
MSC 8303
MONOLITHIC SYSTEMS OPERATING SYSTEM

USER'S MANUAL
(MSOS)

"Infonnation contained in this manual is disclosed in confidence
and may not be duplicated in full or in part by any person without prior
written approval of Monolithic Systems Corporation. Its sole purpose is
to provide the user with adequately detailed documentation so as to
efficiently install, operate, maintain, and order spare parts for the
system supplied •. The use of this document for all other purposes is
specifically prohibited."

COPYRIGHT © 1978 BY
MONOLITHIC SYSTEMS CORPORATION

14 Inverness Drive East

Englewood, Colorado, 80112

(303)-770-7400

CHAPI'ER 1 - GENERAL • • • •
Introduction

. • • • • 1-1

Start up procedure

CHAPI'ER 2 - OPERATION •
Command Format
Files
N1..Ureric Fields
Special Character Functions

CliAPrER 3 - SYSTEM CX>MMANDS • • • •
ASSIGN
BLOCK
CONTINUE
DATE
DUMP
ECHO
EXAMINE
FILES
ooro
HEXIDAD
IO (Z80 version only)
IDAD
JAM
MODIFY
NAME
NEWDISK
PUNCH
REGISTERS
RUN
SAVE
SWAP (Z80 only)
VERIFY
ZAP

1-1
1-2

2-1
2-3
2-4
2-5

3-1
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-7
3-7
3-8
3-9
3-9
3-9
3-10
3-10

• • • • 2-1

•••• 3-1

CHAPTER 4 - USER ACCESS TO THE MONITOR. • • • • • • 4-1
Performing user I/O 4-1
Adding user devices 4-4
Adding user commands 4-5

APPENDIX A - SYSTEM ERROR OODES • • A-1

APPENDIX B - USEFUL ROUTINES • •
APPENDIX C - SOF'IWARE BREAKPOINTS AND USER

INTERRUPTS. • • • •

APPENDIX D - HEXI.O.l\O BINARY FORMAT ••
Z80
6800

APPENDIX E - SAVEFILE FORMAT FOR MSOS.

. . . .
D-1
D-2

. . .

•• B-1

••• C-1

• •• D-1

••• E-1

319-0009-000

1-1

CHAPTER 1

GENERAL

Introduction

MSOS (Monolithic Systems Operating System) is a file management and
program development system for use with the MSC 8001 Single Board
Computer family. MSOS provides the user with a powerful tool for
loading and saving program files and performing simple I/O on a
variety of devices. The built in debug capabilities allow the user
to get application programs up and running with minimal effort.

MSOS occupies less than 6K bytes of EPROM on the MSC 8001
board. ROM residence eliminates the time consuming bootstrap and
restart procedures comrron to the early stages of program devel
opment. The operating system requires approximately 256 (decimal)
bytes of user RAM memory for temporary storage, plus a 156 byte
RAM buffer for each I/O channel. All other user memory is undis
turbed by the operating system. The diagram on the following page
outlines the memory map utilized in the MSC 8001 computer.

Cormnands are typed on the keyboard or read from disk storage, and
direct the system to load or save programs from mass storage,
examine registers or memory locations for debug purposes, or
perform other monitor operations. The system contains a complete
set of cormnands for maintaining the user file library.

MSOS cormnands are uniform from processor to processor in the
Monolithic Systems Single Board Computer family. Users may transfer
their MSOS experience from processor to processor with ease.

User programs may access all I/O devices known to the system via
character oriented routines. It is also possible to pass system
cormnands from the users program for immediate execution by the
monitor. The user may link in additional system corrmands and
.I/O devices to ~e system at run time. These additional cormnands
and device drivers may be RAM or ROM resident.

Startup Procedure - Starting the monitor
---~~--~~~-

1. The firmware ROM(s) containing MSOS must first be inserted into
the processor board. A serial I/O terminal such as a Teletype
or CR!' must be connected to the board as described in the
appropriate section of the hardware user's manual. This I/0
terminal will be referred to as the system console. Some boards
require an MSOS compatible addressing prom.

319-0009-000

MSOS ROM

17FF

1800
MSIL ROO (OPTICNAL)

lFFF

2000

SYSTEM RAM

27FF

2800

00 BOARD USER RAM

3FFF

4000

ADDITICNAL USER RAM

7FFF

8000

ADDITIONAL USER RAM

OR USER OOM

FFFF

Figure 1. MSC 8001 Memory Allocation Map

1-2

USER STACK

24K BYTES
MINIMUM RAM TO
RUN ALL SUPPORI'ED
SOFI'WARE

319-0009-000

1-3

2. When the lx>ard is first powered up, and after a CPU RESET, MSOS
will determine the baud rate at which the terminal is oper
ating. The operator must type two or three "carriage returns",
slowly, to let MSOS find the correct baud rate from any of the
following: 9600, 4800, 2400, 1200, 600, 300, 150, and 110 baud.

When MSOS finds the correct rate, it will print MSOS REV n.n,
the Date, the size of memory, and then prompt the operator for
corranands with a question mark (?). The prompt? is a signal to
the user that the monitor is in idle (keylx>ard mode) and a user
command is required. "n.n" is the revision level for this ver
sion of the monitor.

After the monitor prints its version number it will print what
it thinks is the current date. If this is wrong, it should be
corrected using the DATE corranand.

3. MSOS will re-establish the baud rate whenever an ESCAPE char
acter (marked as ALTMODE on some terminals) is typed. ESCAPE
signals MSOS to perform a "cold start". The ESC key also
closes any oj::>en channels.

319-0009-000

2-1

CHAPTER 2

OPERATION

CommarXi Format

The following pages describe the resident monitor commands. Additional
commands may be linked in at any time (see Chapter 4, Adding User
Commands).

A command is comprised of a KEYWJRD, followed by one or m:>re PARA
METERS with separator characters between them, followed by a termin
ator character.

The KEYWJRD is recognized by the first two characters, allowing
abbreviations. Misspelling of the corrmand from the third character
on is not examined.

The number and kind of the PARAMETERS in each corrmand is described
in this section with the command. Command parameters are described
in an abbreviated notation to simplify the use of this manual as a
reference guide during system operation. An item enclosed in square
brackets represents an item that is to be filled in by some actual
character string supplied by the user. For example:

[fn]
[addr]
[chan]

Indicates that a file name is required
Indicates that a mem:>ry address is required.
Indicates a channel number is required.

An item enclosed in angle brackets < > means that that item may be
optionally provided by the user. For example:

<[fn]> Indicates that a file name is optional.

Command parameters must be either a file name or numeric field. File
names and numeric fields are described in the following sections.

Some examples of valid commands follow.

ASSIGN 02 DW UPOOG
AS 02 DW UPOOG
HEXIDAD A0FF
MJDIFY A0FF 0 1 2 3

(equivalent to above)

319-0009-000

2-2

'!he elements of a command may be separated with any of the, following
characters:

SPACE () EXCLAMATION MARK (!) LEFT PAREN
RIGHT PAREN
PERIOO
APOOTOOPHE
ASTERISK

(()
())
(.)
(I)

COMMA (,) QUOl'ATION MARK (II)
HYPHEN (-) POUND SIGN (#)
PWS (+) OOLI.AR SIGN ($)
SIA.SH (/) PERCENT (%) (*)

It is recamnended for clarity that the user utilize separator
characters from the left m:>st set above (sp, - + /). In some
system cormnands, the plus (+) and hyphen (-) have special meaning.

'Ihese separator characters can be surrounded by any number of blanks.
'!be following examples are equivalent.

LOAD JERRY
LOAD,JERRY
LOAD, JERRY
LOAD · , JERRY
LOAD/JERRY

But the following line is not a legal entry as it contains 2 separators
between elements:

LOAD * , JERRY

A system command must be terminated by a carriage return, or an
ampersand (&). The latter is used to enter several system conmands
on a single line. These are then executed in sequence. There is a
comnand line limit of 80 characters to a line.

When a carriage return terminator is sensed, the comnand line is
executed by the system. If the system does not recognize the comnand,
the m:>nitor will print the following:

ERROR
The line in error up through the illegal character.
?

While entering a comnand string the following characters may be used
to correct errors before the line is terminated:

Ctr! H, Backspace

Ctr! A and DELETE

Ctr! X

Ctr! C

Ctrl [, ESC

Deletes the previous character.

Echoes a\, deletes previous character.

Delete the entire line, but do
not exit the m:>de (such as RE)
you are in.

Cancel command, exit to keyboard m:>de, issue
a prompt. (warm start)

Cancel comnand, close all files, perform a
cold start.

319-0009-000

Files

2-3

Programs or data stored on the disk are organized into discrete areas
of storage called FILES. A FILE is a group of blocks linked together
which is referenced by a file name. When a file is created, an entry
is created in the file directory containing the name of the file, and
the first and last block linked to the file. Each directory entry
utilizes an entire block, therefore there is an overhead of 124 bytes
for each file on the diskette.

'!here is no limit to the number of files which can be stored on a disk,
other than available disk space. MSOS maintains a special file (FREE.
USR), which is a linked list containing all the free space currently not
in use on the disk. When a file is created, blocks from the beginning
of FREE.USR are re11X>ved from the FREE.USR list, and assigned to the file.
When a file is deleted, the blocks from the file are attached to the
beginning of FREE.USR.

File Name Formats

A file name consists of 3 parts: the UNIT NUMBER, the NAME, and the
EXTENSION.

The NAME consists of from 1 to 8 characters. The characters may be
any ASCII character that is not a separator. It is suggested that
the characters used be restricted to numbers and letters to maintain
compatability with future versions of the monitor. The name is the
only part of the filename that is necessary.

'!he EXTENSION is a 1 to 3-character abbreviation for the type of file
being referenced. Except for the length, the EXTENSION follows the
same construction as the name. The EXTENSION follows the name and is
separated from it by a period. The monitor doesn't require any part
icular extension for any type of file. However, it is strongly recom
mended that the user choose a convention for filename extensions and
stick to it.

The 11X>nitor will assign an extension to any filename that doesn't have
one. If the filename is used in a LOAD, SAVE, or ZAP cornmand, the
default extension is ".SAV". In all other cases the default is ".USR".
Note that a system program running under the monitor (i.e., an Assembler)
may have its own defaults.

The UNIT NUMBER, if present, precedes the name. A file may reside on
any disk unit. If a file resides on the primary disk unit, the UNIT
need not be specified. When a file is referenced in a command and the
file does not reside on the primary disk, the unit number upon which
it does reside must be explicitly specified by use of the colon (:)
followed by the unit number. For example, the following commands are
identical except that in the second command the requested file is
located on the second disk.

?Ul.1ill PROG
?Ul.1ill :l,PROG

PROG resides on primary disk unit
PROG resides on second disk unit

319-0009-000

2-4

Unit 0 is assurned to be the primary disk, and therefore is interpreted
to be the same as if no unit number were supplied.

Examples of file names

:1, BASIC.SAV BASIC resides on unit one, and was created with
a SAVE corrana.nd.

TEMP Minimum format, default unit is 0, default extension
is .USR.

Don't Care Character

A special convention has been adopted to improve the flexibility of
file references. This is the question mark (?) or so called "don't
care" character. The question mark will match any character in that
particular character postion. This is true for any operation which
references a file name. It is particularly useful for the ZAP command
discussed in the next chapter. For example

WAD JERRY.???
will load the first file found with the name "JERRY", regardless of the
extension.

Nl..llYEric Fields

This section contains the proper format for entering numbers as
parameters in system commands.

The number system used by the system is hexadecimal. A number is
separated from neighboring items by separator characters. Under
some circumstances certain separator characters may have special
meaning. However, unless specifically mentioned, any separator may
be used.

ADDRESSES -- Most numeric entries will be addresses. An address is
an unsigned hexadecimal integer in the range 0000 to FFFF. When
a numeric entry can be either a BYTE (see below) or an ADDRESS, the
field will be interpreted as an address if it contains three or more
digits. Addresses are represented internally as 16 bit binary quantities.

BYTES - Some nurneric fields may be BYTES. A byte is an unsigned
hex integer restricted to the range 00 through FF. A BYTE interpre
tation will be assurned if the number is composed of less than three
digits. The internal representation for a byte is an 8-bit binary
quantity.

BLCCKS -- Some numeric fields allow entry of a pair of addresses which
represent the first and the last memory location in a block of contiguous
memory. There are two forms of entering a BLOCK field--absolute and offset:

The ABSOLUTE form of a BLOCK field is the starting address
followed by the ending address for the block, e.g.,

1200,1400

319-0009-000

2-5

The OFFSET form of a BLOCK field is the starting address
followed by a plus sign (+) followed by a 16-bit hexadecimal
number which will be added to the starting address to derive
the ending address, e.g.,

1200+3FF

'lllere is an indirect capability for addresses. If the user prefixes
an address with an at sign (@),the contents of the address and the
following byte will become the effective address. E.g., @200 will
refer to the address contained in the pointer at locations 200 and 201.

Note that the @ may be repeated any number of times. This consturction
is useful whenever the address of the address needed is what is known.

Examples of valid numeric fields:

valid ADDRESS, invalid BYTE 123
12 valid ADDRESS, valid BYTE, defaults to BYTE if either is

permitted.
012
@10
@@1200
100,200
100+1FF
@100+1FF
100+@1FF

valid ADDRESS, invalid BYTE
INDIREcr address
doubly-INDIREcr ADDRESS
BLOCK field, beginning and ending addresses.
BLOCK field, beginning address plus offset.
BLCX:K field, first address is INDIREcr
BLOCK field, length of block is INDIREcr

Special Character Functions
---------~~~~-·------

Certain control characters perform special functions during
output to Channel 1 from MSOS. They are described as follows:

Ctrl C
Ctrl S
Ctrl Q

cancel command, same as in edit form.
Stop output and wait for Ctrl C or Ctrl Q.
Continue from Ctrl s.

319-0009-000

3-1

OiAPTER 3

SYSTEM C0MMANDs

ASSIGN Assign command

Formats: ASSIGN [chan] [dev] <[fn]> Exarrples: ASSIGN 1 LP
AS l,DW PROG.TST

'!he ASSIGN command assigns a device or file to one of the I/O
channels. When the logical device is a mass storage device (disk),
the optional file name must be supplied. [chan] may be 1, 2, 3,
or 4. [dev] is a two letter designation of which device is to be
assigned to the indicated channel. The present ROM system has
the following device codes:

TT
LP
DR
00
DA
PI
PO

Terminal, full duplex
Line printer
Disk, rrode = Read
Disk, rrode = Write
Disk, rrode = Append
Parallel Input port
Parallel Output port

'!he device characteristics are described rrore fully in Chapter 4.

All user I/O operations will require an ASSIGNment before a data
transfer can take place. If an I/O operation is attempted on an
unassigned channed, M.SOS will type-

ASSIGN [chan] ?

where [chan] is the channel on which the I/O is being attempted.
M.SOS then pauses for the operator to enter a device name, and,
where applicable, a file name. Once the assigrunent is accepted,
the I/O operation will proceed without further intervention.

'!here is a special channel, channel 0, which is the same as the
other channels except for the fact that it is preassigned to the
system command buffer. Reading from channel 0 reads the last
command string typed. Writing characters to channel 0 is equiva
lent to typing them on the system console for execution.

319-0009-000

BLOCK Block Move Camnand

Format: BIDCK [block] [dest]

3-2

Examples: BLOCK 2000-2400 5000
BL 2000 2400 5000
BLOCK 2000+400 5000

'Ihe BIDCK command moves a block of contiguous memory to another
location. [Block] specifies the boundaries of the memory region
which is to be moved, and [dest] is the new starting address for
the block. The new starting address may be contained within the
old block.

Example--To move a block of memory which is at 2000 (hex) and
which extends to location 2400 (hex), to a new region which
is origined at location 5000 (hex), enter:

BLOCK 2000-2400 5000
(or) BL 2000 2400 5000
{or) BLOCK 2000+400 5000

The first exampl~ shows the source block specified absolutely,
giving the actual addresses for the limits of the block. The
2nd example is analagous, but the command name is abbreviated,
and a space is used as a separator instead of a hyphen. The
3rd example is the same as examples 1 and 2, but offset addressing
is used to specify [block] •

CONTINUE Continue command

Format: CONI'INUE Examples: CO
CONT

'Ihe CONTINUE connnand resumes execution following a software
trap function which transfers control to the monitor. The
program is returned to execution with the machine state ident
ical to when the program trap occurred. See the REGISTERS
command regarding alteri'ng the processor status before returning
to execution.

DATE Date Set Connnand

Format: DATE <[month]/[day]/[year]> Examples: DATE 5/6/78
DA 5/6/78
DA

This corranand sets the system date, which is recorded in the
directory entry for each file when it is created. DATE should
be executed irrunediately after a cold start. If a date is not
supplied with the DATE command, the system prints the current
date on the console.

319-0009-000

DUMP Dump Command

Format: DUMP [block]

3-3

Exarnples: DUMP 0,FF
DUMP 53-SAA

DUMP prints out the contents of memory to channel 1 in hexadecimal
format, 16 bytes per line, with each line preceded by the address
of the first byte on the line. Channel 1 would typically be assigned
to the console or line printer. For exarnple :

AS l,LP & DU 0,FF

would be used to dump the contents of 0 through FF to the line printer.

ECHO Echo corranand

Format: ECHO [count]&[corranand string] Exarnples: ECHO 2 & ZAP PRCX3, 2

ECHO repeats all commands to the right of it [count] times. The
ampersand is required to set off the ECHO comnand from the corrmand
which follows it: and will therefore be repeated. The ECHO may
not be requested to repeat another ECHO corrnnand, vix:

ECHO 10 & ECHO 2 & CONTINUE

is illegal. An ECHO with a count of zero will ECHO the following
corrnnand repeatedly. A typical ECHO type in would be:

ECHO & ZAP PRCX3,2

which will excute the ZAP corranand repeatedly. The corranand will execute
until the ZAP PRcx:;,2 produces an error when all the requested editions
of PRCX3 are deleted.

EXAMINE Examine Corranand

Format: EXAMINE [block] [data] ••• [data]Exarnples: EX 8000-9000 01AB
EX 3AH-3BH CD

The indicated block of memory is scanned for the [data], which may
be either byte or address. For each instance of the data, the
address where it is found will be printed on the system console.

FILES Files Corranand

Format: FILES <[unit]> Examples: FILES :1
FI

Files is the command which lists the directory of files assigned
to a disk unit. The optional [unit] must be the unit number of a
disk drive with a disk inserted. The default value of [unit] is 0,
the primary disk unit.

319-0009-000

3-4

The first line of printout is a header line describing
the information to follow. The header line is

FILENAME

where

FILENAME
FIRST
LAST
SIZE
DATE

FIRST LAST SIZE DATE

is the NAME of the file, including the extension
the block number of the first block in the file
the block number of the last block in the file
the number of blocks in the file
date the file was created

The first file listed in the directory is always a special system file
"FREE.USR" FREE.USR is a linked list containing all the free space on
the diskette. The size of FREE.USR is the anount of space available
on the disk. The date of FREE.USR will always be the last date when
data was written on the disk. The remaining files listed on the
directory are user and system program files.

The logical block number (as listed in the directory) corresponds to
the physical block number in the following way: the first byte of the
block number is the track number, the second byte is the sector number.

File Editions

When a user SAVEs a file with the same file name as a file already on
the diskette, a new EDITION of the file is created (i.e. it is linked to
the front of the directory). A file is never deleted automatically
by the system.

The only edition of a file which can be loaded is the most recent edition
which is the first file of that name listed in the directory. Older
files can be accessed for loading only by ZAPping or renaming all
newer editions. Refer to the ZAP corrunand for further discussion of
file editions.

GOTO GOTO cormnand

Format: GOIO <[addr]> Exarrples : GOI'O 3AH
GO 1000

The user stack p:>inter will be set to the default value (2800H) •
The monitor actually executes a subroutine jump to the specified
address, therefore the last value on the stack will be a pointer to the
return loop, and a return will transfer control back to the monitor.

If no address is given, the last address used by a GO or set by
I.Q1\D or REG, is used.

319-0009-000

HEXLOAD Hexload Command

Format: HEXLOAD <[addr]>

3-5

Exanples: HEXLOAD 1000
HE 100

Hexload loads a standard hex format absolute binary tape or file into memory.
If the optional address is specified in the conunand, the file will be
loaded at that address.

The tape will be loaded from channel 1. If channel 1 is ASSIGNed
to the console device (TT), an XON code will be sent to start the
paper tape reader at the start of the load, and an XOFF code will
be sent to stop the reader when the code is complete. The tape or file
will be assumed to be in the standard hex format for the processor
in use. Appendix D describes the standard hex format for the Z80
and 6800 processors.

IO Read, Send 8 bit data quantity conunand (Z80 only)

Format: IO [addr] <[byte]> Exanples: IO FF (read)
IO FD, 4F (send)

This command is used in the Z80 version to send or read a character
from the IO port [addr]. If the optional [byte] is not supplied, the
character will be read from the port and displayed on the console.
If the optional [byte] is supplied (in hex format), the character
will be written to the IO port specified. Because of processor
differences, this feature is not needed in the 6800 based versions.

LOAD Load Corranand

Format. LOAD [fn] Exanples: LOAD PROG
LO :l,PROGl.TST

This conunand loads a program from the disk into memory. The program
must have been written on the disk by a system SAVE cornnand. LOAD
sets the address used in the next GO command to the starting address
of the program. Therefore the following sequence would be used to
load and execute a program:

?LOAD [fn]
?GO

319-0009-000

3-6

JAM Jam command

Format: JAM [block] [data] • • • [data] Examples: JAM 100-300,0
JA 1000+8,l,2,3,4,5,6,7,8

JAM will fill a block of mem:>ry with the given data. JAM 8000-8100 00
will clear all locations from 8000 to 8100. The list of data can be
any length that doesn't overflow the line.

If while jamming data into the block, the end of the block is reached
before the end of the data list is reached, the JAM will continue,
overflowing the block, until all of the data in the list have been
stored.

If the end of the data list is reached before the end of block is
encountered, the entire data list will be repeated, as needed to
fill the block.

MOOIFY Modify command

Format: MOD.IFY [addr] [data] • • • [data] Examples: MO 3A 0D
MODIFY 100,0,1,2,3

'lbe MODIFY command is used to change the contents of mem:>ry locations.
Starting at the [addr] given, the [data] is stored into mem:>ry. If
[data) is a byte, it is stored into the next mem:>ry location and the
location pointer is incremented by one. In the Z80 version if [data]
is an address, the least significant half is stored first, then the
m:>st significant half is stored and the location counter is incremented
by two. In the 6800 version, this order is reversed.

The command line is terminated with a carriage return. However,
the carriage return does not exit MODIFY m:>de, so that the system
will print the address of the next loaction to be stored and will
accept further data to be stored. If the user responds with another
carriage return or a system command instead of data, MSOS will
exit MODIFY command m:>de and execute the conmand if supplied.

319-0009-000

3-7

NAME Name Command

Format: NAME [fn] [new name] <[date]> Examples: NAME PROG, PROG.TST
NA :l,PROG PRCGl 4/23/78

This command allows the user to change the name and/or extension
of a disk file. A unit number may not be supplied on the [new
name]. If the file was not dated, the date will be set to the
system date. If the file was dated, the date will be unchanged
unless the optional [date] was supplied, in which case the date
will be set to the [date] specified.

NEWDISK Newdisk Command

Format: NEWDISK <[unit]> Examples: NEW
NE

This command is used to format and initialize a new diskette.
Because this command destroys any data that may have been
recorded, NEVER use this corrnnand except when a new, unformatted
disk is to be initialized. The exception is when a formatted
disk has been "crashed" and must be reinitialized.

After the NEWDISK command has been typed, the system will print:

N1W DISK INSERTED?

The user must respond "Y" to start formatting. Any other response
will abort the cornmand.

This command will require several minutes to execute since the entire
disk surface will be written and verified.

PUNCH Punch Cornmand

Format: PUNCH [block] <[addr]> Examples: PU A000 +lFF, A000
PUNCH 100-200

The PUNCH corrunand formats the indicated block of memory into a
standard absolute hex format binary file, and transmits it on
channel #1. If channel U is ASSIGNed to equipnent 'IT, an XON
code will precede the file, and an XOF code will terminate the
file. The file begins and ends with two feet of null characters.

In the Z80 version only, if the optional [addr] is given, this
will be used to set the starting address for the file.

A typical command would be:

PU A000+1FF A000

which will punch out locations A000 through AlFF as a hex load
file with a start block of A000.

If the PUNCH is to a disk file, the file can be loaded again for use
via the system HEXLO.l\D cornmand.

319-0009-000

REGISTERS Registers corrmand

Format: REGISTERS Examples: REGISTERS
RE

The REGISTERS cormnand allows the user to examine and change the contents
of the named CPU registers. The actual registers are of course different
from processor to processor but the method of operation is the same. The
rronitor prints out a header line listing the CPU register mnemonics.
Beneath this line, the current contents of the registers are displayed.
The user changes the contents of a register by positioning the
carriage or cursor below the appropriate value and typing the new value.
The cursor may be positioned by repeatedly pressing the space bar, or by
pressing tab (control I). The tab character will automatically adjust
the cursor to the next register column position. A register value is left
unchanged by spacing or tabbing past it or typing a carriage return before
reaching the register position.

A carriage return with no new values typed leaves all register contents
unchanged. If the user types a system command in response to the
registers command, the system will exit register mode without changing
any values and execute the new command.

Register corrmnand format for the Z80 microprocessor

In the Z80 based CPU, the REx:iISTER corrmand might produce the following
print out:

PC PSW BC DE HL SP IX IY I
790B 1E28 DE01 95DA DC00 E9A3 0000 0A3F 00

where
PC is the processor program counter (16 bits)
PSW is the processor status word (16 bits)
BC is the B and C register pair (16 bits)
DE is the D and E register pair (16 bits)
HL is the H and L register pair (16 bits)
SP is the stack pointer (16 bits)
IX is the X index register (16 bits)
IY is the Y index register (16 bits)
I is the interrupt vector (8 bits)

The following printout would be produced if the user wished to set the
Accumulator and register pair DE to 0.

PC PSW BC DE HL SP IX IY I
790B 1E28 DE01 95DA DC00 E9A3 0000 0A3F 00

0028 0000

Note that the AC and processor status word, and the register pairs, are
treated as a single 16 bit data quantity. Therefore in the example above,
the user had to supply 0028 to change the AC to 0 and leave the status
word alone.

In the Z80, the SWAP corrmand would be used to display the alternate
register set.

319-0009-000

3-9

Register command format for the 6800 processor ---·-------------
In the 6800 based CPU, the REx:;ISTER command might produce the following
print out:

PS B A XREx:; PC SP
00 3A 00 3FFB 0100 02AF

where

PS is the processor status word (8 bits)
B is accumulator B (8 bits)
A is accumulator A (8 bits)
XRe3 is the X register (16 bits)
PC is the processor program counter (16 bits)
SP is the stack pointer (16 bits)

RUN Run Command

Format: RUN. [fn-] < [param] • • • [param] > Examples: RUN PRCX;.TST
RU BASIC 1.2,0

This command loads and executes a program from the disk. It is
equivalent to:

?LON) [fn]
?GO

An attempt to RUN a file with no starting address will load the
file but will not execute the program. An attempt to RUN a non
progr am file will result in an error message. [param] are optional
parameters supplied by the user to be passed to the application
program being executed. Chapter 4 describes this feature in oore
detail.

SAVE Save command

Format: SAVE [fn] [block]< ••• [block]><[entry address]>
Examples: SAVE PROG, 0-100

SAVE PROG.TST, 0-100

This command copies blocks of meoory [block] to a disk file [fn],
and optionally assigns an [entry address] which is the address of the
initial instruction in the program. The default extension for [fn]
is ".SA-vt'

Example: To save a program on disk from meoory locations A424 through
B015, with the initial instruction defined to be at A430:

SAVE JERRY A424-B015 A430
(or) SA :0,JERRY.SAV,A434,B015,A430

which are equivalent forms.

319-0009-000

3-10

The SAVE corrunand writes out the file in a compressed binary format to
save space on the disk and to improve corresponding load time. A
file that has been SAVEd can be loaded into memory again only by
using the system LON) command.

SWAP SWAP corrmand (Z80 only)

Format: SWAP Examples: SWAP
SW

In the Z80 CPU, the SWAP corranand is used to SWAP in the alternate
set of registers. The new registers are displayed as in REGISTERS
and may be changed.

VERIFY Verify corrmand

Format: VERIFY [fn] Examples: VERIFY ASM.SYS
VE EDIT.TST

The VERIFY command reads a file and checks that all sectors can be
read without error. At the end of the verify, the number of soft
errors encountered is printed.

The maximum number of soft errors allowed is 255. If "FF ERRORS"
is printed, the system did not complete reading the file. If any
lesser number was printed, the system can read the file successfully.

It is very unusual to get anything but zero when running this corranand.

If a disk has persistent errors, there are three possibilities:

ZAP Zap conmand

1) the media is faulty. (Disks do wear out.)

2) the drive is faulty. A mis-alligned drive should
particularly be suspected if the disk can be read
on another drive.

3) the interface is faulty. This is more likely to be
the cause of hard errors rather than soft errors.
If one drive of a two drive system works, it is
unlikely to be the interface.

Format: ZAP [fn] [edition] Examples: ZAP PRCG.TST,l
ZAP JERRY 2

The ZAP command is used to delete files from disk.

Whenever a new file is created, it is linked to the front of the
directory. Thus an old file of the same name will not be deleted,
but it cannot be accessed normally. The most recent edition of
the file is the only one which can be accessed by file name.
The edition number does not appear on the file directory, but
is implicit in directory list position.

319-0009-000

3-11

ZAP deletes a particular [edition] of a disk file. The edition number
for all older editions of the file are adjusted by subtracting one.

[F.dition] cannot be 0, and cannot reference an edition number
which doesn't exist.

A convenient method of deleting all editions from a given edition
number up.yards is to ECHO a ZAP command for the selected edition, e.g.,

ECHO & ZAP JERRY 2

will delete all but the most recent edition of JERRY since each
execution of the corranand reduces all the existing edition numbers
by one. To delete all editions of a file,

ECHO & ZAP JERRY 1

will suffice.

The "don't care" character is particularly useful in conjuction with
the ZAP cornrnp.nd.- For example if a directory contained files

TESTl.JOE
TEST2.USR
PROG3

then the corrnnand

ECHO 2 & ZAP TEST?.???

would delete both TESTl.JOE and TEST2.USR. The "don't care" character
may also be used to delete ambiguous file names such as those which can
be erroneously created by an untested user program.

319-0009-000

4-1

OIAPTER 4

USER ACCESS '10 '!HE MONI'IDR

PERroRMI~ USER I/O --------
MSOS performs all I/0 through routines which are accessible to
user programs. This section describes the use of these routines
so that a user may perform character oriented I/O to a device or
disk file.

All I/O through MSOS is performed via CHANNELS. A channel serves
as a data path for information from the monitor to the device and
vica versa. There are five such channels in the present version
of the monitor.

Each channel in the monitor is full duplex. This means that a
bidirectional device such as a teletype can be assigned a single
channel rather than one for each direction as in some systems.

All I/0 is performed a single character at a time through one
of ten monitor routines. The routines are as follows:

CH0R, CH0W, CHlR, CHlW, CH2R, CH2W, CH3R, CH3W, CH4R, CH4W.

A call to CHnR will read a character from the device assigned to
channel n and place it in the A accumulator •. The carry flag is set
if the character read is the last one in the file (EOF conditon),
otherwise it is cleared. No other registers are affected. The
channel is automatically closed after the last character read. Further
attempts to read on this channel will prompt a request from the system
for a channel ASSIGNment.

A call to CHnW will write the character in the A accumulator to
the device assigned to channel n. No registers, including the
Accumulator, are affected except processor status. File oriented
devices will actually buffer the data before writing onto disk, but
this feature is transparent to the user.

Refer to Appendix B for the locations of these routines.

319-0009-000

4-2

Channel ASSIGNment

Before character I/O can occur, the channel must be ASSIGNed to
a device. There are three ways the user can ASSIGN a channel:

1. By using the ASSIGN command from the monitor while in
keyboard node prior to calling the user program.

2. By passing an ASSIGN command to the monitor while
under user program control. (See Chapter 4.),

3. By calling OlnR or CHnW without pre-ASSIGNing, and
then responding to the monitor ASSIGNment request.

CH0R, CH0W are special in the channel 0 is preassigned to the system
command buffer. Reading via channel 0 will fetch the characters
from the last command line. This feature is often used to pass RUN
parameters. Writing to channel 0 is equivalent to typing them
on the system console for execution.

The following describes the device codes and device driver
characteristics for the devices available for user ASSIGNment:

TI' Terminal. Full duplex, auto baud rate (110-9600),
hard or soft copy, 72 or more character line with a
minimum asynchronous serial communications. Must have
"control" character generation available.

LP Line Printer. Output (write) character only.
Otherwise same as TT.

PI Parallel Input. Accesses one of the 8255's on the
8001 board. Each read operation transfers a single
8 bit data quantity across the port.

PO Parallel output. Accesses one of the 8255's on the
8001 board. Each write operation transfers a single
8 bit data quantity across the port.

319-0009-000

Disk

4-3

Disk files can be accessed in three different ways. Each access
type is treated as a separate device.

DR Disk Read. Only read character is defined.

rm Disk Write. Only write character is defined.

DA Disk Append. Append is a write operation. Each
write character call appends the character to the
current contents of the disk file.

When a user is finished writing or appending to a disk file, the file
must be "closed" by reassigning the channel used to the null (NU) or
other device. This operation writes out any remaining information in
the file buffer and updates the file directory.

Note that an attempt to write to a read device is ignored. This
allows prompts that a user program may produce to be successfully
handled. An, attempt to read from a write only device will cause
an ASSIGN request just as if the channel was closed.

319-0009-000

4-4

ADDING USER DEVICES

User devices can be added at any time by adding a new entry
in the device driver table. The format for an entry in the table
is:

POINI'ER: DB

DW
DW
DW
00
DW

"X" , "Y"

OPEN
OUT
INPlJI'
CLOSE
NEXT

;Device name, two chars. this
;device is "XY"

;Pointer to open device routine
;Pointer to character output routine
;Pointer to character input routine
;Pointer to device close routine
;Pointer to next device entry in the
table

'Any routine that is not needed by a user device should have a
"0" entered for its address. The monitor checks for a "0" address
before calling the routine. The m::>nitor saves all registers
except the A accilrnulator so the routines may use any desired
registers.

The location referenced by symbol ODD contains a pointer to the first
device driver table entry. The user makes a new device known to the
system by setting NEXT to the current contents of ODD, and then setting
contents of ODD to the address POINTER. Therefore, the new device is
linked in as the first device in the chain.

A cold start resets DDD to its original value, so the user
has to link in the new device after every power-up or ESC. Refer
to Appendix B, Useful Routines, for a listing of the absolute
location of symbol DDD in this version of the rronitor.

The user's OPEN routine can call GNC (see Appendix B for address
of GNC routine) to fetch any characters after the device name in
the command string. This allows file names or options to be passed.

319-0009-000

4-5

ADDING USER COMMANDS

'Ihe programmer can link a new corranand into the corranand table at
run tine by providing a corranand sub table in the format:

POINTER: DB
DW

"N", "C" ;Ccmnand mnem::mic, two characters
NEXT ;Pointer to next corrunand

;Code to be executed upon collUTlaI1d

The system pointer to the first cormnand is kept in location referenced
by symbol CDT in private RAM. The user corrunand is added by picking
up the contents of CDT and saving it in the second pair of bytes in
the new corrunand table (NEXT). The contents of CDT should then be
set to the address POINTER of the new cornnand.

Whenever a cold start happens, the monitor restores CDT to its
original value. Therefore, the user has to link in the new corrunand
after every power up or ESC.

AUI'OLINK

If the MSIL rom is not installed, there is a procedure that allows
new corrunands or IO devices to be automatically linked in at initial
ization. If location 1800H is 0A5H then the monitor will call 1801H
after it has completed initialization but before it asks for a
corranand. A user supplied routine can--am::>ng other things--set CDT
and DDD to new values.

319-0009-000

A-1

APPENDIX A SYSTEM ERRORS

When MSOS encounters an error·, it prints a diagnostic message
on the console and returns to keyboard mode. There are three
distinct types of errors which may occur:

Syntax Errors

Syntax errors - A syntax error occurs when the m:>nitor
encounters an illegal command syntax. No action on the
user command is taken by the monitor.

Fatal errors - A fatal error occurs when the m:>nitor
encounters some problem during corrmand execution. The
m:>nitor makes every attempt to recover from the error
by attempting to close all files, etc., but full recovery
from the error is uncertain.

Miscellaneous errors - A miscellaneous error is an error
which does not fit in either of the above categories.
'!he system can recover from a miscellaneous error. Trying
to write· on a write protected disk is one example of a
miscellaneous error.

All syntax errors produce the error message "ERROR", followed by
the command line which produced the error up through the character
which caused the error. For example, if the user types

A.SSIGN 2 TX

where TX is an illegal device mnem:>nic, the system would respond
with

ERROR
A.SSIGN 2 T
?

319-0009-000

A-2

Fatal Errors

'!here are many possible fatal errors. In each case the
system prints a diagnostic error message describing the error.
'!he error messages and a discussion of possible causes follows.

Message

BAD CHANNEL NUMBER

CAN'T DELETE FREE O:IAIN

CHECK CHARACTER ERROR,

DISK FULL

DISK POSITION LOST

DISK SEEK ERROR

MEM

:00 SUCH UNIT

SECl'OR NUMBER '!\JO BIG

SECl'OR SIZE ERROR

Meaning

The user attempted to assign a
device to an illegal channel nt.nnber.

User attempted to delete the free
chain file "FREE.USR".

The CRC character used to verify
the accuracy of the sector on a disk
was incorrect. This occurred while
reading (or write verifying) a data
block or directory block.

The user is out of free space on the
disk. This could occur during a
write block operation, during an
open file operation, or during a
close file operation.

Hardware error. Cannot find a sector.
Sector counter logic is not working.

Hardware error. Cannot find a track.
Servo noter head actuator is not
working.

Both LOAD and HEXLOAD verify the data
that has been loaded into menory. This
error occurs when an error is encounter
while verifying. Attempting to load
into ROM or nonexistent menory
locations will produce this error.

Unit nt.nnber supplied is illegal.

Attempt to read or write on an illegal
sector nt.nnber. Usually a result of
incorrect user call to disk write routi

Illegal sector byte count. Either
for a data block or directory block.
Usually a hard disk error while read
ing or incorrect call to disk write
routine.

319-0009-000

Message

SERIAL RECEIVER ERroR (Z80 only)

TRACK NUMBER 'IOO BIG

Miscellaneous Errors

Message

FILE NOI' FOUND
-unit number and filename-

LINE OVERFI..CW

WRITE PROI'ECT

CLOSE DOOR - HIT KEY

A-3

Meaning

An error has occured in the 8251
serial I/O chip. Typing too many
characters during a disk access
will cause this error.

Illegal track number. Usually
caused by an incorrect call to
disk read or write routine.

Meaning

Requested filename could not be
located in device directory.

More than eighty characters typed
on a corrunand line or sent as a
corranand line from a user program.

Attempt to write on a write protected
disk. User should replace the write
protect and then type a character.
Operation will then proceed as normal.

The user has left the door
to the disk drive open. Close the
door and hit any key.

319-0009-000

B-1

APPENDIX B

USEFUL ROUTINES

This Appendix outlines the structure of the pointers to certain
useful routines which may be called by the user. It is intended
to serve as an outline only, for further details, consult the
listing.

Channel I/O Table

IDcations 3 and 4 in MSOS ROM point to the channel I/O Table. The
channel I/0 table contains the address of the CHnR and CHnW routines
for each channel as described in Chapter 4. The structure of the
table is as follows

CH0W: address of write character routine for channel 0 (2 bytes)
CH0R: II read II II II II 0
CHlW: II write II 1
CHlR: • II read II 1
CH2W: II write II 2
CH2R: II read II 2
CH3W: II write II 3
CH3R: II read II 3
CH4W: II write II 4
CH4R: II read n 4

319-0009-000

B-2

Interesting Pointers Table

Locations 5 and 6 in MSOS R:>M point to a table containing the
addresses of other locations useful to the programmer. The contents
of the table are as follows:

INPl'AB: IO!'P
CEAN
BREAK

;address of the channel control table (see listing)
;address of the universal channel call routine
;address of routine which returns control to
;monitor if control C key is struck

CDT ;address of conunand dispatch table
DOD ;address of device driver table
rom ;0 if channel 0 closed, otherwise points to device

;descriptor table for chan 0. The remainder of the
;the channels follow in 2-byte increments.

IDI'E:

BLIA ;Points to table of addresses for the
;parameter blocks.

DAT ;Address of system date.

The monitor stores the size of user Ram in the first
loca.tions of private merrory. (i.e. 2000H in the Z80)

useful Routines Jump Table

Locations BH is the beginning of the Useful Routines Jump
Table. Each entry in this table is a jump to a particular
routine. The jump allows the programmer to transfer control
via subroutine jump directly to the appropriate location in
the table, thus avoiding the extra level of indirection. The
structure of the Useful Routines Jump Table is as follows.

JMP CXJTB ;output a character
JMP GIC ;input a character,strip parity,set carry if

;control character,and echo chr if not.
JMP CRLF ;issue a carriage return and line feed to channel
JMP SPACE ;issue a space character to channel l
JMP MSG ;print a message pointed to by H and L registers

;(Z80) or XREG (6800) to channel l
JMP M.$GI ;print an in line message to channel l.

;message ImJst end in 0 byte
JMP 08 ;Read a byte from the coII1T1and line, return in

;Hand L (Z80) or XREG (6800).
JMP 016 ;same as above but reads a word from cornnand line
JMP BKPI' ;address of where to go in monitor if software

;trap occurs.
JMP MONSR ;warm start, resets stack is all
JMP INI ;initialize serial I/O
JMP FAT3 ;closes all channels and jumps to MONSR.
JMP TSTAT ;sets carry if a key has been struck, clears it

;otherwise
Next four locations are reserved for future expansion.
JMP VECS+21 ;NMI vector transver address.

319-0009-000

1

C-1

APPENDIX C

SOFTWARE BREAKPOINTS AND USER INTERRUPTS

ftiSOS allows the programmer to generate software breakpoints to
the monitor for debugging operations. Software breakpoints and
user interupts are vectored through private MSOS RAM. This
Appendix describes the operation of these two features.

Software Breakpoints

In the Z80 processor, the progranuner makes use of the RST0 - RST7
instructions to generate a software breakpoint. Each of these
instructions with the exception of RST0, transfers control
through the interrupt vector table to location BKPI' which is
the monitor breakpoint routine. Refer to Appendix B and the listing
for the locations and format of this table. The monitor breakpoint
routine takes the following action:

1) Save current machine state

2) Display the registers as if the REGISTER command was
activated

At the point the user might alter register status, or just type
CONI'INUE to return control to the user program.

RST0 is special in that it transfers control to the monitor cold
start location.

'!he easiest way to use the software breakpoint feature is for the
prograrmner to assemble RSTl - RST7 instructions into critical locations
in the user program. When these breakpoints are no longer needed, they
can be replaced with a NOP instruction.

In the 6800 based processor, the SWI instruction is used to transfer
control to the BKPI' routine.

user Interrupts

In the Z80 processor, if the user requires hardware interrupt, he
must set the RSTl - RST7 location to the address of the interrupt
handler routine. On the execution of a cold start, these locations
will be automatically reset to the MSOS BKPI' value, therefore the
user must set up the interrupt vector table after every cold start,
possibly by using the Autolink feature.

An interesting debug technique is to set up a logic analyzer to
generate an interrupt under a given set of software/hardware
conditions. Upon detection of this condition, the logic analyzer
can generate an interrupt which will transfer control to the monitor
breakpoint routine.

319-0009-000

D-1

APPENDIX D

HEXLOAD BINARY FORMAT

This Appendix describes the absolute binary object code format
accepted by the HEXLQ.1:ill command and generated by the PUNCH command.
'!he hex binary formats are the same as used industry wide for
transmittal of Z80 and 6800 object tapes. Therefore, the HEXLOAD
command may be used to load tapes generated at another location,
and PUNCH should be used to generate tapes for transmittal to other
locations.

Hexadecimal binary object code format is an ASCII representation of
program memory, expressed as a series of hexadecimal digits. These
are blocked into records, each of which contains the record length,
type, me:rrory load address, and checksum, in addition to the data. The
descriptions below apply to paper tape on a frame by frame basis, or
disk storage format, which is the same but eliminates the null characters
between blocks.

6800 Format

For the 6800, there are three types of blocks which are separated by
null characters if the output file is the paper tape punch. Each
block starts with the character "S" followed by the characters for the
rest of the block. The two block types are:

1. Data block
2. End block

Data Block Format

'!he format for a data block is:

where
Sl
cc

aaaa

dd

SS

Slccaaaaddd ••• ss

indicates that this is a data block
is the count of the number of bytes in the block. This includes
the checksum byte, the two address bytes, and all the data bytes.
is the two byte address at which the data in this block is to
load. Successive data bytes are stored in consecutive addresses.
(High order digit first.)
are the data bytes. There is a maximum of 16 data bytes in
each data block. (High order digit first.)
is the checksum byte. The checksum is the negative of the sum
of all 8 bit bytes in the record, beginning with record length,
and ending with the last data byte. Therefore, the sum of all
bytes in the record (including the checksum) should be zero.
Only the least 8 bits of the checksum are used.

319-0009-000

Ir2

End Block Format

The format for the end block is:

59

Z80 Format

For the Z80, there are two types of blocks which are separated by
null characters if the output file is the paper tape punch.
Each block starts with the character colon (:) followed by the
characters for the rest of the block. The two block types are

1. Data Block
2. End Block

Z80 Data Block Format

The format for a data block is:

:ccaaaa00dddd ••• ss

where
is the first character in every block

cc is the count of the number of data bytes in the block.
Note that as opposed to the 6800, only data bytes are included
here.

aaaa is the two byte address at which the data in this block is to
load. Successive data bytes are stored in consecutive addresses.
(High order digits first.)

00 block type code. All blocks are type 0.
dd are the data bytes. (High order digit first.)
ss is the checksum byte. The checksum is the negative of the sum

of all 8 bit bytes in the record, beginning with record length,
and ending with the last data byte. Therefore the sum of all
bytes in the record (including the checksum) should be zero. Only
the least 8 bits of the checkstnn are used.

Z80 End Block Format

The End Block is really a special case of data block with a data
count of zero. The format for the end block is

:00aaaa00ss

where
aaaa is the starting address of the file if specified, 0 otherwise.
ss is the checksum.

319-0009-000

?

E-1

APPENDIX E

SAVEFILE FORMAT FOR M.SOS

The save file format is a very compact way of storing memory blocks
on disk. The format can be used with other media, but there is no
error checking other than that supplied by the media.

A record starts with 0FFH. Any data prior to the 0FFH is ignored.

Next there is a 2 byte address (HI LO)

then a 2 byte data count (HI LO)

then the data~possibly an entire memory content.

If the count is 0, the address is taken as the start address.

319-0009-000

