USERS’ MANUAL

//’;,;

i/ A
.k\\\>\\\\
0
/

\J'I
TN
/,,i.,/////
!
3

i

‘(‘"“.,..:;5!’*‘; “i\ |
A ‘\\\ \
¢

\
Y, Z}‘)‘
? ,!’ (X)

ASSEMBLER

st B o 22NN i NN A

PROGRAMMING

i G A NN i N

TAPE HANDLING

A product of Soft Corp for

Thinker
‘Toys"

Copyright 1977 Gary Fitts. Al rights reserved. 1201 10th St Berkeley, CA 94710

ATE

AN ASSEMBLER AND TEXT EDITOR
(AND CASSETTE OPERATING SYSTEM)

A stand-alone 8080 program development system designed
to run with Morrow's Micro-Stuff Speakeasy |/0 board

Features

One of the most versatile text editors ever writfen, ATE can edit any
kind of text from assembly language to "English" language.

ATE is completely programmable. You can create your own high-level
editing commands (or "edit macros"). Repetitious editing operations
or time consuming tape references can be run automatically.

The assembler can handle programs larger than memory, can produce
object code listings in any base you want (hex or octal or decimal or
whatever), and allows you to edit the object code easily even without
an object code listing.

ATE fits into 4K of memory and runs in 8K. More memory can easily be

utilized since everything (the symbol table, the source file area, etc.,)
is moveable.

Copyright 4/15/77 Gary Fitts. All rights reserved.

Contents

Introduction

ATE text editor
Design philosophy
Text addressing

Summary of text addressing'

An editing example
Line typing
ATE commands

4 Set the pointer
E Enter
K Kill
M Move
C Copy
Printing commands
" Quote
! Quote one iine
P Print
B Base
Quote numbers
? Where?
Memory file commands
F Flle
N New

0 Originate
Programming commands
D Do

> Goto
R Repeat
* Label

Error handl ing

QF Quit on failure

QS Quit on success

= Equals
X Execute

Program example

Contents

ATE assembler introduction

Assembler summary

Pseudo-ops

Error codes

N T ® > 6 Qe

Set &

Set $

Assemble the table
Generate object code
Hold the presses
Zero the table

Zlabel Zero the label
Z label Zero after

Tape handl ing commands

| ldentify
I(TITLE)
L Load
J Jump over
v Verify
S Save
T Title
W Write address
RS Resave
Tape handling examples
Gory details
Hardware requirements
Loading ATE

Initialization

10 patching

Sampie |0 patches

The tape driver

The user command table
ATE addresses
Functional descriptions

Memory map

Numerical values

Bugs

Command reference chart

34
46
46
47
47
48

48
49
49
49
49
50
50
50
51
51
52
52
53
53
53
54
54
54
55
56
56
58
60
62
64
64
68
69
73

Introduction

For the reader who enjoys learning a new language by total
immersion, here is an introduction to the text addressing
capabilities of ATE. Skip this part if you want -~ detailed

explanations follow.

n
.o

| CANNOT FIND MY WAY. THERE IS NO STAR
IN ALL THE SHROUDED HEAVENS ANYWHERE.
"(THERE). .

THERE 1S NO STAR

IN ALL THE SHROUDED HEAVENS ANYWHERE.
"..(DED)

I CANNOT FIND MY WAY. THERE IS NO STAR
IN ALL THE SHROUDED

"(TH) .. (H)

THERE IS NO STAR
IN ALL TH
"(TH) .. (H)..(0)
THERE IS NO STAR
IN ALL THE SHRO
"(TH).. (0)

THERE IS NO

"(IN). . (ED)

IND MY WAY. THERE IS NO STAR
IN ALL THE SHROUDED

"(IN)..(ED)

IN ALL THE SHROUDED

"(IN). .(ED)

IN ALL THE SHROUDED
"/(TH) .. (0)

THE SHRO

"/..(HE)

THE

"(IN)..(ED)/(TH)..(0)/.. (HE)
THE

".. (HE)

| CANNOT FIND MY WAY. THE

"..2(HE)
I CANNOT FIND MY WAY. THERE IS NO STAR
IN ALL THE
"..30)
I CANNOT FIND
"2¢)..3()
FIND MY WAY.
"-10 ..
ANYWHERE.
"-2()..
HEAVENS ANYWHERE.

"<

| CANNOT FIND MY WAY. THERE IS NO STAR
"+o €

IN ALL THE SHROUDED HEAVENS ANYWHERE.
"(HEAVENS)*

IN ALL THE SHROUDED HEAVENS ANYWHERE.
|l2<_*

IN ALL THE SHROUDED HEAVENS ANYWHERE.

"(A)ee(N)

AVEN

"()eee()
ALL

"2()eee()
THE

"20)...0)
FIND

"15e

M

"..15e

| CANNOT FIND M

""8oe
?

"().. (D)

. THERE IS NO STAR

IN ALL THE SHROUDED HEAVENS ANYWHERE.
"(+2..0.)-1

THERE S NO STAR

IN ALL THE SHROUDED HEAVENS ANYWHERE
" (HEAVEN)+1

EAVENS

"(C)..(D)
CANNOT FIND
ll<..>
CANNOT FIND

"

CANNOT FIND
"<

C

n

c

"(C)..(D)
CANNOT FIND
" > :

D

"

D

"(C)..(D)
CANNOT FIND
"<+2,.>=2
NNOT F1I
"(C)..(D)/<+3..
NOT FIND
">-2,.>+3
IND MY

ATE Text Editor

Design Philosophy
A text editor should be:

(a) easy to learn

(b) easy to use
(c) versatile enough to edit any kind of text.

Most editors available today fail at least one of the above tests.
For example, the most common kind of editor (from a hobbyist's point of
view) is probably the simple line editor present in all BASICs and -in
most assembly language systems. This is just dandy as far as (a) and
(b) above are concerned, as long as you limit your text to relatively
small computer programs. But large programs are difficult and time-
consuming to edit this way. And trying to edit non-line-oriented text
(such as this) is ridiculous.

At another extreme are well known editors (supported on large
computer systems) such as QED and its descendents. They are relatively
easy to use--once you learn how. But to the non-initiate, they appear
as such an ad-hocery of special conventions that few take the time to
learn to use them efficiently. And even these editors usually leave
something fo be desired as far as (c) goes.

ATE is an attempt to achieve (a), (b), and (c) in one editor.
(a), by syntactical logic and consistency more typical of a programming
language than an editor; (b), by keeping verbosity to an absolute
minimum and allowing immediate as well as programmed execution of all
functions; and (c), by imposing almost no restrictions on the contents
of a file and providing a very powerful and general text-addresssing
capability.

Basic edifting in ATE
There are really only a few operations involved in actual text editing.

Consider what is involved in writing a rough draft by hand:

En‘t‘o-inj (-’mse\’r'f"i'v\j') naw 'Tex'h

W'rif—im5 TLC txt/\ W@M

@ > new ‘Qcat'om.//arric'hmj exXis iv\j— 'Ex‘(_
w——/\

——

Mov fv\j exi s’f?u\j tx?"

S—

The operations illustrated here boil down to 3 basics: entering, killing,
and moving. (Writing the text in the first place is simply entering

into an initially empty file. Correcting consists of killing and then
entering the replacement.) What is needed to make these 3 basic operations
work effectively is a means of viewing tThe text and indicating what is

to be moved or killed, what the destination of the move is, or where an

entry is to be made. So we come tfo

Text Addressing

The examples in this section assume that we already have a text
file in memory. Initialization of new files and file storage and paging
will be covered later. Also, ATE commands will be covered in more detail

later. Most commands require an argument (or value). All the commands

use the same argument format, and this section is devoted to explaining
that format.

Suppose the file we are editing contains the following characters:
WRITING_THE_TEXT. ®® ENTERING_NEW TEXT.

Here we have used _ for a blank and € for a carriage return. When
printed out, the file would appear:

WRITING THE TEXT.

ENTERING NEW TEXT.

Suppose we wanted to eliminate the word THE from the file. The easiest
way to do this would be to use the Kill function as follows:
K(THE)

To understand how this works, we need the concept of an interval. Suppose
we knew that the characters THE occupied memory addresses 2009H, ZOOAH,
and 200BH. (H = hex.) Another (seldom used) way to kill THE would be

to type

K 2009H. . .200BH

(THE) and 2009H. ..200BH are both legal arguments to any ATE command, and
in this case, both would evaluate to the same thing: an interval beginning
at address 2009H and ending at 200BH. The evaluation process is quite

di fferent for these two arguments, however. In the second case, ATE would
not look at the contents of the file at all. I+ would simply evaluate
the two numbers (which we could also have given in decimal or octal,
straight or split; but more of that later) and pass those two values to

the Kill routine. The other argument involves a process called matching.

When ATE encounters an expression such as (THE) in a command argument,
it searches the file for a string of characters that match the ones
enclosed in parentheses. If found, the beginning and ending &ddress of

the string become the values of the expression (THE).

Suppose we want to kill THE,; TEXT, and ENTERING, leaving in the file only
WRITING NEW TEXT.

Here is one way to do ift.

K (THE)...(ING)

Note: Including the blank after the ING keeps the file from being left
with two blanks between NEW and TEXT. We could just as well have typed
K (THE)...(ING). Leaving a blank between the command K and its argument

is optional.

To evaluate this argument, ATE first finds a match for (THE), and then
seafches forward from there to find a match for (ING). Then it combines
these two intervals into a single one extending from the beginning of
the first to the end of the second. (The ... operator can of course be

shortened to .)

As may now be apparent, all ATE expressions evaluate at an interval.
For example, 2009H evaluates to an interval beginning and ending at that
address.

Suppose we want to kill the word TEXT in our file. It is apparent that

we need to be able to distinguish different occurrences of the same string.
To kill the first occurrence of TEXT, we need only type K(TEXT). To kill
the second occurrence and not the first (assuming we are sure that it is

the second occurrence we are after): K 2(TEXT)

The argument 2(TEXT) matches the 2nd~occurrence of TEXT. In general, N(
matches the N.I-h occurrence of the enclosed characters, as long és the
value of N is positive (less than 32,768). -1() will cause the search
to proceed backwards from the end of the file, matching the first
occurrence in that direction. -2() matches the second occurrence from

the end, etc.

But what if we aren't sure how many occurrences of TEXT there are, and we
don't want to count?

K (THE)... (ING)/(TEXT)

(This may look like a lot of typing, but +hings will get better.) This

brings us to the concept of a reference string. When ATE begins

evaluating an argument, it performs any required searches within the

current file. Thus, we say that the current file is the initial

reference string. But when ATE encounters a /, it takes the interval

that has been calculated so far and makes it the reference string. Any

subsequent searches will be performed within this new reference string.

The / operator may be used repeatedly, eg

K (THE)... (ING) /(TEXT)/(E)
This will Kill the E that is within TEXT that is within THE...ING.

To kill all occurrences of TEXT within the file, we use the Repeat command,

which is explained later.

)

Notice that giving a numerical address within an argument does not require
a search, so the following is legal: 0...4095/(ABC). This will cause

a search.for the characters ABC within the first 4K block of memory.

The initial reference string is still the current file, and this

probably does not contain the interval 0...4095. But since 0...4095

does not call for a search, there is no problem of not finding this
inferval within the reference string. When the / is encountered, this

intferval becomes the reference string.

Nofe: The following example assumes some experience with machine
language programming. Suppose that the first 4K block of memory does
not contain an ASCII source file at all, but instead a version of BASIC
whose 1I/0 routines we are trying to modify. Then we wouldn't want to
search for ASCII characters such as ABC, but for object code bytes
such as DB 00 E6 (hex). (This is the object code for IN 0, ANI). We
couldn't write 0...4095/(DB 00 E6), since this would search for the 8
enclosed ASCII characters. We need a delimiter other than parentheses
to tell ATE to interpret the enclosed characters as numerical bytes.
We use a number sign # for this: 0...4095/#DB 00 E6#

The bytes enclosed by the #'s must be expressed in the current
operating base, which is set by the B command (see command summary).
After typing B 8, we would type the above argument as 0...4095/#333 0 346# .

A feature of ATE that helps minimize typing: if a command needs an
argument, but none is given, the interval computed for the last
command is used. For example, here is a common editing operation.
First we view an interval of text to make sure it is the one we want.
To do this we use the quote command " .

" (THE)... (ING) } we type this.

THE TEXT.
ENTERING

The " command simply sends the addressed text to the terminal (inserting

} the compufer responds with this.

a line feed after a carriage return). After seeing the addressed text,
we.may decide to kill i+:
K

10

Since no argument is given, it kills the most recently computed interval,
namely (THE)...(ING). '

Suppose that after seeing the text, we decide that we only want to kill
the word TEXT within it (but not any other occurrence of TEXT within our
file).

K /(TEXT)

Remember that / takes the most recently comph+ed interval and makes it
the reference string. (Otherwise, the current file is the reference
string.) In this case, the most recently computed interval is THE...ING
from the previous argument. So the match will occur within THE...ING, if
at all.

Carriage returns occur frequently in most text, so there shouid be some
way to address them. Trying to enclose one in parentheses will not work,
since that would terminate the argument prematurely. We could use the
numerical value of the character, #D# (hex) or #15# (octal), but a more
convenient and mneumonic character has been provided: « . For example,
suppose we wanted to kill the first carriage return in our file (thus
combining the 2 lines into 1).

K<

Carriage return addressing is one wéy to address lines in ATE. The nfh

line extends from the n-ler carriage return to the nTh cr., not including-

the former. For instance, to quote the 3rd

line, we could type

"2«,.. & (although this will give us 2 cr.'s)

Recall that after a ..., the search proceeds forward from the interval
calculated so far., To view 4 lines starting at the second c¢r., we could
type

"2+. .. 4<—

Notice that this will quote 4 lines, not 2.

11

What if we want to kill the 3rd line without killing the cr. that
precedes it? Here is one way (although there is an easier way that
we will see shortly).

K 2<+1...«

nd

To kitl 4 lines starting just beyond the 2~ cr., we could type

K 2¢+1,..4«

Remember that all expressions in ATE evaluate to an interval, which
is simply a pair of memory addresses. I[nterval+l simply adds 1 to
both of these addresses. Thus, using our original example, (TEX)+1
evaluates to the same thing as (EXT).

What does (WR)...(XT.)+1 evaluate to? Does the +1 apply to everything
that comes before it, or just the (XT.)? Answer: just the (XT.).

The + operator has a higher precedence than the ... operator, so it is
performed first. Thus (WR)...(XT.)+1l extends from the W to the
character after the period (which is a cr in this example).

Here is another way to get the same interval: (WR)...(XT.)+

This introduces another -operator, concatenation. (XT.)+ matches the

first occurrence of the four characters X,T,period, and carriage
return. 3(XT.)« would match the third occurrence of this four-
character string. (As you can see, concatenation has a higher
priority than ..., and a higher priority than "occurrencing".)

Some further examples: «(PRINT)+1...« matches the first line beginning
with PRINT. (We'll see an easier way to do this.) (ABD)(DEF) is
equivalent to (ABCDEF). (ABC)«(DEF) is equivalent to (ABD)#D#(DEF).
No blanks are permitted between elements to be concatenated. In fact,
no blanks are permitted at all in ATE arguments, except within

literals, as in (ING).

12

Another means of line addressing in ATE is the ¥ operator. This takes an
interval and expands it to a full line. In case the interval crosses a
line boundary, it returns only the line containing the end of the interval.
For example,

K3«*

kills the third line. The interval 3¢« is a l-character interval contained
in the 3rd line. (It is the carriage return at the end of this line.)

* expands this to the entire line.

K<(PRINT)*

kills the line that begins with PRINT, not including the preceding carriage
return.

"(TEXT)* quotes the line containing the first occurrence of TEXT, whether
or not it begins the line,

"(TEXT)...(TEXT)*, using our original example, results in the computer
printing

TEXT.

ENTERING NEW TEXT.

Notice that the * operator has a higher priority than the ... operator.

There are a few more special symbols to make text addressing easier. @
matches any single character (as long as there is one left in the
reference string to match). (ABD)@(DEF) will match any occurrence of
ABC_pEF, where the blank contains any single character. Contrast this

to (ABD)...(DEF), which matches ABC thru DEF with any number of char-
acters in between. Using an argument of 72@ would not only give the

72nd character in the reference string, it would test whether or not the
reference string is at least 72 characters long. |f not, the match would

fail. (See the QF and QS commands for the consequences of match failure.)

What if we wanted to match the first 72 characters of the reference
string? (72@ only matches the 72nd, not the first 72.) Here is one way:
"...72@

This quotes the first 72 characters of the current file (if there are that

many). In general, ... at the beginning or end of an interval extends the

13

match to the beginning or end of the reference string.

K 2¢%/ ... (NEW) |

will kill everything in the 2nd line up To and including NEW.
K 77«*...

kills everything in the current file from the 771-h line on.

The symbols < and > refer to the left and right addresses of the most
recently computed interval. They do not call for any matching, they
simply return the appropriate address. K<+2...>=2 will kill every-
thing in the most recently computed interval except the leading and
trailing 2 characters.

When ATE begins computing an argument, a new value is assigned
To < as soon as the left address of an interval is computed. This
allows
"(DO YOU, MR. JONES?)...<+63, which quotes 64 characters starting
with DO YOU... The symbol > retains its old value until the end of
the interval is computed, either at the end of the argument or at a /.

Summary of text addressing

Most of the symbols below were covered in the preceding

narrative. The rest are covered elsewhere as indicated.

Operands that invoke matching:
() Matches the enclosed ASCII characters within the
current reference string.
Matches the enclosed bytes (expressed numerically
in the current operating base).
« Matches a carriage return.
@ Matches any single character.
Operands that return values without matching.
number 1234 (decimal), 1234Q (octal), OF12AH (hex). May
also be expressed in byte-oriented or "split"
fashion: 123:456Q (octal), 123:456 (decimal).
In both cases, the 123 gives the value of the

14

high order byte, while 456 gives the value of
the low order byte. 1:20 = 001:002Q. Note
that hex numbers are naturally byte-oriented:
12:34H = 1234H.

variable X, ABC, S123, POINTER, etc. May be any length.

l6-bit integer values. See the = command.

< Left address of most recently computed interval.

> Right address of most recently computed interval.

4 Address of entry pointer. See the command summary.
<F> The current file (beginning and ending addresses).
<S> The source code area--all files.

<T> The symbol table (see assembler).

<R> The record most recently read in from tape.

? The address of the most recent execution error

(see programming).

The numerical value of one or two ASCII characters,
e.g., '3'=63Q.

The assembly program counter.

$ The assembly storage counter.

Operators:
Highest priority:

Concatenation Applies when any matching=type operands are juxtaposed.
Middle priority (evaluated left-to-right):

+ Addition

- Subtraction

* Expands the end of the preceding interval to a
full line, Must be preceded in the same argument
by an interval-valued operand.

occurrencing Applies when a value precedes a matching operand.

1+Z2(ABC) is equivalent to 3(ABC).
Lowest priority (evaluated left-to-right):
‘e Combines two intervals into one. Can also be thought
of as an operand that matches any number of
characters. May be used repeatedly, e.g.,

15

(1 HAVE)..(PAVEMENT)..(BEFORE). This would
address the first 2 lines of the song "On
the Street Where You Live," where
(1 HAVE)..(BEFORE) would address only the
first line. Values connected by ... must
be in non-decreasing order. 5..3..7 would
fail. See the QF and QS commands. ...
may be shortened to a single .

Takes the most recently computed interval and

makes it the reference string.

An example
The following page presents a "typical™ editing session with

ATE (typical in its use of the editing commands, not in the inanity
of the text). The commands presented are E (enter), K (kill),
M (move), R (repeat), + (set the entry pointer), " (quote), and
' (quote one line). As each coﬁmand is introduced, please refer
to the command summary/for a detailed explanation of what it does.
Even more importantly, please make sure you have read the preceding
section on text addressing.

The > character at the beginning of a line is a prompt issued
by ATE when it is ready to receive a command. Note that bianks are
optional everywhere except within command arguments, where they

are illegal except within literals.

16
S>E(ENTERING NEW TEXT NOTES
WRITING THE TEXT
KILLING AND MOVING TEXT
ENTERING NEW TEXT
WRITING THE TEXT
KILLING AND MOVING TEXT
>0, M (WR)..(K), ". 3
WRITING THE TEXT
KENTERING NEW TEXT
ILLING AND MOVING TEXT
SK(K),K(IL) ..y, M.
WRITING THE TEXT
ENTERING NEW TEXT
>4(THE), ! 4
WRITING 4THE TEXT
SECIN),! 5
WRITING IN 4THE TEXT
>t4+1,! 6
WRITING IN THHE TEXT
>1~+7,' 7
WRITING [N THE TEXT+
>E(BOOK
IS FORBIDDEN), "..2« 8
WRITING IN THE TEXT BOOK
IS FORBIDDEN
>M"3e¥ 9
ENTERING NEW TEXT
SK/(TEXT), ".. 10
WRITING IN THE TEXT BOOK
IS FORBIDDEN
ENTERING NEW
>! 11
ENTERING NEW +
>K 4-1, ! 12
ENTERING NEW+
>E(CASTLE
IS RISKY), ™"..
WRITING IN THE TEXT BOOK
IS FORBI|DDEN
ENTERING NEWCASTLE
IS RISKY
>R99,K(I1S),E(WILL BE) 13
T
WRITING IN THE TEXT BOOK
WILL BE FORBIDDEN
ENTERING NEWCASTLE
WILL BE RWILL BEKY
>K 3(WILL BE), E(CIS), .. 14
WRITING IN THE TEXT BOOK
WIiLL BE FORBIDDEN
ENTERING NEWCASTLE
WILL BE RISKY
>4CIN)LE(M),M(ENT) .. (KY),E("),". 15
WRITING "ENTERING NEWCASTLE
WILL BE RISKY" IN THE TEXT BOOK
WILL BE FORBIDDEN

a—y

> 16

17

Notes

When ATE is first powered up, it initializes an empty file (among
other things), issues a prompt character > , and waits for a command.
In this case, the first command is an Enter. After typing the

third line, we typed a carriage return before typing the closing
parenthesis. This isn't strictly necessary, but if a file contains
more than one line, it is good practice To end every line, including
the last, with a carriage return.

In this example, we have used two dots .. for readability. Most
often, you will probably only want to use one dot for brevity.

+.. sets the entry pointer to the beginning address of its argument.
Since .. matches the entire reference string, and since the
reference string is the current file unless otherwise indicated,

+.. sets the entry poinfér to the beginning of the file. This
pointer q}so indicates the destination of an M (move) command, as
this example shows. (After the move, the pointer is updated to the
end of the inserted material, ready for additional entries or moves.
See #15 below.)

This introduces the single-quote ' command. See the command summary.
Note that we inserted 3 ASCII characters, and that the pointer was

updated past the inserted material,

. The character 4+, when used as a command, means set the pointer to

the beginning of the following interval. When used in an argument,

it returns the (old) address of the pointer. Thus #+1 is analogous
to X=X+1 with the = command., (But note that the t+ command does not

use an equal sign.)

This shows that ATE will recognize 4+7 as an abbreviated version of

+4++7. Note that the entry pointer is now set between the letter

T and a carriage return.

. Here we have asked ATE to quote everything in the file up through

the an carriage return, i.e., the first two lines.
Quote the line containing the Brd carriage return, i.e., the third

line. See the explanation of ¥ under text addressing.

Recal| that / takes the most recently computed interval (in this
case the 3rd line) and makes it the reference string. This way,

we won't kill any other occurrence of TEXT within the file.

18

Note that no matter where it was before, the entry pointer is left in
the position of the deleted text.

Here we are killing the character just before the pointer, again
leaving the pointer in the place of the deleted text. (The deleted
character was a blank.)

R means repeat. After 3 times, ATE could find no more occurrences of
IS, so it responded with a ?.

Here we are saying "kill the 3rd occurrence of WILL BE". In a large
file, we probably would have quoted the offending text, and then used

the restriction operator / .

. Notice that the entry pointer is continually updated throughout this -

process.

We have left 2 carriage returns at the end of the file, as we can see
by the empty line that was quoted there. éee the programming commands
for an example of an editing macro that can be used to clean up a file

that has accumulated adjacent carriage returns and blanks.

ATE Command Summary

Line Typing
Rubout Deletes the last character, echoing a back-slash \ .

Control-Z Deletes the line being typed, echoing a back-slash, carriage

return, and line feed.

Control-A While ATE is typing output or running a program, hitting any

key will halt the current process (without otherwise affecting
it) and wait for you to peruse the output (or whatever). A+t
this point, typing control-A will abort the process and return
control to the terminal. Hitting any other non-printing

character will continue the process where it left off.

Note: With the exception of the above three characters, ATE will
ignore whatever is being typed until the line is fterminated by a
carriage return. But if the line being typed exceeds 72 characters,
ATE will echo a back-slash after each additional character to

19

indicate that the character has been lost. The "terminal width"
can be set to less than 72 characters if desired (see the section
on initialization). |If the line being typed exceeds the terminal
width, ATE supplies a new line (crlf) automatically and lets you
continue typing the line (until the 72 character limit). The
automatic carriage return and line feed will not be part of the
fine.

The terminal width can be set to exceed 72 characters in
order to obtain a wider printout, but input lines will still be
limited to 72 characters.

If you set the terminal width too small, the printout will

not be wide enough to accommodate an assembly listing. In that

case, see the address LISTR in the appendix for a patch.

ATE Command Summary
Note: Most of ATE's power lies in the arguments that you can give

to its commands, not in the commands themselves.. All command arguments
have the same format, which is explained in the section on text

addressing.

Basic Editing Commands
4 "Set pointer." ATE maintains an entry pointer to indicate where

text is to be entered, or what the destination of a Move or Copy
instruction is. Using * as a command will assign the beginning
address of the argument to this entry pointer. For instance,
suppose that WRITING is the first word in the current file.
+(TING) will leave the eniry pointer pointing to the letter T.
However, it is customary to think of 4+ as pointing between the
T and the preceding I, WRIATING, since that is where entered
text will appear. So when you type +(TING), it helps to Think
"set the pointer to precede TING." .

20

The 4 character may also be used in an argument to reference
The entry pointer address. For instance, continuing the above
example, typing "4 would cause ATE to respond with a T. Typing #4+1
will increment the pointer. As a special case, ATE will recognize
the command?+| as an abbreviation of +4+1, not as an attempt to set
the pointer to the absolute address 1. (To do this, you could type
41.) You may use an absolute address (a number or a variable,
instead of a matching operand) and set the pointer outside of your
text files altogether. |In this case, the Enter command will behave
somewhat differently. See the Enter summary for a full explanation.

As is the case with all ATE commands that take an argument, 4
may be typed without an argument, in which case the most recently
computed argument will be assumed. For instance, after typing
"2¢«¥ t+o0 view the 3rd line, we could type 4,E(LABEL) to insert LABEL
at the beginning of this line. Or we could type 4>,E(COMMENT) +o
append COMMENT to the end of the line. |In fact, after viewing the
3rd line with "3<¥*, we could type the following:
4+,E(LABEL),4> ,E(COMMENT)

To accomplish both these operations. To understand why this works,
read about the Enfer and Move commands. In a nutshell: the Enter
command does not change the default argument. But it may cause
text to be moved (t+o expand the file), and whenever ATE moves any-
thing that it knows about (such as >, <, the file, the symbol
table, etc.), it remembers the new location.

The only commands that affect the position of the entry
pointer are: +,E,K,M,C,F,N,0, and L. 4 sets it to the beginning
of the addressed interval, K sets it to +he deletion point, and all
others set it to the end .of the interval in question.

"Enter." Text which follows the E command (as long as it is
properly delimited) is entered at 4, and 4 is set past the entered
material, ready for continued entry. The text fo be entered must

be delimited in the same manner as for matching-type operands:
parentheses around ASCII characters, and number-signs around numeri-
cally expressed bytes. These two types can be concatenated (with

no intervening space), as can the symbol <« for carriage return.

21

However, in contrast fto matching-type operands, the delimited
text can be many lines long, i.e., it can contain carriage returns.
Also, no matching takes piace. ATE does not compute any new
argument values for the E command, so the default argument (the
most recently computed interval) remains unchaﬁged.

The interpretation of what it means to "enter the text at
4" is necessarily different depending on whether or not 4 lies
within a fext (source) file. |If it does lie within a source file,
then we think of 4+ as pointing between characters (just before
the one it was addressed fto). The source file (and any adjacent
files in the source code area--see the memory file commands for
an explanation) is expanded and the given text is inserted. |If
4 is not in any source file recognized by ATE, then the given
text simply overwrites what is already in memory, beginning right
at 4. This latter operation is used most often in editing object
code (= machine language program). For an example of this, see
the # command.

It is legal fo include parentheses in the ASCII text to
be entered, as long as they are balanced, i.e., as long as they
occur in matched pairs. For instance, E(LET X=SIN(Y)) is legal.
It will enter all but the outer-most parentheses. |In ATE, this
feature is often used as follows. We might type:
E(*BLANKS, QF(), K<, (¥*BLANKS))
This enters a string of ATE commands (most of which we haven't
covered yet) into a file. Later, we might ask ATE to execute
these commands. Their effect would be to eliminate multiple
blanks in whatever file was then current. This is called an edit
macro, and will be covered with the programming commands.

Error handling: suppose that the current operating base
is 16, and you type E#C3 12 AX# . ATE will enter the C3 and
the 12, but it will not recognize the X as a legitimate base 16
digit. * will be updated past the entered 12, and an error
sign ? will appear at the terminal. Then you could type E#AC#

(if AC was your intention) to complete the operation.

22

"Kill." The addressed text is deleted, and % (no matter where i+t
was before) is set Té the deletion spot. Thus a Kill followed by
an Enter will replace the deleted text, with no need to use the 4
command. For instance,

K(SAMUEL CLEMENS), E(MARK TWAIN) replaces the first occurrence of
SAMUEL CLEMENS With MARK TWAIN. R999, K(SAMUEL CLEMENS), E(MARK
TWAIN) will replace all occurrences (unless the ftext is extra-
ordinarily repetitious of that name). (See the Repeat command.)

As with Enter, Kill behaves differently when used to edit
object code, i.e., memory data outside a text file. I|f the
addressed text is inside a source (text) file, then it is moved
outside the source file area, and the remaining source code is
compacted to fill the gap. (Thus the killed text is not actually
overwritten, and can be retrieved, until the next Enter causes the
source area to expand.) But if the addressed interval is outside
The source area, then it is zeroed, i.e., the addressed interval
is filled with zeros, and 4+ is left pointing to the first zero.

Machine language example: Suppose we have a version of
Basic whose input routine we want to change. From the documentation,
we know that it does teletype I0 using the Processor Technolcgy
standard ports (0 for status, 1 for data). We could load Basic at,
say, 3000H and then type the following:

K 3000H..5000H/#DB 00 E6#@@@E#DB O1#

E #CD E1 23# ‘

What we have done is put zeros (NOPS) in place of the old input code,
and then put in a call to our new input routine at the beginning of
this zeroed section. We used the four @'s so that we didn't have

To worry about what the mask was, whether the jump was a JZ or JUNZ,
and what the jump address was.

In actual practice, we would want to look at the code before
we zeroed it. See the # command for an example of this.

"Move." The addressed text is removed from its present location
and inserted at the entry pointer. The pointer is updated past the
inserted material, ready for additional moves or entries. If the

addressed text included any of the internal pointers known to ATE,

23

then these are updated fo their new location. These are: <F>

(the current file), <S> (the source area), <T> (the symbol

table), <R> (the record most recently read in from tape), <

(the left address of the most recently computed interval), >

the right address of the same), the user command table, the
command interpretation pointer (in case a macro is currently
executing), and any return or repeat addresses. The Kill command
uses the same subroutines to move text out of the source area, and
the Enter command uses them to expand the source area if necessary.

Example: To put lines 10 through 12 between lines 2 and 3,
23¢%, M 10<¥, 2« Or we could type
$2«¢+1, M 9«+1..3«
in either case, if we then typed a " command without an argument,
we would see the text that had been lines 10 through 12, but in
the new location. + will now be at the end of these lines, but
if we want it at the beginning, all we have to do is type %
without an argument (or type 4<).

As with the Enter command, Move behaves somewhat differently
when used to edit object code. |If 4 is outside the source area,
then the addressed interval is simply copied fo 4, overwriting
what is already there. This happens no matter where the addressed
interval is, and the original interval remains unchanged (unless 4
was within it). For example, to move the symbol table up ldb
bytes: 4<T>+100, M<T>
If you didn't want ATE to know about the new copy of the symbol
table, you would use the Copy command.

"Copy." This is a seldom-used command. |t copies the addressed
interval +o 4, overwriting what is already there, and updates 4
past the copied material. There are two differences between
this and the Move command. (A) Copy is insensitive to whether
or not 4+ lies within source code. Even if it does, Copy simply
overwrites what is there; it never expands and inserts. So you
will probably not want to Copy anything into a source file.

(B) Copy "hides" the new location of the copied material from
ATE, i.e., none of ATE's internal pointers are updated. One

- 24

examp le of when you might find this useful: you might want to
create a duplicate copy of (say) the current file somewhere else
in memory, without having that copy actually become the current
file.

Printing Commands
" "Quote." Sends the addressed characters to the terminal, inserting
a line feed after each carriage return. For exampile
>"(THE) .. (NEW)
THE TEXT
ENTERING NEW
If the ferminal prih+s garbage in response to this command, you have
probably given it an argument outside your source files. In that
case, you probably wanted to have the characters expressed numerically.
Use the # command for this.

! "Quote one line." Takes no argument. This quotes the line
containing the entry pointer, showing the position of this pointer
by a 4 character. The 1 appears just before the position to which
it is addressed, since this is where Entered or Moved text will
appear. For instance:
>AE T, ', E(ES), !

WRITING TH4AE TEXT
WRITING THES4E TEXT

Using ' does not affect the default argument.

P "Print." This is mainly used with assembly language programs. |t
prints the lines containing the addressed text in assembly language
format. Each line is given a line number (which is not part of the
text). The first line of the file is 1, the second is 2, etc.

Here is an example that shows the difference between " and P.

25

>"CIN). (MASK)
IN STATUS GET THE STATUS BYTE

ANT MASK
>P
79 INCHR [N STATUS GET THE STATUS BYTE
80 ANI MASK SCREEN OFF IRRELEVANT BITS
>"
IN STATUS GET THE STATUS BYTE
ANI MASK

Note that P only prints entire lines, even if the argument
does not come up to line boundaries. But this does not change
the default argument--it remains exactly as typed. (No
implicit * operation is performed.)

P can be used to get the line number of a non-assembly-
language line, even though the output will be strange. (The

listing can be control-A'ed.)

"Base." Sets the current operating base to the given value.
This does not produce any output itself, but subsequently all
numerical output will be generated in this base. The only
effect on input is that numerically-expressed bytes delimited
by #'s in command arguments must be expressed in this base.
The base may not be less than 5. Typing B8 gives you

octal, B1l0 gives decimal, and B16 gives hex.

"Quote numbers." This is similar to the "command, except that
the characters are expressed numerically in the current operating
base. The beginning address of the interval is printed,
followed by up to b (=base) bytes, and then followed if necessary
by more such lines. (This command is often called "Dump" in
other systems.)

Machine language example: (This expands the example
given with the Kill command.) Suppose we have a version of Basic
whose input routine we want to modify. From ifs documentation,

we know that it comes set up for teletype 10 using Processor

26

Technology standard ports (0 for status, 1 for data). We can load
Basic at (say) 3000H, and then look for the machine language code
for IN O, ANI _, followed by IN 1.

># 3000H..5000H/#DB 00 E6#..#DB Ol#

31DA DB 00 E6 80 CA DA 01 DB 01

>K, E#C3 #1 23#, #

31DA C3 E1 23 00 00 00 00 00 00

After looking at the code and deciding that it was what we wanted,
we zeroed it, entered a call to our new input routine, and then

looked at it again to confirm that the change was made correctly.

? "Where?" Prints the beginning and ending addresses of the argument.
For example, ?.. will give the addresses of the current file.
(Note: this works unless the file ié empty. .. is a matching
operator, and it will fail if the reference string is empty. On the

other hand, <F> is an operand that returns values without matching,

so ?<F> will always work.)

Memory File Commands

ATE keeps its text files adjacent in one area of memory,
called the "source area,'" denoted <S>. The left address of <S>
is ordinarily fixed (although it may be changed by M<S> or by an
0 command), while the right address varies dynamically in response
to enter and kill commands. <S> consists of a zero byte, followed
by the first file, followed by another zero byte, followed by the
second file, etc., ending with a zero byte. There is no limit on
the number of files. No separate file directory is maintained;
files can be accessed (via the F command) by addressing any of
their contents. By convention, files can be '"named" by entering a
uniquely identifying name as the first line. (The name should be
preceded by a * if the file is going to be assembled.) The F com=-
mand can then address this name. No check is made to keep <S> from
overflowing memory, but the user can periodically check ifs size

by typing 7<S> .

27

"File." This finds the file containing the given argument, makes
it current, and sets 4 to the end of the file. Unlike any
command covered so far, the initial reference string of this
command is <S>, not <F> . So for instance, F(WRITING) will find

the first occurrence of WRITING within the source area, and then

make the file that contains this current.

If for some reason you have memory files isolated from the
source area (by use of the 0 command, perhaps, or by loading from
a peripheral not recognized by ATE), you can access them by
giving an absolute address with the F command. Suppose you have

loaded a file from a disk at address 4000H. As long as the

limiting zeros are in place, you can type F 4000H . ATE will

look forwards and backwards for the limiting zeros. |f the given
address contains a zero, ATE assumes that it is the beginning of
the file.

After finding the file boundaries, ATE checks the
relationship of these boundaries to the source area. |f the
file is within the source area, it is made current, 4+ is set to
the end, and nothing else happens. But in addition, if one
edge of the file is within <S> while the other isn't, then <S>
is expanded to include the new file. |If the new file is
entirely outside <S> , then ATE forgets the old source area
(leaving it intact) and adopts the new file as the new source
area. The old source area can be recovered later by repeated

use of the F command, or with the 0 command.

"New file." Opens a new, empty file at the top of the source
area and makes it current, ready for entry. Specifically, a
zero is written into memory just beyond the last zero in the
source area. <S$> is expanded to include this new zero, and

the current file pointers and the entry pointer are set to the
empty file between these two zeroes. Note that N does not take

an argument.

28

0 "Originate new source area." Sets up a new source area at the given
address(es). |If only one address is given, as in O 3000H, then two
consecutive zeros are written into memory starting at this address
(at 3000H and 3001H, for example). |f two addresses are given, as
in O 3000H..36DAH, then zeros are written at these addresses. In
either case, the last (possibly empty) file of this new source area

is made current, and 4 is set to its end.

Programming commands
ATE can create (and edit) source files which are actually
strings of ATE commands. Later, these commands can be executed

by typing a D or > command addressed to the desired point.

D "Do." This is analagous to an assembly language CALL or a Basic
GOSUB. ATE remembers the location of this command, computes the
argument, and then starts executing commands at this address (the

beginning address of the argument). In computing the argument,

the initial reference string is <S> , ATE will continue executing
commands until it encounters an end-of-file or one of the Quit
commands, at which point it will return to the command following

the Do. |f there is no command following the Do and no previous
Do to return to, or if an error is encountered, control returns
to the terminal. See the end of this section for an example of
an ATE program using Do's.
Do's may be nested. To see how deeply they can be nested,
you could type the following:
N, E(X=X+1, D(X=X+1)), X=0, D(X=X+1)
This line creates and then executes an ATE program. The trouble
with this program is that it never lets ATE return from the Do.
I+ keeps executing Do's until ATE runs out of storage for return
addresses. At that point, ATE issues an error sign (a ?) and returns
control to the terminal. (See "Error Handling" for more information.)
You could then type #X or ?X to see how many Do's had been stored.
(Note: +the return address storage area is also shared by the Repeat

command.)

29

Notice that when ATE sees D(X=X+1), it does not immediately
increment X. Instead, it stores the return address, searches the
source area for the first occurrence of the string X=X+1i, and
then begins executing commands at that point.

Rather than address commands directly, as in D(X=X+1), we
usually address labels, as in D(*COUNT). See the * command below.
For maximum brevity, we can use a variable to hold the absolute
address of the desired command. We could say Y=(X=X+1) or
Y=(*¥COUNT), and later type DY. This is useful for often-repeated
edit macros (see the example at the end of this section). But
then we must be careful not to change the absolute location of
the command by some edit operation. Placing it at the bottom
of the source area (or in an isolated source area) will ensure
against this.

Caution: D(STRING) contains an occurrence of STRING. |If
you want to address an occurrence of STRING at some later point
in the program, you could use D 2(STRiING).

"Goto." Causes ATE to execute commands beginning at the given

address. Like Do, > may be used within a program, or it may be
used to start a program from the fterminal. Unlike Do, no return
address is stored, so ATE will never aufomatically return to the

succeeding command. As with D, the initial reference string is

<S> . (The only ATE commands for which this is true are F, D,
and > . Note that the initial reference string never includes
the command line being typed.) Here is a simple example. Note
that the prompt character is not a Goto command.

>N, E("(HELP, |*M TRAPPED IN AN INFINITE LOOP),>(")), >(")

This command |ine creates and executes a program that quotes
HELP, [|'M TRAPPED IN AN INFINITE LOOP indefinitely until

control-A'ed.

30

"Repeaf." May be used in a program or in the command line. |If
used in a program, the rest of the file up to an end-of-file zero
byte, or up to a Quit command (see below) is repeated the given
number of times. (If this value is 0, the following commands are
not executed.) When the repetition is exhausted, a return is
performed (to an outer loop or to a Do, whichever is more recent,
or to the terminal). For example:

N, E(S=0,N=0,R 100,N=N+1,S=S+N), D(S=0), #S
This creates and executes a program that finds the sum of the
intfegers 1 to 100.

When R is used directly in a command line, then the rest of
that line will be repeated the given number of times before con-
frol returns to the tferminal (unless an error or a control-A
forces an early return). For instance, R999,K(SOON),E(IMMEDIATELY)
will replace all occurrences of SOON with IMMEDIATELY and then
return with an error sign ? when it can find no more.
+0CCO0H, R1024, E() will clear the screen of your VDM (i.e.,
it will fill 1K of memory, beginning at OCCOOH, with blanks).

"Label." This use of ¥ is similar to its use in assembly language--
it tells the system to ignore the following characters. (This has
no relation to *'s use as a line operator in command arguments.)
When ATE encounters a ¥ as a command, it skips ahead to the next
command, ignoring all intervening characters. Thus these inter-
vening characters can be a mneumonic label for that point in the
program. For example, we could create a program as follows:

>N, E(*BLANKS, K(), EC), >(¥*BLANKS))

Later, whenever we wanted to eliminate double blanks from the
current file, we could type

> >(*BLANKS)

We could use a shorter mneumonic, of course. This program has the
defect that it will always end with an error, when no more double
blanks can be found. So it cannot be called by a Do command with
any hope of returning. For this we need the Quit commands.

Specifically, * causes ATE to skip ahead to the next blank,

Error

31

comma, carriage return, or end-of-file (zero), whichever comes
first.

Handling: Ordinarily, any error in a command argument causes ATE

QF

to stop an execution, issue an error sign ?, and return control
to the terminal. To see what caused the error, you could type
>t ?-5..7

This will quote 6 characters from the program, ending with the one
that ATE was looking at when it gave up. (Of course, any other
number of characters could be used.) For instance, suppose we
executed *BLANKS given above.

> >(*BLANKS)

?

> 2-5..7

K(C),

This shows that ATE was unable to evaluate the argument to the K
command, i.e., it could not find any more adjacent blanks in The

current file.

"Quit on Failure." In general, both quit commands (QF and QS)
mean "quit this subroutine." When the argument to QF is evaluated,

a match failure or a comparison failure will not abort the

program. Instead, it will cause a return to the latest Do or to
the terminal. In performing this return, one Repeat loop will
be broken, if present. |f Repeats are nested, the outer loops
will not be broken.

Examples: We can use this command to repair the defect

in our program ¥BLANKS mentioned above (with the ¥ command).
*¥BLANKS, QF(), K>, >(*BLANKS)
Now this routine can be called with a Do. As long as there are
adjacent blanks in the current file, this will Kill one of them
and loop. When it cannot find any more adjacent blanks, the QF
will force a return instead of an error.

Since QF will break a repeat loop, we could also write
¥BLANKS this way: *BLANKS, R9999, QF(), K>

QS

32

In addition to match failure, QF will force a return instead

of an error on a comparison failure. Values connected by ... must

be in non-decreasing order. So QF X..Y will succeed and continue
if X£Y, and will fail and return if X>Y. More than two values at
a time may be checked, as in QF X..Y..Z . QF X..Y..X will return
if X#Y.

"Quit on Success." This is the same as QF above, except that i+t
forces a return if its argument is successfully computed. If a
match failure or comparison failure occurs in the argument, then
execution continues. If any other kind of error occurs in the
argument, the program is aborted and control returns fto the ferminal.

For an example, see the end of the section on cassette commands.

"Equals." This is the only command that doesn't precede its
arguments. |t is used in the conventional manner to set the value
of a variable, e.g., X=X+1, POINTER=VALUE, S1=-1, etc. Blanks
around the = are optional. Variables can be any length, must
start with a letter, and may contain only upper case letters and
digits. Values are 16 bit unsigned inftegers. (So Sl=-1 is
equivalent to S1=0FFFFH) Any ATE argument (including no argument)
may occur to the right of the =. The variable on the left is
assigned the beginning address of the (default) argument. F=2(X=X+1)
assigns the address of the an occurrence of the string X=X+I| to
the variable F. X=, Y=> saves the current default argument in X and
Y (although it creates a new default argument).

Variables are kept in a symbol table shared with the assembier.
This allows you to set external references prior fo an assembly, and
to address object code symbolically after an assembly. See the Z

commands for more information.

"Execute." This is used to call machine language subroutines (as
opposed to D which calls ATE subroutines). The machine language
routine may end with a RET (as long as the stack has not been

lost) in which case X can be part of any ATE command line or program

33

Just like any other ATE command. You have between 20 and 40
stack levels (40 to 80 bytes) depending on how deeply nested
the Do's and Repeats are when the X is encountered. If your
routine loses the stack, it should end with a jump to address
SYS1 (see appendix). This returns control to the terminal
fgnoring any commands following the X.

Your routine can evaluate an ATE argument:
X ROUTINE X..Y, OTHER COMMANDS
Leave a space between the address of your routine (which you can
set with an =, e.g., ROUTINE=3456H) and the argument you want to
evaluate. X..Y can be any ATE argument. Your routine can CALL
address CVALS (see the appendix). On return, HL and DE will
contain the beginning and ending values of the argument.
Additional arguments can be evaluated by repeated calls to CVALS,
as long as the additional arguments are separated in the command
line by blanks, not commas or carriage returns.

User machine language routines can also be accessed by
entering a name and address for the routine into the user
command table (explained l|ater).

Example of a useful ATE program

This is a program (or "edit macro") to "clean up" an
English language file after extensive editing. Unless you are
quite careful when editing such a file, you will probably end
up with lots of adjacent blanks and very short or long lines
that will spoil the looks of the file when it is printed out.
Affer creating the following program, typing D(¥CLEAN) will
eliminate multiple blanks and fix the carriage returns so that
each line is < LENGTH long. (Don't forget to set LENGTH first,
e.g., LENGTH=72.)

¥CLEAN uses *hree subroutines: *CRS replaces all
carriage returns with blanks. *BLS eliminates multiple blianks.
¥INS fixes the line length.

34

*CRS, QF<, K, EC), >
*BLS, QF(), K>, >(*BLS)

*INS, QF 4..LENGTHE, K /-1(), E€, >(*LNS)
*CLEAN, D(*CRS), D(*BLS), +.., D(*LNS)

This program can easily be extended to detect special symbols and
replace them with new paragraphs (a carriage refurn and several
spaces), or new pages (several carriage returns, depending on the

number of cr's since the last new page).

Introduction to the ATE assembler

If you already have some experience with assembly language programming,
you should skip ahead and read the Assembler Summary. |If any of the summary
is unclear to you, then come back and read this introduction.

| f you haven't had any experience with 8080 machine language (in
particular, if you haven't learned the instruction mneumonics such as
CALL and XCHG and what they do), then you should read a text on 8080

machine language before continuing. -

This manual assumes that you know at least enough about 8080
machine language programming to code the following subroutine:

Take the byte in the memory location addressed by the HL

register pair, add it to the byte addressed by the DE

register pair, and store the result at the address in the BC

register pair.

If you were doing all your programming by hand through the front panel
keys or switches, you might first write down the mneumonics for the
desired instructions, look up their values in a table, and key these

values into memory:

Mneumonics Hex Octal
LDAX D 1A 032
ADD M 86 | 206
STAX B 02 002

RET C9 311

35

For this little subroutine, there is not much work involved. But
when you try to wrife larger programs this way, you begin to wish that
your computer could do some of the busy-work for you. The first step--
figuring out the instructions that will do thejob--is not always busy-
work. Sometimes this may involve ingenuity, But the second and third
steps are easily automated. Looking up mneumonics in tables and putting

the values where they belong in memory are the major tasks of an assembler.

Example I. Power up ATE and type the following. (The > sign at the
beginning of a line is a prompt issued by ATE when it is waiting for
a command. No prompt is issued while you are entering text. Notice

that we put each mneumonic on a separate line, and precede each one

with a blank. The reason for this will be covered shortly.)
>E(LDAX D
ADD M You type this.
STAX D
RET)
>G
0000 1A 1 LDAX D
0001 86 2 ADD M ATE responds with this,
0002 02 3 STAX B
0003 C9 4 RET

Here is what we have just done: We Entered the mneumonics into a file
in the computer's memory, and then we told ATE to Generate a machine
language program from these mneumonics. ATE stored the resulting
machine instructions in memory starting at address 0, and

printed out the hex code for each instruction along with the mneumonic
that produced it. (It also numbered these mneumonics for later
reference.) Of course, we could have told ATE to use some other
address than O --this will be covered later. And we could have told
ATE to use octal or decimal, rather than hex, by typing B8 or B10

(see the B command).

36

In order to use the subroutine fthat we have just written, we of
course need to call it. We don't want to write CALL 0 each time,

however. We want to give the subroutine a name and write the following:

CALL MADD

.
.

.

MADD LDAX D

ADD M

STAX B

RET
This way, we don't have to know the address of the subroutine while we
are writing the program--we can let ATE figure this out later.

Example 2. Type the following. (Notice that we are using some of the
text editing features of ATE. We will explain them briefly in the notes
below. They are described fully elsewhere in this manual.)

notes

>4, 1
>E(CALL MADD
* 2

*

MADD)
>", 3

CALL MADD

*

*

MADD LDAX D
ADD M
STAX B
RET
>P.
1 CALL MADD 4
2 *

37

3 *

4 MADD LDAX D
5 ADD M
6 STAX B
7 RET

Notes (1) * stands for the "entry pointer", i.e., the position in the
current file at which new text will be entered. The dot "." as it is
used here stands for the current file. 4. tells ATE to position the
entry pointer at the beginning of the current file. Note that the
current file already contains the mneumonics from example 1.

(2) An * at the beginning of a line (i.e., not preceded by a
space) has a special meaning to the ATE assembler. We can put
anything we want on the rest of the line (including nothing), and
the assembler will ignore the whole line. This lets us comment our
programs and "space out" the instruction mneuonics.

(3) ". fells ATE to gquote the current file. This shows us the
file as it resides in memory. Notice that the instruction mneumonics
are preceded by blanks, but the *'s and the subroutine label MADD are
not preceded by blanks. .

(4) P. tells ATE to print the current file. Spaces and line
numbers are added to the printout to make the assembly language easier

to read.

Example 3. Now let's assemble this program.

>G
0004 cp 00 00 A 1 CALL MADD
2 *
3 *
0007 1A 4 MADD LDAX D
0008 86 5 ADD M
0009 02 6 STAX B
000A 9 7 RET

38

The "A" in the first line of the program listing is an error message.

I+ stands for argument error: ATE did not know the value of the

argument to the CALL instruction, i.e., it did not know the address
of the MADD subroutine.

The problem is this: the assembler looks at the program one
line at a time, beginning with the first line. When ATE saw CALL
MADD, it had not yet come to the subroutine labeled MADD, so it
did not know what address to use with the CALL instruction. So it
simply used an address of 0 and flagged an error.

This is offten called the "forward reference" problem. One way
to solve it would be to have ATE look forward through the program,
counting instruction bytes until it comes fo MADD. Then it could
go back to the CALL MADD instruction with the correct address. But
the trouble with this is that the program might be on tape (if it
were too large for memory), and moving tape back and forth is very
time consuming.

To get around this, we would like ATE to look over the entire
program once, before it begins to print anything. This way it can
figure out the address of the subroutine MADD (and any other
subroutine) before it actually needs it. It can store the label
MADD together with the proper address in a symbol table. Then
later when it sees CALL MADD, it can look in this table to find
the appropriate address.

What this all boils down to is that the assembler can make two
passes over our program. On pass 1, it reads through the program
and constructs a symbol table, i.e., a list of labels and their
corresponding machine language addresses. Then on pass 2, it rereads
the program and actually generates the machine language instructions
and stores them in memory.

The command A tells ATE to do pass |. (it stands for Assemble
the symbol table.) It is not necessary if the program has no labels
(as in example |) or if the symbol table is already in memory
(possibly restored from tape). The command G (for ggneraTe machine
language) tells ATE to do pass 2. We can command ATE to do both
passes by typing A,G . (Most assembly language systems don't let

39

you command the two passes separately. They use a single command such as
ASSM where ATE would use A,G. But there are real advantages to the A,G

approach, as we will see.)

Example 4. The current file still contains the same program as in

example 3. Suppose we now type
>Z,A

The first command Z (Zero the symbol table) simply makes sure that we are
starting out with a clean slate. |t removes any old symbols that might
be left over from a previous programming session. (Sometimes we want to
save these symbols., More about this later.) The A command then does
pass 1 over our program and puts MADD (and any other labels) into the
symbol table. (Notice that this does not produce any printout.) To

see that ATE does know the address of MADD now, we can type

>7?MADD
00OE 0O00E

(To see why ATE responds with two values, try Typing ?MADD..MADD+9)

Now we can do pass 2 over our program.

>G
CO00B cp OE CO 1 CALL MADD
2 *
3 *
0COE IA 4 MADD LDAX D
COOF 86 5 ADD M
0010 02 6 STAX B
0011 C9 7 RET

This time there was no error. Note: we could have typed Z,A,G all

on one line to accomplish the same thing.

40

How do we tell ATE where in memory fto store the assembled machine
language? Actually, there are two problems here. (a) Where in memory
will the machine language program be located when it is executing? and
(b) Should the program be temporarily stored somewhere else first? For
instance, we might want to assemble a program that will begin executing
at address 1000H. But ATE itself begins at 1000H, so we would want the
assembler fto store the new machine language somewhere out of the way until
we are ready fo use it.

The symbol & stands for the "assembly program counter" (remember
that they both begin with an "a"). This holds the execution address of
the instructions being assembled. The symbol $ stands for the "storage
pointer" (remember that they both begin with an "s"). This holds the
address where the assembled instructions are being stored. (In many
assembly language systems, $ stands for both; the two uses cannot be
separated.) For example, we can use & and $§ as commands:
>&1000H, $0DO0OH
This tells ATE to set the assembly program counter to 1000H, and set the
storage pointer to ODOQ. Now, the next program to be assembled will be
stored at OD0OO, But it will have to be loaded at address 1000 in order to
execute properly. (In more detail: the next A command will assemble
the symbol table assuming that the program begins at address 1000. Thus
all CALL and JMP addresses will be based on this starting address.

The next G command will use the symbol table and generate machine language,

but will store this machine language beginning at 0000,)
Example 5. Let's write a new program.

>N

>E(FIRST LXI H,1234H

SECOND MVI A,1

JMP FIRST

JMP SECOND THIS IS A SILLY PROGRAM

)
>&1000H, $0DOOH, Z, A, G

41

Ioo0 21 34 12 1 FIRST LXI H,1234H

1003 3E 01 2 SECOND MVI A,1

1005 C3 00 10 3 JMP FIRST

1008 C3 03 10 4 JMP SECOND THIS IS A SILLY PROGRAM
Notice that the assembler allows us o fill out a line with comments.

The listing shows the machine code at the addresses for which it is

assembled, not where it is stored. We can check this:

>#ODOOH. . ODOAH (The number sign # command is called DUMP on most systems.)
ODO0O 21 34 12 3E 01 C3 00 10 C3 03 10

>#1000H. . 100AH

0000 €3 5F 1D 31 C4 OE CD 51 14 CD C3

We can see that the assembled machine language was stored at 0D00, not
at 1000 which still holds the beginning of ATE.

There is another way to fell ATE where to begin the assembly
or where to store the object code. (Note: object code = assembled
machine language.) We can put instructions to this effect right in

our assembly language program:

Example 6

>4,

>E(AORG 1GOOH

SORG QDOOH

)

~Z,A,G,
<000 1 AORG 0
1000 6D0O 2 SORG ODOOH
1000 21 34 12 3 FIRST LXI H,1234H
1003 3 01 4 SECOND MVI A,1
1005 ©3 00 10 5 JMP FIRST
1008 €3 03 10 6 JMP SECOND THIS IS A SILLY PROGRAM

42

AORG (Assembly ORiGin) tells ATE to assign the following value fo the
assembly program counter. SORG (Storage ORiGin) tells ATE fo assign the
following value to the storage pointer. These two assembly language

instructions are called pseudo operations, since they are not actual CPU

operations.

Another pseudo-op, ORG, affects both & and $. (It is included
mainly for compatability with other systems, which don't have AORG and
SORG.) Using ORG 2000H in a program will increment & to 2000H, and then
increment $ by the same amount (not necessarily to 2000H). That is, after
the assembler sees ORG 2000H, then &new = 2000H, and $new -9 = & -

old new
& . One reason for this is 1o allow you to use ORG fo reserve

s?égage space in the middle of your machine language program. For
instance, ORG &+100 would reserve 100 bytes.

An easier way to reserve memory space is to use the DS (Define
Storage) pseudo-op. DS 100 will reserve 100 bytes. DS, however, does
not put any information into the reserved space. To do this, use DB

(Define Byte), or DW (Define Word).
Example 7

>N, E(LHLD ADDRES
ADDRES DW SECOND,1234H
DB 12H,34H,'A','B'
)
>&0DO0H, $,A,G,
0DO0 2A 03 1D
0D03 03 17 34 12 2 ADDRES DW SECOND,1234H
0D07 12 34 41 42 3 DB 12H,34H,'A','B'

There are several things to notice in this example:

(a) In the command |ine &0DOOH,$,A,G, we didn't give any argument after

the $ command. As always, whenever a command argument is missing, ATE

uses the argument from the last command. We could have typed &0DOOH, $0.DOOH,
A,G, but that would have been redundant.

43

(b) We didn't Zero the symbol table before we gave the A command, so the
symbols FIRST and SECOND (from the last example) are left in the table,
along with their values of 1000 and 1003, So when the assembler sees DW
SECOND, it assembles that correctly.

(c) DW reverses the natural order of a fwo-byte word, as required by

the 8080.

(d) DB can be used to put ASCII characters into the program, as shown

above, but an easier way is to use the ASC pseudo-op:

Example 8

>N,E(ASC HELLO

ASC- BY-BY
)
>G
ODOB 48 45 4C 4C 4F 1 ASC HELLO

0D10 42 59 20 42 59 2 ASC- BY-BY

Note that to insert a space (blank) character in the ASCII string, we
signal that a dash (or any other non-alphanumeric character) will stand

for a space by putting the dash right after tThe ASC.
Example 9. Another important pseudo-op is EQU.
>Kl

>E(LXI H,ADDRES
ADDRES EQU 1234H

),Z,A,G,
0D15 21 34 12 1 LXI H,ADDRES
1234 2 ADDRES EQU 1234H

Notice that in this example, we killed the contents of the current
file and put new text into it, rather than leaving the old file in

memory and starting a new one as we did before.

44

The EQU pseudo-op puts the statement label (such as ADDRES above) into
the symbol table, and gives it the stated value. We can use the name ADDRES
many times in the program, and if we ever want to change its value, we need
only change the EQU statement. (However, we cannot change the value of
ADDRES from one thing to another within the same program, i.e., we can have

at most one EQU statement for each label.)
Example 10. The last pseudo-op is END.

>E(END
THE REST OF THE FILE CAN HAVE ANYTHING IN IT. THE ASSEMBLER WILL NOT GO
BEYOND AN "END" PSUEDO-OP.)
>n,
LXI H, ADDRES
ADDRES EQU 1234H
END
THE REST OF THE FILE CAN HAVE ANYTHING IN IT. THE ASSEMBLER WILL NOT GO
BEYOND AN "END" PSUEOD-OP.

>Z,A,6 A
0D18 21 34 12 1 LXI H,ADDRES

1234 2 ADDRES EQU 1234H
0D 1B 3 END

Assembly language format rules:

The assembly language program (or "source code") is a text file

containing lines, or "statements". Each line looks like this:

label opcode argument comment
or

* comment

(1) Lines may not begin with a line number, as they must in some systems.
However, a line number will be supplied with the program listing.
(2) 1f the first character (not the first non-blank character) is an ¥,

then the rest of the line is taken to be a comment.

45

(3) The label is optional. If the line does begin with a label, then the
first character in the line must be the first letter of the label. If
the line has no label, then the first character must be a blank. The
label must begin with a letter, and can contain only upper case letters
and digits.

(4) The opcode can be either a machine instruction or a pseudo-op. It
must be preceded by a blank.

(5) An argument is necessary for some opcodes. It must be preceded by

a blank, and it cannot contain blanks except within quotes, such as MVI A,' ' .
Here, MVI is the opcode and A,' ' is the argument.

(6) Anything after the argument is assumed to be a comment.

(7) The number of blanks (as iong as there is at least one) separating
the tabel, opcode, argument, and comment have no effect on the format

of the printout. This format may be changed by changing the tab stops

(see Initialization Data).
The assembler stops when it reaches an end-of-file marker or an END

pseudo-op. (Any byte that is numerically less than a carriage return

will be treated as an end-of-file marker.)

Assembly error messages:

A Argument error. This can be caused by an undefined symbol (i.e.,
a name not in the symbo! table, such as MADD in example 3) or by bad
syntax. Arguments are generally not computed during pass 1, so

this error message will be printed only during pass 2. Exception:
arguments of pseudo-ops are computed during pass 1, and may cause
this error message.

M Missing label. This occurs only if you use an EQU pseudo-op

without a label. This error message, along with the offending

line, will be printed during pass 1 and pass 2.

D Doubly-defined label. The label is already in the symbol
table, and you are attempting to change its value. The old

value is retained. This can happen if you have just assembled

46

a program, and you are trying to re-assemble i+ without first zeroing
the symbol table., Pass 1 -and 2.

L Label error--bad character in label. This can happen only if the
first character in the line is neither alphabetic, nor blank, nor
¥, (In particular, it can happen if the line begins with a number.)
The assembler gives up on the offending line, and 3 NOPS (zero-bytes)
are generated in place of whatever machine insfruction was intended.
Pass 1 and 2.

0 Opcode error. The opcode is not any recognizable operation or
pseudo-operation. 3 NOPS (zero-bytes) are generated. Pass 1 and 2.
The following summary of the ATE assembler contains some information

not covered in this introduction.

ATE Assembler summary

ATE contains an assembler based on the Processor Technology
assembly language format. However, lines must not begin with a line
number (although one will be supplied on the output listing). Oid line
numbers can be removed with a simple edit macro. Each line must begin
with a label, if it has one, or else with a blank. Labels can be any
length; the assembler will recognize all characters. But to keep the
listing neat, labels should be £ 6 characters. The label, opcode,
argument, and comment must be separated by blanks, and the argument
cannot contain blanks except within literals.

All instruction opcodes are standard. The pseudo-ops are:

ORG Sets the assembly program counter (&) to the given value, and
increments the code storage pointer ($) by a like amount.

$ $o|d' The ORG statement may be labeled, in

which case the lable will have the new & as its value.

&new -&old= new

AORG

SORG

DB

Dw

DS
ASC

EQU
END

47

"Address Origin." Sets & to the given value without changing §.

If this statement is labeled, the label receives the new & value.

"Storage Origin." Sets $§ to the given value without changing &.

A label receives the current value of &, not $.

"Define Byte." Standard, except that multiple bytes may be

defined, separated by commas.

"Define Word." Standard, except that multiple words may be

defined, separated by commas.

"Define storage." Standard.

"ASCII." Not standard. The ASCII string must be delimited by

blanks (but May end with a carriage return). To embed blanks

in the ASCII string:

LABEL ASC- HELLO-WORLD- COMMENT

Any non-alphanumeric character may be used in place of the -.
Finally, the character 4 has a special significance within

the ASCIT string. |t sets bit 7 of the preceding character.

This is useful in constructing tables. See the section on

The User Command Table for an example.

"Equals." Standard. May occur at most once for each label.

Standard.

Assembly errors: A--Argument error. Zero is used in place of the bad

argument. Pass 2 only.

M--Missing lable. Pass 1 and 2.

D--Doubly-defined label., The old value of the label
is retained. Pass 1 and 2.

L--Label error, bad character. 3 NOPS (zeros) are
generated. Pass 1 and 2.

0--Opcode error. 3 NOPS are generated. Pass 1 and 2.

Assemb ly Commands

Set the assembly program counter (which can be referenced by an
& character in opcode arguments) fto the given address. For
example, & 1000H. This command is superceded by an AORG or ORG

statement in the source code.

48

Set the code storage pointer (which can be referenced by a $
character in opcode arguments) to the given address. For example,
-$ ODOOOH. This command is superceded by a SORG statement in the

source code.

"Assemble the symbol table." This performs pass 1 over the current
file. The two passes of the assembler can be commanded separately
in ATE. This allows you to treat many different files as one
program. You can have a library of subroutines in source code

on tape, for example, and incorporate selected ones intfo a new
program by doing pass 1 over the desired files and then going back
and doing pass 2 over the same files. The total amount of source
code can be larger than memory, and there is no need to physically
cocatenate all the files before assembling them. Of course, both
passes can be commanded Ytogether by typing A,G.

Note that A does not ftake an argument. The assembly program
counter (&) and the code storage pointer ($) can be set before the
first pass over the first file either by the & and $ commands above
(e.g., &1000H,$ sets them both to 1000H), or by AORG, SORG, or ORG
statements in the source code. § does not need to be set for pass
1 unless it is referenced in the program.

If an error is detected, an error code (M,D,L, or O for pass
1) is printed, followed by the offending line. Otherwise, pass 1

produces no listing.

"Generate object code." This performs pass 2 over the current file,
storing object code in memory and producing a full listing. If &
and $§ were set previously, they do not need to be reset for pass 2--
ATE does this automatically. The object code listing is produced

in The current operating base (see the B command).

Example: (This uses the tape commands |dentify and Load,

which will be covered later.) Suppose we have 11 consecutive source
files on tape, which together would be too large to fit in memory.
But we do have room to fit them in one at a time, and in addition

we have room to store the 4K of object code they will produce.

49

(We could also put the code out onto tape--an example will be

given later.) We can assemble these files as one program by

Typing the following command |ines:

>&0, $0DOOOH, R11, I, L, A, K.. Then we rewind the tape and type

>R11, I, L, G, K.. We kill each file after we are
through with it to make room
for the next one.

H "Hold the presses." This is the same as G except that it

suppresses the listing of everything except the error Iines.’

Note that even without a listing we can look at and edit the

object code. Suppose that we want to look at the code for a

routine called INIT, which ends just before a line labeled READ.

We can type # INIT..READ-1, since these symbols are now in the

table. If we had assembfed our code at one address and stored

it at another, we could type

F=$-&, # INIT+F..READ-1+F

z "Zero the symbol table." Initializes a new symbol table
containing only the 8080 register symbols and their values.
(A=7,B=0,C=1,D=2,E=3,H=4, L=5,M=6,SP=6,PSW=6). After initiali-
zation, these symbols have no special status; they can be
removed (using Zsymbol) or redefined (using =) just like any
other symbol. Note: if the table was Moved (as described under
the Move command) then Z will initialize the new table at the

new address.

Zsymbol Zero the given symbol. This removes the symbol from the
table and compacts the table. For instance, Z INIT removes all
traces of INIT (and its value) from the table and compacts the

table, freeing 6 bytes of table space.

Z>symbol Zero after the given symbol. Removes all symbols from the
table that were created chronologically after the given symbol.
Before assembling a program, you can use this to remove conflicting

symbols from the table (from a former assembly of the same

50

program, say) without destroying previously created variables that
you want to save. There is usually no need to completely Zero the
table. For instance, suppose you have saved some names for your
often-used machine language routines (instead of putting these in
The user command table). |f the last such name to be saved was DOS,
they typing Z>DOS before an assembly will preserve these names while

giving you an otherwise clean slate.

Tape Hand!ling Commands

These commands are fairly simple--they were designed with the
realities of audio cassette recording in mind. But in combination
with ATE's multi-command line and programming capability, they are

quite powerful. See the examples at the end of this section.

I "{dentify." Identifies the next record on the tape (i.e., reads
the record header) and prints information at the terminal. For
example, if after loading ATE from cassette, you rewind the

cassette to the lead-in tone:

>1
1000 1FFF ATE OBJECT CODE COPYRIGHT 4/15/77 G.FITTS
This gives the addresses to which the record will load (unless you

specify otherwise), and the record title. The tape is now stopped
between the header and the record body, waiting for an L, J, or Vv
command.

Note: Every record on the tape consists of (a) a 5 second
lead-in tone, (b) the record header--256 bytes, approx. 9 seconds,
(c) another 5 second tone, and (d) the record body. When a tape
is first mounted, or affer it is rewound, you must position it
manually to the first lead-in tone. After this, ATE will automatically
start and stop the tape at the correct positions with no further need

for manual intervention.

I(TITLE) Searches the tape (forward) for a record whose title begins
with the given string. The entire title need not be given. For

51

example, I(ATE) would find the record mentioned above, as would
I(ATE OBJECT), etc. Header info from other records encountered
during the search is printed, so I(any non-existent title) will
catalog the tape. (The tape will run for about 1 minute beyond
the end of recorded material before ATE will stop it, issue an
error sign 7, and return control to the terminal.)

Note: Contfrol-A does not function while the tape is
running. But stopping the computer and restarting ATE at ad-
dress SYS1 will stop the tape. The tape must then be repositioned

to a header lead-in tone.

"Load." |f used without an argument (there is no default
argument in this case), the record is loaded at the address that
was printed in response to the I command, |If it is a source
file, Then this address is the top of the source area. In this
case, the file is loaded, the source area is expanded to include
the new file, and the new file becomes current with 4 at its end.
(That is, unless a checksum error occurs. See below.)

If an address is given with the L command, then the file
(source or not) is simply loaded to that address. Even if it
was a source file, it is not made current or incorporated into
The source area.

After loading, a checksum is computed across the loaded
record. An error will cause a ?7, and contfrol will return to
the terminal. |f the bad record was a source file, it will not
be incorporated into the source area or made current.

Of course, multiple tape commands can be included in the
command line or in a program, as for ahy ATE commands. 1,L
will identify and load the next record. T(BASIC),L,X<R> will
find, load, and execute that record (as long as its entry point
is the first byte). Note than an | command must precede an L,

although other non-tape commands can intervene.

"Jump over." Moves the tape past the previously ldentified record

and stops it.

52

"Verify." Checks the record byte-for-byte against memory, issuing
a ? at the end if there is any difference. To use this command,
first Save the record (see below), rewind the tape to the lead-in
tone for the record body, and type V. (Or you can rewind to the
header lead-in tone and type I1,V)

"Save." Takes an argument, and saves the addressed interval on
tape. For instance, S.. saves the current file. S<S> saves all
files. S1000H..1FFFH creates a new copy of ATE.

(A) If no title was given (see the T command below), then a
default title is used. For source files, this is the first
line of the file. For object code, this is the first 8 bytes.
(ATE labels a record "source" if it begins in the source area.)

(B) If no write-address was given (see the W command below), then
by default the write-address that is saved with the record is
the same as the address from which the record is saved. (This
address can always be changed at load time. It is irrelevant
for source files, which are always loaded onto the source area.)

(C) Records saved with the S command (including ATE itself) can
be loaded and executed by the ROM bootstrap loader on the
Morrow interface board. Simply set the tape to the ‘lead-in
tone and execute the bootstrap (address 815FH=201:137Q).

The sense switches play the following role:

If all switches are off, the program loads and executes
(as long as there is no checksum error). |f switch 0 is on,
the tape will stop after the record header has been loaded.
You can then change the load address from the front panel.
it is stored at address 8277H=202:167Q, low byte first. Then
turn switch O off and restart the computer from where you
stopped it.

After the load is complete, a checksum is computed, and
if in error, the computer enters a jump-self loop (C2 OC 82,
or 302 014 202). Otherwise, switch 7 is checked. f off,
the record is executed. |If on, the computer loops, reading
switch 7. At this point, you can go into the record from

the front panel and change its 10, or whatever.

53

And one more feature: after changing the |/0 or whatever,
you can create an updated tape of the same record by setting
your recorder to record and executing address 823EH=202:076Q.
(Of course it would probably be easier to load ATE and use it
to edit and save the new version of the record.)

(D) George Morrow's Speakeasy board can control up to three recorders.
ATE always reads from machine #1, and at first it also writes to
machine #1. But editing a tape is ften times easier with fwo
recorders. To make ATE write to recorder #2, type #QEF5H,

E#85#. For further details, see the sections entitled

"Initialization" and "Initialization Values".

"Title." |f used before the Save command (with no intervening tape
commands), this titles the record about to be saved with the given
text. The given text must be enclosed in parantheses. For example,
T(ATE OBJECT CODE COPYRIGHT 4/15/77 G. FITTS), S 1000H..1FFFH
will create the record mentioned under the t command.
Note That there is really no need to title source code, since
the default title (the first line) is the conventional title for

The file once it is loaded into memory.

"Write address." |If used before the Save command (with no interve-

ning tape commands), this sets the write address (load address) of

The record about to be saved to the given value. For instance, if

you copied ATE to ODOOOH (say), and then installed some of your

own custom patches, you could save the new version by typing:
T(PERSONALIZED ATE), W 1000H, S ODOOOH..ODFFFH

"Resave." |f used after a load (with no intervening tape commands),
this resaves the the record using the original title and load
address. For instance, if you had just loaded ATE at ODOOOH, then
typing RS would create a copy from this address that still had its
original title and load address 1000H

54

But if you typed S ODOOOH..ODFFFH, then the load address of the
new copy would be ODOOOH, and the title would be the first 8 bytes

of code.

Tape examp les

Here is a command |ine to search the tape for a record containing STRING.
R999, I, L, QS<R>/(STRING), K<R>

Here is a program (called *EDTAPE) to read through a tape, changing every
occurrence of STRINGL to STRINGZ2 and creating an updated fape. Note
that ATE must write to recorder #2 (as described under Save) to make this
feasible.

¥LOOP, QF(STRING1), K, E(STRING2), >(*LOOP)

*EDTAPE, I, L, D(*LOOP), RS, K<R>, >(¥EDTAPE)

If you want to assemble |10 files into a single program and you don't
have enough memory to store the assembled object code, you could type
the following lines:

&0, R10, $ODOOOH, I, L, A, K.. (Then rewind the tape)

&0, R10, $0DOOOH, I, L, W&, G, S ODOOOH..$-1, K..

Gory details

Hardward Requirements

To run ATE with no modifications, you need at least 8K of memory
beginning at address 0 and Morrow's I0 board connected to recorder #1
and to a teletype (or other 110 baud serial device). More memory is
desireable, as is a second recorder.

If you meet all the above requirements except for the baud rate,
then you can patch in the new rate by changing one byte. See below.

|f your terminal is not connected through Morrow's I0 board, you
can patch your own I0 routines into ATE by changing three jump instructions.

The procedure is described below.

55

If your tape recorder is not connected through Morrow's board,
then (assuming you can load ATE--see below) you can still use the
editor and assembler parts of ATE, but you won't be able to use the

tape commands, unless you patch in a new tape driver (see below).

Loading ATE

Assuming that you have the standard hardware described above,
proceed as follows: mount the ATE cassette in recorder #I| and
position the tape to the beginning of the first lead-in tone (about
25 seconds into the tape). Then execute address 815FH = 201:1370Q
with all sense switches off. The ROM bootstrap loader on the
Morrow IO board will read in a loader from the tape, which will then
load the ATE object code to addresses 1000H..1FFFH. This takes about
2-3/4 minutes. Then, unless a checksum error is detected, ATE will
begin executing, printing a prompt > character at the terminal.

(If a checksum error is detected, the loader enters a jump-self
loop: C2 OC 82 or 302 014 202).

If you can load ATE as above, but you want to patch the baud
rate or change the I0 before ATE starts executing, then turn sense
switch 7 on before the load is complete. This will prevent the
loader from passing control to ATE. When the tape stops, you can
make the patches as described below and then execute ATE from
address 1000H. .

If you want to load ATE through some other cassette interface:
ATE is recorded at 300 baud Kansas City Standard. .The tape consists
of (a) a 5 second lead-in tone, (b) a 256 byte header (approx. 9
seconds), (c) a 1/2 second gap, (d) another 5 second lead-in tone,
and (d) 4096 bytes of core image ATE object code, which should be
loaded at address 1000H. The 2 byte checksum for these 4096 bytes is
stored in the header. It is the 43™9 and 44" bytes of the header,
low byte first.

56

Initialization

ATE is written so that it can be stored in ROM. Consequently, you can
write-protect the 2nd 4K block of memory after loading ATE, if you want.
ATE keeps its variables, stack, etc., in RAM beginning at address OE60OH =
016:140Q, When ATE is executed from address 1000H, initial values for many of
These variables are copied into RAM. These initial values are stored
together in a list within ATE.

To make a permanent change in any of these values, you can make
changes within this list., (See the addresses appendix for the details of
this list.) To do this, you can load ATE with sense switch 7 on, make
changes from the front panel, and then execute from address 1000H. Or you can
let ATE begin executing, make the changes using the Enter command, and then
Type X1000H. In either case, you will want to make an updated copy of
ATE by typing T(PERSONALIZED ATE), S 1000H..1FFFH

If you don't want your changes to be permanent, you can alter the
desired data at its new location in RAM after initialization. (Again,

see the addresses appendix for these locations.)

10 PaTching

If you are using the serial port on the MMS 10 board and you simply
want to patch in a new speed constant, enter it at one of the addresses
given in the appendix (either the pre or post-initialization address, 1BAUD or SCON,
depending on whether you want a permanent or temporary change).

Three routines are required for terminal I0: (a) a character
input-echo routine, (b) a character output routine (which can be the
echo part of the first routine), and (c) a panic detect routine. ATE
accesses each routine through a single jump instruction, and a new
routine can be patched in simply by changing the jump address. See the
addresses appendix for the locations of these jumps.

The requirements for these routines are as follows: In every
case, the only CPU register that must be maintained is SP. You can
use up to 20 bytes of stack. (a) The character input-echo routine
should get a character from the terminal, strip off the parity bit if
necessary, echo the character (possibly by falling info the character

oquuf routine), and return with the character in register A. (b) The

57

character output routine should output the character in register A.
(c) The panic detect routine should RETurn to continue the current

process, or jump to SYS1 to abort it (see addresses appendix).

Suggestions:

The character output routine can drive a-different device than
the echo routine. For instance, commands could be echoed to your
CRT, while printouts (which come from the character output routine)

could appear on your hardcopy device.

Of course, ATE can changé 10 devices under program control by
entering a jump to the new driver at OTPAD (see appendix). For
instance, suppose that your hardcopy driver is located at ODOOOH,
while your CRT driver is at OEOOOH. You could create the following

edit macros:

¥HARDCOPY, X=+, + OTPAD, E#C3 00 DO#, +X
*¥SOFTCOPY, X=+, 4+ OTPAD, E#C3 00 EO#, 4X

Now, D(*HARDCOPY) can be used in a command line or in a program to
route output to the hardcopy device, while D(¥SOFTCOPY) will return
output to the CRT. (In each case, the entry pointer is saved and

restored.)

ATE can be used with a half-duplex terminal by eliminating

the echo part of the character input routine.

go0:000
BPB:662
0BP:004
V0087
000:011
606:613
P0B:014
Goo2016
PO0:020
PoB:023
Poo:024
Po:026

0od:027
PoG:031
bov:B33
Po0:034
Pod:036
poG:041
6od:043
000:044
>

Ve6:000
guB:001
000:100
gou:200
BoG:001
g20:063

Voo
160
Dev
8ol
177

333
346
312
333
346
17
333
346
312
176
323
311

Doo
200
014

Bol

333
346
319
333
315
376
300
363

go0
100
pol
oo
ol

B3

0o

boo

Lo

020

=Yoo AS WD
-

= b et
s WN

58

*SAMPLE IO ROUTINES FOR THE 3P+S

STATUS
DATA

EQU
EQU

6
1

DATAREADY EQU 44@H

PRINTERREADY EQU 8@H

ABORT EQU 1

SYS1
*

INECHO

OUTCHR
CGUTLOP

*
PANDET

EQU

IN
ANI
JZ
IN

ANI

Mov
IN

ANI
JZ

MOV
our
KRET

IN
ANI
RZ
IN
CALL
CpI
RNZ
JMP

1903H

STATUS

DATAREADY

INECHO
DATA
7FH
B,A
STATUS

STATUS PORT
DATA PORT

CONTROL-A
ATE RE ENTRY POINT

PRINTERREADY

OUTLOP
A,B
DATA

STATUS

DATAREADY

DATA
INECHO
ABORT

SYsl

Bew
Gey2
bowa
guod
POE9
UyuB
bbiBC
UEYE
B6le
dBl3
bilé
geleé

Gul7
walsg
biolB
woglc
YU lE
Bwzl
VY23
Puzd
>

By
BoBl
Y
bu8
byol
1863

£B
E6
Ca
DB
E6
47
Db
EG
CA
78
D3
C9

ok
E6
Ca
DB
Cu
FE
Co
C3

(587
4y
by
b1
7F
i
8
BC
bl
0o
4
1
Ui
vl
03

%%

16

= AL 00 SO U N
[

o
'.._0 -

~

b
RN

3N R e e
(Rl I [WS, I

[SN SN SR CH AN SN S S
T~ O U WK T

*SAMPLE IG ROUTINES FOR THE 3P+S

STATUS
LDATA

EQU ¥ STATUS PORT
EQU 1 DATA PORT

DATAREADY EQU 46H
PRINTERREADY EQU 8i6H

ABORT
5Ysl
*

INECHO

CUTCHR
OUTLOCP

*

PANDET

EQU 1 CONTROL=-A

EQU 16634 ATE KE ENTRY POINT
IN STATLUS

ANI DATAREADY

Jz INECHO

IN DATA
ANI 7Fh

1IN STATUS

ANI PRINTERREADY
Jz GUTLOP

MOV A,B

OUT DATA

KET

IN STATUS
ANI UATAKEADY
KZ

IN DATA
CALL INECHO

CpI ABURT
RNZ
JMp SY¥S1

60

The Tape Driver

If you don't have George Morrow's Interface board, you will have

to duplicate some of its onboard ROM software with your own tape

driver, and you will have 1o provide 512 bytes of memory at 8200H =
202:000Q.
ATE, since ATE contains code that executes within this address space.)

(This data buffer cannot be relocated without reassembling

ATE accesses its tape driver thru a single call instruction at

TAPCAL (see appendix and (5) below), and uses these conventions:

N

(2)

(3)

If bit 0 of the A register is 1, then a write operation is

required:

(a)

(b)

The HL register pair contains the beginning address of
the data to be written.
The DE register pair contains the number of bytes to be

written.

If bit O of the A register is 0, then a read operation is

required:

(a)

(b)

(c)

The HL register pair contains the beginning address of
the buffer where the data should be stored.

The DE register pair contains the number of bytes to

be read and stored.

If the C register equals 0, then the data should simply -
be read and stored. However, if the C register equals
1, the data should be read but not stored (i.e., the
tape should be advanced over DE bytes). If the C
register equals 40H, then the data should be read and
compared to memory beginning at address HL. [f a
discrepancy is found, a non-zero byte should be stored
at address DERR (see appendix). (In addition, you could
store the address of the offending byte at ERSAV. Then
one of the commands "?, #?, or ?? would give information

about this address).

If your tape interface is capable of detecting any physical

error conditions in your tape hardware, you can signal This

to ATE by storing a non-zero byte at SERR and returning.

61

(This is what allows ATE to signal an error after one minute of
listening to a blank or motionless tape.)

(4) 1f your tape interface has motion control, it should stop the tape
after each read or write operation.

(5) You will also have to provide a checksum computing routine. ATE uses
the routine CHECK on Morrow's 1/0 board, calling this routine twice
at CHECK1 and CHECK2 (see appendix). |f you want, you can duplicate
the code for CHECK, which follows. In any case, you will have to use
the same conventions.

(6) Finally, if you want the bootstrapping capability and the reproduc-
tive capability provided by each ATE record header, you will have to
keep your tape driver and checksum computer in ROM, and you will have
to provide a bootstrap loader in ROM that can read the 256 byte header
into TAPRAM and then branch there.

COMPUTE CHECK-SUM ROUTINE

Cal ling conventions:
(A) The register pair H-L is loaded with the starting address of
the data block on which the check-sum is to be computed.
(B) The register pair D-E is loaded with the word count of the
data block.
(C) The computed check is returned in the register pair H-L.
Including. the return address of the calling program, the routine uses
four levels of the stack.

814D E5 CHECK PUSH H SAVE ADDRESS POINTER

814E 21 00 00 LXI H,O0 INITIALIZE CHECK SUM

8151 44 MOV B,H

8152 E3 GDATA XTHL SAVE AND EXCHANGE/ADDR POINTER
8153 4E MoV C,M GET DATA

8154 23 INX H INCREMENT ADDRESS POINTER
8155 E3 XTHL SAVE & CGET PARTIAL CHECK SUM
8156 09 DAD B ADD NEW DATA

8157 1B DCX D DECREMENT WORD COUNT

8158 7A MOV A,D TEST FOR

8159 B3 ORA E WORD COUNT

815A C2 52 81 JNZ GDATA EQUAL ZERO

815D D1 POP D RESTORE STACK

815E (€9 RET

62

The user command table

The user command table is initially located at IUSRCT (see
appendix), but this may be changed at any time (see below).
Command names may be any length, and may contain any printing
ASCl1 characters. The only restrictions are:

(a) The last byte of each command name in the table must
have its high order bit set to 1. (Since the ASClI
code only requires the low order 7 bits, this does not
restrict your choice of characters.)

(b) The command name must be followed by the command
address, low byte first.

(c) The table must end with a zero byte.

You can create a user command table with the Enter command,
but the easiest way is to assemble it in place, as in the example
on the next page. Once you have created a table, you can save it
on tape (along with the object code for its routines), and re-
load it at any time. See the Save command.

When ATE is initialized, it writes a zero (= end-of-table
byte) at IUSRCT, and writes the address |USRCT into RAM at USRCT.
Thereafter, whenever ATE is given a command, it begins searching
at USRCT first before searching its own internal command tables.
Thus user commands can supercede ATE's. For instance, if you
create a command called PUNCH, ATE will not interpret this as
Print UNCH.

The user command table can be relocated in several ways.
You can always change |USRCT before initialization, or change
USRCT after initialization. If you already have a table occupying
addresses OEOOH..OEOCH, for instance, and you want to move it to
3000H, simply type 43000H, M OEOOH..OEOCH . ATE will realize
that you have moved the user command table, and will remember the

new location.

VVVVVVVVVYVVYV

>N,E(AORG GEGOH
SORG UEQUH START OF USER COMMAND TABLE
ASC PKCH™

Dw @DYk¥YH ADDRESS OF PNCH

ASC PAPR™

DW VEPYUYH ADDRESS OF

DB ©# END OF TABLE)

>

>G
816:060
Jdle:biDd

g16:000
Ble6:004
$16:006
vle:612
$16:614
>

>
>Bl16,G
WELD
BED®

PEGD
VED4
WEWS6
VEBA
BEBC

VVVVVVVVVVVVVVYVVVYV

016

12¢
Yo
126
2ow
BEd

VE®

5y
bo
59
b
787

1 737}

116 1©3 316
328
1l 1286 322
349

]

4E 43 C8
Dk
41 59 D2
E2

PAPR

N

~ O Ut W

63

ACRG
SORG

ASC
Dw
ASC
Dw
LB

AORG
SORG

ASC
DW
ASC
Dw
DB

YEGOH
GEGGH
PNCH™
LD ah

PAPR™

BEVOBH
]

RPEOOH
WEUDOH

PNCH™
POYUBH
PAPR™
BEYDBOH
7]

START OF USER COMMAND
TABLE

ADDRESS OF PNCH

ADDRESS OF PAPR
END OF TABLE

START OF USER COMMAND
TABLE

ADDRESS OF PNCH

ADDRESS COF PAPR
END OF TABLE

ATE addresses -- functional descriptions (numerical values follow)

IBOSA Pointer to initial beginning of source file area

ICODE Initial value of & and $

{BAUD Initial speed constant for Morrow's interface board

ISYMTB Pointer to initial beginning of symbol table

IBASE initial base for numerical input and output

IWCHNL Initial write channel -- ie, reg A constant for WRITE
calls to COPE (the ROM tape driver on Morrow's |0 board).
83H = 203Q for recorder #1, 85H = 205Q for recorder #2,
or 89H = 211Q for recorder #3.

IUSRCT Pointer to the beginning of the initial user command table.
(ATE writes a zero there during initialization.)

I INPAD Contains a jump to the initial character input-echo routine.

IOTPAD Contains a jump to the initial character output routine.

IPNPAD Contains a jump to the initial panic-detect routine.

IWIDTH Initial ferminal width

I TAB1 Initial TAB1; column number for labels

ITAB2 Initial TAB2; column number for opcodes

| TAB3 Initial TAB3; column number for arguments

1 TAB4 Initial TAB4; column number for comments

IALOFF Initial assembly source-listing offset; column number for
error flag (if any). The source listing follows to the
right of this column, with TABS 1-4 interpreted relative
to this column.

BASE Current base for numerical input and output.

WCHNL Current write channe!l (see IWCHNL above)

USRCT Pointer to the beginning of the current user command table

INPAD Contains a jump to the current inpuft-echo routine.

OTPAD Contains a jump to the current character output routine.

PNPAD Contains a jump to the current panic-detect routine.

64

65

WIDTH Current terminal width

TAB1 Current tab 1; column number for labels
TAB2 Current tab 2; column number for opcodes
TAB3 Current tab 3; column number for arguments
TAB4 Current tab 4; column number for comments

ALOFF Current assembly source-listing offset. The source code
is listed to the right of the object code, with tabs 1-4

interpreted relative to this offset.

ATERAM The beginning address for storage of ATE's variables and stack

BOSAP Pointer to the beginning of the current source file area

EOSAP Pointer to the end of the current source file area

BOFP Pointer to the beginning of the current file

EOFP Pointer to the end of the current file

ASPC Assembly program counter (&)

STCTR Assembly storage pointer ($)

SYMTB Pointer to the beginning of the current symbol table

TABA Pointer to the end of the current symbol table

CHPTR The entry pointer (4)

PNTR The command interpretation pointer

P1 ~ The beginning value of the argument (<)

P2 The ending value of the argument (>)

RECAD Pointer to the beginning of the fecord read in from tape

RECND Pointer to the end ot the record read in from tape

ERSAV Pointer to the character that caused a command interpretation
error (?)

PHD The column in which the print head is waiting

SYSO This is the beginning of ATE, ie, the entry point that
initializes everything. Jump here after power up. Typing
X followed by this address will re-initialize ATE.

SYS1 This is the re-entry point to ATE that avoids re-initialization.

VCHK

CVALS

VALUS

LISTR

MARGN

CHECK1
CHECKZ

66

This is useful with user-written machine language routines
called from ATE (via the user command table, or via an X
command). VCHK will return with the Z flag off if there is
an argument following the command, or with the Z flag on
if there is no argument. (See the X command for more info.)
This routine returns the values of any ATE argument that
follows a user command. The beginning value is returned

in HL, while the ending value is returned in DE. If there
is no argument, the values compuféd for the last command
are returned. Any error encountered will cause a ?-output
and will return control to the terminal. |f the user has
supplied several arguments (separated by blanks), These
can be detected by VCHK and evaluated by repeated calls

to CVALS. CVALS will not proceed beyond a comma, carriage
return, or end-of-file zero byte. The reference string for
any matching operands is the current file.

This routine is the same as CVALS with two exceptions:

you must provide the beginning and ending addresses of any
reference string in HL and DE; and in case of an error,
VALUS simply returns with the Z flag off.

A terminal width of less than approximately 50 (depending
on your tab settings) will not accomodate an assembly
listing properly. To remedy this, replace the CALL TAB
at LISTR with a CALL MARGN.

If you don't have Morrow's |0 board and you are supplying
your own tape driver, you will also have to supply a
checksum computing routine as described earlier in the
TAPE DRIVER section. Replace the CALL CHECK at CHECK1 and

CHECK2 with a call to your own checksum routine.

TAPCAL

TAPRAM

SCON
DERR
SERR

CHKSM
LODAD
LNGTH
TYPE

WUNIT

TITYP
TITLE

67

This is ATE's only call to its tape driver, so you can
patch in your own driver by changing this call. See also
CHECK1 and CHECK2 above and the "tape driver" section of

the manual.

Each | command, and each bootstrap load, reads a 256 byte
record header into this location.

Speed constant for the serial interface on Morrow's 10 board
DATA ERROR and STATUS ERROR. Before each tape driver call,
ATE sets these bytes to zero. On return from the tape
driver, ATE checks both bytes, and if either one is non-
zero, ATE signals an error and returns control to the
terminal. See the "tape driver" section for more info.
Note that ATE's checksum logic is independent of these
bytes.

The record checksum

The record load-address

The record length

The record type: an ASCI! 'S' for source, 'B' for binary
The recorder (see WCHNL) that will be used if the
reproductive capability of the record header is invoked.
See the Save command for more info.

The type of the record title. See TYPE above.

The title that was given at Save -time, if any, or else

the first 128 bytes of the record.

68

ATE memory map: standard initialization, minimal 8K system

200H

400H

OEOOH

OE60H

1000H

2000H

8000H

8200H

8400H

ob ject
code

area

512 bytes

symbol
table
area

512 bytes

source
file

area

2560 bytes

user
command
table

96 bytes

ATE
RAM
416 bytes

ATE
ROM
4K bytes

Tape
ROM
512 bytes

Tape
RAM
512 bytes

002

004:

016

016:

020:

040

200

202

204

:000Q

000Q

:000Q

1400Q

000Q

:000Q

:000Q

:000Q

:000Q

A

These addresses can
be changed from the
terminal at any time.

o | -

These addresses can
be changed only by
reassembling ATE.

©35:224
¥35:226
B35:230
¥35:232
#35:234
635:235
§35:236
035:240
B35:243
635:246
835:251
635:252
¥35:253
§35:254
#35:255
935:256

816:364
816:365
¥16:366
¥416:370
©16:373
016:376
Bl7:001
B17:662
B17:063
Bl7:0064
B17:085
61l7:066

pl6:1498
16:322
#16:326
"9l16:332
816:336
£16:320
$16:324
016:362
v16:356
Gl6:342
¥W16:366
v16:312
£l6:316
£16:3406
8162352

Doy
poY
254
poY
g1
293
by
303
363
383
11¢
01l
w17
Dz4
635
625

b4
Uoo
B
B2

w16
345
263
202

Bubd:061
bEv:Pdl
Vo092
o663
Ghb:663
dpB:663
Pob:001
Bub:001
BPb:v61
Guo:001
Bp0:0061
buv:6d1

Pls240
PoY:062
Boib:0D2
Cubsbu2
w002
Vo Pb2
bho:bi2
bbb:BB2
bud:dD2
Bbv:gbe
o2
Ppd:0b2
Pov:bBL2
Yob:0062
P2

217
2061
027

W0 00O Ul W N
- =

-

[y
W N

69

*ATE ADDRESSES -- NUMERICAL VALUES
*

*

*THE FOLLOWING ARE COPIED INTO RAM
*AT INITIALIZATION TIME

*

18OSA
ICODE
IBAUD
ISYMTB
IBASE
IwCHNL
IUSRCT
IINPAD
IOTPAD
IPNPAD
IWIDTH
iTABl1
ITABZ
ITAB3
ITAB4
IALGFF
*

bw
DW
DW
Dw
DB
LB
DW
JMp
JMP
JmMp
LB
DB
CB
DB
DB
DB

499H
0
BACH
260H
8

8 3H
OEWOH
MINPT
SROUT
PANIC
72

8

15

20

29

21

*STARTING wITH IBASE, THE ABOVE
*VALUES ARE COPIED INTO THE
*FOLLOWING RAM LOCATIONS

*

BASE
wCHNL
USRCT
INPAD
OTPAD
PNPAD
wWIDTH
TAB1
TAB2
TAB3
TAB4
ALOFF
*
*OTHER
*
ATERAM
BOSAP
EOSAP
EOQOFP
ECFP
ASFC
STCIR
SYHTE
TABA
CHPTK
ENTR
Pl

P2
KECAD
KECND

DS
DS
DS
DS
uSsS
oS
DS
LS
Us
bS
DS
LS

b bt b b bt WO W W R b

LOCATICNS IN ATE KAM

DS
DS
DS
Ds
DS
DS
DS
oS
LS
o5
bs
LS
DS
us
DS

209+BUFLN+BUFLN+BUFLN

Y

NN NNNNDRNDNDNNDNN

616:354
B17:832

B20:000
B20:603
¥21:014
G21:925
021:163
G33:0975
B27:260
@34:06061
$34:122
#34:164

202:000
2832363
2@3:365
203:366

202:052
202:167
202:171
282:173
202:174
202:175
202:176

VVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

0B0:002
boB:BV2

363
661
315
315
257
315
257
315
315
315

137
344
B85
v67

222

115
115
612

VY2:090
Vod:062
boo:0B1
060001

WobB:002
Bob:0B2
BoG:002
Be6:001
WoB:001
bbUs061
bbo:2062

W35
blé
B30
bzl
¥31
2ol

201
201

70

ERSAV
PHD
*

DS
bS

2
2

*ADDRESSES INSIDE ATE

*
SYSU
SYsl
VCHK
CVALS
VALUS
LISTR
MARGN

JMP
LXI
CALL
CALL
XKA
CALL
XRA

CHECK1 CALL
CHECKZ2 CALL
TAPCAL CALL
*

*ADDRESSES IN THE TAPE RAM

*

TAPRAM DS

SCON
DERR
SERR
*

*THE
*WITH
*
CHKSM
LODAD
LNGTH
TYPE
WUNIT
TITYP
TITLE

LS
DS
DS

DS
DS
DS
DS
bs
DS
DS

INIT
SP,STACK
SBLK
FVALS

A

TAB

A

CHECK
CHECK
COPE

512
2
1
1

FOLLOWING ARE LOCADED
EACH RECORD HEADER

2
2
2
1
1
1

TAPRAM+256-&

71

\Y4

*ATE ADDRESSES -- NUMERICAL VALUES
*
*

*THE FOLLOWING ARE COPIED INTO RAW
*AT INITIALIZATION TIME
*

IBOSA Dw 460H

ICODE DW ¢

IBAUD DW WUACH

ISYMTB bW 208H

IBASE DB 8

IWCHNL DB 83H

IUSRCT Dw WE@@H
IINPAD JWE MINPT
IOTPAD JMP SKOUT

1D94 be 04
1D96 vo 60
1D98 AC 00
109A b B2
1p9cC 08

109D 83

1D9E B BE
1DAB C3 E5 17
1DA3 C3 B3 81

bt bt e = OG0 S OY U1 N
Vs WIS i

1DAb C3 82 17 16 IPNPAD JMP PANIC
1DA9 48 17 IWIDTH DB 72
1DAA U8 18 ITABl DB 8
1DAB BF 19 ITABZ DB 15

1DAC 14 298 ITAB3 DB 29

1DAD 10 21 1TAB4 DB 29

1DAE 15 22 IALOFF DB 21
23 *
24 *STARTING WITH IBASE, THE ABOVE
25 *VALUES ARE COPIED INTO THE
26 *FOLLOWING RAM LOCATIONS
27 *

YEF4 Y6l 28 BASE DS 1

GEF5 Boel 29 wCHNL DS 1

QEF6 VoY2 36 USKCT DS 2

QEF8 U3 31 INPAD DS 3

PEFB VB3 32 CTPAD DS 3

GEFE gpe3 33 PNPAD DS 3

HFEB1l Cubl 34 wIDTH DS 1

OFp2Z BEwl 35 TAB1 DS 1

PFB3 bLol 36 TAB2 DS 1

OFd4 BEBl 37 TAB3 ok} 1

UF@5 Pl 38 TAB4 DS 1

BFG6 Yl 39 ALOFF DS 1
4¢ *
41 *OTHER LOCATICNS IN ATE KAWM
42 *

WE6D plAag: 43 ATEKAM DS 200+BUFLN+BUFLN+BUFLN

WED2 b2 44 BOSAP DS 2

PED6 Yob2 45 LOSAP DS y)

YEDA Budz 46 BOFF DS 2

YELUE VP2 47 EOF¥ DS 2

YELDG Bovz 43 ASPC DS 2

JED4 PoY2 49 SICTR LS 2

WEF2 Bow2 50 SYuTh DS 2

GYEEE BYv2 51 TARA LS 2

WEEZ2 B2 52 CHPTR LS 2

PEC6 Vo2 53 ENTR s 2

YECA VB2 54 rl DS z

YECE Pou2 55 p2 DS p)

BEEG b2 56 KECAD DS 2

GEEA
gEEC
OF1A

léwe
1vw3
11eC
1115
1143
1B3D
1780
1C31
1C52
1C74

8261
83F3
83F5
83F6

82zA
8277
8279
8278
827C
827D
827E

VVVVVVVVVVVVVVVVVVYVYVYVYVYYVYV

P02
DE02
Db62

C3
31
Ch
Cp
AF
Cb
AF
CL
Co
Cb

5F
C4
05
37

92
4D

40
ba

0200
Bubz
vowl
Bewl

0662
D002
P
TN
be6l
Dbl
82

10
BE
18
11

19
81

81
8l

57
58
59
60
61
62
63
64
65
66
67
63
69

71
72
73
74
75
76
77
78
79
8
§1

83
84
85
86
87
88
89
S¢

72

RECND DS 2

ERSAV DS 2

PHD BS 2

*

*ADDRESSES INSIDE ATE

*

SYSy JMp INIT

5YSs1 LXI ©5P,STACK

VCHK CALL SBLK

CVALS CALL FVALS

VALUS XRA A

LISTR CALL TAB

MARGN XKRA A

CHECK1 CALL CHECK

CHECKZ2 CALL CHECK

TAPCAL CALL COPE

*

*ADDRESSES IN THE TAPE KRAM
*

TAPRAM DS 512

SCON DS 2

DERR DS 1

SERR bS 1

*

*THE FOLLOWING ARE LOADED
*nITH EACH RECORD HEADER

*

CHKSM DS
LODAD DS
LNGTH DS
IYPE LS
wUNIT DS
TITYP DS
TITLE DS !

D NN

]

'APRAM+256-&

Bugs

73

#FF#@ doesn't work properly as a command argument. Using the any-

character matching operand @ cocatenated with numerically
expressed bytes will conflict with an FF byte, if there is
one within the # signs. (It will cause the FF byte to match
anything.) Rule: don't use FF and @ together.

OPCODE COMMENT does not print properly when the opcode requires no

argument. The print routine does not know which opcodes
require arguments and which don't, so in this case the comment
will be printed in the argument field. Rule: if you want to
comment a line where the opcode doesn't require an argument,
use some visually inoffensive character (such as a period)

as the 'argument'. This won't affect the assembly, and the

line will list correctly.

ASC TOO-MANY-CHARACTERS will assemble correctly but will not Ilist

correctly. Instead of keeping the object code in its proper
columns, the listing will allow the object code to run over
intfo the source code columns, displacing the source listing
of that line to the right. Rule: to keep a hex assembly
Iisting neat, use 5 or fewer ASC characters per line. For
an octal listing, use 4 or fewer. Or, more characters can

be accomodated per line by increasing ALOFF (see appendix).

DB too many bytes, and DW too many words: same comments as for

ASC above.

Takes an arqument? Reference string See page

Basic editing

4 Set the pointer Y¢S .eeceevees.s current file ceoeveees 19
E Enter cocecececeneeee MO tevrenosescocsccescssssssscscovnnees 20
K Kill cecieeeesecesese Y8S cuvevaesnssss current file coveeeees 22
M MOVE tocvevecccncenns YES seeeseeaesess current file .o.ovvene 22
C COPY ¢eovecescccccnce ¥8S cevevesseess current file .ooveaaas 23

Printing

" QUOTE ceveeececnenece YES ceveeenssss. current file coveeeees 24
Quote ONE 1iNE seeeee MO civerveevtttscenccccsacanseasanocacee 24
Print coceeececcceces ¥8S ceeesacesecss cUrrent file coeeeee.. 24
BaSE cesecaencecsoses YES ceveeesssssslcurrent filedieieeeees 25
Quote nNnumberse ¥8S c.ceveeseses current file cvveveoee. 25
Where .ccceeecveescee Y85 ceveesnseses current file covveeees 26

WPV -

Memory files

F o OFile coceceeecccecees YES covevacssces SOUNCE Ared cesvcesces 27
N mw 0 000 00000 00s e no LB I I R I BB B I IR IR I I I IR Y B R B Y) 27

O Originate ccceeeeeeee ¥8S veveesesesss current file covevee.. 28

Programming

D DO civerecevcecssssee YOS caceccesccae SOUNCE Ar€A coveeoceese 28
> GOTO tieecececcscssess YES cerscescesse SOUMCE Ar€A ceeovseces 29
R Repeat ..cceeeveecess ¥Y8S ceveeesssssolcurrent filedoeeoeoooe 30
¥ Label ciceccesceccrce NO cevessecesssoccsccncsccnsccscscsascss 30
QF Quit on failure .ecee Y85 coveeeeeesss current file cceeeeees 31
QS Quit on succesS .ccvee ¥8S ceessansees. current file cvoveeeee 32
= Equals ceeieeccceence Y8S ceveeeeesses current file .cocvee.. 32
X Execute ..ceesecceces Y8S cusseesssssslcurrent file)oooeoeeoo. 32

Assemb | ing

Set & tiiceccccsccees YES ceveseseesss current file coveeee.. 47
Set $ teevecerccccece YBS ceveesesssse current file coveeee.. 48
Assemble the table .. NO c.cieecerervererrcccnscnccnne ceacane 48
Generate object code NO ..eieeesrseconcececssasssssssccnsass 48
Hold the presses ...c. NO ceeeieececcecesnesoscsconnsnsnsasssnss 49
Zero the table cteeeee NO ceiereencceesscscsscscccsascaccacnses 49
Zlabel Zero the label .. NO teiececreccesrcccsccaseresscsscceees 49
Z label Zero after c...co NO cieieeeserseceeccacacccsacnsensesnnees 49

Tape handling

| 1dentify ceeeeesccses MO ticieevencossecscocesscsosscsnsnsees 50
I(Title) ceeveveseccccase MO tiecoceosscssennnsssssssscassssnsess 90
Load eiceeeeeeceessss Optional current file «cecevv.. 51
JUMD OVEIr tivceeaccee NO teveeceansecocensscsasccsasssnsancns D1
Verify coeeeeeceeceee MO teveececscocccsascnvcnssnnsonacnssne D2
SAVE cevevervcessscss YOS sessescecess cUrrent file cveeeeees 52
Title ceeevecsnccsces NO ceveeccnocassnncacea teecsessnae ceese B3
Write address «scceees ¥Y8S teeeeesesess current file ccveeeee. 53
RESAVE sevecscrccsese NO tevsescsssostcccosvssssassssssassssse DI

NI G®>ope

BE—An<er

