MITSUBISEI

5 1/4" ELEXIBLE DISR DRIVE
MODEL M4853
oem manual

M4853-1 Flexible Disk Drive

M4854-1S OEM MANUAL

IABLE OF CONTENTS

1. INIRODUCIION 1-1
1.1 General Description 1-2
1.2 Specifications. 1-3
1.2 .1 Performance Specs 1-31.2 .21.2 .3
Functional Specs 1-4
1.2 .4 1-5Physical Specs
1.2 .5
Environmental Specs 1-6
Reliability Specs 1-7
2. GENERAL OPERATION 2-1
2.1 System Operation 2-1
2.2 Electronics 2-1
2.3 Rotation Kechanism 2-3
2.4Positioning Mechanism2-3
2.5 Read/Write Heads 2-3
3. FUNCTIONAL OPERATION 3-1
3.1 Power-On Sequencing 3-1
3.2 Drive Selection 3-1Positioning Operation3-1
3.4Side Selection3-2
3.5 Read Operations 3-2
3.6 Hrite Operations 3-2
3.7 Disk Insertion 3-3
3.8 Disk Removal 3-3
4. 4-1
ELECTRICAL INTERFACE4.14.1 .1
4.1 .2
4.1 .3
4-3
Signal Interface
Cabling Kethod and Input Terminations. 4-3
Line Drives and Receivers 4-3
Input Signal Lines 4-5
4.1 .4 Output Signal Lines 4-11
4.2Power Interface.4-14
4.2 .1
5. PHYSICAL INTERFACE 5-1
5.1 Signal Connector 5-1
5.2 DC Power Connector 5-3
5.3Frame Ground Connector5-4.
5.4
Interface Connector Location 5-5
6. PHYSICAL SPECIFICATIONS 6-1
6.1 Installation Orientation 6-1
6.2 Drive Dimensions 6-1
7. USER OPTIONS 7-1
7.1 Drive Select Options 7-1
7.2 Motor Control Options 7-2
7.3 Ready Output Options 7-5
7.4 Head Load Options 7-8
7.5 LED Options 7-10
7.6 Terminations 7-12
7.7 Frame Ground 7-12
7.8 Options Summary 7-13
8. RECORDING FORMAT 8-1
8.1 Recording Encoding 8-1
8.1 .1 FM. 8-2
8.1 .2 MFM. 8-3
8.1 .3 MMFM. 8-4
8.2 Recommended Formatting 8-5
8.3 Error Detection and Correction. 8-12
8.3 .1 8.3 .2 8-12
Read Errors 8-12
9. SHIPPING 9-1
9.1 Shipping Damage 9-1
9.2 Re-Shipping 9-1

List of Eiqures

2-1	M4854-iS Functional Diagram
3-1	Comparison of FM and MFM Encoding
3-2	Read/Write Drive Compatibility
4-1	Cabilne Method
4-2	Recommended Line Driver and Receiver Circuit
4-3	Drive Select Timing
4-4	Side Select Timing
4-5	Step Timing
4-7	Index Timing
4-8	Track 00 Timing
4-9	Basic Ready Iiming
5-1	Connector Ji Dimensions and Pin Numbers
5-2	Connector J2
5-3	Connector Location Diagram
6-1	Disk Drive Installation Directions
6-2	Dimensions of M4854-1S
7-1	In-Use Latch Iiming
7-2	Current Ready (I) Timing
7-3	Held Ready (II) Iiming
7-4	Disk Change (Drive Select Reset) Timing
7-5	Disk Change (Step Pulse Reset) Timing
7-6	Head Load Options Schematic
7-7	Frame Groud Circuit
7-8	PCB Option Locations
8-1	FM Write Timing
8-2	FM Read Timing
8-3	MFM Nrite Iiming
8-4	MFM Read Timing
8-5	MMFM Write Iiming
8-6	MMFM Read Timing
8-7	ISO-7487/2 style, Track 00, Side O (FM)
8-8	ISO-7487/2 style, All other tracks (MFM)
8-9	512 Bytes/Sector, Standard Format
8-10	1.024 Bytes/Sector: Standard Format
8-11	256 Bytes/Sector, Simplified Format
8-12	512 Bytes/Sector. Sinplified Format
8-13	256 Bytes/Sector, NEC 765 A Format
8-14	512 Bytes/Sector, HEC 765A Format
8-15	1.024 Bytes/Sector. NEC 765A Format
9-1	Head Protection sheet Installation
9-2	Bag and Board Assembly
9-3	Ten-Pack Carton Assenbly
9-4	Single-Pack Carton Assembly

List of Tatles

1-1	Performance Specifications
$1-2$	Furictional Specifications
$1-3$	Physical Specifications
$1-4$	Environmental Specifications
$1-5$	Reliability Specifications
$4-1$	DC Power Connector Pin Arrangement
$4-2$	Signal Connector PinArrangement
$4-3$	DC Power Specifications
$5-1$	Connector for Iwisted-Pair Cable (P1)
$5-2$	Connector for Flat Cable (P1)
$5-3$	DC Power Connectors
$7-1$	Option Summary

The Mitsubishi M4854-iS is, a high-performance, double-sided, double bit and double track density riexible disk drive using a hieh-density 5.25-inch diskette, that provides maximum customer sitisfaction with high reliability and long service life.

- Main features -
- Has an unformatted capacity of 1.6 mega-byte, and a transfer rate of $500 \mathrm{kbit/sec}$.
- Spindle speed can be selected from interface (360 RPM to 300 RPM). Chanees disk capacity to 9.0 Megabyte.
- Is compatible with the new IBM PC-AT (trademark of International Business Machines Corporation) "high capacity" floppy disk drive, either with a 300 or 250 Kbit/second transfer rate.
- Is electrically compatible with 8 n floppy disk drive controllers.
- LSI ICs have been used to reduce the size of the drive and fricrease reliability.
- Easily removed front panel allows packaging flexibility.
- Includes a diskette ejector for easy diskette removal.
- A circular gimbal spring in the read/write head suspension mechanism greatiy improves aedium trackine performance.
- The steel band, flat stepping motor drive system for positioning achieves the best intertrack access tigie in jts class: just 3 ws.
o The maintenance-free, DC, brushless, direct-drive motor obviates the belt replacement necessary for conventional counterparts.
- Excellent wedia interchangeability, wide off-track window time margin, and hiel. perforaance are maintained over wide ambient temperature and relative humidity ranges.
- The high-torque spindle motor permits control by switching on and off either the motor (starting time 500 ms) or the head load solenoid (loading time less than 50 ms).
- Dynamic ciamping insures correct disk seating with easy disk insertion.
- The M4854-1S Flexible Disk Drive is a twin-head, double-sided. magnetic disk drive with an unformated memory capacjty of 1.6 megabyte (360 RPM), or 1.0 megabyte (300 RPM), for doubledensity recordings.
- For 1.6 Megabye operation the M4854-1S reads and writes 5.25-inch, double-sided high density diskettes in double-density rordat.
- The Mi4854-iS employs the unique Mitsubishi circular gimbal spring for holding and loading the magnetic heads to assure soft, steady contact with the medium. This means excelient read/write operation and a lone service life for the medium. One of the outstanding features of this wechanism is reduction of the effects of jacket deforaiation and thickness variations, thereby stabilizing read/write performance.
- By changing the data transfer rate and/or the spindle speed, and translating track numbers given to the controller, three different types of disks way be accorodat.ed:
A) 96 TPI, high density disks may be read and written without restriction.
B) 96 TPI, standard density disks nay be read and written after changine either the transfer rate or the spindie speed.
C.) 48 TPI, standard density disks may be read and written on, after changing the transfer rate or the spindle speed. Once written upon by the M4854-iS, the disk cannot be reliably used in a 48 IPI disk drive again.
- The M4854-1S allows two methods of dowriward conpatibility:
A) 360 RPM operation, with either 500 or 300 Ebit/second transfer rates. A "low urite current" input must be used to write on standard density media.
E) The spindle speed may be lowered to 300 by use of an input to the drive. The transfer rate would be changed to $250 \mathrm{Kbit/second}$.

Access time
Track to track 3 mS maximum (unsettled)

Average
Settling time
Head loading time
Speed change time

94 mS (including settling time)
15 mS maximum
50 mS maximum (including settiing)
400 nSec maximum

Table 1-1 Performance Specifications

| 1.2 .2 | Functional specifications (Table 1-2) | |
| :--- | :--- | :--- | :--- | :--- |

Table 1-2 Functional Specifications

```
1.2.3 Physical specifications (Table 1-3)
```

 DC power requiremients
 \(+5 \mathrm{~V} \quad 4 \mathrm{~V}\) 5\%,0.5 A typical (seeking)
 \(+12 \mathrm{~V}+12 \mathrm{~V}\) 5\%, 0.5 A typical (seeking)
 Heat dissipation
 8.5 watts typical, seeking
5.0 watts typical, reading in
standby dode
4.O watts typical motor off
Physical dimensions (Except for front panel)
Height 1.62 in (41 mm)
Hidth 5.75 in (146 世. \quad)
Depth 7.68 in (195 mm)
Front panel dimensions
Height $\quad 1.65$ in (42.0 mm)
Width 5.83 in (148.0 mm)
Weight $2.9 \mathrm{lbs}(1.3 \mathrm{~kg})$

Table 1-3 Physical Specifications

```
1.2.4 Environmental Specifications (Tat.je 1-4)
```

```
Operatinc environmentad
conditiors.
```

Ambient temperature
Relative humidity

Shock
Vibration
Altitude
fon-operating environmental conditions

Ambient temperature
Relative humidity
Shock
Vibration
Altitude

5 to 46 Deg. C (41F tc 115 F)
208 to 808 (Maximum wet buib temperature: 29 C (85 F)
2.5 G Max (20 mSec)
C. 25 G Max ($5-200 \mathrm{~Hz}$)
-300 to 3000 meters
5% to 95\%, non-condensirs
30 G Max (20 mSec)
3.0 G Max (5-200 Hz.)
-300 to 3000 meters

Transportation environment conditions (max 72 hours)

Ambient. temperature

Relative Humidity
-40 to 62 Dez. C (-40 to 144 Deg. F)

18 to 958, non-condensine

Table 1-4 Environuental Specifications

```
1.2.5 Reliability specirications (Table 1-5)
```

```
MTBF
MTTR
Unit life
Media lire
    Insertion
    Rotational life
    Tap-tap
Error rate
    Soft read error
    Hard read error
    (Both hard and soft
    error rates assume
    a 100\% open MFK data
    and clock window, and
    a correctly operating
    phase-lock loop data
    separator)
    Seek error
\(10,000 \mathrm{POH}\) (Power On Hours) minimum
30 minutes
5 years or 20,000 energized hours, whichever comes first
Media life
Insertion
Rotational life
Tap-tap
Error rate
Soft read error
Hard read error
(Both hard and soft
error rates assume
a 100\% open MFN data \(a\) correctly operating phase-lock loop data separator)
Seek error
```

4
3×10 or more
3.5×10 pass/track or more 5×10 on the same spot of a track
-9
10 bit (2 retries)
-12
10 bit (10 retries)
-6
10 seek

Table 1-5 Reliability Specifications

The M4854-iS Flexible Disk Drive consists of a mediun. rotatine mechanism. two read/urite heads, an actuator to position Lhe read/urite heads on tracks, a solenoid to load the read/urite heads on the medium, electronic circuits to read and write data, and to drive these components.

The rotation mechanism clamps the medium inserted into the drive to the spindle, wich is directly coupled to the DC brushless motor, and rotates it at 360 or 300 RPM. The positioning actuator moves the read/urite to be head over the desired track of the medium. Then, the head loading solenoid loads the read/urite head on the medium to read or urite data.

2.2
 ELECTRONIC CIRCUITS

The electronic circuits driving the individual mechanisms of the M4854-iS are located on single printec-circuit board, which consists of the followine circuits:

- Line driver and receiver that exchanges sienajs with the host systen
- Drive selection circuit
- Index detection circuit
- Head positioning actuator drive circuit
- Head loadine solenoid drive circuit
- Spindle motor control speed circuit
- Read/write circuit
- Write protect circuit
- Normal/low write current selection circuit
- Track 00 detection circuit
- Drive ready detection circuit
- Head selection circuit.
- In use indicator LED orive circuit 2-1

Figure 2-1 M4854-iS Functional Diagram

```
2.3 ROTATION MECHANISM
    The diskette rotation mechanism uses a DC brushless
        direct-drive motor to directly rotate the spinoje at
        300 or 360 RPM.
2.4 POSITIONING MECHANISM
    The positioning mechanism is a higti-performance st.et]
    band tyfe.
    The head carriage assembly is fastened to the steel
        band which in turn is secured around the capstan of a
        two-phase hybrid stepping motor; a }1.8\mathrm{ turn of the
        steppine motor moves the read/urite head one track in
        the designated direction, thus positioning the
        read/write head.
        This orive system is temperature corpensated to
        minimize read/urite head deviations from the disk
        tracks caused by ambient temperature change.
READ/WRITE HEADS
The read/write heads use MnZn magnetic ferrite.
Each read/write heal has three ferrite cores, consisting of a read/urite core and erase cores on both sides of the read/write core to erase the space between tracks (tunnel erase).
The two read/write heads, which are located race-toface with the disk between them, are mounted on compliant, circular gimbal springs so that the heads track the disk with good contact to enable diaximun: reproduction of the signals rrom the disk. The high surface tracking ability of the circular eimbal keeps the disk free of stress, and thus improves disketi.e jjfe.
```

3.1 POWER ON SEQUENCING
No operation may be performed for a period of 100 msec after the application of $D C$ power to the drive.
The read/urite head aay be positioned on an incorrect track after switching the DC power on, so before starting a read/urite operation, perform a stef out operation until a track 00 signal is detected, thes correctly positionine the head at a known positicn.
3.2 DRIVE SELECTION

The $k 4854-1 S$ daisy chain cabling system peraits connection of multiple drives with a single cable.

These drives are selected when the drive select jines from the controller becone active. Only the drive whose drive select line is active sends and receives signals to and from the host system. The select lines on the drives must have different numbers if t.wo or more drives are connected. If the same number is assigned, an operation error occurs due to interfererice auong the output signals of the drives.

POSITIONING OPERATION
The seek operation which moves the read/write head to the desired track sedects a direction first, inward or outward, with the polarity of the direction select signal. and moves the head with the step signal. If access to a track two or more tracks away is required, step pulses are continuously sent until the tiead moves to the desired track.

Head movement occurs with the trailing edet of t.fe stef. pulse.

It is allowable to read (and sometimes write) a 48 IPI disk in a 96 TPI disk drive. But the software must command the controller to move two 96 TPI" tracks for one 48 TPI track.

SIDE ONE SELECTION
The read/urite heads located on both sides of the diskette are selected by the side one select signal. When the side one select line is high, the side 0 head is selected. When it is low the side 1 head is selected.
READ OPERAIION
Three modes of encoding, FM, MFM, or MMFM are used for the data stored on media. $F M$ is used for singledensity recording, and MFM or MMFM for double-density recordine.
The required timing of operations for reading is described in Chapters 4 and 8.
A comparison of the FM and MFM encoding modes is stichn in Fig. 3-1. See chapter 8 for a complete description of encoding methods.
WRITE OPERATIONS
Write data can be encoded by either FM, MFM, or MAFM. The M4854-iS has eood contact stability of the read/urite heads on the medium and employs highperformance read/write heads, so no precompensation is necessary for correcting the bit shift effect when writing data in the MFM wode (ocuble density). However, if it is desired preconipensation of 15 C nSec or smaller should be used on tracks 43 and above, and none should be used on lower numbered tracks.
When using the drive in a 300 or 250 K bit/second transfer rate mode no precompensation can be used. Doing so will only reduce the read data window dareins.
The required timing of operations for reading is described in Chapters 4 and 8. See chapter 8 for a complete description of encoding methods. See Figure 3-2 for allowable read/urite combinations betwen different types of drives.

The sequence of events that occur with disk inserqiof モ!ヒ:

1) Ite user inserts the disk into the drive cintid audible "click" is heard. This indicates that Lhe drive ejection mechanism has received the disk.
2) When the disk is rully inserted into the drive, a mechanjcal swjtch is actuated, and the spindie dotor starts to rotate.
3) The user clamps the disk on to the rotating spindle using the bridge handle. The tandle is moved until ar audible click is heard.
4) The disk starts to rotate, and the index sensor begins to detect pulses of light from tre index LED.
5) The index pulses are deteced in a rinimum period of time, which suitches the neld readyn logic to a true state. (If the disk is not properly seated, this will not. occur because the index hole in the disk will never ajlow lieht t.o sirike the presise location required to activate the photo-transistor that is the index pulse sensor.) The spindle untor is turned off.
6) Option junper fiC may be used to load the head on to the disk at this time. This is desirable if the user wishes to eliminate the head load and settilng timies associated with motor start/stop operation.

DISK REMOVAL
To remove the disk from the drive the user depresses the front panel door flap, which releases the bridge handie. The efector mechanism then transports t.he disk out of the drive into the users fingers.

This action also resets the "held ready" status to a false condition, or the "disk change" status to a true condition, which can be detected by having the system controller poll the drive for its status.

DAIA | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 3-1 Comparison of $F M$ and MFM Encodine

OTES

1. Tive \% TH heod ant the "double atepmed" by ceocroller
2. The © TPI head mat the "double ocepped" by ceacroller. Write cerrent mat to rolwced.
3. Vrite current meit to rowuced.
4. Tir $\%$ TPI tred anet to "domble etapper by centreller. Speot roduced to 300 Im .
5. speed redweed so 200 Rim.

Figure 3-2 Read/Urite Drive Compatibility

$$
3-5
$$

```
    4. ELECTRICAL INTERFACE
There are two kinds of electrical interfaces: Signal interface
and DC power interface.
The signal interface sends and receives control signals and
read/urite data between the M4854-1S and the host system via the
J1/P1 connector.
The DC power interface drives the spindle drive motor of the M4854-1S, and supplies power to the electronic circuits and thee stepping motor which drives the read/write head positionine mechanisa via the \(J 2 / P 2\) connector.
The signals and pinarrangement of these two types of interfaces are shown in Tables 3-1 and 3-2.
```

Source voltage Pin number
+12 V DC 1
+12 V DC return 2
+5 V DC return 3
45 V DC 4
Table 4-1 DC Power Connector Pin Assignaents (Jz/P2)

Signal	Type	$\begin{aligned} & \text { Sirnal } \\ & \text { Pin No. } \end{aligned}$	Ground/keturn Pin No.
LOW WRITE CURRENT(SB) LOW SPEED (SS) HEAD LOAD (HH)	Input	2	1
IN USE	Input	4	3
DRIVE SELECT 3	Input	6	5
INDEX	Output	8	7
drive select o	Input	10	9
DRIVE SELECT 1	Input	12	11
DRIVE SELECT 2	Input	14	13
MOTOR ON	Input	16	15
DIRECTJON SFLECT	Input	18	17
STEP	Input	20	19
WRITE DATA	Input	22	21
WRITE GATE	Input	24	23
Track 00	Output	26	25
WRITE PROIES:	Output	28	27
READ DATA	Output	30	29
SIDE ONE SELECT	Input	32	31
READY/DISK CHANGE	Output	34	33

[^0]$$
4-2
$$

The signal interface is classified into control signals arid data signals. These interface signal lines are all at TIL levels. The meanings and characteristics of the sierial devels are as follows:
$0 \quad$ True $=$ Logiczl "On $=V L O V$ to 0 o.4. V In $4 C \mathrm{~mA}$ a.aximum

0 False $=$ Loeical ${ }^{n \prime n}=\mathrm{VH}+2.5 \mathrm{~V}$ to 5.25 V In 0 mA

- Input impedance $=150$ ohms
4.1.1 Cabling method and input line termination

The M4854-iS uses a daisy chain cabiling systen. A single ribbon cable or twisted-pair cable may be ritted with multiple connectors to permit connection of up to four drives.

The connected drives are multiplex-controlled by drive seject infes, and any one of the drives can be accessed.

The cabline method and input line termination are shown in Fig. 4-i. A aximum of eight input signal lines, plus the drive select dines, nay be terminated at the M4854-1S. Proper operation of the drives requires termination at or near the drive connected to the end of the interface cable farthest from the host system.

The M4854-iS has a resistor pack in a socket on the printed-circuit board to terminate these input signal Iines.

When a drive is shipped from the ractory, its terminators are installed on the printed-circuit board.

Keef the terminators connected in the drive that is at the end of the iriferiface cable, and disconnect the terminators in all tife ot.her drives.
4.1.2 Line Drivers and Receivers

It is suggested that a Schmitt trigger circuit with a hysteresjs characteristic at the switching level be used for the line receiver to improve the noise reisstance of the interface ilnes.
L-

Figure 4-1 Catiine Method

Figure 4-2 Recommended Line Driver and Recejver Circuit

$$
4-4
$$

4.1 .3 Input Signal Lines
The M4854-iS tas 12 input signal ilnes. Input sienalscan be classified into two types: One is multiplexedin a multi-drive system; and the other performs amultiplex operation.
The multiplexing signals are:

- Drive select 0
- Drive select 1
o Drive select 2
- Drive select 3

Drive select 0 to drive select 3
When one af these drive select iines are at logical oon level. the multiplexed I/O ines become active to enable read/urite operation. These four separate input signal ines, drive select 0 to drive select 3 , are provided for connecting four drives to one system and Gultipleaing them. Jumper pins DSO, DS1, DS2, and DS3 on the prinqed-circuit board are used to select the drives to be rade active, corresponding to drive select ines.

DSO is shorted before shipment from the factory, 80 this setting wist be changed when establishing other drive identirications are desired.

See figure 4-3 for timing details.

Figure 4-3 Drive Select Timing

Figure $4-4$ Side Select Timing 4-6

4.1.3.6 Write data

Data to be written on the diskette is sent to this interface line.

This line is normally at logical ngn, and reverses the write current at the leading edge of a negative-going data pulse (reversal from loeical "!" to logical "on) to write data bits.

This line is enabled when the write gate is at logical "On, rigure 4-6 stiows the write data timing with to other signals. See Chapter δ for data ericodine sfecifics.

Figure 4-6 Write Cate Timing

$$
4-9
$$

4.1 .3 .7	In use
	An LED indicator on the front panel lights when this interrace line goes to logical non. The LED can also be lit by drive select. See Section 7.0 for related options.
4.1 .3 .8	Motor on
	This interface ijne starts the spindie motor when it goes to logical non. See Chapter 7 for related options.
	The motor-on ilne goes logical "in to stop the motor and keep it off while the drive is out of operation, thus reducing system heat generation.
4.1 .3 .9	Low Write Current, Low Speed, Head Load
	This input has three possible uses, depending on whict optioris are selected on the main PCB. See Chapter 7 for the specific option settings.
	Low Write Current:
	This interface input. is a logicaj "in for high density disk operations. It is changed to a logical "on only when yritine on a low capacity disk. This is necessary to insure reliable read/write operation. The state of this input must be held constant for minimum of 590 uSec after the Urite Gate input goes to a logical "1", (high) level.
	Low Speed:
	Bringing this input to "Iow" state causes the spindle motor to slow to 300 RPM. A transfer rate of $250 \mathrm{Kbit} / \mathrm{sec}$ must be used in this mode, along with narmal density media. The write current is olso lowered by this selection.
	Head Load:
	It is possible to use pin 2 as head load control input, but only if it is used exclusively in the 1.6 megabyte mode. See Chapter 7 for complete detalls.

4.1 .4	Output signal dines
	The M4854-is has five standard output sienij innes. All pf them are multiplexed by the drive select ilnes. Until the unit is enabled by its drive select input, all of the outputs are in the "off" state.
4.1 .4 .1	Index
	This interface line is normaliy logical min but sends a logical "on output pulse 3 ms wide each time the diskette makes one revolution.
	This signal signifies the start of track on the rotating diskette. The index signal timine is shown in Figure 4-7.

-Inder

Figure 4-7 Index Output Iiming

$$
4-11
$$

$$
4.1 .4 .2
$$

4.9 .4 .3

Track 00
When this interface jine is at logical mon, it indicates that a read/write head of the selected drive is positioned on track 00. If the output of the selected drive is at logical "1". it indicates that the read/urite head is positioned on a track other than track 00. See Figure 4-8 for timing details.

Read data
This interface ince transmits the data that is detected by the read/urite head on the diskette.

The read data line is normaliy logicaj ng^{n} but it sends logical on (negative-eoine) output. puise during read operation. Refer to Chapters 7 and 8 for timing details.

Figure $4-8 \underset{4-12}{ } \operatorname{Track}^{4} 00$ Timing

4.1.4.4 Ready/Disk Change

This interface line is logicaj "in when the door is open or no diskeite is in the drive. The line goes logical non (ready) if an index pulse is detected twice or more, DC power (+5 V and +12 V) is within limits, and a diskette is inserted into the drive and the door is closed. See Chapter 7 for related options, and Figure 4-9 for timing details.

A "disk change" reature is also available on this output. This is used when knowledge of a disk chatite is the drive is necessary for sort.ware reasens.
4.1 .4 .5

Write protect
This interface sienal notifies the host system of the insertion of a diskette without a write enable notch into the drive. The signal goes t.o logical "on when a write-protected diskette is inserted into the drive. When the sienal is at logical non, writing on the diskette is intibited even if the write eate line becomes active.

Figure 4-9 Basic Ready Timing 4-13

Table 4-3 DC Power Specifications

Electronic interfaces between the fi4E54-1S and the host systen are acconflished with thite connectors. Connector jilis for the signal jriterfaces, connector $\sqrt{2}$ for the DC power supplies, and connector j5 for riatie eroundifie. Tlie connectors used for the M4854-1S and recominended matine cunnectors are described below.
5.1 SIGNAL CONNECTOR

J1 is a card-edge type, 34-pin (for both sides, or 17 pins for a single side) connector with even-numbered pins (2,4, to 34) on the parts side and odd-numbered pins (1,3, to 33) on the soldered side.

A key slot is provided between pins 4 and 6 for the polarity reversal prevention.

The dimensions of J q are shown in Fig. 5-1.
Recommended P q connectors that date with $J 1$ are stiown in Tables 5-1 and 5-2.

Fig. 5-1 Connector Ji Dimensions (mm) and Pin Numbers

Table 5-2 Connector for Flat Cable (Pi)

```
5.2 DC POWER CONNECTOR (J2/PZ̃)
    d% is a four-pin DC power connector aade by AYPP,
jucated on the back of the printed-circuit board. Pin
4 on connector J2 is located closest to Jl/P1; the
arraneement of the pins es viewed from the side is
s.l:cir: in figure 5-2. Pin numbers are shown on the parts
sjde.
The connectors on the drive side and cable side are
shown in Table 5-3.
```

	P2 (Cable Side)	J2 (Drive Side)
Parts	AMP PIN	AMP PIN
Housing.	$1-480424-0$	$172349-1$
Contact (4 pins)	$60619-1$	-
Crimp tool	$90124-2$	-
Extraction tool	$1-305183-2$	-
Cable (3 max.)	AVG 18	-

Table 5-3 DC Power Connectors

Figure 5-2 Connector J2
5.3 FRAME GROUND CONNECTOK (J5/P5)

EASTON Termined
AMP P/8 6C920-1

Crimp Terminal
AMP P/N 60972-1

```
5.4 INTERFACE CONNECTOK PHYSICAL LOCATION
Figure 5-3 shows the physical locations of the interface conrectors used for the M4854-is.
```


Figure 5-3 Connector Location Diagram (Rear View) 5-5
6.

PHYSICAL SPECIFICATIONS
6.1

INSTALLATION DIRECTION
The M4854-iS disk drive shown in Fig. 6-1.
Slant mounting should be within 10 degrees of perpendicular.

(Door open to left) (Door open to right) (Door open to upward)

Fig. 6-1 Disk Drive Installation Directions
6.2 DIMENSIONS OF M4854-1S

See Fig. 6-2

Figure 6-2 Dimensions of M4854-1S

$$
6-2
$$

7. USER OPIIONS

Non-standard modes of operation are avallable to the customer by using option plugs, and some PCB cut andlor jumpers. When using a plug, instaliling the option plug on a pair of square pins is a "short" condition, and removing it is an "open". A trace or a soldered wire jumper between two pads is mshort", and none is a "open".

If necessary, these plug-on jumpers may be purchased froni ELCO. with a part number of 00-8261-0282-00-878.

The specific options are expiained below.
7.1 DRIVE SELECT OPIIONS
7.1.1 DSO TO DS3

When two or more FDDs are connected-to the system, jumper one of the four choices to allow the drive to be enabled when the particular select dine is taken to a logical "o" condition.

Only one drive per system may be designated for each drive number. In other words, there can only be one drive "on, etc. in a system.

MX
If only one FDD is in system, this option way be used to constantly select the drive. It causes the drive to ignore the status of the "DS" lines.

Inis jumper must be removed in multi-drive systems.
7.1.3 TD

This option allows the user to have the same DS line (DSO, DS1, DS2, DS3) used on more than one drive. Specificaliy, it disconnects the discrete terminating vesistor that is connected to the DS irputs. Ihis would ofly be used for special test situations.

7.2	MOTOR CONTROL OPTIONS
	Various ways of turning on the spindle motor are available to the user. The controller design and the timing requirements of the total system must be considered for'this.
7.2.1	Motor On Input
	$\begin{aligned} & \text { MM }=\text { Short } \\ & \text { MS }=\text { Open } \end{aligned}$
	This combination will cause the spindle motor to rotate if a logical non is present at the motor on input, and a disk is installed in the drive.
7.2.2	Drive Select Input
	$\begin{aligned} & \text { MM }=\text { Open } \\ & \text { MS }=\text { Short } \end{aligned}$
	This combiaation will cause the spindle motor to rotate if one of the drive select inputs goes to a logical -On, and a disk is installed in the drive.
7.2.3	Motor On or Drive Select Inputs
	$\begin{aligned} & M M=\text { Open } \\ & M S=\text { Open } \end{aligned}$
	This combination will cause the spindle notor to rotate if either the motor on or drive select input goes to logical on level, and disk is installed in the drive.
7.2 .4	In-Use Latcbed Input
	$\begin{aligned} & \text { MM }=\text { Short } \\ & \text { MS }=\text { Short } \\ & \text { IU }=\text { Short } \end{aligned}$
	This combination will cause the spindle motor to rotate if the in-use input and the drive select input are such that the in-use condition is latched, and a disk is installed in the drive. See Figure $7-1$ for timine details.

7.2.5 Dual Speed Operation

SS $=$ Short
$S B=$ Open
This combination allows the drive to be used in a dual speed mode. Normally, the drive will be in 360 RPM, $500 \mathrm{Kbit/sec}$, mode. If pin 2 of Pi/Ji is made "lown, the drive changes to 300 RPM, 250 Lbit/second operation.
7.2.6 Single Speed Operation
$S S=$ Open
SB = Short
This combination will cause the floppy disk to always rotate at 360 RPM. The transfer rate is 500 Kbit/sec for 1.6 Mbyte and 300 Ebit/sec for 1.0 and 0.5 Mbyte capacity. The "Low Urite Current" input must be taken Elow" to correctly record on a dormal density rioppy diskette.

Figure 7-1 In-Use Lateb Iining

Figure 7-2 Current Ieady (I) Iiming 7-4

Figure 7-3 Held Ready (II) Timing

Figure 7-4 Disk Change (Drive Select Reset) Timing
7.3.4 Disk Change Option (Step Pulse Reset)
$2 S=$ Open
$D C=$ Short
This option is the same as the preceeding one, except that the "high" to "low" transition of the stepping input resets the orive status.
7.3.5 Radial Ready
$R R=$ Open
This option will cause the ready output to always be enables; the drive select input will bave no effect on the ready output. The iogic of the ready output (2S, DC options) is aft affected by RR.

Figure 7-5 Disk Change (Step Reset) Timing 7-7

Many alternatives are available to the user on how to cause the read/urite head to load onto the disk. To prolong disk life, the head should be unloaded as much as possible. Also, increased throughput can be realized by keeping the spindie motor turining, and then loading the head whenever disk access is required, because head loading is much quicker than starting the motor. But, this may not be a factor if sinele, lone accesses are preformed.
7.4.1 Head Loading with Drive Sedect

HS = Short
Installing this plug will cause the head to load when the drive is selected by DSO through DS3. Ihis occurs only if a disk is installed in the drive with the door closed. See figure 7-5 for achematic of this and other head load options.

Note: As seen in Figure 7-6, HS, HM, and HL can be used at the same time, but HH must not be used at the asme time as the option it is connected to through option DH.

(Pull-up Resistors Diltted For Clarity)

Figure 7-6 Head Load and Spare Input Options Schematic 7-8

7.4 .2	Constant Head Loading
	HC $=$ Short
	This option will cause the head to always be loaded arter the door is closed on a disk.
7.4.3	Head Loading with Motor On
	HM = Short
	This option will cause the head to load if the motor on input goes "lown, and the door is closed on a disk.
7.4 .4	Head Losding with In Use
	HL = Short
	This option will cause the head to load if the in-use input goes "lown, and the door is closed on a disk.
7.4 .5	Head Loading with Spare
	$\begin{aligned} & H H=\text { Short } \\ & S P=\text { Short } \end{aligned}$
	This option will cause the bead to load if the spare input goes "lown, and the door is closed on a disk. DH may be used to qualify this action with the Drive Select inputs. The HH option cannot be used if pin 2 on Pi/Ji (Low Speed, Low Urite Current is being utilized.
7.4 .6	Head Unioad Delay
	$U \mathrm{D}=$ Open
	In order to eliminate unalated oscillation of the head load solenold, delay may be introduced after whatever head load signal being used is made ralsen. This delay is 4 index pulses, which equals a time delay of 600 to 800 ESec.

A front panel LED (also called the "In-Use" LED) is provided in the M4854-1S. Its purpose in most cases is to alert the user that the drive is being used, and that the disk should not be removed. It can also act as an indicator of progran execution status. Many different modes of operation are available, which are detailed below.
7.5.1 In-Use Input or Drive Select

IU $=$ Short
This combination will cause the LED to be on if either the In-Use or drive select inputs are made active.
7.5.2 Drive Select

IU = Open
This combination will cause the LED to light only if the drive is selected.
7.5.3 In-Use

IU = Short
IS = Short
This combination will lieht the LED when the In-Use input is input is active.
7.5.4 In-Use Latched By Drive Select
$I U=$ Short
IS = Short
IL = Short
This combination latches the state of the In-Use input on the "high" to "low" transition of the drive select input. See figure 7-1 for timing details.

```
7.5.5 Head Load
    IH = Cut PCB Irace
    = Short Open Pads
This combination causes the LED to light whenever the
read/urite head is loaded. It totally ignores all In-
lise circuitry and other jumpers.
7.5.6 Ready Qualifier
IR = Short
Shorting IR causes the In-Use LED to be qualified by
the ready status (Disk Change options cannot be
used). If used with "held ready" this has the effect
Of lighting the LED only if a disk is in the drive and
the door is closed.
```


INPOT TEBMINATIONS

All input lines to the drive are terminated (see section 4.1.1). The resistor pack should be removed on drives in multi-drive systems, with the exception of the drive the farthest electrical distance from the system controller.
frame groond
Normally the frame of the drive is connected to the logic ground through resistor-capacitor network. If this is not desiredit can be disconnected by cutting the FG trace. See Figure 7-7.

HOST SYSTEM DISK DRIVE

Figure 7-7 Frame Ground Circuit 7-12

Name	Description	Type	Factory Shipment	
DSO	Drive Select - 0	P1UE		X
DS 1	$\cdots-1$		X	
DS2	" $n-2$.	X	
DS3	$\cdots \quad 0-3$	"	x	
MX	n \quad - Continuous	"	X	
TD	" . - Termination	n		X
HS	Head Load - Drive Select	Plug		X
HC	" - Constant	-	x	
HM	" - - Motor On	n	X	
HL	n n - In Use	n	X	
HH	" n - Spare	-	X	
UD	$n{ }^{n} \quad$ - Unioad Delay	"	x	
SP	Spare Input - Enable		x	
DH (HM)	n n - HM Route	n		X
DH (HL)	" " - HL Route	n	X	
IU	In Use - In Use Input	Plug		X
IS	" - - No Drive Select	\cdots		\underline{x}
IL	n " - Latched	n		χ
IR	n " - Ready Qualified	"		x
IH-1	n - - Normal	"		X
IH-2	n - - Head Load	n	x	
2 S		Plug	X	
DC	" - Disk Change		X	
RR	. - Radial Output	n		x
MM	Motor On - Motor On	Plug		X
MS	" " - Drive Select	-	X	
SS	Motor Speed - Dual Speed	\cdots		X
SB	" n - Single Speed	"	X	
FG	Frame Grounding	Trace		X

Table 7-1 Option Summary

Figure 7-8 PCB Option Locations
7-14
8. RECORDING FORMAT
Data to be recorded on the floppy disk is grouped in variousblocks.There are bits, bytes, sectors, tracks, and sides. The bits areencoded onto the disk by three possible means: FM, MFM, or M.MFitechniques. These bits are collected together in a certainnumber of bytes per sector to define the actual recording formatused. All of this is defined by the host system; the disk drivejust records and detects flux reversals on the disk.
8.1 BIT ENCODING

As stated before, there are three main methods of
encoding bits on a floppy disk. All have sonie
advantages and disadvantages, but the generally
accepted standard is MFM (also called Double Density).

```
8.1.1 FM Encodine
Fhi (Frequency Modulation) encodine is shown in Figure 8-1. It is the simplest form of encoding, and may be decoded by use of inexpensive one-shot multivibrators. It can do this because each data pulse is between two clock pulses, thereby defining the "read window" very precisely. Values shown are for a \(500 \mathrm{Kbit/second}\) transfer rate. Multiply all values by 1.666 for a 300 kbit/second transfer rate, and by 2 for a 250 Kbit/second transfer rate.
```


Figure 8-1 FM Write Tiding

Figure 8-2 fM Read Timing 8-2

8.1.2 MFM Encoding

MFM (Modified Frequency Modulation) encoding records twice the number of bits per inch (linear recordine density) as FM encoding, but has the same number of flux changes per inch. It does this by removine the clock pulses, and shrinking the bit cell space by 50%. See Figure 8-3 and 8-4 for specific details. Clock bits are always uritten at the leading edge of the celj ondy if no data bits are written in either the present or preceeding bit cells. Values shown are for a 500 Kbit/second transfer rate. Multiply all values by 1.666 for a $300 \mathrm{kbit} / \mathrm{sec} o n d$ transfer rate, and 2 for a $250 \mathrm{Kbit} / \mathrm{second}$ transfer rate.

Figure 8-3 MFM Write Tiding

Figure 8-4 MFM Read Timing


```
8.1.3 MMFM Encoding
MMFM (Modified-Modified Frequency Modulation) is also a "double density" encoding method, but it further reduces the number of clock bits used to fill the empty spaces between data pulses.
It is not a standard encoding technique, and should probably be avoided for that reason. See Figure 8-5 and 8-6 for a description of MMFM. The data bits are uritten in the middie of the data cells, but a clock pulse is encoded only if no clock or data pulses were written in the previous bit cell, and no data bit is to be written in the present one. Values shown are for a 500 kbit/second transfer rate. Multiply all values by 1.666 for a \(300 \mathrm{kbit} / \mathrm{sec}\) ond transfer rate, and by 2 for a \(250 \mathrm{Ktij} / \mathrm{second}\) transfer rate.
```


(1)
(1)
(1)
(0)
 3.00

Figure 8-5 MMFM Write Timing

Figure 8-6 MmFM Read Timing 8-4

M4854-1S RECOMMENDED FORMATTINGS
M4854-1S 5 1/4.inch Flexible Disk Drives use industry standarc Turnel Erase type Read/Write Heads, and higt. accuracy direct-drive brushless motor for spindle rotation; guaranteed $\pm 1.6 \%$ index interval and $\pm 2 \%$ instantaneous speed.

The recommended formattings for dat.a interchange between drives are shown in the rollowing figures, including formatting and data re-write modes.

The drives ollow for the following conditions on all tracks.
(1) The leading edge of a data block should be preceded by the erased area when re-written.
(2) The trailing edge of ata block should be covered by the erased area when rewritten.
(3) The erased area should not overlap with Sector Identifiers.
(4) Read/Write gap should te before the next ID mark as the erase current is falling off when re-written with a fast rotation spindle on a slow formatted secior.

Figure 8-8 ISO-7487/2 Style, Ali Other Tracks (MFM) 250 or $300 \mathrm{Kbit} / \mathrm{second}$ Transfer Rate 8-6

Figure 8-9 512 Bytes/Sector, Standard Format 250 or 300 Y.bit/second Transfer Rate

Figure 8-10 1,024 Bytes/Sector, Standard Format 250 or $300 \mathrm{Kbit} / \mathrm{second}$ Transfer Rate 8-7

> Figure 8-12 51 . Bytes/Sector, Simplified Format 250 or 300 Kbit/second Iransfer Rate $8-8$

- Missiag clock transition between bits 4 and 5

Figure 8-93 256 Bytes/Sector, NEC 765A Format 250 or $300 \mathrm{Ktit/second} \mathrm{Iransfer} \mathrm{Rate}$

Figure 8-14 512 Bytes/Sector. NEC 765A Format 250 or $300 \mathrm{Kbit/second}$ Transfer Rate 8-9

Figure 8-15 1,024 Bytes/Sector, NEC 765 A Format 250 or $300 \mathrm{Kbit} / \mathrm{second}$ Transfer Rate

Figure 8-16 512 Bytes/sector, 15 Sectors/track $500 \mathrm{Kbit} / \mathrm{second}$ Transfer Rate

Figure 8-17 ISO-7065/2 Style, Track 00 Side 0 (FM) $500 \mathrm{Kbit} / \mathrm{second}$ Iransfer Rate

Figure 8-18 ISO-7065/2 Style, All Other Tracks (MFM) $500 \mathrm{Kblt} / \mathrm{second}$ Transfer Rate

8-11
8.3 ERROR DETECTION AND CORRECTION
8.3.1 Write Errors

If an error occurs during a write operation, it can be detected by perforaine e read operation on the diskette imoediately following the write operation. This is generally called a urite check, which is an effective means of preventing write errors. It is recormended, therefore, that a write check be made without fail.

If a write error occurs, repeat the write operation and conduct a urite check. If data cannot be correctly uritten even after the write operation is repeated about ten times, perform read operation on another track to determine whether the data can be read correctly. If so, specific track of the diskette is defective. If data cannot be correctly read on the other track, the drive is assumed to have some trouble. If the diskette is defective, replace it.
8.3.2 Most data errors that occur are soft errors. If read error occurs, repeat the read operiation to recover the data.

The following are possible main causes of soft errors:
o Dust is caught between the read/urite head and diskette causing temporary fault in head contact. Such dust is generally removed by the selfcleaning wiper of the jacket, and the data is recovered by the next re-read operation. If read/urite is continued for a long time in a very dusty environment, however, hard errors can result Irom a dawaged diskette surface.

- Randon electrical noise ranging in time from a few microseconds to a few milliseconds can also cause read errors. Spike noise generated by awitching requiator, particularly one that has short switcting intervals, deteriorates the signal-tonolse ratio, and increases the number of re-read operations for data recovery. It is aecessary, therefore, to aake an adequate check on the nolse levels of the DC power supplies to the drive and frame erounding.
c Written data or diskettes may have so small a defect as cannot te detected by a data check during write operation.
- Fingerprints or other foreigr vatter on a witten diskette can also cause a temporary error. If foreign matter is left on a uritten diskette for a long time, it can adhere to the diskette, possibly causing a hard error.

It is recommended that the following read operations be performed to correct these soft errors:

- Stef 1: Fefeat the read operation about ten times, or until the data is recovered.
- Step 2: If the data cannot be recovered by Step 1, wove the head to another track, the opposite direction of the previous track position before the desienated track, and then return the head to the originad posjtion.
- Step 3: Repeat an operation similar to Step 1.
- Step 4: If the data cannot be recovered, assume the error is a hard error.

9. RESHIPMENT PRECAUTIONS

When restipping the drive, proper steps must be taken to prevent any damage t.o the orive.
9.1 SHIPPING DAMAGE

Ary damage to the drive that occured during shipping is the responsibility of the carrier. Contact the carrier for any damage claims.
9.2 RESHIPPING

If it is necessary to return a drive for any reason, proper steps must be taken to prevent damage to the orive.

- Use all the packing materials that were rectived with the drive, if possible.
o Be sure to utilize the anti-static bag that came with the orive.
- The head protection sheet should be inserted into the drive (the door should not be closed).

Please refer to figures 9-1, 9-2, 9-3, and 9-4 for specific details of how to pack the drives for shiprent.

NOTE: After inserting the bead protection sheet. push the stopper in the arrow direction (a) until the sheet is securely in place.

Figure 9-1 Head Protection Sheet Installation 9-2

Figure 9-2 Bag and Board Assembly

Figure 9-3 Ten-Pack Carton Assembly

Figure 9-4 Single-Pack Carton Assembly

[^0]: Table 4-2 Signal Connector Pin Arrangement (Ji/P1)

