
M68KTENBG/D2

TENbug Debugging Package
User's Manual

QUALITY • PEOPLE • PERFORMANCE

M68KTENBG/D2

MAY 1984

TENbug DEBUGGING PACKAGE

USER'S MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

I/Qnodule, SYSTEM V/68, TENbug, VERSAdos, and VME/10 are trademarks of Motorola
Inc.

The computer programs stored in the Read Only Memories of this device contain
material copyrighted by Motorola Inc., first published 1983, and may be used
only under a license such as the License for Computer Programs (Article 14)
contained in Motorola's Terms and Conditions of Sale, Rev. 1/79.

Second Edition

Copyright 1984 by Motorola Inc.

First Edition September 1983

CHAPTER 1

1.1
1.2
1.3
1.3.l
1.3.2
1.3.2.1
1.3.3
1.4
1.4.1
1.4.2
1.4.3
1.5

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.6
2.7

2.8
2.9
2.10
2.11

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.3

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4

TABLE OF CONTENTS

GENERAL INFORMATION

INTRODUCTION •••
DEFINITION OF TENbug •••••••••••••••••••••••••••••••••••••••
TENbug INTERNAL STRUCTURE ••••••••••••••••••••••••••••••••••

:l'11ernory Map •••
Vectors and Errors

Resetting Vector Base Register •••••••••••••••••••••••••
Disk I/O •••

TENbug WITH SYSTEM V/68 ••••••••••••••••••••••••••••••••••••
Operational Corrmands •••••••••••••••••••••••••••••••••••••
r:Ebugging Conunarrls •••••••••••••••••••••••••••••••••••••••
Non-Applicable Corrmands

REFERENCE MANUALS ••

TENbug OPERATING PROCEDURE

INTRODUCTION •••
CHASSIS CONTROL SWITCHES •••••••••••••••••••••••••••••••••••
TERMINAL CONTROL CHARACTERS ••••••••••••••••••••••••••••••••
HEADER J2 ••
ENTERING TENbug DURING SYSTEM POWER-UP (COLD START) ••••••••

Cold Start without MVME400 Module ••••••••••••••••••••••••
Cold Start with MVME400 Module •••••••••••••••••••••••••••

ENTERING TENbug VIA SIMULATED COLD START •••••••••••••••••••
ENTERING TENbug WITHOUT DESTROYING MEMORY CONTENTS

(WA.RM START) •••

TENbug COMMAND OPERATION •••••••••••••••••••••••••••••••••••
WHEN TENbug PROMPT FAILS TO APPEAR •••••••••••••••••••••••••
ROMBOOT FACILITY •••
OFFLINE KEYBOARD COMMAND •••••••••••••••••••••••••••••••••••

COMMAND LINE FORMAT

INTRODUCTION •••
TENbug COMMAND LINE FORMAT •••••••••••••••••••••••••••••••••

Expression as a Parameter ••••••••••••••••••••••••••••••••
P.ddress as a Parameter •••••••••••••••••••••••••••••••••••

Address Formats ••
Offset Registers •••••••••••••••••••••••••••••••••••••••

COMMAND VERIFICATION •••••••••••••••••••••••••••••••••••••••

COMMAND SET

INTRODUCTION ...
TENbug COMMANDS ••

Display/Set Register (.<register>) •••••••••••••••••••••••
Draw Graphics Bars Test Pattern (BARS and NOBARS) •••••••• .. Block Fill (BF)
Bootstrap Halt (BH)

i

1-1
1-1
1-1
1-1
1-2
1-3
1-4
1-4
1-4
1-5
1-5
1-5

2-1
2-1
2-2
2-2
2-2
2-4
2-4
2-5

2-5
2-6
2-6
2-6
2-12

3-1
3-2
3-2
3-2
3-3
3-3
3-4

4-1
4-2
4-3
4-4
4-5
4-6

4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15
4.2.16
4.2.17
4.2.18
4.2.19
4.2.20
4.2.21
4.2.22
4.2.23
4.2.24
4.2.25
4.2.26
4.2.27
4.2.28
4.2.29
4.2.30
4.2.31
4.2.32
4.2.33
4.2.34
4.2.35
4.2.36
4.3

CHAPTER 5

5.1
5.1.1
s.1.1.1
s.1.1.2
s.1.2
5.2
s.2.1
s.2.1.1
s.2.1.2
5.2.1.3
5.2.l.4
5.2.l.5
5.2.2

TABLE OF CONTENTS (cont'd)

Block Initialize
Block Move (BM)

(BI) ••••••••••• ..
Bootstrap Operating System (BO) ••••••••••••••••••••••••••
Breakpoint Set and Remove (BR and NOBR) ••••••••••••••••••
Block of Memory Search (BS) ••••••••••••••••••••••••••••••
Block of Memory Test (BT)
Character RAM Display (CH) •••••••••••••••••••••••••••••••
CRT Control Register Modification (CRT) ••••••••••••••••••
Checksum (CS) ..
Data Conversion (EC)
Display Formatted Registers (DF) •••••••••••••••••••••••••
Dump Memory (S-Records) (DU) •••••••••••••••••••••••••••••
Go Direct Execute Program (GD) •••••••••••••••••••••••••••
Go Execute Program (GO)
Graphics RAM Display (GR and Ncx:;R) •••••••••••••••••••••••
Go Until Breakpoint (GT)
Help (HE) ..
I/O Command for Disk (IOC) •••••••••••••••••••••••••••••••
I/O Physical for Disk (IOP) ••••••••••••••••••••••••••••••
I/O Teach for a Disk (IOT) ••••••••••••••••••••••••••••••• Load (S-Records) (LO)
Memory Display (MD)
Memory Modify (MM)
Memory Set (MS)
Display Offsets (OF)

.......................................
Printer Attach and Detach (PA and NOPA) •••••••••••••••••• ... Port Format (PF)
Transparent Mode (TM)
Trace (TR) ...
Trace to Temporary Breakpoint (TT) •••••••••••••••••••••••
Verify (S-Records) (VE)
Video Map (VM) ...

COMMAND Sill1MARY ••

USING THE ASSEMBLER/DISASSEMBLER

INTRODUCTION ••
M68010 Assembly Language ••••••••••••••••••••••••••••••••

Machine-Instruction Operation Codes •••••••••••••••••••
Directives ••

Comparison with MC68000 Resident Structured Assembler •••
SOURCE PRcx:;RAM CODING •••••••••••••••••••••••••••••••••••••

Source Line Format ••••••••••••••••••••••••••••••••••••••
Operation Field •••••••••••••••••••••••••••••••••••••••
Operand Field •••
Disassembled Source Line ••••••••••••••••••••••••••••••
Mnemonics and Delimiters ••••••••••••••••••••••••••••••
Character Set •••

Instruction Surmnary •••••••••••••••••••••••••••••••••••••

ii

4-7
4-8
4-9
4-12
4-14
4-16
4-17
4-18
4-19
4-22
4-23
4-25
4-27
4-28
4-30
4-31
4-32
4-33
4-36
4-38
4-41
4-44
4-47
4-50
4-52
4-53
4-54
4-61
4-63
4-65
4-66
4-68
4-69

5-1
5-1
5-1
5-1
5-2
5-4
5-3
5-3
5-4
5-4
5-4
5-6
5-6

5.3
5.3.1
5.3.2
5.3.3
5.3.3.l
5.3.3.2
5.3.3.3
5.3.4
5.3.5
5.3.5.1
5.3.5.2
5.3.5.3
5.3.5.4

CHAPTER 6

6.1
6.2
6.3

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

FIGURE 2-1.
2-2.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.

TABLE 4-1.
4-2.

TABLE OF CONTENTS (cont'd)

ENTERING AND MODIFYING SOURCE PROGRAMS •••••••••••••••••••••
Invoking the Assembler/Disassembler ••••••••••••••••••••••
Entering a Source Line •••••••••••••••••••••••••••••••••••
Program Entry/Branch and Jump Addresses ••••••••••••••••••

Entering Absolute Addresses ••••••••••••••••••••••••••••
Desired Instruction Form •••••••••••••••••••••••••••••••
current Location •••••••••••••••••••••••••••••••••••••••

Assembler Output/Program Listings ••••••••••••••••••••••••
Error Conditions and Messages ••••••••••••••••••••••••••••

Error Traps ••
Improper Character •••••••••••••••••••••••••••••••••••••
Number Too Large •••••••••••••••••••••••••••••••••••••••
Assembly Errors ••

TENbug ROUTINES AVAILABLE TO THE USER

INTRODUcrION •••
USER I/O THROUGH TRAP #15 ••••••••••••••••••••••••••••••••••
TENbug SUBROUTINES •••

SOFTWARE ABORT•••

TENbug MESSAGES ••
CONFIGURATION AREA •••
S-RECORD OUTPUT FORMAT •••••••••••••••••••••••••••••••••••••

LIST OF ILLUSTRATIONS

Flow Diagram of VME/10 Cold Start ••••••••••••••••••••••••••
Flow Diagram of TENbug Operational Mode ••••••••••••••••••••
Sample Program to Convert ASCII Digit to Hexadecimal Value
ASCII Character Set ••
Sample Program as Entered into VME/10 ••••••••••••••••••••••
Sample Program Listing •••••••••••••••••••••••••••••••••••••
Examples of Error Traps ••••••••••••••••••••••••••••••••••••
Examples of Improper Characters ••••••••••••••••••••••••••••
Example of a Number Which Is Too Large •••••••••••••••••••••
Examples of Assembly Errors ••••••••••••••••••••••••••••••••

LIST OF TABLES

TENbug Conmands by Type ••••••••••••••••••••••••••••••••••••
TENbug Cormnarrl and Option Summary ••••••••••••••••••••••••••

iii/iv

5-7
5-9
5-9
5-10
5-10
5-11
5-11
5-12
5-13
5-13
5-14
5-15
5-15

6-1
6-1
6-3

A-1
B-1
C-1
D-1

2-3
2-7
5-7
5-8
5-10
5-12
5-13
5-14
5-15
5-16

4-1
4-69

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual describes the debugging monitor TENbug as it is used in the VME/10
Microcomputer System, hereafter referred to as the VME/10.

1.2 DEFINITION OF TENbug

TENbug is the resident firmware debugging package for the VME/10. The 32K-byte
firmware (stored in ROM or EPROM devices) provides a self-contained programning
arrl operating environment. TENbug interacts with the user through predefined
comnands that are entered via the terminal. The corrmands fall into five general
categories:

a. Commarrls which allow the user to display or modify memory.

b. Commarrls which allow the user to display or modify the various internal
registers of the MC68010.

c. Commands which allow the user to execute a program under various levels
of control.

a. Commands which control access to the various input/output resources on
the board.

e. Commands which allow the user to select and test video features and
graphics resolution.

An additional function called the TRAP #15 I/O handler allows the user program
to utilize various routines within TENbug. The TRAP #15 handler is discussed in
Chapter 6.

The operational mode of TENbug is described in Chapter 2.

1.3 TENbug INTERNAL STRUCTURE

1.3.1 Memory Map

The following abbreviated memory map for the VME/10 highlights addresses that
might be of particular interest to TENbug users. Refer to the VME/10
Microcomputer System Reference Manual for a complete description of the memory
maps for both high- and low-resolution graphics modes.

Note that addresses are assumed to be hexadecimal throughout this manual. In
text, numbers may be preceded with a dollar sign ($) for identification as
hexadecimal.

1-1

RAM LOCATION

0-3FF
400-AFF

SPECIAL LOCATIONS

FOOOOO-F00007

Fl4000-Fl4FFF

I/O LOCATION

FlClC9
FlClCB
FlClEl
FlClE9
FlCODl

FUNCTION

vectors
Work area and stack for TENbug

FUNCTION

Area containing initial values for suJ,:>ervisor stack
pointer, program counter, and vector base register after
cold start

Area used to define programmable "soft" character set

FUNCTION

Serial port 2 (host) , serial I/0 card (optional)
Serial port 3 (host) , serial I/O card (optional)
Parallel port 1 (printer) , parallel I/O card (optional)
Parallel port 2 (printer) , parallel I/O card (optional)
Base address of RWINl Disk Controller

1.3.2 Vectors and Errors

TENbug shares resources with the target program under test -- that is, each
affected resource can be used only by TENbug or the target program at any given
time.

Exception vectors are memory locations from which the processor fetches the
address of a routine which will haoole the exception. These vectors are
initialized by TENbug in default memory locations 0 through $3FF during a cold
er warm-start sequence (see Chapter 2) • If the target program uses any of these
locations, the user values must be rewritten following each cold or warm start.
If the target program uses any of the following locations, the associated
function will be lost to TENbug.

MEMORY LOCATION

10-13
24-27
BC-BF
138-13B

TENbug FUNCTION

Breakpoints (illegal instructions)
Trace
TRAP #15 user calls to TENbug
ABORT pushbutton switch on VME/10 OJ.:>erator panel

(ref er to ApJ.:>errl ix A)

The vectors with default memory locations of $80 through $3FF cause a ???? ERROR
TRAP message to be displayed on the console terminal. In addition, several of
the vectors cause display of appropriate information. (Refer to ApJ.:>endix B for
a list of error messages.) BUS and ADDR error traps also cause display of the
exception status from the stack, in hexadecimal characters, as shown in the
following example.

1-2

Status Register

Program Counter hldress

Frame Format and Vector Offset

Special Status Word

Fault Mdress

2769 OOF 533A 8 08 13 5 OOFlC030 0000 0020 0000 20FF OOFO 2007 067A
5338 0000 OOFl 2007 C030 OOFO 533C FFEl 0000 0394 1El4 0000 0004 1El4 0003

BUS ERROR TRAP

For additional information on this display, refer to the bus error, address
error, arrl the reference classification descriptions in the exception processing
chapter of the M68000 16/32-Bit Microprocessor Prograrnner's Reference Manual.

1.3.2.1 Resetting Vector Base Register. The MC68010 processor upon which the
VME/10 is based features a Vector Base Register (VBR) which contains the base
(starting) address for the VME/10 exception vectors. Exception vectors are
located in memory addresses 0 through $3FF relative to the VBR. Upon reset
(cold or warm start) of the MC680lff, the value of the VBR is set to zero.

TENbug must have control of the exception vectors to function properly. If the
user sets the VBR to a value other than its default value of zero, he must also
establish a new set of exception vector memory locations for the VBR value. In
other words, the user must copy all existing vector memory locations to the same
relative location in the new VBR table.

In the following example, the VBR value is changed from O to lOFOO. Exception
vector memory locations must also be copied to this new location. Note that the
content of each vector memory location (i.e., the appropriate routine address)
remains the same.

VBR = 0 VBR = lOFOO

0 lOFOO
00000444 00000444

4 10F04
0000044C 0000044C

8 10F08
00000454 00000454

c lOFOC

v v
J

3FC 112FC
000008A4 000008A4

1-3

1.3.3 Disk I/O

TENbug provides limited support of disk I/O through a Winchester Disk
Controller. The commands supported are BH, BO, roe, IOP, and IOT. Each of
these conunands does a read of the volume ID found on sector 0 of a disk.

NOTE

A sector is 256 bytes. The disk controller maps
physical sectors on various disks into virtual
256-byte sectors at the controller interface.

The first 256 bytes of the media are the volume ID. Bytes $F8-$FF of the volume
ID must contain either the ASCII character string "EXORMACS" or "MOTOROLA";
otherwise, an error message will result. For more information on interpreting
the data displayed, see the Winchester Disk Controller User's Manual.

The other information used frcm the volume ID is:

BYTES

$14-$17

$18-$19

$1E-$21

$90-$93

$94

USED FOR

Starting sector address of program to be loaded (via BH, BO) •

Number of 256-byte sectors to be loaded.

Load address (first destination memory byte) •

Sector address of media configuration parameters (refer to
Appendix C) •

Length of configuration area (usually one 256-byte sector) •

1.4 TENbug WITH SYSTEM V/68

The following paragraphs list information specific to the use of TENbug with
SYSTEM V/68.

1.4.1 Operational Comnands

In the following list, comnands given in parentheses indicate the key that is to
be pressed. Cormnands not given in parentheses are to be typed as shown.

BH

BO

(BREAK)

(DEL)

(CTRL-D)

(CTRL-H)

(CTRL-W)

(CTRL-X)

Boots the operating system frcm the fixed disk and halts.

Boots the operating system from the fixed disk and gives
control to the program loaded.

Aborts conmand.

Deletes character.

Redisplays line.

Deletes character.

Suspends output; any character continues output.

Cancels command line.

1-4

1.4.2 Debugging Commands

The following commands may be useful for debugging, but should be used only in
single-user mode after sync has executed. Use of these comnands may result in
the need for system reboot •

• AO-.A7 BARS, NOBARS * HE
.DO-.D7 BF IOC
.DFC BM !OP
.PC BR, NOBR !OT
.RO-.R6 BS MD
.SFC CH, NOCH MM
.SR CRT MS
.SSP cs OF
.USP DC PA, NOPA
.VBR DF TR

GD TT
GO
GR, NOOR
GT

* This comnand modifies graphics memory and should be used only with an
operating system configured to support graphics.

1.4.3 Non-Applicable Commands

The following commands should be used in a stand-alone mode; they should not be
used with SYSTEM V/68.

BI
BT
DU
LO

PF
TM
VE

1.5 REFERENCE MANUALS

Refer to the following documents for more information on the environments in
which TENbug is used.

VME/10 Microcomputer System Overview Manual, M68KVSOM

VME/10 Microcomputer System Diagnostics Manual, M68KVSDM

VME/10 Microcomputer System Reference Manual, M68KVSREF

VERS.Ados to VME Hardware and Software Configuration User's Manual, MVMEDOS

Winchester Disk Controller User's Manual, M68RWIN1

MVME400 Dual RS-232C Serial Port Module User's Manual, MVME400

MVME410 Dual 16-Bit Parallel Port Module User's Manual, MVME410

M68000 16/32-Bit Microprocessor Programmer's Reference Manual, M68000UM

1-5/1-6

CHAPTER 2

TENbug OPERATING PROCEDURE

2.1 INTRODUCTION

The following procedures enable the user to enter TENbug. For information on
system installation, self-test diagnostic programs, and operating system
initialization, refer to the VME/10 Microcomputer System Overview and
Diagnostics manuals.

2.2 CHASSIS CONTROL SWI'.K:HES

Before attempting to initiate TENbug, the user should be familiar with the
operator panel located at the bottom left corner on the front of the VME/10
chassis. This panel contains the following control switches which are supported
by TENbug. Use of these switches is described in paragraphs 2.5 through 2.7.

a. I 0 I 1 I - The amber-colored power on/off rocker~arm switch is used to
turn on power to the VME/10 arrl initiate the power-up/reset self-test
(PWRT). When the 0 side is pressed, power is off; when the 1 side is
pressed, power is on.

b. KYBD LOCK - The KYBD LOCK key switch controls a bit in a register which
is monitored by TENbug. When the key switch is in the locked (vertical)
position, VME/10 performs an automatic BO comnand from device 0 (this
usually starts the operating system). When the key switch is in the
unlocked (horizontal) position, VME/10 enters TENbug. Also, when the key
switch is in the locked position, the front panel pushbutton switches
RESET and ABORT, as well as the keyboard, are inoperative. This feature
provides protection from inadvertent panel interrupts during system
usage.

c. RESET - When this momentary-action pushbutton switch is pressed, it
resets the VME/10 logic circuits. If the VME/10 is in the operating
system, TENbug is entered by pressing RESET (provided the KYBD LOCK key
switch is in the unlocked position) • Because pressing RESET can cause
indeterminate results, read the warm start description in paragraph 2.7
before using this switch.

d. ABORT - When this momentary-action pushbutton switch is pressed (provided
the KYBD LOCK switch is in the unlocked position), the VME/10 enters
TENbug, but the VME/10 logic circuits are not reset. After an abort, the
user can enter the character G to continue execution of the current
program prior to the abort. Appendix A describes what occurs when the
ABORT switch is pressed.

e. RESET arrl ABORT - These buttons may be used in combination to accomplish
the same thing as the on/off switch (i tern a.) without cycling power.
This simulated cold-start sequence is described in paragraph 2.6.

2-1

2.3 TERMINAL CONTROL CHARACTERS

Several keys are used as command line edit and control functions. The user
should be familiar with these functions before using TENbug. The functions
include:

a. DEL key or CTRL H - will delete the last character entered on terminal.

b. CTRL X - will cancel the entire line.

c. CTRL D - will redisplay the entire line.

d. <--1 (carriage return) - will enter the command line and cause
processing to begin.

e. CTRL W - will suspend system output to the terminal. To resume output to
the terminal, any character can be entered.

f. BREAK - will abort commands that do any console I/O and return to the
input routine.

For characters requiring the control key (CTRL), the CTRL should be pressed and
held down, and then the other key (H, x, D, or W) should be pressed.

2.4 HEADER J2

The configuration of pins 5 arrl 6 on header J2, located inside the VME/10
chassis, determines whether the power-up reset (PWRT) self-test is performed
upon system initialization. It also allows generation or suppression of the
"Booting from ROM: xxxx" message at the close of the ROMBOOT procedure (refer to
paragraph 2.10). When a jumper is placed on pins 5 and 6 of J2, as in initial
VME/10 factory configuration, the PWRT self-test is performed during the
cold-start and warm-start sequences described in the following paragraphs. This
jumper also allows display of the ROMBOOT message when control is passed to
TENbug. When the jumper is removed fran pins 5 arrl 6 of J2, no PWRT self-test
is performed and the ROMBOOT message is suppressed.

2.5 ENTERING TENbug DURING SYSTEM POWER-UP (COLD START)

Invoking TENbug using the cold-start technique causes the contents of all memory
to be destroyed. It also causes the VME/10 system to place the contents of
addresses $FOOOOO-$F00003 into the supervisor stack, and the contents of
$F00004-$F00007 into the program counter. These addresses are located in system
ROM. Figure 2-1 illustrates a flow diagram of the VME/10 cold-start procedure.
The following paragraphs assume that a jumper is present on pins 5 and 6 of J2.

2-2

APPLY
POWER

I ----- -----

I
I
I

PWRT
SELF-TEST

I
I

I
I
I NO

I
I
I
I YES

TENbug

\
\

\
\

\
\

\

INITIALIZE
TEN bug

'- - - --- ---- -----

BOOT
PROORAM
(USUALLY

OPERATIN:l
SYSTEM)

FIGURE 2-1. Flow Diagram of VME/10 Cold Start

2-3

\
I

I
I
I
I
I

J

2.5.l Cold Start without MVME400 Module

This method allows the user to enter TENbug during system power up when no
MVME400 (Dual RS-232C Serial Port) module is present in the VME card cage.

a. Set the KYBD LOCK key switch on the opera tor panel to the unlocked
position.

b. Apply power to chassis. When power is applierl, the PWRT self-test is
initiated.

c. If PWRT self-test indicates no errors, the TENbug prompt and version
number will appear on the screen:

TENbug 2.x >

2.5.2 Cold Start with MVME400 Module

This method allows the user to enter TENbug during system power up when an
MVME400 module is present in the VME card cage.

a. Set the KYBD LOCK key switch on the operator panel to the unlockerl
position.

b. Apply power to chassis. When power is applied, the PWRT self-test is
initiaterl.

c. If PWRT self-test indicates no errors, the firmware displays a prompt
without a version number.

TENbug >

It then awaits input from the first device to be used, which will be the
console terminal.

d. Select the terminal to serve as the console keyboard. This device will
remain the console device until the VME/10 is restarted with a warm- or
cold-start procedure.

e. Press the carriage return key on the chosen keyboard to obtain the
complete TENbug prompt with version number.

TENbug 2.x >

2-4

2.6 ENTERING TENbug VIA SIMULATED COLD START

A cold-start sequence (the equivalent of turning the power off and on) can be
simulated when the KYBD LOCK switch is set to the unlocked position. Use the
RESET arrl ABORT buttons as follows:

a. Press and hold RESET button.

b. Press and release ABORT button.

c. Release RESET button.

d. When an MVME400 module is not present in the VME card cage, go to step c.
of paragraph 2.5.1.

e. When an MVME400 module is present in the VME card cage, go to step c. of
paragraph 2.5.2.

Like the true cold-start sequence, this method will erase all memory contents
arrl will execute the PWRT self-test. It will also place the contents of ROM
addresses $FOOOOO-$F00003 into the supervisor stack, and the contents of
$F00004-$F00007 into the program counter. In other words, it translates the ROM
at $FOOOOO to location $000000, so that the RAM at location 0 is mapped out of
the system.

2.7 ENTERING TENbug WITHOUT DESTROYING MEMORY CONTENTS (WARM START)

This method allows the user to enter TENbug without destroying the contents of
the VME/10 memory. However, using the warm-start sequence (pressing RESET only)
causes the VME/10 to place the contents of RAM addresses $0 through $3 into the
supervisor stack, and the contents of $4 through $7 into the program counter.
It also sets the processor to supervisor state.

CAUTION

B:OCAUSE THESE ADDRESSES ARE LOCATED IN RAM,
THE USER CAN OVERLAY ANY DATA OR ADDRESS
INTO THESE REGISTERS, IN WHICH CASE RESULTS
ARE INDETERMINATE.

a. Set the KYBD LOCK key switch to the unlocked position.

b. Press the RESET button on the operator panel.

c. When an MVME400 module is not present in the VME card cage, go to step c.
of paragraph 2.5.1.

d. When an MVME400 module is present in the VME card cage, go to step c. of
paragraph 2.5.2.

2-5

2.8 TENbug COMMAND OPERATION

After TENbug initialization, the computer waits for a command line input from
the console terminal. A standard input routine controls the system while the
user types a line of input. Command processing begins only after the line has
been entered, followed by a carriage return. When a proper com:nand is entered,
the operation continues in one of two basic modes. If the command causes
execution of a user program, the TENbug firmware may or may not be reentered,
depending on the discretion of the user. For the alternate case, the cormnand
will be executed under control of the TENbug condition. During comnand
execution, additional user input may be required, depending on the command
function.

Figure 2-2 illustrates the VME/10 operational mode.

NOTE

If a cormnand causes the system to access an unused address
(i.e., no memory or peripheral devices are located at that
address), a bus trap error will occur. Unless default
vectors have been overwritten, the terminal displays a trap
error message and the contents of all MC68010 registers.
Control is then returned to the TENbug monitor. A bus trap
error also occurs if the system attempts to write to ROM.

2.9 WHEN TENbug PROMPT FAILS TO APPEAR

Refer to Chapter 2 of the VME/10 Microcomputer System Diagnostics Manual for
instructions if the PWRT sequence fails and/or no TENbug prompt appears during
one of the procedures listed in this chapter.

2.10 ROMBOOT FACILITY

When the VME/10 completes its preliminary initialization, pins 5 and 6 of header
J2 are checked to determine whether the PWRT self-test should be executed. If
not, TENbug receives control irmnediately; if so, it receives control after
execution of the self-test. After control is passed to TENbug, a routine in ROM
can be executed (if the ROM meets the format requirements). This feature, which
provides the ability to transfer control to an external ROM routine at power up
or cold start, is named ROMBOOT.

A module requiring the use of ROMBOOT linkage must meet the following three
requirements:

a. The routine must be located in the VME/10 memory map between addresses
$180000 to $FFEOOO.

b. The ASCII string "BOOT", followed by some linkage convention information,
must be located on an 8K boundary within the memory range.

c. The routine must pass a checksum test applied from the first to the last
byte of the module.

2-6

EXECUTE
COMMAND
FUNCTION

NO

YES

DOES
COMMAND LINE

CAUSE USER PRCXiRAM
EXECUTION?

NO

YES

BEGIN
EXECUTION

OF USER
PROORAM

FIGURE 2-2. Flow Diagram of TENbug Operational Mode

2-7

NOTE

There is no requirement that the routine reside
in ROM; it can be loaded into a RAM module and
then invoked by a cold start.

To prepare a module for ROMBOOT, the CS corrmand must be used. When the module
is ready it can be loaded into RAM, and the checksum generated, installed, and
verified with the CS command. (Refer to the Checksum corrmand description and
examples.)

The format of the beginning of the routine is as follows:

MODULE OFFSET LENGTH CONTENTS

$00 4 BOOT

$04 4 Entry address

$08 4 Routine Length

$0C ? Routine name

DESCRIPTION

ASCII string indicating possible
routine; checksum must be zero,
too.

Longword offset frcm 8K boundary.

Longword, includes "BOOT to end".

ASCII string containing routine
name (only four bytes displayed).

By convention within Motorola, the last three bytes of ROM contain the firmware
version number, checksum, and socket number. In this environment, the length
would contain the ASCII string "BOOT" (that was on the 8K boundary) , through and
including the socket number; however, the user wishing to make use of ROMBOOT
does not have to fill a complete ROM. "Any partial amount will be accepted, as
long as the length reflects where the checksum will be correct.

The sequence used to validate a routine for execution begins at the high limit
of memory first and checks for the "BOOT" indicator. Three events are of
interest for any location being tested.

a. If there is no memory at that location, a bus error is generated. The
ROMBOOT routine is required to move on to the next 8K boundary.

b. If memory is present, but the first four bytes do not contain BOOT, the
ROMBOOT routine is required to move on to the next 8K boundary.

c. If the ASCII string "BOOT" is located on an 8K boundary, we are not
assured that the routine is really one meant to gain control at power up
or cold start. To verify that this is the case, the bytes starting from
the 8K boundary through the end of the routine (as defined by the 8K
boundary + 4-byte length at offset $8) are run through the self-test
checksum routine. If both the even and odd bytes are zero, chances are
very good that the routine was meant to be used for ROMBOOT.

2-8

The bus error routine address is replaced at location $8 before control is
passed to the routine at the point specified within the header (8K boundary +
contents of offset $4). A JSR instruction which loads the address of the next
instruction within the ROMBOOT routine on the stack allows the routine to return
control to TENbug following some temporary task such as initialization.

In most cases, right before control is actually given to the ROM routine, a
message displaying the first four bytes of the routine name (8K boundary +
contents of $C) is placed on the terminal in the following form:

Booting from ROM: xxxx

where xxxx are the first four bytes of the name.

If pins 5 and 6 of header J2 are not jumpered, the message is suppressed and the
PWRT self-test programs are not run. This might be desirable if, for example,
no CRT or disk was present on a system.

The following example returns control to TENbug 2.x after placing a test pattern
in a portion of RAM. Notice the use of the CS comnand to calculate and verify
the checksum.

2-9

SAMPLE ROMBOOT ROUTINE - Procedure for preparing checksum

TENbug 2.x > MD O+R3 40
OOOOOO+R3 42 4F 4F 54 00 00 00 14
000010+R3 41 F9 00 01 FO 00 20 3C
000020+R3 FF FC 4E 75 01 01 00 00
000030+R3 FF FF FF FF FF FF FF FF

00 00 00 A6 54 65 73 74
00 00 EF FF 11 00 51 C8
10 08 FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

TENbug 2.x > M 10+R3;DI
000010+R3 41F90001FOOO
000016+R3 203COOOOEFFF
00001C+R3 1100
00001E+R3 51C8FFFC
000022+R3 4E75
000024+R3 0101
000026+R3 0000

000028+R3 1008
00002A+R3 FFFF
00002C+R3 FFFF
00002E+R3 FFFF
000030+R3 FFFF

LEA.L
MOVE.L
MOVE.B
DBF.L
RTS
BTST
oc.w

oc.w
oc.w
oc.w
oc.w
oc.w

TENbug 2.x > CS O+R3 2A+R3
PHYSICAL ADDRESS=00020000 0002002A

(EVEN ODD)=4B34

TENbug 2.x > M 26+R3;W
000026+R3 0000 ? 4B34.

TENbug 2.x > CS
PHYSICAL ADDRESS=00020000 0002002A

(EVEN ODD)=OOOO

$0001FOOO,AO ? (CR)
#61439,DO ? (CR)~
DO,- (AO) ? (CR)
DO, $0 200 lC? (CR)

? (CR) -
00,Dl? (CR)
$0000 ? (CR)

$1008 ? (CR)
$FFFF ? (CR)
$FFFF ? (CR)
$FFFF ? (CR)
$FFFF ? •

BOOT ••••••• &Test
Ay •• p. < •• o ••• QH
.,Nu ••••••••••••

Load ROMBOOT routine in RAM to
generate checksum.

Display (in hex) contents of RAM
containing the routine.

Display same memory using
disassembler/assembler. This small
routine loads a test pattern into
RAM and returns to TENbug 2.x.

0101 is revision number of routine.
0000 is value to be replaced by
checksum.
1008 are socket ID's Ul6 and Ul08.

NOTE: The socket !D's are the last
two bytes of the routine.

Calculate checksum from byte 0 to
byte 2A (end of routine +l). Note
that location where checksum is to
be placed must be $0000 to produce
correct checksum bytes.

Enter calculated checksums with MM
canmand.

Issue CS command to verify zeros
are produced. Notice the operands
fran the previous CS command are
retained for verification.

SAMPLE ROMBOOT ROUTINE - Procedure for preparing checksum (cont'd)

TENbug 2.x > MD O+R3 40
OOOOOO+R3 42 4F 4F 54 00 00 00 14 00 00 00 A6 54 65 73 74
000010+R3 41 F9 00 01 FO 00 20 3C 00 00 EF FF 11 00 51 ca
000020+R3 FF FC 4E 75 01 01 4B 34 10 08 FF FF FF FF FF FF
000030+R3 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

TENbug 2.x >

BOOT ••••••• &Test
Ay •• p. < •• o ••• QH
·I Nu •• K4 ••••••••

Display memory one more time with
checksum in place.

2.11 OFFLINE KEYBO~ COMMAND

Pressing the SEL key places the VME/10 keyboard and local CRT display into local
mode (offline to TENbug conmands) • Then uppercase, lowercase, and special
characters are displayed on the local VME/10 CRT display when they are entered
on the keyboard. To exit local mode, press the SEL key again; TENbug will
resume control of the keyboard and CRT display.

Five function keys provide support for the character attributes as follows:

Fl Character blink
F2 Character underline
F3 Character inverse video
F4 Character protect
FS Character color

Functions controlled by keys Fl through F4 are enabled by pressing the
appropriate function key, whereas pressing SHIFT and the same function key
disables the function. The character-color function increments through eight
colors or shades of green each time the FS key is pressed.

The offline feature is particularly useful in building sample screens for
applications under developnent.

2-12

rnAPTER 3

CDMMAND LINE FORMAT

3.1 INTRODUCl'ION

Cornmarrls are entererl in buffer-organized fashion. A standard input routine
controls the system while the user types a line of input. Processing begins
only after the carriage return has been entera:1.

Many primitive canmarrls can be alterErl by the options field. This provides the
user several extensions to the primitive ccm:nands.

Several can:nands are set arrl reset pairs; i.e., rather than having two primitive
canmarrls, the form NO is added as the first two characters of the canmarrl. For
example, the set breakpoint carn:nand is BR, and the reset breakpoint carmand is
NOBR.

Cornmarrl line formats are presentErl in a modified Backus-Naur Form (BNF) •
Certain symbols in the syntax may be used, where noted, in the real I/O. Others
are metasymbols, which are used for definition only and are not entered by the
user.· These metasymbols and their meanings are as follows:

< > Angular brackets enclose a symbol, known as a syntactic variable,
that is replace1 in a canmarrl line by one of a class of symbols it
represents.

This symbol indicates that a choice is to be made. One of several
symbols, separatro by this symbol, should be selected.

Square brackets enclose a symbol that is optional. The enclosed
symbol may occur zero or one time.

] • • • Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol may appear zero or more times.

In the examples given in the following paragraphs, operator entries are shown
underscorerl for clarity only -- i.e., the underscore is not to be typed.
Operator entries are followErl by a carriage return unless otherwise specified.
The carriage return is not shown in examples except where it is the only entry,
in which case it is shown as (CR).

3-1

3.2 TENbug COMMAND LINE FORMAT

The format of the TENbug command line is:

TENbug 2.x > [NO]<canmand>[<port number>] [<parameters>] [;<options>]

where:

TENBUG 2. x > Is the basic TENbug pranpt. For pranpt variations, see
appropriate comnand descriptions.

NO

comnand

port number

parameters

options

Is the negative form (opposite) of primitive comnand.

Is the primitive comnand.

Specifies the applicable device port.

Can be of the form <expression> or <address> and are usually
separated by spaces.

Specifies applicable options; multiple options may be
selected.

The basic command form consists of the primitive command field and the
parameters field, al though some primitives do not require parameters. Some
primitive commands allow specification of alternate device ports. The
additional comnand negation and options field can modify the primitive corrmand.

If an option exists for a corrmand, a semicolon (;) plus <options> field(s) are
added to the commarrl. Thus, several extensions can be provided to the user.

3.2.1 Expression as a Parameter

An <expression> can be one or more numeric values separated by the arittnnetic
operators plus (+) or minus (-). Numbers are assumed hexadecimal except for
those preceded by an ampersand (&) , which are decimal. In the assembler,
numbers are assumed decimal unless preceded by a dollar sign ($).

3.2.2 Address as a Parameter

M:lny comnands use <address> as a parameter. The syntax accepted by TENbug is
the same as that accepted by the assembler, plus a memory indirect mode. Also,
contained within TENbug are eight offset registers designated RO through R7.
These registers are software registers only, and are provided for easier
debugging of relocatable code.

3-2

3.2.2.1 Address Formats.

FORMAT

expression

expression+of f set

expression+off set

(A@)

(A@,D@}
(A@,A@}

expression(A@}

expression(A@,D@}
expression(A@,A@}

[expression]

EXAMPLE

140

DESCRIPTON

Absolute address (offset register zero is
added) •

130+R5 Absolute address plus offset register five (not
an assembler-accepted syntax} •

150+R7 Absolute address (offset register seven is
always zero; not an assembler-accepted
syntax) •

(AS} Address register indirect.

(A6,D4) Address register indirect with index.

120(A3} Register indirect with displacement.

110(A2,Dl) Address register indirect with index plus dis
placement.

[100] Memory indirect (not an assembler-accepted
syntax) •

3.2.2.2 Offset Registers. Eight software registers (not actually hardware
configured} are used to modify addresses contained in TENbug commands. The
first seven registers (.RO-.R6} are used as general-purpose offsets, while .R7
(the eighth register) is always zero. The contents of the registers can be
displayed by the offset conrnand (OF), paragraph 4.2.29, and modified by the
.<register> cormnand, paragraph 4.2.1.

The offset registers are always reset to zero at power up. Thus, if their
contents are not changed, the registers will have no ef feet on the entered
address.

Unless another offset is entered, each command that expects an address parameter
automatically adds offset RO to the entered address -- that is, if RO = 1000,
the following Cciiirrlands are thesame:

BR 10
BR lO+RO
BR 1010+R7

(10 + 1000)
(10 + 1000)
(1010 + 0)

RO is added by default

R7 is always zero

The physical address for each of these commands is 1010.

Offset RO is automatically added to the offset registers any time they are
modified. The only exception to this is when another offset register is
specifically added. Offset registers may be set to zero by adding R7 (always
zero) to zero.

EXAMPLE:

.RO O+R7

.Rl 8

.RO 100

.RO 200

.R3 lOO+Rl

.RO O+R7

(RO = 0 + 0 = 0)
(Rl = 8 + 0 = 8)
(RO = 100 + 0 = 100)
(RO = 200 + 100 = 300)
(R3 = 100 + 8 = 108)
(RO = 0 + 0 = 0)

3-3

RO set to zero
Offset RO is zero, Rl is set to 8
Off set RO added
Offset RO added
Offset RO not added
RO set to zero

3.3 COMMAND VERIFICATION

As an aid to the user, TENbug displays for most commands its interpretation of
the values entered as expression and address parameters. The results are
displayed in either physical or logical format, depending upon the command
entered.

EXAMPLES:

TENbug x.y > .RO 1000
TENbug x.y > .PC 0

Logical Format Example

TENbug x.y > MD 0
OOOOOO+RO 4E 71 4E 71 4E 71 4E 71 4E 71 00 00 OF 90 00 00 NqNqNqNqNq ••••••

Physical Format Example

TENbug x.y > GT 8
PHYSICAL ADDRESS=00001008
PHYSICAL ADDRESS=OOOOlOOO

AT BREAKPOINT
PC=00001008 SR=2700=.S7 ••••• USP=00012C5C SSP=0000085E VBR=OOOOOOOO SFC=l DFC=O
D0-7 00304E71 00001000 4E711000 00000000 00004E71 0000002C 00001008 00000000
A0-7 000004DA 00000000 00001000 0000053A 00001002 00000551 00000551 0000085E

PC=000008+RO 4E71 NOP

Commands entered are also checked for validity. For example, specifying an
address parameter which would result in an error may cause the message INVALID
ADDRESS=xxxxxxxx to be displayed on the console terminal. A table of TENbug
error messages is provided in Appendix B.

3-4

CHAPTER 4

COMMAND SET

4.1 INTRODUCTION

Chapter 4 describes the command line syntax and provides one or more examples
for each cormnand in the TENbug comnand set. Table 4-1 lists TENbug command
mnemonics by type. For SYSTEM V/68-specific information about TENbug cormnands,
refer to paragraph 1.4.

TABLE 4-1. TENbug Commands by Type

COMMAND
MNEMONIC DESCRIPTION

MD

MM

MS

.AO-.A7

.DO-.D7

.DFC

.PC

.SFC

.SR

.SSP

.us

.VBR

DF

BF

BI

EM

BS

BT

DC

.RO-.R6

OF

Memory display/disassembly

Memory modify/disassembly/assembly

Memory set

Display/set address register

Display/set data register

Display/set destination function code

Display/set program counter

Display/set source function code

Display/set status register

Display/set supervisor stack pointer

Display/set user stack pointer

Display/set vector base register

Display formatted registers

Block of memory fill

Block initialize

Block of memory move

Block of memory search

Block of memory test

Data conversion

Display/set relative offset register

Display off sets

4-1

TABLE 4-1. TENbug Commarrls by Type (cont'd)

COMMAND
MNEMONIC DESCRIPTION

BR

NOBR

GO

GT

GD

TR

TT

PA

NOPA

BARS

NO BARS

CH

NOCH

CRT

cs
GR

NOGR

PF

TM

VM

HE

DU

LO

VE

BH

BO

IOC

IOP

IOT

4.2 TENbug COMMANDS

Breakpoint set

Remove breakpoint

Execute program

Go until breakpoint

Go direct execute program

Trace

Trace to tanporary breakpoint

Printer attach

Detach printer

Draw graphics bars test pattern

Clear graphics bars test pattern

Display character data

Remove character data from screen

Modify CRT control registers

Checksum

Display graphics RAM

Remove graphics RAM fran screen

Port fonnat

Transparent mode

Video map

Help

Dump memory cs-records)

Load (S-records)

verify CS-records)

Bootstrap halt

Bootstrap operating system

I/O command for disk

I/O physical for disk

I/0 teach for disk

A complete description of each TENbug corrunand is provided in the following
paragraphs. Messages resulting from error conditions during corrmand execution
are described in Apperrlix B.

4-2

4.2.1 Display/Set Register (.<register>) .<register>

.<register> [<expression>]

The .<register> commarrls allow the user to display or modify individual
registers. Commands with a leading period and the registers displayed/altered
by these commarrls are:

.AO-.A7 address register

.DO-.D7 data register

.DFC destination function code (used with MC68010 MOVES instruction)

.PC program counter

.RO-.R6 relative offset register (software register)
(refer to OF corrmand)

.SFC source function code (used with MC68010 MOVES instruction)

.SR status register (in the MC68010)

.SSP supervisor stack pointer

.USP user stack pointer

.VBR vector base register

EXAMPLE COMMENT

TENbug 2.x > .PC Display program counter •
• PC=OOOOOAOO

TENbug 2.x > .A7 FOO Set address register 7 to $FOO.

TENbug 2.x > .Rl AOO Set relative offset register 1 to $AOO.

TENbug 2.x > OF
R0-7 00000000-0ooooAoo 00000000 00000000 00000000 00000000 00000000 00000000

Display all relative offset registers.

TENbug 2.x > DF
PC=OOOOOAOO SR=2700=.S7 ••••• USP=FFFFFFFF SSP=OOOOOFOO VBR=OOOOOOOO SFC=2 DFC=7
D0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOFOO

PC=OOOOOO+Rl 41F81000 LEA.L $00001000,AO

Display all formatted CPU registers.

4-3

4.2.2 Draw Graphics Bars Test Pattern (BARS and NOBARS) BARS
NO BARS

BARS
NOBARS

The BARS command provides a graphics test pattern that can be used to
familiarize the user with a few of the graphics facilities. BARS will create a
color or green scale consisting of eight horizontal and eight vertical bars.
Fach bar in a given axis is a different color or shade of green. Where a
horizontal bar intersects a vertical bar, the result is the Exclusive-OR of the
two colors or shades.

For more detailed information about the control registers and graphics RAM,
refer to the VME/10 Microcomputer System Reference Manual.

If NOBARS is entered, the graphics RAM is cleared. If BARS is entered following
a previous BARS commarrl, the system automatically clears graphics RAM before
redrawing the test pattern. If graphics RAM has been enabled (using the GR
ccrnmarrl), the test pattern can be seen while it is being drawn.

This diagnostic corrunarrl will support high- or low-resolution mode, with the only
observable difference being that the low-resolution version can be drawn in less
time due to the reduced amount of RAM involved. For more information about
changing from high- to low-resolution mode refer to the description of the VM
corrunarrl.

See also: [NO]CH, CRT, [NO]GR, VM

EXAMPLE COMMENT

TENbug 2.x > GR

TENbug 2.x > BARS

TENbug 2.x > VM

TENbug 2.x m> GR

TENbug 2.x m> NOCH

TENbug 2.x m> BARS

TENbug 2.x m> GR 2

TENbug 2.x m> NOBARS

TENbug 2.x m> CH

TENbug 2. x m> VM

Display the contents of graphics RAM.

Execute the graphics test pattern command. Notice
both graphics and character data are displayed.

Change from high- to low-resolution mode.

Enable graphics again.

Disable the character RAM.

NOTE

'!he following corrunarrls will not be visible on the
CRT display after execution of the NOCH comnand.

Draw test pattern, a little quicker this time.

Allow only the color controlled by bit 2 in control
register 1.

Clear graphics RAM.

Restore the character display.

Change fran low- to high-resolution mode.

4-4

4.2.3 Block Fill (BF) BF

BF <addressl> <address2> <pattern>

The BF canmarrl fills a specified block of memory with a Sf.>ecified binary pattern
of word size. A word boundary (even address) must be given for the starting
<address!> arrl errlirg <address2> of the block. The pattern word may be
expressed in hexadecimal (default), decimal, octal, or binary format. Refer to
the DC canmarrl for symbols used to denote numeric type. If a pattern of less
than word size is entered, the data is right-justified arrl leadirg zeros are
inserted by TENbug.

EXAMPLE

TENbug 2.x > MD 900
000900 FF FF 00 00 FF FF 00 00 FF FF 00 04 FF FF 00 00

TENbug 2.x > BF 900 90E 4E75
PHYSICAL ADDRESS=00000900 0000090E

TENbug 2.x > MD 900

................

000900 4E 75 4E 75 4E 75 4E 75 4E 75 4E 75 4E 75 4E 75 NUNUNUNUNUNUNUNU

TENbug 2.x >

4-5

4.2.4 Bootstrap Halt (BH) BH

BH [<device>] [,<controller>]

where:

device

controller

Is a single hexadecimal digit (0-3) specifying the device to
be used (default = 0) •

Is a single hexadecimal digit (0) specifying the controller
to which the device is connected (default = 0).

The BH command causes data fran disk to be loaded into memory and program
control to be given to TENbug. If device and/or controller are not specified,
device 0 and controller 0 are used.

This camnand works the same as BO, except that control is transferred to TENbug.

See also: BO

EXAMPLE

TENbug 2.x > BH
Booting fran:~SYS

COMMENT

Boot Halt fran default drive O, default controller O.
(Message appears only if first four bytes of volume
ID are not null.)

PC=00001694 SR=2700=.S7 ••••• USP=FFFFFFFF SSP=00040EOO VBR=OOOOOOOO SFC=2 DFC=7
D0-7 00000000 00000000 00000048 4D453455 4D505500 A987EDCB 00000000 0007FFFE
A0-7 OOFlCODl 00001694 0000067A OOF01E2C OOF01350 00000550 00000550 00040EOO

PC=001694 46FC2700 MOVE.W #9984,SR

TENbug 2.x >

TENbug 2.x > BH 2
Booting fran:----""TEN

Boot Halt fran drive 2, default controller O.
(Message appears only if first four bytes of volume
ID are not null.)

PC=000025D8 SR=2700=.S7 ••••• USP=FFFFFFFF SSP=000014D8 VBR=OOOOOOOO SFC=2 DFC=7
D0-7 00000002 00000000 OOOOOOAC 4D453455 00000000 00000010 00000000 0007FFFE
A0-7 OOFlCODl 00002508 00000682 OOF01E2C OOF01350 00000552 00000552 000014D8

PC=0025D8 41F81408 LEA.L $00001408,AO

TENbug 2.x >

NOTE

To use the BH comnand, a valid stack value must
be in locations $0-$3 of the file being loaded.

4-6

4.2.5 Block Initialize (BI) BI

BI <address!> <address2>

The BI camnan::1 initializes word parity in a specifia:l block of memory consisting
of <address!> through <address2>. No data in any word is changed if parity in
the word is correct. If parity in a word is incorrect, the characters "m?"
($6D3F) are written in that word to force correct parity. If the parity cannot
be set in one or more words, the message BUS TRAP ERROR is displayed on the
console. The BT (Block Test) canmarrl may be used to isolate the failure(s).

NOTE

Both crldresses must be on word boundaries.

See also: BT

EXAMPLE

TENbug 2.x > BI 44000 4FFFE
PHYSICAL ADDRESS=00044000 0004FFFE

TENbug 2.x >

4-7

4.2.6 Block Move (BM) BM

BM <addressl> <address2> <address3>

where:

<addressl> Is the starting address of the source memory block.

<address2> Is the ending address of the source memory block.

<address3> Is the starting address of the destination memory block.

The BM canman:l is used to move (duplicate) blocks of memory fran one area to
another.

EXAMPLE

TENbug 2.x > MD BOO A;DI
OOOBOO 1018 MOVE.B (AO)+,DO
OOOB02 ocoooooo CNP.B #0,DO
OOOB06 67F8 BEQ.S $000BOO
OOOB08 4E75 RTS

TENbug 2.x > MD AOO A;DI
OOOAOO FFFF oc.w $FFFF
000A02 OOOOFFFF OR.B #-1,DO
000A06 0020FFFF OR.B #-1,-(AO)

TENbug 2.x > BM BOO B09 AOO
PHYSICAL ADDRESS=OOOOOBOO OOOOOB09
PHYSICAL ADDRESS=OOOOOAOO

TENbug 2.x > MD AOO A;DI
OOOAOO 1018 MOVE.B (AO) +,DO
000A02 ocoooooo CMP.B #0,DO
000A06 67F8 BEQ.S $000A00
000A08 4E75 RTS

TENbug 2.x >

4-8

4.2.7 Bootstrap Operating System (BO) BO

BO [<device>] [,<controller>] [,<string>]

where:

device Is a single hexadecimal digit (0-3) specifying the device to
be used (default= 0).

controller Is a single hexadecimal digit (0) specifying the controller
to which the device is connected (default = 0).

string Is an optional ASCII character string that is passed to the
program being loaded frcm the specified device and
controller.

The function of the BO comnand is to access a program on disk, transfer it into
memory space, arrl give control to that program. Where to find the program and
where in memory to store the program is contained in sector 0 of the disk
corresponding to the specified device and controller. If the device and
controller are not specified, the default value zero is used for each.

The following sequence occurs when the BO comnand is executed:

a. Starting at sector O (the volume ID), 256 bytes are read and transferred
into TENbug workspace RAM.

b. If the volume ID (locations $0 through $3) is not null, these four ASCII
bytes will be displayed as follows:

Booting from: SYS

Where SYS is the volume ID. If null, the display is suppressed.

c. Motorola ID locations $F8-$FF are read to ensure that they contain either
"EXORMACS" or "MOTOROLA" •

d. The location of the program to be loaded and its destination in memory
are identified by examining the first sector at the following locations.

LOCATIONS

$14-$17

$18-$19

$1E-$21

CONTENTS

First 256-byte sector to transfer

Number of sectors to transfer

.Address of first destination byte (first memory address)

e. The location of the disk configuration area is identified by examining
volume ID locations as shown:

LOCATIONS

$90-$93

$94

CONTENTS

Sector address of the media configuration parameters
(normally sector 1)

rength of the configuration area (normally one 256-byte
sector)

4-9

BO

If there is no media configuration area specified, default media
configuration values are used to read the disk. If there is a media
configuration area specified, then that VERSAdos sector is read into the
TENbug workspace, arrl these values are used to read the disk. Refer to
Appendix C for additional infonnation.

f. The program is read and transferred to its memory destination.

g. The status register is updated to reflect supervisor mode and interrupt
level 7.

h. The stack pointer is loaded fran locations $0-$3 relative to the
destination memory.

i. The program counter is loaded fran locations $4-$7 relative to the
destination memory.

The registers are set up as definerl below, arrl the program loaded by the BO
commarrl now has control of execution.

DO ••• DRIVE NUMBER
Dl ••• IPC NUMBER
D2 ••• DISK CONFIGURATION CODE
D3 ••• FLAG FOR IPL; 'ME4U'.= USE BUGS' DISK READ ROUTINE
AO ••• ADDRESS OF DISK CONTROLLER BOARD
Al ••• ADDRESS OF PROGRAM JUST LOADED
A2 ••• ADDRESS OF DISK CONFIGURATION DATA
A3 ••• ADDRESS OF BUGS' DISK READ ROUTINE
A4 ••• ADDRESS OF ~THE DEBUGGER ENTRY ro INT ("MACSBUG")
A5 ••• START OF TEXT
A6 ••• END OF TEXT+l (WHERE THE NEXT OIARACI'ER WOULD GO)
A7 ••• STACK OF PROORAM JUST LOADED
SR ••• SUPERVISOR M(])E AND LEVEL SEVEN

These registers can be used by IPL to load the file identified by the string
field. If a string field is specified on the BO commarrl line, registers A5 and
A6 point to the first an:l last plus one characters of the string. If no string
is specified, register AS = A6. The file name may be followed by a semicolon
arrl either or both of the options L=$<address> or H. Specifying H causes
control to be returned to TENbug, rather than to the specified program.

Refer to the discussion of the bootload file, IPL.SY, in the M68000 Family
VERSAdos System Facilities Reference Manual.

4-10

BO

The devices am controllers currently supported by TENbug are assigned as
follows:

DEVICE #

0
1
2
3

CONTROLLER #

0

EXAMPLE

TENbug 2.x > BO
Booting fran:-SYS

TENbug 2.x > BO 2
Booting fran:~N

TENbug 2.x > BO ,,O.VMElO.KBD.SY
Booting from: SYS

DESCRIPTION

Winchester hard disk
Winchester hard disk
5 1/4" Winchester floppy disk
5 1/4" Winchester floppy disk

DESCRIPTION

:EMINl disk controller

COMMENT

Boot from the default drive and controller,
(drive is O, controller is 0).
Note: The volume ID is SYS.

Boot fran drive 2 (first floppy) on the
default controller (IMINl number 0) •
Note: The volume ID is TEN.

Boot fran default device 0 on the IMINl
(default controller 0) and pass the ASCII
string that will request the program named
KBD.SY under catalog VMElO, account number O,
to be loaded by the IPL program. (IPL was
the program booted into memory with the BO
canmarrl.)
Note: The volume ID is SYS.

4-11

4.2.8 Breakpoint Set and Remove (BR and NOBR) BR
NOBR

BR (display only)
BR [<address>[;<count>]] [<address>[;<count>]] •••
NOBR [<address>[<address>] •••]

When encountere:I, a breakpoint causes target program execution to stop and
control to be transferred to TENbug. The BR ccmnand may be used without
parameters to cause display of current breakpoint addresses. The BR <address>
command sets one or more addresses into the breakpoint add)\ess table. This
table can hold up to eight breakpoint addresses. Multiple breakpoints (up to
eight) may be specifie:I with one call of the Breakpoint command. Addresses
should be on even word boundaries. The range of <count> is a 32-bi t integer.

The breakpoints are inserte:I into the target program when execution is called
via a GO or GT command. The illegal instruction $4AFB is inserted at the
addresses specifie:I by the table. During execution of the program, a breakpoint
occurs whenever this instruction is encountered. If program control is lost,
control may be regainerl via the RESET or the ABORT button. ABORT is preferred
because use of the RESE'l' function may leave breakpoints ($4AFB) in the user
pr03ram, whereas ABORT wil 1 recover properly (refer to Apperrlix A) •

While executing a Trace canmarrl, the breakpoint addresses are monitored (i.e.,
the illegal instruction $4AFB is not placed in memory). ·

After stopping at a breakpoint, execution may be continued by typing the CD
canmarrl.

The NOBR canmarrl removes one or more breakpoints fran the internal breakpoint
table. The NOBR corrmarrl without parameters eliminates all breakpoints.

BR COMMAND FORMAT

TENbug 2.x > BR

TENbug 2.x > BR <address>

TENbug 2. x > BR <address>; <count>

NOBR COMMAND FORMAT

TENbug 2. x > NOBR

TENbug 2.x > NOBR <address>

See also: GT, TT

DESCRIPTION

Display all breakpoints.

Set a breakpoint.

Set a breakpoint with a count. Count is
decremented each time the breakpoint is
encountered until <count> = O. Execution
stops as soon as count is decremented to
zero. Thereafter, execution will stop
each time the breakpoint is reached.

DESCRIPTION

Clear all breakpoints.

Clear a specific breakpoint.

4-12

EXAMPLE

TENbug 2.x > .R4 4000

TENbug 2.x > BR 1010 2000;5 2040 4000

BREAKOOINTS
001010 001010
002000 002000;5
002040 002040
OOOOOO+R4 004000

TENbug 2.x > NOBR 1010 2040

BREAKOOINTS
002000 002000;5
OOOOOO+R4 004000

TENbug 2.x > NOBR

BRFAKOOINTS

TENbug 2.x >

4-13

BR
NOBR

4.2.9 Block of Memory Search (BS) BS

BS <address!> <address2> '<literal string>'
BS <address!> <address2> <data> [<mask>] [;<option>]

The BS corrmand has two modes: literal string search and data search. Both modes
scan memory beginning at <address!> through <address2>, looking for a match.

The literal string mode is initiated if a single quote (') follows <address2>.
The ASCII literal string can include lowercase letters. If a single quote does
not follow <address2>, data search mode is assumed. In the data search mode,
the optional mask (if used) is ANDed to data. The default mask is all ones.
The options supported are:

;B byte
;W word
;L longword

The default is byte.

In both modes of the BS corrmand, if the search finds matching data, the data and
the address (es) are displayed. If the search is in data search mode with a
mask, and data is found that matches the data after the mask is ANDed, the data
from memory before applying the AND mask is displayed.

EXAMPLE COMMENT

TENbug 2.x > MD 41FFO 15
OOlFFO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
002000 43 43 45 45 00 00 00 00 00 00 00 00 00 00 00 00

................
CCEE ••••••••••••

TENbug 2.x > BS 41FFO 4200F 'CC'
PHYSICAL ADDRESS=OOOOlFFO 0000200F
002000 'CC'

TENbug 2.x > BS 41FFO 4200F 34 ;W
PHYSICAL ADDRESS=OOOOlFFO 0000200F

TENbug 2.x > BS 41FFO 4200F 03 OF
PHYSICAL ADDRESS=OOOOlFFO 0000200F
002000 43
002001 43

TENbug 2.x > BS 41000 47FFE 4AFB;W
PHYSICAL ADDRESS=OOOOlOOO 00007FFE
001000 4AFB

TENbug 2.x > nrl 10000 30

Successful search for literal string
'CC'•

Unsuccessful search for word-length data
(with default mask).

Successful search for byte-length data,
with four most significant bits masked.

Successful search for "leftover"
breakpoints.

010000 54 68 69 73 20 69 73 20 61 20 6D 65 73 73 61 67 This is a messag
010010 65 20 66 6F 72 20 74 68 65 20 42 53 20 63 6F 6D e for the BS can
010020 60 61 6E 64 2E 20 20 20 20 20 20 20 20 20 20 20 mand.

Display of memory that will be searched
for lowercase letters.

4-14

TENbug 2.x > bs 10000 20000 'is'
PHYSICAL ADDRESS=OOOlOOOO 00020000
010002 I iS 1

010005 'is'

TENbux 2.x >

Block Search the address range for ASCII
I iS I e

BS

Successful search finding two occurrences.

4-15

4.2.10 Block of Memory Test (BT) BT

BT <addressl> <address2>

The BT canmarrl. provides a destructive test of a block of memory. A word
boundary (even address) must be given for the starting <address!> and ending
<address2> of the block. If the test runs to canpletion without detecting an
error, all memory testerl will have been set to zeros.

Execution of this comman:l may take several secorrls for large blocks of memory.

When a problem is found in a mennry location, the address, the data stored, arrl
the data recrl are displayed. Control is then returnErl to TENbug.

See also: BI

EXAMPLE COMMENT

TENbug 2.x > BT 44000 47FFE
PHYSICAL ADDRESS=00044000 00047FFE

TENbug 2.x > BT 44000 4FFFE
PHYSICAL ADDRESS=00044000 0004FFFE
FAILED AT 0480FE WROTE=FFFF READ=OOOO

TENbug 2.x >

4-16

Successful memory test; no errors
fourrl.

Unsuccessful memory test; error
data is listed.

4.2.11 Character RAM Display (CH) CH
NOCH

CH [<bits>]
NOCH

The Character Dispiay (CH) cormnand provides access to specific bi ts within
VME/10 control register 0 ($Fl9F05). These bits determine whether the character
RAM is displayed upon the CRT built into the VME/10. They are called the
character disable bi ts, and must be off to allow the color or shade of green
being used to draw the characters on the display.

For more detailed information about the control registers, refer to the VME/10
Microcomputer System Reference Manual.

An optional <bi ts> parameter, 0-7, can be provided to replace the current
configuration of bits 7, 6, arrl 5 of VME/10 control register O. Default is 0
(or all bits off), allowing the character display to appear on the CRT.

If NOCH is entered, the current values of bi ts 7, 6, and 5 within control
register 0 are first saved, and then replaced by 7 (all bits on). This removes
any character data appearing on the screen. The data still resides in display
RAM, unchanged; only the control register has been modified.

To again display character data within display RAM, the CH conmand can be
entered. The value saved when NOCH was last executed is restored. If the
optional <bits> parameter is provided, however, the new value is used in place
of the bit pattern previously saved.

See also: [NO]BARS, CRT, [NO]GR, VM

EXAMPLE COMMENTS

TENbug 2.x > NOCH

TENbug 2.x > CH

Remove any character data being displayed upon the
built-in terminal.

NOTE

The keyboard is still operational; however,
the data entered will not be displayed.

When CH is entered, all previous data that was-on
the screen (minus any lines that scrolled off the
top) will be seen again.

4-17

4.2.12 CRT Control Register Modification (CRT) CRT

CRT

The CRT commarrl provides an easy way to access the VME/10 control registers that
affect the CRT display. Entering the CRT comnand begins a sequence of prompts
that displays the current result of a particular control register bit(s). The
user is able to continue without changing the register, or to walk through a
preselected set of parameters available for that bit within the register~

For more detailed information about the control registers, see the VME/10
Microcomputer System Reference Manual.

The first prompt presented is the video amplifier duty cycle. Bit 3 within
control register 0 is toggled on and off, selecting 50% or 100% duty cycle.
Parameters can be toggled by pressing any character on the keyboard; the value
continues to alternate with each press of a key. When the desired option is
selected, pressing ENTER (or carriage return) moves on to the next parameter.

The second prompt selects a cursor. In the same manner as before, three
selections are presented: one for each character entered. When the cursor
selection is complete, press ENTER (or carriage return) to proceed. Cursor
selection is controlled by bits 5 and 6 within control register 1.

The third prompt selects an optional blinking cursor. Blinking alternates with
a steady cursor for each character entered. Bit 4 within control register O
controls cursor blink. After carriage control is entered the next prompt is
displayed.

The fourth and last option selected is inverse video. Bit 2 within control
register 0 is alternately set or cleared to select inverse or normal video.
When the selection is made, press ENTER and the following message wi 11 be
displayed on the built-in terminal:

Video Set

TENbug 2.x >

See also: [NO]BARS, [NO]CH, [NO]GR, VM

4-18

4.2.13 Checksum (CS) cs

cs [<addressl>] [<address2>]
'

The Checksum comnarrl provides access to the same checksum routine used by the
power-up/reset (PWRT) self-test firmware. This routine is used in two ways
within TENbug.

a. At power up, if pins 5 and 6 of jumper J2 are connected, the self-test is
executed. One of the many items verified is the checksum contained in
TENbug ROM. If for any reason the contents of ROM were to change fran
the factory version, the checksum test is designed to detect the change
arrl inform the user of the failure.

b. Following a valid self-test, TENbug 2.x examines the VME address space
for code that needs to be executed. This feature (ROMBOOT) makes use of
the checksum routine to verify that a routine in memory is really there
to be executed at power up. For more information refer to paragraph
2.10, which describes the format of the routine to be executed and the
interface provided upon entry.

This corrmand is provided as an aid in preparing routines for the ROMBOOT
feature. Since ROMBOOT does checksum validation as part of its screening
process, the user needs access to the same routine in the preparation of
EPROM/ROM routines.

The [<address>] parameters can be provided in two forms:

a. An absoute address (24-bit maximum).
b. An expression using a displacement + relative offset register.

Any previous addresses are saved as default addresses for CS comnarrls invoked
later. This is convenient since users typically enter the address range to
calculate the checksum and then enter the results into memory (into bytes that
were $0000 while the checksum was calculated). When the CS cormnand is used to
verify the content and location of the new checksum, the operands need not be
entered since the command retains the addresses used to calculate the previous
checksum. The even and odd byte result should be 0000, verifying that the
checksum bytes were calculated. correctly and placed in the proper locations.

The default operarrls at power up are the starting/ending addresses of the TENbug
2.x firmware. The results for even and odd bytes should be 0000.

The algorithm used to calculate the checksum is as follows:

a. $FF is placed in each of two bytes within a register. These bytes
represent the even and odd bytes as the checksum is calculated..

b. Starting with the first address, the even and odd bytes are extracted.
from memory and XORed with the bytes in the register.

c. This process is repeated, word by word, until the ending address is
reached.. Note that the last word addressed is NOT included in the
checksum. This technique allows use of even ending addresses ($040000 as
opposed to $D3FFFE) •

4-19

~
I
tv
0

EXAMPLE

TENbug 2.x > CS
PHYSICAL ADDRESS=OOFOOOOO OOF08000

(EVEN ODD)=OOOO

TENbug 2.x > MD 20000 3F

cs

COMMENT

CS canmand entered without operands right after power
up (addresses are TENbug firmware limits by default).

Display routine requiring a checksum. Start at
$20000; last byte is at $20029. Checksum will
be placed in bytes at $20026 and $20027, so they
are zero while calculating the checksum.

020000
020010
020020
020030

42 4F 4F 54 00 00 00 14 00 00 00 A6 54 65 73 74 BOOT ••• ~ ••• &Test
41 F9 00 01 FO 00 20 3C -oo 00 EF FF 11 00 51 C8 Ay •• p. < •• o ••• QH
FF FC 4E 75 01 01 00 00 10 08 FF FF FF FF FF FF - .:Nu ••••••••••••
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ••••••••••••••••

TENbug 2.x > M 20010;DI
020010 41F90001FOOO
020016 203COOOOEFFF
02001C 1100
02001E 51C8FFFC
020022 4E75
020024 0101
020026 0000
020028 1008
02002A FFFF
02002C FFFF
02002E FFFF
020030 FFFF

LEA.L
MOVE.L
MOVE.B
DBF.L
RTS
BTST
oc.w
oc.w
oc.w
oc.w
oc.w
oc.w

$0001FOOO,AO ?(CR)
#61439,DO ?(CR)
DO ,-(AO) ? (CR)
D0,$02001C ?(CR)
?(CR) -
DO,Dl ? (CR)
$0000 ?(CR)
$1008 ? (CR)
$FFFF ?(CR)
$FFFF ? (CR)
$FFFF ?(CR)
$FFFF ? ~ (CR)

Display executable code plus revision number,
checksum, socket ID, and a few unused bytes following
the routine:

0101 is revision.
0000 is where checksum is to be placed.
1008 are socket locations Ul6 and U08.
FFFF is unused manory.
FFFF is unused manory.
FFFF is unused manory.
FFFF is unused memory.

TENbug 2.x > cs 20000 2002A
PHYSICAL ADDRESS=00020000 0002002A

(EVEN ODD}=4B34

TENbug 2.x > M 20026;W
020026 0000 ?4B34.

TENbug 2.x > CS
PHYSICAL ADDRESS=00020000 0002002A

(EVEN ODD}=OOOO

TENbug 2.x > .R3 2000

TENbug 2.x > cs O+R3 2A+R3
PHYSICAL ADDRESS=00020000 0002002A

(EVEN ODD}=4B34

TENbug 2.x > M 26+R3;W
000026+R3 0000 ?4B34.

TENbug 2.x > CS
PHYSICAL ADDRESS=00020000 0002002A

(EVEN ODD)=OOOO

TENbug 2.x >

Request checksum of area using absolute addresses.

Checksum of even bytes is $4B.
Checksum of odd bytes is $34.

Place these bytes in zeroed area used while
calculating checksum.

Verify checksum (no operands needed if same as
previous entries) •
Result is 0000, good checksum.

Define value of relative offset register 3.

Request checksum of area using relative ofset.

Checksum of even bytes is $4B.
Checksum of odd bytes is $34.

Place these bytes in zeroed area used while
checksum was calculated.

Verify checksum (no operands needed if same as
previous entries) •

cs

()
CJ)

4.2.14 Data Conversion (DC) DC

DC <expression>

The DC can.marrl is used to convert an expression into hexadecimal and decimal.
The expression-may be entered in hexadecimal, decimal, or mixed format; output
will be shown both ways. Default input format is hexadecimal. Octal and binary
values may also be converted to decimal and hexadecimal values.

The following symbols are used:

$ precedes hexadecimal value (default; may be omitted)
& precedes decimal value
@ precedes octal value
% precedes binary value

Except for .RO, offset registers may not be used with the DC corrmand.

This cormnand is useful in calculating displacements such as destination of
relative branch instructions or program counter relative addressing modes.

COMMAND FORMAT

TENbug 2.x > DC $<data>

TENbug 2 • x > DC & <data>

EXAMPLE

TENbug 2.x > DC &120
000078 =$78=&120

TENbug 2.x > DC &15+$4-$13
000000 =$0=&0

TENbug 2.x > DC -1000
FFFOOO =$FFFFF000=-$1000=-&4096

TENbug 2.x > DC &15-$9+@14-%1100
000006 =$6=&6

TENbug 2.x >

DESCRIPTION

Convert hexadecimal data into hexadecimal
and decimal.

Convert decimal data into hexadecimal and
decimal.

4-22

4.2.15 Display Formatted Registers (OF) OF

DF

The DF canmand is used to display the M::68010 registers. The registers display
is also provided whenever TENbug gains control of the program execution (i.e.,
at breakpoints and when tracing).

Note that any single register can be displayed with the .AO-.A7, .DO-.D7, and
similar cormnands. Refer to the descriptions of the Display/Set Register corcmand
(.<register>) and the OF cormnand.

EXAMPLE

TENbug 2.x > DF

COMMENTS

Display formatted registers. Notice that the
values of register A7 and the user stack pointer
are the same because the status register
indicates user mode.

PC=OOOOOOOO SR=OOOO= •• O ••••• USP=FFFFFFFF SSP=OOOOOOOO VBR=OOOOOOOO SFC=2 DFC=7
D0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 FFFFFFFF

PC=OOOOOO 0000 DC.W $0000

TENbug 2.x > .A7 1100

TENbug 2.x > OF Once again the values of A7 and the user stack
pointer are the same. The latter was changed by
altering A7 in the user mode.

PC=OOOOOOOO SR=OOOO= •• O ••••• USP=OOOOllOO SSP=OOOOOOOO VBR=OOOOOOOO SFC=2 DFC=7
D0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00001100

PC=OOOOOO 0000 DC.W $0000

TENbug 2.x > .SS BOO Set supervisor stack pointer.

TENbug 2.x > .SR 2700 Set supervisor state and interrupt level 7.

TENbug 2.x > .R3 AOO Set relative offset register 3 to $AOO.

TENbug 2.x > .PC O+R3 Set program counter to start of area using the
relative offset register.

4-23

TENbug 2.x > DF

DF

Display formatted registers again. Notice that
the supervisor mode in the status register
results in the supervisor stack pointer being
displayed both as the SSP and A7. Other changes
include the program counter now being displayed
in two ways: on the first line as an absolute
address, and on the fourth line relative to the
closest offset register equal to or below the
absolute address. Notice also that the current
location of the program counter is displayed in
both hexadecimal and disassembled M68010 source
statements.

PC=OOOOOAOO SR=2700=.S7 ••••• USP=OOOOllOO SSP=OOOOOBOO VBR=OOOOOOOO SFC=2 DFC=7
D0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOBOO

PC=OOOOOO+R3 41F81000 LEA.L $00001000,AO

TENbug 2.x >

4-24

4.2.16 Dump Memory (S-Records) (DU) DU

DU[<port number>] <addressl> <address2> [<text>]

The DU comnarrl formats memory data in S-record form arrl sends it to a specified
port. The default port number is port 1, the VME/10 built-in CRT
terminal/keyboard. The first record output is an SO record, which will contain
the characters entered in the text field on the cornnand line, if any. The last
record output is an S7, SS, or S9 terminator. See Appen:lix D for information on
S-records.

To dtnnp to a peripheral using the DU cornnand, a dual serial I/Qnodule, MVME400,
or a dual parallel I/Qnodule, MVME410, must be available on the I/O Channel.
Note that serial ports 1 and 2 on the MVME400 correspond to TENbug ports 3 and
2, respectively, and that parallel ports 1 arrl 2 on the MVME410 correspond to
TENbug ports 4 and 5, respectively.

Default destination is the console terminal. Specifying DU<port number> allows
the output to be directed to another port.

Valid port numbers for this command are:

PORT NUMBER DESCRIPTION

none
1
2
3
4
5

Defaults to TENbug port 1 (VME/10 built-in terminal/keyboard).
Specifies TENbug port 1 (VME/10 built-in terminal/keyboard).
Specifies TENbug port 2 (MVME400 port 2 - 7201/B) •
Specifies TENbug port 3 (MVME400 port 1 - 7201/A).
Specifies TENbug port 4 (MVME410 port 1 - PIA/A).
Specifies TENbug port 5 (MVME410 port 2 - PIA/B).

This comnand does not send control characters to start or stop peripheral
devices.

See also: LO, PF, VE

NOTE
'1

Offset RO is added to the address field in each S-record.
I

EXAMPLE COMMENT

TENbug 2.x > MD AOO 30 Display memory where routine to be transferred
exists.

OOOAOO
OOOAlO
OOOA20

41 F8 10 00 20 3C 00 00 02 FF 11 00 51 ca FF FC
60 EE 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71
00 00 00 00 00 00 00 00 ' 00 00 00 00 00 00 00 00

4-25

Ax •• < •••••• QH.:
'nNqNqNqNqNqNqNq

TENbug 2.x > MD AOO 7;DI

OOOAOO
OOOA04
OOOAOA
OOOAOC
OOOAlO
OOOA12
OOOA14

41F81000
203C000002FF
1100
51C8FFFC
60EE
4E71
4E71

Display memory using the disassembler.

LEA.L
MOVE.L
MOVE.B
DBF.L
BRA.S
NOP
NOP

$00001000,AO
#767,DO
DO,-(AO)
D0,$000AOA
$000AOO

TENbug 2.x > DU AOO Al5 TENBUG 2.X Test

DU

Dump memory to default port, starting at $AOO
through Al5, and place title within SO record.

PHYSICAL ADDRESS=OOOOOAOO OOOOOA15
S012000054454E42554720322E582054455354FO
Sll30A0041F81000203C000002FF110051C8FFEC17
Sl090Al060EE4E714E7110
S9030000FC

TENbug 2.x >

4-26

Note: This appears on the default
CRT display.

4.2.17 Go Direct Execute Program (GD) GD

GD [<address>]

The GD canmarrl is similar to the GO canmand, except that GD does not set
breakpoints, nor does it start by tracing one instruction. The GD ccmnand
starts the target program at the location given as <address> without changing
any of the exception vectors (default locations 0 through $3FF) • If <address>
is not st:ecifierl, the GD corrunarrl starts the target program at the address in the
program counter.

See also: GO, GI'

EXAMPLE

(Listing
001900
001902
001906
001908

of program in memory at location 001900)
1018 MOVE.B (AO)+,DO
OCOOOOOO CMP.B #0,DO
66F8 BNE.S $001900
4E75 RTS

TENbug 2.x > BR 1900 1908

BREAKOOINTS
001900 001900
001908 001908

TENbug 2.x > G 1900
PHYSICAL ADDRESS=00001900

AT BREAKOOINT
PC=00001900 SR=2704=.S7 •• Z •• USP=OOOOC19E SSP=OOOOOCOO VBR=OOOOOOOO SFC=2 DFC=2
D0-7 00000000 00000000 00003048 40453455 00000000 00000020 00000000 0007FFFE
A0-7 00001002 00001694 0000065C OOF01D72 OOF0120C 00000538 00000538 OOOOOCOO

PC=001900

TENbug 2.x > GD 1900
PHYSICAL ADDRESS=00001900

4-27

4.2.18 Go Execute Program (GO)

GO [<address>]
G [<address>]

GO
G

The Go (G or GO) command causes the target registers (previously saved in RAM)
to be placed into the actual MC68010 hardware registers, and any breakpoints
previously requested to be placed into RAM. When this is completed, control is
given to the target program by one of two methods. If no operands are provided
with the G (or GO) command, the current value of the program counter is used.
If an address is provided, this address will be placed into the program counter
and then used to give control to the target code. The program starts by first
tracing one instruction and then free running until one of the following events
interrupts the program execution.

a. The target program encounters a breakpoint.

b. An abnormal program sequence causes exception processing (e.g., divide by
zero).

c. The operator intervenes through use of the RESET or ABORT pushbuttons on
the VME/10 operator panel.

NOTE

The execution will be in REAL TIME unless
any breakpoints with <count> are encountered.

The [<address>] parameter can be provided in several formats:

a. An absolute address (24-bit maximlml).

b. An expression using a displacement + relative offset register.

c • .Address indirect, using the contents of RAM (or ROM) to acquire the new
program counter contents.

d. Register indirect, using the contents of address registers 0 through 7 to
acquire the new program counter contents.

4-28

EXAMPLE

TENbug 2.x > .PC AOO

TENbug 2.x > G
PHYSICAL ADDRESS=OOOOOAOO
AT BREAKPOINT

PC=OOOAOA 1100 MOVE.B DO,-(AO)

TENbug 2.x > G AOO
PHYSICAL ADDRESS=OOOOOAOO
AT BREAKPOINT

PC=OOOAOA 1100 MOVE.B DO,-(AO)

TENbug 2.x > M 20000;L
020000 00000000 ?AOO.

TENbug 2.x > GO [20000]
PHYSICAL ADDRESS=OOOOOAOO
AT BREAKPOINT

PC=OOOAOA 1100 MOVE.B DO,-(AO)

TENbug 2.x > .Al AOO

TENbug 2.x > G (Al)
PHYSICAL ADDRESS=OOOOOAOO
AT BRFAKPOINT

PC=OOOAOA 1100 MOVE.B DO,-(AO)

TENbug 2.x > .R2 AOO

COMMENT

Set program counter to desired address.

Enter Go conmand using existing PC.

Enter Go conunand with absolute address provided.

Set RAM location to contain an execution address.

Enter Go conunand providing indirect address in RAM.

Set address register to contain an execution address.

Enter Go command providing indirect addressing in Al.

Set relative offset register to contain start of module.

00
G

TENbug 2.x > GO O+R2
PHYSICAL ADDRESS=OOOOOAOO
AT BREAKPOINT

Enter Go cormnand providing a displacement and offset register.

PC=OOOOOA+R2 1100 MOVE.B DO,-(AO)

TENbug 2.x >

Notice the physical address used in each example, though provided
in a different way in each case, is identical.

4.2.19 Graphics RAM Display (GR and N(X;R) GR
NOGR

GR [<bits>]
NOGR

The Graphics Display (GR) command provides access to specific bits within VME/10
control register 1 ($Fl9F07). These bits determine whether the graphics RAM is
displayed upon the CRT built into the VME/10. These bits are called the
graphics enable bits and must be on to allow the respective colors, or shades of
green, that they control to be displayed upon the screen.

For more detailed infonnation about the control registers, see the VME/10
Microcomputer System Reference Manual.

An optional <bi ts> parameter, 0-7, can be provided to replace the current
configuration of bits 3, 2, arn 1 of VME/10 control register 1. Default is 7
(all bits on), allowing the character display to appear on the CRT.

If NOGR is entered, the current values of bi ts 3, 2, and 1 within control
register 0 are first saved, arn then replaced by zero (all bi ts off) • This
removes any graphics data appearing on the screen. The data still resides in
display RAM; only the control register has been modified.

To once again display graphics data the GR commarn can be entered. The value
saved when NOGR was last executed will be restored. If the optional <bits>
parameter is provided, the new value is used in place of the bit pattern
previously saved.

See also: [NO]BARS, [NO]CH, CRT, VM

EXAMPLE

TENbug 2.x > GR

TENbug 2.x > BARS

TENbug 2.x > NOCH

COMMENT

Display the contents of graphics RAM.

Execute the graphics test pattern command. Notice
both graphics and character data are displayed.

Remove all character data from the screen.

Remember the following CANNOT
be seen but is shown as a guide:

TENbug 2.x > GR 4

TENbug 2.x > NOGR

TENbug 2.x > GR

TENbug 2.x > CH

Enable only the color, or shade of green,
controlled by bit 2 of control register 1.

When the carriage return is pressed, all graphics
and character data are gone.

The last value previously used in the graphics
control register bits is restored (4 in this
example).

Restore the character display.

Now the entire character screen
is shown as well as graphics RAM.

TENbug 2.x > NOGR Remove the graphics display.

TENbug 2.x >

4-30

4.2.20 Go Until Breakpoint (GT)

GT <temporary breakpoint address>

The GT canmaoo performs the following:

a. Sets the temporary breakpoint specified on the corrmarrl line.

b. Sets breakpoints entered by the BR commarrl.

c. Sets target program registers as displayed by the DF commarrl.

d. Causes the target program to execute fran the PC address (free run in
real time).

When any breakpoint is encountered, the temporary breakpoint is reset.

See also: BR, DF, GD, GO, TR, TT

EXAMPLE

(Listing of program in memory at location 001900)
001900 1018 MOVE.B (AO)+,DO
001902 OCOOOOOO CMP.B #0,DO
001906 66F8 BNE.S $001900
001908 4E75 RTS

TENbug 2.x > BR 1900 1908

BREAKPOINTS
001900 001900
001908 001908

TENbug 2.x > .PC 1900

TENbug 2.x > GT 1906
PHYSICAL ADDRESS=00001906
PHYSICAL ADDRESS=00001900

AT BREAKPOINT
PC=00001906 SR=2700=.S7 ••••• USP=OOOOC19E SSP=OOOOOBF8 VBR=OOOOOOOO SFC=2 DFC=2
D0-7 00000020 00000000 00003048 40453455 00000000 00000020 00000000 0007FFFE
A0-7 0000160E 00001694 0000065C OOF01D72 OOF0120C 00000538 00000538 OOOOOBF8

PC=001906

TENbug 2.x > BR

BREAKPOINTS
001900 001900
001908 001908

TENbug 2.x >

4-31

4.2.21 Help (HE)

HE

The HE canmarrl displays a list of available commarrls.

EXAMPLE

TENbug 2.x > HE

.PC .SR •• US .SS .VBR .DFC .SFC

.DO thru .D7

.AO thru .A7

.RO thru .R7

CRT CH NOCH GR NOGR
BARS NO BARS
IOC !OP !OT

cs BF BH BI BM BO
BS BT DC DF DU G
GT HE LO M MD MM
PA NOPA PF T TM TR
VM

TENbug 2.x >

(Control Registers)
(Test Graphics RAM)
(Physical Disk I/O)

BR NOBR
GD GO
MS OF
TT VE

4-32

HE

4.2.22 I/O Command for Disk {IOC) IOC

IOC

The IOC corrmand allows the user to issue comnands directly to the RWINl
controller.

When invoked, this corrunarrl pranpts for the drive and controller required. An
address where the current RWINl comnand is located and hex display of that
ccmnarrl are shown, followed by an "ARE YOU SURE?" pranpt.

The ccmnarrl is used primarily as a debugging tool to issue conunands to the RWINl
controller to locate problems with either drives, media, or the controller
itself. The RWINl ccmnands are as follows:

0/0 Check drive status
0/1 Recalibrate
0/4 Format drive
0/6 Format track {refer to example)
0/7 Format default/alternate track
0/8 Read sectors (use !OP comnand)
0/9 Scan sectors
O/A write sectors {use IOP comnand)
O/B Seek
O/C Read track {Winchester only)
O/D Read ECC {Winchester only)
O/E Write ~C {Winchester only)
6/0 Configure drive

NOTE: For more information see the Winchester Disk Controller User's Manual.

The default values are the parameters left over from any previous controller
request. An !OP corrmand or, if an operating system has been booted and the
debugger was reentered with the use of the ABORT button, the drive, controller
and the last commarrl {08 read sectors) issued by boot to the RWINl controller
are the current default values.

While answering the prompts, there are four actions that can be taken following
the question mark prompt:

? •

- Entering a carriage return indicates that the existing value for
the current parameter is acceptable; go on to the next
parameter.

- Entering a period indicates that this execution of the IOC
cormnand must be terminated now, without asking for more
parameters.

? - Entering a caret symbol indicates that a previous parameter
requires a change and will logically back up one parameter each
time it is entered {until the first entry is reached, where it
will remain until one of the other responses is received).

? <data> - Entering the appropriate data requested (followed by a carriage
return or ENTER) • Often the parameters are checked for valid
options {i.e., Y or N).

4-33

EXAMPLE

TENbug 2.x > IOP
-READ OR WRITE (R/W) = ••••••••• R ? W

MEMORY ADDRESS FOR DISK I/0=.$00001000 ? 2000
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY} = ••••••• $00 ? -2-

CONTROLLER NUMBER= ••••••• $00 ? (CR}
FIRST BLOCK NUMBER=.$00000000 ? 100

NUMBER OF (256 BYTE) BLOCKS= ••••• $0001 ? (CR)

ARE YOUR SURE (Y/N) ? Y

DISK ERROR: STATUS=06 4D 00 08 09 01 40 01 00 09

COMMENT

Invoke the physical disk I/O command.
Specify a write operation.
Write to memory location $2000.
Write to drive 2 (floppy}.
Write to RWINl controller.
Write to block number $100.
Write one 256-byte block.

Last chance • • • Sure? Yes

IOC

For this example an unformatted floppy disk was
placed into drive 2. As_ expected an "06" indicates
that the ID HEADER NOT FOUND message from the
Winchester Disk Controller User's Manual is the
correct description of the situation.

t PC=OOF04EBC SR=2700=.S7..... USP=E'E'E'E'E'E'FF SSP=000008CC VBR=OOOOOOOO SFC=2 DFC=7
~ D0-7 00000001 OOOOOOAC 00002100 00000109 00000000 00000010 00000028 00042700

A0-7 OOFlCODl 00002100 00000682 OOF1COD9 00001010 0000054E 0000054E 000008CC
PC=F04EBC 4BFAFDCO LEA.L $00F04C7E(PC),A5

TENbug 2.x > IOC
DRIVE NUMBER (0&l=FIXED,2&3+FLOPPY}= ••••••• $02 ? (CR}

CONTROLLER NUMBER= ••••••• $00 ? (CR)

DISK COMMAND AT $00000634 = $0A 40 01 08 01 AC

ARE YOU SURE (Y/N) ? N

The IOC conunand will be used to write the ID header
for a specific track. To start, the RWINl comnand
must be located. This is done by entering an IOC
conmand. The RWINl comnand last used is then
displayed along with its address. In this case,
the last request was "OA" for the write that was
attempted in the IOP.

H

8

ii::.
I
w
U1

TENbug 2.x > M 634
000634 QA ? 06

TENbug 2.x > IOC
DRIVE NUMBER (O&l=FIXED,2&3-FLOPPY)= ••••••• $02? (CR)

CONTROLLER NUMBER= ••••••• $00 ? (CR)

DISK COMMAND AT $00000634 = $0A 40 01 08 01 AC

ARE YOU SURE (Y/N) ? Y

TENbug 2.x > IOP
-READ OR WRITE (R/W) = ••••••••• W

MEMORY ADDRESS FOR DISK I/0=.$00002000
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $02

CONTROLLER NUMBER= ••••••• $00
FIRST BLCX::K NUMBER=.$00001000

NUMBER OF (256 BYTE) BLCX::KS= ••••• $0001

ARE YOU SURE (Y/N) ? Y

? (CR)
? (CR)
? (CR)
? (CR)
? (CR)
? (CR)

IOC

Modify menory at the specified address ($634 in this
example) arrl change the write ($0A) operation to a
format track ($06) operation (Chapter 4 in the
Winchester Controller User's Manual).

Invoke the IOC conmand and, after verifying the
correct drive and controller and that the RWINl
conmand is proper, reply Y in response to the
ARE YOU SURE? pranpt.

With the return of the TENbug prompt the conmand is
complete. Note that a total format will require
longer than the "dead man" timer provides; the TENbug
program will time out and send an error message, but
the RWINl controller will proceed with the comnand
until complete.

"W" COMPLETE In this example the write can now be completed, as
long as the one track that was formatted is all that
is specified.

TENbug 2.x >

H

8

4.2.23 I/O Physical for Disk (IOP) IOP

IOP

The IOP comma:rrl allows the user to do physical reads or writes to the disk.
When invoked, this canmand pranpts for the information required to perform the

, Input/Output operation. The initial values for drive arrl controller are zeros,
(hard disk 0 on the IMINl controller) • However, once a parameter has been
changed the new value will becane the new default.

Notice that this canma:rrl can only perform recrls arrl writes through the IMINl
controller. If for some reason any of the other IMINl canmands are required,
the IOC canma:rrl can be used.

While answering the pranpts, there are four actions that can be taken following
the question mark pranpt:

? (CR)

? •

? A

? <data>

- Entering a carriage return indicates that the existing value for
the current pa.rameter is acceptable; go on to the next
parameter.

- Entering a period indicates that this execution of the IOC
canmam must be terminated now, without asking for more

p:irameters.

Entering a caret symbol indicates that a previous parameter
requires a charge arrl will logically back up one parameter each
time it is generated (until the first entry is reached, where it
will remain until one of the other responses is received).

- Entering the appropriate data requested (followed by a carriage
return or ENTER). Often the parameters are checked for valid
options (i.e, Y or N).

NOTE

Care should be taken when using this diagnostic tool.
Portions of the operating system could be destroyed if
an incorrect area of a disk were modified.

4-36

EXAMPLE

TENbug 2. x > IOP
-READ OR WRITE (R/W) = ••••••••• R ? (CR)

MEMORY ADDRESS FOR DISK I/0=.$00000000 ? 1000
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $00 ? ~

MEMORY ADDRESS FOR DISK I/0=.$00001000 ? AOO
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $00 ? ~2~

CONTROLLER NUMBER= ••••••• $00 ? (CR)
FIRST BLCX:K NUMBER=.$00000000 ? 500

NUMBER OF (256 BYTE) BLOCKS= ••••• $0000 ? _!

ARE YOU SURE? (Y/N) ? Y

"R" COMPLETE

TENbug 2.x > MD AOO 30

OOAOO
OOOAlO
OOOA20

TENbug
OOOA12
OOOA16
OOOAlA
OOOAlE
OOOA22

41 F8 10 00 20 3C 00 00 02 FF 11 00 51 ca FF FC
60 EE 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2.x > M Al2;L
4E714E71 ? -1
4E714E71 ? -1
4E714E71 ? -1
4E710000 ? -1
00000000 ? •

TENbug 2.x > IOP
-READ OR WRITE (R/W) = ••••••••• R ? W

MEMORY ADDRESS FOR DISK I/0=.$00000AOO ? (CR)
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $02 ? (CR)

CONTROLLER NUMBER= ••••••• $00 ? (CR)
FIRST BL<X:K NUMBER=.$00000500 ? (CR)

NUMBER OF (256 BYTE) BLCX:KS= ••••• $0001 ? (CR)

ARE YOU SURE (Y/N) ? !_

"W'' COMPLETE

TENbug 2.x >

COMMENT

Request physical disk I/O to read a routine.
Use default of read.
Change $0 default to $1000.
That isn't correct; back up one parameter.
Change $1000 to $AOO.
Change default drive 0 to drive 2.
Use controller O.
Change block number to $500.
Read one 256-byte block.

Last change? Yes, all is ready.

The read is canplete.

IOP

Display data read from disk (only first $30 bytes).

Ax •• < •••••• QH.:
'nNqNqNqNqNqNqNq
Make change to RAM where routine was loaded.

Request physical disk I/O to write to a disk.
Change to W for write.
Use previous address.
Drive is fine; no change.
No change.
No change.
No change.

Last chance; are you sure? Yes, all is ready.

Write is complete.
H
0
"'O

4.2.24 I/O Teach for a Disk (IOT) !OT

!OT

The IOT comnarn allows the user to change the configuration of the RWINl
controller. When invoked, this corcmand prompts for the information required to
perform the configuration commarn.

Depending on the type of drive there are varying parameters required.

WINCHESTER HARD DISK

Drive number
Controller number
Sector size
Number of heads
Number of cylirrlers
Number of sectors per track

5.25-INCH FLOPPY DISK

Drive number
Controller number
Sector size
Number of heads
Number of cylinders
Number of sectors per track
Motorola/IBM format
Single- or double-sided media
Single- or double-track density
Single- or double-data density

The IOT comnand will present the appropriate questions based upon which drive
has been specified. There are four actions that can be taken following a
question mark prompt:

? (CR) - Entering a carriage return indicates that the existing value for
the current parameter is acceptable; go on to the next
parameter.

? • - Entering a period indicates that this execution of the IOC
comnarn must be terminated now, without asking for more
parameters.

? "' - Entering a caret symbol indicates that a previous parameter
requires a change and will logically back up one parameter each
time it is enterErl (until the first entry is reached, where it
will remain until one of the other responses is received).

? <data> - Entering the appropriate data requested (followed by a carriage
return or ENTER) • Of ten the parameters are checked for valid
options (i.e, Y or N).

Appropriate configuration information for specific disk types is listed in the
"Mass Storage" chapter of the VERSMos to VME Hardware and Software
Configuration user's Manual.

4-38

EXAMPLE

TENbug 2.x > IOT
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $02? 00

CONTROLLER NUMBER= ••••••• $00 ? (CR)
SECTOR SIZE (0=128,1=256,2-512,3-1024)= ••••••••• l? ...!.~

TENbug 2.x > !OT
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $00? 02

CONTROLLER NUMBER= ••••••• $00 ? (CR)
SECTOR SIZE (0=128,1=256,2-512,3-1024)= ••••••••• l? (CR)

NUMBER OF HEADS, (ON THIS DRIVE)= ••••••• $02 ? (CR)
NUMBER OF CYLINDERS, (ON THIS DRIVE)= ••••• $0050 ? (CR)

SECTORS PER TRACK= ••••••• $10 ? 8~
MorOROLA/IBM FORMAT (M/I)= ••••••••• I? (CR)

SINGLE/DOUBLE SIDED MEDIA (S/D)= ••••••••• D? (CR)
SI~LE/DOUBLE TRACK DENSITY (S/D)= ••••••••• D? (CR)
SINGLE/DOUBLE DATA DENSITY (S/D)= ••••••••• D? §_~

COMMENT

Teach RWINl controller a new configuration.
Select drive O.
Use default controller O.
Change of heart ••• start over again.

Invoke the IOT comnand again.
C.Onfigure drive 2 (first floppy).
No change.
No change.
No change.
No change.
Change from 16 sectors/track to 8.
No change.
No change.
No change.
Change to single-data density.

!OT

TENbug 2.x > IOT

DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $02? 0
CONTROLLER NUMBER= ••••••• $00 ? (CR)

SECl'OR SIZE(0=128,1=256,2=512,3=1024)= ••••••••• l? (CR)
NUMBER OF HEADS, (ON THIS DRIVE)= ••••••• $01 ? (CR)

NUMBER OF CYLINDERS, (ON THIS DRIVE)= ••••• $0001? A~
NUMBER OF HEADS, (ON THIS DRIVE)= ••••••• $01 ? 2

NUMBER OF CYLINDERS, (ON THIS DRIVE)= ••••• $0001? 132
SECTORS PER TRACK= ••••••• $00 ? 20

TENbug 2.x >

IOT

Invoke IOT to change configuration of hard disk to
allow use as a 5-megabyte hard disk.

Oops, passed the number of heads parameter; back up.
Change to 2 heads.
Change to $132 cylinders.
And $20 (32) sectors/track.

NOTE: These parameters are specifically for the
5-megabyte Winchester hard disk. To find out
what a particular Winchester hard disk
requires for configuration, boot the operating
system and, while "inactive" (not updating
critical files), press the ABORT button. Then
enter an IOT corrmand to see how the boot
device is configured. If all is well, enter
GO and continue with operating system control.

4.2.25 Load CS-Records) (LO) LO

LO[<port number>] [;<options>] =<text>

The LO cormnarrl prepares the VME/10 to receive S-records fran the designated
<port number> and then transmits the <text> following the = sign to the system
connected to the <port number> indicated. As the S-records are received, the
checksums are verified and the data placed into memory. If the automatic
relative offset register, RO, contains a nonzero value, this offset is added to
the address contained within the S-record before the data is moved into memory.

The following options are supported:

;-C Ignore validation of the checksum on each S-record while loading.

;x Echo the S-records read to the VME/10 built-in terminal. Different
environments may dictate that the ;X option not be used. If
printer attach is in effect, the data cannot be displayed upon the
screen (and then printed on the printer) before the next record
arrives. Thus data can be missed.

This comnand requires that a dual serial I/Qnodule (MVME400) be available on the
I/O Channel. Note that serial ports 2·ana 1 on the MVME400 correspond to TENbug
ports 2 and 3, respectively.

Default source is the TENbug port 2. Specifying LO<port number> allows the
input to be received from other ports.

Valid port numbers for this comnand are:

PORT NUMBER

none
1
2
3

DESCRIPTION

Defaults to TENbug port 2 (MVME400 port 2 - 7201/B).
Specifies TENbug port 1 (VME/10 built-in terminal/keyboard).
Specifies TENbug port 2 (MVME400 port 2 - 7201/B) •
Specifies TENbug port 3 (MVME400 port 1 - 7201/A) •

4-41

LO

EXAMPLE COMMENT

TENbug 2.x > BF AOO FOO 2020 Fill RAM with spaces.
PHYSICAL ADDRESS=OOOOOAOO OOOOOFOO

TENbug 2.x > MD BOO Display RAM.

OOOBOO 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

TENbug 2.x > .RO 100

TENbug 2.X > LO =DU AOO A80
DU AOO A80

TENbug 2.x > .RO O+R7

TENbug 2.x > .RO
.RO=OOOOOOOO

TENbug 2.x > MD AOO

Set automatic relative offset register to
$10 to reposition S-records to be loaded by
+ $100.

Load S-records from $AOO to $A80 (into $BOO
to $B80).

Reset automatic relative offset register to
zero.

Display memory at $AOO to verify S-records
not loaded here.

OOOAOO 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

TENbug 2.x > MD BOO 7F

OOOBOO
OOOBlO
OOOB20
OOOB30
OOOB40
OOOBSO
OOOB60
OOOB70

00 01 02 03 04 OS FF FF
10 11 12 13 14 lS 16 17
20 21 22 23 24 2S 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
so Sl S2 S3 S4 SS S6 S7
60 61 62 63 64 6S 66 67
70 71 72 73 74 75 76 77

Display memory at off set $100 from source
location.

08 09 OA OB OC OD OE OF
18 19 lA lB lC lD lE lF
28 29 2A 2B 2C 2D 2E 2F
38 39 3A 3B 3C 3D 3E 3F
48 49 4A 4B 4C 4D 4E 4F
S8 S9 SA SB SC 5D SE SF
68 69 6A 6B 6C 6D 6E 6F
78 79 7A 7B 7C 7D 7E 7F

................
! "#S%& I () *+ ,-./

0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]"'
'abcdefghijklmno
pqrstuvwxyz{I}".

TENbug 2.x > BF AOO BOO 4161 Fill RAM with pattern.
PHYSICAL ADDRESS=OOOOOAOO OOOOOBOO

TENbug 2.x > MD AOO Display destination memory.

OOOAOO 41 61 41 61 41 61 41 61 41 61 41 61 41 61 41 61 AaAaAaAaAaAaAaAa

4-42

LO

TENbug 2.x > LO ;X=DU AOO ABO Enter Load corrmand specifying ;X option
(echo S-records to CRT as memory is being
loaded) •

DU AOO A80
PHYSICAL ADDRESS=OOOOOAOO OOOOOA80 Notice SO, Sl, arrl S9 records are displayed

upon screen. (Refer to warning in cornnand
description about timing restrictions with
the ;x option.)

S0030000FC
Sll30A00000102030405FFFF08090AOBOCODOEOF79
Sll30Al0101112131415161718191AlB1ClD1ElF5A
Sll30A20202122232425262728292A2B2C2D2E2F4A
Sll30A30303132333435363738393A3B3C3D3E3F3A
Sll30A40404142434445464748494A4B4C4D4E4F2A
Sll30A50505152535455565758595A5B5C5D5E5FlA
Sll30A6060616263646S666768696A6B6C6D6E6FOA
Sll30A7070717273747S767778797A7B7C7D7E7FFA
Sl040A8080Fl
S90300000FC

TENbug 2.x > MD AOO 80 Display memory containing downloaded data.

OOOAOO
OOOAlO
OOOA20
OOOA30
OOOA40
OOOASO
OOOA60
OOOA70

00 01 02 03 04 OS FF FF
10 11 12 13 14 15 16 17
20 21 22 23 24 2S 26 27
30 31 32 33 34 3S 36 37
40 41 42 43 44 4S 46 47
so 51 52 53 54 5S S6 57
60 61 62 63 64 6S 66 67
70 71 72 73 74 75 76 77

08 09 OA OB QC OD OE OF
18 19 lA lB lC lD lE lF
28 29 2A 2B 2C 2D 2E 2F
38 39 3A 3B 3C 30 3E 3F
48 49 4A 4B 4C 40 4E 4F
58 59 SA SB SC SD SE SF
68 69 6A 6B 6C 60 6E 6F
78 79 7A 7B 7C 70 7E 7F

NOTE

................
! "#S%& I () *+ ,-./

01234S6789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]"'
'abcdefghijklmno
pqrstuvwxyz{j}".

The host system used to create and transmit the S-records
was an ~68000 F.ducational Computer Board (MEX68~B) •

4-43

4.2.26 Memory Display (MD) MD

MD[<port number>] <address> [<count>] [;<options>]

The MD corrmand displays a portion of manory which begins at <address> and
exterrls for the number of bytes or lines given as <count>. There are two
formats that can be requested with the MD corrmand.

a. The dump format begins each line with the starting or next hexadecimal
manory address followed by 16 hex bytes per line with the ASCII
equivalent shown to the right. The number of lines varies with the
<count> entered (or default). There are no partial lines. If the byte
count ends in the middle of a line, the complete line is displayed.
(Default byte <count> is $10.)

b. The disassembler format provides:

1. The sta~ting or next hexadecimal manory address.

2. The object code displayed in hexadecimal.

3. The M68010 source statanent that will assemble into the object code
as described in 2. above.

If the operation code is not valid, a "Define Constant" is constructed
for one word. Notice that <count> for the disassembler mode is a number
of source lines to be disassembled and displayed, not the number of
bytes. (Default line <count> is $10.)

Default destination is the console terminal. Specifying MD<port number> allows
the output to be directed to another port.

Valid port numbers for this corrmand are:

PORT NUMBER

none
1
2
3
4
5

DESCRIPTION

Defaults to TENbug port 1 (VME/10 built-in terminal/keyboard).
Specifies TENbug port 1 (VME/10 built-in terminal/keyboard) •
Specifies TENbug port 3 (MVME400 port 1 - 7201/A) •
Specifies TENbug port 2 (MVME400 port 2 - 7201/B) •
Specifies TENbug port 4 (MVME410 port 1 - PIA/A) •
Specifies TENbug port 5 (MVME410 port 1 - PIA/B) •

Options supported are the disassembler and the screen option.

;DI Requests the disassembler option. The <count>, if provided, is a
line count (default is $10).

;s Requests the display of a full screen of memory (16 lines of
display in either dump or disassembler format). Notice that the
default for disassembly is $10 (or 16 decimal) anyway. If the
<count> and ;s option are both entered within the same MD corcmand,
the ;s option has priority.

All combinations are valid (e.g., ;DIS, ;SDI, ;SDI, ;DIS).

4-44

MD

The MD corrmand has a quick scroll facility that lets the terminal operator press
CR repeatedly following the initial MD command. In the past, all but the first
display were automatically 16 lines long. To enable control blocks to be
examined conveniently, the <count> (either bytes or lines) is used for each
iteration.

EXAMPLE COMMENT

TENbug 2.x > MD 10000 30 Display memory of a small routine in dump
format.

010000
010010
010020

TENbug

010000
010004
OlOOOA
OlOOOC
010010
010012
010014

TENbug

OOOAOO

41 F8 10 00 20 3C 00 00 02 FF 11 00 51 CS FF FC
60 EE FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Ax •• < •••••• QH.:
In••••••••••••••

2.x > MD 10000 7;DI Display memory of the same routine
disassembler format.

41F81000 LEA.L $00001000,AO
203C000002FF MOVE.L #767,DO
llOO MOVE.B DO ,-(AO)
51C8FFFC DBF.L D0,$01000A
60EE BRA.S $010000
FFFF oc.w $FFFF
FFFF oc.w $FFFF

2.x > MD AOO Display memory without a <count>.

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

in

TENbug 2.x > (CR) Enter a carriage return; the next <count>
bytes are displayed (default is $10) •

OOOAlO 10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07

4-45

MD

TENbug 2.x > MD AOO;S Display a full screen of hexadecimal data.

OOOAOO 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
OOOAlO 10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07
OOOA20 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17
OOOA30 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
OOOA40 10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07
OOOASO 08 09 OA OB 0C OD OE OF 10 11 12 13 14 15 16 17
000A60 00 01 02 03 04 05 06 07 -08 09 OA OB OC OD OE OF
000A70 10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07
OOOA80 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17
OOOA90 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
OOOAAO 10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07
OOOABQ 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17
OOOACO 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOADO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOAEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOAFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
TENbug 2.x > MD AOO 18 Display m~ry with a <count> of $18.

OOOAOO 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ••••••••••••••••
OOOAlO 10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07 ••••••••••••••••

TENbug 2. x > (CR) Enter a carriage return to display the next <count>
bytes (starting where the last request ended, even
if in the middle of the line).

000Al8 00 01 02 03 04 05 06 07 08 09 OA OB OC_OD OE OF ••••••••••••••••
000A28 10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07 ••••••••••••••••

TENbug 2.x > (CR)

OOOA30
OOOA40

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07

TENbug 2.x >

4-46

................

,4.2.27 Memory Modify (MM)

M[M] <address>[;<options>]

MM
M

The function of the Manery Modify (M or MM) canmand is to change data in memory.
An address and options are specified on the initial comnand line.

For convenient viewing and changing of object data, four variations of data
updating capability are offered. These are enhanced by five options: the data
size options, word and longword (the default size is byte); odd or even address
access options (byte-size only) ; arrl a nonverif ication option for write-only
operations. Action provided by an option specified on the initial comnand line
is utilized in all four data updating sul::modes and remains in force until the M
comnand is exited.

The five memory change mode options are:

;W Set size to word (i.e., two bytes).

;L Set size to longword (i.e., four bytes).

;O Set size to byte; access only odd addresses.

;V Set size to byte; access only even addresses.

;N No verification. Do not read data after updating. If used, ;N must be
preceded by one of the above options (the semicolon (;) is required
between multiple options).

When the memory change mode is entered on execution of the initial comnand line,
object data in the specified locations is displayed in hexadecimal format, and
the M corrmand prompt (?) is presented at the right of the data. The data can
then be changed using any of the subconunarrls described below. If desired, the
action of the subcomnand can be obtained without entering new data. For
example, the· contents of the preceding location (s) can be viewed by typing
11

A (CR) 11 alone after the ? prompt, or the M comnand can be exited by typing
II. (CR)".

[<data>] (CR)
[<data>] A (CR)
[<data>] =(CR)
[<data>] • (CR)

Update location and sequence forward.
Update location and sequence backward.
Update location and reopen same location.
Update location and terminate.

Disassemble/Assemble Mode (the ;DI option)

On execution of an initial M com:nand line with the ;DI option selected, the
disassemble/assemble mode is entered. Starting from the specified location,
data is disassembled into a source instruction line, and both object data (in
hexadecimal) and the source line are displayed. The M command prompt (?) is
displayed to the right of the disassembled source line. If desired, a new
source instruction may be typed and assembled to replace the existing
instruction (the first character must be a space, which is recognized as the
label field delimiter by the TENbug one-line assembler). Assembly is initiated
by typing a carriage return. After assembly and updating, data in the following
locations is disassembled and the next source line displayed. Note that the
update and sequence backward (A(CR)) and the update and reopen the same location
(=(CR)) features are not available in the disassemble/assemble mode. Typing

11
• (CR)" while in this mode provides exit from the M comnand.

4-47

EXAMPLE

TENbug 2.x > M lOOOO;L

010000
010004

00000200 ? (CR)
FFFFFFFF ? -S:-

TENbug 2.x > MM 10008;W;N

010008 ? 1111
OlOOOA ? 2222
OlOOOC ? 3333
OlOOOE ? 4444
010010 ? ;ir--
OlOOOE ? 5555

010010 ? 6666.

TENbug 2.x > M 2000l;N;O

020001 ? l=
020001 ? 8=
020001 ? l=
020001 ? 7=

020001 ? •

COMMENT

.MM
M

Memory modify location $10000 a longword at a
time.
No change to this longword.
Change this longword to $-5 (or $FFFFFFFB) and
stop.

Modify memory location $10008 a word at a time; do
not read data after updating.
Place a word of l's into this location.
Place a word of 2's into this location.
Place a word of 3's into this location.
Place a word of 4 ''s into this location.
Back up one word.
Place a word of S's over the 4's in this location.

Place a word of 6's into'this location.

Place a byte into the odd locations only, without
reading the data.
Place a 1 into this memory location and remain at
the same location. This technique is very useful
for debugging I/O devices.
Place a 7 at this memory location and remain at the
same location.
Exit the MM corrunand •

4-48

TENbug 2.x > M 49528;DI

049528 48B800010406
04952E 40F80406
049532 48E7FFFE
049536 4FF8095A

049536 4FF8095A
049536 4FF8095A
04953A 1600
04953C 04444281

TENbug 2.x >

MM
M

Modify menory starting at $49528 using the
disassembler.

MOVEM.W D0,$0406 ? (CR)
MOVE.W SR,$0406 ? (CR)
MOVEM.L DO-D7/AO-A6,::(A7) ? (CR)
LEA.L $095A,A7 ? MOVE.B

X? (CR)
LEA.L $905A,A7 ? (CR)
MOVE.B DO,D3 ? (CR)~
SUB.W #17025,04---=? •

NorE

(response to incomplete,
incorrect entry)

Refer to Chapter 5 for more information
about the assembler/disassembler.

4-49

4.2.28 Memory Set (MS) MS

MS <address> <data>

The Memory Set (MS) cormnand changes the contents of memory. The data entered is
placed at the location specifi~ by <address>. If the data entered requires
word alignment and <address> is not even, the byte at <address> is bypassed and
the data is placed in the next even address.

Memory Set allows both hexadecimal and ASCII string data within the same line.
The length of hexadecimal values can also vary. A space is used to delimit each
field, and an apostrophe must be used to enclose each ASCII string.

Notice that lowercase is supported within· the ASCII string. TENbug's comnand
am parameter parser automatically converts all lowercase input into uppercase.
The only exceptions are the ASCII strings within apostrophes and the data
entered while in transparent mode. This provides support for users wishing to
use the terminal in lowercase. The comnands and operands will work because they
are converted to uppercase, am, where lowercase is specifically needed, it is
supported (BS, MS, and TM) •

The maximum number of bytes that can be entered with one MS <address> <data>
canmand is limited to the size of the command line buffer, or 128 bytes. When
the character in the last position of the first line is entered, an automatic
CR/LF is sent to the display allowing the user to continue and still read the
input characters entered.

EXAMPLE COMMENT

TENbug 2.x > MD AOO 30 Display memory at start before the MS comnand.

OOOAOO
OOOAlO
OOOA20

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

TENbug 2.x > MS,AQl 'MS Test' 41 61 42434445 20313233 'End of Data'

Enter ASCII string, two bytes, two longwords, and
another string. (Notice lowercase input.)

TENbug 2.x > rcrl aOO 30 Now display results with the MD command. Notice
comnand was entered in lowercase.

OOOAOO
OOOAlO
OOOA20

20 40 53 20 54 65 73 74 20 41 61 42 43 44 45 20 MS Test AaBCDE
31 32 33 45 6E 64 20 6F 66 20 44 61 74 61 2E 20 123End of Data.
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

TEN'bug 2.x > BF AOO BOO 4161

Fill memory with Aa so changes will stand out.

PHYSICAL ADDRESS=OOOOOAOO OOOOOBOO

4-50

MS

TENbug 2.x > MD A70 Display memory near errl of what a full buffer can
change.

OOOA70 41 61 41 61 41 61 41 61 41 61 41 61 41 61 41 61

TENbug 2.x > MS AOO 'This example shows that the MS command allows more than one
line of data in the buffer at a time. Note the CR/LF sent'.

Enter long ASCII strirg.

TENbux 2.x > md aOO 80 Display a full 128 bytes.

OOOAOO
OOOAlO
OOOA20
OOOA30
OOOA40
OOOA50
000A60
OOOA70

54 68 69 73 20 65 78 61
77 73 20 74 68 61 74 20
6F 6D 6D 61 6E 64 20 61
72 65 20 74 68 61 6E 20
20 6F 66 20 64 61 74 61
62 75 66 66 65 72 20 61
2E 20 4E 6F 74 65 20 74
20 73 65 6E 74 61 41 61

TENbug 2.x >

6D 70 6C 65 20 73 68 6F
74 68 65 20 4D 53 20 63
6C 6C 6F 77 73 20 6D 6F
6F 6E 65 20 6C 69 6E 65
20 69 6E 20 74 68 65 20
74 20 61 20 74 69 6D 65
68 65 20 43 52 2F 4C 46
41 61 41 61 41 61 41 61

4-51

This example sho
ws that the MS c
omnand allows mo
re than one line
of data in the

buffer at a time
• Note the CR/LF
sentaAaAaAaAaAa

4.2.29 Display Offsets (OF) OF

OF

The OF ccmnarrl displays the offsets used to assist with relocatabili ty and
position-independent code.

Linked segments of code will each have a different load address or offset. For
user convenience, seven general purpose offsets (.RO-.R6) are provided. Offset
.R7 is always zero, which provides a convenient technique for entering an
address without an offset. If no value is assigned to one of the general
purpose offsets, it will have the default value of zero.

Unless another offset is entered, each corrmand that expects an address parameter
automatically adds offset RO to the entered address -- that is, if RO = 1000,
the following Cominanas are the same:

BR 10
BR lO+RO
BR 1010+R7

(10 + 1000)
(10 + 1000)
(1010 + 0)

Offset RO added by default.

R7 is always zero.

The physical address for each of these corrmands is 1010.

EXAMPLE COMMENT

TENbug 2.x > .Rl 1000 Set off set Rl.

TENbug 2.x > .R3 33000

TENbug 2.x > .R4 440000

TENbug 2.x > .RS 0 Reset offset RS.

TENbug 2.x > .R6 -1

TENbug 2.x > OF Display offsets.

RO=OOOOOOOO Rl=OOOOlOOO R2=00000000 R3=00033000
R4=00440000 RS=OOOOOOOO R6=FFFFEtFFF R7=00000000

TENbug 2.x > .RO 1200

TENbug 2.x > MM 10
OOOOlO+RO 61 ? •

TENbug 2.x > MM 10+R7
000010 00 ? •

TENbug 2.x >

Set offset RO.

Offset RO is added to the address.

R7 is al ways O arrl, when entered, overrides
RO.

To set RO to O after it has been set to a
non-zero value, use the commarrl ".RO O+R7".
The command ".RO O" will not alter RO.

4-S2

4.2.30 Printer Attach arrl Detach (PA arrl NOPA)

PA[<port number>]
NOPA

PA
NOPA

The PA canrnarrl allows the user to attach the line printer so that information
sent to the console terminal will also be printed. (The printer is connected to
a port on a dual 16-bit parallel port I/Qnodule, MVME410, attached to a printer
board which communicates with the VME/10 system via the I/O Channel. Refer to
the initial setup instructions in the VME/10 Microcanputer System Diagnostics
Manual.) The board has two PIA's. TENbug takes the lower addressed PIA as port
4 arrl the higher as port 5. Default is always port 4.

Valid port numbers for this canmarrl are:

PORT NUMBER DESCRIPTION

none
4
5

Defaults to TENbug port 4 (MVME410 port 1 - PIA/A).
Specifies TENbug port 4 (MVME410 port 1 - PIA/A).
Specifies TENbug port 5 (MVME410 port 2 - PIA/B).

The printer can also be called by the Memory Display (MD4 or MD5) canmarrl.

If the printer is deselectErl or not ready, the message PRINTER NOT READY will be
sent to the console terminal. TENbug will wait until the printer is ready or
the BREAK key is pushErl.

NOTES

1. Execution of this carmand when no dual 16-bit parallel port
module is connectErl to the I/O Channel may require pressing
the RESET pushbutton in order to return control to TENbug.

2. Only one printer port can be attached at a time.

The NOPA carmarrl allows the user to detach the line printer at port 4 or port 5
fran the console terminal. Output will then be displayed on the console
terminal only; it will not be printErl.

See also: MD

EXAMPLE COMMENT

TENbug 2.x > PAS

TENbug 2.x > MD 800 90

000800
000810

FF FF 24 18 FF 7F 0C 00 FF 7F 30 04 FF FF 00 00 •• $ ••••••• 0 •••••
FF 31 FF FF FF 01 FF FF FF 26 FF FF 7F 22 FF FE .l ••••••• & ••• ".-

TENbug 2.x > NOPA

TENbug 2.x >

Output is displayed on console terminal and printerl
at port 5.

Future output will be displayed on console terminal
only.

4-53

4.2.31- Port Format (PF) PF

PF[<port number>]

The Port Format (PF) carmarrl displays or changes the autanatic null insertion
for each character arrl for each carriage return. Two additional pieces of
information are displaye::I:

a. The address of RAM used to initialize the two 7201 serial ports when the
optional MVME400 module is installed.

b. The address of the TENbug option bytes in RAM (affecting transparent mode
pa.rameters and the environment while tracing).

There are two responses when the Port Format (PF) qanmand is entered. If the
optional MVME400 module is installed, the character null count arrl the carriage
return null count are displayed. If the dual serial port is not installe::I, a
message notifyirg the user is displayed. In either event, the RAM locations for
7201 initialization and the TENbug options are then displayed.

TENbug 2.x > PF

OPTIONAL MVME400 NOT INSTALLED

7201 RAM @ xxxxxx
OPTIONS @ YYYYYY

TENbug 2.x > PF

PORT2
CliAR NULL= 0 0
C/R NULL = 00

PORT3
00
00

7201 RAM @ xxxxxx
OPTIONS @ YYYYYY

NOTE

TENbug port 2 corresponds to MVME400 port 2, (7201/B).
TENbug port 3 corresporrls to MVME400 port 1, (7201/A).

If either PF2 or PF3 is entererl, the CliAR NULL count (number of nulls to be
inserte::I after each character) is displayed followe::I by a ? pranpt. The user
may then enter a new count or enter a carriage return to move on to the next
field without change to this parameter. C/R NULL (or the number of nulls to be
in.serte::I after each carriage return) is the secom and last parameter displayed
for the user to accept or modify as desired.

If the configuration of either or both of the 7201 serial ports requires
modification (e.g., number of stop bits, parity), the PF carmarrl cannot directly
make the charges. Insteoo, the oodress where RAM is located for the
initialization of the ports is displaye::I on the general display. A Memory
Modify canmarrl can be used to alter these hex locations. After a change has
been made, the serial ports must be forced to reinitialize by entering a PF
<port number> canman:i. This will place the new RAM data into the 7201
registers. The contents of the 7201 RAM area at power up or cold start are as
follows.

4-54

RELATIVE PORT2 PORT3 DESCRIPTION
OFFSET (7201/B) (7201/A) OF MOVE

0000 18 18 $18 to ctl reg 0
0002 02 02 $02 to ctl reg 0
0004 00 00 $00 to ctl reg 2
0006 14 14 $14 to ctl reg O
0008 44 44 $44 to ctl reg 4
OOOA 01 01 $01 to ctl reg 0
oooc 00 00 $00 to ctl reg 1
OOOE 05 05 $05 to ctl reg 0
0010 EA EA $EA to ctl reg 0
0012 03 03 $03 to ctl reg 0
0014 El El $El to ctl reg 3

FUNCTION

Issue channel reset
Set up R2 for a read

PF

Disable DMA & interrupt vector
Set up R4 for a read & reset
stop bits & parity
Set up Rl for a read ·
Disable interrupts
Set up R5 for a read
Set bits/character (write)
Set up R3 for a read
Set bits/character (read) AUTO

ENABLE

See the examples following this discussion for 7201 reconfiguration.

Three-wire interfaces (TXD, RXD, GND) and other interfaces that do not provide
full modem flow control (DSR, RTS, CTS, DCD, DTR) can be supported by disabling
the AUTO ENABLE feature within the 7201 serial controller (register 3, bit 5).
In this mode of operation there will not be any flow control in either direction
with the modern control lines.

If flow control is desired, for transmission of S-records to and from an
EXORmacs through an M:rM for example, the AUTO ENABLE feature can be enabled.
In addition there are specific jumpers that must be in place to support this
configuration. For more information on the serial port jumper configuration
refer to the paragraph in the MVME400 user's manual entitled "CTS Control
Headers".

The following jumper configurations provide flow control with modern control
lines:

TENbug PORT 2 TENbug PORT 3
MVME400 PORT 2 MVME400 PORT 1

J7 Jl6

1-3, 2-4 1-3, 2-4

MVME400 J9 IS JUMPERED MVME400 Jl5 IS JUMPERED
(TO TERMINAL) (TO TERMINAL)

EXORmacs EXORmacs
MCCM (TO MODEM) MCCM (TO MODEM)

4-55

PF

For compatibility, the format of the "options" RAM area is the same as that used
in the Fducational Computer Board (ECB) firmware TUTOR l .x. Several i terns are
not supported within TENbug, but those that are reside in the same offsets. The
XON/XOFF characters and auto line feed control are not supported within TENbug
2.x; as a result the first three bytes in the "options" area are unused.

Offset $3 within the "options" RAM, a non-$00 byte will inhibit the register
display at breakpoints and traces.

Offset $4 contains the Transparent Mode (TM) "trailing" character (the character
transmitted through port 2 to inform a host system that any characters that
might be left over from this port are to be flushed) • If this character is $00
or NUL, there will not be any transmission of a character upon termination of
transparent mode.

Off set $5 contains the character that when entered will terminate transparent
mode and return control to TENbug.

See also: TM

4-56

~
I

U1
.....J

EXAMPLE

TENbug 2.x > PF

PORT2 PORT3
CHAR NULL= 00 00
C/R NULL = 00 00

7201 RAM @ 001314
OPTIONS @ 001152

TENbug
001314
001316
001318
00131A
00131C
00131E
001320
001322
001324
001326
001328

2.x > M 1314;W
1818 ? (CR)
0202 ? (CR)
0000 ? (CR)
1414 ? (CR)
4444 ? 4144
0101 ? (CR)
0000 ? (CR)
0505 ? (CR)
EAEA ? AAEA
0303 ? (CR)
ElEl ? 6lEl.

TENbug 2.x > PF
CHAR NULL= 00 ?(CR)
C/R NULL = 00 ? (CR)
TENbug

COMMENT

Reconfigure for 7 bits/character with even parity.

Display the address of the 7201 initialization RAM.

(For this example, the address of RAM is $1314.
This address will vary by TEN'bug version) •

Modify areas affecting transmitted/received
bits/character, number of stop bits, and parity.

NOTE

Only the first byte is modified within each
pair of bytes. In this example, only TENbug
port 2 (MVME400 port 2 7201/B) is being
changed.

PF

After the RAM has been changed, the 7201 must be
forced to initialize. PF2 or PF3 will issue serial
port initialization after accepting the two optional
variables.

ii::.
I

U1
CX)

PF

In the example below, the AUTO ENABLE bit in control register 3 is turned on for ports 2 and 3 to provide modem
control line flow control.

TENbug
001314
001316
001318
00131A
00131C
00131E
001320
001322
001324
001326
001328

2.x > M 1314;W
1818 ? (CR)
0202 ? (CR)
0000 ? (CR)
1414 ? (CR)
4144 ? 4444
0101 ? (CR)
0000 ? (CR)
0505 ? (CR)
AAEA? EAEA
0303 ? (CR)
61El ? ClCl.

TENbug 2.x > PF2
CHAR NULL= 00 ? (CR)
C/R NULL = 00 ? (CR)
TENbug

Reconfigure both ports to support a 3-wire interface
(TXD, RXD, and ground only) •

NOTE

In this example both the first and second
bytes are modified (contents of control
register 3), disabling the port 2 and port 3
AUTO ENABLE feature.

Reinitialize the serial ports using the modified RAM.

The following are examples both with arrl without register information within trace and breakpoints.

TENbug 2.x > BR AlO

BREAKPOINTS
OOOAlO OOOAlO

TENbug 2.x > .PC AOO

Use the "options" bytes displayed by PF.

Set breakpoint at end of a routine.

Set program counter at start of routine.

TENbug 2.x > T Trace one instruction. (Note: Complete register
PHYSICAL ADDRESS=OOOOOAOO display for each trace and breakpoint.)
PC=OOOOOA04 SR=2704=.S7 •• Z •• USP=FFFFFFFF SSP=OOOOOBOO VBR=OOOOOOOO SFC=2 DFC=7
D0-7 OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A0-7 00001000 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOBOO

:EC=OOOA04 203C000002FF MOVE.L $767,DO

TENbug 2.x :> (CR) Assume Trace (CR after previous trace) •
PHYSICAL ADDRESS=OOOOOA04
PC=OOOOOAOA SR=2700=.S7 ••••• USP=FFFFFFFF SSP=OOOOOBOO VBR=OOOOOOOO SFC=2 DFC=7
D0-7 000002FF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A0-7 00001000 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOBOO

PC=OOOAOA 1100 MOVE.B DO,-(AO)

TENbug 2.x :> GO
PHYSICAL ADDRESS=OOOOOOAOA

Allow free running of routine to be stopped by
breakpoint.

AT BREAKPOINT Once again, full register display.
PC=OOOOOAlO SR=2704=.S7 •• Z •• USP=FFFFFFFF SSP=OOOOOBOO VBR=OOOOOOOO SFC=2 DFC=7
D0-7 OOOOFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOBOO

PC=OOOAlO 60EE BRA.S $000AOO

TENbug 2.x > PF

PORT2 PORT3
CHAR NULL= 00 00
C/R NULL= 00 00

7201 RAM @ 001314
OPTIONS @ 001152

Request "options" RAM location with the PF comnand.

Note: Address will vary fran example.

PF

TENbug 2.x > M 1152
001152
001153
001154
001155

00 ? (CR)
00 ? (CR)
00 ? (CR)
00 ? 1:-

Use address to display, then modify, the fourth byte
(offset $3) fran zero to nonzero to suppress canplete
register display.

.i:::..
I

°' 0

TENbug 2.x > .PC AOO

TENbug 2.x > T
PHYSICAL ADDRESS=OOOOOAOO

PC=OOOA04 203C000002FF

TENbug 2.x :> (CR)
PHYSICAL ADDRESS=OOOOOA04

PC=OOOAOA 1100

TENbug 2.x :> (CR)
PHYSICAL ADDRESS=OOOOOAOA

PC=OOOAOC 51C8FFFC

TENbug 2.x :> GO
PHYSICAL ADDRESS=OOOOOAOC

AT BREAKPOINT
PC=OOOAlO 60EE

TENbug 2.x >

MOVE.L #767,DO

MOVE.B DO,-(AO)

DBF.L D0,$000AOA

BRA.S $000AOO

Restart routine again.

Trace one instruction.

Trace assumed when previous trace followed with a
carriage return.

PF

Note: Only physical address where execution begins;
the relative displacement and offset (if used) for
the PC; the hex value of the instruction; followed by
the disassembled instruction.

Breakpoint displays the same abbreviated information.

4. 2. 32 Transparent Mode C™} 'IM

TM [<exit character> [<trailing character>]]

The TM camnarrl, together with an MVME400 dual RS-232C serial port I/Onodule,
provides terminal support in a dumb terminal fashion until the exit character is
received.

Multiple baud rates are supporterl, however, because the processor supports the
CRT display in a polling fashion; each time the screen requires scrolling there
is a delay that can result in lost characters. Baud rates down through 4800
baud can miss characters on the display.

The <exit character> is enterErl right after the ™ conmand itself, though an
optional space is permi tta:l. Note that CTRL-X, crRL-D, CTRL-H, CTRL-J, arrl
CTRL-M cannot be specified as exit or trailing characters fran the 'IM carmand.
These characters provide control for the terminal (e.g., line delete, ra:lisplay
the line, backspace} arrl will not be passed to the 'IM carmand from the terminal
harrl ler. Al 1 other characters, both CTRL arrl non-CTRL, can be entere1.
(Default <exit character> is CI1RL-A.}

The <trailing character> is transmitted to the host port upon receipt of the
<exit character>. With systems using VERSAdos the standard trailing character
is a CTRL-X, which cancels anything that might have made it to an input buffer.
By default CTRL-X is specifierl as the trailing character so there is no problem
using it (though if another trailing character were selected, CTRL-X could not
be entererl to reinstate it}.

There is an alternate way of setting the exit and trailing characters. Since
they are stored in RAM, any user knowing the location of these characters could
use a Memory Modify (MM} canmarrl to alter those values. By issuing a Port
Format (PF} comnand the address of the TENbug option bytes is displayed at the
errl of the display.

Trailing character is located at offset $4
Exit character is locate1 at offset $5

In systems where no data at all must be sent upon exit of transparent mode, the
trailing character can be chal'l3'Erl to $00 using Memory Modify within the option
bytes. With the trailing character as NUL, there is no data sent at exit time.

Only TENbug port 2 (MVME400 port 2, 7201/B} is supported as the transparent
port. Even though the other ports may have output directe1 to them (e.g., MD3,
DU3), they are not supported for transparent mode.

4-61

EXAMPLE

TENbug 2.x > TM

TRANSPARENT EXIT=$01 = CTL A

TENbug 2.x > TM (CTRL-S)

TRANSPARENT EXIT=$13 = CTL S

TENbug 2.x > PF

PORT2 PORT3
CHAR NULL= 00 00
C/R NULL = 00 00

7201 RAM @ 001314
OPTIONS @ 001152

TENbug 2.x > M 1152;W
001152 0000 ? (CR)
001154 0000 ? (CR)
001156 1813 ? oOic.

TENbug 2.x > TM

TRANSPARENT EXIT=$1C = CTL \

TENbug 2.x > M 1156;W
001156 OOlC ? 1801.

TENbug 2.x > TM

TRANSPARENT EXIT =$01 = CTL A

TENbug 2.x >

COMMENT

Request default exit and trailing character by
entering only TM.

TM

TENbug responds with both hex and CTRL display of exit
character.

Specify CTRL-S as exit character with TM (hold down
the CTRL key and press the S key) • TENbug responds
with hex 13 and CTL-S, verifying what was entered.

Use PF comnand to show where the TENbug option
variables are located within RAM.

Use Memory Modify conmand to display the trailing
character ($18) and the current exit character ($13).
Then change the trailing character to prevent
transmission of any data upon exit (refer to the
discussion of null trailing characters) and change
exit character to a CTRL-\ (control backslash).

Enter a TM conmand without any operands and the
previous values will be used, as changed by Manery
Modify.

Change trailing character back to CTRL-X and exit
character to CTRL-A.

Enter TM without operands and the CTRL-A exit
character is verified.

4.2.33 Trace (TR)

T[R] [<count>]

TR
T

The Trace (T or TR) canmarrl executes instructions one at a time, beginning at
the location pointed to by the program counter. After execution of each
instruction, the ~68010 registers are displayed.

When the trace m:>de is enterErl, the pranpt includes a colon (i.e.,
TENbug 2.x :>). While in this mode, typing only a carriage return will cause
one instruction to h: tracErl.

Breakpoints arrl breakpoint counts are in effect during trace.

Trace cannot h: used to step through interrupts or exceptions (e.g. , TRAP) •

COMMAND FORMAT

TENbug 2.x > T

TENbug 2.x :> TR <count>

TENbug 2.x :> (CR)

TENbug 2.x :> MD 1000

DESCRIPTION

Trace one instruction.

Trace <count> instructions.

Carriage return (CR) executes next instruction.

Typing the next canmarrl exits trace mode.

NOTE

If the program counter contains an address that falls between
the starting arrl errling addresses of the TENbug program,
the warning message .PC within "DEBUGGER" will be returned.
Processing will continue with unexpected results if stack
pointers and/or registers are not handled properly.

See also: DF, GO, Gr, TT

4-63

EXAMPLE:

TENbug 2.x > .PC 2000

TENbug x.y > TR
PHYSICAL ADDRESS=00002000

TR
T

PC=00002002 SR=2700=.S7 ••••• USP=FFFFFFFF SSP=00000800 VBR=OOOOOOOO SFC=2 DFC=2
D0-7 00304E71 00002000 C05E2000 00000000 1796AF30 00000020 00000000 00000000
A0-7 OOF021CA 00000000 00002000 00000458 00000410 00000551 00000551 00000800

PC=002002

TENbug x.y :> (CR)
PHYSICAL ADDRESS=00002002

PC=00002004
D0-7 00304E71 00002000 C05E2000 00000000 1796AF30 00000020 00000000 00000000
A0-7 OOF021CA 00000000 00002000 00000458 00000410 00000551 00000551 00000800

PC=002004

TENbug x.y :> T 2
PHYSICAL ADDRESS=00002004
PC=00002006 SR=2700=.S7 ••••• USP=FFFFFFFF SSP=00000800 VBR=OOOOOOOO SFC=2 DFC=2
D0-7 00304E71 00002000 C05E2000 00000000 1796AF30 00000020 00000000 00000000
A0-7 OOF021CA 00000000 00002000 00000458 00000410 00000551 00000551 00000800

PC=002006
PC=00002008 SR=27.00=.S7 ••••• USP=FFFFFFFF SSP=00000800 VBR=OOOOOOOO SFC=2 DFC=2
D0-7 00304E71 00002000 C05E2000 00000000 1796AF30 00000020 00000000 00000000
A0.:-7 OOF021CA 00000000 00002000 00000458 00000410 00000551 00000551 00000800

PC=002008

TENbug 2.x :>

4-64

4.2.34 Trace to Temporary Breakpoint (TT)

TT <breakpoint address>

The TT canmarrl performs the followirg:

a. Sets a temporary breakpoint at the address specified.

b. Starts program execution in the trace mode.

c. Traces until any breakpoint with a zero count is encountered.

d. Resets the temporary breakpoint.

The temporary breakpoint is not displayErl by the BR camiand.

See also: DF, GO, Gr, TR

EXAMPLE

TENbug 2.x > .PC 2000

TENbug 2.x > TT 2006
PHYSICAL ADDRESS=00002006
PHYSICAL ADDRESS=00002000

TT

PC=00002002 SR=2700=.S7 ••••• USP=FFFFFFFF SSP=00000800 VBR=OOOOOOOO SFC=2 DFC=2
D0-7 00304E71 00002000 C05E2000 00000000 1796AF30 00000020 00000000 00000000
A0-7 OOF021CA 00000000 00002000 00000458 00000410 00000551 00000551 00000800

PC=002002
PC=00002004 SR=2700=.S7 ••••• USP=FFFFFFFF SSP=00000800 VBR=OOOOOOOO SFC=2 DFC=2
D0-7 00304E71 00002000 C05E2000 00000000 1796AF30 00000020 00000000 00000000
A0-7 OOF021CA 00000000 00002000 00000458 00000410 00000551 00000551 00000800

PC=002004

AT BREAKPOINT
PC=00002006 SR=2700=.S7 ••••• USP=FFFFFFFF SSP=00000800 VBR=OOOOOOOO SFC=2 DFC=2
D0-7 00304E71 00002000 C05E2000 00000000 1796AF30 00000020 00000000 00000000
A0-7 OOF021CA 00000000 00002000 00000458 00000410 00000551 00000551 00000800

PC=002006

TENbug 2.x :>

4-65

4.2.35 Verify CS-Records) {VE) VE

VE[<port number>] [;<options>] =<text>

The VE canrnarrl prepares the VME/10 to receive S-records fran the designated
<port number> and then transmits the <text> following the = sign to the system
connecta:l to the <port number> irrlicata:l. As the S-records are received, the
bytes are canpara:l one by one with the contents of memory. If all bytes are
correct, the TENbug pranpt is returna:l. However, if any data does not canpare,
a message in the following format is displayed:

SlLLaaaa.-.-.-.-.-.-.-.-.-.-DD.-.-.-.-.-

or

S2LLaaaaaa.-.-.-.-.-.-.-.-.-.-DD.-.-.-.-.-

where:

Sl or S2 Is the s-record type (note size of address).

LL Is the length of the data containErl within the checksum.

aaaa or aaaaaa Is the address that this S-record verifies •

• -.-.- Are characters that verify correctly.

DD. Represents the contents of the S-record where data was
found to be different.

Refer to Appendix D for a discussion of S-record content.

The followin,;J options are supported:

;-C Ignore validation of the checksum on each S-record while loading.

;X Echo the S-records read to the VME/10 built-in terminal.

The VE canmarrl requires that a dual serial I/Qnodule (MVME400) be available on
the I/O Channel. Note that serial ports 2 and 1 on the MVME400 correspond to
TENbug ports 2 aoo 3, respectively.

Default source is the TENbug port 2. Specifyin,;J VE<portnumber> allows the input
to be received fran other ports.

Valid port numbers for this cannand are:

PORT NUMBER

none
1
2
3

DESCRIPTION

Defaults to TENbug port 2 (MVME400 port 2 - 7201/B).
Specifies TENbug port 1 {VME/10 built-in terminal/keyboard).
Specifies TENbug port 2 (MVME400 port 2 - 7201/B).
Specifies TENbug port 3 {MVME400 port 1 - 7201/A).

4-66

EXAMPLE

TENbug 2.x > BF DOO EOO 4161
PHYSICAL ADDRESS=OOOOODOO OOOOOEOO

TENbug 2.x > MD DOO

VE

COMMENT

Initialize RAM to known pattern.

OOODOO 41 61 41 61 41 61 41 61 41 61 41 61 41 61 41 61 AaAaAaAaAaAaAaAa

TENbug 2.x > LO =DU DOO D80
000 080

TENbug 2.x > MD DOO 8F

OOODOO
000010
000020
000030
000040
000050
000060
000070
OOOD80

00 01 02 03 04 05 FF FF
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77
80 61 41 61 41 61 41 61

TENbug 2.x > M D78
OOOD78 78 ? 88.

TENbug 2.x > M DlA
OOODlA lA ? OA.

TENbug 2.x > VE =OU 000 080
DU DOO 080

Display memory.

Enter LO carmarrl which contains a Dump
(DU) canmarrl for an F.ducational
Canputer Board (R::B).

Display RAM to see if data was
transferrErl.

08 09 OA OB OC OD OE OF
18 19 lA lB lC 10 lE lF
28 29 2A 2B 2C 2D 2E 2F
38 39 3A 3B 3C 30 3E 3F
48 49 4A 4B 4C 40 4E 4F
S8 S9 SA SB SC SD SE SF
68 69 6A 6B 6C 6D 6E 6F
78 79 7A 7B 7C 70 7E 7F
41 61 41 61 41 61 41 61

................
! "#$%&' () *+ ,-./

01234S6789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]"'
'abcdefghijklmno
pqrstuvwxyz { I } ".
.aAaAaAaAaAaAaAa

Alter two bytes with Manory Modify to see
if Verify can detect incorrect bytes.

Enter the Verify canmarrl requesting the
same s-records be transmittErl.

Sll30Dl0.-.-.-.-.-.-.-.-.-.-1A.-.-.-.-.-
Sll30D70.-.-.-.-.-.-.-.-78.-.-.-.-.-.-.-

TENbug 2.x > M DlA
OOODlA OA ? lA.

TENbug 2.x > M 078
000078 88 ? 78.

TENbug 2.x > VE =DU 000 080

TENbug 2.x >

Two errors are detectErl.

Use Memory Modify to change the two bytes
back to the correct values.

Invoke the Verify canmarrl again; no
errors are detected this time.

4-67

4.2.36 Video Map (VM) VM

VM

The VM canmarrl toggles the high-resolution bit (bit 4 of control register 1),
causing VME/10 RAM to ,be remapped. This enables use of both low- (800 x
300-pixel matrix) arrl high- (800 x 600-pixel matrix) resolution graphics display
mode.

WARNING

WHEN THE VM <X>MMAND IS USED, ALL VME/10
RAM IS REARRANGED AND MUST BE RELOADED.

The user enters TENbug in the high-resolution mode (bit set to 1), with memory
mapped accordingly. The basic TENbug pranpt appears:

TENbug 2.x >

When the VM canmand is entered (bit changed to 0} , the memory map is reorganized
for low resolution mode arrl a modified pranpt appears which signifies that low
mode is in effect:

TENbug 2.x m>

However, the actual display matrix does not change. By remapping VME/10 memory,
RAM space is provided for the user to modify the display by reprogramming the
CRT controller device (MC6845) that defines the video screen.

Entering the VM corrmarrl again will remap RAM for high-resolution mode.

Descriptions arrl memory maps for both low- and high-resolution modes appear in
the VME/10 Microcanputer System Reference Manual.

EXAMPLE

TENbug 2.x > VM

TENbug 2.x m> VM

TENbug 2.x >

COMMENT

While in high-resolution mode, use VM
canmarrl to enter low-resolution mode.

New pranpt irrlicates low-resolution mode.
Enter VM carmand again to return to
high-resolution mode.

4-68

4.3 COMMAND SUMMARY

The corrmarrls arrl options available to TENbug 2.x users are surrrnarized in Table 4-2.

TABLE 4-2. TENbug Comnand and Option Sumnary

COMMAND DESCRIPTION

[NO]BARS Draw graphics test pattern.

BF <address!> <address2> <pattern> Block fill.

BH [<device>] [,<controller>]

BI <address!> <address2>

BM <address!> <address2> <address3>

BO [<device>] [,<controller>] [,<string>]

[NO]BR [<address>[;<count>]] •••

BS <address!> <address2> '<literal string>'
<address!> <address2> <data>[<mask>] [;<option>]

BT <address!> <address2>

[NO]CH [<bits>]

CRT

CS [<address!>] [<address2>]

DC <expression>

DF

DU[<port number>] <address!> <address2> [<text>]

GD [<address>]

Boot arrl halt.

Block initialize.

Block move.

Boot operating system.

Set and remove breakpoints.

Block search; options ;B ;W ;L.

Block test.

Alter character display map.

Alter CRT control registers.

Checksum.

Data conversion/evaluation.

Display formatted registers.

Dump memory (S-records) •

Go direct.

ii::.
I

.....J
0

TABLE 4-2. TENbug Canmarrl and Option Summary (cont'd)

COMMAND DESCRIPTION

G[O] [<address>] Install breakpoints and go.

[NO]GR [<bits>] Alter graphics display map.

GT <temporary breakpoint address> Go until address.

HE Display cornnands/registers.

IOC Issue RWINl comnand.

IOP Issue physical read/write.

IOT Teach RWINl a configuration.

LO[<port number>] [;<options>] =<text> Load (S-records).

MD[<port number>] <address> [<count>] [;<options>] Manory display; options ;DI ;s •

M[M] <address>[;<options>] Manory modify; options ;w ;L ;O ;V ;N ;DI.

MS <address> <data> Manory set (also ASCII) •

OF Offset register display.

[NO]PA[<port number>] Printer attach/detach.

PF[<port number>] Port format.

TM [<exit character> [<trailing character>]] Transparent mode.

T[R] [<count>] Trace.

TT <breakpoint address> Trace until address.

VE[<port number>] [;<options>] =<text> Verify (S-records) •

VM Toggle video map.

TABLE 4-2. TENbug Command and Option Surrnnary (cont'd)

COMMAND DESCRIPTION

(See description of .<register> commands)

.AO - .A7 [<expression>]

• DO - .D7 [<expression>]

• DFC [<expression>]

• PC [<expression>]

• RO - .R6 [<expression>]

• SFC [<expression>]

• SR [<expression>]

• SSP [<expression>]

• USP [<expression>]

• VBR [<expression>]

Key Functions:

(BREAK)

(DEL)

(CTRL-D)

(CTRL-H)

(CTRL-W)

(CTRL-X)
(<_J)

Display/set address register.

Display/set data register •

Display/set destination function code •

Display/set program counter •

Display/set relative offset register •

Display/set source function code •

Display/set status register •

Display/set supervisor stack pointer •

Display/set user stack pointer •

Display/set vector base register •

Abort conmand or process.

Delete character.

Redisplay line.

Delete character.

Suspend output; any character continues.

Cancel cormnand line.

Process current/previous conmand line.

rnAPTER 5

USIN3 THE ASSF.MBLER/DISASSF.MBLER

5.1 INTRODUCTION

Included as part of the VME/10 TENbug 2.x firmware is an assembler/disassembler
function. The assembler/disassembler is an interactive assembler/editor in
which the source program is not saved. Each source line is translated into the
proper MC68010 machine language code and is stored in memory on a line-by-line
basis at the time of entry. In order to display an instruction, the machine
code is disassembled, and the instruction mnemonic and operands are displayed.
All valid MC68010 instructions are translated.

The VME/10 assembler is effectively a subset of the MC68010 Resident Structured
Assembler. It has more limitations than the resident assembler, such as not
allowing line numbers arrl labels; however, it is a powerful tool for creating,
modifying, arrl debugging MC68010 code.

5.1.1 M68010 Assembly Language

The symbolic language userl to code source programs for processing by the
assembler is called M68010 assembly language. This language is a collection of
mnemonics representing:

• Operations

- MC68010 machine-instruction operation codes
- Directive (pseudo-op)

• Operators

• Special symbols

5.1.1.1 Machine-Instruction Operation Codes. That part of the assembly
language that provides mnemonic machine-instruction operation codes for the
MC68010 machine instructions is described in the M68000 16/32-Bit Microprocessor
Progranuner's Reference Manual. The user should refer to this manual.

5.1.1.2 Directives. The assembly language can contain mnemonic directives
which specify auxiliary actions to oo perfonned by the assembler. Directives
are not always translated to machine language.

Assembler directives assist the programmer:

• In controlling the assembler output
• In defining data arrl symbols
• In allocating storage

The VME/10 assembler recognizes only one directive called define constant
(DC.W). This directive is used to define data within the program. Refer to
p:lragraph 5.2.4 for a description of this directive.

5-1

5.1.2 Comparison with MC68000 Resident Structura:l Assembler

There are several major differences between the VME/10 assembler and the MC68000
Resident Structura:l Assembler. The resident assembler is a two-pass assembler
that processes an entire program as a unit, while the VME/10 assembler processes
each line of a program as an individual unit. Due mainly to this basic
functional difference, the capabilities of the TENbug 2.x assembler are more
restricta:l:

a. Label and line numbers are not used. Labels are used to reference other
lines and locations in a program. The one-line assembler has no
knowla:lge of other program lines and, therefore, cannot make the required
association between a label and the label definition located on a
separate line.

b. Source lines are not saved. In order to read back a program after it has
been entera:l, the machine code is disassembled and then displayed as
mnennnic and operands.

c. Limi ta:l error indication. The one-line assembler will show a question
mark (?) under the portion of the source statement where an error
probably occurred, or will display the word "ERROR" or another short
message. In contrast, the resident assembler generates specific error
messages for over 60 different types of errors.

d. Only one directive (DC.W) is accepted.

e. No macro operation capability is included.

f. No conditional assembly is used.

g. Several syrrbols recogniza:l by the resident assembler are not included in
the VME/10 assembler character set. These symbols include !, >, am <.
Two other symbols, * and /, each have multiple meanings to the resident
assembler, deperrlirg on the context, but only one meaning to the VME/10
assembler. Finally, the ampersarrl character (&) specifies a decimal
number when used with the TENbug 2.x assembler (although numbers with no
prefix are assumed to be decimal), while this symbol represents a logical
AND function to the resident assembler. Paragraph 5.2.1.5 describes the
VME/10 assembler character set.

Although functional differences exist between the two assemblers, the one-line
assembler is a true subset of the resident assembler. The format and syntax
usa:l with the TENbug 2. x assembler are acceptable to the resident assembler
except as described in g. above.

5.2 SOURCE PROGRAM Q)DING

A source program is a sequence of source statements arranged in a logical way to
perform a pra:leterrnina:l task. Each source statement occupies a line and must be
either an executable instruction or a DC.W assembler directive. Each source
statement follo'NS a consistent source line format.

5-2

5.2.1 Source Line Format

Each source statement is a canbination of operation arrl, as required, operarrl
fields; line numbers, labels, arrl canments are not used. The general fonnat is:

<sp> <operation field> [<operand field>]

The space (<sp>) must be the first character of each line. This is to be
consistent with the resident assembler, which expects the first field of each
line to be either a space or a label. Because the TENbug 2.x assembler never
allows a label, the first character must always be a space.

5.2.1.1 Operation Field. The operation field must follow at least one space
(more can 1:e used) arrl entries can consist of one of two categories:

a. Operation codes which corresporrl to the l'-C68010 instruction set.

b. Define constant directive (DC.W) which is recognized to define a
constant in a word location. This is the only directive recognized by
the assembler.

The size of the data field affected by an instruction is detennined by the data
size code. Some instructions arrl directives can operate on more than one data
size. For these operations, the data size code must be specified or a default
size applicable to that instruction will be assumed. The size code need not be
specified if only one data size is pe:r:mi tted by the operation. The data size
code is specified by a period (.) , appended to the operation field, and followed
by B, W, or L, where:

B = Byte (8-bit data).
W =Word (the usual default size; 16-bit data).
L =Longword (32-bit data).

The data size code is not pennitted, however, when the instruction or directive
does not have a data size attribute.

Examples (legal):

LEA 2(AO) ,Al

ADD.B (AO) ,DO

ADD Dl,D2

ADD.L A3,D3

Example (i1 legal) :

SUBA. B #5 ,Al

Longword size is assumed (.B, .W not allowed); this
instruction loads effective crldress of first operand
into Al.

This instruction adds the byte whose address is (AO) to
lowest order byte in DO.

This instruction adds low order word of Dl to low order
word of D2. (W is the default size code.)

This instruction crlds entire 32-bit (longword) contents
of A3 to D3,.

Illegal size specification (.B not allowed on SUBA).
This instruction would have subtracted the value 5 from
the low order byte of Al; byte operations on address
registers are not allowed.

5-3

5.2.1.2 Operarrl Field. If present, the operarrl field follows the operation
field and is separated from the operation field by at least one space. When two
or more operarrl subfields appear within a statanent, they must be separated by a
canma. In an instruction like ' ADD Dl,D2' the first subfield (Dl) is generally
applioo to the secorrl subfield (D2) arrl the results placed in the secorrl
subfield. Thus, the contents of Dl are added to the contents of D2 and the
result i~ saved in register D2. In the instruction ' MOVE Dl,D2' the first
subfield (Dl) is the sending field and the second subfield (D2) is the receiving
field. In other words, for most two-operarrl instructions, the general
format '<opcode> <source>,<destination>' applies.

5.2.1.3 Disassembled source Line. The disassembled source line may not look
identical to the source line entered. The disassembler makes a decision on how
to represent a numerical value 1:ased on how it interprets the number's use. If
the number is determined to be an address or a "would-be" address, it is
displayErl in hexadecimal; everythin:J else is decimal. For example,

MOVE.L #$1234, $5678

disassembles to

005000 21FC000012345678 MOVE.L #4660,$00005678

Also, for some instructions, there are two valid mnanonics for the same opcode,
or there is roore than one assembly language equivalent. The disassembler may
choose a form different fran the one originally enteroo. As examples:

a. BRA is returnErl for BT
b. DBF is returned for DBRA

NOTE

The assembler recognizes two forms of mnemonics for two
branch instructions. The BT form (branch corrlitionally
true) has the same opcode as the BRA instruction. Also,
DBRA (decranent arrl branch always) arrl DBF (never true,
decranent, arrl branch) mnemonics are different forms for
the same instruction. In each case, the assembler will
accept both forms.

5.2.1.4 Mnanonics arrl Delimiters. The assembler recognizes all MC68000
instruction mnemonics except ILLOOAL. Numbers are recognized as both decimal
arrl hexadecimal, with decimal the default case (note that this is reverse to the
TENbug 2.x camnands):

a. Decimal is a string of decimal digits (0-9) without a prefix (default) or
precooed by an optional ampersarrl (&). Examples are:

1234
&1234

b. Hexadecimal is a strin:J of hexadecimal digits (0-9, A-F) precedoo by a
dollar sign ($). An example is:

$AFE5

5-4

One or more ASCII characters enclosed by apostrophes (') constitute an ASCII
string. ASCII strings are left-justified and zero-filled (if necessary),
whether stored or used as immediate operands. This left justification will be
to a word boundary if one or two characters are specified, or to a longword
boundary if the string contains more than two characters.

005000
005002
005008

5300
223C41424344
3536

oc.w
MOVE.L
oc.w

NOTE

'S'
'ABCD' ,Dl
'56'

The MC68000 has seventeen 32-bit registers (DO-D7, A0-A6, SSP, USP)
in addition to a 32-bit program counter (24 bits available) and a 16-
bit status register. Registers D0-07 are used as data registers for
byte, word, and longword operations. Registers AO-A6 and SSP and USP
are used as software stack pointers and base address registers; they
may also be used for word and longword data operations. All 17
registers may be used as index registers. Register A7 is a pseudo
register, used as the system stack pointer corresponding to either
SSP or USP, depending on the operating state.

The following register mnemonics are recognized by the assembler:

D0-07

AO-A7

SSP

USP

CCR

SR

PC

Data registers.

.Address registers.

.Address register 7 represents the supervisor stack pointer of the
active system state.

User stack pointer. Used only in privileged instructions which
are restrictErl to supervisory state.

Condition code register (low 8 bits of SR).

Status register. All 16 bits may be modified in the supervisor
state. Only low 8 bits (CCR) may be modified in user state.

Program counter. Used only in forcing program counter-relative
addressing.

VBR Vector base register, contains the 32-bit absolute address of the
beginning of the exception vector.

SFC Source function code.

DFC Destination function code.

5-5

5.2.1.5 Character Set. The character set recognized by the TENbug 2.x
assembler 1s a subset of ASCII, and these are listed below:

a. The uppercase letters A through z

b. The integers 0 through 9

c. Arithmetic operators: + -

d. Parentheses ()

e. Characters used as special prefixes:

(pound sign) specifies the imnediate form of addressing

$ (dollar sign) specifies a hexadecimal number

& (amr;:>ersand) specifies a decimal number

@ (canmercial at sign) specifies an octal number

% (percent sign) specifies a binary number

' (apostrophe) specifies an ASCII literal character

f. Five separating characters:

Space

, (ccmna)

• (period)

I (slash)

- (dash)

g. The character * (asterisk) indicates current location.

5.2.2 Instruction Sumnary

Refer to the M68000 16/32-Bit Microprocessor Progranmer's Reference Manual for
descriptions of the M:68000 instructions and addressing modes.

5-6

5.3 ENTERING AND MODIFYING SOURCE PROGRAMS

User programs are entered into the VME/10 RAM using the one-line assembler/
disassembler. The program is entered in assembly language statements on a
line-by-line basis. The source code is not saved as it is converted immediately
to machine code upon entry. This imposes several restrictions on the type of
source line that can be entered.

Symbols and labels, other than the defined instruction mnemonics, are not
allowed. The assembler has no means to store the associated values of the
symbols and labels in lookup tables. This forces the programmer to use memory
addresses and to enter data directly rather than use labels.

Also, editing is accomplished by retyping the entire new source line. Lines can
be added or deleted by moving a block of memory data to free up or delete the
appropriate number of locations.

In order to describe more clearly the procedures used to enter, modify, and
execute a program, a specific example will be described. Figure 5-1 lists a
program that converts an ASCII coded number into its hexadecimal equivalent. An
ASCII character is in the lowest 8 bi ts of register DO when the program is
entered. Upon exiting, DO contains the equivalent hexadecimal digit (0 to F),
or an FF if the ASCII character does not correspond to a proper hex number.

GETHEX

GrHXl
EXIT
GrHX2

ERROR

CMP.B
BLT.S
CMP.B
BGT.S
AND.L
BRA
CMP.B
BLT.S
CMP.B
BGT.S
SUB.B
BRA
MOVE.L
JMP

#$30,DO IS HEX NO. < O?
ERROR NOT A HEX NO.
#$39,DO IS HEX NO. > 9?
GTHX2
#$F,DO SAVE ONLY LOWER 4 BITS
* END OF ROUTINE
#$41,DO IS HEX NO. < 'A'?
ERROR NOT A HEX NO.
#$46,DO IS HEX NO. > 'F'?
ERROR NOT A HEX NO.
#7,DO MAKE IT SMALLER -- A=lO
GTHXl
#$FF,DO ERROR CODE
EXIT

NOTE: Converts ASCII digit in lowest 8-bit of register DO into
hex value. Returns equivalent 0-F or FF on error in DO.

FIGURE 5-1. Sample Program to Convert ASCII Digit to Hexadecimal Value

For clarity, Figure 5-1 contains cormnents and labels. The program as it appears
after entry into the VME/10 is shown in Figure 5-3. Figure 5-2 shows the ASCII
character set for better understanding of the program.

5-7

~
0 0 0 0 1 1 1 1

0 .0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

~~ b3 b2 b1 Column 0 1 2 3 4 _5_ _I .1

' ' ' Row Hex 0 1 2 3 4 5 8 7
0 0 0 0 0 0 NUL OLE SP 0 11_ p ~

0 0 0 1 1 1 SOH OCl I 1 A a a q
0 0 1 0 2 2 STX DC2 2 B R b r
0 0 1 1 3 3 ETX DC3 I 3 c s c s
0 1 0 0 4 4 EQT OC4 $ 4 D T d t

0 1 0 1 5 5 ENO NAK % 5 E u 8 u
0 1 1 0 6 6 ACK SYN & 6 F v f v
0 1 1 1 7 7 BEL ETB 7 G w Jl w
1 0 0 0 8 8 BS CAN (8 H x h J(

1 0 0 1 9 9 HT EM) 9 I y i y
1 0 1 0 10 A LF SUB . J z j z
1 _Q_ 1 I IT lf V1 lli + K [k]
1 1 0 0 12 c FF FS < L \ I l
1 1 0 1 13 D CR GS - = M) m I
1 1 1 0 14 E so RS > N " n -
1 1 1 1 15 F SI us I ? 0 - 0 DEL

FIGURE 5-2. ASCII Character Set

5-8

5.3.1 Invoking the Assembler/Disassembler

The assembler/disassembler is invoked using the ;DI option of the Memory Modify
(MM) and Memory Display (MD) comnands:

MM <address> ;DI

where (CR)
(.CR)

sequences to next instruction
exits command

arrl

MD[<port number>] <address> [<count>] ;DI

The Memory Modify (;DI option) is used for program entry and modification. When
this coomand is used, the manory contents at the specified location are
disassembled and displayed, followed by a "?". A new or modified line can be
entered if desired.

The disassembled line can be an MC68000 instruction or a DC.W directive. If the
disassembler recognizes a valid form of some instruction, the instruction will
be returned; if not, the DC.W $xxxx (always hex) is returned. Because the
disassembler gives precedence to instructions, a word of data that corresponds
to a valid instruction will be returned as the instruction.

For the given example, the program will be entered starting at location $1000:

TENbug 2.x > MM lOOO;DI
001000 1005 MOVE.B D5,DO ?

5.3.2 Entering a Source Line

A new source line is entered immediately following the "?", using the format
discussed in paragraph 5.2.1:

TENbug 2.x > MM lOOO;DI
001000 1005 MOVE.B D5,DO ? CMP.B #$30,DO

When the carriage return is entered terminating the line, the old source line is
erased fran the terminal screen, the new line is assembled and displayed, and
the next instruction in manory is disassembled and displayed:

TENbug 2.x > MM lOOO;DI
001000 OC000030
001004 FFFF

01P.B #$30,DO
DC.W $FFFF ?

NOTE

If a terminal with a printer only (no CRT) is used, such as a TI 700
series device, the printer will overwrite the previous line. There
fore, a clear printout of the new entry will not be made. This also
happens if the printer on port 3 is attached via the PA comnand.

5-9

Another program line can now be entered. Program entry continues in like manner
until all lines have been entered. A period is used to exit the MM comnand.

If an error is encountered during assembly of the new line, the assembler will
display the line unassembled with an "X" under the field suspected of causing a
problem, or an error message will be displayed. Errors are discussed in
paragraph 5.3.5.

5.3.3 Program Entry/Branch and Jump .Addresses

Figure 5-3 shows the sample program as it is input to the VME/10 one-line
assembler. Notice that the comnents and labels used in Figure 5-1 are not
allowed; absolute addresses must be used for BRA and JMP instructions.

CMP.B #$30,DO CMP.B #$30,DO
BLT * BLT $1022
CMP.B #$39,DO CMP.B #$39,DO
BGT * BGT $1014
AND.L #$F,DO AND.L #$F,DO
BRA * BRA *
CMP.B #$41,DO CMP.B #$41,DO
BLT * BLT $1022
BGT * BGT $1022
SUB.B #7,DO SUB.B #7,DO
BRA $100C BRA $100C
MOVE.L #$FF,DO MOVE.L #$FF,DO
JMP $1012 JMP $1012

a) First entry b) With correct branch addresses

FIGURE 5-3. Sample Program as Entered into VME/10

5.3.3.1 Entering Absolute Addresses. The absolute addresses are probably not
known as the program is being entered. For example, when the second line is
entered (BLT.S ERROR in Figure 5-1), the user does not know that the branch
address (ERROR MOVE.B #$FF,DO) will be $1022. However, the user can instead
enter an "*" for branch to self. After the correct address ($1022) is
discovered, the second line can be reentered using the correct value. This
technique can be used for forward branches and jumps. It is not required for
backward branches and jumps, such as the last line of the example, because the
required address is already known. If the absolute address is not within the
range of a short address, a long address must be specified by appending .L to
the mnemonic (BGT.L *) •

5-10

5.3.3.2 Desired Instruction Fonn. Care must be taken when entering source
lines to ensure that the desired instruction form is entered. If the quick fonn
of the instruction is wanted, it must be specified. For example:

005780 203C00000003 MOVE.L #3,DO Assembles to the 6-byte instruction.

whereas

005780 7003 MOVEQ.L #3,DO Assembles to the 2-byte instruction.

If the PC-relative addressing mode is desired, it must be specified. For
example:

001000 41F803FO LEA $3FO,AO Assembles $3FO as an absolute address.

whereas

001000 41FAF3EE LEA $3FO(PC) ,AO Assembles $3FO as a PC-relative address.

5.3.3.3 Current Location.
expression, the character "*"

To reference a current location in an operand
(asterisk) can be used. Examples are:

007000 6022 BRA *+$24

007000 6000FFFE BRA.L *
007000 60FE BRA *

5-11

5.3.4 Assembler Output/Program Listings

A listing of the program is obtained using the Me:nory Display (MD) comnand with
the ;DI option. The MD conmand requires both the starting address and the
instruction count to be entered in the command line.

Two techniques can be used to obtain a hard copy of the program using the MD
conmand.

a. The Printer Attach (PA) comnand is first used to activate the port 4 or 5
printer. A Memory Display (MD) to the tenninal will then cause a listing
on the terminal and on the printer.

b. An MD4 or MD5 (Manery Display to port 4 or 5) conmand using the ;DI
option will cause a listing on the printer only.

Figure 5-4 shows a listing of the sample program. Note in this example that $D
lines are specified in the MD camnand.

Note also that the listing does not correspond exactly to that of Figure 5-3.
As discussed in paragraph 5.2.1.3, the disassembler displays in hexadecimal any
number it interprets as an address; all other numbers are displayed in decimal.

TENbug 2.x > MD 1000 D;DI
001000 OC000030 QvU>.B #48,DO
001004 6DlC BLT.S $001022
001006 OC000039 CMP.B #57,DO
OOlOOA 6E08 BGT.S $001014
OOlOOC 02800000000F AND.L #15,DO
001012 60FE BRA.S $001012
001014 OC000041 QvU>.B #65,DO
001018 6D08 BLT.S $001022
00101A 6E06 BGT.S $001022
00101C 04000007 SUB.B #7,DO
001020 60EA BRA.S $00100C
001022 203COOOOOOFF MOVE.L #255,DO
001028 4EF81012 JMP $1012

TENbug 2.x >

FIGURE 5-4. Sample Program Listing

5-12

5.3.5 Error Conditions and Messages

There are five different conditions that can result in error messages while
using the assembler/disassembler. The response to the error condition can be to
abort the cormnand (and thus the assembler) , or to cause the assembler to ask for
a corrected input line. The error conditions are discussed in the following
paragraphs and include bus and address error traps, improper characters, numbers
which are too large, and assembly errors.

5. 3. 5 .1 Error Traps. Two types of errors are trapped. One form, which
produces a bus error trap, may be encountered if a location is accessed w~ere
there is no memory. Included in this error type are write cycles to ROM. The
second form produces an address error trap. Instructions must always begin on
an even address; if not, an address error trap will result. Figure 5-5 shows
examples of these conditions.

TENbug 2.x > M AOOOOO;DI

2700 0000768A 8008 1105 OOAOOOOO 0000 7682 0000 FFFF 0000 6100 0557
1158 0000 OOAO 0008 0000 OOAO 0002 FFEl 0006 038F 4C04 0100 0000 4CD4 0000

BUS ERROR TRAP
PC=0000768A SR=2700=.S7 ••••• USP=FFFFFFFF SSP=0000149A VBR=OOOOOOOO SFC=2 OFC=7
00-7 OOA00044 01964020 FFF24020 00000008 OOOOB432 00000000 00000000 00000000
A0-7 000016EA 00004EDA 00001401 0000115C OOAOOOOO 00001158 00001158 0000149A

PC=00768A E51C ROL.B #2,04

TENbug 2.x > MM FOOOOO;OI

2700 000076E8 8008 0205 OOFOOOOO 0000 8C67 0000 1419 0000 1419 051A
8C67 1280 0000 14~ 1400 OOFO 0001 FFEl 0000 0380 1419 0000 0001 1280 0001

BUS ERROR TRAP
PC=000076E8 SR=2700=.S7 ••••• USP=FFFFFFFF SSP=0000149A VBR=OOOOOOOO SFC=2 OFC=7
00-7 671E8C67 00000001 00000253 00000000 OOOOOOlE OOOOOOlE 00000002 00000000
A0-7 00001517 OOFOOOOO 00001401 00001537 OOFOOOOO 0000153A 0000153A 0000149A

PC=0076E8 B400 CMP.B D0,02

TENbug 2.x > M lOOOl;DI

2700 0000768A 800C 1105 00010001 0000 7682 0000 FFFF 0000 6100 0557
1158 0000 0001 0008 0001 0001 0003 FFEl 0006 038F 4C04 0100 0000 4C04 0000

BUS ERROR TRAP
PC=0000768A SR=2700=.S7 ••••• USP=FFFFFFFF SSP=0000149A VBR=OOOOOOOO SFC=2 DFC=7
00-7 00010044 01964020 FFF24020 00000008 OOOOB432 00000000 00000000 00000000
A0-7 000016EA 00004EDA 00001401 0000115C 00010001 00001158 00001158 0000149A

PC=00768A E51C ROL.B #2,04

FIGURE 5-5. Examples of Error Traps

5-13

Also note that bus and address errors also cause displ~y of the exception status
fran the stack, in hexadecimal characters.

For details on this display, refer to the bus error and address error
descriptions in the M68000 16/32-Bit Microprocessor Programner's Reference
Manual.

5.3.5.2 Improper Character. If a character appears in the operand field that
does not belong to the class of characters specified or expected, an "X" will be
printed beneath the character string suspected of containing the improper
character, followed by a "?" to pranpt reentry of the line. For example, if a %
(percent sign) is used to -specify the binary class of characters, only the
digits 0 and 1 will be accepterl.

TENbug 2.x > MM 6000;DI

006000
006000

FFFF oc.w
MOVE.W

TENbug 2.x > MM 6000;DI

$FFFF ?
#S' ,DO

X?

S is not a decimal digit

MOVE.W #S' ,DO

9 is not an octal digit

006000
006000

FFFF OC.W $FFFF ? ADDA.L #@974,A6
ADDA.L #@974,A6

X?

TENbug 2.x > MM 6000;DI P is not a decimal digit

006000
006000

FFFF oc.w
JMP

$FFFF ? JMP $4000+PC
$4000+PC

X?

FIGURE 5-6. Examples of Improper Characters

5-14

5. 3. 5. 3 Number Too Large. Another error type involves numbers which are too
large for the MC68000 to handle. Again, an "X" is printed under the number
suspected of containing the error, followed by a "?". Figure 5-7 gives an
example.

TENbug 2.x > MM 4000;DI

004000
004000

FFFF oc.w
LEA.L

Value is larger than 32 bits

$FFFF ? LEA.L $937402110,A7
$937402110,A7

X?

FIGURE 5-7. Example of a Number Which Is Too Large

5.3.5.4 Assembly Errors. An assembly error can occur due to an invalid opcode,
an illegal addressing mode for a particular instruction, a format which is in
error (leading space omitted as an example), or a source line which is incorrect
in some other way. When the entry as written is not a valid MC68000
instruction, the assembler echoes the source line up to and including the field
in which the error probably occurred. It also prints an "X" under the field
suspected of containing an error, followed by a "?" to prompt reentry of the
line.

The entire line must be reentered in its correct form. If the error has not
been corrected or another is encountered, the error indicator will be returned.
After all errors have been corrected and the source line represents a valid
MC68000 instruction, the line will be assembled. The memory address, machine
code, and source code will be displayed and the next line will be disassembled.
A period (.) is used to exit the command. Examples of typical errors are shown
in Figure 5-8.

5-15

Example 1 Invalid Opcode

006700 FFFF DC.W $FFFF ? BEQU.S $6754 --------BE Q U. S
X? BEQ.S $6754

006700 6752 BEQ.S $6754

Example 2 Missing Leading Space

001100 FFFF oc.w $FFFF ?OR.B 05, (A6)

001100 8Bl6
X? OR.B 05, (A6)
OR.B 05, (A6)

Example 3 Unrecognizable Opcode

005300 FFFF DC.W $FFFF ? MULSW 52,03 ------MULSW
X? MULS.W 52,03

005300 C7F80034 MULS.W 52,03

Example 4 Invalid Size Extension

007200 FFFF

007200 7202

DC.W $FFFF ? MOVEQ.B #2,0l
MOVEQ.B #2,0l

X? MOVEQ.L #2,0l
MOVEQ.L #2,0l

Example 5 Invalid Addressing Mode

001500 FFFF DC.W
ADDQ.B

$FFFF ?
#7,AO

ADDQ.B #7,AO

X?
#7, (AO)

ADDQ.B #7, (AO)
001500 5El0 ADDQ.B

Examples 6 and 7 Branch Address Too Large

004900 FFFF oc.w
BRA

$FFFF ?
$10000

X? BRA

BRA $10000

$8000
004900 600036FE BRA $8000

004800 FFFF

004800 605E

DC.W
BRA.S

BRA.S

BRA.S

$FFFF ?
$7000

BRA.S

X? BRA.S
$4902

X? BRA.S
$4860

$4902

$4860

$7000

FIGURE 5-8. Examples of Assembly Errors

5-16

OiAPTER 6

TENbug ROUTINES AVAILABLE TO THE USER

6.1 INTRODUCTION

This chapter describes the TENbug TRAP #15 I/0 handler, which allows system
calls from user programs. The system calls can be used to access selected
functional routines containErl within the TENbug firmware, including input arrl
output routines. TRAP #15 may also be used to transfer control to TENbug
without performing initialization.

6.2 USER I/O THROUGI TRAP #15

Format in user program:

TRAP #15
DC.W $000x

Call to TENbug trap handler
Function beirg requested (x = function)

Valid Functions (refer to paragraph 4.2.26 for port number definitions):

FUNCTION DESTINATION

0 TENbug

1 Console (port 1)

2 Console (port 1)

3 Host (port 2)

4 Host (port 2)

5 Printer (port 4)

6 Console (port 1)

DESCRIPTION

Display format (see DF); then go to TENbug.

Input line
Input parameters: Point AS.L and A6.L both to

the start of buffer.
Exit conditions: A5.L points to the start of

buffer; A6.L points to the
end + 1.

Output line (with CR, LF)
Input parameters: Point AS. L to start of

string and A6.L to end of
string + 1.

Exit conditions: None.

Read line (no echo)
Input parameters: Same as Function 1.
Exit conditions: Same as Function 1.

Output line (with CR, LF)
Input parameters: Same as Function 2.

Output line (with CR, LF)
Input parameters: Same as Function 2.
Exit conditions: Same as Function 2.

Output line (no CR, LF)
Input parameters: Same as Function 2.
Exit conditions: Same as Function 2.

6-1

7 Host (port 2) Output line (no CR, LF)
Input parameters: Same as Function 2.
Exit conditions: Same as Function 2.

8 Printer (port 4) Print line (no CR, LF)
Input parameters: Same as Function 2.
Exit conditions: Same as Function 2.

9 Host (port 3) Read line (no echo)
Input parameters: Same as Function 1.
Exit conditions: Same as Function 1.

A Host (port 3) Output line (with CR, LF)
Input parameters: Same as Function 2.
Exit corxH tions: Same as Function 2.

B Host (port 3) Output line (no CF, LF)
Input parameters: Same as Function 2.
Exit con:litions: Same as Function 2.

c Printer (port 5) Print line (with CR, LF)
Input parameters: Same as Function 2.
Exit con:litions: Same as Function 2.

D Printer (port 5) Print line (no CF, LF)
Input parameters: Same as Function 2.
Exit con:li tions: Same as Function 2.

EXAMPLE PROGRAM:
*
* TEST OF TRAP #15 USER I/O
*

00002000 ORG $2000 PROGRAM STARTS HERE
002000 2E7C00004000 START MOVE.L #$4000,A7 INITIALIZE STACK
002006 2A7C0000201C MOVE.L #BUFFER,AS FIX UP AS & A6 for I/O
00200C 2C4D MOVE.L A5,A6

*
00200E 4E4F TRAP #15 INPUT BUFFER FROM C'ONSOLE
002010 0001 DC.W 1

*
002012 4E4F TRAP #15 PRINT BUFFER TO C'ONSOLE
002014 0002 DC.W 2

*
002016 4E4F TRAP #15 STOP HERE LIKE BRFAKPOINT
002018 0000 oc.w 0
00201A 60E4

*
00201C 0200 BUFFER DS.L 128 THIS IS THE I/O BUFFER

6-2

6.3 TENbug SUBROUTINES

A branch table is locaterl at the beginning of ROM to allow use of TENbug
subroutines under various operating systems. Note, however, that TRAP #15
support is the starrlard interface between the user arrl I/O routines. Use of the
branch table should be based upon a complete understanding of the TENbug 2 .x
source release.

The branch table allows a calling routine to access any of the supported
subroutines with a BSR to a long branch located at the start of EPROM. The user
will always be able to access these subrouties despite future changes in their
locations because the table offset will not change (even though the actual
subroutine addresses might) •

In most cases, the following subroutines can be entererl with a BSR to the
address shown for each entry.

$FOOOOC TRACE - Trace one instruction

No registers are required for linkage except the stack for the RTS.

$F00010 Bc:x:MD - Disk boot entry point

No registers are required for linkage; control is returned to TENbug.

$F00014 ABORTB - Software abort routine

No registers are required for linkage; control is returned to TEN'bug.

$F00018 CHKBP - Illegal instruction vector

No registers are required for linkage; control is returned to TENbug.

$F0001C CHECKSUM - Calculate or verify checksum

AO Start of memory
Al End of memory
CCR Condition code returned:

z (BEQ) Indicates valid checksum

$F00020 DISKR - Disk read routine

AO
DO
Dl
D2
D3
IFCNUM
DRVNUM

Address of hardware (controller/drive)
Number of 256-byte blocks
Winchester byte 5
Memory address
Block address
RAM variable containing 1-byte controller number
RAM variable containing 1-byte drive number

6-3

$F00024 DISKW - Disk write routine

AO
DO
Dl
D2

.Address of hardware (controller/drive)
Number of 256-byte blocks
Winchester byte 5
Memory address

D3
IPCNUM
DRVNUM

Block address
RAM variable containing 1-byte controller number
RAM variable containing 1-byte drive number

$F00028 INITVECT - Initialize miscellaneous vectors (#4-#11 and #24-#48)

'$F0002C INITHRAM - Initialize specific vectors (bus and address error)

$F00030 INCHS - Input a character from the keyboard

DO Converted value for key pressed
CCR Corrlition codes returned:

z (BEQ) Character is displayable
x (BMI) BREAK entered
C (BCS) Character is not displayable (i.e., $0-$1F, $80-$FE)

$F00034 OUTCHS - Output a character to the display

DO must contain the character to be output.

$F00038 POINTRAM - Get RAM pointer

AO will contain the address of the following RAM variables:

DS.L 1
DS.L 1
DS.L 1
DS.L 1

Starting address of RAM
Ending address of RAM
.Address of the disk configuration table
.Address of the disk controller/drive variable

$F0003C N/A - Reserved for future use

$F00040 HOTSTART - User request to restart TENbug

No registers are required for linkage; control is returned to TENbug.

$F00044 N/A - Reserved for future use

$F00048 N/A - Reserved for future use

6-4

APPENDIX A

SOFTWARE ABORT

If a target program must be stopped with the stack data preserved, the user may
press the ABORT pushbutton on the VME/10 chassis operator panel. This will
generate a level seven interrupt vector which will interrupt the target program
arrl load the contents of ROM location $138 into the program counter. If the
default vector locations have not been overwritten, the console will display
SOFI'WARE ABORT and the following data will be saved: address registers, data
registers, program counter, status register, supervisor stack pointer, user
stack pointer, vector base register, destination function code, and source
function code.

Remember that TENbug shares resources with the target program under test (refer
to paragraph 1.3.2). Therefore, if the target program changes the contents of
location $138, this abort feature is lost.

In contrast to the abort feature, the contents of the target supervisor stack
pointer, program counter, and status register are lost when the RESET pushbutton
is pressed. The RESET feature sets the processor to supervisor state, loads the
supervisor stack pointer with the contents of RAM locations 0-$3, and loads the
program counter with the contents of RAM locations $4-$7. It also saves the
contents of the target registers for display by the Display Format (DF) camnand.

A-1/A-2

®MOTOROLA

ADDENDUM

TO

TENbug DEBUGGING PACKAGE

USER'S MANUAL

M68KTENBG/Al

AUGUST 1984

'!his addelldum transni ts replacanent pages for the TENbug Debugging Package
User's Manual. Replacanent pages have been marked with vertical change bars to
iooicate revised or new material.

Insert the changed pages attached to this addemum into your M68KTENBG/02
manual. Make certain that the page you are replacing is renoved fran your
manual. '!his page of the addelldum should be placed after the title page and
used as a record page of the ·chan;es inale to the manual.

Replacement pages provided by this addemum are:

1-1 through 1-6
4-13 through 4-16
4-37 through 4-40

4-43, 4-44, 4-69, 4-70

QIAP.I'ER 1

GENERAL INFORMATION

1.1 INTRODtJCrION

This manual describes the debuggin; monitor TENbug as it is used in the VME/10
Microcanputer System, hereafter referred to as the VME/10.

1.2 DEFINITION OF TENbug

TENbug is the resident firmware debuggi01 package for the VME/10. The 32K-byte
firmware (stored in RCM or EP~ devices) provides a self-contained programning
an:I operatiD:J enviroanent. TENbug interacts with the user through pre::lefined
ccnman:Is that are entered via the tenninal. The carmarXls fall into five general
categories:

a. Conman:is which allow the user to display or modify menory.

b. carman:ls which allow the user to display or modify the various internal
registers of the ~68010.

c. CemnarXls which allow the user to execute a program under various levels
of control.

d. Ccmnarxls which con~ol access to the various input/output resources on
the board.

e. CcmnarXls which allow the user to select and test video features and
graphics resolution.

An additional function called the TRAP #15 I/O harxiler allows the user program
to utilize various routines within TENbug. The TRAP tlS hardler is discussed in
Cllapter 6.

The operational mode of TENbug is described in Olapter 2.

1.3 TENbug INTERNAL STRUCTURE

1.3.l Memory Map

'Ihe followin; abbreviated memory map for the VME/10 highlights addresses that
might be of particular interest to TENbug users. Refer to the VME/10
Microcanputer System Reference Manual for· a canplete description of the menory
maps for both high- arx3 low-resolution graphics modes.

Note that addresses are assumed to be hexadecimal throughout this manual. In
text, numbers may be prece::led with a dollar sign ($) for identification as
hexadecimal.

1-1

I

RAM LOCATION

0-3FF
400-AFF

SPB:IAL LOCATIONS

FOOOOO-F00007

Fl4000-Fl4FFF

I/O LOCATION

FlClC9
FlClCB
FlClEl
FlClE9
FlCODl

FUNCTION

Vectors
Work area and stack for TENbug

FUNCTION

Area containing initial values for supervisor stack
pointer, program counter, aoo vector base register after
cold start

Area used to define progranmable "soft" character set

FUNCTION

Serial port 2 (host), s~rial I/O card (optional)
Serial port 3 (host), serial I/O card (optional)
Parallel port l (printer), parallel I/O card (optional)
Parallel port 2 (printer) , parallel I/O card (optional)
Base address of ~INl Disk controller

1.3.2 Vectors arx3 Errors

TENbuq shares resources with the target program under test -- that is, each
affected resource can be used only by TENbug or the target program at any given
time.

Exception ·vectors are memory locations fran Which the processor fetches the
adqress ·of a routine which will harx3le the exception. These vectors are
initialized by TENbuq in default manory locations O through $3FF during a cold
or warm-start sequence (see Chapter 2). If the target program uses any of these
locations, the user values must be rewritten followin;;J each cold or wann start.
If the target pr~am uses any of the following locations, the associated
function will be lost to TENbug.

MEMORY LOCATION

. 10-13
24-27
BC-BF
138-13B

TENbug FUNCTION

Breakpoints (illegal instructions)
Trace
TRAP 115 user calls to TENbug
ABORT pushbutton switch on VME/10 operator panel

(refer to Appendix A)

When unini tial.ize:3 vectors are given control because of exception processing,
the console tenninal will display a general message indicating the vector offset
that was used: Offset Vector $xxx Error Trap. In addition, several of the
vectors cause display of appropriate infonnation. (Refer to Appeooix B for a
list of error messages.) BOS aoo ADDR error traps also cause display of the
exception status fran the stack, in hexadecimal characters, as shown in the
following example.

1-2

Status Register

Program Co\ll'lter Mdress

Frame Format aoo Vector Offset

Special Status Word

Fault 1ddress

27 9 00 533A 8 08 13 5 OOF[C030 0000 0020 0000 20FF OOFO 2007 067A
5338 0000 OOFl 2007 C030 OOFO 533C FFEl 0000 0394 1El4 0000 0004 1El4 0003

BC5 ERROR TRAP

For additional infonnation on this display, refer to the bus error, address
error, arXI the reference classification descriptions in the exception processing
chapter of the M68000 16/32-Bit Microprocessor Programner's Reference Manual.

1.3.2.l Resetti~ Vector Base aegister. The M:68010 processor upon which the
VME/10 is . based eatures a vector Base Register (VBR) which contains the base
(startir:g) address for the VME/10 exception vectors. Exception vectors are
located in maoory addresses 0 through $3FF relative to the VBR. Upon reset
(cold or wa:cm start) of the ~68010, the value of the VBR is set to zero.

TENbug must have control. of the exception vectors to f\ll'lction properly. If the
user sets the VBR to ·a value other than its default value of zero, he must also
establish a new set of exception vector menory locations for the VBR value. In
other words, the user must copy all existing vector memory locations to the same
relative location in the new VBR table.

In the followin; example, the VBR value is changed fran 0 to lOFOO. Exception
vector mE!OOry locations must also be copied to this new location. Note that the
content of each vector menory location (i.e., the appropriate routine address)
remains the same.

VBR = 0 VBR = lOFOO

0 lOFOO
00000444 00000444

4 10F04
0000044C 0000044C

8 10F08
00000454 00000454

c lOFOC

I I I I
I I I I

3FC 112FC
000008A4 000008A4

1-3

1.3.3 Disk I/O

TENbug provides limited support of disk I/O through a Winchester Disk
Controller. The carman:ls supported are BH, BO, IOC, IOP, and IOT. BH, BO, and
optionally, IOT read the volune ID found in sector 0 of each disk. Pointers to
the conf iguiation data located in sector o. are used to read the configuration
sector. The configuration sector contains the data that allows the RWINl
controller to issue reads to the specific types of drives.

NOTE -
A sector is 256 bytes. The disk controller maps
physical sectors on various disks into virtual
256-byte sectors at the controller interface.

If a ·disk read to a Winchester drive fails, the read will be re1;ried twice
before generating an error message. The mINl controller will make corrections,
if possible, and the disk transfer will continue on fran the next sector.

NOTE

~R CORREX:TION an:1 RETRY were first provided in TENbug 2.1.

The fi.rst 256 bytes of the media are the volume ID. Bytes $F8-$FF of the volume
ID must contain either the ASCII character string "EXORMACS" or "MOTOROIA";
otherwise, an error message will result. For more info:r:mation on interpreting
the data displayed, see the Winchester Disk Controller User's Manual.

The other infoi:mation used fran the volune ID is:

BYTES

$14-$17

$18-$19

$1&-$21

$90-$93

$94

USED FOR

Starting sector address of program to be loaded (via BH, BO).

Number of 256-byte sectors to be loaded.

Load address (first destination menory byte).

Sector address of media configuration parameters (refer to
Appendix C).

Iangth of configuration area (usually one 256-byte sector).

1.4 TENbug WITH SYSTEM V/68

The following paragraphs list information specific to the use of TENbug with
SYSTEM V/68.

1-4

1.4.1 Operational canmards

In the followin; list, canmards given in parentheses indicate the key that is to
be pressed. C~rds not given in parentheses are to be typed as shown.

BH

BO

(BRFAK)

(DEL)

(CTRL-D)

(CTRL-H)

(C'l'RL-W)

(C'l'RL-X)

Boots the operating system fran the fixed disk and halts.

Boots the operating system fran the fixed disk and gives
control to the program loaded.

Aborts camnard.

Deletes character.

Redispla~ line.

Deletes character.

SUsperds output; any character continues output.

Cancels canmarXI line.

1.4.2 Debugging Ccxrmands

'!be following ccmnan3s may be useful for debugging, but should be used only in
sin;le-user mode after sync has executed. Use of these canmarXls may result in
the need for· system reboot •

• AO-.A7 BARS, NOBARS * HE
.o0-.D7 BF ICC
.DFC BM IOP
.PC BR, NOBR IOT
.RO-.R6 BS MD
.SFC Oi, NCCH MM
.SR CRT MS
.SSP cs OF
.USP oc PA, NOPA
.VBR OF TR

GD TT
00
GR, NOGR
Gr

* This canma~ modifies graphics me:nory am should be used only with an
operating system configured to support graphics.

1-5

1.4.3 Non-Applicable Commards

The followi~ canman:Is should be used in a staoo-alone mode; they should not be
used with SYST!M V/68.

BI
BT
DU
LO

PF
'lM
VE

1.5 REFEREN:E MANUALS

Refer to the followi03 documents for more infonnation on the envirorxnents in
which ~ug is used.

VME/10 Microcanputer System Overview. Manual, M68KVSa1

VME/10 Microcanputer System Diagnostics Manual; M68KVSDM

VME/10 Microcanputer System Reference Manual, M68KVSREF

VERS1dos to VME Hardware aoo Software Configuration User's Manual, MVMEDOS

Winchester Disk Controller user's Manual, M68RWIN1

MVME400 Dual RS-232C serial Port Module User's Manual, MVME400

MVME410 Dual 16-Bit Parallel Port Module user's Manual, MVME410

M68000 16/32-Bit Microprocessor Progranmer's Reference Manual, M68000UM

1-6

EXAMPLE

TENbug 2.x > .R4 4000

TENbug 2.x > BR 1010 2000;5 2040 4000

BREAKPOINTS
001010 001010
002000 002000;5
002040 002040
OOOQOO+R4 004000

TENbug 2.x > NOBR 1010 2040

BRFAKPOINTS
002000 002000;5
OOOOOO+R4 004000

TENbug 2.x >" ~

BREAKR>INTS

TENbug 2.x >

4-13

BR
NOBR

4.2.9 Block of Me:nory Search (BS)

BS <address!> <address2> '<literal string>'
BS <addressl> <address2) <data> [<mask>] [!<options>]

The BS carmard has two modes: literal string search and hex data search. Both
modes can search rnEm)ry beginning at <address!> through <address2>, looking for
a mat.ch. Alternatively, a user can specify that a data search report back only
locations that do not match the input data. This alternative search for a
mismatch can be particularly useful \\hen searching for suspected faulty menory.
For example, a known pattern can be placed into suspect RAM locations, and a BS
cannand with an option to search for a mismatch will display any bad RAM
locations.

The literal string mode is initiated if a single quote (') follows <address2>.
The AS:II literal string may contain both uppercase and lowercase letters. If a
siDJle quote does not follow <address2>, data search mode is assumed. If the
optional mask is supplied with a data search, the mask is ANDed to the data
fourd at each address. The data located in the menory is not changed. The
masked data is then examined for a match. (The default mask is all l's.)

Available options for a data search enable a user to specify the data fo:cmat and
whether to search for a match or a mismatch. The options to specify data fo:cmat
are the letters B,. w, aoo L. To specify a mismatch, a minus sign is placed
before or after the data · foxmat indicator. If there is no minus sign in the
options field, a matchin:l search is ass~.

;B Data fonnat is a byte; search for a match.
;-B Data fo:cmat is a byte; search for a mismatch.
;w Data fonnat is a word; search for a mat.ch.
;-W Data fo:cmat is ·a word; search for a mismatch.
;L Data fonnat is a loDJWOrd; search for a mat.ch.
;-L Data fo:cmat is a 10D3W0rd; search for a mismatch.

The default value for a data search is ;B.

When a search is canpleted, each address containing data that meets the
specifie:i require:nents is displayed on the terminal, alODJ with the data located
at that address.

To illustrate the searchiDJ ccmnand, the following examples are provided:

EXAMPLE COMMENT

Show memory to be searched.
AS SA AS SA AS SA AS SA %Z%Z%Z%Z%Z%Z%Z%Z
41 42 43 61 62 63 20 20 Aa ABab ABCabc
AS SA AS SA AS SA As SA %Z%Z%Z%Z%Z%Z%Z%Z

TENbug 2.x > MD 10000 40
010000 AS SA AS SA AS SA AS SA
010010 41 61 20 41 42 61 62 20
010020 AS SA AS SA AS SA AS SA
010030 AS SA AS SA AS SA AS 52 AS S2 AS S2 AS SA AS SA %Z%Z%Z%R%R%R%Z%Z

TENbug 2.x > BS 10000 10040 'ab'
Physical Address=OOOlOOOO 00010040
010015 'ab'
OlOOlB 'ab'

Successful· search for literal string
'ab'.

4-14

TENbug 2.x > BS 10000 10040 43 DF;B
Physical Address=OOOlOOOO 00010040
OlOOlA 43 -·
010010 64

TENbug 2.x > BS 10020 10040 ASSA;-W
Physical Address=00010020 00010040
010036 A552
010038 A552
01003A AS52

Successful data search using a
mask allowing both lowercase aoo
uppercase ASCII c.

Search for any words NOl' matching
. the test pattern.

4-15

BS

4.2.10 Block of Manory Test (BT) BT

BT <address!> <address2>

The BT canman:3 provides a destz:ucti ve test of a block of manory. A word
boundary (even address) must be given for the starting <addressl> and ending
<address2> of the block. If the test runs to canpletion without detecting an
error, all menory tested will have been set to zeros.

Execution of this ccmnam may take several secoms for large blocks of memory.

When a proble:n is found in a meroory location, the a:idress, the data stored, aoo
the data read are displayed. Control is then returnai to TENbug.

See also: BI

EXAMPLE

TENbug 2.x > BT 44000 47FFE
PHYSICAL ADDRESS=00044000 00047FFE

TENbug 2. x > BT 44000 4FFFE .
PHYSICAL ADDRESS=00044000 0004FFFE
FAILED AT 0480FE WROTE=FFFF READ=OOOO

TENbug 2.x >

4-.16

COMMENT

Successful memory test; no errors
found.

Unsuccessful menory test; error
data is listed.

t w
"1

EXAMPLE

TENbug 2.x > IOP
~READ OR WRITE (R/W)=•••••••••R? (CR)

MEMORY ADDRFSS FOR DISK I/0=.$00000000 ? 1000
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)=•••••••$00 ? -.---

MEMORY ADDRFSS FOR DISK I/0=.$00001000 ? AOO
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= •••• ~ •• $00 ? ~

CONTROLLER NUMBER= ••••••• $00 ? (CR)
FIRST BLOCK NUMBER=.$00000000 ? 500

NUMBER CF (256 BYTE) BLOCKS= ••••• $0000 ? 1

ARE YOU SURE? (Y/N) ? Y

"R" CCJ1PLETE

TENbug 2.x > Ml AOO 30

Request physical disk I/O to read a routine.
Use default of read.
Change $0 default to $1000.
'!bat isn't correct; back up one paraneter.
Olange $1000 to $AOO. ~
Olange default drive O to drive 2.
use controller o.
Olange block number to $500.
Recd one 256-byte block.

Last change? Yes, all is ready.

'lhe read is canplete.

Display data read fran disk (only first $30 bytes).

OOAOO
OOOAlO
OOOA20

41 F8 10 00 20 3C 00 00 02 FF 11 00 51 ca FF FC Ax •• < •••••• QH.:
60 EE 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 'nNqN:)NqNqNqNqNq
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ••••••••••••••••

TENbug 2.x > M Al2;L
OOOA12
OOOA16
OOOAlA
OOOAlE
OOOA22

4E714E71 ? -1
4E714E71 ? -1
4E714E71 ? -1
4E710000 ? -1
00000000 ? -.

TENbug 2.x > ·roe
-RFAD OR WRITE (R/W) = ••••••••• R ? W

MEMORY ADDRESS FOR DISK I/0=.$00000AOO ? (CR)
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $02 ? (CR)

CONTROLLER NUMBER= ••••••• $00 ? (CR)
FIRST BLOCK NUMBER=.$00000500 ? (CR)

NUMBER OF (256 BYTE) BLOCKS= ••••• $0001 ? (CR)

ARE YOU SURE (Y/N) ? Y

"W'' ca-1PLETE

TENbug 2.x >

Make change to RAM where routine was loaded.

Request physical disk I/O to write to a disk.
Change to W for write.
Use previous address.
Drive is fine; no change.
No change.
lb change.
No change.

Last chance; are you sure? Yes, all is reedy.

write is canplete.

IOP

4.2.24 I/O 'leach for a Disk (IOT) IOT

IOT [<device>] [<controller>]

where:

device Is a single hexadecimal digit, O through 3, specifying the
disk to be recd. Default value is o.

controller Is a single hexadecimal digit, 0 or 1, specifying the ~INl
controller through which the disk i_s connected. Default value
is o.

The IOT camnard allows the user to change the configuration of the IWINl
controller. If the IOT ccmnand is invoked without specifying <device> or
<controller>, the camtard will pranpt for required infonnation. If the <device>
and/or <controller> are specified in the IO'l' ccmnaoo line, the current
configuration is overwritten with the configuration data located on the disk,
without the user having to know am manually enter the parameter info:cmation
required. The parameters required for correct configuration when the options
are not specified depeoo upon the type of drive, as shown below:

WINCHFSTER HARD DISK S.25-INCH FLOPPY DISK

Drive number
Controller number
Sector size
~r of heeds
Number of cylinders
Number of sectors per track

Drive number
Controller number
Sector size.
Number of heads
Number of cylinders
Number of sectors per track
Motorola/IBM fo:cmat
Sirqle- or double-sided media
Single- or double-track density
Single- or double-data density

The IOT camnan:J will present the appropriate questions based upon which drive
has been specified. '!here are four actions that can be taken following a
question mark pranpt:

? •

? A

? <data>

- Entering a carriage return indicates that the existing value for
the current parameter is acceptable; go on · to the next
parameter.

- EnteriBJ a period indicates that this execution of the IOC
ccmnan:J must be terminated now, without asking for more
parameters.

- EnteriBJ a caret symbol indicates that a previous parameter
requires a change am will logically back up one parameter each
time it is entered (until the first entry is reached, where it
will ranain until one of the other responses is received).

- Entering the appropriate data requested (followed by a carriage
return or ENTER) • Often the parameters are checked for valid
.options (i .e, Y or N) •

Appropriate configuration infonnation for specific disk types is listed in the
"Mass Storage" chapter of the VERSAdos · to VME Hardware and Software
Configuration User's Manual.

4-38

EXAMPLE

TENbug 2.x > IOT
DRIVE Y.JMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $02 ? 00

OONTROLLER NUMBER= ••••••• $00 ? (CR)
SECTOR SIZE (0=128,1=256,2-512,3-1024)= ••••••••• l ? .:.~

TENbug 2.x > IOT
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $00 ? 02

CDNTROLLER NUMBER= ••••••• $00 ? (CR)
SECTOR SIZE (0=128,1=256,2-512,3-1024)= ••••••••• l ? (CR)

NUMBER OF HEAOO, (ON THI~ DRIVE)= ••••••• $02 ? (CR)
NUMBER OF CYLINDERS, (ON THIS DRIVE)=.••• .$0050 ? (CR)

s~s PER TRACK= ••••••• $10 ? 8~
MOTOROLA/IBM FORMAT (WI)=•••••••••I ? (CR)

SINGLE/DOUBLE SIDED MEDIA (S/D)=•••••••••D ? (CR)
SUK;LE/DOUBLE TRACK DENSITY (S/D)= •• •• ••••• D ? (CR)
SINGLE/DOUBLE DATA DENSITY (S/D)=•••••••••D ? ~~

Tmbug 2.x > IOT .
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $00 ?

OONTROLLER NUMBER= ••••••• $00 ?
SECI'OR SIZE (0=128,1=256,2-512,3-1024)= ••••••••• l ?

NUMBER OF HEAflj, (ON THIS DRIVE)= ••••••• $01 ?
NUMBER OF CYLINDERS, (ON THIS DRIVE)= ••••• $0001 ?

SECTORS PER TRACK= ••••••• $00 ?

TENbug 2.x > IOT 0
DRIVE NUMBER (O&l=FIXED,2&3=FLOPPY)= ••••••• $00 ?'

OONTROLLER NUMBER= ••••••• $00 ?
SECTOR SIZE (0=128,1=256,2-512,3-1024)= ••••••••• l ?

NUMBER OF HFADS, (ON THIS DRIVE)= ••••••• $06 ?
NUMBER OF CYLINDERS, (ON THIS DRIVE)= ••••• $0132 ?

S~ORS PER TRACK= ••••••• $20 ?

Teadl HtlINl controller a new configuration.
Select drive o.
Use default controller o.
<llange of heart ••• start over again.

Invoke the IOT cannard again.
Configure drive 2 (first floppy).
No change.
No change.
No change.
No change.

. Olange fran 16 sectors/track to e.
No change.
No change.
No change.
<llange to siDJl~ata density.

IOT ccmnard showing default parameters
for hard disk 10. TEtl>ug initializes
the HtlINl. No parameters were entered
fran the menu.

IOT cannard requesting the configuration
data fran the disk am initializing the
IWINl. No parameters were entered fran
the menu.

IOT

t
~
0

TENbug 2.x > IOI'

DRIVE NUMBER (O&l=FIXED1 2&3=FLOPPY)=•••••••$02 ? 0
CONTROLLER NUMBER= ••••••• $00 ? (cR)

SEI.:TOR SIZE(0=128,1=256,2=512,3=1024)= ••••••••• l ? (CR)
NUMBER OF HEAllS, (ON THIS DRIVE)= ••••••• $01 ? (CR)

NUMBER OF CYLINDERS, (ON THIS DRIVE)= ••••• $0001 ? #Ii

NUMBER OF HEA.n9 1 (ON 'DUS DRIVE)= •••• •• .$01 ? 2
NUMBER OF CYLINDERS, (ON THIS DRIVE)= ••••• $0001 ? 132

SECTORS PER TRACK= ••••••• $00 ? 20

TENbug 2.x >

IOT

Invoke IOT to change configuration of hard disk to
allow use as as-megabyte hard disk.

Oops, passed the nmber of heads parameter; back up.
Olange to 2 heads.
Olange to $132 cylirders.
An:! $20 (32) sectors/track.

NOTE: 'Ibese parameters are specifically for the
5-megabyte Winchester hard disk. To fioo out
what a particular Winchester hard disk
requires for configuration, boot the operating
system ard, while "inactive" (not updating
critical files), press the ABORT button. '!hen
enter an IOI' cannaoo ·to see how the boot
device is configured. If all is well, enter
ex> arrl continue with operating system control.

LO

TENbug 2.x > ~ ;X=DU !Q.Q. !§.2. Fnter Load cannand specifying ;x option
(echo S-records to CRT as manory is being
loaded).

OU AOO ASO
PHYSICAL ADDRESS=OOOOOAOO OOOOOASO Notice so, Sl, arx3 S9 records are displayed

upon screen. (Refer to warning in carmand
description about timing restrictions with
the ; X option.)

S0030000FC
Sll30A00000102030405FFFF08090AOBOCOOOEOF79
Sll30Al0101112131415161718191Al.BlClD1ElFSA
Sll30A20202122232425262728292A2B2C202E2F4A
Sll30A30303132333435363738393A3B3C303E3F3A
Sll30A40404142434445464748494A4B4C404E4F2A
Sll30A505051525354555657S8S9SASBSCSDSESF1A
Sll30A60606162636465666768696A6B6C606E6FOA
Sll30A7070717273747S767778797A7B7C707E7FFA
Sl040A8080Fl
S90300000FC

TENbug 2. x > !!2 !Q.Q_ !Q. Display memory containing downloaded data.

OOOAOO
OOOAlO
OOOA20
OOOA30
OOOA40
OOOASO
OOOA60
OOOA70

00 01 02 03 04 OS FF FF
10 11 12 13 14 15 16 17
20 21 22 23 24 2S 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 4S 46 47
SO Sl S2 S3 54 SS S6 S7
60 61 62 63 64 6S 66 67
70 71 72 73 74 7S 76 77

08 09 OA OB OC OD OE OF
18 19 1A lB lC 10 lE lF
28 29 2A 2B ~ 20 2E 2F
38 39 3A 3B 3C 30 3E 3F
48 49 4A 4B 4C 40 4E 4F
58 59 SA SB SC SD SE SF
68 69 6A 6B 6C 60 6E 6F
78 79 7A 7B 7C 7D 7E 7F

NOTE

••••••••••••••••
••••••••••••••••

1 "IS%& I () *+ ,-./
0123456789:;<=>?
@ABCDEFGf IJKLMNO
PQRSTtJVWXYZ(\]A
'abcdefghijklmno
pqrstuvwxyz { I } ".

The host systan used to create and transmit the S-records
was an M:68000 E:lucational canputer Board (MEX68KEX:B).

4-43

4.2.26 Memory Display (MD} MD

MD[<port number>] <address> [<colll'lt>J[;<options>J

The MD carmam displays a portion of memory which begins at <address> aoo
exteoos for the number of bytes or lines given as <count>. '!here are two
fo:cmats that can be requested with the MD cannaoo.

a. The dmp fonnat begins each line with the starting or next hexadecimal
manory address follow9l by 16 hex bytes per line with the ASCII
equivalent shown to the right. The number of lines varies with the
<count> entered (or default). There are no partial lines. If the byte
count eoos in the middle of a line, the canplete line is displayed.
(Default byte <count> is $10.)

b. The disassembler fonnat provides:

1. The starting or next hexadecimal manory address.

2. The object code displayed in hexadecimal.

3. The M68010 source statement that will assemble into the object code
as described in 2. above.

If the operation code is not valid, a "Define Constant" is constructed
for one word. Notice that <count> for the disassenbler mode is. a number
of source lines to be disassenbled arxl displayed, not the number of
bytes. (Default line <CQunt> is $10.)

Default destination is the console tenninal. Specifying MD<port number> allows
the output to be directed to another port.

Valid port numbers for this cannarxl are:

PORT NUMBER

none
1
2
3
4
5

DF.SCRIP!'ION

Defaults to TENbug port 1 (VME/10 built-in te:cminal/keyboard).
Specifies TENbug port 1 (VME/10 built-in terminal/keyboard) •
Specifies TENbug port 2 (MVME400 port 2 - 7201/B).
Specifies TENbug port 3 (MVME400 port 1 - 7201/A).
Specifies TENbug port 4 (MVME410 port 1 - PIA/A) •
Specifies TENbug port 5 (MVME410 port 2 - PIA/B).

Options supported are the disassembler and the screen option.

;DI Requests the disassembler option. The <count>, if provided, is a
line count (default is $10).

;s Requests the display of a full screen of memory (16 lines of
display in either dump or disassembler fo:cmat). Notice that the
default for disassembly is $10 (or 16 decimal) anyway. If the
<count> and· ;S option are both entered within the same MD Camtarxl,
the ;S option has priority.

All canbinations are valid (e.g., ;DIS, ;SDI, ;s DI, ;DIS).

4-44

.i:i.

~
\0

4.3 COMMAND SUMMARY

The canmarrls am options available to TENbug 2.x users are sunmarized in Table 4-2.

TABLE 4-2. TENbug Ccmnaoo aoo Option Sumnary

COMMAND

[NO]BARS

BF <addressl> <address2> <pattern>

BH [<device>] [,<controller>]

BI <address!> <address2>

BM <addressl> <address2> <address3>

BO [<device>] [,<controller>J[,<string>J

[NO]BR [<address>[;<count>J) •••

BS <addressl> <address2> '<literal string>'
<addressl> <address2> <data>[<mask>J [;<option>]

BT <addressl> <address2>

[NO]CH [<bits>]

CRT

CS [<cddressl>J [<a:idress2>]

i:::c <expression>

OF

DU[<port number>] <a:idressl> <address2> [<text>]

GD [<a:idress> J ·

DF.SCRIPTION

Draw graphics test pattern.

Block fill.

Boot aoo halt.

Block initialize.

Block aove.

Boot operating system •

Set ard remove breakpoints.

Block search; options ;B ;W ;L ;-B ·;..w ;-L.

Block test.

Alter character display map.

Alter CRT control registers •.

Checksum.

Data conversion/evaluation.

Display foi::matted registers.

Illnp manory (S-records).

Go direct.

I

TABLE 4-2. TENbug Camia1...a and Option Smmary (cont'd)

COMMAND

G[O] [<address>]

[NO)GR [<bits>]

GT <tanporary breakpoint address>

HE

IOC

IOP

IOT [<device>J[<controller>J

LO(<port number>] (;<options>] =<text>

MD(<port number>) <cddress> (<count>] [;<options>)

M(M] <address>(;<options>]

MS <address> <data>

OF

(NO]PA(<port number>)

PF(<port number>]

'IM [<exit character> (<trailiBJ character>])

T[R] [<count>]

TT <breakpoint address>

VE(<port number>] (;<options>] =<text>

VM

DFSCRIPTIOO

Install breakpoints and go.

Alter graphics display map.

Go until address.

Display carmards/registers.

Issue R'lINl carmard.

Issue physical read/write.

'leach RiINl a configuration.

Load (S-records).

Manory display; options ;DI ;s.

Manory modify; options ;W ;L ;o ;V ;N ;DI.

Manary set (also Afl:!II).

Offset register display.

Printer attach/detach.

Port fonnat.

Transparent mode.

Trace.

Trace until address.

Verify (S-records).

Toggle video map.

I

ERROR MESSAGE

PRINTER NOT READY

Error

ILLEGAL INSTRUCTION

•••• Error Trap

Offset Vector $xxx Error Trap

Invalid Option •••
valid options are ••• ;DI or ;S

IS NOT A HEX DIGIT

DATA DID NOT STORE

Invalid Address

What?

NOT HEX

APPENDIX B

TENbug MESSAGES

MEANING

Printer is not properly connected or cannot
receive output.

Error (pref ix) •

Instruction used an illegal opcode.

See Traps in M68000 16/32-Bi t Microprocessor
Programmer's Reference Manual.

Indicates uninitialized vector.

Memory Display command response to invalid
option.

Improper character entered in a field that
requires a hexadecimal digit.

Data did not go where intended (such as
attempting to write to ROM).

Address too big (1 in bits 24 - 31) or odd for
.w or .L (1 in bit 0).

Program does not recognize user's entry.

Same as IS NOT A HEX DIGIT.

DISK ERROR: Status=xx xx xx xx xx xx xx xx xx xx
DISK ERROR: Status=Busy Refer to the Winchester Disk Controller User's

Manual for explanation of the ten status
bytes.

B-1

OTHER MESSAGE

TENbug 2.x >

Software Abort

Break

At Breakpoint

Physical .Address

.PC within "DEBUGGER"

Booting fran: x~xx

Booting from ROM: xxxx

MEANING

TENbug 2.x pranpt.

Displayed when ABORT button is used.

BREAK key has been used.

Indicates program has stopped at breakpoint.

Actual address calculated using parameters and
relative offsets.

Displayed by trace comnands indicating care
must be taken while "TESTIN:;" within TENbug
(e.g., with breakpoints and STACK).

Indicates the volume ID of the disk being
booted. Message is suppressed if volume ID is
null.

Indicates the name of the routine in ROM that
is receiving control during the ROMBOOT
procedure.

B-2

APPENDIX C

CONFIGURATION AREA

Disks initialized using some systems contain a Volume Identification Block and a
Disk Configuration Block in sectors 0 and 1, respectively. TENbug looks for
either "EXORMACS" or "MOTOROLA" in locations $F8-$FF of sector O to validate the
disk. Refer to paragraph 1.3.3 for more information used from the volume ID.
TENbug then uses the following parameters from the Disk Configuration Block to
access the disk:

Attributes word

Physical sectors per track on media

Number of heads on drive

Number of cylinders on media

Physical sector size of media

Precompensation cylinder number

The complete Disk Configuration Block is shown below:

256-BYTE
SOCTOR 1
OFFSET

0
1
2
3
4
6
8
10 {$A)
12 {$C)
16 {$10)
20 {$14)
24 {$18)
25 {$19)
26 {$1A)
28 {$1C)
29 {$1D)
30 ($1E)
32($20)
34 ($22)
36 ($24)
38($26)
39($27)
40 ($28)

LENGTH
IN

BYTES

1
1
1
1
2
2
2
2
4
4
4
1
1
2
1
1
2
2
2
2
1
7
60{$D8)

PARAMETER
DESCRIPI'ION

DEVICE STATUS
OR

CONFIGURATION ERROR CODE
CHANNEL TYPE
DEVICE TYPE
DRIVER CODE
ATTRIBUTES MASK
PARAMETERS MASK
ATTRIBUTES WORD
SECTOR SIZE
TOTAL SECTORS
WRITE TIMEOUT {UNUSED)
READ TIMEOUT {UNUSED)
PHYSICAL SECTORS PER TRACK ON MEDIA
NO. OF HEADS ON DRIVE
NO. OF CYLINDERS ON MEDIA
INTERLEAVE FACTOR ON MEDIA
SPIRAL OFFSET ON MEDIA
PHYSICAL SECTOR SIZE OF MEDIA
PHYSICAL SECTOR SIZE OF DRIVE
NUMBER OF CYLINDERS ON DRIVE
PROCOMPENSATION CYLINDER # {usually • 5 total cyl)
PHYSICAL SECTORS PER TRACK ON DRIVE
RESERVED
UNUSED

C-1

Disks initialized on some systems may not contain the Volume Identification
Block or the Disk Configuration Block. These disks cannot be accessed by TENbug
until the locations $F8-$FF of sector O are modified to contain either
"EXORMACS" or "MOTOROLA". TENbug then uses the following default values to
access the disk. These default values will allow access of track 0 for all
configurations.

RWINl
FLOPPY HARD

PARAMETER DESCRIPTION DISK DISK

Attributes word $OF $10

Physical sectors per track on media 10 N/A

Number of heads on drive 2 1

Number of cylinders on media 50 1

Physical sector size of media N/A N/A

Precanpensation cylinder number N/A 0

The attributes word is defined as:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
I 0 I 0 I 0 I MT I SN I DS I MF I TD I

MT - Media Type
0 = Floppy disk
1 = Hard disk

SN* - Sector Numbering
O = Motorola format
1 = IBM format

DS* - Diskette Sides
O = Single sided
1 = Double sided

MF* - Recording Method
O = Single data density (FM)
1 = Double data density (ME'M)

TD* - Track Density
O = Single track density (48 TPI)
1 = Double track density (96 TPI)

* Floppy disk attribute only.

C-2

APPENDIX D

S-ROCORD OUTP1JI' FORMAT

The S-record format for output modules was devised for the purpose of encoding
prcgrams or data files in a printable format for transportation between canputer
systems. The transportation process can thus be visually monitored and the
S-records can be more easily editerl.

S-RECORD CONTENT

When viewerl by the user, S-records are essentially character strings made of
several fields which identify the record type, record length, manory address,
code/data, am checksum. Each byte of binary data is encoded as a 2-character
hexadecimal number: the first character representing the high-order four bits,
and the second the low-order four bits of the byte.

The five fields which canprise an S-record are shown below:

+--------+---------------+-------------+-----------------------+------------+ I type I record length I address I code/data I checksum I
+--------+---------------+-------------+-----------------------+------------+

where the fields are canposerl as follows:

PRINTABLE
FIELD CHARACTERS

type 2

record length 2

address 4, 6, or 8

code/data 0-2n

checkst.nn 2

CONTENTS

S-record type -- SO, Sl, etc.

The count of the character pairs in the record,
excluding the type arrl record length.

The 2-, 3-, or 4-byte address at which the data
field is to be loaded into memory.

Fran 0 to n bytes of executable code, manory
loadable data, or descriptive information. For
canpatibili ty with teletypewriters, some prcgrams
may limit the number of bytes to as few as 28 (56
printable characters in the S-record).

The least significant byte of the one's complement
of the sum of the values represented by the pairs
of characters making up the record length, address,
and the code/data fields.

When downloading S-records to TENbug, each record must be terminaterl with a CR.
Additionally, an S-record may have an initial field to accaru:rodate other data
such as line numbers generaterl by sane time-sharing systems.

Accuracy of transmission is ensurerl by the record length (byte count) and
checkstnn fields.

D-1

S-RECORD TYPES

Eight types of S-records have been defined to accanm:>date the several needs of
the encoding, transportation, and decoding functions. The various Motorola
upload, download, an:l other record transportation control programs, as well as
cross assemblers, linkers, and other file-creating or debugging programs,
utilize only those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a particular program,
the user's manual for that program nust be consulted.

An S-record-format module may contain S-records of the following types:

SO The header record for each block of S-records. The code/data field may
contain any descriptive information identifying the following block of
S-records. Under VERSAdos, the resident linker's !DENT canmand can be
used to designate module name, version nurrber, revision number, arrl
description information which will make up the header record. The
address field is normally zeros.

Sl A record containing code/data arrl the 2-byte address at which the
code/data is to reside.

82 A record containing code/data and the 3-byte address at which the
code/data is to reside.

S3 A record containing code/data and the 4-byte address at which the
code/data is to reside.

SS A record containing the number of Sl, S2, and S3 records transmitted in
a particular block. This count appears in the address field. There is
no code/data field.

S7 A termination record for a block of S3 records. The address field may
optionally contain the 4-byte address of the instruction to which
control is to be passed. There is no code/data field.

88 A termination record for a block of S2 records. The address field may
optionally contain the 3-byte address of the instruction to which
control is to be passed. There is no code/data field.

S9 A termination record for a block of Sl records. The address field may
optionally contain the 2-byte address of the instruction to which
control is to be passed. Under VERSAdos, the resident linker's ENTRY
camnan:l can be used to specify this address. If not specified, the
first entry point specification encountered in the object module input
will be used. There is no code/data field.

Only one termination record is used for each block of S-records. S7 and S8
records are usually used only when control is to be passed to a 3- or 4-byte
address. Otherwise, an S9 record is used for termination. Normally, only one
hea:ler record is used, although it is possible for multiple header records to
occur.

D-2

CREATION OF S-RECORDS

S-record-fonnat prCXJrams may be produced by several dump utilities, debuggers,
the VERSAdos resident linkage editor, or several cross assemblers or cross
linkers. On VERSAdos systems, the Build Load Module (MBLM) utility allows an
executable load module to be built from S-records, and has a counterpart utility
in BUILD.S, which allows an S-record file to be created fran a load module.

PrCXJrams are available for downloading or uploading a file in S-record fonnat
from a host system to an 8-bit microprocessor-based or a 16-bit microprocessor
based sys tern.

EXAMPLE

Shown below is a typical S-record-format module, as printed or displayed:

S00600004844521B
Sll30000285F245F2212226A000424290008237C2A
Sll300100002000800082629001853812341001813
Sll3002041E900084E42234300182342000824A952
Sl07003000144ED492
S90300000C

The module consists of one SO record, four Sl records, arrl an S9 record.

The SO record is canprised of the following character pairs:

so

06

00
00

48
44
52

lB

S-record type SO, irrlicating that it is a header record.

Hexadecimal 06 (decimal 6), irrlicating that six character pairs (or
ASCII bytes) follow.

A 4-character, 2-byte address field; zeros in this example.

ASCII H, D, and R - "HDR".

The checksum.

The first Sl record is explained as follows:

Sl S-record type Sl, indicating that it is a code/data record to be
loaded/verified at a 2-byte crldress.

13 Hexadecimal 13 (decimal 19), indicating that 19 character pairs,
representing 19 bytes of binary data, follow.

00 A 4-character, 2-byte address field; hexadecimal address 0000; where
00 the data which follows is to be loaded.

D-3

5

The next 16 character pairs of the first Sl record are the ASCII bytes of the
actual program code/data. In this assembly language example, the hexadecimal
opcodes of the pr03ram are written in sequence in the code/data fields of the Sl
records:

OPCODE

285F
245F
2212
226A0004
24290008
237C

INSTRUCTION

MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L

(A7) +,A4
(A7)+,A2
(A2) ,Dl
4(A2),Al
FUOCTION(Al),02
#FORCEFUNC,FUNCTION(Al)

• (The balance of this code is continued in the
code/data fields of the remaining Sl records,
and stored in memory location 0010, etc.)

2A The checksum of the first Sl record.

The second and third Sl records each also contain $13 (19) character pairs and
are errled with checksums 13 arrl 52, respectively. The fourth Sl record contains
07 character pairs and has a checksum of 92.

The S9 record is explained as follows:

S9

03

00
00

FC

S-record type S9, indicating that it is a termination record.

Hexadecimal 03, indicating that three_character pairs (3 bytes) follow.

The address field, zeros.

The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal (ASCII in this
example) representation of the binary bits which are actually transmitted. For
exanple, the first Sl record above is sent as:

!n!! !!!!il!! .!!!!!.!!!!! code/data checksum

s 1 1 3 0 0 0 0 2 8 5 r ... 2 A

3 3 1 3 1 3 3 3 0 3 0 3 0 3 0 3 2 3 8 3 5 4 6 ... 3 2 4 l

0101_10011 qo11 jooo1 0011 !0001 0011 }011 0011 Toooo 0011 Ioooo 0011 }ooo 0011 Toooo 0011 Joo10 0011 }ooo 0011 10101 0100 }110 ... 0011 }010 0100 Iooo1

D-4

SUGGESTION/PROBLEM
REPORT QUALITY • PEOPLE • PERFORMANCE

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282

Attention: Publications Manager
Maildrop DW164

Product:---------------

Please Print

Name _______________ _

Company ______________ ~

Street----------------

City----------------

Manual:----------------

Title-----------------

Division----------------

Mail Drop _____ Phone ______ _

State _________ Zip _____ _

For Additional Motorola Publications
Literature Distribution Center

Four Phase/Motorola Customer Support, Tempe Operations
(800) 528-1908

616 West 24th Street (602) 438-3100
Tempe, AZ 85282
(602) 994-6561

®MOTOROLA

~ NIOTOROl.A Semiconductor Products Inc.
Q P.O. BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC.

17622 PRINTED IN USA (6/84) MPS 4M

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	A-01
	A-02
	A_001
	A_1-01
	A_1-02
	A_1-03
	A_1-04
	A_1-05
	A_1-06
	A_4-13
	A_4-14
	A_4-15
	A_4-16
	A_4-37
	A_4-38
	A_4-39
	A_4-40
	A_4-43
	A_4-44
	A_4-69
	A_4-70
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	reply
	xBack

