M68KVSOM/D1

VME/10

Microcomputer System
Overview Manual

QUALITY e PEOPLE ¢ PERFORMANCE

M68KVSOM/D1

FEBRUARY 1984

VME/10 MICROCOMPUTER SYSTEM

OVERVIEW MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

DEbug, I/Omodule, RMS68K, SYMbug, TENbug, VERSAdos, VMEbus, VMEmodule, and
VME/10 are trademarks of Motorola Inc.

SASI is a trademark of Shugart Associates.

The computer program stored in the Read Only Memory of this device contains
material copyrighted by Motorola Inc., first published 1983, and may be used
only under a license such as the License For Computer Programs (Article 14)
contained in Motorola's Terms and Conditions of Sale, Rev. 1/79.

WARNING

THIS EQUIPMENT GENERATES, USES, AND CAN RADIATE RADIO
FREQUENCY ENERGY AND, IF NOT INSTALLED AND USED IN
ACCORDANCE WITH THE INSTRUCTION MANUAL, MAY CAUSE
INTERFERENCE TO RADIO COMMUNICATIONS. AS TEMPORARILY
PERMITTED BY REGULATION, IT HAS NOT BEEN TESTED FOR
COMPLIANCE WITH THE LIMITS FOR CLASS A COMPUTING
DEVICES PURSUANT TO SUBPART J OF PART 15 OF FCC RULES,
WHICH ARE DESIGNED TO PROVIDE REASONABLE PROTECTION
AGAINST SUCH INTERFERENCE. OPERATION OF THIS EQUIPMENT
IN A RESIDENTIAL AREA IS LIKELY TO CAUSE INTERFERENCE,
IN WHICH CASE THE USER, AT HIS OWN EXPENSE, WILL BE
REQUIRED TO TAKE WHATEVER MEASURES MAY BE REQUIRED TO
CORRECT THE INTERFERENCE.

First Edition

Copyright 1984 by Motorola Inc.

PREFACE

Unless otherwise specified, all address references are in hexadecimal
throughout this manual.

An asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal
is low.

An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur
on a high to low transition.

TABLE OF CONTENTS

GENERAL INFORMATION

INTRODUCTION +seeecsocacsoscssacsacsasccssscasssasscsasnscsanas 1—1
FEATURES .vcccecescccscscsoscssacccsasossssssssssssosssssssnce 1—1
SPECIFICATIONS ..cccccsascscsccccsscsscsssassecssssassscsaas 1—4
EQUIPMENT SUPPLIED .ceeececsccscocsoscsscsossscsssocssccasssnsaas 1=D
I/0 CHANNEL AND VME EQUIPMENT OPTIONS eececoeccccscsscscssss 1-6
SYSTEMS DEVELOPMENT AND INTEGRATION scceececcccsccascccsscas 1=7
GENERAL DESCRIPTION .ccceccessocccscssssasssccassssacsssssss 1-8
Control Unit ChasSiS seceseceessscsseccscnsssscssssaccnssss 1-8
System Control MOAULe c.ceesesscccssssssssssssssssssssasss 1=9
Display Unit .eececececccccecsscssssssscsssccsscscssesssses 1-14
Keyboard ...ccceeeeeecenans e £ S
VERSAdos OPERATING SYSTEM AND DEVELOPMENT TOOLS .ceeseeessaa 1-15
VERSAdos Operating SySte@M ceceeececesssccccscssssccosnsssss 1-15
Resident Structured AssSembler ...ceceeecccsscccsscescsssss 1-15
Symbolic DEDUGJEL eeeeecevscescoccsasescccossnccnsscsanaes 1=17
CRT Text EJIitOLr eeceeeecccsssssccssscssscecosccsscssecccsssssee 1—17
Linkage EJitOr ceeesceeeccscecconsssccssssscannsonscscanss 1-17
Diagnostic Package .eceeeeececesececccesccccssscccascssnes 1-17
SYSTEM MEMORY MAPccececncecescsascccscsasscncassascaceces 1—18

e o e o o ¢ o
o o . o
=W

L] L]
. L] .
[0 - SR OVIN NS 3

HFHHFFFRFRFEFPRRFRHERRPRFRRRRE D
.

WM NNININIJANUT D WN -
L]

CHAPTE HARDWARE/SOFTWARE SYSTEM STARTUP

INTRODUCTION ccveceoecocccsccsssoossccssccnscosssnsssenssess 2-1
SYSTEM POWER=UP +eeeescescssascsssscssssesssasesccssssscssses 2—1
POWER-UP/RESET SELF-TEST ceceeeccaccccsssccorsascsccsnnssssse 2—1
SYSTEM INITIALIZATION .ececceccasccscancssasssoscscnssssasssssa 2-2

VERSAdOs Operating SyStam .c.ececeeccccssscscccssssccssases 2-2

TENDUG ccecoccocaccccoceasssocassososansssssnsasscsaccssscces 24
DISK-RESIDENT MODULE DIAGNOSTICS .eeeececacsccccccsasccnssss 2-4
BACKUP PROCEDURE tecsececscosocossscccconcesssnccssssassosss 2-D

* e e o o
.
N

ISH SN SH N SH N SIS ¢
.
U R B WNKE N

CHAPTE

sl

WWWWWWWWwWWwWwwWwwWwwwwwww
L]
r O SO O S O SO N O SO SO SO NI N Y O TR S IR

CONTROLS AND INDICATORS

INTRODUCTION ceececoscscecscacscacccscsacscssscscssaccsacssosasces =1
CHASSIS cecevscsssccccccsceovsccscssossossscosnnssssosvoscannnnss I—1
DISPLAY UNIT cevceececcccccoscscacscsscssacssssassascsccsssnaaes 3—2
KEYBOARD CONSOLE .ctcccosssossccsanccscsscsoncsssssscsccsanss 3—2
MOAE KEYS cueeeveococosasscssosossssnsssssssssssssanssnssss 3-4
Typewriter Keyboard .eeceeccccceccsssccsssossccccsssascsass 3—D
NUMEYicS (0-9) eteeececesccccccssccscsccsscssacsasssossnsassss 3=
Alphabetic Characters (a—2) ssececeesceccsssascccassssseae 3=5
Symbol CharactersS ccceeeeecsscsscceccsacccascscscnccsasss 3=5
Special CharaCtersS ...cececcsccccsscsscscssssscccasssaece 3-5
Cursor Control Keypad eeececsscessccccccssccccssccsssccces 39
CUrsOr CONtYOl ceeeeccecececccccassascoscccncsasssascassss 3—=9
Functions (CLEAR/BREAK, RESET) ..cccccccccvcccccccssscse 3-10
Special Character (ESC) eeeseesscssscossccsssssssscsnses 3—10
Hex/Edit KeYPad ceceeecccccscccsscesscessccsssscsssesssees 310
Hexadecimal MOJE ..eeeeecccccsccscccocccscsnascssssancss 3—10
Edit MOAE tecvececessscesnccscscoccncssassssssssssssssasses 3—10
User Function Keys (F1-F1l6) c.cceecscccccesccccosasssseess 3—12
ASCII Character Set .eceececccccccocscccsccsssccccsccacsnsasecss 3-13

.
L]

AU ddwWwwwdddNDNDND-
[.

e o o o o o .
s o o & o o o o o
o o P
w N - = wN -

e o

* & o
. .
LS

TABLE OF CONTENTS (cont'd)

Page

CHAPTER 4 SOFTWARE DESCRIPTION

INTRODUCTION cececceoceccccccscsscsscscsssscsccscssossccsscsosccsncossce
VERSAJOS cececesssccccssassccssssscsscscssscssscscscasssncsssssce
Functional OVEIVIEW seesecececscscesssssessssscssssscssasse
Operational OVEXVIEW seeesecsssccccsccscsssssossccccsscnss
VERSAdOS File Name FOIMAL eceececsscccccccocccsccssscaccane
Session ManagemeNt .eseeeescssscesssoscssosssosssssasscasse

!
HHEMRONULOLOLILE_ WNND -

Sessions © 0 0000000000000 P0000PP0GOP0O0LCOIOSIONOOEOSDBNOIOGIONOEOSNEOSNOEOIOTOONOES

.
L]

L[]
VU bW
L]
w N =

)
N =

SeCUrity © €@ 00 0000009000000 0000060000000000000000000000000cL

Examples P 0 0 0 0000000000000 00000 0000000000000 00000000000

Utiliti€S ceesecceccsescccsvasssaseanscascssscssssasascssnscane
DESCriptiONS ceeeecececsccveessssscccasscsccessscosasnanss
EXampPleS ceeecvececscssscvsecsccscssssscsencsssosacasncascssne

SOFTWARE DEVELOPMENT eecceossccccscssssscasccssanncsssassases 4-20
Designing a SYSteM sececeescscecsscssacsassssssssassscncee 4-21
SYSGEN Command Set ceecesscccessssncscssscscscsssssenccsss 4-22

OPTIONAL SOFTWARE .¢veeceeccccccscsccsccascccccacccncassanes 4-23

PASCAl ceeeecssscscscsasccscscsssssssssccsssssacescssccces 4=23

FORTRAN .ceececcocccccsccscsossossoscssosscoscsvncsscssoscnscncnsee 4-23

CrosS PrOAUCES ceeesessscccoscossassccssscsccsncsasssnsnnes 4=24

PROM PrOJLaNNEY eeeecosssscscesccsssccssssssscsssassscocnses 4—24

Independent SOftWAYE evescevssccescssasssccsscsscncccncseaee 4-24

[
BB R P WWWENNNNDNNDNNDNDNNDDNNDN -
L
1

nhsblb.brb.?ohobuhnblhuh

.
[NC I

L]
L]
Ud W+

@h&hs&%&&#:&hh%&hb&bb%&b
.

.
L]

CHAPTER 5 CRT TEXT EDITOR

INTRODUCTION .eececcoosccscssccssssacosocsssossssassossscscsssse O—L
1 CommAand LiNE eeeeceeseccessccscccscssnssanssssscsssnsssnssss D=1
2 E COMMANAS s eocecccccssssscscasssscsascssanscasscsscsasccss D=3
3 EXaMPleS ceececcccccccssscsesccscvsssasscnscnssssncnsssees 50

CHAPTER 6 ASSEMBLER

.1 INTRODUC.[‘ION © © 0000 0000000000000 000000000000000000000000000
.2 SOURCE PR%RMS 2 © 0000000000000 P000P0000POOGIOOINRCOIEOINONOROIONOOIOTOIOIE
COding 00 0000000000000 0000000000000000000000000000000000

Symbols and EXPreSSiONS secescceccccscsccssscsasorssssccsce

Registers ® 00 0000000000000 0000000000000000006000000c600000es

L
S w N+

MaCl‘.'OS © 0 060000000000 0000000000000000600000000000060000c00rco0

INVOKIm THE ASSEMBLER © 0 0000000000000 000000000000000000000
DIRECI‘IVES © 0 0 0000000000000 0000000000600000°00000000s0000sese
ASSMBLER GJTPUT ® 00 0000000000000 000000060000000s0000000OIGS

.6 LINKAGE 900 00 0000000000000 000000000000000000000c00sORSIGOGOIGGES
7

O\O\O\(')\O\O'\O\

I
OO U Wi =

i
o

O\O\?\O\

WPLES ® © 0 00 0000000000080 00000000000000000000000CBOIBSIOIOSIEOSIESIES

ii

TABLE OF CONTENTS (cont'd)
Page

CHAPTER 7 LINKAGE EDITOR

INTRODUCTION ¢ eveeccosccccoccoccccsosscsscssssscssssansosssnsse

INVOKING THE LINKER cecccaceccccccccccscccsscssssoscsscscscnce
1 Command LiNE cecececccccecoccccscscscessasosossccsccccssncns
2 User COMMANAS eevesescscssscccccsecscsscsssssccsccnssssscsss

LINKER OUTPUT cececcccccscscsccccccocscsoscscssccsscsnssccscscscscssscse
1 LiSting TYPES eeesecescccsosscessscssssssssssssccsccscsnces
2 Relocatable Object Module FOrmMAt c.eeeeecsccscescccssccss
3 Load Module FOXmat eeecececscccccsccsscssscoscscsccssscssonss
4
5

| |
HHEPOYoOoAANNDH

N~ O

WWwwwwwbdhbNhNO -
.

S_Record File Format @060 0000000000000 0000000000000
Debug File Fomat © 0000000000000 00000000000000OOCIIOEOOIOGIOGIOITES

NN NNNNNNN
Tl\l\l\lTl\l\]\l\l\l

2
5
2v)

PASCAL COMPILER

INTRODUCTION ccececscccssscsscssssccsscscssssesosscsscsascse
SOURCE PROGRAM seecececesoosccscscsscccssscsossascscscscnccccscscs
Pascal SoUurce PrOJXaIMS ececececcccsccscccccscsccccsccsacscsccs
Pascal SUbPrOgramS ceeeescesccesccscscscsccssscccsssssccccs
Assenbly Language SUbYOULINES..eecsesscccescssccccesscscce
Runtime LibrarieS seeeececcecsssscesssssccescsecscscsssacses
INVOKING THE CQOMPILER seeececoccccccscosscascscsscsascoscosnnnsse
Phase 1 — PASCAL ceeecscssasccsscssassscsssscsccsssscscncns
Phase 1.5 — POPTIM tctcecceccacecscaccccscsccccosccacnancne
Phase 2 — PASCALZ ceeeevssscscccsscsccsscscsassossssssancnce
COMPILER OUTPUT ccccecscoscsccscscccosscsnscsccscsccccscscsccacss
Relocatable Object MOQUlES teeceecccccscascscsscscascanas
Psuedo Assembly Listing DesSCription seeecceceesscssscsssee
LINKAGE cececcecsccccccascscccssscsccosscsosnsoncccsccsssssnccee

L%D MODU]-IES ® 00060000000 00000000000006060000c000000G0CCGGLIIOGEDLOTS

EXAMPLES 0 0 0P 0 P00 00O POPO00090000CL000000PCRSISSISIOIISTSIOTOSES

B> wWw N+
I

o o e o 9
NouddbdbwLwwwpdpdNhpDdDDDNDD -

o s o

11

ooooooooooooooooclnooooooooooooooo
HFHEHEHWOWWOWONOOUTUL &b WHRHH

= OO

« o o
w N

* o o
11

o e
L] L]
[SO ol

[I |

00 00 00 ©O 00 0O 00 OO 00 CO OO 0O ©O 00 OO OO

CHAPTER 9 DEBUG CAPABILITY

INTRODUCTION 4ccecccsccccoscecsacscossscsscacoscsosscsscnsssscnsss

TENDUG cecoceccccccccccaccsascccscoconscosccsosnsvsososssccssonscs
1 Command Set eececccscsccaccsssrccssssssossccscscsccssssance
2 TENbUG EXaMPlES cecesesscccccccccccccccccccccccnsccscccccnce

DEDUJ cececceccccsorscceassscscsssssssossssssssssssssssssssasse
1 Command LiNE eceeecescscssccssscasscscsssssscccscccssscnces
.2 Primitive COMMANAS ¢ ceesceccccccsscsssasscsaccssssansccans
SYMDUG ceccescccccccccssscnccssscsosccssssesssssosncscsssssse
.1 Symbol Table Creation .eeceeecceccccssccescccscsccsscnnss
o2 Command LiNE seeececsssscccessccsscsessossscccsccnssscncns

b WwwNpdhdNO -
L]

\O\OLO\O\OK'O\D\DKD\D
CO~NOYU D> WH =

WO W WOWWWOWOWYOOY
L] L]
11

.

iii

TABLE OF CONTENTS (cont'd)

Page

LIST OF ILLUSTRATIONS

FIGURE 1-1. VME/10 Microcomputel SYStEM seeeccccscsscsscccssssscesssasse L
1-2. Typical VME/10 Microcomputer System Development Integration 1
1-3., Control Unit ChaSSiS teceececccccsscssscncscssssssscnssscess L=
1-4. VME/10 Microcomputer System Block Diagram seeceesseseccessse 1

1-5. Display Memory Word Format Definition seceseececescecsecsecssee 1-11
1-6. Pixel ACCESS Word FO]’.mat Definition 9000000000000 0000000000 0 1_12

1-7. VMEbus and I/O Channel Module Expansion Card Cage Options .. 1-13
1-8. VERSAdos Operating System and Related Utility Programs 1-16
1-9. VME/10 System Memory MAp eceeececsccesccssccccssosssccssosses 1-18
1-10. - High and Normal Resolution GraphiCS ceecececesscccsccsceassass 1-18
1-11. VME/10 I/0 Memory Map (2 sheetS) ..cccececccsceccscsscsacsses 1-19
3-1. OperatoY Panel .ceccecececcsssscscsscsscosccsosoascossasasssssses 3=l
3=-2, Keyboard ASSEMD1Y cesececscocsscccscssssccscscasscsscsssscns 3=3
4-1. VERSAJOS StYUCLUYE eeeesscsossessccsssssescssccssesssecsssonsss 4=2

LIST OF TABLES

TABLE 1-1. VME/10 Microcomputer System SpecificationS ceeeeececccccssees 1-4
- 1-2. Starﬁard Systm Configuration ® 0 80O 50060005000 OH O OL OSSP OSSEPSLOISEDS 1-5
1-3. Optional Ek!uiment’....'....ll..-OOOv..........O........ 1—6

3--]-. Mode Keys0.............0..........0..................... 3—4
3-2, Standard Typewriter Keyboard Character COde .eeesesscceccccss 3=6
3-3. Cursor Control KEYS eeeesceecccsccccssessscncsasscccassscsee 3=9

3-4. Edit MOde KEYS eeceecccccocccscsascscscsscosssosncssosnosssnsss =11
3-5. User Function Key Character COde eececssccsssssccccsssccness 3=12
3-6. ASCII Character Set seeesscccccsscssascccssassassesssssssssss =13
4-1. Session Control COMMANAS seeesssccssscsssessscssssssssssscses 4~5
9-1. TENbug Commands DY TYPE eeescccsccosscsscscocsccssssssscsses I=2
9-2. DEbug Primitive COMMANAS cecesesoceccsssccssccasssssssssnssaece I=5
9-3. SYMbug Primitive COMMANAS seecececcscscesssessssssccssnssccses 9=9

iv

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual provides general information, control and indicator descriptions,
initialization procedures, and software-related information for the VME/10
Microcomputer System (hereafter referred to as VME/10). Before unpacking the
system, powering it up, and performing any software operations described in this
manual, refer to the VME/10 Microcomputer System Installation Guide, M68KVSIG.

The VME/10 provides the single user with 8- and 16-bit hardware/software and
instrumentation development support and, eventually, 32-bit support. It
incorporates the extended performance of the MC68010 MPU, the MC68451 Memory
Management Unit (MMU), VMEbus compatibility, and full VERSAdos multitasking
real-time operating system support, including high-level languages such as
Pascal.
The VME/10 is comprised of a chassis, a keyboard, and a display unit. Refer to
Figure 1-1.
1.2 FEATURES
The features of VME/10 are as follows:

. MC68010 16/32-bit Microprocessor Unit (MPU).

. MC68451 Memory Management Unit (MMU).

. Industry-standard VMEbus interface with full bus arbitration logic and
software controllable interrupter.

. I/0 Channel interface for adding off-board resources such as A/D
converters, serial and parallel I/0 ports, etc.

. 384K bytes RAM (triple-ported between graphics controller, local bus, and
VMEbus) .

. Static RAM for storage of user-definable character sets and display
attributes.

. Two 28-pin sockets for ROM/PROM/EPROM storage of up to 64K bytes for
custom applications.

. Battery backed-up time-of-day clock with 50 bytes of CMOS RAM storage.

. 15-inch video display having the following software-controllable display
formats:

a. 25 lines by 80 characters -- 8 x 10 characters with descenders
(10 x 12 font).

b. 800 x 300 pixel for normal resolution graphics.

1-1

FIGURE 1-1. VME/10 Microcomputer System

c. 800 x 600 pixel for high resolution graphics.
d. Pixel graphics with overlaid character displays.

Monochrome video display standard, with 7-level gray scaling (color
optional).

Detached full ASCII character set keyboard with cursor control keys,
hexadecimal pad, and 16 function keys.

Mass storage subsystem providing both 5-1/4" floppy disk and 5-1/4"
Winchester disk storage units.

Floppy disk
IM-byte unformatted capacity (655K-byte formatted)

Winchester disk

Choice of: (a) 6.38M-byte unformatted capacity (5M-byte formatted)
(b) 19.1M-byte unformatted capacity (15M-byte formatted)
Card cage options for feature expansion capability.

Choice of: (a) Five I/0 Channel card cage slots (with 6.38M-byte
Winchester option)

(b) Five VMEbus card cage slots with VMEbus backplane,
plus four I/0 Channel slots (with 19.1M-byte
Winchester option)

Conformance to ergonomic standards applicable to video display and
keyboard.

TENbug firmware-resident debug/monitor package.

Firmware-resident power-up/reset and disk-resident module diagnostic

VERSAdos real-time multitasking operating system with M68000 macro
assembler, plus tools and utilities.

Capability of hosting hardware development tools.
- HDS-400 for M68000 family 16/32-bit emulation
- HDS-200 for M6800 family 8-bit emulation

- Bus state analyzer for logic analysis functions

1-3

1.3 SPECIFICATIONS

Table 1-1 lists the specifications for the VME/10.

TABLE 1-1. VME/10 Microcomputer System Specifications
CHARACTERISTIC SPECIFICATION
Microprocessor MC68010
MPU clock frequency 10 MHz

Word size
Data
Address

Memory address capability

Bus standard
Clock frequency
Bus cycle time
Interrupt control
Bus arbitration
Data
Address
Control

Temperature
Operating
Storage

Relative humidity

Physical dimensions

l— ’ 8" r 16"b1t
24-bit

16M bytes (8 bits/byte)

VMEbus

‘16 MHz

200 ns (min.)

7-level priority
4-level daisy-chained
l6-bit

24-bit

Asynchronous

10° to 40° C
-40° to 60° C

20% to 80% (non-condensing)

Chassis & monitor Keyboard

Length 22.8 in. (57.9 cm) 8.3 in. (21.1 cm)

Width 19.0 in. (48.3 cm) 19.0 in. (48.3 cm)

Height 20.0 in. (50.8 cm) 2.0 in. (5.1 cm)
Weight 50 lbs. (23 kg) 5 1lbs. (2.3 kg)

Power requirements

(switching power supply) 90-132 vac, 47-63 Hz, 500 W

180-264 vac, 47-63 Hz, 500 W

1.4 EQUIPMENT SUPPLIED

Table 1-2 1lists the part number and description for the standard system

configurations.
TABLE 1-2, Standard System Configuration
PART NUMBER DESCRIPTION
M68K101-1 VME/10 Microcomputer System, including the MC68010 Microprocessor

Unit, MC68451 Memory Management Unit, 384K bytes dynamic RAM,
655K-byte (formatted) 5-1/4" floppy disk unit, S5M-byte
(formatted) 5-1/4" Winchester disk unit, 15-inch monochrome video
display, and full ASCII keyboard with cursor control keys,
hexadecimal keypad, and 16 user functional keys. For 115 Vac, 60
Hz operation.

Expansion card cage incorporates five slots for single wide
I/Omodule cards, plus ribbon cable and connectors to provide the
I/0 Channel interface functions to each card slot.

System software includes the VERSAdos operating system, plus
M68000 Family Structured Macro Assembler, Symbolic Debugger, CRT
Editor, and Linkage Editor. A comprehensive diagnostics package
is also included. The software is resident on the Winchester
hard disk.

System firmware incorporates (a) power-up self-test function, (b)
disk bootstrap loader, and (c) TENbug Debug/Monitor package.

M68K102B1 Same as M68K101-1, except as follows:
. Expansion card cage provides five slots for double format
VMEmodule cards, plus 5-position VMEbus backplane at the
rear of the card cage. Also includes four slots for single
wide I/Omodule cards, with necessary cabling and
connectors to provide the I/O0 Channel interface to each
card slot.
. 15M-byte (formatted) 5-1/4" Winchester disk unit replacing
5M-byte unit in M68K101-1) .
M68K101-2 Same as M68K101-1, but for 230 Vac, 50 Hz operation.
M68K102B2 Same as M68K102Bl, but for 230 Vac, 50 Hz operation.

1.5 I/0 CHANNEL AND VME EQUIPMENT OPTIONS

Table 1-3 lists the part number and description for the optional equipment.

TABLE 1-3. Optional Equipment

PART NUMBER DESCRIPTION

Modular expansion options - VMEbus

MVME200 64K dynamic RAM with byte parity

MVME201 256K dynamic RAM with byte parity

MVME210 Static ROM/RAM module

MVME300 High performance IEEE-488 GPIB Controller with DMA

Modular I/0 expansion options - I/0 Channel

MVME400 Dual RS-232C serial port

MVME410 Dual 16-bit parallel port (see NOTE)
MVME420 SASI adapter

MVME4 35 Buffered 9-track magnetic tape adapter
MVME600 12-bit analog input module

MVME601 le—channel expander for MVME600
MVME605 12-bit analog output module

MVMEG10 Opto-isolated 120V/240V ac input
MVME615/616 Opto-isolated 120V/240V ac output
MVME6 20 Opto-isolated 60 Vdc input

MVME625 Opto-isolated 60 vdc output

MVME935 Remote I/0 Channel extender cable connection module

Remote I/0 Channel modules

M68RAD1 Remote intelligent analog conversion module

M68RIO1 Remote I/0 solid state relay module

NOTE: This module recommended for parallel printer interface port
applications with the VME/10 system.

1-6

1.6 SYSTEMS DEVELOPMENT AND INTEGRATION

The initial stages of developing a microprocessor-based system normally involve
two parallel, rather independent, efforts. One is the hardware design -- the
other the software design.

The VME/10, when used as the host in conjunction with Motorola's 1line of
hardware development stations, simplifies the design process because of its
ability to unite the hardware and software development processes throughout the
development cycle.

The hardware development station provides a complete hardware and software
development system for Motorola's families of microprocessors. Two major
factors contribute to the usefulness of the hardware development station as a
systems development tool. The first is its ability to serve as a fully
functional substitute for the selected microprocessor or microcomputer in the
target system. When plugged into the socket on the prototype hardware, the
hardware development station provides efficient testing of hardware as well as
software. The second factor is its ability to interface with Motorola's
Real-Time Bus State Analyzer (BSA), which speeds the debugging process and
allows program code optimization. See Figure 1-2.

The BSA is a development tool which allows simultaneous monitoring of different
points in a system. Interfacing through the system bus or the MPU bus, the BSA
tracks events occurring on each line of the bus, storing the information for
later analysis and interpretation.

The emulator can be configured and software run prior to availability of
prototype target system hardware. This allows an early start on the debugging
process. As hardware changes occur, software updating and debugging are readily
accomplished. Moreover, with the hardware development station, it becomes
economically feasible to test alternate design approaches to determine the best
solution.

TARGET
\ SYSTEM
\ BOARD

SOCKET

FIGURE 1-2. Typical VME/10 Microcomputer System Development Integration

1.7 GENERAL DESCRIPTION
The VME/10 basic system consists of three assemblies:

. Control unit chassis
. Display unit
. Keyboard

1.7.1 Control Unit Chassis
The control unit chassis, as shown in Figure 1-3, provides the housing for:

. System control module

. Mass storage subsystem, consisting of floppy and Winchester disks
. Expansion card cage

. Power supply

. Cooling fan

. Operator panel

VMEmodule
l«——— CARD CAGE

POWER FAN /
SUPPLY

1/Omodule
CARD CAGE
/

OPERATOR
PANEL

MINI
WINCHESTER
DRIVE

WINCHESTER/FLOPPY
CONTROLLER
MODULE

FIGURE 1-3. Control Unit Chassis

1-8

1.7.2 System Control Module

The system control module,

VME/10,

consists of two boards -- the processor/MMU board and
graphics/interface board. See Figure 1-4.
* USABLE AS SYSTEM
(DBPUW) DRAM IF GRAPHICS
KEYBOARD | UNIT NOT BEING USED
____________ L A Y _
SYSTEM CONTROL
MODULE - GRAPHICS
DRAM*
DISPLAY SEﬁIﬁV
CONTROLLER
¥ MC6845 \ @ 1384K
MC68010 KEYBOARD CHARACTER PIXEL BYTES
MO 51 CONTROLLER <> DISPLAY GRAPHICS DUAL
MMU MC68661 RAM CONTROL CONTROL
8K BYTES
STATIC @
LOCAL BUS «
o
(=]
45 <> 2
TIME-OF-
110 BOOT-STRAP' DAY CLOCK VMEbus
CHANNEL SELF-TEST, W/BATTERY INTERFACE
INTERFACE DEBUG ROM BACKUP
—— | e e e e e e e e e . . e . — —— G —— —— — —— e d
WINCHESTER
/O CHANNEL CONTROLLER
MODULE
1/0module | VMEmodule
CARD CAGE ' CARD CAGE
FIGURE 1-4. VME/10 Microcomputer System Block Diagram

Processor/MMU Board

which contains the central intelligence of the

the

The combination of the MC68010 MPU and MC68451 MMU provides processing power
sufficient to permit seéeveral development tasks to proceed simultaneously --
editing, program development, system debugging -- with full protection for each
This fundamental processor/memory architecture also provides designers
with the protection features required in multitasking OEM systems where security

task.

and protection of both programs and data are essential.

The Processor/MMU board

contains one MC68451 MMU device which provides up to 32 separate program/data
segments and three extra sockets into which additional MMU devices may be
optionally installed to allow up to 96 additional segments.

Graphics/Interface Board

The graphics/interface board (VMECl) contains the major elements of high-speed
semiconductor memory in the system, plus the graphics subsystem and interfaces
to various off-board devices. The graphics/interface board incorporates the
following features:

Qe

b.

e

£.

384K bytes RAM - utilizing 64K X 1 HMOS RAM technology for operating
system, support software, user programs, and graphics subsystem display
buffer storage. (See item i for detail on the graphics subsystem.) For
increased performance and minimum contention, the on-board RAM is
multi-ported to allow shared access from the local on-board bus, the
VMEbus, and the graphics controller.

16K bytes ROM/PROM/EPROM - used for bootload and test and diagnostic
routines for debugging and system start-up and control.

Interrupt handler - allows 22 sources of interrupts to the MC68010
Microprocessor.

Time-of-day clock (MC146818) - an 8-bit real-time clock including 50
bytes of general-purpose RAM for saving critical information. Both the
clock and RAM are battery backed up, allowing up to five days of data
retention with fully charged batteries at power down.

Keyboard interface (MC68661) - uses RS-422C type buffers (multi-drop,
5-volt, differential communication 1line) to communicate with the
keyboard.

Local on-board bus - provides communication between the MPU, ROM, RAM,
CRT controller, keyboard interface, battery backed-up time-of-day clock,
I/0 Channel, and the VMEbus. This architecture allows the on-board
processor to continue operating at full speed, while other (optional)
VMEbus masters operate simultaneously.

I/0 Channel interface - links the local on-board bus to the I/0 Channel
cable for communication to the mass storage subsystem and any optional
I/0 cards installed.

Industry-standard VMEbus compatibility - is supported by three functions:

1. The VMEbus interface which provides the data and address path from
the on-board MPU via the local bus to the VMEbus to allow VMEbus
use in a system requiring additional off-board resources such as
additional memory, processors, or intelligent device controllers.

2, The VMEbus arbiter which arbitrates all four bus request priority
levels, with operation transparent to software.

3. The VMEbus requester which is used to gain access to the resources
on the VMEbus. Bus requests can be made either indirectly
(software transparent) or directly by specific request through
corresponding status and control registers under program control.
The associated VMEbus interrupter logic permits the MPU to place
an interrupt on one of the seven VMEbus interrupt request lines.
The related interrupt handler can be software configured to
respond to any subset of the seven VMEbus interrupt request lines,
thus allowing several boards with interrupt handlers to respond to
different interrupt levels from the VMEbus.

1-10

i. Graphics Subsystem -~ provides efficient graphics support hardware at low
cost.

The video graphics subsystem generates all video and display synchronization
signals required by both monochrome and color display units. Initially, the
VME/10 incorporates a monochrome video display.

Fundamentally, the VME/10 displays characters in a 25-line by 80-column format,
or high resolution pixel graphics in an 800 x 600 pixel matrix, or a specialized
combination display of both character and pixel graphics simultaneously. Within
this basic framework, additional capabilities are provided for (a) alternate
normal resolution pixel graphics within an 800 x 300 point field, and (b) user
definition through software of specialized character sets, fonts, and display
attributes. An MC6845 CRT controller device is used by software to define the
video screen.

The 384K-byte RAM in the system control module has the dual purpose of general
software storage and graphics data storage. If no pixel graphics capability is
being used, all of the RAM on the system control module is available as system
RAM. If graphics is being used in the normal resolution mode, the graphics
display RAM is located in the high addressed 96K bytes of RAM. Alternately, in
the high resolution mode, the high addressed 192K bytes of RAM are dedicated to
graphics.

The VME/10 graphics subsystem combines separate character and graphic display
memories. The character display memory is 16 bits wide and 2K (4K optional)
deep (SF17000-SF18FFF). The 16 bits of each word are defined in Figure 1-5.

|bl5 |bl4 |bl3 |bl2 |bll |bl0 | b9 | b8 | b7 | b6 | bS | b4 | b3 | b2 | bl | bO|

One of 128 displayable
characters

Software bit 1

Red (Intensity in Monochrome)

Blue (Intensity in Monochrome)

Green (Intensity in Monochrome)

Inverse Video

Underline

Blink

Non-Display

Software bit 2

FIGURE 1-5. Display Memory Word Format Definition

1-11

The character generator RAM is initialized with the ASCII character definitions,
but can be modified by the user to define alternate special symbols required by
the application. The font is 8 X 16 in a 10 X 24 character field for the high
resolution monochrome display, and 8 X 10 in a 10 X 12 character field for the
normal resolution/color display.

Two modes of pixel graphics operation are available on the VME/10 -- the group
access mode and the pixel access mode. The application determines the most
appropriate mode to use. The group access mode utilizes three separate
contiguous banks of memory. Each bank represents a primary color for color
applications, or an intensity level for monochrome applications. The graphics
display buffer RAM block in the memory map is organized so that the first third
of the graphics RAM location is bank 1, the second third is bank 2, and the
third is bank 3. This organization allows the MPU to change 8 or 16 contiguous
pixels on the screen at one time in one color/intensity bank. This mode is
particularly useful for drawing bar graphs, color filling an object, or blanking
the screen.

The graphics RAM is accessible in another mode called the pixel access mode. In
this mode, read/write hardware exists to allow the processor the ability to
change one pixel at a time (per memory cycle) in all three banks. In this mode,
the processor uses only word accesses, and writes a special "pixel access word".

The organization of the pixel access word is as shown in Figure 1-6. The
address range is $E00000-SEFFFFF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| | | | | | MASK1 | MASK2| MASK 3| | | | | | BANK1 | BANK2 | BANK3 |

FIGURE 1-6. Pixel Access Word Format Definition

The pixel access mode is oriented toward drawing lines or changing a portion of
a display. The mask bits allow the user to avoid disturbing the contents of a
given plane(s) while changing the contents of another plane(s). This technique
minimizes the software design effort required and improves system performance.
It further eliminates the necessity to rewrite data into bank addresses when the
data remains unchanged.

Mass Storage Subsystem

The mass storage subsystem consists of a disk controller board, plus one 5-1/4
inch floppy disk drive unit and one 5-1/4 inch Winchester disk drive unit. The
floppy disk drive provides storage of 1.0M bytes unformatted (655K byte
formatted) capacity, incorporating reliable dual-density, dual-sided 96
tracks/inch (TPI) technology. The associated Winchester disk drive unit is
available in either of two storage capacities, depending on the specific VME/10
model:

Option #1 - 6.38M bytes unformatted capacity (5M bytes formatted)

Option #2 - 19.1M bytes unformatted capacity (15M bytes formatted)

1-12

Expansion Card Cage

An expansion card cage is provided with card plug-in access from the rear panel
of the control unit chassis. Either of two card cage options is installed,
deperding on the specific VME/10 model:

Option #1 - 5-slot single wide card cage with connectors and ribbon cable
installed to make the I/O Channel available in each of the five
card locations. This card cage is standard with the 6.38M-byte
Winchester disk model of the VME/10.

Option #2 - Combination VMEbus and I/0 Channel card cage, with 5-slot VMEbus
backplane, accommodating up to five double wide VMEmodule
boards, plus up to four single wide I/Omodules. All necessary
I/0 Channel cabling and connectors are installed to serve the
four I/0 Channel card slots. This card cage is standard with
the 19.1M-byte Winchester disk model. Refer to Figure 1-7.

These card cage options permit convenient system expansion and customization
through addition of I1/0 Channel and/or VMEbus compatible cards. Common
applications are additional global system memory, serial and parallel ports,
analog conversion functions, and an IEEE-488 interface to intelligent
instrumentation.

VMEmodules

I/Omodules

FIGURE 1-7. VMEbus and I/0 Channel Module Expansion Card Cage Options

1-13

1.7.3 Display Unit

The standard video display is a 15-inch (diagonal) monochrome unit with
antiglare, P39 (green) phospor screen. The standard ASCII character set with
8 X 10 characters with lowercase descenders in a 10 X 12 font is used over a 25
line X 80 character display in normal mode. Optionally, 800 X 600 pixel high
resolution graphics, 800 X 300 pixel normal resolution graphics, or a
combination of characters and graphics may be displayed.

The character set and attributes displayed can be changed by altering the
contents of the character/attribute static RAM. Characters or individual pixels
can be displayed in any of seven levels of the gray scale on the monochrome
display.

A color display monitor of the same size is a planned option.

The display unit is accommodated by a tilt and swivel stand that is mounted to
the top of the control unit chassis. The screen is tilted by pressing down at
the bottom edge of the screen enclosure; therefore, it cannot be inadvertently
moved by leaning on the front top of the screen. This configuration conforms to
all ergonomic standards in order to increase user comfort and productivity.

1.7.4 Keyboard

The keyboard is connected to the control unit chassis by a serial link, using a
coiled telephone cable with quick disconnect "modular" connectors. The keypad
consists of a full ASCII character set with interchangeable keycaps, 16 function
keys, a 7-key cursor/tab control pad, and a hexadecimal keypad. The keyboard is
also designed to conform to all ergonomic design principles.

1-14

1.8 VERSAdos OPERATING SYSTEM AND DEVELOPMENT TOOLS

To achieve most efficient use of the varied system resources provided by the
VME/10, efficient system control and management software is required. This need
is met by the VERSAdos operating system and its related family of development
tools and utilities for the M68000 and M6800 MPU families. VERSAdos
incorporates a modular, multilayer design supporting a variety of application
enviromments, and is especially well suited to real-time control system and
applications. Because it provides a convenient, friendly interface between the
user and the system resources, including a wealth of development support
software, VERSAdos has emerged as the operating system environment of choice for
increasing numbers of system developers who are incorporating the Motorola 8-
and 16-bit microprocessor families into various end applications. VERSAdos is
particularly well suited to providing a common host/target environment, thereby
minimizing the task of system integration.

As packaged with the VME/10, the complete basic VERSAdos operation environment
includes, in addition to the basic operating system, an M68000 family structured
macro assembler, symbolic debugger, CRT-oriented text editor, and M68000 linkage
family editor. A diagnostics package is also provided for use in helping to
isolate suspected hardware system problems. This software is resident on the
Winchester hard disk.

Figure 1-8 illustrates the VERSAdos operating system and related utility
programs.

1.8.1 VERSAdos Operating System

VERSAdos is a multitasking, multiprogramming system executing on the MC68010 MPU
in the VME/10. Programs execute in dynamically-assigned, variable-length
segments with read/write privileges. Instructions and data are located in
separate memory segments.

The heart of VERSAdos is the RMS68K Real-Time Executive which provides task
services and supports memory management. It also allows inter-task
communication, provides exception monitor facilities, and handles system
interrupts.

The Input/Output (I/0) subsystem of VERSAdos supports device independence, logic
1/0, overlapped computation, and physical I/0. Both sequential and random
record access are supported by VERSAdos.

The powerful VERSAdos file management system supports three file structures —-
contiguous, sequential, and indexed sequential. Other file system features
include disk and file protection, shared file access, dynamic file allocation,
and fixed or active protection.

1.8.2 Resident Structured Assembler

The M68000 resident structured macro assembler translates source statements into
relocatable machine code, assigns storage locations to instructions and data,
‘performs auxiliary assembler actions designated by the programmer, and
optionally produces a cross reference listing. The M68000 resident assembler
includes macro and conditional assemnbly capabilities, plus certain "structured
programming" control structures such as "for, repeat, while" loops and "if-then,
if-then-else" conditional branches.

1-15

9T-1

VERSAdos OPERATING ENVIRONMENT

I

|
VERSAdos

REAL-TIME
MULTITASKING
OPERATING SYSTEM*
I

I
| I | | I I I
I I I I I I I

Optional M68000 Symbolic CRT Linkage Optional Diagnostics
Utilities Macro Debugger* Editor* Editor* Language Package*
Assembler* Support
for
M68000

I

I

| - M6800 Assembler
| - M6804 Assembler |

| - M6805 Assembler |

| - M6809 Assembler [

| - Data I/0 PROM Programmer Interface | | |
|

|

I

|

|

- M68000 Fast Floating Point | | I I
- HDS200 Interface

- HDS400 Interface Pascal FORTRAN MC68000/68010 BASIC
- BSA Interface Compiler Compiler Independent Compiler
- PDP-11 to M68000 (Planned) Software (Planned)

Assembly Language Translator

*Included on mass storage media.

FIGURE 1-8. VERSAdos Operating System and Related Utility Programs

1.8.3 Symbolic Debugger

The symbolic debugger (SYMbug) program is used to debug other programs whose
source code is written in Motorola's Structured Macro Assembler for execution on
the M68000 Family MPU's. The language processors, in cooperation with the
linkage editor, supply information to SYMbug. This permits the user to describe
the debugging requirements to SYMbug in terms close to the language in which the
source program was written. S¥Mbug allows the user to debug in symbolic
terminology. SYMbug allows the user to perform the following:

. Examine, insert, and modify program elements such as instructions, numeric
values, and coded information (i.e., data in all its representations and
formats) . .

. Control execution, including the insertion of breakpoints into a program
and request for breaks or changes in elements of data. :

. Trace execution by displaying information at designated points in a
program.

. Search programs and data for specific elements and sub-elements.

. Create macro commands allowing user-defined formats and commands.

1.8.4 CRT Text Editor

The CRT-oriented Text Editor provides the capability to create and modify source
programs. The editor supports both command and page editing, utilizing the
cursor control keys, control characters, and function keys of the VME/10
keyboard chassis to insert, alter, or delete characters and lines within a user
text file.

1.8.5 Linkage Editor

The Linkage Editor provides the capability of converting one or more separately
compiled object units into a loadable object module file. The editor determines
segment attributes, calculates address space, searches libraries, resolves
external references, relocates object code, and issues error messages. At the
end of a linkage process, the editor prints a report that contains a module map,
a table of externally defined symbols, and any unresolved or multiply defined

symbols.

1.8.6 Diagnostic Package

The diagnostic package verifies the overall functionality of the VME/10 by
exposing it to a set of off-line tests. The package provides two levels of
diagnostics. The first level is the firmware-resident, power-up/reset test.
The second level is comprised of disk-resident diagnostics for more extensive
hardware testing. The governing guideline for diagnostics is to provide a
comprehensive test package that will isolate a malfunction to a functional block
and at least down to the faulty module. For detailed information, refer to the
VME/10 Microcomputer System Diagnostics Manual (M68KVSDM) .

1-17

1.9 SYSTEM MEMORY MAP

Figure 1-9 depicts the l6-megabyte system memory map.

ADDRESS
$000000 SYSTEM RAM AFTER UNSWAP GOES FROM 0 TO 1
SOOFFFF SYSTEM ROM AFTER POWER ON RESET

$010000 SYSTEM RAM AND GRAPHICS RAM

SOSFFFF (SEE FIGURE 1-10)

ggggggg RESERVED FOR RAM EXPANSION
géggggg VMEbus (see NOTE)

ggggggg GRAPHICS - PIXEL ACCESS ADDRESSING BLOCK
SF00000 SYSTEM ROM AFTER UNSWAP BIT GOES FROM 0 TO 1
SFOFFFF SYSTEM RAM AFTER POWER ON RESET

ggigggg 1/0 (SEE FIGURE 1-11)
SF1E000

SFFFFFF VMEbus

3.

NOTE: The RAM (384K bytes) on the System Control Module can be accessed
by off-board devices via the VMEbus. The base address of the dual-
ported RAM on the VMEbus is $D00000-DSFFFF.

FIGURE 1-9. VME/10 System Memory Map

HIGH RESOLUTION GRAPHICS

gg]égggg SYSTEM RAM
zgggggg GRAPHICS AND SYSTEM RAM
| NORMAL RESOLUTION GRAPHICS
foiiees —
s048000 enicS > SyoTEt s

FIGURE 1-10. High and Normal Resolution Graphics

1-18

ADDRESS

D15-D08 UPPER DATA

| DO7-DO0 LOWER DATA

$F10000

$F13FFF TLLEGAL
$F14000 | CHARACTER GENERATOR
$F14FFF | RAM
$F15000l | ATTRIBUTE GENERATOR
SF15FFF I RAM
——————— —t ILLEGAL |
e o
ggigggg DISPLAY MEMORY
o -
$F19F00l VERTICAL GRAPHICS CURSOR REGISTER
$F19F02: HORIZONTAL GRAPHICS CURSOR REGISTER
$F19F05l ILLEGAL | CONTROL REGISTER 0
SF19F07 ILLEGAL | CONTROL REGISTER 1
$F19FO9' ILLEGAL | CONTROL REGISTER 2
$F19FOB| ILLEGAL | CONTROL REGISTER 3
$Fl9F0DI ILLEGAL | CONTROL REGISTER 4
$F19FOF' ILLEGAL | CONTROL REGISTER 5
SFIOF11 ILLEGAL | CONTROL REGISTER 6
$F19Fl3l ILLEGAL | GRAPHICS OFFSET REGISTER
seism reserD
$F19F85: ILLEGAL | STATUS REGISTER
ggigﬁg RESERVED

FIGURE 1-11. VME/10 I/O Memory Map (Sheet 1 of 2)

1-19

e

ADDRESS D15-D08 UPPER DATA | D07-DO0 LOWER DATA
$F1A021 ILLEGAL ADDRESS REGISTER MC68A45
SF1A023 INTERNAL REGISTER FILE
SF1A025
SF1A02F ILLEGAL
$F1A031 TX/RX DATA REGISTERS
SF1A033 ILLEGAL STATUS REGISTER MC2661
SF1A035 MODE 1, MODE 2 REGISTERS
SF1a037 COMMAND REGISTER
SF1A039
SF1A07F ILLEGAL
SF1A081 SECONDS REGISTER
$SF1A083 SECONDS ALARM REGISTER
SF1A085 MINUTES REGISTER
SF1A087 MINUTES ALARM REGISTER
SF1A089 HOURS REGISTER
$FlAQSB HOURS ALARM REGISTER
SF1A08D DAY OF THE WEEK REGISTER MC146818
SF1AQ8F DAY OF THE MONTH REGISTER
SF1A091 MONTH REGISTER
SF1A093 YEAR REGISTER
SF1A095 REGISTER A
SF1A097 REGISTER B
SF1A099 REGISTER C
SF1A09B REGISTER D
SF1A09D ILLEGAL BATTERY BACKED UP RAM MC146818
SF1AQOFF TIME OF DAY CLOCK
SF1A100
SF1ATFF ILLEGAL
SF1A800
SF1AFFF DMA/MMU
SF1B000
SF1BFEF ILLEGAL
SF1C000 1/0 CHANNEL
SF1DFFF ILLEGAL (SEE NOTE)

$SF1CICl1-$F1C1DF.
modules.

NOTE: The standard SYSGEN program dictates that if a printer is included,
the MVME410 module should be addressed at S$F1ClE1-SF1ClFF.
if there are serial ports, the MVME400 module should be addressed at

These are recommended addresses reserved for the

Similarly,

FIGURE 1-11. VME/10 I/O Memory Map (Sheet 2 of 2)

1-20

CHAPTER 2

HARDWARE/SOFTWARE SYSTEM STARTUP

2.1 INTRODUCTION

This chapter provides system initialization, media backup procedures, and system
performance verification for the VME/10. Commands and other input/output (I/0)
are presented in this manual in a modified Backus-Naur Form (BNF) syntax.
Certain symbols in the syntax are not to be typed; their usage is restricted to
the syntactic structure. These symbols and their meanings are as follows:

<> The angular brackets enclose a "syntactic variable", that is
replaced in a command line by one of a class of items it represents.

| This symbol indicates that a choice is to be made. One of several
items, separated by this symbol, should be selected.

[1] Square brackets enclose an optional item. The enclosed item may
occur zero or one time.

[1... Square brackets followed by periods enclose an item that is
optional/repetitive. The item may appear zero or more times.

Operator entries are shown underscored for clarity (the underscore 1is not
typed), and are to be followed by pressing the carriage return key (<--'). When
a carriage return is the only required entry, it is shown as (CR).

2.2 SYSTEM POWER-UP

After the VME/10 has been correctly installed as directed in the VME/10
Microcomputer System Installation Guide, M68KVSIG, turn on the system by setting
the 0/1 rocker switch on the chassis to the 1 position.

2.3 POWER-UP/RESET SELF-TEST

When the VME/10 is powered up, a firmware-resident power-up/reset (PWRT)
self-test is performed to verify the functionality of the system resources
necessary to boot and initiate the operating system. During the self-test,
messages regarding the progress and results of the self-test are displayed. The
PWRT takes about 5 seconds to execute, but note that an additional several
seconds is required for the Winchester media to spin up to speed before the PWRT
is performed. The total length of time required may be up to a minute.

Upon completion of the PWRT after power-up, control of the system is given
either to TENbug or to VERSAdos, depending upon the position of the KYBD LOCK
switch (key vertical = locked = VERSAdos, key horizontal = unlocked = TENbug)

The PWRT self-test may also be initiated by the operator with the RESET and
ABORT pushbuttons (provided the KYBD LOCK key switch is in the horizontal,
unlocked position) when used in the following sequence:

a. Press and hold RESET pushbutton.
b. Press and release ABORT pushbutton.
c. Release RESET pushbutton.

The VME/10 then enters TENbug.

2.4 SYSTEM INITIALIZATION
The VME/10 may be initialized in either of two modes:

a. VERSAdos operating system
b. TENbug (operating system media not required)

NOTE

The VERSAdos operating system and supporting software is
resident on the Winchester hard disk. After the system
has been initialized, backup copies of this software should
be made and stored for safekeeping. This procedure is given
in paragraph 2.9, Backup Procedure.

Prior to performing these procedures, refer to Chapter 3 for identification and
function of the VME/10 switches and keys.

2.4.1 VERSAdos Operating System

The VERSAdos operating system may be entered by either of two methods. Method 1
is used when the system is initially powered up. Method 2 is used after the
system has entered TENbug.

Method 1 (enter VERSAdos operating system at system initial power-up)

NOTE

When using the power-up boot process, described as follows,
VERSAdos is booted from device 0, controller 0. To boot a
different file or boot from a different device/controller,
the boot must be initiated from TENbug. Refer to TENbug's
BO command described in Chapter 9.

a. On chassis operator panel, set the KYBD LOCK key switch to the locked
(vertical) position. (Note that the chassis operator panel pushbutton
switches RESET and ABORT are inoperative.)

b. Set the power switch to the on position (1). When power is applied, the
power-up/reset self-test (PWRT) is initiated. It may require up to one
minute for the disk drive to attain running speed and to perform the
self-test. The following messages are displayed on the monitor:

Power-up test in progress
Waiting for disk to spin up

c. After the self-test concludes, assuming no errors have been indicated,
the following is displayed:

Power-up test complete

2-2

d.

The VME/10 boots the VERSAdos operating system into memory from the
Winchester disk media and VERSAdos identifies itself. Unlock the
keyboard (KYBD LOCK switch in horizontal position) and press the
"uppercase lock" key (@) on the keyboard. Make the responses
indicated, using current date and time:

VERSADOS VERSION: n.nn mm/dd/yy XXXXXXXXXX
ENTER DEFAULT SYSTEM VOLUME :USER NO.=SYS:0

ENTER DATE (MM/DD/YY)=3/31/83

ENTER TIME (HR:MIN)=7:00

7:00:01 3/31/83 START SESSION 0001 USER 0

Two informative chain files, which may be modified by the user, are
executed and their messages displayed.

The operating system may have been generated with an automatic logon as
volume SYS:, user 0, and session 0001. 1In this case, current time and
date are displayed. They may be changed by the user, with the DATE and
TIME commands.

To exit the VERSAdos operating system, enter one of the following on the
keyboard: ;

=LOG OFF
14:00:00 3/31/83 END SESSION 0001 USER 0
or

=OFF
14:00:00 3/31/83 END SESSION 0001 USER 0

or
=BYE
If the power has not been turned off, VERSAdos can be reentered after

logoff by pressing the CLEAR/BREAK key and responding to the system
prompts. :

2 (enter VERSAdos operating system from TENbug)

When TENbug is running on the VME/10, ensure that the VERSAdos operating

system media is available and that the KYBD LOCK switch is in horizontal

position.

Enter BO command from keyboard to load VERSAdos from the fixed hard disk.
TENbug x.x > BO

Go to step d. of Method 1.

NOTE

When booting operating system from floppy disk drive,
enter BO 2 or BO 2,0 [<Kfilename>]. Refer to TENbug
BO command described in Chapter 9.

2.4.2 TENbug
TENbug may be entered by either of two methods. Method 1 is used when the

system is 1n1t1a11y powered up, and method 2 is used to return to TENbug from
VERSAJoS .

Method 1 (enter TENbug at system initial power-up)

a. Set the KYBD LOCK key switch to the unlocked (horizontal) position.

b. Set the power switch to the on position (1l). When power is applied, the
PWRT self-test is initiated.

c. If PWRT self-test indicates no errors, and there is no MVME400 (Dual
RS-232C Serial Port) present in the VME card cage, the follow1ng will be
displayed on the monitor:

TENbug x.x >

d. If PWRT self-test indicates no errors, and there is an MVME400 present,
the following is displayed on the monitor:

TENbug

e. Select the terminal to serve as the default console device, and depress
any key on its keyboard. The following will be displayed:

TENbug x.x >

Method 2 (enter TENbug from VERSAdos operating system)

a. When the VERSAdos operating system is running on the VME/10, TENbug is
entered by pressing the RESET pushbutton (provided the KYBD LOCK key
switch is in the unlocked (horizontal) position and the vectors in
location 0-7 have not been destroyed).

b. Go to step c. of Method 1.

2.5 DISK-RESIDENT MODULE DIAGNOSTICS

After the VME/10 has been powered up, extended tests can be performed on the
system by executing the disk-resident module diagnostics (DRMD) package. It is
recommended that the first-time user perform these extended tests to verify
system performance. For detailed information, refer to the VME/10 Microcomputer
System Diagnostics Manual, M68KVSDM.

2.6 BACKUP PROCEDURE

The software supplied on the fixed Winchester hard disk should not be exercised
until the following procedure has been performed to create a complete backup
copy. The backup version should be labeled and stored for safekeeping. Note
that when backing up from the fixed disk to floppy diskettes, several diskettes
will be required.

The following steps initialize and configure diskettes and create backup
diskettes from the fixed hard disk. User-entered responses are shown underlined
and are to be followed by a carriage return.

a. After entering VERSAdos as shown in paragraph 2.7.1, insert a
double-sided blank or scratch diskette in the floppy drive.

b. Call the INIT program and make the entries shown below:

=INIT #FD02;V
OK TO INITIALIZE #FD02 (Y/N) ? ¥
Data Density of media (S-single,D-double) D > C
DO YOU WANT TO FORMAT DISK (Y/N) ? Y -
START FORMAT
ENTER NEW VOLUME NAME VMEL
ENTER USER NUMBER 0
ENTER DESCRIPTION (MAX 20 CHARACTERS) VME/10 BACKUP
DO YOU WANT THE BOOT STRAP (Y/N) ? Y
FILE NAME IS: SYS:0000..IPL.SY
ENTER NEW NAME IF NEEDED (CR)
THE CURRENT LOAD ADDRESS IS $00000EQ0
ENTER NEW LOAD ADDRESS S$E00
DO YOU WANT A DUMP AREA (Y/N) ? N
DO YOU WANT TO VALIDATE SECTORS (Y/N)? Y
VALIDATING SECTORS B
0 BAD SECTORS ENCOUNTERED

NOTE

Because this first diskette must be bootable, the V option must be
entered on the INIT command line. When the bootstrap question is
answered with a Y, the user will be allowed to enter a LOAD address.
(The LOAD address for the VME/10 is S$SE00).

c. Call the BACKUP program to copy files from the hard disk to the floppy.
The file names are listed as the files are copied:

=BACKUP #HDOO, $FD02

STARTING FILE-BY-FILE BACKUP PROCESS

COPY ALL FILES, SELECT FILES, OR QUIT (A/S/Q) ? A
DUPLICATE FILE - OK TO COPY (Y/N/Q) ? VME1:0000..IPL.SY N
VME1:0000. .ARESTRRG.HT

VMEl:<user no.>.<catalog>.<file name>.<ext>
% QUTPUT DISK FULL ** CONTINUE (Y/N) ? N

2-5

d. Note the full user number, catalog, file name, and extension of the last
file copied.

e. Remove the diskette, label it, and set it aside.
f. Use the DISMOUNT utility:

= DISMOUNT #FD02
DISMOUNT version XXXXXX X

g. Insert another double-sided blank or scratch diskette into the floppy
drive.

h. Initialize and format the floppy and continue backing up the hard disk
as follows. (Note that BACKUP's S option must be used to back up these
successive floppies.).

=INIT #FDO02
OK TO INITIALIZE #FD02 (Y/N) ? ¥
Data Density of media (S-single,D-double) D > C
DO YOU WANT TO FORMAT DISK (Y¥/N) ? Y
START FORMAT
ENTER NEW VOLUME NAME VME2
ENTER USER NUMBER 0
ENTER DESCRIPTION TMAX 20 CHARACTERS) VME/10 BACKUP
DO YOU WANT THE BOOT STRAP (Y/N) ? N
DO YOU WANT A DUMP ARFA (Y/N) ? N
DO YOU WANT TO VALIDATE SECTORS (Y/N)? Y
VALIDATING SECTORS B
0 BAD SECTORS ENCOUNTERED
=BACKUP #HDO0O,#FD02;S
STARTING FILE-BY-FILE BACKUP PROCESS
COPY ALL FILES, SELECT FILES, OR QUIT (A/S/Q) ? A
ENTER RESTART FILENAME (INCLUDING USER NUMBER)

<user no.>.<catalog>.<filename).<ext> (Enter full file name of

WE2:<user no.>.<catalog>.<filename>.<ext> last file copied to
previous diskette, but

. do not enter the volume

. name. The files will be

. listed as they are
copied.)

i. Each time the ** OUTPUT DISK FULL ** message appears, enter N and repeat
the procedure from step d. above until all files are copied from the
hard disk (system will return to the VERSAdos "=" prompt without issuing
the ** OUTPUT DISK FULL ** message). Use a different volume name for
each diskette.

Note that in the preceding examples, the utility DISMOUNT is not required.
However, for most routine operations with diskettes that have been initialized
previously (have a volume name), the diskettes must be MOUNTed and DISMOUNTed.
For examples of using BACKUP, INIT, MOUNT, and DISMOUNT for routine copying of
files on the fixed disk to floppy diskettes, and from floppy diskettes to the
fixed disk, refer to Chapter 4 or to the VERSAdos System Facilities Manual,
M68KVSF .

CHAPTER 3

CONTROLS AND INDICATORS

3.1 INTRODUCTION

This chapter provides control and indicator descriptions for the VME/10 chassis,
display unit, and keyboard.

3.2 CHASSIS

The chassis has an operator panel (Figure 3-1) located at the bottom left corner
on the front of the chassis.

0|1

KYBD LOCK RESET ABORT

FIGURE 3-1. Operator Panel

The controls perform the following functions:

de.

0 1 | - The power on/off rocker-arm switch is used to turn on power
to the VME/10. The '0' represents the off position; the 'l' represents
the on position.

KYBD LOCK - The KYBD LOCK key switch controls a bit in a register which
is monitored by TENbug. When the key switch is in the locked position,
the VME/10 enters the VERSAdos operating system. When the key switch is
in the unlocked position, the VME/10 enters TENbug. Also, when the key
switch is in the locked position, the keyboard keys and the front panel
pushbutton switches RESET and ABORT are inoperative. This feature
provides protection from inadvertent interrupts during system usage.

RESET - When this momentary-action pushbutton switch is pressed, it
resets the VME/10 logic circuits. If the VME/10 is in the VERSAdos
operating system, TENbug is entered by pressing RESET (provided the KYBD
LOCK key switch is in the unlocked position).

ABORT - When this momentary-action pushbutton switch is pressed, the
VME/10 enters TENbug, but the VME/10 logic circuits are not reset. After
an abort, the user can enter 'G' to continue execution of the current
program prior to the abort.

There are two indicators located at the front of the chassis. When either the
Winchester or floppy disk drive is accessed, the respective indicator becomes
illuminated.

3-1

3.3 DISPLAY UNIT

The display unit has a rear panel which contains a rotary adjustment control
(*D) used for varying the screen intensity.
3.4 KEYBOARD CONSOLE
The keyboard console is partitioned into four basic functional groups:
a. Typewriter keyboard
b. Cursor control keypad

c. Hex/edit keypad
d. User function keys (F1-F16)

NOTE

The exact action taken when a key is depressed depends upon
the port configuration and the program communicating to the
keyboard display unit. Refer to the Data Management
Services Manual (RMS68KIO) for detailed information.

Refer to Figure 3-2 for keyboard assembly.

3-2

(3

AA . MY

. e B

OTOROLA

FIGURE 3-2.

Keyboard Assembly

3.4.1 Mode Keys

There are six mode keys on the keyboard console. The mode keys and their
functional respective locations are defined as follows:

a. CTRL
b. SHIFT

c. CAPS LOCK

d. ALT

e. PAD/FUNCTION
f. CLACKER CONTROL

Located on the typewriter
keyboard keypad

-_w_ Located on the cursor control keypad

The six mode keys and their functions are defined in Table 3-1.

TABLE 3-1. Mode Keys

FUNCTION

KEY

FUNCTION PERFORMED WHEN DEPRESSED

Control (1)

Shift (1)

Uppercase (1)
lock

Alternate

Pad/function
control

Clacker
control

CTRL

ALT

PAD/FUNC

W

Enables keyboard generation of ASCII control
characters. Depress and hold the control key, then
depress the specified key. This action generates a
control <character <code which performs the
respective function.

Enables typewriter keyboard generation of shifted
characters (including uppercase alphabetic
characters). Also is involved in generation of
character codes for the 16 user function keys, and
the CLEAR/BREAK and RESET/ESC function keys located
on the cursor control keypad. Depress and hold the
shift key, then depress the selected key. This
action generates the shifted character code.

Enables the typewriter keyboard generation of all
capital letters. Depress the uppercase lock key
(remains down), then depress the selected
alphabetic key. The uppercase lock key remains
down until it is again depressed.

Not implemented.

Controls the mode for the hex/edit keypad (refer to
paragraph 3.4.3). When the key 1is depressed
(remains down), the hex/edit keypad functions in
the hexadecimal mode. The PAD/FUNC key remains down
until depressed again. When the key 1is not
depressed, the hex/edit keypad functions in the
edit mode.

When released (remains up), a 'soft click' is
generated each time a key 1is depressed. The
clacker control key remains up until it is
depressed again.

NOTE: (1) If none of the above modes is activated, the keyboard is con-

sidered to be in the normal mode, as referenced in Table 3-2.

3-4

3.4.2 Typewriter Keyboard

The typewriter keyboard contains the following numerics, alphabetic, symbol and
special character selection:

a. Numerics (0-9)

b. Alpha characters (A-Z)

c. Symbol characters

d. Special characters (delete, carriage return, and forward tab)

Table 3-2 lists the characters and codes generated when a key is depressed when
the typewriter keyboard is in a specific or multi-mode of operation.

3.4.2.1 Numerics (0-9). Numerics are obtained by depressing the respective
numeric key when in the normal mode. Refer to Table 3-2.

3.4.2.2 Alphabetic Characters (a-2z). Lowercase alphabetic characters are
obtained by depressing the respective alphabetic key when in the normal mode.
To obtain uppercase characters, depress the CAPS LOCK key (remains down) or
depress ard hold the shift key, then depress the respective alpha key. Refer to
Table 3-2.

3.4.2.3 Symbol Characters. Symbols are obtained by depressing the respective
symbol key when in the normal or shift mode. Refer to Table 3-2.

3.4.2.4 Special Characters. The special character keys are defined as follows:

a. The DEL (delete) key erases the last character typed on the line.

b. The <--! (carriage return) key moves the cursor to the beginning of the
next line and signals the end of a line typed to the camputer.

c. The -->| (forward tab) key moves the cursor to the next tab position in
certain programs (e.g., the editor).

3-5

TABLE 3-2,

Standard Typewriter Keyboard Character Code

KEY DESCRIPTION NORMAL %ﬁ SHIFT CTRL
A Alphabetic A A A S0l
B Alphabetic B B B $02
C Alphabetic C C C $03
D Alphabetic D D D $04
E Alphabetic E E E $05
F Alphabetic F F F $06
G Alphabetic G G G $07
H Alphabetic H H H $S08
I Alphabetic I 1 I $09
J Alphabetic J J J $S0A
K Alphabetic K K K SO0B
L Alphabetic L L L $0C
M Alphabetic M M M $0D
N Alphabetic N N N SOE
0 Alphabetic O 0] 0 SOF
P Alphabetic P P P $10
Q Alphabetic Q Q Q $11
R Alphabetic R R R $12
S Alphabetic S S S $13
T Alphabetic T T T $14
U Alphabetic U U U $15
\% Alphabetic V \Y \' $16
W Alphabetic W W W $17
X Alphabetic X X X $18
Y Alphabetic Y Y Y $19
z Alphabetic 2 Z Z $1a

3-6

TABLE 3-2. Standard Typewriter Keyboard Character Code (cont'd)
MODE
CAPS

KEY DESCRIPTION NORMAL LOCK SHIET CTRL
~ Tilde -

! Grave accent ' '

! Exclamation point !

1 Digit 1 ’ 1 1

@ Commercial at @ $00
2 Digit 2 2 2

Number sign

3 Digit 3 3 3

S Dollar sign $

4 Digit 4 4 4

% Percent sign 3

5 Digit 5 5 5

~ Circumflex ~ S1E
6 Digit 6 6 6

Ampersand &
Digit 7 7 7

* Asterisk *

8 Digit 8 8 8

(Opening parenthesis (

9 Digit 9 9 9

) Closing parenthesis)

0 Digit 0 0 0

_ Underline _ S1F
- Hyphen (minus) - -

+ Plus sign +

= Equals = =

DEL Delete STF STF STF

-—>| Forward tab $09 $09 S09

{ Opening brace { S1B
[Opening bracket [[

TABLE 3-2. Standard Typewriter Keyboard Character Code (cont'd)

MODE
CAPS
KEY DESCRIPTION NORMAL LOCK SHIFT CTRL
} Closing brace } $1D
{ Closing bracket]]
' Apostrophe ' $1C
\ Backward slant \ \
: Colon :
; Semicolon H 7
" Double quotation "
! Single quotation ! !
<=1 Carriage return $0D $0D S0D
< Less than <
’ Comma ’ r
> Greater than >
. Period ’ .
? Question mark ?
/ Forward slant / /

NOTE: A blank entry indicates no character generated.

There are four other multi-modes available. Following are the multi-modes and
their respective character sets generated:

MODE , CHARACTER SET
CAPS LOCK AND SHIFT Same as SHIET
CAPS LOCK AND CTRL Same as CTRL
CAPS LOCK, SHIFT, CTRL Same as CTRL
SHIFT AND CONTROL Same as CTRL

3.4.3 Cursor Control Keypad

The cursor control keypad provides the following:

a. Cursor control

b. Functions: CLEAR/BREAK, RESET
C. Special character: ESC

3.4.3.1 Cursor Control.

(e.g., the editor).

The cursor control keys are used in special programs

Table 3-3 imdicates the cursor control keys and their
respective character codes and functions.

TABLE 3-3., Cursor Control Keys

CHARACTER
KEY FUNCTION CODE FUNCTION PERFORMED WHEN DEPRESSED
<— Cursor left $08 Moves cursor left one column.
-> Cursor right $0C Moves cursor right one column.
/|\ Cursor up $0B Moves cursor up one line in same column.
\[/ Cursor down SO0A Moves cursor down one line in same column.
|<=— Backward tab $DB Moves cursor left to previous tab position.
-->| Forward tab $09 Moves cursor right to next tab position.
SEL Not implemented.
CLR
TAB Not implemented.
SET
1\\ Home $COo

Moves cursor to left-most column in top line.

3-9

3.4.3.2 Functions (CLEAR/BREAK, RESET). The function keys are described as
follows:

a. The shifted value of the CLEAR/BREAK key (CLEAR) causes all positions in
the display to be filled with spaces. The cursor moves to the home
position.

b. The non-shifted value of the CLEAR/BREAK key (BREAK) generates a 'special
condition' signal which is recognized by the VERSAdos operating system
and allows the user to log on.

c. The shifted value of the RESET/ESC key (RESET) initializes the screen to

the power-on condition.

3.4.3.3 Special Character (ESC). The non-shifted value of the RESET/ESC key
(ESC) generates an ASCII escape character ($1B).

3.4.4 Hex/Edit Keypad

The hex/edit auxiliary keypad performs two modes -- hexadecimal keyboard entry
and editing functions -- which are controlled by the PAD/FUNC key (refer to
paragraph 3.4.1). The ENTER key (carriage return) generates a character code
$0D which moves the cursor to the beginning of the next line (left margin). The
ENTER key is not affected by the PAD/FUNC key.

3.4.4.1 Hexadecimal Mode. When the PAD/FUNC key is depressed, the keypad can
be used as a hexadecimal keypad utilizing characters 0-F and also a comma (,)
and a period (.).

3.4.4.2 EJit Mode. When the PAD/FUNC key is in the normal position (not
depressed) , the keypad can be used for editing purposes when in special programs
(e.g., the editor). Table 3-4 defines the editing notations and the character
codes generated.

3-10

TABLE 3-4. EJit Mode Keys
CHARACTER

FUNCTION KEY CODE FUNCTION PERFORMED

Delete character DCHR SD1 The delete character key deletes the
character on which the cursor is
positioned. The characters to the right of
the cursor on that line are moved left one
column. The right-most column becomes a
blank.

Delete line DLINE $D7 The delete line key deletes the line on
which the cursor is positioned. The lines
below the cursor are moved up. The last
line becomes blank.

PMODE Not implemented.
EOF Not implemented.

Erase to EOL $D5 The end of line key erases all positions

end of line from the cursor position to the end of the
line.

Erase to EOP $D4 The end of page key erases all positions
end of page from the cursor position to the end of the
display.

EAU Not implemented.

Insert character ICHR $DO The insert character key moves the
character wunder the <cursor and all
characters to the right on the same 1line
right one column. The character position
under the cursor becomes blank.

Insert line ILINE $D6 The insert line key moves all lines,
starting with the line on which the cursor
is positioned, down one line. The line the
cursor is on becomes blank.

TEST Not implemented.
HELP Not implemented.

3-11

3.4.5 User Function Keys (F1-F16)

There are 16 user function keys on the keyboard. A program may be written to
monitor the character values generated by these function keys and perform
corresponding functions. Refer to Table 3-5 for character values generated by
the user function keys during the normal and shift modes.

TABLE 3-5. User Function Key Character Code

FUNCTION
KEY NORMAL SHIFT
1 $A0 $BO
2 $Al $B1
3 SA2 $B2
4 $A3 $B3
5 $A4 SB4
6 $A5 $B5
7 SA6 $B6
8 $A7 $B7
9 $A8 $B8
10 $A9 $B9
11 SAA SBA
12 SAB $BB
13 SAC $BC
14 SAD $BD
15 SAE SBE
16 $AF S$BF

3-12

3.4.6 ASCII Character Set

Table 3-6 lists the ASCII character set and the methods by which each ASCII
character can be generated from the keyboard.

TABLE 3-6. ASCII Character Set

KEYBOARD IMPLEMENTATION

CHARACTER COMMENTS OF CHARACTER (1) HEX VALUE
NUL Null or tape feed 2C¢ 00
SOH Start of Heading ac 01
STX Start of Text BC 02
ETX End of Text cc 03
EOT End of Transmission D¢ 04
ENQ Enquire (who are you, WRU) EC 05
ACK Acknowledge FC 06
BEL Bell GC 07
BS Backspace <-- or HC 08
HT Horizontal Tab -->| or 1€ 09
LF Line Feed l or JC oA
VT Vertical Tab T or K€ 0B
FF Form Feed -—> or L€ oc

RETURN Carriage Return <--1, ENTER, or MC 0D
SO Shift Out NC OE
SI Shift In o¢ OF
DLE Data Link Escape pc 10
DC1l Device Control 1 Q¢ 11
DC2 Device Control 2 RC 12
DC3 Device Control 3 sC 13
DC4 Device Control 4 TC 14
NAK Negative Acknowledge u® 15
SYN Synchronous Idle Ve 16
ETB End of Transmission Block W€ 17
CAN Cancel Xc 18
EM End of Medium Y€ 19
SUB Substitute YA 1A
ESC Escape, prefix ESC or [€ 1B
FS File Separator \¢ 1c
GS Group Separator 1€ 1D
RS Récord Separator 6C . 1E
Us Unit Separator -C (hyphen) 1F
SP Space or Blank Space bar 20

3-13

TABLE 3-6. ASCII Character Set (cont'd)
KEYBOARD IMPLEMENTATION
CHARACTER COMMENTS OF CHARACTER (1) HEX VALUE
! Exclamation point 1S 21
" Quotation marks (dieresis) 'S 22
Number sign 3S 23
$ Dollar sign 4s 24
% Percent sign 5S 25
& Ampersand 78 26
' Apostrophe (acute accent, ! 27
closing single quote)
(Opening parenthesis 9S 28
) Closing parenthesis 0S 29
* Asterisk 8s 2A
+ Plus sign =S 2B
¢ (2) Comma (cedilla) ' 2C
- Hyphen (minus) - 2D
. (2) Period (decimal point) . 2E
/ Slant / 2F
0 (2) Digit 0 0 30
1 (2) Digit 1 1 31
2 (2) Digit 2 2 32
3 (2) Digit 3 3 33
4 (2) Digit 4 4 34
5 (2) Digit 5 5 35
6 (2) Digit 6 6 36
7 (2) Digit 7 7 37
8 (2) Digit 8 8 38
9 (2) Digit 9 9 39
: Colon ;S 3a
H Semicolon ; 3B
< Less than ,S 3C
= Equals = 3D
> Greater than .S 3E
? Question mark /S 3F
@ Commercial at 28 40

3-14

TABLE 3-6. ASCII Character Set (cont'd)
KEYBOARD IMPLEMENTATION
CHARACTER COMMENTS OF CHARACTER (1) HEX VALUE

A (2) Uppercase letter A AS 41
B (2) Uppercase letter B BS 42
C (2) Uppercase letter C cs 43
D (2) Uppercase letter D DS 44
E (2) Uppercase letter E ES 45
F (2) Uppercase letter F FS 46
G Uppercase letter G GS 47
H Uppercase letter H HS 48
I Uppercase letter I 1S 49
J Uppercase letter J Js 4A
K Uppercase letter K KS 4B
L Uppercase letter L LS 4C
M Uppercase letter M MS 4D
N Uppercase letter N NS 4E
0] Uppercase letter O (0 4F
P Uppercase letter P pS 50
Q Uppercase letter Q QS 51
R Uppercase letter R RS 52
S Uppercase letter S sS 53
T Uppercase letter T TS 54
U Uppercase letter U Us 55
\' Uppercase letter V Vs 56
W Uppercase letter W WS 57
X Uppercése letter X). G 58
Y Uppercase letter Y yS 59
Z Uppercase letter Z zs 5a
[Opening bracket [5B
\ Reverse slant \ 5C
] Closing bracket] 5D
~ Circumflex 6S 5E

Underline -S (hyphen) 5F

3-15

TABLE 3-6.

ASCII Character Set (cont'd)

KEYBOARD IMPLEMENTATION

CHARACTER COMMENTS OF CHARACTER (1) HEX VALUE
* Quotation mark ' 60
a Lowercase letter a A 61
b Lowercase letter b B 62
c Lowercase letter c C 63
d Lowercase letter d D 64
e Lowercase letter e E 65
f Lowercase letter £ F 66
g Lowercase letter g G 67
h Lowercase letter h H 68
i Lowercase letter i I 69
J Lowercase letter j J 6A
k Lowercase letter k K 6B
1 Lowercase letter 1 L 6C
m Lowercase letter m M 6D
n Lowercase letter n N 6E
o Lowercase letter o 0 6F
P Lowercase letter p P 70
q Lowercase letter gq Q 71
r Lowercase letter r R 72
s Lowercase letter s S 73
t Lowercase letter t T 74
u Lowercase letter u U 75
v Lowercase letter v \Y 76
W Lowercase letter w W 77
X Lowercase letter x X 78
y Lowercase letter y Y 79
zZ Lowercase letter z Z 7A
{ Opening brace [S 7B
| Vertical line \S 7C
} Closing brace 18 7D
- Tilde '8 7E

DEL Delete DEL 7F
NOTES:

(1) For implementation on keyboard, c = Control; s = Shift
(2) This key is located on the main typewriter keyboard and also on the

hex/edit keypad.

the PAD/FUNC key is depressed (remains down) .

On the hex/edit keypad, this key is activated when

3-16

CHAPTER 4

SOFTWARE DESCRIPTION

4.1 INTRODUCTION

The VME/10 Microcomputer System package includes the VERSAdos operating system
and associated development system software furnished on the fixed Winchester
media. VERSAdos consists of a powerful set of file-handling utilities, security
capability, real-time multitasking kernel, a system generation facility, an
M68000-family assembler and linkage editor, a CRT-oriented text editor,
diagnostics, and both symbolic and non-symbolic debuggers.

Optionally available are Pascal and FORTRAN campilers and various cross
assemblers, cross linkers, amd a cross Pascal compiler; the latter make it
possible to assemble or compile and link programs for 8-bit "target" systems
using the VME/10 as the "host" design station.

The VME/10 firmware contains a resident monitor/debugger, TENbug, useful not
only as the "bootstrap" of the operating system or other program, but as a
simple, easy-to-use debug tool.

This chapter and those that follow provide not only general descriptions of the
features and functions of various coamponents of the VME/10 software, but
step-by-step examples which can be performed by the new user for familiarization
with the system.

NOTE

Before using the software furnished on the Winchester disk,
a backup copy should be made and stored for safekeeping,
as directed in Chapter 2.

System firmware error messages are listed in the TENbug Debugging Package User's
Manual, M68KTENBG. Operating system error messages are described in the
VERSAdos Error Messages Manual, M68BKWMSG.

4.2 VERSAdos
4.2.1 Functional Overview

VERSAdos is a modular, multilayered operating system that provides a convenient
and friendly interface between the user and system hardware. It provides a
solution to general-purpose program generation requirements associated with the
development of microprocessor-based systems, as well as the execution
requirements of dedicated, real-time, multitasking application systems. The
modular nature of the operating system permits configuration of the VME/10 for a
variety of host/target applications. This flexibility reduces the costs and
problems normally encountered during system integration by permitting extensive
debugging to be performed on a compatible hardware/software configuration prior
to the integration process.

VERSAdos operations are task oriented. A task is a program, complete with its
associated data area, that performs a functional unit of work. Application
programs are performed as tasks and are executed according to their priorities,
scheduling requirements, and availability of required resources.

VERSAdos is responsible for accepting, checking, interpreting, and expediting
user application requests. During execution of a task, the operating system may
request assistance fram various operating system support routines not directly
accessible to the application program. These support routines assist in
operator control, memory management, task segmentation, and input/output control
for various hardware subsystems. This permits execution of more than one task
at a time, thereby allowing several application programs to be operating
independently on the system. This also relieves the application program from
the necessary chore of direct interaction with the system hardware. Instead,
application programs communicate their input/output requests to the system via
the operating system using an established protocol.

The operating system is divided into four major layers, with each layer further
subdivided into other layers. The four major layers are: the Real-Time
Multitasking Executive (RMS68K) layer, the I/0O layer, the File Management layer,
and the Session Management layer. This structure is shown in Figure 4-1.

User Tasks

Session Management

File Management

1/0 Subsystem

@

FIGURE 4-1. VERSAdos Structure

4-2

RMS68K, the Executive, is the nucleus of the VERSAdos operating system. It has
responsibility for servicing all hardware and software generated interrupts and
dispatching the interrupts to the proper tasks for processing. RMS68K also acts
as the arbiter to resolve conflicts that result when campeting tasks vie for
processor time. Facilities that pemmit inter-task communications and task
synchronization are also supported. RMS68K protects user applications while
providing diagnostic feedback during error conditions. Refer to the M68000
Family Real-Time Multitasking Software User's Manual, M68KRMS68K.

The layered design of VERSAdos provides a degree of system flexibility, while
maintaining a straight-forward structure that is easy to understand and use.
The layered structure also provides the unique ability of combining the normally
diverse functions of time-sharing software development with real-time system
control or else tailoring an operating system to the user's requirements. The
high degree of modularity inherent with the major programs of VERSAdos permits
each user to add specific functions for his individual requirements with a
minimum of time amd effort. With the incorporation of Intelligent Peripheral
Controllers to optimize I/0 functions, CPU overhead is significantly reduced,
thereby providing more computing power for each system user and pemitting
connection of higher data rate I/0 devices.

Real-time I/0 processing capabilities are provided that allow directly connected
or processing-generated interrupts to be serviced. In addition, multi-
programming of real-time tasks can be accommodated. All tasks can be scheduled
on a priority basis. Inter-task communications are included to pass parameters
and/or control between tasks and/or the operating system. A special control,
the semaphore, is used to provide task synchronization and to coordinate the use
of shared resources. Operating system I/O operations are device independent;
that is, they refer to the logical properties of operation rather than to the
physical characteristics or file formats. I/0 operations are performed by the
Input/Output Services (IOS) portion of VERSAdos. File management services
provide transfer control between memory and logical devices or files.
Contiguous, sequential, amd indexed sequential files are supported. File
handling operations are performed by the File Handling Services (FHS) portion of
VERSAdos. For further information on I0S and FHS, refer to the VERSAdos Data
Management Services and Program Loader User's Manual, RMS68KIO.

4.2.2 Operational Overview

Fran the user's standpoint, VERSAdos is made up of a collection of utility
programs used to manipulate files, directories, and peripherals; a versatile
CRT-oriented text editor for the creation and editing of ASCII files; a set of
"session control" commards for direct communication with the system; batch and
chaining capabilities which allow operation in an interactive, on-line,
foreground mode as well as in background mode; a Jjob spooling function; a
multi-level security package; an M68000 Family structured macro assembler and
module linker; two software debugging programs, DEbug (non-symbolic) and SYMbug
(symbolic); amd a '"system generation" program, SYSGEN, which simplifies
user-modification of the operating system to suit a particular hardware/software
configuration.

4.2.3 VERSAdos File Name Format

All files used under VERSAdos, including those program files (or load modules)
which comprise the operating system, are fully described as follows:

<volume>:<user number>.<catalog>.<file name>.<extension> (<{protection>)

where:

volume

user number

catalog

file name

extension

protection

is the name of the media on which the file resides (e.g., the
fixed disk might be named SYS, FIX, VOLO, etc.; floppies
might be named VOL1l, VOL2, FL1, FL2, etc.). Up to four
alphanumeric characters may be used (first character must be
alpha) .

is from one to four decimal digits, and establishes
"ownership" of catalogs and files. User 0 is referred to as
the system administrator; user 0 validates numbers assigned
to other users of the system.

is a name of up to eight alphanumeric characters, or it may
be null (blank). A volume. may contain many catalogs, and
many files may be grouped under the same catalog name. For
instance, files pertaining to a particular project may share
the same catalog name.

is up to eight alphanumeric characters. It identifies a
particular file.

is an extension of two alpha characters which further
identifies a file by type. Certain extensions have meaning
to VERSAdos; for instance, SA identifies ASCII source files,
SY identifies operating system files, LO identifies
executable load modules, XX and NW identify news files.

is an optional user-selectable access permission code
consisting of two, three, or four of the characters A-P. If
specified when the file is created, it must be matched
whenever the file is accessed. If not specified, it defaults
to PPPP (any user may read or write to the file).

Default values for <volume>, <user number>, and <catalog> are those established
at logon, although they can be changed by the user. Default file name extension
varies according to the utilities that use the file. For example, ASM, E, and
LIST assume an extension of SA; LOAD, PATCH, and SYMbug assume an extension of
LO; and LINK expects an extension of RO or RX. Default values need not be
typed. For example, assuming that the logon values are a volume identification
of VOLO, user number 0, and a catalog name of TEST, the following ASCII source
file names are generally equivalent:

VOLO0:0.TEST.FILEOL.SA

TEST.FILEOl

FILEOl

4-4

4.2.,4 Session Management

When the VME/10 System is booted up, the Session Control task is initiated.
This task enables several useful functions which are executed with a set of
commards (see Table 4-1).

Functions performed as part of the Session Control task include batch and chain
file processing, user identification, system security, system date and time
setting, and dissemination of system news. Certain of the Session Control
capabilities can be deleted from the operating system and a new system created
with SYSGEN, if the functions are not needed.

4,2,4.1 Sessions. At power-up, the operator will typically log on as user
number 0. User 0, also referred to as the system administrator, is allowed
several "privileged" activities, including the establishing of a system password
and the assigning of user numbers to other authorized personnel. The first
session after booting is session number 0001. Each logon after a 1logoff
initiates another sequentially numbered session, until the system is rebooted.

The values established at boot-up for volume identification, user number, and
catalog remain in effect until changed with the Session Control USE command, or
by logging off the system and logging back on with different values. The DEF
comand is used to display current defaults.

TABLE 4-1. Session Control Commands

COMMAND DESCRIPTION

OFF Terminate session.)

LOG OF [F] Terminate session. ; IDENTICAL SESSION TERMIMATION
LOGOF [F] Terminate session. ;

BYE Terminate session.

BATC [H] Sulmit batch job.

CANC [EL] Cancel selected or all batch jobs.

ELIM[INATE] Cancel all batch jobs (privileged).

QUER [Y] Request status of batch job.

CHAI [N] Execute chain file.,

RETR[Y] Restart execution of aborted chain file at current record.
PROC [EED] Restart execution of aborted chain file at next record.
OPT [ION] Set chain conditional processing option.

TABLE 4-1. Session Control Commands (cont'd)

COMMAND DESCRIPTION

R? Display contents of chain conditional processing pseudo
registers.

END Terminate chain processing.

LOAD Call the loader.

STAR[T] Begin execution of user task.

CONT [INUE] Restart execution of user task.

STOP Stop execution of user task.

TERM [INATE] Terminate execution of user task.

BSTO[P] Stop all tasks on Break.

BTER [M] Terminate all tasks on Break.

USE Enter file descriptor defaults.

DEF [AULTS] Display default values.

ARG[UMENTS] Enter/display new arguments.

NOARG[UMENTS] Clear argument list.
DATE Display time and date or (privileged) change date.
TIME Display time and date or (privileged) change time.

~

Place the session control task in the dormant state.

PASS [WORD] Specify or change user password.
SWORD Specify or change system security word (privileged).
SECURE Specify level of system security (privileged).

During session 0001, the system clock is set with the correct date and time, if
necessary, with the DATE and TIME commands. '

Three furnished information files can be edited by user 0 to convey appropriate
messages to users. The files and their functions are as follows:

SYS:0.PRIV.BULLETIN.NW This file's contents are displayed at
successful logon, and provide pertinent
information to system users.

SYS:0.PRIV.REJECT .NW This file announces an unsuccessful logon
attempt, when system security is in effect.

SYS:0.PRIV.NEWS.NW This file is designed to contain information
of interest to system users, and is accessed
by any user by entering the session control
command, NEWS, This causes the file's
contents to be scrolled on the screen.

Two chain files can also be created/edited by the administrator so that a
previously selected set of processes can be performed autamatically at logon.
They are:

SYS:0.PRIV.UPSYSTEM.CF This chain file may optionally be activated at
the completion of session 0001. A typical use
of this file is to establish security levels
for the system (paragraph 4.2.4.2).

SYS:0.PRIV,.USER.CF This chain file may be created to perform any
desired functions, and to be activated any
time a user logs on as user 0. Additionally,
any user may create his own PRIV.USER.CF under
his own user number to contain desired
commands to be activated whenever he logs on.

4.2.4.2 Security. VERSAdos' security package can be SYSGEN'd into the
operating system or excluded from it. When part of the system, there are four
levels of security available:

LEVEL SECURITY
0 None. Any user number may be entered at logon at any session.
1 System security. A system password has been installed by the

system administrator. No one may log on to the system without
entering the security word.

2 User number/password security. A list of valid user numbers, with
or without individual passwords, has been entered into a password
file maintained by the administrator. Only valid user numbers may
be entered at logon, and if a password has been established for a
particular user number, it must also be entered.

3 Both system and user number/password security. At logon, a valid

user number, a system security password, and (if established) an
individual password must be entered.

4-7

As supplied, the boot load file VERSADOS.SY establishes level 0 security.
During session 0001, the system administrator can select any other level for
himself or for all other users with the session control commands SECURE and
SWORD. User 0 can also change the contents of the chain file executed when
VERSAdos is booted, PRIV.UPSYSTEM.CF, to automatically establish security levels
for all subsequent sessions.

Levels 2 and 3 are dependent upon a password file having been created by the
system administrator, using the ACCT utility program. ACCT and the VALID,
NOVALID, and PASS utilities are used to maintain these security levels. Refer
to the VERSAdos System Facilities Manual, M68KVSF, for the use of these
utilities.

4.2.4.3 Examples. The following examples assume that the VME/10 has just been
powered up, VERSAdos is running, and that the default logon values established
are the volume identification of SYS:, a user number of 0, and a null catalog,
ard it is session 0001.

=DEF
SYSTEM VOLUME = SYS:
USE DEFAULT VOLUME = SYS:0..
USER NUMBER = 0
USER TASK =
SESSION = 0001
TERMINAL = CNSL
OPTION(S) SET =
=DATE
14:21:52 9/8/83
ENTER DATE (MM/DD/YY) = 09/15/83
=TIME
14:22:05 9/15/83
ENTER TIME (HR:MIN) = 07:25

If date and time do not need to be changed, the CLEAR/BREAK key can be used to
return to the VERSAdos prompt. If the user is logged on as other than user 0,
no invitation to enter the date or time is issued.

=USE 0.PRIV

SYSTEM VOLUME = SYS:

USE DEFAULT VOLUME = SYS:0.PRIV.
USER NUMBER = 0

USER TASK =

SESSION = 0002

TERMINAL + CNSL

OPTION(S) SET =

=E BULLETIN.NW (Call the editor utility; the present
VERSADOS EDITOR RELEASE Xx.XX contents of the file are displayed
COPYRIGHT BY MOTOROLA XXXX on the screen, and the editor will
. accept direct commands.)
> DEL 0-9999 (Delete all lines of text in the
- file.)

(Press the F1 key to enter the CRT page edit mode. The cursor appears at the
top of the screen.)

> (CR)

> (CR)

> (CR)

> (CR)

> WELCOME TO THE VME/10 MICROCOMPUTER SYSTEM.

> (CR)

=

(Press the Fl key to return to command mode. The cursor appears at the bottom
of the screen.)

> QUIT (Exit the editor program.)
EDIT DONE

The following example edits the 0,PRIV.UPSYSTIM.CF chain file to install a
system security word. Note, however, that the security level established in

this chain file will not be in effect for "session 0001" -- in other words,
whenever VERSAdos is rebooted. Security level will be in effect only in
subsequent sessions after 0001 -- when VERSAdos has not been rebooted. For

security level 1, 2, or 3 to be in effect at system boot time, the IPL.SY file
must be modified (refer to the VERSAdos System Facilities Reference Manual).

=E UPSYSTEM.CF

(Editor identifies itself and the present contents of the chain file are

displayed.)

> DEL 0-9999

(Press the Fl key to enter CRT page edit mode.)

> =SECURE

>1 (Establish security level 1.)

>1

> =SWORD

> SECRET (Enter system security word "SECRET"
or other password of your choice.)

> =END
(Press F1 function key to return to camand mode.)

4-9

> QUIT

EDIT DONE

=E REJECT.NW

(Editor identifies itself, and the present contents of the chain file are
displayed. Press the Fl key to enter CRT page edit mode.)

> DEL 0-9999

(Press the uppercase lock key to return to uppercase and lowercase mode.)
> So sorry, you are not an authorized user.

> Please see your system administrator for the logon procedure.

>

(Press the Fl key to return to command mode.)

> QUIT

EDIT DONE

=OFF

07:45:20 9/15/83 END SESSION 0001 USER 0O
(Press the CLEAR/BREAK key.)

VERSAdos VERSION x.xx XXXXXKXXXXX
ENTER USER NO. = 21
ENTER SECURITY WORD XX (Entries are not echoed to the screen.)

ENTER SECURITY WORD YY
ENTER SECURITY WORD ZZ

So sorry, but you are not an authorized user.
Please see your system administrator for the logon procedure.

LOGON REJECTED, LOGGED OFF

(Press CLEAR/BREAK.)

VERSAdos VERSION x.xXX XXXXKXXXKXX
ENTER USER NO. = lg
ENTER SECURITY WORD SECRET (Or other security password selected

when editing the UPSYSTEM.CF file;
security word is not echoed to the
screen.)

07:58:15 9/15/83 START SESSION 0002 USER 10

WELCOME TO THE VME/10 MICROCOMPUTER SYSTEM.

=NEWS
*

* FILE: PRIV.NEWS .NW
*

This file is similar to the PRIV.BULLETIN.NW file in that it can be used to
provide important information to the user; however, unlike PRIV.BULLETIN.NW, the
user must request the PRIV.NEWS.NW file if one desires to read its contents.
=LOGOFF

07:59:00 9/15/83 END SESSION 0002 USER 10

4-10

4,2.5 Utilities

The VERSAdos utility program set is used for physical manipulation of files,
storage media, and intersystem data transfer.

VERSAdos utilities are invoked by simply entering the name of the load image
file (a file with an extension of .LO) which performs the function. The Session
Control Task calls the loader to create a task and load the file, and then
starts the function. Because user-created files of type LO can also be loaded
and started by simply specifying their names, any which perform a useful
function may also be considered utility commands. These are created through use
of the LINK command (linkage editor) on a program which has been typed into a
file using the Editor, and then assembled or compiled.

It is sometimes useful to load a utility but, rather than have execution begin
automatically, start execution manually at the desired time. For example, this
two-step operation will allow a diskette to be changed between loading and
execution, which can be helpful in a two-drive system. The session control
command LOAD, used in conjunction with the session control command START, allows
this to be done. If the utility to be loaded requires arguments, these must be
specified on the LOAD command line.

Most VERSAdos utilities allow variation in their functions by the specification
of options. Many also are "interactive"; i.e., they allow a subset of commarnds
which enable the system operator to supply parameters or otherwise control
operation of the utility "on-line".

The general format used to load and run a utility program is:
=<utility name> <input field>,<output field>;<options>

Paragraph 4.2.5.1 lists the VERSAdos utilities alphabetically and gives brief
descriptions of their functions. Paragraph 4.2.5.2 provides a set of examples
of several of the more commonly used utilities. These examples can be performed
as practice exercises by new VERSAdos users.

Full descriptions of most of the utilities can be found in the VERSAdos System
Facilities Reference Manual, M68KVSF. Those not covered in the facilities
manual —-- the Editor, Assembler, Linker, DEbug, S¥Mbug, ard SYSGEN, as well as
the optional Pascal and FORTRAN compilers and the TENbug monitor -- are
described in Chapters 5 through 9 of this manual, and more extensively in
individual manuals.

Additionally, the VERSAdos Reference Card, MVDOSCARD, is available for both new
amd experienced VERSAdos users. :

4-11

4.,2.5.1 Descriptions. VERSAdos utilities are listed alphabetically, with
descriptions of their usage, in the following paragraphs.

ACCT

The Account utility may be used by the system administrator to open a
password file and an accounting file, and then to monitor individual and
collective usage of the system. This utility will probably not be needed
when the VME/10 is used as a single-user system.

BACKUP

BACKUP provides two methods of transferring data from one disk to another:
track-to-track mode and file transfer mode. Since track-to-track mode
requires that the source and destination disks be of the same type, the file
transfer mode will be used for the standard configuration VME/10. File
transfer mode must be specified with BACKUP options A or R, Sub-options
allow several variations in copying. Individual files or families of files
can be selected for transfer. File descriptor fields infommation can be
specified on the destination disk. Indexed sequential files can be packed
to reclaim internal file space. Files can be packed together to reclaim
disk space. A starting point at which file transfer should begin can be
specified on the source disk. Files can be selected by date range and/or
file/family, or can be selected one at a time. When source data exceeds
capacity of the destination disk, the file transfer mode permits insertion
of additional destination disk(s). All destination disks must have been
initialized previously with the INIT utility.

BUILDS

The BUILDS utility transforms a binary load module into a file of
ASCII-encoded information which may then be transported to another system
for further use. The format of the records in the file is Motorola
S-record, so called because each record begins with a byte containing the
code for an ASCII "S" -~ for start of record.

CONNECT

The CONNECT utility allows the user at a temminal on a VERSAdos system to
communicate with a second computer which is connected to a second port. It
produces the same effect as physically disconnecting the terminal from the
VERSAdos system and connecting it to the second computer, without having to
move any cables. When the L=n option is specified, CONNECT performs the
following functions on the terminal from which it was invoked before
connecting the terminal to the other port:

a. Resets the display screen.

b. Sets up the virtual screen (the area which scrolls while in CONNECT
mode) as lines 1 through 1l-n.

c. Displays the message indicating successful connection.

4-12

COPY

The COPY utility copies a file onto the same volume under a new file name,
or onto another volume under the same or a new name. Options allow a file
to be appended to the end of an existing file, packing of data in an indexed
sequential file, character-by-character camparison of existing files with
display of byte differences within records, and character-by-character
comparison of a copied file and the original with display of byte
differences within records. Output can be sent to a printer if part of the
system, or to the display terminal for a quick look at the contents of a
file.

DEL

The Delete utility removes a file name from a disk directory and frees all
space allocated to that file. Options allow a list of files or a "family"
of files with like parameters (e.g., same catalog or same extension) to be
deleted with one command, and/or to direct a list of files deleted (normally
displayed on the CRT) to an output file or to a printer.

DIR

FEach VERSAdos disk contains a Volume Identification Directory (VID),
established when the disk was initialized. Informmation describing the disk
space allocation, location, amd attributes of each file contained on the
disk is stored in this directory. Part or all of the information entered
for each file can be obtained by using the DIR utility. Options provide
greater detail.

DISMOUNT

This utility, used in conjunction with the MOUNT utility, enables the VME/10
to handle disks of unlike formats. DISMOUNT performs the camplementary
function of the MOUNT utility. It forces VERSAdos to release, control of a
mounted floppy disk and to reject input/output requests to a new disk until
the MOUNT command has been reissued. Before using DISMOUNT, the floppy must
be off-line —- i.e., the floppy drive door must have been opened.

DISPATCH

The use of this utility is privileged; i.e., only logon user 0 may use it.
It is used in conjunction with BATCH job processing, to change dynamically
the number of batch jobs that are able to execute.

DUMP

DUMP is a utility that allows examination and/or modification of one or more
sectors of disk data. The basic command provides a display of the contents
of a disk, a file, or a portion of a file, in hexadecimal; alternatively,
the dump may be directed to a printer or into another file. Specifying the
interactive option allows certain sectors of the disk or file to be read
into a change buffer in memory; bytes may be individually examined, changed,
and read back to the disk to replace the original version.

4-13

EMFGEN

This utility allows the user to add error messages and/or alter existing
messages in the error message file, ERRORMSG.SY, which is used by VERSAdos'
error message handler to issue most system messages.

FREE

Knowledge of unallocated space on a disk is often needed for file creation
or editing, or before copying a file. The FREE utility determines and
displays the total number of available sectors and the size of the largest
available block of contiguous sectors in decimal and hexadecimal
representation for a specified volume.

INIT

LIB

All blank diskettes for use on the VME/10 must be formatted and initialized
with the INIT utility before their first use. Formatting establishes a
sector/track pattern on the diskette which is compatible with the VME/10 and
VERSAdos. Initializing creates a Volume Identification Block (VID) on the
diskette which can be recognized by VERSAdos. The VID includes a
user-supplied volume I.D., description, and ownership. A disk file
directory is also created by INIT. If directed to do so, INIT will check
the disk for bad sectors; if any are found, INIT will write their locations
into the Sector Lockout Table (SLT) so data cannot be written to them.

Used diskettes can also be initialized with INIT to clear the file
directory. (Disks containing wanted files should not be initialized, as
their directory entries will be altered so as to be unrecognizable by
VERSAdos, and new data will overwrite their contents.) The formatting
function need not be performed when initializing a used VERSAdos disk.
(Note: Fommatting destroys all data on a disk.)

An option allows specification of the address of the bootstrap file. For
the WME/10, the VERSAdos bootstrap file is named SYS:0..IPL.SY, and it must
be located at location SEO0O0.

Although INIT can be used on hard disks, the fixed hard disk furnished with
the VME/10 was formatted and initialized at the factory and contains all
operating system files. It should not be re-initialized unless these files
are to be replaced.

The Library utility makes useful software routines available for use by more
than one program or more than once in a program. These routines, or program
modules, are created in assembly or high-level language; put into a file
using the editor; assembled or compiled; and combined into a "library" file
or files with the LIB utility. These user-created library files, along with
those supplied with the system amd with optional high-level languages, can
then be linked and made accessible to application programs. LIB offers
several interactive commands to aid in manipulation of the modules while
creating library files.

4-14

LIST

Using the LIST utility, all or part of an ASCII disk file can be displayed,
written to a separate file, or (if a printer is part of the system) printed.
Selectable options allow specification of beginning and/or ending lines;
numbering of lines; prompt for wider or narrower line length and longer or
shorter page length specification; prompt for heading; and interactive mode.
In interactive mode, if the heading prampt option or non-standard length and
width prompt option were specified, these parameters can be supplied. Lines
to be listed can also be specified while in interactive mode.

MBLM
Object files which were assembled using the M68000 Family Cross Macro
Assembler are in S-record formmat. These files cannot be linked into load
modules, but can be transported to the VME/10 and then converted to loadable
and executable files by means of the MBLM utility.

MIGR
ASCII programs filed on MDOS-format diskettes can be converted to VERSAdos
format with the MIGR utility. MDOS is the resident operating system for
Motorola's EXORciser computer. Because EXORciser's standard drives are
typically EXORdisk 8" floppies, and VME/10's floppy drive is 5-1/4", an
EXORdisk must be available to the VME/10 in order to use MIGR.

MOUNT

MOUNT allows VERSAdos to access disks of differing media formats. It must
be used before performing I/0 operations to a floppy diskette on the VME/10
(except for the first diskette accessed after powerup). In turn, the
DISMOUNT utility must be used after the diskette has been taken off line, to
release the device. If the diskette is of VERSAdos formmat (contains a
VERSAdos V.I.D.), entering the MOUNT commard and the device designation is
all that is required. If the diskette is of foreign fommat, however, it may
be accessed after MOUNTing when configuration data has been supplied by the
user during MOUNT's interactive dialog.

NOVALID

If system security level 2 or 3 is in effect, and a user password file
exists, NOVALID is used to delete specified user number records from the
file.

PATCH

Changes can be made to executable load module files with the PATCH utility.
Interactive subcommards allow the display and change of portions of a file
after it has been read into memory. This makes it possible to make changes
to a program without having to charnge the source and reassemble it. PATCH
includes a one-line disassembler and a one-line assembler.

4-15

PRTDMP

The Print Dump utility, PRTDMP, allows dumping part or all of memory to a
file after an abort of a load module. The file or a portion of it can then
be displayed or routed to a printer for examination. To use this utility,
the load module must have been 1linked with the 1linker's D option.
Interactive commands vary the type of output.

RENAME

This utility is used to change the name of a file and/or its catalog name.
The system administrator (logon user 0) may also change a file's user
number. User 0 or the volume owner may change a file's protection key.

REPAIR

REPAIR is an interactive utility used to repair the various logical
structures of disks and files if they have become damaged. These structures

include:
VID Volume I.D. block
SAT Sector allocation table
CFGA Configuration area (media format)
SDB Secondary directory block (catalog list)
SDE Secondary directory entry (catalog entry)
PDB Primary directory block (file name list)
PDE Primary directory entry (file name entry)
FAB File allocation block (list of data blocks)
DB Data block (list of sequential records)
HDR Header
SLT Sector lockout table
DTA Diagnostic test areas

REPAIR can be used to recover a deleted file, if the file's DB and FAB have
not been reallocated.

SCRATCH

This utility quickly erases the VID of a used diskette so that it can be
reused. Only the disk's owner or logon user 0 can SCRATCH a disk. The disk
also may be reformatted with SCRATCH. After using this utility, the disk
must be reinitialized by INIT.

SESSIONS

The SESSIONS utility is used to detemine the current online sessions and the
batch jobs in queue for execution. Information is displayed by device
number (terminal) and sessions number for online sessions and by user number
and session number for batch jobs.

4~16

SPL /SPOOL

VERSAdos offers a spooling capability whereby a particular volume can be
designated as storage media for a queue of files awaiting time-consuming
background tasks such as batch amd chain processing and printing. This
frees the system for foreground operations. The operating system must be
SYSGEN'd to add a printer or an auxiliary storage device. SPL must be
installed in session 000l1. SPOOL may then be accessed whenever needed in
subsequent sessions. SPOOL includes a list of subcommands for initiating,
monitoring, and cancelling spooling functions.

SYSGEN

- The SYSGEN facility makes it possible to customize the operating system,

deleting unwanted parameters and adding others to accommodate additional
peripheral equipment. Furnished with VERSAdJos are SYSGEN commard files anmd
chain files for several specific system types which facilitate this process.
The files for a particular system are identified by their catalog name;
e.dg., the comand file for the VME/10 is named VMES10.SYSOMD.SA. This file
reflects the exact configuration of the VERSAdos software furnished for
VME/10 uses. By examining this file, the user can detemmine whether any of
several system attributes should be redefined. If changes are made to
SYSCMD, SYSGEN must then be used on the file to ceate a usable system.

SYSANAL

SYSANAL is an interactive operating system debugging utility. It provides a
means of examining system tables in RMS68K, the nucleus of VERSAdos, and at
any part of memory while VERSAdos is running. Output is to the display
screen or to a printer if one is available.

TRANSFER

The ASCII file transfer utility allows up- or downloading of files such as
source code or S-records between the VME/10 and another system. The systems
may be connected directly between serial ports, or by phone lines/modems.
Both systems must be configured for the same baud rate and character makeup.
TRANSFER uses two associated programs, ULOAD and DLOAD.

UPLOADS

UPLOADS is used to migrate S-records from same external source to a VERSAdos
system. The S-records must be received through an MVME400 dual port serial
module or the VME/10 I/O Channel which is connected to the source system via
a direct RS-232C hardware configuration.

4-17

4,2,5.2 Examples. Following are some typical examples of some frequently-used
utilities. They may be used for familiarity with the system.

Boot VERSAdos as described in Chapter 2. Insert a blank diskette in the floppy
drive, ard make the following entries:

=INIT #FD02
OK TO INITIALIZE #FD02 (Y/N) ? Y
Data Density of media (S-single,D-double) D > C
DO YOU WANT TO FORMAT DISK (Y/N) ? Y
START FORMAT -
ENTER NEW VOLUME NAME VOL1
ENTER USER NUMBER 0
ENTER DESCRIPTION _(MAX 20 CHARACTERS) PRACTICE ONE
(prints only for user 0)
DO YOU WANT THE BOOTSTRAP (Y/N) ? N (Prints only for user 0)
DO YOU WANT A DUMP AREA (Y/N) ? N
DO YOU WANT TO VALIDATE SECTORS (Y/MN) ? X
VALIDATING SECTORS
0 BAD SECTORS ENCOUNTERED
Ccopy 0..PATCH.LO,VOL1:0..PATCH.LO

Remove the diskette and dismount it by entering:

=DISMOUNT #FD02
DISMOUNT Version XXXXXX X

Insert another blank diskette, repeat the INIT #FD02 sequence above, giving this
diskette a volume name of VOL2 and a description of PRACTICE TWO.

At the VERSAdos prompt, enter:

=COPY 0.*.* ,XX,VOL2:0.*,%.
COPY ALL OR SELECT FILES (A/S) ? A

FILES COPIED = n

=COPY 0.*.* NW,VOL2:0.&.& . NW
COPY ALL OR SELECT FILES (A/S) ? A

.

FILES COPIED = n

These commands will copy various news and instructional files to the diskette.
The asterisk, or "wild card", selects all files on the default volume (the
Winchester) with a blank catalog name and extensions of XX and NW. The files
are listed as they are copied.

4-18

=DIR #FDO02

DEVICE FD0Z2 IS VOLUME VOL2

USER NUM= 0000 DESC= VOLUME TWO
=DIR VOL2:0.*.* ,*;S

DIR VERSION xxxxxx x mm/dd/yy hh:mm:ss

All files on the diskette are listed alphabetically on the CRT screen.
Change default volume to the floppy with the USE session control command:

=USE VOL2:

SYSTEM VOLUME =SYS:

USE DEFAULT VOLUME = VOL2:0..

USER NUMBER = 0

USER TASK =

SESSION = 0001

TERMINAL = CNSL

OPTION (S) SET =

=DIR ;E

DIR VERSION xxxxxx x mm/dd/yy hh:mm:ss

Each file on VOL2 is listed, with all directory information as to file type,
size, location, and protection.

=COPY TRANSFER.XX,#

The contents of the ASCII File Transfer instructional file are displayed on the
screen. To halt display, press the CIRL and W keys. To resume display, type
any key.

=LIST TRANSFER.XX;L=1

The file contents are listed on the screen in LIST's format, with page heading
and line numbers.

=DEL TRANSFER.XX
DELETED VOLZ2:0000. .TRANSFER.XX
=DIR

(Note that TRANSFER is no longer listed in the volume directory.)

Use the FREE utility to ascertain how much space is left on the diskette (dddd =
decimal, S$hhh = hexadecimal):

=FREE
VOLUME VOL2:
dddd/shhh TOTAL SECTORS AVAILABLE
dddd/shhh LARGEST CONTIGUOUS SECTORS
XX% OF SECTORS ARE AVAILABLE
=USE SYS:

4-19

Remove the diskette and dismount-it:

=DISMOUNT VOL2:
DISMOUNT Version XXXXXX X

Insert the diskette VOL1 and mount it:

=MOUNT #FDO02

MOUNT Version XXXXXX X

VOL1 has been mounted

Total Vdos sectors 2552
=pUMP VOL1:0..PATCH.LO,#;1I
DUMP VERSION XXXXXX X

>D $7,58

The I option instructs DUMP to enter the interactive mode, and the # in the
output field calls for output to the console screen. In interactive mode, the D
subcommand asks for a dump of sectors $7 and $8. They are displayed on the
screen in hexadecimal, with printable ASCII characters at the right-hand side.

>QUIT
~OFF
09:52:15 9/15/83 END SESSION 0001 USER O

4.3 SOFTWARE DEVELOPMENT

A user may custom—configure an operating system to suit a particular application
by using the VERSAdos System Generation Facility (SYSGEN) to modify any of
several system attributes, including:

- Type and number of devices
-~ Number of logical units per user
- Amount of memory space for:
Global segment table
Trace table
Device connection queue
- Number of files

A file must be created to contain a series of commands from the SYSGEN command
set. In addition, utility programs not containing interactive dialog may be
invoked fram within this "command file", allowing a utility or selected portions
of a utility to be run as if it had been called directly.

Furnished on the VERSAdos media are command files which represent the
configurations of the furnished VERSAdos versions, along with chain files which
can be used to perform the SYSGEN. These command files can be listed to
identify their parameters, and if a different configuration is required, the
command files can be modified and a new operating system generated with SYSGEN.

The following paragraphs contain concepts to be considered when designing an
operating system, and a brief listing of the SYSGEN command set. For full
information on the SYSGEN process -- the SYSGEN command set, user-changeable
parameters, and the SYSGEN command syntax -- refer to the System Generation
Facility User's Manual, M68KSYSGEN, which includes a typical example of a SYSGEN
command file for the VME/10.

Refer also to the M68000 Family Real-Time Multitasking Software User's Manual,
M68KRMS68K, for a more detailed discussion of design concepts.

4-20

4.3.1 Designing A System

The software development of an operating system can be broken into four phases.
These phases are not necessarily distinct phases carried out in a particular
sequence, but will probably overlap and be re-conceived as changes in one phase
impact the others.

Analysis Phase.

Many types of systems can be built using real-time operating system concepts,
including industrial process control systems, operations control systems, data
acquisition systems, management information systems, and development systems.
As the first step, the designer should consider some general questions such as:

- What are the basic functional requirements of the system?
- What basic type of system can satisfy these requirements?
- What basic hardware components are needed to satisfy these requirements?
- What basic software components are needed to satisfy these requirements?

The basic functional requirements of the system must be clearly defined at the
outset. Some common configurations are: (a) a complete bootstrap~loadable
system, in which an entire user system is located in non-resident memory or on a
peripheral mass storage device, amd is loaded into system RAM at start-up time;
(b) a ROM~resident initializer and RMS68K executive, which would load user tasks
into RAM during initialization; and (c) a complete ROM-resident system, where
the initializer, the RMS68K executive, and the user tasks are all located in
ROM.

Design Phase.

In this phase, the basic components needed to satisfy the functional
requirements are defined.

A top-down structured methodology will typically be used to define the system
functions, making it easier to define the necessary tasks. Once a certain level
of functional modularity has been determined, modules can be grouped together to
form tasks.

Implementation Phase.

After user tasks have been coded and assembled into relocatable object modules,
the final system can be created. The three main steps involved are:

- Build the tailored RMS68K module. The camplete RMS68K package is very
extensive. A given application may not require its full set of
capabilities; therefore, unneeded functions may be amitted by deleting the
appropriate directives and reassembling and linking the selected/modified
object modules.

- Build application modules, assemble, and link them into load modules. If
necessary, the supplied system initializer may also be modified,
reassembled, and linked.

- Use the SYSGEN utility to combine the RMS68K load module and the
applications load modules.

4-21

Testing and Debugging Phase.

Use the TENbug program to test and debug the new operating system. TENbug, the
firmware resident monitor, offers versatile commands which facilitate debugging.
Refer to the TENbug Debugging Package User's Manual, and to the M68000 Family
Real-Time Multitasking Software User's Manual for helpful tables.

4.3.2 SYSGEN Command Set

PARAMETER Contains the name of a SYSGEN parameter followed by its value.
The value is in effect throughout the remainder of the SYSGEN
process and cannot be redefined.

PC Adjusts the location counter maintained during SYSGEN execution.

TASK Defines the beginning of a task stream which is of the type that
results in a task being included in the output file. Also marks
the end of the previous task or process if it was not completed
by an END statement.

PROCESS Defines the beginning of a process stream which is of the type
that results in a process being included in the output file.
Also marks the end of the previous task or process if it was not
completed by an END statement.

EXCLUDE Specifies a segment of a process or task that will not be loaded
with the process or task.

SEGMENT Defines the beginning of a segment stream which is of the type
that results in a process being included in the output file.
Also marks the end of the previous task or process if such was
not completed by an END statement.

END Ends previous task or process.

MSG Causes an operator message to be displayed at the relevant
terminal.

PAUSE SYSGEN execution halts until any character is depressed.

SUBS Indicates source file(s) in which the actual values of SYSGEN
defined parameters are substituted for the parameter names.

ASM Specifies an assembler commarnd line which causes ASM to be
invoked.

LINK Specifies a source file that contains input to linkage editor,

arnd invokes LINK.

IFxx (Where xx is EQ, NE, GT', LT, GE, or LE), will initiate
conditional processing.

ENDC Terminates the conditional processing associated with its
associated IFxx directive.

4-22

=<{progname> [<legal args>]

Invokes a utility program (where <progname> is the name of the
utility and <legal args> represents any command line input
which is allowable for that utility). The utility cannot carry
on an interactive dialog. This capability is used in the
SYSGEN command file to invoke the COPY utility with the append
option to produce a single listing of all assemblies and links.

* Comment; everything following the asterisk is treated as a
comment and will be listed but not processed.

4.4 OPTIONAL SOFTWARE

Currently available for use on the VME/10 are compilers for the high-level
languages, Pascal and FORTRAN. Also available are cross assemblers and linkers
which enable programmers working at a VME/10 to assemble and link programs for
the MC6800, MC6804, MC6805, and MC6809 microprocessors, as well as a cross
Pascal compiler which allows development on the VME/10 of Pascal programs for
Motorola's 8-bit microprocessors.

4.4.1 Pascal

Pascal 1is a high-level, user-oriented language for the MC68000 family of
microprocessors, based on the language as defined by Niklaus Wirth. Pascal is a
highly structured language which promotes good programming techniques, is
self-documenting, and its user-oriented statement forms simplify program
writing. Extensions provided by Motorola include address specification for
variables, alphanumeric labels, string types, exit, non-decimal integers,
runtime error checking, runtime file assignment, and separate compilation and
linking. The optimizer produces compact efficient code. Library routines
include both IEEE floating point and a single precision fast (multiply:
44 microseconds) floating point.

4.4.2 FORTRAN

The FORTRAN compiler translates source programs written in FORTRAN into MC68000
Family machine language, object code. FORTRAN is a high-level programming
language widely used for scientific and engineering problem solving with
features also useful for certain business-related applications. The FORTRAN
compiler is the 1977 ANSI subset standard. Also included are extensions
designed specifically for microprocessor applications such as bit manipulation
and assembly language interface capabilities.

4-23

4,4.3 Cross Products

The Motorola 8-Bit Cross Macro Assembler Series provides assembly language
programming capability for the Motorola MC6809, MC6805, MC6804, MC6801, and
MC6800 microprocessor families on the VME/10 System. The assemblers are
available to support the individual programming requirements of each processor
family. Each assembler features macro instruction capability, evaluation of
complex expressions, and ‘inclusion of input from other disk files; and
high-level operators that allow the programmer to write structured assembly
language. In addition, the assemblers may optionally produce a symbol cross
reference listing.

The 8-Bit Cross Linkage Editor also runs on the VME/10 System, and takes the
relocatable object module disk file produced by the 8-Bit Cross Macro Assembler
Series as its input. The output of the 8-Bit Cross Linkage Editor is an
absolute load module file in Motorola's S-record format as well as a
comprehensive listing. The S-record load module file can then be transmitted to
Motorola EXORciser, EXORset, or Hardware Development Station products for system
integration.

The cross Pascal compiler allows Pascal programs for the MC6809 microprocessor
to be developed on the VME/10. It is similar to the resident M68000-family
Pascal compiler, processing code in two phases. Cross Pascal programs are
linked with furnished library routines by the cross linker, and may be linked
with assembly language subroutines.

4.4.4 PROM Programmer

Interface software for programming PROM's and EPROM's is available that is
compatible with VERSAdos on the VME/10. This software is designed to be used
with Data I/O's System 22 PROM Programmer.

With this hardware/software combination, almost any PROM or EPROM in 16-, 18-,
20-, 24-, or 28-pin sizes can be programmed. The Data I/0 programmer can be
connected to the VME/10 through an RS-232C cable.

4.4.5 Indeperdent Software

A broad range of indeperdent software suppliers support Motorola's 16/32-bit
microprocessors. See the latest issue of the "Motorola Microprocessor Software
Catalog" for a 1list of applicable software and addresses of independent
suppliers.

4-24

CHAPTER 5

CRT TEXT EDITOR

5.1 INTRODUCTION

VERSAdos provides a CRT text editor program, E, to simplify the creation of
ASCII text files - such as program source - and modify these files.

Two simple-to-use modes of operation are offered by the editor - CRT screen
editing and line editing. In CRT mode, page editing is accomplished by
positioning a cursor by means of the cursor keys and special function keys,
ard/or by an extensive and versatile set of commands. In line mode, insert and
command levels are used.

Multiple files may be merged using the editor, and portions of files may be
written to new files while editing, and/or copied to other locations within the
file, either saving or deleting the original text.

The output of the editor may be in "indexed sequential" files (type ID), or
"sequential" files (type S). The default file type when creating a new file is
indexed sequential, but sequential can be selected by specifying the S option on
the command line. When editing an old file, its type determines the type of the
output file, except when otherwise specified by the S or I option.

Sequential files to be edited are placed in a temporary scratch file, and saved
to disk after editing by using the editor's QUIT command.

If an edited version of a sequential file is not to be saved on disk, specifying
the A option after typing QUIT will delete it from the scratch file, leaving
only the original, unedited version on the disk. If no changes are made to the
contents on an existing file after it has been opened by E, only the original
file is saved. Because indexed sequential files are edited directly, the A
option after typing QUIT has no effect.

5.1.1 Commard Line
The editor is called from VERSAdos as follows:

E <fnamel>[,<fname2>] [;<options>]
where:
fnamel Is a VERSAdos file descriptor (explained in paragraph 4.3.3).

It either describes an old (existing) file or a new (non-existing)
file. A default value of .SA is assumed for the extension.

If existing, <fnamel>'s contents are made available for editing.
If <fname2> is not specified, the contents of the edit file will
be stored under <fnamel> on campletion (upon issuing a SAVE or
QUIT command with no arguments), overwriting its previous
contents.

If non-existing, <fnamel> is newly created to receive the contents
of the edit file on completion.

5-1

fname?2

options

Is a VERSAdos file descriptor of a new (nonexisting) file.

If <fname2> is specified, <fnamel> must be an existing file.
<fname2> will receive the contents of the edit file wupon
completion, and the contents of <fnamel> will be left unchanged.

A default value of .SA is assumed for the <extension).

Is one or more of the following options (multiple options are
entered with no intervening spaces):

L

Enter the 1line mode of operation. All other options
described below are valid for use in the line mode.

The default condition is the CRT mode, except when E is
called from a chain file.

Line mode is the normal condition for chain file editing;
i.e., the L option need not be specified on the command line
within a chain file.

This option allows the viewing of a file but allows no
changes to be made. Records greater in length than 79
characters are not trucated as would be the case without the
K option. Viewing of the first 79 characters in each record
is provided. Although no changes to a file can be made, the
editor scroll functions and the DOWN, FIND, LIST, QUIT,
RANGE, UP, and VERIFY commands are available. The K option
may only be used alone or in combination with the L option.

Creates the output file (<fname2> or new <fnamel>) in indexed
sequential format.

Creates the output file (<fname2> or new <fnamel>) in
sequential format.

Sets assembler tabs (columns 11, 18, 37).

Sets COBOL tabs (columns 6, 9, 12).

Sets FORTRAN tabs (column 7).

Sets Pascal tabs (columns 4, 7, 10, 13, 16, 19, 22, 25, 28,
31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 73).

NOTE

When no tab option is specified, a default
format of tab stops every 10 columns is assumed.

5.1.2 E Commards

The commards available for use when editing, and a summary of their functions,
follows. Note that the following terms are equivalent:

line = record
current line = line at which cursor is positioned
colunn = character position
page = full screen display
Commards to E may be in uppercase or lowercase.

CRT & LINE MODE

ADUP Duplicate records (lines) fram the file and place them in
the XTRACT buffer, appending them to any records already in
the buffer. The records still remain in the file. A
vertical range may be specified in the format ADUP 1-10
(lines 1 through 10). If range is not specified, default
is the current record only. Vertical range may also be in
the format ADUP *-100, where * is current line amd 100 is
the next 100 lines. If number of lines is not specified,
only the current line is used.

AMOV [E] Move records from the file amd place them in the XTRACT
buffer, appending them to any records already in the
buffer. The records moved are deleted from the file. A
vertical range may be specified in the formats AMOV 60-100
(line numbers specified) or AMOV *-100 (number of records
specified), with defaults as specified for ADUP. The
XTRACT commard is used to copy the deleted data back into
the file.

C [HANGE] Change strings within records. The following may

optionally be specified: vertical range of records,
horizontal range with each record (number of characters
within each line), a "transparent" charcter (to be inserted
in the new string to cause any characters in the old string
in the same colums to be ignored, or left unchanged),
occurrence within a record in which the change is to be
‘made, old string and new string, and number of lines in
which the change will be made. For example, C 5-9:10-12;
a/JMP/JSR/a changes the characters JMP to JSR every time
they appear in columns 10 through 12 in lines 5 through 9
in the file being edited.

DEL [ETE] Delete records or parts of recorxrds from the edit file.
Vertical and horizontal ranges may be specified, with
defaults as specified for CHANGE. For example, DEL deletes
the line at which the cursor is pointing. DEL *-20:10-50
deletes all data in columns 10 through 50 from the next 20
lines, beginning with the current line.

D [OWN]

DUP [LICATE]

EX [TEND]

F[IND]

LINE

MERGE

MOVE

Move the record pointer downwards. For example, D 50 moves
the cursor from its current location to the 50th 1line
following.

Duplicate records and place them a newly created XTRACT
buffer, replacing any previous XTRACT buffer. The records
still remain in the file. A vertical range may be
specified. For example, DUP copies only the current line
into the XTRACT buffer; DUP *-15 copies the next 15 lines,
beginning with the current line.

Append data to the end of records. Any string may be
apperded, and a vertical range may be specified. For
example, EX 20-29 "HDS400" apperds the string HDS400 to the
erds of the 10 lines beginning with line 20.

Find a string, or position record pointer at a record, the
format of the FIND command is the sample as for the CHANGE
command, except that only one string may be specified. For
example, F 3-5:2-7;a/HDS400/a locates every occurrence of
the string HDS400 in character positions 2 through 7 of
records 3 through 5 and displays them on the screen. F 0
moves the cursor to the beginning of the file; F 200 moves
the cursor forward to the 200th line in the file.

Display the line number of the current record. After LINE
is entered, the number of the record at which the cursor is
positioned is displayed at the bottom of the screen. For
example, CURRENT LINE IS 18.

Copy a file or a portion of a file resident on disk into
the file being edited. This allows combining files or
copying of data within a vertical range from another file
to the desired location in the edit file. For example,
MERGE VOL1l:..TEST.SA inserts the entire contents of the

file TEST.SA on a disk named VOL1, into the edit file above
the current record. MERGE 1-3 OLDFILE.SA copies lines 1
through 3 from the file OLDFILE.SA on the default disk, to
the edit file above the cursor location.

Move records into a newly created XTRACT buffer, replacing
any previous XTRACT buffer. The records moved are deleted
from the file. This command works exactly as AMOV, except
that the records moved replace any previously stored XTRACT
buffer contents. Records moved are deleted from their
current location and can be restored to the desired
location with the XTRACT command. For example, MOV 5-10
deletes 6 records from their current location; after the
cursor is moved to the desired location, typing XTRACT
copies them from the XTRACT buffer to the edit file above
the cursor location.

PRINT

QUIT

R[ANGE]

SAVE

TAB

Output records to the printer. A vertical range of records
may be specified; default is the entire file. The records
may optionally be printed out double- or triple-spaced by
specifying the option D or T. For example, PRINT prints
the entire edit file, single-spaced, on printer #PR.
PRINT 100-199 #PR2 D prints records 100 through 199,
double-spaced, on printer #PR2,

Save the edit file in a VERSAdos file, terminate the edit
session, and return control to VERSAdos. For example, QUIT
closes the edit file and writes it to the disk under the
output file name. If no changes were made during editing,
no output file is created. 1If, after editing, the changes
made are not wanted, exiting with QUIT A prevents the
output file from being created. Note, however, that the A
option on QUIT is only valid if the output file was to have
been sequential (either because the input file was
sequential or because the S option was specified on the E
commard line).

Establish default values for the vertical and horizontal
ranges of the CHANGE, FIND, PRINT, and SAVE commands. The
original defaults are entire record and/or entire file.
RANGE is used to change these defaults. For example, R
1-100 changes the vertical range for the FIND, CHANGE,
PRINT, and SAVE cammands. R :10-30 leaves the vertical
range unchanged, but sets the default horizontal range to
columns 10 through 30. Entering R or RANGE alone returns
defaults to entire record/entire file.

Save part or all of the edit file in a VERSAdos file,
and continue editing. For example, SAVE *-100
VOL1:0,CAT1.FILE2,SA creates a new file named CAT1.FILE2,.SA

on VOL1, and copies 100 lines into it from the edit file,
beginning at the current line. SAVE FILEDUP.SA copies the
entire edit file into a new file named FILEDUP on the
current volume.

Specify tab stops. The default tab stops are set at every
10th colum. The column numbers of desired tab locations
to be added to existing settings can be specified, or an
option letter (A, C, F, or P} can be specified to set tabs
at locations convenient for Assembler, COBOL, FORTRAN, or
Pascal source programming. When an option letter is
specified, previous tab settings are cleared. Specifying
TAB with no tab stops or option letter sets tabs at the
default settings, or at settings specified on the E command
line, if any. For example, TAB 25,35 adds stops at columns
25 through 35, but does not change any settings already in
effect. TAB A sets tab stops at columns 11, 18, and 37,
convenient for Assembly language source code.

U[P]

X [TRACT]

Move the record pointer upwards. For example, U 25 moves
the cursor to the 25th line preceding the current line.

Copy the records from the XTRACT buffer placed there by
ADUP, DUP, AMOV, or MOVE, and insert them above the current
record in the file. The records still remain in the
buffer. XTRACT may also be used simply to empty the
buffer. For example, XTRACT or X copies the contents of
the buffer into the edit file, above the current line.
XTRACT A or X A does not copy the contents of the buffer

into the edit file, but deletes them from the buffer.

LINE MODE ONLY (;L OPTION OR WITHIN CHAIN FILES)

OOLM
DTAB

I [NSERT]
L[IST]
STAB

V [ERIFY]

5.1.3 Examples

Display the ruler of column spacirgs.

Delete tab stops.

Enter insert level, for adding records to the edit file.
List records in the edit file.

Specify tab stops.

Display records that are altered or record pointer changes.

The following simple examples are intended to illustrate various functions of

the editor.

With VERSAdos running, insert the diskette VOL1 created in the example in
Chapter 4 (or use another formatted, initialized diskette) and enter:

L]

MOUNT #FD02

Change defaults to the diskette (if volume name is not VOL1l, substitute the
actual volume name for VOLL):

= USE VOL1:0

5-6

Create a new file on the diskette:

= E TESTFILE.SA

The new file is opened and the editor is in CRT page edit mode. Fill four lines
with random text, beginning with an asterisk and a tab (*-->|) such as the
following:

KLJLKSDF AJFLKSDJUK SJFKDJFJS WUROEURIXS SJLKWUIOSKFLDKJA SDFJLSJSKJ
SDFLKJKJAF SJFLKDKA LKJKJE SAJLJIKJ LLLFS AKJLJ AJDLFJKD E UQULF
DSJFLSDJK ADJFLDJKF ADFJULDJF AADFJLKJA FJUSLFKJ ADFJLJ A SFJUDLJ A
SFJUKDJFKLA A FSJUFLJ AJDLFJSK A FSLJFJA SJFLDJF A

R ok % X

Press K\ key to move cursor to upper left hand corner. Press the F1 key to
enter command mode. Make the following changes to the file:

> C *-999;a/F/S/a

(In all lines from the cursor location to the end of the file, change all
occurrences of F to $.)

% KLJLKSDE AJSLKSDJUK SJ$KDJU$JS WURDEURIXS SJLUKWUIOSKSLDKJIA SDSJILSJISKJY
f SDELKJIKJIAS SUSLKDKA LKJKJE SAJLJIKJ LLL$S AKJLY AJDLSJIKD E UCULS

* DSJSLSDJIK ADJSLDUKE AD$SJLDJIE AADSJILKJIA $JSLSKY AD$SJLJ A S$JDLJY A

* SFJUKDJFKLA A FSJFLJ AJDLFJSK A FSLJUFJA SJFLDJF A

> DEL 1-4:2-9

(In lines 1 through 4, delete all data in character positions 2 through 9. llote
that the spaces inserted by the tab key are deleted.)

FULILKSDE AJSLKSDIK SJISKDUSJIS WURDEURIXS SJLKWUIOSKSLDKJA SD$JILSJISKJ

#SDSLKJIKIAS SUSLUDKA LKJKJE SAJLIKJI; LLL$S AKJLJ AJDL$JIKD E UOULS

#DSJIBLSDIK ADJFELDUKS ADSJILDJIS AADSJILKJIA $JSLSKY ADSJLI A S$JIDLJY A
#SFJKDJFKLA A FSJFLJY AJDLFJUSK A FSLJFJA SJFLDJF A

Press Fl to return to page edit mode. Note that the cursor is still positioned
at line 4.

Press the EOL key on the right hand key pad. Line 4 is deleted. Press the
carriage return key (<—!) 6 times, moving the cursor to line 10. Verify this
by pressing the Fl key, then typing:

> line
CURRENT LINE IS 10
>

Press F1l, then fill 2 lines with dollar signs (hold $ and ﬁ keys down until 2
lines are filled.)

$EEEESEFEBESSFEFFESEETESEP PP EPIEBISFESFEFESSEPETISHISISEPEEFESESSFEBSSSSSPESE
SEEPEFEEESPISPEEEEIFITFFPPESPSFFEFBESHSPEPEPIEFFEFISESFSSFSSSSSSPEFFSSSESSHSS
SEPEEEEEEE

5-7

Press F1 to return to command mode. Enter:

> DUP 10-11 (Fill XTRACT buffer with contents of lines 10 and 11,

> XTRACT then copy the contents of the XTRACT buffer to the file,
> XTRACT inserting it at the cursor location, four times.

> XTRACT As the lines are added, the display is scrolled upwards.)
> XTRACT

EES RS At Ak ik e A e s A A e s
FEFEETEFESEHSIIEEETFESTRSEFURISEIHTEIEITEIBSIIFETEPESBI T I G ESFETESBETFEEEFSEBYE
$2HFEEIFILTEIFIGFEEFIBRBLSFIFHSFFTESIICISESEF P EIIPLIEEFHTEIGITITEEBSSESELTES
PEPSFEFEEFIEEFFESSFEISELE ISP SFESSEIFFSEESFEPSESLSLFETHEIFESFSETELEESTETHEFFEISENS
EX3 333443 L e L e e i A e e A e e R
E3$SIPFIETFIPTIPSFSIITIIFSEISTISTIIFIIFSSESIFISEPIPBIFFTIFSSEFSIILISSESIFBEFES
S SPIPPIEF SIS TEESSTIEIPEPPEFSEBIIFSFEISESEIIFEIFBEPEFILLISBPEBFESEESEES
$EEEFFIEPSEETISIISSFTEFIESIEISPSTBIEIEISSETIIESEPEFESFESIESTSBFSISETFGIFESEEEHES
FEECEFSEPESFEEHETTHEIITISSSISIFSFISEISHIIFISHESTSPEFILSIISBISLEIEEPPELFTESESEEES
$3ESFESIPEIFTEISHFISFIFIFSFIIISPPPFIISSIIFTIIEBIIISHIIFISHESSEIFBSFEBEISTPERFSEES
3T TES

> find 10

Move the cursor to the last full line of dollar signs with the ¢ key and
ask for line number:

> line
CURRENT LINE IS 19

Change all occurrences of $ in columns 25 through 50 in lines 10 through end of
file to dots:

> ¢ 10-999:25~50;a/S$/./a

(This takes several seconds, and then the display changes.)

FEEPSEEEESBEESESEEBESEES. . . L L $FHSFEFEESPTEESPESPSPBHEFEBESS
FEEPSTIEEEESEEBSESBEPSEE. . . L 35 PSSP IPSESSSESPTESHES
SHEEPEFEETEHPEESESPBSSEEE. . . L SEEEPEPSEEEHESFFSTEELETEESHES
EPSEPTTETEESSPEFEPBEREDS. . . . L L $PFSSETEEFEPTEDESPEEITEEIRBES
R A Lk T $3SESEEPEEFEFFESSSESEIETISESS
SHEEEFEESELEEEESEEESESBBE. . L L $EEEEEEEEPPPSIPSSSFLEFEETEDES
FHESEPEHTEEEBEREBEBEEESE. . . . $EEPTESBEEEEEBEESEISTELEDERTS
FEEFELPFESFSERESESEESEEE. . L L $EFESPESPEIPSIBSEEEBETEEIEBES
L2 R L g $533SFFSEFFTEPFPPEESSEILPPEES
EE R 3 L $EEETEEEPLEDEBEFSEEILEPEBEEES
3333313343

Change those dots in columns 30 through 45 in lines 12 through 17 to asterisks:

> C 12-17:30-45;a/./*/a

SEEPEEPEPSEPEBEEEBSPEEBE. . . L L L $95$5FEFPEIFEESPSEESSTPESSEES
$HFEFEPEESEEEPEREBIEEEEE. L L L $35535FP3S PS5 SFSEFFEETESESESE
$FSEEFPEPESESSEEPSESFEEESE. . L L . R L X 2333133314431 43 23 102 1441 2
PEEEEPHPEESPEESSEFBETEFS. LS (3333313413343 33 3343143
$EEEEPSTEEPPIERSPESBEEEE. | | L | SESEFH I H SRR, $4$55435PE$ PP ESFFSSEEE TSP
SFEEEPEFEESSFSEFISFSFESES, | L L . HHRHR R RHRNRE®, $SEPSEIPES PSS FPPEPSEPSEDEES
EEEEEEEEETEEIEESIESEPEEE. | | L . SH3E33E I HHHHHB®, $$5535PFFEPFEFPESPFSES ST ES
SESPPEEEPEDPSEEPSESSSBES. . | | . EX BT LR T S $36$33ES PSSP ESIPSSPEESSEE
SESPESEFSEIEIBESEEBPBBEE. L $EEESEEPPPSFESSEESEFESLEEEHSS

SEEEESSFSIEESEISSSTHSEES

.......................... $HEETESIEEPTPESEPEFEESBESSSES
TS EESSS

Copy part of the file to a new file and exit the editor.

> save 10-19 NEWFILE.SA
> quit
EDIT DONE

Open the newly created file. The editor is in command mode, and the lines
copied to this file are displayed.

= E NEWFILE.SA

.

Press Fl1 to enter page edit mode. Using the cursor arrow keys, move the cursor
through the display and make a few changes to the file by typing over the
existing characters; e.g.:

$$SFESEPEPFSFESEOEEIEEBES. . L L VME/Z10. PHEPFEILIEITHLEESSEIFSFIELEES
$FETEIPEFEEFEESEEEBEEEEE. L L L EHEEFEEFFETEIFREIPEEILPETEBEE
$HEITEIFSPLFTEFSETEEPEEEDE. . . . | FRHE G FF RS ERH®, ST TESEITEIBES LI LREFEES
$PFFEIPFEESFFFEFTFPEDSEE. | . L NSRS HNNE, PEEBHEEIEIFEEEEEFFEHIIFEECEEE
$EFIEFTEEIEFIPEEFESTEEHEEFE. . . L . LRy T Y $45E35$3FES TSI ESELTETEESLES
$EEEFSEFFFFEETTETEETEEESE. . . L HHHFRFHRRBISRIHRS $EEEPFFSFECEISSIIESLTESEELETE
$EESEEFEFEFEEEESEEEESBES. L | . SRR FRE, $PIPSESEISEEEIFEFEIETEFSESEESE
$ESESEIESIEILSEEBEIEEEES. . | L . eI AR HRNE, $$EFPSESEFIISLFFSEFLCEESFPETES
$ETEFIEIESFESEEBEESEEBBE. . L L L $EESEEIETPEESFEEIEESISESSEEGES
2453 HPPSSPTISSESEIEEEPE. L L MICROCOMPUTER. $PEFSEESFEFTESFTEETEEETFEESEES

Note that in page edit mode, characters entered replace those over which they
are typed. To insert space for new text, use the ICHAR and ILINE keys to insert
character space and insert line space. Use the DCHAR and DLINE keys to delete
characters and lines.

Position the cursor at the last character in the last line in the file and press
¢--l+ then press F1.

Merge part of the old file with this file:

> Merge 10-19 TESTFILE.SA

5-9

The contents of lines 10 through 19 of the old file are inserted at the cursor
position amd displayed.

Change the last line:

> C 20:34-39//SYSTEM/

$HEFEETEFESEFELESEPBIFEES. . VMESL1G. ..o $SSEFTFEFEIPICFEFILPIEEISTIESE
$HEEFPLEFFEESEEEFEFEEESE. L L L e $3FEFIEFFIETEIILEIPELIEHESIRER
$EFETEFEPIFESTESSEIEESEE. L L . HHFRFHF SRR RS REF GG ETTCH LTI CEITLICHEFTIGHE
$3PE$EPEESFEFIFSEEFEESEE. L L R S F3EFTFIEFIFEEGEFSEHTIHEESFEE
FESFETSTRFEFEEFSFESEEBESE. . L L L SR A A YRS EEH, $EFELFFFFESIIHEEEEELEIEHEETHEE
$EPEFPSEPEFESTFSPEISFSSEE. . . L L SRR ERRH $FFSFFLHEIFELIILFELIFTLEELEDE
$FEFEFTFFEFTEEEEEPEEETEESS. | . L . L L T R L L FHPPETFFIFFESIESEEBTFLEFSEFESESE
$FEEIEIEFEIFPESFICEBSFPEDS. | L L | I HHHRN®, $ESFEEFSFEEFFTSEESFTIESIITETEES
EEFPEESPEESEESEBESEBEE. . L L L L $FFEIFPIIELEPFEISESIITIFSETEES
$$3EESFESFEPIIIEBIEEEEBE. | L L MICROCOMPUTER. $FFESEFISFFIEEITECESSFSTFESEEH
$HFEEESESFESSTEESBESESTE. . L L L $EFESFESFESTELTEISIEEIIEEEEEEE
SESEEIPSEFEISFESFESSEIES. . . L L $HFEEFEEIESFELISSTESESFFESEES
$EPFLFFIFESESTEBEEIBEFES . L L L L E T 2 S 333353 2 L3 3338 2 8 A S e R L
$E3PETFEEEESFEFEFEEFEESESE. L . L SE3 S NS HFIAR® FEEPEEETEPSETTIIBEBEEISTFESES
$HFSFFPFEPEESFSEFSSEBEES. . . L . LT 2 L e L r $EESETEIEITEEIISSESEIREFTFESES
$3F5$IFPESTFETIPESETEEES. . X R T T T2 S $EEPEPEFFFEFEFIFTEFFIEEIPHEEHEGS
TEFEEFIEFESTEEIEEEBEEBES. | | | L R R R X $3PFETTEITETITEIFISEFSFPEFEIFES
EFSFEIEFESEEFESEEEEBEBESE. | . L E T Y Y T FHESFSEEETESTCEFISEEIIEEELTE
FEFEEPSESFESFEFSFREBBEDSE. L FEEFPFESHFFFEEFFIFESESEEFDESTS
FEEPEFFEIEFTEISEEFESBESSE. . L L L SYSTEM. $EFTFFIFFLFSIIISCBESSEEBEEISTE

If part of the display has scrolled off the top of the screen, press the F4 key
to view page 1, or press F6 repreatedly until the first line in the file can be
seen ("BOF OR EOF ENCOUNTERED" appears at the bottom of the screen).

Four of the function keys (Fn) can be used to advance or reverse the display
through a file, as follows:

F3
F4
F5
F6

Display next page

Display previous page

Move display up one line at a time
Move display down one line at a time

In all cases, the display will advance or retreat only until BOF or EOF is

reached.

If a printer is part of the system, get a printout of the file's contents, then
return to VERSAdos:

> PRINT #PR

5-10

CHAPTER 6

ASSEMBLER

6.1 INTRODUCTION

VERSAdos' assembler, the M68000 Family Resident Assembler, is used to translate
M68000 family assembly language source programs into relocatable object code
which, after linking, is "machine-readable" by the MC68010 microcomputer. The
assembler's capabilities include handling the following:

. Structured syntax

. Complex expressions

. Macros

. Conditional assembly

. Absolute or relocatable code generation
. Symbol table listing

. Cross-referencing

Source programs are written in MC68000-family assembly language, entered into a
file on disk using the VERSAdos CRT Text Editor, assembled, then linked with the
VERSAdos linkage editor and assigned absolute memory addresses or relocatable
addresses. The output file produced by the linker may be a load module (an
executable program) or a relocatable object module, which can then be linked
with other assembly, Pascal, or FORTRAN programs.

6.2 SOURCE PROGRAMS

MC68000 family assembly language source programs consist of a series of
statement lines arranged in a logical way to perform predetermined tasks.
Source statement lines may be any of the following:

. Executable instructions
. Assembler directives

. Macro invocation

. Comment

6.2.1 Coding

Source statement lines are comprised of four fields, separated by a space or
spaces:

. Label

. Operation
. Operand

. Comment

If the first character (column 1) in a statement is an asterisk (*), the entire
line is treated as a comment -- ignored by the assembler, but printed in
listings for documentation of the program.

Source statement lines must not be numbered. The assembler will number the
lines while assembling the program.

Label. The first field of a source statement is the label field. A label is
generally a symbolic name representing a numerical value or an address
(location) in memory. Labels are allowed on all instructions and directives
which define data structures (FOR, IF-THEN). Labels are required in the
assembler directives which define symbol values -- SET, EQU, REG. Labels also
are required on MACRO definitions and on the IDNT directive.

Operation. This may be any of the following:

. Instruction -- the MC68000 instruction set, with the following additions
for the MC68010:

MOVE CCR,<effective address> Move from condition codes register
to effective address.

MOVEC Rc,Rn, or Rn,Rc Move from control register Rc to
register Rn or from register Rn to
control register Rc.

MOVES <effective address>,Rn Move from effective address to
or Rn,<effective address> register Rn or from register Rn to
effective address.

RTD #<displacement> Return fram subroutine with
displacement (2's camplement 16-bit
integer, sign extended to 32 bits).

Certain instructions allow a "quick" and/or an "immediate" form when
immediate data within a restricted size range appears as an operand.
These abbreviated forms are normally chosen by the assembler, when
appropriate. However, it is possible for the programmer to "force" such a
form by appending a "Q" or "I" to the mnemonic opcode (to indicate "quick"
or "immediate", respectively). The instructions are: ADDI, ADDQ, (MPI,
EORI, MOVEQ, ORI, SUBI, SUBQ.

Some instructions also have "address" variant forms (which refer to
address registers as destinations); these variants append an "A" to the
instruction mnemonic. This variant will be chosen by the assembler
without programmer specification, when appropriate to do so; the
programmer need specify only the general instruction mnemonic. However,
the programmer may "force" such a variant form by appending the "A". They
are ADDA, CMPA, MOVEA, SUBA.

The QMP instruction also has a memory variant form (CMPM) in which both
operards are a special class of memory references. The (MPM instruction
requires postincrement addressing of both operands. The (MPM instruction
will be selected by the assembler, or it may be specified by the
programmer.

. Directive -- pseudo-operation codes for controlling the assembly process.
. Macro call -- invocation of a previously described macro.

Some instructions and directives can operate on more than one data size. Size
is specified by one of the following suffixes to the operation mnemonic:

.B = Byte (8-bit data)

W = Word (16-bit data; usually default)

.L = Long word (32-bit data)

Examples:

LEA 2(A,0),Al Long word size is default; loads effective address of
first operand into register Al.

ADD D1,D2 Word size is default; adds low order word of D1 to low
order word of D2.

ADD.L A3,D3 Long word size; adds entire 32-bit contents of A3 to D3.

pc.B 10,5,7 Byte size; defines constants 10, 5, and 7 (decimal) in

three contiguous bytes of memory.

Operand. When used, specified generally in the format <opcode source>,<opcode
destination>; e.g., MOVE D1,D2 moves the contents of D1 to D2.

Comment. This optional field is used to document the code. It appears in
listings, but otherwise is ignored by the assembler.

6.2.2 Symbols and Expressions

Symbols recognized by the assembler consist of one or more valid characters, the
first eight of which are significant. The first character must be an uppercase
letter (A-Z) or a period (.). BEach remaining character may be an uppercase
letter, a digit (0-9), a dollar sign ($), a period (.), or an underscore ().

Numbers recognized by the assembler include decimal, hexadecimal, octal, and
binary values. Decimal numbers are specified by a string of decimal digits
(0-9); hexadecimal numbers are specified by a dollar sign ($) followed by a
string of hexadecimal digits (0-9, A-F); octal numbers are specified by an "at"
sign (@) followed by a string of octal digits (0-7); binary numbers are
specified by a percent sign (%) followed by a string of binary digits (0-1).

One or more ASCII characters enclosed by apostrophes (') constitute an ASCII
string. ASCII strings are left-justified and =zero-filled (if necessary),
whether stored or used as immediate operands. This left justification will be
to a word boundary if one or two characters are specified, or to a long word
boundary if the string contains more than two characters.

Expressions are composed of one or more symbols, which may be combined with
unary or binary operations. Legal symbols in expressions include:

a. User-defined labels and their associated absolute or relocatable values.

b. Numbers and their absolute values.

6-3

c. The special symbol "*" always identifies the value of the program counter
at the beginning of the DC directive, even when multiple arguments are
specified (e.g., DC.B 1,2,3,*-3). The program counter may be either
absolute or relocatable.

Operators recognized by the assembler include the following:

Operator Definition Operator precedence
+ Addition 6
- Subtraction 6
* Multiplication 5
/ Division 5
- Unary minus 2
>> shift right 3
<KL Shift left 3
& Logical AND 4
! Logical OR 4
() Parentheses 1

6.2.3 Registers

The following MC68010 register mnemonics are recognized by the assembler:

DO-D7 Data registers.
A0-A7 Address registers.
A7, SP Either mnemonic represents the system stack pointer of the active

system state.

UsSP User stack pointer.

CCR Condition code register (low 8 bits of SR).

‘SR Status register. All 16 bits may be modified in the supervisor
state. Only low 8 bits (OCR) may be modified in user state.

PC Program counter. Used only in forcing program counter-relative
addressing.

VBR . Vector base register. Supports multiple vector table areas
during exception processing. Accessed by the MOVEC instruction.

SFC Alternate function code source register. Accessed by the MOVEC
instruction.

DFC Alternate function code destination register. Accessed by the

MOVEC instruction.

6-4

6.2.4 Macros

A set of instructions that are to be repeated can be defined as "macros"; values
of variables within the macro routines can be specified later when the macro is
called into use. When the macro is called, the generated instructions that
comprise the macro are "expanded" —-- executed inline in the normal flow of the

program.

A macro definition consists of header, body, and terminator:

<label> MACRO header; <label> must be a unique identifier, the
<name> by which the macro is called.
<statement> body; may be instructions, directives, calls to
. other macros; parameter arguments may be included.
<statement>
ENDM terminator.

Statements within the macro can call out argument substitution, wusing the
designations \0 through \9 and \A through \Z, e.g., MOVE.L \3,LOCATN. When the
macro is expanded after being invoked, the third parameter specified on the
macro call will be moved to LOCATN.

Macros are invoked from a program in the following form:

[<label>] <name>[.<qualifier>] [<parameter list>]

where:
label is another unique label.
name is the <label> defined with the MACRO directive.
.qualifier is the \0 size/displacement qualifier, such as .B, .W, or
.L.
parameter list is the list of parameters to be substituted into the

macro, separated by commas. Null parameters must also be
set off by commas --e.g., <paraml>,<param2>,,,<param5>.
Up to 36 parameters may be specified.

6.3 INVOKING THE ASSEMBLER
The commard line format for the assembler is:
ASM <source file>[, [<object file>][,<listing file>]][;<options>]

Only the <source file> is required. The default extension on the <source file>
is SA. If the <object file> and/or <listing file> are not specified, they will
default to the same file name as the <source file>, but with extensions of RO
and LS, respectively.

Multiple source files may be assembled by separating these input files with a
slash (/). In the case of multiple source files, the first file name is used
for the default object and listing file names. The listing may be output to the
CRT or the printer during assembly by specifying the appropriate mnemonic in
place of the listing file; e.g., the command ASM TEXT,,#PR will print the
listing.

The assembler recognizes the following options on the command line:

OPTION DEFAULT FUNCTION
C C Produce object code.
D D - Produce symbolic debug symbol table file; file name

will be same as that of the relocatable object
file, with an extension of RS.

L L Produce listing.
M M List macro expansions.
P=<processor> P=68000 Accept MC68000 instruction set. P=68010 is

required for VME/10, unless OPT P=68010 is used
within program.

R -R Inhibit production of cross-reference.

S -S Inhibit listing of structured control expansions.
1) W Enable warning messages during assembly (default).
Z=n Z=37 Increase data area size to n Kbytes.

If the P=<processor> or Z=n option is followed by another option, a separating
coma must be used. Otherwise, separating commas are not required for multiple
options. For all options except P=<processor> and Z=n, a minus sign before the
option letter produces the opposite effect.

6.4 DIRECTIVES

Assembler directives (pseudo-ops),

with the exception of DC and DCB, are

instructions to the assembler rather than instructions to be translated into
object code. Following the descriptions and examples of the basic forms of the
most frequently used assembled directives.

ASSEMBLY CONTROL

ORG
INCLUDE
SECTION
OFFSET
MASK2
END

SYMBOL DEFINITION

EQU
SET
REG

DATA DEFINITION/
STORAGE ALLOCATION

COMLINE
DC

DS

DCB

LISTING CONTROL
AND OPTIONS

PAGE
LIST
NOLIST or NOL
FORMAT
NOFORMAT
SPC n
NOPAGE
LLEN n
TTL
NOOBJ
OPT

FAIL

LINKAGE EDITOR CONTROL

IDNT
XDEF
XREF

STRUCTURED CONTROL

ELSE ENDW
ENDF FOR
ENDI IF

Absolute origin

Include second file as if it was inline
Relocatable program section

Define offsets

Assembler for Mask2 (R9M, MC68000 mask)
Program end

Assign permanent value to label
Assign temporary value to label
Define register list for MOVEM instructions

Command line

Define constants
Define storage

Define constant block

Top of page

Enable the listing

Disable the listing

Enable the automatic formatting
Disable the automatic formatting
Skip n lines

Disable paging

Set line lengths 72 < n < 132
Up to 60 characters of title
Disable object output

Assembler options
Programmer-generated error

Relocatable identification record
External symbol definition
External symbol reference

REPEAT
UNTIL
WHILE

6.5 ASSEMBLER OUTPUT

Assembler outputs include an assembly listing, a symbol table, a symbolic debug
symbol table file, and a relocatable object program file.

The assembly listing includes the source program, as well as additional
information generated by the assembler. Most lines in the listing correspond
directly to a source statement. Lines which do not correspond directly to a
source line include:

. Page header and title
. Error and warning lines
. Expansion lines for instructions over three words in length

The last page of the assembly listing is the symbol table. Symbols are listed
in alphabetical order, along with their values and an indication of the
relocatable section in which they occur (if any). Symbols that are XDEF, XREF,
REG, in named common, or multiply defined are flagged. If option CRE has been
specified in the program, the cross-reference listing will identify the source
lines on which the symbol was defined or referenced (definitions appear first,
flagged with a "-").

LISTING CONTROL

AND OPTIONS

PAGE Top of page

LIST Enable the listing

NOLIST or NOL Disable the listing

FORMAT Enable the automatic formatting
NOFORMAT Disable the automatic formatting
SPC n Skip n lines

NOPAGE Disable paging

LLEN n Set line lengths 72 < n < 132
TTL Up to 60 characters of title
NOOBJ Disable object output

OPT Assembler options

FAIL Programmer~generated error

LINKAGE EDITOR

CONTROL

IDNT Relocatable identification record (label required)
XDEF External symbol definition

XREF External symbol reference

6.6 LINKAGE

The relocatable object module produced by the assembler must be processed by the
M68000 family linkage editor, or linker, in order to resolve relocation and
cross referencing needs. The output of the linker, in turn, can be another
relocatable object module, a file in "S-record" format which can be transmitted
to another computer, or a "load module" which can be executed directly on the
VME/10. A relocatable object module may be linked with other assembly language
programs, as well as FORTRAN and Pascal programs; in these cases, the user
should be aware of FORTRAN and Pascal requirements. Libraries of commonly used
routines may also be linked with assembly language programs.

"Relocation" refers to the process of binmding a program to a set of memory
locations at a time other than during the assembly process. For example, if
subroutine "ABC" is to be used by many different programs, it is desirable to
allow the subroutine to reside in any area of memory. One way of repositioning
the subroutine in memory is to change the "ORG" directive operand field at the
beginning of the subroutine, and then to re-assemble the routine. A
disadvantage of this method is the expense of re-assembling ABC. An alternative
to multiple assemblies is to assemble ABC once, producing an object module which
contains enough information so that another program (the linkage editor) can
easily assign a new set of memory locations to the module. This scheme offers
the advantages that re-assembly 1is not required, the object module is
substantially smaller than the source program, relocation is faster than
re-assembly, and relocation can be handled by the linkage editor (rather than
editing the source program and changing the ORG directive).

In addition to program relocation, the linkage editor must also resolve inter-
program references. For example, the other programs that are to use subroutine
ABC must contain a jump-to-subroutine instruction to ABC. However, since ABC is
not assembled at the same time as the calling program, the assembler cannot put
the address of the subroutine into the operand field of the subroutine call.
The linkage editor, however, will know where the calling program resides and,
therefore, can resolve the reference to the call to ABC. This process of
resolving inter-program references is called "linking".

Program sections provide the basis of the relocation and linking scheme. Each
of these sections may also have a variable number of named common sections
associated with it, with each common section having a unique name. These
relocatable sections are passed on to the linkage editor, which concatenates all
sections with the same number in the different modules to be linked. Each of
the 16 relocatable sections may contain data and/or code; in addition, named
common sections may be defined within any relocatable section.

Absolute sections are unnumbered (ard, therefore, unlimited in number); they are
specified by the ORG directive.

6.7 EXAMPLES

Following is an example of creating an absolute load module using the assembler
and the linkage editor.

a.

At the VERSAdos prompt (=), invoke the CRT text editor by entering the
following:

=E PROGNAME

PROGNAME represents the name of the source file being created; SA is the
default extension, and is usually used for ASCII source files.

After the user program has been entered, depress the Fl1 function key to
return the editor prompt (>) to the lower left portion of the screen,
and exit the editor as follows:

>QUIT
Assemble the program:

=ASM PROGNAME

The relocatable object module created by the assembler will be written to
a file named PROGNAME, with the default extension of RO. A list of the
source with the hex representation will be written to PROGNAME.LS.

Link the program. In this example, an assembly language subprogram
(created and assembled as above) is linked with the main program into an
executable load module (the file PROGNAME.LO) :

=LINK PROGNAME/SUBPROG

RO is the default extension for the input files.

An assenbly language program may also be linked with a Pascal or FORTRAN
program which is to call it.

Alternatively, a chain file such as the following could have been used to
assemble (step b.) and link (step c.) the assembly program.

First, call the editor:

=E CHAINASM.CF

Then enter the following command lines into the edit file:

=ASM PROGNAME

>=ASM SUBPROG

>=LINK PROGNAME/SUBPROG
>=END

NOTE

The VERSAdos prompt (=) is required on a
chain file command which calls a utility.

6-10

Exit the editor by depressing the Fl key and typing:
>QUIT

The chain file is executed by entering its name to VERSAdos:
=CHAINASM.CF

The user has the option of either listing the program on the screen or
printing hard copy to investigate and correct errors.

l. To list the program on the screen, enter:

=LIST PROGNAME.LS

The entire program will scroll on the screen (line by line) and
the compilation errors will be indicated as they occurred. To
stop the scrolling in order to investigate an error, press CTRL-W
(hold the CIRL key, then press the W key). To continue scrolling,
press any key.

2. To list the program on the printer, enter:

=COPY PROGNAME.LS,#PR

The entire program will be printed, indicating the total number of
errors and also where each error appeared in the program listing.

Use the text editor to correct the errors, then call the chain file
again. When no assembly errors exist, a valid absolute load module will
automatically be created, provided the linkage editor encounters no
problems.

The absolute load module is now ready to be examined or modified by
utilizing one of the two debugging programs -- DEbug or TENbug. To use
DEbug, refer to the SYMbug/A and DEbug Monitors Reference Manual for the
procedure to load an absolute load module into memory. To use TENbug,
refer to the BO command in the TENbug Debugging Package User's Manual for
the procedure to load an absolute load module into memory.

A completely debugged load module can be executed by entering only its
name to the VERSAdos prampt (=):

=PROGNAME

6-11/6-12

CHAPTER 7

LINKAGE EDITOR

7.1 INTRODUCTION

After user-written source files have been assembled (if assembly language) or
compiled (if high-level language such as Pascal or FORTRAN) into "relocatable
object module" files, they must be "linked" by the VERSAdos Linkage Editor (the
"linker") to convert them to absolute binary load modules. These load modules
are programs which are executable under VERSAdos. Furnished or user-created
library files may also be linked with the object modules, if their routines are
to be utilized.

One or two other forms of output files may be selected instead of a load module:
relocatable object modules can be linked to form a larger relocatable object
module, or they can be converted to Motorola S-record format modules, which can
easily be downloaded from the VERSAdos system to another computer. During the
downloading to a target system, the S-records are converted to machine-readable
code. An appendix to the VERSAdos System Facilities Reference Manual, MM68KVSF,
describes Motorola S-records.

The task of the linker is to examine amd gather infommation from the relocatable
object module(s) associated with indeperdently compiled or assembled source code
module(s) and, based upon this information, to allocate memory to code and data,
to relocate according to this allocation, and to resolve all references to
symbols assumed to be global to one or more modules.

The linker requires two passes (the input is read twice) before it can create an
output module. During the first pass, the linker gathers information about
externally referenced and externally defined symbols, building a symbol table in
the process. It also keeps track of what sections are assigned -- their names,
lengths, and starting addresses. Finally, it determines what modules from the
library file(s) are required. During pass one, no attention is paid to the
actual code/data in the relocatable object modules that are input.

After pass one, if an S-record module or absolute load module is being
generated, the linker assigns each section to an absolute address in memory.
This address is where the section will be loaded when the absolute load module
is executed. After allocation of memory, it is known how much space is required
for the resulting load module or S-record module. At this time, the output file
is allocated.

If a relocatable object module is being generated, the linker simply computes
the total size of each section in use; it opens the output file and outputs the
necessary information about each section and symbol to it. (Note: Each section
will always be started on a word boundary.)

The linker then proceeds to pass two, where the relocatable object modules read
in pass one are re-read in the same order. However, at this time, the data/code
in each module is relocated and reference resolution is performed, and the
data/code is then written to the output file. If a relocatable object module is
being produced, however, the input is not relocated, but any references between
the input modules are resolved.

At the completion of pass two, the linker outputs its final listings. The
listings produced depend on which options were specified in the invoking comma
line. :

7-1

7.2 INVOKING THE LINKER

When the linker is called from VERSAdos, several variations in processing can be
specified as options on the command line. Alternatively, certain parameters and
options may be specified interactively by user commands after the linker has
been started. The options are described in paragraph 7.2.1 and the user
commands are described in paragraph 7.2.2.

7.2.1 Comnand Line

VERSAdos will bring the linker into memory and begin its execution in response
to a LINK commard. Parameter or option information provided with the LINK
command line is saved for use by the linker. The format for this command line
is as follows:

LINK [<input file>] [, [<output file>][,<list file>]][;<options>]

<input file> is the name of a disk file containing one or more relocatable
object modules. As many input files as desired may be specified on the command
line, separated by a slash. Extensions, if not given, default to RO. These
files are processed first before any files specified by INPUT commands.

If input files are not specified, the A option is forced on to allow entry of
user commards. Files may then be specified by means of the INPUT command.

<output file> is the name of the disk file which will be used to contain the
output of the linker. This will be a file containing a load module, a
relocatable object module, or an S-record module (depending on what option(s)
are used). If a load module or an S-record module is being created, this file
name need not be specified, in which case the linker will assume the name of the
first input file processed, but with an extension of LO or MX, respectively. If
a relocatable object module is being created, an output file name that is
different from the input file name(s), must be specified. The default extension
for this file name is LO, RO, or MX, depending upon whether a load module,
relocatable object module, or S-record module is being produced, respectively.

<listing file> is the name of the disk file, with default extension of LL, which
will be used to contain the listings produced by the linker.

If # or #PRn is specified instead of <list file>, the listings will be directed
to the user's console or line printer, respectively.

If no list file or device is specified, but options requesting listings are, the
listing will be directed to the default output file/device (usually the user's
console).

<options> may be one or more of the following options.

OPTION DEFAULT FUNCTION

A -A Accept user commards from the command input device. If no
input files are specified in the command line, this option
is forced on.

B -B In the listing produced by the assembler, each relocatable
section in a module starts at relative address =zero.
However, each actual starting address (offset) is wherever
the linker locates a section within a memory segment.
Therefore, to form actual addresses for a section, this
offset must be added to each relative address in the
listing.

The B option forces each relocatable section from each
module to start on a page ($100-byte) boundary. The offset
then appears as $xxxx00, which -- being a multiple of $100
— makes it easier to work with and remember. This option
does not affect an absolute section, which is always placed
at the address indicated by its ORG directive.

If a START user command -- following after a B option —-
defines a starting address that is not on a page boundary,
the particular section or sections will start at the first
page boundary after that address.

This option may be used only if a load module or an
S-record file is being created.

D -D Create a symbolic debug file. It will have the same name
as the first file processed for input, with an extension of
DB.

H -H Include in the listing file the infommation found in the

header record of each input object module.

I -I List the command line and all user commards, if any, on the
listing file.

L=<1libfile>

!
[

Search the specified library files in the order listed if
any references are unresolved at the end of pass 1.
Process any modules which contain definitions satisfying
any unresolved references. More than one <libfile> may be
specified, separated by a slash.

If this is not the last option in the command line, it must
be followed by a comma.

M -M List a map of the resulting module on the listing file.

0 -0 Create an absolute binary load module. If no output file
name was specified in the command line, the load module
will have the same name as the first file processed for
input, but with an LO extension. Note that this option and
the R arnd Q options are mutually exclusive.

OPTION

P

DEFAULT

P or -P

-S

FUNCTION

Search default libraries at the end of pass 1 if unresolved
external references. There is one default library file
supplied for each language supported by VERSAdos (e.g.,
0.&.FORTLIB.RO or 0.&.PASCALIB.RO).

This option defaults to on (P) if a load module or an
S-record module is being created (0 or Q option is on).
Otherwise, it defaults to off (-P).

The L option, if specified, is executed first, in order to
load any user-written modules before default 1library
modules.

Create an S-record output module. If the output file name
is not specified, its name defaults to that of the first
input file, plus the MX extension. When Q is specified,
the user commands TASK, MONITOR, PRIORITIES, OPTIONS,
ATTRIBUTES, and COMLINE may not be used, but the IDENT
commard may be used to specify identification to the SO
record. Note that this option and the O and R options are
mutually exclusive.

Create a relocatable object module. This option requests
that the relocatable object modules input be combined to
create another relocatable object module, rather than an
S-record module or an absolute load module. All references
between the modules input will be resolved. Only those
external references that cannot be resolved among the input
modules will be included in the output module. All the
external symbol definitions encountered in the input
modules will be included in the output module unless an
XDEF user command is specified. When the R option is used,
an output file name, different from the input file name(s),
must be specified on the command line; otherwise, an error
will result. Note that this option and the O and Q options
are mutually exclusive.

When the S option is used on the LINK command line,
segments without user-specified starting addresses are
allocated sequentially, on page boundaries, after the
segment having a user-specified starting address.
Allocation occurs in the order segments are defined in
SEGMENT commards. '

For example, when only one segment is given a
user-specified starting address, that segment will be
allocated at that address, and all remaining segments will
be allocated immediately after it.

When more than one user-specified starting address is
given, segments without user-specified starting addresses
are allocated after the segment having the highest
user-specified starting address.

7-4

OPTION

DEFAULT

W=n

Z=n

W=24

Z=35

FUNCTION

In the event that no user-specified starting addresses are
specified, the S option has no effect. The segments will
be allocated sequentially, starting at memory address 0.

When -S 1is in effect, segments without user-specified
starting addresses are allocated sequentially in the order
in which they are encountered by the 1linker, on a
"first-fit" basis.

This option may be used only if a load module or an
S-record module is being created.

If any unresolved references exist at the end of pass 1,
list the references. Allow the user to specify additional
commards to resolve the references. This option is forced
off if the cammand input device is not the user console.

IMPORTANT: If this option is specified, the linker will
not proceed to pass 2 until all unresolved references are
resolved.

valid <n> may be 24, 28, or 32. Specify the bit width of
the addressable memory space. Some target processors may
provide for a 28-bit or 32-bit memory space (e.g., the
MC68010 or the MC68020). Use of the W=28 or W=32 option
allows the user to create an S-record output module which
contains 28-bit or 32-bit addresses. Note that W=28 or
W=32 may be used only when the Q option is on.

List the external definition directory on the listing file.

Allocate a stack and heap segment of at least <n>K bytes
(1K = 1024). This segment is used by the linker for
storage of the symbol table. If the linker aborts with a
Pascal runtime abort code of $1008, $1010, or $1011 (see
VERSAdos Messages Reference Manual or M68000 Family
Resident Pascal User's Manual), it may be possible to
perform the link successfully by invoking it with a larger
Z option.

7.2.2 User Commands

The linker will accept direct commands when any of the following conditions
exist:

a. Input files were not specified on the command line.
b. The A option was specified on the command line.

c. External references were not resolved at the end of pass 1, and the U
option was specified on the command line.

The linker prampts for entry of a user command by displaying a right angle
bracket (>). After each command entry, the linker issues its prampt until an
END, QUIT, or ABORT command is entered. The 1linker then either continues
prompting or returns control to VERSAdos, as appropriate.

The available commands are:

ABORT All open files are closed and control is returned to
VERSAdos .

ATTR[IBUTES] [<list>]
Used only when output file is a load module. Sets up task
attributes in resultant load mode. <list> may be zero,
any, or all of the following:

identifies task as a system task.

if task is aborted, do a task dump.

assigns logical unit number 8 to task when loaded.

makes task position independent.

U O W
N

COML [INE] <name>[,<length>] | [(<segment>)]<address>[,<length>]

Specifies where in memory the command line used to invoke
the resultant user program will be stored. If linker
output will be a relocatable object module, only <name>
(previously externally defined in input module) may be
specified. 1If linker output will be a load module, <name>
or <address> may be specified. COML may not be used if an
S-record module is being created.

DEF [INE] <symbol>,<value>
Places <symbol> name in external symbol definition table of
resultant relocatable object module. Ignored if the XDEF
camand is also given.

END Signals end of user command entry. During linkers first
pass, a search is made for unresolved external references.
If found and P option was specified, default libraries are
searched. If found and U option was specified, they are
displayed and the linker prompts for further user entries.
If found and U option was not specified, the linker aborts.
If no unresolved references remain, pass 2 processing will
begin. The QUIT command also effects these results.

ENTRY <name> | [(<segment>)] <address>
Identifies entry point (beginning execution location) of
linker output module. Only <name> may be specified if
output will be relocatable object module. If output will
be load module or S-record module, <name> or <address> may
be specified.

7-6

IDENT <name)>,<version>,<revision) [,<description>]
Identifies module name, version, and revision, and optionally
supplies a description, to a relocatable object module or
S-record module. If relocatable object module, this is the
name by which it will be referenced in any future linking.
If S-record module, the IDENT information is put in the SO
record.

IN[PUT] (filename> [,<modnamel>[,<modname2>]...]
Extends or replaces the input file name specification on the
command line. The term <modname> represents a module name
specified in assembler IDNT, Pascal PROGRAM or SUBPROGRAM, or
linker IDENT directives. More than one series of file name
and module name(s) can be specified on an IN directive line.

LIB[RARY] <libfile> [<libfile>]...
Allows specifying one or more library files, which will then
be searched in the order 1listed for unresolved external
references. LIB may be used in place of the L=option on the
comand line.

LIST and <filename>|# | #PR [n]

LISTM|U|X The first form of the LIST command establishes whether, when
the second form of the command is used, the listings will be
output to a file, to the screen (#), or to a printer.
Default is to the screen. LIS™ asks for an immediate
listing of the load map; LISTU asks for an immediate list of
unresolved references; and LISTX asks for an immediate list
of external definitions.

MON[ITOR] <name)> [,<session number>]
Used to specify name and session number for a monitor task
for the task being created (load modules only) .

OPT[IONS] [M] [P] Two directive options, specified in any order, are available
(load modules only). M instructs the linker that a monitor
task is specified; P directs the linker to use the monitor of
the loading task (propagate the monitor).

PRIO[RITIES] <initial priority>,<limit priority>
Establishes a task's initial priority and its limit priority
(load modules only).

QUIT Ends input of interactive user cammands. Works exactly the
same as END.

SEG[MENT] <segname> [(<attributes>)]:<sec#>[,<sec#>]...[<start>[,<end>]]

Allows defining a particular segment of the memory management
unit when the output or the linker is a load module or an
S-record module. Segment names may be up to four characters.
Attributes may be any of the following: R=read only segment;
L=locally shareable segment; and G=globally shareable
segment. One section number or a range of section numbers
may be specified. Starting or starting and ending addresses
of the segment may be specified. Refer to the M68000 Family
Linkage Editor User's Manual for a more detailed explanation
of memory allocation.

7-7

START <section#>[,<section#>]...<start address>
Defines the starting address at which a particular section
or sections, or a rarge of sections of a segment will be
stored in memory. The linker's output must be a load
module or an S-record module.

TASK <name>[,<session number>]
When the output load module is to be executed as a "task",
this command is given to the linker to give the task a name
and, optionally, specify a session number. If TASK is not
used, the resulting load module's task name will be the
first four characters of its file name -- session number
defaults to zero.

XDEF <symbol> [,<symbol>]...
Specifies which externally defined symbols in the input
relocatable object module(s) that have already been
processed will be externally defined in the relocatable
object module the linker is producing. If not used, all
externally defined symbols encountered will be defined as
XDEF's in the new module.

7.3 LINKER OUTPUT

The following paragraphs describe the listings produced by the linker, and also
the formats of the linker's output modules -- relocatable object modules, load
modules, and S-record files. Additionally, the format of "debug files" created
optionally by the linker, which can then be accessed by VERSAdos' symbolic
debugger program, SYMoug, is described.

7.3.1 Listing Types

At the erd of pass 1 when unresolved references still exist, at a fatal error,
at the end of pass 2, or immediately in response to user listing commands, the
linker will print listings. Some of the listings at the end of pass 2, ad at
fatal errors, occur only as a result of options specified in the LINK command
line. The listings are directed to the listing output file or device.

Fatal Errors

When the linker encounters a fatal error and cannot complete the 1link, the
following information is generated: Linker version identification, options in
effect, unresolved external references, multiply defined symbols, error count,
and a statement that the output module has not been created. The command line
entered and any user commands entered are also part of the listings if the I
option was specified.

Immediate Listings

The following information is immediately output when the LIST directives are
given to the linker:

LIST™ = Load map
LISTU = Unresolved external references
LISTX = Externally defined symbols

7-8

End of Pass 1

If any unresolved references still exist after pass 1, they are listed.

End of Pass 2

The listing produced always includes: linker version identification, options in
effect, unresolved external references, multiply defined symbols, error count,
and a message as to whether a new output module has been created or a previous
one has been replaced by this module. Depending upon options specified, the
following may be part of the listing:

I = command line and user directives

H = object module header information

M = load map
0,0 = length of segments and module, in bytes
X = externally defined symbols

7.3.2 Relocatable Object Module Format

Under the VERSAdos operating system, relocatable object modules are stored in
sequential files with fixed length records of 256 bytes.

Within each 256-byte record are stored a variable number of variable length
relocatable object records. Each one of these records consists of a one-byte
byte count followed by the actual data of the relocatable record. The byte
count indicates the number of data bytes that follow in that record. The byte
count may contain any value between 0 and 255, inclusive. A byte count of zero
indicates a relocatable object record with no data bytes (a record of this type
is ignored by the linkage editor). Thus, the length of one relocatable object
record is limited to a total of 256 bytes -- one byte for the byte count and a
maximum of 255 data bytes.

Each 256-byte fixed length record is totally filled before continuing on to the
next 256-byte record. Thus, it is possible for a variable length record to be
divided between two fixed lengths.

Any space not used in the last 256-byte fixed length record of a relocatable
object module file is filled with binary zeroes. This effectively fills out the
rest of the file with relocatable object records that have zero bytes of data
(which will be ignored by the linkage editor).

There are four basic types of relocatable object records. The type of a record
is indicated by the first byte of data (the byte immediately after the byte
count) in the record. Record types may be: identification, external symbol
definition, object text, or end.

Each relocatable object module must contain an identification record as the
first record in the module. It is this record which indicates the beginning of
a relocatable object module. The identification record contains general
information about the reloctable object module, such as its name, version and
revision, what language processor was used to create the module, what source
files was used to create the module, the time and date the module was created,
and a description of the module.

Each external symbol definition record contains a variable number of external
symbol definitions (ESD's), each of which defines a relocatable section, a
common section, an absolute section, an externally defined symbol, an externally
referenced symbol, or a command line address. The type of an ESD within an
external symbol symbol definition record is indicated by a one-byte value at the
beginning of the ESD.

Several ESD entries may be included in one ESD record.

In order that they may be easily referenced later in the relocatable object
module, each section (relocatable, common, and absolute) and each external
reference in a relocatable object module is assigned an index. This index is
called an external symbol definition index (ESDID).

ESD's which describe externally defined symbols and command line addresses are
not assigned indices. This is because these types of ESD's do not need to be
referred to later in the relocatable object module.

ESDID's are assigned anew for each relocatable object module processed.

Object text records define the actual code and data which is to be put in the
resulting load module (or relocatable object module). Each object text record
contains absolute code along with relocation data for computing relocated code.
A bit map is employed to indicate what data is absolute code and what data is
relocation data.

An end record indicates the end of a relocatable object module and must be the
last record in every module. It also contains information about the starting
execution address of the module.

7.3.3 Load Module Format

Under the VERSAdos operating system, load modules are stored in contiguous
files. Each load module consists of a header block followed by a variable
number of memory image blocks. Each block is 256 bytes long.

The first block in a load module is known as the Loader Information Block (LIB).
It is also sometimes called the header block. The LIB contains all the
necessary information about the load module except the actual data. The LIB
consists of three major sections: the header, the segment allocation
descriptors, and the memory image descriptors.

The header part of the LIB occupies the first 48 bytes of the LIB and contains
information about the task that is created when the load module is loaded into
- memory by the VERSAdos loader.

Immediately following the header section of the LIB are the segment allocation
descriptors (SAD's). There are eight SAD's where each one occupies 16 bytes.
This makes for a total of 128 bytes. The SAD's occupy the 49th through 176th
bytes in the LIB. Each SAD describes a memory management unit (MMU) segment
that is to be set up when the module is loaded. Currently, a task may have a
maximum of four MMU segments allocated to it.

7-10

Immediately after the segment allocation descriptors in the loader information
block are the memory image descriptors (MID's). There are 20 MID's in a LIB and
each MID occupies 4 bytes, which makes for a total of 80 bytes. The MID's
occupy the 177th through 256th bytes of the LIB. Each memory image descriptor
defines a logical address space in memory into which data in the load module is
to be located.

For each memory image descriptor, there is a contiguous block of data in the
memory image blocks of the load module which corresponds to the address space
defined by the MID. The data corresponding to the MID's appears in the load
module in the order in which the MID's appear.

Immediately following the LIB in a load module are a variable number of
contiguous memory image blocks. Each memory image block contains 256 bytes of
code/data which is to be loaded into memory, without alteration, when the task
is loaded. The number of memory image blocks in a load module depends upon the
number of memory image descriptors in the LIB and the address spaces defined by
them. Note that MID's define memory images in multiples of pages (256 bytes).
Therefore, all the data in any given memory image block belongs to one and only
one memory descriptor.

7.3.4 S-Record File Format

An S-record file consists of a sequence of specially formatted ASCII character
strings. There are several fields within these records in which groups of
characters must be interpreted as hexadecimal values of one to four bytes in
length. An S-record will be less than or equal to 70 bytes in length. Since
each S-record requires 10 to 14 bytes in fixed overhead for the type, byte
count, address and checksum fields, the variable length data field may be
allocated, at most, 60 bytes. This translates to 60 characters or 30 character
pairs or bytes of data per data record from the user viewpoint.

The order of S-records within a file is of no significance, and no particular
order may be assumed in the S-record file output by the linker.

S-record types output by the linker may be:

S0 The type of record.field is 'S0' ($5330). The address field is unused
and will be filled with zeros ($30303030). The header information
within the data field is supplied by the user by means of the
interactive user command IDENT.

Sl The type of record field is 'S1" ($5331). The address field is
interpreted as a two-byte address. The data field is composed of
memory loadable data.

S2 The type of record field is 'S2' ($5332). The address field is
interpreted as a three-byte address. The data field is composed of
memory loadable data.

S3 The type of record field is 'S3' ($5333). The address field is
interpreted as a four-byte address. The data field is composed of
memory loadable data.

7-11

S7 The type of record field is 'S7', 'S8', or 'S9' ($5337, $5338, or

S8 $5339), respectively. The address field contains the starting

S9 execution address specified by the user by means of the interactive
user command ENTRY. If no ENTRY command is specified, the first entry
point encountered in the object module's input will be used. If no
starting address is encountered, the beginning address of the first
segment will be used. If none of these methods is used to specify the
starting address, this field will be set to zeroes. The address field
of the 'sS7', 'S8', amd 'S9' records is four, three, amd two bytes,
respectively. There is no data field.

7.3.5 Debug File Format

The format of debug files, used by the symbolic debugger S¥Mbug, is similar to
that of relocatable object module files in that they are stored in sequential
files with fixed length records of 256 bytes. Records not completely filled
with information are padded with S$FF to fill 256 bytes.

A debug file contains infommation taken from three sources: the relocatable
object modules used as input to the linker, their associated .RS files (if they
exist), and the load module information block. This information is organized
into a .DB header record and one or more additional records per relocatable
object module included in the link. The module infommation is organized into a
module header record, zero or more module symbol records, anmd zero or more
module index records per module.

7-12

CHAPTER 8

PASCAL COMPILER

8.1 INTRODUCTION

Source programs written in Pascal for the VME/10 are compiled with the M68000
Family Pascal Compiler and then linked with applicable library routines by the
M68000 Family Linkage Editor to create an executable load module. They may be
linked, also, with other Pascal subprograms and assembly language subroutines.

The Pascal compiler consists of three separate programs which are run
sequentially. The first and third programs are required; the second program,
which is optional, is an optimizer which reduces code size and increases its
efficiency, thereby increasing the speed at which the finished Pascal program
executes. The three programs are named PASCAL, POPTIM, and PASCAL2, and are
also referred to respectively as Phase 1, Phase 1.5 (or optimizer), and Phase 2.
Each program processes its input file in a single pass and generates the input
file for the next program.

8.2 SOURCE PROGRAMS

8.2.1 Pascal Source Programs

Various options can be specified from within the Pascal program that affect the
compiler's source, listing, and object output, control runtime checks, change
stack and heap size, and call for fast floating point arithmetic.

These options are specified in the source file as a Pascal comment, with an
additional symbol which informs the compiler that the comment is an "option
comment". Two forms may be used:

{$<option>} or (*S$<option>*)

Options are specified as alphabetic characters, followed immediately by a plus,
minus, or equal sign. More than one option can be specified within the same
comment, separated by commas but not spaces. The option comments generally may
be specified anywhere a comment is normally allowed. '

Many of the options may alternatively be specified on the Pascal command lines
(paragraph 8.3). The option comment characters and their meanings are:

OPTION DEFAULT ’ FUNCTION
=n =4 Specify the number of bytes used for integer
arithmetic.
C- C+ Generate an input file for the optimizer or Phase 2.

Eliminating this file reduces the time necessary to
generate the listing and any errors.

8-1

OPTION DEFAULT FUNCTION

D+ D- This combines the K and R options to (1) generate
code to perform runtime checks which verify that
array indices and subrange type variables are in
range, and (2) include executable unit numbers in the
executable object code.

E none Page eject for Phase 1 listings.

F=<filename> Include the file specified by <filename> in the
source. Immediately after the line which contains
this comment option, Phase 1 will start obtaining its
source input from the file indicated by <filename>
(which must conform to the rules for specifying a
file name for the operating system). When the end of
the "include file" 1is encountered, Phase 1 will
return to getting its source from the original source
file at the point it left off.

G+ G- Keep object files output by the compiler or optimizer
which contain errors (normally deleted).

H= H=4096 Specify the size of the program heap in bytes.

I- I+ Pass any external files specified on the command line

to the program at start-up.

K+ K- Include executable unit numbers in the executable
object code. The executable unit numbers relate to
statements and are found on the source listing.

L- L+ Generate a source listing in the Phase 1 listing
file, on the printer, or on the CRT.

o+ o~ Enter source statements as comments in the Phase 2
input.
P+ P- Include executable unit numbers in the executable

object code, but only at function/procedure entry and
exit points.

Q+ Q- Use fast floating point.

R+ R- Generate code to perform runtime checks which verify
that array indices and subrange type variables are
in range.

S=n variable The value specified by n will be the default

stack/heap size in bytes used by the program. If
specified, n must be at least 768.

W+ W- Generate a warning during Phase 1 processing if non-
standard Pascal features are used. Standard Pascal
comprises only the 1language features proposed by
Jensen and Wirth.

In Motorola Pascal, program's code size and data size are limited only by the
amount of memory in the user's system. The size of a component of a file type
is limited to 32767 bytes due to the nature of the Pascal input/output
utilities.

Motorola extended data types include a dynamic string type which may include
character strings up to 32764 characters long. Extended floating point types
include double and extended precision reals in addition to the normal precision
reals.

String constants are limited to a maximum of 132 characters. Strings are
limited to 32766 bytes (32764 bytes of data and a two-byte current length word).
Sets are fixed at eight bytes.

The subranges of case statement index expressions and array index expressions
may be any subrange which can be expressed using four-byte integers.

8.2.2 Pascal Subprograms

Level one procedure and function declarations may have their declaration and
statement parts replaced by the Pascal directive forward, and then have their
specific program parts treated as external and compiled separately within a
subprogram. The subprograms are linked to the main program when the load module
is created by the linker.

The form of a subprogram is similar to the form of a Pascal program. It
consists of a subprogram heading and declaration part. However, it does not
contain a statement part.

The subprogram heading contains, in the following order: (1) the symbol
subprogram, (2) a subprogram name identifier, and (3) a subprogram parameter
list. The subprogram parameters should be the same as the program parameters in
type, number, and order.

The declaration part of a subprogram consists of the declaration of variables,
procedures, and functions, and the definition of constants and types. In order
to preserve recognition of global identifiers, all variables in the subprogram
variable declaration part must agree in type, number, and order with those
appearing in the program's variable declaration part.

Constants and types declared in the Pascal program may be duplicated in a
subprogram, :

Among the procedures and functions declared in the subprograms are those which
were declared as external (forward) in the Pascal program. These externally-
referenced procedures and functions must be declared at level one.

The final end statement of the final procedure or function declared in the
subprogram is followed by a period (.), which terminates the subprogram.

8.2.3 Assembly Language Subroutines

An assembly language routine may be called externally by a Pascal program using
normal Pascal argument passing. Such a routine may perform a function not
available in Pascal or a function to be used repetitively in a real-time
environment, a shorter and faster routine than might be possible in Pascal.

There are two requirements which must be satisfied in order to include an
assembly language subroutine in a Pascal program. The first is to declare the
external assembly language routine in the Pascal program. This is done by
declaring a level 1 procedure or function, contained in the main program or a
subprogram, using the forward directive. These declarations should appear
before the first non-external procedure heading.

For example:
FUNCTION SUMTHREE(I,J,K:INTEGER) : INTEGER; FORWARD;

The external assembly language subroutine may then be called just as any Pascal
procedure or function. Calling an assembly language routine is identical in
format -- and its runtime requirements are identical in system usage -- to a
reqgular function or procedure call in Pascal. The call might be:

BEGIN
+=SUMTHREE(3,5,7) ;

The second requirement concerns the file which contains the assembly language
routine. This file must have an entry point, which has been declared external
with an XDEF, with the same name (truncated to 8 characters) as the procedure or
function in the Pascal program. The assembler must be informed that the
subroutine is to be included in section 9. A 'SECTION 9' directive at the
beginning of the assembly language subroutine file accomplishes this.

For example:
XDEF SUMTHREE
SECTION 9
SUMTHREE EQU *

Control may be returned to the Pascal program by means of either a return from
subroutine instruction or a jump indirect through an address register which
contains the return address. Refer to the M68000-family Resident Pascal User's
Manual for stack requirements of the assembly language subroutine.

After it is assembled, an assembly language routine is linked with a Pascal
program and appropriate libraries by means of the linkage editor.

8.2.4 Runtime Libraries

When Pascal programs are linked, they are automatically linked also with the
default library of runtime routines, PASCALIB.RO. Libraries of routines written
by the user can be created by using the LIB VERSAdos utility, and then linked
with the Pascal programs. The name of the user library must be specified to the
linker, either on the LINK command line or with the interactive LIB command.

Other Pascal libraries are furnished for use with other Motorola computers, and
for use when only the VERSAdos kernel, RMS68K, is used. These are described in
the M68000-Family Resident Pascal User's Manual.

8-4

8.3 INVOKING THE COMPILER

Following are the command lines used to invoke the three Pascal compiler
programs, PASCAL (Phase 1), POPTIM (Phase 1.5), and PASCAL2 (Phase 2), and brief
descriptions of their operation. The output of Phase 1 may be input directly to
Phase 2, or it may be input to the optimizer, Phase 1.5. Phase 2 accepts the
output of either Phase 1 or 1.5, and produces a relocatable module, ready to be
linked.

8.3.1 Phase 1 - PASCAL

Phase 1 processes a Pascal source program, checking the syntax of each statement
it encounters. If any errors are detected, they are brought to the attention of
the user. These errors should be eliminated and Phase 1 should again be invoked
to compile the modified program. When no errors are reported, Phase 1
processing is complete. The file output by Phase 1 is an intemmediate file. If
errors are detected, this file is automatically deleted. A listing of the file
can optionally be requested; any errors found are flagged in the listing.

The commard line to invoke the PASCAL Phase 1 program is:
PASCAL <source file [, [<output file>][,<list file>][;<options>]

More than one source file may be specified, separated by a slash (/) character.
If the output and/or list files are not specified, appropriate default filenames
will be created, based upon the first input filename. The listing may also be
directed to the CRT screen or a printer by specifying # or #PR, respectively,
instead of a file name. Options are similar to the source file option comments.
Except for the Q option, option comments override command line options. Command
line options are:

OPTION DEFAULT FUNCTION
C C Generate an intermediate code file.
D -D Generate runtime range checking code; include

executable unit numbers in object code.
E -E’ Disable progress counter updating during compilation.

G -G Retain the intermediate code file in the event an error
is detected.

I I Pass external files from the command line.

K -K Include executable unit numbers in object code.

L L Generate a Phase 1 listing.

0 -0 Include source statements in Phase 2 input.

P -P Include executable unit numbers in object code at

function/procedure entry and exit points.

8-5

OPTION DEFAULT ‘ FUNCTION

Q -Q Use fast floating point. When wusing separate
compilation, the same state of this option (Q or -Q)
must be used with each compilation.

R -R Generate runtime range checking code.
W -W Warn if non-standard Pascal features are used.
=n Z=40 Set stack/heap (symbol table) size wused by this

compiler phase to nK. Value of n must be at least 40
(the default value, 40K bytes).

8.3.2 Phase 1.5 -- POPTIM

When an error-free intermediate file is produced by Phase 1, it can be input to
POPTIM, the optimizer, at the user's option, or skipped.

POPTIM provides machine-independent optimization of the pseudo-code produced by
the compiler by reducing the number of pseudo-codes and providing more
information to the machine-dependent code generator about the program in general
and about variable usage.
The output file produced by Phase 1.5 becames, in turn, the input file for
Phase 2. However, if the optimizer encounters errors, this file is
automatically deleted.
The optimizer is called from VERSAdos as follows:

POPTIM <intermediate file)>[,<output file>] [;<options>]

Options may be:

OPTION DEFAULT FUNCTION
E -E Disable progress counter updating during optimization.
G -G Retain the optimized intermediate code file in the event an

error is detected.

O=n O=1 Perform levels of optimization up to n. The default level
is 1. (Levels 2 and 3 are not yet implemented.)

Z=n 7Z=32 Set stack/heap size used by this compiler phase to nK.
Value of n must be at least 32.

8-6

8.3.3 Phase 2 -- PASCALZ2

Phase 2 of the compiler processes the intermediate code produced by Phase 1 or
the optimized intermediate code produced by Phase 1.5, and generates an object
module that can be link edited to create a load module. It then generates, in
the form of a relocatable object module, the machine code equivalent of the
corresponding group of intermediate instructions. One object module is
generated for the entire input file.

Phase 2 is called as follows:

PASCAL2 <intermediate file>[, [<object file>][,<1list file>]][;;<options>]

Options may be:

OPTION DEFAULT FUNCTION
E -E Disable progress counter updating during code generation.
G -G Retain the relocatable object output file in the event an

error is detected.

L -L This option enables generation of the 1listing file
specified by <list file>.

J J This option causes a JSR to an F-line trap simulator to be
generated before each floating point instruction generated
when the standard version of floating point is being used
(-Q). This is the default condition. Entering -J as a
command line option suppresses generation of the JSR's to
the F-line trap simulator. If -J is used, the user must
supply his own floating point initialization routine,
F-line trap handler, and memory access routine at linkage
edit time. When using separate compilation, the same state
of this option, J or -J, must be used with each
compilation.

Z= Z=48 Set stack/heap size used by this compiler phase to nK.
Value of n must be at least 48.

8.4 COMPILER OUTPUT

The final output file of Phase 2 of the compiler is a relocatable object module
file that is compatible with the M68000 Family Linkage Editor. Also produced at
this time, if requested with the L option on the PASCAL2 command line, is a
"pseudo assembly" listing which facilitates later debugging.

Following is a pseudo assembly listing of lines 55 through 66 of a Pascal
program. For comparison, the same lines from the Phase 1 listing of the program
are shown below it.

Phase 2 Output (Pseudo Assembly Listing)

* BEGIN 55
* 56
* {read in the numbers, one by one} 57
* 58
* PR i := 1 T0 array size DO 59

000000920094 3B7C 0001 BICA MOVE $1,=-20022 (AS)

00000098-009A 3B6D BICE BlC2 MOVE -20018 (A5) ,~20030 (AS)

0000009E=O00AQ 60%* BRA L6

000000A0=-00A4 LS EQU *
* BEGIN 60
* write (output,'Input number ',i:3,': '); 61

000000A0-00A4 486D FFFO PEA =16 (AS)

000000A4-00A8 4EAB *%%* JSR +PLDCS~, PLISR (A3)

000000A8=00AC 000D DC.W 13

000000AA=00AE DC.B 'Input number '

000000B8-00BC 4267 CLR - (A7)

000000BA~00BE 4EAB *##*#* JSR « PWRS=,PLJSR (A3)

000000BE-Q0C2 7203 MOVEQ #3,D1

000000C0-00C4 302D BICA MOVE «20022 (AS) ,DO

XREF 8:.PWRI

000000C4=00C8 4EAB *#*# JSR . PWRI-.PLJSR(A3)

000000C8-00CC 2F08 MOVE.L AQ,-(A7)

000000CA=Q0CE 2F3C 00023A20 MOVE.L $#145952,-(A7)

000000D0-00D4 4267 CLR -(A7)

000000D2-00D6 4EAB *##* JSR + PARS=-, PLISR (A3)
* force (output); 62

000000D6=00DA 2F08 MOVE.L AO0,-(A7)

000000D8-00DC 4E93 JSR (A3)

000000DA=00DE **#**4#% DC.L USER1~*
* readln (input,number array(i]) 63
* END; {FOR} 64

000000DE-O0E2 302D BICA MOVE =20022 (AS5) ,DO

000000E2~00E6 ES540 ASL $2,D0

000000E4~00E8 41ED B1CC LEA =20020 (AS) ,A0

000000E8-00EC 43F0 0000 LEA 0(A0,DO) ,Al

000000EC=-00FC 41ED FFF8 LEA -8 (AS) ,A0

XREF 8:.PROJ

000000F0~00F4 4EAB **** JSR +PRDJ=-, PLISR (A3)

000000F4=00F8 4EAB *##*% JSR «PRIN=-,PLJSR (A3)

000000F8=-00FC 526D B1CA AIDQ $#1,-20022 (AS)

000000FC=0100 69** BVS L7

000000FE-0104 L6 EQU *

000000FE-0104 302D B1C2 MOVE ~20030 (AS) ,DO

00000102-0108 BO6D BlCA [0, 14 =20022 (AS) ,DO

00000106=-010C 6C** BGE LS

00000108~0110 L7 EQU *
* . 65
* {now sort the numbers - use a bubble sort} 66

Phase 1 Output

55 0)C- BEGIN

56 0) =~)

57 0)— {read in the numbers, one by one}

58 0)—

59 8 0)— FOR i := 1 TO array _size DO

60 0)D~- BEGIN

61 9 0)— write (output,’Input number *,i:3,': ');

62 10 0)=— force (output);

63 1 0)— readln (input,number_array[i])

64 0)-D END; {FOR}

65 0)—

66 0)=— {now sort the numbers - use a bubble sort}

8.4.1 Relocatable Object Modules

The relocatable module file contains information which, when extracted by the
linker, makes possible the combination of separate programs and the automatic

inclusion of necessary system routines. The location of every level 1 procedure
is recorded in the object file in an external definition record. A list of all
modules referenced by the program, either explicitly requested by the user or
determined by Phase 2 to be needed, is included in an external reference record.
An indication of the memory occupied by the program is provided, along with a
request for space to be used by the Pascal program for data storage in a
stack/heap.

The code itself is also stored in the object module. Phase 2 creates code that
is position independent, as well as relocatable. The linking process will
preserve the position-independence so that Pascal programs may theoretically be
loaded into any memory address space. A special feature of this code is that it
includes a pseudo long relative branch facility that enables any instruction to
be reached with six bytes of code. Routines obtained from the runtime library
may always be reached with a four-byte instruction.

8.4.2 Pseudo Assembly Listing Description

If a Pascal program does not perform as expected, debugging may be necessary.
The most convenient way to perform this activity is by including facilities in
the program to inform the user of its progress, reporting the values of critical
variables at appropriate times. Occasionally it might be desirable to conduct
debugging of individual machine instructions rather than source statements. The
pseudo assembly listing output at the end of Phase 2 processing greatly
facilitates this activity.

This listing contains the following information:

a. Pascal source statements are present if the O option was selected when
Phase 1 processing was requested. To the right of the source statement
appears a statement number that matches the statement number appearing at
the beginning of each line of the Phase 1 listing. This makes it easy to
find a specific source statement in the pseudo assembly listing.

b. Between source statements appears a representation of the code that was
stored in the object file. This appears in a similar format to that
which would be produced by an assembler. Machine code for instructions
which cannot be shown in final form (instructions containing forward
references and instructions requiring linkage for completion) is
indicated by asterisks (**).

c. An assembly language instruction equivalent to the machine code
representation appears on the right side of the pseudo assembly listing.
This code may serve as a basis for users desiring to modify code
generated by Phase 2, but will not, in general, assemble correctly.

d. In certain situations, addresses have not been determined at the time the
listing is generated. In the Phase 2 listing, unknown addresses jumped
to or branched to are indicated by asterisks. Instruction addresses
which are uncertain at this time are shown as ranges in which they will
fall -- e.g., 00000054-005C. This uncertainty results from forward
references to labels and Phase 2's attempt to reach the label using a
short branch. Phase 2 does not know whether a short branch will be
adequate until sometime after the pseudo assembly 1listing has been
output.

8-9

8.5 LINKAGE

- The relocatable object module produced by Phase 2 of the Pascal compiler must
then be processed by the M68000 Family Linkage Editor. The output of the linker
may be either an executable Pascal program (a load module), a file that can be
downloaded to a target system for execution (an S-record module), or another
relocatable module, to be linked with other relocatable object modules (Pascal
or assembly).

If procedures and functions in a Pascal program are written in assembly
languages, these subroutines must be linked with the program.

The linker also links the runtime library, PASCALIB, with the program so that
input/output routines called by the program can be accessed.

Pascal supports separate compilations so that the user may group one or more
procedures or functions into a subprogram. The linker can combine as many
subprograms as desired, and can resolve references between the program and
subprogram or between two subprograms. Modules using standard floating point
may not be linked with modules using fast floating point.

According to the linker's default processing, memory will be allocated in two
segments. Segment SEGL, the program segment, will contain the runtime routines,
the Pascal code section, and assembly language routines. Segment SEG2, the data
segment, will contain the Runtime Maintenance Area (RMA), Pascal stack/heap, and
the Pascal exception vectors.

8.6 LOAD MODULES

When the Pascal program has been finally linked with all necessary subprogram
modules, assembly language modules, and 1libraries into an executable load
module, it may then be run by typing its name to VERSAdos.

Filename assignments can be made on the command line when entering the program
name, and the Z=n option can be specified on the command line to extend the
stack/heap size.

The following command line to VERSAdos associates filenames with file variable
specifications on a program statement in a Pascal program named COMPUTE, and
enlarges the stack/heap size to 32K bytes:

= COMPUTE MATH.SA,TRIG.SA,ARITH.LS;Z=32

where the program statement was:
program compute (input,output,source,object,listing)

The input and output file specifications required by Pascal ("I=" and "O=") were
omitted on the command line, as they default to the user's terminal (I=%, O=%).

8-10

8.7 EXAMPLES

Following is an example of creating an absolute load module using the Pascal
compiler and the linkage editor.

Q.

Ce.

At the VERSAdos prompt (=), invoke the CRT text editor by entering the
following:

=E PROGNAME

PROGNAME represents the name of the source file being created; .SA is the
default extension, and is usually used for ASCII source files.

After the user program has been entered, press the F1l function key to
return the editor prompt (>) to the lower left portion of the screen, and
exit the editor as follows:

>QUIT

Compile the program into a relocatable object file and link the file with
other files called from the Pascal library to create an absolute load
module. Each Pascal phase (1, optional 1.5, and 2) and the linkage
editor can be called separately, or the user can create a chain file that
will automatically execute the two (or three) phases of Pascal and the
linking function to create the absolute load module, as in the following
example.

First, call the editor and create a new file:

=E CHAINPAS.CF

Then enter the following command lines into the edit file. The first
three lines call Phase 1, Phase 2, and the linker, in that order. The
Pascal library, PASCALIB, is linked by default.

>=PASCAL \1
>=PASCAL2 \l
>=LINK \L
>=END

NOTE

The VERSAdos prompt (=) is required on a chain
file command line which calls a utility.
Exit the editor by pressing the Fl key and typing:
>QUIT

The chain file can be called for compilation and linking by entering the
following:

=CHAINPAS.CF PROGNAME

Note that in this example, the program name is specified on the CHAIN
commard line, rather than within the chain file.

When the execution of Pascal, Phase 1, is completed, the number of errors
is indicated.

8-11

e.

The following events occur during execution of the chain file: Phase 1
creates an intermediate code file, PROGNAME.PC, and a listing file,
PROGNAME.PL; Phase 2 creates the relocatable object module, PROGNAME.RO;
the linker creates the absolute load module, PROGNAME.LO.

The user then has the option of either listing the program on the screen
or printing hard copy to investigate and correct errors.

1. To list the program on the screen, enter:

=LIST PROGNAME.PL

The entire program will scroll on the screen (line by line) and the
compilation errors will be indicated as they occurred. To stop the
scrolling in order to investigate an error, press CTRL-W (hold the
CTRL key, then press the W key). To continue scrolling, press any
key.

2. To list the program on the printer, enter:

=COPY PROGNAME.PL,#PR

The entire program will be printed, indicating the total number of
errors and also where each error appeared in the program listing.

Use the text editor to correct the errors, then call the chain file
again. When no compilation errors exist, a valid absolute load module
will automatically be created, provided the linkage editor encounters no
problems.

The absolute load module is now ready to be examined or modified using
either TENbug or DEbug. To use DEbug, refer to the SYMbug/A and DEbug
Monitors Reference Manual for the procedure to load an absolute load
module into memory. To use TENbug, refer to the BO command in the TENbug
Debugging Package User's Manual for the procedure to load an absolute
load module into memory.

A completely debugged load module can be executed by entering only its
name to the VERSAdos prompt (=):

=PROGNAME

8-12

CHAPTER 9

DEBUG CAPABILITY

9.1 INTRODUCTION

A load module often requires debugging to overcome deficiencies which come to
light when the program runs in an actual application. Supplied with VERSAdos
are two debug monitor programs -- DEbug and SYMbug. In addition to these, a
firmware-resident debug monitor program, TENbug, is supplied in the ROM of the
VME/10 System.

9.2 TENbug

TENbug is the resident firmware monitor and debugging package for the VME/10.
The 16K-byte firmware (stored in two 8Kx8 ROM or EPROM devices) provides a
self-contained programming and operating enviromment. TENbug may be entered
directly at system power-up or from VERSAdos. These two methods are given in
Chapter 2.

TENbug interacts with the user through predefined commands that are entered via
the terminal. The commands fall into five general categories:

a. Commards which allow the display or modification of memory.

b. Commands which allow the display or modification of the various internal
registers of the MC68010.

c. Commands which allow execution of a program under various levels of
control.

d. Commards which control access to the various input/output resources on
the board.

e. Comands which allow selection of video graphics resolution.

An additional function called the TRAP #15 I/O handler allows the user program
to utilize various routines within TENbug.

For complete information on TENbug, refer to the TENbug Debugging Package User's
Manual, M68KTENBG.

9.2.1 Command Set

TENbug's debugging functions are performed in response to the entering of simple
"primitive" cammands, with or without associated parameters and options,
Several of the commands are set and reset pairs -- the reset function is
specified by preceding the command with NO. The entry of a command line is
always followed by pressing the carriage return key (<--!). TENbug checks each
entry for validity, returning an error message if incorrect, or processing the
camand and displaying an interpretation of the parameter values if correctly
entered.

9-1

Table 9-1 lists the primitive commands supported.

TABLE 9-1. TENbug Commands by Type

COMMAND

MNEMONIC DESCRIPTION

MD Memory display

MM Memory modi fy

.A0-,A7 Display/set address register

.D0-.D7 Display/set data register

.DFC Display/set destination function code
.PC Display/set program counter

.SFC Display/set source function code
SR Display/set status register

.SSP Display/set supervisor stack pointer
.USP Display/set user stack pointer

.VBR Display/set vector base register

DF Display formatted registers

.RO-.R6 Display/set relative offset register
OF Display offsets

BR Breakpoint set

NOBR Remove breakpoint

G0 Execute program

GT Go until breakpoint

GD Go direct execute program

TR Trace

TT Trace to temporary breakpoint

PA Printer attach

NOPA Detach printer

BH Bootstrap halt

BO Bootstrap operating system

w Video map

9-2

9.2.2 TENbug Examples

The following example assumes that the system has been initialized and the
furnished software has been backed up, as directed in Chapter 2.

a. Ensure that the KYBD LOCK key switch on the VME/10 chassis is in the
unlocked (horizontal) position.

b. Press the on/off switch to the "1" position and wait for the hard disk to
spin up.

c. Press and release the RESET pushbutton on the VME/10 chassis. TENbug
will take control and display its prampt (if system includes an MVME400,
press any key on the keyboard after pressing RESET, to get the full
prampt) :

TENbug x.y >

d. Display and alter the contents of MC68010 registers by typing in the
commands shown underscored (underscore is not to be typed), following
each entry with a carriage return. (The initial register values
displayed will differ from these.)

TENbug x.y > DF (Display formatted registers)

PC=00F02C9E SR=2704=.S7..Z.. USP=FFFFFFFF SSP=000007C4 VBR=00000000 SFC=2 DFC=2

DO-7 00300030 00000804 00000000 00000000 4D505520 00000020 00000000 00000000

A0-7 OOF1A031 OOF0133C OOF008AA 00000458 0000049A 00000536 00000536 000007C4
PC=F02C9E

TENbug x.y > .R1 3000 (Set register Rl offset to 3000)
TENbug X.y > OF (Display offset registers)

RO-7 00000000 00003000 00000000 00000000 00000000 0000000 00000000 00000000
TENbug x.y > .PC 40000 (Change value in program counter)
TENbug x.y > .SSP C00 (Set supervisor stack pointer)

TENbug x.y > DF (Display formatted registers)

PC=00040000 SR=2704=.S7..Z.. USP=FFFFFFFF SSP=00000C00 VBR=00000000 SFC=2 DFC=2

D0G-7 00300030 00000804 00000000 00000000 4D505520 00000020 00000000 00000000

AO0-7 OOF1A031 OOF0133C OOF008AA 00000458 0000049A 00000536 00000536 00000C00
PC=03D000+R1

TENbug x.y >

e. Return to VERSAdos with the boot command:

TENbug x.y > BO

9.3 DEbug

DEbug is a VERSAdos-resident monitor program, used to debug other programs whose
source code is written in assembly language for execution on the MC68010. The
language processor and the linkage editor suppy information to the DEbug
monitor.

DEbug allows the user to examine, insert, and modify program elements such as
instructions, numeric values, and coded data.

Execution can be controlled by [Ebug, via the insertion of breakpoints into a
program,

DEbug uses an extensive set of primitive commands for manipulation and
examination of foreground tasks. A set of task-level commands may be used on
foreground or background tasks and are applicable to both the single and
multitasking modes of operation.

9.3.1 Command Line

The DEbug program is invoked as follows:

= DEBUG [<program name>]

Specifying the name of the load module to be debugged enters single task mode.
The first four letters of the program name are then included in the DEbug
prompt. Typing DEbug without a program name enters multitask mode. The maximum
number of tasks to be debugged must then be specified, and either the LOAD or
ATTA command must be used before any of DEbug's primitive commands can be used.

9-4

9.3.2 Primitive Commards
Table 9-2 lists DEbug's primitive commands.

TABLE 9-2 DEbug Primitive Commands

COMMAND SYNTAX DESCRIPTION
AS[<address>] [<valuedl Address stop
[NO]BR[<address>] ... Set/reset breakpoint
DE Default to attach/detach printer
DF Display format
G[0] Execute target task
HE [LP] Display commands
MD <address> [<count>] Memory display

MS <address> <byte 1> [<byte 2> <byte 3>]...
Memory set

OF [<register) <value>] Offset

Q[UIT] Quit (go to VERSAdos)

T[R] [<Kcount>] Trace target task

ATTA <task name>[m<terminal>|#*] Attach task

DETA [<task name>] Detach task

EVEN [<task name>] ,<exception #> Event definition

LOAD <file name> [<command line>] Load (task)

MASK [<task name>] ,<exception #> Mask exception

STAR [<task name>]|ALL] Start task(s)

STAT [<task name>],<status>] Status definition

STOP [<task name>]|ALL] Stop task(s)

TASK <task name>[,<note level>] Task notify

TERM <task name> Terminate task

WAIT : Wait task

.A0-.A7 Display/change address register

.D0-.D7 Display/change data register

.MC Display/change maximum count

(software register)
.OP Display/change execution options
(software register)

.PC Display/change program counter

.SR Display/change status register

.ST Display/change task state

VA Display/change value
(software register)

.VL Display/change value location
(software register)

.M Display/change value mask
(software register)

XM Display/change execption mask

BREAK Abort commard

CTRL-S Redisplay line

CTRL-H Delete character

CTRL-W ' Suspend output (See NOTE)

CTRL-X Cancel command line

CR (Carriage Return) Send line for execution

NOTE: After CTRL-W has been used, the entry of any character
will cause the output display to continue.

9-5

9.4 SYMbug/A

SYMbug/A, referred to here as SYMbug, is a VERSAdos-resident multitasking
utility that allows a user to debug application program(s) in terms close to the
actual program itself, That is, unlike other debuggers that allow only absolute
memory accesses, SYMbug generates informmation about the program that is
available to the user during debug. Information is kept concerning assembler
symbol names, module names, and section numbers. SYMbug will autamatically
evaluate this type of symbolic information to absolute addresses for user. It
is not necessary to reference a current link map to debug a program. Instead,
knowledge of module names and symbols is sufficient to calculate relative
offsets and debug the program by reference to an assembler listing. Without the
overhead of user responsible address resolution the task of debugging a program
becomes faster and easier with a reduction in the chance for error.

To utilize the symbolic referencing capability of SYMbug, a relocatable symbol
file (RS extension) is created during assembly by specifying the D option. The
RS file is then changed into a debug file (DB extension) during linking by
specifying the D option. This debug file is in optimized form to increase the
symbolic referencing speed of SyMbug.

At present, the Pascal compiler does not provide the option of creating a
relocatable symbol (RS extension) file for input to the 1linkage editor.
Therefore, the symbolic referencing capabilities of SYMbug cannot be used to
access a point in a compiled module represented by a label in the source file.
However, provided the D option was set during assembly and linkage, symbolic
referencing can be used to access symbolic locations within assembled modules of
a load module. Access to relative offsets within campiled modules is also
provided.

SYMbug's functional kernel is DEbug. SYMbug interfaces with the VERSAdos
operating system to provide complete debug control to the user. User interface
is via a powerful set of "primitive" commands. These commands allow the user
to:

a. Examine/modify registers and absolute and program relative memory
addresses specified in a number of ways:

. Directly
. In an expression
. As an effective address
. Symbolically
(also allows control of display/modification formats)

b. Control program execution by allowing the user to:
. Insert breakpoints into the program
. Trace program execution
. Monitor data changes

c. Direct multitasking functions by allowing the user to:

. Modify task scheduling/information handling
. Modify task attributes/status

9-6

d. Expand debugger functions through user generation of:

. User "macros" built of a series of primitive commands
. In line comand/command block repeat functions
. Default input/output format modifications

e. Access information outside of SYMbug so that the user may save and
restore previously defined infommation:

. Save and load program(s) to and from disk

. Save ard load symbolic information (macro names/local symbols) to
and from disk

. Generate debug session echo to printer

SYMbug error messages are informative and precise. The SYMbug HELP command can
be used to display a brief syntax summary for all commands.

9.4.1 Symbol Table Creation

In order to use SYMbug as a symbolic debugger, a symbol table must have been
created using the assembler's and the linker's D options when assembling and

linking each module.

For example, the program created in Chapter 6 might have been assembled as
follows:

= ASM PROGNAME;D

Three files are created -- the relocatable object module PROGNAME.RO, the
listing file PROGNAME.LS, and the relocatable symbol file, PROGNAME.RS.

The subprogram would also have to be assembled with the D option:

= ASM SUBPROG;D

Again, three files are created -- all with the same filename but with the
extension of RO, LS, amd RS, respectively.

The files are then linked to create an executable load module. The D option
must be used on the linker's command line:

= LINK PROGNAME/SUBPROG;D

The linker's output consists of a load module named PROGNAME.LO, and a symbolic
debug file named PROGNAME.DB. This file is dependent upon the contents of the
RS files «created during assembly, and contains the absolute address
specifications for the modules.

SYMbug may alternatively be used as an absolute debugger, similar to DEbug, if
the D option was not used when assembling or linking.

9.4.2 Commard Line
To use as a symbolic debugger, SYMbug is called as follows:

= SYMBUG [<filename)>[<arguments>]]

If the name of the file to be debugged is not given on the command line, it can
be loaded with the LOAD command after SYMbug is running. <arguments> are any
that are allowable for the file being debugged. For example, a new file-copying
program named CPY.LO might be loaded as a task perfomming a copying operation:

= SYMBUG CPY FILFA.SA,FL6:21.CAT1.FILEA.SA;B

SYMbug : autdnatically locates the corresponding symbolic debug file.

9-8

9.4.3 SYMbug Commards

SYMbug primitive commands are listed in the following table.

TABLE 9-3. SYMbug Primitive Commands

COMMAND SYNTAX DESCRIPTION
AS [<address> [<value) [;<mask>]]] Address stop
BF <addressl> <address2> <data> [;<length>] Block fill
BM <addressl> <address2> <address3> Block move
[NO]IBR [<address> [;<count>]]... Set/reset breakpoint

BS

CR

DC

DE

DF

FR

FS
G[O]
HE [LP]
[NOJIT
[NOIMA
MD

MM

MS

OF
[NO]OT
Q[UIT]
[NO]SD
T[R]
ATTA
DETA
EVEN
LOAD
MASK
STAR
STAT
STOP
TASK
TERM
WAIT

<addressl> <address2> <data>
[<count>]

<expression>

[<default option>]

<file name>

<file name>

[<address>]

[<command>]

<addressl> <address2>
[<name>]...

<address> [<count>] [;<option>]
<address> [; <option>]

<address> <data>

<addressl> <address2>

[<local> [<value>]]
[<count>]

<task name>[,<terminal>|#*]
[<task name>]

[<task name>] ,<exception #>
<file> [<command line>]
[<task name>] ,<exception #>
[<task name>|ALL]

[<task name>,<status>]
[<task name>|ALL]

<task name> [,<note level>]
<task name>

BREAK
CTRL-S
CTRL-H
CTRL-W
CTRL-X
CR (Carriage Return)

Block search

Commarnd repeat

Define constant or Data convert
Defaults

Display formatted registers
File read

File save

Go (execute)

Display cammands
Set/reset inside trace
Set/reset macro define
Memory display

Memory modify

Memory set

Display Offset register
Set/reset outside trace
Quit (go to VERSAdos)
Set/reset symbol define
Trace

Attach task

Detach task

Event definition

Load (task)

Mask exception

Start task(s)

Status definition

Stop task(s)

Task notify

Terminate task

Wait task

Abort command

Redisplay line

Delete character

Susperd output (See NOTE
Cancel comand line

Send line for execution

NOTE:

After CTRL-W has been used, the entry of any character will cause
the output display to continue.

9-9/9-10

SUGGESTION/PROBLEM micro!
REPORT i

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street MailDrop_________ Phone

City State Zip

For Additional Motorola Publications Four Phase/Motorola Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 438-3100

Tempe, AZ 85282
(602) 994-6561

@ MOTOROLA

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	reply

