
MVME135BUG/D2

MVME135 Debug Monitor
135Bug Debugging Package

®MOTOROLA

PRELIMINARY

MVME135 DEBUG MONITOR
135Bug DEBUGGING PACKAGE

MVME135BUG/D2
MARCH 1988

The information in this document has been carefully checked and is
believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Furthermore, Motorola reserv.es the right
to make changes to any products herein to improve reliability,
function, or design. Motorola does not assume any liability arising
out of the application or U'Se of any product or circuit describe~
herein; neither does 1t convey any license under its patent rights
or the right.s of others.

EXORmacs~ VERSAdos, VMEmodul~, VME/10, and 135Bug are trademarks of:
Motorola Inc.

UNIX is a registered trademark of AT&T.

Second Edition

Copyright 1988 by Motorola.Inc.

First Edition April 1987

TABLE OF CONTENTS

1. GENERAL INFORMATION • • • • • • • •
1. 1 Description of 135Bug • • • •••
1.2 HowToUseThisManual.. • •••
1.3 Installation and Start-Up •••••••••
1.4 MVME135 Board Operation With l35Bug ••
1.4.1 MVME135 Switch Settings •••••••••
1. 4. 1. 1 BOOT Switch • • • • • • • •
1.4.l.2 ENV0 and ENVl Switches •••••••••
1. 4. 1. 3 MPSUP Switch • • • • • • • • • • • • • • • •
1.4.2 MVME135 Port Configurations •••••••
1.4.3 Z8036CIOTimerRegisters •••••
1 . 5 Memory Requirements • • • • • • • • •
I • 5. 1 EPROM Mapping • • • • • • • • • • • •
1.5.2 RAM Allocation ••••••••••
1 • 6 AUTOBOOT • • • • • • • • • • • • • • • • •
1.7 Multi-Processing Support (MPSUP) •••••
1 . 8 Reference Documentation • • • • • • • • •

2. USING THE 135Bug DEBUGGER ••••
2 .1 Entering Debugger Command Lines
2.l.l Syntactic Variables •••••
2. l. l. l Expression as a Parameter • • • • • •
2. 1. 1. 2 Address as a Parameter • • • • • •
2.2 Terminal Input/Output Control •
2. 3 Entering and Debugging Programs • • • •
2. 4 System Utility Ca 11 s from User Programs
2.5 Restarting the System •••••••••
2 . 5 . 1 Reset • • • • • • • • • • • • • • • •
2 .. 5. 2 Abort • . • • . • • • . • • •
2o5.3 Break It •••••••••••••••

2. 6 Preserving Debugger Operating Environment
2. 6 .1 135Bug Vector Table and Workspace • •
2. 6. 2 Exception Vectors Used By 135Bug •••
2.6.2.1 Using 135Bug's Target Vector Table •
2.6.2.2 Creating a New Vector Table ••••••
2.6.2.3 135Bug Generalized Exception Handler
2. 7 Disk I/0 Support • • • • • • • • • • • • • ••
2. 7 .1 Blocks Versus Sectors •••••••
2. 7. 2 Disk I/0 vi a 135Bug Commands •
2.7.2.1 IOP (Physical 1/0 to Disk) ••••
2.7.2.2 IDT (I/OTeach) •••••••••
2.7.2.3 IOC (1/0 Control) ••••••
2.7.2.4 BO (Bootstrap Operating System) ••
2.7.2.5 BH (Bootstrap and Halt} ••••
2.J.3 Disk 1/0 via 135Bug System Calls •••••

- i -

1-1
1-1
1-4
1-4
1-7
1-7
1-7
1-8
1-9
1-9
1-9

1-10
1-10
1-10
1-13
1-15
1-17

2-1
2-1
2-2
2-2
2-3
2-7
2-7
2-8
2-8
2-8
2-9
2-9
2-9
2-9

2-10
2-11
2-12
2-14
2-16
2-16
2-16
2-16
2-17
2-17
2-17
2-17
2-17

2. 7 .4 Default 135Bug Controller and Device
Parameters ••••••••

2. 7. 5 Disk 1/0 Error Codes • • • • • • • • •
2.8 Additional Support Features ••••
2. 8 .1 Function Code Support • • • • • •
2.8.2 Diagnostic Facilities ••••••••••••
2.8.3 Floating Point Coprocessor Support •••
2.8.4 Paged Memory Management Unit Coprocessor

Support •••••

3. THE 135Bug DEBUGGER COMMAND SET
3.1 Introduction •••••••••
3.2 Block of Memory Fill ••••••••
3.3 Bootstrap Operating System and Halt ••••
3. 4 Block of Memory Move • • • •
3.5 Bootstrap Operating System
3. 6 Breakpoint Insert/Delete
3. 7 Block of Memory Search • • • • • • • • • • • • •
3. 8 Block of Memory Verify • • • •
3. 9 Data Conversion • • • • • •
3. HJ Dump $-Records •••••••••••
3. 11 Go Direct (Ignore Breakpoints) •
3 .12 Go To Next Instruction •••••
3. 13 Go Execute User Program • • • • • • •
3 .14 Go To Temporary Breakpoint • • •••
3.15 Help ••••••••••••
3 .16 1/0 Control For Disk •••••
3.17 1/0PhysicaltoDisk •••••••••
3.18 I/0 Teach Disk Configuration. • • ••••••••
3 .19 Load S-Records From Host •••••••
3.20 Macro Define/Display/Delete ••
3.21 Macro Edit ••••••••••••••
3.22 Enable/Disable Macro Expansion Listing.
3. 23 Save/Load Macros • • • • • • • •
3.24 Memory Display ••••••••••••••
3.25 Memory Modify •• · •••••••••••••••
3. 26 Memory Set • • • • • • • • • • • • • •
3.27 Offset Registers Display/Modify ••••••
3. 28 Printer Attach/Detach • • • • •
3. 29 Port Format • • • • • • • • • • • • • • • • • •
3.29.1 Listing Current Port Assignments ••
3.29.2 Configuring a Port •••••••••
3.29.3 Parameters Configurable by Port Format ••
3.29.4 Assigning a New Port •
3.30 Register Display ••
3.31 Cold/Warm Reset • • • • ••••••••••
3.32 RegisterModify... • ••••
3. 33 Switch Directories • • • • • •
3 . 34 Trace • . • . • . . . •
3. 35 Trace On Change Of Contra 1 Fl ow • • • •

- i i -

· 2-18
2-18
2-19
2-19
2-20
2-20

2-24

3-1
3-1
3-3
3-6
3-7

3-10
3-13
3-14
3-18
3-20
3-22
3-26
3-28
3-30
3-33
3-35
3-37
3-38
3-42
3-51
3-55
3-58
3-60
3-61
3-63
3-65
3-69
3-70
3-73
3-75
3-75
3-75
3- 77
3-78
3-80
3-86
3-87
3-91
3-92
3-95

3. 36 Transparent Mode • • • • • • •
3. 37 Trace To Temporary Breakpoint •
3.38 Verify S-Records Against Memory

4. USING THE ONE-LINE ASSEMBLER/DISASSEMBLER
4.1 Introduction ••••••••••••••••••••
4 .1.1 MC681112111 Assembly Language • • • • • • • • • •
4.1.1.1 Machine-Instruction Operation Codes •••••••
4. 1 . 1 • 2 Directives • • • • • • • • • • • • • • • • • •
4.1.2 Comparhon with MC681112111 Resident Structured

Assembler • • • • • • • • • • •••
4.2 SourceProgramCoding •••••.•••••••
4. 2. 1 Source Line Format •••••••••••
4.2.1.1 Operation Field • • • • • • • • • ••••••
4.2.1.2 Operand Field •••••••••••
4.2.1.3 Disassembled Source Line ••••••
4.2.1.4 Mnemonics and Delimiters ••••
4. 2 .1. 5 Character Set • • • • • • • • •
4. 2. 2 Addressing Modes • • • • • • • • • •
4. 2. 3 DC. W Def; ne Constant Directive •
4.2.4 SYSCALL System Call Directive ••
4. 3 Entering and Modifying Source Program • • • • • • • •
4.3.1 Invoking the Assembler/Disassembler
4.3.2 Entering a Source Line •••••••
·4. 3. 3 Entering Branch and Jump Addresses
4.3.4 Assembler Output/Program Listings ••••

5. SYSTEM CALLS • • • • • • • • • • • •
5.1 Introduction •••••••••••••
5.1.1 Invoking System Calls Through TRAP #15
5 .1. 2 String Formats for 1/0 • • •••••
5.2 System Call Routines ••••
5 •. 2.1 .INCHR function ••
5.2.2 .INSTAT Function • • • • •••
5.2.3 . INLN Function • • • ••••
5. 2. 4 . READSTR Function • • • • •
5·.2.5 .READLN Function •••••
5.2.6 .CHKBRK Function • • • • •••
5. 2. 7 • DSKRD, . DSKWR Function • • • •
·5.2.8 .DSKCFIG Function • • • • ••••
5.2.9 .DSKFMT Function •••••••••
5.2.10 .DSKCTRL Function •••••••••
5.2.11 .OUTCHR Function
·5.2.12 .OUTSTR, .OUTLN Function •••••••••
5.2.13 .WRITE, .WRITELN Function
5.2.14 .PCRLF Function •••••••
5.2.15 .ERASLN Function ••••
5.2.16 .WRITD, .WRITDLN Function
5. 2. 17 . SNDBRK Function
·5.2.18 .TM_INI Function

- iii -

.3-97
3-98

3-11110

4-1
4-1
4-1
4-1
4-1

4-2
4-3
4-3
4-3
4-4
4-4
4-5
4-7
4-8

4-12
4-12
4-13
4-13
4-14
4-15
4-15

5-1
5-1
5-1
5-2
S-2
5-4
5-5
5-6
5-7
5-8
5-9

5-10
5-14
5-19
5-22
5-2.4
5-25
5-26
5-28
5-29
5-3111
5-32
5-33

5.2.19 .TM STR0 Function
5.2.20 • TM-RD Fu.net ion
5.2.21 • DE[AY Function .
5.2.22 • RED IR Function
5.2.23 .REDIR I, .REDIR O Function
5.2.24 • RETURN Function-
5.2.25 .BINDEC Function
5.2.26 .CHANGEV Function
5.2.27 • STRCMP Function
5.2.28 • MULU32 Function
5.2.29 .DIVU32 Function . . "
APPENDIX A - S-RECORD OUTPUT FORMAT

APPENDIX B - INFORMATION USED BY B0/BH COMMANDS

APP.ENDlX C - DISK CONTROLLER DATA ••••••

APPENDIX O - OlSK COMMUNI'CATION STATUS CODES •

APPENDIX E - VME135 STATUS-REGISTER (STATl)

APPENDIX F - MAPPING SWITCH (S3) •••••••

APPENDIX G - VME135 CONFIDENCE TEST STATUS CODES

- i V -

5-34
5-35
5-36
5-37
5-39
5-40
5-41. . . . 5-42
5-44
5-45

. 5-46

A-1

8-1

C-1

0-1

E-1

F-1

G-1

LI ST OF FI GU RES

FIGURE 1-1. FLOW DIAGRAM OF 1358ug OPERATION MODE 1-2

LIST OF TABLES

TABLE 1-1. 135Bug ENVIRONMENT OPTIONS

TABLE 1-2. RESERVED CIO REGISTERS •••

TABLE .2-1. DEBUGGE.R ADDRESS PARAMETER FORMATS

TABLE 2-2. EXCEPTION VECTORS USED BY 135Bug

TABLE 3-1. DEBUGGER COMMANDS • • • • • • •

TABLE 4-1. 135Bug ASSEMBLER ADDRESSING MODES •

TABLE 5-2. 135Bug SYSTEM CALL ROUTINES • • •

- vi -

1-8

1-10

2-4

2-10

3-1

4-9

5-3

PRELIMINARY

1.1 Description of 135Bug

CHAPTER 1
GENERAL INFORMATION

MVME135BUG/D2

The 135Bug package (MVME135BUG) is a powerful evaluation and
debugging tool for systems built around the MVME135 processor
module. Facilities are available for loading and executing user
programs under complete operator control for system evaluation.
135Bug includes commands for display and modification of memory,
breakpoint capabilities, a powerful assembler/disassembler useful
for patching programs, and a self test on power up feature which
verifies the integrity of the system. Various 135Bug routines that
handle 1/0, data conversion, and string functions are available to
user programs through the TRAP # 15 handler.

1358ug consists of three parts; (1) a command-driven user
; nteract i ve software debugger, described in Chapter 2 and hereafter
referred to as the debugger, (2) a command-driven diagnostic package
for the VME135 hardware, described in th-i!- MVME135 Diagnostic
Firmware User's Guide (Motorola Pu~lication MVME135DIAG) and
hereafter referred to as the diagnostics, and (3) a user interface
which accepts commands from the system console terminal .

When using 1358ug the -user wil 1 either operate out of the debugger
directory or out of the diagnostic directory. If the user is in the
debugger di rectory then the debugger prompt 135Bug> , wi 11 be
displayed and the user will have all of the debugger commands at his
disposal. If _the user ;s in the diagnostic directory then the
diagnostic prompt 135Diag>, will be displayed and the user will have
all of the diagnostic commands at his/her disposal u well as all of

.the debugger commands. The user may switch between directories by
using the SD command, described in Chapter 3, or ~ay ~xamine the
commands in the particular directory that he/she is currently in by
using the HE command, also described in Chapter 3.

· Since 135Bug is command-driven, it performs its various operations
in response to user commahds entered at the keyboard. Figure 1-1
i 1 ,:ustrates the fl ow of control in 135Bug. When a command is
entered, 135Bug wt 11 · execute the command and the prompt wt ll
reappear. However, if a command is entered which causes execution
of user target code (i.e., GO) then control may or may not return to
135Bug, depending on the outcome of the user progr_am.

Those users who have used one or more of Motorola's other debugging
packages will find 13SBug very similar. There are two noticeable.
differences. Many of the commands are more flexible and powerful.
Also, the debugger in general is more: "user-friendly", with more

.detailed err.or messages and an expanded on-l_ine help facility.

1-1

PRELIMINARY MVME135BUG/D2

1.2 How To Use This Manual
If the user ·has never used a debugging package before, then he/she
should read all of Chapters 1 and 2 before attempting to use 135Bug.
This will give an idea of 135Bug's structure and capabjlities.

Section 1.3, entitled "Installation and Start-up", describes a
step-by-step procedure to follow to power up the module and obtain
the 135Bug prompt on the terminal screen.

For a question about syntax or operation of a particular 135Bug
command, the user may turn to the entry for that particular command
in the section describing the command set (Chapter 3).

Some debugger commands take advantage of the built-in one-line
assembler/disassembler. The command descriptions in Chapter 3
assume that the user al ready understands how the
assembler/disassembler works. Refer to the assembler/disassembler
description in Chapter 4 for details on its use.

NOTE: In the examples shown, all user input is given in bold script.
This is done for clarity in understanding the examples (to
distinguish between character input by the user and character
output by 135Bug). The symbol < CR> represents the carriage
return key on the user's terminal keyboard. Whenever this
symbol appears it means that a carriage return should be
entered by the user.

1.3 Installation and Start-Up

To enable 135Bug to operate properly with the MVME135 module, the
following set-up procedure must be followed:

CAUTION
INSERTING OR REMOVING MODULES WHILE POWER
IS APPLIED COULD DAMAGE MODULE COMPONENTS.

1. Refer to the MVME135 User's Manual (Motorola Publication Number
MVME135) and configure the mini-jumpers on the module as required
for the user's particular application. The only mini-jumper
configuration which is specifically dictated by 135Bug is J7.
Jumper J7 must be configured with a jumper pin across pins (2-3).

NOTE: This jumper block configures the EPROM sockets at U54 (odd
byte) and U56 (even byte) to accept 64K x 8 devices. This
is the configuration of the MVME135 module as shipped from
the factory.

1-4

PRELIMINARY MVME135BUG/02

2. Configure status switches S3 and S4 on the MVME135 as required
for the user's particular application. Refer to Appendices E and
F for configuration details. Configure the BOOT switch (S4-10),
the MPSUP switch (S4-9), and the ENVII, ENVl switches (S4-3,4) to
select the desired power-up/reset mode. These switches are
described in detail in section 1.4.1.

3. Be sure that the two 135Bug EPROM's are installed in locations
U54 and U56 of the MVME135 module.

4. Refer to the set-up procedure for the user's particular chassis
or system for details concerning the installation of the MVME135.

5. Connect the terminal which is to be used as the 135Bug's system
console to the connector lablt!d Ser Port 1 on the MVME135. Set up
the termi na 1 as fo 11 ows:

Step A - Eight bits per character.

Step B - One stop bit per character.

Step C - Parity disabled.

Step D - Baud rate for the terminal connected to MVME135 port 1
must be set to 9600. After power-up, the baud rates as
well ·as other port characteristics may be changed via
software using the debugger's PF. (Port Format) command.

NOTE: In order for high-baud rate serial communication between
135Bug and the terminal to work, the terminal must do some
"handshaking". If the terminal being used does not do
hardware handshaking via the CTS line (EXORterms do
hardware handshaking) then it must do XON/XOFF ·
handshaking. If the user gets garbled messages and missing
characters then he/she should check the terminal to make
sure XON/XOFF handshaking is enabled.

6. If it is desired to connect up some device (i.e., a host computer
system or a serial printer) to por·t 2, connect the RS-232 cable
for the device to the connector l abl ed Ser Port 2 on the MVME135.
The characteristics for this port may be reconfigured later using
135Bug's PF command.

7. Power up the system. 135Bug will execute some self-checks and
display the debugger prompt 135Bug>. The messages displayed will
vary depending on the system configuration and integrity. These
messages are explained below:.

1-5

PRELIMINARY MVME135BUG/02

a) A Confidence Test is unconditionally run at power up/reset. If
the Confidence Test passes, a message is not displayed, but if
any section of the test fails, the message, followed by a code
indicat-ing the failure mode is displayed as follows:

Confidence Test Failed, Code XX

Refer to Appendix G for an explanation of the Confidence Test
failure codes. The code is also available in the MP Comm Byte
of the MP-CSR. A non-zero value indicates a failure. The
board FAIL light will remain lit, on Confidence Test failure ..

b) If the MVME135 contains a MC68881 Floating' Point Co
Processor, a FPC Confidence Test will be executed. If the FPC
Confidence test executes without error, the message

FPC passed

is displayed, otherwise the message

FPC failed

.... is displayed. If a FPC is not detected, the following
message is displayed.

No FPC detected

c) If the MVME135 contains. a MC68851 Paged Memory Management
Unit, a PMMU Confidence Test will be executed. If the PMMU
Confidence test executes without error, the message

PMMU passed

is displayed, otherwise the message

PMMU failed

is displayed. If a PMMU is not detected, the following
message is displayed.

No PHMU detected

1-6

PRELIMINARY MVMEl 3 SBUG/D2

d) Automatic s,z,ng of local memory is performed to determine if
the MVME135 contains a 1- or 4-Megabyte DRAM. Depending on the
amount of local memory found, the following message will be
displayed.

Local Memory size isl MEG (4 MEG)

e) If the local memory fails to respond correctly, the following
message will be displayed.

Loca 1 Memory Failure

An example of the display from power up/reset for a healthy
MVME135 containing a FPC, PMMU, and lMEG of local DRAM follows:

· VME135 Debugger/Diagnostics Rel ease Version V. r - MM/DD/VY
FPC passed
PMMU passed
Local Memory size is 1 MEG
135Bug>

Messages pertaining to the AUTOBOOT function are explained in
section l. 6 Auto boot.

1.4 MVME135 Board Operation With 135Bug

This section describes all switch and jumper settings used by 135Bug
that directly affect its operation. The terminal port assignments
are also defined in this section. All.component initialization
critical to the function of 135Bu:g is discussed in the last portion
of this section.

1.4. l MVME135 Switch Settings
The 135Bug will read the user switch settings and .initialize the
hardware control registers accordingly. Four switcb positions are
used to alter the operati-0n of the 135Bug. These are the
BOOT, ENV0, ENVl, and the MPSUP switches.

1.4.1.1 BOOT Switch
DIP switch S4 on the MVME135 contains a mode control switch, BOOT, at
switch position 10. This switch controls the autoboot function of
135Bug. When the switch is in the ON position, the 135Bug is in
manual boot mode. In manual boot mode, the debugger is entered after
appropriate:itart-up (~ee next section), and the user is presented
with a prompt. To boot~t~ap an operating system, the explicit boot

1-7

PRELIMINARY MVME135BOG/02

commands (BO or BH): :must be entered by the user. When this switch is
in the OFF position, the l35Bug is in automatic boot mode. In
automatic boot mode, the 135Bug attempts to boot from a pre
programmed location in the EPROM or to read a proper boot block from
any devices connected . in the system. The autoboot procedure' is
defined in detail in section 1.6.

In either BOOT mode, the user needs to be aware that all address
information used by the Boot procedure, mainly the target program
counter and stack pointer, is required to be accessible over the
VMEbus. For example, when using OPT0 or OPT!, local memory
addresses must be translated to the addres·s accessible over VME.

NOTE: Translations are done unconditionally when using the 135Bug
01 sk I/0 routines.

1. 4. 1. 2 ENVS and ENVl Switches
DIP switch S4 on the MVME135 contains the mode control switches,
ENVS an{ENVl, at switch positions 3 and 4, respectively. This
switch ·selects one of four possible operating environments, or
"optioni" of 135Bug. 135Bug sets up certain default conditions at
power-up or restart based on these switches. In particular, the
ENVS, ENVl switches dictate the location of 135Bug's vector table
and reserved workspace (see section 1.5, "Memory Requirements" for
·more details on 135Bug memory allocation).

The settings for this switch are shown in the following table. BASE
refers to the first address of allocated RAM as s·een by 135Bug.

TABLE 1-1. 135Bug ENVIRONMENT OPTIONS

OPT ENV0 ENVl Restart Function

" ON ON 135Bug operates locally at BASE .. 0.

1 ON OFF 135Bug operates locally at High memory,
BASE • $FFX00000.

2 OFF ON 135Bug operates over VMEbus BASE, BASE=
0 + OFFSET, with the OFFSET calculated by
(BOARD n - l)* 16K. (n • 1, 2, 3, etc.)

3 OFF OFF 135Bug operates in first off-board VMEbus.
memory, with the OFFSET calculated by ID
byte* 16K.

1-8

PRELIMINARY MVMEl 3 5BUG/D2

Refer to Appendices E and F, MVME135 Status Register STATl (S4) and
the Board ID-Mapping switch (S3), for specifics on setting these
switches to obtain the desired power-up/restart conditions.

1.4. 1 .3 MPSUP Switch

DIP switch S4 on the MVME135 contains a mode control switch, MPSUP,
at switch position 9. This switch enables/disables the feature
which allows a MVME135 or other CPU board to transfer control from
the 135Bug currently executing to a previously specified location.
When this mode is enabled, continuous polling occurs of several MP
CSR bits, as well as MPIRQ, resulting in a psuedo-interrupt under
certain conditions into target code. This is explained in complete
detail in section 1. 7.

1. 4. 2 MVME135 Port Confi gurat; ons
Some 135Bug commands give the user the option of choosing the port
which wi 11 be used for input or output. The valid port numbers which
may be used for these commands are:

0 - MVME135 Terminal Port
1 - MVME135 Host/Printer Port

(MVME135 " Serial Port 1"
(MVME135 " Serial Port 2"

NOTE: These logical port numbers (0 and 1) are referred to as
"Serial Port l" and "Serial Port 2", respectively, by the
MVME135 hardware documentation.

For example, the command DUS (Dump S~Records to Port 0) would
actually output data to the device connected to the serial
port labeled "Ser Port I" on the MVME135 front panel.

1.4.3 Z8036 CIO nmer Reghters
The 28036 CIO counter-timer device on-board the MVME135 module
contains 48 internal registers. Some of these registers are used by
the MVME135 hardware to maintain status and control information.·
135Bug uses two 8-bit registers of the CIO to store the upper word of
the address of its workspace memory. These registers would normally
hold the interrupt vectors to be returned by the CIO (they are unused
because the vectors are returned by a PROM on the MVME135 module).
The value in these registers is used by 135Bug to locate its vector
table, variables, and stack.

If the user elects to use these particular CIO registers containing
the workspace star~ address then 135Bug will not operate. Using
other,CIO registers will impair MVME135 hardware operation.

1-9

PRELIMINARY MVME135BUG/D2

If the user wishes to take advantage of t~e broadcast IRQ mechanism·
in the 135Bug (S4 position 9, M'PSUP • OFF, as explained in sectfon
1. 7), then the CIO PORT B operat,on must remain configured• as per the
135Bug setup. The Interrupt Pending bit in the Port B Control and
Status register, is used for BRIRQ polling and should never be set
when the bug is in operation unless a BRIRQ operation is desired.

The following table summarizes the CIO registers.

TABLE 1-2. RESERVED CIO REGISTERS

Address CIO Register ·MvME135/135Bug Function

SFFFB001ll2 Port A IRQ Vector Used by 1_358ug to store upper byte of
· workspace memor~ start address.

SFFFB0003· Port B IRQ Vector Used by 1358ug to store upper-mjd byte
of workspace memory start address.

SFFFB000D Port A Data MVMEl35 St.atus Register STAT! .•

$FFFB000E Port B Data MVME13S Control Register CNTl.

1. 5 Memory Requ i rements
The program portion of 1358ug is approximately i2BK bytes of code.
In addition, 135Bug requires a minimum of 16K bytes .of read/write
memory to operate.

1.5.l EPROM Mapping
The EPROM sockets on-board the MVME135 module are mapped at
locations $FFF00000 to SFFFIFFFF. The 135Bug code is position
; ndependent and wi 11 execute anywhere in memory.

1.5.2 RAM Allocation
1358ug requires a minimum of 16K bytes of read/write memory to
operate. This memory may either be an off-board system memory
(i.e., on an external memory board such as the MVME2fll4, MVME204-l or
MVME204-2) or 135Bug may utilize its own or another MVME135's on
board read/write memory.

On power-up or restart, 1358ug examines the setting of the
ENVS, ENVl switches-of the MVME135's STAT! status register (refer
to Appendix E) to determine if the user desires to run out of MVME135
memory or from system memory.

1-10

ORELIMINARY MVME135BUG/D2

Four environment options are available for selecting the location
for the 135Bug's stack and work area. The MVME135 allows local
memory to be accessed at either a high or low memory address, as well
as over the VMEbus. Deciding which option to use depends on the
system memory available, and whether the application requires the
use of local memory to run more efficiently.

The four options as previously mentioned in section 1.4.1.2 are
described below. BASE refers to the first address of allocated
■emory as seen by 135Bug.

In the first two options, 135Bug may see local DRAM at a different
address range than seen by other VMEbus masters.

OPTION 8: locate the 135Bug locally at the low memory BASE address
$8.

OPTION 1: Locate the 135Bug locally at the high memory address·.
With l MEG of local memory the BASE address is SFFEH8H
and for 4 MEG of 1 oca l memory the - BASE address is
$FF8H808.

The next-two options allow the user to locate the 135Bug at one of two
base addresses over the VMEbus. To allow multiple MVME135's to
select the same option simultaneously, ea.ch of the 135Bug space must
have a unique offset from the base address selected.

· · OPTION 2: • Locate· the 13·sBug space at VMEbus address $0 + offset.
·This mode assumes some type of memory mapped over VME at
• address $0, whether it is local or external memory. For
·option 2, the offset is calculated by multiplying the
VME135's board number - l ·(i.e., 1st, 2nd, 3rd •.• from
lowest to upper VMEbus address range; the lowest-mapped
VME135 is board # 1, the next lowest is board # 2, etc.) by
16K. This is to enable multiple-VME135's Bug stack and
variable space to be continuous from address zero, even
if the boards. are not mapped contiguously over the

'VMEbus.

OPTION 3: Locate the 135Bug space at the first off-board system
memory location plus the offset. The offset is
calculated by multiplying the 5 least significant bits of
the ID byte by 16K ((ID byte & $1 F) * $4000). The ID byte
is an image of the Board ID mapping switch S3. This mode
a.ssumes memory mapped contiguously fo 11 owing the
MVME135's DRAM as it appears over the VMEbus.

1-11

PRELIMINARY MVME135BUG/02

NOTE: In order to accurately size past local memory using
Option 3, all VME135's in the system -ust hav~ the·
same 1 oca 1 memory size.

Regardless of where the 16K bytes are located, the first 12K bytes
are used for 135Bug stack and static variable space and the next 4K
bytes are reserved as user space. Whenever the MVME 135 is reset the
target program counter is initialized to the address corresponding
to the beginning of the user space and the target stack pointers are
initialized to addresses within the user space, with the target ISP
set to the top of the user space. The target VBR is set equal to the
BASE pl us the offset.

The following examples illustrate 135Bug memory allocation.

Example 1: Option 0 selected, with two 1 MEG MVME135's in the system,
and a VME204-2 mapped at $200000 over the VMEbus.

~~~! ~~~l ~i H~~~2.J!!~~=! .. ~!!! !!!22!:e~ !!!22! .. l~e 
B0#1 ON ON 00 $00000000-$001/J02FFF $00003000 $00004000 
B0#2 ON ON 1/Jl $00000000-$0001/J2FFF $00003000 $00004000 

Example 2: Option 1 se0lected, with two 1 MEG MVME135's in the system, 
and a VME204-2 mapped at $2000£10 over the VMEbus. 

B0#1 ON 
B0#2 ON 

OFF 00 SFFE0001/JI/J-$FFEI/J2FFF $FFE03001/J $FFE04000 
OFF 1/Jl SFFE0001/JI/J-SFFEI/J2FFF SFFE03001/J $FFE04000 

Example 3: Option 2 selected, with two 1 MEG MVME135's in the system, 
and a VME21/J4-2 mapped at $21/J001/J0 over the VMEbus. In this 
example, both boards' bug space is allocated in BD#l's 
DRAM. 

ENV0 ENVI S3 ---- ··-- --B0#1 OFF ON 00 S00001/JI/J00·$1/J0002FFF $1/JI/JI/JI/J31/JI/JI/J S001/JI/J41/JI/JI/J 
80#2 OFF ON 01 $01/J004000-$1/J01/JS7FFF $1/J0007000 SI/JI/JI/JI/J801/J0 

1-12 



PRELIMINARY MVME135BUG/D2 

Example 4: Option 2 selected, with two 1 MEG HVME13S's in the system, 
and a VME204-2 mapped at S0 over the VMEbus. In this 
ex amp 1 e, both boards' bug space is a 11 ocatJd on the 
VME204-2. 

[~!! ~! ~ !!~25.~!!St.!.!!t! !!ti!l.fE !!ti!l.!!f 
B0#1 OFF ON 02 SN0000ff-S00002FFF $00003000 $00084080 
BO# 2 OFF ON 03 SN884000-S08""6FFF $00007000 $08800111 

Example S: Option 3 selected, with two l MEG MVHE135's in the system, 
and a VME284-2 mapped at $200000 over the VMEbus. 

[~!! ~?! ~~ !!~2~2-~l!:~.!.!!t! !!ti!l.eE !!ti!l.!!f 
80#1 OFF OFF 0111 $002000N-$88202FFF $00203000 $00204080 
80#2 OFF OFF 181 $88204000-$00206FFF $00207000 $00208080 

Example 6: _Option 3 selected, with two l MEG MVME13S's in the system, 
and a VHE204-2 mapped at S8 over the VMEbus. 

:~~~! ~~! :!! !!~2~2-~l!:~.!.!!t! !!ti!!.eE !!ti!!.!~ 
·B0#1 OFF 'OFF-02 S08808088-S0088AF~F. $011100B000 S0000C000 
.80#2 OFF OFF· 03 S""8f/JC0f/J0-S880f6EFFF . S0088Ff/J00 $00010000 

.Example:7: Option 3 selected, wi:th:two:4.MEG MVME135's in the system, 
. and a VME204-2 mapped at S80000111 over the VMEbus. 

~~!! ~~~! ~~ !!~2~2-~!!S~.!-~!t! !!ti!!.fE !!ti!l.!~e 
80#1 OFF OFF 00 $01'1180000~~$00802FFF $00803000 $00804000 

·SD#2 OFF OFF fill $01'118flJ4000•$flJ08flJ6FFF $0081'1171'1lf1JIIJ Sl'lll'll81'1181'110f1J' 

1 . 6 AUTOBOOT 
AUTOBOOT is a switch selectable functiori'that provides an operator 
independent mechanism for booting from a pre-~rogrammed location in 
the EPROM.or an operating system . .When enabled, 'AUTOBOOT will first 
determine if a pr~selected EPROM location i~ non-zero, and if so, 
control will be transfered to .the address. contained in that 
lo cat ic;,n. Otherwise,: -AUTOBOOT wi 11 s~an f:o,r controllers and devices 
in a specified sequence:until a valid bo:otable:device is found .or 

1-13 



PRELIMINARY MVME135BUG/D2 

until the l;st is exhausted. If a valid bootable device is found, a 
boot from that device is started. The controller scanning sequence 
goes from the lowest controller Logical Unit Number (LUN) detected 
to the highest controller LUN detected. At the controller level, 
scanning goes from the lowest device LUN configured to the highest 
device LUN configured. Autoboot operation can be enabled or 
disabled with the BOOT switch as follows : 

Switch ON • manual boot (Using BO or BH commands). 
Switch OFF• auto boot or ROM boot (At power-on/reset). 

Example 1: With the BOOT switch set to ON, the RESET pushbutton is 
pressed: 

VMEl35 Debugger/Diagnostics Release Version V.r - MM/DD/VY 
FPC passed test 
No PMMU detected 
Local Memory Size is 1 MEG 
135Bug> 

Example 2: With the BOOT switch set to OFF, the RESET pushbutton is 
pressed. A ROM BOOT Stack Pointer and Program Counter 
have been preprogrammed in EPROM addresses $FFF1FFF4 and 
$FFF1FFF8, respectively. The following is displayed then 
control is transfered to the address in $FFF1FFF8. 

VME135 Debugger/Diagnostics Release Version V.r - MM/OO/YY 
FPC passed test 
No PMMU detected 
Local Memory Size isl MEG 
Booting from ROM address $XXXXXXXX 

Example 3: With the BOOT switch set to OFF, the RESET pushbutton is 
pressed. EPROM location $FFF1FFF4 contains a zero value. 
The first beatable device is a streamer tape on the 
VME350, controller 4, device 0: 

1-14 



PRELIMINARY MVME135BUG/D2 

VME135 Debugger/Diagnostics Release Version V.r - MM/DD/VY 
FPC passed test · 
No PMMU detected 
Local Memory Size is I MEG 
Autoboot in progress ... To abort hit <BREAK> 
Booting from VME350 CLUN•4 DLUN•0 
IPL loaded at: $00050000 

NOTE: A vertical parity checksum word at SFFFIFFFE must be updated 
each time the 135Bug EPROMs are patched. The new checksum is 
calculated by performing the Boolean exclusive OR operation 
over the new contents for the EPROMs. A method for 
calculating the new checksum is described below. 

I. Transfer the intended new contents for the EPROMs to system 
memory. One way is to download from development system, EPROM 
programmer, etc. ioto memory using 135Bug' s LO command: 

135Bug>LO;x■COPY NEWPRmtS> MX,# < er;. 

Another way is to copy the contents of the current EPROMs,out 
into: system memory with 135Bug's BM command and then make the 
desired changes. The following command sequence copies the 
EPROM code out to address $50000: 

135Bu~BM FFF88880:~ 58880:b 
Effective address: FFF00000 
Effective count · : &131072 
Effective address: 00050000 
135Bug>l'tl < addr to change> ; DI < er> 

2. Enter the following program segment at some location other than 
that containing the new EPROM ~ontents. Running this program 
segment cal cul ates the proper checksum for the new EPROM 
contents and 1 eaves it in the 1 ower word of register Dl. 

GEJWORD 

LEA 
MOVE.L 

MOVEQ.L 
MOVE.W 
EOR.W 
SUBQ.L 

< start addr of code> ,A0 Point to new code. · 
#SIFFFE,D0 This is the byte count for 

#-1, DI 
(Al'J)+,D2 
D2,Dl 
#2,D0 

1-15 

.loop. 
Load initial checksum value. 
Get a word. 
Accumulate checksum. 



PRELIMINARY MVME135BUG/D2 

BNE.B GETWORD 
ANDI.L #$0000FFFF,Dl 
SYSCALL . RETURN 

Mask off upper.word. 
(O1.W contains checksum) 

3. Run the program segment using 135Bug's· GO command. Use 135Bug's 
RD command to view the checksum in the lower half of DI. 

4. Install new checksum in last word of code. 

5. Upload modified code to development system or EPROM programmer 
using 135Bug's DU command. 

1.7 Multi-Processing Support (MPSUP) 
There are four methods of transfering control to a target program 
from the 135Bug, in the Multi-Processing psuedo interrupt Support 
mode (MPSUP • OFF). Three bits in the MP-CSR are available for use, 
LM0, SlGLP, and SIGHP, in addition to the MPIRQ bit in Control 
Register 1. · · 

Since the 135B'ug operates in non-interrupt mode, when the MPSUP mode 
is enabled, these bits will be polled regularly. When one of the 
four bits is asserted, it is processed as if an exception occurred, 
creating a normal four word stack frame, then jumping indirectly 
through the vector-table. The polling operation is handled in the 
syste·m console driver module. 

Before setting any of the four bits, the location to which control 
will be transferred; must be loaded in the associated vector table 
address. The 135Bug' s Interrupt Vector Base is $400 offset from the 
target VBR value (Base+ Offset). The vector table addresses for the 
four bi ts are as fo 11 ows: 

LM0 
SIGLP 
SIGHP 
MPIRQ 

135Bug VBR+Sl28 
135Bug VBR+Sl2C 
135Bug VBR+Sll4 
135Bug VBR+$108 

· location Monitor 0 
Low Priority Signal 
High Priority Signal 
Broadcast IRQ 

If the user plans to return to 135Bug using an "RTE" instruction 
after processing of the signal or broadcast-has been completed, it 
is the user's responsibility to preserve the exception stack frame 
as well as 135Bug's register state. 

Control can also be returned to the 135Bug by pressing the ABORT 
pushbutton. 

1-16 



 

PRELIMINARY MVME135BUG/D2

Before 135Bug exits through the vector table to the pre-1 oaded
target address, the bit causing the transfer of control will be
negated. This is done to prevent an interrupt from occurring when
the interrupt mask is lowered, and to prevent a re-transfer of
control if 135Bug is re-entered.

The bi ts supported in the MP SUP mode, and how they operate is
described below:

LM0: This bit is low true, and can be set through the MP-CSR,
or by a broadcast cycle to the associated location in
Short 1/0.·

SIGLP(HP): This bit is high true, and is set by writting directly to
the MP-CSR location.

MPIRQ: This bit is low true. In order to use this signal, the
user must give up control of VME Interrupt Level 1, since
the hardware uses this path for the BRIRQ cycle. When the
MPSUP mode is selected, VMSKl is unconditionally
enabled. ·Polling for the MPIRQ bit will not be done
unless VMSKl is enabled. Also, as previously mentioned,
the Z8036 CIO PORT B configuration must be programmed as
it is in the 135Bug initialization.

Since the MPIRQ bit will be reset when BRIRQO goes away,
polling will be done using the Z8036 PORT B CSR Interrupt
Pending bit.

1.8 Reference Documentation

The following publications may provide additional information. If
not shipped with this product, they may be purchased from Motorola's
Literature Distribution Center, 616 West 24th Street, Tempe,
Arizona 85282; telephone (602) 994-6561.

1-17



PRtLIMINARY 

Document Tit 1 e 

MVME135 Diagnostic Firmware User's Guide 

MVME135 32-Bit Multiprocessing Board User's Manual 

MVME204-l/-2 Dual Ported Dynamic Memory User's Manual 

VSB Device Specification 

M68KVMM8851 Memory Management Board User's Manual 

MC68020 32-Bi t Microprocessor User's Manua 1 

MC6885l Paged Memory Management Unit User's Manual 

MC68881 Floating-Point Coprocessor User's Manual 

MC68882 .Enhanced Floating-Point Coprocessor Technical 
Summary 

MVME319 Intelligent Disk/Tape Controller User's Manual 

MVME320 VMEbus Disk Con troll er Module User's Manua 1 

MVME321 IPC Firmware User's Guide (Preliminary) 

MVME327 IPC Firmware User's Guide (Preliminary) 

MVME350 IPC Firmware User's Guide (Prel imiriary) 

MVME360 Storage Ori ve Disk Contro 11 er User's Manua 1 

1-18 

MVME135BUG/D2 

Document Number 

MVME135DIAG 

MVME135 

MVME204 

TBD 

M68KVMMB851 

MC68020UM/AD 

MC68851UM/AD 

MC68881UM/AD 

BR509/D 

MVME319 

MVME320 

MVME321FW 

MVME327FW 

MVME350FW 

MVME360 



PRELIMINARY MVME135BUG/02 

CHAPTER 2 
USING THE 135Bug DEBUGGER 

2. l Entering Debugger COllml&nd L 1 nes 
135Bug is command-driven and performs its various operations in 
response to user commands entered at the keyboard. When the 
debugger prompt 135Bug> appears on the terminal screen then the 
debugger is ready to accept commands. 

As the command line is entered it is stored in an internal buffer. 
Execution begins only after the carriage return is entered, thus 
allowing the user to correct entry errors, if necessary, using the 
control characters described in section 2.2. 

When a command is entered the debugger will execute the command and 
the prompt will reap-pear. However, if the command entered causes 
ex~cution of user target code, (i.e., 60), then control may or may 
not return to the debugger, depending on what the user program does. 
For example, if a breakpoint has been specified, then control will 
return to the debugger when the breakpoint is encountered during 
execution of the user program. Alternately, the user program could 
returri control to the debugget by means of the TRAP #15 function 
.·RETURN (described in Chapter 5). For more about this, refer to the 
description in Chapter 3 for the 60 commands. 

In general, a debugger command is made up of the following parts: 

1. The command identifier (i.e., MD or md for the memory display 
command). Note that either upper- or lower-case is allowed. 

2. A port· number if the command is set up to work with more than one 
port. : · • · . · 

3. At least one intervening space before the first argument. 

4. Any required arguments, as specified by command. 
5. An option field, set off by a semicolon(;) to specify conditions 

other than the default conditions of the command. 

The commands are shown using a modified Backus-Naur form syntax. 
The meta-symbols used are: 

< > The angular brackets enclose a symbol, known as a syntactic 
variable, that is replaced in a command line by one of a class of 
symbols it represents. 

[ ] Square brackets enclose a _symbol that is optional. 

2-1 



PRELIMINARY MVME135BUG/D2 

This symbol indicates that a choice is to be made. One of 
several symbols, separated by this symbol, should be selected. 

/ The slash indicates that one or more of the symbols separated by 
this symbol can be se 1 ected. · 

{} These brackets enclose an o·ptional symbol that may occur zero or 
more times. 

2.1.1 Syntactic Variables 
The following syntactic variables wi 11 be encountered in the command 
descriptions which follow. In addition, other synt~ctic:variables 
may be· used and will be defined in the particular command 
de.script ion in which they occur. 

< _DEL> 
< EXP-> 

- Del imite~; either a comma or a space. 
- Expression (described in detail in section-2.1.1.1). 

< ADDR> - Address (described in detail in section 2.1.1.2). 

< COUNT> - Count; the. syntax is tile same as for < EXP> . 
< RANGE> - A range of memory addresses which may be specified either 

by < ADDR> < DEL> < ADDR> or by < ADDR> : < COUNT> . 
., < TEXT> - An ASCII string of up to 255 characters, delimited at each 

· end by the single quote mark ('). · 

2 .1.1.1 Expression as a Parameter 
An expression can be one or more numeric values separated by the 
arithmetic operators plus (+) or minus (-), multiplied by (*), 
divided by_(/), logical AND(&), shift left (< < ), or shift right 
( > > ) • 

Numeric values may be expressed in either hexadecimal, decimal, 
octal, or binary by immediately preced~ng them with the proper base 
i dent ifi er. 

Numeric value examples: 

Base 

Hexadecimal 
Decimal 
Octal 
Binary 

Identifier 

2-2 

Examples 

SFFFFFFFF 
&1974, &lfiJ-&4 
@ 456 
%lfiJfiJfiJllfiJ 

., 



 
 

PRELIMINARY MVME135BUG/D2

If no base identifier is specified, then the numeric value is
assumed to be hexadecimal.

A numeric value may also be expressed as a string literal of up to
four characters. The string literal must begin and end with the
single quote mark ('). The numeric value is interpreted as the
concatenation of the ASCII values of the characters. This value is
right-justified, as any other numeric value would be.

String literal examples:

String Literal

'A'
'ABC'
'TEST'

Numeric Value (in Hex)

41
414243
54455354

Evaluation of an expression is always from left to right unless
parentheses ~re used to group part of the expression. There is no
operator precedence. Sub-expressions within parentheses are
evaluated first. Nested parenthetical sub-expressions are
evaluated from the inside out.

Examples of val id expressions are:

. Expression

FF00ll
45+99
&45+&99
@ 35+@ 67+@ 10
%10011110+%1001
88< < 44
AA&F0

Result (in Hex)

FF00ll
DE
90
SC
A7
880
A0

The total value of the expression must be between 0 and $FFFFFFFF.

2 .1.1. 2 Address as a Parameter

Many commands us·e < ADDR> as a parameter. The syntax accepted by.
135Bug is similar to the one accepted by the 68020 one-line
assembler. All control addressing modes are allowed. An "address+
offset register" mode is also provide.d.

2-3



PRELIMINARY MVME135BUG/D2 

2.1.1.2.1 Address Formats. Table 2-1 summarized the address 
formats which are acceptable for address parameters in debugger 
command lines. 

TABLE 2-1. DEBUGGER ADDRESS PARAMETER FORMATS 

Format 

N 

N+Rn 

(An) 

(d,An) or 
d(An) 

(d,An,Xn) or 
d(An,Xn) 

([bd,An,Xn],od) 

([bd,An],Xn,od) 

Example 

14 

130+RS 

(Al) 

(120,Al) 
120(Al) 

(&120,Al,D2) 
&120(Al,D2) 

([C,A2,A3],&100) 

. ([12,A3],D2,&10) 

Description 

Absolute address+contents of auto
matic offset register. 

Absolute address+contents of the 
specified offset register ( not an 
assembler-accepted syntax). 

Address register indirect. 

Address register indirect with dis
placement (two formats accepted). 

Address register indirect with index 
and displacement (two formats 
accepted). 

Memory indirect pre-indexed . 

Memory indirect post-indexed. 

For the memory indirect modes, fields can be omitted. For example, 
three of many permutations are as follows: 

( [ ,An], od) 

([bd]) 

( [bd,, Xn]) 

([,Al], 4) 

([FClE]) 

([8,,D2]) 

Notes: N - Absolute address (any valid expression). 
An - Address register n. 
Xn - Index register n (An or Dn). 
d - Displacement (any valid expression). 
bd - Base displacement (any valid expression). 
od - Outer displacement (any valid expression). 
n - Register number (0 to 7). 
Rn - Offset register n. 

2-4 



 

PRELIMINARY MVME135BUG/D2

2.1.1.2.2 Offset Registers. Eight pseudo-registers (RIil through R7)
called offset registers are used to simplify the debugging of
relocatable and position-independent modules. The listing files in
these types of programs usually .start at an address (normally Ill)
that is not the one in which they are loaded, so it is harder to
correlate addresses in the listing with addresses in the loaded
program. The o·ffset registers solve this problem by taking into
account this difference and forcing the display of addresses in a
relative address+offset format. Offset registers have adjustable
ranges and may even have overlapping ranges. The range for each
offset register is set by two addresses: base and top. Specifying
the base and top addresses for an offset register sets its range. In
the event that an address falls in two or more offset registers'
ranges, the one that yields the least offs·et is chosen. For
additional information about the offset registers, see the OF
command description.

NOTE: Relative addresses _are limited to 1 megabyte (5 digits),
regardless of the range of the closest offset regjster.

Example: A portion of the listing file of a relocatable module
.assembled with the MC68fll2fll VERSAdos•Resident Assembler
is shown below:

1
2
3
4
5
6
7
8
9

1111
11
12
13
14

Ill OOfllfllfllfllfllfll 48E7808fll
Ill fllfllfllfllfllfllfll4 428111
Ill fllfllfllfllfllfllfll6 1018
Ill 00fllfllfllfllfll8 5340
Ill fllfllfllfllfllfllfllA 12D8
Ill fllfllfllfllfllfllfllC 51C8FFFC
Ill fllfllfllfllfllflllfll 4CDFflllflll
Ill. fllfllfllfllfllflll4 4E75

***.,,.,,* TOTAL ERRORS Ill-

****** TOTAL WARNINGS Ill--

*
* MOVE STRING SUBROUTINE
*
MOVESTR MOVEM.L

CLR.L
MOVE.B
SUBQ.W

LOOP MOVE.B
MOVS DBRA

MOVEM.L
RTS

END

Dfll/Afll,-(A7)
DIil
(Afll)+,Dfll
#1,Dfll
(Afll)+,(Al)+
Dfll,LOOP
(A7)+,Dfll/Afll

The above program was loaded at address fllfllflll327C.

2-5



PRELIMINARY 

The disassembled code is shown next: 

135Bug>K) 1327CiDI CR> 
0001327C 48E78080 
00013280 4280 
00013282 HHS 
00013284 5340 
00013286 12D8 
00013288 51C8FFFC 
0001328C 4CDF0101 
00013290 4E75 
135Bug> 

MOVEM.L 
CLR.L 
MOVE.B 
SUBQ.W 
MOVE.B 
DBF 
MOVEM.L 
RTS 

D0/A0, -(A7) 
D0 
(A0)+,D0 
#1,D0 
(A0)+, (Al)+ 
D0,$13286 
(A7)+,D0/A0 

MVME135BUG/D2 

By using one of the offset registers,. the disassembled code 
addresses can be made to match the listing file· addresses as 
follows: 

135Bug>OF RS CR> 
R0 z00000000 00000000? 
135Bug>K) B+RBiDI < CR> 
00000+R0 48E78080 
00004+R0 4280 
00006+R0 1018 
00008+R0 5340 
0000A+R0 12D8 
0000C+R0 SICSFFFC 
00010+R0 4CDF0101 
00014+R0 4E75 
135Bug> 

1327C:16. < CR> 

MOVEM.L 
CLR.L 
MOVE.B 
SUBQ.W 
MOVE.B 
DBF 
MOVEM.L 
RTS 

2-6 

D0/A0, -(A7) 
D0 
(A0)+,D0 
#1,D0 
(A0)+,(Al)+ 
Dl/l,$A+R0 
(A7)+,D0/A0 



 
 

PRELIMINARY MVME135BUG/D2

2.2 Terminal Input/Output Control

When entering a command at the prompt the following control codes
may be entered for l i mi ted command l i ne editing.

NOTE: The presence of the upward caret, "" ", before a character
indicates that the Control or CTRL key must be held down while
striking the character key.

{Cancel line)

AH (backspace)

- The cursor is backspaced to the beginning
of the Hne. If the terminal port is
configured with the hardcopy or TTY
option (see PF command) then a carriage
return and line feed is issued along with
another prompt.

- The cursor is moved back one position.
The character at the new cursor position
is erased. If the hardcopy option is
selected a "/" character is typed along
wi.th the deleted character.

< de l> (delete/rubout) - Performs the same function as "" H".

"D (redisplay) - The entire command 1 foe as entered so far
is redisplayed on the following line.

When observing output from any 135Bug command, the ,XON and XOFF
characters which are in effect for the ·terminal port may be entered
to control the output, if the XON/XOFF protocol is enabled
(default).: These characters are· initialized to ""S" and ""Q"·
respectively by 13:SBug but may be changed by the user using the PF·
command. In the initialized (default) mode operation is as follows:

As

A Q

(wait)

(resume)

- Console output is halted.

- Console ·output is resumed.

2.3 Entering and Debugging Programs

The're are various ways to enter a user program into system memory for
execution. One way is to create the program using the.MM (Memory
Modify) command with the assembler/disassembler option. The
progr.am is entered by the user one source line at a time. After each
s:ource line is entered, it is assembled and the object code is loaded
to. memory. Refer to Chapter 4 for complete details of the 135Bug
Assembler/Disassembler. ·

2-7



PRELIMINARY MVME135BUG/02 

Another way to enter a program is to download an object file from a 
host. system (i.e., an EXORmacs). The program must ~e in S-Record 
format (described in Appendix A) and may have been assembled or 
compiled on the host system. Alternately, the program may have been 
previously created using the 135Bug MM command a.s outlined above and 
stored to the host using the DU (Dump) command. If a communication 
link exists between the host system and the VME135, then the file can 
be downloaded into memory via the debugger's LO command. 

Another way is by reading in the program from disk, using one of the 
disk commands (i.e., BO, BH, or IOP). Once the object code has been 
loaded into memory, the user can set breakpoints if desired and run 
the code or trace through it. 

2. 4 System Ut i 11 ty Ca 11 s from User Programs 
A convenient way of doing character input/output, and many other 
useful ope.rations has been provided so that the user does riot have t'o 
write these routines into the target code. The user has access ~o 
various 135Bug routines via the MC68020 TRAP #15 instruction. 
Refer to Chapter 5 for details on the various TRAP #15 utilities 
available and how to invoke them from within a user program. 

2.5 Restarting the System 

There are three methods available to the user of inittalizing the 
system to a known state. Each has characteristics.which make it more 
appropriate than another fn certain situations. 

2.5.1 Reset 

Pressing and releasing the RESET pushbutton on the front panel of 
the VME135 will initiate an on-board reset. Two reset modes are 
available: COLD and WARM. By default, 135Bug is in COLD mode (refer 
to the RESET command description). During COLD reset, a total 
system initialization takes place, as if the VME135 module had just 
been powered up. All static variables are restored to their default 
states. 

On-board serial ports are reconfigured to their default state. The 
breakpoint table is cleared. The offset registers are cleared. The 
target registers are invalidated. Input and output character queues 
are cleared. On-board devices (timer, serial ports, etc) are reset. 

During WARM reset, ll5Bug variables and tables are preserved, as 
well as the target state registers and breakpoints. If the 
particular VME135 is the system controller, then a system reset is 
issued to the VMEbus and other modules in the system are reset as 
well. 

2-8 



 
 

PRELIMINARY MVMEl 3 SBUG/D2

Reset.must be used if the processor ever halts (as evidenced by the
VME135's illuminated HALT LED) for example, after a double bus
fault, or if the 135Bug environment is ever lost (vector table is
destroyed, etc).

2.5.2 Abort

Abort is invoked by pressing and releasing the ABORT pushbutton on
the VME135 front panel. Whenever Abort is invoked while running
target code, a •snapshot• of the processor state is captured and
stored in the target registers. For this reason Abort is most
appropriate when terminating a user program that is being debugged.
Abort should be used to regain control if the program gets caught in
a loop, etc. The target PC, stack pointers, etc will help to
pinpoint the malfunction.

Abort generates a level seven interrupt (non-maskable). The target
registers, reflecting the machine state at the time the abort
pushbutton was pushed, will be displayed to the screen. Any
breakpoints installed in the user code will be. removed and the
breakpoint table will remain intact. Control will be returned to
the debugger.

2.5.3 Brealc

I{ "Break" is generated by pressing and releasing the BREAK key on the
terminal keyboard. Break does not generate an interrupt. The only
time break is recognized is when characters are sent or received by
the debugger console. Break will remove any breakpoints in the user
code and will keep the breakpoint table intact. Break does not,
however, take a snapshot of the machine state nor does it display the
target registers. It is useful to terminate debugger commands that
output large blocks of data before completion.

2. 6 Preserving Debugger Operating Environment
This section explains how to avoid contaminati,ng the operating
environment of the debugger. 135Bug uses ceftain ~f the VME135's
on-board resources and uses on-board memory to contain temporary
variables, exception vectors, etc. If the user disturbs resources
which 135Bug depends on, then the debugger may function unreliably
or not at all. ·

2. 6 .1 135Bug Vector Tab 1 e and Workspace
As described in section 1.5, "Memory Requirements", 135Bug needs

• 14.SK bytes of read/write memory to operate and also allocates
another 1. SK bytes as user space for a total of 16K bytes allocated.
On power-up or reset, 135Bug decides where this memory will be.
Starting at this point, 135Bug reserves a 1024-byte area for· a user

2-9



PRELIMINARY MVME1358UG/D2 

program vector table area and then allocates another 1024-byte area 
and builds an exception vector table for the debugger itself to use. · 
Next, 1358ug reserves' space for static variables and initializes 
these rtat i c variables to predefined default values. Aftar the 
static variables, 135Bug allocates space for the system stack, then 
initializes the system stack pointer to the top of this area. 

With the exception of the first 1024-byte vector table area, the 
user must be extremely careful not to use the above-mentioned memory 
areas for other purposes. The user should refer to section 1.5.2 to 
determine how to dictate the location of the reserved memory areas. 
If, for example, a user program inadvertently wrote over the ~tatic 
variable area containing the serial communication parameters, these 
parameters would be lost, resulting in a loss of communication with 
the system console terminal. If a user program corrupts the system 
stack, then an incorrect value may be loaded into the processor's 
program counter, causing a system crash. 

2.6.2 Exception Vectors Used By 135Bug 

The exception vectors used by the debugger are listed below. These 
vectors must reside at the specified offsets in the target program's 
vector table for the associated debugger facilities (breakpoints, 
trace mode, etc), to operate. 

TABLE 2-2. EXCEPTION VECTORS USED BY 135Bug 

Vector Offset 

$08 

$10 
$24 

$7C 

$BC 

Exception 

Bus Error 

Illegal Instruction 

Trace 

Level 7 Interrupt 

TRAP #15 

135Bug Facility 

Retries accesses when conflict 
bit active and RMC cycle caused 
error. 
Breakpoints (Used by GO, GN, GT) 

Trace operations (such as T) 

ABORT pushbutton 

System ca 11 s ( See Chapter 5) 

When the debugger handles one of the exceptions listed in Table 2-2, 
the target stack pointer is left pointing past the bottom of the 
exception stack frame created; that is, it reflects the system stack 
pointer values just before the exception occurred. In this way, the 
operation of the debugger facility (through an exception) is 
transparent to the user. 

2-10 



PRELIMINARY MVME135BUG/D2

Ex amp 1 e: Trace one instruction using debugger.

      135Bug>RD < CR>

 

PC •00003E00 SR •2700-TR:OFF_S._7_ .....
USP •00003830 MSP •00003Cl8 IS~ •00004000 VBR •00000000
SFC •0-F0 DFC •0-F0 CACR -0-.. CAAR -00000000
00 •00000000 DI •00000000 02 •00000000 D3 •00000000
D4 -00000000 D5 •000008 06 •000008 D7 •00000000
AS •00000000 Al •00000008 A2. •00000000 A3 •00000000
A4 •00000000 AS •000008 A6 •00000000 A7 •00004000
00003E00 203900100000 MOVE.L ($100000).L,D0
135Bug>T < CR>
PC •00003E06 SR
USP •00003830 MSP
SFC •0•F0 DFC
00 •12345678 Dl
D4 •00000000 D5
AB •00000000 Al
A4 •00000000 AS
00003E06 D280
135Bug>

•270S-=TR:OFF_S._7_ .....
•00003Cl8 IS~ •00004000 VBR •00000000
•0•F0 CACR •0s.. CAAR •00000000
•00080080 D2 •80088000 D3 •00000000
•00000000 D6 •00000000 D7 •00000080
•00000000 A2 •00000000 A3 •00000000
•00000000 A6 •00000000 A7 •00004000

ADD.L 00,Dl

Notice that the value.of the target stack pointer register (A7) has
not changed even though a trace exception has taken place. The user
program may either use the exception vector table provided by l35Bug

. or it may create a separate exception ve.ctor table of its own. The
two following sections detail these two methods.

2.6.2.1 Using 135Bug's Target Vector T.able
l35Bug iflitializes and maintains a vector table area for target
programs. A target program is any user program started by the bug,
either manually with GO or TRace type commands or automatically with
the BOot command. The start address of this target vector table a-rea
is the base address of the VME135 module, determined as described in
section 1.5.2. This address is loaded into the target-state VBR at
power-up and cold-start reset and can be observed by using the RD
command to display the target~state registers immediately after
power-up.

135Bug i nit i ai i zes the target vector table with the debugger vectors
listed in Table 2-2 and fills the other vector locations with the
address of a generalized exception handler (refer to section
2. 6. 2. 3). The target program may 'take over as many vectors as
desired by simply writing its own exception vectors into the table.

2-11



PRELIMINARY MVME135BUG/D2 

If the vector:locations listed in Table 2-2 are overwritten then the 
a.cc;ompanying debugger functions will be lost. 

135Bug maintains a separate vector table for its own use in !l IK-byte 
space elsewhere i" the reserved memory space. In general, the user 
does not have to be aware of the existence of the debugger vector 
table. It is completely transparent to the user and the user should 
never make any modifications to the vectors contained in it. 

2.6.2.2 Creating:a New Vector Table 
A user program may create a separate vector table in memory to 
contain its exception vectors. If this -is done, the user program 
must change the value of the VBR to point at the new vector table. In 
order to use the debugger fa~ilities the user can copy the proper 
vectors from the 135Bug vectQr table into the corresponding vector 
locations in the user vector table. · 

The vector for the 135Bug generalized exception handler (described 
in detail in section 2.6.2.3) may be copied from offset $80 (Jrap #0. 
vector) in the target vector table to all locations in the user's 
vector table where a separate exception handler is not used. This 
will provide diagnostic support in the event that the user progra~ 
is stopped by an unexpected exception. The generalized exception 
handler gives a formatted display of the target registers and 
i dent i fies t.he type of the exception. 

2-12 



 

PRELIMINARY MVME135BUG/D2

The following is an example of a user routine which builds a separate
vector table and then moves the VBR to point at it:

*
-• BUILDX - Build exception vector table•-
*
BUILDX MOVEC.L

LEA
MOVE.L
MOVE.W

LOOP HOVE.L
SUBQ.W
BMI.S
MOVE.L
MOVE.L
MOVE.L
MOVE.L
LEA.L
MOVE.L
MOVEC.L
RTS
END

VBR,A0
$18000,Al
$88(A0),D0
S3FC,Dl
00, (Al,Dl)
#4,Dl
LOOP
$8(A0),$8(Al)
$10(A0) ,$10(Al)
$24(A0) ,$24(Al)
SBC(A0) ,SBC(Al)
COPROCC(PC),A2
A2,$2C(Al)
Al,VBR

Get copy of VBR.
New vectors at $18000.
Get generalized exception vector.
Load count (all vectors).
Store generalized exception vector.

Initialize entire vector table.
Copy bus error vector.
Copy breakpoints vector.
Copy trace vector.
Copy system call vector.
Get user exception vector.
Install as F-Line handler.
Change VBR to new table.

It may turn out that the user program uses one or more of the
exception vectors that are required for debugger operation.
Debugger facilities may still be used, however, if the user's
exception handler can determine when to handle the exception itself
and when to pass the exception to the debugger.

When an exception occurs which·the user wants to pass on to the
debugger (i.e., ABORT) the user's exception handler must read the
vector offset from the format word of the exception stack frame.
This offset is added to the address of the 135Bug target program
vector table (which the user program saved), yielding the address of
the l35Bug exception vector. The user program then jumps to the
address stored at this vector location (i.e., which is the address
of the 135Bug exception handler).

The user program must make sure that there is an exception stack
frame in the stack and that it is exactly the same as the processor
would have created for the particular exception before jumping to
the address of the exception handler~

2-13



PRELIMINARY MVME13SBUG/D2 

The following is an example o'f ~ us~~ exception handler which ca.n 
pass an exception along to the debugger: 

* 
*** EXCEPT· Exception handler 
* 
EXCEPT SUBQ.L #4,A7 Save space in stack for -a PC value. 

LINK A6,#0 Frame pointer for access.ing PC space. 
MOVEM.L A0-AS/D0-O7,-{SP). _Save registers. 

: decide here if user code will handle exception, if so, branch ... 

MOVE.L 
MOVE.W 
ANO.W 
MOVE.L 
UNLK 
RTS 

BUFVBR,A0 
14{A6),D0 
#$0FFF,D0 . 
{A0,D0.W),4{A6) 
A6 

Pass. e)(cept ion to debugger; Get VBR .. 
Get the vector offset from stack frame. 
Ma~k off the format information. : •. 
Store address. of debugger exc handler. 

Put addr of exc handl~r into PC and go. 

2.6.2.3 135Bug General 1zed Exception Handler 
135Bug has a generalized exception handler which it uses to hand.le 
all of the exceptions not listed in Table z..,2, For all these 
exceptions, the target stack pointer is left pointing to the top of 
the exception stack frame created. In this way, if an unexpected 
exception occurs during execution of a user code segment, the user 
is presented with the exception stack frame to help determine the 
cause of the exception. The following example illustrates this: 

2-14 



PRELIMINARY MVMEl 3 SBUG/D2

Example: Bus error at address SFl/ll/ll/ll/ll/l. It is assumed for this
example that an access of memory location SFl/ll/ll/ll/ll/l will

       initiate Bus Error exception processing.

  
 

 

135Bug>RD < CR>
PC . •llll/ll/ll/l3E01/l SR •2701/l•TR:OFF_S._7_ •.•..
USP •001/103830 MSP •001/l03Cl8 ISP"' •001/104000 VBR •00000000
SFC •0•F0 DFC •0•F0 CACR •Ill-.. CAAR •00000000
DIil •00000000 DI •008000 D2 •00000000 D3 •00000000
D4 •00000000 DS •00000001/l D6 •00000001/l D7 •00000001/l
Al/l •00000000 Al •00000000 A2 •00000000 A3 •00000000
A4 •00000000 AS •00000001/l A6 •00000000 A7 •00004000
00003E01/l 203900F00000 MOVE.L ($F00000).L,Dl/l
I35Bug>T <CR>

Exception: Long Bus Error
Format/Vector-801118
SSW•I/JI45 Fault Addr. •01/JFl/ll/ll/ll/ll/l Data ln•l/lllll/ll/ll/ll/ll/ll/l Data Out•000021/l06
PC •00003E06 SR •A701/l-TR:ALL_S._7_ ..•..
USP •01/1003831/l MSP •llllll01/l3Cl8 ISP"' •00003FA4 VBR •01/1000000
SFC •0=F0 DFC •lll•Flll CACR •Ill-. . CAAR •00000000
DIil •011100"000 DI •00000000 D2 •00000001/l DJ •00000000
D4 •011100001/ll/l D5 •011100001110 D6 •01/1000001/l D7 -0000001/ll/l
Al/I •lllllll/ll/ll/ll/ll/l0 Al =00000000 A2 =00000001/l A3 •lll001/lllllll00
A4 •0001110000 AS •011101110000 A6 =111"0011101110 A7 •0111003FA4
l/l0003E00 203901/JF00000 MOVE.L ($F00001/l).L,D0
135Bug>

Notice that the target stack ·pointer is different. The target stack
pointer now pciints to the last value of the exception stack frame
that was stacked. The exception stack frame may now be exami~ed
using the :Mo command.

135Bug>MD (A7) :&.44 < CR>
00003FA4 A700 111000 2001/l B01/18 3E2C 1/1145 011101/l 011127
l/ll/l003FB4 0Fl/l0 011100 1/JFl/ll/l 1/1000 0000 IBCC 2039 0000
00003FC4 01/100 201/JA 0000 2008 01/100 2006 0000 111000
00003FD4 00F0 0000 100F 0487 011100 A700 4003 0000
00003FE4 0000 7FFF 0000 0000 C010 111000.0000 4000
00003FF4 0000 111000 FFF8 l/l86C
135Bug>

2-15

.0.>, .E ... '·
.p ... p ..•.. L 9 •.

.p ........ ' .@ •••

•••••••• @ ••••• @ •

. . . . . x.1



PRELIMINARY MVME135BUG/D2 

2.7 Disk I/0 Support 
135Bug can initiate disk Input/Output by communicating with 
intelligent disk controller modules over the VMEbus. Disk support 
facilities built into 135Bug consist of command-level disk 
operations, disk I/0 system calls (via the TRAP #15 instruction) for 
use by user programs, and automatic bootstrap at power-up or reset. 
Parameters such as the address where the module is mapped and the 
type and number of devices attached to the controller module are 
kept in tables by 135Bug. Default values for these parameters are 
assigned at power-up and cold-start reset, but may be altered as 
described irJ section 2. 7 .5. 

Appendix C contains a list of the controllers presently supported, 
as well as a list of the default configurations for each controller. 

2. 7 .1 Blocks Versus Sectors 
The logical block defines the unit of information for disk devices. 
A disk is viewed by l35Bug as a storage area divided in logical 
blocks. By default, the logical block size is set to 256 bytes for 
every block device in the system. The block size can be changed on a 
per device basis with the IOT command. 

The sector defines the unit of information for the media itself, as 
viewed by the controller. The sector size will vary for different 
controllers, and the value for a specific device can be displayed 
and changed with the IOT command. 

When a disk transfer is requested, the start and size of the transfer 
is specified in blocks. 135Bug translates this into an equivalent 
sector specification, which is then passed on to the controller to 
initiate the transfer. If the conversion from blocks to sectors 
yields a fractional sector count, an error is returned and no data is 
transferred. 

2.7 .2 Disk I/0 via 135Bug Con111ands 
These following 135Bug commands are provided for disk I/0. Detailed 
instructions for their use may be found in Chapter 3. When a command 
is issued to a particular controller LUN and device LUN, these LUNs 
are remembered by 1358ug so that the next disk command will default 
to use the same controller and device. 

2. 7 .2.1 IOP (Physical I/0 to Disk) 
This command allows the user to read or write blocks of data, or to 
format the specified device in a certain way. IOP creates a command 
packet from the arguments specified by the user, and then invokes 
the proper system ca.11 function to carry out the operation. 

2-16 



PRELIMINARY MVME135BUG/D2 

2. 7 .2. 2 IOT ( I/0 Teach) 
IOT a 11 ows the user to change any configurable parameters and 
attributes of the device. In addition, it allows the user to see the 
controllers available in the system. 

2.7.2.3 IOC (I/0 Control) 
IOC allows the user to send command packets as defined by the 
particular controller directly. This command can also be used to 
look at the resultant device packet after using the IOP command. 

2. 7 .2.4 BO (Bootstrap Operating System) 

BO reads an operating system or control program from the specified 
device into memory, and then transfers control to it. 

2.7.2.5 BH (Bootstrap,and Halt) 

BH reads an operating system or control program from the specified 
device into memory, and then returns control to 135Bug. It is used 
as a debugging tool. 

2.7 .3 Disk I/0 via 135Bug System Calls 

All operations that actually access the disk are done directly or 
indirectly by 135Bug system calls. (The command-level disk 
operations provide a convenient way of using these system calls 
without writing and executing a program). 

The following system calls have been lyovided to allow user:programs 
to do disk 1/0: 

.DSKRD Disk Read. System call to ~ead blocks from •a disk into 
memory . 

. DSKWR Disk Write. System call to write blocks from memory onto 
a disk . 

. DSKCFIG Disk Configure. Th.is function allows the u,ser to change 
the configuration of the ·specified device . 

. DSKFMT Disk format. This function allows the user to send a 
format command to the specified device . 

. DSKCTRL Disk Control. This function i.s used to implement any 
special device control functions that can not be 
accomodated easily with any of the ot1her disk functions. 

Refer to Chapter 5 for information on usirig these and other sy*te~ 
calls. 

2-17 



PRELIMINARY MVME135BUG/O2 

To perform a disk operation, 135Bug must eventually present a 
particular disk controller module with a controller command packet 
which has been especially prepared for that type of controller 
module. A command packet for one type of controller module usually 
does not have th~ same format as a command packet for a different 
type of module. The system call facilities which do disk 1/0 accept 

. a generalized packet format as an argument, and translate it into a 
controller specific packet, which is then sent to the specified• 
device. Refer to the system call descriptions in Chapter 5 for 
details on the format and construction of these standardized" user" 
packets. 

2.7 .4 Default 135Bug Controller and Device Parameters 
135Bug initializes the parameter tables for a default configuration 
of controllers and devices (refer to Appendix C). If the system 
needs to be configured differently than this default configuration 
( for example, to use a HI-Megabyte Winchester drive where the 
default is a 40-Megabyte Winchester drive), then these tables must 
be changed. 

There are three ways to change the parameter tables. If BO or BH is 
invoked, the configuration area of the disk is read and the 
parameters corresponding to that device are rewritten according to 
the parameter information contained in the configuration area 
(refer to Appendix B for more information on the disk's 
configuration a~ea). This is a temporary change. If a cold-start 
reset occurs then the default parameter information wi 11 be written 
back into the tables. 

Alternately,,the IOT command may be used to manually reconfigure the 
parameter table for any controller and/or device that is different 
from the default. This is al so a temporary change and wi 11 be 
overwritten if a cold-start reset occurs. Finally, the user may 
change the configuration files and rebuilt 135Bug so that it has 
different defaults. This last option is·described in detail in the 
135Bug Customer Letter. Refer to Appendix C for disk controller 
data. 

2. 7. 5 Disk I /0 Error Codes 
135Bug returns an error code if an attempted disk operation is 
unsuccessful. Refer to Appendix D for an explanation of disk 1/0 
error codes. 

2-18 



PRELIMINARY MVME135BUG/D2 

2.8 Additional Support Features 

In addition to the features already discussed, the 135Bug supports 
other specialized functions of the VME135 module. These features 
are detailed in the following sections. 

2.8. l Function Code Support 
The function codes identify the address space being accessed on any 
given bus cycle, and in general, they are an extension of the 
address. This becomes more obvious when using a memory management 
unit like the MC68851, where two identical logical addresses can be 
made to map to two different physical addresses. In this case, the 
function codes provide the additional information required to find 
the proper memory 1 ocat ion. 

For this reason, the following debugger commands were changed to 
allow the specification of function codes: 

MD 

MM 

MS 

GO 

GD 
GT 
GN 

BR 

Memory Display 
Memory Modify 
Memory Set 
Go to target program 
Go direct (no breakpoints) 
Go and set tempor-ary breakpoint 
Go to next instruction 
Set breakpoint 

The symbol "!\"following the address field indicates that a function 
code specification follows. The function code can be entered by 
specifing a valid function cod·e mnemonic or by specifying a number 
between 0 and 7. The syntax for an address and function code 
specification is: 

<'ADDR> "< FC> 

2-19 



PRELIMINARY MVME1358UG/D2 

The valid function code mnemonics are: 

Function Code Mnemonic Description 

Ill F0 ·Unas i gned, reserved 
1 UD User Data 
2 UP User Program 
3 F3 Unassigned, reserved 
4 F4 Unassigned, reserved 
5 SD Supervisor Data 
6 SP Supervisor Program 
7 cs CPU Space Cycle 

Ex.ample: To change data . .at location SSrllrllrll in the user da_ta space. 

135Bug>m SOOBAud < CR> 
00005000~0 0000 ? 1234. < CR> 
135Bug> 

2.8.2 Diagnostic Facilities 
As part of the 135Bug debugging package, the MVME135DIAG Diagnostic 
Firmware User's Guide provicles a· complete set· of hardware 
diagnostics intended for the testing and troubleshooting of the 
VME135. In order to use the diagnostics the user must switch 
directories to the diagnostic directory. If in the debugger 
directory, the user can switch to the diagnostic directory by 
entering the debugger command SD for "switch directories". The 
diagnostic prompt l358ug> should appear. Refer to the MVME135OIAG 
Diagnostic Firmware User's Guide for complete descriptions of the 
diagnostic routines available and instructions on how to invoke 
them. Note that some diagnostics depend on restart defaults that 
are set up on 1 y in a particular restart mode. Refer to the 
documentation on a particular diagnostic for the correct 
positioning of switches. 

2. 8. 3 Fl oat i ng Point Coprocessor Support 
The MC68881 (Floating Point Coprocessor) and the MC68882 (Enhanced 
Floating Point Coprocessor) are supported in this version of 1358ug. 
An MC6888X confidence check is run at reset time to verify that the 
part is present and that all registers can be accessed. It also 
insures that a context switch can be done sucessfully. The commands 

2-20 



PRELIMINARY MVME135BUG/D2 

RD, RM, MD, and MM have been extended to allow display and 
modification of floating point data in registers and in memory. 
Floating point instructions can be assembled/disassembled with the 
DI option of the MD/MM commands. Finally, the MC6888X target state 
is saved and restored along with the processor state as required 
when switching between the target program and 135Bug. 

At power-up/reset an FPC confidence check is executed. Initially, a 
read of one of the floating point registers is attempted. If a bus 
error timeout is received then the test is aborted and the message 
"No FPC detected" is displayed. Otherwise the test continues. If 
an error is detected the test is aborted and the message "FPC failed 
test" is displayed. If the test runs without errors then the message 
"FPC passed test" is displayed and an internal flag is set. This 
flag is later checked by the bug when doing a task switch. The FPC 
state will be saved and restored only if this flag is set. This 
allows proper bug operations in systems that do not have an FPC. 

Valid data types that can be used when modifying a fl_oating point 
data re~ister or a floating point memory location: 

,, 

Integer Data Types 

12 Byte 
1234 Word 
12345678 Long 

Floating Point Data Types 

l_FF _7FFFFF 
1_7FF_FFFFFFFFFFFFF 
1_7FFF_FFF.FFFFFFFFFFFFF 
llll_2103_123456789ABCDEF01 
-3.1234567890123450I_E+l23 

Single Precision Real Format 
Double Precision Real Format 
Extended Precision Real Format 
Packed Decimal Real Format 
Scientific Notation Format (Decimal) 

When entering data in single, double, extended, or packed decimal, 
the following rules must be observed: 

I. The sign field is the first field and is a binary field. 
2. The exponent field is the second field and is a hexadecimal 

field. 

2-21 



PRELIMINARY MVME1358UG/D2 

3. The mantissa field is the last field and is a hexad-ecimal field. 
4. The sign field, the exponent field, and at least the first digit 

of the mantissa field must be present (any unspecified digits in 
the mantissa field are set to zero). 

5. Each field must be separated from adjacent fields by an 
underscore. 

6. All the digit positions in the sign and exponent fields must be 
present. 

Single Precision Real 
. . . 

This format would appear in memory -as.: 

1-bit sign field 
8-bit bia_sed exponent field 

23-bit fraction field 

(1 binary digit) 
(2 hex digits. Bias=$7F) 
(6 hex digits) 

A single precision number takes 4 bytes in memory. 

Double Precision Real 

This format would appear in memory as: 

1-bit sign field 
11-bit biased exponent field 
52-bit fraction field 

(I.binary digit) 
(3 hex digits. Bias•$3FF) 
(13 hex digits) 

A double precision number takes 8 bytes in memory. 

Extended Precision Real 

This format would appear in memory as: 

1-bit sign field 
15-bit biased exponent field 
64-bit mantissa field 

(1 binary digit) 
(4 hex digits. Bias•$3FFF) 
(16 hex digits) 

An extended precision number takes 12 bytes in memory. This is 
because there is a 16-bit undefined field following the exponent 
field. This field is never displayed nor required to be entered when 
modifying extended precision data. 

2-22 



PRELIMINARY MVME135BUG/D2 

NOTE: The single and double precision formats have an implied 
integer bit (always 1). 

Packed Decimal Real 

This format would appear in memory as: 

4-bit sign field 
16-bit exponent field 
68-bit mantissa field 

(4 binary digits) 
(4 hex digits) 
(17 hex digits} 

A packed decimal number takes 12 bytes in memory. 

Scienti fie Notation 

This format provides a convenient way to enter and display a 
floating point decimal number. Inter-nally, the number is assembled 
into a packed decimal number and then converted into a number of the 
specified data type. 

Entering data in this format requires the fo 11 owing fields: 

An optional sign bit(+ or-). 
One decimal digit followed by a decimal point. 
Up to 17 decimal digits (at least one digit must be entered}. 
An optional Exponent field that consists of: 

An optional underscore. 
The Exponent field identifier, 1 etter II E 11 : 

An optional Exponent sign(+, -). 
From 1 to 3 decimal digits. 

The MC68881 registers are: 

3 system registers: 
FPCR - Floating-point Control Register 
FPSR - Floating-point Status Register 
FPIAR - Floating-point Instruction Address Register 

8 data registers: 
FP0-FP7 - Floating-point Data Registers 

For more information about the MC68881 coprocessor, refer to the 
MC68881 Floating Point Coprocessor User's Manual. 

2-23 



PRELIMINARY MVME135BUG/02 

. 2.8.4 Paged Memory Management Unit Coprocessor Support 

The Paged Memory Management Unit Coprocessor (MC68851) is supported 
in this version of 135Bug. An MC68851 confidence check ts run at 
reset time to verify that the part is present and that all registers 
can be accessed. It also insures that a context switch can be done 
sucessfully. The commands RD, RM, MD, and MM have been extended to 
allow display and modification of PMMU data in registers and in 
memory. PMMU instructions can be assembled/disassembled with the DI 
option of the MD/MM commands. In addition, the MC68851 target state 
is saved and resto~ed along with the processor state as required 
when switching between the target program and 1358ug. Finally, 
there is a set of diagnostics to test functionality of the PMMU. 

At power-up/reset a PMMU confidence check is executed. Initially, a 
read of one of the PMMU registers is attempted. If a bus error 
timeout is received then the test is aborted and the message "No PMMU 
detected" is dfsplayed·. Otherwise the test ·con~inues. If an error 
is detected the test is aborted and the message "PMMU failed test:• is 
displayed. If the test: runs without errors· then t_he message "PMMU 
passed test" is displayed anq an internal flag is set. This flag is 
later checked by the bug when doing a task ·switch. The PMMU state 
will be saved and restored only if this flag is set. This allows 
proper bug operations in systems that do not have a PMMU. 

The PMMU defines the Double Longword data type, which is used when 
accessing the root pointers. All other registers are either byte, 
word. or 1 ongword. registers. 

The MC68851 registers are shown below, along with their data types 
in parentheses: 

Addres·s Translation Control Registers: 

CRP - CPU Root Pointer (DL) 
SRP - Supervisor Root Pointer (DL) 
DRP - OMA Root Pointer (DL) 
TC - Translation Control (L) 

Status Information Registers: 

PCSR - PMMU Cache Status Register (W) 
PSR - PMMU Status Register (W) 

2-24 



  

PRELIMINARY

Protection Mechanism Control Registers:

CAL - Current Access Level
VAL - Validate Access Level
sec - Stack Change Control
AC - Access Control

Breakpoint Registers:

(B)
(B)
(B)
(W)

MVMEI35BUG/D2

BAOO-BAD7 Breakpoint Acknowledge Data Registers (W)
BAC0-BAC7 Breakpoint Acknowledge Control Registers (W)

For more information about the MC68851 coprocessor, refer to the
MC68851 Paged Memory Management Unit User's Manual.

2-25



PRELIMINARY MVME1358UG/D2 

THIS PAGE INTENTIONALLY LEFT BLA~K 

2-26 



 

PRELIMINARY MVMEl 3 SBUG/D2

CHAPTER 3
THE 135Bug DEBUGGER COMMAND SET

3.1 Introduction

This chapter contains descriptions of each of the debugger commands
and provides one· or more examples of each. Table 3-1 summarizes the
135B ug debugger commands.

TABLE 3-1. DEBUGGER COMMANDS

Command Mnemonic Title Section

BF Block of Memory Fi 11 3.2
BH Bootstrap Operating System and Halt 3.3
BI Block of Memory Initialize 3.4
BM Block of Memory Move 3.5
BO •Bootstrap Operating System 3.6
BR/NOBR Breakpoint Insert/D"el ete 3.7
BS Block of Memory Search 3.8
BV • Block of Memory Verify 3.9:
DC Data Conversion 3.10
DU Dump S-Records 3.11
GD Go Direct (Ignore Breakpoints} 3.12
GN Go to Next Instruction 3.13
GO: Go Execute User Program 3.14
GT Go To Temporary Breakpoin~ 3.15
HE Help 3.16
IOC I/0 Control for Disk 3.17
IOP I/0 Physical (Direct Disk Access} 3.18
IOT 1/0 "TEACH"for Disk Configuration 3.19
LO Load S-Recorcts from Host 3.20
MA/NOMA Macro Define/Display/Delete 3.21

MAE Macro Edit 3.22
MAL/NOMAL Enable/Disable Macro Expansion Listing 3.23

MAW/MAR Save/Load Macros 3.24
MD Memory Di sp 1 ay 3.25
MM Memory Modi fy ·3.26
MS Memory Set '3.27

OF Offset Registers Display/Modify .3.28

3-1



PRELIMINARY 

TABLE 3-1. DEBUGGER COMMANDS (cont.) 

Command Mnemonic Title 

PA/NOPA 
PF 
RD 
RESET 
RM 
SD 
T 
TC 
TM 
TT 
VE 

Printer Attach/Detach 
Port Format 
Register Di sp 1 ay 
Cold/Warm Reset 
Register Modify 
Switch Directories 
Trace 
Trace On Change of Contra 1 Fl ow 
Transparent Mode 
Trace To Temporary Breakpoint 
Verify S-Records Against Memory 

MVME135BUG/D2 

Section 

3.29 
3.30 
3.31 
3.32 
3.33 
3.34 
3.35 
3.36 
3.37 
3.38 
3.39 

Each command is described in the fo 11 owing text. The command's 
syntax is shown using the symbols explained in section 2.1. In the 
examples shown, all user input is shown in bold font. This is done 
for clarity in understanding the examples {i.e., to ·di_st'inguish 
between character input by the user and character output by !35Bug). 
The symbol < CR> represents the carriage return key on the user's 
terminal keyboard. Whenever this symbol appears it means that a 
carriage return should be entered by the user. 

3-2 



PRELIMINARY MVME135BUG/D2 

3.2 Block of Memory Fill 

BF < RANGE> < DEL>< data> [ < increment> ] [; BI WI L] 

where: 

< data> and < increment> are both expression parameters 

options: 

B - Byte . 

W - Word 

L - Longword 

BF 

The BF command fil 1 s the specified range of memory with a data 
pattern. If an increment is specified, then< data> is incremented 
by this value following each write, otherwise < data> remains a 
constant value. A decrementing pattern may be accomplished by 
entering a negative increment. The data entered by the user is 
right-justified in either a byte, word, or longword field (as 
specified by the option selected). The default field length is w 
(Word). 

If the user-entered data does not fit into the data field size then 
leading bits are truncated to make it fit. If truncation occurs then 
a message will be printed stating the data pattern which was 
actually written (or initially written if an increment was 
specified). 

If the user-entered increment does not fit into the data field size 
then leading bits are truncated to make it fit. If truncation occurs 
then a message will be printed stating the increment which was 
actua 1 ly used. 

It the upper address of t~e range is not on the correct boundary for 
an integer multiple of the data to be stored then data is stored to 
the last boundary before the upper address. No address outside of 
the specified range will ever be disturbed in any case. The 
"Effective address" messages displayed by the command will show 
exactly where data was stored. 

3-3 



PRELIMINARY . · MVME135BUG/02 

Example 1: (Assume memory from $2f/lf/lf/lf/l to $2f/lf/l2F is clear) . 

. 135Bug>BF 2fllMJ8,2ilS1F 4E71 < CR> . 
Effective address: f/lf/lf/l2f/lf/lf/lf/l 
Effective address: f/lf/lf/l2f/lf/llF 
135Bug>lt> 2f11Ml8:18 < CR> 
f/lf/lf/l2f/lf/lf/lf/l 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 
f/lf/lf/l2f/lf/llf/l 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 
0f/l02f/lf/l2f/l f/lf/lf/lf/l f/lf/l0f/l f/l0f/lf/l 0f/lf/lf/l 0f/l0f/l f/l0f/lf/l f/lf/l0f/l f/lf/lf/lf/l 
135Bug> 

NqNqNqNqNqNqNqNq 
NqNqNqNqNqNqNqNq 

Since no option was specified, the length of the data field 
defaulted to word. 

Examp,l e 2: (Assume memory from $2f/lf/lf/lf/l to $2f/lfll2F is cl ear). 

135Bug>BF 2f11Ml8,1S 4E71 ;B < CR> 
Effective address: f/lf/lf/l2f/lf/lf/lf/l 
Effective count : &16 
Data• $71 
135Bug>lt> 2f11Ml8:3S;B < CR> 
f/l0f/l2f/lf/lf/lf/l 7171 7171 7117 7171 7171 7171 7171 7171 
f/lf/lf/l2f/lf/llf/l f/lf/lf/lf/l f/lf/lf/lf/l f/lf/lf/lf/l f/lf/lf/lf/l f/lf/lf/lf/l 0f/lf/lf/l f/l0f/lf/l f/lfllf/lf/l 

f/lf/lf/l2f/lf/l2f/l f/lf/lf/lf/l f/lf/lf/lf/l f/lf/lf/lf/l f/lf/lf/lf/l f/lf/lf/lf/l 0000 f/lf/l00 0000 

1358ug> 

qqqqqqqqqqqqqqqq 

The specified data did not fit into the specified data field size. 
The data was truncated and the "Date•" message was output. 

Example 3: (Assume memory from S2f/lf/l00 to $2f/l02F is clear). 

1358ug>BF 2f11Ml81 2Sfll86 12345678 ; L < CR> 
Effective address: f/l002f/lf/l00 
Effective address: f/l0020f/l03 
1358ug>lt> 2f11Ml8:C;L < CR> 
00020000 1234 5678 0000 0000 0000 f/l000 0000 0000 
00020010 0000 0000 0f/lf/l0 0000 0000 0000 0000 0000 
00020020 0000 0000 0000 0000 0000 0000 0000 0000 
135Bug> 

3-4 

.4Vx ••••••••.•.• 



PRELIMINARY MVME135BUG/D2 

The longword pattern would not fit evenly in the given range. Only 
one longword was written and the •Effective address" messages 
reflect the fact that data was not written all the way up to the 
specified address. 

Example 4: (Assume memory from $20000 to $2002F is cl ear). 

135Bug>BF 28888,18 8 1 < CR> 
Effective address: 00020000 
Effective count : &24 
135Bug>II> 2888e:18 < CR> 
00020000 0000 0001 0002 8883 
00020010 0008 0009 000A 0008 
00028020 0010 0011 0012 0013 
135Bug> 

( default size is Word 

0004 0005 0806 0007 
000C 0000 000E 000F 
0014 0015 0016 0017 

3-5 



PRELIMINARY MVME1358UG/D2 

3.3 Bootstrap Operating System and Halt BH 

BH.(< Device LUN> ][<DEL>< Controller LUN> ][<DEL>< String>] 

Device LUN - Is the logical unit number of the device to boot 
from. Defaults to LUN 0. 

Controller LUN - Is the logical unit number of the controller to 
which the above device is attached. Defaults to 
LUN 0. 

< DEL> - Is a field delimiter: Comma (,) or spaces. ( ) . 

< String> - Is a string that is passed to the operating system 
or control program loaded.· Its syntax and use is 
completely defined by the loaded program. 

The BH command is used to load an operating system or control program 
from disk into memory. This command works in exactly the same way as 
the BO command, except that control is not given to the loaded 
program. Since control is retained by 135Bug, all the 135Bug 
facilities are available for debugging the loaded program if 
necessary. 

-Examples: 

135Bug>BH 1,8 < CR> 
135Bug> 

135Bug> BH A,3, test2;d < CR> 
135Bug> 

( Boot and halt from device LUN I, ) 
( controller 0. ) 

( Boot and halt from device LUN $A, ) 
( controller 3, and pass the string ) 
( "test2;d" to the loaded program. ) 

Refer to the BO command description for more detailed information 
about what happens during bootstrap loading. 

3-6 



PRELIMINARY 

3.4 Block of Memory Move 

BM< RANGE>< DEL>< ADDR> [; BIWIL] 

options: 

B - Byte 

W - Word 

L - Longword 

MVME135BUG/O2 

· BM 

The BM command copies the contents of the memory addresses defined 
by< RANGE> to another place in memory, beginning at< ADDR>. 

The option field is only allowed when< RANGE> was specified using· a 
count. In this case the B, W, or L defines the size of data that the 
count is referring to. For example a count of four with an option of 
L would mean to move four longwords {or 16 bytes) to the new 
location. If an option field is specified without a count in the" 
range an error results. 

Example 1: {Assume memory from $20000 to $2002F is clear). 

135Bug>II> 218:18 < CR> 
00021000 5448 4953 2049 5320 4120 5445 5354 2121 
00021010 0000 0000 0000 0000 0000 0000 0000 0000 
135Bug> 

135Bug>BM 218 2100F 2l!J8fll0 <.CR> 
Effective address: 00021000 
Effective address: 0002100F 
Effective address: 00020000 
135Bug> 

135Bug>Kl ZeBeB:10 < CR> 
00020000 5448 4953 2049 5320 4120 5445 5354 2121 
00020010 0000 0000 0000 0000 0000 0000 0000 0000 
135Bug> 

3-7 

THIS IS A TEST!! 

THIS IS A TEST!! 



PRELIMINARY .MVME135BUG/02 

::Example 2: Th:is utility is very useful for patching assembly code 1n 
memory. Suppose the user had a short program in memory at 
address 2fllfllfllfll ... 

. 135Bug>lt> 20000:S;DI < CR> 
fllfllfll2fllfllfllfll D48fll 
00020002 E2A2 
00020004 2602 
00020006 4E4F0021 
0002000A 4E71 
135Bug> 

AQO.L 
ASR.L 
MOVE.L 
SYSCALL 
NOP 

00,02 
D1,02 
02,03 
.OUTSTR 

Now suppose the user would like to insert a NOP between 
the AOO.L instruction and the ASR.L instruction. The 
user should Block Move the object code down two bytes to 
make room for the NOP. 

135Bug>BM 2SflJB2 2000B 20064 < CR> 
Effective address: 00020002 
Effective address: 00020008 
Effective address: 00020004 
135Bug> 

135Bug>lt> 2Sele8:6;DI < CR> 
00020000 0480 
00020002 E2A2 
00020004 E2A2 
00020006 2602 
000200fll8 4E4F0021 
fllfll02001iJC 4E71 
135Bug> 

AOO.L
ASR.L 
ASR.L 
MOVE.L 
SYSCALL 
NOP 

3-8 

OliJ,02 
01,02 
01,02 
02,03 
.OUTSTR 



 

PRELIMINARY MVMEl 3 SBUG/D2

Now the user need simply to enter the NOP at address 21111111112.

135Bug>"4 2fl882;DI < CR>
111002001112 E2A2
1110021111111112 4E71
1110020004 E2A2
135Bug>

135Bug>K> 2fJ81118:6;DI < CR>
1111111112111111111111 D48111
11111111121111111112 4E71
11111111121111111114 E2A2
1111110211101116 2602
111111111211111108 4E4Fllllll21
11111102IIIIIIIIIC 4E71
135Bug>

ASR.L
NOP
ASR.L

ADD.L
NOP
ASR.L
MOVE.L
SYSCALL
NOP ·

3-9

01 ,02 ? NOP < CR>

01 ,02 ? • <CR>

0111,02

01,D2
D2,03
.OUTSTR



PRELIMINARY MVME135BUG/D2 

3. 5 Bootstrap Operating System • BO 

BO[< Device LUN> ][<DEL_>< Controller LUN> ][< DEL>.< String>] 

Device LUN - Is the logical unit number of the device to boot 
from. Defaults to LUN 0. 

Controller LUN - Is the logi.cal unit number of the controller to 
which the above device is attached. Defaults to 
LUN 0. 

< DEL> - Is a fielq delimiter: Comma(,) or spaces C ). 
< String> - Is a string that· is passed to the operating system 

or control l)rograin loaded. Its syntax _and use is 
completely defined by the loaded program .. 

The BO command is used to load~~ operating $ystem or control pro.gram 
from disk into memory·and give control to it. Where to fi~d the 
program and where in memory to road 'it is co'nt.ained in block 0 of the 
device LUN specified. The devi.ce and controller configuration:s used 
when BO is initiated can be ~xamined and changed via the IOT command. 

The following sequence of events occur when BO is invoked: 

1. Block 0 of the devic~ LUN and controller LUN ·specified is read 
into memory. 

2. Locations $F8(248) to $FF(255) of block 0 are checked to contain 
the string "MOTOROLA"or "EXORMACS". 

3. The following information is extracted from block 0: 

$90(144)-$93(147) : Configuration area starting block. 

$94(148) : Configuration area length in blocks. 

If any of the above two fields is zero, the present controller 
configuration is retained; otherwise the first block of the 
configuration area is read and the controller reconfigured. 

3-10 



 

PRELIMINARY MVMEI 3 SBUG/02

4. The program is read from disk into memory. The following
locations from block 0 contain the necessary information to
initiate this transfer:

$14(20)-$17(23} : Block number of first sector to load from disk.

$18(24)-$19(25} : Number of blocks to load from disk.

$1E(30}-S21(33} : Starting memory location to load.

5. The first eight locations of the loaded program must contain a
"pseudo reset vector•, which is 1 oaded into the target registers:

0-3: Initial value for target system stack pointer.
4-7: Initial value for target program counter. If less than

load address+B then it represents a displacement that when
added to the starting load address yields the initial value
for the target PC.

6. Other target registers are initialized with certain arguments.
The resultant target state is shown below:

PC,.

SR•

00 •
01 •

Entry point of loaded program (loaded_from "pseudo reset
vector"}.

$2700.

Device LUN.

Cont ro 11 er LUN.

04 = 'IPLx', with x=S0C ($49504C0C}.

The ASCII string 'IPL' indicates that this is the Initial
Program Load sequence; the code $0C indicates TRAP #15
support with stack parameter passing and TRAP #15 disk
support.

A0 • Address of disk cont ro 11 er.

Al.. Entry point of loaded program.

A2.. Address of media configuration block. Zero if no
configuration loaded.

AS• Start of string (after command parameters}.

A6 = End of string+l (if no string was entered AS= A6}.

A7 = Initial stack pointer'(loaded from "pseudo reset vector"}.

3-11



PRELIMINARY MVME135BUG/D2 

7. Control is given to the loaded program. Note that the arguments 
passed to the target program, as for example, the string 
pointers, may be used or ignored by the target program. 

Examples: 

135Bug>BO < CR> 

135Bug>BO 3 < CR> 

135Bug>BO , 3 < CR> 

135B'-'g>BO 8 9,test <CR> 

{ Boot from device LUN 0, 
{ contra 11 er 0. 

{ Boot from device LUN 3, 
{ contra 11 er 3. 

{ Boot from device LUN 0, 
{ controller 3. 

) 
) 

) 
) 

) 
) 

{ Boot from device LUN 8, ) 
{ controller 0, and pass the string ) 
{ 11 test II to the booted program. ) 

3-12 



 
 

PRELIMINARY

3.6 Breakpo;nt Insert/Delete

BR [ < ADDR> [: < COUNT> ] ]

NOBR [ < ADDR> ]

MVMEI 3 SBUG/D2

BR
NOBR

The BR command allows the user to set a target code instruction
address as a • breakpoint address" for debugging purposes. If during
target code execution a breakpoint with 0 count is found, the target
code state is saved in the target registers and control is returned
back to 135Bug. This allows the user to see the actual state of the
processor at selected instructions in the code.

Up to eight breakpoints can be defined. The breakpoints are kept in
a table which is displayed each time either BR or NOBR are used. If
an address is specified with the BR command that address is added to
the breakpoint table. The count field specifies how many times the
instruction at the breakpoint address must be fetched before a
breakpoint is taken. The count, if greater than zero, is
decremented with each fetch. Every time that a breakpoint with zero
count is found, a breakpoint handler routine prints the CPU state on
the sc.reen and control is returned to 135Bug.

• NOBR is used for deleting breakpoints from the breakpoint table. If
an address is specified then that address will be removed from the
breakpoint table. If NOBR < CR> is entered then all entries will be
deleted from the breakpoint table and the empty table will be
displayed.

Example:

135Bug>BR 14888,142811 14780:&12 < CR>
BREAKPOINTS
00014000 00014200
00014700:C

135Bug>NOBR 142110 < CR>
BREAKPOINTS
00014000 00014700:C

135Bug>NOBR < CR>
BREAKPOINTS
135Bug>

( Set some breakpoints.

( Delete one breakpoint.

( Delete all breakpoints.

3-13



PRELIMINARY MVME135BUG/02 

3. 7 Block of Memory Search BS 

BS< RANGE> < DEL> < TEXT> [;BIWIL] or 

BS<RANGE> <DEL> <data> <DEL> [<mask>] [;BIWIL,N,V] 

The BS command searches the specified range of memory for a match 
with a user-entered data pattern. This command has three modei, as 
described below. 

Mode 1 - LITERAL STRING SEARCH -- In this mode a search is carried out 
for the ASCII equivalent of the literal string entered by the user. 
This mode is assumed if the single quote (') indicating the 
beginning of a< TEXT> field is encountered following< RANGE>. The 
size as specified in the option field tells whether the count field 
of < RANGE> refers to bytes, words, or 1 ongwords. If < RANGE> is not 
specified using a count then no options are allowed. If a match is 
found then the address of the first byte of the match is output. 

Mode 2 - DATA SEARCH -- In this mode a data pattern is entered by the 
user as part of the command line and a size is either entered by the 
user in the option field or is assumed (the assumption is word). The 
size entered in the option field also dictates whether the count 
field in < RANGE> refers to bytes, words, or 1 ongwords. The 
following actions occur during a data search: 

1. The user-entered data pattern is right-justified and leading 
bits are truncated or leading zeros are added as necessary to 
make the data pattern the specified size. 

2. A compare is made with successive bytes, words, or longwords 
(depending on the size in effect) within the range for a match 
with the user-entered data. Comparison is made only on those 
bits at bit positions corresponding to a •1• in the mask. If no 
mask is specified then a default .mask of all one's is used (all 
bits will be compared). The size of the mask is taken to be the 
same size as the data. 

3. If the "N" (non-aligned) option has been selected then the data is 
searched for on a byte-by-byte basis, rather than by words or 
longwords regardless of the size of< data>. This is useful if a 
word (or longword) pattern is being searched for, but is not 
expected to 11 e on a word ( or longword) boundary. 

4. If a match is found then the address of the first byte of the match 
is output along with the memory contents. If a mask was in use 
then the actual data at the memory location is displayed, rather 
than the data with the mask applied. 

3:-14 



PRELIMINARY MVME135BUG/02 

Mode 3 - DATA VERIFICATION -- If the "V" (verify) option has been 
selected, then displaying or addresses and data will be done only 
when the memory contents do NOT match the user-specified pattern. 
Otherwise this mode is identical to Mode 2. 

For all three modes, informations on matches is output to the screen 
in a four-column format. If more than 24 lines of matches are found 
then output is inhibited to prevent the first match from rolling off 
of the screen. A message is printed at the bottom of the screen 
indicating that there is more to display. To resume output the user 
should simply press any character key. To cancel the output and exit 
the command the user should press the BREAK key. 

If a match is found (or, in the case of Mode 3, a mismatch) with a 
series of bytes of memory whose beginning is within the range but 
whose end is outside of the range then that match wil 1 be output and a 
message will be output stating that the last match does not lie 
entirely within the range. The user may search non-contiguous 
memory with this command without causing a Bus Error. 

Examples: (Assume the following data is in memory). 

00030004 0000 0045 7272 6F72 2053 7461 7475 733D 
00030010 3446 2F2F 436F 6E66 6967 5461 626C 6563 
00030020 7461 7274 3A00 0000 0000 0000 0000 0000 

... Error Status• 
4F//ConfigTableS 
tart: •..•....•.. 

135Bug>BS 30flJ00 31/l02F 'Task Status' <CR> 
Effective address: 00030000 
Effective address: 0003102F 
-not found-
135Bug> 

135Bug>BS 31/l000 31/l02F 'Error Status' < CR> 
Effective address: 00030000 
Effective address: 0003002F 
00030003 
135Bug> 

3-15 

Mode 1: the string is not 
found, so a message is 
output. 

Mode 1: the string is found, 
and the address of its first 
byte is output. 



PRELIMINARY 

135Bug>BS 311l0111B 3001F 'ConfigTableStart' < CR> 
Effective address: 00030000 
Effective address: 0003001F 
00030014 
-last match extends over range boundary-
135Bug> 

135Bug>BS 311l0111B:30 't' ; B < CR> 
Effective address: 00030000 
Effective count : &48 
0003000A 0003000C 00030020 00030023 
135Bug> 

135Bug>BS 311l0111B:18,2F2F < CR> 
Effective address: 0003~000 
Effective count : &24 
00030012j2F2F 
135Bug> 

135Bug>BS 311l0111B,3002F 3034 < CR> 
Effective address: 00030000 
Effective address: 0003002F 
-not found-
135Bug> 

135Bug>BS 30000,3882F 3034 ;N < CR> 
Effective address: 00030000 
Effective address: 0003002F 
000301/Jf/JF j 3D34 
135Bug> 

3-16 

MVMEI35BUG/O2 

Mode 1: the string is found, 
but it ends outside of the 
range, so the address of its 
first byte and a message are 
output. 

Mode 1, using < RANGE> with 
count and stze option: count 
is displayed in decimal, and 
address of each occurrence 
of the string is output. 

Mode 2, using . < RANGE> with 
count: count is displayed 
in decimal, and the data 
pattern is found and 
displayed. 

Mode 2: the default size is 
word and the data pattern 
is not found. so a message 
is output. 

Mode 2: the default size is 
word and non-aligned option 
is used, so the data pattern 
is found and displayed. 



PRELIMINARY 

135Bug>BS 38000:38 68,Fe ;B < CR> 
Effective address: 00030000 
Effective count : &48 
00030006l6F 0003000B161 
00030017166 00030018169 
0003001Cl62 0003001Dl6C 
135Bug> 

0003001Sl6F 
00030019167 
0003001El65 

3-17 

00030016l6E 
0003001B161 
00030021161 

MVME135BUG/D2 

Mode 2, using < RANGE> with 
count, mask option, and size 
option: count is displayed 
in decimal, and the actual 
unmasked data patterns found 
are displayed. 



PRELIMINARY MVME135BUG/D2 

3. 8 B1 ock of Memory Verify 

BV < RANGE> < DEL> < data> [ < increment> ][;BI WI L] 

where: 

< data> and < increment> are both expression parameters 

options: 

8 ~ Byte 

W - Word 

L - Longword 

BV 

The BY comma.nd compares the specified range of memory against a data 
. pattern. If an increment is specified, then< data> is incremented 
by this value following each comparison, otherwise< data> remains a 
constant value.· A decrementing pattern may be accomplished by 
entering a negative increment. The data entered by the user is 
right-justified in either a· byte, word, or longword field (as 
specified by the option selected). The default field length is W 
(word). 

If the user-entered data or incremen~ (if specified) does not fit 
into the data field size·then leading bits are truncated to make the 
fit. If truncation occurs, then a message will be printed stating 
the data pattern and, if applicable, the increment value actually 
used. 

If the range is specified using a count then the count is assumed to 
be in terms of the data size. 

If the upper address of the range is not on the correct boundary for 
an integer multiple of the data to be verified, then data is verified 
to the last boundary before the upper address. No address outside of 
the specified range will be read from in any case. The "Effective 
address" messages displayed by the command will show exactly the 
extent of the area read from. 

3-18 



PRELIMINARY MVME135BUG/O2 

Example 1: (Assume memory from 20000 to 2002F is as indicated). 

135Bug>K> 28800:18 < CR> 
00020000 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 
00020010 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 
00020020 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 

NqNqNqNqNqNqNqNq 
NqNqNqNqNqNqNqNq 
NqNqNqNqNqNqNqNq 

135Bug>BV 28800 211111F 4E71 < CR> 
Effective address: 00020000 
Effective address: 0002001F 
135Bug> 

{default size is Word 

{verify successful, nothing printed) 

Example 2: (Assume memory from 20000 to 2002F is as indicated). 

135Bug>K> 2fl000:38;B < CR> 
00020000 0000 0000 0000 0000 
00020010 0000 0000 0000 0000 
00020020 0000 0000 0000 0000 
l35Bug>BV 28800:38,f/J:B < CR> 
Effective address: 00020000 
Effective count : &48 
0002002Al4A 0002002BIFB 
0002002El4A 0002002FIFB 
135Bug> 

0000 0000 0000 0000 
0000 0000 0000 0000 
0000 4AFB 4AFB 4AF.B .......... J.J.J. 

0002002Cl4A 0002002D!FB. 

{mi smatche-s are printed out 

Example 3: {Assume memory from. 20000 to 2002.F i.s as indicated). 

135Bug>K> 2fl000:18 < CR> 
00020000 0000 0001 0002 0003 0004 0005 0006 ~007 
00020010 0008 FFFF 000A 000B 000C 0000 000E 000F 
00020020 0010 0011 0012 0013 0014 0015 0016 0017 
135Bug>BV ·28800:18,0,1 < CR> 
Effective·address: 00020000 
Effective count : &24 
00020012IFFFF 
135Bug> 

{default si.ze is Word 

{mismatch is printed out) 

3-19 



PRELIMINARY

3.9 Data Conversion

DC < EXP> I< ADDR>

MVME135BUG/D2

DC

The DC command is used to simplify an expression into a single
numeric value. This equivalent value is displayed in its
hexadecimal and decimal repr~sentation. If the numeric value could
be interpreted as a signed negative number {i.e., if the most
significant bit of the 32-bit internal representation of the number
is set) then .both the signed and unsigned interpretations are
displayed.

DC can also be used to obtain the equivalent effective address of an
MC68020 address 1 ng mode.

Examples:·

135Bug>DC 11 < CR>
. 00.000010 .. $10 ~ &16

135Bug>

135Bug>DC 111-&21 < CR>
SIGNED : FFFFFFF6 •-SA• -&10
UNSIGNED: FFFFFFF6 • SFFFFFFF6 • &4294967286
135Bug>

135Bug>DC 123+&34~ 67+%1100091 < CR>
. 00000314 .. S314 • &788

135Bug>

135Bug>DC (M"'S) /4 < CR>
0000000C •SC• &12

135Bug>

135Bug>DC 55&F < CR>
00000005 • S5 • &5

135Bug>

3-20

   



 

PRELIMINARY

135Bug> DC 55> > l < CR>

0000002A .. $2A • &42

135Bug>

MVMEI 3 SBUG/D2

The subsequent examples assume A0=00030000 and the following data
resides in memory:

00030000 11111111 22222222 33333333 44444444

135Bug>DC {Afll) < CR>
00003000 • $30000 • &196608

135Bug>

13SBug>DC {[,Afll]) <CR>
11111111 • $11111111 • &286331153

135Bug>

135Bug>DC (4,Afll) < CR>
00030004 • $30004 • &196612

135Bug>

135Bug>DC {[4,Afll]) <CR> ,
22222222 = $222222.\ • &57.2662306

135Bug>

3-21

, , , n 11 " "3333DDDD



PRELIMINARY MVME13SBUG/D2 

3. lB Dump S-Records DU 

DU [<port>]< DEL><RANGE><DEL> [<TEXT><DEL>] [<ADDR>] [<OFFSET>] [ ;B IWI L] 

The DU command outputs data from memory in the form of Motorola S
Records to a port specified by the user. If port is not specified 
then the S-Records are sent to the host port. 

The option field is allowed only if a count was entered as part of the 
range and defines the units of the count (bytes, words, or 
longwords). · 

The optional <TEXT> field is for text that will be incorporated 
into the header (SO) record of the block of records that will be 
dumped. 

The optional < ADDR> field is to allow the user to enter an entry 
address for code contained in the block of records. This address is 
incorporated into the address field of the block's termination 
record. If no entry address is entered then the adi:lress field of the 
termination record will consist of zeros. The termination record 
will be an S7, S8, or S9 record, depending on the address entered. 
Refer to Appendix A for additional information on S-Records. 

An optional offset may also be specified by the user in the< OFFSET> 
field. The offset value is added to the addresses of the memory 
locations being dumped to come up with the address which is written 
to the address field of t"he S-Records. This allows the user to 
create an s..,Record.f1le which will load back into memory at a 
different location than the location from which it was dumped. The 
default ·offset is zer·o. 

CAUTION: If an offset is to be specified but no entry address is to 
be specified then two commas (indicating a missing field) 
must precede the offset to keep it from being interpreted 
as an entry addres~. 

Ex amp 1 e 1: Dump memory from $20000 to $2002F to port 1. 

135Bug>llJ 2fl0BS 2flB2F < CR> 
Effective address: 00020000 
Effective address: 0002002F 
135Bug> 

3-22 



 

PRELIMINARY MVMEI 3 5BUG/D2

Example 2: Dump 10 bytes of memory beginning at_ $30000 to the
terminal screen (port 0).

135Bug>llJ8 3811190:118 < CR>
Effective address: 00020000
Effective count : &10.
S0030000FC
S20E03000026025445535466084E4F7B
S9030000FC
135Bug>

Example 3: Dump memory from $20000 to $2002F to host (port 1).
Specify a file name of II TEST" in the header record and
specify an entry point of $2000A.

135Bug>DU 28fll00 2002F 'TEST' 281110A < CR>
Effectiye address: 00020000
Effective address: 0002002F
135Bug>

The following example shows how to upload S-Records to a host
computer (in this ca-se an EXORmacs running the VERSAdos operating
system), storing them in the file 11 FILEl.MX 11 which the user will
create with the VERSAdos utility UPLOADS. '

135Bug> TM <:CR>.
Escape character: $0l•"'A

<BREAK>

II

(login)
II

.. uPL~S FILEl < CR>

..
( Go into transparent mode to establish )
( conmunication with the EXORmaces. )

( Press BREAK key to get VERSAdos 1 ogi n )
( prompt. )

( User must log onto VERSAdos and enter the)
( catalog where FILEl.MX will reside. )

( At VERSAdos prompt, invoke the UPLOADS )
( utility and tell it to create a file )
( named II FILE! 11 for the S-Records that )
( will be uploaded. )

3-23



PRELIMINARY MVME13SBUG/O2 

The UPLOADS utility will at this point display some messages like 
the following: 

UPLOAD II s II RECORDS 
Version x.y 

Copyrighted by MOTOROLA, INC. 

volume•xxxx 
catlg•xxxx 
fil e•FILEI 
ext•MX 

UPLOADS Allocating new file 
Ready for ft S" records, ... 

( When the VERSAdos prompt returns, 
( enter the escape character to return 
( to 135Bug. 

Now enter the command for 135Bug to dump the S-Records to the _port. 

135Bug>OO 2fJsee 2BF 'FILEl' <CR> 
Effective address: 00020000 
Effective address: 0002000F 
135Bug> 

135Bug> 1M < CR> 
Escap~ character: $10-AA 

QUIT <CR> 

( Go into transparent mode again. 

( Tell UPLOADS to quit 1 ooking for 
( records. 

3-24 

) 
) 



PRELIMINARY MVME135BUG/D2 

The UPLOADS utility will now display some more messages like this: 

volume•xxxx 
catlg•xxxx 
file•FILEl 
ext•MX 

UPLOAD II s II RECORDS 
Version x.y 

Copyrighted by MOTOROLA, INC. 

*STATUS* No error since start of program 
Upload of S-Records complete. 

•OFF <CR> 

•<AA> 
135Bug> 

( The VERSAdos prompt should return. ) 
( Log off of the EXORmacs. ) 

( Enter the escape character to return ) 
( to 135Bug. ) 

3-25 



PRELIMINARY. 

3.11 Go Direct (Ignore Breakpoints) 

GD [ < ADDR> ] 

MVMEI 3 SBUG/02 

GD 

The GD command is used to start target code execution. If an address 
is specified, it is placed in the target PC. Execution starts at the 
target PC address. As opposed to GO, breakpoints are not inserted. 

Once execution of target code has begun, control may be r~turned to 
135Bug by various conditions: 

1. The user presses the ABORT or RESET pushbuttons on the VME135 
front panel. 

2. An unexpected exception occurs. 
3. By execution of the .RETURN TRAP #15 function.· 

Example: (The following program resides at SHHil00). 

135Bug>rt> 1Sel8S;DI < CR> 
00010000 2200 
00010002 4282 
00010004 D401 
00010006 E289 
00010008 66FA 
0001000A E20A 
0001000C SSC2 
0001000E 60FE 
135Bug>RM 00 < CR> 

MOVE.L 
CLR.L 
ADD.B 
LSR.L 
BNE.B 
LSR.B 
scs 
BRA.B 

Initialize D0 and start target program: 

D0 •00000000 ? 52A9C. < CR> 
135Bug>GD 11!1111811 < CR> 
Effective address: 00010000 

3-26 

D0,Dl 
D2 
01,02 
#1,01 
$10004 
#1,D2 
D2 
$1000E 



PRELIMINARY 

To ex ;t target code, press ABORT pushbutton. 

Exception: Abort 
Format Vector• 0100 
PC •0001000E SR 
USP •0000F830 MSP 
SFC •S-F0 DFC 
D0 •00052A9C DI 
D4 •00000000 D5 
A0 •00000000 Al 
A4 •00000000 AS 
00flllf/lf/l0E 
135Bug> 

•27ll•TR:OFF_S._7_X ..• C 
•0000FC18 ISP" •0000FFF8 VBR •00000000 
•0•F0 CACR •0•.. CAAR •00000000 
•00000000 D2 •000000FF D3 •00000000 
•00000000 D6 •00000000 D7 •00000000 
•00000001/l A2 •00000000 A3 •00000000 
•00000000 A6 •00000000 A7 •f/l000FFF8 

BRA.B $lf/lf/l0E 

Set PC to start of program an-cf restart target code: 

135Bug>RM PC < CR> 
PC •0f/lf/llf/lf/l0E ? lf/JS88. < CR> 
1358ug>ll> < CR> 
Effective address: 00010000 

3-27 

MVME135BUG/D2 



, PRELIMINARY MVME135BUG/02 

3.12 Go To Next Instruction 

GN 

GN 

The GN command sets a temporary breakpoint at the address of the next 
instruction, that is, the one following the current instruction, and 
then starts target code execution. After setting the temporary 
breakpoint, the sequence of events is similar to that of the GO 
command. 

GN is especially helpful when debugging modular code because it 
allows the user to "trace" through a subroutine call as if it were a 
single instruction. 

Ex.ample: The following section of code resides at $60000. 

135B~g>ltJ 6eJIIJlll8:4;DI < CR> 
00006000 7003 
00006002 7201 
00006004 6100FFA 
00006008 2600 
135Bug> 

MOVE.L #3,D0 
MOVEQ.L #1,Dl 
BSR.W $7000 
MOVE.L D0,D3 

The following simple subroutin~ .resides at adaress $7000. 

135Bug>ltJ 7"""9:2:DI < CR> 
00007000 D081 
00007002 4E75 
135Bug> 

ADD.L Dl,D0 
RTS 

3-28 



 

 

PRELIMINARY

Execute up to the BSR instruction.

13SBug>RM PC < CR>
PC •llllllllllllllllllllllll ? 6'B!l. < CR>
13SBug>GT 68lll4 < CR>
Effective address: lllllllll0611l04
Effective address: 00006000
At Breakpoint
PC •0011llll6011l4 SR
USP •00003830 MSP
SFC •0-F0 DFC
DIil •0011lllllll011l3 Dl
04 •0011llll011l011l D5
A8 •00011llll011l0 Al
A4 •llllll011lllllllllllll AS
lll000611llll4 6lllllll0FFA
13S8ug>

•2700-TR:OFF_S._7_ ..•..

•011lllllll3Cl8 ISP"' •lll0011l4000 VBR •llllllllllll0000

•0-F0 CACR •Ill•.. CAAR •llllllllllll011lllllll

•lll011llllllllllllll D2 •llllllllllllllllllllllll D3 •011lllllllllllllllllll

•00000000 D6 •lll011llll011lllllll D7 . •011lllllllllllll00

•llllllllllllllllllllllll A2 •llllllllllllllllllllllll A3 •lll011llllllllllllllll

•llllllllllllllllllllllll A6 •lllllllll00011llll A7 •llllllllllll411lllllll

BSR.W $7000

MVME13SBUG/O2

Use the.GN command to "trace"through the subroutine call and display
the resu·1 ts.

135Bug>GN < CR>
Effective address: llllllllllll6011l8

Effective address: llllllllllll611llll4

At Breakpoint
PC •llllllllllll611llll8 SR
USP =lllllllll038311l MSP
SFC · •0•Flll · DFC
DIil ·•00000004 Dl
D4 .•0011llllllllllllllll DS
A0· •llllllllllllllllllllllll Al
A4 •llllllllllllllllllllllll AS
llllllllllll611llll8 2611llll
13SBug>

s2711llll=TR:OFF_S_._7 _ ..•..
•lllllllll03Cl8.ISP* ·•lllfllllllll4000 VBR •llllllllllllllllllllllll
•lll=Flll : CACR •Ill==. .. CAAR •llllllllllllllllllllllll
•llllllllllllllllllllll·D2 ·•llllllllllllllllllllllll D3 •llllllllllllllllllllllll
•lllllllll00000 D6 ·==flllllllllllllllllllllll D7 =llllllllllllllllllllllll
.. fllfll000000 A2 •00000000 A3 •00000000
•00000000 A6 =00000001/l A7 •00004000

MOVE.L D0,O3 :

3-29



PRELIMINARY 

3 .13 Go Execute User Program 

GO [<ACOR>] 

MVME135BUG/D2 

GO 

The GO command (alias 6) is used to initiate target code execution. 
All previously set breakpoints are enabled. If an address i~ 
specified, it is placed in the target PC. Execution starts at the 
target PC address. 

The sequence of events is as fo 11 ows: 

1. First, if an address is specified, it is loaded in the target PC. 
2. Then, if a breakpoint is set at the target PC address, the 

instruction at the target PC is traced (executed i-n trace mode). 
· 3. Next, all breakpoints are inserted in the target code. 

4. Finally, target code execution resumes at the target PC address. 

· At this point control may be returned to 135Bug by various 
conditions: · 

1. A breakpoint with a count of' zero is found. 
2. The user presses the ABORT or RESET pushbuttons on the VME135 

front panel . 
3. An unexpected exception occurs. 
4. By execution of the • RETURN TRAP # 15 function. 

Example: (The following program resides at Slllllllflllll). 

135Bug>K> leJB;DI < CR> 
1/ll/JSll/ll/JSl/l 221/ll/l 

llll/llllllll01/l2 4282 
flJSl/lll/ll/ll/l4 041/ll 
llll/ll/lll/ll/ll/l6 E289 
01/lSISl/ll/lS 66FA 
1/ll/ll/lll/ll/lSA E21/lA 
1/JSl/lll/lllll/JC 55C2 
01/ll/lll/lllll/JE 60FE 

135Bug> 

MOVE.L 
CLR.L 
AOO.B 
LSR.L 
BNE.B 
LSR.B 
scs 
BRA.B 

3-31/l 

01/l,0l 
02 
01,02 
#1,01 
Slf1J01/l4 
#1,02 
02 
$11/ll/ll/JE 



PRELIMINARY MVMEl 3 SBUG/D2 

Initialize D0, set some breakpoints, and start target program: 

135Bug>RM 00 < CR> 
D0 •00000000 ? 52A9C. < CR> 
135Bug>BR UlfJflll,1888E < CR> 
BREAKPOINTS 
00010000 0001000E 
135Bug>CI> ll!lfll8 < CR> 
Effective address: 00010000 
At Breakpoint 
PC •0001000E SR 
USP •0000F830 MSP 
SFC •0•F0 DFC 
D0 •00052A9C Dl 
D4 •00000000 OS 
A0 •00000000 Al 
A4 •00000000 AS 
0001000E 60FE 
135Bug> 

•20ll•TR:OFF_s._s_x ..• c 
•0000FC18 ISP"' •00010000 VBR •00000000 
•0•F0 CACR •0•.. CAAR •00000000 
•00000000 D2 •000000FF D3 •00000000 
•00000000 D6 •00000000 D7 •00000000 
•00000000 A2 •00000000 A3 -00000000 
•00000000 A6 •00000000 A7 •00010000 

BRA.B S1000E 

Note that in this case breakpoints are inserted after tracing the 
first instruction, therefore the first breakpoint is not taken. 

Continue target program execution. 

135Bug>G <CR.'> 
Effective address: 0001000E 
At Breakpoint 
PC •0001000E SR 
USP •0000F830 MSP 
SFC •0=F0 DFC 
D0 =00052A9C DI 

. D4 •00000000 D5 
A0 •00000000 Al 
A4 =00000000 AS 
0001000E 60FE 
135Bug> 

•20ll•TR:OFF_S._0_X ..• C 
•0000FC18 ISP* =00010000 VBR •00000000 
•0•F0 CACR •0==. . CAAR •00000000 
•00000000 D2 •000000FF D3 •00000000 
•00000000 D6 =00000000 D7 •00000000 
•00000000 A2 •00000000 A3 •00000000 
=00000000 A6 =00000000 A7 =00010000 

BRA.B $1000E 

3-31 



PRELIMINARY 

Remove breakpoints and restart target code. 

135Bug>NOBR < CR> 
BREAKPOINTS 
l35Bug>GO lOOIIJIIJ < CR> 
Effective address: 00010000 

To exit target code, pre.ss the ABORT pushbutton. 

Exception: Abort 
Format Vector• 0100 
PC •0001000E SR 
USP •0000F830 MSP 
SFC •0•F0 0FC 
00 •00052A9C 01 
04 •000000f0 05 
A0 •00000000 Al 
A4 •00000000 AS 
I/JI/J011/J00E 60FE 
135Bug> 

•21/Jll•TR:0FF_S._0_X •.• C 
•0000FC18 ISP* •00010000 VBR •00000000 
•I/J•f0 CACR a0•. . · CAAR a00000000 
•00000000 02 •000000FF 03 •00000000 
•001/J1/J0000 06 •00000000 07 •00000001/J 
•00000000 A2 •00000000 A3 •00000000 
•00000000 A6 •00000000 A7 •0000FFF8 

BRA. B $1000E 

3-32 

MVME135BUG/02 



PRELIMINARY 

3.14 Go To Temporary Breakpoint 

GT < ADDR> 

MVME135BUG/02 

GT 

The GT command al 1 ows the user to set a temporary breakpoint and then 
start target code execution. A count may be specified with the 
temporary breakpoint. Control is given at the target PC address. 
All previously set breakpoints are enabled. The temporary 
breakpoint is removed when any breakpoint with 0 count is 
encountered. 

After setting the temporary breakpoint, the sequence of events is 
similar to that of the GO command. At this point control may be 
returned to 135Bug by various "conditions: 

l. A breakpoint with a count of zero is found. 
2. The user presses the ABORT or RESET pushbuttons on the VME135 

front panel. 
3. An unexpected exception occurs. 
4. By execution of the • RETURN TRAP # 15 function. 

Example: (The following program resides at $10000). 

135Bug>K> lfl080;DI < CR> 
00010000 2200 
00010002 4282 
00010004 D401 
00010006 E289 
00010008 66FA 
0001000A E20A 
0001000C 55C2 
0001000E 60FE 
135Bug> 

Initialize D0 and set a breakpoint: 

135Bug>RM 00 < CR> 
00 =00000000 ? 52A9C. < CR> 
135Bug>BR 1000E < CR> 
BREAKPOINTS 
0001000E 
135Bug> 

MOVE. L 
CLR.L 
ADO.B. 
LSR.L 
BNE.B 
LSR.B 
scs 
BRA.B 

3-33 

D0,01 
D2 
01,02 
#1,Dl 
$10004 
#1,D2 
D2 
$1000E 



PRELIMINARY MVME135BUG/02 

Set PC to start of program, set temporary breakpoint, and start 
target code: 

135Bug>RM PC < CR> 

PC •0fllf/JH!lfllf/JE ? lilfllN. < CR> 
135Bug> 

135Bug>GT looe6 < CR> 
Effective address: fllfllflllfllfllfll6 
Effective address: fllfllflllfllfllfllfll 
At Breakpoint 
PC •fllfllflllfllfllfll6 SR 
USP •fllfllfllf/J383f/J MSP 
SFC •fll•F0 OFC 
00 ~00fll52A9C 01 
04 •00fllfll00fllfll 05 
Afll •fllfll0fllfllfllfll0 Al 
A4 •fllfllfllfllfllfllfllfll AS 

fll0flllfllfllfll6 E289 
135Bug> 

•27ll•TR:OFF_S._7_X .•. C 
•fllfllfll03Cl8 ISP* •fllfllfllfll4fllfll0 VBR •fllfll0fllfllfllfllfll 

•0•F0 CACR •0•.. CAAR •0fllfllfllfllfllfllfll 

•fllfllfllfll0029 02 •fllfllfllfllfllfllfll9 03 •fllfllfllfllfllfllfllfll 

•fllfllfllfllfllfllfll0 06 •fllfllfllfll0fllfll0 07 •fllfllfllfllfllfllfll0 

•fllfllfll0fllfllfll0 AZ •fllfllfllfll0fll00 A3 •0fllfll0f/Jfll0fll · 
•fllfllfllfllfllfllfllfll A6 •fllfllfllf/Jfllfllfll0 A7 =fllfllfll04fllfllfll 

LSR.L U,01 

Set another temporary breakpoint at $10002 and continue the target 
program execution. 

135Bug>GT 1IIJIIJ82 < CR> 
Effective address: fll00lfllfllf/J6 
At Breakpoint 
PC •0fllflll0f/J06 SR 
USP •0fllfllfll3830 MSP 
SFC •fll•Ffll OFC 
00 •fllfllfll52A9C 01 
04 •0fllfll00fll00 05 
A0 •0fllfll0fllfllfll0 Al 
A4 •fllfll0fllfll0fllfll AS 

0f/Jfll1000E 60FE 
135Bug> 

•271l•TR:OFF _S._7 _X •• • C 
•0fllfllf/J3Cl8 ISP* •fllfllfllfll4f/Jfll0 VBR •fllfllfll0fllfllfll0 

•0•Ffll CACR •0-. . CAAR •00fllfllfllfllfll0 

•fll00fllfllfllfllfll 02 •0fllfllfllfllfllFF 03 •fllfllfllfll000fll 

•fllfllfllfll0fllfllfll 06 •00fllfllfllfllfllfll 07 •fll00fllfllfllfllfll 

•fllfllfllfll0fllfllfll A2 •fllfllfllfllfllfllfllfll A3 •fllfllfllfllfllfllfllfll 

•fllfllfllfllfllfll00 A6 •fllfllfllfllfllfllfllfll A7 •fllfllfllfll4fllfllfll 

BRA. B $lf/Jfllf/JE 

Note that a breakpoint from the breakpoint table was encountered 
before the temproary breakpoint. 

3-34 



PRELIMINARY MVME135BUG/D2 

3.15 Help HE 

HE [ < COMMAND> ] 

HE is the 135Bug help facility. HE <CR> displays the command name 
of all available commands along with its appropriate title. 
HE < COMMAND> displays only the command name and title for that 
particular command. 

Examples: 

135Bug>HE < CR> 
BF Block Fill 
BH Boot Operating System and Halt 
BI Block Initialize 
BM Qlock Move 
BO Boot Operating System 
BR Breakpoint Insert 
NOBR Breakpoint Delete 
BS Block Search 
BV Block Verify 
DC Data Conversion and Expression Evaluation 
DU Dump S-Records 
GD Go Direct (no breakpoints) 
GN Go and Stop after Next Instruction . 
GO Go to Target ,ode 
G "Alias" for previous conmand 
GT Go and Insert Temporary Bre.akpoint 
HE Help facility 
IOC I/0 Control for 'Disk 
IOP I/0 to Disk 
IOT I/0 " Teach " 
LO Load S-Records 
MA Macro Define/Display 
NOMA Macro Delete 
MAE Macro Edit 
MAL Enable Macro Expansion Listing 
NOMAL Disable Macro Expansion Listing 
MAW Save Macros 
MAR Load Macros 

3-35 



PRELIMINARY 

MD 
MM 
MS 
OF 
PA 
NOPA 
PF 
RD 
RESET 
RM 
SD 
T 
TC 
TM 

Memory Display 
Memory Modify 
Memory Set 
Offset Registers 
Printer Attach 
Printer Detach 
Port Format 
Register Display 
Cold/Warm Reset 
Register Modify 
Switch Directory 
Trace Instruction 
Trace on Change of Flow 
Transparent.Mode: 

TT 
VE 

Trace to Temporary Breakpoint 
Verify S-Records 

To display the command T, enter: 
135Bug>HE T < CR> 
T Trace Instruction 
135Bug> 

3-36 

MVME135BUG/D2 



 

PRELIMINARY

3.16 I/0 Control For Disk

IOC

MVMEl 3 5BUG/D2

IOC

The IOC command allows a user to send command packets directly to a
disk controller. The packet to be sent must already reside in memory
and must follow the packet format of the particular disk controller.

This command may be used as a debugging tool to issue commands to the
disk controller to locate problems with either drives, media, or the
controller itself.

The defaul~ controller LUN and device LUN when·1oc is invoked are
those most recently specified for IOP, IOT, or a previous invocation
of IOC. The same special characters used by the MM command to access
a previous field (A), reopen the same location(•), or exit(.), can
be used with IOC. The power-up default for the packet address is the
area which is also used by the BO and IOP commands for building
,packets. ·

Example: Send the packet at $10001/l to a VME319 controller board
configured as CLUN #0. Specify an operation to the hard
disk which is at DLUN #1.

.135Bug> I~ < CR>
Controller LUN •01/l? <CR>
Device LUN · ,;.I/JIil? 1 < CR>
Packet:address •01/llllllll2BC? ll!K!ll!IS <CR>
llllllllll:lllllllll0. 0219 f511l0 1001 0002 0100 3D01/l 3000 001/llll
001/ll-lllllll0. 0000 0000 031/llll 01/lllllll 001/llll 021/llll 03
Send Packet•Y (Y/N)? < CR>
135Bug>

3-37

............. 0 ...



PRELIMINARY 

3.17 I/0 Physical to Disk 

IOP 

MVME135BUG/02 

· IOP 

The IOP command allows the user to read, write, or format any of the 
sup.ported disk devices. When invoked, this command goes into an 
interactive mode, prompting the user for all the parameters 
necessary to carry out the command. The user may change the 
displayed value by typing a new value foll owed by < CR> , or may 
simply enter< CR>, which leaves the field unchanged. 

The same special characters used by the MM command to access a 
previous field("), reopen the same location(•), or exit(.), can be 
used with IOP. After IOP has prompted the user for the last 
parameter, the selected function is executed. The disk SYSCALL · 
functions (described in chapter 5) are used by IOP to access the 
specified disk. 

Initially (after a cold reset), all the parameters used by IOP are 
set to certain default values. Howe·ver, any new values entered will 
be saved and will be displayed the next time that the IOP command is 
invoked. 

The information that the user is prompted for is .as follows: 

1. Controller LUN •S~J? 

The Logical Unit Number of the controller to access is specified 
in this field. 

2. Device LUN •SS? 

The Logical Unit Number of the device to access is specified in 
this field. 

3. Read/Write/Format •R? 

In this field the user specifies the desired function by entering 
a one character mnemonic as follows: 

a. R for Read. This will read blocks of data from the selected 
device into memory. 

b. W for Write. This will write blocks of data from memory to 
the selected device. 

3-38 



 

PRELIMINARY MVME135BUG/02

c. F for Format. This will format the selected device. For disk
devices, either a track or the whole disk can be selected by a
subsequent field.

4. Memory Address •'1llll'1llll3000?

This field selects the starting memory address for the block to
be accessed. For disk read operations, data is written starting
at this location. For disk write operations, data is read
starting at this location.

5. Starting Block •'1llll000000?

This parameter specifies the starting disk block number to
access. For disk read operations, data is read starting at this
block. For disk write operations, data is written starting at
this block. For disk track format operations, the track that
contains this block is.formatted.

6. Number of Blocks •0002?

This field specifies the.number of data blocks to be transferred
on a read or write operation.

7. Address Modifier •00?

This field contains the VMEbus address modifier to use for OMA
(Direct Memory Access) data transfers by the selectec,
controller. If zero is specified, .a valid default -value is'-'
selected by the driver. If a non-zero value is specified, then it
wi 11 be used by the driver for data transfe.rs.

8. Track/Disk •T (T/0)?

_This field specifies whether a disk track or the entire disk will
be formatted when the format operation is selected.

9. File Number =0000?

For streamer tape devices, this field sp~cifies the starting file
number to access.

. 3-39



PRELIMINARY MVME13 SBUG/O2

U'I. Flag Byte

The flag byte is used to specify variations of the same command,
and to .receive special status information. Bits 0 thrbugh 3 are
used as command bits, bi ts 4 through 7 are used as status bi ts. At
the present, only streamer tape devices use this field. The
following bits are defined for streamer tape read and write
operations.

Bit 7 File Mark flag. If 1, a file mark was detected at the end
of the last operation.

Bitl Ignore File Number flag. If 0, the file number field is
used to position the tape before any reads or writes are
done. If 1, the file number field. is ignored, .and reads
or writes start at the present tape position.

Bit 0 End Of Fne flag. If 0, reads or writes are done until the
specified block count ts e~h~usted. If 1, reads are done
unt 11 the count is exhausted or until a file mark is
found.: If 1, writes are terrilihaied with a filemark.

11. Retension/Erase •R (R/E)?

For streamer tape devices, . this field indicates whether a
retension of the tape or an erase should be done when a format
operation is selected.

Retension: This will rewind the tape to BOT, advance the tape
without interruptions to EOT, and then rewind it
back to BOT. Tape retens ion is recommended by
cartridge tape suppliers before writing or reading
data when a cartridge has been subjected to a change
in environment or a physical shock, has been stored
for a prolonged. period of time or at extreme
temperature, or has been previously used in a
start/stop mode.

Erase: This will completely clear the tape of previous data
and at the same time will retension the tape.

After all the required parameters are entered, the disk access will
be initiated. If an error occurs, an error status word will be
displayed. Refer to Appendix D for an explanation of returned error
status codes.

3-40

 



 

PRELIMINARY MVME135BUG/D2

Example 1: Read 25 blocks starting at block 370 from device 2 of
controller 0 into memory beginning at address $50000.

135Bug> JOP < CR>
Controller LUN •00? < CR>
Device LUN •00? 2 < CR>
Read/Wri te/Fonnat•R? < CR>
Memory Address •00003000? 58B < CR>
Starting Block •00000000? &378 <CR>
Number of Blocks •0002? &25 < CR>
Address Modifier •00? < CR>
135Bug>

Example 2: Write 14 blocks starting at memory location $7000 to file
6 of device 0, controller 4. Append a filemark at the end
of the file.

135Bug> JOP < CR>
Contra 11 er LUN •00? 4 < CR>
Device LUN •02? e < CR>
Read/Write/Fonnat=R? W <CR>
Memory Address •00050000? 71M!K!l <CR>
File Number =00000172? 6 <CR>
Number of Blocks =0019? e < CR>
Fl ag Byte =00? o/.111 < CR>
Address Modifier =00? < CR>
135Bug>

3-41



PRELIMINARY 

3.18 I/O Teach Disk Configuration 

IOT [; [H][A]] 

MVME135BUG/D2 

IOT 

The IOT command allows the user· to "teach" a new disk configuration 
to 135Bug for use by the TRAP #15 disk functions. IOT lets the user 
modify the controller and device descriptor tables used by the TRAP. 
#15 functions for disk access. Note that since 135Bug commands that 
access the disk use the TRAP #15 disk functions, changes in the 
descriptor t.ables .will affect all those commands. These commands 
include IOP, BO, BH, and al so any user program that uses the TRAP# 15 
disk functions. 

Before attempting to access .the·disks with the IOP command, the user 
should verify the par.ameters and, if necessary,.modify them for the 
specific media and d,rives:used in the system. 

· ·Note that during:a bciot, :the crinf1guration secto~· is normally read 
from the disk and the device.descriptor table for the· LUN used 

.modified accordingly; If the user desires to read/write using IOP 
from a disk that has been Qooted., IOT will not be required, unless 
the system is r:-eset. · 

IOT may be invoked with the H (Help) option specified. This option 
instructs IOT· to list the ·disk controllers which are currently 
available in the system. 

Example: 

135Bug> IOT;H < CR> 
Disk Controllers Available 

Lun Type Address # dev 
0 VME320 $FFFFB000 4 
4 VME350 $FFFF5000 1 

1358ug> 

IOT may be invoked with the A (All) option specified. This option 
instructs IOT to list all the disk controllers which are currently 
supported in 1358ug. When invoked without options, the IOT command 
enters an interactive sub-command mode where the descriptor table 
values currently in effect are displayed one-at-a-time on the 
console for the operator to examine. The operator may change the 
displayed value by entering a new value or may leave it unchanged by 
typing only a carriage return. The same special characters used by 
the MM command to access a previous field ("), reopen the same 
location(•), or exit(.), can be used with IOT. All numerical values 
are interpreted as hexadecimal numbers. Decimal values may be 
entered by preceding the number with an"&". 

3-42 



 

PRELIMINARY MVME135BUG/O2

The first two items of information that the user is prompted for are
the Controller LUN and the Device LUN (LUN • Logical Unit Number).
These two LUNs specify one particular drive out of many that may be
present in the system.

If the Controller LUN and Device LUN selected do not correspond to a
valid controller and device, then IOT will output the message
• Inv al id LUN" and the user wi 11 be prompted for the two LUNs again.

After the parameter table for one particular drive has been selected
via a Controller LUN and a Device LUN, IOT will begin displaying the
values in the attribute fields, allowing the user to enter changes
if desired.

The parameters and attributes that are associated with a particular
device are determined by a parameter and an attribute mask that is
part of the device definition.

The device that has been selected may have any combination of the
fo 11 owing parameters and attributes:

l. Sector Size:

0-128 1-256
2-512 3-1024

The physical sector size specifies the number of data bytes per
sector.

2. Block Size:

0-128 1-256
2-512 3~1024 =0i?

The block size defines the units in which a transfer count is
specified when doing a disk/tape block transfer. The block size
can be smaller, equal to, or greater than the physical sector
size, as long as the following relationship holds true:

(Block Size)*(Number of Blocks)/(Physical Sector Size) must be an
integer.

3. Sectors/Track =0020?

This field specifies the number of data sectors per track, and is
a function of the device being accessed and the sector size
specified.

3-43



PRELIMINARY MVME135BUG/D2

4. Starting Head -10?

This field specifies the starting head number for the device. It
is normally zero for winchester and floppy drives. It is non
zero for dual volume SMD drives.

5. Number of Heads .. 05?

This field specifies the number of heads on the drive.

6. Number of Cylinders =0337?·

This field specifies the number of cylinders on the device. For
floppy disks, the number of cylinders depends on the media size
and the track density. General values for 5-1/4" floppy disks
are show below:

48 TPI - 40 Cylinders
96 TPI - 80 Cylinders

7. Precomp. Cylinder •0000?

This field specifies the cylinder number at which
precompensation should occur for this drive. This parameter is
normally specified by the drive manufactur!!r.

8. Reduced Write Current Cylinder =0000?

This field specifies the cylinder number ~t which the write
current should be re<iuced when writing to the drive. This
parameter is normally specified by the drive manufacturer.

9. Interleave Factor •00?

This field specifies how the sectors are formatted on a track.·
Normally, consecutive sectors in a track are numbered
sequentially in increments of 1 (Interleave factor of 1). The
interleave factor controls the physical separation of logically
sequential sectors. This physical separation gives the host
time to prepare to read the next logical sector without
requiring the loss of an entire disk revolution.

10. Spiral Offset •011J?

The spiral offset controls the number of sectors that the first
sector of each track is offset from the index pulse. This is
used to reduce latency when crossing track boundaries.

3-44



 

PRELIMINARY MVMEl 3 5BUG/D2

11. ECC Data Burst Length=IIIIII?

This fie 1 d defines the number of bi ts to correct for an ECC error
when supported by the disk controller.

12. Step Rate Code •0111?

The step rate is an encoded field used to specify the rate at
which the read/write heads can be moved when seeking a track on
the disk.

The encoding is as fo 11 ows:

Step Rate Winchester 5-1/4" 8"
Code(Hex} Hard Disks Floppy Floppy

0111 .0 msec 12 msec 6 msec
1111 6 msec 6 msec 3 msec
1112 10 msec 12 msec 6 msec
1113 15 msec 2111 msec 1111 msec
1114 20 msec 3111 msec 15 msec

13. Single/Double DATA Density •D (S/D)?

Single (FM) or double (MFM} data density should be specified by
typing Sor D, respectively.

14. Si ngl e/Doubl e TRACK Densi ty=D (S/D)?

Used to define the density across a recording surface: This
usually relates to the number of tracks per inch as follows:

48 TPI - Single Track Density
96 TPI .- Double Track Density

15. Single/Equal_in_all Track iero density =S (S/D)?

This flag specifies whether the data density of track Ill is single
density or equal to the density of the remaining tracks. For the
"Equal in all" case, the. Single/Double data density flag
indicates-the density of track Ill.

3-45



PRELIMINARY MVME135BUG/D2 

16. Slow/Fast Data Rate ,.5 (S/F)? 

This flag selects the data rate for floppy disk devices as 
follows: 

S = 250kHz data rate 
F = 500kHz data rate 

17. Gap 1 •07? 

This field contains the number of words of zeros that are written 
before the header field in each sector during format. 

18. Gap 2 "".08? 

This field contains the number of words of zeros that are written 
between the header and data fields during f!ormat and write 
commands. 

19. Gap3=00? 

This field contains the number of words of zeros that are written 
after the data fields during format commands. 

20. Gap 4 •111111'? 

This field contains the number of words of zeros that are written 
after the last s,ector of a track and before the index pu-lse. 

21. Spare Sectors Count .. 00? 

This field contains the number of sectors per track allocated as 
spare sectors. These sectors will only be used as replacements 
for bad sectors on the disk. 

22. Reserved Area Units:Tracks/Cyl inders •T (T/C)? 

This field specifies the units (tracks or cylinders) used for 
the next two fields. 

23. < UNITS> Reserved for Al ternates-0000? 

This field specifies the number of < UNITS> reserved for the 
alternate mapping area on the disk. The token < UNITS> is 
rep 1 aced by the word N Tracks" or the word "Cylinders", as 
specified by the NReser-ved Area Units" field. 

3-46 



 

PRELIMINARY MVMEl 3 5BUG/D2

24. < UNITS> Reserved for Controller•0_000?

This field specifies the number of< UNITS> reserved for use by
the controller. The token < UNITS> is replaced by the word
"Tracks" or the word "Cylinders", as specified by the "Reserved
Area Units" field.

Example 1: Examining the default parameters of a 5-l/4"Floppy Disk.

135Bug> IOT < CR>
Controller LUN
Device LUN
Sector Size:
0-128 1-256
2-512 3-1024
Block Size:
0-128 1-256

.. 00? <CR>
• 00? 2 <CR>

= 01? <CR>

2-512 3-1024 = 01? <CR>
Sectors/Track • 0010? < CR>
Number of Heads • 02? < CR>
Number of Cylinders = 0050?. < CR>
Precomp. Cylinder • 0028? < CR>
Step Rate Code • 00? < CR>
Single/Double DATA Density •D (S/D)? <CR>
Single/Double TRACK' Density •D {S/D)? <CR>
135Bug>  

3-47



P.RELIM I NARY MVME135BUG/D2 

:Example 2: Changing from: a 40 Megabyte Winchester to a 70 Megabyte 
Winchester. (Note that reconfiguration such as this is 
only necessary when a user wishes to read or write a disk 
which is different than the default using the IOP 
command. Reconfiguration is normally done automatically 
by the 80 or BH command when booting from a disk which is 
different from the default). 

135Bug> IOT < CR> 
. Controller LUN 
Device LUN 
Sector Size: 
0-128 1-256 
2-512 3-1024 
Block Size: 
0-128, 1-256 

,. 00? < CR> 
• 00? 2 < CR> 

.. 01? < CR> 

2-512 3-1024 = 01? <CR> 
Sectors/Track • 0020? < CR> 
St art i ng Head .. 00? < CR> 
Number of Heads • 06? 8 < CR> 
Number of Cylinders • 033E? 408 < CR> 
Precomp. Cylinder • 0000? 401 <CR> 
Reduced Write Current Cylinder- 0000? < CR> 
Interleave Factor • 01? ·a < CR> 
Spiral Offset • 00? <CR> 
ECC Data Burst Length• 0000? rMl8B < CR> 
135Bug> 

3-48 



PRELIMINARY MVME135BUG/D2 

Example 3: Changing from Fuji drive to Fixed/Removable CDC drive. 
It is necessary to reconfigure two devices, one 
corresponding to the fixed disk and one corresponding to 
the removable disk of the CDC drive. 

135Bug> JOT < CR> 
Controller LUN 
Device LUN 
Sector Size: 
0-128 1-256 
2-512 3-1024 
Block Size: 
0-128 1-256 
2-512 3-1024 
Sectors/Track 
Starting Head 
Number of Heads 
Number of Cylinders 
Interleave Factor 
Spiral Offset 
Gap 1 
Gap 2 
Spare Sectors Count 
135Bug> 

• 00? 2 <CR> 
• 00? <CR> 

., 02? 1 <CR> 

• 01? <CR> 
= 0040? < CR> 
• 00? HI < CR> 
.. 0A? 5 <CR> 
c 0337? < CR> 
• 01? <CR> 
= 00? <CR> 
= 10? 7 <CR> 
• 20? 8 <CR> 
• 00? <CR> 

(Fixed Disk) 

3-49 



PRELIMINARY 

135Bug> IOT < CR> 
Contra 11 er LUN 
Device LUN 
Sector Size: 
0-128 1-256 
2-512 3- Hll24 
Block Size: 
0-128 1-256 
2-512 3-1024 
Sectors/Track 
Starting Head 
l'tumber of Heads 
Number of Cylinders 
Interleave Factor 
Spiral Offset 
Gap 1 
Gap :2 
$pare Sectors Count 
135Bug> 

• 02? <CR> 
• 00? 1 <CR> 

.. 01? < CR> 

.. 01? <CR> 
• 0040? < CR> 
• 01/J? < CR> 
.. 00? 1 <CR> 

. ,. 0337? < CR> 
• 01? <CR> 
• I/JIil? <CR> 
':" 7? <CR> 
= 8? <CR> 
.; 01/J? < CR> 

MVME135BUG/D2 

(Removable Disk) 

3-50 



( 

PRELIMINARY MVMEl 3 SBUG/02 

3 .19 Load S-Records From Host LO 

LO [nl[< ADDR> ][ ;< X/-C/T> )[•<text>] 

This command is used when data in the form of a file of Motorola S
Records is to be downloaded from a host system to the VME135 module. 
The LO command accepts serial data from the host and loads it into 
memory. 

The opt i ona 1 port number "n" a 11 ows the user to specify which port is 
to be used for the downloading. If this number is omitted, port l 
will be assumed. 

The optional < ADDR> field allows the user to enter an offset 
address which is to be added to the address contained in the address 
field of each record. This will cause the records to be stored to 
memory at different locations then would normally occur. The 
contents of the automatic offset register are not added to the S
Record addresses. If the address is in the range $0 to SlF and the 
port number is omitted, enter a comma before the address to 
di st i ngu i sh it from a port number. 

The optional text field, entered after the equals sign (=), will _be 
sent to the host before 135Bug begins to look for S-Records at the 
host port. This al 1 ows the user to send a command to the host device 
to initiate the download. This text should NOT be delimited by any 
kind of quote marks. The text is understood to begin immediately 
following the equals sign and terminate with the carriage return. 
If the host i! ~oerating full duplex,-the string will also be echoed 
ba~k to the t ,: t port by the host and wi 11 appear on the user's -
terminal sere(: ... 

In order to accommodate host systems that echo all received 
characters, the above-mentioned text string i~ sent to the h~st one 
character at a time and characters received from the host are read -
one at a time. After the entire command has been sent to the host LO 
will keep looking for a <LF> character from the host, signifying 
the end of the echoed command. No data records will be processed 
until this < LF> is received. If the host system does not echo 
characters, LO will still keep looking for a< LF> character before 
data records are processed. For this reason it is required in 
situations where the host system does not echo characters that the 
first record transferred by the host system be a header record. The 
header record is not used but the < LF> after the header record 
serves to break LO out of the loop so that data records will be 
processed. 

3-51 



PRELIMINARY MVME135BUG/02 

The other options have the following effects: 

-C option - Ignore checksum. A checksum for the data contained 
within an S-Record is calculated as the S-Record is read 
in at the port. Normally, this calculated checksum is 
compared to the checksum contained within the S-Record 
and if the compare fails, an error message is sent to 
the screen on completion of the download. If this 
option is selected then the comparison is not made. 

X option - Echo. This option echoes the S-Records to the user's 
termi na 1 as they are read in at the host port. 

T option - TRAP # 15 code. This option causes LO to set the target 
register 04 • 'LO'x, with x • $0C ($4C4F200C}. The 
ASCII string 'LO ' indicates that this is the LO 
command; the code $0C indicates TRAP #15 support with 
stack parameter/result passing and TRAP #15 disk 
support. This code can be used by the dpwnl oaded 
program to select the appropriate calling convention 
when invoking debugger functions, since some Motorola 
debuggers use conventions different from 135Bug, and 
they wi 11 set a different code in 04. 

The S-Record f~rmat (refer to Appendi~ A} allows for an entry point 
to be specified in the address field'of the termination record of an 
S-Record block. The contents of the address field of the 
termination record (plus the offset address, if any} will be put 
into the target PC. Thus aftef' a download the user need only enter G 
or GO instead of G < addr> or GO < addr> to execute the ·code that 
was downloaded. 

If a non-hex character is encountered within the data field of a data 
record then the part of the record which had been received up to that 
ti me will be printed to the screen and 135Bug' s error handler wi 11 be 
invoked to point to the faulty character; 

As mentioned, if the embedded checksum of a record does not agree 
with the checksum calculated by 135Bug AND if the checksum 
comparison has not been disabled via the "-C" option then an error 
condition exists. A message will be output stating the address of 
the record (as obtained from the address field of the record}, the 
calculated checksum and the checksum read with the record. A copy of 
the record is also output. This is a fatal error and causes the 
command to abort. 

3-52 



,· 

( 

( 

PRELIMINARY MVME135BUG/D2 

When a load is in progress, each data byte is written to memory and 
then the contents of this memory location are compared to the data to 
determine if the data is stored properly. If for some reason the 
compare fails then a message is output stating the address where the 
data was to be stored, the data written and the data read back during 
the compa~e. This is also a fatal error and will cause the command to 
abort. 

Since processing of the S-Records is done character-by-character, 
any data that was deemed good will have al ready been stored to memory 
if the command aborts due to an error. 

Examples: 

Suppose a host system (a VME/10 with VERSAdos in this case) was·used 
to create a program that looks like this: 

1 * Test Program. 
2 * 
3 65040000 ORG $65040000 
4 
5 6504000 7001 MOVEQ.L #1,00 
6 6504002 0088 AOO.L A0,00 
7 6504004 4A00 TST.B 00 
8 6504006 4E75 RTS 
9 END 

****** TOTAL ERRORS 0--
****** TOTAL WARNINGS 0--

Then this program was converted into an S-Record file named TEST.MX 
as follows: 

S00F00005445535453335337202001015E 
S30D650400007001D0884A004E75B3 
S7056504000091 

3.53 



PRELIMINARY MVME135BUG/D2 

Load this file into the VME135's memory for execution at address 
$'4111111111111 as follows: 

135Bug> TM < CR> · 
Escape character: Sllll•"A 

< BREAK> 

II 

{login) 
II 

=<"A> 

( Go into transparent mode to establish ) 
( communication with the VME/10. ) 

( Press BREAK key to get VERSAdos login ) 
( prompt. ) 

{ User must log onto VERSAdos and enter the) 
{ proper catalog to access the file TEST.MX.) 

( Enter escape character to return to 
( 1358ug prompt. 

135Bug>LO -65000009 ;X..COPY TEST.MX,# <CR> 
COPY TEST.MX,# 
S00Fllllllllllll544553545333533721112111111111115E 
S3111065041111111111117111010111884Allllll4E75B3 
S7111565111411111111111191 
135Bug> 

The S-Records are echoed to the terminal because of the "X"option. 

The offset address of -651111111111111110 was added to the addresses of the 
records in FILE.MX and caused the program to be loaded to memory 
starting at $4111111111111. The text "COPY TEST.MX,#" is a VERSAdos command 
1 ine that caused the file to be copied by VERSAdos to the VME/10 port 
which is connected with the VME135's host port. 

135Bug>ltJ 4'!10f118:4;DI < CR> 
11111111141111111111 71111111 
11111111141111111112 011188 
11111111141111111114 4Alll0 
011111141111111116 4E75 
135Bug> 

MOVEQ. L #1,0111 
AOD.L A0,0III 
TST.B 00 
RTS 

The target PC now contains the entry point of the code in memory 
( $41111111110). 

3-54 



( 

PRELIMINARY 

3. 28 Macro Deffoe/Dhp 1 ay /De 1 ete 

MA [<name>] 
NOMA [<name>] 

<name> : any combination of 1-8 alphanumeric characters 

MVME135BUG/D2 

MA 
NOMA 

The MA command allows the user to define a complex command 
consisting of any number of 135Bug primitive commands with optional 
parameter specifications. 

NOMA is used to delete either a single macro or all macros. 

Entering MA without specifying a macro name causes 135Bug to list 
all currently defined macros and their definitions. 

When MA is invoked with the name of a currently defined macro, that 
macro's definition will be displayed. Line numbers are shown when 
displaying macro definitions to facilitate editing via MAE (see 
section 3. 21) . 

If MA is invoked with a val id macro name that does not currently have 
a definitioJ1, then 135Bug will enter the macro definition mode. In 
response to each macro definition prompt 11 M• 11, enter a 135Bug 
command, including a carriage return. Commands entered are not 
checked for syntax until the macro is invoked. To exit the macro 
definition mode, enter only a carriage return (null line) in 
response to the prompt. If the macro contains errors, it can either 
be deleted and redefined or it can be edited with the MAE command. A 
macro containing no primitive 135Bug commands (i.e., no definition) 
wi 11 not be accepted. 

Macro definitions are -stored in a string pool of fixed size. If the 
string pool becomes full while in the definition mode, the offending 
string will be discarded, a message "STRING POOL FULL, LAST LINE 
DISCARDED" wi 11 be printed and the user wi 11 be returned to the 
135Bug command prompt. This will also happen if the string entered 
would cause the string pool to overflow. The string pool has a 
capacity of 255 characters. The only way to add or expand macros 
when the string pool is full is to either edit or delete macro(s). 

135Bug commands contained in macros may reference arguments 
supplied at invocation time. Arguments are denoted in macro 
definitions by embedding a back slash character"~ followed by a 
numeral. Up to 10 arguments are permitted. A definition containing 
a back slash followed by a zero would cause the first argument to 
that macro to be inserted in place of the 11 ~ 11 characters. 

3-55 



PRELIMINARY MVMEI 3 SBUG/02 

The second argument would be used wherever the sequence "\J." 
occurred. Entering "ARGUE 3000 1 ;B" on the debtigger command line 
would invoke the macro named "ARGUE" with the text strings "3000", 
"l", and ";B" replacing"~", "\l", and "\2" (respectively) within 
the body of the macro. 

To delete a macro, invoke NOMA followed by the name of the macro. 
Invoking NOMA without specifying a macro name deletes all macros. 
If NOMA is invoked with a valid macro name that does not have. a 
definition, an error message will be printed. 

Examples: 

135Bug>MA ABC < CR> 
Malt) 3ffB < CR> . 
M•GO 'it <CR> 
M• < CR> 
135Bug> 

135Bug>MA DIS < CR> 
M=N> 'f:17;DI < CR> 
Ma <CR> 
135Bug> 

135Bug>MA < CR> 
MACRO ABC 
·0ut MD 3000 
020 GO \0 
MACRO DIS 
010 MO \,0:17;01 
135Bug> 

135Bug>MA ABC < CR> 
MACRO ABC 
010 MD 3000 
020 GO \0 
135Bug> 

135Bug>tOIA DIS < CR> 
135Bug> 

Define macro ABC 

Define macro DIS 

List macro deffoitions 

List definition of macro ABC 

Delete macro DIS 

3-56 



PRELIMINARY MVME135BUG/D2 

135Bug>HA ASH < CR> Define macro ASM 
M•"1 't;DI < CR> 
M•<CR> 
135Bug> 

135Bug>HA < CR> List all macros 
MACRO ABC 
010 MD 3000 
020 GO ~ 
MACRO ASM 
010 MD ~;DI 
135Bug> 

l35Bug>NOM < CR> Delete all macros 
135Bug> 

135Bug>MA < CR> List all macros 
NO MACROS DEFINED 
135Bug> 

( 

3-57 



PRELIMINARY MVME13SBUG/D2 

3.21 Macro Edit MAE 

MAE <name> <line#> [<string>] 

<name> : any combination of 1-8 alphanumeric characters 
<line#> : line number in range 1-999 
<string> : replacement line or line to be inserted 

The MAE command permits modification of the macro named on the 
command line. MAE is line oriented and supports the following 
actions: insertion, deletion, and replacement. 

To insert a line, specify a line number between the numbers of the 
lines that the new line is to be inserted between. The text of the 
new line to be inserted must also be specified on the command line 
fo 11 owing the 1 i ne number. 

To replace a line, specify its line number and enter the replacement 
text after the 1 i ne number on the command 1 i ne. 

A line will be deleted if its line number is specified and the 
replacement 1 i ne is omitted. 

Attempting to delete a nonexistant line will result in an error 
mess~ge being printed. MAE will not permit deletion of a line if the 
macro consists of only that line. NOMA must be used to remove a 
macro. To define new macros, use MA; the MAE command operates only 
on previous 1 y defined macros. 

Line numbers serve one purpose - specifying the location within a 
macro definition to perform the editing function. After the editing 
is complete, the macro definition is displayed with a new set of line 
numbers. 

Examples: 

135Bug>"" ABC < CR> 
MACRO ABC 
010 MO 3000 
020 GO~ 
135Bug> 

List definition of macro ABC 

3-58 



PRELIMINARY 

135Bug>MAE ABC 15 RD < CR> 
MACRO ABC 
010 MD 3000 
020 RD 
030 GO \s, 
135Bug> 

135Bug>MAE ABC 11 MD l&+RB < CR> 
MACRO ABC 
010 MD 1B+R0 
020 RD 
030 GO \s, 
135Bug> 

135Bug>MAE ABC 30 < CR> 
MACRO ABC 
010 MD 1B+R0 
020 RD 
135Bug> 

MVME135BUG/D2 

Add a line to macro ABC 

This line was inserted 

Rep 1 ace line 10 

This line was overwritten 

Delete line 30 

3-59 



PRELIMINARY 

3.~2 Enable/Disable Macro Expansion Listing 

MAL 
NOMAL 

MVME135BUG/D2 

MAL 
NOMAL 

The MAL command allows the user to view expanded macro lines as they 
are executed. This is especially useful when errors result, as the 
line that caused the error will appear on the display. 

The NOMAL command is used to suppress the 1 i sting of the macro lines 
during execution. 

The use of MAL and NOMAL is a convenience for the user and in no way 
interacts with the function of the macros. 

3-60 



F'RELIMINARY MVMEI35BUG/D2 

3 .23 Save/Load Macros MAW 
MAR 

MAW [<Device LUN>][<DEL>[<Controller LUN>][<DEL><Block #>]] 
MAR [<Device LUN> ][< DEL> [<Controller LUN> ][<DEL>< Block #>]] 

Device LUN - Is the logical unit number of the device to 
save/load macros to/from. Initially defaults to 
LUN fl.I. 

Controller LUN - Is the logical unit number of the controller to 

DEL 
Block # 

which the above device is attached. Initially 
defaults to LUN fl.I. 

- Is a field delimiter: Comma(,) or spaces ( ). 
- Is the number of the block on the above device that 

is the first block of the macro list. Initially 
defaults to block 2. 

The MAW command allows the user to save the currently defined macros 
to disk/tape. A message is printed listing the block number, 
controller LUN, and device LUN before any writes are made. This 
message is followed by a prompt ("OK to proceed (y/n)?"). The user 
may then dec,line to save the macros by typing the letter "N" 
(uppercase or lowercase). Typing the letter "Y" (uppercase or 
lowercase) permits MAW to proceed and write the macros out to 
disk/tape. The list is saved as a series of strings and may take up 
to three blocks. lf no macros are currently defined, no writes are 
done to disk/tape and "NO MACROS DEFINED" is printed. 

Th~ MAR command allows the user to load macros that were saved by 
MAW. Care should be taken to avoid attempting to load macros from a 
location on the disk/tape other than that written to by the MAW 
command. While MAR checks for invalid macro names and other 
anomalies, the results of such a mistake are unpredictable. 

NOTE: MAR will discard all currently defined macros before loading 
from disk/tape. 

Defaults change each time MAR and MAW are invoked. Once either 
command has been used, the default device, controller, and block 
number are set to those used for that command. If macros were loaded 
from controller 0, device 2, block 8 via command MAR,. then the 
defaults for a later invocation of MAW or MAR would be controller 0, 
device 2, and block 8. 

Errors encountered during 1/0 are reported along with the 16-bit 
status word returned by the disk 1/0 routines. 

3-61 



PRELIMINARY MVME135BUG/O2 

Example: (Assume that device 2, controller 0 is accessable). 

1358ug>MAR 2,0,3 < CR> 
1358ug> 

1358ug>MA < CR> 
MACRO ABC 
010 MD 3000 
020 GO ~ 
1358ug> 

135Bug>MA ASM < CR> 
M•rtl 'f;DI < CR> 
M• <CR> 
135Bug> 

1358ug>MA < CR> 
MACRO ABC 
010 MD 3000 
020 GO ~ 
MACRO ASM 
010 MD ~;DI 
135Bug> 

135Bug>MAW ,.8 < CR> 

Load macros from block 3 

List macros 

Define macro ASM 

Li st a 11 macros 

Save macros to block 8, previous 
device 

WRITING TO BLOCK $8 ON CONTROLLER $0, DEVICE $2 

OK to proceed (y/n)? Y Carriage return not needed 
135Bug> 

3-62 



( 

FRELIMINARY MVMEl 3 SBUG/02 

3.24 MemoryDisplay MD 

MD [ s] < ADDR> [ : < COUNT> I< ADDR> ][ ; [ B I w I L I s I DI X I p ID I] ] 

This command is used to display the contents of multiple memory 
locations all at once. MD accepts the following data types: 

Integer Data Type 

B - Byte 
W - Word 
L - Longword 

Floating Point Data Types 

S - Single Precision 
D - Double Precision 
X - Extended Pree is ion 
P - Packed Decimal 

The default data type is word. Also, for the integer data types, the 
data is always displayed in hex along with its ASCII representation. 
The DI option enables the one line MC68020 assembler/disassembler. 
No other option is allowed if DI is selected. 

The optional count argument in the MD command specifies· the number 
of data items to be displayed (or the number of disassembled 
instructions to display if the disassembly option is selected) 
defaulting to 8 if none is entered. The default count is changed to 
128 if the S (sector) modifier is used. Ente.ring only< CR> at the 
prompt immediately after the command has completed will cause the 
command to re-execute, displaying an equal number of data items or 
lines beginning at the next address. 

Example 1: 

135Bug>fifl 1201110 < CR> 
00012000 2800 1942 2900 1942 2800 1842 2900 2846 
135Bug>< CR> 
00012010 FC20 0050 ED07 9F61 FF00 000A E860 F060 
135Bug> 

3-63 

( .. B) .. B( .. B). (F 

I- .Pm •. a .... h'p' 



PRELIMINARY MVME135BUG/D2 

Example 2: Assume the following processor state: A2=1111111111351110, 
D5•53F00127. 

135Bug>lt> (A2,D5) :&19;8 < CR> 
01110136~7 4F82 00C5 981111 337A DFllll 6C3D 4B5111 IIIFIIIF 0 .• E .. 3z .l=KP ... 
011111113637 31AB 80 +I. 
135Bug> 

Example 3: To display memory at location 5111008 with disassembly 
enabled, the user enters the following. 

135Bug>lt> 50008:DI < CR> 
0111111501111118 46FC271110 
0005000C 61FFlllllllllllllll23E 
0005011112 4E7AO801 
01111115011116 41EO7FFC 
111111051111111A 5888 
0005001C 2E48 
011105001E 2C48 
00050020 13C7FFFB003A 
135Bug> 

MOVE.W $27111111,SR 
BSR.L #511124C 
MOVEC.L VBR,A5 
LEA.L $7FFC(A5},AIII 
AOOQ.L #4,AIII 
MOVE.l Alll,A7 
MOVE.L A0,A6 
MOVE.B: O7,(SFFFBlll03A}.L 

Example 4: To display eight double precision floating point numbers 
at location 50008, the user enters the following command 
line. 

135Bug>lt> 5Sfllfl8;D < CR> 
011111111150111111 0_3F6_44CIDIIIFlll47FC2• 2.4777011111100111111111011102_E-001113 
·0111005008 0_423_DAEFF0480111000• l.27490111001111110001111110_E+lll011 
0011105010 0JJ00JJ00000001110000• 0.11100011111111111111111111100000_E+01111110 
00005018 0_403_001110111111111111111011100• l.601110000000111001111110_E+0001 
00005020 0_3FF_0000000000000• 1.0000000000000000_E+0000 
111000511128 0JJ0111_11111100111FFFFFFFF• 2.121995791114712067_E+0314 
00005030 111_44D_FDE9Fl0A8D361• 6.020000000001110000_E+011123 
0011105038 111_3C0_79CA10C924223• l.5999999999999999_E+011119 
135Bug> 

3-64 



( 

PRELIMINARY MVME1358UG/02 

3.25 Memory Modify MM 

MM < ADDR> [;[ [BIWILISIDIXIP][A][N] ll[DI]] 

This command is used to examine and change memory locations. MM 
accepts the following data types: 

Integer Data Type 

B - Byte 
W - Word 
L - Longword 

Floating Point Data Types 

S - Single Precision 
D - Double Precision 
X - Extended Prechion 
P - Packed Decimal 

The default data type is word. The MM command (alias M) reads and 
displays the contents of memory at the specified address and prompts 
the user with a question mark (" ?"). The user may enter new data for 
the memory location, followed by <CR>, or may simply enter <CR>, 
which leaves the contents unaltered. That memory location will be 
closed and the next memory 1 ocat ion wi 11 be opened. 

The user may al so enter one of several special characters, either at 
the prompt or after writing new clata, which change what happens when 
the carriage return is entered. These special characters are as 
follows: · 

V or v - The next successive memory location will be opened. (This 
is the default. It is in effect whenever MM is invoked and 
remains in effect until changed by entering one of the 
other special characters). 

/\ - MM will back up and open the previous memory location. 

- MM will re-open the same memory location (this is useful 
for examining I/0 registers or memory locations that are 
changing over time). 

- Terminates MM command. Control wi 11 return to l358ug. 

The N option of the MM command disables the read portion of the 
command. The A option forces alternate location accesses only. 

3-65 



r 

PRELIMINARY 

Example 1: 

13 SBug> 191 llMlOO . < CR> 
00010000 1234? < CR> 
00010002 5678? 4321 < CR> 
00010004 9ABC? 8765" < CR> 
00010002 4321? <CR> 
00010000 1234? abed. < CR> 
135Bug> 

. Example 2: 

135Bug>K1 lflllllllJl;LA < CR> 
00010001 CD432187? < CR> 
00010009 00068010? 68818+18- <CR>· 
00010009 0~068020? <CR> 
00010009 00068020? • < CR> 
135Bug> 

Access location 10000 

Modify memory 

MVME135BUG/D2 

Modify memory and backup 

Modify memory and exit 

. · Longword access to location 10001 

.. (Alternate 1 ocat ion accesses) 
Modify and re-open location 

Exit Ill 

The· DI option enables the one-line assembler/disassembler. All 
other options are invalid if DI is selected. The contents of the 
specified memory location will be disassembled and displayed and the 
user will be prompted with a question mark c•1 11 ) for input. At this 
point the user has three options: 

1. Enter <CR>. This will close the present location and will 
continue with disassembly of next instruction. 

2. Enter a new source instruction followed by< CR>. This invokes 
the assembler, which will assemble the instruction and generate a 
•listing file"of one instruction. 

3. Enter. <CR>. This will close the present location and will exit 
the MM command. 

I.f a new source 1 i ne is entered (# 2 above), the present 1 i ne wi 11 be 
erased and replaced by the new source line entered. If a hardcopy 
terminal is being used, port 0 should be reconfigured for hardcopy 
operation with the PF command. In the hardcopy mode, a line feed 
wi 11 be done instead of erasing the 1 i ne. 

3-66 



PRELIMINARY MVME135BUG/D2 

If an error is found during assembly, the ~ymbol 11 " 11 will appear 
below the field suspected of the error, followed by an error 
message. The loc.ation being accessed will be redisplayed. 

Refer to Chapter 4 for additional information about the assembler. 

The examples below were made-in the hardcopy mode. 

Example 3: 

As semb 1 e a new source 1 ine. 

135Bug>ltl 18flll!IC;DI < CR> 
0001000C 46FC2400 
01/.11/.111/.100C 85E2 
01/.11/.111/.111.11/JE 2411.111.1 
135Bug>. 

Example 4: 

New source line wi:th error. 

1/.101/.111/.101/.18 4E7AD81/.11 
01/.11/.111/.1008 

*** Unknown Field*** 
11.10010011.18 4E7AD811.11 
135Bug> 

Example 5: 

MOVE.W $2400,SR ? DIVS.W -(A2),D2 <CR> 
OIVS.W -{A2),02 
MOVE.L 00,02? 

MOVEC.L VBR,A5? BCIG #$12,9(A5,D6)) <CR> 
BCHG #$12,9{A5,06)) 

A 

MOVEC.L VBR,AS? 

Step to next location and exit:MM. 

135Bug>:M lSOOC;DI < CR> 
0001000C 0011.1001/JFF 
00011/.1010 21/JC.9 
135Bug> 

OR.B #255,00? <CR> 
MOVE. L Al, (All.I)+ ? • < CR> 

3-67 



PRELIMINARY 

'Example 6: 

1358ug>M 7000;X < CR> 
rllrllrllrll71/lrll0 0_(/Jrllrllrll_FFFFFFFFl/lrllrlll/ll/l(/Jl/ll/l? 1_3CllrJ_84782 < CR> 
01/lrll071/lrllC 1_7FFF _1/lrllrllrllrllrllrllrllFFFFFFFF? lrJ_001A_F < CR> 
rllrllrllrll71/ll8 rll_rllrllrlll/l_FFFFFFFFl/l01/lrllrllrllrllrll? 6.02E23• < CR> 
(/J(/J(/J(/J7(/J18 rll_41/l4D_FEF4F885469B1/l88(/J? A <CR> 
rllrllrllrll701/lC 1/l_(/JrlllA_Frllrllrllrllrllrllrllrllrllrllrllrllrllrllrll? <CR> 
rllrllrllrll71/ll/l(/J 1_3Cl0_847821/lrllrllrllrllrllrllrllrllrllrll? • <CR> 
135Bug> 

3-68 

MVME1358UG/D2 



PRELIMINARY MVME135BUG/D2 

3. 26 Memory Set HS 

MS< ADDR> {Hexadecimal number}/ {'string'} 

The HS command is used to write data to memory starting at the 
specified address. Hex numbers are not assumed to be of a particular 
size, so they can contain any number of digits {as allowed by command 
line buffer size). If an odd number of digits are entered, the least 
significant nibble of the last byte accessed will be unchanged. 

ASCII strings can be entered by enclosing them in single quotes 
{' '). To include a quote as part of the string two consecutive 
quotes should be entered. 

Example: Assume that memory is initially cleared: 

135Bug>MS 25fl00 f/Jl23456789abcOEF 'TMs is "a test" 23456 < CR> 
135Bug>tc> 25fl00:2f/J;B < CR> 
00025000 0123 4567 89AB CDEF 5468 6973 2069 7320 .#Eg.+MoThis is 
00025010 2761 2074 6573 7427 2345 6000 0000 0000 'a test'#E' .... 
135Bug> 

3-69 



PRELIMINARY 

3.27 Offset Registers Display/Modify 

OF[Rn[;A]] 

MVME135BUG/O2 

OF 

The OF command allows the user to access and change pseudo-registers 
called offset registers. These registers are used to simplify the 
debugging of relocatable and position independent modules (refer to 
offset registers in section 2.1.1.2.2). 

There are 8 offset registers (R0 through R7), but only R0 through R6 
can be changed. R7 always has both base and top addresses set to 0. 
This allows the automatic register function to be effectively 
disabled by selecting R7 as the automatic register. 

Each offset register has two values: base and top. The base ts the 
absolute least address that will be used for the range declared by 
the offset register. The top address is the absolute greatest 
address that will be used. When entering the base and top, the user 
may use either an address/address format or an address/count format. 
If a count is specified, it refers to bytes. If the top address is 
omitted from the range, then a count of I-megabyte is assumed. The 
top address must equal or exceed the base address. Wrap-around is 
not permitted. 

Command usage: 

OF To display all offset registers. An asterisk indicates 
which register is the automatic reg_ister. · 

OF Rn To disp.lay/modify Rn. The u·ser can scroll through the 
registers in a way similar to that used by the MM command. 

OF Rn;A - To display/modify Rn and set it as the automatic 
register. The automatic register is one that is 
automatically added to each absolute address argument of 
every command except if an offset register is explicitly 
added. An asterisk indicates which register is the 
automatic register. 

Range entry: 

Ranges may be entered in three formats: base address alone, base and 
top as a pair of addresses, and base address fo 11 owed by byte count. 
Control characters""", "v", "V", " .. ",and"." may be used. Their 
function is identical to that of the RM (Register Modify) and MM 
(Memory Modify) commands. 

3-70 



r 
I 

FRELIMINARY MVME135BUG/D2 

Range syntax: 

[<base addresS> [<del> <top addresS>]] [Alvl•l,J 
or 

[<base addresS> [ ':' <byte count>]] [Alvl .. l,J 

Offset register rules: 

1. At power-up and cold start reset, R7 is the automatic register. 
2. 

3. 

4. 

5. 

6. 

At power-up and cold start reset, all offset registers have both 
base and top addresses preset to 0. This effectively disables 
them. 
R7 always has both base and top addresses set to 0, it cannot be 
changed. 
Any offset register can be set as the automatic register. 
The automatic register is always added to every absolute address 
argument of every 135Bug command where there is not an offset 
register explicitly called out. 
There is always an automatic register. Note that a convenient 
way to disable the effect of the automatic register is by setting 
R7 as the automatic register. This is the default condition. 

Examples: 

Display of offset registers. 

l35Bug>OF < CR> 
R0 • 00000000 00000000 · : Rl • 00000000 00.000000 
R2 • 00000000 00000000 R3 • 00000000 00000000 
R4 • 00000000 00000000 RS= 00000000 00000000 
R6 = 00000000 00000000 R7*= 00000000 00000000 
135Bug> 

Modify some offset registers. 

135Bug>OF R0 < CR> 
R0 = 00000000 00000000? 20011J11l 2eeFF <CR> 
RI = 00000000 00000000? 25000:200" < CR> 
R0 • 00020000 000200FF?. <CR> 
135Bug> 

3-71 



PRELIMINARY 

Look at location $20000 •• 

1358ug>M 2ilflfJ0;DI < CR> 
00000+R0 41F95445 5354 
135Bug>M R0;DI < CR> 
00000+R0 41F95445 5354 
135Bug> 

MVME135BUG/D2 

LEA.L ($54455354) .L,A0 • < CR> 

LEA. L ( $54455354) . L ,A0 < CR> 

Set R0 as the automatic register . 

. 135Bug>OF R0;A < CR> 
R0*•00020000 000200FF? • <CR> 
135Bug> 

To look at location $20000. 

135Bug>M S:DI < CR> 
00000+R0 41F95445 5354 
135Bug> 

LEA.L ($54455354).L,A0 • <CR> 

To look at location 0, override the automatic offset. 

135Bug>M 6+R7;DI < CR> 
00000000 FFF8 
135Bug> 

DC.W SFFF8 • <CR> 

3-72 



PRELIMINARY MVMEI 3 SBUG/D2 

3. 28 Printer Attach/Detach 

PA [ n] 

NOPA [n] 

PA 
NOPA 

These two commands "attach" or "detach" a printer to the specified 
port. When the printer is attached, everything that appears on the 
system console terminal is also echoed to the "attached" port's 
printer. PA is used to attach, NOPA is used to detach. If no port is 
specified, PA will attach port l by default, NOPA will detach all 
attached ports. 

If the port ~umber specified is not currently assigned, PA will 
di splay an error message. If NOPA is attempted on a port that is not 
curnently attached, an error message will be displayed. 

The port being attached must already be configured. This is done 
using the PF (Port Format) command. On the VME135, it is necessary 
to disable the hardware handshake mechanism. This is done by 
executing the fo 11 owing sequence prior to "PAI". 

135Bug>PF1 <CR> 
Baud rate [110,300,600,1200,2400,4800,9600,19200] .. 9600? <CR> 
Even, Odd, or No Parity [E,O,N] • N? <CR> 
Char Width [5,6,7,8] • 8? <CR> 
Stop :bits [1,2) • I? <CR> 
:Async Mono, Bisync, Gen, SDLC, or HDLC [A,M,B,G,S,H] • A? <CR> 
Syncl = $00? < CR> 
Sync2 • $00? < CR> 
DTE or OCE [T,C] • C? <CR> 
Auto Xmit enable on CTS* [Y,N] = Y? N. <CR> 
135Bug> 

RECOVERING FROM A "HUNG" PRINTER: attached ports are not detached by 
exceptions (bus errors, abort, etc). If printer attach is invoked 
to an incorrectly set-up device, or a fault such as a paper jam 
occurs, the only means of recovery is the RESET switch on· the VME135 
module. 

3-73 



PRELIMINARY 

Examples: 

CONSOLE DISPLAY: 
135Bug>PA < CR> 
(attaching port 1 by default 

135Bug>HE NOPA < CR> 
NOPA Printer detach 

135Bug>NOPA < CR> 
(detach all attached printers) 

· 135Bug> 

PRINTER OUTPUT: 

(printer now attached) 

135Bug>HE NOPA 
NOPA Printer detach 

135Bug>NOPA 
(printer now detached) 

3-74 

MVME135BUG/D2 



PRELIMINARY MVME135BUG/D2 

3. 29 Port Format PF 

PF[n] 

The PF command allows the user to examine and change the serial 
input/output environment. PF may be used to display a list of the 
current port assignments, configure a port that is already assigned, 
or assign and configure a new port. Configuration is done 
interactively, much like modifying registers or memory (RM and MM 
commands). An interlock is provided prior to ,configuring the 
hardware - the user must explicitly direct PF to proceed. 

ONLY EIGHT PORTS MAY BE ASSIGNED AT ANY GIVEN TIME. PORT# 's MUST BE 
RANGE 0 to $IF. 

3.29.l Listing Current Port Assignments 
PF will list the names of the board and port for each assigned port 
number ( LUN) when the command is invoked with the port .number 
omitted. 

Example: 

135Bug>PF < CR> 
Current port assignments: (Port#: Board name, Port name) 
00: VME135, " l" 01: VME135, " 2 11 

135Bug> 

3. 29. 2 Configuring a Port 
The primary use of PF is changing baud rates, stop bits, etc. This 
may be accomplished for assigned ports by invoking the command with 
the desired port number. Assigning and configuring may be 
accomplished consecutively. Refer to the section "Assigning a New 
Port". 

When PF is invoked with the number of a previously assigned port, the 
interactive mode is entered immediately. To exit from the 
interactive mode, enter a period by itself or following a new 
value/setting. While in the interactive mode, the following rules 
apply: 

Only listed values are accepted when a list is shown. The sole 
exception is that upper or lower case may be interchangeably 
used when a list is shown. Case takes on meaning when the 
1 etter itself is used, such as XON character value. 

3-75 



PRELIMINARY MVME135BUG/D2 

A Control characters are accepted by Hexadecimal value or by a 
letterprecededbyacaret (i.e., Control-Awould "AA"). 

The caret, when entered by itself or following a value, will 
cause PF to issue the previous prompt after each entry. 

v Either an upper or 1 owercase "v" wt 11 cause PF to resume 
prompting in the original order (i.e., Baud Rate, then Parity 
type, ... ) . 

Entering an equal sign by itself or when following a value 
will cause PF to issue the same prompt again. This is 
supported to be consistent with the operation of other 
debugger commands. To assume prompting in either normal or 
reverse order, enter the 1 et ter II v II or a caret II A", 
respectively. 

Entering a period by itself or following a value causes PF to 
exit from the interactive mode and issue the "OK to proceed 
(Y/N)?". 

< CR> Pressing carriage return with out entering a va 1 ue preserves 
the current value and.causes the next prompt to be displayed. 

Example: Changing number of stop bits on port number I. 

135Bug>PF1 < CR> 
Baud rate [110,300,600,1200,2400,4800,9600,19200] • 9600? <CR> 
Even, Odd, or No Parity [E,O,N] • N? <CR> 
Char Width [5,6,7,8] • 8? <CR> 
Stop bits [1,2] • l? 2 <CR> (new value entered) 

( the next response is to·demonstrate reversing the order of prompting 

Async Mono, Bisync, Gen, SDLC, 
Stop Bits [1,2] • 2? • < CR> 
OK to proceed (Y/N)? Y 
135Bug> 

or HDLC [A,M,8,G,S,H] • A? A <CR> 
(value acceptable, exit interactive.mode) 
(Note: Carriage return not required) 

3-76 



PRELIMINARY 

3.29.3 Parameters Configurabl_e by Port Format 
Port base address: 

MVME135BUG/D2 

Upon assigning a port, the option is provided to set the base 
address. This is useful for support of boards with adjustable 
base addressing, i.e., the VMEl'llSl'll. Entering no value will select 
the default address shown. 

Baud rate: 
The user may choose from the following: lll'll,31'1ll'll,61'1ll'll,121'1ll'll, 
2401'1l,481'1l0,9601'1l,1921'1ll'll. 

Parity type: 
Parity may be even (choice E}, odd (choice 0), or disabled 
(choice N). 

Character ,width: 
The user may select 5-, 6-, -7, or 8-bit characters. 

Number of stop bi ts: 
Only land 2 stop bits are supp.orted. 

Synchronization type: 
As the debugger is a polled serial input/output environment, most 
users will use only asynchronous communication. Synchronous 
modes are permitted but no synchronous protocols are supported by 
1358.ug. 

Synchroninti on characte_r values: 
Any·s-bit value or ASCII character may,be entered. 

Data equipment type: 
Driver authors may require knowledge of the port's data equipment 
type. Types DTE (Data Terminal Equipment) and DCE (Data 
Communication Equipment) are pefmitted but ignored by current 
drivers. 

Automatic hardware hardshake: 
Some . devices ,and connection circuitry support hardware 
handshake. Transmitters may be set up to enable only when the 
RS-232 signal Clear-to-send is asserted. Receivers may be set up 
to ~egate the RS-232 signal Request-to-send when the receiver's 
FIFO (First-In/First-Out) buffer is full. 

3-77 



PRELIMINARY MVME135BUG/D2 

Automatic softwar.e ha.ndsh:ake: 

Current drivers have the capability of responding to XON/XOFF 
. characters sent to the debugger ports. Receiving a XOFF causes a . 

driver to cease trans~ission until a XON character is received. 
None of the current drivers utilize fIFO buffering, therefore, 
none initiate an XOFF condition. 

Software handshake character va 1 ues: 

The values used by a port for XON and XOFF may be redefined to be 
any 8-bit value. ASCII control characters or hexadecimal values 
a re accepted. 

3.29.4 Assigning a New Port 
PF supports a set of drivers for a number of di ffererit .boards and the 
ports on each. · To us1gn one of these to a previously unassigned 
port nutnber, invoke. the command with that number .. A message will 
then be printed to indicate that the port is unassigned and a prompt 
will be issued to request the name of the board (i.e., VME135, 
VMEIIISIII, etc). Presing RETURN at this point will cause PF to list the 
currently supported boards and ports. Once the name of the board has 
been entered, a prompt w111 be issued for the name of the port. After 
the port name has been entered, PF will attempt to supply a default 
configuration for. the new port. 

Once a val id port has been specified, default parameters are 
supplied. The base address of this new port is one of these default 
parameters. Before entering the interactive configuration mode~ 
the user is a 11 owed to change the port base address. Pressing RETURN 
will retain the base address shown. 

If the configuration of the new port is not fixed, then the 
interactive configuration mode is entered. Refer to section 3.26.2 
above regarding configuring assigned ports. If the new port does 
have a fixed configuration, then PF will issue the "OK to proceed 
(Y/N)?•prompt immediately. 

PF will not initialize any hardware until the user has responded 
with the letter "Y" to prompt "OK to proceed (Y/N)?". Pressing BREAK 
any ti me prior to this step or responding with the 1 et ter "N" at the 
prompt will leave the port unassigned. This is only true of ports 
n~t previously assigned. 

3-78 



/ 

I 

PRELIMINARY MVMEl 3 SBUG/02 

Example: Assigning port 2 to the VME050 printer port. 

13 SBug> PF 2 < CR> 
Logical unit $02 unassigned 
Name of board? < CR> 

Boards and ports supported: 
VME13S: 1, 2 
VME0S0: 1, 2, PTR 
Name of board? VMEB5" < CR> 

( cause PF to list supported boards, 
ports) 

Port base address • SFFFF1080? < CR> 
(Note: Upper or lowercase accepted) 
(Note: Interactive mode is not 
entered as hardware has fixed 
configuration) 

OK to proceed (Y/N)? Y 
l3S8ug> 

3-79 



PRELIMINARY MVME135BUG/D2 

3.30 Register Display RO 

RD {[ +1-1 •H< DNAME> ][/] }{[ + 1-1 •H< REG!>[-< REG2> ]][/]} 

The RD command is used to display the target state, that is, the 
register state associated with the target program (refer to the GO 
command). The instruction pointed to by the target PC. is also 
disassembled and displayed. Internally, a register mask specifies 
which registers will be displayed when RD< CR> is executed. At 
reset time·this mask is set to display all MPU registers. This 
register mask can be changed with the RD command, The optional 
arguments allow the user th~ capability to enable ·or diiable the 
display of any register or group or registers. This is us~ful for 
showing only the registeri of interest, minimizing unnecessary data 
on the screen, and also to save screen space, which is r.educed 
particularly when coprocessor registers are displayed. 

The arguments are as follows: 

+ is a qualifier indicating that a devic~ or register range 
is to be added. 

is a qualifier indicating that.a device or register range 
is to be removed, except when used between two register 
names. In this case it indicates a register range. 

• is a qualifier indicating that a device or register range 
ts to be set. 

/ is a delimiter between device names and register ranges. 

< REG!> is the first register in a range of registers. 

< REG2> is the last register in a range of registers. 

< DNAME> is a device name. This is used to quickly enable or disable 
all the registers of a device. The available device names 
are: 

MPU Microprocessor Unit 

FPC Floating Point Coprocessor 

PMMU Paged Memory Management Unit 

3-80 



PRELIMINARY MVME135BUG/D2 

The following notes should be observed when specifying any arguments 
i ri the command 1 i ne: 

1. The qua 1 i fi er is applied to the next register range on 1 y. 
2. If no qualifier is specified, a+ qualifier is assumed. 
3. All device names should appear·before any register names. 
4. The command line arguments are parsed from left to right, with 

each field being processed after parsing, thus, the sequence in 
which qualifiers and registers are organized has an impact on the 
resultant register mask. 

5. When specifying a registel" range, < REGI> and< REG2> do not have 
to be of the same cl ass. 

6. The register mask used by RD is also used by all the exception 
handler routines, including the trace and breakpoint exception 
handlers. 

The MPU registers in ordering sequence are: 

Number of 
registers 

HJ 
8 
8 

System Registers 
Data Registers 
Address Registers 

(PC,SR,USP,MSP,ISP,VBR,SFC,DFC,CACR,CAAR) 
(D0-D7) 
(A0-A7) 

The FPC registers in ordel"ing sequence are: 
Number of 
registers 

3 
8 

System Registers 
Data Registers 

(FPCR,FPSR,FPIAR) 
(FP0-FP7) 

The PMMU registers in ordering sequence are: 

Number of 
registers 

4 
6 
8 
8 

Address Translation Control 
Control/Status/Access Level 
Breakpoint Acknowledge Data 
Breakpoint Acknowledge Control 

3-81 

(CRP,SRP,DRP,TC) 
(PCSR,PSR,AC,CAL,VAL,SCC) 
(BAD0-BAD7) 
(BAC0-BAC7) 



PRELIMINARY 

Example I: 

135Bug>RD < CR> 
PC =00003000 SR 
USP •0000F830 MSP 
SFC •0•F0 0FC 
00 =00000000 01 
04 •00000000 05 
A0 •00000000 Al 
A4 •00000000 AS 
00003000 424F 
1358ug> 

Notes: 

•2700•TR:0FF_S._7_ ..... 
•00003Cl8 ISP* =00004000 VBR •00000000 
•0•F0 CACR •0•.. CAAR =00000000 
•00000000 02 •00000000 03 =00000000 
•00000000 06 •00000000 07 •00000000 
=00000000 A2 ~00000000 A3 =00000000 
•00000000 A6 •00000000 A7 •00004000 

0C.W $424F 

MVMEI 3 SBUG/02 

An asterisk following a stack pofnter name indicates that it is the 
active stack pointer. The status register includes a mnemonic 
portion to help in read.ing it: 

Trace Bits 

Tl T0 Mnemonic Description 

0 0 TR:OFF Trace off 
0 1 TR:CHG Trace on change of fl ow 
I 0 TR:ALL Trace all states 
1 1 TR: INV Invalid mode 

S, M Bits: The bit name appears (S,M) if the respective bit 
is set, otherwise a"." indicates that it is 
cleared. 

Interrupt Mask: A number from 0 to 7 indicates the current 
processor priority 1 eve 1 . 

Condition Codes: The bit name appears (X,N,Z,V,C) if the 
respective bit is set, otherwise a"." indicates 
that it it cleared. 

3-82 



( 

?RELIMINARY MVMEl 35BUG/D2 

The source and destination function code registers (SFC, DFC) 
include a two character mnemonic: 

Function Code Mnemonic Description 

" F0 Undefined 
1 UD User Data 
2 UP User Program 
3 F3 Undefined 
4 F4 Undefined 
5 SD Supervisor Data 
6 SP Supervisor Program 
7 cs CPU Space 

The CACR register shows mnemonics for two bits: Enable and Freeze. 
Th'e bit name (E,F) appears if the respective bit is set, otherwise a 
11 • 11 indicates that it is cleared. 

Example 2: To set the display to D6 and A3 only. 

1358ug>RD rrfJ6/A3 < CR> 
D6 •00000000 A3 •00000000 
00003000 4AFC ILLEGAL 
135Bug> 

Note that the above sequence sets the display to D6 only and then 
adds register A3 to the display. 

Example 3: To restore all the MPU registers. 

135Bug>RD iMPU < CR> 
PC •00003000 SR •2700=TR:OFF_S._7_ ..... 
USP =00003830 MSP =00003Cl8 ISP* =00004000 VBR •00000000 
SFC =0=F0 DFC =0=F0 CACR =0=.. CAAR •00000000 
D0 =00000000 Dl =00000000 D2 =00000000 D3 •00000000 
D4 •00000000 DS =00000000 D6 =00000000 D7 •00000000 

• A0 •00000000 Al =00000000 A2 =00000000 A3 •00000000 
A4 •00000000 AS •00000000 A6 •00000000 A7 •00004000 

· 00003000 4AFC ILLEGAL 
135Bug> 

Note that an equivalent command would have been RD PC-A7. 

3-83 



PRELIMINARY 

Example 4: 

135Bug>RD +fPC < CR> 
PC •00003000 SR •2700•TR:OFF S. 7 ..... 
USP •00003830 MSP •00003Cl8 ISP* :00004000 VBR =00000000 
SFC •0•F0 DFC =0•F0 CACR =0•.. CAAR =00000000 
00 •00000000 DI =00000000 02 =00000000 03 •00000000 
04 •00000000 05 =00000000 06 =00000000 07 =00000000 
A0 =00000000 Al =0000000~ A2 =00000000 A3 =00000000 
A4 •00000000 AS =00000000 A6 =00000000 A7 =00004000 
FPCR =00000000 FPSR =00000000-(CC=.... ) FPIAR=00000000 
FP0 •0_7FFF_FFFFFFFFFFFFFFFF• 0.FFFFFFFFFFFFFFFF_E-0FFF 
FPl •0_7FFF_FFFFFFFFFFFFFFFF• 0.FFFFFFFFFFFFFFFF_E-0FFF 
FP2 •0 7FFF FFFFFFFFFFFFFFFF~ 0.FFFFFFFFFFFFFFFF E-0FFF 
FP3 .,;0)FFF)FFFFFFFFFFFFFFF• 0.FFFFFFFFFFFFFFFF)-0FFF 
FP4 •0~7FFF_FFFFFFFFFFFFFFFF• 0.FFFFFFFFFFFFFFFF_E-0FFF 
FPS •S_7FFF_FFFFFFFFFFFFFFFF• 0.FFFFFFFFFFFFFFFF_E-0FFF 
FP6 •0_7FFF_FFFFFFFFFFFFFFFF• 0.FFFFFFFFFFFFFFFF_E-0FFF 
FP7 •0_7FFF_FFFFFFFFFFFFFFFF• 0.FFFFFFFFFFFFFFFF_E-0FFF 
00003000 4AFC ILLEGAL 
135Bug> 

MVME1358UG/O2 

The floating point data registers are always displayed in extended 
precision and in scientific notation format. The floating point 
status register display includes a mnemonic portion for the 
condition codes. The bit name appears (N, X, I, NAN) if the 
respective bit is set, otherwise a "·."indicates that it is cleared. 

3-84 



PRELIMINARY 

Example 5: To display only the PMMU registers. 

135Bug>RD •Pftll < CR> 
CRP •00000000_00000000 
DRP •00000000_00000000 
PCSR •0000- .. _0 
AC •0000 CAL •00 
BAD0 •0000 BADl •0000 
BAD4 •0000 BADS •0000 
BAC0 •0000 BACl •0000 
BAC4 •0000 BACS •0000 
135Bug> 

SRP •00000000_00000000 
TC •00000000 
PSR •0000- •••••••.. _0 
VAL -00 sec -00 
BAD2 •0000 BAD3 •0000 
BAD6 •0000 BAD7 •0000 
BAC2 •0000 BAC3 •0000 
BAC6 •0000 BAC7 •0000 

MVME135BUG/D2 

The PCSR and PSR registers above include a mnemonic portion. For the 
PCSR register, the bits are: 

F Flush bit 
LW Lock Warning bit 
TA Task Alias field (3 bits) 

For the PSR register, the bits are: 

B Bus Error 

L L1mit Violation 

s Supervisor Only 

A Access Level Violation 

w Write Protected 

I Invalid 

M Modified 

G Gate 
C Globally Sharable 

N Number of Levels (3 bits) 

3-85 



PRELIMINARY MVME135BUG/02 

3 .31 Cold/Warm Reset 

RESET 

RESET 

The RESET command allows the user to specify the level of reset 
operation that will be in effect when a RESET exception is detected 
by the processor. A reset exception can be generated by pressing the 
RESET pushbutton on the VME135' s front panel. 

Two RESET 1 evel s are available: 

COLD - This is the standard mode of operation, and is the one 
defaulted on power on. In this mode all the static variables 
are initialized every time a reset is done. 

WARM - In this mode all the static variables are preserved when a • 
reset exception occurs. This is convenient for keeping 
breakpoints, offset register values, tne target register 
state, the port configurations, and any other static 
variables in the system. • 

NOTE: If the VME135 is the system controller, pressing the RESET 
pushbutton will reset all the m:odules in the system, including 
disk controller~,like the VME320 or VME360. This may cause 
the disk controller configuration to be out of phase with 
respect to the disk configuration tables in memory. 

Example: 

135Bug>RESET < CR> 
Cold/Warm Start• C (C/W)? W 
135Bug> 

Set to warm start 

Press the RESET pushbutton 
VME135 Debugger/Diagnostic Version 2.0 - 3/2/88 
Wann Start 
135Bug> 

3-86 



( 

PRELIMINARY 

3.32 Reg;ster Mod;fy 

RM< REG> 

MVMEl 3 SBUG/D2 

RM 

The RM command allows the user to display and change the target 
registers. It works in essentially the same way as the MM command, 
and the same special characters are used to control the 
display/change session (refer to the MM command). 

Example 1: 

135Bug>RM D4 < CR> 
D4 =12345678? ABCDEFA < CR> 
D3 .. 00000000? 301110. < CR> 
135Bug> 

Example 2: 

135Bug>RM SFC < CR> . 
SFC .. 7 .. cs ? 1-·<CR> 
SFC -1 .. uo ? • ,< CR> 
135Bug> 

Modify register and backup 
Modify register and exit 

Modify reg;ster and re-open 
Exit 

3-87 



PRELIMINARY MVME1358UG/02 

The RM command is•also used to modify the Floating Point Copr·ocessor 
registers (the MC68881). · 

Example 3: 

1358ug>RM FPSR < CR> 
FPSR =00000000-(CC•.... ) ? F000000 < CR> 
FPIAR=00000000 ? < CR> 
FP0 =0_7FFF _FFFFFFFFFFFFFFFF= 0.FF~FFFFFFFFFFFFF _E-0FFF? 0_1234_5 <CR> 
FPl •lll_7FFF _FFFFFFFFFFFFFFFF• 0.FFF.FFFFFFFFFFFFF _E-IIJFFF? l.25E3 <CR> 
FP2 -lll_7FFF _FFFFFFFFFFFFFFFF• 0. FFFFFFFFFFFFFFFF _E-IIJFFF? lJF _3FF < CR> 
FP3 •lll_7FFF _FFFFFFFFFFFFFFFF• 0.FFFFFFFFFFFFFFFF _E-IIJFFF? 1100.:..9261:._3 <CR> 
FP4 •Ill 7FFF FFFFFFFFFFFFFFFF• IIJ.FFFFFFFFFFFFFFFF-E-I/JFFF?&564 <CR> 
FPS •lll-7FFF-FFFFFFFFFFFFFFFF• 0; FFFFFFFFFFFFFFFF -E~IIJFFF?. {IJ SFF RJAB < CR> 
FP6 •(7FFF )FFFFFFFFFFF.FFFF• IIJ.FFFFFFFFFFFFFFFF =E-IIJFFF? 3~1415. < CR> 
FP7 .. IIJ _7FFF _FFFFFFFFFFFFFFFF =. Ill. FFFFFFFFFFFFFFFF _E-IIJFFF? -2. 74638369E-36. < CR> 

. 1358ug> · 

1358ug>RD +FPC <CR> 
PC =IIJIIJIIJl/l201/ll/l SR •2701/l•TR:OFF_S._7_ ..... 
USP · =-00003830 MSP allJ0003Cl8 ISP* •00004001/l VBR •00000000 
SFC •lll•FIIJ OFC •lll•F0 CACR =Ill=-.. CAAR •00011J00011J 
00 •00000001/l 01 •01/l01/l0000 02 =IIJ0000011J0 03 •0011)00000 
04 -00000000 05 -00000001/l 06 =00000000 07 =00000000 
A0 •00000000 Al =lll001/l0000 A2 =00000000 A3 a00000000 
A4 2 00000000 AS . •00000000 A6 "'IIJ011JIIJ011JIIJ0 A7 "'0011J04011J0 
FPCR •IIJ0011JIIJ000 FPSR •0F000000-(CC•NZI[NAN]) FPIAR-00000000 
FP0 •0_1234_5000000000000000• 6.6258385370745493_E-3530 
FPl •IIJ_4009_9C4001/l00001/l01/l001/l• l.250000011JIIJIIJIIJ{IJIIJIIJIIJ0_E-0003 
FP2 •l_3FFF_BFF000000001/l01/l00•-l.4995117187500001/l_E-IIJIIJ00 
FP3 •1_3C9D_BCEECF12011l61BED9•-3.01/l001/l01/JIIJl/l0000000_E-0261 
FP4 •l/l_4008_8D000000001/llll01/l00• 5.6400000001/l0011J001/l_E-l/l002 
FPS •IIJ_41FF_F8558000000001/l01/l• 2.6012612226385672_E-IIJ154 
FP6 •0_41/l01/l_C91/JE5611J4189374BC• 3.14150001/l001/ll/ll/ll/l00_E-011Jl/ll/l 
FP7 •1_3F88_E9A2Fl/l880678C318•-2.7463836911JIIJl/ll/JIIJ011Jl/l_E-IIJIIJ36 
I/JIIJIIJIIJ211J011J IIJ{IJ{IJIIJI/Jl/l01/l OR.B #0,01/l 
135Bug> 

3-88 



PRELIMINARY MVME135BUG/D2 

The RM command is also used to modify the Paged Memory Management 
Unit registers (the MC68851). 

Example 4: 

135Bug>RM CRP < CR> 
CRP •00000000_00000000 
SRP •00000000_00000000 
DRP =00000000_00000000 
TC =00000000 ? 87654321 < CR> 
PCSR s0000- .• _J? < CR> 
PSR •0000- ......... _0? < CR> 
AC •0000 ? < CR> 
CAL •00 ? < CR> 
VAL •00 ? <CR> 
sec -00 ? < Clb 
BAD0 =0000 ? < CR> 
BADI •0000 .? < CR> 
BAD2 •0000 ? < CR> 
BAD3 =0000 ? < CR> 
BAD4 •0000 ? < CR> 
BADS •0000 ? < CR> 
BAD6 =0000 ? < CR> 
BAD7 =0000 . ? < CR> 
BAC0 •0000. ? < CR>-
BAC 1 =0000 ? < CR> 
BAC2 •0000 ? < CR> 
BAC3 =0000 ? < CR> 
BAC4 s0000 ? < CR> 
BACS =0000 ? < CR> 
BAC6 .. 0000 ? < CR> 
BAC7 =0000 ? • < CR> 
135Bug> 

? <CR> 
? <CR> 
? 12345678 _12345678 < CR> 

3-89 



PRELIMINARY 

135Bug>RD +PftlJ < CR> 
PC •00002000 SR •2700•TR:OFF_S._7_ ..... 
USP •00003830 MSP =00003C18 ISP* =00004000 VBR =00000000 
SFC •0=F0 DFC =0=F0 CACR =0=.. CAAR =00000000 
D0 =00000000 D1 =00000000 02 =00000000 D3 =00000000 
04 •00000000 OS =00000000 06 =00000000 07 =00000000 
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000 
A4 •00000000 AS =00000000 A6 =00000000 A7 =00004000 
CRP •00000000_00000000. SRP =00000000_00000000 
DRP •12345678_12345678 TC =87654321 
PCSR =0000- .. _0 PSR =0000- ......... 0 
AC •0000 CAL -00 VAL =00 sec =00 
BAD0 •0000 BADl =0000 BAD2 =0000· BAD3 =0000 

.BAD4 •0000 BADS •0000 BAD6 =0000, BAD7 =0000 
BAC0 •0000 BACI =0000 BAC2 "'0000 BAC3 =00.00 
BAC4 ~0000 BACS =0000 BAC6 =0000 BAC7 =0000 
00002000 00000000 OR.B #0; □0 
135Bug> 

3-90 

MVME135BUG/D2 



( 

PRELIMINARY MVMEl 3 SBUG/D2 

SD 
3.33 Switch Directories 

SD 

The SD command is used to change from the debugger directory to the 
diagnostic directory or from the diagnostic directory to the 
debugger di rectory. 

The commands in the current directory (the directory that the user 
is in at the particular time) may be listed using the HE (Help) 
command. 

The way the directories are structured, the debugger commands are 
available from either directory but the diagnostic commands are only 
available from the diagnostic directory. 

Example I: 

135Bug>SD. < CR> 
135Diag> 

Example 2: 

135Diag>SD <CR> 
135Bug> 

The user has changed from the debugger) 
directory to the diagnostic directory,) 
as can be seen by the " 135Di ag> " ) 
prompt. ) 

( The user is now back in the debugger 
( directory. 

3-91 



PRELIMINARY MVME135BUG/D2 

3.34 Trace T 

T[<COUNT>] 

The T command allows execution of one instruction at a time, 
displaying the target state after execution. T starts tracing at 
the address in the target PC. The optional count field {which 
defaults to 1 if none entered) specifies the number of instructions 
to be traced before returning control to 135Bug. 

Breakpoints are monitored (but not inserted) during tracing for all 
trace commands, which allows the use of breakpoints in ROM or write 
protected memory. In all cases, if a breakpoint with 0 count is 
encountered, control wi 11 be returned to 135Bu_g. 

The trace functions are implemented with the trace bits (T0, Tl) in 
the MC68020 status register; therefore, these bits should not be 
modified by the user while using the trace commands. 

Example: { The fo 11 owing program resides at 1 oca ti on $10000) 

135Bug>K> 10000;01 < CR> 
00010000 2200 
00010002 4282 
00010004 0401 
00010006 E289 
00010008 66FA 
0001000A E20A 
0001000C 55C2 
0001000E 60FE 
135Bug> 

In it i al i ze PC and D0: 

135Bug>RM PC < CR> 
PC a00008000 ? 10000. < CR> 
135Bug>RM DIii < CR> 
00 •00000000 ? 8F41C. < CR> 
135Bug> 

MOVE.L 
CLR.L 
AOO.B 
LSR.L 
BNE.B -
LSR.B 
scs 
BRA.B 

3-92 

00,01 
02 
01,02 
#1,D1 
$10004 
#1,02 
D2 
$1000E 

/ 



PRELIMINARY 

Display target registers and trace one instruction: 

135Bug>RD < CR> 
PC •00010000 SR 
USP •0000382C MSP 
SFC •0=F0 DFC 
D0 •0008F41C Dl 
D4 •00000000 DS 
A0 •00000000 Al 
A4 =00000000 A5 
00010000 2200 
135Bug>T <CR> 
PC •00010000 SR 
USP •0000382C MSP 
SFC •0•F0 DFC 
D0 •0008F41C DI 
D4 •00000000 DS 
A0 •00000000 Al 
A4 •00000000 AS 
00010002 4282 
135Bug> 

•2700•TR:OFF_S._7_ ..... 
•00003Cl4 ISP"' •00004000 VBR •00000000 
=0=F0 CACR •0=.. CAAR •00000000 
=00000000 D2 •00000000 D3 •00000000 
•00000000 D6 •00000000 D7 •00000000 
=00000000 A2 •00000000 A3 •00000000 
=00000000 A6 •00000000 A7 =00004000 

MOVE.L D0,Dl 

=2700=TR:OFF_S._7_ ..... 
•00003Cl4 ISP* =00004000 VBR •00000000 
•0•F0 CACR •0= .. , CAAR •00000000 
•0008F41C D2 •00000000 D3 •00000000 
•00000000 D6 •00000000 D7 •00000000 
•00000000 A2 •00000000 A3 =00000000 
•00000000 A6 =00000000 A7 •00004000 

CLR.L D2 

Trace next instruction: 

135Bug>< CR> 
PC •00010004 SR 
USP =0000382C MSP 
SFC •0•F0 DFC 
D0 •0008F41C DI 
D4 =00000000 D5 
A0 =00000000 Al 
A4 =00000000 A5 
00010004 D401 
135Bug> 

=2704=TR:OFF_S._7_ .. z .. 
=00003Cl4 ISP* •00004000 VBR =00000000 
•0=F0 CACR •0=.. CAAR •00000000 
=0008F41C D2 •00000000 D3 •00000000 
=00000000 D6 "'00000000 D7 •00000000 
=00000000 A2 =00000000 A3 •00000000 
=00000000 A6 =00000000 A7 =00004000 

ADD.B Dl,D2 

3-93 

MVME135BUG/D2 



PRELIMINARY 

Trace the next two instructions: 

135Bug> T 2 < CR> 
PC •00010000 SR 
USP •0000382C MSP 
SFC =0=F0 DFC 
00 =0008F41C DI 
04 =00000000 D5 
A0 •00000000 Al 
A4 •00000000 AS 
00010006 E289 
PC •00010000 SR 
USP •0000382C MSP 
SFC •0•F0 DFC 
00 =0008F41C 01 
D4 =00000000 05 
A0 =00000000 Al 
A4 •00000000 AS 
00010008 66FA 
135Bug> 

•2700-TR:OFF_S._7_ 
=00003Cl4 ISP* =~0004000 VBR =00000000 
=0•F0 CACR =0=.. CAAR =00000000 
=0008F41C 02 =0000001C D3 =00000000 
=00000000 D6 =00000000 D7 =00000000 
=00000000 A2 =00000000 A3 =00000000 
=00000000 A6 =00000000 A7 =00004000 

LSR.L #1,Dl 
=2700•TR:OFF_S._7_ ..... 
•00003Cl4 ISP* •00004000 VBR •00000000 
=0•F0 CACR •0•.. CAAR =00000000 
•00047A0E D2 =0000001C 03 =00000000 
=00000000 D6 =00000000 07 =00000000 
=00000000 A2 =00000000 A3 =00000000 
=00000000 A6 =00000000 A7 =00004000 

BNE. B 410004 

3-94 

MVME135BUG/D2 



PRELIMINARY 

3.35 Trace On Change Of Control Flow 

TC [ < COUNT> ] 

MVME135BUG/02 

TC 

The TC command will start execution at the address in the target PC 
and will begin tracing upon the detection of an instruction that 
causes a change of control flow, such as JSR, BSR, RTS, etc. This 
means that execution will be in real time until a change of flow 
instruction is encountered. The optional count field (which 
defaults to 1 if none entered) specifies the number of change of flow 
instructions to be traced before returning control to 135Bug. 

Breakpoints are monitored (but not inserted) during tracing for all 
trace commands, which allows the use of.breakpoints in ROM or write 
protected memory. Note that the TC command will recognize a 
breakpoint only if it is at a change of flow instruction. In all 
cases, if a breakpoint with 0 count is encountered, control will be 
returned to 135Bug. 

The trace functions are implemented with the trace bits (T0, Tl) in 
the MC68020 status register, therefore, these bits should not be 
modified by the user while using the trace commands. 

' . ' 

Example:. (The following pr.o~ram resides at location $10000) 

135Bug>f'I>' 1'!llll00;DI < CR> 
00010000 ·2200 
00010002 ~282 
00010004 D401 
00010006 E289 
0001:0~08 66FA 
0001'000A E20A 
0001000c ssc2 
000l000E 60FE 
135Bug> 

MOVE.~ 
CLR.L 
ADD.B 
CSR,L 
'BNLB· 

' ' 

.LSR;B 
scs 
BRA:B 

3-95 

D0,D1 
D2 
D1,D2 
U,Dl 
$10004 
#1,D2 
D2 
S1000E 



PRELIMINARY 

In it i a 1 i ze PC and 00: 

135Bug>RM PC < CR> 
PC •0011108111111111 ? 10000. < CR> 
1358ug>RM 08 < CR> 
00 •fll0flllllllllllllllll ? 8F41C. < CR> 
135Bug> 

Trace on change of fl ow: 

1358ug> TC < CR> 
00010008 66FA 
PC =00010004 SR 
USP •llllllllllll382C MSP 
SFC =0=F0 DFC 
00 =11101118F41C DI 
D4 =001111110000 D5 
A0 ~0111111111111111111111 Al 
A4 =001111111111111110 AS 
00010004 0401 
135Bug> 

BNE. B $1111004 
=2700•TR:OFF_S._7_ ..... 
•00003Cl4 ISP* •111000401110 VBR •001110001110 
=0=F0 CACR =0•.. CAAR =00000000 
=00047AIIIE 02 =001110001C 03 =0000111000 
•00000000 D6 •001110011100 07 =000011111100 
=11101111111111111110 A2 •1111111110111111111111 A3 =011111111101111110 
=111000111111111111 A6 =01111111111110111111 A7 =1111111111114111111111 

AOO.B 01,02 

MVME135BUG/02 

Note that the above display also shows the change of flow 
instruction. 

3-96 



FRELIMINARY 

3.36 Transparent Mode 

TM [-n] [ < ESCAPE> ] 

MVME135BUG/D2 

TM 

The TM command essentially connects the console serial port and the 
host port toge~her, allowing the user to communicate with a host 
computer. A message displayed by TM shows the current escape 
character, i.e., the character used to exit the transparent mode. 
The two ports remain "connected" until the escape character is 
received by the console port. The escape character is not 
transmitted to the host and at power up or reset is initialized to 
$01-A A. 

The optional port number "n" allows the user to specify which port 
wi 11 be the "host" port. If omitted, port 1 wi 11 be assumed. 

The ports do not have to be at the same baud rate, but the terminal 
port baud rate should be equal to or greater than the 'host port baud 
rate for reliable operation. To change the baud rates use the PF 
command. 

The optional escape argument allows the user to specify the 
character to be used as the exit character. This can be entered in 
three different formats: 

'ASCII code $03 
ASCII character 'c 
control chatacter: AC 

Set escape character to AC 
Set escape character to c 
Set escape character to AC 

If the port number is omitted and the escape argument is entered as a 
numeric value, precede the escape ar~ument with a comma to 
di st.i ngu i sh it from a port number. 

Example 1: 

135Bug>TM < CR> 
Escape character:· $01-A A 
<AA> 
135Bug> 

Example 2: 

135Bug>TM "G <CR> 
Es.cape character: $07=A G 
< "G > 
135Bug> 

Enter TM 
Exit code is always displayed 
Exit transparent mode 

Enter TM and set escape character 
to A G 
Exit transparent mode 

3-97 



PRELIMINARY 

3. 37 Trace To Temporary Breakpoint 

TT < ADDR> 

MVME135BUG/D2 

TT 

The TT command will set a temp.orary breakpoint at the specified 
address and will trace until a breakpoint with 0 count is 
encountered. The temporary breakpoint is then removed (TT is 
analogous to the GT command) and control is returned to 135Bug. 
Tracing starts at the target PC address. 

Breakpoints are monitored (but not inserted) during tracing for all 
trace commands, which allows the use of breakpoints in ROM or write 
protected memory. If a breakpoint with 0 count is encountered, 
control wi 11 be returned to 135Bug. ' 

The trace functions are implemented with the trace bits (T0, Tl) in 
the MC68020 status register; therefore, these bits should not be 
modified by the user while using the trace commands. 

Example: (The following program resides at location $10000) 

135Bug>lt> llllfll8B;DI < CR> 
00flllfllfllfllfll 22fllfll 
00010002 4282 
fllfllflllfllfllfll4 0401 
00fll10fll06 E289 
fllfllflllfllfllfll8 66FA 
0001fllfllflJA E2flJA 
0fllflllfllfllflJC 55C2 
fllfllflllfll00E 60FE 
135Bug> 

Initialize PC and OIi.i: 

135Bug>RM PC < CR> 
PC •fll0fl.lfll8fll0fll ? 11/Jf1188. < CR> 
135Bug>RM Dfr'I < CR> 
00 •fllfllfllfll0fllfll0 ? 8F41C. < CR> 
135Bug> 

MOVE.L 
CLR.L 
ADD.B 
LSR.L 
.BNE.B 
LSR.B 
scs 
BRA.B 

3-98 

00,01 
02 
01,02 
#1,01 
$1fllfllfll4 
#1,02 
02 
$10fll0E 



( 

PRELIMINARY 

Trace to temporary breakpoint: 

135Bug>TT 186 < CR> 
PC •00010002 SR 
USP •0000382C MSP 
SFC •0•F0 DFC 
00 •0008F41C DI 
D4 •00000000 05 
A0 •00000000 Al 
A4 •00000000 AS 
00010002 4282 
PC •00010004 SR 
USP •0000382C MSP 
SFC •0=F0 DFC 
DIil •0008F41C DI 
D4 =00000000 DS 
A0 =00000000 Al 
A4 =00000000 AS 
00010004 D401 
At Breakpoint 
PC •00010002 SR 
USP =0000382C MSP 
SFC. =0=F0 DFC 
D0 •0008F41C DI 
D4 =00000000 D5 
A0 =00000000 Al 
A4 •00000000 AS 
0001001116 E289 
1358ug> 

•2700=TR:OFF_S._7_ ..... 
•00003Cl4 ISP* •00004000 VBR •00000000 
•0•F0 CACR •1/J=.. CAAR •00000000 
•0008F41C D2 •00000000 D3 •00000000 
•00000000 06 •00000000 D7 •00000000 
•00000000 A2 •00000000 A3 •00000000 
=00000000 A6 •00000000 A7 •00004000 

CLR.L D2 
•2704•TR:OFF_S._7_ .. z .. 
•00003Cl4 ISP* •00004000 VBR •00000000 
=0•F0 CACR =0=.. CAAR =00000000 
=0008F41C D2 •00000000 D3 ,=00000000 
=00000000 D6 =00000000 D7 =00000000 
=00000000 A2 =00000000 A3 =00000000 
•00000000 A6 =00000000 A7 =00004000 

ADD.B DI ,D2 

=2700=TR:OFF_S._7_ ..... 
=00003Cl4 ISP* =00004000 VBR =00000000 
=0=F0 CACR =0=.. CAAR =00000000 
•0008F41C D2 •0000001C D3 =00000000 
•00000000 D6 =00000000 Ci =00000000 
=00000000 A2 •00000000 A~- •00000000 
•00000000 A6 =00000000 A7 =00004000 

LSR. L #I ,DI 

3-99 

MVME135BUG/D2 



PRELIMINARY MVME135BUG/D2 

3. 38 Verify S~Records Against Memort VE 

VE [n][< AODR> ][;< X/~C> ]['"<text>] 

This command is identical to the LO c-0mmand with the exception that 
data is not stored to memory but merely compared tp the contents of 
memory. 

The VE command accepts serial data from a host system in the form of a 
file of Motorola S-Records and compares it to data already in 
memory. If the data does not compare the~ the user i~ alerted via 
information sent to the terminal screen. 

The optional port number "i'l" allows the user to specify which port 
is to be used for the downloading. If this number is omitted, port 1 
will be assumed~ 

The. optional < ADDR> field allows the user to enter an offset 
address which is to be added to the address contained in the address 
field of each record.: This wi 11 cause the records to be compared to 
memory at different: locati.ons then would normally occur. The 
contents of the automatic offset register are not added to the s
Record addresses. If the address is in the range $0 to $IF and the 
port number is omitted, precede the address with a comma to 
distinguish i_t from a port number. 

The optional text field, entered after the equals sign(•), will be 
sent to the host before 135Bug begins to look for S-Records at the 
host port. This allows the user to send a command to the host" device 
to initiate the do.wnload. This text should NOT be de-Hmited by any 
kind of quote marks. The text is understood to begin immediately 
following the equals sign and terminate with the carriage return. 
If the host is operating full duplex, the string will also be echoed 
back to the host port by the host and will appear on the user's 
terminal screen. 

In order to accommodate host systems that echo all received 
characters, the above-mentioned text string is sent to the host one 
character at a time and characters received from the host are read 
one at a time. After the entire command has been sent to the host VE 
wi 11 keep looking for a < LF> character from the host, signifying 
the end of the echoed command. No data records will be processed 
until this < LF> is received. If the host system does not echo 
characters, VE will still keep looking for a< LF> character before 
data records are processed. 

For this reason it is required in situations where the host system 
does not echo characters that the first record transferred by the 
h·ost system be a header record. The header record is not used but the 

3-100 



PRELIMINARY MVMEl 3 SBUG/D2 

< LF> after the header record serves to break VE out of the loop so 
that data records wi 11 be processed. 

The other options have the following effects: 

-C option - Ignore checksum. A checksum for the data contained 
within an S-Record is calculated as the S-Record is read 
in at the port. Normally, this calculated checksum is 
compared to the checksum contained within the S-Record 
and if the compare fails, an error message is sent to 
the screen on completion of the download. If this 
option is selected then the comparison is not made. 

X option - Echo. This option echoes the S-Records to the user's 
terminal as they are read in at the host port. 

During a verify operation, an S-Record's data is compared to memory 
beginning with the address contained in the S-Record's address field 
(plus the offset address, if it was specified). If the verification 
fails then the non-comparing record is set aside until the verify is 
complete and then it is printed out to the screen. If three non
comparing records are encountered in the course of a verify 
operation then the command is aborted. 

If a non-hex character is encountered within the data field of a data 
record then the part of the record which had been received up to that 
time will be printed to the screen and 135Bug's error handler will be 
inv(?ked to point to the faulty character. 

As mentioned, if the embedded checksum of a record ·does not agree 
with the checksum calculated by 135Bug AND if the checklum 
com~aris~n has no~ been disabled via the "-C" option then an error 
condition exists. A message will be output stating the address of 
the record (as obtained from the address field of the record), the 
calculated checksum and the checksum read with the record. A copy of 
the record is also output. This is a fatal error and causes the 
command to abort. 

3-101 



PRELIMINARY MVME135BUG/D2 

Examples: 

This short program was developed on a host system. 

1 * Test Program. 
2 * 
3 65040000 ORG $65040000 
4 
5 . 6504000 7001 MOVEQ.L #1,D0 
6 65041111112 D11188 ADD.L A0,D0 
7 650411104 4A0111 TST.B D0 
8 65111401116 4E75 RTS 
9 END 

****** TOTAL ERRORS 0- -
****** TOTAL WARNINGS 0--

Then this program was converted into an S-Record file named TEST.MX 
as follows: · · · · 

S0111FIIIIIIIIIIIIS4455354533353372020011/JISE 
S30D65040000701/JIDI/J884A004E7583 
S7056504000091 

This file was downloaded into memory at address $4011101/J. The program 
may be examined in memory using the MD (Memory Display) command. · 

135Bug>MD 4elelil0:4;DI < CR> 
11100411110111 7001 
111004111002 D088 
0004011104 4A00 
1110040006 4E7.5 
135Bug> 

MOVEQ.L #1,DI/J 
ADD.L A0,DI/J 
TST.8 DIil 
RTS 

3-102 . 

\ 



PRELIMINARY MVME135BUG/D2 

Suppose that the user wants to make sure that the program ~as not 
been destroyed in memory. The VE command will be used to perform a 
verification. 

135Bug>VE -6580111888;X-COPY TEST .MX,# < CR> 
S00F00005445535453335337202001015E 
S30D650400007001D0884A004E75B3 
S7056504000091 
Verify passes. 
135Bug> 

The verification passes. The program stored in memory was the same 
as that in the S-Record file that had been downloaded. 

Now change the program in memory and perform the verification again. 

135Bug>'M 482 < CR> 
00040002 0088 ? 0089. < CR> 
135Bug>VE -65080000;X-COPY TEST.MX,# <CR> 
S00F00005445535453335337202001015E 
S30D650400007001O0884A004E75B3 
S7056504000091 

The following record(s) did not verify ..... 

S30D65040000------88--------B3 
135Bug> 

The byte which was changed in memory does not compare with the 
corresponding byte in the S-Record. 

3-103 



PRELIMINARY MVME135BUG/D2 

THIS PAGE. INTENTIONALLY LEFT BLANK 

3-104 



PRELIMINARY MVMEl 3 SBUG/D2 

CHAPTER 4 
USING THE ONE-LINE ASSEMBLER/DISASSEMBLER 

4.1 Introduction 

Included as part of the 135Bug firmware is an assembler/disassembler 
function. The assembler is an interactive assembler/editor in which 
the source program is not saved. Each source line is translated into 
the proper MC68020/MC68851/MC68881 machine language code and is 
stored in memory on a line-by-line basis at the time of entry. In 
order to display an instruction, the machine code is disassembled 
.and the instruction mnemonic and operands are displayed. All va1i~ 
MC68020 instructions are translated.: 

The 135Bug assembler is effectively a sl.ibset of the MC68020 Resident 
Structured Assembler. It has some limitations as compared with the 
Resident Assembler, such as not allowing line numbers and labels; 
however, it is a powerful tool for creating, modifying, and 
debugging MC68020 code.· 

4.1.1 MC68828 Assembly Language 

The symbo 1 i c 1 anguage used to code sounce programs for processing by 
the assembler is MC68020 assembly. This language is a collection of 
mnemonics representing: 

• Operations 

- MC68020 machine-instruction operation code 

- Directives (pseudo-ops) 

• Operators 

• Special symbols 

4. 1. 1. 1 Machine-Instruction Operation Codes 

The .part of the assembly language that provides the mnemonic 
machine-instruction operation codes for the 
MC68020/MC68851/MC68881 machine instructions are described in the 
MC68020UM, MC68851UM, and MC68881UM Technical User's Manuals. 
Refer to these manuals for any question concerning operation codes. 

4.1.1.2 Directives 

Normally, assembly language can contain mnemonic directives which 
specify auxiliary actions to be performed by the assembler. The 
135Bug assembler recognizes only two directives called DC.W (define 

4-1 



PRELIMINARY MVME135BUG/D2 

constant) and SYSCALL. These two directives are used to define data 
within the program and to make calls to 135Bug utilities (refer to 
paragraphs 4.2.3 and 4.2.4, respectively). 

4.1.2 Comparison with MC68020 Resident Structured Assembler 

There are several major differences between the 135Bug assembler and 
the MC68020 Resident Structured Assembler. The resident assembler 
is a two-pass assembler that processes an entire program as a unit, 
while the 135Bug assembler processes each line of a program as an 
individual unit.· Due mainly to this basic functional difference, 
the capabilities of the 135Bug assembler are more restricted: 

1. Label and line numbers are not used. Labels are used to reference 
other lines and lo~ations in a program. The one-line assembler 
has no knowledge of other lines and, therefore, cannot make the 
required association between a label and the label definition 
located on a separate line. 

2; Source lines are not saved. In order to read back a program after 
it has been entered, the machine code is disassembled and then 
di sp 1 ayed as mnemonic and operands. 

3. Only two directives (DC.Wand SYSCALL) are accepted. 

4. No macro operation capability is included. 

5. No conditional assembly is u_sed. 

6. Several symbols recognized by the resident assembler are not 
included in the 135Bug assembler character set. These symbols 
include> and<. Three other symbols have multiple meaning to 
the resident assembler, depending on the context. These are: 

a. Asterisk(*) -- Multiply or current PC. 
b. Slash(/) -- Divide or delimiter in a register list. 
c. Ampersand(&) -- And or decimal number prefix. 

Although functional differences exist between the two assemblers, 
the one-line assembler is a true subset of the resident assembler. 
The format and syntax used with the 135Bug assembler are acceptable 
to the resident assembler except as described above. 

4-2 



P~ELIMINARY MVME135BUG/02 

4.2 Source Program Coding 
A source program is a sequence of source statements arranged in a 
logical way to perform a predetermined task. Each source statement 
occupies a line and must be either an executable instruction, a OC.W 
directive, or a SYSCALL assembler directive. Each source statement 
follows a consistent source line format. 

4. 2 .1 Source L 1 ne Format 
Each source statement is a combination of operation and, as 
required, operand fields. Line numbers, labels and comments are NOT 
used. 

4.2.1.1 Operation Field 
Since there is no label field, the operation field may begin in the 
first available column. It may also follow one or more spaces. 
Entries can consist of one of three categories: 

1. Operation codes Which correspond to the 
MC68020/MC68851/MC68881 instruction set. 

2·. Define Constant directive -- DC.W is recognized to define a 
constant in a word 1 ocat ion. 

3. System Call directive -- SYSCALL is used to call 135Bug system 
utilities. 

· The size of the data field affe~ted by an·instt~ctidn is determined 
by• the data size codes. Some instructions and directives can 

··operate on more than one data s·ize. For these operations, the data 
. size code must be specified or a default size applicable to that 

in~truction will be assumed. The size code need not be specified if 
. only one data size is permitted by the operation. The data size code 
: is specified by a period (.), appended to the operation field, and 

followed by B, W, or L,:where: 

B = Byte (8-bit data) 
W = Word (the usual default size; 16-bit data) 
L = Longword (32-bit data) 

The data size co-de is not permitted, however., when the instruction 
or directive does not have a data size attribute. 

4-3 



PRELIMINARY MVME135BUG/D2 

Examples (legal): 
LEA (A0) ,Al Longword size is assumed (.B, .W not allowed); this 

instruction loads the effective address of the 
first operand into Al. 

ADD.B (A0),D0 This instruction adds the byte whose address is 
(A0) to the lowest order byte in D0. 

ADD 01,02 This instruction adds the low order word of 01 to 
the low order word of D2. (Wis the default size 
code.) 

ADD.L A3,D3 This instruction adds the entire 32-bit (longword) 
contents of Al to DJ. 

Example (illegal): 
SUBA.B #5,Al Illegal size specification (.8 not allowed on 

SUSA). Tbis instruction would have subtracted the 
value 5 from the low order byte of Al; byte 
operations on address registers ar·e not allowed. 

4.2.1.2 Operand Field 
If present, the operand fie 1 d 'fo 11 ows the operation filed and is 
separated from the operation field by at least one space. When two 
or more operand subfields appear within a statement, they must be 
separated by a comma. In an instruction like' ADD Dl;D2', the first 
subfield (Dl) is called the source effective address field, and the 
second subfield (02) is called the destination < EA> field. Thus, 
the contents on 01 are added to the contents of 02 and the result is 
saved in register 02. In the instruction' MOVE 01,D2', the first 
subfield (01) is the sending field and the second subfield (02) is 
the receiving field. In other words, for most two-operand 
instructions, the format 

4.2. 1 .3 Disass•bl ed Source Line 
The disassembled source line may not look identical to the source 
line entered. The disassembler makes a decision on how it 
interprets the numbers used. If the number is an offset off of an 
address register, it is treated as a signed hexadecimal offest. 
Otherwise, it is treated as a straight unsigned hexadecimal. 

4-4 



/ 

PRELIMINARY 

For example, 

MOVE.L 
MOVE.L 

disassembles to 

#1234,5678 
FFFFFFFC(Afl),5678 

00003000 21FC0000 12345678 
00003008 21E8FFFC 5678 

MOVE.L 
MOVE.L 

#$1234,($5678).W 
·S4(A0),(S5678).W 

MVME135BUG/D2 

Also, for some instructions, there are two valid mnemonics for the 
same opcode, or there is more than one assembly language equivalent. 
The disassembler may choose a form different from the one originally 
entered. As examples: 

a. BRA is returned for BT 
b. DBF is returned for DBRA 

NOTE 

The assembler recognizes two forms of mnemonics for two branch 
instructions. The BT form (branch conditionally true) has the same 
opcode as the BRA instruction. Also, DBRA (decrement and branch 
always) and DBF (never true, decrement, and branch) mnemonics are 
different forms for the same instruction. In each case, the 
assembler wi 11 accept both forms. 

4.2. 1.4 Mnemonics and Delimiters 
The assembler recognizes all 68020 instruction mnemonics. Numbers 
are recognized as binary, octal, decimal, and hexadecimal, with 
hexadecimal as the default case. 

a. Decimal • is a string of decimal digits (0 to 9) preceded by an 
ampersand (&). Examples are: 

&12334 
-&987654321 

b. ·Hexadecimal - is a string of hexadecimal digits (0 to 9, A to F) 
preceded by an optional dollar sign($}. An example is: 

SAFES 

4-5 



PRELIMINARY , MVME135BUG/O2 

One or more ASCII characters en~losed by apostr~phes (' ') 
constitute an ASCII string. ASCII strings are right-justified and 
zero filled (if necessary), whether stored or used as immediate 
operands. 

00003000 
005000 
005002 
005008 

21FC0000 12345678 
0053 
223C41424344 
3536 

MOVE. L 
oc.w 
MOVE.L 
oc.w 

#$1234,($5678).W 
'S' 
#'ABCO' ,01 
'56' 

The following register mnemonics are recognized/referenced by the 
assembler/disassembler: 

Pseudo Registers 

R0-R7 User Ofhet. Reg.; sters. 

Main. Processor Registers 

PC Program Counter. 
Used only in forcing program counter-relative addressing. 

SR Status Register. 

CCR Condition Codes Register (lower eight bits of SR). 

USP User Stack Pointer. 

MSP Ma.ster Stack Pointer. 

ISP Interrupt Stack Pointer. 

VBR Vector Base Register. 

SFC Source Function Code Register. 

OFC Destination Function Code Register. 

CACR Cache Control Register. 

CAAR Cache Address Register. 

00-07 Data Registers. 

A0-A7 Address Registers. 
Address register A7 represents the active system stack pointer, 
that is, one of USP, MSP, or ISP, as specified by the Mand S bits 
in the status register (SR). 

4-6 



PRELIMINARY MVME135BUG/02 

Floating Point Coprocessor Registers 

FPCR Control Register. 
FPSR Status Register. 
FPIAR Instruction Address Register. 
FP0-FP7 Floating Point Data Registers. 

Paged Memory Management Unit Coprocessor Registers 

PSR Status Register. 
PCSR Cache Status Register. 
AC Access Control Register. 
CRP CPU Root Pointer. 
SRP Supervisor Root Pointer. 

DRP OMA Root Pointer. 
TC Translation Control Register. 
BAC0-BAC7 Breakpoint Acknowledge Control Registers. 
BAD0-BAD7 Breakpoint Acknowledge Data Registers. 
CAL Current Access Level. 
VAL Validate Access Level. 
sec Stack Change Control. 

4. 2 .1. 5 Character Set 
The character set recognized by the 135Bug assembler is a subset of 
ASCII, and is listed below: 

1. The letters A through Z (uppercase and lowercase) 

2. The integers 0 through 9 

3 . Ar it h met i c operators : + - * / < < ? > & 

4. Parentheses ( ) 

4-7 



PRELI-MI NARY MVME1358UG/D2 

5. Characters used as special prefixes·: 
# (pound sign) specifies the immediate form of addressing. 
$ (dollar sign) specifies a hexadecimal number. 
& (ampersand) specifies a decimal number. 

@ (commercial at sign) specifies an octal number. 

% (percent sign) specifies a binary number. 

(apostrophe) specifie.s an ASCII literal character string. 

6. Five separating characters: 

Space 

(comnta) 
( per.i od). 

/ (sla-sh) 
~ (aash) 

7. The character* (asterisk)'indicates current location. 

4.2.2 Addressing Modes 
Effective address modes, combined with operation codes, define the 
particular function to performed by a given instruction. Effective 
addressing and data organization are described in detail in Section 
2, "Data Organization and Addressing Capabilities~ of the MC68020 
User's Manual. 

Table 4-1 summarizes the addressing modes of the MC68020 which are 
accepted by the 135Bug one-line assembler. 

4-8 



/ 

PRELIMINARY MVME135BUG/02 

TABLE 4-1. 135Bug ASSEMBLER ADDRESSING MODES 

Format 

On 
An 
{An} 
(An}+ 
-(An} 
d(An} 
d(An,Xi} 

(bd,An,Xi} 

([bd,An],Xi,od} 
([bd,An,Xi],od} 
ADDR(PC) 
ADDR{PC,Xi) 

{ADDR, PC,Xi) 

([ADDR,PC],Xi,od} 
([ADDR,PC,Xi],od) 
(xxxx).W 
(xxxx).L 
#xxxx 

Description 

Data register direct. 
Address register direct. 
Address register indirect. 
Address register indirect with post-increment. 
Address register indirect with pre-decrement. 
Address register indirect with displacement. 
Address register indirect with index, 8-bit 
displacement. 
Address register indirect with index, base 
displacement. 
Address register memory indirect post-indexed. 
Address register memory indirect pre-indexed. 
Ptogram counter'indirect with displacement. 
Program counter indirect with index, 8-bit 
displacement. 
Program counter indirect with index, base 
displacement. 
Program counter memory indirect post-indexed. 
Program counter memory indirect pre-indexed. 
Absolute word address. 
Absolute long address. 
Immediate data. 

The user may use an expression in any numeric field of these 
addressing modes. The assembler has a built in expression evaluator 
that supports the following operands types and operators: 

1) Bi nary numbers (%10 ) 
2) Octal numbers (@765 .. 0) 
3) Decimal numbers (&987 .. 0) 
4) Hexadecimal numbers ($FED .. 0) 
5) String literals ( 'CHAR' ) 
6) Offset registers (R0-R7 ) 

7) Program counter (*) 

4-9 



PRELIMINARY MVME135BUG/D2 

All owed operators are: 

1) Addition + 
2) Subtraction 
3) Multiply * 
4) Divide I 
5) Shift left « 
6) Shift right >> 
7) Bitwise or ! 
8) Bitwise and & 

The order of evaluation is strictly left to right with no precedence 
granted to some operators over others. The on 1 y exception to this is 
when the user forces the order of precedence vi a the use of 
parentheses. · 

Possible points of confusion: 

1. The user should keep in mind that where a number is intended and 
it could be confused with a register, it must be differentiated 
in someway. For example: 

CLR 

CLR 
CLR 
CLR 
CLR 

00 

$00 
000 
+00 
00+0 

means CLR.W register 00. On the other hand, 

all mean CLR.W memory location $00. 

2. With the use of "*" to represent both multiply and program 
counter, how does the assembler know when to use which 
definition? 

For parsing algebraic expressions, the order of parsing is 

<OPERAND ><OPERATOR ><OPERAND xOPERATOR > ••• 

with a possible left or right parenthesis. 

Given the above order, the assembler can distinguish by placement 
which definition to use. For example: 

4-10 



( 

PRELIMINARY MVME135BUG/D2 

1) *** Means PC * PC 
2) *+* Means PC + PC 
3) 2** Means 2 * PC 
4) *&&16 Means PC AND &16 

When specifying operands, the user may skip or omit entries with the 
fo 11 owing addressing modes. 

I) Address register indirect with index, base displacement. 
2) Address register memory indirect post-indexed. 
3) Address register memory indirect pre-indexed. 
4) Program counter indirect with index, base displacement. 
5) Program counter memory indirect post-indexed. 
6) Program counter memory indirect pre-indexed. 

For modes Address register/Program counter indirect with index, 
base displacement, the rules for omission/skipping are a.s follows: 

1. The user may terminate the operand at any time by specifying")'". 
Example: 

CLR 

CLR 

( ) 

(") 

or 

is equivalent to 

CLR (0.N,ZA0,ZD0.W*l) 

2. 'The user may skip a ·field by "~tepping past" it'wit~ a· comma.· 
Example: 

CLR (D7) is equivalent to 

CLR ($D7,ZA0,ZD0.W*l) 
but 

CLR ( "D7) is equivalent to 

CLR . (0.N,ZA0,D7.W*l) 

3. If the user does not s-pecify the base register, the default "ZA0" 
is forced. 

4. If the user does not specify the index register, the default 
"ZD0.W*l" is forced. 

4-11 



PRELIMINARY MVME135BUG/D2 

5. Any unspecified displacements are defaulted to 11 0. N11 • 

The rules for parsing the memory indirect addressing modes are the 
same as above with the folldwing additions. 

1. The subfield that begins with 11 [ 11 must be terminated with a 
matching 11 ] 11 • 

2. If the text given is insufficient to distinguish between the 
pre-indexed or post-indexed addressing modes, the default is the 
pre-indexed form. 

4.2.3 DC.W Define Constant Directive 

The format for the DC.W directive is: 

DC.W <operand> 

The function of this directive is to define a constant in memory. 
The DC.W directive can have only one operand {16-bit value) which 
can contain the actual value {decimal, hexadecimal, or ASCII). 
Alternatively, the operand can be an expression which can be 
assigned a numeric value by the assembler. The constant is aligned 
on a word boundary if word {.W) size is specified. An ASCII string is 
recognized when characters are enclosed inside single quotes{' '). 
Each character {7 bits) is assigned to a byte of memory with the 
eighth bit {MSB) always equal to zero. If only one byte is entered, 
the byte is left justified. A maximum of two ASCII characters may be 
entered for each DC. W directive. 

Examples are: 

00010022 0402 oc.w· 1234 Decimal number 
00010024 AAFE oc.w &AAFE Hexadecimal number 
00010026 4142 oc.w 'AB' ASCII String 
00010028 5443 oc.w 'TB'+l Expression 
0001002A 0043 oc.w 'C' ASCII character is right justified 

4.2.4 SYSCALL System Call Directive 
The function of this directive is to aid the user in making the TRAP 
#15 calls to the system functions. The format for this directive is: 

SYSCALL < funct fon name > 

4-12 



PRELIMINARY MVMEl 3 SBUG/D2 

For example, the following two pieces of code will produce identical 
results. 

TRAP #SF 
DC.W 0 

or 
SYSCALL . INCHR 

Refer to Chapter 5 (SYSTEM CALLS), for a complete listing of all the 
functions provided. 

4.3 Entering and Modifying Source Program 
User programs are entered into the memory using the one-line 
assembler/disassembler. The program is entered in assembly 
language statements on a l i ne-by-1 i ne basis. The source code i.s not 
saved as it is converted immediately to machine code upon entry. 
This imposes several restrictions on the type of source line that 
can be entered. 

Symbols and labels, other than the defined instruction mnemonics, 
are ·not a11 owed.· The assembler has rio means to store the associated 
values of the symbols ~rid labels in lookup tables. This forces the 
progi-ammer to use memory addresses and to enter data directly rather 
than use labe 1 s. 

Also, editing is accomplished by retyping the entire new source 
line. Lines can be added or deleted by movi:ng a block of memory data• 
to free up or delete the appropriate numb~r of locations (refer to 
the BM command). · 

4.3.l Invoking the Assembler/Disassembler 
The assembler/disassembler is invoked using the ;DI option of the MM 
(Memory Modify) and MD (Memory Display) commands: 

MM <ADDR > ;DI 
where 

and 

< CR> sequences to next instruction 
.< CR> exits command 

MD[S] < ADDR> [ :< coimt> l<ADDR>]; DI 

4-13 



PRELIMINARY MVME135BUG/02 

The MM (;DI option) is used for program entry and modification. When 
this command is used, the memory contents at the specified locatiqn 
are disassembled· and displayed. A new or modified line can be 
entered Hdesired. 

. 
The disassembled line can be an MC68020 instruction, a SYSCALL, or a 
DC.W directive. If the disassembler recognizes a valid form of some 
instruction, the instruction will be returned; if not (random data 
occurs), the DC.W SXXXX (always hex) is returned. Because the 
disassembler gives precedence to instructions, a word of data that 
corresponds to a valid instruction will be returned as the 
instruction. 

4.3.2 Entering a Source Line 

A new source line may be entered immediately following the 
disassembled line, using the format discussed in paragraph 4.2.1: 

135Bug>MM 10000;0I < CR> 
00010000 2600 MOVE.L 00,03 ? ADDQ.L #l,A3 <CR> 

When the carriage return is entered terminating the line, the old 
source line is erased from the terminal screen, the new line is 
assembled and displayed, and the next instruction in memory is 
disassembled and displayed: 

135Bug>MM 10000;0I < CR> 
00010000 528B · 
00010002 4282 

ADDQ.L #1,A3 
CLR.L D2? 

If a hardcopy terminal is being used, port 0 should be reconfigured 
for hardcopy mode for proper operation (refer to the PF command). In 
this case, the above ex amp 1 e wil 1 1 ook as fo 11 ows: 

135Bug>MM 10000;0I < CR> 
00010000 2600 
00010000 5288 
00010002 4282 

MOVE.L D0,03 ? AOOQ.L #l,A3 <CR> 
AD0Q.L #l,A3 
CLR.L 02? 

Another program 1 i ne can now be entered. Program entry continues in 
like manner until all lines have been entered. A period is used to 
exit the MM command. If an error is encountered during assembly of 
the new line, the assembler wi 11 di splay the line unassembled with a 
"A" under the field suspected of causing the error and an error 
message. 

4-14 



( 

P~ELIMINARY MVME135BUG/D2 

The location being accessed is redisplayed: 

135Bug>Jtl 18f/lOO;di < CR> 
00010000 528B ADDQ.L #l,A3? lea.l 5(a0,d8),a4 <CR> 
00010000 LEA.L 5(Afll,D8),A4 
--------------· ______________________________ A 

*** Unknown Field-* 
00010000 528B ADDQ.L #l,A3 ? 

4.3.3 Entering Branch and Jump Addresses 
When entering a source line containing a branch instruction (BRA, 
BGT, BEQ, etc) do not enter the offset to the branch's destination in 
the operand field of the instruction. The offset will be calculated 
by the assembler. The user must append the appropriate size 
extension to the branch instruction . 

• To reference a current location in an operand expression, the 
character"*" (asterisk} can be used. Examples are: 

.00030000 

.00030000 
00030000 
00030000 

60004094 
60FE 
4EF90003 0000 
4EF00130 0030000 

BRA *+$4096 
BRA.B * 
JMP * 
JMP (*,A0,D0) 

In the case of forward branches or jumps, the absolute address of the 
destination may not be kno~n as the program is be1ng entered. The 
user ~ay temporarily enter an "*" for branch to self in order to 
reserve space. After the actual address is discovered, the 1 i ne 
containing the branch instruction can be re-entered using the 
.correct value. 

NOTE: Branch sizes must be entered as" .B" or ".W" as opposed to 
11 .S" and.".L". 

4.3.4 Assembler Output/Program Listings 

A listing of the program is obtained using the MD (Memory Display) 
command with the ;DI option. The MD command requires both the 
starting address and the line count to be entered in the command 
line. When the· ;DI option is invoked, the number of instructions 
disassembled and displayed will be equal to the line count. 

To obtain a hard·copy listing of a program, use the PA (Printer 
Attach) c:ommand to activate the Port l printer. A MD (Memory 

4-15 



PRELIMINARY MVME135BUG/D2 

Display) to the terminal will then cause a listing on the terminal 
and on the printer. 

Note again, that tlle listing may not correspond exactly to the 
program as entered. As discussed in paragraph 4.2.1.3, the 
disassembler displays in signed hexadecimal any number it 
interprets as an offset of an address register; all other numbers 
are displayed in unsigned hexadecimal. 

4-16 



PRELIMINARY 

5.1 Introduction 

CHAPTER 5 
SYSTEM CALLS 

MVMEl 3 5BUG/D2 

This chapter describes the 135Bug TRAP #15 handler, which allows 
system calls from user programs. The system calls can be used to 
access selected functional routines contained within 135Bug, 
including input and output routines. TRAP #15 may also be used to 
transfer control to 135Bug at the end of a user program ( refer to the 
• RETURN function). 

In the descriptions of some input and output functions, reference is 
made to the fl default input port fl or the "default output port". After 
power-up or reset, the default input and o~tput port is initialized 
to be the VME135 board's console port. The defaults may be changed, 
however, using the .REDIR_I and .REDIR_O functions. 

5. 1. 1 I nvolci ng System Ca 11 s Through TRAP #15 , 
To invoke a system call from a user program simply insert a TRAP #15 
instruction into the source program. The code corresponding to the 
particular system routine is specified in the word following the 
TRAP opcode, as shown in the following example. 

Format in user program: 

TRAP #15 System call to 135Bug 
DC.W $xxxx Routine being requested (xxxx • code) 

In some of the examples shown in the following descriptions,• a 
SYSCALL macro is used. This macro automatically assembles the TRAP 
#15 ca11 followed by the Define Constant for the :function code. For 
clarity, the SYSCALL macro is as follows: · 

SYSCALL MACRO 
TRAP 
DC.W 
ENDM 

#15 
\1 

Using the SYSCALL macro, the system call would appear in the user 
program as follows: 

SYSCALL <routine name> 

5-1 



PRELIMINARY MVME135BUG/D2 

It is, of course; necessary to create an equate file wit.h the routine 
names equat'ed to'their respective codes. · 

When using 135Bug's one-1ine assembler/disassembler, the SYSCALL 
macro and the ~quates ar~ predefined. Simply write in "SYSCALL" 
followed by a space and the function, then the carriage return. 

Example: 

135Bug>M 300S;DI < CR> 
0000 3000 00000000 
0000 3000 .4E4F0022 
0000 3004 00000000 
135Bug> 

ORI. B #$0, D0? SYSCALL .OUTI.N < CR> 
SYSCALL .OUTLN 
ORI. 8 #$0, D0? • < CR> 

5.1.2 String Formats for I/0 
Within the conte.xt of the TRAP # 15 handler there are two formats for 
strings: · · 

Pointer/Pointer Format - The string is defined by a pointer to the 
first character and a pointer to the last 
character + 1. 

Pointer/Count Format - The string is defined by a P.Ointer to a 
count byte which contains the count of 
characters in the string followed by the 
string itself. 

A line is defined as a string followed by a carriage return and a line 
feed. 

5.2 System Call Routines 

Table 5-1 summarizes the TRAP #15 functions. Refer to the write-ups 
on the utilities for specific use information. 

5-2 



PRELIMINARY MVME135BUG/D2 

TABLE 5-2. 135Bug SYSTEM CALL ROUTINES 

I 
/ Code Function Description 

$111111111111 .INCHR Input character 
$1111111111 • INSTAT Input serial port status 
$1111111112 .INLN Input line (pointer/pointer format) 
$11101113 .READSTR Input string (pointer/count format) 
$1111111114 .READLN Input line (pointer/count fomat} 
$01111115 .CHKBRK Check for break 
$11111110 .DSKRD Disk read 
$11111111 .DSKWR Disk write 
$011112 .DSKCFIG Disk configure 
$11111114 .DSKFMT Disk format 
$011115 .DSKCTRL Di~k control 
$111020 .OUTCHR Output character 
$011121 .OUTSTR Output string (pointer/pointer format) 
$0022 .OUTLN Output line (pointer/pointer format) 
$0023 .WRITE Output string (pointer/count format) 

r- $0024 .WRITELN Output line (pointer/count format) 
I $0025 .WRITDLN Output line with data (pointer/count fomat} 

$011126 .PCRLF Output carriage return and line feed 
$0027 .ERASLN Erase line 
$0028 .WRITD Output string with data (pointer/count format) 
$0029 .SNDBRK Send break 
$0040 .TM INI Timer initialization 
$0041 .TM STR0 Start timer at r- 0 
$011142 • TM_RD Read timer 
$0043 .DELAY Wait for the specified delay 
$0060 .REDIR Redirect 1/0 of a TRAP 15 function 
$0061 . RED IR I Redirect input 
$0062 .REDIR_O Redirect output 
$0063 .RETURN Return to 135Bug 
$0064 .BINDEC Convert binary to Binary Coded Decimal (BCD) 
$0067 .CHANGEV Parse value 
$0068 .STRCMP Compare two strings (pointer/count format) 
$0069 .MULU32 Multiply two 32-bit unsigned integers 
S006A .DIVU32 Divide two 32-bit unsigned integers 

5-3 



PRELIMINARY MVME135BUG/02 

5. 2 .1 • INCHR Function .INCHR 

TRAP FUNCTION: . INCHR - Input character r:outine-

CODE: $0000 

DESCRIPTION: Wi 11 read a character from the default input port. The 
character is returned in the stack. 

ENTRY CONDITIONS: 

SP ... > Space for character < byte> 
Word fi 11 < byte> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP ••> Character < byte> 
Word fill <byte> 

EXAMPLE: 

SUBQ.L 
SYSCALL 
MOVE.B 

#2,SP 
.INCHR 
(SP)+,D0 

Allocate space for result 
Call . INCHR 
Load character in 00 

5.-4 



( 

PRELIMINARY MVME135BUG/D2 

5.2.2 .INSTAT Funct;on • INST AT 

TRAP FUNCTION: . INSTAT - Input serial port status-

CODE: $0001 

DESCRIPTION: Used to see if there are character in the default input 
port buffer. The condition codes are set to indicate 
the result of the operation. 

ENTRY CONDITIONS: 

No arguments or stack allocation required 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

.Z(ero) • I if the receiver buffer is empty 

EXAMPLE·:: 

LOOP SYSCALL- .INSTAT Any characters? 
B£Q.S EMPTY No, branch· 
'SUBQ.L #2,A7 . Yes, then 
SYSCALL • . INCHR · Read them 
MOVE.B (SP)+,:(A0)+ • In buffer 
BRA.S l.:OOP · Check for more 

EMPTY 

· · 5- 5 



PRELIMINARY MVME135BUG/D2 

5.2.3 .INLN Function • INLN 

TRAP FUNCTION: . INLN - Input 1 ine routine-

CODE: $0002 

DESCRIPTION: Used to read a line from the default input port. The 
buffer size should be at least 256 bytes. 

ENTRY CONDITIONS: 

SP ••> Address of string buffer <long> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP~=> Address of last character in the string+! <long> 

EXAMPLE: 

If A0 contains the address where the string is to go: 

NOTES: 

SUBQ.L 
PEA 
TRAP 
DC.W 
MOVE.L 

#4,A7 
(A0) 
#15 
2 
(A7)+,Al 

Allocate space for result 
Push pointer to destination 
(Hay also invoke by SYSCALL 
macro (n SYSCALL .INLNn) 

Retrieve address of last character+! 

A line is a string of characters terminated by< CR>. The maximum 
allowed size is 254 characters. The terminating <CR> is not 
included in the string. Control character processing as described 
in section 2.2, Terminal Input/Output Control, is in effect. 

5-6 



., 

PRELIMINARY MVME135BUG/D2 

5.2.4 .READSTR Function .READSTR 

TRAP FUNCTION: .READSTR - Read string into variable-length buffer-

CODE: $0003 

DESCRIPTION: Used to read a string of characters from the default 
input port into a buffer. On entry, the first byte in 
the buffer indicates the maximum number of characters 
that can be placed in the buffer. Note that the 
buffer's size should be no less than this number+ 2. 
The maximum number of characters that can be placed in 
a buffer is 254 characters. On exit, the count byte 
indicates the number of characters in the buffer. 
Input terminates when a < CR> is received. All 
printable characters will be echoed to the default 
output port. The < CR> wn 1 not be echoed. 

ENTRY CONDITION·S: 

SP ... > Address of input buffer <long> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

c-p ==> Top of stack 
l,e count byte contains the number of bytes in the buffer. 

EXAMPLE: 

If A0 contains the string buffer address; 

NOTES: 

PEA 
TRAP 
DC.W 

_(Al?l) 
#15 
3 

Push buffer address 
(May also invoke by SYSCALL 
macro (" SYSCALL . READSTR ") 

This routine allows the· caller to dictate the maximum length of 
input up to 254 characters. If more t-han characters are entered, 
then the buffer input is truncated. Control .character processing as 
described i·n section 2.2, Terminal Input/Output Co.ntrol, is iri 
effect. 

5-7 



PRELIMINARY MVMEI35BUG/D2 

5.2.5 .READLN Function .READLN 

TRAP FUNCTION: .REAOLN - Read line to fixed-length buffer-

CODE: $0004 

DESCRIPTION: Used to read a string of characters from the default 
input port. Characters are echoed to the default 
output port. A string consists of a count byte 
followed by the characters read from the input. The 
count byte indicates the number of characters read 
from the input. The count byte indicates the number of 
characters in the input string, excluding< CR>< LF>. 
A string may be up to 254 characters. 

ENTRY CONDITIONS: 

SP ••> Address of input buffer <long> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP ••> Top of stack 
The first byte in the buffer indicates the string length. 

EXAMPLE: 
-If A0 points to a 256 byte buffer; 

NOTES: 

PEA 
SYSCALL 

{A0} 
.REAOLN 

Long buffer address 
And read a line from defaul~ input port 

The caller must allocate 256 bytes for a buffer. Input may be up to 
254 characters. <CR>< LF> is sent to default output following-echo 
of input. Control character processing as described in section 2.2, 
Terminal Input/Output Control, is in effect. 

5-8 



f 

PRELIMINARY MVME135BUG/D2 

5.2.6 .CHKBRK Function .CHKBRK 

TRAP FUNCTION: . CHKBRK - Check for break-

CODE: $0005 

DESCRIPTION: Returns "Zero" status in condition code register if 
break status detected at default input port. 

ENtRY CONDITIONS: 

No arguments or stack allocation required 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

Z flag set in CCR if break detected 

EXAMPLE: 

SYSCALL .CHKBRK 
BEQ BREAK 

5-9 



PRELIMINARY 

5. 2. 7 • DSKRD, • DSKWR Function 

TRAP FUNCTION: .DSKRD - Disk read function

.DSKWR - Disk write function-

CODE: $0010 

$0011 

MVME1358UG/D2 

.DSKRD 

.DSKWR 

DESCRIPTION: These functions are used to read and write blocks of 
data to the specified disk device. Information about 
the data transfer is passed in a command packet whi~h 
has been bu i 1t somewhere 1 n memory. The address o.f the 
packet is passed as an argument to the function. The 
same command packet format is used for .DSKRD and 
.DSKWR. These function.;; will automatically invoke 
:OSKINIT if the specified controller has not been 
previously initialized. They will also call .DSKCFIG 
if the· specified device has not been previously 
configured. The command packet is eight words in 
1 ength and is arranged as fo 11 ows: 

F E- D C B A 9 8 7 6 5 4 3 2 1 0 
+--------------------------------+----------- -------------------+ 

$00 I Controller LUN I Device LUN I 
+----------------------- ·--------+------------------------------ ·+ 

$02 I Status Word I 
+----------------------------------------------------------------+ 

$04 I I 
+------------- Memory Address --------------+ 

S06 I I 
+----------------------------------------------------------------+ 

$08 I Block Number (Disk) I 
+------------- or --------------+ 

$0A I File Number (Streamer tape) I 
+----------------------------------------------------------------+ 

$0C I Number of Blocks I 
+--------------------------------+-------------------------------+ 

$0E I Flag Byte I Address Modifier I 
+--------------------------------+----------------· --------------+ 

5-10 



PRELIMINARY 

Field descriptions: 

Controller LUN 

Device LUN 

Status Word 

Memory Address 

Block Number 

Fi 1 e Number 

Number of Blocks 

Flag Byte 

MVME135BUG/D2 

Logical Unit Number (LUN) of controller to use. 

Logical Unit Number (LUN) of device to use. 

This status word will reflect the result of the 
operation. It will be zero if the command 
completed without errors. Refer to Appendix D 
for meanings of returned error codes. 

Address of buffer in memory. On a disk read data 
will be written starting at this address. On a 
disk write data will be read starting at the 
address. 

For .disk devices, this is the block number where 
the transfer wil 1 start. On a disk read data 
will be read starting at this block. On a disk 
write data will be written starting at this 
block. 

For streamer tape devices, this is the file 
number where the transfer will start. This field 
is used if the IFN bit in the F1ag Byte is cleared 
(refer to the Flag Byte description). On a disk 
read, data will be read starting at this file. 
On a disk write, data will be written starting at 
this file. 

This field indicates the number of blocks to read 
from the disk (.DSKRD) or to write to the disk 
(.DSKWR). For streamer tape devices, the actual 
number of blocks transferred is returned in this 
field. 

The flag byte is used to specify variations of 
the same command, and to receive special status 
information. Bits 0 through 3 are used as 
command bi ts, bi ts 4 through 7 are used as status 

0 bits. For disk devices this field must be set to 
0. For streamer tape devices, the fol'lowing bits 
a-re defined: 

5-11 



PRELIMINARY 

Address Modifier 

ENTRY CONDITIONS: 

MVME135BUG/02 

Bit 7 File Mark flag. If 1, a file mark was 
detected at the end of the last operation. 

Bit 1 Ignore File Number flag. If 0, the file 
number field is used to position the tape 
before any reads or writes are done. If 1, 
the file number field is ignored, and 
reads or writes start at the present ta~e 
position. 

Bit 0 End Of File flag. If 0, reads or writes 
are done until the specified block count 
is exhausted. If 1, reads are done until 
the count is exhausted or until a file mark 
is found. If 1, writes are terminated wt th 
a filemark. 

VMEbus address modifier to use while 
transferring data. If zero, a default value is 
selected by the bug. If non,-zero, the specified 
value will be used. 

SP ••> AddreS's <long> Address of command packet 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP==> Top of stack 
Status word of convnand packet is updated. 
Data will be written into memory as a result of .DSKRD function. 
Data will be written to disk as a result of .DSKWR function. 
Z(ero) • Set to 1 if no errors. 

5-12 



• 

PRELIMINARY MVME13SBUG/02 

EXAMPLE: 

If Ml, Al point to packets formatted as specified above. 

PEA 
SYSCALL 
BNE 
PEA 
SYSCALL 
BNE 
II 

II 

II 

ERROR xxxxx 
xxxxx 

(A0) 
.DSKRD 
ERROR 
(Al) 
.DSKWR 
ERROR 

XXX 
XXX 

Read from disk 
Branch if error 

Write to disk 
Branch if error 

Handle error 

5-13 



PRELIMINARY MVME1358UG/D2 

5.2.8 .DSKCFIG Function .DSKCFIG 

TRAP FUNCTION: .DSKCFIG - Disk configure function-

CODE: $0012 

DESCRIPTION: This function allows the user to change the 
configuration of the specified device. It 
effectively performs an" IOT under program control". 
All the required parameters are passed in a command 
packet which has been built somewhere in memory. The 
address -of the p11cket is passed as an argument to the 
function. This function is provided for use in 
special applica,tions, since .OSKCFIG is invoked· 
automatically th.e first time that a device is ac_cessed 
by .OSKRD, .DSKWR, or .DSKFMT. The packet format is as 
follows: · 

F E o· C B A 9 8 7 6 5 4 3 2 I 0 
+--------------------------------+-------------------------------+ 

$00 I Cont ro 11 er LUN I Device LUN I 
+--------------------------------+-------------------------------+ 

$02 I Status Word I 
+---~------- --------------------------------------------- -------+ 

$04 I I 
$06 

+--------------- Memory Address 
I --------------+ 

I 
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - ,_, __ - - - - - - - - - - - - - - - -+ 

s0s I I 
+--------------- 0 --------------+ 

$0A I I 
+----------------------------------------------------------------+ 

$0C I 0 I 
+--------------------------------+-------------------------------+ 

$0E I 0 I Address Modifier I 
+--------------------------------+-------------------------------+ 

Field descriptions: 

Cont roll er LUN 

Device LUN 

Logical Unit Number (LUN} of c.ontroller to use. 

Logical Unit Number (LUN) of device to use. 

5-14 



( 

PRELIMINARY MVME135BUG/D2 

Status Word This status word will reflect the result of the 
operation. It will be zero 1f the command 
completed without errors. Refer to Appendix D 
for meanings of returned error codes. 

Memory Address Contains a pointer to a Device Oescri ptor Packet 
that contains the configuration information to 
be changed. 

Address Modifier VMEbus address modifier to use while 
transferring data. If zero, a default value is 
selected by the bug. If non-zero, the specified 
value will be used. 

The Device Descriptor Packet is as fo 11 ows: 

F E D C B A 9 8 7 6 5 4 3 2 l 0 
+------------------ ·------- -----+-------------------------------+ 

$00 I Cont ro 11 er LUN I Device LUN I 
+--------------------------------+•------------------------------➔ 

s02 I 0 I 
+---------- -------------------------------------- .--------------+ 

S04 I I 
+-------- 'Parameters.Mask --------+ 

S06 I I 
+------------------------------------------------- ·--------------~ s0s I . . . I 
+-------- Attrtbutes Mask ✓ ---·---+ 

$0A :1 . . • I· 
+----~-----•••• -••----• ✓---- ,-•--•---•-•-----•----•.--------~- A~ sec J I· +-------- 'A~trtbu:tes Fla~s _.; ______ + · 

$0E I . I . 
+----------------------------------- -- -------------------------+ 

$10 

Parameters 

+------~-~--------------------· ------- ------- --. ~~-----~---~---+ 

5-15 



PRELIMINARY MVME135BUG/02 

Most of the fields in the Device Descri.ptor .Packet.are equivalent to 
the fields defined .in the CFGA -Configuration Area block, a.s 
described in Appendix B. In the field descriptions below, reference 
is made to the equivalent field in the CFGA whenever possible. For 
additional information on these fields; refer to Appendix B. 

Controller LUN Same as in command packet. 

Device LUN Same as in command packet. 

Parameters Mask Equivalent to the IOSPRM and IOSEPRM fields, 
with the least significant word equivalent to 
IOSPRM, and the most significant word equivalent 
to IOSEPRM. . 

Attributes Mask . Equivalent to the IOSATM. and roSEATM fields, . 
with the least significant word equivalent to 
IOSATM, and the most significant word equivalent 
to IOSEATM. . 

Attributes Flags Equivalent to the IOSATW and IOSEATW fields, 
with the least significant word equivalent to 
IOSATW, and the most significant word equivalent 
to IOSEATW. - ... 

Parameters The parameters used for device reconfiguration 
are specified in this area. Most parameters have 
an exact CFGA equivalent. The following chart 
shows the field name, offset from start .of 
packet, length, equivalent CFGA field, and short 
description of each field. Those parameters 
that do not have an exact equivalent are 
indicated with"*~ and are explained after the 
chart. 

5-16 



-( 

PRELIMINARY MVME135BUG/02 

F;eld Offset Length CFGA Description 
Name (Bytes) (Bytes) Equiv. 

P DOS* $10 1 Device descriptor size 
P-DSR $11 1 IOSSR Step rate 
P-OSS* $12 1 IOSPSM Sector size (encoded) 
P-DBS* $13 1 IOSREC Block size (encoded) 
P-OST* $14 2 IOSSPT Sectors/track 
P-DIF $16 1 IOSILV Interleave·factor 
P-OSO $17 1 IOSSOF Spiral Offset 
P-OSH* $18 I IOSSHO Starting head 
P-DNH $19 I IOSHDS Number of heads 
P-DNCYL $IA 2 IOSTRK Number of cyl i nders 
P-DPCYL $IC 2 IOSPCOM Precompensation cylinder 
P-DRWCYL $IE 2 IOSRWCC Reduced write current cylinder 
P-DECCB $20 2 IOSECC ECC data burst 1 ength 
P-DGAPl $22 I IOSGPBl Gap 1 size 
P-DGAP2 $23 1 IOSGPB2 Gap 2 size 
P-DGAP3 $24 1 IOSGPB3 · Gap 3 size 
P-DGAP4 $25 1 IOSGPB4 Gap 4 size 
.P-DSSC $26 1 IOSSSC Spare sectors count 
P-DRUNIT $27 1 IOSRUNIT Reserved area units 
'.P-DRCAL l $28 2 IOSRSVCl Reserved count for alternates 
P=DRCCTR $2A 2 IOSRSVC2 Reserved cQunt for control 1 er 

Chart Notes: 
P DDS 

P _D$S 

P DBS 

This field is fqr. internal use only, and does ~ot have an 
equivalent CFGA field. Should be set to-0. 

This is a one byte·encoded field, whereas the IOSPSM field 
is a two byte t.ine~coded field containing the actual 
number of bytes per sector. The P DSS field is encoded as 
follows: · -

$00 128 bytes 
$01 256. bytes 
$02 512 bytes 
$03 1024 bytes 
$04-$FF Reserved encodings. 

This is a one byte encoded fie 1 d, whereas the IOSREC fie 1 d 
is a two byte unencoded field containing th_e actual 
number of bytes per record (block).· The P_DBS field is 
encoded as follows: 

5-17 



PRELIMINARY 

$00 
$01 
$02 
$03 
$04-SFF 

128 bytes 
256 bytes 
512 bytes 

1024 bytes 
Reserv.ed encodings. 

MVME135BUG/D2 

P DSH This is a one byte field, whereas the IOSSHD field is two 
bytes. This field is equivalent to the least significant 
byte of IOSSHD. 

P _DST This is two bytes, whereas the IOSSPT field is a one byte 
field. 

ENTRY CONDITIONS: 

SP ... > Address <long> Address of comnand packet 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP ••> Top of stack 
Status word of comnand packet is updated. 
The device configuration will be changed. 
Z(ero) • Set to 1 if no errors. 

EXAMPLE: 

If A0 points to a packet formatted as spe_cified above. 

PEA.L (A0) Load command packet 
SYSCALL .DSKCFIG reconfigure device 
BNE ERROR Branch if error 
II 

" 
• 

ERROR xxxxx XXX Handle error 
xxxxx XXX 

5-18 



PRELIMINARY MVMEl 3 5BUG/D2 

5.2.9 .DSKFMT Funct;on .DSKFMT 

TRAP FUNCTION: . DSKFMT - Disk Format Function 

CODE: $0014 

DESCRIPTION: This function allows the user to send a format command 
to the specified device. The parameters required for 
the command are passed in a command packet which has 
been built somewhere in memory. The address of the 
packet is passed as an argument to the function, The 
format of the packet is as follows: 

F E D C B A 9 8 7 6 5 4 3 2 1 0 
+--------------------------------+-------------------------------+ 

$00 I Contro 11 er LUN I Device LUN I 
+--------------------------------+-------------------------------+ 

$02 I · Status Word I 
+----------------------------------------------------------------+ 

s04 I I 
+--------------- · Memory Address ---------------+ 

S06 I . I 
+----------------------------------------------------------------+ 

s0a I I 
+--------------- ~lock Number (Disk) ---------------+ 

$0A I I 
+----------------------------------------------------------------+ 

s0c I 0 I 
+--------------------------------+-------------------------------+ 

$0E I Flag Byte I Address Modifier I 
+--------------------------------+-------------------------------+ 

Field descriptions: 

Cont ro 11 er LUN 

Device LUN 

Status Word 

Logical Unit Number (LUN) of controller to use. 

Logical Unit Number (LUN) of device to use. 

This status word will reflect the result of tne 
operation. It wi 11 be zero if t-he command 
completed without errors. Refer to Appendix D 
for meanings of returned error codes. 

5-19 



PRELIMINARY 

Memory Address 

Block Number 

Flag Byte 

Address Modifier 

MVME1358UG/02 

Address of buffer in memory. On a disk read data 
will be written starting at this address. On a 
disk write data will be read starting at the 
address. 

For disk devices, when doing a format track, the 
track that contains this block number is 
formatted. This field is ignored for streamer 
tape devices. 

Contains additional control information. Bit 0 
is interpreted as follows for disk devices: 

- I f 0, i t i n d i cat es a II Format Track II opera ti on . 
The track that contains the specified block is 
formatted. 

- If 1., it indicates a "Format Disk"operation. 
All the tracks on the disk will be formatted. 

For streamer tapes, bit 0 is interpreted as 
follows: 
- If 0, it selects a "Retension Tape" operation. 

This will rewind the tape to BOT, advance the 
tape without interruptions to EOT, and then 
rewind it back to BOT. Tape retens ion is 
recommended by cartridge tape suppliers 
before writing or reading data when a 
cartridge has been subjected to a change in 
environment or a physical shock, has been 
stored for a prolonged period of time or at 
extreme temperature, or has been previously 
used in a start/stop mode. 

- If 1, it selects an "Erase Tape" operation. 
This will completely clear ·the tape of 
previous data and at the same time will 
re tension the tape. 

VMEbus address 
transferring data. 
selected by the bug. 
value will be used. 

5-20 

modifier to use while 
If zero, a default value is 

If non-zero, the specified 



( 

PRELIMINARY MVME135BUG/02 

ENTRY CONDITIONS: 

SP •-=> Address <long> Address of co11111and packet 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP•=> Top of stack 
Status word of command packet is updated. 
Z(ero) = Set to 1 if no errors. 

EXAMPLE: 

If A0 points to a packet formatted as specified above. 

PEA.L (A0) Load c011111and packet 
SYSCALL .OSKFMT format device 
BNE ERROR 1f errors, branch 
* 
* 
* 

ERROR xxxxx XXX Handle error 
xxxxx XXX 

5-21 



PRELIMINARY MVME135BUG/02 

5.2.lflJ .DSKCTRL Function .DSKCTRL 

TRAP FUNCTION: .DSKCTRL - Disk control function-

CODE: $0015 

DESCRIPTION: This function is used to implement any special device 
control functions that can not be accommodated easily 
with any of the other disk functions. At the present, 
the only defined function is SEND packet, which allows 
the user to send a packet in the specific format of the 
controller. The required parameters are passed in a 
command packet which has been built somewhere in 
memory. The address of the packet is passed as an 
argument to the function. 

The packet is as follows: 

F E D C B A 9 8 7 6 5 4 3 2 1 0 
+--------------------------------+--------------------------~----+ I Controller L~N I Device LUN I 
+--------------------------------+-------------------------------+ I Status Word I 
+--------- -------· -----· --------------------------------------- + I - I 
+--------------- Memory Address --------------+ 
I J 
+--------------------------------------------- ------------------+ 
I I 
+--------------- f1J --------------+ 
I I 
+----------------------------------------------------------------+ 
I 0 I 
+--------------------------------+-------------------------------+ I 0 I Address Modifier I 
+--------------------------------+-------------------------------+ 

Field descriptions: 

Cont roll er LUN 

Device LUN 

Logical Unit Number (LUN) of controller to use. 

Logical Unit Number (LUN) of device to use. 

5-22 



PRELIMINARY MVME135BUG/D2 

Status Word This status word will reflect the result of the 
operation. It will be zero if the command 
completed without errors. Refer to Appendix D 
for meanings of returned error codes. 

Memory Address Contains a pointer to the controller packet to 
send. Note that the controller packet to send 
(as opposed to the command packet) is controller 
and device dependent. Information about this 
packet should be found in the user's manual for 
the controller and device being accessed. 

Address Modifier VMEbus address modifier to use while 
If zero, a default value is 

If non-zero, the specified 
transferring data. 
selected by the bug. 
value will be used. 

ENTRY CONDITIONS: 

SP ••> Address <long> Address of conmand packet 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP=•> Top of stack 
Status word of command packet is updated. 
Additional side effects depend on the packet sent to t~e controller. 
Z(ero) • Set to 1 if no errors. 

EXAMPLE: 

If Al points to a packet formatted as specified above. 

PEA.L (Al) Load command packet 
SYSCALL .. DSKCTRL invoke control function 
BNE ERROR If errors, branch 
II 

II 

II 

ERROR xxxxx XXX Handle error 
xxxxx XXX 

5-23 



PRELIMINARY MVME135BUG/D2 

5. 2 .11 • OUTCHR Function .OUTCHR 

TRAP FUNCTION: . OUTCHR - Output character routine-

CODE: $0020 

DESCRIPTION: This function will output a character to the default 
output port. 

ENTRY CONDITIONS~ 

SP ,..> Character < byte> 
Word fill <byte> (Placed automatically by MPU) 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP••> Top of stack 
Character is sent to the default 1/0 port. 

EXAMPLE: 

MOVE.B 00, -(SP) 
SYSCALL .OUTCHR 

Send character. in D0 · 
To default output port 

5-24 



PRELIMINARY 

5.2.12 .OUTSTR, .OUTLN Function 

MVMEl 3 SBUG/D2 

.OUTSTR 
.OUTLN 

TRAP FUNCTION: .OUTSTR - Output string to default output port

.OUTLN - Output string along with CR/LF-

CODE: $0021 

$0022 

DESCRIPTION: .OUTSTR will output a string 'of characters to the 
default output port • • OUTLN will output a string of 
characters fo 11 owed by a < CR> < LF> sequence. 

ENTRY CONDITIONS: 

SP ... > Address of first character < 1 ong> 
+4 Address of last character+ 1 <long> 

EXH CONDITIONS DIFFERENT FROM ENTRY: 

SP•=> Top of stack 

EXAMP~E: 

If A0 "' start of string 
Al :•· end :of string+l 

MOVEM.L A0/Al,-(SP) 
_ SYSCALL . • OUTSTR 

Load pointers to string 
And print it 

5-25 



PRELIMINARY MVME135BUG/D2 

5.2.13 .WRITE, .WRITELN Function 

TRAP FUNCTION: . WRITE - Output string with no CR of LF

. WRITELN - Output string with CR and LF-

C.ODE: $0023 

$0024 

.WRITE 
.WRITELN 

DESCRIPTION: These output functions are designed to output strings 
formatted with a count byte fol lowed by the characters 
of ~he string. The user passes the starting address of 
the string. The output goes to the default output 
po~t. · · · 

ENTRY CONDITiONS: 

Four bytes of parameter positioned in stack as follow: 
SP••> Address of string <long> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP =-> Top of stack 

5-26 

-



( 

.. 

PRELIMINARY MVMEl 3 SBUG/D2 

.EXAMPLE: 

For example, the following section of code ..... 

MESSAGE I DC. B 
MESSAGE2 DC.B 

PEA 
SYSCALL 
PEA 
SYSCALL 

9, 'MOTOROLA' 
9, 'QUALITY ! ' 

MESSAGEl(PC} 
.WRITE 
MESSAGE2(PC} 
.WRITE 

Push address of string 
Use TRAP #15 macro 
Push address of other string 
Invoke function again 

..... would print out the fo 11 owing message: 

MOTOROLA QUALITY! 

Using function .WRITELN, however, instead of function .WRITE would 
output the following message: 

MOTOROLA 
QUALITY 

NOTES: 

The string must be formatted such that the first byte (the byte 
pointed to by the passed address) contains the count (in bytes) of 
the string., 

5-27 .. 

I 
•, 



PRELIMINARY MVME1358UG/D2 

5.2.14 .PCRLF Function .PCRLF 

TRAP FUNCTION: .PCRLF - Print< CR>< LF> sequence-

CODE: $0026 

DESCRIPTION: .PCRLF w;ll send a< CR>< LF> sequence to the default 
output port. 

ENTRY CONDITIONS: 

No arguments or stack allocation required. 

EXIT CONDITioNS DIFFERENT FROM ENTRY: 

None 

EXAMPLE: 

SYSCALL • PCRLF Output CRLF 

5-28 



PRELIMINARY MVME135BUG/D2 

5.2.15 .ERASLN Function .ERASLN 

TRAP FUNCTION: • ERASLN - Erase 1 ine-

CODE: $0027 

DESCRIPTION: .ERASLN is used to erase the line at the present cursor 
position. If the terminal type flag is set for 
hardcopy mode a< CR>< LF> is issued instead. 

ENTRY CONDITIONS: 

No arguments required. 

EXIT CONDITJONS DIFFERENT FROM ENTRY: 

The cursor is positioned at the beginning of a blank line. 

EXAMPLE: 

SYSCALL .ERASLN 

f 

' 

5-29 



PRELIMINARY MVME135BUG/D2 

5.2.16 .WRITD, .WRITDLN Function 

TRAP FUNCTION: .WRITD - Output string with data

.WRITDLN: Output string with data and CRLF-

CODE: $0028 

$0025 

.WRITD 
.WRITDLN 

DESCRIPTION: These trap functions take advantage of the monitor 1/0 
routine which outputs a user string containing 
embedded variable fields. The user passes the 
starting address of the string and the address of a 
data stack containing the data which will be inserted 
into the string. The output goes to the default output 
port. 

ENTRY CONDITIONS: 

Eight bytes of parameter positioned in stack as follow: 

SP••> Address of string <long> 
Data list pointer <long> 

A separate data stack or data list arranged as follows: 

Data list pointer•> Data for 1st variable in string <long> 
Data for next variable <long> 
Data for next variable <long> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP••> Top of stack 

5-30 



( 

PRELIMINARY MVME135BUG/D2 

EXAMPLE: 

The fo 11 owing section of code ..... 

ERRMESSG DC.B 
MOVE.L 
PEA 
PEA 
SYSCALL 
TST.L 

$14,'ERROR CODEC 110,BZI' 
#3,-(AS) Push error code on data stack 
(AS) Push data stack location 
ERRMESSG(PC) Push address of string 
.WRITDLN Invoke function 
(AS)+ De-allocate data from data stack 

..... would print out the following message: 

ERROR CODE• 3 

NOTES: 

1. The string must be formatted such that the first byte (the byte 
pointed to by the passed address) contains the count (in bytes) 
of the string (including the data field specifiers, described in 
#2 below). 

2. Any data fields within the string must be represented as follows: 
'I< radix>,< fieldwidth> [ZJ I' where < radix> is the base that 
the data is to be displayed ii') (in hexadecimal, i.e., "A" is base 
10, "10" is base 16, etc) and < fieldwidth> is the number of 
characters this data is to occupy in the output. The data is 
right-justified and left-most characte~s are removed to make the 
data fit. The "Z" is included if it is desired- to suppress 
leading zeros in output. 

3. All data is to be placed in the stack as longwords. Each time a 
data field is encountered in the user string, a longword will be 
read from the data stack to be displayed. 

4. The data stack is not destroyed by this routine. If it is 
necessary for the space in the data stack to be deallocated, it 
must be done by the calling routine, as shown in the above 
example. 

5-31 



PRELIMINARY MVME135BUG/D2 

5.2.17 .SNDBRKFunction .SNDBRK 

TRAP FUNCTION: . SNDBRK - Send break-

CODE: $0029 

DESCRIPTION: Used to send break to default output port ( s). 

ENTRY CONDITIONS: 

No arguments or stack allocation required 

EX IT CONDITIONS DI FF ER ENT FROM ENTRY: 

Each serial port specified by-current default port list will hive 
sent "break". 

EXAMPLE: 

SYSCALL .SNDBRK 

5-32 



( 

PRELIMINARY MVME135BUG/O2 

5.2.18 .TM_INI Function • TM_INI 

TRAP FUNCTION: . TM_INI - Timer initialization routine-

CODE: $00411r 

DESCRIPTION: This routine initializes the on-board timers, and 
also calculates a calibration factor used by the other 
timer functions. This routine should be used the 
first time that the timer functions are used. 

ENTRY CONDITIONS: 

No arguments required. 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

TM.CALl(AS) loaded with calibration factor. 
Timers are configured for 24-bit operation. 

EXAMPLE: 

SYSCALL .TM INI Initialize timer 

5-33 



PRELIMINARY MVME135BUG/D2 

5.2.19 • TM_STRB Funct;on • TM STRB 

TRAP FUNCTION: .'TM_STR0 - Start timer at T=0-

CODE: $0041 

DESCRIPTION: This routine will first reset the timer to 0 and then 
it will start it. 

ENTRY CONDITIONS: 

No arguments required. 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

Timer is started. 

EXAMPLE: 

SY SCALI: . TM _STR0 

5-34 



( 

,,. 

rRELIMINARY MVME135BUG/D2 

5.2.20 .TM RD Function .TM RD 

TRAP FUNCTION: . TM_RD - Timer. read function-

CODE: $0042 

DESCRIPTION: This routine is used to read the value of the timer 
{microseconds). 

ENTRY CONDITIONS: 

SP•-> Space for result <long> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP •c> Time in microseconds <long> 

· EXAMPLE: 

SUBQ.L 
SYSCALL 
MOVE.L 

#4,A7 
.TM_RD 
(SP)+,D0 

Allocate space for result 
Read timer 
Load time in microseconds 

5-35 



., 

PRELIMINARY MVME135BUG/O2 

s.2 •. 21 .:DELAY Function .DELAY 

TRAP FUNCTIO:N: . DELAY - Timer delay function-

CODE: $0043 

DESCRIPTION: .DELAY is used to generate accurate timing delays that 
are independent of the processor frequency and 
instruction execution rate. This function uses the 
on-board timer for operation. The user specifies the 
desi.red delay count in microsecon-0s . • DELAY will 
return to the caller after the specified delay count 
is exhausted. The o.n-board ti mer has to be 
initialized once before this function is called by 
invoking the • TM_INI trap function. · 

ENTRY CONDITIONS: 

SP ••> Delay time in microseconds <long> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP ••> Top of stack 

EXAMPLE: 

SYSCALL 
PEA.L 
SYSCALL 
* 
* 
* 

PEA.L 
SYSCALL 

.TM_INI Initialize timer 
&15000000 Load a 15 second delay 
.DELAY 

&50000 
.DELAY 

Load a 50 millisecond delay 

5-36 



PRELIMINARY MVME135BUG/D2 

5.2.22 .REDIR Function .REDIR 

TRAP FUNCTION: .REDIR - Redirect 1/0 function-

CODE: $0060 

DESCRIPTION: This routine is used to select an 1/0 port and at the 
same time invoke a particular 1/0 function. The 
invoked 1/0 function wi 11 read or write to the 
selected port. 

ENTRY CONDITIONS: 

SP •s> Port <word> 
1/0 function to ca 11 < word> 
Parameters of 1/0 function <size specified by function> 
Space for results <size specified by function> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP .;,,,.> Result <size specified by function> 

EXAMPLE: 

None 

NOTES: 

To use .REDIR, the caller should first allocate space and. push the 
parameters required by the desired 1/0 function onto the stack:. 

SUBQ.L #2,A7 Allocate space (no parameters required .by 
.INCHR) 

Then the parameters required by .REDIR should be pushed and the call 
made to .REDIR. 

5-37 



PRELIMINARY 

MOVE.W 
MOVE.W 
SYSCALL 

#.INCHR,-(SP) Load funct{on·code 
#1,-(SP) Load port number 
.REDIR Redirect I/O function 

Finally, the results should be popped from the stack: 

MOVE.B (SP)+,O0 Read character 

MVME135BUG/D2 

The above example reads a character froni port 1 using .REDIR. 

5-38 



( 

PRELIMINARY MVME135BUG/02 

5.2.23 .REDIR_I, .REDIR_O Function 

TRAP FUNCTION: .REDIR_I - Redirect input

.REDIR_O - Redirect output-

CODE: $0061 

$0062 

• RED IR I 
• REDIR-0 

DESCRIPTION: The .REDIR I and .REDIR O functions are used to change 
the default port number-of the input and output ports, 
respectively. This is a permanent change, that is, it 
will remain in effect until a new .REDIR command is 
issued. 

ENTRY CONDITIONS; 

SP ••> Port Number <word> 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP==> Top of stack 
.SIO_IN - Loaded with a ,new mask if .REDIR I called 
.SIO_OUT - Loaded with a .new mask if .REDIR O called 

EXAMPLE: 

MOVE.W #1,-(SP) Load port number 
SYSCALL .REDIR_I Set it as new default 

5-39 



PRELIMINARY MVMEl 3 SBUG/D2 

5.2.24 .RETURN Function .RETURN 

TRAP FUNCTION: . RETURN - Return to 135Bug-

CODE: $11111163 

DESCRIPTION: This function is used to return control to 135Bug from 
the target program in an orderly manner. First, any 
breakpoints inserted in the target code are removed. 
Then the target state is saved in the register image 
area. Finally, the routine returns to 135Bug. 

ENTRY CONDITIONS: 

No arguments required. 

EX IT COHO lT I OHS DIFFERENT FROM ENTRY: 

Control is returned to 1358ug. 

EXAMPLE: 

SYSCALL .RETURN Return to 1358ug 

5-4111 



( 

PRELIMINARY MVME135BUG/D2 

5.2.25 .BINDEC Function .BINDEC 

TRAP FUNCTION: .IUNDEC - Used to calculate the BCD equivalent of the 
binary number specified-

CODE: $0064 

DESCRIPTION: This function takes a 32-bit unsigned binary number 
and changes it to an equivalent BCD (Binary Coded 
Decimal Number). 

ENTRY CONDITIONS: 

SP ••> Argument:Hex number <long> 
Space for result <2 long> 

EXIT CONDITIONS DIFFERENT FROM ENTRY:· 

SP•=> Decimal number (2 Most Significant Digits) <long> 
(8 Least Significant Digits) <long> 

EXAMPLE: 

SUB.L 
MOVE.L 
SYSCALL 
MOVEM.L 

#8,A7 
D0, - (SP) 
.BINDEC 
(SP)+,D1/D2 

Allocate space for result 
Load hex number 
Ca 11 • B INDEC 
Load result 

5-41 



PRELIMINARY MVME135BUG/02 

5.2.-26 .CHANGEV Function .CHANGEV 

TRAP FUNCTION: .CHANGEV - Parse value, assign to variable-

CODE: $0067 

DESCRIPTION: Attempt to parse value in user specified buffer. If 
user's buffer is empty, prompt user for new value, 
otherwise update integer offset into buffer to skip 
"value". Display new value and assign to variable 
unless user's input is an empty string. 

ENTRY CONDITIONS: 

SP••> Address of 32-bit offset into user's buffer 
Address of user's buffer (pointer/count format string) 
Address of 32-bit integer variable to "change" 
Address of string to use in prompting and displaying value 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP ••> Top of stack 

EXAMPLE: 

PROMPT 
GETCOUNT 

OC.B 
PEA 
PEA 
PEA 
PEA 
SYSCALL 
RTS 

$E,'COUNT • 
PROMPT(PC) 

. COUNT 
POINT 
BUFFER 
.CHANGEV 

I 10,s1' 
Point to prompt stri_ng 
Point to variable to change 
Point to offset into buffer 
Point to buffer 
Make the system call 
COUNT changed, return 

5-42 

\ 
l 



( 

PRELIMINARY MVMEl 3 SBUG/D2 

If the above code was ca 11 ed with BUFFER containing "1 3" in 
pointer/count format and POINT containing 2 (longword), then COUNT 
would be assigned the value 3, and POINT would contain 4 (pointing to 
first character past "3"). Note that POINT is the offset from the 
start address of the buffer (not the address of the first character 
in the buffer!) to the next character to process. In this case, a 
value of 2 in POINT indicates that the space between "l"and "3"is 
the next character to be processed. After calling .CHANGEV, the 
screen would display the following line: 

COUNT .. 3 

If the above code was called again, nothing could be parsed from 
BUFFER, so a prompt would be issued. For purpose of example, the 
string "S"is entered in response to the prompt. 

COUNT • 3? 5 < CR> 
COUNT• 5 

If in the previous example nothing had been entered at the prompt, 
COUN.T would retain its prior value. 

COUNT .. 3? < CR> 
COUNT• 3 

5-43 



PRELIMINARY MVME1358UG/02 

5.2.27 .STRCMP Function .STRCMP 

TRAP FUNCTION: .STRCMP - Compare two strings (pointer/count)-

CODE: $111068 

DESCRIPTION: Comparison for equality is made and a boolean flag is 
returned to the caller. The flag will be $111111 if the 
strings are not identical, otherwise it will be $FF. 

ENTRY CONDITIONS: 

SP••> Address of string 1 
Address of string 2 
Three bytes (unused) • 
Byte to receive string comparison result 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP••> Three bytes {unused) 
Byte to receive string comparison result 

EXAMPLE: 

If Al and A2 contain addresses of the two strings. 

SUBQ.L 
PEA 
PEA 
SYSCALL 
MOVE.L 
TST.B 
BNE 

#4,SP 
(Al) 
(AZ) 
.STRCMP 
(SP)+,D111 
D0 
ARE_SAME 

Allocate longword to receive result 
Push address of one string 
Push address of the other string 
Compare the strings 
Pop boolean flag into data register 
Check boolean flag 
Branch if strings are identical 

5-44 

\ 



( 

PRELIMINARY MVME135BUG/D2 

5.2.28 .MULU32 Function .MULU32 

TRAP FUNCTION: .MULU32 - Unsigned 32 x 32 bit multiply-

CODE: $0069 

DESCRIPTION: Two 32-bit unsigned integers are multiplied and the 
product is returned on the stack as a 32-bit unsigned 
integer. No overflow checking is performed. 

ENTRY CONDITIONS: 

SP••> 32-bit multiplier 
32-bit multiplicand 
32-bit space for result 

. EXIT CONDITIONS DIFFERENT FROM ENTRY: 

SP•=> 32-bit product (result from mu1tiplication) 

EXA~PLE: 

Multiply D0 by D(, load re~ult intq D2. 

SUBQ.L 
MOVLL 
MOVE.L 
SYSCALL 
MOVE.L 

#4,SP 
00,-csn 
D1,-(SP) 
. .MULU32 
(SP)+,D2 

Al l;ocate space·· for resi.11 t 
Pus-h multiplicand. 
Push niufripl ier 
Multiply D0 by Dl 
Get product 

5-45 



PRELI-MI NARY MVME 13 SBUG/02 

5.2.29 .DIVU32 Function .DIVU32 

TRAP FUNCTION: .DIVU32 - Unsigned 32 x 32 bit divide- '\. 

CODE: $1/JI/J6A 

DESCRIPTION: Unsigned division is perf6rmed on two 32-bit integers 
and the quotient is returned .on the stack as a 32-bit 
unsigned integer. The case of division by zero is 
handled by returning the maximum unsigned value 
$FFFFFFFF. . 

ENTRY CONDITIONS; 

SP·••> 32-bit divisor 
32-bit dividend 
32-bit space for result 

EXIT CONDITIONS DIFFERENT FROM ENTRY: 

(value to divide by) 
(value to divide) 

SP =-•> 32-bit quotient (result from division) • 

EXAMPLE: 

Divide DIil by Dl, load result into 02. 

SUBQ.L 
MOVE.L 
MOVE.L 
SYSCALL 
MOVE.L 

#4,SP 
DIIJ,-(SP} 
Dl,-(SP} 
.DIVU32 
(SP)+,D2 

Allocate space for result 
Push dividend 
Push divisor 
Divide 01/J by 01 
Get quotient 

5-46 

\ 
i 



PRELIMINARY MVME135BUG/D2 

APPENDIX A - S-RECORD OUTPUT FORMAT 

The S-record format for output modules was devised for the purpose 
of encoding programs or data files in a printable format for 
transportation between computer systems. The transportation 
process can thus be visually monitored and the S-records can be more 
easily edited. 

S-RECORD CONTENT 

When viewed by the user, S-records are essentially character strings 
made of several fields which identify the record type, record 
length, memory address, code/data and checksum. Each byte of bi nary 
data is encoded as a 2-character hexadecimal number: the first 
character representing the high-order 4 bits, and the second the 
low-order 4 bits of the byte. 

The five fields which comprise an S-record are shown below: 

where the fields are composed as follows: 

S-RECORD FIELD DESCRIPTIONS 

Printable · 
Field Characters .Contents 

type 2 S-records type - - S0, Sl, etc. 

record length • 2 The count of the character pairs in the 
record, excluding type and records 
length. 

address 4, 6, or 8 The 2-, 3-, or4-byte address at which:the 
· data field is to be loaded into memory. 

code/data 0-2n From 0 to n bytes of executable code, 
memory-loadable data, or descriptive. 
information. For compatibility with 
teletypewriters, some programs may limit 
the ~umber of bytes to as few as 28 (56 
printable characters in the S-record). 

A-1 



PRELIMINARY 

Field 

checksum 

MVMEl 3 SBUG/02 

S-RECORD FIELD DESCRIPTIONS (cont.) 

Printable 
Characters 

2 

Contents 

The leart significant byte of the one's 
complement of the sum of the values 
represented by·the pairs of characters 
making up the records length, address, 
and the code/data fie 1 ds. 

Each record may be terminated wit~ a CR/LN/NULL. Additionally, an 
S-.record may have an initial field to accommodate other data such as 
1 i ne numbers generated by some time-sharing system. 

Accuracy of transmi ssl'on is ensured by · the record 1 ength (byte 
count) and checksum fields. 

• S-RECORO TYPES 

Eight types of S-records have been defined to accommodate the 
several needs of the encoding, transportation and decoding 
functions. The various Motorola upload, download and other records 
transportation control programs, as well as cross assemblers, 
1 inkers and other file-creating or debugging programs, utilize only 
those S-records which serve the purpose of the program. For 
specific information on which S-records are supported by a 
particular program, the user's manual for the program must be 
consulted. 10xBug supports S0, SI, S2, SJ, S7, SS, and S9 records. 

An S-Record format module may contain S-records of the following 
types: 

S0 The header record for each block of S-records. The code data 
field may contain any descriptive information identifying the 
following block of S-records. Under VERSAdos, the resident 
linker's IDENT command can be used to designate module name, 
version number, revision number, and description information 
which will make up the header records. The address field is 
normally zeros. 

SI A record containing code/data and the 2-byte address at which 
the code/data is to reside. 

S2 A record containing code/data and the 3-byte address at which 
the code/data is to reside. 

A-2 



PRELIMINARY MVME135BUG/D2 

S3 A record containing code/data and ~he 4-byte address at which 
the code/data is to reside. 

SS A record containing the number of SI, S2, and S3 records 
transmitted in a particular block. This count appears in the 
address field. There is no code/data field. 

S7 A termination record for a block of S3 records. The address 
field may optionally contain the 4-byte address of the 
instruction to which control is passed. There is no code/data 
field. 

SS A termination record for a block of S2 records. The address 
field may optionally contain the 3-byte address of the 
instruction to which control is passed. There is no code/data 
field. 

S9 A termination record for a block of SI records. Th.e address 
field .may optionally contain the 2-byte address of the 
instruction to which control is passed. Under VERSAdos, the 
resident 1 inker's ENTRY command can be used to specify this 
address. If not specified, the first entry point specification 
encountered in the object module input will be used. There is no 
code/data field. 

Only one termination record is used for each block of S-records. S7 
and SS records are usually used only when control is to be passed to a 
3- or 4-byte address. Normally, only one header record is used, 
although it is possible for multiple header records to occur. 

CREATION OF S-RECORDS 

S-record-format files may be produced by several dump utilities, 
debuggers, VERSAdos' resident 1 inkage editor, or several cross 
assemblers or cross linkers. On VERSAdos, the Build Load Module 
(MBLM) utility allows an executable load module to be built from s~ 
records, and has a counterpart utility in BUILDS, which allow an S
record file to be created from a load module. 

Several programs are available for downloading a file in S-record 
format from a host system to an 8-bit microprocessor-based or a 16-
bit microprocessor-based system. Programs are also available for 
uploading an S-record file to or from an EXORmacs system. 

A-3 



PRELIMINARY MVME135BUG/02 

EXAMPLE 

Shown below is a typical S-record-format module, as printed or 
displayed: 

S006000048445218 
S1130000285F245F2212226A000424290008237C2A 
S11300100002000800082629001853812341001813 
S113002041E900084E42234300182342000824A952 
S113003000144ED492 
S9030000FC 

The module consists of one S0 record, fo~r Sl records, and an S9 
record. 

The S0 record is comprised of the following character pairs: 

S0 S-record type S0, indicating that it is a header record. 

06 Hexadecimal 06 (decimal 6), indicating that six character pairs 
(or ASCII bytes) follow. 

00 
00 Four-character 2-byte address field, ..zeros in this example. 

48 
44 ASCII H, 0 and R - ~HOR". 
·52 

1B The checksum. 

The first SI record is explained as follows: 

SI S-record type SI, indicating that it is a, code/data record to be 
loaded/verified at a 2-byte address. 

13 Hexadecimal 13 (decimal 19), indicating that 19 character pairs, 
representing 19 bytes of binary data, follow. 

00 Four-character 2-byte address field; hexadecimal address 0000, 
00 where the data which follows is to be loaded. 

A-4 



PRELIMINARY MVMEl 3 SBUG/D2 

The next 16 character pairs of the first SI record. are the ASCII 
bytes of the actual program code/data. In this assembly language 
example, the hexadecimal opcodes of the program are written in 
sequence in the code/data fields of the SI records: 

Opcode Instruction 

285F MOVE.L (A7)+,A4 
245F MOVE.L (A7)+,A2 
2212 MOVE.L (A2),Dl 
226A0004 MOVE.L 4(A2),Al 
24290008 MOVE.L FUNCTION(Al) ,02 
37C MOVE.L #FORCEFUNC,FUNCTION(Al) 

(The balance of this code is continued in the code/data 
fields of the remaining Sl record~ and stored in memory 
location 0010, etc). 

2A The checksum of the first S1 record. 

The second and third SI records also each contain $13 (19) character 
pairs and are ended with checksums 13 and 52 respectively. The 
fourth SI record contains 07 character pairs and has a checksum of 
92. 

The S9 record is explained as follows: 

S9 S-record type S9, indicating that it is a termination record. 

03 Hexadecimal 03, indicating that three character pairs (3 bytes) 
foll ow. 

00 
-00 The address field, zeros. 

FC The checksum of the S9 record. 

Each printable character in an S-record is enclosed in hexadecimal 
(ASCII in this example) representation of the binary bits which are 
actually transmitted. 

A-5 



PRELIMINARY MVME135BUG/D2 

For example, the first SI record above is sent as: 

Address ______ 0 _____________ 0 ______ ------0-- - 0 - -

---3------0--1---3------0--1---3------0--1---3------0-
_0011_1_ 0000 J_ 0011 _1_0000 _ I _0011 _ 1 _0000 _I_ 0011 _ I _0000 _ 

Checksum ______ 2 _____________ A _____ _ 

___ 3 ______ 2 __ 1 ___ 4 ______ 1 __ 

:0011:1:0010:1:0100:1:0001: 

A-6 



( 

PRELIMINARY MVME135BUG/D2 

APPENDIX B - INFORMATION USED BY BO/BH COMMANDS 

Label 

VIDOSS 

VIDOSL 

VIDOSA 

VIDCAS 

VIDCAL 

VIDMOT 

VOLUME ID BLOCK (YID) 

Offset Length (bytes} 

$14(20) 4 

$18(24) 2 

$1E(30} 4 

$90(144) 4 

$94(148) l 

$F8(248) 8 

8-1 

-Always at Block e-
Contents 

Starting block number of 
operating system. 
Oferating system length in 
bocks. 
Starting memory location to load 
operat i_ng system. 
Media configuration area starting 
block. 
Medi a configuration area length 
in blocks. 
Contains the string "MOTOROLA" or 
"EXORMACS". 



PRELIMINARY MVME135BUG/D2 

CONFIGURATION AREA BLOCK (CFGA) 

...... L ... a_be ... 1 ............... o=ff_s_e_t= ... L-=e=ng=t=h=(=by=t=e=st Contents 
IOSATM $04(4) 2 Attributes mask: 
IOSPRM $06(6) 2 Parameters mask. 
IOSATW $08(8) 2 Attributes word. 
IOSREC $0A(l0) 2 Record (block) size in bytes. 
IOSSPT $18(24) I Sectors/Track. 
IOSHDS $19(25) I Number of heads on drive. 
IOSTRK $1A(26) 2 Number of cylinders. 
IOSILV $1C(28) I Interleave factor on media. 
IOSSOF $10(29) I Spiral offset. 
IOSPSM $1E(30) 2 Physical sector siz.e of m~dia in 

bytes. 
IOSSHD $20(32) 2 Starting head number. 
IOSPCOM $24(36) 2 Precompensation cylinder. 
IOSSR $27(39) I Stepping rate code. 
IOSRWCC $28(40) 2 Reduced write current cylinder 

number. 
IOSECC $2A( 42) 2 ECC data burst 1 ength. 
IOSEATM $2C(44) 2 Extended attributes mask. 
IOSEPRM $2E( 46) 2 Extended parameters mask. 
IOSEATW $30(48) 2 Extended attributes word. 
IOSGPBl $32 ( 50) 1 Gap byte 1. 
IOSGPB2 $33(51) I Gap byte 2. 
IOSGPB3 $34 ( 52) 1 Gap byte 3. 
IOSGPB4 $35 ( 53) 1 Gap byte 4. 
IOSSSC $36 ( 54} 1 Spare sectors count. 
IOSRUNIT $37(55} 1 Reserved Area Units. 
IOSRSVCI $38(56} 2 Reserved count 1. 
IOSRSVC2 S3A(58} 2 Reserved count 2. 

8-2 



( 

PRELIMINARY MVME135BUG/02 

I0SATM and I0SEATM 
A "l" in a particular bit position indicates that the corresponding 
attribute from the attributes (or extended attributes) word should 
be used to update the configuration. A "0" in a bit position 
indicates that the current attribute should be retained. 

IOSATM ATTRIBUTE MASK BIT DEFINITIONS 

Label Bit Position Description 

IOADDEN 0 Data density. 
IOATDEN 1 Tranck density. 
IOADSIDE 2 Single/double sided. 
_IOAFRMT 3 Floppy disk format. 
IOARDISC 4 Disk type. 
IOADDEND 5 Ori ve data density. 
IOATDEND 6 Ori ve track density. 
IOARIBS 7 Embedded serJ,!o drive seek. 
IOADPCOM 8 Post-read/pre-write precompensation. 
IOASIZE 9 Floppy disk size. 
IOATKZO 13 Track zero data density. 

At the present all lOSEATM bits are undefined and should be set to 0. 

B-3 



PRELIMINARY MVME135BUG/D2 

IOSPRM and IOSEPRM 
A "I" in a particular bit p'osition indicates that the corresponding 
parameter from the configuration area (CFGA) should be used to 
update the device configuration. A "0" in a bit position indicatas 
that the parameter value in the current configuration wi 11 be 
retained. 

IOSPRM PARAMETER MASK BIT DEFINITIONS 

Label Bit Position Description 

IOSRECB 0 Operating system block size. 
IOSSPTB 4 Sectors per track. 
IOSHDSB 5 Number of heads. 
IOSTRKB 6 Number of cylinders. 
IOSILVB 7 Interleave factor. 
IOSSOFB 8 Spira 1 offset. 
IOSPSMB 9 Phys i ca 1 sector size. 
IOSSHDB 10 Starting head number. 
IOSPCOMB 12 Precompensation cylinder number. 
IOSSRB 14 Step rate code. 
IOSRWCCB 15 Reduced write current cylinder number and ECC 

data burst 1 ength. 

IOSEPRM PARAMETER MASK BIT DEFINITIONS 

Label Bit Position Description 

IOAGPBl ra Gap byte 1. 
IOAGPB2 1 Gap byte 2. 
IOAGPB3 2 Gap byte 3. 
IOAGPB4 3 Gap byte 4. 
IOASSC 4 Spare sectors count. 
IOARUNIT 5 Reserved area uni ts. 
IOARVCl 6 Reserved count 1. 
IOARVC2 7 Reserved count 2. 

B-4 



( 

PRELIMINARY MVME135BUG/D2 

IOSATW and IOSEATW 
Contains various flags that specify characteristics of the media and 
drive. 

Bit Number 

Bit 0 

Bit l 

Bit 2 

Bit 3 

Bit 5 

Bit 6 

Bit 7 

Bit 8 

Bit 9 

Bit 13 

Unused bi ts 

IOSATW BIT DEFINITIONS 

Description 

Data density: 0 • Single density (FM encoding) 
1 • Double density (MFM encoding) 

Track density: 0 • Single density (48 TPI) 
1 • Double density (96 TPI) 

Number of sides: 0 • Single sided floppy 
1 • Double sided floppy 

Floppy disk format: 0 .. Motorola format 
1 to N on side 0 
N+l to 2N on side 1 

l • Standard IBM format 
1 to Non both sides 

Disk type: 0 = Floppy disk. 
l=Harddisk 

Drive data density: 0 • Single density (FM encoding) 
1 • Double density (MFM encoding) 

Drive track density: 0"' Single density 
1 = Double density l 

Embedded servo drive: 0 .. Do not seek on head swi tc..,. 
1 " Seek on head switch 

Post-read/pre-write precompensation: 0" Pre-write 
1 • Post-read 

Floppy disk size: 0 = 5-l/4"floppy 
1 = 8" floppy 

Track zero density: 0 = Single density (FM encoding) 
1 = Same as remaining tracks 

A 11 unused bi ts must be set to 0. 

At the present all IOSEATW bi ts are undefined and should be set to 0. · 

B-5 



PRELIMINARY 

Parameter 

Record (Block) size 

Sector/track 

Number of heads 

MVME135B.UG/02 

PARAMETER FIELD DEFINITIONS 

Description 

,Number of bytes per record (block). Must be 
an integer multiple of the physical sector 
size. · 

Number of sectors per track in bytes. 

Number of recording surfaces for the 
specified device. 

Number of cylinders Number o.f cylinders on the media. 

Interleave factor This field specifies how the sectors are 
formatted on a track. Normally consecutive 
sectors in a track are numbered sequentially 
in increments of 1 (Interleave factor of 1). 
The interleave factor controls the physical 
separation of logically sequential sectors. 
This physical separation gives the host time 
to prepare to read the next logical sector 
without requiring the loss of an entire disk 
revolution. 

Physical Sector size Actual number of_~ytes per sector on media. 

Spiral Offset -Used to displace the logical start of a track 

Starting head number 

Precompensation 
cylinder 

from the physical start of a track. The 
displacement is equal to the spiral offset 
times the head number, assuming that the 
first head is 0. This displacement is used 
to give the controller time for a head switch 
when crossing tracks .. 

Defines the first head number for the 
device. 

Defines the cylinder on which precompens a
ti on wi 11 begin. 

8-6 



( 

PRELIMINARY MVME135BUG/D2 

PARAMETER FIELD DEFINITIONS (cont.) 

Parameter 

Stepping rate code 

Reduced Write Current 
Cylinder 

ECC Data Burst Length 

Gap byte 1 

Gap byte 2 

Gap byte 3 · 

Gap byte 4 

Description 

The step rate is an encoded field used to 
specify the rate at wi1id1 ;.l,e ,..:i .. 1~, .. 1·,~, 
heads can be moved when seeking a 1.t·d1...k n:, 
the disk. The encoding is a follows: 

Step Rate Winchester 5-1/4" 
,, ,, 
v 

Code Hard Disks n2eel .. ===c••••• 
----------= 

~-- .,.': --· 
000 0 msec 12 msec 6 msec 
001 6 msec 6 msec 3 msec 
010 10 msec 12 msec 6 msec 
011 15 msec 20 msec 10 msec 
100 20 msec 30 msec 15 msec 

This field specifies the cylinder number at 
which the write current should be reduced 
when writing to the drive. This parameter is 
normally specified by the drive 
manufacturer. 

This field defines the number of bits to 
correct for an ECC error when supported b~ 
the disk controller. 

This field contains the number of words of 
zeros that are written before the header 
field in each sector during format. 

This field contains the number O" wo1·ds o· 
zeros that are written between the he!de~ 
and data f i e 1 d s du r i n g format and ,., r i r • 
commands. 

This field contains the number of words of 
zeros that are written after the data fields 
during format commands. 

This field contains the number cf wcrd~ ~~ 
zeros that are written after the 1 ast sr.:ctc:· 
!'fa track and before the index pulse. 

B-7 



PRELIMINARY MVME135BUG/D2 

PARAMETER FIE~D: OE'.FINITt:ONS (cont.) 

Parameter Description =--------------===-====-=-=· 
Spare sectors count 

Reserved Area Units 

Reserved Count 1 

Reserved Count 2 

This field contains the number of sectors. 
per track a 11 ocated as spare sectors. These 
sectors wil 1 only be used as replacements 
for bad sectors on the disk. 

This field ~~ecifies the units u~ed for the 
next two fields (IOSRSVCl and IOSRSVC2). If 
zero the units are in tracks, if 1 the units 
are in cy1 i nders. 

This field spe~ifies the number of tracks 
(IOSRUNIT=0), .or the numb.er of ¢ylinders 
(IOSRUNIT=l) reserved for the alternate 
mapping area on the disk. · 

This field •specifies the number of tracks 
(IOSRUNIT•0), or the number of cylinders 
(IOSRUNIT•l) reserved for use by th·e 
controller. 

B-8 



( 

PRELIMINARY MVME135BUG/D2 

APPENDIX C - DISK CONTROLLER DATA 

Di sic Controller Modules Supported 

The following VMEbus disk/tape controller modules are supported by 
135Bug: 

+----------------------------------------+-----------+-----------+ 

I CONTROLLER TYPE l-~~~~---!~-l-~~~~---!:_l 
I ACOR #1 I ACOR #2 I 

+----------------------------------------+-----------+-----------+ . I I $0111 I $1117 I 
MVME319 - SCSI/Floppy/Tape Controller +-----------+------------+ 

I SFFFFIIIIIIIIIIII I SFFFF02111111 I 
+----------------------------------------+-----------+-----------+ 
I I s111111 I Slll6 I 

MVME320 - Winchester/Floppy Controller +-----------+-----------+, 
I SFFFFBIIIIIIIII I SFFFFAC00 I 

+----------------------------------------+-----------+-----------+ 
I MVME321 - Winchester/Floppy Controller L ___ !!! ___ j ____ !!~----1 

I SFFFFlllSllllll I $FFFFlll611111l I 
+------------- ---------------------------+-----------+-----------+ 
I MVME323 - ESDI Controller 1 ____ !!~ ____ 1 ____ !!: ____ 1 

. I SFFFFAlllllllll I SFFFFA2111111 I 
+----------------------------------------+-----------+-----------+ 
I . I Sllllll-1117 I Sllllll-1117 I 

MVME327 - SCSI Controller -+-----------+-----------+ 
· . I $FFFFlll6111111 I SFFFF0711llll I 

+----------------------~---------- -------+-----------+-----------+ 

I MVME35111 - Streamer Tape Controller 1 ____ !!~ ____ 1 ____ !!~----l 
. I SFFFFSIIIIIIIII I SFFFFSIIIIIII I 

+----------------------------------------+-----------+-----------+ 

I MVME3611l - SMD Controller 1 ____ !!: ____ 1 ____ !~=----l 
I $FFFF0Cllllll I $FFFF0Ellllll I 

+----------------------------------------+-----------+-----------+ 

C-1 



PRELIMINARY MVME135BUG/D2 

Disk Controller Default Configurations 

Controller LUN 0 
Controller Type MVME319 
Controller Address: $FFFF0000 
Number of Devices 8 
Devices 

Controller LUN 7 

DLUN 0 = 40 Megabyte Winchester hard drive (see note) 
DLUN 1 • 40 Megabyte Winchester hard drive (see note) 
DLUN 2 • 40 Megabyte Winchester hard drive (see note) 
DLUN 3 = 40 Megabyte Winchester hard drive {see note) 
DLUN 4 • 8 11 DS/00 Motorola format floppy drive 
OLUN 5 • 8 11 DS/00 Motorola format floppy drive 
OLUN 6 • 5-1/4 11 DS/DD 96 TPI floppy drive 
OLUN 7 • 5-1/4 11 OS/00 96 TPI floppy drive 

Controller Type MVME319 
Controller Address: $FFFF0200 
Number of Devices 8 
Devices DLUN 0 • 40 Megabyte Winchester hard drive {see note) 

DLUN 1 • 40 Megabyte Winchester hard drive (see note) 
DLUN 2 • 40 Megabyte Winchester hard drive (see note) 
OLUN 3 • 40 Megabyte Winchester hard drive (see note) 
OLUN 4 • 8" OS/DD Motorola format floppy drive 
DLUN 5 • 8" OS/DO Motorola format floppy drive· 
DLUN 6 • 5-1/4" OSJDD 96 TPI floppy drive 
DLUN 7 • 5-1/ 4 11 OS/DD 96 TPI floppy drive 

NOTE: Devices 0 through 3 are accessed via the SCSI interface on the 
MVME319. An ADAPTEC ACB-4000 Winchester Disk Controller 
module is required to interface between the SCSI and the disk 
drive. Refer to the MVME319 User's Manual for further 
information. 

C-2 



( 

PRELIMINARY MVMEI 3 5BUG/D2 

Controller LUN 0 
Controller Type MVME320 
Controller Address: SFFFFB000 
Number of Devices 4 
Devices 

.Controller LUN 6 

DLUN 0 • 40 Megabyte Winchester hard disk 
DLUN l • 40 Megabyte Winchester hard disk 
DLUN 2 • 5-l/4n DS/DD 96 TPI floppy drive 
DLUN 3 • 5-l/4n DS/DD 96 TPI floppy drive 

Controller Type MVME320 
Controller Address: SFFFFAC00 
Number of Devices 4 
Devices 

Controller LUN 0 

DLUN 0 = 40 Megabyte Winchester hard disk 
: DLUN 1 • 40 Megabyte Winchester hard disk 

DLUN 2 • 5-1/4" OS/DD 96 TPI f1oppy drive 
DLUN 3 = 5-1/4n OS/DD 96 TPI floppy drive 

Controller Type : MVME321 
Controller Address: SFFFF0500· 
Number of Devices : 8 
Devices : DLUN 0 • 40 Megabyte Winchester hard disk 

~· DLUN 1 -= 40 Megabyte Winchester hard disk 
DLUN.2 = 40 Megabyte Winchester hard disk 
DLUN 3 • 40 Megabyte Winchester hard disk 
DLUN 4"' 5-1/4" OS/DD 96 TPI floppy drive 
DLUN 5 "' 5-1/4" OS/DD 96 TPI floppy drive 
DLUN 6 "' 5-1/4" OS/00 96 TPI floppy drive 
DLUN 7 = 5-1/4" OS/OD 96 TPI floppy drive 

C-3 



PRELIMINARY MVME135BUG/D2 

Controller LUN 1 
Controller Type : MVME321 
Controller Address: SFFFF0600 
Number of Devices 8 
Devices 

Controller LUN 8 

DLUN 0 = 40 Megabyte Winchester hard disk 
DLUN 1 • 40 Megabyte Winchester hard disk 
DLUN 2 = 40 Megabyte Winchester hard disk 
DLUN 3 = 40 Megabyte Winchester hard disk 
DLUN 4 = 5-1/4" OS/DO 96 TPI floppy drive 
DLUN 5 .. 5-1/4 11 OS/DD 96 TPI floppy drive 
DLUN 6 = 5-1/ 4 11 OS/DD 96 TP I floppy drive 
DLUN 7 • 5-1/ 4 11 DS/OD 96 TP I floppy drive 

Controller Type MVME323 
Controller Address: $FFFFA000 
Number of Devices 4 
Devices OLUN 0 • CDC WREN Ill 182 Megabyte ESDI hard disk 

(512 byte sectors) 
DLUN 1 • CDC WREN III 182 Megabyte ESDI hard disk 

(512 byte sectors) 
.DLUN 2 • CDC WREN III 182 Megabyte ESDI hard disk 

(512 byte sectors) 
: DLUN 3 • CDC WREN III 182 Megabyte ESOI hard dist 

(512 byte sectors) 

Controller LUN 9 
Controller Type 
Controller Address: 

MVME323 
SFFFFA200 
4 Number of Devices 

Devices DLUN 0 • CDC WREN III 182 Megabyte ESDI hard disk 
(512 byte sectors) 

DLUN 1 • CDC WREN III 182 Megabyte ESDI hard disk 
(512 byte sectors) 

DLUN 2 • CDC WREN III 182 Megabyte ESDI hard disk 
(512 byte sectors) 

DLUN 3 • CDC WREN III 182 Megabyte ESDI hard disk 
(512 byte sectors) 

C-4 



( 

PRELIMINARY 

Controller LUN 0 
Controller Type 
Controller Address: 
Number of Devices : 
Devices 

Controller LUN 1 
Controller Type 
Controller Address: 
Number of Devices 
Devices 

Controller LUN 2 
Controller Type 
Controller Address: 
Number of Devices 
Devices 

Controller LUN 3 
Contro 11 er Type 
Controller·Address: 
Number of Devices 
Devices 

Controller LUN 4 

MVME327 
SFFFF0600 
1 
DLUN 0 • CDC WREN III 

MVME327 
SFFFF0600 
1 

MVME135BUG/D2 

155 Megabyte SCSI hard disk 
(512 byte sectors) 

DLUN 0 • MICROPOLIS 150 Megabyte SCSI hard disk 
(512 byte sectors) 

MVME327 
SFFFF0600 
l 
DLUN 0 • CDC WREN IV 300 Megabyte SCSI hard disk 

(512 byte sectors) 

MVME327 
SFFFF0600 
l 
DLUN 0 .. SEAGATE 80 Megabyte SCSI hard disk 

· ( 512 byte sectors) 

Controller Type MVME327 
Controller Address: SFFFF0600 
Number of Devices 1 
Devices DLUN 0 = ARCHIVE VIPER Streaming Tape Drive 

C-5 



PRELIMINARY 

Controller LUN 5 
Controller Type 
Controller Address: 

MVME327 
$FFFF0600 
1 

MVME135BUG/D2 

Number of Devices 
Devices DLUN 0 • ARCHIVE VIPER·Streaming Tape Drive 

Controller LUN 7 
Controller Type MVME327 
Controller Address: $FFFF0600 
Number of Devices 1 
Devices DLUN 0 • 5-1/4" DS/DD 96 TPI floppy drive 

DLUN 1 • 5-1/4" OS/DD 96 TPI floppy drive 

Contra 11 er LUN 0 
Controller Type MVME327 • 
Controller Address: $FFFF0700 
Number of Devices 1 
Devices DLUN 0 • CDC WREN III 155 Megabyte SCSI hard disk 

Controller LUN 1 
Controller Type 
Controller Address: 
Number of Devices 
Devices 

Controller LUN 2 
Controller Type 
Controller Address: 
Number of Devices 
Devices 

MVME327 
$FFFF0700 
1 

(256 byte sectors) 

DLUN 0 • MICROPOLIS 150 Megabyte SCSI hard disk 
(256 byte sectors) 

MVME327 
$FFFF0700 
1 
DLUN 0 • CDC WREN IV 300 Megabyte SCSI hard disk 

(256 byte sectors) 

C-6 



PRELIMINARY 

Controller LUN 3 
Controller Type 
Controller Address: 

MVME327 
$FFFF0700 
1 

MVME135BUG/D2 

Number of Devices 
Devices DLUN 0 s SEAGATE 80 Megabyte SCSI hard disk 

(256 byte sectors) 

Controller LUN 4 
Controller Type MVME327 
Controller Address: SFFFF0700 
Number of Devices 1 
Devices DLUN 0 • ARCHIVE VIPER Streaming Tape Drive 

Controller LUN 5 
Controller Type MVME327 
Controller Address: SFFFF0700 
Number of Devices I 
Devices DLUN 0 • :ARCHIV£ VIPER Streaming Tape:Drive 

Controller LUN 7 
Controller Type 
Controller Address: 
Number of Devices 
Devices 

Controller LUN 4 

MVME327 
$FFFF0700 
1 
OLUN 0 ., 5-1/4" OS/DD 96 TPI 
DLUN 1 = 5-1/4" OS/DD 96 TP:I 

Controller Type MVME350 
Controller Address: $FFFF5000 
Number of Devices 1 

floppy drive 
floppy drive 

Devices DLUN 0 = QIC-02 Streaming Tape Drive 

C-7 



P-RELIMINARY 

Controller LUN 5 
Controller Type MVME350 
Controller Address: SFFFF5100 
Number of Devices 1 
Devices DLUN 0 = QIC-02 Streaming Tape Drive 

Controller LUN 2 
Controller Type MVME360 
Controller·Address: SFFFF0C00 
Number of Devices 4 

MVME135BUG/D2 

Devices OLUN 0 •_2333K Fuji SMD drive (512-byte sectors) 
DLUN 1 • null device 

Controller LUN 3 
Contra 11 er Type
Contro 11 er Address: 
Number of Devices 
Devices 

DLUN 2 • 2322K Fuji SMD drive (512-byte sectors) 
DLUN 3 •·null device 

MVME360 
SFFFF0E00 
4 
DLUN 0· • 2322K Fuji SMD drive (256-byte sectors) 

: DLUN 1· • nuli device · 
: DLUN 2 • 80 Megabyte Fixed CMO drive 
: DLUN 3 • 16 Megabyte Removable CMD drive 

C-8 



( 

PRELIMINARY MVME135BUG/D2 

APPENDIX D - DISK COMMUNICATION STATUS CODES 

The-status-word returned by the disk TRAP# 15 routfoes flags an error 
condHion if H ;s non-zero. The most significant byte of the status 
word reflects controller independent errors, and they are generated 
by the disk trap routines. The least significant byte reflects 
controller dependent errors, and they are generated by the 
controller. The status word is shown below: 

15 8 7 
+--------------------------+------------------------+ I Controller Independent I ~ontroller Dependent I 
+--------------------------+------------------------+ 

Code 

$00 
$01 
$02 
$1113 
$1114 
$1115 
$06 
$1117 

CONTROLLER INDEPENDENT STATUS CODES 

Definition 

No error detected. 
Invalid Controller Type. 
Invalid Controller LUN. 
Invalid Device LUN. 
Controller Initialization Failed. 
Command aborted vi a break. 
Invalid Command Packet. 
Invalid address for transfer. 

D-1 



PRELIMINARY MVME13SBUG/02 

MVME319 CONTROLLER DEPENDENT STATUS CODES 

Code OefinHion 

$00 Correct execution with out error. 
$rill Data CRC/ECC errcir. 
$02 Disk write protected. 
$03 Drive not ready. 
$04 De 1 eted data mark read. 
$05 Invalid drive number. 
$06 Invalid disk address. 
$07 Restore error. 
$08 Record not found. 
$09 . Sec~or ID CRC/ ECC error. 
SrilA VMEbus DMA error .. 
$0F Coniro 11 er error. 
SHI Drive error. 
$11 Seek error. 
$12 I/0 OMA error. 

Code 

$02 
$03 
$04 
$05 
$06 
$07 
$08 
$09 
SrilA 
S0B-$FF 

MVME321 CONTROLLER DEPENDENT STATUS CODES 

Definition 

Correct execution without error. 
Nonrecoverable error which cannot be completed 
(auto retries were attempted). 
Ori ve not ready. 
Reserved. 
Sector address out of range. 
Throughput error {floppy data overrun) . 
Co11111and rejected (illegal co11111and). 
Busy (controller busy). 
Drive not available (head out of range). 
OMA operation cannot be completed (VMEbus error). 
Co11111and abort (reset busy). 
Not used. 

D-2 

., 



PRELIMINARY 

Code 

$00 
$17 
$18 
$IA 
$IE 

$01 
$1/12 
$03 
$04 
$05 
$06 
$07 
$08 
$09 
$0A 
$08 
$0C 
$I/JD 
$0E 
$1/JF 
$10 
$11 
$12 
$13 
$20 

$01 
$1/12 
$03 
$04 
$05 
$06 

MVMEl 3 5BUG/D2 

MVME321 CONTROLLER DEPENDENT STATUS CODES 

Definition 

-• General Error Codes *** 
Correct execution without error. 
Timeout. 
Bad drive. 
Bad Command. 
Fatal Error. 

*** Hard Disk Error Codes *** 
Write protected disk. 
Sector not found. 
Drive not ready. 
Drive fault or timeout on recalibrate. 
CRC or EC:C error in data field. 
UPD7261 FIFO overrun/underrun. 
End of cylinder. 
fl legal drive specified. 
11 legal cylinder specified. 
Format operation failed. 
Bad disk descriptor. 
Alternate track error. 
Seek error. 
UPD7261 busy. 
Data does not verify. 
CRC error in ID field. 
Reset request (missing address mark). 
Correctable ECC error. 
Abnormal command completion. 
Missing Data Mark. 

*** Floppy Disk Error Codes*** 
End-of-transfer size mismatch. 
Bad tpi combination specified. 
Drive motor not coming on. 
Disk door open. 
Command not completing. 
Bad restore operation. 

D-3 



PRELIMINARY MVME135BUG/D2 

HVHE321 CONTROLLER DEPENDENT STATUS CODES {cont.) 

Code 

$1117 
$1118 
$1119 
SIIIA 
$08 
SIIIC 
$1110 
SIIIE 
SIIIF 
$1111 
$11 
$2111 

Code 

$111" 
$1" 
$12 
$13 
$14 
$15 
$16 
$17 
$18 
$19 
$IA 
$18 
SIC 
$10 
$IE 
$IF 
$2111 
$21 

Definition 

Illegal side reference on device. 
Illegal track reference on device. 
Illegal sector reference on device. 
Illegal step rate specified. 
Bad density specified. 
Write protected di s k. 
Format error. 
Can not find side, track, or sector. 
CRC error in ID field(s). 
CRC error in data field. 
OMA underrun. 
Bad disk size in descriptor. 

HVHE323 CONTROLLER DEPENDENT STATUS CODES 

Definition 

Correct execution without error. 
Disk not ready. . · 
Seek error. 
ECC·code error-data field. 
Invalid command code. 
Illegal fetch and execute command. 
Inv a 1 id sector command. 
Ill ega 1 memory types. 
Bus time out. 
Header checksum error. 
Disk write protected. 
Unit not selected. 
Seek error timeout. 
Fault timeout. 
Drive faulted. 
Ready timeout. 
End of media. 
Translation fault. 

0-4 



PRELIMINARY MVME135BUG/D2 

MVME323 CONTROLLER DEPENDENT STATUS CODES (cont.) 

Code 

$22 
$23 
$24 
$25 
$26 
$27 
$28 
$29 
$2A 
$2B 
$2C 
$20 
S2E 
$2F 
$30 
$31 
$32-3E 
$3F 
$40 
$41 

. $42 
$43-4A 

: $48 
· $4C-4F 

$50 
$51 
$52 
$53 
$54 
$55-SC 
$5D 
SSE-SF 
$60 
$61 
$62 

Definition 

Invalid header pad. 
Uncorrectab 1 e error. 
Translation error, cylinder. 
Translation error, head. 
Translation error, sector. 
Data overrun. 
No index pulse on write format. 
Sector not found. 
10 field error - wrong head. 
Invalid sync in data field. 
No valid header found. 
Seek timeout error. 
Busy timeout. 
Not on cylinder. 
RTZ timeout. 
Invalid sync in header. 
Not used. 
No heads specified. 
Unit not initialized. 
Not us~d. 
Gap spec i fi cat i cin error . 
Not used. 
Seek error. 

Not us·ed. 
Sectors per track specification error. 
Bytes per sector speci fi cation error. 
Interleave specification error. 
Invalid head address. 
Invalid cylinder address. 
Not used. 
lnval id DMA transfer count. 
Not used. 
IOPB failed. 
OMA failed. 
Illegal VME address. 

0-5 



PRELIMINARY MVMEI 35BUG/D2 

MVME323 CONTROLLER DEPENDENT STATUS CODES (cont.) 

Code 

$63-69 
$6A 
$6B 
$6C-6E 
$6F 
$7"-76 
$77 
$78 
$79-EF 
$F0-FE 
$FF 

Code 

$"1 
$"2 
$03 
$04 · 
$"5 
$"6 
$07 
$"8 

SUJ 
$11 
$12 
$13 
$14 
$15 
$16 
$17 

Definition 

Not used. 
·Unrecognized header fie 1 d. 
Mapped header error. 
Not used. 
No spare sector enabled. 
Not used. 
Command aborted. 
AC-fail detected. 
Not used. 
Fatal Error. 
Command not imp 1 emented. 

MVME327 CONTROLLER DEPENDENT STATUS CODES 

Definition 

*** Command Parameter Errors *** 
Bad descriptor. 
Bad command. 
Unimplemented command. 
Bad drive. 
Bad logical disk address. 
Bad scatter-gather table. 
Unimplemented device. 
Unit not initialized. 

•- Media Errors-• 
No ID found on track. 
Seek error. 
Re 1 ocated track error. 
Record not found, bad ID. 
Data sync fault. 
Non-correctable data error. 
Record not found. 
Medi a error. 

0-6 



( 

PRELIMINARY MVME135BUG/D2 

MVME327 CONTROLLER DEPENDENT STATUS CODES (cont.) 

Code 

$20 
$21 
$22 
$23 
$24 
$25 

$30 
$31 
$32 
$33 

s,0 
$41 
$42 
$43 
$44 
$45 

Code 

$00 
$01 
$02 
$03 
$04 
$05 
$06 
$0D 
$0E 
$12 

Definition 

*** Ori ve Errors *** 
Drive fault. 
Write protected disk. 
Motor not on. 
Door open. 
Ori ve not ready. 
Drive busy. 

*** VME OMA Errors *** 
VMEbus error. 
Bad address alignment. 
Bus timeout. 
Invalid OMA transfer count. 

*** Disk:Format Errors*** 
Not enough alternates. 
Format failed. 
Verify error. 
Bad format parameters. 
Cannot fix bad spot. 
Too many defects. 

MVME3:50 CONTROLLER DEPENDENT STATUS CODES 

Definition 

Correct execution without error. 
Block in error not 1 ocated. 
Unrecoverable data error. 
End of media. 
Write protected. 
Drive offl ine. 
Cartridge not in place. 
No data detected. 
Illegal command. 
Tape reset did not occur. 

D-7 



PRELIMINARY MVME13SBUG/D2 

MVME350 CONTROLLER DEPENDENT STATUS CODES (cont.) 

Code 

$17 
$18 
$IA 
$IE 

Code 

$00 
$10 
$12 
$13 
$14 
$15 
$16 
$17 
$18 
$19 
$IA 
$18 
$IC 
$10 
SlE 
SlF 
$20 
$21 
$22 
$23 
$24 
$25 
$26 
$27 
$28 
$29 

Timeout. 
Bad drive. 
Bad Command. 
Fatal Error. 

Definition 

MVME360 CONTROLLER DEPENDENT STATUS CODES 

Definition 

Correct execution without error. 
01 sk not ready. 
Seek error. 
ECC code error-data field. 
Invalid command code. 
Illegal fetch and execute command. 
Invalid sector command. 
Illegal memory types. 
Bus time out. 
Header checksum error. 
Disk write protected. 
Unit not selected. 
Seek error timeout. 
Fault timeout. 
Drive faulted. 
Ready timeout. 
End of media. 
Translation fault. 
Invalid header pad. 
Uncorrectab 1 e error. 
Translation error, cylinder. 
Translation error, head. 
Translation error, sector. 
Data overrun. 
No index pulse on write format. 
Sector not found. 

0-8 

\ 



PRELIMINARY MVME135BUG/D2 

MVME369 CONTROLLER DEPENDENT STATUS CODES (cont.) 

Code Definition 

S2A ID field error - wrong head. 
$2B Invalid sync in data field. 
$2C No valid header found. 
$2D Seek timeout error. 
$2E Busy timeout. 
S2F Not on cyl i nder. 
$30 RTZ timeout. 
$31 
$32-3F 
$40 
$41 
$42 
$43-4A 
$4B 
$4C-4F 
$50 
$51 
$52 
$53 
$54 
$55-SC 

• $SD 
$SE-SF 
$60 
$61 
$62 
$63-69 
$6A 
$6B 
$6E 
$6F 
$70-76 
$77 
$78 
$79-EF 

Invalid sync in header. 
Not used. 
Unit not initialized. 
Not used. 
Gap specification error. 
Not used. 
Seek error. 
Not used. 
Sectors per track specif~cation error. 
Bytes per sector specification error. 
Interleave specification error. 
I nva 1 id head address. 
Invalid cylinder address. 
Not used. •. 
lnva 1 id DMA transfer count. 
Not used. 
IOPB failed. 
DMA failed. 
Illegal VME address. 
Not used. 
Unrecognized header field. 
Mapped header error. 
Not used. 
No spare sector enabled. 

Not used. 
Command aborted. 
AC-fail detected. 
Not used. 

D-9 



PRELIMINARY MVMEl 3 5BUG/D2 

MVHE36S CONTROLLER DEPENDENT STATUS CODES (cont.) 

Code Definition 

SF0-FE Fatal Error. 
$FF Command not implemented. 

0-10 



PRELIMINARY MVME135BUG/D2 

APPENDIX E - VME135 STATUS REGISTER {STATl) 

STAT] is a software-accessible board status register on the VME135 
module. It is implemented in hardware as an ten-position DIP 
switch. The reference designator of this DIP switch is S4. The 
contents of this register may be obtained, with the exception of 
Bits 8 and 9, by reading a byte at SFFFB000D. STATl is a read-only 
register and reflects the settings of the user configuration switch. 
This status register is examined by 135Bug to determine the user's 
preferences concerning the 135Bug operating environment. Certain 
control registers on the VME135 are then set up by 135Bug in 
accordance with the user's selections. 

STATI appears to software as shown below. 

Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
+------+------+------+------+------+------+------+------+------+------+ 
I SCON I PBDISI ENV0 I ENVl I D32 I A32' I VSBSCI VSBENI MPSUPI BOOT I 
+------+------+------+------+------+------+------+------+------+------+ 

S4-1 S4-2 S4-3 S4-4 S4-5 S4-6 S4-7 S4-8 S4-9 S4-10 

If a particular switch is open (OFF), the line is pulled up and the 
bit will be read as a logical 1. If the switch is closed (ON), the 
bit wi 11 be read as a logical 0. 

The board status information in STATI is a follows: 

SCON < VMEbus System Control 1 er> 

This switch is used to configure the VME135 as the VMEbus system 
controller in a multi-processor environment. Only one board on a 
VMEbus can be configured as the system controller. The front panel 
LED labeled "SCON" is illuminated when the module is configured as 
the system controller. Only one SCON should be on in systems that 
use more than one VME135 on a single VMEbus backplane. 

SCON • 0 (ON): This VME135 is the sy~tem controller. 
SCON = 1 (OFF): This VME135 is not the system controller. 

E-1 



PRELIMINARY MVMEI35BUG/D2 

PBD.IS < Pushbutton Enable/Dhable Select> 

This switch is used to select the ABORT/RESET pushbutton 
tnable/disable. When disabled, pushing the ABORT or RESET 
pushbuttons,. wi 11 have no effect on hardware or the · software 
currently executing. 

PBDIS • 0 (ON): RESET and ABORT pushbuttons enabled. 
PBDIS • 1 (OFF): RESET and ABORT pushbuttons disabled. 

ENV9-ENV1 < Operating Environment Select Bits> 

Interpreted by 135Bug, these bits (~witches S4-3 and S4-4, 
respectively} determine certain defaults which are set up at power
up/reset and dictate the 135Bug operating environment. These 
defaults include the location of 135Bug's VBR and stack space. For 
more information refer tcr sect.ion 1.5, "ENV0,ENV1 Switches" and to 
section 1. 7, "Memory Requirements" . 

. ENV0 ENVl 

0 0 

0 1 

1 0 

1 1 

Description 

135Bug operates l oca 11 y at BASE 0 

135Bug operates locally at high memory BASE $FFX00000 

135Bug operates over VMEbus BASE 0, with OFFSET calculated• 
by (board n - 1) "'. $4000. (n • 1_, 2, 3, etc.) 

135Bug operates in fir-s-tVMEbus non-mapped (DRAM) memory 
space with OFFSET calculated by ID byte * $4000. 

D32 < Data Bus Width Se 1 ect> 

This bit (switch S4-5) provides a software selectable 32- and 16-bit 
VMEbus data width. This bit should be used with care because when 
032 • 0, all memory references to the VMEbus can be 32 bi ts. When 032 
• 1, all memory references to VMEbus are forced to be 16 bits. 

D32 • 0 (ON): Selects 32-bit data. 
032 • 1 (OFF): Selects 16-bit data. 

E-2 



PRELIMINARY MVME135BUG/D2 

A32 < Address Bus Width Select> 
This bit (switch S4-6) provides a software selectable 32- and 24-bit 
address option for VMEbus references. The appropriate address 
modifiers are generated for 32- or 24-bit address VMEbus accesses. 
A32 • 0 indicates 32-bit address option; A32 • 24 indicates a 24-bit 
address space. 

A32 • 0 (ON): Selects 32-bit addressing. 
A32 • 1 (OFF): Selects 24-bit addressing. 

VSBSC < VSB System Controller> 
This bit (switch S4-7) is used to configure the VME135 as the VSB 
system controller in a multi-processor environment. Only one board 
on a VSB can be configured as the system co·ntroller. 

VSBSC = 0 (ON) : If VSB enabled, this VME135 is the VSB bus system 
controller. 

VSBSC • 1 (OFF): If VSB disabled, this VME135 is not the VSB bus 
system controller. 

VSBEN < VSB Enable> 

This bit (switch S4-8) is used to select the VSB bus mode. When VSBEN 
• 1, all VSB activity is suspended. Setting VSBEN • 0, enables the 
VSB bus. 

VSBEN = 0 (ON) : Enables VSB. 
VSBEN = 1 (OFF): Disables VSB-. 

(all off-board ~ccesses are done over VMEbus). 

MPSUP < Multi-Processor Support> 
This bit (switch S4-9) is used to select the MP-CSR bit psuedo 
interrupt handling option. 

MPSUP = 0 (ON) : Disables polling of MP bits LM0, SIGLP, SIGHP, and 
BRIRQ. 

MPSUP = l (OFF): Enables polling of MP bits LM0, SIGLP, SIGHP, and 
BRIRQ. 

E-3 



PRELIMINARY MVME135BUG/D2 

BOOT < Bootstrap Mode>· 
The BOOT bit (switch S4-H'}- selects the mechanism to be used for 
operating the system bootstrap. 

BOOT .. 0 (ON) : Select manual boot (using BO/BH commands). 
BOOT• 1 (OFF): Enable autoboot operation (BOOT from ROM, DISK or 

TAPE). 

E-4 



PRELIMINARY MVMEl 3 SBUG/O2 

APPENDIX F - MAPPING SWITCH (S3) 

Switch S3 is the slave resource mapping switch. It is an eight
position piano type DIP switch that maps the memory and MPCSR on the 
VMEbus. 

(Address): A A A A 
(Bit#): 1 1 1 1 

5 4 3 2 

A A A A 
1 1 0 0 
1 0 9 8 

A A A A 

" " " " 7 6 5 4 

MPCSR • 
Base 
Addr 

Ix x xi 0· 0 0 Ix x x x xi 0 
+-------+ +---------------+ 

I 
I 

+----------+------------------+ 
I I \ 
+-------------------------------+ 

A A A A 
0 0 0 0 
3 2 1 0 

0 0 0 0 

I 1 I 2 I 3 I 4 I s I 6 I 7 I a I S3 Switch Positions 
+---~--------.-------------------+ 

\ I 
+-----------------+ 

DRAM I 
Base +------------+ 
Addr = 0000 0 0 0lx _x xx x I 0000 0000 0000 0000 0000 
-.~-------. -------.--~---------------------------------------------

AAAA A .A A A :A A A A 
3322 ·2 2 2 2 ·2 2 2 2 
1098 7 6 5 4 '3 2 1 0 

AAAA AAAA AAAA AAAA AAAA 
1111 1111 .1100 0000 0000 
9876 5432 1098 7654 3210 --- . _____ . __ . _______________ ·------------------~------------------

F-1 



PRELIMINARY MVME 13 SBUr./07. 

The following illustrations provide various examples of MPCSR and 
DRAM base addressing. 

Example 1: 

+--------------------------+ 
Ir 1 2 3 4 s 6 7 a I 
l~fx1fx1fx1fx1fx1fx1fx1fx1 

+--------------------------+ 

MPCSR 

0 Q O O O O O 0 
F F N N N N N N 
F F 

1 1 0 0 0 0 0 0 

Switch S3 
Mapping Switch 

(Factory Configuration) 

(Note: ON is 0, OFF is 1) 

Base Addr • 1 1 0 0 0 0 0 0 0 0 0 0 0000 • $C000 

DRAM 
Base Addr • 0000 0 0 0 0 0 0 0 0 0000 0000 0000 0000 0000 • $0000 0000 

Example 2: 

+--------------------------+ 
0 0 0 0 0 0 0 0 
F F N N N N F N 
F F F 

1 1 0 0 0 0 1 0 

MPCSR 

Switch S3 
Mapping Switch 

(Note: ON is 0, OFF is 1) 

Base Addr • 1 1 0 0 0 0 0 0 0 I 0 0 0000 • $C040 

DRAM 
Base Addr • 0000 0 0 0 0 0 0 1 0 0000 0000 0000 0000 0000 = $0020 0000 

F-2 



PRELIMINARY MVMEl3 SBUG/D2 

APPENDIX G - VME135 CONFIDENCE TEST STATUS CODES 

This appendix contains information about a software-accessible 
Confidence Test Status byte which is available on a Power up/Reset 
sequence. The status code may be obtained by reading the MP COMM 
byte in the local MP-CSR at $FFFB0079, or the MP-CSR's address over 
the VMEbus at $FFFFXXX9 (refer to Appendix F, Mapping Switch S3). 

During normal 135Bug operation, a message will be displayed on a 
Confidence Test failure, indicating the failure code. If the 
Confidence Test completes successfully, no message is displayed, 
and the status code wi 11 be set to $0. 

When the Confidence Test status check is not done in the normal 
135Bug prompt mode, wait until the BSY bit in the MP-CSR is cleared, 
to assure the test has completed and the status has been updated. 

The Confidence Test Code assignments follow: 

CONFIDENCE TEST CODE ASSIGNMENTS 

Test Code Description 

PASS 0 Confidence Test Passed 
CPU A $A MPU Register Test Failure 
CPU_B SB MPU Instruction Test Failure 
CPU_C SC VME135 EPROM Test Failure 
CPU_D SD VME135 Local Ram Test Failure 
CPU_E $[ MPU Addressing Mode Test Failure 
CPU F SF VMEi35 Status and Control Register Test Failure 
CPU G $10 MPU Exception Test Failure 
CPU_! $12 VME135 MP-CSR Test Failure 

SI0_0 · $A0 VME135 DUART Register Test Failure 
SIO I - $Al VME135 DUART Register Test Failure 
SI0_2 $A2. VME135 DUART Register Test Failure 
SIO 3 $A3 VME135 DUART Register Test Failure 

SIO 4 $A4 VME135 DUART Port Register Test Failure 
SIO 5 $AS VME135 DUART Port Register Test Failure 
SIO F $AF VME135 DUART Port Register Test Failure 

G-1 



PRELIMINARY MVME135BUG/D2 

CONFIDENCE TEST CODE ASSIGNMENTS (cont.) 

Test Code Description 
'"" SIOTX_0 $B0 VME135 OUART Transmitter Test Failure 

SIOTX_l $Bl VME135 DUART Transmitter Test Failure 
SIOTX 3 $B3 VME135 QUART Transmitter Test Failure 
SIOTX_S $BS VME135 DUART Transmitter Test Failure 
SIOTX 7 . SB7 VME135 DUART Transmitter Test Failure 
SIOTX F $BF VME135 DUART Transmitter Test Failure 

SIORX_0 $C0 VME135 DUART Receiver Test Failure 
SIORX_2 $C2 VME135 DUART Receiver Test Failure 
SIORX_3 $C3 VME135 DUART Receiver Test Failure 
SIORX_4 $C4 VME135 DUART Receiver Test Failure 
SIORX_F $CF VME135 DUART Receiver Test Failure 

SIOTIM_0 $D0 VME135 DUART Timer Test Failure 
SIOTIM_l $01 VME135 QUART Timer Test Failure 
SIOTIM_2 $D2 VME135 QUART Timer Test Fai 1 ure 
SIOTIM_3 $03 VME135 DUART Timer Test Failure 
SIOTIM_4 $D4 VME135 DUART Timer Test Failure 
SIOTIM_S $D5 VME135 DUART Timer Test Failure 
SIOTIM_6 $D6 VME135 DUART Timer Test Failure 
SIOTIM_F $OF VME135 DUART Timer Test Fai 1 ure 

G-2 · 



SUGGESTION/PROBLEM 
REPORT 

,,,-- Motorola welcomes your comments on its products and publications. Please use this form. 

To: Motorola Inc. 
Microcomputer Division 
2900 s. Diablo way 
Tempe, Arizona 85282 

Attention: Publications Manager 
Maildrop OW164 

Product: --------------
Manual: ______________ _ 

COMMENTS ------------------------------

(For additional comments use other Side) 
Please Print 

Name ______________ _ 

Company ________________ _ 

Street 

City _______________ _ 

State ________ _ Zip ____ _ 

For Additional ·Motorola Publications 
Literature Distribution Center 
616 West 24th Street 
Tempe, AZ 85282 
(602) 994-6561 

Title ----------------
Division ______________ _ 

Mail Drop _____________ _ 

Phone ______________ _ 

Country ______________ _ 

Motorola Field Semce Dlvllion/CUltomer Support 
(800) 528-1908 
(602) 438-3100 

® MOTOROLA 



COMMENTS: _____________________ _ 

® MOTOROLA-



® MOTOROLA INC.

Microcomputer Division
2900 South Diablo Way
Tempe, Arizona 85282
P.O. Box 2953
Phoenix, Arizona 85062

Motorola is an Equal Employment
Opportunity/ Affirmative Action Employer

Motorola and @ are registered
trademarks of Motorola. Inc.
marc.retronik.fr




