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Ie INTRODUCTION 

In barter, man first learned the need for assessing the relative sizes 
of different commodities o He found it possible to do this in two quite 
different ways - b,y measuting to determine how mY£h. or by counting to deter­
mine how m.rul.Y:. Just as he learned to measure length by comparinJ; with the 
length of a hand or foot. he learned to count by placing the apples or skins 
or stones to be counted in one-to-one correspondence with his tingers - the 
digits on the end of his arms. Little wonder that he learned to count b.Y fives 
and tens tor that the symbol V was used to represent one hand full while X 
represented two hands full. 

Computation developed out of measuring and counting, the two sciences 
being called geometr,y and arithmetic, respectivelY. The introduction of a 
ver,y important concept - the digit zero - and thenee the development of the 
Arabic or positional system of numbers, permitted arithmetical computation 
to be performed with much greater facility than before. As always, greater 
speed led not to less time spent, but to more computation being undertaken. 

As the complexity and freqpency of each problem grew, the need to mech­
anize the arithmetical processes became more urgent~ A thousand years·ago, 
the development of the abacus overcame the limitation set by the inadequacy 
of the number of fingers and toes a man could produce. Finally, hundreds of 
years after the development of the abacus, and thousands of years after the 
beginnings of counting and arithmetic, great minds produced the little cogs 
which grew into the modern. adding machines, desk calculators and accounting 
machines .. 

As time went on, the cogs grew better and went around faster~ Special 
sets of cogs made the machines perform the sequences of addition needed to 
form a product, and later the sequences of addition and subtraction needed 
to find a quotient. Motors replaced hand cra~so Today a good mechanical 
calculator multiplies two 10 digit numbers in ten seconds or less. 

Modern electronics could speed this up almost a million fold. But 
to what avail? Practical experience indicates that a competent person 
operating a modern calculator performs about 500 operations a day - and 
many of these operations require but a fraction of the lO-.second maximum 
in the calculator. Speed up the calculator a million fold and you speed 
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up the overall computation by 
at most 10%, assuming that the 
operator can stand the incre­
ased straino What is needed 
is to replace the human being 
in the system, not merely to 
speed up the arithmetical pro­
cesses themselves o 

More than 140 years ago, 
one man, Charles Babbage, 
dreamed of machines which would 
far surpass the wondrous con­
trivances of Pascal and the 
others 0 The more advanced of 
his two machines, for he dream­
ed of two different types, 
would perform the basic opera­
tions of addition, subtraction, 
multiplication and division o 

And it would do much more: It 
would perform, automatically 
and without human interven­
tion, a predescribed sequence 
of arithmetic operations and 
make predescribed logical de­
cisions based on the results 
as it went along 0 In outlin­
ing his Analytical Engine in 

1-2 

1834, Babbage described all the important principles of today's ultra­
modern automatic digital computerso It took over a century, however, for 
mechanical and electrical sciences to reach a state at which his dream. 

WE NEED #277 

RUSH - P.D.Q.-

IN A HURRY!! 

could be fulfilled. 
The automatic 

digital cOInputer 
is simply a mech­
anization not only 
of the arithmetical 
operations, but of 
the operator whiCh 
determines the se­
quence in which the 
operations are per­
formed 0 The ari­
thmetic element of 
the digital compu­
ter, corresponding 
to the desk calcu­
lator, can advanta­
geously be made to 
work very fast, per­

SEMI-AUTOMATIC DIGITAL COMPUTATION forming arithmetical 
operations in a few 
millionths of a se­

cond, for the rest of the system can now keep up with it 0 The control 
element, the counterpart of the human operator, can readil.y be made far 
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faster, more reliable, and somewhat less demanding of wages and fringe 
benefits than the man. 

Unfortunately, however, there is need for automatic memory or stor­
age of various degrees of accessibility, corresponding to the memory of 
the operator, the notebook, and. the reference libraryo There is also 
need for input and output ... the means of' communieation with the outside 
world 0 Primari4r , 
it is memory or 
input-output, de­
pending upon the 
particular prob­
lem, that causes 
the greatest dif­
ficulty in the 
p~sical realiza­
tion, and places 
the greatest limi­
tations on the 
speed and reliabi­
lity of existing 
computers 0 . 

'When a human 
operator is to 
solve a problem 
using a calculator 
or to process a 

ARITHMETIC ELEMENT 

FORMS SUM 
DIFFERENCE 
PRODUCT 
QUOTIENT 

(Positive or Negative) 

PUSH BUTTONS 

CONTROL 

TAKES INSTRUCTIONS 
FROM STORAGE 

THEN 
DIRECTS ALL OTHER 
ELEMENTS PROPERLY 

STORAGE 

0) 
I ) 
2) 

511) 

TAPE IT,~P.~.INPUT SECONDARY OUTPUT 
PREPARATION STORAGE 

AUTOMATIC DIGITAL COMPUTATION 

payroll on an accounting machine, he must be supplied with instructions 
which specify just how the solution is to be obtained. In like manner, 
the digital computer must be provided with a list of instructions, or 
program, in properly coded form, to describe how the solution is to be 
obtained. The process of preparing such a coded program is called pro­
gramming. Programming rea~ consists of two parts: 

1-3 

1) planning the program, or sequence of elementary steps, by 
which the problem may be solved 

2) coding the sequence of steps into a coded program - a 
sequence of computer instructions 

The coding of a problem requires detailed lmowledge of the specif'ic com­
puter on which the problem is to be solved. A coded program has meaning 
only to the computer for which it was written. The planning of a solution, 
on the other hand, does not necessarily involve the details of a.tl1' given 
computer, although a given problem may frequently be s.olved most efficient­
~ it formulated one w~ for one computer and another w~ for another. 

The particular computer for which this manual is prepared does not in 
fact exist, but its characteristics have been simulated on the Whirlwind I 
computer by means of a system of programs. This system has been termed the 
Comprehensive System of Service Routines ani abbreviated as eSe The simulated 
computer will be called the "CS computer". 

The as computer has, of course, the basic -computer elements: arithmetic 
element, control, primary ("high-speed") storage, secondary storage, input 
and outputo Naturally, a number or important concepts and. in:tlumerable details 
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make up a complete description of the computer. Rather than attempt to describe 
the computer completely at the outset, we will firstdecribe a simplified form 
of the computer. embellishing it with more details and more new concepts as we 
progress. In simplifying anything, one must sometimes tell half-truths, and 
this we will do; but we shall not tell any forthright lies. 

The CS Computer - Simplified Version 

The primar.y storage element of the computer consists of 1387 registers. 
Storage registers are locations, pigeon holes into which computer words m~ be 
stored by the computer control and recovered by it when needed. A word is a 
sequence of digits representing a number or an instructiono The location of 
each register is identified by an address, just as the houses on a street are 
identified by addresses o The addresses of the 1387 different registers are 32. 
33, 34, 35, 000,1417 and 1418. 

In the CS computer a word that represents a number occupies two successive 
registers of storage. The location of the number is always specified by the 
address of the first of the two registers. The maximum magnitude of ~ number 
that can be stored in the memory. of the CS com~uter is about 9. ·x 101 , and the 
smallest non-zero magnitude is a bout 505 x 10-ZO. A programmer will write his 
numbers in the usual decimal form: 

,:t129.7863 
where he may indicate as many as 8 significant digits provided the magnitude 
of the number satisfies the range requirements indicated above. 

A more detailed discussion of the representation of numbers will be give~ 
below. 

An instruction is the second kind of word and occupies a single register 
of storage. It specifies both an operation such as add or subtract, and an 
address. This address :designates where the word to be operated upon is to be 
found. For example, the word iad 237 is an instruction which specifies that 
the number contained in registers 237 and 238 is to be added to the number 
already in the multiple register accumulator (l~). 

The multiple register accumulator (MRA) forms the heart of the arithmetic 
element. In it, the sum or difference, product or quotient of two numbers is 
formed. The ma~um magnitude of a number that can be handled in the MRA is 
about 7.0.xl098 )3 whereas the miniJnum magnitude for a non-zero number in the 
MRA is about 7.1xlO-9~b~o 

The first few basic instructions to be considered are described below b,y 
their abbreviations,Dames,and effects. They can be described more concisely 
and compactly if a few standard symbols and te~ are first defined. 
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symbol 

MRA 

al 

N(MRA) 

N(al) 

~ 
clear ••• 

1-.5 

meaning 

multiple register accumulator 

address of a~ chosen storage register 

the number in the MRA before the 
instruction is obeyed 

the number stored in registers al and al+1 

before the instruction is obeyed 

replaces 

set the contents of ••• to zero 

Thus "N(MRA}+N(al} ~MRA" is to be read as "the initial number in the 1-1RA 
plus the number stored in registers a1 md al +1 r.plaQ •• ·,'tb&iF lDiilal: .. D_b-er4:a" .. ·t.ae 
MRA"; i.e., the sum of the numbers contained in MRA and al appears in 1·ili.A. 

Abbreviations for the instructions of the OS canputer have~ been selected for 
mnemonic reasons. An initial letter i is used to denote that the instructions 
are interpreted by special programs stored in the Whirl'tand I computer (see Chapter ) 

ica a1 

ies al 

its al 

iad al 

isu al 

.sllear MRA and ~dd to it N(al) N(al) ~N(MRA) 

£lear MRA and §.Ubtract from it N(al) -Neal) ~N(MRA) 

!ran.§.fer N(MRA) into (a1,a1+1) N(MRA) ~N(al) 

imr al 

idv a1 
iex a1 

l!S!d 
.§l!btract 

multiplY and ~oundoff 

.9.i.Iide 

~change N(~ffiA) with N(al) 

N(MRA)+N(al) ~N(MRA) 

N(MRA)-N(al)--+N(MRA) 
N(MRA).N(al)--+N(MRA) 

N(NRA),;-N(al)-+N(MRA} 
N(MRA)~N(al) .N(a1}·~N(MRA; 

iTOA+nl.234.5e type out N(MRA) in nonnalized*form followed 
by a carriage return 

sp 0 STOp: 

IF IT ISN'T MENTIONED. IT DOESN'T HAPPEN! 

The definition of ica a1 does DQ! specif.y that anything new goes into register 
ale This means that N(al) does not change. Likewise, N(al) is unchanged by 108, 
iad. isu t imr g and idv. Similaruy, N(MRA) is unchanged by 1ts~ iTOA,; and sp O. 

* The normalized form referred to is one that represents .a number in the form 

! ~.d2d3d4d5xlO~ 

where ~ is. adjusted so that ~ r o. 
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WHEN A .~ QUANTITY REPLACFS AN. OLD ONE, THE OLD ONE DISAPPEARS! 

The definition of !£a says that N(al) becomes the new contents of MRA. 
The MBA is first cleared in this process so that its former content is losto 

TOO LARGE A RESULT LEADS TO TROUBLE .. 

Obv1ouslYn if the result of an arithmet1Q uperat10n lies outside the 
range that can be stored, the result cannot be copi.d into atorage. It m~. 
however. be further operated on in the MRA. It a programmer, through oV'er~ 
sight. instruots the computer to copy into storage a result whieh will not 
fit, the computer will stop and indicate an alarm. Obviously. also •. it, is 
possible tor the result of an arithmetic operation to become too large to tit 
even in the extended capaoity ot the MRA,.. ·rhis. too o is an overflow and pro .... 
duces an alarm 9 

Suppose a reotangular swirnmingpo'ol of any given dimensions is to be 
filled with,wat~r to a level 1 foot below the top of the pool. Before filling, 

the pool is to be painted i 

green on the bottom and on 

X
1 

_ .. .-""-, --~~ 

all four sides up to the 
water level. One gallon 
of paint covers 500 square 
feet, and one cubio foot 
of pool water weighs· about 
63 peunds. We wish the 
computer, given the length~ 
width and height in feet,: 
to print out: 

a) The weight of the water 
the pool will hold 

b) The number of gall.ons 
of green paint needed 

Representing feet of length by X19 width by X2• and height by X,~ we 
readilY find that the pool surface area to be painted equals 

bottom + 2 sides + 2 ends 

=. Xl -X2 + 2 • Xl (X3-1) + 2 • X2('x3-1 ) 

and the amount of paint in gallons is obtained by dividing the above number 
of square feet b.Y 500, the number of square feet per gallon. 

The volume i~ Xl- Xi{X1-1). and the weight of water is obtained b.1 
multiplying this num~er of Cubic feet by 63 pounds per cubic foot. 

By oolleoting termsn th an eye to reducing the num.ber of multiplications 
whioh will be re~ired in the e~putat.ion. the two quantities desired can be 
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rewritten as follmlS 
2.(X1 +X2) (X,-l) + Xl X2 

500 
Paint :: 

Water = 63 Xl X2(X
3
-1) 

A procedure for findi.ng thf~seq1:w.ntities might be 

print runount of 

paint just computed 

a 

print weight of water 

just computed 

find 
~Xl+X2)(X3-1)+Xl~ 

00 

I-7 

Certain numerical constants are obviously needede These must be stored 
in storage registers. The registers may at this stage be chosen al~here in 
.terass that the protlrammer desire.. Suppose we pl~\~e them in the tir, s t 
ava,11able rillatoril ~viz •• 32. 3'. eto.) - although other relisters mi~ht have 
ooen u.ed. The only rule that needs to be noted at this time 11 that 1nltruot­
iQ~1 muat be stored in a lequenoe of re.1ster. that correlpondl direotl1 wttb 
the sequence in whioh the instructions are to be. exeouted. Thus numbers may 
be stored 8I\YWhere provided they do not 1nterrupt the aeClUenoe of instructions. 

+1. 
+2. 
+63. 
·500. 

Reoall that +1. oocupies registers 32 and 3', henee +2. oCOUpiSD registers 34 
and J'» etc. The dimensions of tho; poo1, must also be provided int Ually. 
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(It i8 worthwhile for the student to note that b,y beginning the problem with 
a different set of dimensions this same program oan be used unchanged.) 
Suppose we store this data as follows: 

401 ~length) ~ Xl 
42~ (width) =: X2 
441 (height)- 13 

During the oalculatiQn variou.s i.ntermf:.)diate qllantit:te~l (viz.,X.3-1 and 
X1X2) will be oalculated and need tq. be stored. We can provide for them by' 
ini tially storing +0. i,n two pair:s 6.f registers whioh will later contain the 
desired quantities; thus 

461 
481 

+0. } 
+0. Initially, later {i~i~ 

We are now reaqy to write down the required instructions. We can begin 
storing them in any register we desire but onoe we have ohosenthe first 
register, succeeding instructions must occupy succ~5sive registers. Except-· 
ions to this rule will be the subjeot of Chapter II of these notes. Since 
the next available register in, storage is 50 (not ~,since +0. occupies both 
48 and 49) we could begin with that register. Note that if we were to need 
some more registers for constants or intermediate quantities we could wait 
until after we had written d~rn all the necessary instructions and then 
choose these additional registers so as not to interrupt the sequence of 
instructions. In the present Case, our preliminar.y analysis has made this 
unnecessary. We can, then, write the instl~ctions as: 

al [;~ 
.521 

a2 .(~~l 
.5.51 

[
.561 

a3 .571 

a4 581 

[
.591 

a.5 601 

ica 44 

isu 32 
its 46 

place N(44) ~ height in MRA 

subtract N( 32) = +1; ~ leaving X3-1 in HRA 
store the result in register 46(for later use); the result 
also remains in MRA 

iea 40 clear the MRA and add to it (i.e., place in it) the N(40)=X1 
imr 42 multiply by N(42) = X2t forming X1X2 in MFA 

its 48 store the result in register 48(for later use); the result 
also remains in MRA 

imr 46 

imr 36 
mul tiply by N( 46) = 1

3
-1, forming X1X2(X:f

o1) in J:.1RA 

multiply by N(36) = +63., forming 63X1X2(X3-1) in MRA, equal 
to the weight of water. 

iTOA+nl.234,5c type out the numerical value of N(MRA) which is the 
desired result 

ica 40 place Xl in MRA 
iad 42 form X1+X2 in MBA 

(continued on next page) 
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a8 66i 

1-9. 
imr 34 form 2(Xl +X2) in MRA 

imr 46 form 2(X1+X2)(X
3
-1) in ~w 

iad 48 form II +Xl X
2 

in MRA 

:tdv 38 form 2(I.1 .... X2)(X'3-1) +X1X2 :tn MRA equal to the amount of pa1,nt 

500 

iTOA+nl.2345c type Oli 1:. tne amount of paint 

sp 0 stop 

The bra.ckets indica ted to the left of the above program shew how the 
sequence of instructions effects the operations included in the boxes of the 
diagram on page" 1-7. Such a eiiagram is often called a It flow diagram". This 
is an example of how more complicated programs can be decomposed into. the 
progrgmming ofs~pler logical blocks. or course the present program is 
rather trivial but the usefulness of this procedure will become apparent later. 
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II Transfer of Control - Counting 

Thus fa.r!) the computer has been instructed to solve simple arithme­

tical problems, but it can only be made to solve the same sort of prob­

lem more than once by starting it over again manually with new data. 

Since whole programs such as the swimming pool paint and water calcula­

tion just given can be performed (exclusive of output) by the computer 

in less than 1/40 of a second (faster than the eye can see)~ there would 

be a tremendous proportion of time spen,t by the (';oITiputer in wai ting to be 

told what to do next. T~e key to the situatio~ is to give the computer 

ability: (1) to repeat calculations with new da.ta which it bas itself 

generated p (2) to make pr-eclescrihed Ijgici:.1.1 decisions based on rasul ts it 

has obtained, and () to modify ?lC'~ onl.y ;.t,s o"m. data but its own ins'true­

tions" Th~se abi.lities will be discussed and illustrated in this an.d the 

following sectionso 

Special instructions are needed to make the computer repeat, or make 

logical decisions. These are called "jumps" or tftransfers of control". 

and they tell the computer 9 under certain condltions 9 to take the next 

instruction not from the next cOU8ecutj:.,e l"eg~:st~l"~ bqt :t.~;rom the ~gts.ter 

.specified by the address secti-on of the j'ump instruction. ;ne of the 

jump instructions is unconditional; the other is conditional:and makes 

the computer transfer control if and only if a given condition is ful­

filled; otherwise the next instruction is taken in sequenceo 

The following are the available transfer of control instructions: 

isp al 

iep al 

transfe r control' 

conditionally-truster control 
(£onditional ~rogram) 

• We define N':(MRA»O if the sign'of the number 

take the next 
instruction from 
register al and 
continue from there 

ditto, if N(MRA)<O.; 
if n(lmA»o, take tlie 
next instruction in 
sequence 

stored in the MBA is +;and 

N(MRA)<O if this sign is -'. Arithmetic rules apply in the normal way 

except for the difference of two equal numbers. In this case the MRA will 

contain zero but the sign 1s ," ; hence the icp would assume N(MRA)<O. 
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Unconditional Transfer of Control (Example) 

Suppose a swimming pool contains 40,000 gallons of fresh water. 

Once eaoh minute a buoket containing 20 gallons of salt water, containing 

01 pound of salt per gallon p is lowered gently into the pool. A corres­

ponding amount of pool water, unmixed with the newly-added salt water~ 

but thoroughly mixed otherwise~ escapes through an overflow pipe at the 

other end. We wish the computer to print out the amount of salt which 

will be in the pool after 1 minute, 2 minutes. 3 minutes, etc. 

During each minute, 2 pounds of salt come in with the salt water. 

After 1 minute then, there will be 2 pounds of salt in the water. But 

during the second minute, not only do 2 more pounds come in, but a small 

quantity goes down the drain. The amount down the drain is 1/2000 times 

the amount present, since 20 gallons out of 40000 contains one two­

thousandth of the amount of salt present. Hence, at the end of the 

second minute. the total salt equals the 2 pounds from the first minute 

plus the influx of 2 pounds minus the spillover of 2-1/2000= 0.001 pounds, 

for a total of 3.999. During the third minute, 2 more pounds come in, 

and 1/2000 of the 30999 already there escapes, leaving 5.9970005 pounds. 

To formulate this more generally. let xi= pounds of salt at the end of 

the ith minuteo Then. 

and in general 

Xo mOat start 

Xl = 2 during first minute 

x2 = 2 + 2-2/2000= 3.999 during seoond minute 

x) == 2,+ J. 999-3.999/2000 = 5.9970005 during third minute 

, 
th during the i+1 min. 

A possible procedure for programming the proble,m would be: 

form and store print tp.e result 

" I-----x1+1=2+0.9995x i 
J 

JI\ 
(repeat) 
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The program can be written:· 

1001 +2. 

1021 +009995 

1041 
~ 

+0., 

1061 lea 104 

1071 imr 102 

1081 lad 100 

1091 its 104 

1101 iTOA+nl.2j4,Sc 

111l lap 106 

pounds of salt added 

amount of salt in pool (initially 0) 

place +x. in MRA 
1 

form '0.9995%1 

form x1+1 in MRA 

replace xi br,x1+1 in register 104 
I 

print 2:1+1 
repea.t; .1 •••• take next instruotion 
from 106 

Counting Usi;1 OQMitioal TE&asiteEI of Oontrg~ (example) 
The program Just written will be performed over and over again un­

til stopped by human intervention or machine breakdown. 

Suppose what 1s really desired i8 knowledge as to how muoh salt will 

have acoumulated in one day= 1440 minutes. One could. ot course, simply 

wait until 1440 lines of results had been printed. then stop the compu­

ter and oopy the resu1 t. Muoh more effioient, however·, would be a revised 

program whioh would compute 1440 steps without printing. print the result. 

a.nd stop. jlor thiS, we have the oomputer deoide. b1' mea.ns of a. condi­

tional tra.nsfer of oontrol just when 1440 steps have been completed. 
The importa.noe of such an ability can hardly be overemphasized. 

The neoessary program might be: 

form and store Inorea.se 

i by 1 

print 

%1440and stop 

• As an exercise the student m~ atte~pt to shorten this program. 
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100

1' 

102 

1041 

1061 
1081 

1101 

1121 

1131 

1141 

1151 

1161 
117r 

1181 

119J 

1201 

+1 .. 

+2. 

+0.9995 

+1439. 

+0. 

+0. 

ica 108 

imr 104 

iad 102 

its 109 

ica. il0 

iad 100 

its 110 

consta.nts 

pounds of sa.lt 

minutes 

isu 106 ,form i - 1439.. in IvtRA 

11-4 .. 

icp 112 .i! l-l(MRA) < 0, which occurs (since i changes in unit.steps) 
, if i.( 1440, take the next instruction from 112 

!!. N(MRA) )' 0, which occurs when 1 = 1440, ignore this 
"instruction 

ica 108 ] 
iTOA+nl.2J45c I print x1440 

spa 

Note that if +1440. had been stored in 106, then when i became 

= + 1440, the NomA) would be < a (cf.. ~ge II-l). 'Hence control would be 

transferred back to 112. 

Calculating Until Desired Value is Reached (examo1e 1 
As a third possibility. suppose what is really wanted is the time 

at which the ~ount of salt in the pool exc!.~4! 1000 pounds. Again the 

computer must be programmed to make a ,simple decision. A possible 

program would be: 

inere~se form and store 

i by 1 
~~ %i+1 >'1000 

if xi+l~ 100 

print i" 

stop 
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5011 +1. 
503 I :+-2. 
5051 +0.9995 constants 

50? 1 +1000. 

5091 +0. pounds ot salt 

5111 +0. minutes 

5141 iad 501 increase i by 1 
513 I iea 511 1 
5151 its 511 

5161 
51?1 
5181 

5191 

iea 509 
, imr 505 
iad 50) 
its 509 

calculate new %1+1 

It Xt+l~lOOO, take next instruction from 513 

1I-.5. 

520/ 

521 1 

5221 
52)1 

5241 

isu 50?} 
icp 513 If %i+1 >1000, ignore this instruction a.nd go on to 5Z2 

ioa 511 
iTOA+n1.2J4;c 

sp 0 
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Programming Exercises 

Construct sequences of instructions to carry out the following 

processes on the CS computer. 

lI-6. 

It will be assumed that x and 7 are contained in registers 32 and 

34 respectively. All results will be assumed to have values that will 

not exceed the aapaoitr of aIl1' register. ~top the computer after each 

problem. 

1. Place x+ l' in 41. 

2. Place x3 in 53. 
3. &, b, c, d are contained in 100, 102, 104. and 106. respectively. 

Place ax3 + bx2 + cx + d in register 500. 

4. Place the larger ot the positive numbers x and y in register 75. 
5. Place %4 in 115. 
6. Place x9 in 115 by a program of no more than 8 instructions. 

? Place xn in 115: where x~ 0 and n is an integer~+O. unknown to -
you, which has been placed in 12 by a preceding program. 

41 . 
8. Place x in 71. 

(a) using the fewest possible number of registers, 

storagewise. in your program. 
(b) using the fewest possl'ble number of instructions, 

timewise, in your program. (Assume tbat the OS 

computer consumes about the same amount of time 

for each instruction.) 
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Solutions to exam12.1~§ gn l2s11-6: 

1) iea 32 6) iea 32 
it 

iad 34 imr 32 

its 41 imr .32 

sp 0 its 115 

2) iea 32 imr 115 

imr 32 imr 115 

imr 32 its 115 

its 5.3 sp 0 

ep 0 7) 1021i0812 
) iea 100 its 72 

imr 32 iea. 12 

ia.d 102 lad 113 

imr 32 i t.s 12 

iad 104 iep 109 

imr 32 sp 0 

iad 106 iea 115 

its 500 Imr .32 

sp 0 its 115 

4) 100Jiea 32 isp 104 

isu 34 +1. 

iep 106 +1. 

iea 32 a(s.) 6Sliea 77, 66Jiea 73 

itD 75 imr .32 lex 77 

spo its 77, imr 32 

iea 34 iea 73 OR iex 17 

isp 104 iad 75 lad. 75 
5) iea .32 lea 32 its 7J iep 67 

imr 32 imr )2 iep 65 ep 0 

imr .32 OR its 115 sp 0 \ -40~ 

imr .32 imr 115 -40. +1. 

its 115 its 115 +1. +1. 

ep 0 sp 0 +1. 
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8(b) lOOfica. 32 lpOlicf3. 32 

imr 32 OR imr 32 

its 77 imr 32 
imr 77 imr 32 

its 77 imr 32 

imr 77 its 77 

its 77 imr 77 

imr 77 its 77 
imr 77 imr 77 
imr 77 imr 77 

imr 77 imr 77 
iror 32 imr 32 

its 77 its 77 

sp ° sp 0 
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III Cycle Counter - Modification of Addresses 

In the cyclic examples described in chapter II the addresses of 

instructions within each cycle did not change. However, one of the more 

important jobs that computers are called upon to do involves dealing with 

data which are stored consecutively and are to be operated upon cyclically in 

a set fashion. Cycle counters have been devised to facilitate the counting of 

the repetitions of a cycle of instructions and the modifying of instructions 

therein. Cycle counters are often called B-boxes, a term that has received 

wide-spread adoption since it was first used with the Ferranti computer at 

l~nchester University in 1948. 
Ao ~Cycle Cpunting 

As was indicated in chapter II, the counting of cycles of operations can 

be carried out by programming, utilizing the MRA. However, if an intermediate 

numerical result happens to be in the MRA it must be copied into storage while 

the counting is done. For example, suppose we wish to calculate xlO by forming 

in succession x2
) x3, x4'.~$ (involving 9 multiplications) using a cycle of 

instructions. The program might be as follows: 

431 
4.51 

471 

491 
511 
531 
5~ 
551 
561 
571 
581 

.591 
601 

611 
621 

631 
641 

651 

x 

+0. 

+0., 

ica 47 

its 49 
ica 43 
its 51 

ica 49} 
imr 47 
its 49 
ica 51

t iad 43 
its 51 
isu 45 
icp 57 
sp 0 

number of times CYCle} 
is to be carried out 

receives result 

used for counting } index 

multiply by x 

increase 
counter 
by 1 

cycle 

criterion 
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"Note that th!3 powe,r of x obtained in the MRA after the instruction 

in register 58 has been executed,must be stored preparatory to the 

counting effected in registers 60-640 

The number of registers used in this program can easily be re­

duced. However, the form above was chosen to illustrate that cycle 

counting consists basically of two elements: an index element that 

actually counts the number of times the cycle has been carried out; 

secondly, a criterion element for determining when the cycle has been 

carried out the desired number of times. 

In the CS computer special facilities have been included for 

counting cyclic operations independently of the MRA. The heart of 

this cycle counter is the cycle control register pair. This is actually 

two storage registers, one 'of which is called the index register and 

the other, the criterion register. Provision is made for clearing the 

index register, setting the criterion register to any desired integral 

value (up to 2047), incre'asing the index register by any desired integral 

amount (up to 2047), and testing when the magnitude of the integer in 

the index register becomes equal to or greater than the magnitude of the 

integer in the criterion register. 

Care should be taken not to confuse the integers stored in the single 

index register and single criterion register with the ordinary numbers 

that are stored in two consecutive registers. The arithmetic instructions 

described in Chapter I deal automatically with two-register numbers. 

However, the following instructions affect the cycle counter and hence, 

as indicated, deal with the integers stored in the single special reg­

isters. (See Chapter )0 

We define C ( • e .) = contents of •• 0 

i = C(index register) 

n = C(crtterion register) 

icr m £Ycle reset 

ict al £Ycle coun! 

Set i = +0, n = m (+O~m is an integer (2048) 

Increase i by 1 and if this new value of 

'i' ~ \n', then re set i = +0 and take the 

next instruction in sequence; if the new 

li'<In', take the next instruction from 

register ale 
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10 The calculation of x . may now be done by the following program. 

321 x 

341 +0. 

361 icr 9 set up for 9 cycles 

371 ica 32 

381 imr 32} cycle 
391 ict 38 

401 its 34 

411 sp 0 

The following table presents a history of the contents of the index 

and criterion registers and the ~A after the execution of the ict instruc~ 

tion in register 39 of the program above • 
.! !l MRA 

End of cycle 1 1 9 2 x 

2 2 9 x3 

3 .3 9 x4 

4 4 9 x5 

5 5 9 
6 x 

6 6 9 
7 x 

7 7 9 
8 x 

8 8 9 x9 

9 ~ 9 fes~t to 9 
10 x 

B. Modification of Addresses -

The machinery for adjusting an address by means of the cycle counter 

is quite simple. The programmer simply appends "+c"'to an address. 

When this instruction* is to be executed the address is first modified. 

If we let ni tt denote the integer that is contained in the index register, 

then the address is increased by 2i before it is executed (except in the 

case of the instruction whose' operationt'is lap' where the address. is. in';'. 
creased merely by i)o 

* The +c cannot be used in the icp and ict instructions. 
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For example if the programmer writes 

ica 100+c 

then when this instruction is to be executed, the following instruction 

is actually formed 

ica (100+2i) 

and then executed. The increment 2i was selected since we are usually 

working with arithmetic operations on numbers and these numbers occupy 

two registers of storage. In the case of isp 100+c we get isp (lOO+i) 

since this is used with instructions (recall that instructions occupy 

one register of storage). It should be noted that if at any time one 

were to examine the contents of the register containing the instruction 

ica 100+c the address part would be 100 (not 100+2i). The increment 21 

(or i in the case of isp) is added on only during the execution of the 

instruction. 

A simple example illustrating the use of the cycle counter for ad­

dress modifications as well as for counting is the following. Suppose 

we wish to transfer the numbers in registers 100, 102, 104 and 106 to 

registers 200, 202, 204, 206. We would then write: 

321 ier 4 

331 ica 100+c 

341 its 200+c 

35 1 ict 33 

36,1 sp 0 

set up for four cycles 

clear ~ and add. to it N(100+2i); i=0,1,2,3 

store N(MRA) in 200+2i; i=0,1,2,3 

add one to index register; if the new 'i'~4 
then reset i=+O and take the next instruction 
from register 36; if til< 4, then 1Bke the next 
instruction from register 33. Note that n does 
not change (=+4). 

Since there are many cases when we desire to operate on numbers 

that are not stored in consecutive locations, but are spaced a constant 

number of registers apart, we have the following instructions: 

ici m £Ycle increase Increase the contents of the index 
register by m. 

icd m ,£Yele gecrease Decrease the contents of the index 
register by m. 

Here +0 ~ m is an integer < 2048. 

As an example of the use of the ici instruction, let us write a 
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program which transfers numbers in register 100, 104, 108 and 112 into 

registers 200, 204, 208 and 212. 

We have: 

30~ icr 

3021 ica 

3031 its 

30~ ici 

3051 ict 

8 

100+c 

200+c 

1. 

302 

set up for 4 cycles 

pick up N(100+2i) 

store in 200+2i 

1ncrease 1 by 1 

go through 4 cycles 

{
i=+O 
n=+8 

1=0,2,4,6 

i=0,2,4,6 

a history of the contents of the index 

and criterion registers ,.after. the execution of the ict instruction in 

register 305 of the program above: 

The following table presents 

.! l! 
End of cycle 1 2 8 

2 4 8 

3 6 8 

U 8 4 reset 8 
to 0 

C. MultiEle Counters 

Since programs usually contain cycles within cycles, provisions 

have been made for selecting any number of counters the programmer re­

quires (the upper limit on the number of counters available to each pro­

gram is a function of the amount of storage the programmer is willing to 

spare for counting). Multiple counters are often referred to as counter 

lines. The following instruction permits the use of more than one cycle 

control register pair so that more complicated programs may be treated 

effectively: 

isc j ~elect'£ounter 

( +0 ~.1 is an integer < 2048) 

selects .counter j as reference for all 
subsequent interpreted instructions 
tising a" couhter . until execution of the 
next ics instruction; each counter has 
its own index and criterion registers 

If a programmer wishes to use only one cycle counter, there is no 

need for him to select this counter with the isc j instruction. He will 
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automatically get one cycle counter it there appears in his program any 

cycle counter instruction (other than iCi, icd, or icx*). In any pro­

gram, counter zero is initially considered selected until an isc j, 

with j > 0 is executed. Except for this property, counter zero is no 

different from any other counter such as 1, 2, •••• 

Two separate cycle coUnter registers (index, criterion) are set 

aside automatically for counter n (where n is the maximum value for j 

in any program) and for counters n .. l, n-2, ••• , 2, 1,. O. Consequently, 

it is advisable to select an uninterrupted sequence of counters so as . 

not to waste storage for counters that are never used. Thus if the only 

isc j instructions in a particular program were isc 0, isc 3, isc 6, 
the programmer would be wasting S registers of storage. 

To illustrate the use of this instruction, suppose we have a program 

that calculates the values of two quantities, F and G, as functions of 

the time t = j 6.t for j = 1,2,3, ••• ,1000 (6t is a prescribed increment 

of time, say .01 seconds). Suppose further that it is desired to print 

out the value of F at the end of each 5 ttme steps (i.e., for i = 5, 10, 

15, ••• ), the value ofG at the end of each 20 steps, and to stop the 

program at the end of 1000 time steps. If we store the value of F when 

calculated in 200 and of G, in 202, the following program would.suffice: 

32J isc a 
icr 50 

isc 1 

icr 4 

isc 2 

icr 5 

isc 2 

331 

341 
351 

361 

371 

3S1 

391 • • 0 •• calculate 

· .. .. and store 

• •• •• 

· .. .. 
103j ict 39 

1041 ica 200 

F, G 

lO~ iTOA+nl.2345c 

(continued on page 7) 
*icx defined on page 7 

Note that the letter c used here does ~ 
refer to the cycle counter but, as will be 
discussed in chapter 5, gives a carriage 
return. 
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1061 isc 1 

1071 ict 38 

1081 ica 202 

1091 iTOA+nl.23450 

1101 isc 0 

1111 ict 38 
1121 sp 0 

I1I-7 

2001 +0. will contain F 

2021 +0. will contain G 

(Would the program be as efficient without register 38? Explain.) 

This problem could have been.done differently by using an instruc­

tion we are about to define. However, 'the first method is the preferred 

one since it is logically simpler. 

icx al £Ycle e~change 

Second Hethod 

icr 50 

icx 204 

icr 4 
icx 206 

icr 5 

• •• 

• •• 

•• calculate 

•• and store 

0.0 •• F, G 

• •• •• 
1031 ict 37 
1041 ica 200 

#I ' 

1051 iTOA+n1.2345c 

1061 icx 206 

1071 ict 35 
108J ica 202 

(continued on page 8) 

Exchange 0 (index register) with 0(a1) 
and exchange C' (criterion register) with 
0(a1+1). 



M-2539-1 II1-8 

1091 iTOA+n1.2345c 

1101 icx 204 

1111 ict 33 

1121 sp 0 

2001 +0. will contain F 

2021 +0. will contain.G 

2041 +0. count for 10006: t 

2061 +0. count for G 
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Advanced Section 

D 41 The following two .. cycle counter instructions appear in this chapter 

merely for completeness. They are considered to be part of the more 

advanced section of this manual for two reasons: 

(1) There is an easier way to accomplish the same effect. 

(2) They are used more rarely than other cycle counter instructions. 

iat al 

iti al 

~dd and !ransfer 

!ransfer ,index 

digits 

add C(index register) .to the C{al) and 
store the result in the index register 
and in register al 

transfer the right 11 digits of the ~ 
index register into the right 11 digits 
'of register al 

These two instructions.are. principally used for altering the ad­

dress section of an instruction. 
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The exam'ples presented in the preceding sections have been simple 

ones ch~sen to illustrate specific pointso It should be clear to the 

student, that, in practice,programs are far more involved than the ones dis­

played~ Nevertheless, even though these examples are simple, certain 

inconveniences may be observed in the writing of the programs. First of 

all p in writing a sequence of instructions it is rather tedious to have 

to write down all of the addresses especially since only a few of them are 

referred to in other instructions. But even worse, note that if by error 

we had left out Ell! instruction in our sequence (e.go» if we had forgotten 

to multiply by <I)-I) in the program on page I-8) then to insert this 

instruction would require our renumbering all the subsequent instructions 

and then searching all the address parts of instruc,tions to correct those 

affected. This is not only annoying but very often leads to needless 

errors~ 

It should be pointed out that there is a remedy that can be used to 

avoid this inconvenience. To be specific, if we had: 

.... " 
551 its 48 

561 iad 36 

571 iTOA+nI~2345c 

where we have omitted the instruction imr 46, between registers 56 and 

57 we could replace the instruction in register 56 by an isp to some 

block of unused registers (e.g.$ 70, 71t 72); that is: 

551 its 48 
561 isp 70 

571 iTOA+nlo2345c 

and then we add to the program: 

701 iad 36 

711 imr 46 

72 1 iap 57 

carrying out the instruction 
that previously had been in 56 
carrying out the omitted 
instruction 

Such a procedure for correcting a program is frequently called a "patch". 

Note that "patching" is not only una.esthetic, but it is wasteful of 

space and makes a program more difficult to follow (and therefore to cor­

rect) since it interrupts the basic logic of the program. 
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Finally we might note that before we write down each of the sample 

programs above we had to set aside certain registers for input data. 

intermediate results. and final results. Now it was emphasized that it 

mattered little where in storage we put these registersr;>rovided they 

did not interrupt a sequence of instructions. We now see that by using 

our jump instruction (isp) we have a good deal of flexibility in inter­

rupting such sequences.. However:, it should be clear that it would be 

bad practice to make use of such jump instructions (since it is wasteful 

of computer storage~) simply to jump over a misplaced constant. On the 

other hand when one first begins to write down a program it may be very 

difficult to determine just how many registers will be occupied by data 

needed in the program and how many are needed for holding intermediate 

results.. If one leaves too ma.ny registers for them then he may find he 

doesn't have enough registers left for his program., On the other hand 

if he doesn't leave enough - or if he actually starts out by writing 

instructions first (beginning in register 32) - then. since he has no 

way of knowing a priori precisely how many registers will be occupied 

by instructions. he is faced with the problem of what addresses to 

assign to the registers needed for the as yet unspecified data or results~ 

The obvious ,$olution to ,this dilemma is to assign some sort of 

tentative addresses to these unspecified registers.. Since we are alrea~ 

using numbers to specify addresses it is only natural to distinguish 

these unspe cified registers' by a literal nomenclature. tiince there are 

only 26 letters, a simple system is to use letters followed by integers 

(e.g •• all b12. g3. etc.). Such addresses will be called floating 

addresses (abbreviated as flads) since the actual value of the addre~s 

(called the absolute address to distinguish it) can not be determined 

until the program is complete. 

* Also in many cases when a set of instructions is repeated a great many 

times such extr~neous instructions can represent a needless expenditure 

of computer' 'in. 
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Thus for the example on page II~ we could have written the program 

initially as: 

1001 iea 11 

1011 imr dJ 

1021 iad bl 

1031 its il 

1041 iTOA+nl~2345c 
losl isp 100 

~
il'+O. 
bl t +2. 

d3. +0.9995 

' ... ',. 
It should be emphasized that at this point it does not matter what 

Ille label the bracketed quantities so long as each label is unique 0 We 

might even use names such as Joe, Tom. etc. However. the combination of 

a lower case letter followed by an integer is a neat and convenient one 

and has been adopted in the OS c?mputer. (The letters 0 and 1 are ex­

cluded, ) 

Once we appreciate that these floating addresses (flads) can be 

chosen at the programmer's will. we recognize the possibility of mnemonic 

labelling. This makes it easier for others to follow the program - and 

also easier for' the programmer himself to check his program. .l!}or example, 

we could use the letter c for registers a,ssigned to contain constants, 

the letter x for a variable. etco Thus the program above might have 

been written as: 

1001 ioa xl 

1011 imr 02 

1021 iad cl 

1031 its xl 

1041 iTOA +nl.234Sc 

10si isp 100 

01, +2. 

02, +0.9995 

x19 +0. 

Having introduced the idea of a floating address we might examine 

the possibility of writing our sequence of instructions with such a pro­

oedure o Let us consider the example above. Note that the sequence of 
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instructions written there begins ~n register 100 and occupies each suc­

cessive register through 1050 However. the only instruction whose address 

needs to be identified is register 100 since that address is referred to 

by the instruction (isp 100) in regi~ter 105. Oonsequently, we could 

have written this same sequen~e of instructions as follows: 

al,ica xl 

imr 02 

iad cl 

its xl 

iTOA +nle2345c 

isp 801 

In this form the address al is floating - tfu~t is. the actual regis­

ter in storage to be occupied by the instruction lea xl is unspecified. 

Once we specify that al should be equal to 100, these instructions take 

the form they had on page IV-J since successive instructions will occupy 

successive registers 0 

However, note the tremendous flexibility we have gained by using the 

floating address formo First of all we do not need to write down a whole 

lot of addresseso We need only identify or tag those registers to which 

we wish to refer; e o g o9 we tag the register containing ica xl so that we 

can instruct the computer to transfer control to that register at a suit­

able -point in our program (isp al). .b'or this reason we shall refer to 

"a~,,1t as a floating address tag. 

SecondlYt if we discover that we have omitted an instruction we 

need only insert it at the proper place. tor example» if we had errone­

ously written: 

al.iea xl 

iad cl 

its xl _ 

we need only indicate the correotion by writing: 

al,iea x~imr c2 
lad ci~ 

its xl 

The rewriting of the program into absolute address form is a simple 

clerical procedure 0 Each word is assigned an absolute address in a con­

secutive sequence (remembering that numbers occupy two successive regis­

ters)t and then the address section of each instruction is replaced by 
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the corresponding one of the newly assigned absolute addresses. Since the 

procedure i.s straightforward. it is perfectly possible to make the compu­

ter perform the task automatically during input. The OS computer is so 

arranged that this substitution of absolute addresses for floating 

addresses is performed automatically when the tape containing the program 

is read into the computer. Consequently, although the programmer may do 

the job himself if he wishes, there is no need to rewrite a program in 

absolute address form. The tape is simply prepared using floating 

addresses as indicated; the rest of the job is performed by the computer'.: 

The actual procedure followed by the OS computer in transforming float­

ing addresses to absolute addresses will be discussed in Chapter V. 

The letter and number(s) forming a floating address may be chose~ 

at will (except that the letters 1 and 0 should not be used because of 

ambigui ty wi th the num'bers 1 and 0). One other :r.-estriction is imposed 

by the procedure used by the CS computer for ke.eping trac~ of the flads 

as the program is being read in. The sum over all letters of the maxi­

mum numbers used for each letter should not exceed 255 - e.g., if a pro­

gram used only the floating addresses al. a2. a.3. a17. d9. x.31. x100, and 

z~. this condition would be satisfied. since 17+ 9+ 100+ 5= 1.31 which is 

less than 256. 

It is possible to refer to a register that has not been tagged by a 

floating address. This is done by referring its address to a floating 

address that has been used, e.g., 

bl,ica c1 

its il 

ica il 

al) imr c.3 

.. ~ 
isp bl +2 

The in~truc~ion isp bl+2 will transfer control to that register whose 

address is ,two more than bl. Note we can obtain the same result by 

writing isp aI-I. This instruction would transfer control to that regis .... 

ter whose address is one less than ale Care should be taken in applying 

this procedure to numbers since they occupy two successive registers. 

1V-5. 
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Thus in the example: 

al.+1706 

+3.984 

-0.78 
bl.ica al+2 

its il 

J. v-o .. 

the instruction iea al+2 will place +).984 in the MRAo The tendency. of 

course. would have been to use ica al+l which would have been in error .. 

This is one reason for avoiding the use of these address references. An 

even more significant reason for limiting the use of this procedure is 

the fact that it makes it as difficult to insert corrections as in the 

case of absolute addresses" For example, if we wanted to insert +7. in 

our program between +17.6 and +3.984, we would have to be careful to 

correct the address of the instruction in bIt etc. Consequently. rather 

than referring to the address of +30984 by al+2. a different floating 

address is advisableo 

It should be pointed ,out that it is permissible to use, both float­

ing addresses and absolute addresses within the same programe All of 

the sample problems given above can be used with the CS computer. 
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~ROGB:AMMING EXERCISES 

Construct sequences of instructions to oarry out the following pro­

cesses on the OS computer. 

It will be assumed that x and yare numbers contained in registers 

32 and 34 respeotively at the beginning of eaoh problemo All results 

will be assumed to have values that will not exceed the capaoity of any 

registero Stop the computer after each ~roblem. 

(1) Do the following, examples of the first set of programming exer­

oises (on page 11-6) using the cycle counter instructions if this 

will shorten the program: 

(a) ex. 6 (No'. more than 7 instructions) 0 

(b) ex. 8 (a) 

(2) Ini tially N(cl) == Z and 1~(c2) == w 0 Make N(c2) = z and N(ol) = w. 

(J) Find the sum of the 200 numbers in the consecutive registers dl, 

dl+2 t dl+4 t .oe.o.dl+J98. Place the sum in c4. 

(4) Calculate xn where xl 0 and where the cyole oount pair (index= 

+0, cri terion= n~ 0) has been stored in registers 71 and 72 by a 

preceding program; the value of n is unknown to you. Plaoe the 

answer in register 115. 
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Solutions to programming exercises on p.IV-7: 

1. (a) ier' 8 

iea, 32 

2. 

J. 

4. 

(b) 

al.imr' 32 
iet al 

its 115 

sp 0 

ier 40 

ica 32 

al.imr 32 
ict a1 

its 77 

sp 0 

iea e1 

iex e2 

its cl 

sp 0 

fer 200 

iea e4 

al t' iad dl +e 

iet al 

itse4 

sp 0 

e4. + .0 

ica 115 

iex 71 

ied 1 

al,'iet a2 

its 115 

sp 0 

a2, imr 32 

iap al 

llsl + 1. 

IV-B 



v. Input and Output V-l 

I. Inpqt 

'llhus far it has been assumed that programs and data oan somehow be gotten 

, into the computer without t,.1orrying in detail how one goes about aotually doing 

sOo The prooess is simple and straightforward, but oertain conventions must be 
observed 0 The conventions are desoribed below. 

Instruotions, numbers, and certain oontrol information must all be typed 

on a Flexowriter tape-perforating machine. This machine can simultaneous~ 

type a printed copy and punch a paper tape. In response to each key that is 

depressed, a unique combination of holes is punched in each of six of the seven 

positions across a 7/8 inch tape, the combination indicating which of the 50 

different keys on the typewriter has been depressed. The code values correspond­

ing to each of the keys are tabulated on a list called the Flexowriter code 

(see Table 1). The seventh hole is used for control purposes and must always 

be punched (which is accomplished automatica~ b,y leaving the button labeled 

It 7th HOLE'~ depressed). 

In point of fact, the programs are typed almost exactly in the form in 

which they have been written in these, notes so far. The basic rules are: 

10 Instructions: typed as 3 lower case letters followed either by a 

floating address made up of one letter (not oor 1) 

2. Numbers: 

and 1. 2 ,or 3 dig! ts (any integer from 1 thru 255). 

or by an absolute address made up of 2, 3. or 4 digits 

(any integer from 32 thru 1418) followed by a carriage 

return or a tab shift. . The only ac:ceptions to this rule 

are the It sp 0" instruction for stopping the canputer and 

the output instruction iTOA+nl.2345c. Other output 

instructions ~re available and will be discussed in detail 

later in this chapter. 

typed as a plus or minus .§lQ!i followed by as many as 

,8 significant digits if desired with a DECIMAL POINT, 

NO CrnMAS, followed by a carriage return or a tab shift. 

Exponentials with base 2 or 10 may be appended as faotors 

each preoeded by an x (e.g., +l234.56x2-3xl05). 

Nwnbers may 1:e zero or have any magnitude between about 

S.5xlO-20 and 9xl018• 

3. Absolute address assignments: typed as a 2, 3. or 4 digit intege:r' 

(a~ integer fram 32 'thru 1418) followed b.r a VERTICAL BAR. 
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(oontinued on next page) 

V-2 

This causes, the word that follows the vertioal bar to 

be stored in the register identified by the absolute 

address that preoedes the vertical bar(that is. the word 

is It assigned" to this register) 0 It should be remembered 

that if the word is a number it will occupy two suocessive 

registers D the first of whioh is specified by the absolute 

address that precedes the vertical bar. 

If the first word of a program is not preceded by an 

absolute address assignment it will automaticallY be 

stored in register 32. All succeeding words will be stored 

sequentially (with numbers occupying pairs of registers) 

until an absolute address assignment is encountered.. The 

word that follows directly after the vertical bar will 

be £ssigned by the general rule. All successive words 
that are not given absolute address assignments will be 
stored sequential~ following the last absolute address 

assignment. For example, if a programmer began his program 
with: 

iea 500 

:ilnr 502 

its 36 
isp 70 

+.0 

70r ioa 712 

imr)6 

its 602 
• • 
~:. 

• • 
he would find in storage in the OS oomputer: 

Address of Contents of 
R . t R i t egl.s er eK s er. 

)2 ioa 500 

33 imr 502 

,34 its 36 
35 isp 70 

/36 } 37 -tJ'.o 
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Address of 
Register 

• • • • 
70 

71 

72 
• • • . 

Contents of 
Register 

• • • • 
ica 712 

1mr 36 

its 602 
,e 
i'. 
• 

v-, 

Of course if the first word of a program is preceded by 

an ab.$olute address assignment, the word will be assigned 

to the corresponding register (or register pair). Succeeding 

words will be stored sequentiallY in those registers following 

the given absolute address until another absolute address 

assignment is encountered, etc. 

4. Floating address tags: typed as one lower case letter (not 0 or 1) and 1, 

2, or 3 digits (any number from 1 thru 255) followed by a 
COMMA. This is called a tag since it is used by the programmer 

to identif,y the word that follows it. For example 

01,+.5000 

tags the constant +.5000 so that it can be referred to else­

where in the program (e.g., imr cl). 

The general rules given above in section 3 for assigning 

words to storage registers are unaffected by the presence of 

floating address tags. The floating address itself is set 

equal to the absolute address of the register that contains 

the word tagged by the floating address. Thus if a program 

began with 

aI, ioa 500 

imr 502 

its il 

iap 70 

iI, +.0 

701 iea 712 
imr 11 

a2' its 602 



M-2539_1 V-4 

the programmer would find in storage: 

Address Contents 

32 ica 500 

33 imr 502 

34 its 36 

35 isp 70 

36 } +00 
37 
• • 
0 0 
0 I' 

70 ica 712 

71 imr 36 
72 its 602 
0 · 0 0 

0 · 
The floating address al would be replaced by 32 wherever 

it appears in the program. il by 36, a2 by 72, etc. It shoule 

be pointed out that the only way a floating address gets set 

equal to an absolute address is when that floating address is 

used as a tag. Consequently, if a floating address is used 

in an instruction but is never used as a tag, the program will 

be in error and not perform properly lsee VI-b). 

,.Beginning of tape: in preparing the perforated paper tape to be read into 

the CS computer, the following two lines should be typed 

before typing the program itself: 

a} The first line should contain suitable identifying 

information. The first word of this line should be 

"fc" followed by .~"TAP:En (wi th each letter ca.pi t.alized. 

i.eo ,upper c~se) I' This word should be followed by the 

number ~hat identifies the tape and at least one space. 

The programmer may then write his name followed by a 

space and then the date o Commas may be used where de­

sired. However. ~h.e ~otal number of characters (inclttdiDE! 

spaces and commas) should not exceed 60. 

Example of a typiical title: 

fc l' T.AP.E ~ 123-45-6789 . John poe ~ 

b) The second line should contain the special expression 

(24,6). 
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6. End of tape: each"! tape should conclude with a. line containing 

i START AT xyz where xyz denotes the address (e.g •• 

al or b12 or 719 or al+5) at which the program starts. 

The wordr START AT are capitalized. 

7. Typographical errors: if the typist makes a mistake while punchi~g a 

tape on the Flexowriter and detects the error immediately 

(before any more characters are punched on the tape). 

then the tape can be corrected by backing the tape one 

line in the punch. This places the incorrect character 

under the punching heads 0 If the .typist then presses the 

"Code Delete" button. all seven holes will be punched 
I· 

across' that line of tape (this is called a "nullify" 

?haracter) 0 This character will be ignored 1tIhen the tape 

is read into the computer. Similarly. if several charac­

ters have been punched after an erroneous one, all of 

these characters could be punched over with the "nullify" 

character. starting with the first incorrect one. The 

typing and punching can then be resumed with the correct 

characters 0 If an error is undetected for a large number 

of lines, it is usually necessary to duplicate the 'tape up 

to the error. then punch the correct character, skip the 

error on the original tape, continue to duplicate it, etc. 

Splices suitable for the available tape reader are 

difficult to produce. OccaSionally, ingenious ways of 

correcting small mistakes can be found, but there are no 

standard and recommended ways available. 

80 Corrections in the program after tape is typed: a tape may be remade by 

duplication and correction, and if floating addresses are 

used throughout, insertions and deletions maybe made at 

will in the program. Simple changes can sometimes bema.de 

by adding words at the end of the tape, preceded by abso­

lute address assignments. This causes the new words to be 

read in over the incor~ect words, replacing them. To 

enable the programmer to make corrections in registers 

whose absolute addresses are not easily determined, he 

may make use of: 



M-2539-1 V-6 

90 Floating address assignments~ typed as a floating address that had 

been previously used as a tag. plus a small integer if 

desired, followed by a VERTICAL BARo This causes the 

next word ~o go into a register alreaqy used, that is, 

the next word is "assigned" to this register. 

Floating address tags should not be used in a 

program following the use of a floating address assignment 

unless an absolute address assignment intervenes. For 

example: 
~ 

Correct Incorrect 
• • • • • • 

a3,iad b4 a3!)iad b4 

its c6 its c6 
• 0 
0 • • • 

a3Jisu b4 aJlisu b4 

550lic8 a5 ica a5 
its i7 its i7 

isp d3 isp d3 
cl,+.5 cl,+.5 

Both programs will replace the contents of register a3 
by isu b4. However. the program on the right will then 

store ica a5 in a3+1, etc. but it will:NQI assooiate the 

correct absolute address with the floating address cl. 

10 0 Ignored and syno~ous characters: the space, back space, and nullify 

are completelY ignored by the computer~ Thus spaces may 

be used for typographical reasons wherever desiredo They 

are recommended between operation and a.'ddress sections of 

instructions 0 Carriage returns are interpreted in the 

same way as tabs; both have the logical function of term­

inating a word. Extra carriage returns or tabs may be used 

at will exoept within words or addresses. Commas, periods, 

signs, vertical bars, letters 0 and numbers all have ~ertain 

meanings and must not be used indiscriminately. The digit 

zero and the letter 0 are interchangeable,.as are' the digit 

one and the letter 10 Shifts to upper and lower' case have 

meaning and should not be used indiscrimin~telYt but it is 
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11. Layout: 

V-7 
actually only when punctuation, letters. or digits are 

typed in upper case that special things happen. If the 

shift key is accidentally pushed and no character typed 

before shifting down again, no harm is done. An impor­

tant rule to which the computer adheres is: IF. WITHOUT 

MANUAL MOVING OF'THE CARRIAGE, THE TAPE PRINTS AN ACCEP-
I . 

TABLE COP~. THE TAPE IS VALID; i~9., there are no mistakes 

possible on tape that do not show on the typewritten 

QOPy w~en printed from the tape. 

ordinarily. several words are typed to a line, separated 

from one another by a single tab, the last word on a line 

being followed by a carriage return in place of a tab. 

The tab stops are set permanently and should not be changed. 

A series of 10 consecutive vertical bars (called a 

}~NCE) may be inserted where desired to subdivide the 

Flexowriter tape into convenient visible blockso 

It is good practice to tab twice before an address 

tag or assignment and once after it, making it easy to 

spot the address on the printed page. However, a tag or 

assignment ~ only be preceded by one tab and followed 

by none (i090. followed immediately by an instruction o.r 

a number). 

12~ Sources of e~ror: there are numerous errors that can appear on a tapeo 

They manifest themselves in various wayso Some of these 

are looked for by the computer. 

The computer detects the f9l1owing mistakes: numbers 

that are too large, an excessive n~ber of flads (more than 

255, as explained on page IV-5) or of output requests (mor~ 

than about 50). illegal Flexowriter characters (characters 

that do not appear in Table la on page V-I), referring 

to floating addresses that are not used as tags ',. illegal 

duplicate flad tags,starting addresses that, are too large, 

programs that accidentally exceed the available storage, 

and the use of a flad tag after a flad aesignment with-

out an intervening absolute address assignment (see section 

9 on page V-6). 
Other ex;rors, such as addresses tha.t are too large 

~nd ambiguous words are not specifically detected by the 
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oomputer but usual~ cause improper operation of the 

program. Careful proofreading of the program typed 

during the preparation 'of the tape is suggested. 

II. OutPUt. 

The basic idea behind the procedure that has been set up for an output 

request is that the programmer should write a sample number in his output 

request. A program will then be automatically set up in the storage of the 

OS computer to present the output in:the_form desired. 

The output media that are currently available for these automatic routines 

are: (1) a -"direct" typewriter on which numbers may be recorded, and (2) a 

"delayed" typewriter, where the numbers are first recorded in Flexowriter­

coded form at high speed on magnetic tape and later typed out while the com­

puter is doing something else. The maximum speed of these media and the max-

imum number of characters obtainable on one line are as 

1) T.ypewriter: 8 characters/sec. 

2) Magnetic Tape(to be used later with T.ypewriter) , 
133 Characters/sec. 

follows 

154 Characters/line 

154 characters/line 

A programmer indicates his output request by writing the letter i followed 

by three upper case letters followed by a ~ample number. The first of the 

:upper calse letters will be either an M for magnetic tape or a T for direct 

typewriter. The second is 0 to indicate output. The third is A to indicate 

t~t he desires alphabetic or numerioal (alphanumerical) output. For example, 
. the request 

iTOA+123.l234 (1) 

will automatically set up in the storage of the OS computer a program that 

will print out the contents of the MRA as a decimal number, with proper sign. 

having three digits to the 'left of the decimal point and four digits to the 

right. 

10 Initial Zeros 

If the number actual~ contains more than three digits to the left, the 

routine automaticallY adjusts itself to print them all. On the otlier hand, 

spy non~sign~ficant digits (i.e., initial zeros) will be printed as zeros. In 

many ope~ations it is desired to skip initial zeros (except for ,the one just 

to the left of the deCimal.' point) and print the first significant digit of the 

number at the extreme left of the column. This feature can be obtained b,y 

inserting the letter" itt in the request just before the sample nUlllber, 
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iTOA+i123 01234 

On the other hand, it is often desired to line up the numbers so that the 

decimal points fall in a line. Yet it may be desirable to omit printing any 

ini tial zeros 0 By inserting the letter lip" instead of "i". e.g., 

iTOA+p123 01234 

initial zeros will be printed as spaces. 

20 Normalized Form 

Finally. it may be desired to print all of the numbers in a normalized 

form, i.e., all nunibers are multiplied by a power of 10 such that the first 

non-zero significant digit always falls in the same relative position with 

respect to the decimal point. In this case. the number printed is followed by 

a vertical bar followed by the Signed power of 10 that the number is to be multi­

plied by .. This kind of output is obtained by inserting an "n" instead of "pU, e.g., 

iTOA+n123 01234 

As an example, consider the number -7 .. 9532610 - The above request will give 

the following printed numbers: 

using form (1) •• 0~o .. o ••• -007.9532 

3 .. Signs 

(2) ............. 7.9532 
(3) ••• ooo .. o.o~ 7.9532 
(4)oo ... oo .. oo.~795.326l/-02 

If the programmer wishes to have the sign of all numbers printed, then he 

writes + after the iTOA as in the examples already considered. 

In some applications the programmer may know that all his numbers are of 

one sign(eogo 9 positive) and therefore may not want to take the time or space 

to print the sign.. In this case he simply omi ts the sign from his request;e .g. , 

iTOA n12Jol234 

and the printed number will be unsigned. 

On the other hand, he may want only the negative numbers to appear si.giled:. 

For this he writes: 

iTOA-nI2).l234 

Note that he cannot get both positive numbers with signs and negative numbers 

without signs from a single output instnuotion. 

4. Terminal Characters 

In any of the cases above, the carriage of the typewriter will remain exactly 

where it was after the last number was typed. It is possible for th~ programmer 

to terminate his number with one, two, three. or tour spaces, or with a carriage 



return, or with a tabt) To get the spaces he simply writes the proper number 

of SiS after his number - e.g., to get two ,spaces: 

iTOA+i123.1234ss 

To get a carriage return, use a tI cit instead of the SiS: 

iTOA+i1230 1234c 

and for a tab: 

iTOl\+U23.1234t 

s. Decimal Point 

If the progr~er wants only the digits to the left of the deoimal point 

printed and does not want the decimal point i teelf printed (e. g., for integers) 

he need only omit the point in his request, thus: 

iTOA+i123ss 

On the other hand, if his numbers are all less than one and he desires to omit 

the decima!point in his print-out, he simply replaces the decimal point by the 

letter nr" (denoting radix point) t thus: 

iTOA+nrl23ss 

to print three digits to the right with no decimal point printed. Note that if 

the number in the MRA should unexpectedly exceed unity, then the resulting digits 

to the left would be printed along with ~he desired three to the right with no 

indicated decimal point. 

6. Repetition of Output Requests 

It is often desirable to insert output requests at different points within 

the s~e program. Provision has been made in the OS computer so that the sample 

number does not have to be repeated if that. sample number and the desired output 

medium are the same as the one preceding it in the written program. Thus if a 

programmer has written: 

iTOA+i123.1234$s 

and writes the next output request as 

iTOA 

the form of the ~utput will be the same as for (5). 
7 e Scale Faotors 

(5) 

It is possible to have the number in the MRA multiplied by a scale factor 

before that number is printed out. The permissible scale factors consist of 

exponentials with base 2 or base ~O. As many such factors maybe used as desired. 

The factors should be written after the sample number, and each factor should be 

preceded by an x'. (;N.B. -The "+" sign should not be written for positive exponents 11 ) 



M-25.39-l V-II 

Thus if the programmer desired to have the number in theMRA multiplied 

by 25 x 10-3 before printing it out, he would write his request in the 

following form: 

iTOA+ i12.3.l2.34 :x: 25 :x: 10-.3 ss 

8. ,Speoial Chara.oters 

Provisions are availC\ble for printing out speoial oharaoters ,(suoh as 

a deoimal point, spaoe, ,tab, sign, or oarr-iage return) by themselves (i.e., 

wi thout printing some number with it). A request suoh as 

iTOA 0 

will cause a oarriage return to be typed on the "direot" typewriter. The 

significant characteristic of this request is that: !:lQ. sample number is 

indioated. 

The symbols for the special characters are the ~e as those introduced 

above. Only one symbol should be used in any given request., Thus the 

request iMOA+. will not record, a plus sign and a decimal point on the 

delayed printer. To obtain' such a sequence of characters the programmer 

should request: 

iMOA+ 

iMOA. 

Provision has not been made in the CS computer for repeating reques~s 

for special characters as disoussed in section 6 of this .chapt8r- since the 

saving of programmer's ,time would be trivial.:. ConsequentlY' a request tor 

justa. speoial charaoter (no sample number)" should a.lways include the 
" , 

necessary symbol for the desired oharacter. 

~';'Magn.etic Tape Stop Character 

iIi JIlaking ~e 'O,t magnetic tape for delayed printing it is desirable 

that each programmer terminate the Flexowriter printing from magnetic 

tape to avoid printing information recorded subsequent to his own. A 

special "STOP COllBP' character, whioh can be recorded on lDagnetic tape. 

will automatioally s,top the delayed printout equipment. It is possible for 

a programmer to provide this stop oode character automatically 'a.. 

tallows. 

The output request 

:iMOA end 
can be used by a programmer when he has completed his recording onmagnetlc 
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tape to mark the end of his information. The"lMOA end" . request records 

successively on magnetic tape a shift to lower case, stop code charaoter, 

two carriage returns, and another stop code character. 

10. Page Format 

. It is often desirable to arrange a s·at of numbers that a.re to be 

printed out according to a predetermined page layout. The pertinent in-
, 

formation for such a~ arrangement :specifies how many numbers are to be 

printed per line, how m~ny spaces are dealred between numbers,and how many 

numbers are included in the set. Thus three counters are required for 

keeping apcount of these numbers. 

This counting can be set up automatically in the OS compute.r by means 

of the instruction 

i FORMAT or, more briefly, i FOR 

followed by a tab or carriage return, followed by the three pertinent counts 

separated by tabs or carriage returns. Thus the request: 

i FOR 
~ 

IJ 
(-

will set up counters to provide D( numbers per line, ~ spaces between num­

~~rs, and dnumbers per block. 0'-. 'I and r are positive. integers and 

should be written without a decimal point. ~ and~ are restricted by the 

requirement that the nvmber of characters per line on the Flexowriter 

should n9t exceed 154 .. ,If a programmer sets ~ = O. he will obtain a tab 

between his numbers. rcan be any poeitive int~·ger not exceeding 32,767. 
A typical request would be: 

i FOR 
+ 10 
+ 2 
+ 95 

giving a block of 95 numbers with 10 numbers per line for 9 lines, 5 num­

bers in the last line, and t~o spaces between each number. 

After dnumbers· have been -printed out. two carriage returns are typed 

and 'the counters are reset ready to layout a new block. If the programmer 

prints out fewer than~umbers, the carriage of the Flexowriter will be 

left in a position determined by the last number printed out. 

To make use of the oount~ng facility described in the preceding 
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paragraphs, the programmer need only use the letter f as his terminal , , 

character (instead of the characters suggested in section 4 above). Thus 

the request 

i TOA -:"" nl.2345f 

will print out a number in 'a form already described. After the number 

has been printed. the counter~will be increased by I to see if a block 

has been completed. If it bas, two carriage ~eturns will be typed and the 
I 

~ounters will be reset. If not, the counter~will be increased by I and 

a test will be made to see'if a line has been completed. If it has, a 

carriage return will be typed ando(wi~l be reset. If not,f5 spaces (or 

a. tab if I = 0) will be typed 'and the carriage of the Flexowri ter ~ill be 

left alone ~waiting further ~utput instructions. 

Thus the request i FOR, when executed, sets the counters and calls 

in the routines needed to effect the counting. Any subsequent iFOR 

requests will simply reset the coun~ers. It should be emphasized that 

the i~OR request does not return the carriage of the Flexowriter to its 

left-hand mar~in (since at this time the routine does not know what medium 

the programmer has selected). For this reason the programmer should be 

sure to return the oarriage aocordingly by a special request such as 

i MOA c (as a rule a p~ogrammer may assume that before hie program ·is run 

on the machine the carriage has been returned by the computer operator to 

its left-hand margin). 

The actual page layout counting is done in response to the suffix f 

used a,s the terminating symbol. Obv:iously a~y request using any other 

terminating symbol will not affect the counters and hence may spoil the 

layout unless planned by the programmer. 



fa TAPE NO. 123-45-6789 SMI~ 
(~416) _s2,itss2+3 
icr6 icap1+14+c 
s3,itas3+3 lcap1+3 1tst1 
isps4 1 cap 1+5 Idvs4+3 

ier7 ieap1+e lsps1 
iaps1 .icts2+4. 18ps1+2 1spw1 
Itst1+2 ieap1 itss4+3 icap1+4 
im rp 1+6 imrp1+6 

• • • • • • • 
• • • • • • 

J I ,., J I I I f I • • 
• • 

• • • 
• • • • 

• • • • • • • 
• 

• • 
• 

p1,+. -S.74x10-s 
+. +1.0x10-a +. 
1'l'OA+i123.1234ss 
leap1 
l'l'OA 
leal1 
iTOA-i1234S.67c 
lsps2 
1 START AT a1 

(MAIN BODY OF PROGRAM OMITTED FOR BREVITY) 
• • 
• 

+.0342744 
+. 

• • 

·:-+1716.226 
b1. l lcan2 

• 

AN EXAMPLE OF A PROGRAM TYPED FOR mE CS COMPUTER 

lets2+3 isps1+2 
1spO 
ladt1 Imrn2+6 

• 
• • 
• · . 
• • 

• 
• • 
• • 

• 
n2,+1.0 
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I. Machine Errors 

Chapter VI 

ERRORS AND POST-MORTEMS 

VI-l 

In spite of all precautions 9 a program may not perform as intended. 

It is not alwaYs easy to deoide immediately whether or not the ~rogram 

is at fault, but there are certain possible indications which will help 

in the decision. For example: the machine will propably be at fault if 

the same program is run twice under the same initial conditions with 

different results each time. The mere fact that a program has worked 

.oorreotly on several occasions with different data does not absolve the 

programmer from blame if that program should suddenly perform poorly with 

a new data tape. This may have been caused by the new data tape whioh 

might contain unsuitable data or which might have covered over signi~icant 

storage information, etco Whirlwind contains checking devices known as 

parity; alarms, check alarms,etco, which are not supposed to reveal program­

ming errors but only machine malfunctionso However, if certain test pro­

grams which make use of every part of the machine perform satisfactorily, 

then the chances are very good that the computer is working properly. 

In charging programmers with machine time used, that time which the 

programmer has lost due to parity alarms, auxiliary equipment failure, 

etc. is credited to his account. so to speak, with certain reservations 

(e.g., if a program runs for 20 minutes and then has a ~rity alarm, the 

programmer should not expect to be credited with 20 minutes timet since , 
his program ~hould have had ~ rollback feature so t~t no more than the 

last few minutes of the 20 minut'e period is lost) 0 Rollback means a 
t 

periodic recording of the contents of storage on a torm of secondary 

storage so that in case of machine error, such as a parity alarm, the 

contents of storage might be "rolled back" to what it was after the la.st 

recording on secondary storage preceding the machine malfunction. The 

program can then be restarted. (See Advanced Chaptero) 

IIo Definition of Post-Mortem (PM) 

When the performa.nce of a program leads to an undesirable situa.tion 

which has been attributed to a programming mistake (or tape preparation 

mistake» etc.L, the contents of particular storage registers. th~ MBA. etco, 

might be valuable in helping the programmer diagqose the mistakeo A 

post-mortem is a special routine which records this data in some readable 
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form after the program has stopped or has been stopped by the operator. 

III. Programming Errors. 

A. Loop - One type of programming error that can occur which may 

not stop the computer is the repetition of the same set of instructions 

in excess 'of the maximum number of repetitions the programmer would 

normally expecto When the operator realizes that the program has gone 

into a "looptf (indefinite repetition of a cycle of instructions) he stops 

the computer by pressing a special button and obtains a PA Post-Mortem 

(to be discussed in this chapter). Pressing this speoial button causes 

the program to stop on the next iSP9 icp (-)~ or ict (-) encountered. 

Consequently& if a PA Post-Mortem shows that a program has stopped on any 

one of the three operations mentioned above, then it is very likely that 

the program was in a loop. This PA PM will give the programmer some 

information about the loopo However. the programmer might wish to get 

a post-mortem of other registers in storage whose contents might aid him 

in diagnosing the loop. 

B. U~atisfact9ry Results - If a program stops as predicted but 

gives either no results or results which are not what the programmer 

expected, the programmer might ask for a post-mortem to aid him in 

diagnos ing the program I s 'ills 0 lrhe programmer might wish to change and 

then re-run his program so that a post-mortem may be obtained at a critical 

point in its performance. 

Co Unexpected Stop - A program may stop unexpectedly in the wrong 

place in the program or it may stop because of anyone of the following 

errors listed under its respeotive alarm and, in most oases, followed by 

the instructions which could cause this error: 

10 Check Order Alarms 

a o Counter not provided for by the PA* is selected (this 

can occur only if the "j" in isc j has been modified 

by the program). 

bo Exponent of N(MRA) ~ 2j where j refers to the .(JO-J.J), 
notation (provided a1 is not a buffer): its aI, iex a1 

c. 0 < IC(al)' < 1/2: iad a1 9 isu aI, imr a.l, idva1 

* PA (programmer arithmetic) wi11be discussed i~ a subsequent chapter. 
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do When control is transferred to an undefined (illegal) 

instruction, an alarm occurs on the undefined instruction. 

(There are three undefined instructions and the decimal 

values of their operation sections are 0, 30, and 31 

respect i ve ly.) 

2. Divide Error Alarm 

O(al) = 0: idv al 

3. Arithmetic Overflow Alarms 

a o C(index register)+m>J2,767 : ici m 

b. C(index register)-m<-32,767 : ied m 

c. 

d. 

e. 

"C(index register)+C(al)I)}2,767 : iat al (See Advanced 

Section of Chapter III) 

li\= 32,767 before the ict is ex~euted : ict al 

I Resultl>7.0xl0986J or 'Result'<7'~lXlO-9864 : imr al, 

idv a1 

f. If al is a buffer t, then alarm j could occur: iad aI, 

.isu a1 

g. The contents of the index register could be large enough 

to cause an alarm, i.e., when al+c)32,767 : its al+c, 

IV. PA Rbst-Mortem 

iex al+c, ic~ al+c, ics a1+c, iad al+c, isu al+c, imr al+o, 

idv al+c, isp al+c 

A PA Post-Mortem furnishes the progra~mer with extremely useful infor­

mation if his program has not performed satisfactorily. This information 

is based on the contents of storage after the program has performed and 

stopped. If a programmer desires no other tTP'e of post-mortem than a PA PM, 

he need only request it on his Performance Request form. If the programmer 

desires post-mortems other than the PA PM, then he must have submitted 

the proper PM Request for these post-mortems (see section V). In response 

to such a request. the programmer usually obtains. automatically, a PA PM 

in addition to the post-mortem requested. When a PM tape is used, the 

machine checks to see whether there is a PA in storage and whether it has 

been used: 

A. If there is ~ PA in Core Memory (CM)* • a check is made to see 

tIr· Cl·1 ,vIiIl be discussed in a subsequeritchaptcl-'t. 
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whether there are any interpreted instructions (ii)*or Generalized 

Decimal numbers (G.D. numbers) ~equested on the PM tape. If ·there are, 

then the words "no PA" are printed out instead of a PA PM printout. If 

there are nether ii nor G.D. numbers, then nothing at all will be ~rinted 

out. 

B. If there ~ a PA in storage but it has not been ~ then the 

words"PA unused"will be printed out instead of a PA PM printout. If 

the PA bas been used, then a PA PM will be printed out. The PA PM will 

then be followed by the other types of post-mortems requested on the PM 

tape. 

In the case where the programmer requests a PA PM without using a 

PM tape, he will receive a "pushbutton PA PM". This is executed in the 

same way as the PA PM obtained via the PM tape except that in this case 

there is no way of checking for G.D. numbers or interpreted instructions 

since there is no PM tape. , .. The information furnished by a PA PM might 

appear like this: (all addresses in example are decimal) 

4-17-54 

100-04-367 

John Paul Jones 

(24,6) PA PM 

stopped at 279 2791 iex 493+c 499( -.123456781 +07 MRAI +.3245661091 +22 

16241 bl +.2749016271 +1~ " lbl -.7264012781 +11 2bl -.3600724831 -35 

1633t 0\ 0,10 Ifll 3,12 21.0.0 31 0,0 41 0.0 51 0,6 

5091 icp606 6151 i,sp285 3201 isp22l 2461 icp255 2741 icp278 

line 1: date ex: 4-17-54 

line 2: tape no. ex: 100-04-367 

line 3: name ex: John Paul Jones 

line 4: title ex: (24,6) PA PM 

This title information mayor 
may not appear and if it does 
appear it may be in a different 
form or ordero The programmer 
may select his own title by 
having it inserted on his PM tane 
(see "Preparation of PM Tapes ll in 
Section V; in this case, the entire 
title will appear on one line. 

* i1 and G.D. numbers will' be discuss1ed in subsequent chapters. 
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*line 5: stop line 

This line' will always contain information about the interpreted 

instruction which was being executed or which was most recently 

executed. 279 is the address of the instruction that was being 

performed at the time the program stopped; iex 493+c is the 

instruction that was being performed; 499 is the effective result 

of 493+c (the address section of the instruction being performed); 
.* -.123456781 +071s the G.Do number in registers 499 and 450; 

+0)24566109' +22 is the content of the Multiple Register Accumulator. 

Notice that the m~ntissa of a number in 2 registers of storage is 

printed as an 8-digit number and the mantissa of a number in a buffer 

or the MBA is printed as a 9-digit numbero (In the example above, 

th~ program stopped because the ~mA contained a number that exceeded 

the capacity of storage and the iex ~ttempted to store the content 

of the MBA in registers 499 and 500.) 

*line 6: buffer line 

line 7: counter line 

l633t at 0,10 means that cycle counter zero contains a zero in the 

index register and 10 in the criterion register, and that register 

1633*** and 1634 are the index and criterion registers respectively 

of counter zero; lUI 3.12 means that cycle counter one contains a 

3 in its index register and 12 in its criterion register and that 

cycle counter on~ is the most +ecent counter used (indicated by the 

number preceding the 3 vertical bars). If no counters are called 

for, the rtcounter line" will not be printedo The maximum number of 

counters per line is 10. 

* "See section VII for a more detailed discussion of lines 5 and 6. 

** This means -.12345678 x 107 (-.12345678 is often referred to as the 
mantissa of the number). 

***In an advanced chapter, formulas will be presented which will enable 
the programmer to determine the location in storage of the various 
seotions of his program, such as PA, cycle oounters, etco At that 
time the programmer will be able to verify 1633 and 1634 as the 
location of the zero-th cycle counter pair in the example given above. 



line 8: jump table 

The five most recently executed transfers on control (due to isp, 

icp (-» and their locations are enumerated; the most recently 

executed transfer of control appears at the extreme right. If less 

than 5 transfers of control have been made by the time the PM was 

taken, only those will appear in the print. If no transfers of 

control had been made, then the words fino jumps" will be printed 

on this line. 5091 icp606 means that.the fifth last isp, icp (-) 

instruction that was executed is icp606 and it was contained in 

register 509 etc.; the last one executed is icp278 and is contained 

in register 274. 

v. Other Post-MQrtems 

Before his program is run, the programmer would do well to prepare 

a post-mortem tape which he might want to use under certain circumstan~es. 

The programmer must specify on these PM tapes: (1) which registers he 

wants to examine (e.g., registers 100-130), (2) how he wants their 

oontents printed (e.g., as instructions, numbers, or single-register 

integers; thus far such integers have only been used as the contents 

of the index and criterion regis~ers) and (3) which mode he wishes 

used (elg. , direct, or delayed printing; the latter will be described 

in an advanced Chapter). The oomputer furnishes the progran~er with 

the desired information automatically after the operator reads in the 

programmer's PM tape. After a Pos·t-Mortem has been given, the contents 

of OM is automatically restored to whatever it was immediately preceding 

the Post Mort.em. A ~A PM is automatioally given with ea.ch PM tape request 

under the conditions given in section IV above. However. the programmer 

may obtain a PA PM without preparing a ~l tape if he doesn't require any 
t • 

other type of post-mortem. 
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Ao Preparation of PM Tapes 

Tapes are prepared on the standard Flexowriter typewriters by 

depressing the proper keys while in punch and type mode (see figo 1 

at end of chapter) 0 .ii. desc:r.i ption of thl~ information which must 

appear on these tapes follows~ 

1. fp must appear as the iirst oharacters of the tapeo 

(These letters represent 11exo ~ost-mortemo) 

2. Any title the programmer desires (e.go 9 name, date. tape 

number, etc.) must follow the fp notation of 1. Such a title) 

if used, must be followed by a carriage return o 

3. The next characters must indicate the mode desired: 

ao del will give ~ayed printer. (One may punch 

out as much of the words "delayed printer" as he wishes 

but at least the first three letters must appearo) 

b. dir will give .!!Iec t printer 0 (As in3a... abov'e 9 

at least the first three letters must appear.) If no mode 

in indicated on the PM tapeR then the nrogrammer will 

automatioally get delayed 'orintero 

40 Next the programmer indicates whether he wishes decimal Q£ 

'octal addresses in bo,th the locations of words and the address 

section of instructions. 

a. dec will give decimal addresses (whole word 

"decima.l" may be used instead) 0 

b. oct will give octal a.ddresses (whole word "octal tl 

may be used instead)o 

If 'neither ootal nor decimal is indioated on the PM tape, the 

programmer will .automaticallY get decimal addresseso 

50 Next the programmer indicates the address of the initial 

register of a block o.f registers whose co.ntents is desired. 

This address may refer to. OM or to Drum Memory (DM)*. When a 

tape is read into storage the first thing that ocours is that 

the contents of OM is recorded on DM Group O. Consequently, as 

far as the programmer is ooncerned. he may obtain whatever the 

*Drum Memo~y will be described in advanced Ohaptero 
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oontents of register X was in eM before the PM tape was read 

in by requesting the contents of register X of DM Group 00 

This may be done in any one of several ways~ 

(ex. a) 0 - 45 means register 45* of DM Group 0 (Actually 

what we get is register 45 of Core Memory since Drum 

Group 0 contains whatever was in eM before the PM 

tape was read in.) "8 - 88 wou1d mean register 88 of 

DM Group 8. (The "O~, in 0 - 45 above could have been 

omitted. Whenever Drum Group 0 is selected with this 

type of notation, the zero and da.sh are optionalo) 

(exo b) 16472 means register 16472 (deoimal) of Drum Memoryo 

(This is equivalent to using 8 - 88 in ex. aJ** 
(ex. c) 0.40130 means register 40130 (octal) of the Drum 0 

(This is equivalent to using 8 - 88 in ex. a or 

16472 in ex. bo)** 

60 Anyone of the following 2 letter combinations may follow 

section A5. above to indicate the i2Im in which the programmer 

wishes to have his instructions or numbers printed. out ~ 

a.. ii meallS interpreted instruotions ex: ioa 47 

b o wi means Whirlwind instructions ex: oa 47 

0 .. of mea.ns octal fractions ex: 0001763 

d. di means decimal integers ex: 679 

e. df means decimal fractions ex: - .. 6381.j. 

fo gd means generalized deoimal numbers 

ex: + .12 J~56781, +22 

7. This is followed by the address of the final register of 

the block of registers whose contents is desired o The address 

of the final register is indica.ted in the same way as the initial 

regis ter( see AS. a.bove) 0, 

80 The terminating character of the tape consists of two 

vertical bars U : 

·Decimal or octal depending upon what is selected as described in 
section 4. 

'** This notation will be ,:lescribedin an .Advanced Cbapter on Drum Hemory. 
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B. Multiple Bequests 

10 Example One 

VI-9 

One may use the address of a final register of a block as 

the initial address of a new block of registers in steps 5-7 

above 0 If 

0-45 ii 0-700 wi 0-823 df 0-1073 
were typed for steps 5-7 in the preparation of a PM tape, the 

programmer would obtain the following: 

register 45 OM to register 700 OM as interpreted instruotions, 

register 700 OM to register 8~J OM as Whirlwind instructions, 

register 823 OM to register 1073 OM as decimal fractions. 

2. Exanrole Two 

The programmer need not use the address of a final register 

of a block as theini tial address of a new block as in Ex. 1 

above. If 

0-45 ii 0-700 0-750 wi 0-823 1-850 df 1-1073 gd 2-97 
were typed for steps 5-7 in the prep9.ration of a Plvr tape II the 

programmer would obtain the following: 

register 45 OM to register 700 OM as interpreted instructions, 

register 750 OM to register 823 OM as Whirlwind instructions, 

registers 850 to 1073 of Drum Group 1 as decimal fractions, 

register 1073 of Drum GrQup 1 to register 97 of Drum Group 2 

as Generalized Decimal numberso 

3 • Example Three 

The programmer may desire several different modes (e.g., 

delayed printer. direct printer) and/or both octal and decimal 

addresses. The following example shows how easily this may be 

done: 

fp John Sampson April 3, 1954 Tape 263-49-16 
oct 127 ii 700 dec 500 wi 700 dir oct 1-340 

gd 1-75111 
The above would give the programmer the following: 

a. The title on the first line will be recorded on the 

delayed printer. (Since no mode was selected, the ~rogram­

mer automatically gets delayed printero) 
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b. oct 127 ii 700 gives the programmer registers 127-

700 (ootal) of CM as interpreted instructions with oq~l 

addresses on the delayed printer. The location of these 

instructions will also be given in octal. 

c. dec 500 wi 700 gives the programmer registers 500-

700 (decimal) of OM as Whirlwind instructions with deoimal 

addresses on the delayed printer. The location of these 

instructions will also be given in : decimal 0 (Whenever 

changing from one mode to another or from one number system 

to another, place your new information, e.g., dec, dir, etc. 

immediately before the group of registers affected. 

dec 500 wi 700 is an example of this. 

d. dir oct 1-340 gd 1-751 gives the programmer registers 

340-751 (octal) of Drum Group 1 as generalized decimal 

numbers on the direct printer. The location of these 

numbers will be given in octal. 

The following specific cautions are given for the preparation of a 

PM tape so that the programmer may be able to prepare his own tape if the 

need arises. 

c. Cautions in the PrePeration of a PM Tape 

1. In order for OS II to be able to distinguish the last digit 

of one number from the first digit of the next number (as in 

example two section B above where 0-750 follows 0-700) some 

character other than a number must be used to separate them. 

a space, tab, or carriage return will serve the purpose 

adequately. The programmer should avoid writing the ab.ove 

eXample as Q-ZOOQ-2SQ. 
2. The following numbers 1.,2 •• etc. are associated with 

those in the section entitled "Preparation of PM Ta.pes. I~ 

a-l. The letters in fp should not be separated by a 

character. 

b-2. fp and the title must .!l.2! be sepctrated by a carria.g~ 

return •. However. the title must be followed by a 

carriage return. 

c-3. The letters in del,etc. should not be separated by 

a character. 
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d-4. The letters in dec)etc. should not be separated by 

a character. 

e-5. The digits and hyphen in O~~5, 0.12345. 16421 should 

not be separated by a charactero 

f-6. The letters in ii, wi, etc. should not be separated 

by a character. 

g-? Same as e-5. above. 

h-8. The final two vertical bars should not be separated 

by a character. 

3. Baokspacing and manual interference with the Flexowriter 

carriage are illegal. Generally speaking, "if the typed oopy 

of the PM tape looks correct, then the tape probably is oorrect." 

The programmer may combine as many PM tapes as he wishes into 

one tape. 

VI. FIM Table 

It is often convenient to know the absolute addresses assigned to 

the floating addresses used in a particular program. This is especially 

useful in checking a program with the results of a post-mortem since 

addresses in a post-mortem appear as absolute addresses. For this reason 

a iloating ~dress table is available to the programmer for his particular 

program. 

Suppose a program had contained the following floating addresses: aI, 

as, a5+J, a? g2, glO, glo+6, s21, 822. ~hen the program's flad table 

might appear like this: 

assigned flads 

al=108 

g2=217 

s2l=7l8 

a5::rl22 a?=64 

g10=250 

s22-=465 

The fLads are listed alphabetically and then numerically according 

to the number in the flad. Notice that a5+J and glO+6 do not appear in 

the flad table. The reason for this is that since a5=12~ then a5+j=l25 

and since glO=250, glo+6=256. 

If the programmer should erroneously refer to floating addresses that 

have never been assigned (i.e •• used as tags), let us say g), f4, a.nd t8, 

then the following data will automatically be printed in addition to a 

flad table, so that the programmer might have sufficient information to 

correct his error: 
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unassigned flads 

f4 at 91 
gJ at 12 
t8 at 104. 16J. 319 

V1-12 

If a flad. let's sayal, is erroneously used in suoh a way that it 

has more than one value. then no flad table will be reoorded and the 

following will automatioally be printed: 

duplicate flad is a1 
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Advanced Section 

The following section is included in this chapter for completeness, but 

should be considered as part of the more advanced section of this manual. 

VIIo FA PM Continued (refer to illustration on page 4) 

A. Line 5 of PA-PM in greater detail 

If register 279 had contained a buffer instruction instead of 

iex 493+c, the address section of the instruction would contain the 

"b" notation. Thus one might get 2791 imr 3b but the section 

4991 - 0123456781 +07 will be omitted since the contents of the 

buffer will appear on line 6. 

As another example: if the number in 499 had been an improper 

G~D. number, i.e., if it had not been scale-factored (defined in 

advanced chapter), the contents of registers 499 and 500 would not 

have been printed out as a G.D. number but as two octal fractions 

(discussed in advanced chapter) in 'the form, ' 499\ dO.dld2d3d4ds 

Soar eO·ele2e3e4e5· 
The above two examples are included in the following table which 

tabulates all the possibilities for line 5: 
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PA PM TABLE 

Operation section of "instruction 
being executed" 

same operations as above with "e" 
appended 

If there is no cycle block, the 
operation section above will be 
printed as a WW instruction. 

If there is no cycle block, the 
operation: section above will be 
printed as a WW operation. 

Contents of "register's) referred toll 
in address section of instruction 

being executed 

a. Proper GoD. number is printed as 
G.D. numberG 

b. Improper GoD. number is printed as 
two octal fractions. 

c. If the address of the "instruction 
being executed" refers to buffer 
storage, nothing is printed out 
since the content.s of buffer stor­
age is printed on line 6 of the PA 
PM. (Buffer discussed in advanced 
Chapter and in VII-Bo) 

a. If there is a cycle block, same as 
a and b above. (Idea of cycle 
"block ll to be discussed in advanced 
Chapter. ) 

b. If there is no cycle block, this 
section will not be printed. 

a. Interpreted instruction printed as 
such. (If the address of this in­
struction is buffer j, i.eo, jb, 
then the address is printed as 
1784 + j.)* 

b. Instruction printed out as WW in­
struction if 
(1) it is illegal (operation 

positions 0, 30, 31 decimal). 
(2) it is a cycle instruction and 

there is no cycle block. 

a. Printed as two decimal integers*· 
NI i, N+l\ n if there is a cycle 
block. 

b. If there is no cycle block, this 
section will not be printed. 

* 1784 happens to be the address of the first register of the PA block. 

~ Discussed in advanced Ch~pter 
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If there is no cycle block, the 
operation section above will be 
printed as a WW operation. 

If ··there is no cycle block, the 
operation section above will be 
printed as a WW operationl 

If there is no cycle block, the 
operation section above will be 
printed as a WW operation. 

illegal instructions (operation 
positions 0, 30, 31 decimal) 

The operation section above will·' 
be printed as a WW operation. 

VI-15 

This section will not be printed. 

a. If there is a cycle block, then 

(1) an interpreted instruction is 
printed as such. If the ad­
dress of this instruction is 
buffer j, i.eo, jb, then the 
address is printed as 1784+j. 

(2) Illegal instruction is printed 
as a WW instruction. 

b. If there is no cycle block this 
section will not be printed. 

a. If there is a cycle block, then 

(1) an interpreted instruction is 
printed as such, 

(2) an illegal instruction is .. 
printed as a WW instruction. 

b. If there is no cycle block this 
section will be printed out as a 
WW instruction. 

This section will be printed as a 
WW instruction. 

This section will not be printed. 
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B. Line 6 of PA PM (~~tiple Buffers Line) 

This line may appear as tollows: 

16241 bl +.274901627\ +14 1bl -.7264012781 +11 

VI-16 

16241 bl +.2749016271 +14 means that the content of b (buffer zero -
which may also be written Db) is the Generalized Decimal number 

+.2749016271 +14 and th~t the address of the first register ot butfer 

zero is 1624*. (Buffer zero is the first available burfer.) Notice 

that the mantissa of a number in buffer storage is expressed as a 9-

digit number. 

1bl -.7264012781 +11 means that the contents of Ib (buffer one) is the 

G.D. number following the lb etc. The maximum number of buffers appearing 

in anyone line of the PA PM is five. If no buffers have been called 

for, then line 6 of the PA PM will be omitted. 

Drawings attached 

A-58536 

* In an advanced chapter, formulas will be presented which will enable 

the programmer to determine the location in storage of the buffer 

triples b, lb etc. 
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In preparing a program to solve a problem on a digital computer, 

the prog~er frequently will find that his program naturally bre~s 

down into a series of groups of instructions, each performing some nece~­

sary operation. One or more of such groups often are written to perform 

the operation denoted in one of the blocks of the .flow diagram for the 

solution of the problem.- Examples of such operations are the extraction 

of roots of a number, the calculation of the values of a function for 

values of the independent variables, eto.· If suoh operations occur in 

many different programs, much programming time will be saved if these 

routines are available to the programmer without the necessity of his 

preparing them. Such groups of instructions, which perform particular 

operations. are called subroutines, and a colleotion'of such subroutines 

is usually called a. subroutine libra17. Even if particular. routines are 

not available in the subroutine library, the programmer may still find 

~t desirable to write these himself as subroutines in his program, both 

to simplify the logical structure, and to save space if the same routine 

is to be used at different points in the program. ' 

As an illustration of a subroutine. let us assume that the polyno­

"roial function ax2 + 'bx + c is to be evaluated for a particular value of x 

which is in the MRA. A program to evaluate this function would be 

its bl store x 

imr ,al form ax 

iad a2 form ax+b 

imr bl 2 
form ax + 'tnt 

!ad a,3 2 ' 
form ax +bx+ c 

which uses the registers 

aI, 

:1 
coefficients of the polynomial, which will be 

a2, particular numbers depending on the particular 

aJ. problem. 

bl. +01' storage for x 

If we wish to make this subroutine a self-contained block, then an 

~ order will be needed to skip a.round the registers containing numbers, 
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as 

iap pI 

aI, a 

a2 j b 

a.3t c 

bl, +O~ 

pl. its bl 

imr al 

iad a2 

imr bl 

lad a3 

This subroutine is now ready for insertion where needed in a pro­

gram 0 If this subroutine is a member of the subroutine library, there 

is a punched paper tape containing these instructions kept in a file t and 

this tape can be copied into the main program wherever desired. Ifa 

programmer is using a subroutine from the library t he must carefully 

ascertain exactly what the subroutine will do, how many registers it will 

occupy (if storage space is cri tical) t where it places the result or 

results, what its accuracy is (if this is a factor). etc. If he is in­

terested in the time required by his program, then the time required by 

each subroutine t if it can be determined, will be necessary_ 

RELATIVE ADDRESSES 

If a floating address is used in a subroutine. whether written by 

the programmer or obtained from the subroutine library, the programmer 

must avoid using this same floating address in other parts of the 

same program, since the OS computer cannot handle the ambiguous situation 

of one floating address corresponding to two different absolute addresses. 

Since several subroutines from the library might be used in the same 

program, this also means that all library subroutines wpuld have to use 

different floating addresses (and none could be used twice in the same .. 
program). . ]'or these reasons t floating addresses are not used in library 

subroutines. Also, absolute addresses cannot be used in library subrou­

tines since the programmer must be permitted to place such subroutines at 

any point in his program. However, references to other registers in the 

subroutine a,re usually nec~ssary; for this purpose relative addresses are 
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used~ Thus&a register is labeled not by an absolute or floating address, 

but by its pO,sition relative~ to some arbitrary register called the 

reference register, which is usually the first register of the routine. 

Relative addresses are indicated by the suffix r. i.eo p Jr refers to the 

third register after the first register of the subroutine. * When the 

program tape is fed into the machine, relative addresses are converted 

by the machine to absolute addresses by adding the relative address to 

the absolute address correspo.ndin~ to the reference register. If the 

above example is written in terms of relative addresses, we have: 

Or, isp 9r The Ox; is used to specify the r~ference 

lrl a register. as will be explained in the 

Jrl b following paragraphs. 'the lrJ assigns 

5r l c the instruction (or number) that fol-

7rl +0 .. lows to the register (or pair of regis-

9r l its 7r 
ters) whose absolute address is the 

10ri imr lr 
reference register plus one. 

llrl iad Jr 

l2rl imr 7r 

IJr) iad .5r 

Not all the instructions or numbers in such a subroutine need be prece-

ded by relative addresses. ifhe use of relative ~ddresses is similar to 

the use of a'bsoluteaddresses in that counting of registers is required; 

if an instruction or number is omitted by the programmer, it may be 

necessary to renumber the registers and the cross-references in the rou­

tine 'after the insertion of the desired materi~l. 

There are two ways to indicate to the machine the absolute address 

of\ the ref~re.Ro,e.regist~r:. (1) If the subroutine is to be started in. 

a certain absolute register. say 100, then the pr~grammer should write 

1100lor. followed by the first instruction of tae routine. Irhus if it 

were desired to have the above subroutine begin at register 100\1 the 

*Note: Tqe r~lative address Jr should not be confused with the 

floating address rJ. 
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programmer could write 

10010r$ isp 9r 

a 

b 

o 

+0. 

its ·7r 

imr 1r 

lad 3r 
imr 7r 

iad 5r 

This would appear in the machine as 

1001 isp 109 

lOll} 
1 Oil ' a 

1031 .1041 b 

10SI} c 
1061 

107i} +0. 
lOS I 
1091 its 107 

110 1 imr 101 

1111 iad 103 

1121 imr 107 

1131 iad 105 

(2) If a programmer using floating addresses wishes this subrou-

tine to start 

a1,Or. 

in a1 9 he may write 

isp 9r 

lrla 

3r lb 

5r lc 

7rl+oo 
its 7r 

imr lr 

iad Jr 

imr 7r 

iad 5r 

Note: we could omit the relative 

address assignments lr' ,3rl, etc. 
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Since subroutines in the library have the Or, of the first address 

punched in the ta.~)e \l the programmer can simply wri te nlOO'" or Ital til 

before indicating that the subroutine is to be inserted at this point. 

Actually the "Or 9 " is superfluous after the floating address tag Ital." 

since the comma in a floating address tag makes the register so tagged 

the reference register. Iro indicate that a subroutine t say number 10, 

from the library is to be inserted at a particular point in the program. 

the programmer may write "LSR tape no .. 10" on the line following the aI, 

or the 100' 0 f.(lhis may appear on the typewri tten copy of the program 

and will be punched on the paper tape. r'phe library tape containing the 

subroutine is then d~plicat~d on the program tapeo At t~~ end of the 

subroutine!) may he typed the words "E:fD OJ' SUJ.d.OULIl'ftr:. 'l'hese two e;r· '~jS 

of words are used only to, ind.i~ate on t:;.e typewJ:i tten .sheet the posi tions 

of various library' subroutines (LSR) , which helps make this copy of the pro­

gram. easier to followo The machine ignores lines starting with LSR and ENDo .. 

Unlike floating addresses, the same relative addresses may be used 

at many points in a program. In each block of instructions in which 

relative addresses are used, the reference register is the most recent 

one which contains a comma in the address-tag section, e ogo. "aI," in 

the ,;?.bove example.. If we wished to evaluate the above polynomial for 

two values of X$ say Xl and X2t stored in register dl and d2 t a~d to 

type the results on one line, we could write 

ispel 

dlllxl 
d2\lx2 
c19ica dl 

c29 isp 9r 

a 

b 

C 

+00 

its 7r 

imr lr 

iad Jr 

imr 7r 

iad 5r 
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iTOA+nl.2345t 

c3~ica d2 

c4 t isp 9r 

a 

b 

c 

its 7r 

imr lr 

iad 3r 

imr 7r 

iad 5r 

iTOA+nlo2345c 

VII-6 

If this program were Library Subroutine tape number 10. then the 

programmer would get the same program by writing 
iapcl 

dl p'xl 

d:29X2 cl 9 ica dl 
02 9' 

LSR, r.rape No. 10 
. .' iTOA+nl" 2345t 
c3/ica d2 
c4 9 

LSR ,Tape No o 10 
1.4fOA+nl'c2J45c 

When this program appears in the computer, the absolute addresses in 

corresponding orders of the subroutine in its two positions will be dif­

ferent 9 since the reference tegisters are different in the two cases. 

~OSED SUBROUTIl~S 

Obviously 9 ,it is was teful of storage registers to place the same 

subroutines at two or more points in storage. Some saving could be 

realized by using floating addresses to tag the registers containing 

the -constants in the subroutines ll and then placing these at only one 

point in the program 0 For subroutines written by the programmer, this 

is feasible p but for library subroutines it would require changing these 

routines 9 which we wish to avoid. In addition, this probably w ruld not 

amount to a sUbstantial saving, since the constants in a subroutine nor­

mally do not occupy many registers of the routine 0 For these reasons, a 

special order has been built into the OS computer which permits the 
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programmer to leave his m~in routine. go to a, subroutine to perform 

some particular operation~ and then return to the next register of the 

main program.. 'l!his order i~ ~. 

,ita al iransfer ~ddress transfer, into the address section of the 

instruction in register aI, the address 

that is one more than the address of the 

register containing the last ~ (or !£n 
with N(MRA)<O) 

To illustrate the use of the ita al instruction, suppose we rewrite 

the program: 

al»ica dl pick up Xl 

isp c3 go to subroutine 

iTOA+nl~2345t print the resulting N(~mA) followed by a tab 

ica d2 pick up x2 
isp c3 go to subroutine 

iTOA+nlo2345c print N(~mA) follo~ed by a carriage return 
o 
0-
e 

o3 p Or 9 ita 6r 

its 13r 

imr 7r 

iad 9r 

imr 13r 

iad llr 

isp 0 

a 

b 

c 

dl,Xl 
d2\1x2 

go on with program 

Note: It does not matter what address is ini t'ially wri tten in the lsp 

instruction in 6r» since the ita instruction will write the correct 

return address in this instruction whenever the subroutine is entered by 

and isp or icp from the main program.. This new construction of the 
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subroutine also removes the necessity for the isp formerly required to 

skip around the group of const~nts in the subroutineo 

The above subroutine, starting with the ita in C39 could be placed 

anywhere in storage and can be entered from any other point in storage .. 

It is a completely self-contained block of instructions which carries out 

a particular operation when entered with a value of x in the MBA and re­

turns control to the main program when this operation has been comple'ced .. 

This type of subroutine is called a "closed subroutine" as contrasted 

with those subroutines (given in the first examples of this chapter) 

which must be placed in the main program wherever they are re~uired and 

are called "open subroutines". When a closed subroutine has been placed 

in storage 9 we may regard the isp order which "calls" in the subroutine 

(like the isp c3 above) as representing a new order, in this case an or­

der which evaluates the value of the polynomial for the ~rticular value 

of x in the MRA<> The subroutines in the library are of the closed type 

and therefore 'have an i ta ~s t,heir firs tins truction,,, 

A library of subroutines can be a~eat asset to the programmer; par­

ticularly since most problems can be written as a sequence of smaller 

standard operations which are probably represented in the subroutine li­

brary" Time is saved by using the subroutine lib rary 9 not only in the 

composing and writing of the instructions for the routine. but also in 

checking the program for mistakes, since the library subroutine has been 

tested and should be correcto If the programmer writes his program as a 

sequence of subroutines called in by a main program, it may simplify the 

work of writing the program and each new subroutine can be tested sepa­

ratelyas it is written making it easier to isolate and 'correct any 

mistakes" 

PARAMETERS 

The subroutine that we have just evolved will evaluate the given 

polynomial for any value (within the storage limits of the OS computer) 

of the variiable x. 

~et us now suppose that we have a program in which we wish to evalu­

ate a number of different polynomials each of the same degree but with 

different sets of coefficients. We could make use of a~oup of subrou­

tines I) one for each case 9 but these subroutines wou~d all have a grea,t 
\ 

deal in common and it would be a waste to store each one in fullo 
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What is required is to be able to modify one copy of the subroutine 

to meet each case as it arises, or to have the subroutine modify itself 

as requiredo Somehow the user must be able to specify the information 

that is needed to modify the subroutine. This specification is called a 

yarameter of the subroutine. 

PROGRAM PAR.AMETERS 

When a parameter is provided by the program it is called a program 

parametero llor example$ sets of coefficients for the polynomial subrou-, 

tine could be stored in the main program to be used when neededo Such 

program parameters need not be stored a priori in the program j but they 

can actually be determined as part of the programq The variable x itself 

is a good example of a program parameter~ The value of x for which the 

value of the polynomial is to be found may be determined by the program. 

The most convenient place for the p~ogram parameter is in the ~iRA 

since the contents of the MRA are unchanged by the isp. However, only 

one such parameter can be stored in this way. Also, since the ~ffiA is 

used in' the subroutine.~ its initial contents mus t be processed immediate­

ly or be lost~ This places restrictions on the subroutine~ 

The next most convenient place for the program parameter is in the 

main program in the register or registers following the isp to the closed 

subroutine ~ 'l'he reason that this location is convenient is that the 

address of the register following the isp is availabfe to the subroutine 

through the mechanism of the ita instruction. Unfortunately the CS com­

puter does not contain any simple means for setting the necessary addresses 

to refer to these registerso The procedure for handling such addresses 

makes use of instructions and techniques that will be described at a 

later stage in the development of the OS logic. Consequently, further 

discussion of the use of program parameters will be postponed for a 

later chapter .. 

PRESET P.ARAlvIE TERS 

The use of program parameters permits the variation of a parameter 

from time to time during the execution of the program. In the case of a 

library subroutine 9 however, it frequently happens that although it is 

useful to be able to choose a value of the param~ter to suit a particular 

program~ it is no hardship to forego the ab~lity to change the parameter 

during the execution of the program. This means that the parameter can 
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be fixed before the calculation begins, and need not be reset each time 

the subroutine is called ino 

'rhe setting of the appropriate parameter for a particular program 

must be dQne when the pr,ogram is read into the machine. 'Ilhe form of the 

subroutine which is kept in the library files must be applicable to all 

permissible values of the parameter. If the fullest advantage is to be 

taken of the subroutine we want to be able to copy it directly onto a 

program tape without having to make any alterations 0 The machine itself 

must therefore adjust tm subroutine according to the parameter value 

chosene It does this as the program is read into the machine, so that 

by the time the whole program is in the machine the subroutine is in the 

form required by the particular program. .Because the parameter is fixed 

before the execution of the program begins, it is called a preset 

parameter" 

Various methods have been used with various machines for incorpora\" 

ting preset parmeters into the subroutine 0 fhey all require that the 

value of the parameter be defined (i.e., identified a.nd ne1cified) by 

suitable punching on the tape preceding the portio~ of the tape on which 

the subroutine itself is copied. During the read-in proce\ss the machine 

remembers the identity and specified value of the preset parameter~ 

Hence when it reads in the subroutine it is able to incorporate the pre­

set parameter correctly into the subroutine. A list of the pertinent 

preset p~rameters are always included in the description of the subrou­

tine, ]lor the convenience of the programmer, preset parameters are usu­

ally chosen so that if their values are not specified they automatically 

assume their moo t common values (which should be zero for subroutines to 

be used in the as computer)., 

In the as computer» preset parmeters are identified by the fact that 

they consist of 1YiQ. lower case let ters followed by a (iecimal integer less 

than '+1 but greater than zero. The first letter must be one of the fol­

lowing three: p~ u$ or z. The second letter can be any letter other 

than 0 or 10 Care must be taken that the sum over all parameter letter 

pairs of the maximum numbers used for each letter pair does not exceed 

40. .:blor example 9 if the pre set parameters pa 2 t za 5 t za 79 pd 7 P zg 4, 
l 

ug 6. ug 8 il and zz 11 were used in a given program II the condition would 

be satisfied because Z + 7 + 7 + 4+ 8+ 11 = 3.9 (41 .. 
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A value i~' specified for a preset parameter simply by writing down 

the parameter followed by an equal sign, the value to be assigned, and 

finally a tab or a carriage return. ,For example, if it is desired to set 

the preset parameter pa 2 to the valu.e +8, one simply writes in his 

program: pa 2 == +8 (followed by a tab or carriage. r~.~) 

Preset parameters may be set equal to any positive or negative integer 

not exceeding 32,767 in magnitude (this integer must not contain any 

decimal point - see Chapter ~ In addition9 a preset parameter may be 

set e~ual to a floating address. an absolute address, or to another pre­

set parameter provided they are assigned suitable integral values else­

where in the program (the floating address by being used as a tag, the 

preset parameter by being explicitly assigned an integral value). 

The following subroutine evaluates a polynomial anxn + 0" • + alx + a O 
(11) n (integer»O), where the coefficients aO.e.ooo •• ,alO are stored 

in fixed registers in the subroutine. (Such'a polynomial might repre­

sent an approximation to an arbitrary function where the accuracy of the 

approximation can 'be varied by varying n.) 

ppl= 
Orpita 8r 

its 9r 
ier ppl 
iea llr 
iad 33r 
imr 9r 
ict 4r 
iad 33r 
isp 0 
+00 
+0 8 

ala 
a

9 
6 

aO 

- ppl ... ppl + c 

Actually~ the numerical value of the 
coefficients of the polynomial would 
appear here 0 

If the programmer wanted a 5th degree polynomial then he would 

write ppl= 5 # If he wanted a 6th degree polynomial» ~hen he would write 

ppl= 6 9 etco 

TEMPORARY STORAGE 

In many routines s certain registers are used only to hold interme­

dia te results .]1or example ~ in the program on page VII .... 1 9 the initial 
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contents of register bl is immaterial~ When it is desired to evaluate 

the polynomial for some value of ,x 9 the value of x is stored in register 

bl and the evaluation is carried out. If this particular value of x is 

not needed elsewhere in the program~ the contents of register bl again 

"becomes immaterial. Sueh regis ters whose contents are set and used when 

needed during the execution of the urogram and are otherwise immaterial 

are called,temporar~ storage registers. 

A programmer who finds it necessary to make use of such registers 

will simply set aside certain registers for this use 0 ,b'or example p 

registers 46 p 479 48. and 49 in the program on page 1-3 were set aside to 

hold temporarily the indicated intermediate results. If such a program 

were used in conjunction with one or more subroutines which also made 

use of temporary storage registers, then it should be possible by the 

very nature of a temporary storage register for the main ~outine and the 

subroutines to make use of a common set of reg~sterso The number of 

registers in this set will be determined by the maximum number of regis­

ters whose contents ar~ needed in the program at any given time o 

~he difficulty that arises in using such common sets of temporary 

storage registers is that we need some way for each of the routines to 

refer to the common set. In'the OS computer the label at denotes the 

first of a set of consecutive temporary storage registers. It the second, 

2t the third ll ete 0 'rhe label "Ot" is usually abbreviated as Itt" (i "e" Ii 

Ot and t are synonymous; both refer to the same register). 

Temporary storage registers are specified in the same manner as are 

preset parameterso The programmer simply writes» for example, t=1400 

(orv t=al) and henceforth any reference to a temporary storage register 

is determined. For example ica 2t becomes iea l402~ its t becomes 

its 14000 (Similarly with t:: all) iea 2t becomes iea al + 2; its t becomes 

its alo) Note that once t (or Ot) has been specified then all of the 

other temporary storage registers are also specifiedo Hence the program~ 

mer must be careful to set aside in sequence the proper number of tem­

porar1 registers that will 'be needed. 'xhe number of registers required 

for any library subroutine is always included in the associated speci­

fications .. 

Thus, for example g if the main program needs three temporary storage 

registers and if we use two subroutines one of which makes use of five 

:temporary storage registers and the other' subroutine only one 9 "then we 
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would se t aside in our program a block of five registers .to be used as 

temporary storage registerso If this block began in register 1400 (or 

al), then in our program (usually at the very 'beginning) we would write 

t = 1400 (or, t = al) 0 Just as for preset parameters pit is necessary to 

specify in the program the location of the tem~orary storage registers 

berore reference is made to these registers in the program. 

Making use of this new notation 9 we can rewrite the subroutine on 

page VII-7 as follows (it i9 assumed that somewhere in the main program 

before we use any of the temporary registers 9 t will have been specified): 

Oraita 6r 
its t (Store x in the temporary storage 

registers t and Ito) 
imr 7r 
iad 9r 
imr t 
iad llr 
isp 0 
a 
b 
c 

Thus, by referring to t (and It), the main program could, if desired, , 
also make use of the same two temporary storage registers~ Note that 

since numbers occupy two storage registers. the instruction "its tIt 

will actually store a number in registers t and It. Hence the above 

subroutine requires that two registers be set aside in the main program 

for temporary storageo 

l:femporary storage registers should not be confused wi th floating 

addresses 0 Recall that floating addresses are written as a lower case 

letter followed by a positive integer (not 0). Thus It refers to a 

temporary storage register whereas tl is a floating address 0 
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VIII. Cautions 

(1) It is important that programmers when writing a vertical bar 

(eogo, 341) make it long enough so that it cannot be confused with the 

numerical ~o In general; programners using properly numbered forms 

do not need to indicate vertical bars at all, as tape room personnel 

will add them when necessary. 

(2) The initial word following the tape title (excluding such things 

as (24,6), Nor PA*, temporary storage or preset_parameter indications) 

will automatically (unless otherwise assigned) goirit6 the -iriitial-:reg-·· 

ister of storage (i.eo, register 32). However, if one tape contains 

several titles, such as might occur if a tape contained several para­

meters, the initial word after ensuing titles (excluding as above) must 

have an absolute address assignment ~321n if the initial word is to go 

into register 32. Also, if it is desired that a floating address, e.g., 

a2, should have the same absolute address assignment in all the para­

meters, it must be indicated in each parameter, e.g., "361a2,tt. 

(3) In deciding the number of registers being used in a program, 

remember that instructions occupy one register and numbers occUpy two 

registers 0 

(4) Remember that t and Ot are synonymous (It is the register 

following t); 

(5) 

that +0 and +.0 and +0. are synonymous; 

that "0,", "r,", and "Or," are synonymous; 

and that r and Or are synonymous. 

Consider the following section of a program: 

341 isp g7 

g7, ica 73 
isp 76 

4r/ isp a2+7 

82, +03 

-00055 

When this appears in the computer it takes the following form: 

'34~ isp 35 

351 ica 73 

361 isp 76 

* see Advanced Chapter 
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371. 

381 
39' isp 47 

4°1\ +.3 
411 J 
421 }-.0055 
431 

VIII-2 

Registers 37 and 38 each contains the integer +0 

only if storage was previously cleared and if 

nothing was previously assigned to registers 37 

and 38. If you want to have the number +.0 in 

37 and 38, program +.0 in 2r or in 37. 

(6) Remember that all numbers must have at least a sign and a 

decimal point. Also, if powers of 10 or 2 are used with positive ex-

ponents, do not specify a + sign in the exponent of 10 or 2. 

CORRECT NUMBERS 

+207 

+207 x 106 

+0.102659 

+0 or +00 or +0. 

INCORRECT NUMBERS 

2.7 . 
+6 

+2.7 x 10 

0.102659 

+0 

(7) Since the.maximum magnitude. of a number that can be stored in 
.. 18 

2 registers of storage' is about 9xlO and the smallest non-zero magni-
-20 tude is about 5.5xlO ,caution must be exercised to keep numbers 

within these limits when transferr.ing to storage from the MRA. 
-23 -63 ex 1) -207xlO' will go into storage as a number between -2 

and _2-64• (see advanced Chapter) 

ex 2) +207xl02l is too large for storage (a check order alarm will 

result) • 

(8) In order to utilize floating address programming so that in-

sertions and deletions' can be made without the bother of renumbering, 

aI, 

8,2, 

a3, 

is preferred to 
aI, 

al+13 

a1+2, . 
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This follows from the fact that aI, a2, a3,00. are independent floating 

addresses 0 

(9) In storing numbers, the instruction "its It" transfers N(lvlRA) 

to It and 2to Consequently, the next number to be transferred re­

quires the instruction ttits 3ttt which will transfer N(MRA) to 3t and 

4t; similarly using floating addresses, "its al ft transfers N(MRA) to 

al and 801+1, and tlits b21t transfers N(MRA) to b2 and b2+1o Suppose 

we desired to transfer the numbers in cl and c2 into a sequence of 

registers beginning at b2: 

CORRECT INCORRECT 

ica cl ica cl 

its b2 its b2 

ica c2 ica c2 

its b2+2 its b2+1 

(10) The following example is given to distinguish between floating, 

temporary, and relative addresses: 

aI, ica tl (floating address) 

its al+7 tt tt ) 

its 2t (temporary storage address) 

its t3 (f~oating address) 

idv tl+2 ( tt tt ) 

its 9r (relative address) 

isp r3+2 (floating address) 

(11) If a floating address tag, such as el, is preceded by an 

address assignment (disregarding carriage returns an¢! tabs), then 

this must be either an absolute address or a relative address assign-

mento 

Ao CORRECT 

1341 dl ,+.O 
+00 

el,+.4 

B. CORRECT 

dl,+.O 

+.0 

6rl 
el,+.4 

Co INCORRECT 

dl,+.O 

+eO 

dl~61 
el,+.4. 

(12) It is important to note that even though an absolute address 

may interrupt the consecutivity of the assignment of registers, never­

theless this consecutivity may be resumed by the use of the proper 
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notation as illustrated below: 

5olg7,ica b3 the absolute address will be 50 

its c2 the absolute address will be 51 

200lica z4 the absolute address will be 200 

2rlisp dl the absolute address will be 52 since the 

reference address for the r was determined 

by the g7, 

(13) Consider the following portion of a program: (this is correct 

if one wants ..,: 0 0 stored in regl~ters a2, a2+ 1). 

al,+075 

a2,+00 

a3,+05 

On the other hand, the following routine is incorrect if one is in­

tending to put zero into (a2,a2+l): 

al,+075 

212, 

a3,+05 

In this case, a2 and a3are assigned the same absolute address and 

therefore the same content, namely +050 

(14) One of the most common errqrs is to use a fled in the address 

section of an instruction without using that flad as a tag anywhere 

in the programo (See ChapterVI,Section on Flad Table) .. 

(15) If only ~ counter is to be used throughout the program, it 

is not necessary to use an 1§.£. .. operation to select it 0 Cycie counter 

(or line) zero is automatically- available if any counter instruction 

(other than ici, icd, or icx) or the cycle counter letter "c" appear-s 

in the original programo 

Cycle counter line zero is the first counter line available. The 

instruction isc 1 selects the.second-counterline, isc 2 selects the 

third counter line etco However, from a programmer's point of view it 

may be easier to think of it in the following way: 

isc 0 selects counter line zero 

isc 1 selects counter line one 

isc 2 selects counter line two 

etco 
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(16) If the value of m in the instruction icr m is set by the pro­

gram, so that there is a possibility of m being set to zero, then the 

following expediency may be used: 

icr{n) the variable icr instruction 

icd 1 

a1,ict- fl----~) f1,_ 

1 
cycles completed 

do cycle 

isp al 

(17) In using cycle control, remember that when the instruction 

isp 100+c is to be executed, the instruction isp(lOO+i) is effect­

ively formed and then executedo The other operations which may be 

used with +c (namely: its, iex, ica~ ics, iad, isu, imr, idv) exper­

ience the same transformation as the example above except that the i 

is replaced qy 2io 

(18) A preset parameter cannot be specified by anything that could 

occupy more than one register of storageo Thus it might be a floating 

address~ absolute address, sum and/or difference of flads or of other 

preset parameters~ instructions, or integers written without a decimal 

point (see VII-14)0 

ACCEPTABLE 

VALUES FOR PRESET PAR 0 

+50 

ica g2 

+h3+z4-y7 

=627 
pb2+c19 

UNACCEPTABLE 

V!LUES FOR PRESET PAR. 

+050 

-6270 

(19) Preset parameters must. be specified in the_ program before 

they are referred to in the program: 

CORRECT 
pp5=7 

ica b4 

its c3+pp5 

INCORRECT 
ica b4 

its c3+pp5 

pp5=7 
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(20) Temporary registers must be specified in the program before 

they are referred to in the program: 

CORRECT 

t = £6 '­

ics b2+4 

imr t 

INCORRECT 

ics b2+4 

imr t 

• • · o 
• • 

· t = r6 

(21) The reference register referred to in the relative address in 

an instruction is the last tag (the last address followed by a comma). 

al,ica 5r 

its 7r 

imr 5r 

its 5r 

isp bl 

+26.13 
+00 

bl,iE3U 6r 

idv 8r 

its al+5 

imr al+7 

its lOr 

isp d4 

+3014 
-26359028 

d4, 0 

o 
C) . 

5r refers to the fifth register after al 

7r refers to the seventh register after al 

6r refers to the sixth register after bl 

8r " tt 
It eighth" " " 

al+5 It " fI fifth" ft al 

al+7 " " tt seventh " " It 

lOr " " " tenth " fI bl 

(22) Single letters may not b~ written without separating them by 

a plus or minus sign: 

CORRECT 
imr+t+c 

or 
imr t+c 

INCORRECT 
imr tc 

(Since tt+tt may be omitted between 
operation letters and single 
letters.) 
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OD2 
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MAl Largest Eigenvalue of a Real Matrix with Real Eigenvalues 154 
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V. SPECIAL 

SP2 Extract Integral Part of ~ffiA 52 

LIST OF LIBRARY SUBROUTINES AVAILABLE MAY. 1954 
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o 
o 
o 
o 
o 
6 
4 

12 
4 
4 
4 

12 
6 

o 
13+8n 
4k+2m 
4n 
4n 

o 

2 



INSTRUCTION CODE OF THE MIT as COMPUTER 

Instr. 

*ica al £,lear MRA; !add N(al) 
*ics al ~lear MR.A; ~ubtract N(al) 
*iad 81 ~d 
*isu al subtract 
*imr al ~ultip1y and ~oundoff 
*idv a1 giy,ide 

*its al ~ran~fer N(MRA) into (al,al+l) 
i ta al.:!~ransfer .@,ddress 

*iex al ~change N(MRA) with NCal) 
*isp al transfer control 

icp al conditionally transfer control 
(~onditional Erogram) 

icr m ~cle ~eset 
ict al £Yc1e coun1 

ici m £Ycle lPcrease 

icd m £Ycle £ecrease 

icx a1 £yc1e ezchange 

iat a1 !add and !ransfer 

+ O!: ]! and .J. are 

iti al lransfer 1ndex digits 

isc j ~elect £,ounter j 

N(a1)-.,N(MRA) 
-N(aJ)-)N(MRA) 
N (MRA}+N (a1)~N eMRA) 
N(MRA)-N(alHN(MRA) .' 
N(MRA)xN(al)~N(MRA) 
N(MRA)tN(a1)~N(MRA) 

N(MRA)~N(a1) 
transfer into the address section of 
the instruction in register aI, the 
address that is one more than the ad­
dressof the register containing the 
last tsp (or icp with N.(MRA) < 0) 
N(MRA ~N(a1); N(al)-7N(MRA) 
take the n~xt instruction from register 
al and continue from there 
ditto, if N(MRA) < 0; if N(MRA) > 0, 
take the next instruction in seq~ence 

integers < 2048 
set i = +0, n = m 
increase i qy 1 and if this new value 
of \~~In', then reset i=+O and take 
the next instruction in sequence; if 
, 1'1 < \Ill, take the next ins truction 
from register al 
increase the contents of the index 
register by m 
decrease the contents of the index 
register by m 
exchange C(index reg.) with CCal) and 
exch~nge C(criterion reg.) with 
C(al+l) 
add C(index reg.) to the C(al) and 
store the result in the index reg. 
and reg. af 
transfer the right 11 digits of the 
index register into the right 11 
digits 9f register al 
selects counter j as reference for 
all subsequent interpreted instruc­
tions using a counter until execution 
of the next isc instruction--each 
counter has its own index and criter­
ion 

iTOA+nl.2345G type out N(MRA) in normalized form followed by a carriage 
return 

sp 0 STOP 

*These are the only instructions which may be used with the cycle letter "c" in 
the form it appears, for example, in ica al+c. 



If a PA routine is in Core Hemory at the time 2.n fp tape is read-:i.n. 
a PA PM is given automatically. When this occurs, the following conditions 
apply .. 

1. A CS I FA PM is always recorded on the direct typewriter. 

23 A CS II PA PH i;] reGorded on tht:: dJ.rect typet· . .rri.ter or the 
delayed printer d3pcnding on 't-Jha t. unit T-JD.S I'8qu.est6d by the fp 
tape. If both have been T'equested, the delayed printer is used. 

3. If the program has not executed any interpreted instructions the 
PA PM prints ~ "PA unusedn • 

4. If an fp tape requests the ii mode and there is no PA routine 
in storage J the FA PH prints 11 no PAJI , 

5. If an fp tape requests the gd mode and there is no FA routine 
In storage, the PA PH prints "no PA"i and the gd numbers requested 
are printed a s if they were (2J-t· t 6) gd numbers. If there i§. a 
PA routine in storage, t.he gd numbers 'Nill be l)rinted in the 
number system of that PA routine~ 

6. If an fp tape contains no ii or gd requests and there is no PA 
routine in storage~ nothing is printed about a FA PIvI .. 

7. If an fp tape requests flny results on the delayed printer, the 
recording on Unit :3 will be terminated by tlfJO carriage returns. 

.r 


	001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	A-01
	B-01
	C-01

