
•• • •••• ••• •••
• • • • < ••

• • • •
• • • •

• •
• •
• • • • • • .. . • • • • • ••••• • • · .. • • •••• • • ••••• • • • •

• • •••• • • • •
• •• ••• •••• • •• • ••••• • •• • •• • •• ••••• • • •• • •• • ••
• \t • ••• • •• • • • • •••• •• • • •• • •• • •• • •• • ••••• · ., • •• •• • • •••• • • • • ••• ..

It •

••• •• •••• • • • · ' • • ••••• • • • • •• • • •••• • • • • • • • • • • ••• • • •
• ,. .
• • • • • • ••• • • · ... •• • •••• •

• •• • •• • ••••• • •• • •• ••
t

• •• • • • ••

• •••

• ••••• • •• • •• •• • • •••• • •• • •• • •• ••••••• ••••••• ••••••• ••••••• ••••••• •••••••

• • •• • • • • • • • • •
• • ••• • ••• •

Massachusetts Institute of Technology

Summer Session 1954

DIGITAL COMPUTERS

BUSINESS APPLICATIONS

•• • •• • •• • •• • •• • • • • • • • • • • • • • • • • • •
• •••••• • ••••• • •••••• • ••• • • • • •

• • • •
• •••••••• • ~

Massachusetts Institute of Technology

Sunnner Sess.ion 1954

Notes from a special

summer program in

1222 aass 4 t 155~ e e 717 Isee sael 0000 J g i J44 4 f ·.55§ g g ee SaRI 8008
2222 iaa~ ~ 4 BaaH eaa B a 0000

2222 asss 4444
122~ 5 S

t44t ~ssa
I I s 4

222 a a t444 i ~ e 2 2 a a 5 eEle a 222 a a 4444
2 2 ~sai 4 ! i 222 4444

5 e 7777 1::1 91
9

5 e 7
~ 3 ~777 5555 B 3 ~

by
Charles Wo Adams
Stanley GIll
and many others

sa
0

~

~~7
=f-r77

2222
2 2
2 2
~221

with the cooperation of the

eeaa 1999
Reee 991
aaea 999

S S 1444 SS S a a s 444
g s~ 444~

Digital Computer Laboratory of the
Department of Electrical Engineering
and the
Office of Naval Research

1-1

1. INTRODUCTION

These notes discuss a new kind of equipment for the rapid, reliable
and inexpensive processing of large vol~of information -- systems
built around general-purpose, automatically-sequenced, stored-program
electronic digital computers" These devices ,-typified by Remington-Rand t s
UNIVAC and by IBM9 s types 701, 702, 704, and 650 have been the subject ot
much recent popular discussion, often being referred to as tape-processing
machines, as electronic data-processors, or, unhappily, as "giant brains."

For convenience in what follows, the long and somewhat redundant
modifiers -- general-purpose, automatically-sequenced, stored-program,
electronic, and digital -- will be dropped, and the term "computer" alone
will be used to refer to these systems. Before dropping the modifiers,
one might reasonably ask what each of them means and what kinds of com
puting equipment are not being talked about here, as well as what kinds
are.

Digital versus Analog

A digital computer is one which operates numerically on digits -
on quantities expressed in discrete, ~antized, digital form. Digital
contrasts with analog, which describes any computing den ce which oper
ates on continuous variables. It is, in other words, possible to COM
pute in two quite different ways -- by measuring to determine how ~,
or by counting to determine how ~.

Man learned to count by enumerating things one by one in corres
pondeneew ith his fingers and toes (his digits), just as he learned to
measure lengths, say, by comparing with the length of his hand or his
foot. Little wonder that he learned to count by fives and tens. Stones
and then beads replaced the fingers, and the first real computing device,
the abacus, was born. Adding machines, desk calculators, cash registers,
parimutuel machines, score boards, and punched card machines are modern
day digital devices.

Slide rules, rulers, planimeters, scales, wi nd tunnels, towing tanks,
and hour-glasses are analog devices. However, just as the term digital
computer is frequently restricted to mean only a stored-program device,
an analog computer is usually taken to mean not merely a simple computing
aid or a model but rather an electronic, electrical, or mechanical de
vice whose behavior is analogous to that of a given physical system.
Analog computers are mainly useful in giving quick, inexpensive t rela
tively imprecise solutions to fairly complex engineering and control
problems 0 The precision of an analog computer is limited to the precision
of mechanical or electrical parts, usually one part in a hundred or a

1-3

thousand, or at most one part in ten thousand. The cost of increased
precision in analog devices goes up exponentially, whereas the precision
of digital devices can be increased by adding digits at less than linear
increase in cost (and often by proper coding without even altering the
equipment, although at a sacrifice of speed).

Getting back to the adjectives -- electronic, of course, implies
that free electrons are used somewhere in the system, usually in a
vacuum tube. Actually, the term electronic is usually reserved for those
devices whose essential functions are performed entirely by electronics
and not at all by mechanical processeso When mechanical actions control
the flow of electrons and vice-versa, as in an electrical relay, the
term electro-mechanical is used.

General- versus Special-Purposej Applications

A general-purpose computer is one which can, if necessary, be used
in any problem from any area of digital computer applications, unless its
speed or its storage capacity is inadequate. This does not mean that any
general-purpose computer is equally useful in any problem. Any computer
is designed to turn in its best performance on some given type of problem.
Often, however" the flexibility and complexity required for one given
problem is such that a computer designed for the purpose turns out to be
adaptable to almost any other problem -- though perhaps with much less
efficiency dollar-for-dollar compared to a computer built with the other
purpose in mind.

On the other hand 9 there are truly special-purpose computers -- such
as desk calculators, accounting machines, IBM 407 t s, and magnetiC drum
inventory machines such as the American Airlines reservisor -= in which
the lack of some facilities (notably decision-making) preve~t the device
from being adaptable to other kinds of problems o

Digital computers have application. in five different areas:

I. SCIENTIFIC RESEARCH = testing a theory or method of solution by
carrying out a solution and comparing the results with em
pirical data (when the method is successful, it often is used
in an engineering analysis or synthesis approach to give new
data) 0

26 ENGINEERING ANALYSIS AND SYNTHESIS - applying known techniques of
analysis to the parameters of some system design (usually one
chosen'in an attempt to synthesize by finding parameters which
will give the desired result~ for example, computation of
aircraft design~ assembly-line balance, insurance rate tables,
operations research, etc o

3. REDUCTION OF EXPERIMENTAL DATA - Processing engineering tests,
e.go~ rocket firings, into more usable form.

1-5

4. PROCESS CONTROL - determining,from all available measurements,
the·corrections needed at all available control poilits to
adjust a physical system to give the desired outputo For ex
ample, control of aircraft in flight~ of steel mills, of re
fineries, of assembly plants, etco

5. BUSINESS DATA-HANDLING - processing the day-to-day work of in
ventory records, accounting, payroll, etco, and from this ob
taining data to be reduced for oontrol and management purposes.

Each of these kinds of applications puts special demands on the computing
systemo For example, ease of programming is especially desirable to
scientific research; dependability is especially essential in business
data-handling and usually in process control; special input facilities
are needed for all of the last three named; special output facilities are
needed for the last two; and a large storage system or automatic file is
usually needed for business data~handlingo

Automati c Se q uencing

According to our definitions 9 an adding machine or a desk calculator
can truly be called a general=purpose digital computer 0 Such machines
today perform a ten-digit multiplication in less than ten secon.ds.
Modern electronic techniques can speed this up a millionfold -- but to
what avail? A competent personr1 E)]perating a modern desk calculator per
forms about 500 operations a dayo By building a calculator a million
times as fast, one can reduce the maximum of 5000 seconds of machine
operating time per day to a twentieth of a second p but speed up the over
all process by at most 10% or 20%. The bottleneck isp of course, the
human operator. .

The automatically-sequenced digital computer is Simply a mechaniza
tion not only of the arithmetic operations but of the operator who de
termines the sequence in which the operations are performed. All of the
important logical prinCiples of the automatically-sequenced digital com
puter were outlined by Charles Babbage over a hundred and twenty years
ago, but mechanical and electrical techniques could not satisfy his needs
at that time and his Analytical Engine was never builto

The arithmetic element of an automatically-sequenced digital com
puter, corresponding to the desk calculator of a manual system\! can ad
vantageously be made to work very fast, performing arithmetical opera
tions in a few millionths of a second, for the rest of the system can
now keep up wi th it. The control element 9 the counterpart of the human
operator, can readily be made far faster 9 more reliable p and somewhat
less demanding of wages and fringe benefits than the man. Unfortunately,
however, there is need for automatic memory or storage of various de
grees of accessibility, corresponding to the memory of the operator, the
notebook, and the reference libraryo There is also need for input and
output - the means of communication with the outside world o It is the
memory and the input=putput that causes the greatest engineering

WE NEED #277

RUSH - P.D.Q,-

SEMI-AUTOMATIC DIGITAL COMPUTATION

ARITHMETIC ELEMENT

FORMS SUM
DIFFERENCE
PRODUCT
QUOTIENT

(Positive or Negative)

PUSH BUTTONS

CONTROL

TAKES INSTRUCTIONS
FROM STORAG E

THEN
DIRECTS ALL OTHER
ELEMENTS PROPERLY

STORAGE

0)

2)

TAPE I:I~'~~ . INPUT
PREPARATION

SECONDARY
STORAGE

OUTPUT

AUTOMATIC DIGITAL COMPUTATIUN

1.-6

1-7

difficulties in the physical realization, and places the greatest limi
tations on the speed and reliability of existing computerso

stored-Programs versus Card~! Tape- p or Plugboard-Programmed

The flexibility of the sequencing can be improved if the computer

10 move back and forth within the sequence without manual operation
or other excessive delay, and

20 make modifications on its own instructions o

These two facilities are gained if the program of instructions as well as
the data are stored in the internal p random-access memoryo This is not
what is done if plugboards or sequences of cards or punched tape are used
to store the instructions. The second facility listed is achieved auto
matically if the instructions go into the same storage element as the
numbers, although there are stored-program computers in which this is not
done. Since all of the following discussions are based on stored
program computers, it is to be hoped that the virtues of such a system
will become more apparent as the discussion progresses.

Programming and Coding

When a human operator is to solve a problem using a calculator or
to process a payroll on an accounting machine, he must be supplied with
instructions which specify just how the solution is to be obtaned o In
like manner, the digital computer must be provided with a list of in
structions, or program» in properly coded form, to describe how the solu
tion is to be obtainedo The process of preparing such a coded program is
called programmingo Programming really consists of two parts~

I. planning the program, or sequence of elementary steps, by which
the problem may be solved

20 coding the sequence of steps into a coded program - a sequence of
computer instructions. There are a number of other steps con
cerned with coding, as shown in the figure entitled Digital
Computation Center, but except for debugging (removing mis~
takes) these are largely clerical.

The coding of a problem requires detailed knowledge of the specific com
puter on which the problem is to be solved. A coded program has meaning
only to the computer for which it was writteno The planning of a solu
tion, on the other hand, does not necessarily involve the details of any
given computer, although a given problem may frequently be solved most
efficiently if formulated one way for one computer and another way for
another 0

1-8

Since it is virtually impossi ble to discuss progranrning without re
ferring to a specific computer, two hypothetical computers~ called TAC
and SAC' (for Three-Address Computer and Single-Address Computer, respec
tively), will be assumed throughout the ensuing discussions and examples.
These computers do not in fact exist, but their characteristics are to be
simulated on the Whirlwind I computer to permit programs written for TAC
or SAC to be performed and the results or lack of them to be indicated
realistically.

The simulation of these idealized, pedagogical computers by Whirl
wind I has actually been accomplished by means of special programs
written for the Whirlwind I computer by members of the summer school
staft. Such programming represents a considerable effort (several man
months) by experienced programmers and is not unlike the job of construc
ting a digital computer from tubes and Wires, except that a pencil is
used in place of a soldering iron. The techniques for accomplishing the
simulation of one computer by another, and the motivations for doing so,
will be described briefly in Chapter For the present purposes, TAO
and then SAC will be described as if they existed in the hardware and no
further mention will be made of the role played by the Whirlwind I com
puter.

Both TAC and SAC have, of course, the basic computer elements:
arithmetic element, control, storage, secondary storage, input and out
put. Between them they are intended to typify most of the characteris
tics of most of the other currently~available digital computers, com
bining many of the best features, omitting some of the special features
and peculiarities of eacho Naturall~ both important concepts and
innumerable details make up a complete description of the computer.
Rather than attempt to describe the 'fAC_. and SAC computers cOinpletelyat
the' outset ~ ViTe ,haveattacned"a.,cotnplete description as an appendix to
these notes and will build up first TAC and then SAC gradually, embellish
ing them with more details and more new concepts as we progress o

2 ... 1

2, THE RUDIMENTS OF TAC CODING

The best way to learn to code for a given computer is to work out
a few examples. First, of course, one must become acquainted with the
general characteristics of the machine at hand. A complete description
of TAC, such as is appended as Chapter 24, is hard~ necessar.y at this
point. It seems more reasonable to build the description a little at
a time; but even sOp the first bite, as presented in this chapter, is
a big one.

General Characteristics of TAC

The storage element of TAC consists of 110 different registers.
A storage register is a location, like a pigeon hole» in which a single
computer "wordtt may be stored by the computer control element and re
covered by it when the word is needed.

A word in TAC is a series of 9 digits, letters or other characters
representing a nurnber~ an instruction, or some other data.. Since with
numbers the first character 'always is a sign,.:1ny one storage register
can contain a~ integer (whole number) between -99999999 and +99999999
--anything up to a hundred millioDo*

Each register is identified by an address~ just as the houses on
a street are identified by addresses. Treaddresses of TACus 110 different
register~ are OOp 019 02,.0.9 99, xO, xl,o~o,x9. (These addresses are
all lis,ted on the "TAC Program Form" 11 along with space for filling in the
contents of each of the corresponding registers. One character goes into
the first space and two into each of the others merely for convenience in
reading and writing. There is also a blank space for comments or notes ..)
The x registers differ from the others by beingp in effect, faster than
the rest, as will be seen in more detail latero Register xO is ver,y
special; it contains a ver.y useful number, 000000000, and its contents
can not be altered in any way by any instruction o Registers xl and x2
will also be seen later to have an important property-~~TAC can auto
matical~ deal with them in tandem as a single tfregistertf (called xx)
which stores a 16-digit number made up of the two 8=digit numbers which
they individually .. store.

*AlternativelY9 since a character of a word can be any of the symbols
on the MIT Flexowriter keyboard (similar to a standard typewriter), it
is possible to store anY 9-character combination such as Joe E, Doe or
16-8-1954 (spaces p dashes, etco p count as characters). However, certain
of the instructions about to be described will deal on~ with strictly
numerical quantities" Numbers larger than a hundred million or' smaller
than one may be handled by special techniques, but onlY signed 8-digit
integers will be discussed here at the beginning.

2-2

An instruction is one kind of word. It specifies both an operation
to be performed 9 such as add or subtract, and the addresses which des
ignate where the words to be operated upon are to be found 0 For example,
the word A2713l609 (this and the many instructions which follow are easier
to read if punctuated by spaces which would not actually appear in the
word in TAC--thus p A 27 13 16 09) is an instruction which s'pecifies that:
the integer contained in register 27 is to be added (because the letter
A represents addition) to the integer contained in register 13 (without
changing what is contained in registers 27 or l3)t the sum i$ to be .
stored in register 16 (erasing whatever was previously in register'-: 16) t

and the next instruction to be obeyed is to be taken from register 09
(without changing what is in register 09). The fact that TAC is called
a three-address compute~yet deals with instructions that clearly have
four addresses in them, is merely a question of terminology.. The fourth
address, specif,ying the location of the next instruction, is not counted
in the name because it does not serve an important logical function, f'o1;',
as the Single-Address Computer SAC will demonstrate, the instruction
could nearly as well be taken from consecutively-numbered locations ..

Symbols Used

The results of the various operations which TAC can perform are
easier to describe if a few symbols are used for commonly=needed phrases.
Two in particular are usefpl enough to have become somewhat standard in
the computer field gene~ly~v although manr variations still exist.
The symbo:ls are:

C() represents the word contained in the register whose address
is enclosed b.Y the parentheses p usually being read as "the contents
of =-" or sometimes merely as "e of --"

~ represents the phrase "becomes the new contents of" or simply
"goes into" ..

For example:

C(27) + C(13) ~ 16 should be jread as follows: "the contents
of register 27 plus the contents of register 13 becomes the new
contents of register 16" or 9 for brevitYll tiC of 27 plus C of 13
goes into 16ft "

Another group of convenient symbols refers specifically to TAC alone.
They make it possible to identify and distinguish between the 9 different
characters (whether they be digits, signs, letters, symbols 9 etc,) which
make up a TAC word .. This is done in two·differentw~s~ First, the' ~ "
character positions or columns of a word are numbered 1, 211), 4, 5, 6,
7, 8» 9 from left to righto Second, any word is sometimes represented
symbolically by the 9 letters abc d e f g h io
A TAC word~ sign r; 8=digtt iEtegjr i-~ as a number

-1 a , b _ 9 , d _ e _ L.:.. g I h·· I ..:. J

Column # ~ ~\.._2 ... _2.1\ 4-~~~\..JL ... L-,- ~ as an instruction
. operation addresses address address

code letter (of operands) (at result) (at next instruction)

2-3

Thus the letter d is used to represent the 4th character of the word,
whatever that character happens to be. Similarly, the pairs of letters
bcs de, fg, and hi are used to represent the four different addresses
specified in a~ instruction wordo

For ~mple, in the add instnlction A 27 13 16 09 described earlier,
a =A (since the first character of the instruction was a capital A)
be = 27, de = 13, fg = 16, and hi = 09. The result of this particular
A instruction can be described symbclically. as above, b.Y writing
G(27) + C(13) ~ 160 Similarly, the result of a~ A instruction can
be written symbolieal~ as C(bc) + C(dc) ~ fg, which simplY means
that tithe contents of the register designated by the first address
(second and third characters) of the given instruction plus the contents
of the register designated by the second address (fourth and fifth
characters) of the given instruction becomes the new contents of the
regjster designated by the third address (sixth and seventh characters)
of the given instruction" and, implicitly. the next instruction is to
be taken from hi, the register designated by the fourth address (eighth
and ninth characters) of the given instructiono

Arithmetic Operations A, Sa M and D

The four most obvious operations for TAG to perform are addition,
subtraction, multiplications and division. These are comparatively
simple to describe and to use, especially if no attention is given to
the questions of what happens if the results are too large to fit in
a register or if non-numerical quantities are involved. Suffice it
here to say that if the result of an arithmetic operation exceeds eight
digits~ TAG will print out certain symptomatic information, called a
post mortem, and then stop. Non-numerical quantities can in certain
cases be added or subtracted but not multiplied or divided, and results
up to 16 digits may be handled by using the special xl-x2 tandem register
xx.. Detailed discussion of these complications will be defElrred ..

The four basic arithmetic operations in TAC, representing the four
addresses by bc, de, fg, and hi as described above, are~

Name Code Function

Add A C(bc) +C(de)~ fg

Subtract S C(bc) - Cede) ~ fg

Multiply M e(bo) x Cede) ~ fg

Divide D G(bc) + C(de) ---7 fg

(next instruction from hi in all case~)

2-4

Thus, to repeat a previous example, the instruction A27l3l609 adds C(27)
to 0(13), places the result in register 16, and causes the next instruc
tion to be taken from register 09. TAC treats all numbers as integers.
Adding, subtracting, or multiplying two integers gives an integer as the
exact result, and this is the result stored in fg by the At S, or M oper
ations. Division, however, is not an exact process. In this case TAO
rounds off in a conventional way, equivalent to addine:; to to 'ti:l.9 i.l:h:-sigrsdfhl.l
quotient and then throwing away the entire fractional part. Thus TAC
forms, as the rounded quotient, an integer which is at least as nearly
equal to the exact quotient as any other integer would beo

One other instruction will be necessary in even the simplest cases,
namely an instruction which stops the computer. This is called Halt
rather than stop since the code symbol H was available whereas the sym
bol S is used for Subtract. Halting does not involve any operation on
the contents of any registers, so the first three address sections are of
no significance and may be filled in with zeros or any other characters.
The fourth address of Halt specifies, as usual, where the next instruc
tion is to be found, but this is of no significance unless it is antici
pated that one might want to press a button and have the program carry
on or repeat, in which case the halt address should be properly filled
in. Since one occasionally wants to repeat a calculation just to make
sure the machine was not behaving badly the first time through, it is
good practise always to set the fourth address of a Halt instruction so
that the program can be repeated even if no repeat is anticipated.

Name Code Function

Halt H stop the computation

(take next instruction from hi if restarted manually)

Use of the Arithmetic Instructions

For example, if register 00 contains the integer +00000007 and
register 01 the integer +00000095, then a program for placing 7 + 95 in
register 02 would be

031 AOOOl0204
04 H00000003

which, assuming that the computer is somehow gotten to start with the
instruction in 03, adds the 7 in 00 to the 95 in 01 and places the re
sult, +00000102, in 02. The H operation then stops the computer, ready
to repeat if necessary. To place 95+7 in register 2, the program could
be

031 DOl000204
04 H00000003

which divides 0(01) = +00000095 by O{OO) = +00000007, forming the result
+00000014 which is then placed in 02.

2-5

As a first real example, which must of course still not be very hard,
we give a nod to THE COMPLEAT STRATEGYST, which gives social standing to
this type of problem, and take up the case of the vending-machine opera
tors. Consider the plight of John, Mal, and Arnie, whose vending machines
bring them each day a number of coins which we will represent as x
nickels, y dimes, and z quarters. Somehow they must total the take and
divide the profits, with Arnie giving or taking the odd cent if the total
does not divide evenly. Their business being large (but less than a
million dollars a day), they decide to use TAC to take the output of their
electronic coin counters and work out the split. Our task is to write a
program which will make TAO do the job.

First, let us express the problem as concisely as possible. The
gross take, in cents can obviously be found by taking 5 times the num
ber of nickels (which we decided to call x) plus 10 times the number of
dimes (y) plus 25 times the number of quarters (z). Clearly, also, a
share is a third of the gross, except that in rounding off to the nearest
cent we may make the shares a third of a cent too large or too small.
In this case, Arnie's share is to be a cent larger or a cent smaller than
John's and Mal's. Thus we can find John's share and Mal's share by
simply dividing the gross by 3, and then find Arnie's share by subtract
ing the other two from the total. Our problem can be summarized by three
equations '

Gross = 5x + lOy + 25z
John's share or Mal's share = Gross/3, rounded off
Arnie's share = Gross - John's share - Mal's share

Next, let us express the calculation in terms of a sequence of
arithmetic operations

1. multiply: 5 times x = 5x
2. multiply: 10 tiiiles y' = 'lOy
3. multiply: 25 times z =25z
4. add: 5x plus lOy = 5x + lOy
5. add: 25z plus (5x+l0y) = Gross
6. divide: Gross divided by 3 = John's or Mal's share
7. add: J's share plus J's share = 2 J's share
8. subtract: Gross minus 2 J's share = Arnie's share

Now we have a program -- a sequence of elementary operations -- for
solving the problem. The final step is to code this program irito basic
TAO language. To do this, we must first assign all the necessary numeri
cal' information -to specific registers in TAO's storage element. Let us
list the necessary numbers

~: ., io} constants needed
3 •. 25
4. 3
5. x~.] the number of
6. coins, 'which is
7 • data 'we.are ' to

be given

8.
9.

10.
11.
12.
13.
14.
15.

5x
lOy

.' 25z
5:x+10y
Gross
John's or Mal's share
twi ce John's share
Arnie's share

unknowns
to be

computed

2-6

Each of these quantities must be put into some storage register before
TAO can carry out the calculation. Similarly, the coded program or list
of instructions that we intend to write must also be stored, one instruc
tion to a register. It makes no difference which register is used for
which instruction, constant, or unknovJn (actually we ltdll find later
that, in so-called '"seri.a.k~~ computers like TAC, the computation may go
faster if the numbers and instructions are judiciously placed). Since it
does not matter, we may as well assign the various constants, input data,
and unknowns to registers 01 through 15 in the order in which they are
listed above. 'Suppose we are given specific values for x, y, and z:
13,976 nickels; 9,433 dimes; 2,747 quarters.

01 +00000005}
02 +00000010 constants
03 +00000025
04 +00000003
05 +00013976} x given
06 +00009433 Y data
07 +00002747 z

registers
reserved
for
quantities
to be
computed

5x
lOy
25z
5x+10y
Gross
J or M share
2 J's share
At s share

To get the constants and the given data into registers 01 through
07·where we want them, we vnll simply type the addresses and the quanti
ties, exactly in the form shown, on the Flexowriter, preparing a punched
tape which can be read into the computer by putting it into TAC's tape
reader and pressing the "READ IN" button. To reserve registers OS'
through 15 we need do nothing at all except not to use these registers
for anything else in our own program. The instructions, once we get
them written, can go on the same tape with the data, typed in the same
fonn.

In TAO, any of the instructions, including the first one, can go
into any of the registers. At the end of the punched program tape we will
type the location of the first instruction, followed by the word "start"
and TAO will then stop reading in and start computing. Consequently, we
can place our instructions anYVlhere in storage, except of course in the
registers we have already aSSigned to other purposes. Register 16 seems
as good a place to start as any. Since each of the operations called
for in our previous list is an operation in TAC's vocabulary, and since
all of the numbers involved are integers that will fit into TAO's regis
ters, the coded instructions correspond directly to the operations of
our previous list.

The list of instructions which we might use to describe our prob
lem is as follows:

2-7
numerical quantities

instructions comments (relisted for reference)

16 M 01 05 08 17 5:x:...,8 1 +00000005
2 +00000010

17 M 02 06 09 18 10y-.,9 3 +00000025
4 +00000003

18 M 03 07 10 19 25z~10 5 +00013976 x
6 +00909433 y

19 A 08 09 11 20 5:x:+ lOy -+ 11 7 +00002747 z
8 5x

20 A 10 11 12 21 25z + (5x+10y)~12 9 lOy
10 25z

21 D 12 04 13 22 Gross/3~13 11 5x+10y
12 5x+10y+25z = Gross

22 A 13 13 14 23 2 J's share~14 13 Gross 73 = J or M share
14 J + J = 2J

23 S 13 14 15 24 A's share-+15 15 Gross - 2J = A's share

24 H 00 00 00 16 stop

The instruction in register 16 says: multiply what is in register
01. (.Q.8llle1y'5):, by what is in register 05 (namely 13976), place the
product (namely 69880) in register 8 t and then take the next instruction
from register 17. The instruction in 17 then places 10)Co 9433 = +00094330
in 9; the instruction in 18 places 25 x 2747 = +00068675 in 10; 0(19)
places +00164210 in 11; 0(20) places +00232885 in 12; 0(~1) places
+00077628 (John's share or Mal's share, in which the extra third of a
cent was rounded off) in 13; 0(22) places +00155256 in 14; 0(23) places
+00077629 (Arnie's share t which in this case is one cent larger than
John's or Mal's) in 15; and 0(24) stops the computer -~ ready to re-
peat if necessary. The complete program as typed in preparing the
punched tape for TAO might look as follows, where the top line contains
some conventionalized identification which will be described later on.

f2t 198-400-1
01 +00000005
02 +00000010
03 +00000025
04 +00000003
05 +00013976
06 +00009433
07 +00002747
16 M01050817
17 M02060918
18 M03071019
19 A08091120
20 A10111221
21 D12041322
22 Al3131423
23 813141524
24 HOa000016
16 .start

. " . ,

Program f~~ th~ Vend{n° Maghlne 0 e~ators

2-8

output

A program to be useful must print the results of the calculation
so that they can be read, not simply keep the whole thing to itself as in
the preceding example. It is consequently necessary to have an instruc
tion which prints. It would on the whole be satisfactory tor this in
structionsimply to print the contents of a specified register. This
would leave two addresses unused (unless one printed three words at once,
which might not always be convenient), which does not make computer de
signers feel very bright.

In addition, it is very necessary to print the information intelli
gi bly • In the pre cedi ng example, John's and Mal's shares and Arnie's
share could be printed merely as +00077628 and +00077629, but it would
be much better to print the shares in dollars, with some identification
as well, for example:

John
Mal
Arnie

total

$776.28
$776.28
"776.29
2328.85

The print instruction therefore permits printing parts of words, and per
mits putting one character, such as a space, a dollar sign, a comma, a
period, a carriage return, etc., both before and after each printed
group. (The complete list of Flexowriter characters includes digits,
superscripts, capital letters, small letters, symbols, and machine
functions, as listed at the top of page 24-1. The machine functions are
represented in writing by underlined capitals: R = carriage return,
S = space, T = tab, B = back space t C = color change, H = halt-~printer
onlY:,.:, I -; ignore)-:- In the print instruction, only de is an address
in the normal sense. The digits b and c are used to deSignate what part
of the word is to be printed, b indicating which coltunn to start with
and c indicating which to end with. Characters f and g may be any
Flexowriter characters at all. TAC simply prints f itself, whatever it
is, before printing the designated part of C(de) and then prints g itself
at the end. If nothing is wanted either before or after, f and/or g may
be designated as I, representing "ignore'."

Name Code

Print P

Function

Print the characters in the columns
numbered b' thi-<iugh c· in ' C(de) ,pre~
ceded by.the character f and'f.ollowed
by the'character g

For example, in the vending-machine operator problem again, we
could print John's share and Arnie's share in the form

+00077628
+00077629

2-9

by replacing the halt instruction in register 24 by the following:

24 P 19 13 I R 25

25 P 19 15 1. 1. 26

26 H 00 00 00 16

print characters 1 to 9 of C(13)
preceded by nothing and followed
by a carriage return (with line
feed)

print characters 1 to 9 of C(15)
and nothing else

stop, ready to repeat if necessary

Alternatively, we could print their shares in the form

by writing

24 P 57 13 ¢ . 25

25 P 89 13 I R 26

26 P 57 15 ¢ • 27

27 P 89 15 I I 28

28 H 00 00 00 16

$776.28
$776.29

print ¢ 776.

print 28 and return carriage to next
line

print $ 776.

print 29

stop

Suppose we really want to be really elegant -- we might arrange to
print something like the earlier example.

,Jo~, Mal: ¢776.28
Arnie: ¢776.29

Tot~l! $2;328.85
This

requires a long string of print instructions and the insertion of some
special words to contain the names "John, Mal:" and "Arnie::", the back
spacing and. underlining and the word "total~ ". Thus

24 P 19 25 J ~ 26

25 ohn, Mal:

27 P 89 13: I R 28

28 P 19 29 A S 30

29 rnie: S S S S

Prints John, Mal: followed by a space

Prints ¢776.

Prints 28 followed by a carriage;
return

Prints Arnie: followed by 5 spaces

(continued on next page)

30 P 57 15 ¢ I 31

31 P 18 32 1. r 33

32 B BBB· I ------_ --
33 P 89 15 • r 34

34 P 27 32 I R 35

35 P 29 36 I S 37

36 ISS Total: - .-
37 P 44 12 ~ , 38

38 P 57 12 1.! 39

39 P 89 12 • !!. 40

40 H 00 00 00 16

2-10

Prints ~776

Prints 4 backspaces, 4 underlines
(i.e. underlines the four pre
ceding digits)

Prints .29

Underlines the 3 preceding digits
and returns carriage

Prints 2 spaces, then Total: , then
another space

Prints ~ 2, (total is in reg. 12)

Prints 328

Prints .85 and a stop, character

Stops the computer.

The example given does a neat job of printing, but it is predicated
on a beforehand knowledge of how many digits there are in each of the
results. On a bad day, the boys might find their share printed in the
form

John. Mal: $087.13
Arnie: ¢087.l2

Total: ¢Q;26l.38

which would be esthetically displeasing, while on the good days, they
might lose a thousand dollars apiece (although the discrepancy would
show up in the total). The catastrophe of losing digits can be pre
cluded by arranging always to print mor~ digits, but this means that the
results would almost always lack esthetic appeal. The proper solution,
usually, is to write an elaborate program for determining how many sig
nificant digits there are and then printing only those. Such a zero
suppression program involveslllore coding features and tricks than have
been covered thus far.

Input

We have seen that inserting a program of instructions and initial
values into TAO is done by simply preparing a punched tape, putting it
in the reader, and press ing the button. There are times, however, when
the same program is to be used over and over again on different data
where it is not efficient to have the computer stop after each calcula
tion and wait for someone to press the button to read more data in.
Also there are times when it is not convenient to prepare data directly

2-11

in the form of TAC words. Both of these situations are provided for by
means of the read instruction, R, described below o

Name

Read R

Function

Read enough characters from punched
tape to fill the positions numbered
b through c in register de without
changing the other digits of C(de}

Unlike program input, the Read operation reads explicitly each
character which appears on tape except the code delete (all
holes punched) which is ignored, and the upper and lower case
symbols which are not counted (although they are used automati
cally to differentiate capital letters from small ones, etc.)
Consequently underlined characters and $ and ~ are each read as
three separate characters.

For example, in the vending-machine problem it would be more prac
tical to leave the number of nickels, dimes, and quarters unspecified
in the program but to arrange for the program to start by reading the
necessary data from a separate tape. We might for instance arrange to
have the coin counts typed out in the form "013976 nickels, Q>09433:,' dlines"
002747 quarters." The program for reading these quantities into regis
ters 5, 6, and 7 could then be

25 R 49 05 00 26

26 R 19 27 00 28

27 +00 00 00 00

28 R 49 06 00 29

29 R 17 27 00 30

30 R 49 07 00 31

31 R 18 27 00 16

reads 013976 into the right hand end
of register 04

reads Sili'clds$,.·. into 27 to discard
it

acts as a waste basket to receive
unwanted information

reads 009433 into the right hand end
of register 05

discards Sdima$, ..

reads 002747 into 06

discards~uarters, goes to start. of
original program

new starting address

The above program will (as long as the contents of registers 04, 05, and
06 start out with +00 as they do in the original program) put the same
data into 04, 05, and 06 as we did earlier by writing the values into
the program. The revised program, however, can be used without change
from day to day for different numbers of coins, and the number of coins
can be tabulated in a convenient, readable form rather than having to be
incorporated into the program in an artificial way.

3. Drum storage, x-Registers, Scaling, Precision.

and Conditional Sequences

3-1

TAC's primary storage element is imagined to be a magnetic drum,
a rotating cyclinder with a magnetizable surface, on which the 9 char
acters comprising each of the 100 words stored in locations 00 through
99 are recorded. Each character occupies a sequen~e~6f.~ seven posi;l.;,: on ;.~
tions in each of which there either is a pulse or no pulse, roughly
corresponding to the system of holes or no holes used on punched tape
or punched cards.

reading &
,recording

heads

TAOts Hypothetical Drum

Access to a particular storage location requires electron1cal~y
selecting one of the four channels on the drum, then waiting until
the proper one of the 25 words on the drum begins to pass the reading
heads. The channel selection and the circumferential position are
found in effect by an exact division of the desired address b.y 25,
the quotient being the channel, and the re~1nder being the desired
circumferential position around the drum. The time between calling
for a word and receiving it from storage is called the "access time".
Access: time is made up of the waiting time, or "latency", ,and the
time taken for all of the string . .' of 9X7=63 pulses to appear and be
read, which! '1s' , c8.1led~ ·'the .'Word. time 91 •

Since TAO t s drum is imagined as rotating 40 times a second, and
since there are 25 words on each track, words go by the reading
recording heads at a rate of 1000 per secondo A word time in TAC is
therefore one thousandth of a second, uaua~iy ealaed~:one milli-second.
The "latency" varies from 0 to 24 word times, since the best that can
happen is for the desired regIster to turn up just as it is wanted,
and the wonst is for it just to have passed. In executing most instruc
tions, TAC must make four references to storage, one to read each of
the operands, one to store the result, and one to read the next in
struction. It should be noted here that ftread~ just as in its common
usage, means to sense intelligently without destroying the information
recorded.

3-2

The time taken to execute an instruction depends largely on the
latency ~- the time spent waiting for the right information to show
up in the drum 0 TAO looks for the two operands specified by the bc
and de addresses simultaneously if both are wantedo Thus TAO takes

first whatever comes first p then waits for the otherp or takes both
together if they appear togethero This has the effect of reducing the
latency appreciably~ TAO does not try to obtain the next instruction
while it 1s still trying to store the result of ,the previous onep
however p because this would be a possible source of mistakes by pro=
grammers if they attempted to alter the instruction that is to be per
formed nextQ The fact that latency can be reduced by judicious arrange
ment of words in storage is a matter of considerable interest in some
computer designs and a matter of some consternation to the programmerso
Work is progressing on producing computer programs which will in turn
undertake to produce a "minimal latency routineWo In the meantime we
will merely note the existence of this complication and not concern
ourselves here with the detailso

The x-Registers

It is possible to reduce the latency a great deal if there is a
small amount of storage which has a random access with no latencyo
Such parallel storage systems are commonplace for the full primary
storage in present day computersp but they are more expensive than
equivalent serial storage capacityo By a small amount is meant any
where from one ~o sixteen registers9 an amount which does not add as
mucp percent-wise to the cost of the computer as it does to the effective
speed 0 The high=speed or zero=latency registers in TAe are imagined
to be either magnetic core stepping registers or drum revolvers~ devices
which will be discussed briefly in chapter 130 They are labelled
xC, xl $I x2 p x3 ~ x4 p x5 pm f) Xl p x8 f) and 19 f) and are ordinarily used
to hold rrequently~needed data and intermediate results p although they
may be used just as ~ of the drum registers are usedo

In any computerp the number zero is needed surprisingly of ten 0

In a three-or four-address computerf) 'izero is especially useful when
a word is simply to be copied from one location into anothero Register
xC has consequentlY been built to contain zero~ mn the torm OOOOOOOOOp
And can. not be made to hold anything elseo Even if a non...,zero word
is sent to xC by an instruction D the zero will be unchangedf) the non~
zero word lostf) and no harm will be done unless the lost word was
wanted 0 This feature makes xC useful as a waste basketp in the way
~or example) in which register 27 was used on page 2=11 to permit
reading and discarding unwanted informationo (Slnce:xC in effect
contains nothing$) there wouldf) if TAO were to be builtf) be no need
to use any hardware at all for register xOo

Tandem Register xx

Registers xl and x2 srep like register xO p rather special as wellp
but in a different way 0 TAO is equipped to deal with xl and x2 in

tandem~ as if they were·a single register twice as long as usualo
Taken togetherp the pair is called double=xp written XXQ The purpose
of this feature is to facilitate arithmetic operations in which 8
digits:are not suf'ficiento In multiplication in particular, the
product of two 8-digit numbers is a l6=digit numberp and even if only
the 8 most significant are to be retained later~ it is useful to be
able to form the full product and then divide it by 100pOoo pOOO (for
example) to reduce it back to eight digits to be storedo There are
in fact a great many times when a double-length register is useful
if not necessaryp as we will see as we progresso Double~x serves
this purpose wello

The four arithmetic operations described thus far (A p S, Mp D)
and the two which are to be described in this chapter (N 9 C) all may
involve double=length operations in XXp except only that TAC will not
divide ~ the contents of xxo The address xx may, for instance~ be
used as the fg address in an add or subtract instruction to·o,obtain,1.
a double=length sumo No post=mortem(see page 2-3) will occur when
surns p differences, products, or quotients are greater than 99~9999999
if the result is to go into register XXQ If the result to go into xx
exceeds 9p999p99999999999p999p a post=mortem will occur p but this of
course(cannot happen unless C(xx) was one or both of the terms going
into the operation being performedo

The contents of xx is defined to be C(xl)x 100~0009000 + C{x2)o
Thuss if C(xl) = +12345678 and C(x2) = +987654329 then C(xx) =.
+12345678987654320 C(xx) is not defined at all unless C{xl) and
C(x2) are both numbers and both have the same sign 0 Both C(xl) and

'C(x2) retain signs separatelyp but TAO will not operate Qn C(xx) at
all unless the two signs are the same =- a post-mortem occurring if
they differo The xx register cannot be used in connection with any
of the logical operations to be described later nor can its contents
be printed from or read into6 This is no real limitation since xl
and x2 may always be manipulated separatelyo

Precision and Scaling

Adjusting numericalp alphabeticalp and other logical information
to the Procrustean bed of computer word lengths and magnetic tape
block lengths is often a severe problemo The numerical computations
of science~ engineeringp process control9 statistics9 etcop are gen
erally concerned with numbers which are approximations to physical
quantitiesp and in these cases one usually wants to carry just as
many significant digits as can economically be carried, provided that
-this is greater than some individually prescribedoamounttfSranyy-given
problem 0

The number of digits needed is uaually between 4 and 10 and often
between 5 and 80 To allow for these casesp most computers are built
to carry from 8 to 13 decimal placeso There remains a fUrther proglem,
that of keeping the quantities ncentered" in the registers so that no
digits noverrlow~ the left end (a catastrophe) and not too many drop

off the right end (a loss in precision) 0 The problem of carrying
enough digits is one of precision, whereas the closely related problem
of making full use of the available digits by keeping numbers centered
is one of scalingo

The solution of the scaling problem is straightforward p provided
that the programmer knows in advance how large each piece of data and
each intermediate and final result can possibly be9 and provided that
allowing room for this maximum does not make the average precision
too small by wasting too much space in the average caseo Knowing the
maximum~ one simply chooses the units in which the quantity is to be
expressed in such a way that the maximum value will fit in the registero

For exsmple p in writing a program for TAO to deal with the dist=
snces involved in a land survey of Middlesex Countyp one would probably
express distances to a millionth of a mile p or perhaps to a hundredth
of a foot or a tenth of an inch9 since in each case the maximum tolerable
distance would be from one to two hundred miles ~ which is somewhat
more than enough than is needed on the left end~ but there is also more
than is strictly needed on the right~ so it matters littleo On the
other hand~ dealing with distances in nuclear physics 9 one might choose
a thousandth or a millionth or a billionth of an angstrom (a unit
which is itself only 4 billionths of an inch)9 whereas in planning
global strategy one would perhaps use thousandths of miles (to allow
a maximum of a hundred thousand miles)p and in astronomy one might
use a million or a billion miles as the unit of measureo Nor is there
any reason other than convenience for choosing standard units or dec=
imal fractions thereofo In glebal strategy~ where one might not be
interested in distances over 25000 milesp one could use one four=
thousandth of a mile as a unito Of course~ there would ordinarily be
little point in this as it would not buy enough extra preCision to be
worth the minor inconvenienc60

The choice of units amounts to shifting the decimal point within
the number being operated ono In erfect~ the decimal point of the
quantity, if expressed in the most natural or convenient units9 will
lie at some number of places to the right or the left of the largest
digit~ while in TAe the point always lies 8 to the right of the largest
digito Scaling is merely keeping track of the difference between
these two locationso For examplep in global strategy9 the largest
distance may be 173840 miles p with the point 5 places right of the
largest digito Since we want the largest digit to fall in the left
end of a TAG register9 and since TAC will assume 8 places to the
right 9 there is a difference of 5=8 ~ =3 places~ and the scale factor
should be 10-3 ~ 1/lO~3 ~ 1/1000 ~ OoOOlp ioeo the unit used should
be a thousandth of a mile so that the maximum value would occupy 8
digits9 just as was decided earliero

Floating=point Numbers

In any computation in which the numbers are merely approximations
to some physical quantity~ scaling is concerned only with leaving

3=5

as few zeros at the left end of the words in storage as possible v
since these are merely wasted precisiono Keeping all the quantities
centered close to the left end without overflow is usually a ticklish
problem~ often a very difficult one9 especially if the maximum values
of the quantities involved are not known in advanceo Since keeping
track of the decimal point is itself a computational jobv there seems
little reason why the computer should not be made to do its own sca1ingo
This is w in factv done quite often by writing9 once and for a1lv pro=
grams which will keep track of decimal points during the entire comp=
utationo Such programs are called floating=point routines, because
the decimal point in effect floats at its proper place within the
registero Some computers are being designed with the ability to do
floating=point arithmetic designed right into the hardware 9 eogo9 the
IBM 704u Floating=point numbers are made up of two parts~ in a kind
of logarithmic fashiono For examplev the quantity =12345067 may be
represented by =o1234567~+;9 since it equals =01234567 x 10+~ 9 the
quantity +00004567 mayv in the same system9 be represented by
+o4567000~=.3 since it equals +04567000 x 10"'3 0 Since it turns out
that floating=point techniques are of relatively little value in
business problems v there is little value in studying the techniques
any further hereo

Integers vSo Fractions in Busines~

In most bUsiness applications9 it appears numbers have a different
meaning than they do in most engineering and other such applicationso
Most numbers in business are~ b.y fact or by definition, exact == not
merely approximations of physical quantitieso A price~ a catalog
number~ a quantitY9 are usually exact integerso Rounding a number
is not necessary as often as it is in engineering work9 and when a
quantity is rounded 9 the number of digits to be kept and even the
rule for rounding is usually specified exactly by law or by customo
If some item lists for $20078~ for examplev its price is 2078 cents,
exactlY9 if one buys 14 such items~ the list price is 14 x 2078 §

29092 cents exactly~ but if the discount is 10%~ an approximation
is required v for the discount cannot be given as 290902 centso The'
fact that most business quantities are expressed as whole numbers 9
but that percentages and many other quantities are really fractions
less than one raises the question of whether a computer should treat
numbers as integersp with the point at the left, or as fractions9
with the point at the right9 or somewhere in the middleo

Addition and subtraction turn out to be the same no matter where
the point is located == it makes no difference even if the computer
thinks the points are on the right and the programmer thinks they
are on the 1eft9 as long as the point are actually in the same place
in both of the numbers being added or subtractedo Multiplication 9
on the other hand 9 is a horse of a different coloro Consider the two
casesg

027
x 012

00.324

3=6

The product is essentially twice as long as its factorso In the exam=
pIe 2): the~left=hand -word (03) of tpe ,product is: called ,)the 'majbr ~ half' of
the product9 the right=hand word (24) is the minor halfo A computer
which works with integers ordinarily keeps the minor half of the
product and throws the ~ajor half awaY9 whereas a computer working
with fractions keeps the major half and discards the minor halfp or
perhaps rounds it off by adding one to the major half if the leftmost
digit of the minor half exceeds 50 It is evident that neither pro
cedure fits the bill in all cases in either business or any other
applicationsQ Floating=point of course avoids this question9 but
floating-point is not espeoially satisfactory for exact operations
on integers and is completely unsatisfactory for the many non=srith=
meticalp logical operations required in businesso

The question of decimal~point location seems to be answerable as
follows:

10 in business applications 9 where working with integers and
logical values is more common than not9 a computer operating
on numbers with the point fixed at the right is usually more
satisfactory than any other single mode of operationo

20 in engineering and other applications dealing with approx~
imations of physical quanti ties 2) not=exact=but," best=poss ible
results are usually wanted and a point=fixed=st=left computer
is slightly preferable to one with the point fixed at the
right 9 while one with built=in floating=point and fixed=
point together is naturally preferable to either fixed=point
scheme 0

30 in BOTH kinds of applications 9 IT MUST BE POSSIBLE p]}~ - ..
NECESSARY 9 TO DEAL WITH FIXED=AT=RIGHT 9 FlXED=AT=LEFT p FlXED=
ANYWERE-EISE lI AND FLOATING POINTSo

Naturally it is possible to have a machine with the point fixed at
the middle or somewhere else between the ends, and there are such
computers (eogo9 Monrobot)g but the advantage is small unless there
are enough digits (say ten on either side) to permit the computer to
act simultaneously like a fixed=at=left and a fixed=at=right machine
(and this then doubles the cost of the computer storage element since
only half of each register will ordinarily be useful in anyone problem)o

In TAC p it is primarily the xx register that facilitates dealing
with other than fixed=at=right integerso Register xx also facilitates
dealing with numbers which are inherently longer than 8 digits9 but
a discussion of that situation will be postponed until chapter 50
It should be noted 9 in connection with discussing special facilities9
that while such features are often highly desirable they are never
absolutely essentialo (In fact~ it can be shown to be possible9
although not practica19 to perform any arithmetical or logical oper=
atian with a W computer vv whose only abilities are g to deal only with
zeros and onesg to be able to change any single digit to a 1 if it is
a 0 and to a 0 if it is a 19 and to choose between two possible next
instructions depending on whether the digit was a 0 or a 10)

3-7

Use of the xx=Register

As an example of the use of the xx registerw take Fred~s oaseo
F~~d has smuggled 100 9021 pounds sterling out of England and is ex
changing them for dollars in Lucerneo The rate of exchange offered
him there is 2080173 dollars per pound~ Fred wishes to use TAC to
tell him the worth of his fortune in dollarso (He does not care how
the people in Lucerne decided on the rate of exchange to so many
significant figureso) The program is~ of course~ quite short9 assuming
that the number of pounds to be converted is punched as a, 7-digit
ntunber on! a; tape 0

00 R 39 x2 00 01 reads number of pounds into x2

01 M x2 x3 xx 02 100021 x 280173 = 28023183633 ~ xx, putting
+00000280 in xl and +23183633 in x2

02 D xx x4 xx 03 C(xx)/lOOO = 28023184 ~xx~ putting +00000000
in xl and +28023184 in x2

03 P 27 x2 ~.! 04 prints $'280231,,84
04 p 89 x2 01 05

05 H 00 00 00 00 stOps9 ready to start at zero if necessary

xl +'00')00 00 00] used as temporary storage during program to

:x2 '00'00 00 00 store first pounds 9 then thousandths of cents,
then cents

x3 + ':-00, :28 ' 01 73 rat~ of exchange in thousandths of cents , ,per
pound 0

x4 +/:'(.00 1 00 ,10 00 necessary constanta

There are several things worth noting about this program 0 One is
that since the result of the division by 1000 is known to be less than
99 9999 p999p the result will fit into register x2 aloneo The fg address
of~the D instruction could therefore be x2 rather than XX9 the dif
ference being billy tha~ i~ address xx is speoifiedl' +00000000 will
b~ put into xlp whereas if x2 is specifiedf) C,(xl) will remain unchanged
as +000002800 Similarly 9 in the multiply instruction p if xx had been .
given as the be address in place of x29 the result would have been
unchen~ed' 1n this' case 9 S in~e C (xl) ~,'+OOOOOOOO initially so that C (xx)
= C(x2)~ but this of course is not always trueo

Another approach to the problem would be required if Fred had
had a million and 21 pounds instead of his paltry tenth of a millionQ
Then the total number of cents would exceed 99 9 999 9 9990 This can be
handled here by thinking of the dollars and the cents separatelyo
Suppose after multiplying 1000021 by 280173~ getting 280178883633 in
XX9 we had multiplded'q(JQC)by 1000 rather than dividing it by 1000 0

C(xx) would then contain 280178883633000 millionths of a cents 9 with
+02801788 in xl and ~83633000'in x20 Clearly C{xl) is the number of
dollarsw and C(x2) is the remainder in millionths of cents" and we
can simply-print the two parts separatelyo Another difficulty arisesp

3=8

however~ if we want the result rounded off in the normal wayo We
could divide by 19000pOOO and get 2 in xl and 80178884 in x2~ which
gives the correct result9 still in two registerso Unfortunately 9

not having the split occur between the dollars and the cents means
that we must use three print instructions p one for the $29 one for
the 801788 and one for the 0840 AlternativelY9 we could do the
rounding by merely adding +00500000 to XXp which would give +02801788
(the correct number of dollars) in xl and +84133000 (in which the
first 2 digits are the correct number of cents) in x20 Our program
in this case would beg

00 R 29 x2 00 01

01 M x2 x3 xx 02

02 M xx x4 xx 03

03 A xx x5 xx Oli-

04 P 39 xl ¢1 05

05 p 23 x2 o£ 06

06 H 00 00 00 00

xl + 00 '00' 00 00

x2 + 00' "00 \ 00 00

x3 + '00 "28 01 73
x4 + qp R9 10 00
x5 .,\. 00 ~O 00 00

Numerical Shift Ooeration

10000021-+ x2

~80178883633 ~ xx
(o&tOOOO2801 ~ xl9 +78883633 -P 02)

+280178883633000 ~ xx
(+02801788 ~ xl~ +83633000 -+ x2)

+28017888413.3000 -+ xx
(+02801788" x19 +84133000 ...,. x2)

prints ¢280l788

prints 084

stops

temporary storage

constants

One other thing worth noting in connection with Fredgs problem
is this ~- multiplying or dividing by 1000 or b.Y other powers of ten
appears to be something one would often want to dOt, Clearly it should
somehow be made easier both for the programmer to require and for the
computer to execute a multiplication or a division by a million£) say I'
than by 1279413 or ~ any other arbitrary numberp for all that is
required in multiplying or dividing by powers of ten is to shift the
individual digits to the right (for dividing) or to the left (for
multiplying). In almost all computers there are special instructions
to shift right and shift lefto TAC is n9 exception 0 There are in
fact two kinds of shift operations in TAt~ one to perform the numerical
shifting equivalent to multiplication or division~ with proper rounding
and with the sign not shifted!) and a second to shift ("logically")
all characters!) digit or not!) sign or not¥ without roundingo The
former is defined on the following page9 the latter will be described
in chapter':,\,,' , .

Name

Numerical" j

shift left

shift right

N+

N=

Function

Cede) x 10c -. fg

C(de) + 10c -. fg

3-9

In other words~ N shifts the number in de to the left c places if b
is + or to the right c places if b is = and places the result in fgo

Let us now take an example of N (and all of the other instruc~'
tions· 'introduced thus far) 0 Carolyn has been selling homemade candy
for 73p a pound. When someone buys more than one, they often ask
for a quantity discount p and Carolyn has haphazardly given various
discounts!) amounting usually to about 5% on 2 pounds!) 15% on 6~ and
never over 30%. Bob wants to make life easy for his wife and decides
to mechanize the computing of the discount priceo He tabulates a few
of the discounts that Carolyn has given before and decides on the
formula: % discount = 30 <= 150/{q+4)p where q represents the number
purchased 0 Thus for one pound!) q = 1 and the discount = 30 - 150/5 =
0%9 for q = 2 the discount = 30 = 150/6 = 5%9 and so~on9 never exceeding
30%0 Bob writes the following TAO program for his problemp and the
very first customer orders 96 pounds. Bob punches these two digits
on tape (he only allowed for two digits at a maximum), and the comp
utation TAO performs is described alongside the programo

00 R 89 x3 00 01 Plac~s 96 from tape into righthand,'ende'ot x3

01 A x3 20 x2 02 96 -0- 4 = 100 ~ x2

02 D 21 x2 x2 03 150 9000/100 =: 1500 ... x2

03 S 22 x2 15 04 30000 "" 1500 := 28500 -+ 15

04 M x.3 x4 x5 05 96 x 73 = 7008 x5

05 M x5 15 xx 06 7008 x 28500 :;: 199728000 ... xx

06 N -5 xx x2 07 199728000 = 100000 = 1997 ~ x2

07 S x5 x2 x2 08 7008 = 1997 :: 5011 -+ x2

08 P 67 x2 $1 09 Print ¢50p first digit of net price

09 p 89 x2 01 10 Print 011

10 H 00 00 00 00 Stop

15 -- receives 1000 x % discount

20 + 00 00 00 04 } 21 + 00 15 00 00 constants

22 -+ 00 03 00 00

xl ------- } used in calculating % and total discounts
x2 ~

x3 + 00 00 00 00 - receives the quantity 96 in the right end~
leaving +000000960

x4 + 00 00 00 73 - list price per pOLmd
x5 ~ - receives total list price

3...,10

Conditional Seguence = The Comparison Instruction
~ ,\;".1, \ '.~.' •. '" I~'

The last of the four instructions (others were M~ D~ and N) for
operating on numbers~ rather than on instructions~ alphabetic words$
or other logical inrormation~ is C~ for Compare numbericallyo It is
in many ways the most important of the four~ and in it lies the real
heart of the automatic digital computero C permits varying the instruc
tion sequence to be followed depending on the outcome of the comput
ation up to the point in questiono A card programmed calculator and
other tape- and card=sequenced devices are capable of elementary
decision making of the same sort9 but only the stored=program computer
is capable of repeating certain parts of a computation automatically
for a prescribed number of times or until a desired result is approx
imated closely enough

~:,

Compare
numerically

~ Function

C take the next instruction fromg
tg if a (be J! C (de J I> '\"

hi: if 'C{bc) c '~'CJ(de) I>

-'nextregisteri~,conseeutively
:; i,if \c(bcl,~\d (de) 0

Notice that this instruction does not store or print any resulto
Its only putcomeis the detection of one of three different conditionsg
either C(bc) is larger than Cede) ~ or it, is smaller£) or they are equalo
As used herew the symbols >'B,nd -< ~ read nis greater than9i and 9'is
less thanitw refer to the sign as well as the magnitude of the numbers
in questiono Thus 9 3 > 2 (ioe 0 3 is greater than 2), 4 > -5 ~ =2 > -79
o > =97 p etco If C(be) = C(de) I> the next instruction is taken from
the register immediately following the register in which the C instruc
tion was foundQ Naturally be and de may be set equal to one anotherp
or either may be made equal to the next ~onsecutive address o C will
lead to ~ post=mortem if C(bc) and Cede) are not both strictly
numerical in formo

The comparison instruction will of course show up in a number
of examples in later chapterso A simple example here will suffice to
illustrate the prinCiple involved 0

The Cambridge Electric Light Company charges residential sub
scribers in 4 stepsg 75~ for the first 12 kilowatt=hours or lessw
4~ each for the next 38~ 3~ each for the next 50 9 and 2 1/2~ each for
the resto Charlie used 146 kwh in March o The following program
is intended to make TAe compute his light bill and others-:like ito The
general scheme may be seen rather better in a diagrammatic form showing
questions and alternative answerso Diagrams such as this are commonly
used in planning a program and in documenting a program for later
reference or for use by someone else in actually coding the programo
They are gener(!tlly referred to as lIvflo'W' diagrams" 0

01 R 79 x4 00 02
02 A 03 %0 xJ 04
03 + 00 00 00 75
04 c %4 07 08 05

os p 67 x4 _.1 06
06 P 89 xl+ .. 1 28

07 ~ dd cid dd 12
08 S x!4- 07 x4 09

09 o %4 13 1~ 10

10 M %4- 11 x4 12
11 + 00 bo 00 04
12 A x3 x4 x3 05

13 + 00 00 00 38

141 A %') 15 %-3 16
;1.5 + 00 00 01 52

16 '8 %.;4 13 x4l7

17 c %4 21 22 18

18)f x,4 19 %4 20
19 + 00 00 00 03
20 A x,3 %4 x3 05

21 + 00 00 00 50

22 M %.4 23 %.4 24
23 + 00 00 00 05
24 A %4 21 %.4 25
25 D %.4 26 %.4 27
26 + 00 00 00 02
27 A. x3 x4 %3 05

28- H 00 00 00 01

START

Read in K9 the number of kwh used 9 to x4
Put 75. the minimum bill. in x3.

if greater ifequa1 if less

'-- ~
Prepare for step 2:

Form K 12

Oompare

if greater if equal if less

Oompute and add step 2 charge:
Add 4(K - 12) to 0(x3)

Add in step 2 charge:
Add 4 0 38 = 152 to 0(x3)

Prepare for step 3:
Form (K- 12) - 38 = K - 50

Compare (K 50) : 50 , " if greater if equal if less

Compute and add step 3 oharge:
Add 3(K - 50) to 0(x3)

Compute and add step .3 & 4 oharges:
Add (50 + 5(K = 50»/2 to 0(x3)

3-11

Program and Flow Ohart for Cambridge E1ectrio Light Oompany Problem

3=12

Exercises

Each of the following exercises is independent of the others in the
set, so that any register may be used for one purpose in one problem and
for a different purpose in anothero Unless there are special reasons~
the instructions should be placed more or less consecutively~ starting
at register 010 Exercise #5 and those beyond generally leave unspec=
ified the locations at which to store the data and constantso Ordinarily 9

this allocation should end up with constants interleaved as needed in
the instructions~ or grouped separately on the drum 2l alid.with data. and
intermediate results stored~ if possible~ in the x registerso In general
these problems if done in a straightforward way may be assumed not to
give rise to numbers too large to fit in one register~ but some thought
should always be given to this possibilityo One should also take care
not to throwaway precision by dividing before multiplying~ etco Each
program should come to a halt when the job is completeo Do not look
for anything difficult hidden in these problemso The first ones:a.re
just as simple as they seemo The number in parentheses at the end of ('"
each exercise is a reasonable par for the number of registers required
in storing instructions9 constants, data~ and results w including those
explicitly designated in the statement of the problemo

3010 Ellie has placed in register x3 an order for a certain number
of cups of teao In making tea she uses one teaspoonful for
each cup wanted and one for the poto Assuming that register
51 contains +OOOOOOOl~ write a program t.o put in register x4
the number of teaspoonsful of tea that Ellie should useo (5)

~o2o The gross weights in pounds of four different items to be
shipped to New York are stored in registers x4~ x5 w x6~ and
x70 Write a program to put the total weight of the shipment
into x8 Q (9=11)

MorganVs rate of paY1! in cents per hour~ is in register x3w
the number of his withholding tax exemptions is in x4~ and
the number of hours he worked last week is in xlo The quan
tity 1300 9 which is the number of cents exempt per week per
exemption, is in register 5lQ Write a program to put MorganVs
withholding-taxable earnings into register x20 (9=10)

The length and width in inches of Rerbus rectangular coal bin
(which is of a modest size) are stored in registers x3 and x4,
while those of Bobus bin are stored in x6 and x70 The present
level depth in inches of the coal.in Herbvs bin is stored in
x5 and that of Bobvs in x80 Herb changes over to oil heat and
ships his coal to Bobo Write a program to modify the contents
of x8 to the proper new deptho (14)

Centigrade: temperature can'be converted "to 'Fahrenheit by. the
formula~ Fahrenheit tempo = 32 +(9!5)(Centigrade tempo)o
The temperature of the drinks Maurice serves has been measured
in Centigrade degrees (it is 19°) and recorded in register x90
Write a program to place the equivalent Fahrenheit temperature,
to the nearest degreew (which would be 66°)9 into register x80
(9)

3 .. 60 The Halcyon Investment Trust~ with trusts as large as a half
million dollars, has declared a scientifically-computed div
idend of 3041785%0 Write a program which will read 8 digits~
specifting an amount in cents~ from punched tape~ calculate
the dividend to the nearest cent9 and print it as an 8=digit)
unpunctuated numbero (6)

3070 The Delphi Electric Light Company wants its electricity bil~s
computed automaticallyo Initially$) the readings of one cust...,
omeris meter last month is placed in x3 and the reading this
month in x40 The Delphi meters read only 4 digitso Write a
program which will put the number of kwho used into register
x5~ allowing for the case in which the meter has turned over-
so that, for exgmple~ this monthHs reading is 0173 while last
monthus was 99410 (8)

3080 Dean and Uack need TACus help in playing two~card stud$) in
which each player draws two cards and the winner is the holder
of the higher pair~ or9 if neither has a pair~ of the highest
singie card~ always without regard for suit.. The numerical
value of Deanffs two cards are in registers x3 and x4w those
of Jackvs in x5 and x60 Write a program which will print
"Dean wins" 21 "Jack wins" 9 or ·:&OI:tfS a. draw" £! depending on the
cards each holdso (17=20) ,

3090 Kewa of Tagore exacts as tribute from his victims a number of
kruls equal to the eighth power of their waist measurement in
inches (ioe09 the product of the measurement multiplied by
itself seven times~ for example£! 28 = 256 w la' = 100~OOO$)000
and 401 = 6$)553~600~OOO9000)o One dollar equals 10~0009000$)OOO
kruls (ten megakilokruls)0 Alanus waist has just been measured
and the result placed in register x30 Write a program to
print the tribute Alan must pay in dollars and cents9' to the
nearest cent@ allowing for a 60 inch waist ($16796016)9 without
zero suppressiono (11)

30100 Martin makes short-term loans of less than $4000" On these he
charges 12.% simple interest and accepts payments of any amount
at any timeo Each payment is first applied to payment of the
simple interest on the previous balance for the number of days
since the last payment~ and the remainder of the payment is
then subtracted from the balanceo When a payment is received 21

Tweetie, MartinUs office gir19 punches a tape which contains .
the previous balance in cents (5 digits)~ the date of the
previous payment (using 2 digits for the date~ 2 for the' month
numbered 01" to 12 It and 2 for the year) ~ the date of the present
payment (in the same form) $) and the amount of the pre sent
payment in cents (5 digits) 0 For example~ if MurphyHs balance
after his last payment on Septo 13~ 19539 wap, $183069 and he
now pays $25 on Augo 16q 19549 Tweetie types9 with no punctuation
at all~ the digits 18.36913095316085402;00 ~ .. which breaks down
in the following wayg

~ 8 : 69,/ ! 3 0 v- 9 5 ?, t 6 ~ 8 5 4~ ~
l ~ balance 13 Sept ,53 16 Aug 54 $ paid

Assuming a 360-day year of 12 30-day months, one can find
the number of days between any two dates, such as between
17/09/53 and 13/08/54, by forming the difference in years

3-14

times 360 plus the difference in months times 30 plus the
difference in days; for example (54-53)360 + (08-09)30 +
(16-13) = 3330 The simple interest is simply the balance times
0012'times the number of days divided by 360; for example,
1!8369~ 0012 x 333/360 = 20390 The new balance iSg of course,
the previous balance plus interest minus payment: for example~
18369 + 2039 - 2500 = 179080 Write a program which, given
a'data tape prepared by Tweetie, will tell Murphy or any of
Martin's customers what is his new balance by printing it
in dollars and cents (eogo, $179008) after any paymento (30)

4-1
40 Cyclesw Counting, Modification of Instructions

Cycles

Prob1em~ the output of a figgle factory is limited solely by:
the supply of j iggle...Jluts w' _ of which 77 are required in each, figgle 9

and is seldom more than five a dayo Jiggle-nuts are perishable; they
are delivered fresh each morning 9 and any left over must be sold at
the end of the dayo The number delivered this morning is given in xlo
Print the number that will have to be sold todayo

This is essentially a question of finding a division remaindero
TAO does not do this directly~ it rounds off quotients and gives no
remainder. 'We could actually find the remainder from the rounded
quotient by a process of multiplication and subtraction" but there is
a more direct way which is quicker if the quotient is small 0 We simply
duplicate the operation of the figgle factory~ subtracting 77 from
the pile of jiggle-nuts as each figgle is made, until finally there
are not enough left to make a further figgleo

The calculation is largely repetitiveo We can make a neat compact
routine by writing the 8ubtract'instrnctiononly'once9i and arranging
for TAC to obey it repeatedlyo We make it part of a cycleo

We could easily make it a cycle on its own, by making its fourth
addre~s equal to the address of the location containing it, so that
it is always followed by itselfo This, howeverp would not cause the
repetition to stop p the machine would go on subtracting endles~ly {or
until stopped b,y an excessively negative ~esu1t)o Somehow the machine
must decide whether or not to repeat the subtractionp and this decision
must be made after each repetitiono

For this purpose we can use the conditional instructiono If the
number of jiggle-nuts remaining is greater than or equal to 77 a .,further
figgle::can ce' :inade~ if- 1it -1's less than: r;7 the process is finishedo We can
code it thus: 00 C xl 04 01 02 test J'

01 S xl 04 xl 00 subtract 77 cycle
02 P 89 xl R2 03 print
03 H 00 00 00 00 stop
04 + 00000077

C'ounting

Henry has succeeded in producing one specimen of a rose plant
with fine emerald green bloomso He decides to propagate it by taking
one cutting per plant each year$ but cuttings cannot be taken from a
plant until it is two years oldo His first plant is now one year old~
Print the number that he will have after twenty yearsp assuming that
he is an infallible "ardener and none: 6f his plants;6ver'aieQ

Let us store the total number of plants at any given time in xl9

4=2

and the number that are more than one year old in x20 Then for each
year TAO' must add C(x2) to C{xl)~ and replace C(x2) by the old C'(:x1) 0

It must perform these operations 20 times~ and stopo Again the program
is repetitive; again we will use a cycleo

The basic operations are caused b.Y the instructions

00 I A xl x2 xl 01
01 S xl x2 x2

As berore~ we could make an endless cycle simply by writing 00 at the
end of the second instruction9 but if the process is to terminate we
must include a conditional instruction in the oyole o There is a dif
ference~ however~ between this example and the lasto There the number
of jiggle-nuts itself provided the condition on which to base the decision
whether to repeato Here we do not know what Henr.y~s roses will be doing
after twenty years; the decision must be based simply on the number of
years which have elapsedo This essentially involves counting the years;
TAO must be made to keep a tally as it goes alongo

We will keep this tally in x30 The complete routine could be as
follows:

00 A xl - x2 xl 01] the business] 01 S xl x2 x2 02 cycle .02 A x3 06 x3 03 add one to tally
03 G x3 07 04 00 test for completion
04 p 59 xl .R2 05 print
05 H 00 00 00 00 stop
06 -+ 00000001
07 -+ 00000010

xl + 00000001 total plants
x2 -+ 00000000 mature plants
x.3 + 00000000 tally

Minimal Latency Coding of Cycles

To make them easier to follow9 the foregoing examples have not
been coded for minimum latenc,yo In practice one frequently finds that
most of the machine Us time is spent in obeying cycles which appear to
be only a small part of the whole routine 9 simply because they are
obeyed much more often than the rest of the routine iso Hence it is
worth while coding these cycles for minimum lateney~ even if the rest
of the coding is not done in this wayo

Modification of Instructions

The Consolidated Glue Corporation markets glue in containers of
fifteen different sizes 9 numbered 1 to 150 The capacities of these
sizes (in hundredths of a pint) are listed respectively in locations
20 to 340 An order is received9 the number of containers required is
given in x.3 and the size number in x40 Print the amount of glue

4=3

~required to fill this or4er~ to the nearest gallono

This problem unavoidably requires the use of an instruction of
which one address is not known 'When the program is writteno Some "I;·' ';

instruction must pick out from the list the capacity of the container
required w and the location of this information depends on the number
given in x4 when this calculation beginso The routine itself must
therefore cause the machine to constructJthe variable instruction
before using ito This may be done as follows~

00 N +4 x4 xl 01 Shift size left to de positiono
01 A 07 xl 02 02 Put appropriate instruction in 02

03
04
05
06
07
08
09

D :xx 08 xl 04
p 49 xl ~ 05
P 17 09 11 06
H 00 00 00 00
M x3 19 xx 03
+ 00000800
gal Ion s 00

multiply capacity by number of containerso
Divide by 800 to get gallonso
Print resulto
Print "gallonsfio
stop 0

Note that no word has been written for register 029 although the second
instruction tells TAC to look in 02 for its next instructiono The
reason is that before TAC looks for this instruction~ a suitable
instruction will have been put thereo This is done by the instruction
in 019 and the instruction that gets put in 02 is

M x3 (19+5) xx 03
where s is the size numbero

Programmed Switches

In the previous example we had to shift the given number into the
second address (de) position so that9 by addition~ it could be used
to construct the second address of the instruction to be placed in
register 020 In a similar way !Sl address in an instruction can be
modified by the machine itselfo If the fourth address is modified
the effect is interestingg it causes TAC to take its next instruc=
tion from a location which depends on the numbers from which the fourth
address was constructedo This may lead the machine into one of a num
ber of quite different courses or actiono

This w~ we can tackle such a problem as the followingo Bingo
Products Inco has ten classes of employees~ identified by code numbers
1 to 100 Each class has its own rules for calculating wagesp all
quite differento An employee Us code number is given in xl9 print 1tp

and proceed to calculate his wageo The routine for this might begin
this way~

00 I A 02 xl 01 01 put appropriate instruction in 010
print code number and go to cor

responding instruction in 03000120
02.1 P 89 xl B§ 02
~3];,rirst instructions tor
o each type of wage ,r

.12 calculation 0 "

4-4

Instruction Modification Within a Cycle

Problem: Chin Foo has a tape punched with a list of his 57
customers 0 None has more than nine letters in his name, and each
name is followed by spaces to make a total of nine characters. Also
a carriage return symbol; precedes each name. Read these names into
registers 41 through 970

This is another repetitive job and we shall use a cycle in the
program 0 However 9 the operations are not exactlY the same at each
repetition: the first name must go into 419 the second into 42, and
so on. Hence the instruction that places each name in the store must
be changed at each repetition9 the appropriate address will have to
be increased by one each timeo

To end the repetitions we must again include something equivalent
to countingg we shall simply count from 0 to 57 (although this is not
the most effioient way of programming it, as we shall see later)Q
The complete routine is:

00 R 11 xC 00 01
01 R 19 41 00 02
02 A 01 06 01 03
03 A xl 07 xl 04
04 C: xl 08 05 00
05 H 00 00 00 00
06 + 00 01 00 00
07 + 00 00 00 01

~ 00- 88' 88 88 ~6 +

Resetting

discard oarriage return symbol
read name into its register (410 •• 97)
increase 2nd address in 01
count
tes;b for end of job

tally

Note that after the above job is done the second instruction
remains as R 19 98 00 025) and C(xl), remains as +00000057, so that if
we tried to use this routine a second time it would not work. If it
were to be used as part of a big routine (ioeo as a "subroutine")9
and were intende;dt,to 1 ;be()ob~yedi-)severall:times' ;with:ilntthe:b:i:glrouti.n~ 9
it would have to be refreshed between applications by having 0(01)
and C (Xl) ~.set to their initial va.lues 0 This resetting would have
to be done ~ means of instructions obeyed between successive applic
ations of this name=reading subroutinep preferably immediately prior
to each application. Usually such instructions are written along
with the subroutine p making the whole subroutine self-resettingo

4=5

Exercises

A bottle contains 15 ounces of horrible medicineo Andrew has to
take a certain dose (stated in hundredths of an ounce in register
xl) each day until there is not enough left to continueg he may
then throwaway the dregs 0 Print to the nearest hundredth~,the
number of ounces which he will have the pleasure of discardingo
(Use a cyc1eo) (6)

xl contains an amount of money in cents; x2 contains a rate of
interest in tenths of percent (e.go C(x2) = 30 represents 3
percento) Print the total after 10 years, assuming that the
interest is compounded ann~11y to the nearest cento (12)

\Il()."t Using the same data as in question 2~ print then number of complete
years after which the total is at least double the original
principal 0 (12)

How Foo has a TAO input tape bearing the names of his 200 cust
omers; each name consists of nine letters and is followed by a
sign and a five digit decimal number which is the amount in cents
of the customeris oredit (a minus sign means that the customer
owes How money) 0

Write a routine that will read the tape and print out the names
and debts of all customers owing $100 or moreo (12)

Chin Foo has placed the names of his 57 customers in registers
41 through 970 Each shirt received by his laundry is marked
with the customerDs serial number (1 through 57)0 Read one
shirt number (2 characters) from the input tape and print its
ownervs nameo (5)

4060 The TiLpperary Trust Company has 68 customers whose balances (in
cents) are stored in registers 20 through 870 Print the sum of
the balancesp which is less than a million dollarso (12)

4070 With the data of question 6~ subtract from each balance a fixed
charge of 75 centso (10)

5-1

5. C01JJPARING; GROUPING AND PACKING

"Logical" Comparison of:ifords in TAC

Chin Foo, having placed his customers' names in locations 41 through
97, wishes to have TAC check whether they are in alphabetical order.

For this problem we need to have some way of letting TAC decide
which of two VJords comes first alphabetically; this involves comparing
alphabetical characters 0 The C instruction vdll only compare numbers.
We therefore make use of a further instruction:

Name

Compare
Logically

Code -
K

Function

Take next instruction from:
fg if C(bc)~C(de)*
hi if C(bc) < C(de)*

or next register consecutively
if e(bc) is identical with Cede)

*Tbe meaning of the symbol). is defined here in such a way that if C(bc)
comes later alphabetically than Cede), then C(bc»C(de), and vice versao
In detail, the rule is as follows: compare the characters of e(bc) with
those of Cede) column by column from the left until corresponding charac
ters differo Whichever of these characters comes later in the alphabet
belongs to the "greater" wordo Since TAC registers may contain a variety
of symbols besides the letters of the alphabet, and since we distinguish
between capital and small letters~ the alphabet is extended for this
purpose to incllile all the sumbols that TAC uses o The full list is given
in the TAO sununary and is repeated here:

T £ ~ ~ /) - + 0 I 0 2 4 6 8 0 2 4 6 8 a b 000 Z

= S I 3 5 7 9 I 3 5 7 9 A B ooe Z

(Since the decinnl digits appear here in their natural order 9 the K in
struction can be used to compare Eositive numberse It is hmvever a little
untidy vvhen negati ve numbers are involved, so a separate "compare numeri
cally" instruction has been provided~)

For Chin Foo we need to make 56 comparisons, namely'C(41) with 0(42),
C(42) wi th C(43), etc" As this is a repetitive kind of job '.-fe shall
again use a cycle~ and since we must operate on successive registers we
shall have to modify an instruction within the cyclee The coding is very
similar to the last example in Chapter 4~ except that lHe now have to modi
fy two addresses in the same instruction; however, both can be mOdified
simultaneously.

5-2

As a further refinement we shall show how it is possible to dis
pense with the separate tally for counting repetitions, and instead to
base the decisi on whether to repeat the cycle on the instruction wh1-ch is
being modified~ The latter starts as K 41 42 14 11 and ends as K 96 97
14 11 ; when it has passed this final value the process may be stopped e

For this comparison also lile shall use a K instruction; since C is in
tended for use wi th pure numbers it ·would stall on any word containing
letters, even though the essential comparison is merely concerned with
the addresses, which are numbers.

10 K 41 42 14 11

11 A 10 16 10 12

12 K 10 17 13 10

13 P 13 18 ~o 15

14 P 48 18 Ro 15

15 H 00 00 00 00

16 + 01 01 00 00

17 K 97 98 14 11

18 0 oK WR ON G i>

Grouping of Registers

compare consecutive names

increase addresses in 10 cycle

test for end

print "WRONG tt

stop

We have seen that register xx may be used for arithmetic givi~g ,
rii~ to astronomical figures such as the national debt (between 10 and
10). This is the only part of TAO that may be used to perform arith
metic on such large "double length" numbers directly. However 9 there is
no reason why such numbers should not be stored in any two TAO registers;
we are perfectly free to regard any two registers as holding two parts
of a single number if we wish 0 Similarly we may break an item of alpha
betiealinformation into parts occupying separate registers o Names p for
example, frequently contain more than nine letters, but they can be arti
ficially split between the ninth and tenth letters and the two parts
stored in different registers. Since there is never any strong reason
for doing othen'vise, the parts are nearly always stored in consecutive
registersc.

Business applications rarely eall for long numbers to be stored;
however, long alphabetical items often arise, and so does the problem of
determining their correct alphabetical sequenceo

Problem: two names 11 each of 18 characters» are stored in TAO; the
first in registers 15 and 16, and the second. in registers 17 and 18 41

Print them in alphabetical order.

To compare them we must first compare their left-hand halves; if
these are identical" we must then compare their right-hand halves& If
the left-hand halves are not the same the second comparison is unneces
saryo We might code the routine thus~

00 K 15 17 02 06

01 K 16 18 02 06

02 P 19 17 g£, 03

03 P 19 18 ll. 04

04 P 19 15 RI 05 -
05 P 19 16 II 10

06 P 19 15 B!. 07

07 P 19 16 II 08 .-.

08 p' 19 17 RI 09 -
09 P 19 18 ,II 10 -
10 H 00 00 00 00

Packing

compare LeHo halves

compare RoHc halves

print with

order reversed

print in

gi ven order

stop

Just as some items are too long to be accommodated in registers of
a fixed length, so also some items are much shorter than the registers
available 0 There is of course no difficulty in, putting a short item in
a long register; unused digits can always be filled in with zeros in the
case of a number, or with ignores in case of names" etc. However" it is
more economical in storage space if two or more such items can be "packed"
into a single register&

There is nothing mysterious about this~ the items are just placed
side by side" in different digits of the same registero The need fre
quently arises, however~ to separate and rearrange such itemsc Two in
structions in TAC 9 s instruction code are designed to meet this needs
The first is~

Name Code

Extract E

* (See top of next page)

Function

In those columns~ and only those,
in which Cede) has odd* characters,
replace the characters of C(fg) by
the characters occupying correspond
ing columns in eCbc), without al
tering the other characters in C(fg)o

5-4

*Where the· characters of C(de) are decimal digits the meaning of "odd"
is obvious; in other cases, characters in the lower line of the list at
the bottom of page 5-1 are considered odd~ and those in the upper line
eveno

In most applications Cede) will be a prearranged mixture of appro
priately even or odd digits -- eego~ ots and l?so Suppose~ for example,
that register xl contains the day of the week in full (ending with ig
nores if necessary), and that x2 contains a positive number~ less than a
million 0 We wish to abbreviate the day to its first three letters so
that we may pack it and the nu.rnT:>er into xl togethero This requires just
one instruction and one other word~

00 E x2 01 xl 02

01 0 00 11 11 11

The effect is to replace all the letters of the day except the first
three by the di gi t s of the number 0

Packing, and the reverse process of unpacking~ also frequently in
volve:shifting characters to the right or left within registerso The N
instruction is restricted to be used vdth numbers only, and there is a
further instruction for shifting~

Name

Logical
Shift

Code

L

Function

Shift Cede) and C(fg) cyclically
c places; left if b = +, right if b = -

Note firstly that two registers are involved; the contents of both are
shifted & Secondly the shift is cyclic; characters shifted off the end
of either register appear at the opposite end of the other register.
The two registers form a closed loop thus:

d __ d_e_--, tg

J
Characters merely move round the loop and none are losto

If, in the last exarq;>le l) we wished to have the number (without
sign) in the left-hand 6 digits of xl, and the abbreviated day in the
right-hand 3, then we would need one instruction alone:

oot L ... 6 xl x2 01

This WOUld, however, upset C(x2)o

5-5

Exa~le of Unpacking

A positive sum of British money is represented in xl thus: number
of pounds (without sign) in digits 1-5, number of shillings in digits
6 and 7, number of pence in digits 8 and 9 0 Put these numbers into
registers x2, x3, and x4 respectivelYe

The simplest procedure is to shift C(xl) to the right, extracting
each number as it arrives in the correct digital position, thus:

00 'E xl 06 x4 01 extract pence

01 L -2 xl xO 02

02 E xl 06 x3 03 extract shillings

03 L -2 xl xO 04

04 E xl 07 x2 05 extract pounds

05 H 00 00 00 00

06 0 00 00 00 11

07 0 00 01 11 11

x2 + 00 00 00 00

x3 + 00 00 00 00

x4 + 00 00 00 00

Exercises

10 The results of British football matches are decided solely on the
number of goals scored and are always coded thus:

1 means the "home" team won.
2 means the "away" team won.
x means a draw o

Registers 50 through 99 contain the scores of 50 matches; digits 2
through 5 in each-register give the number of goals scored by the home
team, and digi ts 6 through 9 the number scored by the away team. Print
the 50 results. (21)

20 Too Foo's laundry has attracted only 23 customers, which is fortunate
for TAC because each customer 9 s name occupies two consecutive registers;
altogether registers 54 through 99 are used e Print a suitable word to
indicate whether the order is alphabeticalo (13)

5-6

3. Today t s date is c ammonly written in England as 17/8/54. Suppose
that this is packed into register xl, allowing 2 digits for each part,
and ending with a period, thus: 17/08/54. Write a program that 'Will
convert this into the form AUG171954 and will handle any date in the
20th century. (28)

4. The order of precedence of the guests at the Maharajah's Banquets
is dete~ined primarily by the numbers of wives possessed; where these
numbers are equal the guests are arranged in alphabetical order. Read
a tape carrying 357 names each followed by the associated number of
wives, and print out the name of the most distinguished guesto Each
name is followed by ignore characters to a total of 15, and numbers
consist of 3 decin:al digit s (it is considered unethical to possess more
than 999 wives.) (15)

5. Too Foo (see question 2) has rearranged his list of customers to
allow three registers per customer; the third holds the customer's
credit balance in cents. The list now occupies registers 31 through 99.
Read one name (18 characters) from the tape; if this is the name of a
customer print the name and his credit balance, otherwise print "no
record." (18)

8-1

8. INTRODUCTION TO SAC

TAC and SAC have been chosen to present two rather different con
ceptions of an electronic digital computer, and to include between them
most of the basic features of logical design and coding conventions
found in present-day computers.

SAC differs from TAC in the following important respects:

10 SAC has a single-address instruction code.

2. Whereas a TAC register holds any group of 9 symbols, which in a
special case may be a number or an instruction or neither, a SAC regiS
ter cannot hold anything other than a number or an instruction. Alpha
betical items can only be stored by coding them to appear as numbers.

3. SAC has a "B-box" which improves the efficiency of the machine
in operations involving counting and the modification of instructions.

4. The process which loads the program into SAC is considerably
more elaborate than that for TAC and permits a program to be written in
a more convenient form.

SAC Instruction Code

Since each instruction contains only one address it cannot describe
such a big operation as is defined by a TAC instruction. For example,
the operation

C (21) + C (22) 40 23

which is accomplished by one TAC instruction, involves reference to
three storage registers and therefore requires three SAC instructions in
succession. The first of these obtains 0(21) from the store, the second
adds C(22) to it, "and the third puts the sum in 23. This is all one
operation for TAC; in SAC the three steps are taken separately, each in
response to a different instruction.

Some part of SAC must retain C(2l) while waiting for C(22) to be
obtained, and must hold the result of the addition while waiting for
the third instruction to be obeyedo A very ~ecial register is pro
vided for" this purpose; it is called the accumulator.

The actual instructions required to tell SAC to perform the above
addition are:

ccf 21
add 22
cci 23

8-2

copy contents from register 21 into accumulator
add contents of register 22 tonumher in accumulator
copy contents of accumulator into register 23

We shall be introducing further SAC instructions from time to time;
meanwhile the following few will serve to begin with. The abbreviation
AC stands for the accumulator; n is any address.

Code ~ FUnction

cct n .£,opy .£.ontents from C(n)~AC

cei n .£,opy £.ontents ,into C(AC)~n

add n add C(AC) + C(n) ~AC

sub n subtract C(AC) - C(n)~AC

mby n E!ul ti p ly .!?l C(AC) • C(n)-tAC

dby n ~i vide .:El. C(AC) .:- C (n)-tAC (rounded off)

tyn 0 !De ,!!.umber Prin.t C(AC)

stp 0 stoR. st op the computer

The above SAC instructions have nothing corresponding to the fourth·
address in TAC. In general, when a SAC instrUcti on has been obeyed, the
machine automatically looks in the next consecutive register for its
next instruction. Only certain speCiaI types of' instructions allow this
sequence to be broken; we shall consider these shortly.

SAC Registers

SAC has 299 registers numbered ° through 298. Register ° always
contains the number zero; also C(290) II: 1, C(29l) =10, C(292) = 100,
0(293) = 1000, etc. up to 0(298) = 100,000,000 (in general, C{290 + p) =
lOP for p = 0 ••• 8). Every other register (1 through 289) is capable of
holding either an instruction (in which the address must be less than
299) or a signed number of up to 8 decimal digi ts in length. The accu
mulator may hold either an instruction or a signed number of up to 16
decimal digi ts in length. As in TAC, numbers are considered as integers,
with the decimal point at the extreme right; fractions can only be stored
by scaling.

It is assumed that the store of SAC is all of a high speed type;
there is no di vi si on into rapid-access and slow-access registers as in
TAC.

8-3

Exa.m;ple 9."t SAC Program

The program on page 2-7, if recoded for SAC t would appear as follows:

instructions comments numbers

lsi cct 7 z+A,C 11 +5

171 mby 1 5z~AC 41 +3

181 add 6 "! + 5z -+AC 51 :x:

191 add 6 2y + .5z-+AC 61 y

201 add 5 x + 2y + 5z~AC 71 z

2:tJ mby 1 5:x: + lOy + 25z ~ AC

221 cci 12 Gross -+12 121 Gross

231 dby 4 Gross/3 ""AC 131 Gross/3 = ;r

241 cci 13 Gross/3~13 141 2J

251 add 13 2J-+AC 151 Gross - 2J = A

261 cci 14 2J-).l4

271 ccf 12 Gross ~AC

2~ sub 14 Gross - 2J~AC

2~ cci 15 A's share ~l5

301 stp 0 stop

1

Transfer of Oontrol

It has been mentioned above that certain instructions allow the
nor.mal consecutive sequence of execution to be broken, so that after one
ot these instructi ons has been obeyed the next instruction to be obeyed
may not be in the next consecutive register. Such a break is called a
"transfer of control." Of these special instructiOns, one (the first in
the list below) is uneondi tional, i.e., it always causes a transfer of
control. The others are all condi tional, i.e. t the location of the next
instrLlction depends on some condition inside the machine.

Code ,-.
jmp n

~. jip n

jin n

jiz n

ji:x: n

l~ unconditionally

lump if ~ositive

lump £1' ,!:egati ve

lump it A,ero

lump if e~oess

8-4

Function

take next instruotion from register
n, and continue consecutively from
there.

ditto if O(AC»O, otherwise ignore.

ditto it C(AC)<O, otherwise ignore.

.. eli tto-li" C'(AC)';:: O',;,otherilT:Lse:.ignore

ditto.' iithe absolute' value or
C(AC) exc~~qs 134,217,727; other
wiseC!ignore·.·~

The ftjump if exoess" instruction has been provided to assist the pro
gramer in computations with numbers which might per.haps exceed the ca
paci ty 01' an ordinary storage register. Such' numbers may be formed'1n
the accumulator by multiplication or addition, up to a limit 01' 1016 ,
but cannot be copied into the store unless they are less than about 108•
The above instruotion helps one to design the program so that over
large numbers are detected in the accumulator betore an attempt is made
to copy them out. The cri tica~ lim! t. as will be seen trom the above
description, 1s not exactly 10 but is a little larger, due to the tact
that numbers are actually stored as 27 binary digits and sign.

Wi th these instructions, programs oontaining cycles and programs ot
the electricity bill type (page 3-ll) can be coded. It is not possible
to compare two numbers directly with one instruction, as in TAC, but
such a compari son can always be made by first subtracting one number
trom the other and then testing the ditterence.

To give a'simple example, the tiggle factory problem might be coded
as tol1ows. It turns out to be simplest, in SAC, to continue to sub~
tract': 7runtlr;·:t[a:;hUlJlb~~.1.9.f'."jigsl:~~AutS:a~f.Uaily·,becomesnegatj. ve'~ ~d

'tliento 'coFreCr- 'by,addiilg 77~ ,6nce·~atterWards.-,," .'. 0

1 Number 01' jiggle-nuts delivered

2 +77

10 ccf 1 put number delivered in AO

11 sub 2 subtract 77

12 jip 11)repeat if cycle

13 jiz II posi ti va or zero

14 add 2 correct

15 tyn 0 print

8-5

Some Further Instructions

The following instructions are also understood by SAC and are
occasionally useful:

Code -
cnf n

cmf' n

xch n

Name -
9,.opy Aegatively !rom

~opy 1!B-gni tude ,!.rom

e~a.nge

Function

-C(n)~AC

C(n) copied into AC with
positive sign, regardless of
sign of C(n) itself.

C(AO)-+n, C(n)-+AC

SAC also possesses a second division instruction, for divisions involv
ing whole numbers where a remainder is required as well as a quotient,
the latter not being rounded otf. - (This makes it quite unnecessary to
use a cycle tor the figgle factory.) The remainder is placed in a
special "remainder register," Ra. Associated with this are two other
instructions; all three are g~ven below.

~

dhr n

cri n

jir n

Function

!ivide &olding~ema1nder Divide C(AC) by O(n).
quotient-+AC
remainder-+RR

2..opy .r.emainder into

lump if ~emainder

C(RR)~n

Take next instruction from
register n if C(RR) is not
zero.

When SAC obeys a dhr instruction it gives a·remainder smaller than the
di vi Bor in magni tude and han ng the same si gn as the dividend. The
following relationship always holds:

quotient x di visor + remainder • dividend

The only way in which C (RR) can be changed is as the result. of a ~
instruction.

The B-Box

!he B-box is a device containing seven registers which are distinct
and separate from·the accumulator and remainder register and from the
store, and which ,;are called the counters or B-re~isters; they are de
noted by the letters a through g.Each counter contains two integers

8-6

called the index and the criterion respectively. Provision is made for
increasing the index by 1 and testing to see whether it has become equal
to the crt terion, The following si. ngle instruction combines these oper
ations:

Code -
jii n b lump J:! counting

is ,incomplete

Function

increase ib by 1, then take
next instruction from n if
ib<nb

Here ib and nb are the index and criterion respectively of counter b.
Anyone of the counters a through g may be used by substi tut ing the
~propriate letter for b.

It will be noticed that this instruction contains more than the
usual operation section plus one address; it also contains a letter
specifying whieh counter is involved. We shall see later that in fact

j

most of the SAC instructions my have such a leitter attached.

One d.mportant application of the B-bo:x: is "to the counting of the
repetitions of a cycle. Before we can use it in this way we need one
further instruction:

Code Function -
rst n b l:,e.!e! counter

Let us now apply this device to Henry's roses (p. 4-1).

1 +0 number mature

2 +:L. constant

10 ccf 2 put 1 in AD initially

11 rat 20 a .:.;/set"toc.aunt 20'times

12 xch 1 new mature == old total

13 add 1 new total',= old- sum' cycle

14 jii 12 a count.

15 tyn 0 print

. 16 stp 0 stop

8-7

Throughout this computation the total number of plants in each year is
held in the accumulator.

The B-box here acts as a useful auxiliary to the accumulator for
the simple side-operation of counting. However, its most essential
feature lies -in a direct connection between the B-box and the control
unit of the necb.ine. The design of the machine makes it possible for
instructions to be modified after being read from the store and before
being executed by the control unit. This modification consists of
adding the index of any counter to the address in the instruction.

To specify which counter index (if' any) shall be added, the letter
corresponding to that counter 1's simply added to the instruction.
Suppose for example that ib ;I; 6.

Then the instruction
ccf n b

will copy into the accumulator .a2l0(n), but O(n+6).

Note that the instruction as it stands in the store is not affe'cted
in any way by the counter. The addition occurs after the instruction
has been read from the store and as it is about to be executed.

If no ietter is written at the end of an instruction, no' such modi
fication will, occur. The following instructions are like ccf in that
a letter may be added to indicate that modification is required.

ccf, cnf, cmf; cci; add, sub, mby, dby, dhr; c~i; xCh; jmp, jip, jin,

jiz, ji:z:, jir.

As an example of the use of this facility, we shall code for SAC
problem 4.7 on page 4-5. This requires the subtraction of 75 from each
number in registers 20 through 87. We use a cycle, in which two of the
instructio,ns refer to the address of the register being dealt with, and
therefore must in effect be changed at each repetition. By using the
B-box we may leave these instructions fixed in the store, and yet still
have them. refer to a whole series of registers.

11 +75

10 rat 68 a set to oount 68 times
~

11 c~'f, 20 a subtract charge cycle:

12 sub 1 ,; from amount in i = a
13 cci 20 a register (20 + i~) 0 ••••• 67

14 jii 11 a count

15 stp 0 stop

8-8

Too foregoing descrip'tion ShOV1S the principal uses of the B-box.
There are four more in.structions rela ting directly to it, which are
occasionally useful.

Code -
inc n b

dec 11 b

jic .n b

eii 11 b

E:Xf."tI" ;:~j. 813 S - ---.-

Name. -
increase co~~ter -

decrease counter

Function

nb - n~nb

ib + l~ib'
jump to n if
neVI ib> nb or = nb

R.3c~)d3 tiE) fol1;.731 ,J.,::~: p:roblem~'J :ro1' SAC. Whf:::CO qtta.t:l:t.i ties IAF2T8 Given
Lo. X-registE;!"S of" TAG, adopt any ~1ui'table registers ill "the store of SAC
to hold these quanti t'ies~

4.3 4.6

9-1

90 SAC: EDITING, PACKING, SIMBOLIC ADDRESSES

Further Input and Output Instructions

The rin 0 instruction is the converse of the ~ instruction; it
reads one whole number from the input tape and places it in the acc~
ulator. The end of the number is denoted by a carriage return or tab.

In Chapter 8, the ~ instruction was described only in its simplest
form, with the address 00 There are many variations, distinguished by
inserting different address values; which can be used for printing num
bers in a variety of different forms. The address values are listed,
with their effects, in the SAC Summar.y.

In order to be able to accept and present data in alphabetical as
well as numerical form, SAC has special instructions for reading and
printing alphabetical characters. These are the ric 0 and ~ instruc
tions. The former reads a single character from the iftput tape, and the
latter prints a single character. The character may be any of those
available on the Flexowriter; however, since most of these characters
cannot be represented directly in SAC, they are coded as numbers inside
the machine. The numerical equivalents of the various characters are
given in the table headed "The Flexowriter Coda". The ric 0 instruction
places this number in the accumulator; the tyC instruction prints the
charact~r defined b.Y its own address. For example, if the symbol b Is
read from the input tape by the instruction ric 0, the number 62 will be
put in the accumulator; and the instruction tyC 62 will print this char
acter. Notice that there are two forms of each character, depending
on whether the printer is on upper or lower case; two special characters
(71 and 75) serve to change the case.

One of the principal uses ot tIC is to insert carriage return, tab,
space and punctuation symbols into the results produced by SAC.

Both tyC and ~ normally use the delayed p~inter; the information
is not printed during comput~tion but is stored on "1D8gnetic t~pe, which
Is j.ater played back and printed. The recording can be done without
slotdng down the machine appreciably, and the printing can be done whUe
the machine is engaged on another problemo However, there 1s also a
printer linked directly with the machine and this may be used if desired.
Adding 100 to the address of a tyC or ~ instruction will cause the
direct printer 'to be used_o

To summarize, the instructions for reading and printing data are:

Instruction Meaning Definition

ric 0

rin 0

read in character read the next char. via the PJ:1'R into
AC as a positive integer 77

read in numerically read the next complete integer via the
PETIt into AC

tyc m type character
tyc IOO+m

tyn m type numerical
tyn lOO+m

9-2

record on delayed printer (m), or 0
direct printer (lOO+m), the Flexo.
char. specified by the integer m.

record on delayed printer (m), or 0
direct printer (lOO+m), CeAC)" as
specified by m.

Modification of Instructions in SAC

Although the B=box removes the need for changing instructions in
many cases, there are still some cases in which it is des'irable to alter
an instruction in the machine during the execution of a program. This
may involve performing arithmetic on the address part, or changing the
operation part, or bothe

In order to be able to distinguish such enterprising and ingenious
feats of programming from mere mistakes, which tend to look the same,
SAC forbids direct arithmetical operations on whole instructions. Instead,
a way is provided of extracting and ~f replacing the address parts of
instructions~ which are numerical quantities, so that arithmetic may be
performed on them alone e (For this purpose any counter letter that may
be appended to an instruction is not considered part of the address.)

Name Function
~

caf n b E..opy ~ddress from copy address section of C(n) into AC

cai n b .,£,opy address lnto replace address section of C(n) by C(AC

caf and cai instructions may have counter letters appended to them in
the same manner as ccf~ etc o

While it is in the accumulator~ an address is regarded as a number
and may be operated on arithmetically like any other number.

Whole instructions may be moved from place to place via the accumu
lator without causing a post-mortem~ provided that they are not changed
on the wayo To set both the operation and address parts of an instruc
tion during computation 3 the operation part should be set first by copy
ing another instruction which has the same operation; the address can
then be corrected if necessary by means of ~.

Packing of Alphabetical Data

As mentioned at the beginning of Chapter 8, a SAC register cannot
hold any arbitrary group of symbols, but only a number or an instruction.
All alphabetical data must therefore be coded as numbers inside the
machine.

The !!£ and ~ instructions provide a means of conversion between
indi vidual characters and single numbers in the machine. To economize

9-3

in storage space, however, it is desirable to pack as many characters
as possible into one registero Now each character is represented b,y a
number of at most 2 decimal digits, whereas there are 8 decimal digits
available in each registero A simple way of packing is therefore to
use successive pairs of decimal digits in one register to hold 4 numbers
representing 4 different characters.

The packing process can be done b,y shifting decimally, i.e. b,y multi
plying by powers of 10; Gogo to read 4 characters and to pack them, left
to right, in register 1, the program would be:

10 ric 0 first character to AC

11 mb,y 292 shift first character 2 places left

12 cci 1 and copy into 1

13 ric 0 second character to AC

14 add 1 attach first character

15 mb,y292 shift both 2 places left

16 cci 1 and copy into 1

17 ric 0]
assemble first 3 characters

18 add 1

19 mby 292]
shift and copy into 1

20 cci 1

21
ric 0]

22 add 1 assemble all characters and copy into 1

23 cci 1

or better,

10 ric 0

11 rst 3 a

12 mby 292

13 cci 1
cycle 3 times

14 ric 0

15 add 1

16 31i II a

17 cci 1

9-4

Unpacking can be achieved by successive division (using dhr) b.Y 100;
the remainders are the numbers representing the original characters,
although they appear in the reverse order to that in which they were
packed on the previous pageo

It is worth inquiring what the effect would be if we used a number
other than 100 for the multiplications and divisions when packing and
unpackiDgo Clearly, unless we use some power of 10, the packed numbers
will not be recognizable as distinct groups of decimal digits in the
decimal form of the wholeo However, there is nothing magical about the
decimal notation, and we need not worr.y if the decimal number we get
looks qui te unlike any of the numbers we packed, provided that we can
still unpack them successfu1lyo

In fact, the process works with any number in place of 100, with
one important restrictiono The number used must be greater than the
highest number to be packedo For example, the highest Flexowriter code
number is 77, so that we may use 78 or any higher number in place of 100.
What we are doing, in fact, is simply converting a number from the seale
of 78 into the decimal scale, or into whatever scale we imagine SAC to
use 0 Just as in the scale of 10 no digit exceeds 9, so in the scale of
78 no digit may exceed 77 -= and this is true of the numbers in the
Flexowriter codeo

In practice there is a limit to the size of numbers that can be
accomodated in one register, and so the number resulting from the packing
process must not be too largeo This means that the number used as the
base for conversion must not be too large. Thus we can pack 4 Flexo
characters into one SAC register using the base 100, but we cannot do it
with base l50~ because that might lead to a number as great as 77 x
(150)3 which is a bigger number than a SAC register can hold.

Unfortunately we cannot get more than 4 Flexo characters into one
register 0 Even using the smallest possible base (78), the packing of
five characters might produce a number as great as 2887174367 which is
too big for SACo

In most machines there is a practical advantage in using a base
which is a simple power of the number base used in the arithmetic unit
of the machine; in a decimal machine, for instance, the base 100 would
be particularly convenient for packingo The reason is that multiplication
and division by such a number can be performed merely by shifting left
or right, which is a very simple and rapid operation. Most machines (e.g.
TAC) have special shift instructions that are quicker than the equivalent
multiplications and divisionso SAC has no special shift instructions,
but if a multiplication or division instruction refers to one of the
registers 290 through 298 (which contain the powers of 10) it takes a
time which depends on the power of 10· involved, but which is in any case
quicker than an ordinary multiplication (see SAC Summary). From this
point of view, therefore, SAC resembles a decimal machineo

Syffibolic Addresses

At the beginning of Chapter 8 it was mentioned that SAC has facilities
for automatically processing programs after they have been read from the
input tape, and before they are executed, so that programs need not be
written in precisely the form in which the machine will finally use them.

The most important feature ot this process is the conversion ot
symbolic addresseso These are groups of s.ymbols that may be written, if
desired, in an instruction in place of a numerical addresso When the
program is processed by the machine before the calculation begins, all
s.ymbolic addresses are replaced Qy numerical addresses so that the ex
ecution of the program may proceed exactly as already describedo A
symbolic address merely represents, temporarily, some numerical address.

A symbolic address always consists of a lower case letter followed
by a number less than 1,OOOg eogo, al9 b40g p792, etco Its use lies
in instructions which refer to any word that itself appears as part of
the written programo Any word can be labelled with a convenient symbolic
address merely by writing that address alongside it (for details see
below) 0 Instructions that contain this Same s.y.mbolic address will then
be automatically adjusted during loading, so that by the time the cal
culation begins they will all refer to the register containing the word.

The same effect can, of course!!) always be obtained in the old way
simply by finding out which register the word will eventually oceup,y in
the store, and by writing its actual numerical address in all instruc
tions referring to the worda Using a symbolic address merely avoids
having to predict what the numerical address viII beo The advantage of
this becomes more apparent when one is faced with the probability of
having to rearrange large parts of the program, either to correct a mis
take or to make some revision. Numerical addresses must be changed
wholesale, but symbolic addresses are not affected.

A symbolic address9 used to label a word, is sometimes said to be
assi2Iled to the word. The symbolic is written on the left of the word
and separated by a comma~ thus~

b3 9 750

If the instruction

cct b3

appears somewhere in the same program, then it will be adjusted during
loading so that, when executed~ it will cause the former word (ioeo the
number 750) to be placed in the accumulatoro

Example ot Use of Symbolic Addresses

If the coding example on page 8=6 were written using symbolic
addresses!!) it might appear as follows:

9-6

11 aI, +0

a2, +1

10
1

bl, ccf a2

rst 20 a

b2, xch 81

add al

jii b2 a

tyn 0

stp 0

Notice that only two numerical addresses have been written on the
left, to indicate which registers are to contain the words writteno As
symbolic addresses are used, there is no need to fill in all the numerical
addresses on the 1eft9 indeed, the idea of symbolic addresses is to make
this unnecessary 0 If 9 however 9 we want the machine to put the various
words in the same places as were used on po 8-6, it must be told that
there is to be a gap between registers 2 and 100 The number 10 on the
third line tells SAC that the instruction ccf a2 is to be placed in reg
ister 100 In the absence of such an indication SAC places each word in
the register following that in which the previous word on the program
sheet was placedo Thusg there is no need to indicate where all the other
instructions are to g09 they will be placed consecutivelyo

In point of fact, since we are using symbolic addresses we do not
really care very much where the instructions go 0 If the number 10 were
omitted 9 the instructions would go into registers 3 through 9 but they
would still worko We can moreover leave out the number 1 preceding the
first word, for the loading process will automically put this word into
register 1 unless we specify otherwiseo

The s,ymbolic address hI labelling the first instruction is not, in
fact, used in any other instruction in the programo The reason for
attaching this label is to enable SAC to be told (without referring to
an absolute address) where to begin execution of the programo This Is
indicated on the program sheet by writing, after the program 9

b~ start

These are the principal uses of symbolic addresses 0 A further use
(the "assignment" of a word g for correction purposes, to a register to
replace a word appearing earlier in the program) and some further details
of tape preparation will be found in the Summar,y of Specifications for
SAC 0

11-1

11. SAC - INPUT TAPE PREPARATION AND POST MORTEMS

Input

The process of preparing coded programs for actual input to the
computer is a simple and straightforward one. However, there are a few
conventions that must be observed. These conventions are described
below.

Instructions, integers, and control information must be typed by a
Flexowriter tape perforating machine. In addition to performing the
function of an electrt c typevvri tar, this machine prod ucas a 7/8" punched
paper tape. For each key depressed on the Flexowriter, a unique combi
nation of holes or no holes is punched in each of 7 positions across',,' °

this tape.

Ceded programs are actually typed almost exactly in the form in
which they are written. The basic rules are

1. Beginning of tape~ the first line of the page must begin with
the lower case letters I.'2:s followed by the summer session identification
number, 198, a dash follOwed by theprogrammer;"s,o'nuinber andanbther:,"dasl?;
followed by the number assigned to the particular tape by the programmer.
This inforn:ation will be used by the computer to maintain a log of COM
puter operation, Following this information, but on the same line, the
programmer may put any other convenient identifying informat ion such as
narae (s), date, anclpurpose of 'the program. All identifying information
must be on one line fol1mved bya carriage return. For example:

f2s 198-5-2 Customer billing Billetdoux - 8/21/54

Following this line, the program is typed with the first instruction
gOing into register 1 unless an absolute address assignment comes first.

2. Absolute addresses; typed as It 2, 3 decimal digits in the
range 0-298.

3 0 Absolute address assignments: typed as an absolute address
follOJled by a vertical bar.. However, since register 0 permanently con
ta~ns the numb~r 0 and registers 290-298 permanently contain the numbers
10 = 1, to 10 respectively, any attempt to aSSign the absolute addresses
will result in a conversion post mortem (see Locating Mistakes in Pro
grams). Any number of tabs or carriage returns can intervene between an
absolute address aSSignment and the instruction or number to which it
refers e Instructions and numbers following an absolute address assign
ment are assigned to addresses in sequence beginning with the absolute
address assigned.

11-2

4. Floating addresses: typed as any lower case letter except 0 or 1
followed by 1, 2, or 3 decimal digits with the restriction that the first
digit must be non-zero.

50 Floating address assignments: typed as a floating address
followed by a commao The floating address preceding the comma will be
assigned a value equal to the address of the next register in normal
sequence unless the floating address was preceded by an absolute address
assignment. In this case, the floating address will be assigned the
value of the absolute address indicated. Any number of tabs or carriag~
returns may intervene between a floating address assignment and the con
tents of the register to which the floating address is assigned.

6. Instructions: typed as three lower case letters followed by an
absolute or floating address, and terminated with a tab or carriage re
turn.

7. Numbers: typed as a plus or minus sign follmled by I to 9 deci
mal digits (the plus sign may be omitted if desired). The number should
contain E£. commas .2!. decima.l points and shOUld be tar-mina ted by a tab or
carriage return.

8 0 End of tape: the end of a program is marked by the word "start!.'.
The word "start" is preceded by the address at which the programmer wants
the program to start, followed by a vertical bar, e.g.,

1271 start

One precaution must be observed. If the same piece of tape is to con
tain two or more programs or one program with two or more "start" indi
cations, there must be no character (including tab, space and carriage
return) between the final "t" of a "start" and the "f" of the "f2S"
whi ch must fo llow •

9. Typographical errors: errors which are caught soon enough may be
deleted on tape by repositioning the tape and punching all seven holes
of the erroneous character by means of the "code delete" lever, yielding
the character known as "nullify", which is completely ignored by the
computer during input. If an error is not caught soon enough, the tape
must ordinarily be reduplicated up to the error, the correction made,
the erroneous character skipped, and the rest of the tape duplicated.
Simple changes can sometimes be made by manual nullification of charac
ters in the middle of the tape and/or by adding words at the end of the
tape, preceded by absolute address aSSignments which cause the new words
to be read in over the incorrect words, replacing them. The incorrect
word, however, must be a legitimate one which the computer can interpret;
otherwise the computer will stop on the illegal word.

10. Ignored and synonomous characters: the space and back space are
completely ignored by the computer, as is the nullify. Spaces may be
used for typographical reasons wherever desired, but neither back spaces
or spaces can be used to make co rrections or to take the place of tabso
Carriage returns and tabs are interpreted identically, and have the

11-3

logical funttion of terminating a word. Extra carriage returns or tabs
may be used at will between words or addresses, but not within them.
Comma, period, plUS, minus, equals, vertical bar, letters and digits all
have certain meanings and ~ust not be used indiscriminately. The digit
zero and the letter 0 are always completely·· interchangeable as are the
digit one and the letter 1. Upper case should never be used, except in
the title ·line. Both upper and lower case shift keys punch characters
on tape which are not ignored, but as long as all of the typed characters
come out in lower case it does not matter if any shift characters are put
on the tape accidentally •. An important rule to which the computer adheres
is~ if, without manual moving of the carriage, the tape prints an accept
able copy, the tape is probably valid t providing spaces (or back spaces)
have not been used to give the effect of a tab (or of the absence of one).

11. Layout: rules 1 through 8, above, specify the structure of in
dividual wordS, address assignments, and the beginning and end of the
tape. Rule 10, making carriage returns and tabs synonymous and permitting
more than one of them wherever there is one, permits great latitude in
·page layout. Ordinarily, several words are typed in a line, separated
from one another by a single tab, the last word on a line being followed
by a carriage return in ,place of a tab. The tab stops are set perma
nently and should not be changedQ ~hen using absolute addresses, it is
good practice to put an address at the beginning of each new line to
help during typing and proofreading (since it helps prevent .losing one's
place)" and to put a blank line betv]een non-consecutive registerso

(The following example computes two totals of 5 numbers each and
verifies the result by checking the sum of the totals against a cumu
lative total of all ten numbers (crossfooting). The program is per
fectly general but the format of the prlnted page could be altered by
changing the print program at a3-2 e)

f2s 198-5 2 Eisenhower - Crossfoot1ng 8/23/54

1~ rst2a rst10c a1"rst5b a2,ecf60a
add50e 00160a eef62 add50e 00162
inc1e J11a2b e0160a add63 co163
jl1a1a sub62 jlza4 stpO a4,rst2a
tye51 a3,eer60a tyn19 tye51 jl1a3a
stpO

5~ 8125331 7631900 10093726 ~3110221 9872865
5 15694230 8513960 7010123 001523 25834821
6 0 0 0 0

111 start

11-4

~ocating Mistakes in Programs

When a computer program is performed several alternatives may re
suIte The computer may

10 produce correct results and stop as planned;

20 produce results of unknown significanc-e and stop as planned;

3. produce incorrect results or none at all and stop as planned;

40 produce incorrect results or: none at all and not stop;

50 produce some kind of results or none at all D and stop because
of' a violation of the compu.ter's rules 'after recording a post-mortem.

In cases 2 and 3, the burden of checking usually lies on the pro
grammer D but in cases 4 and 5 the computer can aid in the trouble
shooting process by printing out useful information concerning the state
of the contents of various registers at the time the machine stopped,
and a little of the "history" of the way the program operated before the
stop 0 This recorded information and the process of recording it 1s
called a' ."post-mortemo" In case 4, the computer must be stopped by the
operator, who then obtains a post-mortem, but in caSe 5 the post-mortem
is performed automaticallyo In eases 2 and 3 a post-mortem can be ob
tained by request of the programmero

The results of the computation, whether correct or incorrect, are
often very useful in mistake locationo This is especially true in cases
2 and 3 when a hand computed check may be an effective way of detecting
an erroro In any event the results of the program and speed wi th which
they were obtained should be carefully considered.

Computation Post-mortem

A typical SAC post-mortem is given below and the meaning and sig
nificance of each type of information discussed o

(see next page)

198-5-2 Eisenhower - Crossfoot1ng 8/23/54

Computer ran for 2 m1no 11.57 see.

Tape 1 is at block 41

'rap~ 2 i$ at bloek 52

'rape 3 1s at block 99

Tape 4 is at block 35

STOPPED AT a2+1

A~ 149888700

a2+11 oe1a3+30

R~ 45

a3+3q 124053879

11-5

COUNTERS at 1,,2 bf 4,,5 ef 9.,19 df 0,,0 eI 0.,0 tf 0,,0 gJ 0".0

START. 0 a2+6 (a2 •• a2+6)3 a2 •• a2+10

a1 •• a2+6 (a2 •• a2+6):3 a2 •• a2+2 stop

a3+2~ 88834043 124053879 88834043 124053879

The post-mortem information in' the example can be interpreted as
follows:

*Line 1: The title line. reprinted for identification. ,\

*Line 2: The computation time to the nearest hundredth of a second
from the time the program started to the time it stopped. This time
will be the time required for the hypothetical computer SAC to perform
the program and may not agree VI ith the actual elapsed time on Whirlwind.

"*1.i11e8 land 2 'will be automatically recorded before any computer stop,
~;'\/()n if no post-mortem is to be performed o

Lines 3, 4, 5, 6: If any tape unit has been used, the block at
which each unit is positioned will be recorded, with the number of the
last unit used typed in red.

Line 7: The computer refused to perform the instruction at 82+1
which was, according to the post-mortem, cci a3+30 where a3+30 contained
the number 1240538790

Line 8: The contents of the accumulator and remainder register at
the time the computer stopped were 149888700 and 45 respectively. If
dhr had not been used, the contents of the remainder register would not
haVe appeared in the post-mortem.

Line 9: The index and the criterion associated with each counter
are printed on this line, with the index printed before the comma and
the criterion printed atter the comma.

Lines 10, 11: This "jump table" illustrates the last ten distinct
sequences of instructions performed before the computer stopped. In
this example the computer had not gone through ten distinct sequences"of
instructions, so the "history" of the program from the start is given.
In this example the" computer performed the sequence of instructions from
the "start" to a2+6. At that register a jump to a2 occurred, starting
a new sequence at a2. The jump at a2+6 occurred 3 more times causing
the sequence of instructions from a2 to a2+6 to be repeated 3 times.
Thieis indicated on the post-mortem by enclOSing the sequence a2 •• a2+6
in parentheses and using the exponent 3. Note that the jump in a2+6 was
performed 4 times with the result that the instructions a2 ••• a2+6 were
performed 5 times. After proceeding to a2+l0 the cycle was apparently
repeated until the computer stopped on the fifth repetition of the in
struction in a2+2.

Line 12: The final contents of every register whose contents have
been altered in the course of the program is printed here.

In this example the trouble is locate~ by observing that the con
tents of the accumulator are larger than 2 7 • 134217728 which is the
largest integer that can be placed in a register. The machine therefore
recognized that the cci instruction was attempting the impossible and
stopped.

The above post-mortem might be the result of the program on page
ll-3~ except for the fact that lines 3, 4, 5, and 6 and" RR 45 would not
have been present since no magnetic tape instruction or dhr is present
in that program. However, the numbers being added by that program would
result in the error indicated above.

In general, to locate a mistake which the printed or plotted re
sults do not make obvious, one examines the post-mortem to deter.m1ne
where and thence why, symptomatically, the computer balked. Since the
possible sources of P-M for each instruction are specified in the code,
and since the instruction on which the P-K occurred is clearly indicated
on the P-M along with the numerical quantities involved, this is never

11-7

difficult 0 If the source of the trouble is not then obvious, one tries
to establish how the situation arose, by tracing the path of the program
back from the "stop" by means of the "jump table", and by examining the
contents of critical storage registers.

When no obvious causes are noted, a wise procedure is to test,
carefully, each and every piece of available infor~t1on for consistency,
to make sure that it agrees wi th what you expected of the program. This
involves mentally confirming Dhe results printed or plotted, the exact
value or at least the order of magnitude of the contents of every regis
t·er listed in the P-M, and the validity of every jump in the jump table.
If everything jibes and still no explanation of the source of the mis
take can be found, the possibility of a computer malf'lmctlon should be
considered and, in some cases, the program should be re-run to make
certain that exactly the same symptoms are obtained. If so, and if no
able counsel can be found, relax; then try the above procedure over
again 0

Conversion Post-mortems

Some programming. errors can be detected before computation begins;
for example, an integer with magnitude larger than 227, an instruction
with address section larger than 298 or an illegal combination of letters
as an operation code. For errors 01' this type the computer will print
a description of the error before the program is run. For example, the
computer may print

Integer magnitude too large at al-5

Improper instruction used at b6-3

Undefined floating address used at h7

Counter letter missing at cl06-5

Correction of Mistakes

After a tape has been prepared, corrections can always be made by
duplicating the tape up to the mistake, typing the correction, advanc
ing the tape reader beyond the mistake and finishing the duplication.
Sometimes the correction can more readily be made by adding to thA end
of the ta eo If the word in register 23 is ccf23l and should be" 'cnf123,
adding 23 cnf123 to the end of the tape (before the "start") will correct
the mista If register 23 contains eni 123 (a non-existent operation),
it must be corrected where it appears as it will otherwise be treated
during input as an improper operation code regardless of what is put
into register 23 latere Frequently the mistake can be judiciously nulli
fied (by punching holes manually in the tape) without disturbing the
sequence, but completely nullifying one word will ordinarily result in

the following word going into the wrong register. In most cases it will
be possible to nullify everything but a decimal digit or two (and the
tab or carriage return needed to terminate it), which will convert with
out trouble to some positive integer which can be replaced by a correc
tion tacked on the end of the tape. For example, if 23 contains cni123
and should contain cnfl23, the c, n, and i [an be nullified, leaving
the integer ~ in register 23,-and then 23 cnf123 can be tacked on to
the end of the tape, correcting the mistake.

Corrections of this type can also be made using floating address
notation. For example, in the sequence

al, add :x:2
cci x3
cni b7

the cni b7 can be corrected by nullifying the ~, ~, and ! as described
above, and placing

at the end of the program.

If several registers must be inserted in a program, the use of
floating addresses makes it feasible to duplicate the program tape-up
to the point of insertion, type the registers to be inserted, and con
tinue duplicating the tapeo If fixed addresses have been used, and it
is desirable to avoid renumbering all the instructions atter the in
sertion, the program must be ftpatched.~ For example, if the sequence

add 23
mby 24

must be inserted between dby 32 and cci 33 in the segment

loolccf 31
dby 32
cci 33,

then either the dby 32 or cci 33 can be replaced by a jump instruction
which jumps to a hitherto unused part of storage where the necessary
insertion can pe performed followed by a jump back to the original pro
gram 0 Assuming that the registers 200 through 203 have not been used
by the original program9 the insertion mentioned above can be accom."-; .'.
plished by placing the sequence

1011 jmp 200

200ldby 32
add 23
mby 24
jmp 102

at the end (but before the start) of the original. It is good. practice

11-9

when typing the original tape to leave blank tape between the last pro
gram register and the start indication, to facilitate corrections.

Summary

The process of preparing a coded program for any digital computer
consists of planning, then coding. The planning is usually difficult
but unaVOidable, regardless of what kind of a computer is to be used.
The coding is, in principle, trivial. In practice, the details of the
conventions and the many possible sources of misunderstandings and care
less mistakes make the process a rather lengthy one. The amount of
learning required can be reduced by use of Simple, mnemonic conventions
and by making the computer do as much of the clerical work as possible.
SAC incorporates many mnemonic features and simplifications. It also
incorporates powerful means to help locate mistakes which do occur.

SAC is reasonably typical of dip:j.tal computers generally, but in
corporates many features (some of which have not been described in these
notes) which make it one of the easiest digital computers for which to
do the detailed, trivial, burdensome, but frequently fascinating job of
coding o

12-1

120 Nm1BER SYSTEMS

It is, perhaps, not always generally realised how far we depend
upon convention to interpret the things we see written down. Suppose
I write down the symbols 19540 You will probably conclude, unless
something to the contrary is said, that I am writing down the year
of Our Lord (according to the Gregorian Calendar). If I put a comma
after the one - 1,1954 - you might well be right in thinking that
I am about to refer to one thousand nine hundred and fifty four
(= 1 x 1000 + 9 x 100"+ 5 x 10 + 4) jiggle nuts. A variety of pos
sibilities might occur to you - for instance, nineteen point five
four (= 1 x 10 + 9 + 5 x 1/10 + 4 x 1/100), $19054, 1954 hours {using
a 24 hour clock, DoSoT., EoSoTo} - the choice would depend on the
context 0 If I write 10954, however, it is likely that the only
suitable convention that will occur to you is the so-called decimal
not~tion, and you will suppose that I mean 1 x 10 + 9 x 1/10 + 5
x 1/100 + 4 x 1/1000, where by 1/10 I mean 1 T 10, and by i, +, and
x I mean that the set of symbols are combined according to a certain
set of rules to form a new set of symbolso (By the rather obscure
wording of the last sentence you will see th~t we are near the edge
of qUicksand and in fact readily become bogged in defining our sym
bolism, but I shall assume that the normal meanings of the symbols
such as ±, x, t and so on are known to you).

In the few examples above I have tried to show that the meaning'·
you attach to a set of symbols is largely dependent upon the con ...
ventions that are commonly adopted. Now it is obvious that the ones
that ~ been adopted are not by any means the only ones that might
be adopted - it is merely a matter of convenience to use the particular
ones chosen. This is an important point to realise, since what is
convenient as a convention for you and I is not necessarily so for a
piece of electronic apparatus, as we shall see, and there is no good
reason why we should not adopt different conventions for use inside
such an apparatuso The only difficulty introduced by this is th,at a
conversion must take place at some stage from our conventions:t6 those
of the machine and vice-versa. This, however, can often be carried
out by the machine itself, thus ~ affecting our reading of the
results and feeding in of data, which is done in a familiar conventiono

Because the most usual convention about numbers is the decimal
one, there is a tendency to think of all numbers in this way, but
that is not in fact how we use themo For instance, let us write down
the time - about 0910, say. This is really two separate numbers 09

. and 10 each expressed in decimal notation and written together for
convenience 0 Now increase the time -by 59 minutes. We do !l21 write
0969, which would be a simple, logical thing to do if we were really
using a decimal convention, but we SQ write 1009, since there are
exactly 60 minutes in 1 houro It would, in fact, be more logical not
to write each number in decimal formp but to invent additional sym
bols to correspond to la, 11, l2~ 000 , 59 minutes. Let us suppose
104 At; ll~ Boo I) 35~ Z, 36~a, 000 , 59 -4X; we now write the

12-2

time 1009 8s,19, 'and 09.36 as 9a 0 Of course the first symbol could
only go up to C,or, 'on" the 24 hour system, toN 0 This is just the
sort of system ,we use when we define the unit of time called a month,
for here we use a combination of 1etters in place of symbols to specify
the numbers I, 2, • ~'~ , 12, i.eo January, February, .0. , DecemberCl
Whatever the representation of numbers employed commonly, we can, of
course, always fallback on the decimal notation, but this is not the
logical notation for a system if more than 10 symbols would arise
naturally in counting. The number of symbols arising naturally in
designating time is strictly 60 for seconds and minutes, and 24 for
hours; these numbers are called the "bases" of the system, and we
speak of counting "to the base 60"0 To the base 60 the number 95 =
9 x 60 + 5 = 545 in deoimal notation. We employ a great many diff
erent bases in practice, as a few examples will readily show: -
(1) measures of distance: 12 inches = 1 fte (base 12), .3 ft. = 1 ydo
(3), 220 ydso ='1 furlong (220), 8 furlongs = 1 mile (8); (ii)
angular measure: 60 seconds (of arc) =1 minute, 60 minutes = 1 degree,
90 degrees = 1 right angle; and,(iii) fluid measure: 2 pints = 1 quart,
4 quarts = 1 gallon~ It is easy to think up other examples ~6r your-
selves. '

We have already' seen that the decimal system for numbers employs
all the symbols Oto 9 and systems with larger bases can employ more
symbols 0 [:1"What happens if a base less than 10 is used? Obviously we
shall need less, ,rather than more symbols and it is convenient to
employ the appropriate decimal symbolsCl Thus for base 4 we might use
0, 1, 2 and .3 only 0 ',,5, 6, 7 and 8 only would be permissible but less
easy to understand, and so would probably not be used. The simplest
possible base is 2, whiCh uses the symbols 0 orl only; this offers
a methodo! r~c.o:rdi~ ,~,choice between~w?possi1?ilities in,'eacn digit
posi tiqn., ; ~:~ilis"n;pt~tion, thenumbe~ '+.l,.ofc,ourse, is no longer
1 x 10 + ~,.bu;t':1s,',r:x ':2,'.' l::~ .3 (decimal.notatio~o We may readily
set up conversion from binary to decimal if we wish"tby the rule that,
ifabc'~~:&is a binary number of (t + 1) digits, 'then the de<f!imal equl.,·v
alent is found by a x 2t + b x 2t -1 + 000 + u. ConverselY we may
convert from decimal by writing the number as the sum of powers of
two and writing coefficients down as required: thus 25 = 16 + 8 + 1
= 2"" + 23 • 1 ~ 11001 in binaryo

~,~
coeff. 2"1,23 2"'2

Using the same form of positional notation as in decimal, but with
the base 2 substituted, we may express numbers which are not integers,
e.go l9050~lOOllol, since 005 = 2-1 (or 1/2) o Engineeringwise it'
is more convenlentas a rule to employ'binary notation within the
machine. This enables ,one to use such physical properties as an
electric current being switched on or orf,soft iron being magnetized,
or not, or electronicswitehes being set in one of two positions to
represent numbers rather than relying for them on a current having
one of several possible values within fairly narrow to~erance limits.,
In this way it is possible to ensure reasonably high reliability of
operation 0

12--3

Arithmetic with binary numbers goes muc.h like that with decimal
numbers~ but tends to look a little peculiar when you arenUt used to
ito Let us consider a sum in decimal = 7 x 8 + 15 x 3 = 56 + 45 = 1010
In binary this would be written as 111 x 1000 0{I- 1111 x 11 !ii: 111000 +
101101 = 11001010 We note that 1 ? 1 ~ lO~ and 1 x 1 = l~ 1 x 0 = 0 x
1 = 00 As in decimal notB.tion~ if t1.fO numbers of a and b digits
respectively are multiplied tcgether the result contains a + b = 1
digits altogether 0 An important difference is that adding a ; zero
to the right of an integer" which multiplies a decimal number by 10,
has the effect of multiplying a binary ntunber by 20 Similarly moving
the binary point multiplies or divides a number by 2~ thus 1101 0 11 =
1/2 x 1101101 ;;: 1/4 x 110111 :;:: 2 x 1100111 ;;: 4 x 1100111 !.: 8 x 10101110

Most machines are so constructed that only a fixed number of
digits can be dea~t with arithmetically at one time" these having
a correspondence, usual1y~ with the number of digits contained in a
single unit or location in the storeo All machines are such that only
a finite number of digits can be accommodated altogethero As a con
sequence of the first restriction certain difficulties are bound to
arise in dealing with numbers of very different.sizeso For instance,
if our machine is designed to deal with four=digit numbers only (in
decimal)~ then we cannot readily add 1954 to 00003 and retain full
accuracy .."d thout some special a.rrang\~ments 0 Asa consequence of the
second restriction we cannot store certain numbers·at all = the
number denoted by the symbol IT (= 3014159 etco) for instancoo
However$) for most practical purposes it .is sufficient to work to 10
or 11 significant figures9 and this is normally provided againsto
It is~ of course~ necessar,y to have at least one register in the
machine capable of storing 2k = 1 digits (where the numbers stored
are of k digits) in order to accommodate the result of mul.tiplying
two numbers~ unless these can always be accepted rounded off in the least
significant placeo Since the numbers stored are of fixed length as
a rule we must introduce a scaling operation to accommodate two
numbers such as 1954 and 000030 For addition purposes9 so long as
the two~umbers to be added are adjusted so that they are correct
relative one to another~ the result will be correct~ irrespective of
the supposed position of the decimal pointo Thus if we can only
store 19540000 and 3 the result of adding these 9 195400039 can be
interpreted as 195400003 if we imagine that we did store 195~oOOOO and
000030 The same number is held in the machine whether we call it
19540000 or 1954000000 However 9 the position of the point is vital
in multiplication or divisiono Consider 3 x 3 ~ 90 In·a 4=digit
machine holding only integers~ the result will appear as 0000009 in
the register~ whereas if we interpret the original numbers as 00003
each~ the result should be 0000000090 We can overcome many of the
difficulties of this nature either by scaling the numbers adequately
(ioeo multiplying by appropriate factors before storing or before
multiplication) or by some machine or programming device involving
special representation of the numberso We often use a device of this
kind ourselves when writing~ for instance~ fractionso This is con=
venient for representing~ for instance w 1/39 which has no exact value
in decimal notationo This is an example of the use of two integers
to define a single. decimal nurnber'o Another form of representation

is to write 1954 = 001954 x l04~ and 00003 = 03 x 10-3~ and record
in each case two ulllllberso These are 001954 and 4 for the first and
03 and -3 for the secondo The rule is to write the first number as
between =1 and 1 (excluding, the letter):together with the power of

12-4

10 required to give its correct scale (10 is here called the "radix"
of the representation)o A similar convention can be adopted for any
radix~ eogo for radix 2 we write the first number as between 1/2 and
1 and the second as an appropriate power of 2; for instance, 01954
= 07816 x 2-~ and we write (078l6, -2) as the representationo This
is convenient for preserving the maximum accuracy in a calculation,
but is apt to be slow during addition of numbersp since the numbers
have to be adjusted in the arithmetic unit before adding them and re
adjusted afterwards.. This type of representation is usually called
"floating point" representation, and is often employed in machines
for preserving accuracy and avoiding carrying out scaling explicitly
in programmingo

Finally we come to the important subject of sign representation ..
The convention commonly used is to write the sign followed by the
modulus (numerical value) of the number; thus +98~ =504 and so on ..
This convention is used on some machines but necessitates the sign
being treated as a different entity from any of the digits of a
number.. It is therefore more convenient to use a system of comple
ments to represent negative numberso This involves representing
negative numbers by their complement with respeot to some number, say
10 for decimal numbers p so that =00005 is written as 99995p -001 as
98000 - clearly ~l is not permittedo In binar.y it is usual to use
complements with respect to 2~ so that =1/2"'=' =001 ~lolOOOOOO for
an 8 digit machineo An alternative is the so-called vvl vsvv comple
ment when we write ""'1/2~-Ool~loOllllll~ ioeo all zeros and ones
are replaced by their oppositeo All of these methods of complementing
are employed in machines~ arid the decimal equivalent of "lVstt comple
ment (called "(~J:USfV) complement) is used in IoB,Mo punched card
equipment 0

In conclusion, I would like to point out that it is not necessary
for the programmer to be fully acquainted with the details of binary"
arithmetic in order to operate a binary computero On well-designed
binary machines~here is no need to think of numbers as binary at all,
except possibly in preparing the standard input and output routineso
Once these are done the only indication that binary is being used is
usually that an order multiplying and dividing readily by 2 both
exists and is rapid2

14 - 1

140 ORGANIZING THE ATTACK ON A PROBLEM

It is difficult to draw hard and fast lines between the stages
of carrying out a computation on an electronic machine, . since they
are necessarily closely relatedo A rough division was shown on one
of the slides shown in the intDoductory lecture by Professor Adams,
and it seems reasonable to distinguish five main stages: (1) prep
aration of the problemS) (2) cOding~ (3)'preparation of the physical
input medium (eogo cards, tape, etco),including verification, (4)
operating the computer, and (5) analysis and final presentation of!:
the resultsS) including any checking not carried out during the comp~
utationo In this chapter I am concerned primarily with stage (1)
(preparation of the problem)p but it is nec~ssary to look at the
whole picture of operation in order to understand better the necessity
for· certain preparations and the effects which may flow from failure
to prepare the problem correctly.

Whilst it is possible to plan in a general way without considering
the particular computer being used, this:';indsp?ndence cannot be car
ried too farp and p in the present day machines, full efficiency' can
only be achieved by catering to the peculiarities of the computer

"usedo For the purposes of this discussion, I shall not attempt to
review all the possible peculiarities, but will try to point out what
sort of peculiarities affect planning and in wha~ wayo The most
important effects are due to the sizes of the various stores of the
machine and the access time to information contained in them, and the
full significance of this factor will'"'not appear, as a rule, until
coding is attempted 0 For this reason and because time of operation
as a whole may be important and can seldom "be assessed before the
coding stage, coding and programming are difficult to separate out 0

Indeed, an eminent programmer has remarked that programming consists
of writing down the operation symbols and coding putting in the
addresses~ However, it is quite possible to program without carrying
the coding into such detail p and to have the coding earried out by
someone else ..., with a probabl~ consequent loss of efficiency in machine
operation = and this is desirable if the overall time of carrying out
the problem is thereby shortenedo Such a policy would obviously be
justified for problems which could be solved in a few minutes, or
even a few hours of machine time, since the preparation time would
largely out weigh.the time of operation in calculating how long it
would take to solve the problem 0 Equally obviously there areyproblems,
particularly those of a day-by-day nature - inventory control, wages
and the like = where machine operation must be as efficient as possibleo
The saving of 10 minutes per day may lead to a yearly saving of some
60 hours, perhaps, or $18,000 using an IoBoMo 701, leaving quite a
margin over the consultant's fee for the efficient programmer employed,
whose time might only need to be engaged for a week or SOe

Let us assume that we are to separate coding from programming
for the present and that we are conSidering taking over some part of
the running of a commercial firm on a computero Firstly? ~ the,:;problem
for the computer must be statedo This must be done with the utmost
care$) and is probably the most difficult part of the process in

14 - 2

practical caseso I might here quote Dro Bowden from "Faster Than
Thought" g for he puts the commercial aspect of this process succinct,lyo

"ooooA typical commercial computation is
probably handled by several hundred clerkso
Each individual operation is penfectly
straightforward and there is no mystery
about the underlying p'rinciples, but because
of the complexity and the ramifications of
the work it may well be that no single in-
dividual understands the office procedure
in detail, so that the would-be programmer
may have to spend months in finding out
what is in fact doneoooo"

It must be emphasised that what is necessary is not really to find
out what is at present done, but to find out all the possible exceptions
to any general rules which are being''''applied and to specify what
decisions are to be made in these caseso From the point to view of
a programmerpthe person who presents the pro~lem, if he is not himself
the programmer~ must present only what data ~s available (all of it)
and what results he requires, together with specification of what is
to be done when any special situations ariseo Do ~ tr,y to tell the
programmer how to get the results, or attempt to give him a digest
of the data and facts availableo This will usually detract from the
efficiency of the program9 unless you are capable of doing the pro
gramming yourselfo

Given the data and the results required the programmer must re
state the problem in a form suitaole for the computer to tackle, ioeo
fundamentally numerical o In particular, he must reduce any criteria
for acceptance or rejection of data9 or for deciding between two or
more possible courses, into a comparison of the magnitudes of two or
more" ,nuinbers 0 For instanee S) suppose we require that an elevator should
stop to pick up passengers at any floor between where it is now and
where it is goin~if the button of that floor is pressedo' A numerical
statement of this is that$) if -:n~ nth floorS) the button of which is
being pressed, m -+ the nearest floor below where the elevator is now,
and l~ the floort,c' which it is going, then we require to stop at
the nth floor when m ~ n) 1 br when m < n < 10 In any other case,
including if m :;:: n < l$,l then we do not stop before reaching 10 This
numerical expression of qualitative ideas is an essential preliminary
process in all programming not concerned with direct mathematical
computation 0

We now have a problem suitably stated and reduced to a series of
computations connected by numerically determined decisions, and can
draw up a flow chart both for convenient reference and to ensure that
all the possibilities have been considered and treated suitably~
Next 9 we must consider the computations themselves and decide upon
suitable numerical techniques for carrying them outo It is usually
convenient to break down the ~dividual computations somewhat further
in order to make use of any library subroutines that are available,
and to make the process of coding easfero On single address machines»

14 a:> 3

such as SAC~ my experience is that I can conveniently code routines
containing up to 100 = 150 instructionsgpreferably less, containing
not more than three or four cycles within one another 0 If a comp
utation looks like involving more than this it is preferable to break
it down into two separate stages by some suitable rearrangement of
the logic9 if necessaryo If possible, it is best to make each section
complete in itself, so that it can be tested separately from the rest
of the p+oblemo This enables an economical use of the machine for
error diagnosis to be madeo Standard input and output routines are
used to put in the section to be tested and its data 9 and any errors
arising can be directly attributed to failure of the machine or errors
in the coding~ and the· latter should be relatively easy to findo
Although proving each section separately does not mean that they all
will work correctly when put together to form the program required p

the sources of error are more readily located when it is certain that
they arise from misuse of the individual sections or oversights in
programming 9 ra~her than coding 0

This technique for aiding error diagnosis can also be regarded
as a part of the;process of checking required to ensure correct
results from any programo Not only must the programming and coding
be checked 9 preferably on a trial calculation or calculations designed
to test ~ the ramifications of the problem9 but also it may be
necessary to provide against faulty operation of the machineo A
commonly held misconception is that an effective check is provided
by running the same program twiceo It is true that9 provided the
machine does not contain a random number generator~ two consecutive
runs which do not agree are prima facie evidence that the machine is
wrong 0 However~ it does not follow that, if two consecutive runs
agree 9 they are correcto At least two cases are known to me to have
oeeured in practiceg (I) the machine contained a consistent faults>
and (2) a third run gave a different (and~ incidentally 9 correct)
result 0 The best method of checking is usually to carry out the
computation by a different method and to compare the results to en
sure correctness 0 Next best is to institute some internal che'cks
within the calculations 9 verifying that certain equations hold p for
instance 0 As an example~ if we are computing the sum

~2 ~ S2 oj}- S2 + 82
'- 1 2 3'

and do the sum of cross products
12

1: ~ S132 + 8283 + S.31 9

we might verify that the resulting sums satisfy
t.2

+ 2 t. 12 = (Sl + S2 + 3
3

)20

Finally we might resort to spot checks byp saY9 hand calculation to
verify arbitrarily chosen resultso None of these systems is infallible
alone or combined~ of course9 but the errors in the results can be
reduced to a very small proportion by suitable applicationo Clearly
it is necessary to incorporate some of the checks indicated in pro=
gramming the problem and this can sometimes be done without greatly
increasing the time of the computation 0

14 - 4

I may say that I do not hold with indiscriminate use of pro
gramming techniques to ov~ome possible engineering failureso These
not only waste time in the computation, but also lead to the conceal
ment of faults which are best dealt with as they occuro No test program
has yet been devised that ensures that a machine is fault free, and
it is fair to assume that faults will occur during long consecutive
runs of the machine 0 The longer the run without output, :or, :" at l~ast,
recording results on permanent storage devices, the more catastrophic
is a failureo It is most important to plan the reading in and out
of high speed storage to more permanent forms, and from more perm-
anent storage onto printed sheets at intervals reasonable with respect
to their average failure timeso Few high speed stores should be
trusted for very long, on principle, though trouble free running for
more than 8 consecutive hours has often been experienced on most
machines 0 A good average maximum time to assume is an hour, as not
too much is lost if failure occurs; personally I prefer to use 20
minutes as a maximum period - this is more than enough on a fast
machine and adequate on slow oneso Enough should be recorded after
this time to enable a restart to be made from that point, and this
should not be destroyed at the end of the next period until some
verification has been carried out (this may just consist in not
stopping the machine g if it appears error free, but this should only
be judged by an experienced operator)o Such intermediate results
may 9 of course 9 be adequately stored on mediums such as magnetic tape
or a magnetic drum for the whole period of an average calculation,
and mayor may not be printed out, as r~quiredo However, it may well
be that some intermediate results are required by the problem setter,
or are desirable for checking purposes, and these may be tied up with
the break down indicated aboveo

This brings us to consideration of another important point: how
shall the data best be recorded for the machine, and how are the l'

results to be presented? Of course the form of the results must be
determined primarily by the needs of the problem setter, but he should
be encouraged £0 demand them in the most convenient form for use by
those whom they concerno It is usually possible to arrange the
setting out suitably by the machine, thus saving much time in re
arrangement 0 In the same way data should be recorded in the order
and format most convenient for the recording agent, subject to a "
preference being given to recording directly onto the medium used by
the machine for input "'" this should ~ however be allowed to comp;,i. 0 ,:

licate the process of recordingo Whilst in each case this throws
some extra work on the programmer, who must arrange for the machine
to sort out the data into the form required for operation of the
program 9 my own experience in handling scientific data would lead me
to believe this to be a good thing. Convenience for the recorder
means less mistakes in the original entries, and such mistakes cannot
usually be easily detected or rectified - it has been well said that
the most important entries in a ledger are the original entries, the
accuracy of which cannot be checked by the most highly paid accountants,
and that these are usually made by the lowest paid member of the staft!

Let us now review the points which we have to bear in mind when
programming 0 First9 we must state the problem carefully in a form

14 - 5

fundameDtally numerical; secondly we must decide the form of our data
and of our results; thirdly, we must break down the problem into con
venient units for (1) coding, (2) storage, and (3) time of operation;
fourthly, we must decide the numerical methods to be employed; fifthly,
we must decide on the checking techniques to be used. After all this
we may begin to carry out the coding, first selecting any library
subroutines which may be available for carrying out units of the comp
utation, and secondly, writing any new routines required, finishing
up with the master routine tying all the bits together. At this
stage we sho~d estimate the time required to carry out the sections
of the computation and reconsider our breaking down of the problem
to see if this requires revision. Having satisfied ourselves on all
these points we are ready to proceed to the testing of individual
routines, and finally to complete testing of the program. Your own
experiences with TAO will"; show that the amount of time taken by the
latter processes are by no means negligible matters, There are few
things that require more patience and perserverance than getting a
program right. However, once the program is tested and found correct,
there is no greater satisfaction than to watch the machine producing
results in the knowledge that each one represents many man hours of
effort saved - not to mention a few dollarsl

15 - 1

15. ORGANIZATIONAL PROBLEMS

The purpose of tbis chapter is to discuss some of the problems
that are encountered in organizing a computing center. First we will
consider certain basic distinguishing characteristics and then we will
go on to the more common problems that areIDund at most centers.

It is difficult to give a general procedure for organizing a
computing center since each center represents or is part of a system
having its own'characteristics. Of these characteristics, the follow
ing four seem quite basic.

1. Size of the computer. In the surveys already offered in this
course you have had an opportunity to see the wide variety of computers
being offered on the market. Last year Dr. Wilkes of the University
of Cambridge suggested that in organizing a center a guiding principle
to remember is that machine time is valuable. This is especially true
when dealing with the larger more expensive machines. Considerable
effort should therefore be spent in insuring that as much machine time
as possible is used productively. However it is also true that a~
routine can be shortened if enough time (both coding and machine test
ing) is spent on it. Consequently a compromise must be reached.

Associated with the size of the computer is the amount and speed
of the auxiliary storage equipment available. A center having a central
computer whose operating speed is comparable to the input-output speeds
can make more extensive use of the auxiliar,y eq~ipment without sacrific
ing too much in efficiency. Such considerations are usually predominant
in deciding what sort of automatic coding the center will adopt.

2. Type of coder. In·ma:gy organizations the person who proposes
the problem does the cocting. ihis kindo! operation' is often referred
to as "open shop". On the other hand, the coding may be done by a
resident group of experienced coders in what might be called a "closed
shop". In the open shop, provision must be made for the training of
a large number of new programmers, for their supervision, and for the
carr.ying-overof results from one problem to another (for example. by
the use of a library of subroutines). Closed shop operation creates
the problem of communication between the person proposing the problem
and the coder. Closed shop operation can also lead to persqnnel problems
since coding someone else's problem can become ver.y tedious. This leads
to efforts to reduce the coding to a sufficientlY low level so that it
can be done by relativelY unskilled personnel or by the mac~ine itself.

15-2

3. TYpe 01' problem. Here we might distinguish between the pro
duction-type problem and the short-run problem which is completed after
a few hours or less of computation. Once a production-type problem has
been successfully coded, the resulting routines will be run again and
again wi th little strain on the programming staff. For this type of
problem, of course, any effort "that makes the routines more efficient
will payoff in rich dividends. Also the scheduling of machine time to
handle production runs is greatly simplified since the time required for
a run is usually well known. For ahort-run problems the ratio of pro
duction time" to checking time will not be very high. For these problems,
methods that reduce the time required to detect and remove mistakes from
a routine may be extremely helpful. Special routines tor assembling a
final program from a set of subroutines, for carrying out floating-point,
matrix, or complex arithmetic, and tor providing extensive post-mortem
information are often used for this purpose.

4. KInd of COmputing center. This may best be described by ex
amples. A computing center that is renting out machine time to a differ
ent division of the same company or to a different company may not be
too concerned about how effiCiently the machine time is used. On the
other hand a center whose income Qr support is based upon productive re
sults will of course make every effort to increase production. A re
search center may devote a great deal of time to computing certain con-"
stants to many decimal places or to exploring theorems in Number Theory.
However, a center that has to justify its existence to a cost-conscious
management may find itself setting up routines to take over pay-roll
calculations, etc.

It should be pointed out that the problems associated with the
characteristics just described are not mutually independent. For ex
ample, the type of coder one employs is related to the type of problems
to be solved. To keep a large machine busy with a set of short-run but
complex problems requires a large statf of programmers. In such a case
it would be more practical to let the person who proposed the problem
learn and carry out the coding. Also the kind of problem to be solved is
related to the kind of computing center. For example, one would not ex
pect that a research center, such as one finds at the University of
Cambridge or at MoI.T., would allow one programmer to monapolize a large
fraction of machine time over an extended period. On the other hand,
General Ele ctric can assign a large fraction of its IBM 701 time to the
deSign of steam turbines for its Lynn plant.

So ,£ar we have been conSidering the organizational problems of com
puting centers having certain characteristics. One of the more inter
esting problems is to select the characteristics for a center that is
about to be set up. The questions of which computer to buy (or even
whether to buy one),which problems to put on the machine, and whether
to train present personnel to code can be difficult ones. The main
difficulty is that there usually is no one simple answer. For example,
in the choice of a machine, some people feel that it is better to own
two smaller computers "than one large unit so that if one machine is down

15-3

the other is still available. On the other hand, the speed and flexi
bility of a large mac~ine is far more than double that of a machine of
half its priceo Consequently the cost per operation and the number of
operations performed between down periods may make it the better buy if
there is enough computation to keep it busy. (Of course, each computer
has its own basic propertieso)

It might be pointed out that the selection of problems to be placed
on a machine or the investigation of ideas for the development ot new
control systems can be carried out on time rented at one of the many
available computing centers. Some companies have found it useful to pma
chase a smaller computer to gain experience to indicate what future steps
should be takeno

In the preceding paragraphs we have emphasized the differences be
tween computing centers. However, all of these centers do have a great
deal in common - they all want to make use of a high-speed computer to
solve a problem. !he fact that this course is being offered to you in
dicates that there is a good deal of common ground. You have already
gone over the steps needed to solve a problem on a high-speed computer
(in Prof. Adams's introductory leQture, in the movie~king Electrons
Count," in solving your problem 014 TAC, and, in lecture'14~given by.
Professor Douglas). However, in each of these cases the a pproach was
from the progra.mner t s point of view. I would now like to review these
steps once more, but this time from the point of view of the person who
is organizing the center. There will, of course,be some overlap in the
two points of view but there are enough ~ew ideas, I believe, to make
this review worthwhile.

The steps indicated on page 1-9 are common to most computing centers
although the importance of each step may vary widely.- For example, in a
business application where a procedure for inventory control has been
developed and put into regularuse,themaln steps of interest would in
volve preparing a tape or cards with the input information, running the
machine, and checking the results 0 The other steps might enter infre
quently when variations or improvements are introduced into the system.
Let us now consider the steps in some detail.

1. Proposing. Sometimes the main problem here is to get people
to propose problemso It can take an awful lot of problems to keep a
large machine busy. Some people feel that a problem has to be very com
plex before it should be coded for a machine. On the other hand, there
are many problems that could be solved quicker calendarwise on a~desk mach
ine. Also many" p'eople tend to ask for fa'r' more 'res'ults than they need or
can ever :hope' ,te process." As Prof. Douglas. has pointed out ,many problems
a:re:' staled in a misleading-',Corm.

2. Planning. This involves not only the selection of a procedure
(which may or may not be numerical) but, in many cases, the selection of
the computer to be used. It is interesting to note that by the tech
niques used to simulate TAC and SAC on WWI, many centers have been t~s
formed from single computer units to multi-machine projects. Each ot

15-4

these cOIIU>uters, whether real or simulated, ha$ its own advantages and
disadvantages. The factors involved in choosing among them include:
availabi11 ty of the machine, ease ot coding (as measured by the time it
takes a programmer, who may be untrained, to code his problem), available
storage, computing speed, computer reliability (for a simulated computer,
this will depend upon the ~egree of testing), ease 01' error detection
and tape correction, available ~recision, and available subroutine li
brary.

3. Coding. In an open shop center the coding of a probtem can be
greatly simp1itiednby the use of such techniques as floating-point rep
resentation, symbolic and relative addresses, and counting facilities.
Moreover, the use of mnemonic instruction codes, compiling routines,
subroutine libraries, etc. abbreviates the training period of a new pro
grammar~ Of course, the availability of more than one computer (real or
simulated) does increase the number of conventions that ~ programmer may
have to learn. Also the slowing down of the machine by interpretive
routines must be taken into consideration. Such techniques can also be
used, of course, in a closed shop operation but here the need of them is
greatly reduced. For prod'Q,ction-type problems it will, in general, be
preferable to develop routines that are as efficient as possible.

40 Clerical. In this category we can include typing or punching,
verffying, and the filing of input and output information. When possible
the use of routines that assemble previously prepared subroutines and
allow the use of special pseudo-codes (such as tyn for calling in a
special output routine) simplifies the' typing by reducing the length of
tape needed and by making possible the use of more common terminology
(eogo, start). Also versatile read-in programs that can ignore certain
characters (such as color shifts, spaces, treat the letter I and the
number one as being synonymous, ete.) make it possible to cheek the
correctness ,of a tape by the visual inspection of the typed copy pro
duced w~ile the tape was being punched.

Checks like verifying and proofreading are very desirable since
they can be done at a cost far less than that of the machine time wasted
because of undetected mistakes. Mistakes that result because of the
illegibility of a programmerts writing can only be detected by the pro
grammer himself. The use of a read-in program that can detect typing
mistakes will also save a great deal of computing time.

The filing of tapes and results can, as in so many other eases, be
facilitated by a suitable numbering system. The handling of machine
output is simplified if these results are suitably labeled. In the
Whirlwind computer this feature has been made automatic.

50 ' Testing and debugging (isolating and removing mistakes). In a
computing center that must deal with a large number of new problems, the
task of debugging the corresponding routines can be very time consuming.
SAC and TAO have illustrated how useful conVersion and computation post
mortems can be. However, it should be noted that the incorporation of mis
take detection routines can mater.Ui~ slow down the computation. More
over printing out too much information each time a mistake 'is detected.

15-5

can also lead to a waste of computer time.

In many centers programmers are allowed and even encouraged to
operate their own routines. This has obvious advantages but has often
proved objectionable because of the tendency of programmers to tr,y to
correct their routines on the spot without carefully considering what
the changes should be. Thus machine time can be wasted both while the
programmer in question is deciding what changes to make and also be
cause the hasty changes he makes may be in error.

6 • Solving. The distribution of the machine time. among the accepted
problems will, of course. depend upon the particular system involved.
This system will specify who gets priorities, etc. At the Digital
Computer Lab. we have found it worthwhile to distinguish between long
runs and short runs (less than five m1nutes) where short runs usual~
get the priority. At IBM in New York City a schedule has been set up
so that time assignments can be made automaticallY by computations
from a rigid formula.

The system pi scheduling adopted should be one that does not
encourage programmers to overestimate their required machine time.
This is particularly liable to happen if the system is such that the
programmer will have great difficulty in regaining access to the mach
ine againo Hence a fluid system is desirable. Of course a programmer
who is paying at a substantial rate for the machine time he uses tends
to be at least moderate in his time requests.

Keeping a record of the actual time used by a given problem is
a clerical job that can be done by the use of time clocks. However.
a very suitable system results if the machine itself has some way of
automatically recording the time. For example the Whirlwind I computer
contains a timing register that can count up to almost 10 hours in steps
of 1 1/15 seconds. Thus by setting this register initially to zero it
is possible to punch out the tape number and time for each problem that
is read into the computer. If, for some reason such as machine break
down, the machine run is interrupted, this fact can be manually punched
on the time record or log with an indication of the time lost. This
log can later be processed by the machine itself to produce week~ or
monthly statements of time used, etd.

A type of interruption that can prove most frustrating to a
programmer is one that is caused by a transient machine malfunction
occurring after the routine has run a considerable length of time. A
common type of su·ch malfunction is the loss of a digi t either in the
memor,y itself or during the transfer of information. .Such a loss is
usually detected by the computer through a parity check or transfer
check. A parity check adds,.up the digits in a word and adjusts an
extra digit tagged to the word so that the sum is even. A transfer
check simply uses two different paths of transmission and checks the
end results. Another useful check is a sum check where all the words
in a block of information are numerical~ added, reduced 7 modu10 some
convenient numbers and the sum stored. Whenever this block is trans
ferred p the sum is checkedo Whenever the machine detects a malfunction

15-6

by one of these checks it will stop. In ma~y types of calculations
the only way the routine can be restored to its correct state is by
completely rerunning the problem. This can result in a serious loss
of computer time.

To reduce the amount of machine time lost as just described, the
programmer can set up rerun points in his routine by periodically
storing on some form of auxiliar.y storage all the information necessar,y
to reconstitute his routine. At the time of a machine failure a rerun
or rollback routine can then be employed to continue the calculation
from the last rerun point. It should be noted here chat in maqy cases
the auxiliar.y equipment itself must also be reconstituted.

Finally care should be taken to avoid idle machine time in the
interim when one problem has been completed and a new one is to begin.

7. Analyzing ReSUlts. Some checks must always be maintained on
the numbers being obtained from the computer. This is basically a
problem for the programrner and Prof. Douglas discussed various check
ing methods yesterday. It might be mentioned that it often pays in
the running of a computing center to provide a rource of questioning
for the programmer to be sure that he is aware of this checking. This
sort of questioning usually comes in the preparation (or screening)
stage when the programmer is asked to indicate how he will be able
to verify his results. <

8. Maintenance. The engineers who maintain the machine are
usually in attendance or on call while the machine is being operated.
The manufacturer usually sets up some sort of maintenance schedule.
Some difficulties that arise during operation are readily recognized by
the machine operators. It is a good practice for the machine operators
to refer any suspected difficulties to the engineers. Log books are
usually kept so that the operators can describe any unusual machine
behavior. Most programmers will not tr,y to push runs on a machine
that is misbehaving, since it is sometimes sufficiently difficult to
trouble shoot a routine on a well machine. The organization of the
center should not encourage programmers by making them lose their turn
to try to get results anyway when there is evidence of machine mal
functiono

Standby terminal equipment should be provided when possible since
the cost of such equipment is relatively low. Thus the giving up of
machine time because of a malfunctioning typewriter can be avoided.

Special routines have proved ver,y useful in the testing of computers.
The extent to which such routines can be used will depend, of course,
upon the ingenuity of the programmers and the nature of the computer.
At the Digital Computer Laboratory two sets of routines have come into
use. The first is used with marginal checking for the routine testing
of the various computer sections. The second set is used for diagnostic
purposes to locate actual failures in the auxiliar.y drum system and term
inal equipment. In t~e future it is planned to combine some of the
features of both sets of routines.

16-1

160 TECHNIQUES OF AUTOMATIC CODING

Choice of Coding System

When planning to use a large electronic digital computer, we are
free to choose, from a very large range of possibilities, the form of
coding in which programs shall be written, with little or no effect on
the amount of hardware requiredo The reason for this is that a large
computer can, as it stands p be made to handle a very wide range of inform
atioD=processingtasks g one such task is the receipt of the machine's
own programs and the conversion of these programs into operations to be
carried outo Having decided on our code, we merely have to provide the
machine with a program that will tell it how to convert this code into
the form which it requires 0 There are of course lim! tations, and these
we shall cons ider later 0

Our aim in choosing a code is to reduce the amount of labor involved
in programming 0 This is particularly important at the present stage of
automatic computing, when big new projects are being initiated dai~,
but our educational institutions are not yet generally equipped to pro
duce programmers. It is therefore desirable to relieve the programmer
of unnecessary chores, and, in particular, to see that no work 1s repeated.

Subroutines

The first and most obvious development is to keep a record of all
pieces of program that are likely to be of use to several people; the so
called library of subroutines. A written description of each subroutine
enables a programmer to see how it might fit into his program~ he denotes
it on the program sheet by its catalog numbero At first subroutines were
incorporated into programs by copying them in the form of punched tape
or cards, the advent of large auxiliary stores has made it possible to
keep a library in the auxiliar.y store and so to make the incorporation
of a subroutine into a program fully automatico

Fitting a subroutine into a program is by no means a simple bUSiness,
and a whole host of conventions grows up around the use of a librar,yo A
difficulty soon arose over subroutines that were required to be used at
two or more different points in a program: should such subroutines be
copied afresh at each point, or should one copy be made to serve, thus
saving storage space but raising a problem in ensuring the correct sequence
of execution of a program? The latter course led to a special type ot
subroutine known as a "closed" subroutine, which is allocated a place in
the store away from the main part of the program. A jump instruction
sends control to the subroutine when required, and the subroutine is so
arranged that control always jumps back, when the subroutine has been
executed 9 to the instruction following the one which caused the original
jumPG (See figure on next pageo)

16=2

=t=
A jmp s1 ~ sl£>

A+l

~ closed subroutine

B . jmp 81
, ,

B+l
=F~ jmp link

The jump instruction at the end of the closed subroutine£> known 8S the
link instruction~ must ~ontain an address depending on the address from
which the subroutine was last entered (in tact~ it must be one more than
this address \) namely A+ 1 or B+ 1 as the case may be) 0 Various methods
are used in various machinea~ in SAC p a special instruction has been
provided (sra = see SAC Summary for details) which can be used at the
beginning of a closed subroutine to set the correct address in the linko

Another diffi~ul ty \) encountered before the invention of symbolic
addresSesp arose from the fact that\) since it was required to be able to
place a subroutine anywhere in the storep some of the numerical addresses
in its instructions would have to be adjusted according to its position
in the storeo This 'Was overcome by a system of relative addresses~ vizo
written addresses defining registers according to their position in
relation to the beginning of the particular subroutine 0 The releti ve
addresses were converted to ordinary or "absolut6w addresses during loadingo

Several factors must be considered in making a library subroutine
as useful as possible g one of these is its generality ot applicationo
For example 9 a subroutine might be made to carr,y out some operation (eogo
to locate the largest number) on a string of numbers in consecutive
registers in the st~reo To be really useful\) the same subroutine should
be applicable however long the string and wherever its first member may
be 9 although of course in any l~stance the subroutine must be told these
particulars which are ~alled parameters of the subroutineo Parameter
values are indicated by the programmer when he uses the subroutine p and
are used by the subroutine to suitablY adjust its own internal working
so as to produce the required resulto

Often two classes of parameters are distinguishedg preset parameters
and program parameters 0 T he former are indicated in the written form ot
the programp and the corresponding adjustment of the subroutine is made
during loading 0 The latter are indicated by putting them into the mach
ine as register contents 9 and the adjustment is done each time the sub
routine is used 9 during the exeeution of the programo C'ommonly 9 they
are put into registers following the jump instruotion which sends control
to the subroutine (assuming that the subroutine is of the closed type).

16=.3

If it has been decided to place certain closed subroutines in the
store$) the task of writing the rest of the program becomes somewhat
easier 0 The programmer knows that in order to cause the machine to carry
out a certain complex operation he needs merely to write a jump instruc
tion referring to one of the subroutines (and perhaps to follow it b.f
one or more parameter values to specify the operation exactly) 0 This is»
on a somewhat grander scale~ just what he does when he uses an instruction
to cause the machine to carry out an operation listed in the machinets
instruction codSo The presen~e of the subroutines may be looked upon as
extending the basic instruction code of the machineo

Interpretive Subroutines

This idea has been further developed and has led to the concept
of an interpretive subroutineo This is used to deal with a situation
in which a whole series of operations of a certain general type i~ re=
quired to be performed in successionpeach operation requiring a small
subroutine $) wi th no ordinary basic machine operations intervening 0 Such
might be the case $) for example $) if a lengthy calculation were to be
performed on numbers too big to be held in single registers p so that each
arithmetical step involved a set of basic machine operations9 ioe0 9 a
subroutine 0

In such a case $) the machine would spend most of its time executing
the subroutinesp if control were sent back to the "main" part of the
program it would immediately be referred on to another subroutine 0 It
is possible to arrange that control$) in factp never returns to the main
part of the program between operations but remains within the subroutineso
These are all welded into one f) an interpretive subroutine 9 which includes
also a section to supervise the sequence in which the various operations
are performedo

,
The jump instructions in the main program which formerly directed

control to the subroutines are eliminate<.l8 all that remain are the para
meters fixing details of each operation 0 These parameters must now
specif.y which operations are to be performed as well as fix their detailso

WhUe an interpretive subroutine is being used$) the instruc;tion code
of the machine is not merely augmented9 it is entirely replacedo Instead
of instructions p the programmer writes parameters defining operations
to be performed by the interpretive routine according to rules laid down
when it was createdo These parameters are in fact instructions in a
different sense 0

Processing During Loading

SAC illustrates most of the ways in which a progr~ can be processed
on its w~ into the machine g foremost among these are the conversion of
symbolic into numerical addresses and the conversion of mnemonic .3=letter
function codes into the binary digital form used within the machineo In
scientific applications the acceptance of numbers written in a great

16-4
variety of different forms is also useful g and if a library is available
for automatic referencep the loading process must recognize symbols which
stand for a subroutine and select that subroutine to be copied from the
library 0

Debugging

Finding mistakes in his programs is one of the most tedious chores
facing a programmerg and it is made much easier if he has plenty of
useful information about events within the machine during the runo In
formation about the final state of the machine is given by post-mortem
routines 0 If an interpretive technique is being used 9 it can with slight
elaboration be made to provide suitably selected information about the
actual running of the progrrumo

If the program has undergone considerable processing during loading,
all devices for providing evidence;. for:·debbgging'p:u.rposes~' shottid'! reverSe"·;
this process and present their evidence in a form corresponding to that
originally used by the programmaro This may be even more difficult to
plan than the original processingo

Elaborate conversion and interpretive schemes dOg however, have one
great advantage when it comes to debugging~ . Out of the very large variety
of things which the programmer is at liberty to write on his program sheet
many will be nonsense; and moreover many of these nonsensical things can
be automatically identified as such during one of the processes through
which the program passeso Thus SAC will automatically indicate which of
ma~ different rules a programmer has violated in drawing up his programo
To this extent g therefore 9 the debugging is practically automatico

The Principle of Imitation

Although in TAC the store was described as being a magnetic drumg

this fact was not essential knowledge for a user of the machineo The
physical nature of the SAC store has in fact not been disclosedo To a
userpa whole machine may be sumntarized as a set of rules for writing
instructions and data~ and a list showing the machinets response to each
instruction {the instruction code) 0

We have just seen g however, that the rules for writing instructions
and data depend entirely on the programs used for feeding them into the
machine, and that the instruction code can be augmented or completely
changed by means of subroutines of greater or less complexityo Consequently,
by the use of suitable programsg a machine may be made to ~pear, logically,·
as a different machine; ioeog it can 2Ddtate another machineo In these·
ways, both TAC and SAC have been imitated by Whirlwind, which is basically
quite unlike eithero

16-5

The Limitations of Automatic Coding Techniques

There are unfortunatelY several obstacles in the w~ of extensive
exploitation of the foregoing ideaso Firstly, all these techniques
absorb some machine time which might otherwise be savedo Secondly, they
also use up part of the storage capacity of the machineo Thirdly, (and
this is a point which is easily underestimated) they require a considerable
amount of programming effort to prepare, and some effort for the user to
learn 0 Fourthly, there are limits set by the nature of the problem ~and
by the transcription devices avallableo Let us consider these points in
turn 0

The processing of a program during loading does not usually take
any appreciable time and, where it is done, it is nearly always veIl worth
the machine time requiredo Interpretive techniques, on the other hand,
slow down the rate at which the actual execution of the program takes
place, and may (in the case of long computations) absorb considerable
amounts of timeo Objective comparisons are impossible because interpretive
subroutines are normally only used in cases where the machinets instruc
tion code is inappropriate to the jOb; the only alternative to the use
of an interpretive subroutine is then presumably to use several small
subroutines or to write a very long and circumlocutory program without
subroutines 0 The former would probably save little or no time; the latter
might save machine time but might also require stupendous amounts of
programming timeo Nevertheless it should be borne in mind, when considering
the application of an interpretive technique, that the machine time in
volved is liable to be large and must be justified by savings in other
directions.

The number of instructions contained in many existing program-proc
essing schemes is of the order of several thousandso Where auxiliary
storage is available 9 it is usually adequate to hold the processing
routines, but the absence of an auxiliary store severely limits the
facili ties that can be providedo }breover, an interpretive routine, which
operates during the execution of the program rather than during loading,
must be held in the high-speed part of the store during the computation
and so limits the high=speed storage space available for the programo
Again, howver, the only al ternati ve may be worse: to perform the same
computation without an interpretive routine may require much more storage
space 0

The work entailed in preparing a program-processing or automatic
coding scheme does not end with the writing of the processing routines,
or. even with their successful debuggingo It is then necessary to prepare
a description of the scheme as it affects the usero~ch of the effect
iveness of a good scheme can be lost if the description is badly pre-
pared 0 The aim is to save the future programmer's time; this can unfortun
ately only be done at the expense of having him spend some time learning
the ruleso This is both a psychological and an economical barrier which
it is important to minimizeo Clear writing is essential, with the subject
matter so arranged that no person need read passages that do not directly
concern himo

16=6

It has been stated that the net result of automatic coding techniques
is to cause one machine to imitate another 0 Al ternati vely p they may be
thoughtof as allowing the programmer to write his programs in a different
languagep one that is translated to the machine's internal language by
the processing routineso In order to make things easy for the programmer,
we should make the new language as convenient as possible for him to use.
The original statement of the problem to be solved comes to him in some
language, and his job is to convert it into a language that can be pre
sented to the machine 0 We should make this gap as narrow as possible,
ioeop the language accepted by the processing routines should be as
similar as possible to the lapguage in which the problems ariseo

Here 9 ~owever f) there are technical difficulties 0 Firstly, the lang
uages that are used in practice contain an immense variety of symbols
(especially in the fields of science and engineering)o Not only would
the automatic processing of such information be complicated» but there
simply do not exist transcription devices with keyboards adequate to
handle all the symbols (and any manual translation would defeat our
purpose). SecondlYf) (and this is more fundamental), very few of the
seemingly precise statements made even in technical subjects can in fact
be interpreted unambiguously without an intelligent knowledge of the sub
ject matter co and this is quite beyond the ability of"machines at present.

Notwithstanding these formidable obstacles, automatic coding is
slowly advancingo No one system can be considered the best for all
purposes; there will !nevi tably be many, appropriate to different types
of applications 0 There is a tremendous amount of work entailed in
developing each onef) and we must not expect any spectacular advanceso

18. OPERATIONS RESEARCH

by Prof. Philip M. Morse, reprinted from
MECHANICAL ENGINEERING, March, 1954

Operations Research is the application of re-
~search techniques to the study of the oper
ations·of war and peace. It examines what
occurs when a team of men or machines does the
job assigned to it. It is an activity; a
pattern of operations, susceptible of being
related to other diverse activities. Its
applications encompass such unrelated matters
as determining time of waiting in line in a
restaurant; fixing the inter-relation between
sales fluctuations, size of inventories, and
production scheduling; or developing a pattern
of search operations for an enemy submarine
or aircraft.

In Operations Research there is an opportunity
for scientists and engineers to help in admin
istrative problems, not by becoming the admin
istrator, but by providing the administrator
with quantitative understanding of aspects of
his operational problems, so that he can reach
a wise decision, fully conscious of the im
plications of his choice.

18-1

This is a progress report on a relatively new branch of app1ied
science. First utilized during the last war on military problems, it
proved valuable enough so that most military staff, here and in England,
now have operations-research groups. More recently its usefulness in
industry is corning to be recognized, and groups are also being attached
to top industrial staffs. The Operations Research Society of America,
for.med two years ago, now has nearly 1000 members; its Journal is now in
its second volume. What is this new activity, and how is it related to
other branches of science and engineering?

Defining a branch of science in a few nontecpnical terms is not
easy. Perhaps the safest definition is that Operations Research is the
activity carried on by operations-research groups and reported in the
Journal of the Operations Research Society of America. But often some
less circular sort of definition is desirable. Students who may wish to

18-2

learn about the field have to be told what it is; people want to mow
what it's good for; workers in related fields want to mow why it should
be differentiated from their own fields, and so on.

What is Operations Research?

Operations Research has been defined as the application of the
scientific method to problems of management, but this is obviously too
concise and too general a statement. There are many sorts of "scientific
methods," and many sorts of people study problems of management. Part of
the definition must describe the way these problems are studied. Here
the word "research" in the title may give a hint. The research sCientist,
at least in the physical sCiences, uses the quantitative language of
mathematics, employs the well-known but ditficult-to-describe procedures
of experimentation and theory making. He looks at the phenomenon he is
studying in a certain impersonal way, being more interested in how than
in whither, more interested in why than in!.2!: ~~. Many centuries
of experience have taught him that this impersonal viewpoint, this dual
employment of theory and experiment, will usually procure for himre
suIts of value in his science and that too great a preoccupation with
questions of the worth of the result, or the immediacy of the need,
actually will hinder his progress.

Operations Research» then)is fhe application of research techniques
to the study of the operations of war and peace. It is concerned with
an attempt to understand something, in the, scientific sense of the word
"understanding." It is a~ effort to discover regularities in some phe
nomenon and to link these regularities with other knowledge so that the
phenomenon can be modified or controlled, just as othar. scientific re
search does e The difference comes in the phenomema which' are studied,
the subJect mattero Instead of studying the behavior of electrons, or
metals, or gasoline engines, or insects, or individual men, Operations
Research looks at what goes on when some team of men and e~ipment goes
about doing its assigned job. A battalion of soldiers, a squadron of
planes, a factory, or a sales organization is more than a collection of
men and machines; it is an activity, a pattern of operation. These oper
ations can be studied» their regularities can be determined and related
to other regularities; eventually they can be understood, and they then
can be modified and im.proved.

Research at the Operational Level

Operations Research is ooncerned, not with matter or with individual
machines or with men, but with the operation as a whole; with battle tac
tics, with strategic and logistic planning for future operations, with
the interrelation between sales fluctuations, size of inventories, and
production scheduling, with the flow <patt"rn of goods in a group of fac
tories or of traffic in a City, to mention a few examples. We might use
the word Mleval" to distinguish between the different subject material,

18-3

if we can divorce the word from any connotation of relative importance
or difficult yo Physics and chemistry would then correspond to research
at the basic or material level, the study of bridges and television sets,
research at the engineering or applied levale Operations Research would
then be "research at the operational levelo"

Although the name is relatively new, research at the operational
level is not new, of courseo Taylor and his followers, in their time~
and-motion studies, have investigated a small part of the whole field,
traffic engineers have been working on another part, systems engineers
encroach on it, and so on g Perhaps the most useful service the'new
term Operations Research has performed is to emphasize the essential
unity of the whole field, to force the recognition of similarities in
behavior in areas hitherto separate, and to make apparent the broad use
fulness of a number of research techniques and mathematical models.

Techniques Used

I have not yet said anything about the techniques used in Operations
Research 0 As with other research, any technique of measurement or of
calculation, any portion of a basic science is used which will produce
results 0 We should expect that the theory ot probability and of statis
.tics would be very useful tools; we also should expect that the tech
niques of the psychologist would be needed in other easeso This does
not mean that Operations Research is applied statistics, on the one hand,
or is a branch of social psychology, on the othero It uses any and all
of these disciplines to study operations in order that they may be un
derstood and thus controlledo Since a wide variety of basic science Is
involved, much of the research can best be carried on by a team of wor
kers having a variety of backgroundtraininS t each contributing his
specialized knowledge to the solutionot th$ operational problem. The
advantage of a mixed team for the study of many operational problems is
obvious 0 In fact, some persons have said"'that the use of mixed research
teams is a characteristic of Operations Researcho It certainly is im
portant in many investigations; whether it is characteristic or necessary
might be questioned.

But certainly further generalities will not be helpful here; a few
specific examples may help clarity the pictureo Certain particular as
pects of operations have been the subject of intensive study in the last
few years, and special mathematical models have been developed to help
understand the phenomenao As is usual with models, they represent only
part of the phenomena, and since Operations Research is new, most of
these models need further development before they can be satisfactorily
general in their applicabili tyo Here the Operations Research worker
needs the help of the baSic scientist, particnlarlythe mathematician.

18-4

Waiting in Line

Take the simple business of waiting in line - the British call it
queuing 0 All of us do it too much of the time; if we drive to work in
the morning, we wait at traffic lights; if we go to a cafeteria at noon,
we wait for our luncho It is the headache of many businesses; it is a
vital problem for airlines when an airport clouds in and the planes be
gin to staok up, waiting to lando Let us see what can be said about
this sort of problem.

We start as usual With a fantastically simplified case, one where
the front of the line is served at some constant rate, say, S per seoond,
and where the rear of the line is being tilled up by people (or planes)
coming in at random times but with an average rate of arrival, A per
secondo We also will assume that this has been going on long enough so
that a steady state has been reached; we can consider the transient ease
as a later elaborationo The key to this mathematical model lies in the
working out of the various probabilities that the line will have 0, 1,
2, or n persons in it. Call the probability that there are n persons
in the line Pn •

If PIO is large, for example, this means that we are quite likely
to find 10 people ahead of us when arriving in line; what the restaurant
tries to do is to make Po large.

TQ~have a steady state none of the P should change with time.

But every time a person arrives, all the P step up one by one,
Po changes to PI' and so on; and every time a person is served, they all
cfiange downward o So, in order that A persons arriving a second and S
being served a second will not change the probabilities continually, they
must be related in some special way.· For example, the rate ot disappear
ance ot a line of zero length is APO' the rate of arrival times the
chance that a zero-length line is there; the rate ot appearance ot a
line ot zero length is SPl , the rate of serving times the chance that a
single-length line is present. To have a constant probability ot zero
length line, we .must have these two rates balance; APo .·SPle Similar
balance for lines ot unit length, of length n, and so on, gives rise to
the sequence ot equations.

and so on.

These can be solved without much trouble, giving

Pn = (S - A) (An/sn~l)

as long as the rate of serving S is larger than the rate of customer
arrival A. It is obvious that if customers a.re arriving at a rate
faster than they can be served, the line ca~ot ever be stationary in
length and, if they value their reputation or peace of mind, our restau
rant or airport managers must avoid this at all costs o But even when

18-5

customers ar~ive more slowly than they can be served, we see that there
is a finite chance that a line will form. In fact, the average length
of the line turns out to be A/(S - A).

This quantity is quite small as long as the maximum serving rate S
is at least twice the arrival rate A. But if people arrive nearly as
fast as they can be served, the average waiting line rapidly lengthens;
if A is OoSS, then the average number in line is 4; if A is 009S, the
line has 9 in it, on the average, and so on. For example, if A is O.SS,
if customers are served 25 per cent faster than they arrive, on the
average, then 20 per cent of the time there will be no line, 16 per cent
of the time one will be waiting, 13 per cent of the time two will be in'
line, 8 perl cent of the time four will be waiting, 2 per cent of th~
time ten will be in line, and so on; the average line length will be
tour.

It may seem peculiar that there should be any waiting line when the
mean rate of service is greater than the average rate of arrival; this
is due to our assumption of randomness in service and arrival. We as
sume that each customer doesn't conveniently arrive just 'when the last
customer has been served; the customers arrive at random, which does not
mean regularly. Also, one customer may take longer to be served than
the next, and a bunch of customers every now and then arrive just when a
slow-poke is being served.

These random mismatches between customer and server don't matter
much if the service is considerably faster than the average rate of ar
rival; once in a long time two or three may come in a bunch, but most of
the time no one is waiting. But if customers arrive nearly as fast as
the line can be handl~dt these mismatches occur more and more often, and
the chance of a long line occurring quickly is large. Of course, if t~e
servicing process could be made absolutely regular, each service com
pleted exactly in 10 seconds, for example, and if also we could regiment
our customers to arrive exactly 10 seconds apart, so that one walked in
the door exactly at the end of each 10 seconds, then S could equal A,
and still no line would formo

But service is very seldom as perfectly timed as this, and we
practically never can regiment the arrivalso Customers, automobiles,
and airplanes do arrive in a random manner at restaurants, street inter
sections, and airports, and it turns out that the results of our simple
quantitative reasoning fit actuality remarkably well in spite of our
preeonceptionsto the eontraryo Here is a case where theory and actuali-
ty contradict our intuitive "feelingso" •

In every case where this theory applies, gross errors of estimate
have been made, regarding the expected length of waiting lines, on the
basis of nonmathematical "huneheso" Often long a~guments have occurred
betore the manager would be willing to tace the consequences of the
theory. They would continue to say, "But why should there be a waiting
line when I can serve them faster than they are comi~?" in spite of the
line which was there betore their eyes. The results of such irrational
behavior only produce irritation in the case ot restaurants, gasoline

18-6

stations, and the like; it is much more serious in the case of airports
or docking facilities in harbors, particularly under wartime conditions.

Industrial Problems

The simple theory. sketched so quickly above, can be expanded and
com~licated almost indefinitely. For example, the problem of machine
maintenance in a factory is of this sort. The machine can be said to
"arrive in the waiting line" when it breaks down; it is "served" when it
gets repaired. The flow of parts through an assembly line is another
example. The theory can tell us how many parts must be kept on hand at
each stage of the process, in order that no machine should be kept idle
by delay in the earlier proceSSing, for example. Many aspects of the

, over-all problem of industrial inventories also can be analyzed by this
technique. Here it is the sales, the outflow, which has the large
fluctuations; we need to balance between the requirement that orders be
filled as soon as they come in and the added expense of running a fac
tory overtime if our inventory runs out.

Another sort of problem which turns up in a large number of oper
ational studies has to do with the optimization of some function of a
number of variables, subject to boundary conditions which limit the
range of the variables. For example, an oil company can produce various
proportions of fuel:oil, gasoline, and aviation fuel from its cracking
plants, depending on the kind of crude oil used, and can produce various
proportions of these end products from a given crude, depending on the
cracking process used. But crudes differ in price, and cracking
processes differ in cost. Suppose the company has orders for definite
quantities of end products to be delivered in the next 3 months. What
amounts of which crude shall it buy, and which processes shall it use in
its cracking plants, to produce the required amounts of pro'ducts at the
least cost, subject to limitations of supply of crudes and of output of
its plants?

The Variables here are the various amounts of crudes to be bought
and the degree of utilization of each plant. The function to be mini
mized is a linear function of these variables, and the limits on each
variable are known accurately. Such a problem is known as a ftlinear
programming" problemo 'rhere are many such problems which turn up in
Operations Researcho 'rechniques of solution are not simple, and many of
them require high-speed computing machines; much further mathematical
research is needed to simplify computing procedures in linear-programming
calculations.

Parenthetically, the optimization of the crude-oil-cracking prob
lem has been worked out by the research or the engineering departments
of many large oil companies. The persons who worked out those solutions
did not call what they were doing Operations Research; many of them had
not heard of Operations Research. It is also true, howeve~, that most of
these workers were not aware that many other problems in the company's
operations were likewise amenable to the same analysis. The value of

18-7

the concept of Operations Research to these companies lies in making
their research men aware that the'" techniques of theoretical analysis
they have been using for one problem can be applied to a much wider
range of operational problems than they hitherto had conceived, and in
showing the company executives that they can use their ovv.n research de~
partmants to help solve production and sales and distribution problems,
where formerly they had hot been usedo

Linear Programming

The linear-programmdng problem can be visualized most simply in
geometrical terms. The n variables define an n-dimensional space; a
point of this space corresponds to a solution. Each limitation on the

. range of the variables corresponds to a hyperplane in this space, re- .
stricting the allowed solution pOints to one side of the hyperplane. By
the time we have finished specifying all the restrictions (negative pro
duction not allowed, maximum limits on storage capacity, limits on pro
duction, and so on) we find that we have surrounded the region of possi
ble solution by hypersurfaces, so that the allowed region is the interior
of a convex polyhedron in the hyperspaceo If the function to be opti
mized is a linear function of the variables, then the requirement that
this function have some constant value also corresponds to a hyperplane
which mayor may not cut through the polyhedron; if it does, it then
corresponds to an operationally possible value of the function to be
optimized. By changing the value of the constant, we can generate a
family of hyperplanes parallel to each other, their distance from the
origin being proportional to the value of the function to be optimizedo

Some of the hyperplanes in this family cut through the polyhedron
containing the region of solution; some do noto There are two lim1ting
hyperplanes, one corresponding to the largest value of the function for
'which the hyperplane just touches the polyhedron, and one corresponding
to the smallest value which just toucheso Consideration of the geometry
shows that for most orientations of the family of planes the two limit
ing planes just touch a vertex of the bounding polyhedron and thus con
tain just one possible solution compatible with all the boundary con
ditionso The outermost limiting point is the optimum solution if the
function is to be maximized; the innermost point is optimum if the
function is to be minimiped o Once the geometry is clear in one's mind,
it is easy to visualize the solut1ono But, at present, it is not easy
actually to compute the optimum vertex when there are several dozen
variables and about a hundred boundary faces of the polyhedrono

Production Planning Needed

Important as linear-programming techniques are, they need further
generalization to be able to solve many problems in Operations Researcho
Production planning is an exampleo A factory can produce so many units
of some product each month, but sales of the product are small during

18-8

the summer and very large in December, so large that fall production
cannot equal December sales. One solution is to run the factory over
time during the fall; but overtime production 90sts more than normal
output. Another solution is to produce more during spring and summer
and store it ready for the winter rush; but warehousing also costs money,
in storage and handling charges and in interest on the money tied up. A
third solution of course is to fail to meet orders in December, but this
is a counsel of despairo

It should be evident by now that this is also a linear-programming
problem. The variables are the regular production each month and the
overtime production each month. The excess of production over sales each
month is warehoused o The boundary conditions are the limits on the pro
duction and overtime production each month and the additional require
ments that the total production from the first of the year shall never
be less than total sales from the first of the year. The quantity to be
minimized is the total cost, including overtime charges and warehousing
charges.

As stated, this is a straightforward linear programming problem, if
we can predict exactly our sales throughout the coming yearo If our -
sales forecast is exact, we can proceed to find the distribution of pro
duction and overtime production each month to minimize total costs and
to satisfy all forecast saleso The trouble is we never know exactly
what the sales are going to be, and if we have underestimated them, we
will not be able to meet orders; if we have overestimated them, we will
end the year with unsold product in our warehottseo All we really have'
is a probability distribution of expected sales; to put it pictorially,
some of the sides of the bounding polygon are fuzzy, not sharp.

Problema of -Bounded Optimization"

At present, our techniques of solution are not adequate for such
problems, nor are they if the function to be optimized is not a linear
function of the variableso Such more general problems might be called
problems of bounded optimizationo The problems are clear, but a great
deal of further analysis and devising of computational techniques is
needed before solutions can be obtained with the requisite ease o Speed
of solution is needed here, for in many cases we wish to find a whole
sequence of solutions as we vary some of the limits: What happens if we
build another factory, or if we close down our factory in August, for
example? When solutions of problems of bounded optimization are easy to
obtain, many tough problems of planning, of production, of sales effort,
of logistiCS, and so on, will be easier to solve o

Another kind of problem for which a mathematical model can be built
came up first in naval operations research but has numerous business
analogs 0 It concerns the operation of "search" for an enemy vessel, or
submarine, or aircraft.. The enemy is somewhere in a given area of the
seao How do you deploy your aircraft to find him? The central idea here
is the "rate of search o

ff A Single plane can see the enemy vessel (by
radar or sonar or visually as the case may be) R miles away, on the

18-9

average. The plane can "sweep" out a band of width 2R as it moves along;
the picture is analogous to a vacuum cleaner, of width 2R, sweeping over
the ocean at a rate equal to the speed of the plane and picking up what
ever comes beneath ito An area equal to the speed of the plane times
twice the mean range of detection will thus be swept in an hour. The
sweep rates of planes vary from a few hundred square miles per hour to
several thousand square miles per hour, depending on the plane, the
radar equipment, and the vessel searched for.

If the enemy is equally likely to be anywhere within a certain
area, then the problem is a straightforward geometrical one. The
search effort is evenly laid out over as much of the area,as one has
planes available. The problem is a little complicated by the fact that
detection is not certain at extreme ranges, so the probability of detec
tion falls off near the edge of the swept band and there should be a
certain amount of overlap between bands to improve the chance of detec
tion near the edges.

But if the chance that the enemy is present varies from area to
area, the problem becomes quite difficult; non-mathematical intuition
may lead to quite erroneous use of available effort. For example, if
the enemy is twice as likely to be in one area than in another, then,
if only a small amount of search effort is pOSSible, all this effort
should be spent in searching the more likely area. Iflmore effort is
available, some time can be spent on the less likely area, and so on.
A definite formula can be worked out in each specific case. Search
plans for various contingencies were worked out by the Operations Re
search team attached to the Navy during the war; they materially aided
the naval efforts in many cases.

From War Effort to Industry

It seems a far cry from planes and ships and submarines to industry
and business activitieso But the utility of the mathematical models is
their wide range of ~plicability. One possible business application of
search theory comes in the problem of assignment of sales effort. Sup
pose a business has a limited number of salesmen, who are to cover a
wide variety of dealerso Some of these dealers are large stores, which
usually will produce large orders when visited, same are small stores
with correspondingly smaller sales return. If there are enough sales
men, every dealer can be visited every month, and the optimum number of
sales can be made, although the sales cost will be high. With fewer
salesmen available, search theory indicates that the larger stores
should be visited more often than the small stores; with very few sales
men it may be that only the large stores should be visited. If the
probable return per visit for each store is known, the optimum distri
bution of sales effort can then be calculated.

An interesting and typical variation on this problem comes when we
consider the action of the individual salesmen, when we try to make their
behavior conform to the best over-all distribution for the company. For

18-10

each individual salesman, with his limited effort, it may be best for
him to visit only the large stores; if his visits are uncontrolled-and
~he is paia a flat commdssion, it may turn out that the large stores
are visited too often, the small stores too seldom, for best returns
for the company as a whole o It then becomes necessary to work out a
system of incentive commissions designed to induce the salesmen to
spread their efforts more evenly between large and small customers. It
the general theory has been worked out, this additional complieation ean
be added without too much difficulty.

This problem of balanCing the tendencies of different parts of a
large organization is one which is often encountered in industrial
Operations Researcho The sales force is out to increase sales of all
items, though some items may return less profit than others. Production
resists changeover to making another product, though sales on the other
product are increasing; and the financial department frowns on building
up large inventories, though small inventories always put the production
division at the mercy of sales fluctuations o It is often not too diffi
cult to suboptimize each of these divisions separately, so each is
running smoothly and 'effectively in so far as its own part of the busi
ness is concernedo But to be sure that all these parts mesh together to
make the company as a whole operate most effiCiently requires much more
subtle analysis and very careful quantitative balancingo

In the interest of reducing factory overtime and to keep down in
ventory, for example, it may be necessary to modify the salesman's in
centive commissions, so he will be induced to push one line over another.
It may be necessary for the production division to allOW more overtime
in one department than another, to make some part of its operation run
at less than optimum in order that the over-all operation be optimum;
and one must take care not to penalize the production department, by
reduced tionuses or the like, for reducing its efficiency so that the
effectiveness of the whole is improved o

But perhaps these few simple examples are enough to show that the
research techniques developed to increase our understanding of the
nature of the physical world also can be used to help us 'understand
operational problemso In many cases in industry and war, a simplified
quantitative model of the situation can help us see what goes on and
can help us devise the best way to proceed o In many cases it is not
necessary to have a complete picture of all that goes on, clear down to
all the basic detailso As long as our mathematical model can be ad
justed to fit some of the regularities' which appear, we can abstract
these parts of the behavior from the rest and study them separately.
The process of abstraction, of keeping clear of local details, has the
advantage of providing a model which may fit a Variety of circumstances -
restaurants, production lines, or landing aircraft. By gaining in
generality, of course, we lose in detailo

.Perhaps it also can be seen that such methods probably cannot be
used to solve all problems o Just as it is quite unlikely that the
methods of analysis used so successfully in genetics can be used to
solve all biological problems, for example, so it is unlikely that the

18-11

Operations Research sCientist, with his specialized techniques of analy
sis, can ever replace the usual business executives or army generals,
with their practical experience and their intuitive grasp of the com
plicated effects of morale and applied psychology, for example.

But as new techniques are tried in more and more different fields,
it should become clear what operational situations can be analyzed by
its means and what situations cannot. Already there are Operations
Research teams working closely with military and industrial administra
tors, exploring these possibilities, reporting their findings to the
administrator that he may be able to combine their quantitative results
with his experience and judgment to reach .more understanding decisions.

In general, scientists and engineers have not been active in ad
ministering government or bUSiness. This is not surprising, for the
business of science is to understand, not to act. In Operations Re
search, however, the scientist and engineer can provide a better un~er
standing of operational problems so administrative decisions can be
made wisely.

200 COST REDUCTION THROUGH ELECTRONIC PRODUCTION CONTROL

by

Ro Go Canning

20 - 1

Reprint of paper presented at the semi-annual meeting of the American
Society of Mechanical Engineers, Los Angeles, California, June 28 -
July 2, 1953 and published in the November~ 1953, issue of Mechanical
Engineering 0

Of the four main aspects of cost reduction that come to mind
probably the most common is that of product improvement; redesign of
the product to simplify or eliminate parts9 making for ea~ier fabrica
tion, and so ono The second aspect is methods improvement, a familiar
subject to those in Industrial Engineering; this calls for more effic
ient use of tools~ work spaceS) motions~ and the likeo The third aspect
is better utilization of productive facilities9 this includes production
planning~ loadingg and scheduling~ and covers more efficient decision
making and more effective centrolo The last aspect is reduction of
overhead 9 by the mechanization of the officeo

In a current paper~ Dro MoEo Salvesonl indicates a mathematical
framework for the loading and scheduling of productive facilities 0 The
development of such a mathematical model is most iroportant g because
it would provide production management"'wi-th f"8'sys,tematic means of' determ
ining optimum (or near optimum) loads and scheduleso The application
of mathematical methods in practical situations undoubtedly will depend
to a great extent upon the use of electronic data-processing equipmento
However, the 'introduction of such electronic equipment also can result
in the reduction of overhead by the mechanization of the office, if an
adequate systems design is considered from the outseto

The main points: made in this paper ~are ithatSJ'in :the author'$ opiriion,
the primary value of electronic production control for cost reduction
will be in the form of increased output of product~ using the same pro
ductive facilities (although it is realized that this "intangible"
gain is often harder to sell to management)g then to a lesser extent
electronics also will reduce overhead~ by replacing clerical employeeso

To give a clearer picture of how these cost reductions might come
about and why the two points are so rated g a sketch of an electronic
system designed for one local company that shows promise of meeting
these objectives, and an order of magnitude of these two types of cost
savings, will be presentedo •

1 ftA Computational Technique fer the Scheduling Problem"9 by MoEo
Salveson9 presented at the Semi=Annual Meeting, Los Angeles, California,
June 28-July 29 1953s> of the AMERICAN SOCIETY OF MECANICAL ENGINEERSo

20 -- 2

Mechanization of the Office

For logical sequence of presentation, it will be necessary to con
sider the latter of these two points, the mechanization of the office,
as background material for the first point. One ~f the major object
ives of the project, as set forth b.y Dr. Salveson , is the design of
a master Scheduling computer which will fulfill the functions of
loading and scheduling productdlon()pperations It In attacking the problem
of how to aesign such a machine, it was apparent that a data-handling
system would be necessary for two function: (a) to translate the '
schedule generated by this master computer into specific shop instruc
tion, and (b) to measure and feed back the actual rate of progress, as
initial conditions for the next scheduling computation. The present
state of the electronic-computer art is such that a data system to per
form these functions appears quite feasible even tho~h the design of
the master scheduling computer may not be as yet. iIimrthermorJ9, a data
system might well pay for itself in a short time by means of savings
in clerical salaries, and thus pave the way for the introduction of
the master scheduling computer at a later time.

To investigate this application of electronic machines to pro
duction data processing, a two-phase study was planned. The first
phase was to consist of a number of plant visits to companies in the
Los Angeles area to determine some of the characteristics of those
firms which might be interested in electronic data system, ioeo, number
of employees, type of product, type of production organization, and so
ono The second phase was to locate one firm in the lOG~l area that
met many of these requirements and study it in detail, with the aim of
designing an electronic system to meet its needso Thus we started out
with one objective in mind of "mechanizing the production-control
office" -- we wanted to find out where employees could be replaced
more efficiently by electronic lDfich1nes, and an indication of hoW' many
employees could be so replaced.

The remainder of the paper will be devoted to presenting some of
the conclusions of this two-phase study, with respect to cost reduction.
Based on the results of the first phase of the study, we will first
split the field of production into two main segments, and choose one
of them for analysis; within this segment, we will point out the types
of firms most in need of electronic production-control systems. We
will state briefly the present methods used by such companies and
finally, by the example of the case study, we will show how electronics
more nearly can provide what is desired in the way of B.produ.6tion-
control system: foT.' the' fi.rms 0 ' , , ."

:J ,.... : . t ' ~

. One main . segment of the production field about which much has
been written recently (especially with respect to its probabl~use of
electronics) has been given the name of "automation" -- automatic
materials handling and automatic control of the continuous production

2 "On a Quantitative Method in Production Planning and Scheduling," by
MoEo Salveson, Econometricap vole 20, October, 1952, ppe 554-5900

20 -- 3

lineQ The continuous line appears to be the objective of much of
American industry, in order to achieve mass production and low unit
costo The use of electronics here would be that of control, to re
place some production employees in the routine operations of meter
watching, switch-throwing, and so on. This is an important field and
is receiving considerable attention today, not only by industrial
engineers but also by electronic and servosystem engineerso However,
in a continuous-line plant, a relatively large production-control
staff is usually not neededo The main production problem is estimating
the size of the market (rate of demand) and then adjusting the rate of
production to meet this demand. The small number of clerical employees
in the production-control office does not hold much hope for necessary
cost savings in such firmso

Applying System to Job-Shop Production

Rather, it is the other segment of the production field with which
we will be concerned -- the job-shop operation, stressing customer
service rather than mass production, where a large variety of products
is possible, and production is to customer order rather than to
finished=goods inventory. These are the firms that do have a relatively
large production-control department. The results of the first phase
of the study can be stated briefly. It was evident that job-shop
plants with less than 500 employees probably could not justify the pur
chase of an electronic production-control system; also, certain plants
with over 1000 employees almost certainly could consider the purchase
of such a systemo Firms with over 500 but less than 1000 employees
varied in their need, and would reqUire individual detailed analysis 0 .

It is at this size of plant (over 1000 employees) that the concept of
"freedom of choice" at the foreman level becomes important.

As an illustration of this concept, 'the continuous-line plant
obviously has little freedom of choice as to which job will be worked
on next~ the next job coming aowthe line will be the one. If the
necessary materials do not arrive at the right place at the right time,
the line stops and the general manager of the plant knows about it in
a matter of minutes. At the other extreme, in the large job shop,
there are any number of jobs waiting to be worked on in any department,
and the foreman is faced with the task of choosing which sequence to
work themo

other forms of this "freedom of choice" problem were encountered,
including plants with a large volume of engineering changes (as in the
aircraft firms), a complicated payroll structure where anyone employee
might work on as many as ten different wage rates during a week, and
large-volume inventory control where it is difficult to pick up the
individual disbursements easily.

In the course of these plant visits, one plant stood out above the
others as an interesting one for a detailed study. At this company,
the production-control manager had developed quite an efficient manual
system of production control, by the use of centralized inventor.y

20 - 4

control, a priority system based on due dates, control boards in each
department showing the due dates of the jobs in that department, and
so ono With about 1000 employees in the plant, there were only eight
expediters (or about 008 per cent of the total employees), which com
pares very well with the 2 to 5 per cent figure reported in other
plants 0 It was felt that if an electronic system could "compete" with
the present manual system, this would augur well for the use of elec
tronics in other plantso

The company produces on a job-shop basis -- to customer order,
rather than to finished-goods inventory. A large variety of products
is possible, and individual customer specifications are commono
Since the firm does much of the fabrication of component parts, and all
of the assembly, this means that the loading and scheduling problems
are presento

Now, restricting attention to this type of plant, let us assume
that customer orders are received and processe4o This processing calls
for a fair amount of clerical efrort-- exploding bills of material,
posting requirements, recapping requirements and comparing with in
ventory, deciding whether to enter an order (shop or purchase) to ob
tain the parts, preparing such an order, investigating the status of
raw materials and ordering them if needed. Let us assume that several
thousand such orders are in the plant or in the purchasing department
at anyone timeo To make matters realistic, we will Qonsider that
some of these thousands of orders are behind schedule, owing to machine
breakdown, tooling troubles, reworks, and so o~. Fina+ly, let us con
entrate our attention on the production eontroller, or" chief expediter,
whose responsibility it is to coordinate activities so as to get all
of the parts of one customer order into the assembly department at one
time 0

The Chief Expediter's Job

Under present methods, what are the activit~es of such a ·person?
Obviously there are too many orders in the shop for him to remember
the status of all of them. So decentralization is used; expediters
are assigned to groups of departments to watch the status of orders
within those departmentso One of the main functions of these expediters
is to observe the "exceptions", e.go, orders behind schedule more than
a certain amount, and either take corrective action themselves or re
port the matter to the chief expeditero The other important source
of such "exception" data is from the assembly department, which informs
the chief expediter that certain assemblies cannot be worked since
they have parts missing.

Since there is no regular flow of work withi~ the shop, it is
next to impossible to predict how many shop orders will arrive in any
given department during a dayo Thus bottlenecks can and do develop
overnight: When bottlenecks do occur, the decision must be made im
mediately whether to authorize overtime or send some of the jobs out
side on a suboontract basis. The former course has its obvious draw
backs, while the latter course costs heavily in time, in order for

20 - 5

bids to be r.equesj:;ed, and received, tools and materials shipped to
the outside firm, and so on. Lite often becomes a continuing suc
cession of "putting out fires· tor p~duction-control management.

What Electronics Offers
What does electronics have to offer for such a situation, in so

far as the mechanization of clerical functions is concerned? Fig. 1
is a flow diagram of the proposed method of processing customer orders
at the company studied. The first operation is that of typing a stand
ard sales order from the customer's order. Such items as inspection,
procedure, renegotiation clause, customer code number, and product
code must often be added to the information supplied by the customer.
By using a special electric typewriter, a punched paper tape is ob
tained i~ addition to the regular typed document. This punched paper
tape has the information in a form suitable for direct entr,y into an
electronic data-handling machine. Bills of material are prepunched
into punched cards (which are still important "building blocks" in a
systems design, even with the advent of magnetic tajes, and the like).
The appropriate decks are selected by the operator and fed into the
machine. The machine combines these variable data (quantities, due
dates, and so on) with the standard data and posts them on the require
ments magnetic tape. After all postingtiiware made,. the machine scans
the requirements for each part number, and compares it with the in
ventory data for the same part on the adjacent tape. Parts that may
need ordering can be used for a "loading" computation described by
Dr. Salveson, or the decision on what and how much to order can be
made by the human operator after the machine prints out the facts Qn
these questiollable items.' In addition to storing the order information
inside the machine, we also ask the machine to prepare the customary
papers to which we are accustomed and cannot live without.

What has the machine done so far? Nothing that is not done al
ready by manual methods, except that the operations of writing, com
puting, sorting, selecting, and so on, are done by machine instead of
by clerks. As an important by-prodUct, we have the pertinent inform
ation stored in the machine, where it can be used for other purposeso
In much this same way, information on the progress of shop orders
within the shop can be picked up and stored in the machine. Space
does not permit a discussion of how this is accomplished in the system
we propose, but further details maJ be 0stained directly from the author
or from a special report on the subject.

Now, what does the production controller do with an electronic
system? Fig. 2 is the block diagram of the analysis part of the pro
posed system.

3 ftA Proposed Electronic Data Handling ~ystemfor Production Control",
by RoGo Canning, Research Report No. 10, February, 1953, Industrial
~ggistics Research Project, University of California, Los Angeles,
California

Ditto

Customer

Order

~o= [;j :writ --4 ... ahe.
Tape

'1 .

Pa.rts List
Tub File

1 w
~

!
Purcha e
Reqlln

ssemo
Order

Figure 10 20 = 6

Printe
Report ------~O Human . lJ~nt
1

~.

~orking Memo~

EDHM

Control -"

I----~~)I Working Memo

Shop
Order

Posting Requirements and Ordering'

Shipme'nts by
Due Dates

8
1

Figure 2.

1
(parts Shorta8
~ As:s,embly ;1

Re~-,----------~~I

B~f---()~
Choice

C'ontrol
Board

Schedulin
------------~ ~--------~

Bachine

CONTROL AND EXPEDITING

20 7

20 = 8

To begin with, we see another tub file of puncbed cards; each
card indicates a customer order for one monthe If the customer enters
an order for the same assembly over a period of several months p a
similar card would be prepared for each montho These cards are then
sorted and collated by shipment-due dates. As a first step in the
analysis p the production controller selects the cards from the front
of the deck; these cards represent shipments that are past due, due
this week9 and due during the next two weeks or so. These cards are
then read into the elctronic data-handling machine (EDHM).

How EDHM Works

For each card, the machine then~utomatically refers to one part
of its·· memory 51 a magnetic tape showing how many parts are short for
each assembly order 0 The information is presented graphically so that
the production controller's attention is directed, for example, to
those assembly orders that are past due and have only one part missingo
It is on such critical parts that he will concentrate his attentiono
He then asks the machine to indicate the part numbers of these critical
parts 0

The next step is to find the present status of all shop orders
that are making these critical parts. To do this, the machine auto
matically refers to another magnetic-tape memor.y (there being at least
four such tape units tied to the machine, each storing the equivalent
of 129000 punched cards). After t~is step, the production controller
is able to concentrate his attention on the critical shop orders.

Notice the difference between the present manual systems and the
electronic system. In the manual systems, no one man can keep track
of the status of all orders in the shop, so that this function is
split up between a number of men. In the electronic system, the machine
has all the information available and presents the desireQ infol'lilation
on demand to the production controller, for his decisiono Except for
this~ however~ the electronic system is still not too different from
the present manual methods using clerical help. The system so tar,
then, is the mechanization of the office.

Perhaps the reader is questioning why we have mixed up punched
cards with magnetic tapes -- why not all or the other? Punched cards
are still very useful for the operations of printing, sorting. and
collating datao Also, they constitute an economical and efficient
form of data storage where sequential access from small decks of cards
is sufficient and where few changes occur in the data; it is hard to
"erase" a hole in a card, for example. Magnetic tapes, on the other
hand~ have the advantage of automatic look-up (called random access),
ease of erasing and changing the data, and no need for the machine
operator constantly to feed new decks of cards into the machineo It
is likely that for some years to come, electronic data-processing
systems will make use of both metbodsQ

20 - 9

The Scheduling Problem

Now let us consider the scheduling problem -- the antioipation of
bottlenecks and the decisions on the most effective corrective actions
needed. As was pointed out earlier, the large number of shop orders
and other variables cause this to be a difficult decision-making
prpblem for the production controllet. Owing to the limited memory
span of the human mind, the number of ¥ariables that enter into these
decisions must be reduced to the point where one person can comprehend
them.

Stmplirication of the manual scheduling operation is accomplished
as follows: The main criterion of priority fo.r a shop order is due
date -- primarily, the date on which it must be ready for the assembly
department, and then the individual operation due dates which must
be met in order to achieve the final due date. If the shop order is
for parts that are':hold'~pg'up tbA.L eompmetd!6n" of, anrasselJlbly:,' ~'~igher
priority can be given by setting back the individual operation due
date until there is no other:jbb in the department with an earlier
date. However, if the coordination of several shop orders is involved,
to make them all arrive at the assembly department at the same time,
this is often too complicated a situation to solve mentally with any
degree of accuracy" owing to all the interactions. The time esttmate~
for a shop order to progress through several operations is not cal
culated from standard times plus waiting t~es, but is likely to be
an 'average "fl~w time" based on experience. Thus "rules of thumb"
must be used, and the expediters concentrate their attention on the
"exceptionft orders.

It is in such a situation that eleotronics begins to show a marked
advantage over manual methods. An important feature of the system is
that very little additional eqUipment is needed for this function,
since all tne pert!i:nent production data are stored already in:-.the
machine.

Referring again to Fig. 2, ve have added a block called the
scheduling machineo For those familiar vith industrial engineering,
this machine is an electronic analog of the well-known Gantt chart.
For those not familiar with Gantt eharts, let us say that the scheduling
machine assigns shop orders to machine tools in just the same decision
making manner as is done in the shop -- only on a much faster time
scale 0 The machine is then able to deduce logically what is most
likely to be happening in the shop for each hour during the next few
weeks.

The scheduling machine is first loaded from the shop-order status
tape, which gives an up-to-date picture of the status of each shop
order. The maohine then starts working its way into the future, hour
by hour. When a machine tool is available, the scheduling machine
scans through all waiting shop orders and picks the "one" with the
highest priority that is slated to go on that type of machine tool.
At any desired time, the machine can stop working its way into the
future and total up the number of shop orders waiting in eaoh ~epartment,

20 - 10

to give a picture of scheduled versus available hours.

When a future bottleneck becomes apparent, the production con
troller has several choices, in order to smooth out the peaks and
valleys: changing priorities to move some jobs faster, overtime work,
sending certain jobs outside on subcontract well in advance of when
the bottleneck would occur, and so on. By "playing" with the schedule
in this way, it is believed that he can derive a satisfactory schedule
for the next week or two. Also, he can get a rough idea of the future
by letting the machine run out a month or two in advance. A rough
estimate of the time scale is 15 min. machine time for 40 hr. shop
tiroeQ

Therefore, two brief (and, it is hoped important) stat~ents
can be made about the contribution of electronics to the scheduling
problem: The electronic lDachine helps the production controller 'to' , , ..
include more of the important variables into his decision-making
process, instead of using simplifications and "rules of thumb", Also,
the scheduling machine allows the production controller to see the
consequences of several alternative decisions, and to choose the dec
ision with the better consequences. Bottlenecks and valleys can be
foreseen and corrective action started in time to do some good. We
feel confident that a better utilization of production facilities will
be realized from such a system, with resultant savings even greater
than those obtained from mechanization of clerical operations.

Possible Cost Reductions

The question then arises -- what is the magnitude of cost re
ductions that an electronic system might produce? Educated estimates
only are available so faro At the company studied, it is estimated
that the functions of about 14 of the 29 people now in production
control could be handled by machine. This direct saving from salaries
and overhead would amount to some $175,000 or more, in 2 1/2 years.
Since the company's product output in 2 1/2 years would be in the
neighborhood of (~ndthis is an estimate based on the number of direct
labor employees) $12 9000,000, even a 3 per cent increase in output
from the reduction of bottlenecks and more optimum scheduling and
loading would mean a saving of about $360,000, or about twice as much
as the clerical savingso The two savings total some $535,000, in
2 1/2 years, and the cost of the ~quipment is estimated to be between
$250 pOOO and $300,0000

Conclusion

This paper gives an idea of how an electronic s.ystem could take
over many of the routine clerical operations in production control,
and to assist in some o£ the nonroutine operationso However, space
does not permit a discussion of some of the more interesting issues
such as how a particular company can determine whether or not elec
tronics would be of interest tb the management. Nor has it been

20 - 11

possible to consider the likely and very important reactions of em
ployees, unions, supervisors, and top management to the idea of such
a system, or the possible changes in a company's way of doing business.
These are questions requiring further investigation as actual ap
plications are made.

Summary of Specifications for

TAC ~- a Three-Address Computer

24-1

TAC is a hypothetical computer developed for use in ~T·s special summer
program in Digital Computers: Business Applications, August~ 19540 A compiler
interpreter program for ~·s Whirlwind I permits Whirlwind to simulate TACo

TAC Definitions

A character is any of the following letters, digits, superscripts, symbols, or
machine functions, comprising the complete vocabulary of the MIT Flexo
writers (augmented by , and ~)o

T ~ I - /) ~ + 0 I 0 2 4 6 8 0 2 4 e e a boooZ

'R B' 'H _~ ~ (_ == fJ I s 1 3 5 7 9 1 S 5 7 9 A Bo 00 Z

(where ~ = return carriage, ! = tab (stops every 10th space), ~ = back space,
Q = color shift (starts black), H = stop, 1 = ignore, § = space)

A ~ consists of nine characters, which are identified from left to right by
the letters abc d e f g h i or by the digits 1 to 90

A number is a word in which the first character, a, is -, +, or 0 and each of
the remaining eight characters bcdefghi: is'-,o~e"of' nine digits 0, l~- 2,0 II. ,9,
forming an a-digit decimal integero

An instruction is a word in which the first characte~~, represents one of the
fifteen operations listed below and the remaining characters, paired, form
four "addresses"o The scheme is shown below:

I a t be c 1 die #L f j: 'g 1 h 1 i I
Operation'cha;tcter ~ :j"~ rAddress~f next" instruction .

, { (except in C, X, I) Address of first operand except
in N, L, R, P, T) Address to which result'is 'sent

Address of second operand' (except in C, X, P, "R, I)

An address normally' refers to one of 110 registers which are numbered 00,01,
000, 99, xC, xl, .OQ, x90 However, there are certain exceptions to this:

(1) The bc address associated with operations N, L, R, P and T is omitted,
and the characters are used as a continuation of the operation des

'ignation (see e.go N+, N- below);
(2) The fg address for operation P'is omitted and the characters are

used' to continue operation specification;
(3) The registers xl and x2 can be treated as a single register for cer

tain purposes and this register is denoted by the address xxo For
operations A, S, N, D or ~, the '-contents. of xx will be treated as
a single l6~digit number, ~rovided that xl and x2 both contain 8-
digit numbers having the swme sign. Thus if xl contains +12345678
and x2eontains +98765432, then xx will be deemed to contain
+12345678987654320

We note that address xC always contains exactly zeroo A post,mortem (see
below) will always occur if any instruction contains an address which is
not legitimate accoding to the above rules.

A post-mortem is performed automatically whenever TAC encounters ahY impossible
instruction (ifr'particular, any word not starting with one of 15 legit1:ma.te
operation code letters, or containing an illegitimate address~ or violating
the special conditions listed. oftpages 2:&~o The post-mortem consists of
printing the location of the illegitimate instruction itselfw the contents
of the registers it refers to, a sequence table listing the locations of
the instructions performed just prior to the post-mortem, and an altered
word table listing the contents of all of the registers whose contents have
been altered during the progr~o

The time required to perform a given instruction may be calculated from the
following £acts: TAe storage consists of a magnetic drum with 4 groups of 25
words (0=24~ 25=49$) 50""'74~ 75=99) revolving at 40 revolutions per second (1 milli ...
second per word)p access to the x registers is one word time (no waiting time
required)~ andTAC always follows the control sequence: it acquires the instruc
tion~ acquires the operand(s*)~perfor.ms the required operation (in the number of
word times indicated in the following list), and stores the result(s*) (omitting
any storage accesses where none is required~ as with the bc address of N, L, R,
P, or '1')0

*if two references to the drum are required to acquire operands or store results,
TAC searches for both simultaneously!) so that the time required is the longer of
the two access times computed independently 0

Symbols Used

abcdefghi represents the nine characters of a TAC wordo

C() represents "contents of"., Thus e{be) represents ftthe contents of the reg
ister whose address is bc il (where b and c~ the second and third characters
of the instruction, must each be either one of the decimal digits or the
letter x)o

.... represents "becomes the new contents ofno Consequently; C(be)+C(de)~fg
should be read as "the contents of be plus the contents of de becomes the new
contents of register fg$) replacing whatever was in fg but not changing what
is in be or deo

xx represents TACgs double-length register made by pairing xl and x20

:> represents "is greater than"o -< represents "is less than"o

10c (read as "ten to the Off) represents a one followed by c zeroso (for example
lOS := 1009000) 0

TAO Instruction Code

Function Post-Mortem will occur .
Read'R:5 / char 0 ; ReaP.: ; eno'ugh characters from pUnched If ,there is not enough tape

tape to fill the positions numbered or if tape contains illegal

Print P 10/charo

Tape
Read

Tape
Write

Tr 30/block

Tw

Input I 5/char.

Halt H

b thru c in register de, without characters 9 or if b=O It_ ~r ;f
changing the other digits of e (de) ~ c=O or if b)c or if :lii~ not

a legitimate address~-"
(ignores delet;i.ons ~ deals properly W1 th upper arui"lower case p but
reads all other characters including back spaces, underlines, tabs,
and carriage returns explicitly, and ¢ and ~ are each read as 3
characters) 0

Print the characters in the positions "unless b=l~ 2~0009 9 and
numbered b thru c in register de, pre· . c=l~ 290~0' 9 and
ceded by the character f and followed de is a legitimate addresso(~6rX~)
by go Ol" if b'>C.

read 10 words from block de (or from
next consecutive block if de=OO) on
tape unit c into registers fg~ fg+l~

_O!Ol !~9 ____ = == ~ _ ~ ~ __ _

write 10 words onto block de (or o~to
next consecutive block if de=OO) on
unit c from registers fg~ fg+l~ooo
fg+9

Without altering the present contents
of storage p start reading a punched
tape containing a TAe program in con=
ventional formp ending by taking the
next instruction from the address pre c

ceding "start" at the end of thetapec

unless b="w or r

"
"

c=19 2 9, 3~ 4 and.t
fg=OO, 01,000, 90 or
xO

n de=OOp Olpooo, or 40
if de=OO & block 40 has been
just read or writteno

stan camnutin~o Start at hi onlv if the start button is denresseda

24=3

Add 10* if the magnitude of the result exceeds
99 p999 p999 (or 99 999 9999 9999 9999,999 if
tg=xx)

------+-r--+--:---~-~_--_--I2. if bc=xx or de=xx or fg=xx and (be) and (de)
S 2 C(bo)-C(de)-+f'g are not both numberso

A 2 C(Bc)+C(de)-.fg

Subtract
30 if the column-by-column addition or subtracti~

involves any non-digit N in any arithmetic
operation other than I+O=N, N-O=N, or N-N=Oo
(see next page for details) _ __

""''"_.

Multiply M 10 C(bc)xC(de)-.fg 10* if magnitude of result exceeds 99,999 9999
(or 9p9999999,999,999.999 if fg=xx)

D 25 C(bc)+C(de)-+fg 2a.in M and D only, unless eCbc) and C(de) are
(auotient rounded)

Divide

Numerical I both numbers 0

Shift Left N+ 2 C(de)x10c fg 2b. in N only, unless b=+ or , c=decima1 digiti'
.- - - ~ - - -I- - - - e - - - - - -- and C(de)=a numbero

Shift Right N- 2 C(de),plO "fg 3. in D only, if de=xx

Compare C 2 Take next instruction * ifC(bc) andC(de) are not both numberso
Numerically from: fg if C (bc) > C (de) ,

hi if CCbc) < Cede) 9 or
next register consec~
utive1y if C(bc)=C(de)o

Logical
Shift

L 2 Shift Cede) and C(fg) ~less b=+ or -p c=O, 1, 0009 or 9; and de and

Compare
Logically

K 2

cyclically c p1aces(left fg are legitimate addresses.
if b is +, right if b is -)0 or if bc, de, or fg=xxo
~b=+ b=- ..

d de H fig"

Take next instruction *
from fg if C(bc)t- C(de), if bc, de, or fg=xx ..
hi if C(bc) -< Cede), or ..
next register consecu
tively if e(bc) is ident-
ical '>lith e (de ~. b 1 "

-...........here the sy!!! 0 "-
~ is defined as follows: Compare the characters of e(bc) with those
of Cede) column-by-column from the left end until identity is established
or until one character is found to be to the right of the other in the
list belowi'** in which case the Hord containing said character is said

________ ~ __ +-~t~o~b~e~gr~e~a~t~e=r~th=a=n~t=h=e~ot~h=e~r~l~o£gi~c~a=.1=l~Y~·~~~ ___________________________ .

In those columns, and only thoseS! .in WhiC1' *of bc de f _ Extract E 2
Cede) has odd characters (listed in the ~ ~ , or g-xx
lower line of the two lines be1ow**)g. ._
replace the charact.er~ of C(fg) by the characters occupying corresponding
columns in C(bc)g w~thout altering the other characters in C(fg)o

** smallf even~ T Q I .~ /) - + • I 0 2 4 6 8 0 2 4 e a
end L Q~i R B H g : (:: I S

i 0 Register ~ contains "UOOOOOOOO;- If ~n instruc ~on a emp s 0 pu 0

into it~ the information is loste No Post-Mortem occurSo

large
end

20 The next instruction is taken from hi (unless otherwise specified in operations C and
K) except in 10

30 A Post-Mortem always occurs if hi is not a legitimate address (except in I,and 1:1 H
if not restarted)o

* A Post ~1ortem ocours on A9 S9 M~ D9 C9 K, and E unless bcS) de g and fg are all legitimate
addresses 0

Summary of Specifications for

SAC = a Single~Address Computer

SAC is the 1954 version of the Summer Session Computer of 1953 9 which
was developed for summer classeso SAC is the Summer Session Computer without
tloating=point numbers but with auxiliary magnetic tapes for a larger amount
of storageo

SAC Definitions

A word is either an instruction or an integer written to be stored in one
registero Each register holds 27 binary digits and a signe

An integer is composed of 27 binary digits and a signo Hence its magnitude

must be less than 227: l34p2l7~728 which is somewhat greater than 108
0

Hence SAC integers may be thought of as being 8 decimal digits longo
They are written as a ... or a ~ sign (the + may be omitted) and 1 to 8
decimal digitsp followed by carriage returns or tabso

An instruction is made up of an operation section and an address section p and
possibly a "counter lettern to add the value of a counter to the v$lue
of the address before executione Instructions are followed by tabs or
carriage returnso

An operation is indicated by a code of three lower-case letters as given on
pages 3 and 40

An address may be either absolute or symbolico An absolute address is any
integer from 0 to 298 (since SAC has 299 registers) 0 U'singw theee'~' intege:cs p words
are assigned to registers uSinglthe address followed by a vertical bar~

102 add 15
A symbolic address is a single lower-case letter (except £ or 1) followed
by one to three decimal digitso It is used to "tagn registers which are
referred to by the program and are written:

ccf b3
The r~gister referred to is tagged by the address and a commag

, b3g+750
To correct a program and assign a new word to a previously used registerp
the tag is written with a vertical bar instead of a commag

b3 +700
If the register to be changed has no tagp a count from the nearest tag
may be added to that tag and written with a vertical barg

b3+51 +2
In either case~ words from this point on (after the correction) will
overwrite the registers following bJ or bJ+50 Counter letters (ap b p Cp

d g e 9 fp or g) do not alter the actual instructions in the store but
rather cause the instruction to refer to a register with an address which
is the sum of the address section of the instruction and the value of
the counter called for at the time g! execution of the instructiono

A post=mortem may be of two typesg conversion or computationo A conversion
post-mortem occurs when the program which changes the SAC program into
Whirlwind language finds a gross error on the tapeo Such errors may be
1) unassigned symbolic address~ 2) undefined instruction, J) duplicate
symbolic address p 4) absolute address too large9 5) program longer than
289 words plus the 10 fixed constants~ 6) integer too largep 7) number in
symbolic address too largep and 8) no counter letter on operations rst~
jii9 jic, inc p deep and ciio Computation post-mortems occur during the
execution of the program and are defined for each instructiono See pages
Jf) 49 and 50

25=2

SAC Equipment

SAC is intended to be representative of the general field of single=
address digital computerso It doesn't exist as a configuration of electron
tubes and wire~ though 0 It is simulated through compiler~interpreter programs
on MoIoTo~s Whirlwind I computero It has a speed of about 3000 operations
per secondo SAC has 289 registers to hold integers or instructions and 10
registers with fixed constantso Input is by means of tape prepared on the
Flexowriter tape perforating equipment and read through a Photoelectric
Tape Readero Output is provided by three different deviceso Through the
oscilloscope and the camerap curves may by plotted point b.Y point and photo=
graphed for permanent recordo Information may be typed in two waysp either
on a typewriter directly connected to the machine or on special magnetic
tape for typing at a later time (recording is done at a much higher speed
than direct typing)o

The whole computer centers around the arithmetic element p which is
made up of an accumulator twice as long as a register~ capable of holding
54 binary digits (which means it may hold an integer whose maximum value is

about 18 x 1015)9 and the remainder register to hold the remainder after a
dhr instructiono SAC has an auxiliary store composed of four magnetic
tape units~ each capable of storing 990 wordso They may be used only through
the SAC instructions mts 9 !!E: 9 and mtw"

Data may be placed in the machine in two wayso The prepared program
tape may be read into the machine by placing the machine in the loading
mode by pressing the READ=IN button, or by using the rip instructiono
C·omplete words 9 terminated by tabs or carriage returns 9 may be read in using
the rin instructiono Both instructions read Flexowriter tape in the PETRo

A program is prepared on the Flexowriter typewriter which punches a
tape as the tyPewriter operateso There are four parts to the programg

1) the title linep written as f2s 198=4~- = --~ and some identitying
information 0 The first set of holes on the actual tape must correspond to
an.fo The title line is followed by a carriage returno

2) the actual words of the programp each terminated by tabs or carriage
returns p using symbolic or absolute addresses as desired"

3) tags on the words as needed p or absolute addresses when desiredo

4) an order telling the computer at which instruction the program is
to begin being executed p using either a71 start if a tag has been assigned
to the word to be started at9 or a2+61 start if the word has no tag but one
is near p or an absolute address 271 start 0

INTRUCo

ccf a1 b

eei a1 b

en! a1 b

emf' a1 b

er! a1 b

xoh a1 b

add al b

sub a1 b

mby a1 b

dby a1 b

dhr al b

jmp a1 b

jip a1 b

jma1 b

jiz a1 b

jir a1 b

jix a1 b

ara a1 b

cat a1 b

cal a1 b

rS,t"m b

jii a1 b

jic a1 b

inc m b

dec m b

~ii alb

MEANING

copy contents from

copy contents into

copy negative from

copy magnitude from

copy remainder into

exchange
add+

+ subtrs.ct

multiply by

divide by

divide holding
remainder

jump

jump it positive

jump it negative

jump if zero

jump if remainder/

jump if excess

set return address**

copy address fro~

copy address ~nto**

reset (counter b)

jump if incomplete

jump if complete

increase (counter b)

decrease (counter b)

copy index into

INSTRUCTION CODE OF THE SINGLE ADDRESS COMPUTER (SAC)

DEFINITION

C(al+~)~AC

C(AC)=+ a1+~

=C(al+~)~AC

IC(a1+~)I~~ AC

C{RR)~a1+~

C(AC)~a1+~9 C(al+ib)~AC

C(AC) + C(a1+ib)~AC

C(AC) = C{al+~)-+AC

C{AC) x C{al+ib)-+AC .

divide C(AC) by C(a1+i
b

) ~ rounded quotient=:)AC.

divide C(AC) by C{al+ib) 9 quotient~AC,
remainder ~ RR

take next instruction trom al+i
b

ditto$) it C(AC)) 0

ditto, if C{AC) (0

ditto-9 it C{AC) :: 0

ditto$) if C(RR) F 0

ditto9 if "C(AC) ~ 227

replace address section of C(a1+~) with 1 + the
address of the register containing the most recent
jump or conditional jump which took effect

address section only (as an integer) ot C(a1+ib)=JAC

addrEf'ss section ot C{AC)=t>al+~ as address section.

set ~ := 0 9 "~ :: m

increase,~ by 19 then jump to a1 if ~ <. ~
increase i b , by 19 then jump to a1 it ib ~ nb

increase both ~ and ~ by m

d$orease both ~ and ~ by m

~ as an integer~al

TIME
{mso}

001

001

001

001

001

001

001

001
10S++

10S++

105++

001

001

001

001

001

001

001

0 0 1

001

001

001

001

001

001

001

POST=MORTEM*:1t

14

29 59 9
149 15
149 15
5 +.

29 59 99 14
1, 39 49 99 14
I, 4~ 99 13 9 14
19 12

119 12

II$) 12

17

10 9 17"
10 9 17
10 9 17

17
109 17

59 16

59 16

59 79 99 16
19
179 18
179 18

189 19

189 19

5

IN'I'RUCo

pat a1 b

MEANING

plot a1

DEFINrrION

plot a point on the scope ~t x ~ C(al+~) & y ~ C{AC)
(sea drawing on page 4)

frc 0 frame (scope) camera move the next film trame into place and open the
camera shutter if it was closed

ric 0 read in character readOthe next oharo via the PETR into AC as a
positive integer~ 77

rin 0 read in numerically read the next complete integer via the PETR
into AC

rip 0 read in program read in program via paper tape in PETR~ storing
and starting as directed by new program

mts mno bmagnetic tape search search magnetic tape unit mfor block no and stop at
beginning of blockc If no~009 select next block in
order"

mtr a1 b magnetic tape read

mtw a1 b magnetic tape write

tyc m type character
tyc 100+m

tyn m type numerical value
tyn lO(}fm:

'stp 0 stop

read from most recently selected magnetic tape unit
and block into registers al+~9 al+i

b
+l p cof),al+i

b
+9

write on most recentlY selected magnetic tape unit
and block from registers al+~p al+~+19coC>9al+~+9

record on delayed printer (m)9 or on direct printer
(lOO+m)9the Flexoo char 0 specified by the integer m

record on delayed printer (m)por on direct printer
(IOO+m)9C(AC) as specified by m (see table pege 4)

stop the computation

TIME
(mso)

1

500

100

400

+++

+++

+++

~G15
100

*(30 400

POST=MORTEM*1f

6~ 12

(Compo stop~ it
no tape in PETR)

1 (also see
ric above)

22 (also see
ric above)

239 24

25 9 27

26 9 27

20

29 lOp 21

~ne programmtng mistakes which result in a post=mortem are listed on the next pageo A post=mortem results while per=
forming an ipstruction if any of the programming mistakes listed with that instruction are madeo A post=mortem will
always occur it (al+~) ~300 or if (al+J.o) < 00

~®n executing this instruo~j.on9 a counter letterp if' anY9 is not considered part of the address-section of the
instruction in register al+ibo ",

~'Afi integ$:gv may be added to an instruction or vice=versal! but an integer may be subtracted only from: an instructiono
Two instrnCltions with identlCJal ope~ations se~tions may be subtracted to get an integero

c(»9}-A multipli©ation ?r dlvisio~ instruction in whi©h the register referred to (register al +ib) is 290+p where O~ p' 8
(so that th, result1ng operat10n :1s a decimal shift) takes 001 (p+l) millisecondso .

'~'4>{>T1me .for magneti~ ta~ instru~tionsg 10 mao per block read or written~ plus 10 mso eacho time _tap~ stop~o Searching,~,
time 1$ the same as the time to read all intervening blocks 9 but computer operation mayo©~ursfmult~eouslYo

$Long~r/tfme applies to dire©t printing9 shorter time to delayed printing (via special magnetic tape)o

80
90
lao
110
120
130

140

PROGRAMMING MISTAKES which cause a POST=MORTEM

Result is an integer of magnitude ~ 2~~ 150 C(a1+~) is an instruction
Result is an integer of magnitude ~ 2 16$ C(al+ib) is not an instruction
C(AC) and C(a1+~) are both instructions 170 C(al+~) is not- an instruction and the jump takes effect
Result is instruction with address) 499 (the Post=Mortem will occur after the jump is executed)
a1+i.",.~ 290 or al+~ ~O 180 Resulting magnitude of ib~ 512
~ C(Ab')~ ~ 1024 or !~(a1+J"l ~ 1024 190 m} 499
C(AC) is a positive integer>499 200 m ~ 77 or m corresponds to an illegal F1exo character
(or instruction with address<:300) 210 m:;lO or m~20 or m~.30
C(AC) is an instruction 220 First character on new tape is not l,o (Will caUse WI
C(AC) is undefined alarm) (Reader stops after last ~in starto If new pro=
C(AC) is not an integer gram follows~ next character must be !o)
C{al+ib) ~ 0 230 m f 2~ 29 .3 9 or 4
C'(AC) and C(a1+i

b
) are not both integers 240 no ~ 00 and block 99 has just been used

C{al+~) is not an integerS) or instruction 250 a1+~~ 281 or a1+1o = 0
with same operation section as C(AC) 26c a1+~~290
C(a1+~) is undefined' 27c If 'tape is positioned after block 99

Contents ot special registers

0(0)(='+0 '
0(290) = +100 = +1
C(291) = +101 = +10
C(292) = +10; = +100
C(293) = +10 = +1000
C(294) = +104 = +10 9 000

C(295) = +1~ = 1009000
0'(296) = +10~ = 1 9 000',000
0(297) = flO = 10 9000,000
0(298) = +108 ~ 10090009 000
C(299) = undefined

DEFINITIONS OF SYMBOLS

~

AC

0(a1)

becomes the new contents of

Accumulator

Contents of register a10 a1 represents any floating address~ ioeo, any letter except 0 or 19 fol=
lowed by any non=negative decimal integer < 10000

Contents of the register whose address is obtained by adding to a1 the Ta1ue of ibo

The index associated with counter b 9 where b represents any of the 7 counters a9 b~ Cp d 9 e9 r or
go Except for the 6 instructions rst9 jii9 jic9 inc9 dec 9 oii9 a counter letter need ru!! be
specified al10

The criterion associated with counter bo

RR Remainder Register 9 which holds the remainder after ~ and is not changed by any other instructiono

FETR Photo=electric Tape Reader into which is inserted a punched Flexo tape to be read in under control
of thb comnuter"

Tabulation or m Tal~e.s

noo of digits
m initial zeros]2rinted :;;: d

0 ignored 1~d~9

1=9 printed d := m

11=19 spaced over 1~ d~(m=lO)

EXaIDE1es alAC} := 12~!t C(AC) = =789

tynO 1234 =789

tynlO3 Post"';Mortem =789

tyn5 01234 =00789

tynl16 **1234 **-=789

* represents space on printed copy

for use with3n

total s12ace
poso nego

d d + 1

An m ... 1

m=lO m= 9

C(AC2 illi: a
0

000

00000

*****0

zero prints
~

a
Post=Mortem it

m OVs le(Ae)l~lOm
see examples Ie (AC)1~20m=lO

Delayed/Direct

Delayed

Direct

Dela.yed

Direct

Calibration of Scope Face tor Eat Instruction

Area a'f'ailable
tor plotting

A Selected BibliographY of Material
Relevant to Business Anolications of Computers

PROCEEDINGS 0]' CONFERENCES AlW SDIPOSIA

Joint AIEE-Il~-ACM Computer Conference Renor~s

26-1

(Available from the Association for Computing Machinery, 2 East 63rd St.,
New York, NoY.)

10 Trends in Computers: Automatic Control and Data Processing (Western
Computer Conference, Los Angeles, Calif., Feb~ 11-12, 1954, $3.00)

Keynote and Luncheon Addresses
a. Will Electronic Principles Make Possible a Business Revolution

WD W. McDowell, p.9
b. Trends in Electronic Business Data Systems Development,

Dean Eo Wooldridge, po 16

Session II-Data Processing Systems
c. The Automatic Handling of Business Data, Oliver Whitby, po 75
do Introductiont Richard Go Canning, po 80
eo Ready-to-Wear Unit Control Procedure, S .. J. Shaffer, po :32
fo Unit Control Systems Engineering, Raymond DaViS, po 89
go A Solution for Automatic Unit Control, Harry Do Huskey, po 96
h. The Bystem in Operation, Myron Jo Mendelson, po 98
Session IV-Data Processing Equipment
i. The IBM Magnetic Drum Calculator ~Tne 650-Engineering and Design

Considerations, Eo So Hughes, Jr. 5 p.-..140
j. Design]leatures of Remington Rand Speed Tally, John Lo Hill, p. 155
k" Production Control With the Elecom 125, Norm?>!). Grieser, po 163
I. A Centralized Data Processing System, Jerome J. Dover, po 172
mo A Merchandise Control System, William Lo Martin, po 184

"00" 0 .and 10 other articles

20 Proceedings of the Western Computer Conference
(Los Angeles, Califo,]leb. 4-6,1953, $3.50)

Session I
a~ Commercia.l Applications -- Ifhe Implication of Census Experience

Jo Lo McPherson, po 4q
b 0 Pa.yroll Accounting' with Elecom 120 Comnuter J H. F .. Shaw II p'. 54
co Automatic Data Processing in Larger Manufacturing Plants

M .. E" Salveson and R" tr. Canning. po h'1
d. Requirements of the Bureau of Old-Age and Survivors Insurance for

Electronic Data Processing ~quipment, :roo Eo Stickell, po 74
eo The Processing of Information-Containing Documents» Go We Brown and

L .. No Ridenour, po 80
eoooooand 18 other articles

3. Proceedings of the Eastern Joint Computer Conference
(Washington p DoC., Deco 8-10p 1953, $3000)

Use of Electronic Data-Processing Systems in the Life Insurance
Brisiness» Mo Eo Davis!) po 11

0" ... 0 .and 23 other articles

PROCEEDINGS 0]' COmERENCES AN"D SYMPOSIA - Cont.

4. Review of Input and Output Equipment Used in Computing Systems
(New York, N.Y., Dec. 10-12, 1952, $4.00)
27 articles

50 Review of Electronic Digital Comnuters
(Philadelphia, Pa., Dec. 10-12, i951, $3.50)

Proceedings of the Association for Computing Machinery

(Available from the Association for Computing Machinery, 2 E. 63rd St,
New York, N. Y.)

60 Meeting at Toronto, Ont., Sept. 8~10, 1952 - 35 articles ($3.00)

7. Meeting at Pittsburgh, Pa., May 2 and 3, 1952 - 41 articles ($4.00)

See also Journal of the ACM, 123 below

American Management Association

26-2

(Available from American Management Assn., 330 W. 42nd St., New York 36, N.Y.)

8. A"IvIoAo Special Conference - Integrating the Office for Electronics
(Convention Workbook, Feb. 25-26, 1954, New York, N.Y., Not for sale)
Contains good bibliography of references.

9. A New Approach to Office Mechanization: Integrated Data Processing
Through Common Langua.ge Machines - The U.S. Steel Corp. Program
$2.50 to non-members

lfayy Mathematica.l Computing Advisory; Panel Meetinf::s

(Published by the Office of Naval Research, Dept. of the navy,
Washington, Do Co)

10. Symposium on Managerial Aspects of Digital Computer Installations
30 Ma.rch 1953·

II. A Symposium on Commercially Available General-Purpose Electronic
Digital Computers of Moderate Price - l~ May 1952

Life Office Management Association

12. Electronics Seminar, Papers presented at Spring Conference,
Swampscott, Mass., ~~y 25. 1953 (Not for sale)

Midwest Research Institute (Kansas City, Mo.)

13. A Symposium on Industrial Applications of Automatic Computing
Equipment, Jan., 1953

Railway Systems and Procedures Assn.

14. Proceedings 1954 Spring Meeting: Inventory Management and Data
Processing (Chicago. Ill~, April 20-22, 1954, $4.50, Copies
obtainable from: Mro J. W. Milliken, Secretary-Treasurer, Railway
Systems and Procedures Assn q P. 00 Box 514, .New York 8, N.Y.)

Manchester University Computer

150 Inaugural Conference, July, 1951

26-3
SURVEYS

16. A Survey of Automatic Digital Computers - Office of Naval Research-
1953 (Available from US Dept. of Commerce, Office of Technical Services.
Washington 25. D. Co. $2.00)

17. Electronic Digital Computer Survey - Jan 0 1953
(Vitro Corp. of America, 233 Broadway, New York 7. NoYo)

GLOSSARIES

18. Report to the Association for Computing Machinery: First Glossary of
ProgrAmming Terminology - June 1954
(Ava.ilable from the ACM, 2 East 63rd St. New York 36. N.Y., $.25)

19. Standards on Electronic Computers: Definitions of Terms, 19.50
(Available from IRE, 1 East 79 St., New York 21, N.Y., $.75)

RWPORTS

20. Electronics - New Horizon in Retailing
Research Report prepared by a group of students at the Harvard Grad.
S.chool of Business Administration
(Available from !ER Associates, 6450 Cecil Ave., Clayton 5, Mo.-$lO.OO)

21. Electronic Business Machines - A New Tool for Management
Report of a group of Harvard Business School students for second-year
course in Manufacturing

22. Report of Committee on New Recording Means and C.omputing Devices
Society of Actuaries, Sept., 1952

. COMPUTER JOURNALS

23. Journal of the Association for Computing Machinery (Published
Quarterly since Jan. 1954, subscriptions $5.00 for members; $10.00 for
non-members; membership, including subscription, $6.00)

24. Computers and Automa.tion (Edmund C. Berkeley and Associates, 36 West
11th St ... New York II, N.Y •• - $4.50/yr Q published periodically; now
to be published monthly)

BOOKS

25. Berkelyp Edmund C., Giant Brains or Machines that Think
John Wiley and Sons Inc., 440 Fourth Ave., New York, N.Y. (1949)

26. Booth and Booth, Automatic Digi tal Calculators
Academic :flress Inc., 125 East 23rd St q New York 10, NoY. (.1953)

270 Bowden, B. V. t Faster Than Thought
Pitman Publishing Corp., 2 West 45 St., New York, N.Y. (1953)

280 Diebold, John, Automation
D Vah Nostrand Coo Inc., New York, N.Y. (1952)

29. Engineering Research Associates, High Speed Computing Devices
McGraw-Hill Book Co 0, New York, IT. Yo (1950)

30. Hartree, Douglas R~ Calculating Instruments and Machines
Irhe University of Illinois Press, Urbana, Illinois (1949)

BOOKS, Cont. 26-4

31. Wiener, Norbert, The Human Use of Human Beings
Houghton Miffling CO. t Boston (1950)

32. Wilkes, Wheeler and Gill The Preparation of Programs for an Electronic
Digi tal Computer '
Addison Wesley Press. Inco, Cambridge 42, Mass. (1951)

ARTICLES FROM JOURNALS AND MAGAZINES

33. Business Week
. Tomorrow's Management Aug 15. 1953

~rvard Business Review
34. Electronics Down to Earth. J. A. Higgins and J. S. Glickauf, March

April 1954
35. GE and UNIVAC, Ro F. Osborn, July-August 1954
36. Olfice Management Association Journal

Automatic Calculating Machines and Their Potential Application in
the Office, Do R. Hartree, August 1952

37. Journal of the Instutute of Actuaries
Large-Scale Electronic Digital Computing Machines, R.L .. Michaelson
December 1953

38. Journal of Accountancy
Accountant's Responsibility for Making Punched-Card Installations
Successful, Leon Eo Vannais Oct. 1949

39. Journal of the Royal Society o~ Arts
Automatic Calculating Machines, M. V. Wilkes, 14 December 1951

40. Proceedings of the Institute of Radio Engineers. Computer Issue,
October 1953
a. Computing Bi t by Bi t or Digital Computers Made Easy

A •. L. Samuel, po 1223
b. Can Machines Think?, Mo V. Wilkes, p. 1230
c. Computers and Automata. Co E. Shannon, p. 1234
do Electronic Computers and Telephone Switching, W .Do Lewis, po 1242
eo Fundamentals of Digi tal Computer Programming, W 0 H. .Thomas, p. 1245
•• ooo.and 39 other articles

41. Philosophical Magazine
Programming a Digital Computer to Learn, A. G. Oettinger, Dec. 1952

42. Stores
Retailing with Electronics, Joseph]. Jeming

Fortune
43. Office Robots, January, 1952, p. 82
44. The Automatic Factory. October. 1953. p. 168
450 The Information Theory ,December, 1953 t p. 136 Francis Bello
46. Push-Button Labor, August, 1954, po 50

470
48.

Scientific American
Mathematical Machines, Ho Mo Davis, April 1949. p. 29
The Strange Life of Charles Babbage, Philip and Emily Morrison,
April 1952, po 66
Computers in Business, Lo Po Lessing, January 1954, p. 21
Linear Programming, WoWoCooper and A. Charnes, August 1954. p. 21

Time
~he Thinking Machine, Jan 0 23, 1950, po 54

26-5
CQ)G.fERCIAL COMPUTER MATERIAL

International Business Machines corp •• 590 Mad.ison Ave •.• New York, N'. Y.
52. - Light on the Fu,ture (1953) (General ltlformation on computers.)
53. IBM Electronio Data Processing Machine Type 702 Manual of Instruotion
54. IBM Type 650 Opera.ting Principles
55. Principles of Operation Type 701 and Associated Equipment (1953)
56. IBM Speedoodipg System for the Type 701 Electronic Data Processing

Maohines (195.3)
Also case studies on the 650 and brochures on commercial applications of
other IBM machines.;" " ;

Remington Band Inc.,.3l5Fourth Ave., New York 10, .N.Y.
5? .Programming Univac Faa-tronic Systems - Instruction Manual I (1953)

($18.50)
58. How Univac Pre4icted the Election for CBS-TV (1952)
59. The A-2 Compiler Systems Operation Manual (l95.3)
60. The Edi ting Generat.or (1952)
61. Univao Short Oode (1952)
62. !he Programmer -a per~odioal
63. Catalogue of Oourses iJ;1.,lectronio .Computers (19.53-54)

cgmputerReae,rgh eRgh ,·'348 If. 11 Segundo Blvd., Hawthorne, Calif'.
6. An Explanatio.n for '·he Layman of "Eleotronio Brains",

lDverett A. Emerson (1953)
65. Oomparison of the Card-Programmed Computer with the General-

Purpose Oomputer Model aRC 102-A (1953)
66. .Acoounting with Electronics, J. S. Warshauer (1953)
67. .Sorting and Collating with the CRO 107 or CRC 102A General

Purpose Computers

The British Tabula.ting Maohine 00., Ltd •. , 17 Park Lane, Loudon, W.l.
68. Bamb1es Through Bin1and and Eleotronia, R. Miohaelson

MIT PUBLICA!IONS

Oourse
69.

70.

71.

Theses

Not ••
Notes on Digital Computers and their .pp1ioations, Summer 1953
($,.00)
Digital Computers -Advanoed Coding Teohniques, Summer 1954
($1 • .00)
.Notes from MI'f Summer Course on Operations Besearch, June 16-
July .3, 1953 ($.3. SO + .15 postage from Teohnology Press)

72. Eleotronic Digital Maohines for High-Speed Information Searching,
Philip R. Ba.gley (1951)

73. ,Applications of Self-Cheoking and Self-Correcting Codes to
Digital Oomputers, F. E.Heart (1952)

74. A Survey of Automatio Ooding Techniques for Digital Computers
John L. Jones, (19~)

75. Department Store Information Processing Techniques
B. E. Morriss (1952)

76. Information Sorting in the Application of Electronio Digital
Computers to Business Operation,. H. H •. Seward (1954)

MIT PUBLICATIONS, Cont.

Digital Computer Laboratory Reports
770 The Programmed Synthe sis of Digital Computers Wi thin Digital

Computers. F. ,Eo Heart (1954)
780 The M.I .. To Systems of Automatic Coding: Comprehensive, Summer

Session, and Algebraic, Co ,We ,Adams (1954)

26-6

79. Digital Computers As Information Prooessing Systems, J. W. Forrester
(1949)

80. Charles Babbage -- Soientist and Philosopher, Edited by H.R.
Rathbone (19~2)

81. The Differenoe Engines of Pehr Georg and Edvard Scheutz,
E~ited by R. ~. Rathbone.(1952)

820 ,Summary Report No. 37 - First Quarter 1954
830 Summary Report No. 36 - Fourth Quarter 1953
84. Summary Report No. 35 - Third Quarter 1953
850 Summary Report No. 34 - Seoond Quarter 1953

THE FLEXOWRITER CODE

AlEhanumerlcal Seguence Coded Value Se~ence

Low. Up. Code Low. Up. Code Code Low. Up. Code Low. Up.
Case Case Value Case Case Value Val. Case Case Val. Case Case

a A 6 0 0 76 The values of such 2 e E 35
b B 62 1 1 25 characters are equal 3 8 8

~g k K
c c 34 2 2 17 to the sum of the 5 I t T
d D 22 3 3 7 weights appearing at 6 a A 42 z Z

the head of each column s e E 2 4 " 13 in which a hole is 7 3 43 back space
f F 32 5 IS 23 punched. The seventh 10 space bar 44 1 L
g G 64 6 s 33 hole, which comprises 11 45 tabulation
h H 50 7

.,
27 the right-most column 12 s S 46 w W

8 8
in the sketch, is used

" i I 14 6~ only for control pur- 13 4 50 h H
3 J 26 9 9 poses. The seventh 14 1 I 51 carr. ret.
k K ~~ + !. 15 hole must be punched .15 + / 52 y y
1 L 35 as part of each char- 16 u U 54 p p

acter which is to be
m M 70 21 read in by the com- 17 2 a 56 q Q

n N 30 31- puter. 20 color shU 60 0 0
0 0 60 = 11 21) 61 stop code
p p 54 I 5 22 d D 62 b B

q Q 56 space bar 10
40 gQ 10 . 4 g .1 :J hole

23 5 IS 64 g G
r n 24 carr. ret. 51 I rt-frr~;~tar. val.

24 r R 66 9 9

s S 12 tab. 45 25 1 1 70 m M
t T 40 up. case 71 II~C 34

26 3 J 71 up. case

u U 16 low. case 75
__ m! 70

27 7
.,

72 x X
v V 74 nullify 77

_-tab· 45 30 'n N 74 v V -- a 6 w W 46 stop code 61 . ----.top 61 31 I (75 low. case
x X 72 back space 43 32 f F 76 0 0

y y 52 color aft. 20 33 6 e 77 nullify
z Z 42 '---feedholes 34 c C

1

2

3

4

5

6

7

8

9

1 0

11

12

13

14

TAC Time Chart

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

; j

-----~--r---t---r----r---+-t---+--_+___+___+__I_+__4___+__t___+___I_+__4__I___+_____.,>

I I

I
!

I
I

t---+---+----+---+-___ r---' -.t--;------r-----r------r--;_--t----+---I------+----+-------f-_+--_ i
!

I
!
I

I

I

J
I

I i

I . .

!
i 1

i

1 i I

I I Ii I ! I

I

I

~--.--~r-T-~-r-+~-~+-~~_+_4~~+_-~~-t-_+~~ __ ~~_
I I

r---r-----___ -+ __
I i jl

I :

1 i

----- -

I I

I
I I

I

I
I

I I
i

I

J
i ! 15 !

i

16
:

I
I

t I
I

I
17 I

J
I

I
18

j

j 1

I
I I

19 !

20
1 1 .

J.. J. 1 1
I
1 1

I I

23 STbRAGE CAPACITY vs. dPERATION TIME

for

® 78 AUTOMATIC DIGITAL COMPUTERS
73
17

30 65
1

(f) @
r-
aJ

105
c

@ \

53

38
~

>- Drum (§) @
r--
<.)

~
«
<.)

w
<..9 «
a::

96
Acoustic

68
69 27 ~ 76

-45 7'7 16270 ~
15 ~1 ~ 52 (®

58 @ 81
79 6 -.@ 95

@ 84
14 24

~ 22
E lectro- Stat ic Core

0 26 87
@ 13

0
r-

104
(f)

2
61 57-12

I 86

I sec. -\00 msec. 10 msec. I msec.

TIME TO PERFORM a+b=c; c+d+e=f; gxh=i

0= commercially available 21 CRC 107 30 ELECOM 200 51 ILLIAC 68 MSAC 81 RAYDAC
22 CSIRO Mark I 31 ELLIOTT-NRDC 52 lAS 69 MOSAIC 84 SEAC

1 ABC 13 BINAC 23 CUBA 33 ERA 1101 53 IRSIA-FNRS 70 NAREC 86 SWAC
2 ACE 14 Burroughs 24 DYSEAC 34 ERA 1102 57 JOHNNIAC 71 NICHOLAS 87 TAC
4 APE~R~C 15 CADAC 102 25 EDPM 701 35 ERA 1103 58 LEO 73 OARAC 88 TC-1
5 APE X C 16 CADAC 102A 26 EDSAC I 36 FLAC 61 Manchester 76 ORACLE 92 UNIVAC
6 ARRA 17 CALDIC 27 EDVAC 38 G 2 62 MANIAC 77 ORDVAC 95 Whirlwind I
7 AVIDAC 18 C1rcle 28 ELECOM 100 45 Hughes Air 64 MIDAC 78 PERM 96 WISC

12 BESK 19 CE 36-101 29 ELECOM 120 49 IBM 650 65 MINAC 79 Pl'ERA

	000
	001
	01-01
	01-03
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-01
	12-02
	12-03
	12-04
	14-01
	14-02
	14-03
	14-04
	14-05
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	24-01
	24-02
	24-03
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	A-01
	B-01
	C-01

