can be found
in <X11/Xatom.h>. These atoms are listed and described in the GSE
Programmer’s Guide. This set contains the standard properties associated
with a font. The predefined font properties are likely but not guaranteed
to be present on any given server.

STRUCTURES
typedef struct {
XExtData *ext_data; /*hook for extension to hang data*x/
Font fid; /*Font id for this font*/
unsigned direction; /*hint about direction the font is paintedx*/

unsigned min_char_or_byte2; /*first character*/
unsigned max_char_or_byte2; /#*last character*/

unsigned min_bytel; /*first row that existse*/

unsigned max_bytel; /*last row that exists*/

Bool all_chars_exist; /*2lag if all characters have non-zero size*/
unsigned default_char; /*char to print for undefined character*/

int n_properties; /*how many properties there arex*/

XFontProp *properties; /*pointer to array of additional properties*/
XCharS8truct min_bounds; /*minimum bounds over all existing char*/
XCharS8truct max_bounds; /*minimum bounds over all existing chars*/
XCharStruct *per_char; /*first_char to last_char information*/

-1-



XGetFontProperty (3X) (X1ib - Properties) XGetFontProperty(3X)

int ascent; /*logical extent above baseline for spacing*/
int descent; /*logical descent below baseline for spacing*/
} XFontStruct;

SEE ALSO
XSetStandardProperties, XRotateWindowProperties, XDeleteProperty,
XChangeProperty, XGetWindowProperty, XListProperties, XGetAtomName,
XInternAtom.



XGetGeometry (3X)

NAME

(X1ib - Window Attributes) XGetGeometry (3X)

XGetGeometry — obtain current geometry of drawable.

SYNOPSIS

Status XGetGeometry (display, d, root, x, y, width, height,
border_width, depth)

Display *display;

Drawable d;

Drawable
int *x,
unsigned
unsigned
unsigned

ARGUMENTS
display

d

root

width

height

border_width

depth

DESCRIPTION

*root ; /* RETURN =*/

*Y; /* RETURN x*/
int *width, =*height;/* RETURN x*/
int *border_width;/* RETURN */
int *depth; /* RETURN x*/

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the drawable, either a window or a pixmap.

Returns the root window ID of the specified window.

Return the location of the drawable for a window. They
are the upper left outer corner relative to its parent’s ori-
gin. For pixmaps, these coordinates are always 0.

Return the dimensions of the drawable. For a window,
these return the inside size (not including the border). For
a pixmap, they just return the size.

Returns the borderwidth, in pixels, of the window’s
border, if the drawable is a window. Returns 0 if the
drawable is a pixmap.

Returns the depth of the pixmap (bits per pixel for the
object) The depth must be supported by the root of the
specified drawable.

This function gets complete information about the current geometry of a

drawable.

XGetGeometry returns a status of 0 on failure or 1 when it succeeds.



XGetGeometry (3X) (Xlib - Window Attributes) XGetGeometry(3X)

ERRORS
BadDrawable

SEE ALSO
XGetWindowAttributes, XChangeWindowAttributes, XSetWindowBackground,
XSetWindowBackgroundPixmap, XSetWindowBorder,
XSetWindowBorderPixmap.



XGetIconName(3X) (X1ib - Window Manager Hints) XGetIconName(3X)

NAME
XGetlconName — get name to be displayed in icon.

SYNOPSIS
Status XGetIconName (display, w, icon_name)
Display *display;
Window w;
char **icon_name; /* RETURN =*/

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID. This is the window whose icon
name you want to learn.

icon_name Returns a pointer to the name to be displayed in the
window’s icon. The name should be a null-terminated
string. If you never assigned a name to the window,
XGetlconName sets this argument to NULL. When finished
with it, a client must free the icon name string using
XFree.

DESCRIPTION
XGetlconName reads the icon name property of a window. This function is
primarily used by window managers to get the name to be written in that
window’s icon when they need to display that icon.

The XGetlconName return value is non-zero status if it succeeds, and 0 if
no icon name has been set for the argument window.

ERRORS
BadWindow

SEE ALSO
XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints,
XSetWMHints, XGetZoomHints, XSetZoomHints, XGetNormalHints,
XSetNormalHints, XGetTransientForHint, XSetTransientForHint, XFetchName,
XSetIconName, XStoreName, XGetlconSizes, XSetlconSizes, XSetCommand.



XGetlIconSizes(3X) (X1ib - Window Manager Hints) XGetlIconSizes(3X)

NAME
XGetIconSizes — get preferred icon sizes.
SYNOPSIS
Status XGetIconSizes (display, w, size_list, count)
Display *display;
Window w;
XIconSize **size_list; /* RETURN */
int *count; /* RETURN =*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID (usually of the root window).
size_list Returns a pointer to the size list.
count Returns the number of items in the size list.
DESCRIPTION

XGetlIconSizes returns zero if a window manager has not set icon sizes, and
a non-zero status otherwise. This function should be called by all pro-
grams to find out what icon sizes are preferred by the window manager.
The application should then use XSetWMHints to supply the window
manager with an icon pixmap or window in one of the supported sizes.

STRUCTURES
typedef struct {
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc:
} XIconS8ize;

/* width_inc and height_inc provide the preferred
* increment of sizes in the range from min_width
* to max_width and min_height to max_height. */



XGetIconSizes (3X) (X1ib - Window Manager Hints) XGetIconSizes(3X)

ERRORS
BadWindow

SEE ALSO
XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints,
XSetWMHints, XGetZoomHints, XSetZoomHints, XGetNormalHints,
XSetNormalHints, XGetTransientForHint, XSetTransientForHint, XFetchName,
XGetlIconName, XStoreName, XSetIconSizes, XSetCommand.



XGetImage(3X)

NAME

(X1ib - Images) XGetImage(3X)

XGetImage — place contents of rectangle from drawable into image.

SYNOPSIS

XImage *XGetImage (display, d, x, y, width, height, plane_mask,

format)

Display *display;
Drawable d;

int x, y;

unsigned int width, height;
long plane_mask ;

int format;

ARGUMENTS
display

®

width
height

plane_mask
format

DESCRIPTION

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the drawable to get the data from.

Specify the x and y coordinates. These coordinates define
the upper left corner of the rectangle and are relative to
the origin of the drawable.

Specify the width and height. These arguments define the
dimensions of the image.

Specifies a plane mask which indicates which planes are
represented in image.

Specifies the format for the image. Pass either XYPixmap
or ZPixmap.

XGetImage provides a mechanism to perform a rudimentary screen dump.

XGetImage returns an XImage structure. This structure provides you with
the contents of the specified rectangle of the drawable in the format you
specify. If you specify the XYPixmap format, the function gets only the bit
planes you passed to the plane_mask argument. If you specify the ZPixmap
format, the function sets as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the
values in plane_mask, and ignores extraneous bits.



XGetImage(3X) (X1ib - Images) XGetImage(3X)

XGetImage returns the depth of the image to the depth member of the
XImage structure. The depth of the image is as specified when the draw-
able was created.

If the drawable is a pixmap, the specified rectangle must be completely
inside the pixmap, or a BadMatch error will occur.

If the drawable is a window, the window must be mapped. It must also
be the case that, if there were no inferiors or overlapping windows, the
specified rectangle of the window would be fully visible on the screen;
otherwise, a BadMatch error will occur. The returned image will include
any visible portions of inferiors or overlapping windows contained in the
rectangle. The specified area can include the borders. The returned con-
tents of visible regions of inferiors of different depth than the specified
window are undefined.

If the window has a backing-store, the backing-store contents are returned
for regions of the window that are obscured by noninferior windows.
Otherwise, the return contents of such obscured regions are undefined.
Also undefined are the returned contents of visible regions of inferiors of
different depth than the specified window.

For XYFormat format data, the bit_order member of XImage specifies which
bit order your server likes the data in.

If XGetImage fails for any reason, it returns NULL.

ERRORS

BadDrawable
BadMatch See Description above.
BadValue

SEE ALSO

XDestroylmage, XPutlmage, XCreatelmage, XSublmage, XGetSublmage,
XAddPixel, XPutPixel, XGetPixel, ImageByteOrder.



XGetInputFocus(3X) (X1ib - Input Handling) XGetInputFocus(3X)

NAME
XGetInputFocus — discover current input focus window.

SYNOPSIS

XGetInputFocus (display, focus, revert_to)
Display *display;

Window *focus; /* RETURN */
int *reveri_to; /* RETURN */
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
focus Returns the ID of the focus window, or one of the con-
stants PointerRoot or None.
revert_to Returns the window to which the focus would revert if the

focus window became invisible. This is one of these con-
stants: RevertToParent, RevertToPointerRoot, or RevertTo-
None. Must not be a window ID.

DESCRIPTION
XGetInputFocus returns the current focus window and the window to
which the focus would revert if the focus window became invisible.

It does not report the last focus change time. This is available only from
events.

SEE ALSO
XSelectInput, XSetInputFocus, XWindowEvent, XCheckWindowEvent,
XCheckTypedEvent, XCheckTypedWindowEvent, XMaskEvent,
XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeckIfEvent,
XPutBackEvent, XPending, XSynchronize, XSendEvent, QLength.



XGetKeyboardControl (3X) (X1ib - User Preferences) XGetKeyboardControl (3X)

NAME
XGetKeyboardControl — obtain list of current keyboard control values.

SYNOPSIS
XGetKeyboardControl (display, values)
Display *display;
XKeyboardState *values; /* RETURN */

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
values Returns filled XKeyboardState structure.
DESCRIPTION

XGetKeyboardControl returns the current control values for the keyboard.
For the LEDs, the least significant bit of led-mask corresponds to LED
one, and each bit that is set to one in led_mask indicates an LED that is lit.
auto_repeats is a bit vector; each bit that is set to one indicates that
auto-repeat is enabled for the corresponding key. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to
8N+7, with the least significant bit in the byte representing key 8N.
global_auto_repeat is either AutoRepeatModeOn or AutoRepeatModeOff.

For the ranges of each member of XKeyboardState, see the routine that sets
that value.

STRUCTURES

typedef struct {
int key_click_percent;
int bell_percent;
unsigned int bell_pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32];

} XKeyboardState;

SEE ALSO
XGetDefault, XAutoRepeatOff, XAutoRepeatOn, XBell,
XChangeKeyboardControl, XGetPointerControl.



XGetKeyboardMapping(3X) (X1ib - Keyboard) XGetKeyboardMapping(3X)

NAME
XGetKeyboardMapping — return symbols for keycodes.

SYNOPSIS
KeySym *XGetKeyboardMapping (display, first_keycode,

keycode_count, keysyms_per_keycode)
Display *display;
KeyCode first_keycode ;
int keycode_count;
int *keysyms_per_keycode ; /* RETURN =*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from

XOpenDisplay.
first_keycode  Specifies the first keycode that is to be returned.
keycode_count  Specifies the number of keycodes that are to be returned.

keysyms_per_keycode
Returns the number of keysyms per keycode.
DESCRIPTION

Starting with first_keycode, XGetKeyboardMapping returns the symbols for
the specified number of keycodes. The specified first_keycode must be
greater than or equal to min_keycode as returned in the Display structure,
otherwise a BadValue error occurs. In addition, the following expression
must be less than or equal to max_keycode as returned in the Display struc-
ture, otherwise a BadValue error occurs.

first_keycode + keycode_count - 1

The number of elements in the keysyms list is:
keycode_count * keysyms_per_keycode

Then, KeySym number N (counting from zero) for keycode K has an index
(counting from zero) of the following (in keysyms):

(K - first_keycode) * keysyms_per_keycode + N

The keysyms_per_keycode value is chosen arbitrarily by the server to be
large enough to report all requested symbols. A special KeySym value of
NoSymbol is used to fill in unused elements for individual keycodes.



XGetKeyboardMapping(3X) (X1ib - Keyboard) XGetKeyboardMapping (3X)

Use XFree to free the returned KeySym list when you no longer need it.

ERRORS
BadValue first_keycode less than display->min_keycode.
display->max_keycode exceeded.
SEE ALSO

XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XKeysymToString,
XNewModifierMap, XQueryKeymap, XStringToKeysym, XLookupKeysym,
XRebindKeySym, XChangeKeyboardMapping, XRefreshKeyboardMapping,
XLookupString, XSetModifierMapping, XGetModifierMapping.



XGetModifierMapping(3X) (X Programming Library) = XGetModifierMapping(3X)

NAME
XGetModifierMapping — obtains modifier key mapping (Shift, Control,
etc.)

SYNOPSIS
XModifierKeymap *XGetModifierMapping (display)
Display *display;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
DESCRIPTION
XGetModifierMapping ‘returns the keycodes of the keys being used as
modifiers.

There are eight modifiers, represented by the symbols ShiftMapIndex, Lock-
Maplndex, ControlMapIndex, Mod1MapIndex, Mod2MapIndex, Mod3MapIndex,
Mod4Maplndex, and Mod5MapIndex. The modifiermap member of the XMo-
difierKeymap structure contains eight sets of keycodes, each set containing
max_keypermod keycodes. Zero keycodes are not meaningful. If an entire
modifiermap is filled with zeroes, the corresponding modifier is disabled.
No keycode will appear twice anywhere in the map.

STRUCTURES
typedef struct {
int max_keypermod; /* server°s max number of keys per */
KeyCode *modifiermap; /* modifier an 8 by max_keypermod array of
* keycodes to be used as modifiers »*/

} XModifierKeymap;

/* modifier names. Used to build a SetModifierMapping request or
* to read a GetModifierMapping request. These correspond to the
* masks defined above. */

#define ShiftMapIndex
#define LockMapIndex
#define ControlMapIndex
#define ModiMapIndex
#define Mod2MapIndex
#define Mod3MapIndex
#define Mod4MapIndex
#define Mod6EMapIndex

N OO0~ WN -+ O



XGetModifierMapping(3X) (X Programming Library)  XGetModifierMapping(3X)

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XKeysymToString,
XNewModifierMap, XQueryKeymap, XStringToKeysym, XLookupKeysym,
XRebindKeySym, XGetKeyboardMapping, XChangeKeyboardMapping,
XRefreshKeyboardMapping, XLookupString, XSetModifierMapping.



XGetMotionEvents (3X) (X1ib - Input Handling) XGetMotionEvents(3X)

NAME

XGetMotionEvents — get pointer motion events.

SYNOPSIS

XTimeCoord *XGetMotionEvents (display, w, start, stop,
nevents)
Display =*display;

Window w;
Time start, stop;
int *nevents; /* RETURN =/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID. This is the window whose asso-
ciated pointer motion events will be returned.
start .
stop Specify the time interval in which the events are returned
from the motion history buffer. Pass a time stamp (in mil-
liseconds) or CurrentTime.
nevents Returns the number of events returned from the motion
history buffer.
DESCRIPTION

XGetMotionEvents returns all events in the motion history buffer that fall
between the specified start and stop times (inclusive) and that have coor-
dinates that lie within (including borders) the specified window at its
present placement. The x and y coordinates of the XTimeCoord return
structure are reported relative to the origin of w.

If the start time is later than the stop time, or if the start time is in the
future, no events are returned. If the stop time is in the future, it is
equivalent to specifying the constant CurrentTime.

The motion history buffer may not be available on all servers. If
display.motion_buffer > 0, it exists. The pointer position at each pointer
hardware interrupt may then be stored for later retrieval.

Use XFree to free the returned XTimeCoord structures when they are no
longer needed.

If XGetMotionEvents fails for any reason, it returns NULL.



XGetMotionEvents (3X) (X1ib - Input Handling) XGetMotionEvents (3X)

STRUCTURES
typedef struct _XTimeCoord {
Time time;
unsigned short x, y:
} XTimeCoord;

ERRORS
BadWindow

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XIfEvent, XCheckIfEvent, XPeekEvent, XPeekIfEvent, XPutBackEvent,
XPending, XSynchronize, XSendEvent, QLength.



XGetNormalHints(3X) (X1ib - Window Manager Hints) XGetNormalHints (3X)

NAME
XGetNormalHints — get size hints for window in normal state (not
zoomed or iconified).

SYNOPSIS
Status XGetNormalHints (display, w, hints)
Display *display;

Window w;
XSizeHints *hinis; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
hints Returns the sizing hints for the window in its normal
state.
DESCRIPTION

XGetNormalHints returns the size hints for a window in its normal state by
reading the NORMAL_HINTS property. This function is normally used
only by a window manager. It returns a non-zero status if it succeeds,
and 0 if it fails (e.g. the application specified no normal size hints for this
window.)

STRUCTURES
typedef struct {
long flags; /% which fields in structure are defined */
int x, y:
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inec, height_inc;
struct {
int x;/* numerator */
int y;/* denominator */
} min_aspect, max_aspect;
} XS8izeHints;

/* flags argument in size hints */
#define USPosition (1L << 0) /* user specified x, y*/
#define USSize (1L << 1) /* user specified width, heightx*/



XGetNormalHints (3X)

#define PPosition (1L
#define PSize (1L
#define PMinSize (1L
#define PMaxSize (1L
#define PResizelInc (1L
#define PAspect (1L

<<
<<
<<
<<
<<
<<

2)
3)
4)
B)
8)
7

/*
/*
/*
/*
/*
/*

(X1ib - Window Manager Hints)

program
progranm
program
progran
program
progranm

specified
specified
specified
specified
specified
specified

XGetNormalHints (3X)

position*/

sizex»/

minimum sizex*/
maximum size*/
resize increments*,
min/max aspect rati

#define PAllHints (PPosition|PSize|PMinSize|PMaxSize|PResizelInc|PAsp«

ERRORS
BadWindow

SEE ALSO

XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints,
XSetWMHints, XGetZoomHints, XSetZoomHints, XSetNormalHints,
XGetTransientForHint, XSetTransientForHint, XFetchName, XGetlconName,
XSetlconName, XStoreName, XGetlconSizes, XSetlconSizes, XSetCommand.



XGetPixel (3X) (X1ib - Images) XGetPixel (3X)

NAME
XGetPixel — obtain a single pixel value from an image.

SYNOPSIS
unsigned long XGetPixel (ximage, x, y)
XImage *ximage;

int x;
int y;
ARGUMENTS
ximage Specifies a pointer to the image.
x
y Specify the x and y coordinates.
DESCRIPTION

XGetPixel returns the specified pixel from the named image. The x and y
coordinates are relative to the origin (upper left [0,0]) of the image). The
pixel value is returned in normalized format; that is, the least significant
byte (LSB) of the long is the least significant byte of the pixel.

STRUCTURES
typedef struct _XImage {
int width, height; /* size of imagex/
int xoffset; /* number of pixels offset in X directionx*/
int format; /* XYBitmap, XYPixmap, ZPixmap*/
char *data; /* pointer to image data*/
int byte_order; /* data byte order, LSBFirst, MSBFirstx*/
int bitmap_unit; /* quant. of scanline 8, 18, 32%/
int bitmap_bit_order; /* L8SBFirst, MSBFirst*/
int bitmap_pad; /* 8, 18, 32 either XY or ZPixmap*/
int depth; /* depth of image*/
int bytes_per_line; /* accelarator to next linex/
int bits_per_pixel; /* bits per pixel (ZPixmap)*/
unsigned long red_mask; /* bits in z arrangment*/

unsigned long green_mask;
unsigned long blue_mask;

char *obdata; /* hook for the object routines to hang on */

struct funcs { /* image manipulation routines */
struct _XImage *(*create_image) ();

int (*destroy_image) ();

unsigned long (*get_pixel) ();

int (*put_pixel) O);



XGetPixel (3X) (X1ib - Images) XGetPixel (3X)

struct _XImage *(*sub_image) ();
int (*add_pixel) ();
> z;

} XInmage;

SEE ALSO
XDestroyImage, XPutlmage, XGetImage, XCreateImage, XSubImage,
XGetSubImage, XAddPixel, XPutPixel, ImageByteOrder.



XGetPointerControl(3X) (X1ib - Pointer) XGetPointerControl (3X)

NAME
XGetPointerControl — get current pointer acceleration parameters.
SYNOPSIS
XGetPointerControl (display, accel_numerator, accel_denominator,
threshold)

Display =*display;

int *accel_numerator, *accel_denominator; /* RETURN */
int *threshold ;

/* RETURN */

ARGUMENTS
display Specifies a pointer to the Display structure; returned from

XOpenDisplay.
accel_numerator Returns the numerator for the acceleration multiplier.

accel_denominator
Returns the denominator for the acceleration multiplier.

threshold Returns the acceleration threshold in pixels. The pointer
must move more than this amount before acceleration
takes effect.
DESCRIPTION

XGetPointerControl  gets the pointer acceleration parameters.
accel_numerator/ accel_denominator is the number of pixels the cursor moves
per unit of motion of the pointer, applied only to the amount of move-
ment over threshold.

SEE ALSO
XQueryPointer, XWarpPointer, XGrabPointer, XChangeActivePointerGrab,
XUngrabPointer, XGetPointerMapping, XSetPointerMapping,
XChangePointerControl.



XGetPointerMapping(3X) (X1ib - Pointer) XGetPointerMapping(3X)

NAME
XGetPointerMapping — get the pointer button mapping.

SYNOPSIS
int XGetPointerMapping (display, map, nmap)
Display =*display;
unsigned char map[l; /* RETURN =*/

int nmap;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
map Returns the mapping list. Array begins with map[].
nmap Specifies the number of items in mapping list.
DESCRIPTION

XGetPointerMapping returns the current mapping of the pointer buttons, in
two forms, the args and the returned value. map is an array of the
numbers of the buttons as they are currently mapped. Elements of the list
are indexed starting from one. The nominal mapping for a pointer is the
identity mapping: mapli]=i. If map[3]=2, it means that the third physical
button triggers the second logical button.

nmap indicates the desired number of button mappings.

The returned value is the actual number of elements in the pointer list,
which may be greater or less than nmap.

SEE ALSO
XQueryPointer, XWarpPointer, XGrabPointer, XChangeActivePointerGrab,
XUngrabPointer, XSetPointerMapping, XGetPointerControl,
XChangePointerControl.



XGetScreenSaver(3X) (X1ib - Screen Saver) XGetScreenSaver(3X)

NAME

XGetScreenSaver — get current screen saver parameters.

SYNOPSIS

XGetScreenSaver (display, timeout, interval, prefer_blanking,
allow_exposures)

Display *display;

int *timeout, *interval; /* RETURN x*/

int *prefer_blanking ; /* RETURN x*/
int =*allow_exposures ; /* RETURN */
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
timeout Returns the timeout, in seconds, until the screen saver
turns on.
interval Returns the interval between screen saver invocations, in
seconds.

prefer_blanking Returns the current screen blanking preference, one of
these constants: DontPreferBlanking, PreferBlanking, or
DefaultBlanking.

allow_exposures Returns the current screen save control value, either Don-
tAllowExposures, AllowExposures, or DefaultExposures.

DESCRIPTION

XGetScreenSaver returns the current settings of the screen saver, which
may be set with XSetScreenSaver.

A positive timeout indicates that the screen saver is enabled. A timeout of
0 indicates that the screen saver is disabled. If no input from devices (key-
board, mouse, etc.) is generated for the specified number of timeout
seconds, the screen saver is activated.

If the server-dependent screen saver method supports periodic change,
interval serves as a hint about how long the change period is, and zero
hints that no periodic change should be made. Examples of ways to
change the screen include scrambling the color map periodically, moving
an icon image about the screen periodically, or tiling the screen with the
root window background tile, randomly reoriginated periodically. An
interval of 0 indicates that random pattern motion is disabled.



XGetScreenSaver(3X) (X1ib - Screen Saver) XGetScreenSaver(3X)
3X

SEE ALSO
XForceScreenSaver, X ActivateScreenSaver, XResetScreenSaver, XSetScreenSaver.



XGetSelectionOwner(3X) (X1ib - Selections) XGetSelectionOwner(3X)

NAME
XGetSelectionOwner — return selection owner.

SYNOPSIS
Window XGetSelectionOwner (display, selection)
Display =*display;
Atom selection ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
selection Specifies the selection atom. This is the atom whose
owner you want returned.
DESCRIPTION

XGetSelectionOwner returns the window ID of the current owner of the
specified selection. If no selection was specified, or there is no owner,
the function returns the constant None.

ERRORS
BadAtom

SEE ALSO
XSetSelectionOwner, XConvertSelection.



XGetSizeHints(3X) (Xlib - Window Manager Hints) XGetSizeHints (3X)

NAME
XGetSizeHints — read any property of type WM_SIZE_HINTS.

SYNOPSIS
Status XGetSizeHints (display, w, hints, property)
Display x*display;

Window w;
XSizeHints *hinits; /* RETURN %/
Atom property ;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
hints Returns the size hints structure.
property Specifies the property atom.
DESCRIPTION

XGetSizeHints returns the XSizeHints structure for the named property and
the specified window. This is used by XGetNormalHints and XGet-
ZoomHints, and can be used to retrieve the value of any property of type
WM_SIZE_HINTS; thus, it is useful if other properties of that type get
defined. These functions are used almost exclusively by window
managers.

XGetSizeHints returns a non-zero status if a size hint was defined, or
returns 0 otherwise.

STRUCTURES
typedef struct {
long flags; /* which fields in structure are defined
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {
int x; /* numerator */
int y; /* denominator »/
} min_aspect, max_aspect;
)} XSizeHints;



XGetSizeHints (3X)

/% flags argument in size

#define
#define

#define
#define
#define
#define
#define
#define
#define

ERRORS

BadAtom

USPosition (1L
USB8ize (1L
PPosition (1L

P8ize (1L
PMinSize (1L
PMaxSize (1L
PResizeInc (1L
PAspect (1L

<<
<<

<<
<<
<<
<<
<<
<<

(Xlib - Window Manager Hints)

XGetSizeHints (3X)

user specified x, y »/
user specified width, height »/

program specified position »*/

program specified size */

program specified minimum size */
program specified maximum size */
program specified resize increments */

hints */
0) /»
1) /=
2) /»
3) /»
4) /»*
) /»
8) /»
7/

program specified min/max aspect ratios »/

PAllHints (PPosition|PS8ize|PMinS8ize|PMaxS8ize|PResizeInc|PAspect)

BadWindow

SEE ALSO

XGetClassHint, XSetClassHint, XSetSizeHints, XGetWMHints, XSetWMHints,
XGetZoomHints, XSetZoomHints, XGetNormalHints, XSetNormalHints,
XGetTransientForHint, XSetTransientForHint, XFetchName, XGetIconName,
XSetIconName, XStoreName, XGetlconSizes, XSetIconSizes, XSetCommand.



XGetStandardColormap (3X) (Xlib - Colormaps) XGetStandardColormap (3X)

NAME
XGetStandardColormap — get standard colormap structure.

SYNOPSIS
Status XGetStandardColormap (display, w, cmap, property)
Display *display;
Window w;
XStandardColormap *cmap;/* RETURN x*/
Atom property ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
cmap Returns the filled colormap information structure.
property Specifies the atom indicating the type of standard color-
map desired. The pre-defined standard colormap atoms
are XA_RGB_BEST_MAP, XA_RGB_RED_MAP,
XA_RGB_GREEN_MAP, XA_RGB_BLUE_MAP,
XA_DEFAULT_MAP, and XA_RGB_GRAY_MAP.
DESCRIPTION

The XGetStandardColormap function returns the colormap definition associ-
ated with the atom supplied as the property argument. For example, to
fetch the standard gray-scale colormap for a display, you use XGetStan-
dardColormap with the following syntax.

XStandardColormap colormap;

XGetStandardColormap (dpy, RootWindow(dpy, 0), &colormap, XA_RGB_GRAY_MAP) ;

This call does not load the colormap into the hardware colormap, it does
not allocate entries, and it does not even create a virtual colormap. It just
provides information about one colormap. The application can then
attempt to create a virtual colormap of the appropriate type, and allocate
its entries according to the information in the XStandardColormap. Instal-
ling the standard colormap must then be done with XInstallColormap, in
cooperation with the window manager. Any of these steps could fail, and
the application should be prepared.

An application should go through this process only if it needs the special
qualities of the standard colormaps. For one, they allow you to convert

-1-



XGetStandardColormap (3X) (Xlib - Colormaps) XGetStandardColormap (3X)

RGB values into pixel values easily. Given an XStandardColormap structure
for a XA_RGB_BEST_MAP colormap; and floating point RGB coefficients
in the range 0.0 to 1.0, you can compose pixel values with the following C
expression:

pixel = base_pixel
+ ((unsigned long) (0.5 + r * red_max)) » red_mult
+ ((unsigned long) (0.5 + g * green_max)) * green_mult
+ ((unsigned long) (0.5 + b * blue_max)) * blue_mult;

The use of addition rather than logical-OR for composing pixel values per-
mits allocations where the RGB value is not aligned to bit boundaries.

Refer to the GSE Programmer’s Guide for a complete description of standard
colormaps.

STRUCTURES

typedef struct {
Colormap colormap; /* ID of colormap created by XCreateColormap */
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long baso_pikol;

} XstandardColormap;

ERRORS
BadAtom
BadWindow

SEE ALSO
XCopyColormapAndFree, XCreateColormap, XFreeColormap, XInstallColormap,
XUninstallColormap, XSetStandardColormap, XListInstalledColormaps,
XSetWindowColormap, DefaultColormap, DisplayCells.



XGetSubImage(3X) (X1ib - Images) XGetSubImage(3X)

NAME
XGetSublmage — copy rectangle in drawable to location within pre-
existing image.
SYNOPSIS
XImage *XGetSubImage (display, d, x, y, width, height,
plane_mask, format, dest_image, dest_x, dest_y)
Display *display;
Drawable d;
int x, y;
unsigned int width, height;
unsigned long plane_mask;
int format;
XImage *dest_image;
int dest_x, dest_y;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
Specifies the drawable, a pixmap, or window.

x

y Specify the x and y coordinates. These coordinates define
the upper left corner of the rectangle relative to the origin
of the drawable.

width

height Specify the width and height of the subimage taken.

plane_mask Specifies which planes of the drawable are transferred to
image.

format Specifies the format for the image. Either XYPixmap or
ZPixmap.

dest_image Specifies the the destination image.

dest_x

dest_y Specify the x and y coordinates of the destination rectan-

gle relative to the image’s origin. They specify the upper
left corner of the destination rectangle in the image, deter--
mining where the subimage will be placed.



XGetSubImage(3X) (X1ib - Images) XGetSubImage(3X)

DESCRIPTION

XGetSublmage updates the dest_image with the specified subimage in the
same manner as XGetImage, except that it does not create the image or
necessarily fill the entire image. If format is XYPixmap, the function
transmits only the bit planes you specify in plane_mask. If format is ZPix-
map, the function transmits as zero the bits in all planes not specified in
plane_mask. The function performs no range checking on the values in
plane_mask and ignores extraneous bits.

The depth of the destination XImage structure must be the same as that of
the drawable. Otherwise, a Badlmage error is generated. If the specified
subimage does not fit at the specified location on the destination image,
the right and bottom edges are clipped. If the drawable is a window, the
window must be mapped or held in backing store. It must also be the
case that, if there were no inferiors or overlapping windows, the specified
rectangle of the window would be fully visible on the screen; otherwise, a
BadMatch error is generated.

If the window has a backing-store, the backing-store contents are returned
for regions of the window that are obscured by noninferior windows.
Otherwise, the return contents of such obscured regions are undefined.
Also undefined are the returned contents of visible regions of inferiors of
different depth than the specified window.

XSublmage extracts a subimage from an image, instead of from a drawable
like XGetSubImage.

ERRORS
BadDrawable
BadGC
BadMatch Depth of dest_image is not the same as depth of d. See also
Description.
BadValue

SEE ALSO

XDestroylmage, XPutlmage, XGetImage, XCreateImage, XSubImage,
XAddPixel, XPutPixel, XGetPixel, ImageByteOrder.



XGetTransientForHint(3X) (Xlib - Window Manager Hints) XGetTransientForHint(3X)

NAME
XGetTransientForHint — get WM_TRANSIENT_FOR property of window.

SYNOPSIS
Status XGetTransientForHint (display, w, prop_window)
Display =*display;
Window w;
Window *prop_window ; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.

prop_window  Returns the WM_TRANSIENT_FOR property of the speci-
fied window.
DESCRIPTION
XGetTransientForHint obtains the WM_TRANSIENT_FOR property for the
specified window. This function is normally used by a window manager.
This property should be set for windows that are to appear only tem-
porarily on the screen, such as pop-up menus and dialog boxes.

XGetTransientForHint returns a status of 0 on failure, non-zero on success.

ERRORS
BadWindow

SEE ALSO
XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints,
XSetWMHints, XGetZoomHints, XSetZoomHints, XGetNormalHints,
XSetNormalHints, XSetTransientForHint, XFetchName, XGetIlconName,
XSetlconName, XStoreName, XGetlconSizes, XSetlconSizes, XSetCommand.



XGetVisualInfo(3X) (X1ib - Visuals) XGetVisualInfo(3X)

NAME
XGetVisualInfo — find visual information structure that matches template.

SYNOPSIS
XVisualInfo *XGetVisualInfo (display, vinfo_mask,
vinfo_template, nitems)
Display =*display;
long vinfo_mask ;
XVisualInfo *vinfo_template;

int *nitems; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
vinfo_mask Specifies the visual mask value. Indicates which elements

in template are to be matched.

vinfo_template Specifies the visual attributes that are to be used in match-
ing the visual structures.

nitems Returns the number of matching visual structures.

DESCRIPTION
XGetVisuallnfo returns a list of visual structures that match the attributes
specified by the vinfo_template argument. If no visual structures match the
template, XGetVisuallnfo returns a NULL. To free the data returned by
this function, use XFree.

STRUCTURES

typedef struct {
Visual *visual;
VisuallID visualid;
int screen;
unsigned int depth;
int class;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bits_per_xrgb;

} XVisuallnfo;



XGetVisualInfo(3X) (X1ib - Visuals) XGetVisuallnfo(3X)

/% The symbols for the vinfo_mask argument are: =/

#define VisualNoMask 0x0
#define VisualIDMask Ox1
#define VisualScreenMask 0x2
#define VisualDepthMask O0x4
#define VisualClassMask 0x8
#define VisualRedMaskMask 0x10
#define VisualGreenMaskMask 0x20
#define VisualBlueMaskMask 0x40

#define VisualColormapSizeMask 0x80
#define VisualBitsPerRGBMask 0x100
#define VisualAllMask Ox1FF

SEE ALSO
XMatchVisuallnfo, DefaultVisual.



XGetWindowAttributes(3X) (Xlib - Window Attributes) XGetWindowAttributes(3X)

NAME
XGetWindowAttributes — obtain current attributes of window.

SYNOPSIS
Status XGetWindowAttributes (display, w, window_attributes)
Display *display;
Window w;
XWindowAttributes *window_atiributes; /* RETURN x*/

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window whose current attributes you want.
window_attributes
Returns a filled XWindowAttributes structure, containing
the current attributes for the specified window.
DESCRIPTION

XGetWindowAttributes returns the XWindowAttributes structure containing
the current window attributes.

While w is defined as type Window, a Pixmap can also be used, in which
case all the returned members will be zero except width, height, depth, and
screen.

The following list briefly describes each member. For more information,
refer to the GSE Programmer’s Guide.

x, ¥y The current position of this window relative to its parent.

width, height
The current dimensions of this window.

depth The number of bits per pixel in this window.

visual The visual structure.

root The root window ID of the screen containing the window.

class The window class. One of these constants: InputOutput
or InputOnly.



XGetWindowAttributes(3X) (Xlib - Window Attributes) XGetWindowAttributes(3X)

bit_gravity
The new position for existing contexts on resize. One of
the constants ForgetGravity, StaticGravity, or CenterGravity,
or one of the compass constants (NorthWestGravity,
NorthGravity, etc.).

win_gravity
The new position for subwindow on parent resize. One of
the constants CenterGravity, UnmapGravity, StaticGravity, or
one of the compass constants.

backing_store
When to maintain contents of the window. One of these
constants: NotUseful, WhenMapped, or Always.

backing_planes
The bit planes to be preserved in a backing store.

backing_pixel
The pixel value used when restoring planes from a partial
backing store.

save_under A boolean value, indicating whether saving bits under this
window would be useful.

colormap  The colormap ID to be used in this window, or None.

map_installed

A boolean value, indicating whether the colormap is
currently installed. If True, the window is being displayed
in its chosen colors.

map_state The window’s map state. One of these constants: IsUn-
mapped, IsUnviewable, or IsViewable. IsUnviewable indicates
that the specified window is mapped but some ancestor is
unmapped.

all_event_masks
The set of events any client have selected. This member is
the bitwise inclusive OR of all event masks selected on the
window by all clients.



XGetWindowAttributes(3X) (Xlib - Window Attributes) XGetWindowAttributes(3X)

your_event_mask

The bitwise inclusive OR of all event mask symbols
selected by the querying client.

do_not_propagate_mask

The bitwise inclusive OR of the event mask symbols that
specify the set of events that should not propagate. This
is global across all clients.

override_redirect

A boolean value, indicating whether this window will
override structure control facilities. This is usually only
used for temporary pop-up windows. Either True or False.

screen A pointer to the Screen structure for the screen containing
this window.
XGetWindowAttributes returns a status of 0 on failure or 1 when it
succeeds.
STRUCTURES

The XWindowAttributes structure contains:

typedef struct {

int x, y; /*
int width, height; /*
int border_width; /*
int depth; /*
Visual #*visual; /»
Window root; /*
int class; /#
int bit_gravity; /%
int win_gravity; /*
int backing_store; /*

unsigned long backing_planes;/*
unsigned long backing_pixel; /»*

Bool save_under; /*
Colormap colormap; /*
Bool map_installed; /*
int map_state; /+
long all_event_masks; /*
long your_event_mask; /%

long do_not_propagate_mask; /*

location of windowx*/

width and height of window*/

border width of window*/

depth of window*/

the associated visual structure*/

root of screen containing windowx*/
InputOutput, InputOnly*/

one of bit gravity values»/

one of the window gravity values*/
NotUseful, WhenMapped, Always*/

Planes to be preserved if possiblex/
value to be used when restoring planes*/
boolean, should bits under be savedx*/
colormap to be associated with window»/
boolean, is colormap currently installed*/
IsUnmapped, IsUnviewable, IsViewablex*/

set of events all people have interest in»/
my event mask*/

set of events that should not propagate*/



XGetWindowAttributes(3X) (Xlib - Window Attributes) XGetWindowAttributes(3X)

Bool override_redirect; /* boolean value for override-redirectt
Screen *screen; /* pointer to correct screen®/
} XWindowAttributes;

SEE ALSO
XChangeWindowAttributes, XSetWindowBackground,
XSetWindowBackgroundPixmap, XSetWindowBorder,
XSetWindowBorderPixmap, XGetGeometry.



XGetWindowProperty (3X) ~ (Xlib - Properties) XGetWindowProperty (3X)

NAME

XGetWindowProperty — obtain the atom type and property format for a

window.
SYNOPSIS

int XGetWindowProperty (display, w, property, long_offset,
long_length, delete, req_type, actual_type, actual_format, nitems,

bytes_after, prop)
Display *display;

Window w;

Atom property ;
long long_offset, long_length ;

Bool delete;

Atom req_type;
Atom *actual_type; /* RETURN x*/
int *actual_format ; /* RETURN */
unsigned long *nitems; /* RETURN x*/
long *bytes_after; /* RETURN =/
unsigned char **prop; /* RETURN =*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID. This is the window whose atom
type and property format you want to obtain.
property Specifies the property atom.
long_offset Specifies the offset in 32-bit quantities where data will be
retrieved.
long_length Specifies the length in 32-bit multiples of the data to be
retrieved.
delete Specifies a boolean value of True or False. If you pass True

and a property is returned, the property is deleted from
the window and a PropertyNotify event is generated on the
window.



XGetWindowProperty (3X) (Xlib - Properties) XGetWindowProperty(3X)

req_type If AnyPropertyType is specified, returns the property from
the specified window regardless of its type. If a type is
specified, the function returns the property only if its type
equals the specified type.

actual_type Returns the actual type of the property.
actual_format  Returns the actual data type of the returned data.

nitems Returns the actual number of 8-, 16-, or 32-bit items
returned in prop.

bytes_after Returns the number of bytes remaining to be read in the
property if a partial read was performed.

prop Returns a pointer to the data actually returned, in the
specified format. XGetWindowProperty always allocates
one extra byte after the data and sets it to ASCII Null.
This byte is not counted in nitems.

DESCRIPTION
XGetWindowProperty gets the value of a property if it is the desired type.

XGetWindowProperty sets the return arguments acccording to the following
rules:

® If the specified property does not exist for the specified window,
actual_type is None, actual_format = 0 and bytes_after = 0. delete is
ignored in this case, and nitems is empty.

® If the specified property exists, but its type does not match req_type,
actual_type is the actual property type, actual_format; is the actual pro-
perty format (never zero), and bytes_after is the property length in
bytes (even if actual_format is 16 or 32). delete is ignored in this case,
and nitems is empty.

® If the specified property exists, and either req_type is AnyPropertyType
or the specified type matches the actual property type, actual_type is
the actual property type and actual_format is the actual property for-
mat (never zero). bytes_after and nitems are defined by combining the
following values:

N = actual length of stored property in bytes (even if actual_format is 16 or 32)

I = 4 » long_offset (convert offset from longs into bytes)

L = MINIMUM((N - I), 4 * long length) (BadValue if L < 0)
bytes_after = N - (I + L) (number of trailing unread bytes in stored property



XGetWindowProperty (3X) (Xlib - Properties) XGetWindowProperty (3X)

The returned data (in prop) starts at byte index I in the property
(indexing from 0). The actual length of the returned data in bytes is
L. L is converted into the number of 8-, 16-, or 32-bit items returned
by dividing by 1, 2, or 4 respectively and this value is returned in
nitems. The number of trailing unread bytes is returned in
bytes_after.

If delete == True and bytes_after == O the function deletes the
property from the window and generates a PropertyNotify event on
the window.

RETURNED VALUE
When XGetWindowProperty executes successfully, it returns Success. If the
specified window did not exist, it generates a BadWindow error. If the type
you passed in req_type did not exist or did not match the property type
returned in actual_type, the function generates a BadMatch error.

ERRORS

BadValue Value of long_offset caused L to be negative above.
BadAtom

BadWindow

BadMatch

SEE ALSO

XSetStandardProperties, XGetFontProperty, XRotateWindowProperties,
XDeleteProperty, XChangeProperty, XListProperties, XGetAtomName,
XinternAtom.



XGetWMHints (3X)

NAME

(X1ib - Window Manager Hints) XGetWMHints(3X)

XGetWMHints — read window manager hints.

SYNOPSIS
XWMHints *XGetWMHints (display, w)
Display *display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
DESCRIPTION

This function is primarily for window managers. XGetWMHints returns
NULL if no WM_HINTS property was set on window w, and returns a
pointer to a XWMHints structure if it succeeds. Programs must free the
space used for that structure by calling XFree.

STRUCTURES

typedef struct {
long flags;
Bool input;
int initial_state;

Pixma:
Windo
int i
Pixma.
XID w

p icon_pixmap;
w icon_window;
con_x, icon_y:;
p icon_mask;
indow_group;

/*
/*
/*
/*
/*
/*
/*
/*

marks which fields in this structure are definedx*/
does application need window manager for input*/
see below*/

pixmap to be used as icon*/

window to be used as icon*/

initial position of icon*/

icon mask bitmap*/

id of related window group*/

/* this structure may be extended in the future */

} XWMHints;

/* initial state flag:

#define
#define
#define
#define
#define

DontCareState
NormalState
ZoomState
Iconic8tate
InactiveState

*/

b W N +» O



XGetWMHints (3X) (Xlib - Window Manager Hints) XGetWMHints (3X)

ERRORS
BadWindow

SEE ALSO
XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XSetWMHints,
XGetZoomHints, XSetZoomHints, XGetNormalHints, XSetNormalHints,
XGetTransientForHint, XSetTransientForHint, XFetchName, XGetlconName,
XSetlconName, XStoreName, XGetlconSizes, XSetlconSizes, XSetCommand.



XGetZoomHints(3X) (X1ib - Window Manager Hints) XGetZoomHints (3X)

NAME
XGetZoomHints — read size hints for zoomed window.

SYNOPSIS
Status XGetZoomHints (display, w, zhints)
Display *display;

Window w;
XSizeHints *zhinis; /* RETURN %/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
zhints Returns a pointer to the zoom hints.
DESCRIPTION

XGetZoomHints is primarily for window managers. XGetZoomHints returns
the size hints for a window in its zoomed state (not normal or iconified)
read from the WM_ZOOM_HINTS property. It returns a non-zero status
if it succeeds, and 0 if the application did not specify zoom size hints for
this window.

STRUCTURES
typedef struct {
long flags; /* which fields in structure are defined »*/
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {
int x; /* numerator */
int y; /* denominator =/
} min_aspect, max_aspect;
} X8izeHints;

/* flags argument in size hints */
#define USPosition (1L << 0) /* user specified x, yx*/
#define USSize (1L << 1) /* user specified width, height*/

#define PPosition (1L << 2) /* program specified position»*/
#define PBize (1L << 3) /* program specified size*/



XGetZoomHints(3X)

4) /»
B) /»
8) /=
7 /»*

(X1ib - Window Manager Hints)

program
program
program
progranm

specified
specified
specified
specified

XGetZoomHints(3X)

minimum size*/

maximum sizes/

resize increments*/
min/max aspect ratios»/

PAllHints (PPosition|PS8ize|PMinSize|PMaxSize|PResizeInc|PAspect)

#define PMinSizxze (1L <<
#define PMaxSixze (1L <<
#define PResizelInc (1L <<
#define PAspect (1L <<
#define

ERRORS
BadWindow

SEE ALSO

XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints,
XSetWMHints, XSetZoomHints, XGetNormalHints, XSetNormalHints,
XGetTransientForHint, XSetTransientForHint, XFetchName, XGetlconName,
XSetIconName, XStoreName, XGetlconSizes, XSetlconSizes, XSetCommand.



XGrabButton(3X)

3]

NAME

(X1ib - Grabbing) XGrabButton(3X)

XGrabButton — grab a pointer button.

SYNOPSIS

XGrabButton (display, button, modifiers, grab_window, owner_events,
event_mask , pointer_mode, keyboard_mode, confine_to, cursor)

Display *display;

unsigned int bution;

unsigned int modifiers;

Window grab_window ;

Bool owner_evenis ;

unsigned int event_mask;

int pointer_mode, keyboard_mode ;

Window confine_to;

Cursor cursor;

ARGUMENTS
display

button

modifiers

grab_window

owner_events

event_mask

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the mouse button. May be Buttonl, Button2, But-
ton3, Button4, Button5, or AnyButton. The constant
AnyButton is equivalent to issuing the grab request for all
possible buttons. The button symbols cannot be ORed.

Specifies a set of keymasks. This is a bitwise OR of one or
more of the following symbols: ShiftMask, LockMask, Con-
trolMask, ModlMask, Mod2Mask, Mod3Mask, Mod4Mask,
Mod5Mask, or AnyModifier. AnyModifier is equivalent to
issuing the grab key request for all possible modifier com-
binations (including no modifiers).

Specifies the window ID. This is the window you want to
grab.

Specifies a boolean value of either True or False. See
Description below.

Specifies the event mask. This mask is the bitwise OR of
one or more of the event masks listed under XSelectInput.



XGrabButton(3X) (Xl1ib - Grabbing) XGrabButton(3X)

pointer_mode  Controls further processing of pointer events. Pass one of
these constants: GrabModeSync or GrabModeAsync.

keyboard_mode Controls further processing of keyboard events. Pass one
of these constants: GrabModeSync or GrabModeAsync.

confine_to Specifies the window to confine the pointer. One possible
value is the constant None, in which case the pointer is not
confined to any window.

cursor Specifies the cursor to be displayed during the grab. One
possible value you can pass is the constant None.

DESCRIPTION
XGrabButton establishes a passive grab, such that an active grab may take
place when the specified key/button combination is pressed. After this
call, if

1) the specified button is pressed when the specified modifier keys are
down (and no other buttons or modifier keys are down),

2)  grab_window contains the pointer,
3) the confine_to window (if any) is viewable, and
4)  these constraints are not satisfied for any ancestor,

then the pointer is actively grabbed as described in GrabPointer, the
last_pointer_grab time is set to the time at which the button was pressed,
and the ButtonPress event is reported.

The interpretation of the remaining arguments is as for XGrabPointer. The
active grab is terminated automatically when all buttons are released
(independent of the state of modifier keys).

A modifier of AnyModifier is equivalent to issuing the grab request for all
possible modifier combinations (including no modifiers). A button of
AnyButton is equivalent to issuing the request for all possible buttons (but
at least one).

The request fails if some other client has already issued a GrabButton with
the same button/key combination on the same window. When using
AnyModifier or AnyButton, the request fails completely (no grabs are esta-
blished) if there is a conflicting grab for any combination. The request has
no effect on an active grab.

The owner_events argument specifies whether the grab window should
receive all events (True) or whether the grabbing application should



XGrabButton(3X) (X1ib - Grabbing) XGrabButton(3X)

receive all events normally (False).

The pointer_mode and keyboard_mode control the processing of events dur-
ing the grab. If either is GrabModeSync, events for that device are not
queued for applications until XAllowEvents is called to release the events.
If either is GrabModeAsync, events for that device are processed normally.

An automatic grab takes place between a ButtonPress and a ButtonRelease,
so this call is not necessary in some of the most common situations. Refer
to the description of grabbing in the GSE Programmer’s Guide.

ERRORS
BadAccess When using AnyModifier or AnyButton and there is a con-
flicting grab by another client. No grabs are established.

- Another client has already issued an XGrabButton request
with the same key/button combination on the same win-
dow.

BadAlloc

BadCursor

BadValue

BadWindow
SEE ALSO

XGrabKey, XUngrabKey, XGrabKeyboard, XUngrabKeyboard, XUngrabButton,
XGrabPointer, XUngrabPointer, XChangeActivePointerGrab, XGrabServer,
XUngrabServer.



XGrabKey(3X)

NAME

(X1ib - Grabbing) XGrabKey (3X)

XGrabKey — grab a key.

SYNOPSIS

XGrabKey (display, keycode, modifiers, grab_window, owner_events,
pointer_mode , keyboard_mode)
Display *display;

int keycode;

unsigned

int modifiers ;

Window grab_window ;
Bool owner_events ;
int pointer_mode, keyboard_mode ;

ARGUMENTS
display

keycode

modifiers

grab_window

owner_events

pointer_mode
keyboard_mode

DESCRIPTION

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the keycode to be grabbed. It may be a modifier
key. Specifying AnyKey is equivalent to issuing the
request for all key codes.

Specifies a set of keymasks. This is a bitwise OR of one or
more of the following symbols: ShiftMask, LockMask, Con-
trolMask, ModlMask, Mod2Mask, Mod3Mask, Mod4Mask,
Mod5Mask, or AnyModifier. AnyModifier is equivalent to
issuing the grab key request for all possible modifier com-
binations (including no modifiers). All specified modifiers
do not need to have currently assigned keycodes.

Specifies the window from which you want to receive
input from the grabbed key combination.

Specifies whether the grab window should receive all
events (True) or whether the grabbing application should
receive all events normally (False).

Controls further processing of pointer events. Pass one of
these constants: GrabModeSync or GrabModeAsync.

Controls further processing of keyboard events. Pass one
of these constants: GrabModeSync or GrabModeAsync.

XGrabKey establishes a passive grab on the specified keys, such that when
the specified key/modifier combination is pressed, the keyboard is
grabbed, and all keyboard events are sent to this application. More

-1-



XGrabKey(3X) (X1ib - Grabbing) XGrabKey (3X)

formally:

IF the keyboard is not grabbed and the specified key, which itself
can be a modifier key, is logically pressed when the specified modif-
ier keys logically are down (and no other keys are down),

AND no other modifier keys logically are down,

AND EITHER the grab window is an ancestor of (or is) the focus
window OR the grab window is a descendent of the focus window
and contains the pointer,

AND a passive grab on the same key combination does not exist on
any ancestor of the grab window,

THEN the keyboard is actively grabbed, as for XGrabKeyboard, the
last keyboard grab time is set to the time at which the key was
pressed (as transmitted in the KeyPress event), and the KeyPress
event is reported.

The active grab is terminated automatically when the specified key is
released (independent of the state of the modifier keys).

The pointer_mode and keyboard_mode control the processing of events dur-
ing the grab. If either is GrabModeSync, events for that device are not
queued for applications until XAllowEvents is called to release the events.
If either is GrabModeAsync, events for that device are processed normally.

ERRORS
BadAccess -~  When using AnyModifier or AnyKey and another client has
grabbed any overlapping combinations. In this case, no
grabs are established.
- Another client has issued XGrabKey for the same key com-
bination in grab_window.
BadValue keycode is not in the range between min_keycode and
max_keycode in the display structure.
BadWindow
SEE ALSO

XUngrabKey, XGrabKeyboard, XUngrabKeyboard, XGrabButton,
XUngrabButton, XGrabPointer, XUngrabPointer, XChangeActivePointerGrab,
XGrabServer, XUngrabServer.



XGrabKeyboard (3X) (X1ib - Grabbing) XGrabKeyboard(3X)

NAME
XGrabKeyboard — grab the keyboard.

SYNOPSIS
int XGrabKeyboard (display, w, owner_events, pointer_mode,
keyboard_mode, time)
Display *display;
Window grab_window ;
Bool owner_events ;
int pointer_mode, keyboard_mode ;

Time time;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
grab_window  Specifies the window that requires continuous keyboard
input.

owner_events  Specifies a boolean value of either True or False. See
Description below.

pointer_mode  Controls further processing of pointer events. Pass either
GrabModeSync or GrabModeAsync.

keyboard_mode Controls further processing of keyboard events. Pass
either GrabModeSync or GrabModeAsync.

time Specifies the time when the grab should take place. Pass
either a timestamp, expressed in milliseconds, or the con-
stant CurrentTime.

DESCRIPTION
XGrabKeyboard actively grabs control of the main keyboard. If the grab is
successful, it returns the constant GrabSuccess. Further key events are
reported only to the grabbing client. This request generates FocusIn and
FocusOut events.

XGrabKeyboard processing is controlled by the value in the owner_events

argument:
®  If owner_events is False, all generated key events are reported to
grab_window.



XGrabKeyboard (3X) (X1ib - Grabbing) XGrabKeyboard (3X)

If owner_events is True, then if a generated key event would normally
be reported to this client, it is reported normally. Otherwise the
event is reported to grab_window.

Both KeyPress and KeyRelease events are always reported, independent of
any event selection made by the client.

XGrabKeyboard processing of pointer events and keyboard events are con-
trolled by pointer_mode and keyboard_mode:

If the pointer_mode or keyboard_mode is GrabModeAsync, event process-
ing for the respective device continues normally.

For keyboard_mode GrabModeAsync only: if the keyboard was
currently frozen by this client, then processing of keyboard events is
resumed.

If the pointer_mode or keyboard_mode is GrabModeSync, events for the
respective device are queued until a releasing XAllowEvents request
or until the keyboard grab is released as described above.

XGrabKeyboard processing fails under the following conditions and returns
the following:

If the keyboard is actively grabbed by some other client, it returns
AlreadyGrabbed.

If grab_window is not viewable, it returns GrabNotViewable.

If time is earlier than the last keyboard grab time or later than the
current server time, it returns GrabInvalidTime.

If the pointer is frozen by an active grab of another client, the
request fails with a status GrabFrozen.

If the grab succeeds, the last keyboard grab time is set to the specified
time, with CurrentTime replaced by the current X server time.

ERRORS

BadValue
BadWindow

SEE ALSO

XGrabKey, XUngrabKey, XUngrabKeyboard, XGrabButton, XUngrabButton,
XGrabPointer, XUngrabPointer, XChangeActivePointerGrab, XGrabServer,
XUngrabServer.



XGrabPointer(3X)

NAME

(Xl1ib - Grabbing) XGrabPointer(3X)

XGrabPointer — grab the pointer.

SYNOPSIS

int XGrabPointer (display, grab_window, owner_events,
event_mask, pointer_mode, keyboard_mode, confine_to, cursor, time)
Display *display;
Window grab_window ;
Bool owner_eventis ;

unsigned

int event_mask;

int pointer_mode, keyboard_mode ;
Window confine_to;
Cursor cursor;

Time time;
ARGUMENTS
display
grab_window

owner_events

event_mask
pointer_mode
keyboard_mode

confine_to

cursor

Specifies a pointer to the Display structure; returned from
XOpenDisplay.

Specifies the window that wants to grab the pointer input
independent of pointer location.

Specifies if the pointer events are to be reported normally
within this application (pass True) or only to the grab win-
dow if selected by the event mask (pass False).

Specifies the event mask. See XSelectInput for a complete
list of event masks.

Controls further processing of pointer events. Pass either
GrabModeSync or GrabModeAsync.

Controls further processing of keyboard events. Pass
either GrabModeSync or GrabModeAsync.

Specifies the window to confine the pointer. One option
is None, in which case the pointer is not confined to any
window.

Specifies the cursor. This is the cursor that is displayed
with the pointer during the grab. One option is None,
which causes the cursor to keep its current pattern.



XGrabPointer(3X) (X1ib - Grabbing) XGrabPointer(3X)

time Specifies the time when the grab request took place. Pass
either a timestamp, expressed in milliseconds (from an
event), or the constant CurrentTime.

DESCRIPTION
XGrabPointer actively grabs control of the pointer. If the grab is success-
ful, it returns the constant GrabSuccess. Further pointer events are only
reported to the grabbing client.

event_mask is always augmented to include ButtonPressMask and Button-
ReleaseMask. If owner_events is False, all generated pointer events are
reported with respect to grab_window, and are only reported if selected by
event_mask. If owner_events is True, then if a generated pointer event
would normally be reported to this client, it is reported normally; other-
wise the event is reported with respect to the grab_window, and is only
reported if selected by event_mask. For either value of owner_events,
unreported events are discarded.

pointer_mode controls further processing of pointer events, and
keyboard_mode controls further processing of main keyboard events. If the
mode is GrabModeAsync, event processing continues normally. If the
mode is GrabModeSync, events for the device are queued but not sent to
clients until the grabbing client issues a releasing XAllowEvents request or
an XUngrabPointer request.

If a cursor is specified, then it is displayed regardless of what window the
pointer is in. If no cursor is specified, then when the pointer is in
grab_window or one of its subwindows, the normal cursor for that window
is displayed. Otherwise, the cursor for grab_window is displayed.

If a confine_to window is specified, then the pointer will be restricted to
stay contained in that window. The confine_to window need have no rela-
tionship to the grab_window. If the pointer is not initially in the confine_to
window, then it is warped automatically to the closest edge (and
enter/leave events generated normally) just before the grab activates. If
the confine_to window is subsequently reconfigured, the pointer will be
warped automatically as necessary to keep it contained in the window.

The time argument lets you avoid certain circumstances that come up if
applications take a long while to respond or if there are long network
delays. Consider a situation where you have two applications, both of
which normally grab the pointer when clicked on. If both applications
specify the timestamp from the ButtonPress event, the second application
will successfully grab the pointer, while the first will get a return value of



XGrabPointer (3X) (X1ib - Grabbing) XGrabPointer(3X)

AlreadyGrabbed, indicating that the other application grabbed the pointer
before its request was processed. This is the desired response because the
latest user actions is most important in this case.

XGrabPointer may generate more than one EnterNotify and LeaveNotify
event pair.

The XGrabPointer function fails under the following conditions, with the
following return values:

®  If grab_window or confine_to window is not viewable, GrabNotViewable
is returned.

® If the pointer is actively grabbed by some other client, the constant
AlreadyGrabbed is returned.

e If the pointer is frozen by an active grab of another client, GrabFrozen
is returned.

®  If the specified time is earlier than the last-pointer-grab time or later
than the current X server time, GrabInvalidTime is returned. (If the
call succeeds, the last pointer grab time is set to the specified time,
with the constant CurrentTime replaced by the current X server time.)

ERRORS
BadCursor
BadValue
BadWindow

SEE ALSO
XGrabKey, XUngrabKey, XGrabKeyboard, XUngrabKeyboard, XGrabButton,
XUngrabButton, XUngrabPointer, XChangeActivePointerGrab, XGrabServer,
XUngrabServer.



XGrabServer(3X) (X1ib - Grabbing) XGrabServer(3X)

NAME

XGrabServer — grab the server.
SYNOPSIS

XGrabServer (display)

Display *display;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from

XOpenDisplay.

DESCRIPTION

Grabbing the server means that only requests by the calling client will be
acted on. All others will be queued in the server until the next XUngrab-
Server call. The X server should not be grabbed any more than is abso-
lutely necessary.

SEE ALSO

XGrabKey, XUngrabKey, XGrabKeyboard, XUngrabKeyboard, XGrabButton,
XUngrabButton, XGrabPointer, XUngrabPointer, XChangeActivePointerGrab,
XUngrabServer.



XIfEvent(3X) (X1ib - Input Handling) XIfEvent(3X)

NAME
XIfEvent — wait for matching event.

SYNOPSIS
XIfEvent (display, event, predicate, args)
Display *display;
XEvent *event; /* RETURN =*/
Bool (*predicate) () ;
char *args;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
event Returns the matched event.
predicate Specifies the procedure to be called to determine if the
next event satisfies your criteria.
args Specifies the user-specified arguments to be passed to the
predicate procedure.
DESCRIPTION

XIfEvent checks the event queue for events, uses the user-supplied routine
to check if they meet certain criteria, and removes the matching event
from the input queue. XIfEvent returns only when the specified predicate
procedure returns True for an event. The specified predicate is called each
time an event is added to the queue.

If no matching events exist on the queue, XIfEvent flushes the output
buffer and waits for an appropriate event to arrive. Use XCheckIfEvent if
you don’t want to wait for an event.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XCheckIfEvent, XPeekEvent, XPeeklfEvent, XPutBackEvent,
XPending, XSynchronize, XSendEvent, QLength.



XInsertModifiermapEntry(3X) (Xlib - Resource Manager) XInsertModifiermapEntry(3X)

NAME
XInsertModifiermapEntry — add a new entry to an XModifierKeymap
structure.

SYNOPSIS
XModifierKeymap *XInsertModifiermapEntry (modmap,

keysym_entry, modifier)
XModifierKeymap *modmap;

KeyCode keysym_entry ;
int modifier ;

ARGUMENTS
modmap Specifies a pointer to an XModifierKeymap structure.
keysym_entry  Specifies the KeyCode of the key to be added to modmap.
modifier Specifies the modifier you want mapped to the keycode
specified in keysym_entry. This should be one of the con-
stants:  ShiftMapIndex, LockMaplndex, ControlMaplndex,
ModiMaplndex, Mod2Maplndex, Mod3Maplndex,
Mod4MapIndex, or Mod5Maplndex.
DESCRIPTION

XlInsertModifiermapEntry returns an XModifierKeymap structure suitable for
calling XSetModifierMapping, in which the specified keycode is deleted
from the set of keycodes that is mapped to the specified modifier (like
Shift or Control). XInsertModifiermapEntry does not change the mapping
itself.

This function is normally used by calling XGetModifierMapping to get a
pointer to the current XModifierKeymap structure for use as the modmap
argument to XInsertModifiermapEntry.

Note that the structure pointed to by modmap is freed by XinsertModifier-
mapEntry. It should not be freed or otherwise used by applications.

For a description of the modifier map, see XSetModifierMapping.

STRUCTURES
typedef struct {

int max_keypermod; /* server s max number of keys per modifier

KeyCode *modifiermap; /* an 8 by max_keypermod array of
* keycodes to be used as modifiers =/
} XModifierKeymap;

#define ShiftMapIndex (o]



XInsertModifiermapEntry(3X) (Xlib - Resource Manager) XInsertModifiermapEntry(3X)

#define LockMaplIndex
#define ControlMapIndex
#define ModiMapIndex
#define Mod2MapIndex
#define Mod3MapIndex
#define Mod4MapIndex
#define ModEMapIndex

N0 0N

SEE ALSO
XDeleteModifiermapEntry, XGetModifierMapping, XSetModifierMapping,
XNewModifierMap, XFreeModifiermap, XKeycodeToKeysym,
XKeysymToKeycode, XKeysymToString, XQueryKeymap, XStringToKeysym,
XLookupKeysym, XRebindKeySym, XGetKeyboardMapping,
XRefreshKeyboardMapping, XLookupString.



XInstallColormap (3X) (X1ib - Colormaps) XInstallColormap (3X)

NAME
XInstallColormap — install a colormap.

SYNOPSIS
XInstallColormap (display, cmap)
Display *display;
Colormap cmap;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap to install.
DESCRIPTION

If there is only one hardware colormap, XInstallColormap loads a virtual
colormap into the hardware colormap. All windows associated with this
colormap immediately display with their chosen colors. Other windows
associated with the old colormap will display with false colors.

If additional hardware colormaps are possible, XInstallColormap loads the
new hardware map and keeps the existing ones. Other windows will
then remain in their true colors unless the limit for colormaps has been
reached. If the maximum number of allowed hardware colormaps is
already installed, an old colormap is swapped out. The
MinCmapsOfScreen(screen) and MaxCmapsOfScreen(screen) macros can be
used to determine how many hardware colormaps are supported.

If cmap is not already an installed map, a ColormapNotify event is gen-
erated on every window having cmap as an attribute. If a colormap is
uninstalled as a result of the install, a ColormapNotify event is generated
on every window having that colormap as an attribute.

Colormaps are usually installed and uninstalled by the window manager,
not by clients.

At any time, there is a subset of the installed colormaps, viewed as an
ordered list, called the "required list." The length of the required list is at
most the min_maps specified for each screen in the Display structure.
When a colormap is installed with XInstallColormap it is added to the head
of the required list and the last colormap in the list is removed if neces-
sary to keep the length of the list at mim_maps. When a colormap is unin-
stalled with XUninstallColormap and it is in the required list, it is removed
from the list. No other actions by the server or the client change the
required list. It is important to realize that on all but high-end



XlInstallColormap (3X) (X1ib - Colormaps) XInstallColormap (3X)

workstations, min_maps is likely to be 1.

ERRORS
BadColor

SEE ALSO
XCopyColormapAndFree, XCreateColormap, XFreeColormap,
XGetStandardColormap, XUninstallColormap, XSetStandardColormap,
XListInstalledColormaps, XSetWindowColormap, DefaultColormap, DisplayCells.



XInternAtom(3X) (X1ib - Properties) XInternAtom(3X)

NAME
XInternAtom — return an atom for a name string.

SYNOPSIS
Atom XInternAtom (display, atom_name, only_if exists)
Display =*display;
char *atom_name;
Bool only_if_exists ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
atom_name Specifies the name associated with the atom you want

returned. The string should use the ISO Latin-1 encoding,
and upper/lower case is important.

only_if exist  Specifies a boolean value that indicates whether XInternA-
tom should return None or should create the atom if no
such atom_name exists.

DESCRIPTION
If the atom exists, XInternAtom returns the atom identifier corresponding
to atom_name.

If the atom does not exist, then XInternAtom either returns None (if
only_if exists is True ) or creates the atom (if only_if exists is False ). The
string name should be a null-terminated ASCII string. Case matters; the
strings "thing", "Thing", and "thinG" all designate different atoms. The
atom remains defined even after the client who defined it has exited. It

becomes undefined only when the last connection to the X server closes.

This function is the opposite of XGetAtomName, which returns the atom
name when given an atom ID.

Predefined atoms are defined in <X11/Xatom.h> and begin with the prefix
"x A_".
ERRORS

BadAlloc
BadValue

SEE ALSO
XSetStandardProperties, XGetFontProperty, XRotateWindowProperties,
XDeleteProperty, XChangeProperty, XGetWindowProperty, XListProperties,
XGetAtomName.



XlIntersectRegion(3X) (X1ib - Regions) XIntersectRegion(3X)

NAME
XintersectRegion — compute the intersection of two regions.

SYNOPSIS
XIntersectRegion (sra, srb, dr)
Region sra, srb;

Region dr; /* RETURN =/

ARGUMENTS

sra

srb Specify the two regions with which to perform the compu-

tation.

dr Returns the result of the computation.
DESCRIPTION

XlntersectRegion generates a regions that is the intersection of two regions.
STRUCTURES

/*

* opaque reference to Regiondata type.

* user won’t need contents, only pointer.
*/

typedef struct _XRegion *Region;

SEE ALSO
XXorRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XShrinkRegion, XSetRegion, XRectInRegion, XPolygonRegion, XPointInRegion,
XOffsetRegion, XEmptyRegion, XCreateRegion, XDestroyRegion, XEqualRegion,
XClipBox.



XKeycodeToKeysym(3X) (X1ib - Keyboard) XKeycodeToKeysym(3X)

NAME
XKeycodeToKeysym — convert key code to keysym.

SYNOPSIS
KeySym XKeycodeToKeysym (display, keycode, index)
Display *display;
KeyCode keycode ;

int index;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
keycode Specifies the keycode.
index Specifies which keysym for that keycode to return.
DESCRIPTION

XKeycodeToKeysym returns the KeySym defined for the specified keycode.
XKeycodeToKeysym uses internal Xlib tables, which already have converted
uppercase to lowercase. index specifies which keysym in the array of
keysyms corresponding to a keycode should be returned.

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeysymToKeycode, XKeysymToString, XNewModifierMap, XQueryKeymap,
XStringToKeysym, XLookupKeysym, XRebindKeySym, XGetKeyboardMapping,
XChangeKeyboardMapping, XRefreshKeyboardMapping, XLookupString,
XSetModifierMapping, XGetModifierMapping, IsKeypadKey, IsCursorKey,
IsPFKey, IsFunctionKey, IsMiscFunctionKey, IsModifierKey.



XKeysymToKeycode(3X) (X1ib - Keyboard) XKeysymToKeycode(3X)

NAME
XKeysymToKeycode — convert a keysym to the appropriate keycode.

SYNOPSIS
KeyCode XKeysymToKeycode (display, keysym_kcode)
Display *display;
Keysym keysym_kcode ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

keysym_kcode  Specifies the keysym that is to be searched for.

DESCRIPTION
XKeysymToKeycode returns the KeyCode corresponding to the specified
KeySym symbol in the current mapping. If the specified Keysym is not
defined for any keycode, XKeysymToKeycode returns zero (0).

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToString, XNewModifierMap, XQueryKeymap,
XStringToKeysym, XLookupKeysym, XRebindKeySym, XGetKeyboardMapping,
XChangeKeyboardMapping, XRefreshKeyboardMapping, XLookupString,
XSetModifierMapping, XGetModifierMapping, IsKeypadKey, IsCursorKey,
IsPFKey, IsFunctionKey, IsMiscFunctionKey, IsModifierKey.



XKeysymToString (3X) (X1ib - Keyboard) XKeysymToString(3X)

NAME
XKeysymToString — convert KeySym symbol to ASCII.

SYNOPSIS
char *XKeysymToString (keysym_sir)
KeySym keysym_str;
ARGUMENTS
keysym_str Specifies the KeySym that is to be converted.

DESCRIPTION
XKeysymToString converts a KeySym symbol (a number) into a character
string. The returned string is in a static area and must not be modified. If
the specified KeySym is not defined, XKeysymToString returns NULL. For
example, XKeysymToString converts XK_SHIFT to "XK_SHIFT".

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XNewModifierMap, XQueryKeymap,
XStringToKeysym, XLookupKeysym, XRebindKeysym, XGetKeyboardMapping,
XChangeKeyboardMapping, XRefreshKeyboardMapping, XLookupString,
XSetModifierMapping, XGetModifierMapping, IsKeypadKey, IsCursorKey,
IsPFKey, IsFunctionKey, IsMiscFunctionKey, IsModifierKey.



XKillClient(3X) (X1ib - Client Connections) XKillClient(3X)

NAME
XKillClient — destroy a client or its remaining resources.

SYNOPSIS
XKillClient (display, resource)
Display *display;
XID resource;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
resource Specifies any resource created by the client you want to
destroy, or the constant AllTemporary.
DESCRIPTION

If a valid resource is specified, XKillClient forces a close-down of the client
that created the resource. If the client has already terminated in either
RetainPermanent or RetainTemporary mode, all of the client’s resources are
destroyed. If AllTemporary is specified, then the resources of all clients
that have terminated in RetainTemporary are destroyed.

ERRORS
BadValue

SEE ALSO
XSetCloseDownMode



XListExtensions (3X) (X1ib - Extensions) XListExtensions(3X)

NAME
XListExtensions — return list of all extensions to X supported by the
server.

SYNOPSIS
char **XListExtensions (display, nextensions)
Display *display;

int *nextensions; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
nextensions Returns the number of extensions in the returned list.
DESCRIPTION

XListExtensions lists all the X extensions supported by the current server.
The extension names will be in the ISO LATIN-1 encoding, and
upper/lower case is important.

SEE ALSO
XQueryExtension, XFreeExtensionList.



XListFonts(3X)

NAME

(X1ib - Fonts) XListFonts(3X)

XListFonts — return a list of the available font names.

SYNOPSIS

char **XListFonts (display, pattern, maxnames, actual_count)
Display *display;
char *patiern;
int maxnames ;

int *actual_count ; /* RETURN =*/
ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

pattern Specifies the string associated with the font names you
want returned. You can specify any string, an asterisk (*),
or a question mark. The asterisk indicates a wildcard for
any number of characters and the question mark indicates
a wildcard for a single character. The pattern should use
the ISO Latin-1 encoding, but upper/lower case is not
important.

maxnames Specifies the maximum number of names that are to be in

actual_count
DESCRIPTION

the returned list.

Returns the actual number of font names in the list.

XListFonts returns a list of font names that match the string pattern. Each
string is terminated by NULL. The maximum number of names returned
in the list depends on the value you passed to maxnames. The function
returns the actual number of font names in actual_count. The client should
call XFreeFontNames when done with this list to free the memory.

The font search path (the order in which font names are compared to pat-
tern) is set by XSetFontPath.

SEE ALSO

XLoadFont, XLoadQueryFont, XFreeFont, XFreeFontInfo, XListFontsWithInfo,
XFreeFontNames, XFreeFontPath, XGetFontPath, XQueryFont, XSetFont,
XSetFontPath, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XListFontsWithInfo(3X) (X1ib - Fonts) XListFontsWithInfo(3X)
NAME
XListFontsWithInfo — obtain the names and information about loaded
fonts.
SYNOPSIS
char **XListFontsWithInfo (display, pattern, maxnames, count,
info)
Display *display;
char *pattern; /* null-terminated */
int maxnames;
int *count; /% RETURN */
XFontStruct **info; /* RETURN =/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from

pattern

maxnames

count

info

DESCRIPTION

XOpenDisplay.

Specifies the string associated with the font names you
want returned. You can specify any string, an asterisk (*),
or a question mark. The asterisk indicates a wildcard on
any number of characters and the question mark indicates
a wildcard on a single character.

Specifies the maximum number of names that are to be in
the returned list.

Returns the actual number of matched font names.

Returns the font information. XListFontsWithInfo provides
enough space for maxnames pointers.

XListFontsWithInfo returns a list of font names that match the specified
pattern and a list of their associated font information. The list of names is
limited to size specified by the maxnames argument. To free the allocated
name array, the client should call XFreeFontNames. To free the font infor-
mation array, the client should call XFreeFontInfo.

The information returned for each font is identical to what XQueryFont

would return,

except that the per-character metrics (lbearing, rbearing,

width, ascent, descent for single characters) are not returned.
If XListFontsWithInfo fails for any reason, it returns NULL.



XListFontsWithInfo(3X)

STRUCTURES
typedef struct {

XExtData
Font fid;
unsigned
unsigned
unsigned
unsigned
unsigned

Bool all_chars_exist;
unsigned default_char;

*ext_data;

direction;

(X1ib - Fonts) XListFontsWithInfo(3X)

/*»
/*
/*

min_char_or_byte2;/»
max_char_or_byte2;/*

min_bytel;
max_bytel;

int n_properties;

XFontProp *properties;
XCharStruct min_bounds;
XChar8truct max_bounds;
XCharStruct *per_char;

int ascent;
int descent;
} XFoatStruct;

SEE ALSO

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

hook for extension to hang data*/

Font id for this fontx»/

hint about direction the font is painted*/
firet characterx*/

last characters/

first row that existe*/

last row that exists*/

flag if all characters have non-zero size*/
char to print for undefined character*/

how many properties there arex/

pointer to array of additional properties»/
minimum bounds over all existing char»/
minimum bounds over all existing char*/
first_char to last_char information*/
logical extent above baseline for spacing*/
logical descent below baseline for spacing*/

XLoadFont, XLoadQueryFont, XFreeFont, XFreeFontInfo, XListFonts,
XFreeFontNames, XFreeFontPath, XGetFontPath, XQueryFont, XSetFont,
XSetFontPath, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XListHosts (3X) (Xl1ib - Host Access) XListHosts (3X)

NAME
XListHosts — obtain a list of hosts having access to this display.

SYNOPSIS
XHostAddress *XListHosts (display, nhosts, state)
Display *display;

int *nhosts; /* RETURN x*/
Bool *state; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
nhosts Returns the number of hosts currently in the access con-
trol list.
state Returns the state of access to the control list at connection

setup. True if enabled, False is disabled.

DESCRIPTION
XListHosts returns the current access control list as well as whether the
use of the list was enabled or disabled when this client connected to the
display. XListHosts allows a program to find out what machines can make
connections, by looking at the list of host structures. This XHostAddress
list should be freed with XFree when it is no longer needed.

If XListHosts fails for any reason, it returns NULL.

STRUCTURES
typedef struct {
int family;
int length;
char *address;
} XHostAddress;

SEE ALSO
XAddHost, XAddHosts, XRemoveHost, XRemoveHosts, XDisableAccessControl,
XEnableAccessControl, XSetAccessControl.



XListInstalledColormaps(3X) (X1ib - Colormaps) XListInstalledColormaps(3X)

NAME
XListInstalledColormaps — get list of installed colormaps.
SYNOPSIS

Colormap *XListInstalledColormaps (display, w, num)
display *display;

Window w;
int *num; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window for whose screen you want the list
of currently installed colormaps.
num Returns the number of currently installed colormaps in the
returned list.
DESCRIPTION

XListInstalledColormaps returns a list of the currently installed colormaps
for the screen of the specified window. The order in the list is not signifi-
cant. There is no distinction in the list between colormaps actually being
used by windows and colormaps no longer in use which have not yet
been freed or destroyed. The allocated list should be freed using XFree,
when it is no longer needed.

ERRORS
BadWindow

SEE ALSO
XCopyColormapAndFree, XCreateColormap, XFreeColormap,
XGetStandardColormap, XInstallColormap, XUninstallColormap,
XSetStandardColormap, XSetWindowColormap, DefaultColormap, DisplayCells.



XListProperties (3X) (Xlib - Properties) XListProperties(3X)

NAME
XListProperties — get property list for window.

SYNOPSIS
Atom *XListProperties (display, w, num_prop)
Display *display;

Window w;
int *num_prop; /* RETURN =/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window whose property list you want.
num_prop Returns the length of the properties array.
DESCRIPTION

XListProperties returns a pointer to an array of atom properties that are
defined for the specified window. To free the memory allocated by this
function, use XFree.

When XListProperties fails, it returns NULL and sets the num_prop argu-
ment to 0.

ERRORS
BadWindow

SEE ALSO
XSetStandardProperties, XGetFontProperty, XRotateWindowProperties,
XDeleteProperty, XChangeProperty, XGetWindowProperty, XGetAtomName,
XiInternAtom.



XLoadFont(3X) (Xlib - Fonts) XLoadFont(3X)

NAME
XLoadFont — load font if not already loaded; get font ID.
SYNOPSIS
Font XLoadFont (display, name)
Display *display;
char *name;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
name Specifies the name of the font in a null terminated string.
The font name uses ISO Latin-1 encoding, but upper/lower
case is not important.
DESCRIPTION

XLoadFont loads a font into the server if it has not already been loaded by
another client. XLoadFont returns the font ID or, if it was unsuccessful, a
zero (0), and generates a BadName error. When the font is no longer
needed, the client should call XUnloadFont. Fonts are not associated with
a particular screen. Once the ID is available, it can be set in the font
member of any GC, and thereby used in subsequent drawing requests.

Font information is usually necessary for locating the text. Call XLoad-
FontWithInfo to get the info at the time you load the font, or call
XQueryFont if you used XLoadFont to load the font.

ERRORS
BadAlloc

BadName Font name specified does not identify an available font.

SEE ALSO
XLoadQueryFont, XFreeFont, XFreeFontInfo, XListFonts, XListFontsWithInfo,
XFreeFontNames, XFreeFontPath, XGetFontPath, XQueryFont, XSetFont,
XSetFontPath, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XLoadQueryFont(3X) (X1ib - Fonts) XLoadQueryFont(3X)

NAME
XLoadQueryFont — load a font and fill information structure.

SYNOPSIS
XFontStruct *XLoadQueryFont (display, name)
Display *display;
char *name;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
name Specifies the name of the font. This name is a null ter-
minated string.
DESCRIPTION

XLoadQueryFont performs a XLoadFont and XQueryFont in a single opera-
tion. XLoadQueryFont provides the easiest way to get character size tables
for placing a proportional font. That is, XLoadQueryFont both opens
(loads) the specified font and returns a pointer to the appropriate
XFontStruct structure. If the font does not exist, XLoadQueryFont returns
NULL.

The XFontStruct structure consists of the font specific information and a
pointer to an array of XCharStruct structures for each character in the font.

STRUCTURES
typedef struct {
XExtData *ext_data; /* hook for extension to hang data*/
Font fid; /* Font id for this font*/
unsigned direction; /* hint about direction the font is paintedx/

unsigned min_char_or_byte2;/* first character*/
unsigned max_char_or_byte2;/* last character*/

unsigned min_bytei; /* first row that exists»/

unsigned max_bytel; /* last row that exists*/

Bool all_chars_exist; /* flag if all characters have non-zero sizex*/
unsigned default_char; /* char to print for undefined character*/

int n_properties; /* how many properties there are*/

XFontProp *properties; /* pointer to array of additional properties*/
XChar8truct min_bounds; /* minimum bounds over all existing charx*/
XCharStruct max_bounds; /* minimum bounds over all existing char*/
XCharS8truct *per_char; /* first_char to last_char information*/

int ascent; /* logical extent above baseline for spacing*/
int descent; /* logical descent below baseline for spacing*/



} XFontStruct;

typedef struct {
short lbearing;
short rbearing;
short width;
short ascent;
short descent;

/*
/*
/*
/*
/*

uneigned short attributes; /»*

} XCharStruct;

ERRORS
BadAlloc
BadName

SEE ALSO

XLoadQueryFont(3X) (Xlib - Fonts) XLoadQueryFont(3X)

origin to left edge of raster *»/
origin to right edge of raster »/
advance to next char‘s origin */
baseline to top edge of raster »/
baseline to bottom edge of raster */
per char flags (not predefined) =*/

XLoadFont, XFreeFont, XFreeFontInfo, XListFonts, XListFontsWithInfo,
XFreeFontNames, XFreeFontPath, XGetFontPath, XQueryFont, XSetFont,
XSetFontPath, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XLookUpAssoc(3X) (X1ib - Association Tables) XLookUpAssoc(3X)

NAME
XLookUpAssoc — obtain data from an association table.

SYNOPSIS
char *XLookUpAssoc (display, table, x_id)
Display *display;
XAssocTable *iable;

XID x_id;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
table Specifies the association table.
x_id Specifies the X resource ID.
DESCRIPTION

This function is provided for compatibility with X Version 10. To use it
you must include the file <X11/X10.h> and link with the library -loldX.

Association tables provide a way of storing data and accessing by ID.
This information is available to all clients. XLookUpAssoc retrieves the
data stored in an XAssocTable by its XID. If the matching XID can be found
in the table, the routine returns the data associated with it. If the x_id
cannot be found in the table the routine returns NULL.

STRUCTURES
typedef struct {

XAssoc *buckets; /* pointer to first bucket in bucket array */

int size; /* table size (number of buckets) */

} XAssocTable;

typedef struct _XAssoc {

struct _XAssoc *next; /* next object in this bucket */
struct _XAssoc *prev; /* previous object in this bucket */
Display »*display; /* display which owns the ID */
XID x_id; /* X Window System ID */
char =*data; /* pointer to untyped memory */
} XAssoc;
SEE ALSO

XCreateAssocTable, XDeleteAssoc, XDestroyAssocTable, XMakeAssoc.



XLookupColor(3X) (X1ib - Color Cells) XLookupColor(3X)

NAME
XLookupColor — get database and closest hardware supported RGB
values from color name.

SYNOPSIS
Status XLookupColor (display, cmap, colorname, rgb_db_def,
hardware_def)
Display *display;
Colormap cmap;
char *colorname;
XColor *rgb_db_def, *hardware_def; /* RETURN */

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap.
colorname Specifies the color name string (for example "red").
Upper/lowercase characters are acceptable, in ISO Latin-1
encoding.

rgb_db_def Returns the exact RGB values for the specified color name
from the /usr/lib/rgb database.

hardware_def ~ Returns the closest RGB values possible on the hardware.

DESCRIPTION
XLookupColor looks up the string name of a color with respect to the
screen associated with the specified cmap and returns both the exact color
values and the closest values possible on that screen.

XLookupColor returns 1 if colorname exists in the RGB data base or 0 if it
does not exist.

To determine the exact RGB values, XLookupColor uses a data base on the
X server. On SYSTEM V/68 this data base is /usr/lib/rgb. To read the
colors provided by the data base on a SYSTEM V/68-based system, see
lusr/lib/rgb.txt. The location, name, and contents of this file are operating
system specific.

STRUCTURES
typedef struct {
unsigned long pixel;
unsigned short red, green, blue;
char flags; /* DoRed, DoGreen, DoBlue */



XLookupColor(3X) (X1ib - Color Cells) XLookupColor(3X)

char pad;
} XColor;

ERRORS
BadColor
BadName

SEE ALSO
XAllocColorCells, XAllocColorPlanes, XAllocColor, XAllocNamedColor,
XParseColor, XQueryColor, XQueryColors, XStoreColor, XStoreColors,
XFreeColors, XStoreNamedColor, BlackPixel, WhitePixel.



XLookupKeysym(3X) (X1ib - Keyboard) XLookupKeysym(3X)

NAME
XLookupKeysym — get KeySym corresponding to keycode in structure.
SYNOPSIS
KeySym XLookupKeysym(event, index)
XKeyEvent *event;

int index;
ARGUMENTS
event Specifies the KeyPress or KeyRelease event that is to be
used.
index Specifies which KeySym from the list associated with the
keycode in the event to return. These correspond to the
modifier keys and the symbol ShiftMapIndex.
DESCRIPTION

Given a keyboard event and the index into the list of KeySyms for that key-
code, XLookupKeysym returns the KeySym from the list that corresponds to
the keycode in the event.

Each keycode may have a list of associated KeySyms, which are portable
symbols representing the meanings of the key. The index specifies which
KeySym in the list is desired, indicating the combination of modifier keys
that are currently pressed. Therefore, the program must interpret the state
member of the XKeyEvent structure to determine the index before calling
this function. The exact mapping of modifier keys into the list of keysyms
for each keycode is server-dependent beyond the fact that the first keysym
corresponds to the keycode without modifier keys, and the second
corresponds to the keycode with Shift pressed.

XLookupKeysym simply calls XKeycodeToKeysym, using arguments taken
from the specified event structure.

Note that some hardware can’t support KeyRelease events for every key.
You may wish to avoid using them in your code.

STRUCTURES
typedef struct {
int type: /* of event »/
Display *display: /* Display the event was read from »*»/
Window window; /* "event® window it is reported relative to
Window root; /* root window that the event occured on */
Window subwindow; /* child window 2/
Time time; /* milliseconds */



XLookupKeysym(3X) (X1ib - Keyboard) XLookupKeysym (3X)

int x, y; /* pointer x, y coordinates in event window */
int x_root, y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask »/
unsigned int keycode; /+ detail »/
Bool same_screen; /* same screen flag */
} XKeyEvent;

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XKeysymToString,
XNewModifierMap, XQueryKeymap, XStringToKeysym, XRebindKeysym,
XGetKeyboardMapping, XChangeKeyboardMapping, XRefreshKeyboardMapping,
XLookupString, XSetModifierMapping, XGetModifierMapping.



XLookupString(3X) (X1ib - Keyboard) XLookupString(3X)

NAME
XLookupString — map key event to ASCII string, keysym, and Com-
poseStatus.

SYNOPSIS

int XLookupString(event, buffer, num_bytes, keysym, status)
XKeyEvent *event;

char *buffer; /* RETURN =/
int num_bytes;
KeySym *keysym; /* RETURN =*/

XComposeStatus *status; /* not implemented */

ARGUMENTS
event Specifies the key event to be used.

buffer Returns the resulting string.

num_bytes Specifies the length of the buffer. No more than
num_bytes of translation are returned.

keysym If this argument is not NULL, it specifies the keysym ID
computed from the event.
status Specifies the XCompose structure that contains compose

key state information and that allows the compose key
processing to take place. This can be NULL if the caller is
not interested in seeing compose key sequences. Not
implemented in Release 1 or 2.

DESCRIPTION

XLookupString gets an ASCII string and a keysym that are currenly
mapped to the keycode in a KeyPress or KeyRelease event, using the modif-
ier bits in the key event to deal with shift, lock and control. The XLookup-
String return value is the length of the translated string and the string’s
bytes are copied into the user’s buffer. The length may be greater than 1
if the event’s keycode translates into a keysym which was rebound with
XRebindKeysym.

The compose status is not implemented in Release 1 or 2.

STRUCTURES
/*
* Compose sequence status structure, used in calling XLookupString.
*/
typedef struct _XComposeStatus {
char *compose_ptr;/* state table pointer »/



XLookupString(3X) (X1ib - Keyboard) XLookupString(3X)

int chars_matched;/* match state »/

} XComposeStatus;

typedef struct {

int type; /*
Display *display; /*
Window window; /*
Window root; /*
Window subwindow; /*
Time time; /*
int x, y; /*
int x_root, y_root; /*
unsigned int state; /*

unsigned int keycode; /*
Bool same_screen; /»
} XKeyEvent;

SEE ALSO

of event »/

Display the event was read from */

“event" window it is reported relative to */
root window that the event occured on */
child window »/

milliseconds s/

pointer x, y coordinates in event window */
coordinates relative to root */

key or button mask */

detail =/

same screen flag */

XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XKeysymToString,
XNewModifierMap, XQueryKeymap, XStringToKeysym, XLookupKeysym,
XRebindKeySym, XGetKeyboardMapping, XChangeKeyboardMapping,
XRefreshKeyboardMapping, XSetModifierMapping, XGetModifierMapping.



XLowerWindow(3X) (X1ib - Window Manipulation) XLowerWindow(3X)

NAME

XLowerWindow — lower a window in the stacking order.

SYNOPSIS

XLowerWindow (display, w)
Display *display;
Window w;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID of the window to be lowered.
DESCRIPTION

XLowerWindow lowers a window in the stacking order of its siblings so
that it does not obscure any sibling windows. If the windows are
regarded as overlapping sheets of paper stacked on a desk, then lowering
a window is analogous to moving the sheet to the bottom of the stack,
while leaving its x and y location on the desk constant. Lowering a
mapped window will generate exposure events on any windows it form-
erly obscured.

If the override_redirect attribute of the window (refer to the GSE
Programmer’s Guide) is False and some other client has selected Substruc-
tureRedirectMask on the parent, then a ConfigureRequest event is generated,
and no further processing is performed. Otherwise, the window is
lowered to the bottom of the stack.

LeaveNotify events are sent to the lowered window if the pointer was
inside it, and EnterNotify to the window which was immediately below the
lowered window at the pointer position.

ERRORS

BadWindow

SEE ALSO

XRaiseWindow, XCirculateSubwindows, XCirculateSubwindowsDown,
XCirculateSubwindowsUp, XRestackWindows, XMoveWindow, XResizeWindow,
XMoveResizeWindow, XReparentWindow, XConfigureWindow, XQueryTree.



XMakeAssoc(3X) (X1ib - Association Tables) XMakeAssoc(3X)

NAME
XMakeAssoc — create entry in an association table.

SYNOPSIS
XMakeAssoc (display, table, x_id, data)
Display =*display;
XAssocTable *tiable;

XID x_id;
char *data;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
table Specifies the assoc table.
x_id Specifies the X resource ID.
data Specifies the data to be associated with the X resource ID.
DESCRIPTION

XMakeAssoc inserts data into an XAssocTable keyed on an XID. Association
tables allow you to easily associate data with resource ID’s for later
retrieval by any application.

This function is provided for compatibility with X Version 10. To use it
you must include the file <X11/X10.h> and link with the library
-loldX.

Data is inserted into the table only once. Redundant inserts are meaning-
less and cause no problems. The queue in each association bucket is
sorted from the lowest XID to the highest XID.

Refer to the GSE Programmer’s Guide for further explanation.

STRUCTURE
typedef struct {
XAssoc *buckets;/* pointer to first bucket in bucket array */
int size;/* table size (number of buckets) =*/
} XAssocTable;

typedef struct _XAssoc {
struct _XAssoc *next;/* next object in this bucket */
struct _XAssoc *prev;/* previous object in this bucket */
Display *display;/# display which owns the ID =*/



XMakeAssoc(3X) (X1ib - Association Tables) XMakeAssoc(3X)

XID x_id;/* X Window System ID »/
char *data;/* pointer to untyped memory =/
} XAssoc;

SEE ALSO
XCreateAssocTable, XDeleteAssoc, XDestroyAssocTable, XLookUpAssoc.



XMapRaised(3X) (X1ib - Window Mapping) XMapRaised (3X)

NAME
XMapRaised — map a window on top of its siblings.
SYNOPSIS
XMapRaised (display, w)
Display *display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
DESCRIPTION

XMapRaised marks a window as eligible to be displayed. It will actually
be displayed if its ancestors are mapped, it is on top of sibling windows,
and it is not obscured by unrelated windows. XMapRaised is similar to
XMapWindow, except it additionally raises the specified window to the top
of the stack among its siblings. Mapping an already mapped window
with XMapRaised raises the window. See XMapWindow for further details.

ERRORS
BadWindow

SEE ALSO
XMapSubwindows, XMapWindow, XUnmapSubwindows, XUnmapWindow.



XMapSubwindows(3X) (X1ib - Window Mapping) XMapSubwindows(3X)

NAME
XMapSubwindows — map all subwindows.

SYNOPSIS
XMapSubwindows (display, w)
Display *display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
DESCRIPTION

XMapSubwindows maps all subwindows of a window in top-to-bottom
stacking order. XMapSubwindows also generates an Expose event on each
newly displayed window. This is much more efficient than mapping
many windows one at a time, as much of the work need only be per-
formed once for all of the windows rather than for each window.

ERRORS
BadWindow

SEE ALSO
XMapRaised, XMapWindow, XUnmapSubwindows, XUnmapWindow.



XMapWindow(3X) (X1ib - Window Mapping) XMapWindow(3X)

NAME
XMapWindow — map a window.
SYNOPSIS
XMapWindow (display, w)
Display *display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
DESCRIPTION

XMapWindow maps a window, making it eligible for display depending on
its stacking order among its siblings, the mapping status of its ancestors,
and the placement of other visible windows. If all the ancestors are
mapped, and it is not obscured by siblings higher in the stacking order,
the window and all of its mapped subwindows are displayed.

Mapping a window that has an unmapped ancestor does not display the
window but marks it as eligible for display when its ancestors become
mapped. Mapping an already mapped window has no effect (it does not
raise the window).

If the window is opaque, XMapWindow generates Expose events on each
opaque window that it causes to become displayed. If the client first
maps the window, then paints the window, then begins processing input
events, the window is painted twice. To avoid this, the client should use
either of two strategies:

1. Map the window, call XSelectInput for exposure events, wait for the
first Expose event, and repaint the window(s) explicitly.

2. Call XSelectinput for exposure events, map, and process input events
normally. Exposure events are generated for each window that has
appeared on the screen, and the client’s normal response to an
Expose event should be to repaint the window.

The latter method is preferred as it usually leads to simpler programs. If
you fail to wait for the Expose event in the first method, it can cause
incorrect behavior with certain window managers that intercept the
request.



XMapWindow(3X) (X1ib - Window Mapping) XMapWindow (3X)

ERRORS
BadWindow

SEE ALSO
XMapRaised, XMapSubwindows, XUnmapSubwindows, XUnmapWindow.



XMaskEvent(3X) (X1ib - Input Handling) XMaskEvent(3X)

NAME
XMaskEvent — remove next event that matches passed mask.

SYNOPSIS
XMaskEvent (display, event_mask, rep)
Display *display;
long event_mask ;

XEvent *rep; /* RETURN =/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
event_mask Specifies the event mask. See XSelectInput for a complete
list of event masks.
rep Returns the event removed from the input queue.
DESCRIPTION

XMaskEvent removes the next event in the queue which matches the
passed mask. The event is copied into an XEvent supplied by the caller.
Other events in the queue are not discarded. If no such event has been
queued, XMaskEvent flushes the output buffer and waits until one is
received. Use XCheckMaskEvent if you do not wish to wait.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeeklIfEvent,
XPutBackEvent, XPending, XSynchronize, XSendEvent, QLength.



XMatchVisuallnfo(3X) (Xlib - Visuals) XMatchVisualInfo(3X)

NAME
XMatchVisuallnfo — obtain the visual information that matches the
desired depth and class.

SYNOPSIS
Status XMatchVisualInfo (display, screen, depth, class, vinfo)
Display =*display;

int screen;
int depth;
int class;
XVisualInfo *vinfo; /* RETURN =*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
screen Specifies the screen.
depth Specifies the desired depth of the visual.
class Specifies the desired class of the visual, such as Pseu-
doColor or TrueColor,
vinfo Returns the matched visual information.
DESCRIPTION

XMatchVisuallnfo returns the visual information for a visual that matches
the specified depth and class for a screen. Because multiple visuals that
match the specified depth and class can exist, the exact visual chosen is
undefined.

If a visual is found, this function returns True and the information on the
visual is returned to vinfo. Otherwise, if a visual is not found, it returns
False.

Refer to the GSE Programmer’s Guide for a description of visuals.



XMatchVisualInfo(3X) (X1ib - Visuals) XMatchVisualInfo(3X)

STRUCTURES

typedef struct {
Visual *visual;
VisuallID visualid;
int screen;
unsigned int depth;
int class;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bite_per_rgb;

} XVisuallnfo;

SEE ALSO
XGetVisuallnfo, DefaultVisual.



XMoveResizeWindow(3X) (Xlib - Window Manipulation) XMoveResizeWindow(3X)

NAME
XMoveResizeWindow — change size and location of window.

SYNOPSIS

XMoveResizeWindow (display, w, x, y, width, height)
Display *display;

Window w;
int x, y;
int width, height;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID of the window to be reconfig-
ured.
x
y Specify the x and y coordinates. These coordinates define
the new position of the upper left corner of the window
relative to its parent.
width
height Specify the width and height. These arguments define the
interior size of the window.
DESCRIPTION

XMoveResizeWindow moves or resizes a window or both. Configuring a
mapped window may lose its contents and generate an Expose event on
that window depending on the bit_gravity and backing store attributes.
Configuring a window may generate exposure events on windows that
the window formerly obscured, depending on the new size and location
parameters.

If the override_redirect attribute of the window is False (refer to the GSE
Programmer’s Guide) and some other client has selected Substruc-
tureRedirectMask on the parent, then a ConfigureRequest event is generated,
and no further processing is performed. Otherwise, the window size is
changed. XMoveResizeWindow does not raise the window.

ERRORS
BadMatch
BadValue
BadWindow



XMoveResizeWindow(3X) (Xlib - Window Manipulation) XMoveResizeWindow(3X) -

SEE ALSO
XLowerWindow, XRaiseWindow, XCirculateSubwindows,
XCirculateSubwindowsDown, XCirculateSubwindowsUp, XRestackWindows,
XMoveWindow, XResizeWindow, XReparentWindow, XConfigureWindow,
XQueryTree.



XMoveWindow(3X) (Xlib - Window Manipulation) XMoveWindow(3X)

NAME
XMoveWindow — move a window.

SYNOPSIS
XMoveWindow (display, w, x, y)
Display *display;

Window w;
int x, y;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID. This is the window to be
moved.
x
y Specify the x and y coordinates. These coordinates define
the new location of the top left pixel of the window’s
border (or the window itself, if it has no border).
DESCRIPTION

XMoveWindow changes the position of the origin of the specified window
relative to its parent. XMoveWindow does not change the mapping state,
size, or stacking order of the window. Moving a mapped window will
lose its contents if:

®  Its background_pixmap attribute is ParentRelative.

® The window is obscured by non-children and no backing store
exists.

If the contents are lost, exposure events will be generated for the window
and any mapped subwindows. Moving a mapped window will generate
exposure events on any formerly obscured windows.

If the override_redirect attribute of the window is False (refer to the GSE
Programmer’s Guide) and some other client has selected Substruc-
tureRedirectMask on the parent, then a ConfigureRequest event is generated,
and no further processing is performed.



XMoveWindow(3X) (X1ib - Window Manipulation) XMoveWindow(3X)

ERRORS
BadWindow

SEE ALSO
XLowerWindow, XRaiseWindow, XCirculateSubwindows,
XCirculateSubwindowsDown, XCirculateSubwindowsUp, XRestackWindows,
XResizeWindow, XMoveResizeWindow, XReparentWindow, XConfigureWindow,
XQueryTree.



XNewModifiermap (3X) (X1ib - Keyboard) XNewModifiermap(3X)

NAME
XNewModifiermap — create a keyboard modifier mapping structure.

SYNOPSIS
XModifierKeymap XNewModifiermap (max_keys_per_mod)

int max_keys_per_mod ;

ARGUMENTS
max_keys_per_mod
Specifies the maximum number of keycodes assigned to
any of the modifiers in the map.
DESCRIPTION

XNewModifiermap returns a XModifierKeymap structure and allocates the
needed space. This function is used when more than one XModifierKey-
map structure is needed. max_keys_per_mod depends on the server and
should be gotten from the XModifierKeymap returned by XGetModifierMap-
ping.
STRUCTURES

typedef struct {

int max_keypermod; /* server’s max number of keys per modifier */

KeyCode *modifiermap;/* An 8 by max_keypermod array

* of the modifiers »/

} XModifierKeymap;

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XKeysymToString, XQueryKeymap,
XStringToKeysym, XLookupKeysym, XRebindKeysym, XGetKeyboardMapping,
XChangeKeyboardMapping, XRefreshKeyboardMapping, XLookupString,
XSetModifierMapping, XGetModifierMapping.



XNextEvent(3X) (X1ib - Input Handling) XNextEvent(3X)

NAME
XNextEvent — get next event of any type or window.
SYNOPSIS
XNextEvent (display, report)
Display =*display;

XEvent *report; /* RETURN =%/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
report Returns the event removed from the input queue.
DESCRIPTION

XNextEvent removes an input event from the head of the event queue and
copies it into an XEvent supplied by the caller. If the event queue is
empty, XNextEvent flushes the output buffer and waits (blocks) until an
event is received. Use XCheckNextEvent if you do not want to wait.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeekIfEvent,
XPutBackEvent, XPending, XSynchronize, XSendEvent, QLength.



XNoOp(3X) (X1ib - HouseKeeping) XNoOp(3X)

NAME

XNoOp — send a NoOp to exercise connection with server.
SYNOPSIS

XNoOp (display)

Display *display;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from

XOpenDisplay.

DESCRIPTION

XNoOp sends a NoOperation request to the X server, thereby exercising the
connection. This request can be used to measure the response time of the
network connection. XNoOp does not flush the output buffer.

SEE ALSO
XFree, XOpenDisplay, XCloseDisplay, DefaultScreen.



XOffsetRegion(3X) (Xlib - Regions) XOffsetRegion(3X)

NAME
XOffsetRegion — change offset of region.

SYNOPSIS
X0ffsetRegion (r, dx, dy)
Region r;
int dx, dy;

ARGUMENTS
r Specifies the region.
dx
dy Specify the amount to change the offset of the specified
region.
DESCRIPTION

XOffsetRegion changes the offset of the region the specified amounts in the
x and y directions.

Regions are located using an offset from an arbitrarily chosen point (the
"region origin") which is common to all regions. It is up to the application
to interpret the location of the region relative to a drawable. If the region
is to be used as a clip_mask by calling XSetRegion, the top left corner of the
region relative to the drawable used in the graphics request will be at
(xoffset + clip_x_origin, yoffset + clip_y_origin), where xoffset and yoffset are
the offset of the region and clip_x_origin and clip_y_origin are elements of
the GC used in the graphics request.

STRUCTURES
/*
* opaque reference to Regiondata type.
* user won’t need contents, only pointer.
*/
typedef struct _XRegion *Region;

SEE ALSO
XXorRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XShrinkRegion, XSetRegion, XRectInRegion, XPolygonRegion, XPointInRegion,
XIntersectRegion, XEmptyRegion, XCreateRegion, XDestroyRegion,
XEqualRegion, XClipBox.



XOpenDisplay(3X) (X1ib - HouseKeeping) XOpenDisplay(3X)

NAME
XOpenDisplay — connect a client program to an X server.

SYNOPSIS
Display #*XOpenDisplay (display_name)
char *display_name ;

ARGUMENTS
display_name  Specifies the display name, which determines the
hardware display and communications domain to be used.
See description below.

DESCRIPTION
The XOpenDisplay routine connects the client to the server controlling the
hardware display through TCP, SYSTEM V/68, or DECnet streams.

If display_name is NULL, it defaults to the DISPLAY environment variable
on SYSTEM V/68 systems. On non-SYSTEM V/68 systems, see that operat-
ing system’s Xlib manual for the default display_name. The display_name or
DISPLAY environment variable is a string that has the format
hostname:server or hostname:server.screen. For example, frog:0.2 would
specify screen 2 of server 0 on the machine frog.

hostname Specifies the name of the host machine on which the display
is physically connected. You follow the hostname with
either a single colon (:) or a double colon (::), which deter-
mines the communications domain to use. Any or all of the
communication protocols can be used simultaneously on a
server built to support them.

®  If hostname is a host machine name and a single colon (:) separates
the hostname and display number, XOpenDisplay connects the
hardware display to TCP streams.

®  If hostname is "unix" and a single colon (:) separates it from the
display number, XOpenDisplay connects the hardware display to
SYSTEM V/68 domain IPC streams.

®  If hostname is a host machine name and a double colon (::) separates
the hostname and display number, XOpenDisplay connects the
hardware display to DECnet streams. To use DECnet, however, you
must build all software for DECnet. A single X server will accept
both TCP and DECnet connections if it has been built for DECnet.



XOpenDisplay(3X) (X1ib - HouseKeeping) XOpenDisplay(3X)

server Specifies the number of the server on its host machine. This
display number may be followed by a period (.).

screen Specifies the number of the default screen on server. Multi-
ple screens can be connected to (controlled by) a single X
server, but they are used as a single display by a single user.
screen merely sets an internal variable that is returned by the
DefaultScreen macro. If screen is omitted, it defaults to 0
structure that is defined in <X11/Xlib.h>.

If successful, XOpenDisplay returns a pointer to a Display This structure
provides many of the specifications of the server and its screen(s). If
XOpenDisplay does not succeed, it returns a NULL.

After a successful call to XOpenDisplay, all of the screens on the server
may be used by the application. The screen number specified in the
display_name argument serves only to specify the value that will be
returned by the DefaultScreen macro. After opening the display, you can
use the ScreenCount macro to determine how many screens are available.
Then you can reference each screen with integer values between 0 and the

value returned by ScreenCount.
STRUCTURES

/*

* Display datatype maintaining display specific data.

*/
typedef struct _XDisplay {

XExtData *ext_data; /% hook for extension to hang data */

struct _XDisplay *next; /* next open Display on list */

int £d; /* Network socket. */

int lock; /% is someone in critical section */

int proto_major_version; /* major version of server°s X protocol */

int proto_minor_version; /* minor version of server’s X protocol */

char *vendor; /* vendor of the server hardware */

long resource_base; /% resource ID base */

long resource_mask; /* resource ID mask bits */

long resource_id; /* allocator current ID #*/

int resource_shift; /* allocator shift to correct bits */

XID (*resource_alloc) (); /% allocator function */

int byte_order; /* screen byte order, LSBFirst, MSBFirst */

int bitmap_unit; /* padding and data requirements */

int bitmap_pad; /* padding requirements on bitmaps */

int bitmap_bit_order; /* LeastS8ignificant or MostS8ignificant */



XOpenDisplay(3X) (X1ib - HouseKeeping) XOpenDisplay (3X)

int nformats; /% number of pixmap formats in list */

ScreenFormat *pixmap_format; /#* pixmap format list =/

int vaumber; /* X1ib°s X protocol version number. */

int releass; /% release of the server */

struct _XSQEvent *head, *tail;/* Input event queus. */

int qlen; /* Length of input event queue »/

int last_request_read; /* sequence number of last event read NI */

int request; /* sequence number of last request. */

char *last_req; /* beginning of last request, or dummy */

char *buffer; /#* Output buffer starting address. */

char *bufptr; /* Output buffer index pointer. */

char *bufmax; /* Output buffer maximum+i address. */
#ifdef SHMLINK

shmBufPtr firstS8hmBuf; /* first shm buffer »/

shmBufPtr lastShmBuf; /* last shm buffer =/

char *shmRegion; /% Address of shm region */

int shmld; /% shm id for shm region */

#endif SHMLINK

unsigned max_request_size; /* maximum number 32 bit words in request*/
struct _XrmResourceDataBase *db;

int (*synchandler) (); /% Synchronization handler »*/

char *display_name; /* "host:display" string used on this connect#*
int default_screen; /* default screen for operations »*/

int nscreens; /* number of screens on this serverx*x/

Screen *screens; /* pointer to list of screens »*/

int motion_buffer; /* size of motion buffer */

Window current; /* for use internally for Keymap notify x*/
int min_keycode; /* minimum defined keycode */

int max_keycods; /% maximum defined keycode */

KeySym *keysyms; /% This server‘s keysyms */

XModifierKeymap *modifiermap;/* This server’s modifier keymap */

int keysyms_per_keycode; /* number of rows */

char *xdefaults; /* contents of defaults from server */

char *scratch_buffer; /* place to hang scratch buffer */

unsigned long scratch_length;/#* length of scratch buffer */

int ext_number; /* extension number on this display */
XExtension ®ext_procs; /* extensions initialized on this display */
/* '

* the following can be fixed size, as the protocol defines how
* much address space is available.



XOpenDisplay(3X) (X1ib - HouseKeeping) XOpenDisplay(3X)

% While this could be done using the extension vector, there
* may be MANY events processed, so a search through the extension
#* list to find the right procedure for each event might be
* expensive if many extensions are being used.
=/
int (*event_vec([128]) (); /% vector for wire to event */
int (swire_vec([128]) (); /* vector for event to wire */
} Display;
/*
* Information about the screen.
*/
typedef struct {
XExtData *ext_data; /* hook for extemsion to hang data */
struct _XDisplay *display:; /% back pointer to display structure */
Window root; /% Root window id. */
int width, height; /* width and height of screen */
int mwidth, mheight; /* width and height of in millimeters */
iat ndepths; /* number of depths possible */
Depth *depths; /% list of allowable depths on the screen */
int root_depth; /* bits per pixel */
Visual #*root_visual; /* root visual */
GC default_gc; /* GC for the root root visual =/
Colormap cmap; /% default colormap »/

unsigned long white_pixel;
unsigned long black_pixel; /% White and Black pixel values */

int max_maps, min_maps; /* max and min colormaps */

int backing_store; /% Never, WhenMapped, Always #*/
Bool save_unders;

long root_input_mask; /+% initial root input mask */

} Screen;

/*
* Format structure; describes ZFormat data the screen will understand.
*/
typedef struct {
XExtData sext_data; /* hook for extension to hang data */
int depth; /* depth of this image format */
int bits_per_pixel; /* bits/pixel at this depth =/
int scanline_pad; /% scanline must padded to this multiple */



XOpenDisplay(3X) (Xlib - HouseKeeping) XOpenDisplay(3X)

} ScreenFormat;

SEE ALSO
XFree, XCloseDisplay, XNoOp, DefaultScreen.



XParseColor(3X) (X1ib - Color Cells) XParseColor(3X)

NAME
XParseColor — lookup or translate RGB values from ASCII color name or
hexadecimal.

SYNOPSIS
Status XParseColor (display, colormap, spec, rgb_db_def)
Display *display;
Colormap colormap ;

char *spec;
XColor *rgb_db_def; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap.
spec Specifies the color specification, either as a color name or

as hexadecimal coded in ASCI (see below).
Upper/lowercase characters are acceptable. The string
must be null-terminated.

rgb_db_def Returns the RGB values corresponding to the specified
color name or hexadecimal specification, and sets its
DoRed, DoGreen and DoBlue flags.

DESCRIPTION

XParseColor returns the RGB values corresponding to the English color
name or hexadecimal values specified, by looking up the color name in
the color database, or translating the hexadecimal code into separate RGB
values. It takes a string specification of a color, typically from a command
line or XGetDefault option, and returns the corresponding red, green, and
blue values, suitable for a subsequent call to XAllocColor or XStoreColor.
spec can be either as an English color name (as in XAllocNamedColor) or as
an initial sharp sign character followed by a hexadecimal specification in
one of the following formats:

#RGB (one character per color)
#RRGGBB (two characters per color)
#RRRGGGBBB (three characters per color)
#RRRRGGGGBBBB (four characters per color)

Where R, G, and B represent single hexadecimal digits (upper or lower case).



- XParseColor(3X) (X1ib - Color Cells) XParseColor(3X)

The hexadecimal strings must be null-terminated so that XParseColor
knows when it has reached the end. When fewer than 16 bits each are
specified, they represent the most significant bits of the value. For exam-
ple, #3a7 is the same as #3000a0007000. The colormap is used to
determine which screen to look up the color on. The screen’s default
colormap is a reliable choice.

This routine will fail and return 0 status if the initial character is a sharp
sign but the string otherwise fails to fit one of the above formats, or if the
initial character is not a sharp sign and the named color does not exist in
the server’s database.

Status is 0 on failure, 1 on success.

STRUCTURES
typedef struct {
unsigned long pixel;
unsigned short red, green, blue;
char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} XColor;

ERRORS
BadColor

SEE ALSO
XAllocColorCells, XAllocColorPlanes, XAllocColor, XAllocNamedColor,

XLookupColor, XQueryColor, XQueryColors, XStoreColor, XStoreColors,
XFreeColors, XStoreNamedColor, BlackPixel, WhitePixel.



XParseGeometry(3X) (Xlib - Standard Geometry) XParseGeometry (3X)

NAME
XParseGeometry — generate position and size from standard window
geometry string.
SYNOPSIS
int XParseGeometry(parsestring, x, y, width, height)
char *parsestring ;
int =*x, =*y, *width, *height;/* RETURN =*/

ARGUMENTS

parsestring Specifies the string you want to parse.

x

y Return the x and y coordinates (offsets) from the string.

width

height Return the width and height from the string.
DESCRIPTION

By convention, X applications use a standard string to indicate window
size and placement. XParseGeometry makes it easy to conform to this stan-
dard because it allows you to parse the standard window geometry string.
Specifically, this function lets you parse strings of the form:

=<width>x<height>{+-} <xoffset>{+-} <yoffset>

The items in this string map into the arguments associated with this func-
tion.

XParseGeometry returns a bitmask that indicates which of the four values
(width, height, xoffset, and yoffset) were actually found in the string, and
whether the x and y values are negative. The bits are represented by these
constants: XValue, YValue, WidthValue, HeightValue, XNegative, and YNega-
tive, and are defined in <XI11/Xutil.h>. For each value found, the
corresponding argument is updated and the corresponding bitmask ele-
ment set; for each value not found, the argument is left unchanged, and
the bitmask element is not set.

SEE ALSO
XGeometry, XTranslateCoordinates.



XPeekEvent(3X) (X1ib - Input Handling) XPeekEvent(3X)

NAME
XPeekEvent — get event without removing it from the queue.
SYNOPSIS
XPeekEvent (display, report)
Display *display;

XEvent *report; /* RETURN */
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
report Returns the event peeked from the input queue.
DESCRIPTION

XPeekEvent peeks at an input event from the head of the event queue and
copies it into an XEvent supplied by the caller, without removing it from
the input queue. If the queue is empty, XPeekEvent flushes the output
buffer and waits (blocks) until an event is received. If you do not want to
wait, use the QLength macro to determine if there are any events to peek
at, or use XPeekIfEvent. In Release 2, XEventsQueued can perform the func-
tion of either QLength or XPending and more.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekIfEvent, XPutBackEvent,
XPending, XSynchronize, XSendEvent, QLength.



XPeekIfEvent(3X) (X1ib - Input Handling) XPeekIfEvent(3X)

NAME
XPeekIfEvent — get event without removing it from the queue; do not
wait.

SYNOPSIS
XPeekIfEvent (display, event, predicate, args)
Display *display;
XEvent *event; /* RETURN */
Bool (*predicate) () ;
char *args;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
event Returns the matched event.
predicate Specifies the procedure to be called to determine if each
event that arrives in the queue is the desired one.
args Specifies the user-specified arguments that will be passed
to the predicate procedure.
DESCRIPTION

XPeckIfEvent returns an event only when the specified predicate procedure
returns True for the event. The event is copied into event but not removed
from the queue. The specified predicate is called each time an event is
added to the queue.

XPeeklIfEvent flushes the output buffer if no matching events could be
found on the queue, and then waits for the next matching event.

For Release 2, the output buffer is flushed only if no matching events are
found on the queue. This change is compatible with applications written
for Release 1.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPutBackEvent,
XPending, XSynchronize, XSendEvent, QLength.



XPending(3X) (X1ib - Input Handling) XPending(3X)

NAME
XPending — flush the output buffer and return the number of pending
input events.
SYNOPSIS
int XPending (display)
Display *display;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
DESCRIPTION

XPending returns the number of input events that have been received from
the server, but not yet removed from the queue. If there are no events on
the queue, XPending flushes the output buffer, and returns the number of
events transferred to the input queue as a result of the flush.

The QLength macro returns the number of events on the queue, but
without flushing the output buffer first.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeekIfEvent,
XPutBackEvent, XSynchronize, XSendEvent, QLength.



XPointInRegion(3X) (X1ib - Regions) XPointInRegion(3X)

NAME
XPointInRegion — determine if a point is inside a region.

SYNOPSIS
int XPointInRegion(r, x, y)
Region r;
int x, y;

ARGUMENTS
r Specifies the region.

x
y Specify the x and y coordinates of the point relative to the
region origin.
DESCRIPTION

XPointInRegion returns non-zero if the point x, y is contained in the region
r. The boundary is considered inside the region.

Regions are located using an offset from an arbitrarily chosen point (the
"region origin") which is common to all regions. It is up to the application
to interpret the location of the region relative to a drawable.

STRUCTURES
/*
* opaque reference to Regiondata type.
* user won’t need contents, only pointer.
*/
typedef struct _XRegion #*Region;

SEE ALSO
XXorRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XShrinkRegion, XSetRegion, XRectInRegion, XPolygonRegion, XOffsetRegion,
XlntersectRegion, XEmptyRegion, XCreateRegion, XDestroyRegion,
XEqualRegion, XClipBox.



XPolygonRegion(3X) (Xl1ib - Regions) XPolygonRegion(3X)

NAME

XPolygonRegion — generate a region from points.

SYNOPSIS

Region XPolygonRegion (points, n, fill_rule)
XPoint points[];
int n;
int fill_rule;

ARGUMENTS
points Specifies a pointer to an array of points.
n Specifies the number of points in the polygon.
fill_rule Specifies whether areas overlapping an odd number of
times should be part of the region (WindingRule) or not
part of the region (EvenOddRule). Refer to the GSE
Programmer’s Guide for a description of the fill rule.
DESCRIPTION

XPolygonRegion creates a region defined by connecting the specified
points, and returns a pointer to be used to refer to the region.

Regions are located relative to an arbitrarily chosen point (the "region ori-
gin") which is common to all regions. In XPolygonRegion, the coordinates
specified in points are relative to the region origin. By specifying all points
relative to the drawable in which they will be used, the region origin can
be coincident with the drawable origin. It is up to the application
whether to interpret the location of the region relative to a drawable or
not.

If the region is to be used as a clip_mask by calling XSetRegion, the top-left
corner of region relative to the drawable used in the graphics request will
be at (xoffset + clip_x_origin, yoffset + clip_y_origin), where xoffset and
yoffset are the offset of the region (if any) and clip_x_origin and
clip_y_origin are elements of the GC used in the graphics request.

° EvenOddRule

Areas overlapping an odd number of times are not part of the
region.



XPolygonRegion(3X) (X1ib - Regions) XPolygonRegion(3X)

®  WindingRule
Overlapping areas are always filled.

STRUCTURES
typedef struct {
short x,y;
} XPoint;

/*
* opaque reference to Regiondata type.

* user won“t need contents, only pointer.
*/

typedef struct _XRegion *Region;

SEE ALSO
XXorRegion, XUnionRegion, = XUnionRectWithRegion,  XSubtractRegion,
XShrinkRegion, XSetRegion, XRectInRegion, XPointInRegion, XOffsetRegion,
XlIntersectRegion, XEmptyRegion, XCreateRegion, XDestroyRegion, XEqualRe-
gion, XClipBox.



XPutBackEvent(3X) (X1ib - Input Handling) XPutBackEvent(3X)

NAME
XPutBackEvent — push event back on the input queue.

SYNOPSIS
XPutBackEvent (display, event)
Display =*display;
XEvent *event;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
event Specifies a pointer to the event to be requeued.
DESCRIPTION

XPutBackEvent pushes an event back onto the head of the current display’s
input queue (it would become the next one returned by the next XNex-
tEvent call). This can be useful if you have read an event and then decide
that you'd rather deal with it later. There is no limit to how many times
you can call XPutBackEvent in succession.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeekIfEvent,
XPending, XSynchronize, XSendEvent, QLength.



XPutImage(3X) (X1ib - Images) XPutImage(3X)

NAME
XPutImage — draw an image on window or pixmap.

SYNOPSIS
XPutImage (display, drawable, gc, image, src_x, src_y, dst_x, dst_y,
width, height)
Display *display;
Drawable drawable;
GC gc;
XImage *image;
int src x, src_y;
int dst_x, dst_y;
unsigned int width, height;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
drawable Specifies the drawable.
8 Specifies the graphics context.
image Specifies the image you want combined with the rectan-
gle.
src_x
src_y Specify the offset from the top left corner of image.
dst_x
dst_y Specify the x and y coordinates. These are the coordinates
of the subimage, relative to the origin of the drawable,
where the image will be drawn.
width
height Specify the width and height of the subimage. These
arguments also define the dimensions of the rectangle on
the drawable.
DESCRIPTION

XPutImage draws a section of an image on a rectangle in a window or pix-
map. The section of the image is defined by src_x, src_y, width, and height.

XPutlmage uses these graphics context components: function, plane_mask,
subwindow_mode, clip_x_origin, clip_y_origin, and clip_mask. This function
also uses these graphics context mode-dependent components: foreground
and background.



XPutImage(3X) (X1ib - Images) XPutImage(3X)

If an XYBitmap format image is used,

then the depth of drawable must be

one and the image must be XYFormat, otherwise a BadMatch error is gen-
erated. The foreground pixel in gc defines the source for set bits in the
image, and the background pixel defines the source for the zero bits.

For XYPixmap and ZPixmap format images, the depth of the image must
match the depth of drawable. For XYPixmap, the image must be sent in
XYFormat. For ZPixmap, the image must be sent in the ZFormat defined

for the given depth.
STRUCTURES

typedef struct _XImage {
int width, height; /*
int xoffset; /*
int format; /*
char #*data; /*
int byte_order; /*
int bitmap_unit; /*

size of image */

number of pixels offset in X directi
XYBitmap, XYPixmap, ZPixmap */
pointer to image data */

data byte order, L8BFirst, MSBFirst
quant. of scanline 8, 18, 32 =»/

int bitmap_bit_order;/* LS8BFirst, MSBFirst =/

int bitmap_pad; /*
int depth; /*
int bytes_per_line; /*
int bits_per_pixel; /*

char *obdata; /*
struct funcs { /*

8, 18, 32 either XY or ZPixmap */
depth of image */

accelarator to next line */

bits per pixel (ZPixmap) */

hook for the object routines to hang
image manipulation routines */

struct _XImage *(*create_image) ()

int (*destroy_image) ();
unsigned long (*get_pixel) ();
int (*put_pixel) ();
struct _XImage *(*sub_image) ();
int (*add_pixel) ()
>z

} XImage;



XPutImage(3X) (X1ib - Images) XPutImage(3X)

ERRORS
BadDrawable

BadGC
BadMatch See Description above.
BadValue

SEE ALSO
XDestroylmage, XGetImage, XCreatelmage, XSublmage, XGetSubImage,
XAddPixel, XPutPixel, XGetPixel, ImageByteOrder.



XPutPixel (3X) (X1ib - Images) XPutPixel (3X)

NAME
XPutPixel — set a pixel value in an image.
SYNOPSIS
int XPutPixel (ximage, x, y, pixel)
XImage *ximage;

int x;
int y;
unsigned long pixel;
ARGUMENTS
ximage Specifies a pointer to the image.
x
y Specify the x and y coordinates.
pixel Specifies the new pixel value.
DESCRIPTION

XPutPixel overwrites the pixel in the named image with the specified pixel
value. The x and y coordinates are relative to the origin (upper left [0,0])
of the image. The input pixel value must be in normalized format (that is,
the Least Significant Byte (LSB) of the long is the LSB of the pixel).

STRUCTURES
typedef struct _XImage {

int width, height; /* size of image */

int xoffset; /* number of pixels offset in X direction */
int format; /* XYBitmap, XYPixmap, ZPixmap */

char =»data; /* pointer to image data */

int byte_order; /* data byte order, LSBFirst, MSBFirst */
int bitmap_unit; /* quant. of scanline 8, 18, 32 */

int bitmap_bit_order;/* LSBFirst, MSBFirst */

int bitmap_pad; /* 8, 18, 32 either XY or ZPixmap */

int depth; /* depth of image */

int bytes_per_line; /* accelarator to next line »*/

int bits_per_pixel; /* bits per pixel (ZPixmap) =*/

unsigned long red_mask;/* bits in z arrangment */

unsigned long green_mask;

unsigned long blue_mask;

char *obdata; /* hook for the object routines to hang on */
struct funcs { /* image manipulation routines */

struct _XImage *(*create_image) ();

int (*destroy_image) ()



XPutPixel (3X) (X1ib - Images) XPutPixel (3X)

unsigned long (*get_pixel) O;
int (*put_pixel) ();
struct _XImage *(*sub_image) ();
int (*add_pixel) ();
>z

} XImage;

SEE ALSO

XDestroylmage, XPutlmage, XGetlmage, XCreatelmage, XSublmage,
XGetSublmage, XAddPixel, XGetPixel, ImageByteOrder.



XQueryBestCursor(3X) (Xl1ib - Cursors) XQueryBestCursor(3X)

NAME
XQueryBestCursor — get closest supported cursor sizes.

SYNOPSIS
XQueryBestCursor (display, d, width, height, rwidth, rheight)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int *rwidth, *rheight;/* RETURN */

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

d Specifies the drawable.

width

height Specify the preferred width and height.

rwidth

rheight Return pointers to the closest supported cursor dimen-

sions on the display hardware.

DESCRIPTION
XQueryBestCursor returns the closest cursor dimensions actually supported
by the display hardware to the dimensions you specify.

Call this function if you wish to use a cursor size other than 16 x 16.
XQueryBestCursor provides a way to find out what size cursors are actually
possible on the display. It returns dimensions acceptable for XCreatePix-
mapCursor. Applications should be prepared to use smaller cursors on
displays which cannot support large ones.

ERRORS
BadDrawable

SEE ALSO
XDefineCursor, XUndefineCursor, XCreateFontCursor, XCreateGlyphCursor,
XCreatePixmapCursor, XFreeCursor, XRecolorCursor, XQueryBestSize.




XQueryBestSize(3X) (X1ib - Pixmaps and Tiles) XQueryBestSize(3X)

NAME
XQueryBestSize — obtain the "best” supported cursor, tile, or stipple size.

SYNOPSIS
XQueryBestSize (display, class, which_screen, width, height, rwidth,
rheight)
Display *display;
int class;
Drawable which_screen;
unsigned int width, height;
unsigned int *rwidth, *rheight;/+* RETURN =/

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
class Specifies the class that you are interested in. Pass one of

these constants: TileShape, CursorShape, or StippleShape.

which_screen  Specifies a drawable ID which tells the server which
screen you want the best size for.

width
height Specify the width and height desired.
rwidth
rheight Return the closest supported width and height available
for the object on the display hardware.
DESCRIPTION

XQueryBestSize returns the "fastest” or "closest” size to the specified size.
For class of CursorShape, this is the closest size that can be fully displayed
on the screen. For TileShape and StippleShape, this is the closest size that
can be tiled or stippled "fastest.”

For CursorShape, the drawable indicates the desired screen. For TileShape
and StippleShape, the drawable indicates the screen and possibly the visual
class and depth (server dependent). An InputOnly window cannot be
used as the drawable for TileShape or StippleShape (else a BadMatch error
occurs).



XQueryBestSize(3X) (X1ib - Pixmaps and Tiles) XQueryBestSize(3X)

ERRORS
BadDrawable

BadMatch InputOnly drawable for class TileShape or StippleShape.
BadValue

SEE ALSO
XSetTile, XQueryBestTile, XSetWindowBorderPixmap,
XSetWindowBackgroundPixmap, XCreatePixmap,
XCreatePixmapFromBitmapData, XFreePixmap, XQueryBestStipple,
XWriteBitmapFile, XReadBitmapFile, XCreateBitmapFromData.



XQueryBestStipple(3X) (X1ib - Pixmaps and Tiles) XQueryBestStipple(3X)

NAME
XQueryBestStipple — obtain the best supported stipple shape.

SYNOPSIS
XQueryBestStipple (display, which_screen, width, height, rwidth,
rheight)
Display *display;
Drawable which_screen ;
unsigned int width, height;
unsigned int *rwidth, *rheight;/* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
which_screen  Specifies a drawable which tells the server which screen
you want the best size for.

width
height Specify the width and height desired.
rwidth
rheight Return the width and height of the stipple best supported
by the display hardware.
DESCRIPTION

XQueryBestStipple returns the closest stipple size that can be stippled
fastest. The drawable indicates the screen and possibly the visual class
and depth. An InputOnly window cannot be used as the drawable (else a

BadMatch error occurs).
ERRORS

BadDrawable

BadMatch InputOnly window.
SEE ALSO

XSetTile, XQueryBestTile, XSetWindowBorderPixmap,
XSetWindowBackgroundPixmap, XCreatePixmap,
XCreatePixmapFromBitmapData, XFreePixmap, XQueryBestSize,
XWriteBitmapFile, XReadBitmapFile, XCreateBitmapFromData.



XQueryBestTile(3X) (X1ib - Pixmaps and Tiles) XQueryBestTile(3X)

NAME
XQueryBestTile — obtain the best supported fill tile shape.

SYNOPSIS
XQueryBestTile (display, which_screen, width, height, rwidth,
rheight)
Display =*display;
Drawable which_screen ;
unsigned int width, height;
unsigned int *rwidth, *rheight;/+* RETURN x*/

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
which_screen  Specifies a drawable which tells the server which screen
you want the best size for.

width
height Specify the width and height desired.
rwidth
rheight Return the width and height of the tile best supported by
the display hardware.
DESCRIPTION

XQueryBestTile returns the "closest” size that can be tiled "fastest.” The
drawable indicates the screen and possibly the visual class and depth. An
InputOnly window cannot be used as the drawable.

ERRORS
BadDrawable

BadMatch InputOnly drawable specified.

SEE ALSO
XSetTile, XSetWindowBorderPixmap, XSetWindowBackgroundPixmap,
XCreatePixmap, XCreatePixmapFromBitmapData, XFreePixmap,
XQueryBestSize, XQueryBestStipple, XWriteBitmapFile, XReadBitmapFile,
XCreateBitmapFromData.




XQueryColor(3X) (X1ib - Color Cells) XQueryColor(3X)

NAME

XQueryColor — obtains the RGB values for the specified pixel value.
SYNOPSIS

XQueryColor (display, cmap, colorcell_def)

Display *display;
Colormap cmap;

XColor *colorcell_def; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap ID.
colorcell_def  Specifies the pixel value and returns the RGB contents of
that colorcell.
DESCRIPTION

XQueryColor returns the RGB values stored in cmap for the pixel value you
specified in the same XColor structure, and sets the flags member of that
structure to (DoRed | DoGreen | DoBlue). The values returned for an unallo-
cated entry are undefined.

XQueryColor returns zero if it encountered some problem, or non-zero if it
succeeded.

STRUCTURES
typedef struct {
unsigned long pixel;
unsigned short red, green, blue;

char flags; /% DoRed, DoGreen, DoBlue */
char pad;
} XColor;

ERRORS
BadValue Pixel not valid index into cmap.

BadColor

SEE ALSO
XAllocColorCells, XAllocColorPlanes, XAllocColor, XAllocNamedColor,

XLookupColor, XParseColor, XQueryColors, XStoreColor, XStoreColors,
XFreeColors, XStoreNamedColor, BlackPixel, WhitePixel.



XQueryColors(3X) (X1ib - Color Cells) XQueryColors(3X)

NAME
XQueryColors — obtain RGB values for an array of pixel values.
SYNOPSIS
XQueryColors (display, cmap, colorcell_defs, ncolors)
Display *display;
Colormap cmap;
XColor colorcell_defs [ncolors] ;
int ncolors;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cmap Specifies the colormap.
colorcell_defs  Specifies an array of XColor structures.
ncolors Specifies the number of XColor structures in the color
definition array.
DESCRIPTION

XQueryColors returns the RGB values stored in cmap for each pixel value
passed in the pixel member of each XColor structure, and sets the flags
member in each XColor structure(s) to (DoRed | DoGreen | DoBlue).

XQueryColors returns zero if it encounters some problem, or non-zero if it
succeeds.

STRUCTURES
typedef struct {
unsigned long pixel;
unsigned short red, green, blue;

char flags; /* DoRed, DoGreen, DoBlue */
char pad;
} XColor;




XQueryColors(3X) (X1ib - Color Cells) XQueryColors(3X)

ERRORS

BadColor

BadValue Pixel not valid index into cmap.

Note: if more than one pixel is in error, the one reported is arbitrary.
SEE ALSO

XAllocColorCells, XAllocColorPlanes, XAllocColor, XAllocNamedColor,
XLookupColor, XParseColor, XQueryColor, XStoreColor, XStoreColors,
XFreeColors, XStoreNamedColor, BlackPixel, WhitePixel.



XQueryExtension (3X) (X1ib - Extensions) XQueryExtension(3X)

NAME
XQueryExtension — get extension information.
SYNOPSIS
Bool XQueryExtension (display, name, major_opcode, first_event,
first_error)
Display *display;
char *name;
int *major_opcode ; /* RETURN */
int *first_event; /* RETURN */
int *first_error; /* RETURN */
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
name Specifies the name of the desired extension. name should
be in ISO LATIN-1 encoding, and upper/lower case is
important.

major_opcode  Returns the major opcode of the extension, for use in error
handling routines.

first_event Returns the code of the first custom event type created by
the extension.
first_error Returns the code of the first custom error defined by the
extension.
DESCRIPTION

XQueryExtension determines if the named extension is present, and returns
True if it is. If so, the routines in the extension can be used just as if they
were core Xlib requests, except that they may return new types of events
or new error codes. The available extensions can be listed with XListEx-
tensions.

The major_opcode for the extension is returned, if it has one. Otherwise,
zero is returned. This opcode will appear in errors generated in the exten-
sion.

If the extension involves additional event types, the base event type code
is returned in first_event. Otherwise, zero is returned in first_event. The
format of the events is specific to the extension.

If the extension involves additional error codes, the base error code is
returned in first_error. Otherwise, zero is returned. The format of



XQueryExtension(3X) (Xlib - Extensions) XQueryExtension(3X)

additional data in the errors is specific to the extension.

Refer to the GSE Programmer’s Guide for more information on using and
writing extensions.

SEE ALSO
XListExtensions, XFreeExtensionList.



XQueryFont(3X) (Xlib - Fonts) XQueryFont(3X)

NAME
XQueryFont — return information about loaded font.

SYNOPSIS
XFontStruct *XQueryFont (display, font_ID)
Display *display;
XID font_ID;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
font_ID Specifies either the font ID or the graphics context ID.
You can declare the data type for this argument as either
Font or GContext (both X IDs).
DESCRIPTION

XQueryFont returns a pointer to the XFontStruct structure information
associated with the font. This call is needed if you loaded the font with
XLoadFont, but need the font information to place text. XLoadQueryFont
both loads and gets information about a font.

If font_ID is declared as data type GContext (also a resource ID), this func-
tion queries the font stored in the GC specified by this ID. However, in
this case the GContext ID will be the ID stored in the XFontStruct, and you
cannot use that ID in XSetFont or XUnloadFont.

Use XFreeFontInfo to free this data.

XQueryFont returns NULL if the specified font is not loaded or if the rou-
tine fails for some other reason.

STRUCTURES
typedef struct {
XExtData *ext_data; /* hook for extension to hang data */
Font fid; /* Font id for this font */
unsigned direction; /* hint about direction font is painted */

unsigned min_char_or_byte2; /* first character */
unsigned max_char_or_byte2; /* last character */

unsigned min_bytel; /* first row that exists */

unsigned max_bytel; /* last row that existe */

Bool all_chars_exist; /* flag if all characters have non-zero sizex/
unsigned default_char; /* char to print for undefined character */
int n_properties; /* how many properties there are */

XFontProp *properties; /* pointer to array of additional properties»/



XQueryFont(3X) (X1ib - Fonts) XQueryFont(3X)

XCharStruct min_bounds; /* minimum bounds over all existing charx*/
XCharStruct max_bounds; /* minimum bounds over all existing charx*/
XChar8truct *per_char; /* first_char to last_char information */
int ascent; /* logical extent above baseline for spacing */

int descent; /* logical descent below baseline for spacing »*/
} XFontStruct;

ERRORS
BadAlloc
BadFont

SEE ALSO

XLoadFont, XLoadQueryFont, XFreeFont, XFreeFontInfo, XListFonts,
XListFontsWithInfo, XFreeFontNames, XFreeFontPath, XGetFontPath,
XSetFont, XSetFontPath, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XQueryKeymap(3X) (X1ib - Keyboard) XQueryKeymap (3X)

NAME
XQueryKeymap — obtain bit vector for current state of keyboard.

SYNOPSIS

XQueryKeymap (display, keys)
Display *display;

char keys[32] ; /* RETURN x*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
keys Returns an array of bytes that identifies which keys are
pressed down. Each bit represents one key of the key-
board.
DESCRIPTION

XQueryKeymap returns a bit vector for the logical state of the keyboard,
where each bit set to one indicates that the corresponding key is currently
pressed down. The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N+7 with the least significant bit in the
byte representing key 8N. Note that the logical state may log the physical
state if device event processing is frozen due to a grab.

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XKeysymToString,
XNewModifierMap, XStringToKeysym, XLookupKeysym, XRebindKeysym,
XGetKeyboardMapping, XChangeKeyboardMapping, XRefreshKeyboardMapping,
XLookupString, XSetModifierMapping, XGetModifierMapping.



XQueryPointer(3X) (X1ib - Pointer) XQueryPointer(3X)

NAME

XQueryPointer — get current pointer location.

SYNOPSIS
Bool XQueryPointer (display, w, root, child, root_x, root_y,
win_x, win_y, keys_buttons)

Display *display;

Window w;

Window *root, *child; /* RETURN =*/

int *root_x, *root_y; /* RETURN */

int *win_x, *winy; /* RETURN x*/
unsigned int *keys_buttons; /* RETURN %/

ARGUMENTS
display Specifies a pointer to the Display structure; returned from

w

XOpenDisplay.
Specifies a window which indicates which screen the

pointer position is returned for, and child will be a child of
this window if pointer is inside a child.

root Returns the root window ID the pointer is currently on.

child Returns the child window ID the pointer is located in, if
any.

root_x

root_y Return the x and y coordinates relative to the root’s origin.

win_x

win_y Return the x and y coordinates relative to window w.

keys_buttons  Returns the current state of the modifier keys and pointer

buttons. This is a mask composed of the OR of any
number of the following symbols: ShiftMask, LockMask,
ControlMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask,
Mod5Mask, ButtonlMask, Button2Mask, Button3Mask,
Button4Mask, Button5Mask.

DESCRIPTION
XQueryPointer gets the pointer coordinates relative to a window and rela-
tive to the root window, the root window ID and the child window ID (if

any) the pointer is currently in, and the current state of modifier keys and
buttons.



XQueryPointer(3X) (X1ib - Pointer) XQueryPointer(3X)

If XQueryPointer returns False, then the pointer is not on the same screen
as w, child is None, and win_x and win_y are zero. However, root, root_x,
and root_y are still valid. If XQueryPointer returns True, then the pointer is
on the same screen as the window w, and all return values are valid.

The logical state of the pointer buttons and modifier keys can lag behind
their physical state if device event processing is frozen due to a grab.

ERRORS
BadWindow

SEE ALSO
XWarpPointer, XGrabPointer, XChangeActivePointerGrab, XUngrabPointer,
XGetPointerMapping, XSetPointerMapping, XGetPointerControl,
XChangePointerControl.



XQueryTextExtents(3X) (X1ib - Text) XQueryTextExtents (3X)

NAME
XQueryTextExtents — query server for string and font metrics.

SYNOPSIS
int XQueryTextExtents (display, font_ID, string, nchars, direc-
tion, ascent, descent, overall)
Display *display;
XID font_ID;
char =*string;

int nchars;
int *direction; /* RETURN =*/
int *ascent, *descent; /* RETURN =*/
XCharStruct *overall; /* RETURN =*/
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
font_ID Specifies the appropriate font ID previously returned by
XLoadFont, or the GContext that specifies the font.
string Specifies the character string.
nchars Specifies the number of characters in the character string.
direction Returns the direction the string would be drawn using the
specified font. Either FontLeftToRight or FontRightToLeft.
ascent Returns the maximum ascent for the specified font.
descent Returns the maximum descent for the specified font.
overall Returns the overall characteristics of the string. These are

the sum of the width measurements for each character, the
maximum ascent and descent, the minimum lbearing added
to the width of all characters up to the character with the
smallest lbearing, and the maximum rbearing added to the
width of all characters up to the character with the largest
rbearing.
DESCRIPTION

XQueryTextExtents returns the dimensions in pixels that specify the bound-

ing box of the specified string of characters in the named font, and the

maximum ascent and descent for the entire font. This function queries

the server and, therefore, suffers the round trip overhead that is avoided

by XTextExtents, but it does require a filled XFontInfo structure.



XQueryTextExtents(3X) (X1ib - Text) XQueryTextExtents(3X)

The returned ascent and descent should usually be used to calculate the line
spacing, while the width, rbearing, and lbearing members of overall should
be used for horizontal measures. The total height of the bounding rectan-
gle, good for any string in this font, is ascent + descent.

overall.ascent is the maximum of the ascent metrics of all characters in the
string. The overall.descent is the maximum of the descent metrics. The
overall. width is the sum of the character-width metrics of all characters in
the string. The overall.lbearing is the lbearing of the character in the string
with the smallest Ibearing plus the width of all the characters up to but
not including that character. The overall.rbearing is the rbearing of the
character in the string with the largest lbearing plus the width of all the
characters up to but not including that character.

XQueryTextExtents returns 1 on success and 0 on failure.

STRUCTURES
typedef struct {
short lbearing; /* origin to left edge of raster »/
short rbearing; /* origin to right edge of raster »/
short width; /* advance to next char’s origin »/
short ascent; /* baseline to top edge of raster */

short descent;

unsigned short attributes;

} XCharStruct;

ERRORS
BadFont
BadGC

SEE ALSO

/*
/*

baseline to bottom edge of raster x»/
per char flags (not predefined) =/

XQueryTextExtents16, XDrawlmageString, XDrawlImageString16,
XDrawString, XDrawString16, XDrawText, XDrawText16, XTextExtents,
XTextExtents16, XTextWidth, XTextWidth16.



- XQueryTextExtents16(3X) (X1ib - Text) XQueryTextExtents16(3X)

NAME

XQueryTextExtents16 — query server for string and font metrics of 16-bit
character string.

SYNOPSIS
int XQueryTextExtentsi18 (display, font_ID, string, nchars,
direction, ascent, descent, overall)
Display =*display;
XID font_ID;
XChar2b *string;

int nchars;
int =*direction; /* RETURN =/
int *ascent, *descent; /* RETURN =*/
XCharStruct *overall; /* RETURN */
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
font_ID Specifies the appropriate font ID previously returned by
XLoadFont, or the GContext that specifies the font.
string Specifies the character string. Either FontLefttoRight or
FontRighttoLeft.
nchars Specifies the number of characters in the character string.
direction Returns the direction of painting in the specified font.
ascent Returns the maximum ascent for the specified font.
descent Returns the maximum descent for the specified font.
overall Returns the overall characteristics of the string. These are

the sum of the width measurements for each character, the
maximum ascent and descent, the minimum lbearing added
to the width of all characters up to the character with the
smallest Ibearing, and the maximum rbearing added to the
width of all characters up to the character with the largest
rbearing.
DESCRIPTION

XQueryTextExtents16 returns the dimensions in pixels that specify the

bounding box of the specified string of characters in the named font, and

the maximum ascent and descent for the entire font. This function

queries the server and, therefore, suffers the round trip overhead that is



XQueryTextExtents16(3X) (Xlib - Text) XQueryTextExtents16(3X)

avoided by XTextExtents16, but it does require a filled XFontInfo structure.

The returned ascent and descent should usually be used to calculate the line
spacing, while the width, rbearing, and lbearing members of overall should
be used for horizontal measures. The total height of the bounding rectan-
gle, good for any string in this font, is ascent + descent.

overall.ascent is the maximum of the ascent metrics of all characters in the
string. The overall.descent is the maximum of the descent metrics. The
overall.width is the sum of the character-width metrics of all characters in
the string. The overall.lbearing is the lbearing of the character in the string
with the smallest Ibearing plus the width of all the characters up to but
not including that character. The overall.rbearing is the rbearing of the
character in the string with the largest lbearing plus the width of all the
characters up to but not including that character.

For fonts defined with linear indexing rather than two-byte matrix index-
ing, the server interprets each XChar2b as a 16-bit number that has been
transmitted with the most significant byte first. That is, bytel of the
XChar2b is taken as the most significant byte.

If the font has no defined default character, then undefined characters in
the string are taken to have all zero metrics.

XQueryTextExtents16 returns 1 on success and 0 on failure.

STRUCTURES

typedef struct { /* normal 18 bit characters are two bytes */

uneigned char bytei;
unsigned char byte2;
} XChar2b;

typedef struct {

short lbearing; /* origin to left edge of raster =/
short rbearing; /* origin to right edge of raster »/
short width; /* advance to next char‘s origin »/
short ascent; /* baseline to top edge of raster »/

short

descent;

unsigned short attributes;
} XCharStruct;

ERRORS
BadFont
BadGC

/*
/*

baseline to bottom edge of raster =/
per char flags (not predefined) »/



XQueryTextExtents16(3X) (X1ib - Text) XQueryTextExtents16(3X)

SEE ALSO
XQueryTextExtents, XDrawImageString, XDrawImageString16, XDrawString,
XDrawString16, XDrawText, XDrawText16, XTextExtents, XTextExtents16,
XTextWidth, XTextWidth16.



XQueryTree(3X)

NAME

(X1ib - Window Manipulation) XQueryTree(3X)

XQueryTree — obtains a list of children, parent, and root.

SYNOPSIS

Status XQueryTree (display, w, root, parent, children, nchildren)
Display *display;

Window w;
Window *root; /* RETURN x*/
Window *parent; /* RETURN x*/
Window **children; /* RETURN x*/
unsigned int *nchildren; /* RETURN */
ARGUMENTS
display Specifies a pointer to the Display structure; returned from

w

root
parent
children

nchildren

DESCRIPTION

XOpenDisplay.

Specifies the window ID. For this window, XQueryTree
will list its children, its root, its parent, and the number of
children.

Returns the root ID for the specified window.
Returns the parent window of the specified window.

Returns the list of children associated with the specified
window.

Returns the number of children associated with the speci-
fied window.

XQueryTree uses its last four arguments to return the root ID, the parent
ID, a pointer to a list of children and the number of children in that list,
all for the specified window w. The children are listed in current stacking
order, from bottom-most (first) to top-most (last). XQueryTree returns 0 if
it fails, 1 if it succeeds.

You should deallocate the list of children with XFree when it is no longer

needed.



XQueryTree(3X) (X1ib - Window Manipulation) XQueryTree(3X)

ERRORS
BadWindow

SEE ALSO
XLowerWindow, XRaiseWindow, XCirculateSubwindows,
XCirculateSubwindowsDown, XCirculateSubwindowsUp, XRestackWindows,
XMoveWindow, XResizeWindow, XMoveResizeWindow, XReparentWindow,
XConfigureWindow.



XRaiseWindow(3X) (Xlib - Window Manipulation) XRaiseWindow(3X)

NAME
XRaiseWindow — raise a window to top of stacking order.
SYNOPSIS
XRaiseWindow (display, w)
Display *display;

Window w;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID. XRaiseWindow raises this win-

dow to the top of the stack.

DESCRIPTION
XRaiseWindow moves a window to the top of the stacking order among its
siblings. If the windows are regarded as overlapping sheets of paper
stacked on a desk, then raising a window is analogous to moving the
sheet to the top of the stack, while leaving its x and y location on the desk
constant.

Raising a mapped window may generate exposure events for that window
and any mapped subwindows of that window that were formerly
obscured.

If the override_redirect attribute of the window (refer to the GSE
Programmer’s Guide) is False and some other client has selected Substruc-
tureRedirectMask on the parent, then a ConfigureRequest event is generated,
and no further processing is performed.

ERRORS
BadWindow

SEE ALSO
XLowerWindow, XCirculateSubwindows, XCirculateSubwindowsDown,
XCirculateSubwindowsUp, XRestackWindows, XMoveWindow, XResizeWindow,
XMoveResizeWindow, XReparentWindow, XConfigureWindow, XQueryTree.



XReadBitmapFile (3X) (X1ib - Pixmaps and Tiles) XReadBitmapFile (3X)

NAME
XReadBitmapFile — read a bitmap from disk.

SYNOPSIS
int XReadBitmapFile(display, d, filename, width, height, bitmap,
x_hot, y_hot)

Display *display;

Drawable d;

char *filename;

unsigned int *width, x*height;/* RETURN */
Pixmap *bitmap; /* RETURN x*/
unsigned int *x_hot, *y_hot;/* RETURN */

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

d Specifies the drawable.

filename Specifies the file name to use. The format of the file name
is operating system specific.

width

height Return the dimensions of the bitmap that is read.

bitmap Returns the pixmap resource ID that is created.

x_hot

y_hot Return the hot spot coordinates in the file (or -1,-1 if none
present).

DESCRIPTION

XReadBitmapFile reads in a file containing a pixmap of depth one (a bit-
map). The file can be either in the standard X version 10 format or in the
newer X version 11 bitmap format (which is only slightly different).

XReadBitmapFile creates a pixmap of the appropriate size, reads the bitmap
data from the file into the pixmap. The caller must free the bitmap using
XFreePixmap when done.

If the file cannot be opened, XReadBitmapFile returns BitmapOpenFailed. If
the file can be opened but does not contain valid bitmap data, XReadBit-
mapFile returns BitmapFileInvalid. If insufficient working storage is allo-
cated, XReadBitmapFile returns BitmapNoMemory. If the file is readable and
valid, XReadBitmapFile returns BitmapSuccess.



XReadBitmapFile(3X) (X1ib - Pixmaps and Tiles) XReadBitmapFile (3X)

Here is a Version 11 example bitmap file:

#define name_width 16

#define name_height 186

#define name_x_hot 8

#define name_y_hot 8

static char name_bits([] =
{
Oxf81f, Oxe3c7, Oxcff3, 0x9ff9, /* each data entry 18 bits */
Oxbffd, Ox33cc, Ox7ffe, Ox7ffe,
Ox7e7e, Ox7ffe, 0x37ec, Oxbbdd,
0x9¢c39, Oxcff3, Oxe3c7, Oxf8if
)

SEE ALSO
XSetTile, XQueryBestTile, XSetWindowBorderPixmap,
XSetWindowBackgroundPixmap, XCreatePixmap,
XCreatePixmapFromBitmapData, XFreePixmap, XQueryBestSize,
XQueryBestStipple, XWriteBitmapFile, XCreateBitmapFromData.



XRebindKeysym(3X) (X1ib - Keyboard) XRebindKeysym(3X)

NAME
XRebindKeysym — rebind KeySym to string for client.
SYNOPSIS
XRebindKeysym (display, keysym, mod_list, mod_count, string,
num_bytes)
Display *display;
KeySym keysym ;
KeySym *mod_list;
int mod_count;
unsigned char *siring;
int num_bytes;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
keysym Specifies the KeySym to be rebound.
mod_list Specifies a pointer to an array of keysyms that are being
used as modifiers.
mod_count Specifies the number of modifiers in the modifier list.
string Specifies a pointer to the string that is to be returned by
XLookupString.
num_bytes Specifies the length of the string.
DESCRIPTION

XRebindKeysym binds the ASCII string to the specified keysym, so that
string and keysym are returned when that key is pressed and the modifiers
specified in mod_list are also being held down. This function rebinds the
meaning of a keysym for a client. It does not redefine the keycode in the
server but merely provides an easy way for long strings to be attached to
keys. Note that you are allowed to rebind a KeySym that may not exist.

Refer to the GSE Programmer’s Guide for a description of keysyms and key-
board mapping.

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XKeysymToString,
XNewModifierMap, XQueryKeymap, XStringToKeysym, XLookupKeysym,
XGetKeyboardMapping, XChangeKeyboardMapping, XRefreshKeyboardMapping,
XLookupString, XSetModifierMapping, XGetModifierMapping.



XRecolorCursor(3X) (X1ib - Cursors) XRecolorCursor(3X)

NAME
XRecolorCursor — change color of cursor.

SYNOPSIS

XRecolorCursor (display, cursor, foreground_color, background_color)

Display *display;
Cursor cursor;
XColor *foreground_color, *background_color;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
cursor Specifies the cursor ID.

foreground_color
Specifies the red, green, and blue (RGB) values for the
foreground.

background_color
Specifies the red, green, and blue (RGB) values for the
background.

DESCRIPTION
XRecolorCursor applies a foreground and background color to a bitmap cur-
sor. Cursors are normally created using a single plane pixmap, composed
of Os and 1s. XRecolorCursor applies a pixel value to each of these bit
states. If the cursor is being displayed on a screen, the change is visible
immediately. On some servers, these color selections are read/write cells
from the colormap, and cannot be shared by applications.

STRUCTURES
typedef struct {
unsigned long pixel;
unsigned short red, green, blue;
char flags; /% DoRed, DoGreen, DoBlue */
char pad;
} XColor;

ERRORS
BadCursor

SEE ALSO
XDefineCursor, XUndefineCursor, XCreateFontCursor, XCreateGlyphCursor,
XCreatePixmapCursor, XFreeCursor, XQueryBestCursor, XQueryBestSize.

-1-



XRectInRegion(3X) (X1ib - Regions) XRectInRegion(3X)

NAME
XRectInRegion — determine if rectangle resides in region.

SYNOPSIS
int XRectInRegion(r, x, y, width, height)

Region r;
unsigned int x, y, width, height;
ARGUMENTS
r Specifies the region.
x
y Specify the x and y coordinates of the top-left corner of the
rectangle relative to the region origin.
width
height Specify the width and height of the rectangle.
DESCRIPTION

XRectInRegion returns Rectangleln if the rectangle is completely contained
in the region r, RectangleOut if it is completely outside, and RectanglePart is
it is partially inside.

Regions are located using an offset from an arbitrarily chosen point (the
“region origin") which is common to all regions. It is up to the application
to interpret the location of the region relative to a drawable. If the region
is to be used as a clip_mask by calling XSetRegion, the top-left corner of
region relative to the drawable used in the graphics request will be at
(xoffset + clip_x_origin, yoffset + clip_y_origin), where xoffset and yoffset are
the offset of the region and clip_x_origin and clip_y_origin are the clip ori-
gin in the GC used.

For this function, the x and y arguments are interpreted relative to the
region origin, not the drawable origin.

STRUCTURES
/*
* opaque reference to Regiondata type.
* user won‘t need contents, only pointer.
»/
typedef struct _XRegion *Region;



XRectInRegion(3X) (X1ib - Regions) XRectInRegion(3X)

SEE ALSO
XXorRegion, XUnionRegion, XUnionRectWithRegion, XSubtractRegion,
XShrinkRegion, XSetRegion, XPolygonRegion, XPointInRegion, XOffsetRegion,
XlIntersectRegion, XEmptyRegion, XCreateRegion, XDestroyRegion,
XEqualRegion, XClipBox.



XRefreshKeyboardMapping(3X)  (Xlib - Keyboard) XRefreshKeyboardMapping(3X)

NAME
XRefreshKeyboardMapping — update the stored modifier and keymap
information.

SYNOPSIS

XRefreshKeyboardMapping (event)
XMappingEvent *event;

ARGUMENTS
event Specifies the mapping event that is to be used.

DESCRIPTION

XRefreshKeyboardMapping causes the library to update the mapping
between keycodes and keysyms. This updates the client application’s
knowledge of the keyboard.

You usually want to call XRefreshKeyboardMapping when a MappingNotify
event occurs. MappingNotify events occur when some client has called
XChangeKeyboardMapping.
STRUCTURES
typede? struct {
int type;
Display *display; /* display the event was read from »/
Window window; /% unused »/
int request; /* one of MappingModifier, MappingKeyboard,
MappingPointer */
int first_keycode; /* first keycode =»/

int count; /* defines range of change w. first_keycodex*/

} XMappingEvent;

SEE ALSO
XDeleteModifiermapEntry, XInsertModifiermapEntry, XFreeModifiermap,
XKeycodeToKeysym, XKeysymToKeycode, XKeysymToString,
XNewModifierMap, XQueryKeymap, XStringToKeysym, XLookupKeysym,
XRebindKeysym, XGetKeyboardMapping, XChangeKeyboardMapping,
XLookupString, XSetModifierMapping, XGetModifierMapping.



XRemoveFromSaveSet(3X) (Xl1ib - Save Set) XRemoveFromSaveSet(3X)

NAME
XRemoveFromSaveSet — removes a window’s children from the client’s
save-set.

SYNOPSIS
XRemoveFromSaveSet (display, w)
Display *display;
Window w;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

w Specifies the window whose children you want to remove
from this client’s save-set. This window must have been
created by a client other than the client making this call.

DESCRIPTION

XRemoveFromSaveSet removes a window’s children from the save-set of the
calling application. Usually, this call is invoked by a window manager,
using RootWindow macro for w, to remove all top-level windows on a
screen from the save-set.

The save-set is a safety net for windows that have been reparented by the
window manager, usually to provide a shadow or other background for
each window. When the window manager dies unexpectedly, the win-
dows in the save-set are reparented to their closest living ancestor, so that
they remain alive.

This call is not necessary when a window is destroyed since destroyed
windows are automatically removed from the save-set. Refer to the GSE
Programmer’s Guide for more information about save-sets.

ERRORS
BadMatch w not created by some other client.

BadWindow

SEE ALSO
XAddToSaveSet, XChangeSaveSet.



XRemoveHost(3X) (X1ib - Host Access) XRemoveHost(3X)

NAME
XRemoveHost — remove host from access control list.

SYNOPSIS
XRemoveHost (display, host)
Display *display;
XHostAddress *host;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
host Specifies the network address of the machine to be
removed.
DESCRIPTION

XRemoveHost removes the specified host from the access control list on the
host running the server controlling the current display. The display
hardware must be on the same host as the calling process in order to
change the access control list.

If you remove your own machine from the access control list, you can no
longer connect to that server, and there is no way back from this call other
than to log out and reset the server.

The address data must be a valid address for the type of network in which
the server operates, as specified in the family member.

STRUCTURES
typedef struct {
int family; /* for example AF_DNET »/
int length; /% length of address, in bytes */
char *address; /% pointer to where to find the bytes !

} XHostAddress;

/* constants used for family member of XHostAddress */

#define FamilyInternet (]

#define FamilyDECnet 1

#define FamilyChaos 2
ERRORS

BadAlloc

BadValue



XRemoveHost(3X) (X1ib - Host Access) XRemoveHost(3X)

SEE ALSO
XAddHost, XAddHosts, XListHosts, XRemoveHosts, XDisableAccessControl,
XEnableAccessControl, XSetAccessControl.



XRemoveHosts(3X) (Xl1ib - Host Access) XRemoveHosts(3X)

NAME
XRemoveHosts — remove multiple hosts from the access control list.

SYNOPSIS
XRemoveHosts (display, hosts, num_hosts)
Display *display;
XHostAddress *hosts;
int num_hosts ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
hosts Specifies the list of hosts that are to be removed.
num_hosts Specifies the number of hosts that are to be removed.
DESCRIPTION

XRemoveHosts removes each specified host from the access control list on
the local machine running the server. The display hardware must be on
the same host as the client process, in order to change the access control
list.

If you remove your machine from the access control list, you can no
longer connect to that server, and there is no way back from this call
except to log out and reset the server.

The address data must be a valid address for the type of network in which
the server operates, as specified in the family member.

STRUCTURES
typedef struct {
int family; /* for example AF_DNET */
int length; /* length of address, in bytes »/
char *address; /* pointer to where to find the bytes

} XHostAddress;

/* constants used for family member of XHostAddress */

#define FamilyInternet o

#define FamilyDECnet 1

#define FamilyChaos 2
ERRORS

BadAlloc

BadValue



XRemoveHosts(3X) (Xl1ib - Host Access) XRemoveHosts (3X)

SEE ALSO
XAddHost, XAddHosts, XListHosts, XRemoveHost, XDisableAccessControl,
XEnableAccessControl, XSetAccessControl.



XReparentWindow(3X) (X1ib - Window Manipulation) XReparentWindow (3X)

NAME
XReparentWindow — change a window’s parent.

SYNOPSIS
XReparentWindow (display, w, parent, x, y)
Display *display;

Window w;
Window parent ;
int x, y;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
parent Specifies the parent window ID.
x
y Specify the coordinates of the window relative to the new
parent.
DESCRIPTION

XReparentWindow modifies the window hierarchy by inserting the window
w as a child of parent. This function is usually used by the window
manager to put a border behind application windows.

If w is mapped, an XUnmapWindow request is performed first automati-
cally. w is then removed from its current position in the hierarchy, and is
inserted as a child of the specified parent. w is placed on top in the stack-
ing order with respect to siblings. A ReparentNotify event is then gen-
erated. The override_redirect member of the structure returned by this
event is set to either True or False. Window manager clients normally
should ignore this event if this member is set to True.

Finally, if the window was originally mapped, an XMapWindow request is
performed automatically.

Normal exposure processing on formerly obscured windows is performed.
The server might not generate exposure events for regions from the initial
unmap that are immediately obscured by the final map. The request fails
if the new parent is not on the same screen as the old parent, or if the
new parent is the window itself or an inferior of the window.



XReparentWindow(3X) (X1ib - Window Manipulation) XReparentWindow(3X)

ERRORS
BadMatch parent not on same screen as old parent of w.
w has a ParentRelative background and parent is not the
same depth as w.
parent is w or an inferior of w.
BadWindow
SEE ALSO

XLowerWindow, XRaiseWindow, XCirculateSubwindows,
XCirculateSubwindowsDown, XCirculateSubwindowsUp, XRestackWindows,
XMoveWindow, XResizeWindow, XMoveResizeWindow, XConfigureWindow,
XQueryTree.



XResetScreenSaver(3X) (X1ib - Screen Saver) XResetScreenSaver(3X)

NAME
XResetScreenSaver — reset the screen saver.

SYNOPSIS
XResetScreenSaver (display)
Display *display;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
DESCRIPTION

XResetScreenSaver redisplays the screen if the screen saver was activated.
This may result in exposure events to all visible windows if the server
cannot save the screen contents. If the screen is already active, nothing
happens.

SEE ALSO
XForceScreenSaver, XActivateScreenSaver, XGetScreenSaver, XSetScreenSaver.



XResizeWindow (3X) (Xlib - Window Manipulation) XResizeWindow(3X)

NAME
XResizeWindow — change a window’s size.

SYNOPSIS
XResizeWindow (display, w, width, height)
Display *display;

Window w;
int width, height;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
width
height Specify the new dimensions of the window.
DESCRIPTION

XResizeWindow changes the inside dimensions of the window. The border
is resized to match but its width is not changed. XResizeWindow does not
raise the window, or change its origin. Changing the size of a mapped
window may lose its contents and generate an Expose event, depending on
the bit_gravity attribute (refer to the GSE Programmer’s Guide). If a mapped
window is made smaller, exposure events will be generated on windows
that it formerly obscured.

If the override_redirect attribute of the window is False and some other
client has selected SubstructureRedirectMask on the parent, then a Confi-
gureRequest event is generated, and no further processing is performed.

ERRORS
BadWindow

SEE ALSO
XLowerWindow, XRaiseWindow, XCirculateSubwindows,
XCirculateSubwindowsDown, XCirculateSubwindowsUp, XRestackWindows,
XMoveWindow, XMoveResizeWindow, XReparentWindow, XConfigureWindow,
XQueryTree.



XRestackWindows (3X) (X1ib - Window Manipulation) XRestackWindows(3X)

NAME

XRestackWindows — change stacking order of siblings.

SYNOPSIS

XRestackWindows (display, windows, nwindows) ;
Display =*display;
Window windows [] ;
int nwindows ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
windows Specifies an array containing the windows to be restacked.
All the windows must have a common parent.
nwindows Specifies the number of windows to be restacked.
DESCRIPTION

XRestackWindows restacks the windows in the order specified, from top to
bottom. The stacking order of the first window in the windows array will
be on top, and the other windows will be stacked underneath it in the
order of the array. Note that other siblings may not be included in the
windows array and so the top window in that array will not move relative
to these other siblings.

If the override_redirect attribute of the window is False and some other
client has selected SubstructureRedirectMask on the parent, then Confi-
gureRequest events are generated for each window whose override_redirect
is not set, and no further processing is performed. Otherwise, the win-
dows will be restacked in top to bottom order.

ERRORS

BadWindow

SEE ALSO

XLowerWindow, XRaiseWindow, XCirculateSubwindows,
XCirculateSubwindowsDown, XCirculateSubwindowsUp, XMoveWindow,
XResizeWindow, XMoveResizeWindow, XReparentWindow, XConfigureWindow,
XQueryTree.



XRotateBuffers (3X) (X1ib - Cut Buffers) XRotateBuffers(3X)

NAME
XRotateBuffers — rotate the cut buffers.

SYNOPSIS
XRotateBuffers (display, rotate)
Display =*display;
int rotate;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
rotate Specifies how many positions to rotate the cut buffers.
DESCRIPTION

XRotateBuffers rotates the 8 cut buffers the amount specified by rotate.
Buffer 0 becomes buffer rotate, buffer 1 becomes buffer rotate+1 mod 8,
buffer 2 becomes buffer rotate+2 mod 8, and so on. This cut buffer
numbering is global to the display. This routine will not work if any of
the buffers have not been stored into with XStoreBuffer.

Refer to the GSE Programmer’s Guide for a description of cut buffers.

ERRORS
BadAtom
BadMatch
BadWindow

SEE ALSO
XStoreBuffer, XStoreBytes, XFetchBuffer, XFetchBytes.



XRotateWindowProperties(3X) (X1ib - Properties) XRotateWindowProperties (3X)

NAME
XRotateWindowProperties — rotate properties in the properties array.

SYNOPSIS
XRotateWindowProperties (display, w, properties, num_prop,
npositions)
Display *display;
Window w;
Atom properties [] ;
int num_prop;
int npositions ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.

properties Specifies the property list.
num_prop Specifies the length of the properties array.

npositions Specifies the number of positions to rotate property list.
The sign controls the direction of rotation.

DESCRIPTION

XRotateWindowProperties rotates the contents of an array of properties on a
window. If the property names in the properties array are viewed as being
numbered starting from zero and if there are num_prop property names in
the list, then the value associated with property name I becomes the value
associated with property name (I + npositions) mod num_prop, for all I
from zero to num_prop - 1. Therefore, the sign of npositions controls the
direction of rotation. The effect is to rotate the states by npositions places
around the virtual ring of property names (right for positive npositions, left
for negative nposition).

If npositions mod num_prop is non-zero, a PropertyNotify event is generated
for each property, in the order listed.

If a BadAtom or BadMatch error is generated, no properties are changed.



XRotateWindowProperties(3X) (XIib - Properties)  XRotateWindowProperties(3X)

ERRORS
BadAtom Atom occurs more than once in list for the window.
No property with that name for the window.
BadMatch
BadWindow
SEE ALSO

XSetStandardProperties, XGetFontProperty, XDeleteProperty, XChangeProperty,
XGetWindowProperty, XListProperties, XGetAtomName, XInternAtom.



XSaveContext(3X) (X1ib - Context Manager) XSaveContext(3X)

NAME
XSaveContext — save data value corresponding to window and context
type (not graphics context).

SYNOPSIS
int XSaveContext(display, w, context, data)
Display *display;
Window w;
XContext context;
caddr_t data;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window with which the data is associated.
context Specifies the context type to which the data corresponds.

data Specifies the data to be associated with the window and

type.

DESCRIPTION
XSaveContext saves data to the context manager database, according to the
specified window and context ID. The context manager is used for associat-
ing data with windows within an application. The client must have called
XUniqueContext to get the context ID before calling this function. The
meaning of the data is indicated by the context ID, but is completely up to
the client.

If an entry with the specified window and context ID already exists,
XSaveContext writes over it with the specified data. However, this has
costs in time and space. If you know the entry already exists, it is better
to call XDeleteContext first.

The XSaveContext function returns XCNOMEM (a nonzero error code) if an
error has occurred and zero (0) otherwise. Refer to the GSE Programmer’s
Guide for a description of a context manager.

STRUCTURES
typedef int XContext;

SEE ALSO
XDeleteContext, XFindContext, XUniqueContext.



XSelectInput(3X) (Xlib - Input Handling) XSelectInput(3X)

NAME
XSelectInput — select the event types to be sent to a window.

SYNOPSIS
XSelectInput (display, w, event_mask)
Display *display;
Window w;
long event_mask ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID. This is the window interested in
the input events.

event_mask Specifies the event mask. This mask is the bitwise OR of
one or more of the valid event mask bits (see below).

DESCRIPTION
XSelectInput defines which input events the window is interested in. If a
window is not interested in an event, it propagates up to the closest
ancestor unless otherwise specified in the do_not_propagate_mask attribute.

The bits of the mask are defined in <X11/X.h> :

ButtonPressMask NoEventMask
ButtonReleaseMask KeyPressMask
EnterWindowMask KeyReleaseMask
LeaveWindowMask ExposureMask
PointerMotionMask VisibilityChangeMask
PointerMotionHintMask StructureNotifyMask
Button1MotionMask ResizeRedirectMask
Button2MotionMask SubstructureNotifyMask
Button3MotionMask SubstructureRedirectMask
Button4MotionMask FocusChangeMask
Button5MotionMask PropertyChangeMask
ButtonMotionMask ColormapChangeMask
KeyMapStateMask OwnerGrabButtonMask

A call on XSelectInput overrides any previous call on XSelectInput for the
same window from the same client but not for other clients. Multiple
clients can select input on the same window; their event_masks are dis-
joint. When an event is generated it will be reported to all interested



XSelectInput(3X) (X1ib - Input Handling) XSelectInput(3X)

clients. However, only one client at a time can select for each of Substruc-
tureRedirectMask, ResizeRedirectMask, and ButtonPress.

If a window has both ButtonPressMask and ButtonReleaseMask selected,
then a ButtonPress event in that window will automatically grab the mouse
until all buttons are released, with events sent to windows as described
for XGrabPointer. This ensures that a window will see the ButtonRelease
event corresponding to the ButtonPress event, even though the mouse may
have exited the window in the meantime.

If PointerMotionMask is selected, events will be sent independent of the
state of the mouse buttons. If instead, one or more of Button1MotionMask,
Button2MotionMask, Button3MotionMask, ButtondMotionMask,
Button5MotionMask is selected, MotionNotify events will be generated only
when one or more of the specified buttons is depressed.

XOpenDisplay sets the event_mask attribute; this attribute can also be set
directly with XChangeWindowAttributes.

ERRORS
BadValue
BadWindow

SEE ALSO
XSetInputFocus, XGetInputFocus, XWindowEvent, XCheckWindowEvent,
XCheckTypedEvent, XCheckTypedWindowEvent, XMaskEvent,
XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeekIfEvent,
XPutBackEvent, XPending, XSynchronize, XSendEvent, QLength.



XSendEvent(3X) (X1ib - Input Handling) XSendEvent(3X)

NAME

XSendEvent — send an event.

SYNOPSIS

Status XSendEvent (display, w, propagate, event_mask, event)
Display =*display;
Window w;
Bool propagate ;
long event_mask;
XEvent xevent;

ARGUMENTS

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

w Specifies the window ID of the window where you want
to send the event. Pass the window resource ID, Poin-
terWindow, or InputFocus.

propagate Specifies how the sent event should propagate depending
on event_mask. See description below. May be True or
False.

event_mask Specifies the event mask. See XSelectInput for a detailed
list of the Event masks.

event Specifies a pointer to the event to be sent.

DESCRIPTION

XSendEvent sends an event from one client to another (or conceivably to
itself). This function is used for communication between clients using
selections, for simulating user actions in demos, and more.

The specified event is sent to the window indicated by w regardless of
active grabs.

If w is set to PointerWindow, the destination of the event will be the win-
dow that the pointer is in. If w is InputFocus is specified, then the destina-
tion is the focus window, regardless of pointer position.

If propagate is False, then the event is sent to every client selecting on the
window specified by w any of the event types in event_mask. If propagate
is True and no clients have been selected on w any of the event types in
event_mask, then the event propagates like any other event.

The event code must be one of the core events, or one of the events
defined by a loaded extension, so that the server can correctly byte swap



XSendEvent(3X) (Xlib - Input Handling) XSendEvent(3X)

the contents as necessary. The contents of the event are otherwise unal-
tered and unchecked by the server except that in Release 1 the most signi-
ficant bit of XEvent.type is set to 1. In Release 2, the high bit is no longer
set. Instead, a new flag send_event has been added to each event, which if
True indicates that the event was sent with XSendEvent.

Under Release 1, if a client wants to read events sent by XSendEvent as
normal events, it must ignore the high bit by ORing the event type with
the following expression:

XEvent report;

XNextEvent (display, &report);

report.type &= Ox7f;

/* now sent event looks like any other */

This function is often used in selection processing. For example, the
owner of a selection should use XSendEvent to send a SelectionNotify event
to a requestor when a selection has been converted and stored as a pro-
perty.

STRUCTURES
Refer to the GSE Programmer’s Guide.

SEE ALSO
XSelectInput, XSetInputFocus, XGetInputFocus, XWindowEvent,
XCheckWindowEvent, XCheckTypedEvent, XCheckTypedWindowEvent,
XMaskEvent, XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeekIfEvent,
XPutBackEvent, XPending, XSynchronize, QLength.



XSetAccessControl (3X) (Xl1ib - Host Access) XSetAccessControl (3X)

NAME
XSetAccessControl — disable or enable access control.

SYNOPSIS
XSetAccessControl (display, mode)
Display *display;

int mode;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
mode Specifies whether you want to change the access control to

enable or disable. Pass one of these constants: EnableAc-
cess or DisableAccess.

DESCRIPTION
XSetAccessControl specifies whether other applications (running on the
current host) that subsequently connect to the server should be able to
modify the host access list.

ERRORS
BadAccess
BadAlloc

SEE ALSO
XAddHost, XAddHosts, XListHosts, XRemoveHost, XRemoveHosts,
XDisableAccessControl, XEnableAccessControl.



XSetAfterFunction(3X) (X1ib - Error Handling) XSetAfterFunction(3X)

NAME
XSetAfterFunction — set function called after all Xlib functions.

SYNOPSIS
int (*XSetAfterFunction (display, func)) (O
Display *display;
int (*func) O ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
func Specifies the user-defined function to be called after each
Xlib function. This function is called with one argument,
the display pointer.
DESCRIPTION

All Xlib functions that generate protocol requests call what is known as an
"after function” after completing their work. XSetAfterFunction sets the
function to be called.

SEE ALSO
XDisplayName, XGetErrorDatabaseText, XGetErrorText, XSetErrorHandler,
XSetIOErrorHandler, XSynchronize.



XSetArcMode(3X) (XIib - Graphics Context) XSetArcMode(3X)

NAME
XSetArcMode — set arc mode in graphics context.
SYNOPSIS

XSetArcMode (display, gc, arc_mode)
Display *display;

GC gc;
int arc_mode;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
g Specifies the graphics context.
arc_mode Specifies the arc mode for the specified graphics context.
Possible values are ArcChord or ArcPieSlice.
DESCRIPTION

XSetArcMode sets the arc_mode member of the GC, which controls filling in
the XFillArcs function. ArcChord specifies that the area between the arc
and a line segment joining the end points of the arc is filled. ArcPieSlice
specifies that the area filled is delimited by the arc and two line segments
connecting the ends of the arc to the center point of the rectangle defining
the arc.

ERRORS
BadGC
BadValue

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillRule, XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetClipMask, XSetClipOrigin, XSetClipRectangles,
XSetState, XSetSubwindowMode, DefaultGC.



XSetBackground (3X) (X1ib - Graphics Context) XSetBackground (3X)

NAME
XSetBackground — set background pixel value in graphics context.

SYNOPSIS
XSetBackground (display, gc, background)
Display *display;

GC gc;
unsigned long background ;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
g Specifies the graphics context.

background Specifies the background you want to set for the specified
graphics context.

DESCRIPTION
XSetBackground sets the background pixel value for graphics requests. Note
that this is different from the background of a window, which can be set
with either XSetWindowBackground or XSetWindowBackgroundPixmap.

ERRORS
BadGC

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillRule, XSetFillStyle, XSetForeground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XSetClassHint(3X) (X1ib - Window Manager Hints) XSetClassHint(3X)

NAME
XSetClassHint — set WM_CLASS property of window.

SYNOPSIS
XSetClassHint (display, w, class_hints)
Display *display;

Window w;
XClassHint *class_hints;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
class_hints Specifies the XClassHint structure that is to be used.
DESCRIPTION

XSetClassHint sets the WM_CLASS property for the specified window.
XSetClassHint returns a status of 0 on failure, non-zero on success.

The XClassHint structure set contains res_class, which is the name of the
client such as "emacs", and res_name, which is the first of the following
that applies:

®  command line option (~rn name)
®  a specific environment variable (e.g., RESOURCE_NAME)
® the trailing component of argv [0]

STRUCTURES
typedef struct {
char *res_name;
char *res_class;
} XClassHint;

ERRORS
BadAlloc
BadWindow

SEE ALSO
XGetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints, XSetWMHints,
XGetZoomHints, XSetZoomHints, XGetNormalHints, XSetNormalHints,
XGetTransientForHint, XSetTransientForHint, XFetchName, XGetIlconName,
XSetIlconName, XStoreName, XGetlconSizes, XSetlconSizes, XSetCommand.



XSetClipMask (3X) (X1ib - Graphics Context) XSetClipMask(3X)

NAME
XSetClipMask — set clip_mask pixmap in graphics context.
SYNOPSIS
XSetClipMask (display, gc, pixmap)
Display *display;

GC gc;
Pixmap pixmap ;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
g Specifies the graphics context.
pixmap Specifies the pixmap. Pass the constant None if no clip-
ping is desired.
DESCRIPTION

XSetClipMask sets the clip_mask member of a GC. The clip_mask filters
which pixels in the destination are drawn. Use XSetClipRectangles to set
the clip_mask to a set of rectangles, or XSetRegion to set the clip_mask to a
region.

ERRORS
BadMatich
BadGC
BadValue

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillRule, XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipOrigin, XSetClipRectangles,
XSetState, XSetSubwindowMode, DefaultGC.



XSetClipOrigin(3X) (Xl1ib - Graphics Context) XSetClipOrigin (3X)

NAME
XSetClipOrigin — set clip origin in graphics context.
SYNOPSIS

XSetClipOrigin (display, gc, clip_x_origin, clip_y_origin)
Display =*display;

GC gc;
int clip_x_origin, clip_y_origin;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
gc Specifies the graphics context.

clip_x_origin
clip_y_origin  Specify the clip origin relative to the window specified in
the GC.

DESCRIPTION
XSetClipOrigin sets the clip_x_origin and clip_y_origin members of the GC.
The clip origin control the position of the clip_mask, which filters which
pixels in the destination are drawn.

ERRORS
BadGC

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillRule, XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipRectangles,
XSetState, XSetSubwindowMode, DefaultGC.



XSetClipRectangles(3X) (X1ib - Graphics Context) XSetClipRectangles(3X)

NAME
XSetClipRectangles — change clip_mask in graphics context to list of rec-
tangles.

SYNOPSIS
XSetClipRectangles (display, gc, clip_x_origin, clip_y_origin,
rectangles, nrects, ordering)
Display *display;
GC gc;
int clip_x_origin, clip_y_origin;
XRectangle rectangles[] ;
int nrects;
int ordering;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
g Specifies the graphics context.
clip_x_origin
clip_y_origin  Specify the x and y coordinates of the clip origin, relative
to the window specified in the drawing request.

rectangles Specifies an array of rectangles. These are the rectangles
you want output clipped to.

nrects Specifies the number of rectangles.

ordering Specifies the ordering relations on the rectangles. Possible

values are Unsorted, YSorted, YXSorted, or YXBanded.

DESCRIPTION

XSetClipRectangles changes the clip_mask in the specified GC to the speci-
fied list of rectangles and sets the clip origin to clip_x_origin and
clip_y_origin. The rectangle coordinates are interpreted relative to the clip
origin. The output from drawing requests using that GC are henceforth
clipped to remain contained within the rectangles. The rectangles should
be nonintersecting, or the graphics results will be undefined. If the list of
rectangles is empty, output is effectively disabled as all space is clipped in
that GC. This is the opposite of a clip_mask of None in XCreateGC,
XChangeGC, or XSetClipMask.

If known by the client, ordering relations on the rectangles can be speci-
fied with the ordering argument. This may provide faster operation by the
server. If an incorrect ordering is specified, the X server may generate a



- XSetClipRectangles(3X) (X1ib - Graphics Context) XSetClipRectangles(3X)

BadMatch error, but it is not required to do so. If no error is generated,
the graphics results are undefined. Unsorted means the rectangles are in
arbitrary order. YSorted means that the rectangles are nondecreasing in
their Y origin. YXSorted additionally constrains YSorted order in that all
rectangles with an equal Y origin are nondecreasing in their X origin.
YXBanded additionally constrains YXSorted by requiring that, for every
possible horizontal Y scan line, all rectangles that include that scan line
have identical Y origins and Y extents.

To cancel the effect of this command, so that there is no clipping, pass
None as the clip_mask in XChangeGC or XSetClipMask.

STRUCTURES
typedef struct {
short x,y:;
unsigned short width, height;
} XRectangle;

ERRORS
BadAlloc

BadGC

BadMatch Incorrect ordering (error message server-dependent).
BadValue

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillRule, XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetState, XSetSubwindowMode, DefaultGC.



XSetCloseDownMode (3X) (X1ib - Client Connections) XSetCloseDownMode(3X)

NAME
XSetCloseDownMode — change close down mode of client.

SYNOPSIS
XSetCloseDownMode (display, close_mode)
Display *display;
int close_mode ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
close_mode Specifies the client close down mode you want. Pass one
of these constants: DestroyAll, RetainPermanent, or Retain-
Temporary.
DESCRIPTION

XSetCloseDownMode defines what will happen to the client’s resources at
connection close. A connection between a client and the server starts in
DestroyAll mode, and all resources associated with that connection will be
freed when the client process dies. If the close down mode is RetainTem-
porary or RetainPermanent when the client dies, its resources live on until a
call to XKillClient. The resource argument of XKillClient can be used to
specify which client to kill, or it may be the constant AllTemporary, in
which case XKillClient kills all resources of all clients that have terminated
in RetainTemporary mode.

ERRORS
BadValue

SEE ALSO
XKillClient



XSetCommand (3X) (Xlib - Window Manager Hints) XSetCommand(3X)

NAME
XSetCommand — set the WM_COMMAND atom (command line args).
SYNOPSIS
XSetCommand (display, w, argv, argc)
Display *display;

Window w;
char **argu;
int argc;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
argy Specifies a pointer to the command and arguments used to
start the application.
argc Specifies the number of arguments.
DESCRIPTION

XSetCommand is used by the application to set the WM_COMMAND pro-
perty for the window manager with the SYSTEM V/68 shell command and
its arguments used to invoke the application.

Use this command only if not calling XSetStandardProperties.

ERRORS
BadAlloc
BadWindow

SEE ALSO
XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints,
XSetWMHints, XGetZoomHints, XSetZoomHints, XGetNormalHints,
XSetNormalHints, XGetTransientForHint, XSetTransientForHint, XFetchName,
XGetlconName, XSetlconName, XStoreName, XGetlconSizes, XSetIconSizes.



XSetDashes(3X) (X1ib - Graphics Context) XSetDashes (3X)

NAME
XSetDashes — set dash_offset and dash_list (for lines) of graphics context.

SYNOPSIS
XSetDashes (display, gc, dash_offset, dash_list, n)
Display *display;
GC gc;
int dash_offset ;
char dash_list[] ;

int n;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
gc Specifies the graphics context.
dash_offset Specifies the phase of the pattern for the dashed line style.
dash_list Specifies the dash list for the dashed line style. An odd-
length list is equivalent to the same list concatenated with
itself to produce an even-length list.
n Specifies the length of the dash list argument.
DESCRIPTION

XSetDashes sets the dashes member of the GC. The initial and alternating
elements of the dash_list are the "even" dashes, the others are the "odd"
dashes. All of the elements must be non-zero. The dash_offset defines the
phase of the pattern, specifying how many elements into the dash_list the
pattern should actually begin in the line drawn by the request.

n specifies the length of dash_list. An odd value for n is interpreted as
specifying the dash_list concatenated with itself to produce twice as long a
list.

The unit of measure for dashes is the same as in the ordinary coordinate
system. Ideally, a dash length is measured along the slope of the line, but
server implementors are only required to match this ideal for horizontal
and vertical lines. Failing the ideal semantics, it is suggested that the
length be measured along the major axis of the line. The major axis is
defined as the x axis for lines drawn at an angle of between —45 and +45
degrees or between 315 and 225 degrees from the x axis. For all other
lines, the major axis is the y axis.



XSetDashes(3X) (Xlib - Graphics Context) XSetDashes(3X)

The default dash_list in a newly created GC is equivalent to [4,4].
Refer to the GSE Programmer’s Guide for further information.

ERRORS
BadAlloc
BadGC
BadValue No values in dash_list.
Element in dash_list is zero.
SEE ALSO

XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetLineAttributes, XSetFillRule,
XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XSetErrorHandler(3X) (Xlib - Error Handling) XSetErrorHandler(3X)

NAME
XSetErrorHandler — set non-fatal error event handler.

SYNOPSIS
XSetErrorHandler (handler)
int (* handler) (Display *, XErrorEvent *)

ARGUMENTS
handler The user-defined function to be called to handle error
events. If a NULL pointer, reinvoke the default handler,
which prints a message and exits.
DESCRIPTION

The error handler function specified in handler will be called by Xlib when-
ever an XError event is received. These are non-fatal conditions, such as
unexpected values for arguments. It is acceptable for this procedure to
return, though the default handler simply prints a message and exits.
However, the error handler should NOT perform any operations (directly
or indirectly) on the Display.

The function is called with two arguments, the display variable and a
pointer to the XErrorEvent structure. Here is a trivial example of a user-
defined error handler:

int myhandler (display, myerr)

Display *display;

XErrorEvent *myerr;

{

char msg[80];

XGetErrorText (display, myerr->error_code, msg, 80);
fprintf (stderr, "Error code %s\n", msg);

}

This is how the example routine would be used in XSetErrorHandler.

XSetErrorHandler (myhandler) ;

Note that XSetErrorHandler is one of the few routines that does not require
a display argument. The routine that calls the error handler gets the
display variable from the XErrorEvent structure.

The error handler is not called on BadName errors from OpenFont, Lookup-
Color, AllocNamedColor, protocol requests, on BadFont errors from a

-1-



XSetErrorHandler(3X) (X1ib - Error Handling) XSetErrorHandler(3X)

QueryFont protocol request, or on BadAlloc or BadAccess errors. These
errors can be caught and handled by the program by checking the return

value of the routine.

Use XIOErrorHandler to to provide a handler for fatal errors.

In the XErrorEvent structure shown below, The serial member is the
number of requests starting from one sent over the network connection
since it was opened. It is the number that was the value of the request
sequence number immediately after the failing call was made. The
request_code member is a protocol representation of the name of the pro-
cedure that failed and are defined in < X11/X.h >.

STRUCTURES
typedef struct {
int type
Display *display; /*

unsigned long serial; /»

char error_code; /*

char request_code; /*

char minor_cods; /*

XID resourceid; /*
} XErrorEvent;

SEE ALSO

Display the event was read from
serial number of failed request
error code of failed request */
Major op-code of failed request
Minor op-code of failed request
resource id */

XDisplayName, XGetErrorDatabaseText, XGetErrorText, XSetlOErrorHandler,

XSynchronize, XSetAfterFunction.

*/
*/

*/
*/



XSetFillRule(3X) (Xlib - Graphics Context) XSetFillRule(3X)

NAME
XSetFillRule — set fill rule in graphics context.

SYNOPSIS
XSetFillRule (display, gc, fill_rule)
Display *display;

GC gc;
int fill_rule;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
8¢ Specifies the graphics context.
fill_rule Specifies the fill rule you want to set for the specified
graphics context. Possible values are EvenOddRule or Win-
dingRule.
DESCRIPTION

XSetFillRule sets the fill_rule member of a GC. The fill_rule member of the
GC determines what pixels are drawn in XFillPolygon requests. Simply
put, WindingRule fills overlapping areas of the polygon, while EvenOd-
dRule does not fill areas that overlap an odd number of times. Techni-
cally, EvenOddRule means that the point is drawn if an arbitrary ray drawn
from the point would cross the path determined by the request an odd
number of times. WindingRule indicates that a point is drawn if a point
crosses an unequal number of clockwise and counterclockwise path seg-
ments, as seen from the point.

A clockwise directed path segment is one which crosses the ray from left
to right as observed from the point. A counterclockwise segment is one
which crosses the ray from right to left as observed from the point. The
case where a directed line segment is coincident with the ray is unin-
teresting because you can simply choose a different ray that is not coin-
cident with a segment.

All calculations are performed on infinitely small points, so that if any
point within a pixel is considered inside, the entire pixel is drawn. Pixels
with centers exactly on boundaries are considered inside only if the filled
area is to the right, except that on horizontal boundaries, the pixel is con-
sidered inside only if the filled area is below the pixel.

Refer to the GSE Programmer’s Guide for more information.



XSetFillRule(3X) (X1ib - Graphics Context) XSetFillRule(3X)

ERRORS
BadGC
BadValue

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XSetFillStyle (3X) (X1ib - Graphics Context) XSetFillStyle(3X)

NAME
XSetFillStyle — set fill style in graphics context.

SYNOPSIS
XSetFillStyle (display, gc, fill_style)
Display *display;

GC gc;
int fill_style;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
g Specifies the graphics context.
fill_style Specifies the fill style for the specified graphics context.
Possible values are FillSolid, FillTiled, FillStippled, or FillO-
paqueStippled.
DESCRIPTION

XSetFillStyle sets the fill_style member of the GC. The fill_style defines the
contents of the source for line, text, and fill requests. FillSolid indicates
that the pixels represented by set bits in the source are drawn in the fore-
ground pixel value, and unset bits in the source are not drawn. FillTiled
uses the tile specified in the GC to determine the pixel values for set bits
in the source. FillOpaqueStippled specifies that bits set in the stipple are
drawn in the foreground pixel value and unset bits are drawn in the back-
ground. FillStippled draws bits set in the source and set in the stipple in
the foreground color, and leaves unset bits alone.

ERRORS
BadGC
BadValue

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillRule, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XSetFont(3X) (X1ib - Fonts) XSetFont(3X)

NAME
XSetFont — set current font in graphics context.

SYNOPSIS
XsetFont (display, gc, font)
Display *display;

GC gc;
Font font;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
8 Specifies the graphics context.
font Specifies the font ID.
DESCRIPTION

XSetFont sets the font in the GC. Text drawing requests using this GC will
use this font only if it is loaded. Otherwise, the text will not be drawn.

ERRORS
BadAlloc
BadFont
BadGC

SEE ALSO
XLoadFont, XLoadQueryFont, XFreeFont, XFreeFontInfo, XListFonts,
XListFontsWithInfo, XFreeFontNames, XFreeFontPath, XGetFontPath,
XQueryFont, XSetFontPath, XUnloadFont, XGetFontProperty,
XCreateFontCursor.



XSetFontPath(3X) (X1ib - Fonts) XSetFontPath(3X)

NAME
XSetFontPath — set the font search path.

SYNOPSIS
XSetFontPath (display, directories, ndirs)
Display *display;
char *x*directories ;

int ndirs;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
directories Specifies the directory path used to look for the font. Set-
ting the path to the empty list restores the default path
defined for the X server.
ndirs Specifies the number of directories in the path.
DESCRIPTION

XSetFontPath defines the directory search path for font lookup for all
clients. Therefore the user should construct a new directory search path
carefully by adding to the old directory search path obtained by XGet-
FontPath. Passing an invalid path can result in preventing the server from
accessing any fonts. Also avoid restoring the default path, since some
other client may have changed the path on purpose.

The interpretation of the strings is operating system dependent, but they
are intended to specify directories to be searched in the order listed.
Also, the contents of these strings are operating system specific and are
not intended to be used by client applications.

As a side-effect of executing this request, the server is guaranteed to flush
all cached information about fonts for which there are currently no explicit
resource IDs allocated. The meaning of errors from this request is system
specific.

ERRORS
BadValue

SEE ALSO
XLoadFont, XLoadQueryFont, XFreeFont, XFreeFontInfo, XListFonts,
XListFontsWithInfo, XFreeFontNames, XFreeFontPath, XGetFontPath,
XQueryFont, XSetFont, XUnloadFont, XGetFontProperty, XCreateFontCursor.



XSetForeground(3X) (Xl1ib - Graphics Context) XSetForeground(3X)

NAME
XSetForeground — set foreground pixel value in graphics context.
SYNOPSIS

XSetForeground (display, gc, foreground)
Display *display;

GC gc;
unsigned long foreground;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
gc Specifies the graphics context.
foreground Specifies the foreground pixel value you want for the
specified graphics context.
DESCRIPTION

XSetForeground sets the foreground member in a GC. This pixel value is
used for set bits in the source according to the fill_style.

Refer to the GSE Programmer’s Guide for more information on the GC.

ERRORS
BadGC

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillRule, XSetFillStyle, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XSetFunction(3X) (X1ib - Graphics Context) XSetFunction(3X)

NAME
XSetFunction — set bitwise logical operation in graphics context.

SYNOPSIS
XSetFunction (display, gc, function)
Display *display;

GC gc;
int function;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
8 Specifies the graphics context.
function Specifies the logical operation you want for the specified
graphics context. See Description for the choices and their
meanings.
DESCRIPTION

XSetFunction sets the logical operation applied between the source pixel
values (generated by the drawing request) and existing destination pixel
values (already in the window or pixmap) to generate the final destination
pixel values in a drawing request (what is actually drawn to the window
or pixmap). Of course, the plane_mask and clip_mask in the GC also affect
this operation by preventing drawing to planes and pixels respectively.

Refer to the GSE Programmer’s Guide for more information about the logical
function.



XSetFunction(3X) (Xlib - Graphics Context) XSetFunction(3X)

The function symbols and their logical definitions are:

Symbol Bit Meaning
GXclear 0x0 O
GXand 0x1  src AND dst
GXandReverse 0x2 src AND (NOT dst)
GXcopy 0x3 src
GXandInverted  0x4  (NOT src) AND dst
GXnoop 0x5 dst
GXxor 0x6  src XOR dst
GXor 0x7 src OR dst
GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9  (NOT src) XOR dst
GXinvert Oxa (NOT dst)

GXorReverse Oxb  src OR (NOT dst)
GXcopylnverted Oxc  (NOT src)

GXorInverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

ERRORS
BadGC
BadValue

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillRule, XSetFillStyle, XSetForeground, XSetBackground,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XSetGraphicsExposures(3X)  (Xlib - Graphics Context)  XSetGraphicsExposures(3X)

NAME
XSetGraphicsExposures — set graphics-exposures flag in graphics context.
SYNOPSIS

XSetGraphicsExposures (display, gc, graphics_exposures)
Display *display;

GC gc;
Bool graphics_exposures ;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
gc Specifies the graphics context.

graphics_exposures
Specifies whether you want GraphicsExpose and NoExpose
events when calling XCopyArea and XCopyPlane with this
graphics context.

DESCRIPTION
XSetGraphicsExposure sets the graphics_exposures member of the GC. If
graphics_exposures is True, GraphicsExpose events will be generated when
XCopyArea and XCopyPlane requests cannot be completely satisfied
because a source region is obscured; and NoExpose events are generated
when they can be completely satisfied. If graphics_exposures is False, these
events are not generated.

These events are not selected in the normal way with XSelectInput. Set-
ting the graphics_exposures member of the GC used in the CopyArea or
CopyPlane request is the only way to select these events.

ERRORS
BadGC
BadValue

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetLineAttributes,
XSetFillRule, XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetArcMode, XSetClipMask, XSetClipOrigin, XSetClipRectangles, XSetState,
XSetSubwindowMode, DefaultGC.



XSetIconName(3X) (Xlib - Window Manager Hints) XSetIconName(3X)

NAME
XSetIconName — set name to be displayed in a window’s icon.

SYNOPSIS
XSetIconName (display, w, icon_name)
Display *display;
Window w;
char *icon_name ;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID. This is the window whose icon
name is being set.

icon_name Specifies the name to be displayed in the window’s icon.
The name should be a null-terminated string. This name
is returned by any subsequent call to XGetIconName.

DESCRIPTION
XSetlconName sets the WM_ICON_NAME property for a window. This is
usually set by an application for the window manager. This should be set
to a short name to be displayed in association with an icon.

XSetStandardProperties also sets this property.

ERRORS
BadAlloc
BadWindow

SEE ALSO
XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints,
XSetWMHints, XGetZoomHints, XSetZoomHints, XGetNormalHints,
XSetNormalHints, XGetTransientForHint, XSetTransientForHint, XFetchName,
XGetIconName, XStoreName, XGetlconSizes, XSetlconSizes, XSetCommand.



XSetIconSizes(3X) (X1ib - Window Manager Hints) XSetIconSizes(3X)

NAME
XSetIconSizes — set value of the WM_ICON_SIZE property.

SYNOPSIS
XSetIconSizes (display, w, size_list, count)
Display *display;

Window w;
XIconSize *size list;
int count;
ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
w Specifies the window ID.
size_list Specifies a pointer to the size list.
count Specifies the number of items in the size list.
DESCRIPTION

XSetlconSizes is normally used by a window manager to set the range of
preferred icon sizes in the WM_ICON_SIZE property of the root window.

Applications can then read the property with XGetlconSizes.

STRUCTURES
typedef struct {
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
} XIconS8ize;

ERRORS
BadAlloc
BadWindow

SEE ALSO
XGetClassHint, XSetClassHint, XGetSizeHints, XSetSizeHints, XGetWMHints,
XSetWMHints, XGetZoomHints, XSetZoomHints, XGetNormalHints,
XSetNormalHints, XGetTransientForHint, XSetTransientForHint, XFetchName,
XGetlconName, XSetlconName, XStoreName, XGetlconSizes, XSetCommand.



XSetInputFocus(3X)

NAME

(X1ib - Input Handling) XSetInputFocus(3X)

XSetInputFocus — set the input focus window.

SYNOPSIS

XSetInputFocus (display, focus, revert_to, time)
Display *display;
Window focus;
int revert_to;

Time time;

ARGUMENTS
display

focus

revert_to

time

DESCRIPTION

Specifies a pointer to the Display structure; returned from
XOpenDisplay.
Specifies the window ID of the window you want to be

the input focus. Pass the window ID, PointerRoot, or
None.

Specifies which window the input focus reverts to if the
focus window becomes not viewable. Pass one of these
constants: RevertToParent, RevertToPointerRoot, or RevertTo-
None. Must not be a window ID.

Specifies the time when the focus change should take
place. Pass either a timestamp, expressed in milliseconds,
or the constant CurrentTime. Also returns the time of the
focus change when CurrentTime is specified.

XSetInputFocus changes the input focus and the last-focus-change time.
The function has no effect if time is earlier than the current last-focus-
change time or later than the current X server time. Otherwise, the last-
focus-change time is set to the specified time, with CurrentTime replaced
by the current X server time.

XSetInputFocus generates FocusIn and FocusOut events if focus is different
from the current focus.



XSetInputFocus(3X) (X1ib - Input Handling) XSetInputFocus(3X)

XSetInputFocus executes as follows, depending on what value you assign

to the focus argument:

® If you assign None, all keyboard events are discarded until you set a
new focus window. In this case, revert_to is ignored.

® If you assign a window ID, it becomes the main keyboard’s focus
window. If a generated keyboard event would normally be reported
to this window or one of its inferiors, the event is reported normally;
otherwise, the event is reported with respect to the focus window.

® If you assign PointerRoot, the focus window is dynamically taken to

be the root window of whatever screen the pointer is on at each key-
board event. In'this case, revert_to is ignored.

The specified focus window must be viewable at the time of the request
(else a BadMatch error). If the focus window later becomes not viewable,
the focus window will change to the revert_to argument.

If the focus window later becomes not viewable, XSetInputFocus evaluates
the revert_to argument to determine the new focus window:

®  If you assign RevertToParent, the focus reverts to the parent (or the
closest viewable ancestor) automatically with a new revert_to argu-
ment of RevertToName.
® If you assign RevertToPointerRoot or RevertToNone, the focus reverts
to that value automatically. FocusIn and FocusOut events are gen-
erated when the focus reverts, but the last_focus_change_time is not
affected.
ERRORS
BadMatch focus window not viewable when XSetInput called.
BadValue
BadWindow
SEE ALSO

XSelectInput, XGetInputFocus, XWindowEvent, XCheckWindowEvent,
XCheckTypedEvent, XCheckTypedWindowEvent, XMaskEvent,
XCheckMaskEvent, XNextEvent, XEventsQueued, XAllowEvents,
XGetMotionEvents, XIfEvent, XCheckIfEvent, XPeekEvent, XPeekIfEvent,
XPutBackEvent, XPending, XSynchronize, XSendEvent, QLength.



XSetIOErrorHandler(3X) (X1ib - Error Handling) XSetIOErrorHandler(3X)

NAME
XSetlOErrorHandler — handle fatal I/O errors.

SYNOPSIS
XSetIOErrorHandlex (handler)
int (*handler) (Display *);

ARGUMENTS
handler Specifies a pointer to a user-defined fatal error handling
routine. If NULL, reinvoke the default fatal error handler.
DESCRIPTION

XSetIOErrorHandler specifies a user-defined error handling routine for fatal
errors. This error handler will be called by Xlib if any sort of system call
error occurs, such as the connection to the server being lost. The called
routine should not return. If the /O error handler does return, the client
process will exit.

If handler is a NULL pointer, the default error handler is reinvoked. The
default I/O error handler prints an error message and exits.
SEE ALSO

XDisplayName, XGetErrorDatabaseText, XGetErrorText, XSetErrorHandler,
XSynchronize, XSetAfterFunction.



XSetLineAttributes(3X)

NAME

(X1ib - Graphics Context) XSetLineAttributes(3X)

XSetLineAttributes — set line drawing components in graphics context.

SYNOPSIS

XSetLineAttributes (display, gc, line_width, line_style, cap_style,

join_style)

Display *display;

GC gc;

unsigned int line_width;
int line_style;
int cap_style;
int join_style;

ARGUMENTS
display

g
line_width
line_style
cap_style

join_style

DESCRIPTION

Specifies a pointer to the Display structure; returned from
XOpenDisplay.
Specifies the graphics context.

Specifies the line width you want to set for the specified
graphics context.

Specifies the line style you want to set for the specified
graphics context. Possible values are LineSolid, LineOnOff-
Dash, or LineDoubleDash.

Specifies the line and cap style you want to set for the
specified graphics context. Possible values are CapNotLast,
CapButt, CapRound, or CapProjecting.

Specifies the line-join style you want to set for the speci-
fied graphics context. Possible values are JoinMiter, Join-
Round, or JoinBevel.

XSetLineAttributes sets four types of line characteristics in the GC:
line_width, line_style, cap_style, and join_style.

Refer to the description of line and join styles in the GSE Programmer’s
Guide. See also XSetDashes.

A line_width of zero (0) means use the fastest algorithm for drawing a line
of one-pixel width. These lines may not meet properly with lines speci-
fied as width 1 or more.



XSetLineAttributes(3X) (X1ib - Graphics Context) XSetLineAttributes(3X)

ERRORS
BadGC
BadValue

SEE ALSO
XChangeGC, XCopyGC, XCreateGC, XFreeGC, XGContextFromGC,
XSetStipple, XSetTSOrigin, XSetPlaneMask, XSetDashes, XSetFillRule,
XSetFillStyle, XSetForeground, XSetBackground, XSetFunction,
XSetGraphicsExposures, XSetArcMode, XSetClipMask, XSetClipOrigin,
XSetClipRectangles, XSetState, XSetSubwindowMode, DefaultGC.



XSetModifierMapping(3X) (X1ib - Keyboard) XSetModifierMapping(3X)

NAME
XSetModifierMapping — set keycodes to be used as modifiers (Shift, Con-
trol, etc.).

SYNOPSIS
int XSetModifierMapping(display, mod_map)
Display *display;
XModifierKeymap *mod_map;

ARGUMENTS
display Specifies a pointer to the Display structure; returned from
XOpenDisplay.
mod_map Specifies a pointer to the XModifierKeymap structure.
DESCRIPTION

XSetModifierMapping is one of two ways to specify the keycodes of the
keys that are to be used as modifiers (like Shift, Control, etc.). XSetModifi-
erMapping specifies all the keycodes for all the modifiers at once. The
other, easier, way is to use XInsertModifiermapEntry and XDeleteModifierma-
pEntry which add or delete a single keycode for a single modifier. XSet-
ModifierMapping does the work in a single call, but the price of this call is
that you need to manually set up the XModifierKeymap structure pointed to
by mod_map. This requires you to know how the XModifierKeymap struc-
ture is defined and organized, as described in the next three paragraphs.

The XModifierKeymap structure for the mod_map argument should be
created using XNewModifierMap or XGetModifierMapping.  The
max_keypermod element of the structure specifies the maximum number of
keycodes that can be mapped to each modifier. You define this number,
but there may be an upper limit on a particular server.

The modifiermap element of the structure is an array of keycodes. There
are eight by max_keypermod keycodes in this array: eight because there are
eight modifiers, and max_keypermod because that is the number of key-
codes that must be reserved for each modifier.

The eight modifiers are represented by the constants ShiftMapIndex, Lock-
Maplndex, ControlMaplndex, Mod1Maplndex, Mod2MapIndex, Mod3Maplndex,
Mod4Maplndex, and Mod5Mapindex. These are not actually used as argu-
ments, but they are convenient for referring to each row in the modifiermap
structure while filling it. The definitions of these constants are shown in
the Structures section below.



- XSetModifierMapping(3X) (X1ib - Keyboard) XSetModifierMapping (3X)

Now you can interpret the modifiermap array. For each modifier in a given
modifiermap,  the  keycodes  which  correspond are from
modifiermap[index " max_keypermod] to
modifiermap[[(index + 1) * max_keyspermod] -1] where
index is the appropria<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>