

SOFTWARE INFORMATION PACKAGE

The MITS system software consists of two packages, an assembly
language development system (called Package II), and ALTAIR
BASIC.

These two packages operate in a stand-alone environment
i.e. without disk or other high speed random access storage
device. I/O devices supported are asynchronous serial ASCII
terminals, parallel ASCII terminals (such as TVT's) and the
ACR (cassette) interface board.

Now also available is ALTAIR DISK EXTENDED BASIC. A DOS (Package
II adapted for the floppy disk) is still under development.
Extended BASIC and the DOS both use the same file structure I/O
code; Extended BASIC is an advanced BASIC interpreter while the
DOS package is a disk based assembly language development system.

Here is an overview of the features of the packages currently
available:

Package II
(System Monitor, Editor, Debugger, & Assembler)

System Monitor - 2.SK Bytes

contains I/O drivers for system console, ACR board (supports
mUltiple files on one cassette), and a high speed paper tape
reader. Programs can be loaded from paper tape or cassette,
memory locations examined and changed, and absolute programs
dumped onto paper tape or cassette. Also, the bottom 100 loca­
tions of memory are unused, allowing a vectored interrupt card
to be used.

Text Editor - 2K Bytes

Facilitates editing of source programs. The editor is line
oriented, that is, commands always reference a line or group
of lines.

Commands:

P - Print Lines
I - Insert Lines
D -
R -
E -

Delete Lines
Replace Lines
Exit to Monitor

A - Alter a line. Enables user to change, delete,or
insert minor changes in an already existing llne.

-1-

Bottom
of

M emory

F String - Searches from the current line forware for
an occurrence of the character string given
as its argument.

Relative addressing is allowed. P.+6 would print the sixth
line after the current one.

Line Feed - Prints and moves the current line pointer
to the next line.

Escape - Print and moves current line pointer to
line before current one.

S -Saves File.
L - Loads a File.

Assembler - 3K Bytes

The ALTAIR loading assembler assembles a source program in
one pass from paper tape, cassette or from the current Editor
buffer. Object code is stored directly into memory as assembly
progresses.

Since the assembler is one pass, it is possible to avoid the
time consuming process of re-reading source tapes more than
once, which is the case with mUlti-pass assemblers. Also,
if the program being assembled resides in the edit buffer,
assembly is almost instantaneous and the user may immediately
correct and re-assemble his program.

Features not provided by the ALTAIR assembler:

- Conditional Assembly
- Macros
- Cross Reference Listing

ALTERNATIVE MEMORY MAPS FOR PACKAGE I

Edl.t Bu:tter

Editor

System Monitor

IUser Assemb.Ly
Language

Program

System Monitor

-2-

Edl.t Butter
Assembler

Buffer
Assembler

Editor

System Monitor

AssembLer
Buffer

Assembler

System Monitor

MORE MEMORY MAPS

User program User program

Assembler

Debug Debug

Monitor Monitor

NOTE: Package II can use all available memory. A minimum
of 8K is necessary, but any extra memory may be allocated
for Package II buffer or program storage.

Examine/Modify Commands

DEBUG
2K Bytes

A location to be examined can be specified by an octal address,
a register name (A,B,C,D,E,H,L, or S for status word), or a
period to indicate the address in the current address pointer.
In addition a location can be specified with any of the above
forms but with a + or - octal offset (e.g •• +7).

The specified location can be examined by typing a / after it.
A / causes the following:

- Type the specified (and possibly following locations
in accordance with the current I/O mode.

- Open location(s) for modification.
- A carriage return will close the location.
- A line feed will print the address and contents of the

next memory location(s) (depending on I/O mode).
acts as a line feed but goes to previous instead of

next, location(s).
causes contents of location to be typed in octal regard­

less of I/O mode.
- A tab (control 10 will open for examination the address

associated with a previously displayed symbolic
3-byte instruction.

- Otherwise input information will be accepted to modify
the contents of the current location. Input data
must conform to the specified I/O mode.

-3-

- A rubout typed at any time will cause input to the current
line to be aborted, and a new line will be started.

- A ! causes the location to be typed out in flag mode:
C = Carry
Z
S
p

H

=
=
=
=

Zero
Sign
Even parity
Half carry

I/O modes can be respecified at any time by typing an escape
followed by one of the following characters:

a (octal)
A (ASCII)
S (symbolic) (instruction format)
w (two-byte words)
D (decimal)

Execution Commands

An address (as specified above) if followed by a G will cause
execution of the user program to begin at the specified address.

A P will cause execution of the user program to proceed from
the most recently encountered break point. An octal number
can precede a p to indicate the number of breakpoints that the
user wishes to pass over before finally returning control to
DEBUG.

Breakpoint Commands

There are 8 possible breakpoints (numbered 0 thru 7). To set
a breakpoint an address is followed by an X. The first free
breakpoint will be set.

A Y carriage return will remove all breakpoints.
A Yn will remove breakpoint n.
A Q will cause a table of all set breakpoints to be displayed.

Memory Block Commands

The contents of a block of memory can be displayed by typing
a command of the form:

(ADDRESS A), (ADDRESS B)T
This command will cause memory contents beginning with (ADDRESS A)
and ending with (ADDRESS B) to be displayed in the current I/O mode.

8K BASIC (5.9K)

ALTAIR BASIC (version 3.1) requires a minimum of 6K bytes of
memory.

-4-

Features not normally found in BASIC include Boolean operators
(AND, OR, NOT) which can be used in IF statements or for bit
manipulation, INP and OUT which can read or write a byte from
any I/O port, and PEEK and POKE to read or write a byte from
any memory location. variable length strings (up to 255 characters)
are provided, as well as the LEFT$, RIGHT$ and MID$ functions
to take substrings of strings, a concatenation operator and VAL
and STR$ to convert between strings and numbers. Number represent­
ation is 32 but floating point. Both string and numeric arrays
f~up to 30 dimensions may be used, and can be allocated dynamically
during program execution. Nesting of loops and subroutine calls
is limited only by available memory. Intrinsic functions are SIN,
COS, TAN, LOG, EXP, SQR, SGN, ABS, INT, FRE, RND and POS, in
addition to TAB and SPC in PRINT statements.

Other important features are direct execution of statements,
multiple statements per line, and the ability to interrupt
program' execution and then continue after the examination of
variable values.

For the MITS' line of ALTAIR microcomputers, 8K BASIC costs
$75 with the purchase of 8K memory and an I/O interface board.

4K BASIC (3.3K)

The 4K version of BASIC, with less features than 8K BASIC, costs
$60 for ALTAIR owners with 4K memory and an I/O board.

The features of 4K BASIC are a subset of those of 8K BASIC.
Main restrictions are:

- No strings.
- Matrices of only one dimension.
- Math functions are ABS, INT, SQR, RND, SIN, SGN
- No AND, OR, NOT
- No PEEK, POKE, INP, OUT
- No interrupt response subroutines.
- No ON ••• ~OTO, ON. • .GOSUB
- No CONTinue command.

NOTE: It is often advantageous to run 4K BASIC in an 8K ALTAIR
if you have a long program or a program that uses large
single dimensioned arrays.

-5-

"Creative Electronics"

COMMANDS

A command is usually given after BASIC has typed OK. This is called
the "Command Level". Commands may be used as program statements. Certain
commands, such as LIST, NEW and CLOAD will terminate program execution
when they finish.

NAME

CLEAR

LIST

NULL

RUN

EXAMPLE PURPOSE/USE

*(SEE PAGE 42 FOR EXAMPLES AND EXPLANATION)

LIST
LIST 100

NULL 3

RUN

Lists current program
optionally starting at specified line.
List can be control-C'd (BASIC will
finish listing the current line)

(Null command only in 8K version, but
paragraph applicable to 4K version also)
Sets the number of null (ASCII 0) charac­
ters printed after a carriage return/line
feed. The number of nulls printed may
be set from 0 to 71. This is a must for
hardcopy terminals that require a delay
after a CRLF~ It is necessary to set the
number of nulls typed on CRLF to 0 before
a paper tape of a program is read in from
a.T~Iety:pe- (TELETYPE is a registered
trademark of the TELETYPE CORPORATION).
In the 8K version, use the null command
to set the number of nulls to zero. In
the 4K version, this is accomplished by
patching location 46 octal to contain the
number of nulls to be typed plus 1.
(Depositing a 1 in location 46 would set
the number of nulls typed to zero.) When
you punch a paper tape of a program using
the list command, null should be set >=3
for 10 CPS terminals, >=6 for 30 CPS ter­
minals. When not making a tape, we recom­
mend that you use a null setting of 0 or 1
for :rreletypes, and 2 or 3 for hard copy
30 CPS terminals. A setting of 0 will
work withfTeletype compatible CRT's.

Starts execution of the program currently
in memory at the lowest numbered state­
ment. Run deletes all variables (does a
CLEAR) and restores DATA. If you have
stopped your program and wish to continue
execution at some point in the program,
use a direct GOTO statement to start
execution of your program at the desired
line. *CRLF=carriage return/line feed

NEW

CONT

RUN 200

NEW

(8K version only) optionally starting
at the specified line number

Deletes current program and all variables

THE FOLLOWING CO~NDS ARE IN THE BK VERSION ONLY

CONT Continues program execution after a
control/C is typed or a STOP statement
is executed. You cannot continue after
any error, after modifying your program,
or before your program has been run.
One of the main purposes of CaNT is de­
bugging. Suppose at some point after
running your program, nothing is printed.
This may be because your program is per­
forming some time consuming calculation,
but it may be because you have fallen
into an "infinite loop". An infinite loop
is a series of BASIC statements from
which there is no escape. The ALTAIR will
keep executing the series of statements
over and over, until you intervene or
until power to the ALTAIR is cut off.
If you suspect your program is in an
infinite loop, type in a control/C. In
the 8K version, the line number of the
statement BASIC was executing will be
typed out. After BASIC has typed out OK,
you can use .PRINT to type out some of the
values of your variables. After examining
these values you may become satisfied that
your program is functioning correctly.
You should then type in CaNT to continue
executing your program where it left off,
or type a direct GOTO statement to resume
execution of the program at a different
line. You could also use assignment (LET)
statements to set some of your variables
to different values. Remember, if you
control/C a program and expect to continue
it later, you must not get any errors or
type in any new program lines. If you
do, you won't be able to continue and will
get a "CN" (continue not) error. It is
impossible to continue a direct command.
CaNT always resumes execution at the next
statement to be executed in your program
when control/C was typed.

(LOAD

(SAVE

THE' FOLLOWING TWO COMMANDS ARE' AVAILABLE IN THE BX CASSETTE
VERSION ONLY

(LOAD P

(SAVE P

OPERATORS

Loads the program named P from the
cassette tape. A NEW command is auto­
matically done before the CLOAD com­
mand is executed. When done, the CLOAD
will typeout OK as usual. The one­
character program designator may be any
printing character. CSAVE and CLOAD
use I/O ports 6 & 7.
See Appendix i for more information.

Saves on cassette tape the current pro­
gram in the ALTAIR's memory. The pro­
gram in memory is left unchanged. More
than one program may be stored on cassette
using this command. CSAVE and CLOAD use
I/O ports 6 & 7.
See Append~x I for more information

SYMBOL SAMPLE STATEMENT PURPOSE/USE

= A=100
LET Z=2.5

8=-A

Assigns a value to a variable
The LET is optional

Negation. Note that O-A is subtraction,
while -A is negation.

t 130 PRINT Xt3 Exponentiation (8K version)
(usuaZZy a shift/N) (equal to X*X*X in the sample statement)

OtO=l 0 to any other power = 0

*
/

+

140 X=R*(8*D)

150 PRINT X/1.3

160 Z=R+T+Q

170 J=100-I

AtB, with A negative and B not an integer
gives an FC error.

Multiplication

Division

Addition

Subtraction

RULES FOR EVALUATING EXPRESSIONS:
1) Operations of higher precedence are performed before opera­
tions of lower precedence. This means the multiplication and
divisions are performed before additions and subtractions. As
an example, 2+10/5 equals 4, not 2.4. When operations of equal
precedence are found in a formula, the left hand one is executed
first: 6-3+5=8, not -2.

2) The order in which operations are performed can always be
specified explicitly through the use of parentheses. For in­
stance, to add 5 to 3 and then divide that by 4, we would use
(5+3)/4, which equals 2. If instead we had used 5+3/4, we
would get 5.75 as a result (5 plus 3/4).

The precedence of operators used in evaluating expressions is as
follows, in order beginning with the highest precedence:

(Note: Operators Listed on the same Line have the same precedence.)

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST

2) t

3) NEGATION

4) * /
5) +

EXPONENTIATION (BK VERSION ONLY)

-x WHERE X MAY BE A FORMULA

MULTIPLICATION AND DIVISION

ADDITION AND SUBTRACTION

6) RELATIONAL OPERATORS:
(equaL precedence for
aLL six)

= EQUAL
<> NOT EQUAL

< LESS THAN
> GREATER THAN

<= LESS THAN OR EQUAL
>= GREATER THAN OR EQUAL

(BK VERSION ONLY) (These 3 beZow are LogicaL Operators)

7) NOT LOGICAL AND BITWISE IINOTII
LIKE-NEGATION, Not T-AKE"S ONLY THE
FORMULA TO ITS RIGHT AS AN ARGUMENT

8) AND LOGICAL AND BITWISE IIANDII

9) OR LOGICAL AND BITWISE "OR II

In the 4K version of BASIC, relational operators can only be used
once in an IF statement. However, in the 8K version a relational ex­
pression can be used as part of any expression.

Relational Operator expressions. will always have a value of True (-1)
or a value of False (0). Therefore, (5~4)=0, (5=5)=-1, (4)5)=0, (4<5)=-1,
etc.

The THEN clause of an IF statement is executed whenever the formula
after the IF is not equal to O. That is to say, IF X THEN ... is equivalent
to IF X<>O THEN .-.. -.

SYMBOL

=

<>

>

<

<=,=<

>=,=>

AND

OR

NOT

SAMPLE STATEMENT PURPOSE/USE

10 IF A=15 THEN 40 Expression Equals Expression

70 IF A<>o THEN 5 Expression Does Not Equal Expression

30 IF 8>100 THEN 8 Expression Greater Than Expression

160 IF 8<2 THEN 10 Expression Less Than Expression

180 IF 100<=8+(THEN 10 Expression Less Than Or Equal
To· Expression

190 IF Q=>R THEN 50 Expression Greater Than Or Equal
To Expression

2 IF A<5 AND 8<2 THEN 7 (8K Version only) If expression 1
(A<5) AND expression 2 (B<2) are both
true, then branch to line 7

IF A<l OR 8<2 THEN 2 (8K Version only) If either expres­
sion 1 (A<l) OR expression 2 (B<2) is
true, then branch to line 2

IF NOT Q3 THEN 4 (8K Version only) If expression
"NOT Q3" is true (because Q3 is
false), then branch to line 4
Note: NOT -1=0 (NOT true=false)

AND, OR and NOT can be used for bit manipulation, and for performing
boolean operations.

These three operators convert their arguments to sixteen bit, signed
two's, complement integers in the range -32768 to +32767. They then per­
form the specified logical operation on them and return a result within
the same range. If the arguments are not in this range, an "Fe" error
results.

The operations are performed in bitwise fashion, this means that each
bit of the result is obtained by examining the bit in the same position
for each argument.

The following truth table shows the logical relationship between bits:

OPERATOR ARG. 1 ARG. 2 RESULT

AND 1 1 1
0 1 0
1 0 0
0 0 0

(cont.)

OPERATOR ARG. 1 ARG. 2 RESULT

OR

NOT

1
1
o
o

1
o

1
o
1
o

1
1
1
o

o
1

EXAMPLES: (In aZZ of the exampZes beZow, Zeading zeroes on binary
numbers are not shown.)

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 AND 2=0

4 OR 2=6

10 OR 10=10

-lOR -2=-1

NOT 0=-1

NOT X

NOT 1=-2

Since 63 equals binary 111111 and 16 equals binary
10000, the result of the AND is binary 10000 or 16.

15 equals binary 1111 and 14 equals binary 1110, so
15 AND 14 equals binary 1110 or 14.

-1 equals binary 1111111111111111 and 8 equals binary
1000, so the result is binary 1000 or 8 decimal.

4 equals binary 100 and 2 equals binary 10, so the
result is binary 0 because none of the bits in either
argument match to give a 1 bit in the result.

Binary 100 OR'd with binary 10 equals binary 110, or
6 deciimal.

Binary 1010 OR'd with binary 1010 equals binary 1010,
or 10 decimal.

Binary 1111111111111111 (-1) OR'd with binary
1111111111111110 (-2) equals binary 1111111111111111,
or -1.

The bit complement of binary 0 to 16 places is sixteen
ones (1111111111111111) or -1. Also NOT -1=0.

NOT X is equal to -(X+1). This is because to form the
sixteen bit two's complement of the number, you take the
bit (one's) complement and add one.

The sixteen bit complement of 1 is 1111111111111110,
which is equal to -(1+1) or -2.

A typical use of the bitwise operators is to test bits set in the
ALTAIR's inport ports which ref1ec~ the state of some external device.

Bit position 7 is the most significant bit of a byte, while position
o is the least significant.

For instance, suppose bit 1 of I/O port 5 is 0 when the door to Room
X is closed, and 1 if the door is open. The following program will print
"Intruder Alert" if the door is opened:

10 IF NOT (INP(5) AND 2) THEN 10 This line will execute over
and over until bit 1 (mask-
ed or selected by the 2) be­
comes a 1. When that happens,
we go to line 20 .

20 PRINT "INTRUDER ALERT" Line 20 will output "INTRUDER
ALERT".

However, we can replace statement 10 with a "WAIT" statement, which
has exactly the same effect.

10 WAIT 5,2 This line delays the execution of the next
statement in the program until bit 1 of
I/O port 5 becomes 1. The WAIT is much
faster than the equivalent IF statement
and also takes less bytes of program
storage.

The ALTAIR's sense switches may also be used as an input device by
the INP function. The program below prints out any changes in .the sense
switches.

10 A=300:REM SET A TO A VALUE THAT WILL FORCE PRINTING
20 J=INP(255):IF J=A THEN 20
30 PRINT J;:A=J:GOTO 20

The following is another useful way of using relational operators:

125 A=-(8)C)*8-(8<=C)*C This statement will set the variable
A to MAX(B,C) = the larger of the two
variables Band C.

STATEMENTS

Note: In the following description of statements3 an argument of V
or W denotes a numeric variable3 X denotes a numeric expression3 X$ de­
notes a string expression and an I or J denotes an expression that is
truncated to an integer before the statement is executed. Truncation
means that any fractional part of the number is lost3 e.g. 3.9 becomes
33 4.0l becomes 4.

An expression is a series of variables3 operators3 function calls
and constants which after the operations and function calls are performed
using the precedence rules3 eva1uatesto a numeric or string vaZue.

A constant is either a number (3.14) or a string literal ("FOO").

NAME EXi\f\1P L1: PUIU)OSE/USl:

DATA 10 DATA 1,3,-lE3,.04 Specifies data, read from left to right.

20 DATA" FOO",ZOO

Information appears in data statements
in the same order as it will be read in
the program. IN THE 4K VERSION OF BASIC,
DATA STATEMENTS MUST BE THE FIRST STATE­
MENTS ON A LINE. Expressions may also
appear in th~ 4K version data statements.

(BK Version) Strings may be read from
DATA statements. If you want the string
to contain leading spaces (blanks), colons
(:) or commas (,), you must enclose the
string in double quotes. It is impossible
to have a double quote within string data
or a string literal. (''''MITS· II

• is illegal)

DEF 100 DEF FNA(V)=V/8+C (BK Version) The user can define functions

DIM

110 Z=FNA(3)

113 DIM A(3),8(10)

like the built-in functions (SQR, SGN, ABS,
~tc.) through the use of the DEF statement.
The name of the function is "FN" followed
by any legal variable name, for example:
FNX, FNJ7, FNKO, FNR2. User defined
functions are restricted to one line. A
function may be defined to be any expres­
sion, but may only have one argument. In
the example B & C are variables that are
used in the program. Executing the DEF
statement defines the function. User de­
fined functions can be redefined by exe­
cuting another DEF statement for the same
function. User defined string functions
are not allowed. "V" is called the dummy
variable.
Execution of this statement following the
above would cause Z to be set to 3/B+C,
but the value of V would be unchanged.

Allocates space for matrices. All matrix
elements are set to zero by the DIM state­
ment.

114 DIM R3(5,5),D$(2,2,2) (BK Version) Matrices can have more
than one dimension. Up to 255 dimen­
sions are allowed, but due to the re­
striction of 72 characters per line
the practical maximum is about 34
dimensions.

115 DIM Q1(N),Z(2*I) Matrices can be dimensioned dynamically
during program execution. If a matrix
is not explicitly dimensioned with a DIM
statement, it is assumed to be a single
dimensioned matrix of whose single subscript

117 A(8)=4

END 999 END

may range from 0 to 10 (elevell clements).
If this statement was encountered before
a DIM statement for A was found in the
program, it would be as if a DIM A(lD)
had been executed previous to the execu­
tion of line 117. All subscripts start
at zero (0), which means that DIM X(lOO)
really allocates 101 matrix elements.

Terminates program execution without
printing a BREAK message. (see STOP)
CONT after an END statement causes exe­
cution to resume at the statement after
the END statement. END can be used any­
where in the program, and is optional.

FOR 300 FOR V=l TO 9.3 STEP.6 (see NEXT statement) V is set
equal to the value of the expres­
sion following the equal sign, in
this case 1. This value is called
the initial value. Then the state­
ments between FOR and NEXT are
executed. The final.value is the
value of the expression following
the TO. The step is the value of
the expression following STEP.
When the NEXT statement is encoun­
tered, the step is added to the
variable.

310 FOR V=l TO 9.3 If no STEP was specified, it is
assumed to be one. If the step is
positive and the new value of the
variable is <= the final value (9.3
in this example), or the step value
is negative and the new value of
the variable is => the final value,
then the first statement following
the FOR statement is executed.
Otherwise, the statement following
the NEXT statement is executed.
All FOR loops execute the statements
between the FOR and the NEXT at
least once, even in cases like
FOR V=l TO o.

315 FOR V=10*N TO 3.4/Q STEP SQR(R) Note that expressions
(formulas) may be used for the in­
itial, final and step values in a
FOR loop. The values of the ex­
pressions are computed only once,
before the body of the FOR NEXT
loop is executed.

GOTO

GOSUB

IF ... GOTO

IF ... THEN

320 FOR V=9 TO 1 STEP -1 When the statement after the NEXT
is executed, the loop variable is
never equal to the final value,
but is equal to whatever value
caused the FOR ... NEXT loop to ter­
minate. The statements between
the FOR and its corresponding NEXT
in both examples above (310 & 320)
would be executed 9 times.

330 FOR W=l TO 10: FOR W=l TO :NEXT W:NEXT W Error: do not

50 GO TO 100

10 GOSUB 910

use nested FOR ... NEXT loops with
the same index variable.
FOR loop nesting is limited only
by the available memory.
(see Appendix D)

Branches to the statement specified.

Branches to the specified statement (910)
until a RETURN is encountered; when a
branch is then made to the statement
after the GOSUB. GOSUB nesting is limited
only by the available memory.
(see Appendix D)

32 IF X<=Y+23.4 GOTO 92 (8K Version) Equivalent to IF ... THEN,
except that IF ... GOTO must be followed
by a line number, while IF ... THEN can
be followed by either a line number
or another statement.

IF X<10 THEN 5 Branches to specified statement if the
relation is True.

20 IF X<O THEN PRINT "X LESS THAN 0" Executes all of the
statements on the remainder of the line
after the THEN if the relation is True.

25 IF X=5 THEN 50:Z=A WARNING. The "Z=A" will never be
executed because if the relation is
true, BASIC will branch to line 50.
If the relation is false Basic will
proceed to the line after line 25.

26 IF X<O THEN PRINT "ERROR, X NEGATIVE": GOTO 350
In this example, if X is less than 0,
the PRINT statement will be executed
and then the GOTO statement will
branch to line 350. If the X was 0 or
positive, BASIC will proceed to
execute the lines after line 26.

INPUT

LET

NEXT

ON.··GOTO

3 INPUT V,W,W2

5 INPUT "VALUE";V

300 LET W=X
310 V=5.1

340 NEXT V
345 NEXT

350 NEXT V,W

Requests data from the terminal (to be
typed in). Each value must be separated
from the preceeding value by a comma (,).
The last value typed should be followed
by ac.arriage· return. A "?" is typed as
a prompt···character. In the 4K version, a
value typed in as a response to an INPUT
statement may be a formula, such as
2*SIN(.16)-3. However, in the 8K version,
only constants may be typed in as a re­
sponse to an INPUT statement, such as
4~5E-3 or "CAT". If more data was re­
quested in an INPUT statement than was
typed in, a "??" is printed and the rest
of the data should be typed in. If more
data was typed in than was requested,
the extra data will be ignored. The 8K
version will print the warning "EXTRA
IGNORED" when this happens. The 4K ver­
sion will not print a warning message.
(BK Version) Strings must be input in the
same format as they are specified in DATA
statements.
(BK Version) Optionally types a prompt
string ("VALUE") before requesting data
from the terminal. If ~cairiage· return
is typed to an input statement, BASIC
returns to command mode. Typing CONT
after an INPUT command has been inter­
rupted will cause execution to resume at
the INPUT statement.

Assigns a value to a variable.
"LET" is optional.

Marks the end of a FOR loop.
(BK Version) If no variable is given,
matches the most recent FOR lOop.
(BK Version) A single NEXT may be used
to match multiple FOR statements.
Equivalent to NEXT V:NEXT W.

100 ON I GOTO 10,20,30,40 (BK Version) Branches to the line
indicated by the 11th number after
the GOTO. That is:
IF 1=1, THEN GOTO LINE 10
IF 1=2, THEN GOTO LINE 20
IF 1=3, THEN GOTO LINE 30
IF 1=4, THEN GOTO LINE 40.

If 1=0 or I attempts to select <l non­
existent line (>=5 in this case), the
statement after the ON statement is
executed. How~ver, if I is >255 or
<0, :an FC error message will result.
As many line numbers as will fit on
a line can follow an ON ... GOTO.

105 ON SGN(X)+2 GOTO 40,50,60
This statement will branch to line 40
if the expression X is less than zero,
to line 50 if it equals zero, and to
line 60 if it is greater than zero.

ON ••. GOSUB

OUT

POKE

PRINT

110 ON I GOSUB 50,60

355 OUT I,J

357 POKE I,J

360 PRINT X,Y;Z
370 PRINT

(BK Version) Identical to "ON ... GOTO",
except that a subroutine call (GOSUB) is
executed instead of a GOTO. RETURN from
the GOSUB branches to the statement after
the ON ... GOSUB .

(BK Version) Sends the byte J to the
output port I. Both I & J must be >=0
and <=255.

(BK Version) The POKE statement stores
the byte specified by its second argu­
ment (J) into the location given by its
first argument (I). The byte to be stored
must be =>0 and <=255, or an FC error will
occur. The address (I) must be =>0 and
<=32767, or an FC error will result.
Careless use of the POKE statement will
probably cause you to "poke" BASIC to
death; that is, the machine will hang, and
you will have to reload BASIC and will
lose any program you had typed in. A
POKE to a non-existent memory location is
harmless. One of the main uses of POKE
is to pass arguments to machine language
subroutines. (see Appendix J) You could
also use PEEK and POKE to write a memory
diagnostic or an assembler in BASIC.

Prints the value of expressions on the
terminal. If the list of values to be
printed out does not end with a comma (,) 380 PRINT X,Y;

390 PRINT "VALUE
400 PRINT A2,B,

IS" ; A or a semicolon (;), then a cC!,rriage
return/line feed is executed after ail the
values have been printed. Strings enclosed
in quotes (") may also be printed. If a
semicolon separates two expressions in the
list~ their values are printed next to
each Qther. If a comma appears after an

READ

REM

RESTORE

expression in the list, and the print head
is at print position 56 or more, then a
carriage return/line feed is executed.
If the print head is before print position
56, then spaces are printed until the car-
.riage is at the beginning of the next 14
cO'[umn field (until the carriage is at
column 14, 28, 42 or 56 •..). If there is no
list of expressions to be printed, as in
line 370 of the examples, then a carriage
return/line feed is executed.

410 PRINT MID$(A$,2); (BK Version) String expressions may be
printed.

490 READ V,W Reads data into specified variables from
a DATA statement. The f~r~_t J>~ec:e .. of dat,:
read will be the first'piece of data list~
ed in the first DATA statement of the pro­
gram. The second piece of data read will
be the second piece listed in the first
DATA statement, and so on. When all of
the data have been read from the first
DATA statement, the next piece of data to
be read will be the first piece listed in
the second DATA statement of the program.
Attempting to read more data than there
is in all the DATA statements in a pro­
gram will cause an 00 (out of data) error.
In the 4K version, an SN error from a READ
statement can mean the data it was at­
tempting to read from a DATA statement was
improperly formatted. In the 8K version,
the line number given in the SN error will
refer to the line number where the error
actually is located.

SOD REM NOW SET V=O Allows the programmer to put comments in
his program. REM statements are not exe­
cuted, but can be branched to. A REM
statement is terminated by end of line,
but not by a":".

50S REM SET V=O: V=O In this case the V=O will never be exe­
cuted by BASIC.

S06 V=O: REM SET V=O In this case V=O will be executed

510 RESTORE Allows the ore-reading of DATA statements.
After a RESTORE, the next piece of data
read will be the first piece listed in
the first DATA statement of the program.
The second piece of data read will be
the second piece listed in the first DATA
statement, and so on as in a normal
READ operation.

RETURN

STOP

WAIT

50 RETURN

9000 STOP

805 WAIT I,J,K
806 WAIT I,J

4K INTRINSIC FUNCTIONS

ABS(X) 120 PRINT ABS(X)

INT(X) 140 PRINT INT(X)

RND(X) 170 PRINT RND(X)

Causes a subroutine to return to the
statement after the most recently exe­
cuted GOSUIL

Causes a program to stop execution and to
enter command mode.
(BK Version) Prints BREAK IN LINE 9000.
(as per this example) CaNT after a STOP
branches to the statement following the
STOP.

(BK Version) This statement reads the
status of input port I, exclusive OR's
K with the status, and then AND's the re­
sult with J until a non-zero result is
obtained. Execution of the program con­
tinues at the statement following the
WAIT statement. If the WAIT statement
only has two arguments, K is assumed to
be zero. If you are waiting for a bit
to become zero, there should be a one in
the corresponding position of K. I, J
and K must be =>0 and <=255.

Gives the absolute value of the expression
X. ABS returns X if X>=O, -X otherwise.

Returns the largest integer less than or
equal to its argument X. For example:
INT(.23)=0, INT(7)=7, INT(-.l)=-l, INT
(-2)= -2, INT(l.l)=l.
The following would round X to D decimal
places:

INT(X*lOtD+.5)/lOtD

Generates a random number between 0 and 1.
The argument X controls the generation of
random numbers as follows:

X<O starts a new sequence of random
numbers using X. Calling RND with
the same X starts the same random
number sequence. X=O gives the last
random number generated. Repeated
calls to RND(O) will always return
the same random number. X>O gener­
ates a new random number between 0
and 1.
Note that (B-A)*RNO(I)+A will gener­
ate a random number between A & B.

SGN(X)

SIN (X)

SQR(X)

TAB (I)

USR(I)

230 PRINT SGN(X)

190 PRINT SIN (X)

180 PRINT SQR(X)

240 PRINT TAB (I)

200 PRINT USR(I)

Gives 1 if X>O, 0 if X=O, and -1 if X<O.

Gives the sine of the expression X. X is
interpreted as being in radians. Note:
COS (X)=SIN(X+3.l4l59/2) and that 1 Radian
=180/PI degrees=57.2958 degrees; so that
the sine of X degrees= SIN(X/57.2958).

Gives the square root of the argument x.
An FC error will occur if X is less than
zero.

Spaces to the specified print position
(column) on the terminal. May be used
only in PRINT statements. Zero is the
leftmost column on the terminal, 71 the
rightmost. If the carriage is beyond
position I, then no printing is done. I
must be =>0 and <=255.

Calls the user's machine language sub­
routine with the argument I. See POKE,
PEEK and Appendix J.

8K FUNCTIONS (Includes all those listed under 4K INTRINSIC FUNCTIONS
plus the following in addition.)

ATN(X) 210 PRINT ATN(X)

COS (X) 200 PRINT COS (X)

EXP(X) 150 PRINT EXP(X)

FRE(X) 270 PRINT FRE(D)

INP(I) 265 PRINT INP(I)

Gives the arctangent of the argument X.
The result is returned in radians and
ranges from -PI/2 to PI/2. (PI/2=1.5708)

Gives the cosine of the expression X. X
is interpreted as being in radians.

Gives the constant "E" (2.71828) raised
to the power X. (EtX) The maximum
argument that can be passed to EXP with­
out overflow occuring is 87.3365.

Gives the number of memory bytes currently
unused by BASIC. Memory allocated for
STRING space is not included in the count
returned by FRE. To find the number of
free byt~s in STRING space, call FRE with
a STRING argument. (see FRE under STRING
FUNCTIONS)

Gives the status of (reads a byte from)
input port I. Result is =>0 and <=255.

LOG (X) 160 PRINT LOG (X)

PEEK 356 PRINT PEEK(I)

POS(I) 260 PRINT POS(I)

SPC(I) 250 PRINT SPC(I)

TAN (X) 200 PRINT TAN (X)

STRINGS (BX Version OnZy)

Gives the natural (Base E) logarithm of
its argument X. To obtain the Base Y
logarithm of X use the formula LOG(X)/LOG(Y).
Example: The base 10 (common) log of
7 = LOG(7)/ LOG(IO).

The PEEK function returns the contents of
memory address I. The value returned will
be =>0 and <=255. If I is >32767 or <0,
an FC error will occur. An attempt to
read a non-existent memory address will
return 255. (see POKE statement)

Gives the current position of the terminal
print head (or cursor on CRT's). The
leftmost character position on the terminal
is position zero and the rightmost is 71.

Prints I space (or blank) characters on
the terminal. May be used only in a
PRINT statement. X must be =>0 and <=255
or an FC error will result.

Gives the tangent of the expression X.
X is interpreted as being in radians.

1) A string may be from 0 to 255 characters in length. All string
variables end in a dollar sign ($); for example, A$, B9$, K$,
HELLO$.

2) String matrices may be dimensioned exactly like _n~_ei'i~ _ matrices.
For instance, DIM A$(IO,IO) creates a string matrix of 121 elements,
eleven rows by eleven columns (rows 0 to 10 and columns 0 to 10).
Each string matrix element is a complete string, which can be up to
255 characters in length.

3) The total number of characters in use in strings at any time during
program execution cannot execeed the amount of string space, or an
OS error will result. At initialization, you should set up string
space so that it can contain the maximum number of characters which
can be used by strings at anyone time during program execution.

NAME EXAMPLE

DIM 25 DIM A$(10,10)

PURPOSE/USE

Allocates space for a pointer and length
for each element of a string matrix. No
string space is allocated. See Appendix D.

LET

=
>
<
<=
>=
<>

+

INPUT

READ

PRINT

27 LET A$="FOO"+V$

30 LET Z$=R$+Q$

40 INPUT X$

50 READ X$

60 PRINT X$
70 PRINT "FOO"+A$

Assigns the value of a string expression
to a string variable. LET is optional.

String comparison operators. Comparison
is made on the basis of ASCII codes, a
character at a time until a difference
is found. If during the comparison of
two strings J the end of one is reached,
the shorter string is considered smaller.
Note that "A " is greater than "A" since
trailing spaces are significant.

String concatentation. The resulting
string must be less than 256 characters
in length or an LS error will occur.

Reads a string from the user's terminal.
String does not have to be quoted; but if
not, leading blanks will be ignored and
the string will be terminated on a "," or
":" character.

Reads a string from DATA statements within
the program. Strings do not have to be
quoted; but if they are not, they are
terminated on a "," or ":" character or
end of line and leading spaces are ignored.
See DATA for the format of string data.

Prints the string expression on the user's
terminal.

STRING FUNCTIONS (BK Version OnZy)

ASC(X$) 300 PRINT ASC(X$)

CHR$(I) 275 PRINT CHR$(I)

FRE(X$) 272 PRINT FRE("")

Returns the ASCII numeric value of the
first character of the string expression
X$. See Appendix K for an ASCII/number
conversion table. An FC error will occur
if X$ is the null string.

Returns a one character string whose single
character is the ASCII equivalent of the
value of the argument (I) which must be
=>0 and <=255. See Appendix K.

When called with a string argument, FRE
gives the number of free bytes in string
space.

LEFT$(X$,I) Gives the leftmost I characters of the
310 PRINT LEFT$(X$,I) string expression X$. If 1<=0 or >255

an FC error occurs.

LEN (X$) 220 PRINT LEN(X$) Gives the length of the string expression
X$.in characters (bytes). Non-printing
characters anu blanks are countcu as part
of the length.

MID$ called with two arguments returns
characters from the string expression X$
starting at character position I. If
I>~EN(1$), then M1D$ returns a null (zero
length) string. If 1<=0 or >255, an FC
error occurs.

MID$(X$,I,J) M1D$ called with three arguments returns
340 PRINT MID$(X$,I,J) a string expression composed of the

characters of the string expression X$
starting at the Ith character for J char­
acters. If I>LEN(X$), MID$ returns a null
string. If I or J <=0 or >255, an FC
error occurs. If J specifies more char­
acters than are left in the string, all
characters from the Ith on are returned.

RIGHT$(X$,I) Gives the rightmost I characters of
the string expression X$. When 1<=0
or >255 an FC error will occur. If
I>=LEN(X$) then RIGHT$ returns all of
X$.

320 PRINT RIGHT$(X$,I)

STR$(X) 290 PRINT STR$(X)

VAL CX$) 280 PRINT VALCX$)

Gives a string which is the character
representation of the numeric expression
X. For instance, STR$(3.1)=" 3.1".

Returns the string expression X$ converted
to a number. For instance, VALC"3.l")=3.1.
If the first non-space character of the
string is not a plus (+) or minus C-) sign,
a digit or a decimal point C.) then zero
will be returned.

SPECIAL CHARACTERS

CHARACTER

@

+

USE

Erases current line being typed, and types a carriage
return/line feed. An II@" is usually a shift/Po

(backarrow or underZine) Erases last character typed.
If no more characters are left on the line, types a
carriage return/line feed. "+" is usually a shift/G.

CARRIAGE RETURN A carriage return must end every line typed in. Re­
turns print head or CRT cursor to the first position
(leftmost) on line. A line feed is always ,executed
after a carrfage return.

CONTROL/C Interrupts execution of a program or a list command.
Control/C has effect when a statement finishes exe­
cution, or in the case of interrupting a LIST com­
mand, when a complete line has finished printing. In
both cases a return is made to BASIC's command level
and OK is typed.

(colon)

(BX Version) Prints "BREAK IN LINE XXXX" , where
XXXX is the line number of the next statement to
be executed.

A colon is used to separate statements on a line.
Colons may be used in direct and indirect statements.
The only limit on the number of statements per line
is the line length. It is not possible to GOTO or
GOSUB to the middle of a line.

(BX Version OnZy)

CONTROL/O Typing a Control/O once causes BASIC to suppress all
output until a return is made to command level, an
input statement is encountered, another control/O is
typed, or an error occurs.

?

MISCELLANEOUS

Question marks are equivalent to PRINT. For instance,
? 2+2 is equivalent to PRINT 2+2. Question marks can
also be used in indirect statements. 10? X, when
listed will be typed as 10 PRINT X.

1) To read in a paper tape with a program on it (8K Version), type a
control/O and feed in tape. There will be no printing as the tape
is read in. Type control/O again when the tape is through.
Alternatively, set nulls=O and feed in the paper tape, and when done
reset nulls to the appropriate setting for your terminal.
Each line must be followed by two rubouts, or any other non-printing
character. If there are lines without line numbers (direct commands)
the ALTAIR will fall behind the input coming from paper tape, so
this in not recommending.

Using null in this fashion will produce a listing of your tape in
the 8K version (use control/O method if you don't want a listing).
The null method is the only way to read in a tape in the 4K version.

To read in a paper tape of a program in the 4K version, set the
number of nulls typed on carriage return/line feed to zero by patch­
ing location 46 (octal) 'to be a 1. Feed in the paper tape. When

the tape has finished reading, stop the CPU anu ropatch locat.ioll ,1h
to be the appropriate number of null characters (usually 0, so de­
posit a 1). When the tape is finished, BASIC will print SN ERROR
because of the "OK" at the end of the tape.

2) To punch a paper tape of a program, set the number of nulls to 3 for
110 BAUD terminals (Teletypes) and 6 for 300 BAUD terminals. Then,
type LIST; but, do not type a carriage return.
Now, turn on the terminal's paper tape punch. Put the terminal on
local and hold down the Repeat, Control, Shift and P keys at the same
time. Stop after you h~ve punched about a 6 to 8 inch leader of
nulls. These nulls will be ignored by BASIC when the paper tape is
read in. Put the terminal back on line.
Now hit carriage return. After the program has finished punching,
put some trailer on the paper tape by holding down the same four
keys as before, with the terminal on local. After you have punched
about a six inch trailer, tear off the paper tape and save for
later use as desired.

3) Restarting BASIC at location zero (by toggling STOP, Examine loca­
tion 0, and RUN) will cause BASIC to return to command level and
type "OK". However, typing ControllC is preferred because Controll
C is guaranteed not to leave garbage on the stack and in variables,
and a Control C'd· program may be continued. (see CONT command)

4) The maximum line length is 72 characters~* If you attempt to type too
many characters into a line, a bell (ASCII 7) is .executed, and the
character you typed in will not be echoed. At this point you can
either type backarrow to delete part of the line, or at-sign to delete
thewhole line. The character you typed which caused BASIC to type
the bell is not inserted in the line as it occupies the character
position one beyond the end of the line.

* CLEAR CLEAR
CLEAR X

10 CLEAR 50

Deletes all variables.
(BK Version) Deletes all variables. When
used with an argument "X", sets the amount
of space to be allocated for use by string
variables to the number. indicated by its
argument "X".
(BK Version) Same as above; but, may be used
at the beginning of a program to set the exact
amount of string space needed, leaving a maxi­
mum amount of memory for the program itself.

NOTE: If no argument is given, the string
space is set at 200 by default. An OM error
will occur if an attempt is made to allocate
more string space than there is available
memory.

**For inputting only.

APPENDIX L

EXTENDED BASIC

FEATURE SUMMARY

INTEGER VARIABLES These are stored as double byte signed quantities
ranging from -32768 to +32767. They take up half as much space as
normal variables and are about ten times as fast for arithmetic.
They are denoted by using a percent sign (%) after the variable
name. The user doesn't have to worry about conversion and can mix
integers with other variable types in expressions. The speed
improvement caused by using integers for loop variables, matrix
indices, and as arguments to functions such as AND, OR or NOT will
be substantial. An integer matrix of the same dimensions as a float­
ing point matrix will require half as much memory.

DOUBLE-PRECISION Double-Precision variables are almost the oppo­
site of integer variables, requiring twice as much space (8 bytes
per value) and taking 2 to 3 times as long to do arithmetic as
single-precision variables. Double-Precision variables are de­
noted by using a number sign (#) after the variable name. They
provide over 16 digits of accuracy. Functions like SIN, ATN
and EXP will convert their arguments to single-precision, so
the results of these functions will only be good to 6 digits.
Negation, addition, subtraction,.multiplication, division, com­
parision, input, output and conversion are the only routines that
deal with Double-Precision values. Once again, formulas may
freely mix Double-Precision values with other numeric values and
conversion of the other values to Double-Precision will be done
automatically.

PRINT USING Much like COBOL picture clauses or FORTRAN format
statements, PRINT USING provides a BASIC user with complete con­
trol over his output format. The user can control how many
digits of a number are printed, whether the number is printed
in scientific notation and the placement of text in output. All
of this can be done in the 8K version using string functions
such as STR$ and MID$, but PRINT USING makes it much easier.

DISK I/O EXTENDED BASIC comes in two versions, disk and non-
disk. There will only be a copying charge to switch from one to
the other. with disk features, EXTENDED BASIC will allow the
user to save and recall programs and data files from the ALTAIR
FLOPPY DISK. Random access as well as sequential access are
probided. Simultaneous use of mUltiple data files will be allowed.
utilities will format new disks, and print directories. These
will be BASIC programs using special BASIC functions to get access
to disk information such as file length, etc. User programs can
also access these disk functions, enabling the user to write his
own file access method or other special purpose disk routine. The

file format can be changed to allow the use of other (non-
floppy disks. This type of modification will be done by MITS un­
der special arrangement.

OTHER FEATURES Other nice features which are available are:

Fancy Error Messages
An ELSE clause in IF statements
LIST, DELETE commands with line range as arguments
Deleting Matrices in a program
TRACE ON/OFF commands to monitor program flow
EXCHANGE statement to switch variable values (this will

speed up string sorts by at least a factor of two.)
Multi-Argument, user defined functions with string argu­

ments and values allowed

Other features contemplated for future release are:

A multiple user BASIC
Explicit matrix manipulation
virtual Matrices
Statement modifiers
Paramaterized GOSUB
Compilation
Multiple USR functions
"Chaining"

EXTENDED BASIC uses about 10.3K of memory for its own code
(l4.5K for the disk version) leaving 1K free on a 12K machine.
It will take almost 20 minutes to load from paper tape, 7
minutes from cassette, and 1.7 seconds to load from disk.

We welcome any suggestions concerning current features or
possible additions of extra features. Just send them to the
ALTAIR SOFTWARE DEPARTMENT.

ALTAIR EXTENDED BASIC ADDED FEATURE SUMMARY

Two new variable types:

Integers: -32678 +32q67 LET V% = 5

Double precision sixteen digit accuracy floating point.
LET V# = 1.23456789012345605

DEFINT, DEFDBL, DEFSNG

Set default variable typing, i.e., DEFINT I makes all variables
that start with I integer unless explicitly typed.
DEFDBL A-z would default all variables to double precision.

Formatted output:

PRINT USING 11##.#11; 4.5
floating dollar sign
leading asterisks
loading or trailing signs
commas
scientific notation
strings

LIST # #-# -# #­

DELETE # #- -# #-
(# stands for line number)

EDIT #
A: Restart editing on this line.
nC<char>: Change character to one(s) specified.
nO: Delete n characters.
H<str>$: Delete rest of line and insert (see below).
I<str>$: Insert string at current position in line.
nK<char>: Delete characters passed over until nth occurrence

of character <char>.
L: Print rest of line and resume editing or beginning of line.
Q: Quit editing line, original line unchanged.
nS<char>: Search for the nth occurrence of the character.
carriage return: Print rest of line and replace original

line with edited one.
X<str>$: Go to· the end of the line and insert string. NOTE: $ means escape.

ELSE clause in IF statements: IF X = Y THEN PRINT IIEQUAL II ELSE
PRINT IINOT EQUAL II

SWAP variable, variable: Exchanges value of two variables.

ERASE matrix: Deletes matrix.

More verbose error messages (NEXT WITHOUT FOR)

Multiple argument, any type user defined functions: DEFNA%(X#,&$) =
X#*VAL(Y$)

TRON, TROFF: Trace on/off statements. If trace is on,
number of each line is printed (enclosed
i.e., [100J) as program executes.

the line
in brackets,

:3ize of non-disk EXTENDED BASIC, 10K; DISK version, approximately 12K.

4KBASIC

STATEMENTS
IF ... THEN' END
GOSUB DATA
RETURN LET2
FOR DIM
NEXT REM
READ RESTORE
INPUT PRINT]
STOP

COMMANDS
LIST
RUN
CLEAR 7

SCRATCH

FUNCTIONS
RND
SOR
SIN
ABS
INT
SGN

NOTES: ' IF ... THEN can be followed by a statement. Example: IF A<5
THEN PRINT B
J LET i, optional ill variabh! ilssi!Jnments. EXilmplt!: A· 5 is identical
II) LET A '!'I
'TAU(X) wilhin PRINT statl!ment tabs tl) prillt column X.
I CLEAR delete~ all variJI,les.

FEATURES

• Multiple statements per line, separated by a colon ":" (72 characters per
line)

• Approximately 750 bytes available for program and variable storage be­
fore SIN or SIN, SOR, RND are deleted.

o "@" deletes a whole line and (or underline) deletes last character

tYfled.
• Direct execution of any statements except INPUT.
• Two character error code and line number printed when error occurs.

Example: ? US ERROR IN 50 would indicate a reference to an un­
defined statement in a GOTO, etc., during exeuction of
line 50.

o Control C - interrupt program (prints BREAK IN LINE XX)
• Control 0 - toggles suppress output switch
e All results are calculated to at least six decimal digits of precision.

EXflonents may range from HT38 to 1037
•

o Maximum line number of 65,535.

8KBASIC

8K Altair BASIC provides all the features of the 4K version, plus these ad·
ditional features.

STATEMENTS
ON ... GOTO
ON ... GOSUB
DEF6
OUT~

COMMANDS
CONTs

FUNCTIONS
COS ATN
LOG INP'
EXP FRE"
TAN POS

NOTES: ~OUT sets status of a hardware I/O channel.
41NP returns status of a hardware I/O channel.
~DEF allows for single variable single statement user defined
functions.
~ CONT continues proqram execution after Control Cor STOP
'J F RE relUrm numher of free hyles for proqr itlll or v.lr i.lhl,·
storiJIJe. With a string ar!lumml!, FRE rt!tUfIIS i11l,OWlt "II,,·,·
Siring space.

FEATURES

• Approximately 2K bytl!s aV<lilable for proqram and varrahle SIOla'l" III!
fore ATN or ATN, COS, SIN, TAN are deleted.

• Multi·dimensioned (up to 255) arrays for both strings and (Hlmb"rs.
• AND, OR, NOT operators can be used in IF statements or forrnulas.

• STRINGS
o Maximum length = 255 characters
[J String concatenation (A$ + B$)
11 String functions:
[] LEN - length of string.
o ASC - returns the equivalent ASCII decimal number for the specified

argument.
[] CHR$ - truncates the numeric formula to an integer, interpret~ the in·

teger as a decimal number, and converts it to its equivalent
ASCII character.

o RIG HT$ Return substrings of specified string formulas; beginning at
o LEFT$ leftmost character (LEFT$) or ending at rightmost
o MID$ (RIGHT$) or beginning at specified position (MID$) of the

string formula, and containing the number of characters
specified by the numeric formula.

o STR$ - number converted to a string.
oVAL - string converted to a number.

\ - integer division.

Added functions for forcing type
conversion:

CINT
COBl
CSNG

convert to integer.
convert to double precision.
convert to single precision.

EXTENDED BASIC
DISK FEATURES

SUMMARY

MITS extended BASIC provides the user with complete facility for
reading or writing data files and saving and loading program files.
All file names are eight character ASCII strings. Three file ac­
cess modes are allowed, ASCII sequential input ("1" mode), ASCII
sequential output ("0" mode), and random mode ("R"). In random
mode, the user can read or write the nth 128 byte binary record in
the file. Both random and sequential disk I/O are extremely similar
in implementation to DEC's RSTS-Il file I/O.

NOTE: Parameter s enclosed in brackets [] are optional.

MOUNT {diSk number}, [(disk number~ •• ••]
no argument means all disks

mounts and initializes for I/O the floppy disk on drive (disk
number}.

, UNLOAD [disk number}', ({ disk number\. • • • .]
no arguments mean all disks

closes all files on (disk number~ and disables all I/O on
that disk.

KILL {file name}, {disk number~

deletes the file on the disk specified.

OPEN {mode} ,H*J{file number} ,[file name \ ' {disk number~

Open the file in the mode given on the disk specified. The file
is assigned a file number (1-15) for further I/O operations.

Mode is a string formula whose first character must be
O=sequential output
I=sequential input
R=random

CLOSE {file numberl r Cffile number)]
no argument means all files

closes the file(s) given.

INPUT # (file numberJ,
f variable list~

reads the information on the sequential input file {file
number) into the variable list specified.

PRINT # {file number ~, [USING l str ing formula J iJ
{formula list)

writes the ASCII representation of the internal format on
the formulas given on the file {file number}. (Example: PRINT
#1, 3) Puts a space, 3, space, carriage return on the output file.

LINE INPUT [#] f fi Ie number ~ ,
tstring variable)

reads the complete character string up to a carriage return,
into the string specified. LINE INPUT without a file number may
be used to read a string from the user terminal.

GET [#] {file number" t record number 1
performs a random read of the nth record of the file into the

random file buffer associated with ffile number1.

PUT [#] {file number~, [record number~

performs a random write of the random buffer associated with
{file number} to the nth record in {file numberj.

FIELD [#] {file number}, fnumeric formula1 AS {string variable1,
[, [numeric formula~. • . .]

associates [numeric formula} bytes in the disk buffer with
the {string variable) given. Subsequent CSETs and RSET may be
used to place data in the random buffer, while a random read will
automatically assign byte strings to string variables that have
IFIELDed" into the buffer.

END and NEW both close all files.

LOAD {file name1, {diSk number1 [,R]

The
number1·
after it
LJAD can

LOAD command loads a program file into memory from fdisk
The optional R at the end may be used to RUN to program

is loaded. The old program and all variables are eraced.
be given in a program.

SAVE {program name), {disk number)
(, A [[line range~]]

The SAVE command saves the program on the fdisk number~.
The optional A can be used to save the program file in ASCII
source format (using the optional line range). Otherwise, the
program is saved in compressed image format, which requires less
disk space and loads more quickly.

Functions

MKI$ (~integer formula))

returns a two byte string containing the binary representa­
tion of the {integer formula).

MKD$ (fdouble precision formulas~)

returns an eight byte string containing the binary repre­
sentation of the {double precision formulasl.

MKS$ ({single precision formula~)

returns a four byte string containing the binary representa­
tion of the fsingle precision formulal.

CVI ({string formula\)

returns an integer value which is obtained from the first
two bytes of f string formulaJ.

CVD ({string formula))

returns a double precision value which is obtained from the
first eight bytes of {string formula ~.

CVS ({string formula~)

returns a single precision value which is obtained from the
first four bytes of (string formula}.

CVI, CVS, CVD five a IIfunction cali ll error if the string argument
is too short.

DSKF (tdisk number1)

returns the number of free sectors on tdisk number}. The
disk must be mounted.

EOF (f fi le number 1)
must be a sequential input file and returns a true (-1) if

end of file is detected on {file number3., False (0) otherwise.

LOC (tfile number,)

returns the current record number read or written on lfile
number3. For random files, givestm record that will be accessed
if a GET or PUT without a record # is used.

J.JOF (f file number1)

must be a random access file and returns the last record
number writte:q. on the random file [filenumber3. Always*5 MOD 8.

Answers to Most Often Asked Software Questions

1. Q. How many decimal digits of precision do 4K and 8K BASIC
have?

A. Six digits. Extended (12K) BASIC also has 16 digit double
precision variables as well as six digit single precision
variables.

2. Q. When will BASIC have multi-user capabilities?

A. Perhaps by the middle of 1976. It will be a non-swapping
system with user memory allocated in fixed partitions.

3. Q. Does BASIC allow you to format numeric output precisely
with a certain number digits before and after the decimal
place, for example?

A. In the 8K BASIC, only by converting a number to a string
and them manipulating the string. Otherwise numbers
are printed in a default format described in the BASIC
manual. In Extended BASIC, PRINT USING allows the user to
precisely format both numeric and string output fields.

4. Q. What about BASIC matrix MAT statements? Are they available
in the 8K or Extended versions?

A. No, and there are no plans to implement them at this time.

5. Q. What file capabilities are available in 8K or Extended BASIC?

A. In 8K BASIC, the user can save or load programs files
from cassette or paper tape. In Extended BASIC, the user
can also save programs and data on the floppy disk.

6. Q. When will BASIC be available on ROM?

A. Mayor June, it will be the Extended Version.

7. Q. What are the features and memory requirements of the
different versions of BASIC?

A. See the Software Information Package.

B. Q. What is the cost of upgrading between different versions
of BASIC?

A. The charge for an upgrade is the difference in price plus
a copying charge of $15. For example, an upgrade from
4K or BK BASIC would cost $30, for an upgrade from 4K
to Extended BASIC the charge would be $105, etc.

9. Q. What type of string manipulation is available in BASIC?

A. Very extensive powerful string manipulation is available
in 8K and Extended BASIC. See Software Information Package.

10. Q. Can owners of BASIC let other owners of our machines
make copies of his BASIC?

A. No, they should buy their own copies. Copying the
software in this manner is considered a "RIP-OFF".

11. Q. Is there any limit to the number of nested FOR loops or
levels of parenthesis in BASIC?

A. The only limit imposed on the nesting of FOR loops
or parenthesis is the amount of available memory.
Each nested FOR loop entry requires approximately
16 bytes and each nested parenthesis requires 6 bytes.

12. Q. Can BASIC be used with the line printer?

A. Yes, we have a special version of BK or Extended BASIC
that has LLIST and LPRINT statements to make program
listings or write output on the line printer. These
commands are available for an extra charge of $30.

13. Q. Is there a special version of BASIC with the command to
switch from one terminal to another and back again?

A. Yes, there is a CONSOLE command which allows the user
to switch from one terminal to another and back again.
The extra charge is $30.

14. Q. Are any other languages besides BASIC available?

A. Not at this time. We may have FORTRAN and APL at some
future date.

15. Q. What can you tell me about the floppy disk?

A. Each floppy drive can store approximately 300,000
bytes of information. The floppy disk controller
can handle up to 16 drives. The controller takes up
two card slots in the mainframe. Transfer rate of the
floppy disk is approximately 32,000 bytes/sec and a
random access to any part of the floppy disk takes
approximately 1/3 second. Extra floppy disks may be
obtained from MITS at a cost of $15; one floppy disk
is included with each kit or assembled drive.

16. Q. What are the features and memory requirements of the
Editor, Assembler and Monitor? Capabilities?

A. See the Software Information Package.

17. Q. What is MITS' policy when new versions of the software
replace old versions?

A. The new versions may be obtained for a copy charge
of $15. ($25 for the disk).

18. Q. Are any cross-assemblers available from MITS?

A. Yes, an ANSI standard cross-assembler is available
as a listing ($15) or as a listing and ASCII paper
tape ($30). It does not have macros or conditional
assembly.

19. Q. Can our machine run other 8080 software?

A. Yes, it can run most 8080 programs with no change or
perhaps a slight change in the I/O conventions used.

_PL/M programs, for instance, may be run on an ALTAIR.

20. Q. In what forms are BASIC ~nd Package II (assembler,
monitor, and text editor) available?

A. At this time, binary paper tapes and cassettes and floppy
disks are being shipped. BASIC on ROM is also planned.

21. Q. What types of BASIC accounting packages, inventory packages,
will be available for llse with Extended BASIC?

A. At the present time, MITS does not offer any such packages.
However, early next year we will make available such
packages licensed or purchased from software houses.

22. Q. What is the price for the source listings of BASIC and
Package II?

A. Please contact the factory for source listing prices.

23. Q. What should a customer do if he has a bad cassette or
paper tape?

A. Send the bad one back and we will ship. 'him a new one.
Cassettes are checked at the factory before we ship the!" ~

24. Q. When will the bootstrap loader be available on PROM?

A. The PROM boards are available and PROMs with the bootstxo.hJ
programmed on them cost $40. A disk bootstrap PROM fo'r
DOS and Extended DISK BASIC is also available.

DlJiJ .. '_.
2450 Alamo SE
Albuquerque, NM 87106

