Memorandum M-2539«1
December 1, 1953

Revised April, 1954

COMPREHENSIVE SYSTEHM MANUAL

I. Introduction to Programming

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

by
H. He Denman

E. S, Kopley
J. D, Porter

M=2539 <1 I-1

I. INTRODUCTION

In barter, man first learned the need for assessing the relative sizes
of different commodities., He found it possible to do this in two quite
different ways -~ by measuring to determine how much, or by counting to deter-
mine how many. Just as he learned to measure length by comparing with the
length of a hand or foot; he learned to count by placing the apples or skins
or stones to be counted in one-to-one correspondence with his fingers - the
digits on the end of his arms, Little wonder that he learned to count by fives
and tenssor that the symbol V was used to represent one hand full while X
represented two hands full,

Computation developed out of measuring and counting, the two sciences
being called geometry and arithmetic, respectively. The introduction of a
very important concept ~ the digit zero - and thence the development of the
irabic or positional system of numbers, permitted arithmetical computation
to be performed with much greater facility than before. As always, greater
speed led not to less time spent, but to more computation being undertaken.

As the complexity and freqpency of each problem grew, the need to mech=
anize the arithmetical processes became more urgent, A thousand years ago,
the development of the abacus overcame the limitation set by the inadequacy
of the number of fingers and toes a man could produce. Finally, hundreds of
years after the development of the abacus, and thousands of years after the
beginnings of counting and arithmetic, great minds produced the little cogs
which grew into the modern adding machines, desk calculators and accounting
machines,.

As time went on, the cogs grew better and went around faster, Special
sets of cogs made the machines perform the sequences of addition mneeded to
form a product, and later the sequences of addition and subtraction needed
to find a quotient. Motors replaced hand cranks. Today a good mechanical
calculator multiplies two 10 digit numbers in ten seconds or less.

Modern electronics could speed this up almost a million fold. But
to what avail? Practical experience indicates that a competent person
operating a modern calculator performs about 500 operations a day - and
many of these operations require but a fraction of the 10-second maximum
in the calculator. Speed up the calculator a million fold and you speed

M=-2539 =1

up the overall computation by
at most 10%, assuming that the
operator can stand the incre-
ased strain., What is needed
is to replace the human being
in the system, not merely to
speed up the arithmetical pro-
cesses themselves.,

More than 140 years ago,
one man, Charles Babbage,
dreamed of machines which would
far surpass the wondrous con-
trivances of Pascal and the
others, The more advanced of
his two machines, for he dream-
ed of two different types,
would perform the basic opera-
tions of addition, subtraction,
multiplication and division,
And it would do much more: It
would perform, automatically
and without human interven-
tion, a predescribed sequence
of arithmetic operations and
make predescribed logical de-
cisions based on the results
as it went along., In outlin-
ing his Analytical Engine in

modern automatic digital computers.,

1834, Babbage described all the important principles of today's ultra-

I-2

It took over a century, however, for

mechanical and electrical sciences to reach a state at which his dream

SECONDARY
STORAGE

V ARITHMETIC

WE NEED *277
RUSH - P.D.Q.-
IN A HURRY |l

SEMI-AUTOMATIC DIGITAL COMPUTATION

6ond, for the rest of the system can now keep up with

HERE'S PROBLEM |

#278, JOE I

could be fulfilled.
The automatic
digital computer
is simply a mech-
anization not only

*__\ of the arithmetical

operations, but of
the operator which
determines the se-
quence in which the
operations are per-
formed. The ari-
thmetic element of
the digital compu-
ter, corresponding
to the desk calcu-
lator, can advanta-
geously be made to
work very fast, per-
forming arithmetical
operations in a few
millionths of a se-
it. The control

element, the counterpart of the human operator, can readily be made far

M-2539 <1 ' I-3

faster, more reliable, and somewhat less demanding of wages and fringe
benefits than the man,

Unfortunately, however, there is need for automatic memory or stor=-
age of various degrees of accessibility, corresponding to the memory of
the operator, the notebook, and the reference library. There is also

need for input and output = the means of communication with the outside
world, Primarily,
it is memory or

input=output, de= ARITHMETIC ELEMENT CONTROL STORAGE
pending upon the : FORMS SUM TAKES INSTRUCTIONS| [0)
particular prob= DIFFERENCE | | FROM STORAGE 1)
tom, that causes QUOTIENT DIRECTS AcL. OTHER =

test dif- :
;ﬁu?t‘;aj;stheﬂ (Positive or Negative) ELEMENTS PROPERLY 511)
physical realiza=- 1
tion, and places
the greatest limi- / ; BUS
tations on the :
speed and reliabi=- PUSHBUTTONS
1ity of existing '
computers, v

TAPE TAPEL puT| [SECONDARY| |0 irpyy
When a human PREPARATION [STORAGE

operator is to
solve a problem
using a caleulator AUTOMATIC DIGITAL COMPUTATION
or to process a '
payroll on an accounting machine, he must be supplied with instructions
which specify just how the solution is to be obtained, In like manmer,
the digital computer must be provided with a list of instructions, or
program, in properly coded form, to describe how the solution is to be
obtained, The process of preparing such a coded program is called pro=-
gramming, Programming really consists of two parts:

1) planning the program, or sequence of elementary steps, by

which the problem may be solved
2) coding the sequence of steps into a coded program - a
sequence of computer instructions

The coding of a problem requires detailed knowledge of the specific com=
puter on which the problem is to be solved. A coded program has meaning
only to the computer for which it was written. The planning of a solution,
on the other hand; does not necessarily involve the details of any given
computer, although a given problem may frequently be solved most efficiente
ly if formulated one way for one computer and another way for another.

The particular computer for which this mammal is prepared does not in
fact exist, but its characteristics have been simulated on the Whirlwind I
computer by means of a system of programs, This system has been termed the
Comprehensive System of Service Routines and abbreviated as CS, The simulated
computer will be called the "CS computer®,

The CS computer has, of course, the basic computer elements: arithmetic
element, control, primary ("high-speed") storage, secondary storage, input
and output, Naturally, a number of important concepts and innumerable details

M-2539 <1 -4
make up a complete description of the computer. Rather than attempt to describe
the computer completely at the outset, we will first describe a simplified form
of the computer, embellishing it with more details and more new concepts as we
progress. In simplifying anything, one must sometimes tell half-truths, and
this we will do; but we shall not tell any forthright lies.

The CS Computer - Simplified Version

The primary storage element of the computer consists of 1387 registers.
Storage registers are locations, pigeon hales into which computer words may be
stored by the computer control and recovered by it when needed. A word is a
sequence of digits representing a number or an instruction. The location of
each register is identified by an address, just as the houses on a street are
identified by addresses. The addresses of the 1387 different registers are 32,
33, 34, 35, e..,1417 and 1418,

In the CS computer a word that represents a_number occupies two successive
registers of storage. The location of the number is always specified by the
address of the first of the two registers, The maximum magnitude of g number
that can be stored in the memory of the CS computer is about 9. -x 10l , and the
smallest non-zero magnitude is about 5.5 x 10™ O, a programmer will write his
numbers in the usual decimal form:

Soge . +129.7863

where he may indicate as many as 8 significant digits provided the magnitude
of the number satisfies the range requirements indicated above,

A more detailed discussion of the representation of numbers will be given
below. :

An instruction is the second kind of word and occupies a single register
of storage, It specifies both an operation such as add or subtract, and an
address., This address designates where the word to be operated upon is to be
found. For example, the word iad 237 is an instruction which specifies that
the number contained in registers 237 and 238 is to be added to the number
already in the multiple register aceumulator (MRA).

The multiple register accumulator (MRA) forms the heart of the arithmetic
element. In it, the sum or difference, product or quotient of two numbers is
formed. The ma?imum magnitude of a number that can be handled in the MRA is
about 7,0 x109863 wheggﬁg the minimum magnitude for a non-zero number in the

MRA is about 7.1x10-Y

The first few basic instructions to be considered are described below by
their abbreviations, names,and effects. They can be described more concisely
and compactly if a few standard symbols and terms are first defined.

M-253%.1

I-5

symbol meaning

MRA multiple register accumulator

al address of any chosen storage register
N(MRA) the number in the MRA before the

instruction is obeyed
N(al) the number stored in registers al and altl
before the instruction is obeyed

> replaces
clear <oe set the contents of ... to zero

Thus "N{MRA)+N(al) —3MRA" is to be read as "the initial number in the MRA
plus the number stored in registers al and al+lreplaces the initfal number-n-the
MRA"; i.e., the sum of the numbers contained in MRA and al appears in ifi.

Abbreviations for the instructions of the CS camputer have, been selected for
mnemonic reasons. An initial letter 1 is used to denote that tfx_e instructions
are interpreted by special programs stored in the Whirlwind I computer (see Chapter)

ics
its
‘iad
isu
imr
idv

iex

sp O

ica al

al
al
al
al
al
al
al

clear MRA and gdd to it N(al) N(al) —>N(MRA)

glear MRA and subtract from it N(al) <N(al)—>N(MRA)

transfer N(MRA) into (al,al+l) N(MRA) —>N(al)

add N(MRA)+N(al) —»N(MRA)
subtract N(MRA)=N(al) —)H(MRA)
multiply and roundoff N(MRA) «N(al) —N(MRA)

divide N(MRA)+N(al) —>N(MRA)
exchange N(MRA) with N(al) N(MRA)—>N(al) ;N(a1)—>N(MRA,

iTOA+Nn1.2345¢ type out N(MRA) in normalized*form followed

by a carriage return
STOP:

IF IT ISN'T MENTIONED, IT DOESN'T HAPPEN!

The definition of ica al does not specify that anythin§ new goes into register

al. This means that N(al) does not change. Likewise, N(al

is unchanged by ics,

iad, isu, imr, and idv. Similanly, N(MRA) is unchanged by its, iTOA. and sp O.

* The normalized form referféd to is one that represents a number in the form

+ dlad2d3d4d5x10°‘

where o is adjusted so that d; f'O.

M-2539 =1 I-6
WHEN A NEW QUANTITY REPLACES AN OLD ONE, THE OLD ONE DISAPPEARS!

The definition of ica says that N(2l) becomes the new contents of MRA.
The MRA is first cleared in this process so that its former content is lost,

TOO LARGE A RESULT LEADS TO TROUBLE.

Obviously, if the result of an arithmetic uperation lies outside the
range that can be stored, the result cannot be copied into storage. It may,
however, be further operated on in the MRA, If a programmer, through overw
sight, instructs the computer to copy inte storage a result which will not
fit, the computer will stop and indicate an alarm. Obviously, also, it is
possible for the result of an arithmetic operation to become too largs to fit
even in the extended capacity of the MRA., This, too, is an overflow and pro-

- duces an alarm,

Straightforward Computation - Exsmple lo

Suppose a rectangular swimming pool of any given dimensions is to be
filled with water to a level 1 foot below the top of the pocl. Before filling,
' the pool is to be painted !
green on the bottom and on

lﬁ~#«--—t-m_7_4-—~_~»-—v of paint covers 500 square
Xg:::////'//// /j;//i:;/;//‘ feet, and one cubic foot
V.
- computer, given the length,
/ 7/ X, width and height in feet,
P 2////{/ _ to print out: -
]

' | all four sides up to the
gtf::::::::::7 . water level, One gallon
of pool water weighs about
63 pcunds, We wish the
////.r
_;:::://”/
/ ‘
a) The weight of the water
X the pool will hold

1

b) The number of gallons .
- of green paint needed

Representing feet of length by X,, width by X5, and height by Xaﬂ we
readily find that the pool surface aréa to be painted equals

bottom + 2 sides + 2 ends
=Xpe Xyt 2 0 X (Xg=1) + 2 ¢ Xp(X501)

and the amount of paint in gallons is obtained by dividing the above number
of square feet by 500, the number of square feet per gallon.

The volume is X, e X%(X ~1), and the weight of water is obtained by
multiplying this number of éubic feet by 63 pounds per cubic foot.

By collecting termsjwith an eye to reducing the number of multiplications
which will be required in the computation, the two quantities desired can be

M- 2539-1 I-7

(:-L : 3)

Paint = 550 St

Water = 63 X, XE(XB'I)

4 procedure for finding these guaniities might be

find and stors 1 find and store find
- i 63 ¥ =
x3 1 XX, K 1x2(¥3 1) |
L

print weight of water
Jjust computed

a7 ‘ a6
print amount of find
— »
paint just computed 2(31+X2)(x3'1)+xlxg
500
28
STOR

Certain numerical constants are obviously needed. These must be stored
in storage registers, The registers may at this stage be chosen anywhere in
storage that the programmer desires. Suppose we place them in the first
available reglsters (via.,32, 33, eto,) = although other registers might have
been used. The only rule that needs to be noted at this time is that instruote
ione must be stored in a sequence of registers that corresponds directly with
the sequence in which the instruotions are to be executed. Thus nunbers may
be stored anywhere provided they do not interrupt the sequence of instructions.

3 +1,

3 +2,
36| +63,
38 +500.

Recall that +1, occupies registers 32 and 33, hence +2, occuples registers 34
and 35, etc. The dimensions of the pool must also be provided initially.

H=2539 =1 T=8

(It is worthwhile for the student to note that by beginning the problem with
a different set of dimensions this same program can be used unchanged.)
Suppose we store this data as follows:

4| (length) = X
42l (width) = Xj
WA (height)= X4

During the calculation various intermediate quantities (viz.,X.-1 and
X1%X2) will be calculated and need tq be stored, We can provide for“them by
initially storing +0. in two pairs of registers which will later contain the
desired quantities; thus

sl +0, 7 1o Xqml
w8l 0. :} Initially, later <jxgx2

We are now ready to write down the required instructions. We can begin
storing them in any register we desire but once we have chosen the first
register, succeeding instructions must occupy successive registers. Except-
ions to this rule will be the subject of Chapter II of these notes, Since
the next available register ini storage is 50 (not w9, since +0, occupies both
L8 and 49) we could begin with that register. Note that if we were to need
some more registers for constants or intermediate quantities we could wait
until after we had written dowm all the necessary instructions and then
choose these additional registers so as not to interrupt the sequence of
instructions. In the present case, our preliminary analysis has made this
unnec¢essary. We can, then, write the instructions as:

50l ica 44 place N(44) = height in MRA
al {51 isu 32 subtract N(32) = +1., leaving X5-1 in MRA

52| its 46 store the result in register 46(for later use); the result
also remains in MRA

53] ica 40 clear the MRA and add to it (i.e., place in it) the N(ho)?xl

a2 {54 imr 42 multiply by N(42) = X,eforming XX, in MRA

55 its 48 store the result in register 48(for later use); the result
also remains in MRA
56l imr 46 multiply by N(46) = X3-1, forming X X,(Xp-1) in Hiis
83 1571 imr 36 multiply by N(36) = +63., forming 63%,X,(X,-1) in MRA, equal
. 172°73
to the weight of water,

al 58! iTOA+nl.2345¢ type out the numerical value of N(MRA) which is the
desired result

1

60l iad 42 form X.+X. in MRA

59| ica 40 place X, in MRA
a5
1 72

(continued on next page)

M-2539-31 1-9.

6l imr 34 form z(x1+x2) in MRA
a6 J6d imr 46 form 2(X,*X,) (X,-1) in MRA

631 1aa 48 form v X)X, in MRA

! A ; : o+ o)) o+ i 1

teul adv 38 form 2(X,*X,)(X,-1) +X;X, in MRA equal to the amount of paint
500

a7 651 1TOA+nl.23b5c type ocut the amount of paint

a8 661 sp 0 stop

The brackets indicated to the left of the above program show how the
sequence of instructions effects the operations included in the boxes of the
diagram on page I-7., Such a diagram is often called a "flow diagram", This
is an example of how more complicated programs can be decomposed into.the
programming of simpler logical blocks., Of course the present program is
rather trivial but the usefulness of this procedure will beccme apparent later,

M-2539%1 1I-1.

II Iransfer of Control = Counting

Thus far, the computer has been instructed to solve simple arithme-
tical problems, but it can only be made to solve the same sort of probe
lem more than once by starting it over again manually with new data.
Since whole programs such as the swimming pool paint and water calculaw
tion just given can be performed (exclusive of output) by the computer
in less than 1/40 of a second (faster than the eye can see), there would
be a tremendous proportion of %time spent by the sompuber in waiting to be
told what to do next. The key to the situation is to give the cdmputer
ability: (1) to repeat calculations with new data which it has itself
generated, (2) to make predescribed logical decisions based on results it
has obtained, and (3) to modify nc% only its own data but its own instruc-
tions. Th=se abilities will be discussed and illustrated in this and the
following sections.

Special instructions are needed to make the computer repeat, or make
logical decisions. These are called "jumps" or "transfers of comntrol®,
and they tell the computer, under certain conditions, to take the next
instruction not from the next comsecutive register, byl from the register
specified by the address section of the jump instruction. 7ne of the
Jump instructions is unconditional; the other is conditional:and makes
the computer transfer control if and only if a given condition is ful-
filled; otherwise the next instruction is taken in sequence.

The following are the available transfer of control instructions:

isp al transfer control take the next
instruction from
register al and
continue from there

icp al conditionally trapsfer control ditto, if N(MRA)<O*;
(conditional program) if N(MRA)>0, take the
next instruction in
sequence .

* We define N(MRA)»0 if the sign of the number stored in the MRA is +jand
N(MRA)<O if this sign is =. Arithmetic rules apply in the normal way
excebt for the difference of two equal numbers. In this case the MRA will
contain zero but the sign is - ; hence the icp would assume N(MRA)<O.

M-2539-1 11-2,

Unconditional Transfer of Control QExamgle)

Suppose a swimming pool contains 40,000 gallons of fresh water.

Once each minute a bucket containing 20 gallons of salt water, containing
.1 pound of salt per gallon, is lowered gently into the pool. A corres-
pondiné amount of pool water, unmixed with the newly-added salt water,
but thoroughly mixed otherwise, escapes through an overflow pipe at the
other end. We wish the computer to print out the amount of salt which
will be in the pool after 1 minute, 2 minutes, 3 minutes, etc.

During each minute, 2 pounds of salt come in with the salt water.
After 1 minute then, there will be 2 pounds of salt in the water., 3ut
during the second minute, not only do 2 mcre pounds come in, but a small
quantity goes down the drain. The amount down the drain is 1/2000 times
the amount present, since 20 gallons out of 40000 contains one two-
thousandth of the amount of salt present, Hence, at the end of the
second minute, the total salt equals the 2 pounds from the first minute
plus the influx of 2 pounds minus the spillover of 2'1/2000= 0.001 pounds,
for a total of 3.999. JUuring the third minute, 2 more pounds come in,
and 1/2000 of the 3.999 already there escapes, leaving 5.9970005 pounds.
To formulate this more generally, let X, = pounds of salt at the end of
the‘iﬁg minute. Then,

X, = 0 at start
x, = 2 during first minute
x,=2+ 2-2/2000= 3.999 during second minute
| =2+ 3.999-3.999/2000= 5.9970005 during third minute
and in general
%, = 2% %, = x,/2000= 2+0,9995x, during the 141 min,

!
A possible procedure for programming the problem would be:

form and store print the result
x1+1=2+0.9995x1

(repeat)

M"°25 39-:1 11 '-3 °

The program can be written:*

100| +2. pounds of salt added

102| +0.9995

1041 +0a amount of salt in pool (initially 0)

106} ica 104 place +x, in MRA

107' imr 102 form '0.999511

108f iad 100 form x, ., in HRA

109! its 104 replace Xy by‘x1+1 in reglster 104

110| i70a+nl.2345c print X,

111L isp 106 repeat; i.0., take next instruction
‘ from 106

til stopped by human intervention or machine breakdown.

Suppose what is really desired is knowledge as to how much salt will
have accumulated in one day= 1440 minutes. One could, of course, simply
wait until 1440 lines of results had been printed, then stop the compu-
ter and copy the result. Much more efficient, however, would be a revised
program which would compute 1440 steps without printing, print the result,
and stop, For this, we have the computer decide, by means of a condie
tional transfer of control just when 1440 steps have been éomploted.

The importance of such an ability can hardly be overemphasized.

The necessary program might be:

form and store Increase if i= 11440_4 print
x1+1é2+0.9995xi ioy1 ifi1 ; xluaoand stop

T — —~

* Aé an exercise the student may attempt to shorten this program.

4

| M-2539.1

112 if N(MRA) <0, which occurs (since i changes in unit.steps)

| II-k.

. if 1 €1440, take the next instruction from 112
if N(MRA) >0, which occurs when i= 1440, ignore this
+instruction

}‘ print X3 440

100| +1,

102 +2,

104| +0.9995 ! constants

106 +1439.)

108| +0. | pounds of salt
110} +0, minutes

112§ ica 108

113] imr 104

114 iad 102

115] its 108

116| ica 110

117] iad 100

118] its 110

119] isu 106 . form i-1439. in MRA
120] tcp |
121 ica 108

122) 1TOA+n1.2345¢

123| sp0

Note that if +1440. had been stored in 106, then when i became
=+ 1440, the N(MRA) would be< O (cf. vage II-1). -‘Hence control would be
transferred back to 112.

Calculating Until Desired Value is Reached fexam’nle)

As a third possibility, suppose what is really wanted is the time
at which the amount of salt in the pool exceeds 1000 pounds. Again the

computer must be programmed toc make a simple decision.

program would be:

A possible

increase
ibyl

form and store

%, ,,=2+0.9995x,

if x

i+l

£100

if x

i+l

>1000

print i.}
stop

1

M-2539=-1

501|
503
505
5071

509
511

513|
514
515|

516
517]
518
519
520
521|

522|

523]
524

sp 0

II-50
+1.
+2.
+0.9995 constants
+1000,
+0, pounds of salg
+0. minutes
ica 511
iad 501 increase 1 by 1
its 511
ica 509
dmr 505 calculate new xi+1
iad 503
its 509
isu 507 | If x,,,£1000, take next instruction from 513
iep 513 If xi+l>1000, ignore this instruction and go on to 522
ica 511
1TOA+nl.2345¢

M-2539 =1 | ; 1I-6.
Programming Exercises ;

Construct sequences of instructions to carry out the following
processes on the CS computer. _

It will be assumed that x and y are contained in registers 32 and
34 respectively. All results will be assumed to have values that will
not exceed the capacity of any register. Stop the computer after each
problem.

1, Place x+y in 41,

2. Place x° in 53. |

3. a, b, ¢, 4 are contained in 100, 102, 104, and 106, respectively.
3+bx2+ cx+d in register 500.
4., Place the larger of the positive numbers x and y in register 75.
5. Place xu in 115.
6. Place x9 in 115 by a program of no more than 8 imstructions.
7. Place x" in 115; where x# 0 and n is an integer2+0,unknown to

you, which has been placed in 72 by a preceding program.

8. Place xul in 77. |

(a) using the fewest possible number of registers,

Place ax

storagewise, in your program,

(b) using the fewest possible number of instructions,
timewise, in your program. (Assume that the CS
computer consumes about the same amount of time
for each instruction.)

M-2539-1 1I-7

Solutions to examples on p.II1-6:
1) ica 32 6) ica 32
iad 34 imr 32
its 41 imr 32
sp O its 115
2) ica 32 imr 115
imr 32 imr 115
imr 32 its 115
its 53 sp O
sp O 7) 102} ics 72
3) ica 100 its 72
imr 32 ~ ieca 72
iad 102 fad 113
imr 32 its 72
jad 104 icp 109
imr 32 sp O
iad 106 ica 115
its 500 ' imr 32
sp 0 its 115
4) 100] ica 32 isp 104
isu 34 +1,
iep 106 +1.
ica 32 8(a) 65)ica 77. 66)1ca 73
its 75 imr 32 iex 77
sp0 its 77 imr 32
ica 34 _ ica 73 OR iex 77
isp 104 iad 75 iad 75
5) ica 32 ica 32 ~ its 73 icp 67
imr 32 imr 32 icp 65 sp O
imr 32 OR its 115 sp 0, =40,
imr 32 imr 115 -40, +1.
its 115 its 115 +1, +1,

sp O sp O +1.

M-2539-1 I11-8

8(b) 100|ica 32 100 ica 32
imr 32 OR imr 32
its 77 imr 32
imr 77 imr 32
its 77 imr 32
imr 77 its 77
its 77 imr 77
imr 77 its 77
imr 77 imr 77
imr 77 imr 77
imr 77 imr 77
imr 32 imr 32
its 77 its 77

sp O sp O

III Cycle Counter - Modification of Addresses

In the cyclic examples described in chapter II the addresses of
instructions within each cycle did not change. However, one of the more
important jobs that computers are called upon to do involves dealing with
data which are stored consecutively and are to be operated upon cyclically in
a set fashion. Cycle counters have been devised to facilitate the counting of
the repetitions of a cycle of instructions and the modifying of instructions
therein, Cycle counters are often called B-boxes, a term that has received

wide-spread adoption since it was first used with the Ferranti computer at
Manchester University in 1948,
A. Cycle Counting

As was indicated in chapter II, the counting of cycles of operations can
be carried out by programming, utilizing the MRA. However, if an intermediate
numerical result happens to be in the MRA it must be copied into storage while
the counting is done. For example, suppose we wish to calculate xlo by forming
in succession x2, x3, xu,.¢¢ (involving 9 multiplications) using a cycle of

instructions. The program might be as follows:

wil 41,

9 pberof tinee arele} oriterion
Q?I x

49' +0. receives result

511 +o, used for counting } index
53| ica 47

5“' its 49

55 ica 43

56 its 51

57 1ca g multiply by x\

58] imr 47

59| 1ts 49

60' ica 51\ increase

I A
62| its 51

63| isu 45

64‘ icp 57 y

65| sp 0

M-2539-1 I1I-2

Note that the power of x obtained in the MRA after the instruction
| in register 58 has been executed must be stored preparatory to the
counting effected in registers 60-64.

The number of registers used in this program can easily be re=-
duced. However, the form above was chosen to illustrate that cycle
counting consists basically of two elements: an index element that
actually counts the number of times the cycle has been carried out;
secondly, a criterion element for determining when the cycle has been
carried out the desired number of times. ;

In the CS computer special facilities have been included for
counting cyclic operations independently of the MRA. The heart of
this cycle counter is the .cycle control register pair. This is actually
two storage registers, one of which is called the index register and
the other, the criterion register. Provision is made for clearing the
index register, setting the criterion register to any desired integral
value (up to 2047), increasing the index register by any desired integral
amount (up to 2047), and testing when the magnitude of the integer in
the index register becomes equal to or greater than the magnitude of the
intéger in the criterion register. '

Care should be taken not to confuse the integers stored in the single
index register and single criterion register with the ordinary numbers
that are stored in two consecutive registers. The arithmetic instructions
described in Chapter I deal automatically with two-register numbers.
However, the following instructions affect the cycle counter and hence,
as indicated, deal with the integers stored in the single special reg-
isters. (See Chapter).

We define C(...) = contents of ...

i = C(index register)

n = C(eriterion register)
iecr m gycle reset Set i = +0, n=m (+0%4m is an integer {2048)
iet al gycle coun§ Increase i by 1 and if this new value of

1il 2 \n|, then reset i = +0 and take the
next instruction in sequence; if the new
lil¢ln), take the next instruction from

register al.

M-2539-1 T3

The calculation of xlo'may now be done by the following program.

2] x

34' +0.

36| icr 9 set up for 9 cycles
37| ica 32

38’ inr 32} cycle

39| ict 38

40| its 34

41| sp O

The following table presents a history of the contents of the index
and criterion registers and the MRA after the execution of the iet instrue-

tion in register 39 of the program above.

i n MA
End of cycle 1 1 9 x2

2 2 9 x3
3 3 9 Xt
L 4 9 X
5 5 9 x6
6 6 9 x7
7 7 9
g 8 9 x

9 N '
9 (reset to|9 xlO

0

B. Modification of Addresses -
The machinery for adjusting an address by means of the cycle counter

is quite simple. The programmer simply appends "+c" to an address.

When this instruction* is to be executed the address is first modified.
If we let "i" denote the integer that is contained in the index register,
then the address is increased by 2i before it is executed (except in the

case of the instruction whose operation.'is isp whére the address is in--
creased merely by i).

* The +c¢ cannot be used in the icp and ict instructions.

M-2539-1 III-4

For example if the programmer writes

ica 100+c
then when this instruction is to be executed, the following instruction
is actually formed

ica (100+2i)
and then executed. The increment 21 was selected since we are usually
working with arithmetic operations on numbers and these numbers occupy
two registers of storage. In the case of isp 100+c we get isp (100+i)
since this is used with instructions (recall that instructions occupy
one register of storage). It should be noted that if at any time one
were to examine the contents of the register containing the instruction
ica 100+c the address part would be 100 (not 100+2i). The increment 2i
(or 1 in the case of isp) is added on only during the execution of the
instruction.

A simple example illustrating the use of the cycle counter for ad-
dress modifications as well as. for counting is the following. Suppose
we wish to transfer the numbers in registers 100, 102, 104 and 106 to
registers 200, 202, 204, 206. We would then write:

32| ier 4 set up for four cycles

33| ica 100+c clear MRA and add to it N({100+2i); i=0,1,2,3
34| its 200+c store N(MRA) in 200+2i; i=0,1,2,3

35| ict 33 ~ add one to index register; if the new |i|24

then reset i=+0 and take the next instruction
from register 363 if)il< 4, then take the next
instruction from register 33. Note that n does
not change (=+4).

36l sp O
Since there are many cases when we desire to operate on numbers
that are not stored in consecutive locations, but are spaced a constant

number of registers apart, we have the following instructions:

ici m cycle increase Increase the contents of the index
' register by m.

iecd m gcycle decrease Decrease the contents of the index
register by m.

Here +0{m is an integer { 2048.

As an example of the use of the ici instruction, let us write a

M-2539-1 III-5

program which transfers numbers in register 100, 104, 108 and 112 into
registers 200, 204, 208 and 212.

We have:
304 icr 8 set up for 4 cycles {;::g
302] ica 100+e pick up N(100+2i) 1=0,2,4,6
303 its 200+c store in 200+2i 1=0,2,4,6
304‘ iei 1. increase 1 by 1
305| iet 302 ' go through 4 cycles

The following table presents a history of the contents of the index
and criterion registers.after the execution of the ict ingtruction in

register 305 of the program above:

i a
End of cycle 2 8
4 8
3 6 8
./ 8
4 { reset 8
to O

C. Multiple Counters. .

Since programs usually contain cycles within cycles, provisions

have been made for selecting any number of counters the programmer re-
quires (the upper limit on the number of counters available to each pro-
gram is a function of the amount of stofage the programmer is willing to
spare for counting). Multiple counters are often referred to as counter
lines. The following instruction permits the use of more than one cycle
control register pair so that more complicated programs may be treated

effectively:

ise jJ sgelect counter = selects counter j as reference for all
' o subsequent interpreted instructions
(+04j is an integer{ 2048) using a counter until execution of the
next Ies instruction; each counter has
its own index and criterion registers

If a programmer wishes to use only one cycle counter, there is no

need for him to select this counter with the isc j instruction. He will

M-2539-1 i 111-6

automatically get one cycle counter if there appears in his program any
cycle counter instruction (other than ici, icd, or icx*). In any pro-

gram, counter zero is initially considered selected until an isc j,

with J >0 is executed. Except for this property, counter zero is no
different from any other counter such as 1, 2y¢ce

Two separate cycle counter registers (index, criterion) are set
aside automatically for counter n (where n is the maximum value for j
in any program) and for counters n-l, n-2,..., 2, 1l,. 0. Consequently,
it is advisable to select.an uninterrupted sequence of counters so as
not to waste storage for counters that are never used. Thus if the only
isc j instructions in a particular program were isc 0, isc 3, isc 6,
the programmer would be wasting 8 registers of storage.

To illustrate the use of this instruction, suppose we have a program
that calculates the values of two quantities, F and G, as functions of
the time t = jAt for j = 1,2,3,...,1000 (Ot is a prescribed increment
of time, say .0l seconds). Suppose further that it is desired to print
out the value of F at the end of each 5 time steps (i.e., for i = 5, 10,
15,.0.), the value of G at the end of each 20 steps, and to stop the
program at the end of 1000 time steps. If we store the value of F when
calculated in 200 and of G, in 202, the following program would suffice:

32 isco

33 der 50

34' isc 1

35| der 4

36| isc 2

371 ier 5

38| isc 2 .

39 eee e calculate
coe ae and store

LI 4 LR 4 F’ G

103 iet 39
104| ica 200
105] iTOA+nl.2345c Note that the letter c used here does not

refer to the cycle counter but, as will be
discussed in chapter 5, gives a carriage

(continued on page 7) return.
*icx defined on page 7

- M=2539-1
106
107
10g|
109|
110
111
112]
200|
202|

isc 1

ict 38

ica 202 -
iTOA+nl.2345¢
isc O

ict 38

sp O

III-7

+0. will contain F

+0. will contain G

(Would the program be as efficient without register 38? Explain.)

This problem could have been done differently by using an instruc-

tion we are about to define. However, the first method is the preferred
one since it is logically simpler. ’

iex al

gycle exchange

Exchange C (index register) with C(al)
and exchange C (criterion register) with
C(al+l).

Second Method

32|
33|
34]
35|
36|
37|

103|
104|
105|

106|
107}
108

ier 50

icx 204

icr 4

iex 206

ier 5

ese oo calculate
ess ++ and store

se0 o0 F’G

” -
eeo L 2

iet 37
ica 200
iTOA+nl1.2345¢

icx 206
iet 35
ica 202

(continued on page 8)

- M-2539-1 o
109] iTOA+nl.2345¢
110] iex 204
111] ict 33
112] sp O

200| +0. will contain F
202| +0. will contain G
204] +0. count for 1000 At
206| +0. count for G

II11-8

M-2539-1 III-9

Advanced Section

D. The following two.cycle counter instructions appear in this chapter
merely for completeness. They are considered to be part of the more
advanced section of this manual for two reasons:

(1) There is an easier way to accomplish the same effect.

(2) They are used more rarely than other cycle counter instructions.

iat al 2dd and transfer add C(index register) to the C(al) and
store the result in the index register
and in register al

1ti al transfer index transfer the right 11 digits of the °
dieits index register into the right 11 digits
& of register al

These two instructions are principally used for altering the ad-

dress section of an instruction,

M-2539 =1 IV FLOATING ADDRESSES Iv-1

The examples presented in the preceding sections have been simple
ones chrsen to illustrate specific points. It should be clear to the
student, thaty in practice, programs are far more involved than the ones dis-
played. Nevertheless, even though these examples are simple, certain
inconveniences may be observed in the writing of the programs. ZFirst of
all, in writing a sequence of instructions it is rather tedious to have
to write down all of the addresses especially since only a few of them are
referred to in other instructions. But even worse, note that if by error
we had left out an instruction in our sequence (e.g., if we had forgotten
to multiply by‘(x3-l) in the program on page I=8) then to insert this
instruction would require our renumbering all the subsequent instructions
and then searching all the address parts of instructions to correct those
affected. This is not only annoying but very often leads to needless
errors.

It should be pointed out that there is a remedy that can be used to
avoid this inconvenience. To be specific, if we had:

o s

o o0

55] its 48

56] iad 36

57| 4TOA+n1.2345¢
where we have omitted the instruction imr 46, between registers 56 and
57 we could replace the instruction in register 56 by an isp to some
block of unused registers (e.g., 70, 71, 72); that is:

55| . its 43

56| isp 70

57| 1TOA+n1.2345c
and then we add to the program:

70| iad 36 carrying out the instruction
' that previously had been in 56
?1' imr 46 carrying out the omitted
instruction

72| 1sp 57
Such a procedure for correcting a program is frequently called a "patch",
Note that "patching" is not only unaesthetic, but it is wasteful of
space and makes a program more difficult to follow (and therefore to cor=

rect) since it interrupts the basic logic of the program.

M-2539-1 V-2,
Finally we might note that before we write down each of the sample
programs above we had to set aside certain registers for input data,
intermediats results, and final results. DNow it was emphasized that it
mattered little where in storage we put these registers oprovided they
did not interrupt a sequence of instructions. We now see that by using
our jump instruction (isp) we have a good deal of flexibility in inter-
rupting such sequences. However, it should be clear that it would be
bad practice to make use of such jump instructions (since it is wasteful
of computer storage*) simply to jump over a misplaced constant. On the
other hand when one first begins to write down a program it may be very
difficult to determine Jjust how many registers will be occupied by data
needed in the program and how many are needed for holding intermediate
results., If one leaves too many registers for them then he may find he
doesn't have enough registers left for his program. On the other hand
if he doesn't leave enough - or if he actually starts out by writing
instructions first (beginning in register 32) = then, since he has no
way of knowing a priori precisely how many registers will be occupied
by instructions, he is faced with the problem of what addresses to
assign to the registers needed for the as yet unspecified data or results.
The obvious .solution to this dilemma is to assign some sort of
tentative addresses to these unspecified registers. Since we are already
using numbers to specify addresses it is only natural to distinguish
these unspecified registers by a literal nomenclature, Since there are
only 26 letters, a simple system is to use letters followed by integers
(e.g., al, b12, g3, etc.). Such addresses will be called floating
addregses (abbreviated as g;ggg) since the actual value of the address

(called the absolute address to distinguish it) can not be determined

until the program is complete.

* Also in many cases when a set of instructions is repeated a great many
times such extraneous instructions can represent a needless expenditure

of computer time,

M-2539 -1 IV3.
Thus for the example on page I1I<3 we could have written the program

initially as:

100] ica i1
101 imr 43
102| iad bl
103] its i1

104] 1TOA+nl.2345¢

105] isp 100

i1, +0.

b1, +2.

d3, +0.9995

It should be emphasféed that at this point it does not matter what

we label the bracketed quantities so long as each label is unique. We
might even use names such as Joe, Tom, etc. However, the combination of
a lower case letter followed by an integer is a neat and convenient one
and has been adopted in the CS computer. (The letters o and 1 are ex-

gluded.)
Once we appreciate that these floating addresses (flads) can be

chosen at the programmer's will, we recognize the possibility of mnemonic
labelling. This makes it easier for others to follow the program -~ and
also easier for the programmer himself to check his program. <or example,
we could use the letter ¢ for registers assigned to contain constants,

the letter x for a variable, etc. Thus the program above might have

been written as:

100| ica x1
101| imr c2
102| 4ad cl
103] its x1

104 iTOA +nl.2345¢

105] isp 100

cl, +2.

c2, +0.9995

xl, +0,

Having introduced the idea of a floating address we might examine

the possibility of writing our sequence of instructions with such a pro-
cedure. Let us considezj the example above. Note that the sequence of

M-2539.1 ’ IV-4.
instructions written there begins in register 100 and occupies each suc-
cessive register through 105. However, the only instruction whose address
needs to be identified is register 100 since that address is referred to
by the instruction (isp 100) in register 105. Consequently, we could
have written this same sequence of instructions as follows:
al,ica xl1
imr c2
iad cl1
its x1
iTOA +nl.2345¢
~isp al

In this form the address al is floating -~ that is, the actual regis-
ter in storage to be occupied by the instruction ica xl is unsvecified.
Once we specify that al should be equal to 100, these instructions take
the form they had on page IV-=3 since successive instructions will occupy
successive registers.

However, note the tremendous flexibility we have gained by using the
floating address form. First of all we do not need to write down a whole
lot of addresses. We nesd only identify or tag those registers to which
we wish to refer; e.g., we tag the register containing ica x1 so that we
can instruct the computer to transfer control to that register at a suit-
able point in our program (isp al). ¥Yor this reason we shall refer to
"al,"as a floating address tag.

) Secondly, if we discover that we have omitted an instruction we
need only insert it at the proper place. Hor example, if we had errone-
ously written:

al,ica xl
fad cl
its x1 .
we need only indicate the correction by writing:

al,ica x1 imr o2
jad cl i

its x1

The rewriting of the program into absolute address form is a simple
clerical procedure. ZXach word is assigned an absolute address in a con-
secutive sequence (remembering that numbers occupy two successive regis-

ters), and then the address section of each instruction is replaced by

M-2539-1 IV-5.
the corresponding one of the newly assigned absolute addresses. Since the
procedure is straightforward, it is perfectly possible to make the compu-
ter perform the task automatically during input. The CS computer is so
arranged that this substitution of absolute addreséeé for floating
addresses is performed automatically when the tape containing the program
is read into the computer. Consequently, although the programmer may do
the Jjob himself if he wishes} there is no meed to rewrite a program in
absolute address form. The tapeis simply prepared using floatihg
addresses as indicated; the rest of the job is performed by the computer.:
The actual procedure followed by the CS computer in transforming float-
ing addresses to absolute addresses will be discussed in Chapter V.

The letter and number(s) forming a floating address may be chosen
at will (except that thelletiers 1 and o should not be used because of
émbiguity with the numbers 1 and 0). One other restriction is imposed
By the procedure used by the CS computer'for‘keeping track of.thé flads
as the programlis.being read in. The sum over all letters of the maxi-
mum numbers used for each letter should not exceed 255 - e.g., if a pro-
gram used only the floating addresses al, a2, a3, al?7, 49, x31, x100, and
z5, this condition would be satisfied since 17+ 9+ 100+ 5= 131 which is
less than 256,

It is possible to refer to a register that has not been tagged by a
floating address., This is done by referring its address to a floating
address that has been used, e.g.,

ica il
al,imr c3
isp bl+2
The instruction isp bl+2 will transfer control to that register whose
addresé is ;Eg more than bl. Note we can obtain the same result by
writing isp al-l,. Thié instruction would transfer control to that regis-.
ter whose address is one less than al. Care should be taken in applying

this procedure to numbers since they occupy two successive registers.

Ly=0,

M-2539 -1
Thus in the example:
al,*17.6
+3.984
=0,78
bl,ica al+2
its 11

o 0a

® o0

the instruction ica al+2 will place +3.984 in the MRA. The tendency, of
course, would have been to use ica al+l which would have been in error.
This is one reason for avoiding the use of these address references. An
even more significant reason for limiting the use of this procedure is
the fact that it makes it as difficult to insert corrections as in the
case of absolute addresses. For example, if we wanted to insert +7. in
our program between +17.6 and +3.934, we would have to be careful to
correct the address of the instruction in bl, etec. Consequently, rather
than referring to the address of +3;984 by alt+2, a different floating
address is advisable. ' -
It should be pointed out that it is permissible to use both float-

ing addresses and absolute addresses within the same program. All of

the sample problems given above can be used with the CS cdmputer,

M~2539+1 V-7
PROGRAMMING EXERCISES
Construct sequences of instructions to carry out the following pro=
cesses on the CS computer.
It will be assumed that x and y are numbers contained in registers
32 and 34 respectively at the beginning of each problem. All results
will be assumed to have values that will not exceed the capacity of any
register. Stop the computer after each problem.
(1) Yo the following examples of the first set of programming exer=-
cises (on page II-6) using the cycle counter instructions if this
will shorten the program:
(a) ex. 6 (No more than 7 instructions).
(b) ex, 8 (a)
(2) Initially N(cl)=2z and N(c2)=w. Make N(c2)=2z and N(cl)=w.
(3) Find the sum of the 200 numbers in the consecutive registers dl,
dl+2, di+4,.....,d1+398. Place the sum in ck,
(4) Calculate x® where xff 0 and where the cycle count pair (index=
+0, criterion= n§ 0) has been stored in registers 71 and 72 by a
preceding program; the value of n is unknown to you. Place the

answer in register 115.

M~2539-1 1v-8
Solutions to programming exercises on p.IV-7:
1. (a) icr 8

ica 32

al,imr 32

ict'al

its 115

sp O

(v) icr 40
ica 32
al,imr 32
ict al
its 77

sp O

2, ica cl
iex c2
its cl
sp O

3. icr 200
ica ci

al, iad dl'+c
ict al
its cb

.. sp O

cl, + .0

b, ica 115
iex 71
icd 1

al, ict a2
its 115
, sp O
a2, imr 32
h isp al

115) +1.

M=-2539-2 v. Input and Output V-1

I, Input
Thus far it has been assumed that programs and data can somehow be gotten
"into the computer without worrying in detail how one goes about actually doing
so, The process is simple and straightforward, but certain conventions must be
observed. The conventions are described below,
Instructions, numbers, and certain control information must all be typed
on a Flexowriter tape-perforating machine. This machine can simultaneously
type a printed copy and punch a paper tape. In response to each key that is
depresséd, a unique combination of holes is punched in each of six of the seven
positions across a 7/8 inch tape, the combination indicating which of the 50
different keys on the typewriter has been depressed. The code values correspond-
ing to each of the keys are tabulated on a list called the Flexowriter code
(see Table 1), The seventh hole is used for control purposes and must always
be punched (which is accamplished automatically by leaving the button labeled
"7th HOLE" depressed),
In point of fact, the programs are typed almost exactly in the form in
which they have been written in these notes so far, The basic rules are:
1. Instructions: typed as 3 lower case letters followed either by a
floating address made up of one letter (not o or 1)
and 1, 2, or 3 digits (any integer from 1 thru 255),
or by an absolute addréss made up of 2, 3, or 4 digits
(any integer from 32 thru 1418) followed by a carriage
return or a tab shift. . The only «ceptions to this rule
are the "sp O" instruction for stopping the camputer and
the output instruction iTOA+nl.2345c., Other output
instructions are available and will be discussed in detail
later in this chapter,
2, HNumbers: typed as a plus or minus SIGN followed by as many as
8 significant digits if desired with a DECIMAL POINT,
NO COMMAS, followed by a carriage return or a tab shift,
Exponentials with base 2 or 10 may be appended as factors
each preceded by an x (e.g., +1234.56x2'3x105).
Numbers may te zero or have any magnitude between about
5.5x10720 and 9x10'8,
3. Absolute address assignments: typed as a 2, 3, or 4 digit integer
(any integer from 32 thru 1418) followed by a VERTICAL BAR,

M-2539-1

(continued on next page)

V-2

This causes the word that follows the vertical bar to

be stored in the register identified by the absolute
address that precedes the vertical bar(that is,the word

is "assigned" to this register). It should be remembered
that if the word is a number it will occupy two successive
registers, the first of which is specified by the absolute
address that precedes the vertical bar,

If the first word of a program is not preceded by an
absolute address assignment it will automatically be
stored in register 32, All succeeding words will be stored
sequentially (with numbers occupying pairs of régisters)
until an absolute address assigmment is encountered. The
word that follows directly after the vertical bar will

be assigned by the general rule, All successive words
that are not given absolute address assignments will be
stored sequentially following the last absolute address

assignment, For example, if a programmer began his program
with:

iea 500

imr 502

its 36

‘isp 70

+,0
?0' ica 712

imr 36

its 602

E
4

i»
o
®

he would find in storage in the CS computer:

Address of Contents of
Register Register
32 ica 500
33 imr 502
34 its 36
35 isp 70

/36 . } N
+'!4;.
7 "0

M-2539.-1

4, Floating address tags:

V=3
Address of Contents of
Register Register ‘
o :
* -
70 ica 712
71 imr 36
72 its 602
: :

Of course if the first word of a program is preceded by
an absolute address assignment, the word will be assigned

to the corresponding register (or register pair). Succeeding

words will be stored sequentially in those registers following

the given absolute address until another absolute address

assignmment is encountered, etc,

typed as one lower case letter (not o or 1) and 1,

2, or 3 digits (any number from 1 thru 255) followed by a
COMMA, This is called a tag since it is used by the programmer
to identify the word that follows it, For example

cl,+.5000

tags the constant f.5000 so that it can be referred to else-

where in the program (e.g., imr cl).

The general rules given above in section 3for assigning

words to storage registers are unaffected by the presence of

floating address tags.

The floating address itself is set

equal to the absolute address of the register that contains

the word tagged by the floating address, Thus if a program

began with
al, ica 500
ime 502
its 11
isp 70
i1, +.0
70| ica 712
imr 11
a2, its 602

°
»

M-2539-1

5. Beginning of

V-4

the programmer would find in storage:

Address Contents
32 ieca 500
33 imr 502

34 its 36
35 isp 70
% } +.0
37 .

;0 ica 712
71 imr 36
72 its 602

The floating address al would be replaced by 32 wherever
it appears in the program, il by 36, a2 by 72, etc. It should
be pointed out that the only way a floating address gets set
equal to an absolute address is when that floating address is
used as a tag. Consequently, if a floating address is used
in an instruction but is never used as a tag, the program will
be in error and not perform properly (see VI-6),
tape: ‘inpreparing the perforated paper tape to he read into
the CS computer, the following two lines should bhe typed
before typing the program itself:
a) The first line should contain suitable identifying
information. The first word of this line should be
"fct followed by "TAFE" (with each letter capitalized,
i;é;,upper cqse).‘“This word should be followed by the
number that identifies the tape and at least one space.
The progfammer may then write his name followed by a
'space and then the date. Commas may be used where de-
sired. However, the total number of characters (1nclqding
spaces and commas) should not exceed 60.
Example of a typical title:
fo T TAPE ¥ 123-45-6789 John Doey
b) The second line shou}d/céntain the special expression

(24,6).

M-253%9-1

V-5

6. End of tape: each: tape should conclude with a line containing

7. Typographical

i START AT xyz where xyz denotes the address (e.g.,

al or bl2 or 719 or al+5) at which the program starts.
The wordrs START AT aré bapitalized,

errors: 1if the typist makes a mistake while punching a
tape on the Flexowriter and detects the error immediately
(before any more characters are punched on the tape),
then the tape can be corrected by backing the tape one
line in the punch. This places the incorrect character
under the punching heads. If the typist then presses the
"Code Delete® button, all seven holes will be punched
écrossfthat line of tape (this is called a "nullify"

‘gharacter), .fhis character will be ignored when the tape

is read into the computer. Similarly, if several charace
ters have been punched after an erroneous one, all of
these characters could be punched over with the "nullify"
character, starting with the first incorrect ons. The
typing and punching can then be resumed with the correct
characters. If an error is undetected for a large number
of lines, it is usually necessary to duplicate the tape up
to the error, then punch the correct character, skip the
error on the original tape; continue to duplicate it, etc.
Splices suitable for the available tape reader are
difficult to produce. Occasionally, ingenious ways of
correcting small mistakes can be found, but there are no

standard and recommended ways available,

8. Corrections in the program after tape is typed: a tape may be remade by

duplication and correction, and if floating addresses are
used throughout, insertions and deletions may be made at
will in the program. Simple changes can sometimes be made
by adding words at the end of the tape, preceded by abso-
lute address assignments. This causes the new words to be
read in over the incorrect ﬁords, replacing them. To
enable the programmer to make corrections in registers
whoée absolute addresses are not easily determined, he

may make use of:

M-2539-1
9

10.

V-6

Floating address assigmments: typed as a floating address that had

been previously used as a tag, plus a small integer if
desired, followed by a VERTICAL BAR, This causes the
next word to go into a register already used, that is,
the next word is "assigned" to this register,

Floating address tags should not be used in a
program following the use of a floating address assigmnment

unless an absolute address assignment intervenes. For

example:

Correct Incorrect
. .

a3,iad b4 a3,iad b4
its cé its ¢b
o o
M .

a3|isu b4 a3| 1su bk

550|ica a5 fca a5

its 17 its 17
isp 43 isp d3

clp+o5 019+05

Both programs will replace the contents of register a3
by isu b4. However, the program on the right will then
store ica a5 in a3+l, etc. but it will NOT associate the

correct absolute address with the floating address cl;

Ignored and synonymous characters: the space, back space, and nullify

are completely ignored by the computer. Thus spaces may
be used for typographical reasons wherever desired. They
are recommended between operation and address sections of
instructions, Carriage returns are inferpreted in the

same way as tabs; both have the logical function of term=-
inating a word, EXtra carriage returns or tabs may be used
at will except within words or addresses., Commas, periods,
signs, vertical bars, letters, and numbers all have tertain
meanings and must not be used indiscriminately. The digit
zero and the letter o are interchangeable as are the digit
one and the letter 1., Shifts to upper an&mlower?case ﬁave
meaning and should not be used indiseriminately, but it is

M-2539-1

11. Layout:

V-7
actually only when punctuation, letters, or digits are
tyved in upper case that special things happen. If the
shift key is accidentally pushed and no character typed
before shifting down again, no harm is done. An impor-
tant rule to which the computer adheres is: IF, WITHOUT
MANUALIMOVING OF THE CARRIAGE, THE TAPE PRINTS AN ACCEP-
TABLE GOP?. THE‘TAPE IS VALiD; i.e., there are no mistakes
possible on tape that do not show on the typewritten
¢opy when printed from the tape.
ordinarily, several words are typed to a line, separated
from one another by a single tab, the last word on a line
being followed by a carriage return in place of a tab.'
The tab stops are set permanently and should not be changed.

A series of 10 consecutive vertical baré (called a
FENCE) may be inserted where desired to subdivide the
Flexpwriter tape into convenient visible blocks.

It is good practice to tab twice before an address
tag or assignment and onbe after it, making it easy to
spot the address on the printed page. However, a tag or
assignment need only be preceded by one tab and followed
by none (i.e., followed immediately by an instruction or

a number),

12, Sources of error: there are numerous errors that can appear on a tape.

They manifest themselves in various ways. Some of these
are looked for by the computer.

The computer detects the following mistakes: numbers
that are too large, an excessive number of flads (more than
255, as explained on page IV-5) or of output requests (more
than about 50), illegal Flexowriter characters (characters
that do not appear in Table la on page V-13), referring
to floating addresses that are not used as tags, illegal
duplicate flad tags,starting addresses that are too large,
programs that accidentally exceed the available storage,
and the use of a flad tag after a flad assignment with-
out an intervening absolute address assignment (see section
9 on page V-6).

Other e:rors,}such as addresses that are too large

and ambiguous words are not specifically detected by the

M-2539-1 V-8

computer but usually cause improper operation of the
program, Careful proofreading of the program typed
during the preparation:of the tape is suggested,

II, Output .

The basic idea behind the procedure that has been set up for an output
request is that the programmer should write a sample number in his output
request, A program will then be automatically set up in the storage of the
CS computer to present the output in the. form desired.

The output media that are currently available for these autamatic routihes
are: (1) a "direct" typewriter on which numbers may be recorded, and (2) a
"delayed" typewriter, where the numbers are first recorded in Flexowriter-
coded form at high speed on magnetic tape and later typed out while the come-
puter is doing something else, The maximum speed of these media and the max=-
imum number of characters obtainable on one line are as follows;

1) Typewriter: 8 characters/sec. 154 characters/line
2) Magnetic Tape(to be used later with Typewriter) - L
133 characters/sec. 154 characters/line

A programmer indicates his output request by writing the letter i followed
by three upper case letters followed by a sample number. The first of the
‘upper case letters will be either an M for magnetic tape or a T for direct
typewriter. The second is O to indicate output. The third is A to indicate
that he desires alphabetic or numerical (alphanumerical) output., For example,

" the request
1TOA+123.1234 (1)
will automatically set up in the storage of the CS computer a program that
will print out the contents of the MRA as a decimal number, with proper sign,
having three digits to the left of the decimal point and four digits to the
right,
1. Initial Zeros

If the number actually contains more than three digits to the left, the
routine automatically adjusts itself to print them all. On the other hand,
any non-significant digits (i.e., initial zeros) will be printed as zeros. In
many operations it is desired to skip initial zefos (except for the one just
to the left of the decimal point) and print the first significant digit of the
number at the extreme left of the column, This feature can be obtained by
inserting the letter "i" in the request just before the sample number,

M-2539=1 V-9
€.,

1TOA+1123.1234

On the other hand, it is often desired to line up the numhers so that the

decimal points fall in a line. Yet it may be desirable to omit printing any
initial gzeros. By inserting the letter "p" instead of "i", e.g.,

iTOA+pl23.1234
initial zeros will be printed as spaces.

2. Normalized Form

Finally, it may be desired to print all of the numbers in a pormalized
form, i.e., all numbers are multiplied by a power of 10 such that the first
non-zero significant digit always falls in the same relative“position with
respect to the decimal point. 1In this case, the number printed is followed by
a vertical bar followed by the signed power of 10 that the number is to be multi-
plied by. This kind of output is obtained by inserting an "an" instead of "p", e.g.,
iT0A+nl123.1234
As an example, consider the number -7.953261. - The above reguest will give
the following printed numbers:

using form (1)...cec0e..=007.9532
(2)enrennnea=7.9532
(3)eevecoseeo= 7.9532
(B)eoecooosoe=795.3261/<02

3. Signs
If the programmer wishes to have the sign of all numbers printed, then he
writes + after the iTOA as in the examples already considered.
In some applications the programmer may know that all his numbers are of
one sign(e.g., positive) and therefore may not want to take the time or space
to print the sign. In this case he simply omits the sign from his request;e.g.,
iTOA nl123.1234
and the printed number will be unsigned.
On the other hand, he may want only the negative numbers to appear signed.
For this he writes: '
iTOA-nl23.1234
Note that he cannot get both positive numbers with signs and negative numbers
without signs from a single output instruction.

L. Terminal Characters

In any of the cases above, the carriage of the typewriter will remain exactly
where it was after the last number was typed. It is possible for the programmer

to terminate his number with one, two, three, or four spaces, or with a carriage

M-2539 .1 V-10

return, or with a tab, To get the spaces he simply writes the proper number
of s's after his number - e.g., to get two spaces:
1TOA+1123,.1234ss
To get a carriage return, use a "c¢" instead of the s's:
1TOA+1123.1234c
and for a tab:
1TOA+1123,1234t
5. Decimal Point
If the progpammer wants only the digits to the left of the decimal point
printed and does not want the decimal point itself printed (e;g., for integers)
he need only omit the point in his request, thus:
iTOA+1123ss
On the other hand, if his numbers are all less than one and he desires to omit
the decimal point in his print-out, he simply replaces the decimal point by the
letter "rt (denoting radix point), thus:
1T0A*nr123ss ‘
to print three digits to the right with no decimal point printed. Note that if
the number in the MRA should unexpectedly exceed unity, then the resulting digits
to the left would be printed along with the desired three to the right with no
indicated decimal point,
6. Repetition of Output Requests |
It is often desirable to insert output requests at different points within
the same program. Provision has been made in the CS computer so that the sample
number does not have to be repeated if that.sample number and the desired output
medium are the same as the one preceding it in the written program. Thus if a
programmer has written: .
1TOA+1123.12345s : (5)
and writes the next output request as |
104
the form of the output will be the same as for (5).
7. Scale Factors
It is possible to have the number in the MRA muttiplied by a scale factor
before that number is printed out. The permissible scale factors consist of
exponentials with base 2 or base 10, As many such factors mayte used as desired.
The factors should be written after the sample number, and each factor should be
preceded by an Xe (NoBs ~The "+" sign should not be written for positive exponents.)

M-2539-1 . v-11

Thus if the programmer desired to have the number in the MRA multiplied
by 25 x 10-3 before printing it out, he would write his request in the
following form:

1TOA+ 1123.1234 x 27 x 107 s
8. Special Characters

Provisions are available for printing out special characters (such as
a decimal point, space, tab, sign, or carriage return) by themselves (1i.e.,
without printing some number with it). A request such as

iTOA ¢
will cause a carriage return to be typed on the "direct" typewriter. The
significant characteristic of this request is that pno sample number is
iﬁdicated. | '

The symbols for the special characters are the mme as those introduced
above, Only one symbol should be used in any given request. Thus the
request iMOA+, will not record a plus sign and a decimal point on the
delayed printer. To obtain~suchla sequence of characters the programmer
should request:

iMOA +
iMOA .

Provision has not beén made in the CS computer for repeating requests
for special characters as‘diécussed in'séction 6 of this_chapter-since the
saving of programmer 8 time would be trivial.. Conseqnéntly a request for
Jjust d special character (no sample nnmbor) should always include the

necéssary symbol for the desired character.

’

9 ggetic Tape Stop Character

- In making use of magnetic tape for delayed printing it is desirable
that each programmer terminate the Flexowriter printing from magnetic
tape to avoidvprinting information recorded subsequent to his own. A
special "STOP COEE“ character, which can be recorded on magnetic tape.
-will automatlcallj stop the delayed printout equipment. It is possible for
a programmer to provide this stop code character automatically "as
follows.

l The output request

iMOA end

can be used by a progrémmer when he has completed his recording op‘magnetic

M-2539-1 V-12
tape to mark the end of his information. The"iMOA end" request records
successively on magnetic tape a shift to lower case, stop code character,

two carriage returns, and another stop code character.

10, Page Format
‘It is often desirable to arrange a set of numbers that are to be

printed out according to a predetermined page layout. The pertinent in-
formation for such an arrangementﬁspecifies how many’nnmbers are to be
printedgperline, how many spaces are desired between numbers,and how many
numbers are included in the set. Thus three counters are required for
keeping account of these numbers,

This counting can be set up automatically in the CS computer by means
of the instruction ‘

‘ i FORMAT or, more briefly, i FOR

followed by a tab or carriage return, followed by the’three pertinent counts
separated by tabs or carriage returns. Thus the request:

i FOR
A

y-
r

will set up counters to provide &X numbers per line.;ﬂ spaces between num-
bers, and f'numbers per block. &,)5 and J” are positive integers and
sﬁould be written without a decimal point. { and 2 are restricted by the
requirement that the number of characters per line on the Flexowriter
should not exceed 154.° If a programmer sets 4 =Q. he will obtain a tab
between his numbers. J”can be any positive intéger not exceeding 32,767,
A typical request would be:
- 1 FOR

+ 10

+ 2

+ 95

givipg a block of 95 numbers with 10 numbers per line for 9 lines, 5 num-
bers in the last line, and two spaces between each number. ‘

After J‘hmmbersbhave been printed out, two carriage returns are typed
and ‘the counters are reset ready to lay out a new block. If the programmer
printe out fewer than J~5mmbers, the carriage of'the Flexowriter will be
left in a position détermined by the last number printed out.

To make use of the counting facility described in the preceding

M-2539-1 v-13
paragraphs, the programmer need only use the letter f as his terminal
character (instead of the characters suggested in section 4 above). Thus
~ the request ‘)

i TOA + nl.2345f
will print out a number in ‘a form already described. After the number
has been printed, the counter)*‘will be increased by 1 to see if a block
has been completed. If it has, two carriage —eturns will be typed and the
counters will be reset., If not, the counter®(will be increased by 1 and
a test will be made to see if a line has been completed, If it has, a
carfiage return will be typed anch.will be reset. If not,/3 spaces (or
a tab iff5==0) will be typed'and the carriage of the Flgxowriter will be
left alone awaiting further output instructions.

Thus the request i FOR, when executed, sets the counters and calls
in the routines needed to effect the counting. Any subsequent iFOR
requests will simply feset the counters. It should be emphasized that
the iFOR requeét does not return the carriage of the Flexowriter to its
left-hénd margin (since at thistime the routine does not know what medium
the programmer haé selected). For this reason the programmer should be
sure to return the oarriagé accordingly by a special request such as
iMOA c (as a rule a programmer may &ssume that before his program .is run
on the machine the carriage has been returned by the computer operator to
its left-hand margin).

The actual page layout counting is done in response to the suffix f
used as- the terminating symbol. Obviously any request using any other °
ﬁerminating symbol will not affect the countérs'and hence may spoil the

layout unlegs planned by the programmer.

fe TAPE NO, 123-45-6789 SMITH

(24,6) .82,1itas2+3
icr6 icapi+ili+e
83,itas3+3 icapi+3 itstl
ispsh icapl+s idvshi+3

. L d

L

" 6 0o & & o o

» * o ®

pl,+. -5.74x10~5
+. +1,0x10"% 4+,
1TOA+i123,.1234ss)
icapl

iTOA

icail

iTOA-112345.67¢

isps2

i START AT al

AN EXAMPLE OF A PROGRAM TYPED FOR THE CS COMPUTER

.

* 8 N & o @

+.034%2744

+.

ispsi
itst1+2
imrpi+6

*
*
L
L

*

ler7

iets2+k

icapl
imrpl+6

*
*
L d
L
L4

*

1cép1+c
ispsi+2
itssi+3

* & o o @

MAIN BODY OF PROGRAM OMITTED FOR BREVITY

*

<+1716,226
bi,ican2

ispsi
ispwil
icapi+h

LI 7 2 T R B)

lets2+3
isp0O
iadtl

. & @& & & 8 o

ispsi+2

imrn2+6

* ® @ ° o o @

n2,+1.0

T-6€G2-0

M=2539-1 Chapter VI Viel
BRRORS AND POST-MORTEMS

I. Machine Errors
In spite of all precautions, a program may not nerform as intended.

It is not alwgys easy to decide immediately whether or not the program

is at fault, but there are certain possible indications which will help
in the decision. For example: the machine will propably be at fault if
the same program is run twice under the same initial conditions with
different results each time. The mere fact that a program has worked
correctly on several occasions with different data does not absolve the
programmer from blame if that program should suddenly perform poorly with
a new data tape. This may have been caused by the new data tape which
might contain unsuitable data or which might have covered over significant
storage information, etc. Whirlwind contains checking devices known as
parity alarms, check alarms,etc., which are not supposed to reveal program-
ming errors but only machine malfunctions. However, if certain test pro-
grams which make use of every part of the machine perform satisfactorily,
then the chances are very good that the computer is working properly.

In charging programmers with machine time used, that time which the
programmer has lost due to parity alarms, auxiliary equipment failure,
etc. is credited to his account, so to speak, with certain reservations
(e.g., if a program runs for 20 minutes and then has a parity alarm, the
programmer spould not expect to be credited with 20 minutes time, since
his program should have had a rollback feature so that no more than the
last few minutes of the 20 minute period is lost), Rollback means a
periodic recording of the contents of storage oﬂ a form of secondary
storage so that in case of machine error, such as a parity alarm, the
contents of storage might be "rolled back" to what it was after the last
recording on secondary storage preceding the machine malfunction. The
program can then be restarted. (See Advanced Chapter.)

II. Definition of Post-Mortem (PM)

When the performance'of a program leads to an undesirable situation
which has been attributed to a programming mistake (or tape preparation
mistake, etc.), the contents of particular storage registers, the MRA, etec.,
might be valuable in helping the programmer diagqose the mistake. A
post-mortem is a svecial routine which records this data in some readable

M-2539-1 VIi-2
form after the program has stopped or has been stopved by the operator.
III. Programming Errors,

| A. Loop - One type of programming error that can occur which may
not stop the computer is the repetition of the same set of instructions
in excess of the maximum number of repetitions the programmer would
normally expect. Whén the operator realizes that the program has gone
into a "loop" (indefinite repetition of a cycle of instructions) he stops
the computer by pressing a special button and obtains a PA Post-Mortem
(to be diséuesed in this chapter). Pressing this special button causes
the program to stop on the next isp, icp (~), or ict (~) encountered.
Consequently, if a PA Post-Mortem shows that a program has stopped on any
one of the three operations mentioned above, then it is very likely that
the program was in a loop. This PA PM will give the programmer some
information about the loop. However, the programmer might wish to get
a post-mortem of other registers in storage whose contents might aid him
in diagnosing the loop.

B. Unmsatisfactory Results - If a program stops as predicted but

gives either no results or results which are not what the programmer
expected, the programmer might ask for a vpost-mortem to aid him in
diagnosing the program's ills, The programmer might wish to change and
then re-run his program so that a post-mortem may be obtained at a critical
point in its performance. .

C. Unexpected Stop - A program may stop unexpectedly in the wrong

place in the program or it may stop because of any one of the following
errors listed under its respective alarm and, in most cases, followed by
the instructions which could cause this error:
1. Check Order Alarms
a. Counter not provided for by the PA* is selected (this
can oceur only if the "j" in isc j has been modified
by the program).
b. Exponent of N(MRA) = 29 yhere J refers to the (30-3,J)’
notation (profided al is not a buffer): its al, iex al
c. 0<]c(al)I<1/2 : iad al, isu al, imr al, idv al

* PA (programmer arithmetic) will be discussed in a subsequent chapter.

M-2539-1 VI-3
d. When control is transferred to an undefined (illegal)
instruction, an alarm occurs on the undefined instruction.
(There are three undefined instructions and the decimal
values of their operation sections are 0, 30, and 31
respectively.)
2. Divide Error Alarm
C(al) = 0: idv al
3. Arithmetic Overflow Alarms
a. C(index register)m> 32,767 : icim
b. C(index register)-m<-32,767 : icd m
c. |C(index register)+c(al)|>32,767 : iat al (See Advanced
Section of Chapter III)
d. |il= 32,767 before the ict is executed : ict al
e. lR.esult')?.OxlO9863 or lResult‘<7.1x10-9864

idv al

: imr al,

f. 1If al is a buffer, then alarm j could occur: iad al,
dsu al
g. The contents of the index register could be large énough
to cause an alarm, i.e., when al+c > 32,767 : its al+c,
iex al+c, ica al+ec, ics al+c, iad al+c, isu al+e, imr al+c,
idv al+c, isp al+c
IV, PA Post-Mortem
A PA Post-Mortem furnishes the prograrmer with extremely useful infor-
mation if his program has not performed satisfactorily. This information

is based on the contents of storage after the program has performed and

stopped. If a programmer desires no other type of post-mortem than a PA PM,
he need only request it on his Performance Request form. If the programmer
desires post-mortems other than the PA PM, then he must have submitted

the proper PM Request for these post-mortems (see section V). In response

to such a request, the programmer usually obtains, automatically, a PA PM

in addition to the post-mortem requested. When a PM tape is used, the

machine checks to see whether there is a PA in storage and whether it has
been used:
A, If there is no PA in Core Memory (CM)* , a check is made to see

* CM ,wil) be discussed in a subsequent chapter,

M-2539-1 VI-4
whether there are any interpreted instructions (i1)*or Generalized
Decimal numbers (G.D. numbers) %eqpested on the PM tane. If -there are,
then the words "nmo PA" are printed out instead of a PA PM printout. If
there are nether ii nor G.D. numbers, then nothing at all will be printed
out.

B, If there is a PA in storage but it has not been used then the
words"PA unused"will be printed out instead of a PA PM printout. If
the PA has been used, then a PA PM will be printed out. The PA PM will
then be followed by the other types of post-mortems requested on the PM
tape.

In the case where the programmer requests a PA PM without using a
PM tape, he will receive a "pushbutton PA PM", This is executed in the
same way as the PA PM obtained via the PM tape except that in this case
there is no way of checking for G.D. numbers or interpreted instructions
since there is no PM tape. . The information furnished by a PA PM might

appear like this: (all addresses in example are decimal)

B-17-54
100-04-367

John Paul Jones

(24,6) PA PM

stopped at 279 279| iex 493+ec 499| -.12345678] +07 MmAl +.324566109] +22
1624 | b] +.274901627] +14- 1bl -.726401278] +11 2b] -.360072483 -35

16331 o| 0,20 1}l 3,22 2]/ 0,0 3| 0,0 4 o,0 3| 0,6

509| icp606 615| isp285 320| ispR2l 246 icp255 274 | icp278

line 1: date ex: 4-17-54 This title information may or
may not appear and if it does

line 2: tape mo. ex: 100-04-367 appear it may be in a different
line 3: name ex: John Paul Jones form or order. The programmer

may select his own title by

having it inserted on his PM tape
(see "Preparation of PM Tapes" in

Section V; in this case, the entire
title will appear on one line.

line 4: title ex: (24,6) PA PM

* ii and G.D, numbers will be discusssd in subsequent chapters.

M=2539-1 Vi-5
*line 5: stop line

This line will always contain information about the interpreted
instruction which was being executed or which was most recently
executed., 279 is the address of the instruction that was being
performed at the time the program stopped; iex 493+c is the
instruction that was being performed; 499 is the effective result
of 493+c (the address section of the instruction being performed);
«.12345678]*07?; the G.D. number in registers 499 and 450;
4u32h§66109| +22 is the content of the Multiple Register Accumulator.
Notice that the maniissa of a number in 2 registers of storage is
printed as an 8-digit number and the mantissa of a number in a buffer
or the MRA is printed as a 9-digit number. (In the example above,
the program stopped because the MRA contained a number that exceeded
the capacity of storage and the iex attempted to store the content
of the MRA in registers 499 and 500.)

*line 6: Dbuffer line

line 7: counter line

1633| 0[0,10 means that cycle counter zero contains a zero in the
index register and 10 in the criterion register, and that register
1633**%* and 1634 are the index and criterion registers respectively
of counter zero; 1“‘ 3,12 means that cycle counter one contains a
3 in its index register and 12 in its criterion register and that
cycle counter oneé is the most recent counter used (indicated by the
number preceding the 3 vertical bars). If no counters are called
for, the "counter line" will not be printed. The maximum number of

counters per line is 10,

* See section VII for a more detailed discussion of lines 5 and 6.

*% This means -.12345678 x 107 (-.12345678 is often referred to as the
mantissa of the number).

***In an advanced chapter, formulas will be presented which will enable
the programmer to determine the location in storage of the various
sections of his program, such as PA, cycle counters, etc. At that
time the programmer will be able to verify 1633 and 1634 as the
location of the zero-th cycle counter pair in the example given above.

M-2539-1 | VI-6

line 8: Jjump table
The five most recently executed transfers on control (due to isp,

icp (=)) and their locations are enumerated; the most recently
executed transfer of control appears at the extreme right. If less
than 5 transfers of control have been made by the time the PM was
taken, only those will appear in the print. If no transfers of
control had been made, then the words "no Jjumps"™ will be printed

on this line. 509| icp606 means that the fifth last isp, icp (=)
instruction that was executed is icp606 and it was contained in
register 509 etc.; the last one executed is icp278 and is contained

in register 274.

V. Other Post-Mortems

Before his program is run, the programmer would do well to prepare
a post-mortem tape which he might want to use under certain circumstanges.
The programmer must specify on these PM tapes: (1) which registers he
wants to examine (e.g., registers 100-130), (2) how he wants their
contents printed (e.g., as instructions, numbers, or single-register
integers; thus far such integers have only been used as the contents
of the index and criterion registers) and (3) which mode he wishes
used (elg., direct, or delayed printing; the latter will be described
in an advanced Chapter). The computer furnishes the programmer with

the desired information'automatigallx after the operator reads in the

programmer's PM tape. After a Post-Mortem has been given,the contents

of CM is automatically restored to whatever it was immediately preceding
the Post Mortem. A ?A PM is automatically given with each PM tape request

under the conditions given in section IV above. However, the programmer

may obtain a PA PM without preparing a PM tape if he doesn't require any
other type of post-mortem.

M-2539-1 VI-7

A. Preparation of PM Tapes
Tapes are prepared on the standard Flexowriter typewriters by

depressing the proper keys while in punch and type mode (see fig. 1
at end of chapter). A daseription of the information which must

appear on these taves follows:
l. fp must appear as the first characters of the tape.

(These letters represent flexo post-mortem.)
2. Any title the programmer desires (e.g., name, date, tape
number, etc.) must follow the fp notation of 1. Such a title,
if used, must be followed by a carriage return.
3. The next characters must indicate the mode desired:
a. del will give delayed printer. (One may punch
out as much of the words "delayed printer" as he wishes
but at least the first three letters must appear.)
b. dir will give direct printer. (As injé;, above,
at least the first three letters must appear.) If no mode
in indicated on the PM tape, then the programmer will
antomatically get delayed orinter.
L, DNext the programmer indicates whether he wishes decimal or
octal addresses in both the locations of words and the address

section of instructions.
a. dec will give decimal addresses (whole word
"decimal" may be used instead).
b, oct will give octal addresses (whole word "octal"

may be used instead).

If neither octal nor decimal is indicated on the PM tape, the

programmer will sutomatically get decimal addresses.
5. Next the programmer indicates the address of the initial

register of a block of registers whose contents is desired.
This address may refer to CM or to Drum Memory (DM)*. When a
tape is read into storage the first thing that occurs is that
the contents of CM is recorded on DM Group O, Consequentl§, as

- far as the programmer is concerned, he may obtain whatever the

*Drum Memory will be described in advanced Chapter.

M-2539-1 VI8

contents of register X was in CM before the PM tape was read

in by requesting the contents of register X of DM Group 0.
This may be done in any one of several ways: v

(ex. a) 0 = 45 means register 45*% of DM Group O (Actually
what we get is register 45 of Core Memory since Drum
Group O contains whatever was in CM before the PM
ﬁape was read in.) 8 - 88 would mean register 88 of
DM Group 8. (The "O" in 0 - 45 above could have been
omitted, Whenever Drum Group 0 is selected with this
type of notation, the zero and dash are optional.)

(ex. b) 16472 means register 16472 (decimal) of Drum‘Memor&,
(This is equivalent %o using 8 = 88 in ox. a)**

(ex. ¢) 0.40130 means register 40130 (octal) of the Drum,
(This is equivalent to using 8 - 88 in ex. a or
16472 in ex., b,)**

6. Any one of the following 2 letter combinations may follow

section A5. above to indicate the form in which the programmer

wishes to have his instructions or numbers printed out:

a. 11 means interpreted instructions ex: ica 47
b. wi means Whirlwind instructions ex: ca 47
¢. of means octal fractions ex: 0.01763
d. di means decimal integers ex: 679

e. 4f means decimal fractions ex: ~.6384

f. gd means generalized decimal numbers
ex: +,12345678} +22
7. This is followed by the address of the fipnal register of .
the block of registers whose contents is desired. The address
of the final register is indicated in the sdme way as the initial
register (see A5. above), |

8. The terminating character of the tape consists of two
vertical bars || !

*Decimal or octal depending upon what is selected as described in
‘section 4.

‘** This notation will be described in an idvanced Chapter on Drum Memory.

M-2539-1 : VIi-9
B. iple uests
1. Example One
One may use the address of a final register of a block as
the ini£ia1 address of a new block of registers in steps 5-7
above. If v
0-45 ii 0-700 wi 0-823 df 0-1073
were typed for steps 5-? in the preparation of a PM tape, the

programmer would obtain the following:

register 45 CM to register 700 CM as interpreted instructions,
register 700 CM to register 823 CM as Whirlwind instructions,
register 823 CM to register 1073 CM as decimal fractions.

2. Example Two

The programmer need not use the address of a final register

of a block as the initial address of a new block as in Ex. 1
above. If
0-45 ii 0-700 0-750 wi 0-323 1-850 df 1-1073 gd 2-97
were typed for steps 5~7 in the preparation of a PM tape, the
programmer would obtain the following:
register 45 CM to register 700 CM as interpreted instructions,
register 750 CM to register 823 CM as Whirlwind instructions,
registers 850 to 1073 of Drum Group 1 as decimal fractions,
register 1073 of Drum Group 1 to register 97 of Drum Group 2
as Generalized Decimal numbers.
3. Example Three
The progfammer may desire several different modes (e.g.,
delayed printer, direct printer) and/or both octal and decimal
addresses. The following example shows how easily this may be
done:
fp John Sampson April 3, 1954 Tape 263-49-16
oct 127 ii 700 dec 500 wi 700 dir oct 1340
gd 1-751])
The above would give the programmer the following:
a. The titie on the first line will be recorded on the
delayed printer. (Since no mode was selected, the program-

mer automatically gets delayed printer.)

M-2539-1 VI-10

b. oct 127 ii 700 gives the programmer registers 127-

700 (octal) of CM as interpreted instructions with ogtal
addresses on the delayed printer. The location of these
instructions will also be given in octal.

c. dec 500 wi 700 gives the programmer registers 500-

700 (decimal) of CM as Whirlwind instructions with decimal
addresses on the delayed printer. The location of these
instructions will also be given in:decimal. (Whenever
changing from one mode to another or from one number system
to another, place your new information, e.g., dec, dir, etc.
immediately before the group of registers affected.

dec 500 wi 700 is an example of this,

d. dir oct 1-340 gd 1-751 gives the programmer registers

340-751 (octal) of Drum Group 1 as generalized decimal
numbers on the direct printer. The location of these
numbers will be given in octal.
NOTE
The following specific cautions are given for the preparation of a
PM tape so that the programmer may be able to prepare his own tape if the
need arises.
C. Cautions in the Preparation of a PM Tape
1. In order for CS II to be able to distinguish the last digit
of one number from the first digit of the next number (as in
example two section B above where 0-750 follows 0~700) some
character other than a number must be used to separate them.
a space, tab, or carriage return will serve the purpose
adequately. The programmer should avoid writing the ahave
example as 0-7000-750.
2. The following numbers 1., 2., stc. are associated with
those in the section entitled "Preparation of PM Tapes."
a-1l, The letters in fp should not be separated dy a
character.
b-2. fp and the title must not be separated by a carriags
return. However, the title musgt be followed by a

carriage return.
¢c=-3. The letters in del,etc. should not be separated by

a character.

M=2539-1 | VI-11

d-4, The letters in dec,etc. should not be separated by
a character. _
e-5. The digits and hyphen in O=45, 0.12345, 16421 should
not be separated by a character.
f-6. The letters in ii, wi, etec. should not be separated
by a character,
g-7. OSame as e-=5. above,
h-8. The final two vertical bars should not be separated
by a character.
3. 3Backspacing and manual interference with the Flexowriter
carriage are illegal, Generally speaking, "if the typed copy
of the PM tape looks correct, then the tape probably is correct."
The programmer may combine as many PM tapes as he wishes into
one tape.
VI. ZXlad Tgble
It is often convenient to know the absolute addresses assigned to
the floating addresses used in a particular program. This is especially
useful in checking a program with the results of a post-mortem since
addresses in a post-mortem appear as absolute addresses. JFor this reason

& floating address table is available to the programmer for his particular

program.

Suppose a program had contained the following floating addresses: al,
a5, a5+3, a7, g2, gl0, glo+6, s2l, 822, Then the program's flad table
might appear like this:

assigned flads

al=108 a5=122 a7=64
g2=217 g10=250
821=718 822465

The flads are listed alphabetically and then numerically according
to the number in the flad. Notice that a5+3 and glO+6 do not appear in
the flad table. The reason for this is that since a5=122 then a5+3=125
and since gl0=250, gl0+6=256.

If the programmer should erroneously refer to floating addresses that
have never been assigned (i.e., used as tags), let us say g3, f4, and t8,
then the following data will automatically be printed in addition to a
flad table, so that the programmer might have sufficient information to

correct his error:

M-2539-1 ' VIi-12

unassigned flads
fi at 91
g3 at 72
t8 at 104, 163, 319
If a flad, let's say al, is erroneously used in such a way that it
has more than one value, then no flad table will be recorded and the
following will automatically be printed:
duplicate flad is al

M-2539-1 VI-13
Advanced ééction

The following section is included in this chapter for completeness, but
should be considered as part of the more advanced section of this manusl.

l

VII. PA PM Continued (refer to illustration on page 4)

A. Line 5 of PA PM in greater detail
If register 279 had contained a buffer instruction instead of
iex 493+c, the address section of the instruction would contain the
"b" notation. Thus one might get 279 imr 3b but the section
499| =.12345678| +07 will be omitted since the contents of the
buffer will appear on line 6.

As another example: if the number in 499 had been an improper
G.D. number, i.e., if it had not been scale-factored (defined in
advanced chapter), the contents of registers 499 and 500 would not
have been printed out as a G.D. number but as two octal fractions
(discussed in advanced chapter) in the form =~ 499| d..d.d.d.d,d

0°"1727374°5

500 eo.ele2e3e4§5.

The above two examples are included in the following table which
tabulates all the possibilities for line 5¢

M-2539-1

VI-14

i PA_PM TABLE

Contents of "register(s) referred to"
in address section of instruction

Operation section of "instruction
being executed"

being executed

ica, ies, iad, isu, imr, idv, its,
iex

b.

Co

Proper G.D. number is printed as
G.D. number.

Improper G.D. number is printed as
two octal fractions.

If the address of the "instruction
being executed" refers to buffer
storage, nothing is printed out
since the contents of buffer stor-
age is printed on line 6 of the PA
PM. (Buffer discussed in advanced
Chapter and in VII-B.)

same operations as above with "c"
appended

If there 1s no cycle block, the
operation section above will be
printed as a WW instruction.

8e

If there is a cycle block, same as
a and b above. (Idea of cycle
"block" to be discussed in advanced
Chapter.)

If there is no cycle block, this
section will not be printed.

ita, isp, icp

b.

Interpreted instruction printed as
such. (If the address of this in-
struction is buffer j, i.e., jb,
then the address is printed as
1784 + j.)*

Instruction printed out as WW in-

struction if

(1) it is illegal (operation
positions 0, 30, 31 decimal).

(2) it is a cycle instruction and
there is no cycle block.

icx

If there is no cycle block, the
operation: section above will be
printed as a WW operation.

8o

Printed as two decimal intégers**
N| i, N+l| n if there is a cycle
block.

If there is no cyele block, this
section will not be printed.

* 178, happens to be the address of the first register of the PA block.

% Discussed in advanced Chapter

M-2539-1

der, ici, icd, isc

If there is no cycle block, the
operation section above will be
printed as a WW operation.

VI-15

This section will not be printed.

ispe

If ‘there is no cycle block, the
operation section above will be
printed as a WW operationi

8

b.

If there 1is a cycle block, then

(1) an interpreted instruction is
printed as such. If the ad-
dress of this instruction is
buffer j, i.e., jb, then the
address is printed as 1784+j.

(2) Illegal instruction is printed
as a WW instruction.

If there is no cycle block this
section will not be printed.

If there is no cycle block, the
operation section above will be
printed as a WW operation.

8e

be

If there is a cycle block, then

(1) an interpreted instruction is
printed as such, -

(2) an illegal instruction is
printed as a WW instruction.

If there is no cycle block this

_ section will be printed out as a

WW instruction.

8p

This section will be printed as a
WW instruction.

illegal instructions (operation
positions 0, 30, 31 decimal)

The operation section above will

be printed as a WW operation.

o~

This section will not be printed.

M-2539-1 VI-16

B. Line 6 of PA PM (Multiple Buffers Line)

This line may appear as follows:
1624 b| +.274901627| +14 lb‘ -.726401278| +11 2b| -.360072483| -35

1624] b| +.274901627| +14 means that the content of b (buffer zero -
which may also be written Ob) is the Generalized Decimal number
+.274901627| +1/, and that the asddress of the first register of buffer
zero is 162/*, (Buffer zero is the first available buffer.) Notice
that the mantissa of a number in buffer storage is expressed as a 9-
digit number.

lb' -.726/401278| +11 means that the contents of 1b (buffer one) is the
G.D. number following the 1b ete. The maximum number of buffers appearing
in any one line of the PA PM is five. If no buffers have been called
for, then line 6 of the PA PM will be omitted.

Drawings attached
A-58536

* In an advanced chapter, formulas will be presented which will enable
the programmer to determine the location in storage of the buffer
triples b, 1lb etc.

A-58536
F2335

Lr —

FIG.I FLEXOWRITER TYPEWRITER

M-2539 <1 VII Subroutines : ViI-1

In preparing a program to solve a problem on a digital computér,
the programmer frequently will find that his program naturally breaks
down into a series of groups of imnstructions, each performing some neces-
sary operation. One or more of such grouph‘often are written to perform
the operation denoted in one of the blocks of the flow diagram for the
solution of the prbblgm.'vExamples of such operations are the extraction
of roots of a number, the calculation of the values of a function for
values of the independent variables, etc. If such operations occur in
many different programs, much programming time will be saved if these
routines are available to the programmer without the necessity of his
preparing them. Such groups of instructions, which perform particular
operations, are called subroutines, and a collection of such subroutines
is usually called a subroutine library. Even if particular routines ars
not available in the subroutine library, the programmer may still find
it desirable to write these himself as subroutines in his program, both
to simplify the logical structure, and to save space if the same routine
is to be used at different points in the program. ;

As an illustration of a subroutine, let us assume that the polyno~

'mial function ax24'bx+~c is to be evaluated for a particular value of x
which is in the MRA. A program to evaluate this function would be

its bl store x © .
imr al | form ax

iad a2 . form ax+b

imr bl form ax2 + bx
iad a3 form ax>+bx+ ¢

which uses the registers

al, a coefficients of the polynomial, which will be

a2, b particular numbers depending on the particular

a3j, c problem.

bl, +0« storage for x

If we wish to make this subroutine a self-contained block, then an
isp order will be needed to skip around the registers containing numbers,

M-2539-1 Vil-2
as

) isp pl
al,
a2, b
a3, c
bl, +0.

pl, its bl

imr al
iad a2
imr bl
iad a3

This subroutine is now ready for insertion where needed in a pro-
gram. If this subroutine is a member of the subroutine library, there
is a punched paper tape containing these instructions kept in a file, and
this tape can be copied into the main program wherever desired. If a

- programmer is using a subroutine from the library, he must carefully
agcertain exactly whét the subroutine will do, how many registers it will
occupy (if storage space is critical), where it places the result or
results; what its accuracy is (if this is a factor), etc. If he is in-
terested in the time required by hiskprogram, then the time required by
each subroutine, if it can be determined, will be necessary.

RELATIVE ADDRESSES ,

If a floating addiess is used in a subroﬁtiné, whether written by
the programmer or obtained from the subroutine library, the programmer
must avoid using this same floating addréss in other parts of the
same program, since the CS computer cannot handle the ambiguous situation
of one floating address corresponding to two different absolute addresses.
Since several subroutines from the library might be used in the same
program, this also means that all library subroutines would have to use
different floating addresses (and none could be used twice in the same
program)}. 'for these reasons, floating addresses are not used in library
subroutines. Also, absolute addresses cannot be used in library subrou=
tines since the programmer must be permitted to place such subroutines at

any point in his program. However, references to other registers in the

subroutine are usually necessary; for this purpose relative addresses are

M-2539-1 VIii-3
used, Thus,a register is labeled not by an absolute or floating address,
but by its position relativer to some arbitrary register called the
reference register, which is uéually the first register of the routine.
Relative addresses are indicated by the suffix r, i.e., 3r refers to the
third register after the first register of the subroutine.* When the
program tape is fed into the machine, relative addresses are converted
by the machine to absolute addresses by adding the relative address to
the absolute address corresponding to the reference register. If the

above example is written in terms of relative addresses, we have:

or, isp O9r The Ox is used to specify the reference
1r| a register, as will be explained in the
3r| b following paragraphs. ©The lr| assigns
5r| c the instruction (or number) that fol-
7r| +0. lows to the register (or pair of regis-

9r| its 7r ters) whose absolute address is the

reference register plus one.

lOr| imr 1r
llrl jad I3r
12r| imr 7r

~ 13r] dad 5r
Not all the instructions or numbers in such a subroutine need be prece-
ded by relative addresses. The use of relative addresses is similar to
the use of absolute addresses in that counting of reglsters is required;
if an instruction or number is omitted by the programmer, it may be
necessary to renumber the registers and the cross-references in the rou-
tine ‘after the insertion of the desired material.

There are two ways to indicate to the machine the absolute address
of the reference register: . (1) If the subroutine is to be started iu
a certain absolute register, say 100, then the programmer should write

‘IOOIOr, followed by the first instruction of tae routine. Thus if it

were desired to have the above subroutine begin at register 100, the

*Note: The relative address 3r should not be confused with the
floating address r3.

M=253%-1 VII-4
programmer could write
100|or, isp 9r
a
b
c
+0.,
its 7r
imr 1r
iad 3r
imr 7r
iad 5r
This would appear in the machine as
100| isp 109

1))
102] |
103]

04| [°
105y .
106 |

107[Y 4o,
108|

109| its 107
110| imr 101
111] iad 103
112| imr 107
113| ied 105
(2) If a programmer using floating addresses wishes this subrou=-
tine to start in al, he may write
al,o0r, isp 9r
lrla
3r|b
5r|c
7r|+0.
its 7r
imr 1r
iad 3r
imr 7r
iad 51

Note: we could omit the relative
address assignments_lrl,Brl, etc.

M-2539-1 | VII-5
Since subroutines in the library have the Or, of the first address
punched in the tane, the programmer can simply write "100‘" or "al,"
before indicating that the subroutine is to be inserted at this point.
Actually the "Or," is superfluous after the floating address'tag "al.f
since the comma in a floating address tag makes the register so tagged.
the reference register. To indicate that a subroutine, say number 10,
from the library is to be inserted at a particular vpoint in the program,
the programmer may write "LSR tape no. 10" on the line following the al,
or the 100|° This may appear on the typewritten copy of the program |
and will be punched on the paper tape. <The liorary tape containing the
subroutine is then duplicated on the program tape. At the end of the
subroutine, may be typed the words "END OF SUs«OUIINE?, <These two gr . '.s
of words are used only to, indicate on tne typewritten sheet the positions
of various library subroutines (LSR), which helps make this copy of the pro-
gram easier to follow., The machine ignores lines starting with LSR and END...
Unlike floating addresses, the same relative addrssses may be used
at many points in a program. in each block of instructions in which
relative addresses are used, the reference register is the most recent
one which contains a comma in the addreés-tag gection, e.g., "al," in
the =zbove example. If we wished to evaluate the above polynomial for
two values of x, say X and X5 stored in register 41 and 42, and to
type the results on one line, we could write
ispel
dl,x; ' '
d25x2
clyica 4l
c2,isp 9r
a
b
c
+0.
its 7r
imr 1r
iad 3r
imr 7r
iad 57

M-2539=1) VII-6

iTOA+n1.2345¢%

c3,ica d2

cl,isp 9r
a
b
c
+0,
its 7r
imr 1r
iad 3r
imr 7r
iad 5r
iTOA+nl.2345¢

if this program were Library Subroutine tape number 10, then the

programmer would get the same program by writing
ispcl
dl;x
iZ,xl
cl,ica dl
c2,
LSR, Tape No. 10
"4 1iTOA+ml,. 2345t
c3,ica d2
cl, .
LSR Tape No. 10
4T0A+n1.2345¢
When this program appears in the computer, the absolute addresses in
corresponding orders of the subroutine in its two positions will be dif=-
ferent, since the reference‘gegisters are different in the two cases.

CLOSED SUBROUTINES

' Obviously, it is wasteful of storage registers to place the same
subroutines at two or more points in storage. ©Some saving could be
realized by using floating addresses to tag the‘registers containing

the constants in the subroutines, and then placing these at only one
point in the program. For subroutines written by the programmer, this
is feasible, but for library subroutines it would require changing these
routines, which we wish to avoid. In additioh, this probably wwmld not
amount to a substantial saving, since the constants in a subroutine nor-
mally do not occupy many registers of the routine. VFor these reasons, a

special order has been built into the CS computer which permits the

M=~2539.1 VIiI-7
programmer to leave his main routine, go to a subroutine to perform
some particular operation, and then return to the next register of the

main program. 7This order is ita.

ita al transfer address transfer, into the address section of the
instruction in register al, the address
that is one more than the address of the
register containing the last isp (or icp
with N(MRA)<O0)

To illustrate the use of the ita al instruction, suppose we rewrite

the program:

al,ica dl pick up x,
isp ¢3 go to subroutine
iTOA+nl.2345t print the resulting N(MRA) followed by a tab
ica 42 pick up X,
isp ¢3 go to subroutine

iTOA+nl.2345¢c print N(MRA) followed by a carriage return
g0 on with program

oo

¢3,0r, ita 6r
its 13r
imr 7r
iad 9r
imr 13r
iad 1ir
isp O

b

c

+0,
dl,xl
d2,x2
Note: It does not matter what address is initially written in the isp
instruction in 6r, since the ita instruction will write the correct k
return address in this instruction whenever the subroutine is entered by

and isp or icp from the main program. This new construction of the

M-253%1 VII-8

subroutine also removes the necessity for the isp formerly required to
skip around the group of constants in the subroutine.

The above subroutine, starting with the ita in ¢3, could be placed
anywhere in storagzs and can be entered from any other point in storage.
It is a completely self-contained block of instructions which carries out
a particular operation when entered with a value of x in the MRA and re-
turns control to the main program when this operation has been completed.
This type of subroutine is called a "closed subroutine" as contrasted
with those subroutines (given in the first examples of this chapter)
which must be placed in the main program wherever they are required and
are called "open subroutines". When a closed subroutine has been placed
in storage, we may regard the isp order which "calls" in the subroutine
(1ike the isp c3 above) as representing a new order, in this case an or=-
der which evaluates the value of the polynomial for the mrticular value
of x in the MRA. The subroutines in the library are of the closed type
and therefore have an ita as their first instruction.-

A library of subroutines can be ageat asset to the programmer, par-
ticularly since most problems can be written as a sequence of smaller
standard operations which are probably represented in the subroutine 1li-
brary. Time is saved by using the subroutine library, not only in the
composing and writing of the instructions for the routine, but also in
checking the program for‘mistakes, since the library subroutine has been
tested and should be correct. If the programmer writes his program as a
sequence of subroutines called in by a main program, it may simplify the
work oflwriting the program and each new subroutine can be tested sepa-
rately as it is written making it easier to isolate and correct any
mistakes,

PARAMETERS

The subroutine that we have Jjust evolved will evaluate the given
polynomial for any value (within the storage limits of the CS computer)
of the variable x.

Let us now suppose that we have a program in which we wish to evalu-
ate a number of different polynomials each of the same degree but with
different sets of coefficients. We could make tse of agroup of subrou-
tines, one for each case, but these subroutines‘would all have a great

deal in common and it would be a waste to store sach one in full.

M-2539 <1 , VII-9
What'is required is to be able to modify one copy of the subroutine
to meet each case as it arises, or to have the subroutine modify itself
as required. Somehow the user must be able to specify the information
that is needed to modify the subroutine. This specification is called a
parameter of the subroutine.
PROGRAM PARAMETERS
 When a parameter is provided by the program it is called a program

garaméter° ¥or example, sets of coefficients for the polynomial subrou-
tine could be stored in the main program to be used when needed. Such
program parameters need not be stored a priori in the program, but they
can actually be determined as part of the program. The variable x itself
is a good example of a program parameter. The value of‘x for which the
value of the polynomial is to be found may be determined by the program.

The most convenient place for the program parameter is in the MRA
since the contents of the MRA are unchanged by the isp. However, only
one such parameter can be stored in this way. 4lso, since the MRA is
used in the subroutine, its initial contents must be processed immediate-
iy or be lost. This places restrictions on the subroutins,

The next most convenient place for the program parameter is in the
main ﬁrogram in the register or registers following the isp to the closed
subroutine. The reason that this location is convenient is that the
address of the register following the isp is available to the subroutine
through the mechanism of the ita instruction. Unfortunately the CS com-
puter does not contain any simple means for setting the necessary addresses
to refer to these registers. The procedure for handling such addresses
makes use of instructions and techniques that will be described at a
later stage in the development of the CS logic. OConsequently, further
discussion of the use of program parameters will be postponed for a
later chapter.

PRESET PARAMETERS

The use of program parameters permits the variation of a parameter
from time to time during the execution of the program. In the case of a
library,subroutine,’however, it frequently happens that although it is
useful to be able to choose a value of the parameter to suit a particular
program, it is no hardship to forego the ability to change the parameter

during the execution of the program. This means that the parameter can

M-2539 =1 VII-10

be fixed before the calculation begins, and need not be reset each time
the subroutine is called in,

The setting of the appropriate parameter for a particular program
must be done when the program is read into the machine. The form of the
subroutine which is kept in the library files must be applicable to all
permissible values of the parameter. If the fullest advantage is to be
taken of the subroutine we want to be able to copy it directly onto a
program tape without having to make any alterations. The machine itself
must therefore adjust the subroutine according to the parameter value
chosen. It does this as the program is read into the machine, so that
by the time the whole program is in the machine the subroutine is in the
form required by the particular program. BSecause the parameter is fixed
before the execution of the program beging, it is called a preset
parameter,

Various methods have been used with various machines for incorpora=-
ting preset parmeters into the subroutine. lhey all require that the
value of the parameter be defined (i.e., identified and gpecified) by
suitable punching on the tape preceding the portion of the tape on which
the subroutine itself is copied. During the read-in process the machine
remembers the identity and specified value of the preset parameter.
Hence when it reads in the subroutine it is able to incorporate the pre-
set parameter correctly into the subroutine. A 1list of the pertinent
preset psrameters are always included in the description of the subrou-
tine. ZFor the convenience of the programmer, preset parameters are usu-
ally chosen so that if their values are not specified they automatically
assume their most common values (which should be zero for subroutines to
be used in the CS computer).

In the CS computer, preset parmeters are identified by the fact that
they éonsist of two lower case letters followed by a decimal integer less
than 41 but greater than zero. The first letter must be one of the fol-
lowing three: p, u, or z. The second letter can be ény letter other
than o or 1. Care must be taken that the sum over al l parameter letter
pairs of the maximum numbers used for each letter pair does not exceed
40. Xor example, if the preset parameters pa 2, za 5, za 7, pd 7, zg L,
ug 6, ug 8, and zz 11 were used‘in a given program, the condition would

be satisfied because 2+ 7+7+L4+8+ 11=39 k1,

M-2539-1 VII-11
A value is specified for a preset parameter simply by writing down
the parameter followed by an equal sign, the value to be assigned, and

finally a tab or a carriage return. For example, if it is desired to set

the preset parameter pa 2 to the value +8, one simply writes in his

program: pa 2= 48 (followed by a tab or carriage return)

Preset parameters may be set equal to any positive or negative integer
not exceeding 32,767 in magnitude (this integer must not contain any
decimal point - see Chapter) In addition, a preset parameter may be
set equal to a floating address, an absolute address, or to another pre-
set parameter provided they are assigned suitable integral values else-
where in the program (the floating address by being used as a tag, the
preset parameter by being explicitly assigned an integral value).

The following subroutine evaluates a polynomial anxn+',,,4-alx4-ao

(11) n (integer))0), where the coefficients a are stored

O’noocoeo,alo
in fixed registers in the subroutine. (Such a polynomial might revre-

sent an approximation to an arbitrary function where the accuracy of the

approximation can be varied by varying n.)

ppl=
Or,ita 8r
its 9r
icr ppl
ica 1lr
iad 33r = prl - ppl+tec
imr 9r
ict 4r
iad 33r
isp O
+0,
+0,
a1,
*9
. Actually, the numerical value of the
. coefficients of the polynomial would
o appear here.

0
If the programmer wanted a 5th degree polynomial then he would

write ppl=5 , If he wanted a 6th degree polynomial, then he would write
ppl= 6, etc.

TEMPORARY STORAGE

o Iﬁ many routines, certain registers are used only to hold interme-

diate results. Jor example; in the program on page VII-1, the initial

M=2539 =l VIii-12
contents of register bl is immaterial. When it is desired to e#aluate
the polynomial for some value of x, the value of x is stored in register
bl and the evaluation is carried out. If this particular value of x is
not needed elsewhere in the program, the contents of register bl again
‘becomes immaterial. Such registers whose contents ars set and used when
needed during the execution of the orogram and are otherwise immaterial
are called. temporary storage registers, |

A programmer who finds it necessary to make use of such registers
will simply set aside certain registers for this use. Yor example,
registers 46, 47, 43, and 49 in the program on page I-3 were set aside to
hold temporarily the indicated intermediate results, If such a program
were used in conjunction with one or more subroutines which also made
use of temporary storage registers, then it should be possible by the
very nature of a temporary storage register for the main routine and the
subroutines to make use of a common set of registers. The number of
registers in this set will be determined by the maximum number of regis-
ters whose contents are needed in the program at any given time.

The difficulty that arises in using such common sets of temporary
storage registers is that we need some way for each of the routines to
refer to.the common set. In the CS computer the label 0Ot denotés the
first of a set of consecutive temporary storage registers, 1t the second,
2t the third, etc. The label "Ot" is usuélly abbreviated as "t" (i.e.,
0t and t are syﬁonymous; both refer to the same register).

Temporary storage registers are specified in the same manner as are
preset parameters. The programmer simply writes, for example, t=1400
(or, t=al) and henceforth any reference to a temporary storage register
is determined. For example ica 2t becomes ica 1402, its t becomes
its 1400. (Similarly with t=al, ica 2t becomes ica al+2; its t becomes
its al.) Note that once t (or Ot) has been specified then all of the
other témporary storage registers are also specified. Hence the program-
mer must be careful to set aside in sequence the proper number of tem-
porary registers that will be needed. The number of registers required
for any library subroutine is alwayé included in the associated speci-
fications. A

Thus, for example, if the main program needs three temporary storage
registers and if we use two subroutines one of which makes use of five

temporary storage registers and the other subroutine only one, then we

M~2539-1 | VII-13
wouldvsét aside in our program a block of five registers .to be used as
temporary storage registers. If this block began in register 1400 (or
ai), then in our program (usually at the very beginning) we would write
t= 1400 (or, t=al). Just as for preset parameters, it is necessary to
specify in the program the location of the temporary storage registers
before reference is made to these registers in the program.

- Making use of this new notation, we can rewrite the subroutine on
page VII-7 as follows (it i® assumed that somewhere in the main program
before we use any of the temporary registers, t will have been specified):

Or,ita 6r
its ¢ (Store x in the temporary storage
registers t and 1t.)
imr 7r
iad 9r
imr ¢
iad 11r
isp O
o
b
c

 Thus, by referring to t (and 1t), the main program could, if desired,
also make use of the sam; two temporary storage registers. Note that
since numbers occupy two storage registers, the instruction "its ¢"
will actually store a number in regisgers t and 1t. Hence the above
subroutine requires that two registers be set aside in the main program
for temporary storage.
Temporary storage registers should not be confused with floating
.addresses, Recall that floating addresses are written as a lower case
letter followed by a positive integer (nmot 0). Thus 1t refers to a

tempofary storage register whereas tl is a floating address.

M-2539-1 VIII-1
VIII. Cautions

(1) It is important that programmers when writing a vertical bar
(eegoy 34') make it long enough so that it cannot be confused with the
numerical one. In general, programmers using properly numbered forms
do not need to indicate vertical bars at all, as tape room personnel
will add them when necessary.

(2) The initial word following the tape title (excluding such things
as (24,6), NOT PA*, temporary storage or preset parameter indications)
will automatically (unless otherwise assigned) go into the initial ‘reg--
ister of storage (i.e., register 32). However, if one tape contains
several titles, such as might occur if a tape contained several para-
meters, the initial word after ensuing titles (excluding as above) must
have an absolute address assignment ?32'" if the initial word is to go
into register 32. Also, if it is desired that a floating address, e.g.,
a2, should have the same absolute address assignment in all the para=-
meters, it must be indicated in each parameter, e.g., "36‘a2,".

(3) In deciding the number of registers being used in a program,
remember that instructions occupy one register and numbers occupy two
registers. ,

(4) Remember that t and Ot are synonymous (1t is the register
féllowing t)s

that +, and +.0 and +0. are synonymous;
that "0,", "r,", and "Or,"‘are synonymous;
and that r and Or are synonymous.

(5) Consider the following section of a program:

34 isp g7
g7, ica 73
isp 76
A,,rl isp a2+7
al, +.3
' ~-.0055
When this appears in the computer it takes the following form:
34} isp 35 '
35'» ica 73
36| isp 76

* see Advanced Chapter

)

M-2539-1 oo VIII-2

37[—— Regisfers 37 and 38 each contains the integer +0
38] —— only if storage was previously cleared and if
39| isp 47 nothing was previously assigned to registers 37
40| .3 and 38. If you want to have the number +.0 in
41' 37 and 38, program +.0 in 2r or in 37.

217 _ooss

43]

(6) Remember that all numbers must have at least a sign and a
decimal point. Also, if powers of 10 or 2 are used with positive ex~

ponents, do not specify a + sign in the exponent of 10 or 2.

CORRECT NUMBERS INCORRECT NUMBERS
+2.7 2.7 .

+2.7 x 10° +2.7 x 10*°
+0,102659 4 0.102659

+o or +.0 or +0. : +0

(7) Since the maximum magnitude of a number that can be stored in
2 registers of storagé‘is.about-9x1018,and the smallest non-zero magni-
tude is about 5.5x10-20, caution must be exercised to keep numbers
within these limits when transferring to. storage from the MRA.
ex 1) -2.7x107%
and -2f64. (see advanced Chapter)
ex 2) +2°7x1021
result).

(8) In order to utilize fioating address programming so that in-

will go into storage as a number between -2'"63

is too large for storage (a check order alarm will

sertions and deletith' can be made without the bother of renumbering,
al,
- a2,
a3,

is preferred to
al,
al+l,
a}+2,

M-2539-1 VIII-3

This follows from the fact that al, a2, a3,... are independent floating
addresses.

(9) In storing numbers, the instruction "its 1t" transfers N(MRA)
to 1t and 2t., Consequently, the next number to be transferred re-
quires the instruction "its 3t" which will transfer N(MRA) to 3t and
4t3 similarly using floating addresses, "its al" transfers N(MRA) to
al and al+l, and "its b2" transfers N(MRA) to b2 and b2+l. Suppose
we desired to transfer the numbers in cl and c2 into a sequence of

registers beginning at b2:

CORRECT INCORRECT
ica cl ica cl
its b2 its bR
ica c2 ica c2
its b2+2 : its b2+l

(10) The following example is given to distinguish between floating,

temporary, and relative addresses:

al, ica tl (floating address)
its al+7 (" ")
its 2t (temporary storage address)
its t3 (floating address)
idv t142 (M ")
its 9r {relative address)

isp r3+2 (floating address)
(11) If a floating address tag, such as el, is preceded by an
address assignment (disregarding carriage returns and tabs), then

this must be either an absolute address or a relative address assign-

ment,
~ A. CORRECT B. CORRECT C. INCORRECT
134] dl,+.0 dl,+.0 dl,+.0
+.0 ~ +.0 +.0
149| 6r d1+6
el,+.4 elyt.4 elytel.

(12) It is important to note that even though an absolute address
may interrupt the consecutivity of the assignment of registers, never-

theless this consecutivity may be resumed by the use of the proper

M=2539=1 VIII-4

notation as illustrated below: .

50| g7,ica b3 the absolute address will be 50
its c2 the absolute address will be 51
200|ica z4 the absolute address will be 200
2r|isp a1 the absolute address will be 52 since the
reference address for the r was determined
. by the g7,

(13) Consider the following portion of a program: (this is correct
if one wants +,0 stored in registers a2, a2+l),
al,+.75
a2,+,0
a3,+.5
On the other hand, the following routine is incorrect if one is. in-
tending to put zero into (a2,a2+1):
L al,+.s
azl,
a3,+.5
In this case; a2 and a3 are assigned the same absolute address and
therefore the same content, namely +.5.

(14) One of the most common.errors is to use a flad in the address
éection of an instruction without using that flad as a tag anywhere
in the program. (See Chapter VI, Section on Flad Table).

(15) If only one counter is to be used throughout the program, it
is not necessary to use an isc operation to select it. Cycle counter
(or 1line) zero is sutomatically available if any counter instruction
(other than ici, icd, or icx) or the cycle counter letter "c" éppears
in the original program. | .

Cycle counter line zero is the first counter line available. The
instruction isc 1 selects the second. counter line, isc 2 selects the
third counter line etc.. Hoﬁever, from.a programmer's point of view it
may be easier to think of it in the following way:

isc O selects counter iine Zero
isc 1 selects counter line one
isc 2 selects counter line two

etc.

M-2539-1 VIII-5

(16) If the value of m in the instruction ier m is set by the pro-

gram, so that there is a possibility of m being set to zero, then the

following expediency may be used:
ier(n) the variable icr instruction
ied 1
alyict fle——w 5 f1,

—

cYcles completed do cycle

o

isp al _

(17) In using cycle control, remember that when the instruction
isp 100+c is to be executed, the instruction isp(100+i) is effect=-
ivelj formed and then executed. The other operations which may be
used with +c (namely: its, iex, ica, ics, iad, isu, imr, idv) exper=
ience the séme transformation as the example above except that the i
is replaced by 2i. C -

(18) A preset parameter cannot be specified by anything that could
occupy more than one register of storage. Thué it might be a floating
address, absolute address, sum and/or difference of flads or of other
preset parameters, instructions, or integers written without a decimal
point (see VII=14).

ACCEPTABLE UNACCEPTABLE
VALUES FOR PRESET PAR, VALUES FOR PRESET PAR.

+50 +.50

ica g2 ’ —_—

+h3+24=y7 -

=627 =627

pb2+cl9

(19) Preset parameters must.be specified in the program before

they are referred to in the programs

CORRECT * INCORRECT
pp5=7 ‘ ica b4
ica b4 its ¢3+pp5
its ¢3+pp5 :

o
Ll

pp5=7

©

M-2539-1 VIII-6

(20) Temporary registers must be specified in the program before
they are referred to in the program:

CORRECT INCORRECT
t =£6. ics b2+
ics b2+, imr t
imr t .

. t = £é

(21) The reference register referred to in the relative address in

an instruction is the last tag (the_last address followed by a comma).

al,ica 5r 5r refers to the fifth register after al
its Tr 7r refers to the seventh register after al
imr 5r
its 5r
isp bl
+26,13
+0.

bl,isu ér 6r refers to the sixth register after bl
idv &r gr "™ M N eighth nooom
its al+5 al+s5 1 " " fifth " n al
imr al+7 al+7 % " " geventh n "
its 10r 10r ® v " tenth " " bl
isp d4
+3.14

. -26359.28

+.,0

ddy o

°
©

(22) Single letters may not be written without separating them by

a plus or minus sign:

CORRECT . v . INCORRECT
imr+t+ce imr te
or '

imr t+c¢ (Since "+" may be omitted between
: operation letters and single
letters.)

LSR Tape #
I. OUTPUT

0T1
072
0D1
0D2
0D3
0D5
0S1
0S2

(24,6) Print Decimal No. (Direct Printer)
Delayed or Direct Printing of (30-j,Jj) Numbers
Format and Print G.D.Numbers

Print (24,6) on Delayed Printer

Single Length Delayed Decimal Print

Delayed Octal Number Print AC

(24,6) MRA Decimal Column Scope Layout

AC Decimal Integer, Column Layout Scope Display

II. FUNCIION EVALUATION

FUl
FU2
FU3
FUL
FUs
FU6

(24,6) Exponential e*

(24,6) MRA Square Root

(30-3,J) Logarithm (1lnx)

gin x cos x

(24,6) Hyperbolic functions Sinh x and Cosh x

Arc Sin (24,6)

ITI. MATRIX SUBROUTINES

MAl
MA2
MA3
MA4
MA5

Largest Bigenvalue of a Real Matrix with Real Bigenvalues
Solution of n Simultaneous Linear Equations (Craig's Method)

Rectangular Matrix Multiplication (30j-j)
Matrix Diagonalization (n x n) (24,6)

Symmetric Matrix Inversion or Square Root Inversion

IV. DINFERENTIAL EQUATIONS

IEl
V. SPECIAL

Sp2

Runge Kutta, One step, fourth order, n differential equations

Extract Integral Part of MRA

Registers

126
207
229
147

86

63
221
129

154
145

90
366
k59

58+6n

52

LIST OF LIBRARY SUBROUTINES AVAILABIE MAY, 1954

Temporary Registers

FONOOOOOO

13+8n

Lk+2m
4n
L4n

INSTRUCTION CODE OF THE MIT CS COMPUTER

Instr.
*ica al c¢lear MRAj; add N(al) N(al)-> N(MRA)
%ics al clear MRA; subtract N(al) -N(al}>N(MRA)
*iad al add N(MRA)+N(al)—-N(MRA)
*isu al gubtract N(MRA)=N(al)—N(MRA)
*imr al multiply and roundoff N{MRA)xN(al)->N(MRA)
*idv al divide N(MRA) ¢N(al)—>N(MRA)
*#its al trangfer N(MRA) into (al,al+l) N(MRA)—N{al)
ita al transfer address transfer into the address section of
' the instruction in register al, the
address that is one more than the ad-
dress of the register containing the
; , last isp (or icp with N(MRA) €0)
#iex al exchange N(MRA) with N(al) N(MRA)>N(al); N(al)—>N(MRA)
*isp al transfer control take the next instruction from register
al and continue from there
icp al conditionally transfer control ditto, if N(MRA) < 0; if N(MRA) > O,
(conditional program) take the next instruction in sequence
+0& m and j are integers< 2048
iecr m gcycle reset set i =+0, n=m
ict al gycle count increase i by 1 and if this new value
of ‘i\élnl, then reset i=+0 and take
the next instruction in sequence; if
|il<|nl, take the next instruction
from register al
iei m ¢ycle increase increase the contents of the index
register by m
ied m cycle decrease decrease the contents of the index
register by m
iecx al gycle exchange exchange C(index reg.) with C(al) and
exchange C(criterion reg.) with
C(al+l)
iat al add and transfer add C(index reg.) to the C(al) and
store the result in the index reg.
and reg. al
iti al transfer index digits transfer the right 11 digits of the
index register into the right 11
digits of register al
ise J select counter j selects counter j as reference for
all subsequent interpreted instruc-
tions using a counter until execution
of the next isc instruction--each
counter has its own index and criter-
ion :
iTOA+nl.2345¢ type out N(MRA) in normalized form followed by a carriage
return
sp O STOP

*These are the only instructions which may be used with the cycle 1etter feh in
the form it appears, for example, in ica al+c.

M.2833

page 32

Appendix IT. fyp TAPES AND THE PA PM

1t
a PA PM

apply.
1.

Zs

5

70

a PA routine is in Core Memory at the time an fp tape is read-in,
is given automatically. When this occurs, the following conditions

A CS I PA PM is always recorded on the direct typewriter.

A CS 11 PA P is recorded on the direct tvpewriter or the
delayed printer dpending on what wnil waes requested by the fp
tape. If both have been requested, the delayed printer is used.

If the program has not executed any interpreted instructions the
PA PM prints: "PA unused®.

If an fp tape requests the 1i mode and there 1s no PA routine
in storage , the PA PM prints "no PA".

If an fp tape requests the gd mode and there is no PA routine

in storage, the PA PM prints "no PA", and the gd numbers requested
are printed as if they were (24,6) gd numbers. If there is a

PA routine in storage, the gd numbers will be orinted in the
mumber system of that PA routine,

If an fp tape contains no ii or gd requests and there is no PA
routine in storage, nothing is printed about a PA P,

If an fp tape requests any results on the delayed printer, the
recording on Unit 3 will be terminated by two carriage returns.

(‘ .

	001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	A-01
	B-01
	C-01

