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Abstracte We show in this report that the first problem of ideal filter
design, that of Detection,1 is based upon two probability dis-
tributions, The first describes the process of measurement,
or introduction of noise. The second describes the actual function
it is desired to filter. A method for describing both of these
statistical processes is given which seems very reasonable and
useful in the case of sampled data filters., After the description
of the problem, consisting of the specification of these two
distribution functions, we give the method of combining them
according to the rules of probability theory. This calculation
leads to the construction of a probability distribution function
involving the variables that it is desired to filter. This
distribution function is the desired output of the ideal detector.
A complete mathematical analysis is given, and also a simple
example, to illustrate the technique.

INTRODUCTION

In this report we will discuss a method for designing a filter
on the bagis of a statistical analysis of the processes involved. It
was shownl that the action of any ideal filter can be thought of in two
independent steps. The first step is that of Detection. The second
step is Selection.

The purpose of the ideal detector is to construct the mathematical
function that represents the probability density distribution of the value
of the variable being considered, We might illustrate this by assumi
a one-dimensional tracking problem where the position coordinate is (x). _
By a series of measurements we attempt to find the position of this wvariable.
Because of unknown factors and random variables in the process, we can only
find a probability density distribution function for (x), that is, a
function that gives the probability that the true value of (x) lies in
~ a given small range. The calculation of this probability density distribution
function is the desired action of the detector, We will see in detail
how this is accomplished, later. But first, we will see what the Selector
does-

In general, when one measures a quantity such as (x) above,
one intends to take some action based upon these measurements., If this

1
"The Philosophy of Statistical Filter Design," M-1812, W.I. Wells, Jan. 27, 1953,
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were not the case, then why make the measurement? The question is then,
now that we have the distribution function, how do we decide what specific
action to take? This obviously is decided upon by considering the distribution
function and also by considering the final desired result of the action.
The influence of the desired result of the action is what one associates
with the strategy of the situation. Mathematically, it is related to

a weighting function or Scanning Function. It is the purpose of the
Selection operation to combine the effects of the probability density
distribution function with the Scanning Function to make the actual
selection of the action to be taken, Only the Detection principles

will be investigated in this report,

Detection. As we have stated, the action of the Ideal Detector
is to construct the probability density distribution function for the
variable being measured, .Let us now see what factors must be considered
in performing this,

First we might consider the measurements that are made of the
variable (call it X). For the type of problem being considered here X
is assumed to be some function of time. That is, it may have a different,
though unique; value at each different time. Our purpose is to make
measurements of X and then try to construct X as well as possible from these
measurements, By as well as possible we actually mean that we wish to
construct the probability density distribution function for the wvalue of
X at each particular time. As a restriction of the problem we will consider
only those cases where the measurements are made at discrete intervals
of time., This is then a sampled-data system. We will not require in
general that the samples be taken at equally spaced times, although this
is at present the case of most interest,

When we take these measyrements or samples, it is in general
not possible to say the measurements that we make are the exact value
of X at that time. The reason for this is that all measuring devices are
inherently inaccurate to some degree. We find in general that the true
value of X, for a large number of measurements, is usually distributed
about the measured values, This distribution function is called the
distribution function of the "noise.® We say that if the measurements
are not exact, they are noisy, and the value of the "noise" is randomly
distributed according to a distribution function. This function depends
upon the particular measuring device. One finds that the measurements
made with a sensitive galvanometer are distributed according to a normal
distribution function about the true values. In case the values of the
samples are quantized the distribution function is a flat distribution over
the width of the quantization interval,

The types of noise that may contaminate the data are not restricted
to those caused directly by a measurement device. In case the data is passed
over some transmission link, noise is invariably added to the signals,

This may be of the thermal type or due to some interfering signals., In
any case we may still represent this effect by giving the probability density
distribution fumction of the noise,
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Measurement, For the moment let us work only with the measurement
system., We can assume that some function X is to be measured, but nothing
about this function is known, £ priori. Suppose we take several measurements
and then try to reconstruct X, Obviously since no a priori knowledge was
given concerning X, it will be impossible to infer anything about X except
at the time of each sample. Since each measurement is assumed to be
independent of all the others, we find that the joint probability density
distribution function of X, at each sample time, is the product of the
probability distribution functions for X at each time., As an example,
we might suppose that the distribution function for the noise has the form
of a normal distribution. That is, the true value of X at the time of
the sample is normally distributed about the value of the sample, If
we let Xk be the true value of X at the time t equals k and a, be the value

of the sample at this time, we write the- distribution of X; after the
reception of a) as

W(X,/a,) =2t - (xk-ak)z ) 1,
Y

Then we can also write the product which gives the joint distribution of
X for several times after the reception of several sanmples.,

k 2
- -(X -a)
WK, o o oK /ay, o0 es 8y) ” —*"‘*E o _: 6.__21-_ 2,
r=1 V2n T
T

One notices here that the variance is written as a function of the index, (r),
Although most measuring systems' accuracy does not depend upon time, many

of them do depend upon the actual range of values being measured. Thus,
actually the subscript on the variance might be written so as to show the
dependence upon the a, rather than (¥) itself. This detail is easily

taken care of in an actual problem., We need only remember for the time
being that the variance of each measurement may be different. For instance,
in the case of a quantized function the size of the quantization interval
may be a function of the value of the wvariable.

The important thing to notice here is that we are able to write
a joint probability density distribution for the values of X at each time
a sample is taken, When we do this we have not made use of any other
characteristies than those of the measurement system or the noise, In
case we knew nothing whatever about X this would be the final output of
the detector. Fortunately we often know something about the function X,
which enables us to sharpen up this joint distribution.
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The Function Representation., We will now discuss the Representation
of functions (x) that we will consider. We must be able to describe them
in some convenient and accurate way so that the joint distribution found
above may be sharpendd up and give us a better picture of the function.
In particular, if we wish to find out about the function in between the
sample times we must know about the general character of X,

The type of systems to be considered are those normally encountered
in control problems. Their distinguishing characteristic is their inertia.
To cause a motion or change thereof it is necessary to apply a force.

This is, of course, obvious, but the reason for pointing it out is that

it is the underlying basis for the type of representation that will be used.
In inertial systems it is the forces that are important, thus it seems
reasonable to describe such a system by describing the values of the forces
acting on the system. When we consider one-dimensional meotion aleng the

X axis, the applied force is proportional to the second derivative of X.

It seems reasonable therefore that if we characterize the second derivative
of such intertial systems, we will be able to describe its action accurately.
There are other ways of course, however, since this particular method

will be seen to be most convenient, we will use it. A slightly different
approach to this same representation may be found as follows.

As stated before, we are going to consider only sampled systems.
Thus, it is possible to describe the function during each sample interval.
This approach leads also to the .idea of describing the derivative. Let
us suppose that we break X up into sample intervals. Within each interval
we notice that the function can be approximated very closely, if the
sampled intervals are small, by a polynomial of fairly low order. Suppose
that an n'th order polynomial is found to approximate the function X
in each interval. The polynomial is different in each interval, but of
the same order. Now by differentiation we see that the n'th derivative
of our composite function is a constant in each interval. Calling the -
n'th derivative D" we see that the value of D? is likely to be different -
in each interval but a constant during the interval. Now we ask how this
fits with the idea of inertial systems, If the sample period is chosen
small enough, a second order polynomial (parabola) will suffice as an
approximation in each interval. Then it is the acceleration which is a
constant in the interval., Our physical reasoning leads us to suspect
that the forces being applied to most physical systems are constant
most of the time with changes in value occurring only occasionally..
We might plot a supposed graph of force against time .(Fig. 1),

._/—-/__\-/_L

Fig. 1
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The changes are not really too abrupt, but the fact that the forces are
constant over extended periods checks with our physical reasoning. The
approximation that we are making here is that this curve will be approximated
by a step function. This is done for convenience; however we must have

made sure that the second integral of the step function does give an acceptable
approxinmation to the function X.

In case’ the function X varies more quiekly, it will be necessary
to use a higher order polynomial than the second,. however the same ideas
of constant n'th derivative in the interval carry over-difeetly. .In general
we will consider an n'th order polynomial approximation in each interval.
The actual order needed depends upon the exact problem,

Now that the exact form of the representation has been chosen,
we askt Exactly what quantities must be specified to determine the function
X(t)? It is obvious that one of the things we shall require will be
the value of D", the n' th derivative, in‘each sample interval. Then in
addition to these values we must know the ¥initial conditions," That is,
if we know X and the first n-l derivatives for some interval, then the
knowledge of the D" in each interval enables us to construct X(t).

Since in the case of interest any or all of these quantities
will be described statistically, we require the joint probability distribution
of X and its first n-1 derivatives in one interval and the n'th derivative
in each interval. This joint distribution is the complete deseription
of X(t). We write it as follows:

W(Xes Dy wee D305, woe Df, o00) h.

Where DT is the value of the m'th derivative at the beginning of the 1'th
interval. /

At this point we can introduce the concept of stationarity .
Suppose all sample intervals are equal for the moment. Now if the process
is stationary in the sense we have chosen, we mean that each of the D
enters the above expression in the same way, except for the effect of
the discontinuity at t = O. This is important merely because we start
sampling the function at 2 finitely remote time. If one will imagine
that we have taken a very large number of samples, then each D will
enter the expression in the 'same manner. If the process is not statiomary,
then the D" will enter the expression in a way that depends upon time,
If the process changes very slowly, that is, over a long time the D?
all have approximately the same distribution, we call it qguasi stationary.
If this is the case and we can find how the variations take place, we °
may still be able to use the information. In general, however, this paper
will deal only with stationary processes. In-case the sample intervals
are not equal the condition is that the D” must all enter the expression
(L) in the same manner except for the éffect of variations in length of
interval.

With these concepts and definitions in mind we are ready to see
how the detection process combines the above expressions, i.e., analogous
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to Eq. 2 and Eq. L. in order to accomplish its given function. Before launching
into the formal sélution of this problem it is instructive to get an

intuitive feeling for the steps involved by going through a very simple

example. In the treatment of the general case, the number of formal
manipulations is few but they do not convey the physical reasoning which

leads to them. Thus we will give an example first.

‘Example, Solution A, Instead of beginning with the most general
problem, we will imagine this very simple one and work through it to
get the main ideas straight., This example, although very simple, contains
all of the ideas that are required in the more general treatment. The
problem is this:

We are sampling a function X, with a measurement system that
introduces random errors that are normally distributed about the true _
value. The distribution of the true value Xk about the sample value ak is
thent

w( )=_1 (a2
/2 V-z;“_—&-e-(xz;k) 5.

Further, after examining the process by which X is generated, it is found
that the order of the approximating polynomial is two. This means that
the acceleration (@) will be assumed a random variable and constant in
each sample interval. (@) is assumed to be independent of any past values
and to be normally distributed alsos

i e 6.

W (x,,0,,D %) = W(e) = 'm . T

- The initial values of X and the derivative, V, the velocity, are assumed
to be uniformly distributed. We suppose that we have taken three equally
spaced samples (al,az,aB) and are interested in finding the joint distribution

of the three true values of X (Xl, X,, XB)'

Even if we were not given Eq. 6, we could write a joint distribution
for (X) on the basis of the measurements and the characteristics of the
measurement system. This is just the product of terms like Eq. 5. So we
write the distribution:

1 X
W( XX/ ,a._ )S - e - e - e M S
el athS Vin 6 26 Yo 26 Vowb 26
It turns out in the following that the coefficients do not play an important

part so they will be dropped. One just supposes that a normalizing factor
is needed to reduce the total probability to one. This then becomes:

1 2 2 2
Wo(X Xy Xy/2,8),8) = o7 T2 [?il'gl) + (X,-8,)° + (XB—aB):] Ta.
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Now we would like to alter this distribution to take into account
the fact that we know something about X itself, namely Eq. 6. There are
several ways to do this, but since we are interested in the joint distribution
of the X's we will proceed as follows. We have in Eq. 7a, a joint distribution
of the X's that is independent of any € priori knowledge that we might
possess. If we put the 4 priori knowledge in the form of a joint distribution
of the X's,we can multiply these two independent distributions together
to get the final joint distribution of the X's.

In order to get Eq. 6 into the form we desire we must express
@ in terms of the X's. This is very easily done by the following equations:

= Z(Xl - 12 + V2) 3
X, - Vz)

%
@2 = 2(13 -

is the velocity at the beginning of the second sample interval. Any of
tge velocities could have been used but V2 was convenient. The reason

that this additional variable must be introduced is that one is, in Eq. 8§,
trying to express three variables, X, in terms of only two new cnes, @.
The reason there are only two @'s is obvious since there are only two
sample intervals involved between three samples. Using equation 8 we can
write, from the form of Eq. 6, the joint distribution of the X's based
upon our 4 priori knowledge:

2 :
Wl(xl’xstB’vz) = "‘1"" e |:2(xl-x )] e - E(XB-XQ-VJF
ey
Dr | emp 28° Vznp 28 9
opping the coefficients as beforet
| L B 2 2’
- " L, -X+47,) + (Xy-X,-V,) a,
wl(xl,xz,xyvz) =e —723 174272 37T

Now the desired output of the detector is just the product of 7a. and 9a.
This is the joint probability density distribution function of Xi’XZ’XB’

after the reception of the three samples, and taklng into account the
4 priori knowledge of the form of X. Thus we have?

w(xl,xz,x ,Vz/al,az,aB) 10,

= . -1 [xl-al) + (x2-a2) + (13-a3)] - -2%3‘7 {:xl-fx?_wz)z + (KB-IZ-VZ)j

Although thls 1s the final output of the Detector, one may not
realize what all this means pntll he performs the process of selection,
Thé reason is, that this is a joint distribution in five dimensions and
is dlfficult to visualize. In the case of normal distribution functions
it has been shownl that the process of selection practically always
consists of finding the "most probable" values. To interpret Eq. 10 we
will try to find the most probable value for the four variables involved.
That is, we will try to find the values of the four variables that are
301nt1 most likely to occur. When the distribution function Eq. 10 is
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visualized as a surface in five dimensions, we see that our problem is
to find the "highest point" on the surface, That is, the point
(Xl’XZ’XB’VQ) for which W() is maximum. We do this by taking the four

partial derivatives with respect to the four variables and setting each
equal to zero., This yields four simultaneous equations which in turn are
to be solved for the four variables that are the most likely values.

The solution to these four equations yields:

X, = (2k + 5)a1+ 2a
2(3+k)

2~ &

X2 = a; + (l+k)a2 + 3y
3+ k

'X3 = -a;+ 2a2 + (5+ 2k)a3
2(3 + k)

V2 = a3 - al

2

where k = ——Eﬁ—
16 o)

The ratio (k) is a convenient measure of the relative effect
of the distribution of noise as compared with the distribution of (@).
For instance, if (k) is zero, we may infer that (@) is zero. This means
that the function X is known to be a perfeétly straight line and, hence,
if any of the samples vary from a straight line, this must be due to
the inaccuracies in the measurement system. The Eqs. 11 in this case glves

xl - 58'1 + 23-2 - a3
6
x2 al + 32 + 33
3 12'

e B Bl
6
7 = a3:al
or since the velocity is always equal to V , we may write?

X3 = 12 + V2A= Xl + 2V2

which is indeed a straight line, Suppose for instance we receive samples
that are not on a straight line; let us see what the filter does with them.
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Let a =1, a = 2; a =2, Thent

V'Vz '1/2

X = 76 X, = 10/6 Xy = 13/6

0 1 2
Fig. 2

We see in the plot Fig. 2 that the filter ackually passes a perfectly
straight line near to the given sample values., Of course, if the samples
are themselves on a straight line, the line passes through them exactly.

\a
ct

Now suppose k = 0, This is the case of no noise whatever. In
this cese we would expect to believe the samples as true values and the

filter should pass the proper curved line exactly through each sample point.
The Eqs. 11 become?

2= 8 13,

For the same sample values as above it is easily seen that the
filter now passes a curved line through the samples that looks as follows:$

'X"B " | [
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This is seen'to‘satisfy the condition that that the slope is 1/2 at t = 2.

If x has some intermediate value, this means that there is some
noise and also a good likelihood of a change in velocity. In this case
one would have great dlfficulty‘welghlng these two effects by an 1ntuitive
method. However, now that we have the equations worked out, it is possible
to get the exact answer, one which takes into account the possibilities
that the samples may be wrong a certain amount due to noise, and that they
may be displaced a certain amount due to the changes in velocity.
Suppose we take the case k = 1. Then Eqs, 11 become:

7al + 2a2~a a3

x =

1 5
L = al + 2a2 + a3

2 b 1.
L = -8 -&-—2a2 + 7a3

3 8
v, = 83 = 2y

2

For the same samples as above these values aret

X, =9/8 X,=1./8 X;=17/8 V,=1/2

>
-
2
1
' T 2 3 v
Fig. L

Here again it is seen that the curve does not actually pass through any
of the sample values, however, it is not necessarily a straight line as
it was in the first case,

Discussion of Solution A, It will be recalled that we used V, as

one of the variables, and the statement was made that we could have used
any of the velocities. One sees now why that is possible. The solutions
that we have obtained are complete in the sense that we can ‘calculate

from them any of the other velocities or values of X at intermediate points.
Actually the solution that we have obtained is.too general for what is
needed in control systems or real time problems. In some type of problems
it is of interest to solve for the values of X at several different times
jointly. If the sequence of values was a code word having a certain meaning,
it would be of interest to determine the entire word together. On the
‘other hand, in real time control systems, it is frequently only of interest
to determine the value of X at the present time. Actually we do not care
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for the exact value of X at some past time, except insofar as it helps to
determine the present value of X. In other words, it would have been sufficient
to determine the distribution of 13 alone, without solving the four simultaneous

equations for all.of the X's,_ One may accomplish this by integrating Eq..10
over the variables XIPXZV 0 leaving a distribution involving X3 only.

Now we can differentiate with respect to XB and set that equal to zero and
determine the most likely X3 . It should not be expected that this value

will be the same as found from the joint distribution, although it may be.
This seems strange that the most likely value of X. should be a different

number when two different methods are used to determine it. This is really
a question of what particular thing we are trying to determine,

Let us illustrate with a more straightforward problem, that of
drawing colored balls from urns. Suppose we have three urns with three
different colors of balls in each urn. The ratio of the number of each
color in each urh is indicated in the figure.

5/8 Red 1 Red
0 Blue 0 Blue

~ 3/8 Green 0 Green
Urn 1 Urn 2 Urn 3
1/2 3/8 1/8

Figa 5

The probability of choosing each urn is the fractiomsunder each urn in

the figure. The process is as follows, First, we choose an urn, adeording
to the probabilities given below each urn, and then we choose a ball

from that urn according to the probabilities of the colors of the balls
within that urn. The first question we could ask is, "What color ball

from which urn is most likely to be chosen?™ That is, we are asking about
the color and the urn, jointly. To determine this we can ‘plot the joint
probability a: distribution as follows?

Colors : : E
oo | -8 L e
B |
Blue ———-}--- - -'6716— _:_-- - -
Green|- - - - +3-/1.6- -J’- - = -:_,_ - -
l ; ;:, Urns
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The numbers next to each point are the probability of occurrence-efithat
particular event. For instance, it is easily seen that the probability
of drawing a red ball from the first urn is 1/2 x 5/8 = 5/16. Since

the operations of choosing the urn and choosing the ball are independent,
their probabilities are multiplied. This plot is the joint probability
distribution of colors and urns. We see immediately that the most likely
event is that of choosing the second urn and then a blue ball, which
occurs with a probability of 6/16,

Next we could ask which urn is most likely to be chosen. This
is obviously, from Fig. 5, the first urn which is chosen with a probability
of 1/2. To get this from the joint probability distribution, Fig. 6, we
sum along the direction of the colorss that is, we integrate over the
variable we wish to eliminate. This gives us a one-dimensional distribution?

I 1/2 3/8 1/8

nd < urns
[ 1

2 3
Fig. 7

where we see that our previous result is substantiated.
Now let us ask which color is most likely to be chosen. By

summing along the direction of (urns) we again get a ‘one-dimensional
distribution?

Colors
Red 4 7/16
Blue ¢ 6/16

Green ¢ 3/16

am—

Fig. 8

where we see that the most likely color to be drawn is red with a probability
of 7/16. From the result of the last two questions, that the most likely
urn. is the first and the most likely color is red, one must not then conclude
that the most likely urn and color are one and red, for we saw that the
correct answer to the joint oceurrence was the second urn and the color blue,

From this simple example one sees that the answer he gets depends
upon the exaet question asked. In our particular example we first asked
for the most probable joint distribution of the variables, Xl,X2,X3 and V,.

The reason one would desire this joint distribution is if he were actually
intending to measure or use them, jointly. If however, we are only going
to use, say X,, then we would not want to determine the most likely Joint
occurrence of all variables. From the example of the balls we see that
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such a computation would give erroneus answers. In the case of the balls
if one were to wager on the color of the next ball drawn, he certainly
would mot want to bet on the blue one since the red one is most likely.
On the other hand if one were wagering on both the urn and the ball,

then the blue color would be chosen, along with the second urn. This

is the reason we wish to integrate over all unwanted variables in Eq. 10
and get a distribution in the variables in which we are interested, For
tracking problems it is usually sufficient to find the joint distribution
of the last value of X and of the last value of V. The value of V is
important for predietion purposes.,

In general, then, we will only retain the joint distribution
of the last value of X and V, as our final output from the detector.
The operation of selection will then use this distribution. It may
turn out in more general cases, as we will see shortly, that the entire
joint distribution among all the variables must be kept on hand for
computational purposes within the detection process, even though it
will be distilled down to the two variables X and V, as a final output.
The reason for needing the complete distribution occurs when the values
of acceleration in one sample interval depend upon some past values of
the variable or its derivatives. If this is so, one must keep the distribution
of these past variables on hand in order to be able to determine the
distribution of the acceleration in each subsequent sample interval,
This will be handled rigorously in a moment, but first we should point
out, that while this may cause added complications, the principles that
we used in the above example are the same.

Solution B, With the idea in mind that the only quantities in which
we are interested are the last values of X and V we can try a slightly
different approach to the sample problem. Since we are not interested
in keeping the distribution of past values of X we need not even put
them in the distributions, as such, It will be recalled that the distributions
of the accelerations (@) were transformed into distributions in X, We will
not do that this time. Instead we will include the values of (@) and
then integrate over them, instead of changing to X and then integrating
over the X. The reason for doing it this way is that a rather nice physical
plcture of the calculation process can be formed by this procedure.

Exactly the same steps will be taken but in a different order.

First we take the first sample 2. The distribution of Xj
about a; is the same as Eq. Ta. for only one piece of data; hence
2
171
e 2

 Since we have already determined that the final output of the detector

will be a joint distribution of X and V, we could interpret the above
distribution as that, joint distribution where V is as yet uniformly
distributed. Suppose we plot this as follows.

WXy /2,) = 15,
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: / /
yy 4
‘ 7
g /2
‘ = y
Fig. 9

, We visualize this as a plot in three'dimensions, the probability
distribution W(X,,V;/A{) versus X and V; . This is just the distribution

obtained from one messurement without knowledge of the process being measured.
Suppose now we were to*try to predict the future value of X and V. Ve

would have to take two factors into account., First, the object whose X
coordinate is being measured may have any velocity, as indicated by Fig. 9.
Second, this velocity may change, due to some acceleration, during the

next sample interval. Let us handle these two separstely.

For the moment let us assume that the acceleration is zero, and
ask how the function changes when we try to predict the future value of X
and V., Obviously, if the acceleration is zero,the velocity will not change.
Also one sees that X will increase by the amount of the initial wvelocity.
Thus to find the distribution function for the future (one sample) values
of X, and V, we need only substitute in Eq. 15, V, for v, and X, - V, for
X,. Then we have a distribution of X, and V, for one safiple in%erva in
t%e future under the condi tion that tge acceieration is zero, Regarding
Figure 9, it is easily seen that this operation merely slides each V cross
section to the right an amount Vl. Thus we get Figure 10,

W(XI..}thal)o(':a)
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This just twists the 'mound' to the right, If at this time we
found out that the true value of X, were (a,) we could just trace up the
line X, = a, and would see that the distribution of V2 along this line
would be normal with the maximum value at Vy = a, - ay.

If the sample value (ap) were not given to be an exact value of
» but were instead distributed similarly to a,, we would as before

multiply the distribution that we have, in Figure 10, by the normal
distribution of 12 and ap., This would result in a mound as in Figure 11,

w (X (4, &, )o(.=°)

Vo

X+

This is a mound with a normal cross section in all directions - to X, Vo
and the cross section parallel to '12 s V2 is ellipsoidal. The peak of

the mound is at X, = a, and V2 = a, = aj. This was formed under the as-
sumption of zero acceleration. I.e% us go back now and see what effect
possible accelerations would have on this distribution.
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When we made the substitution of variable that led to Figure 10
we included the condition that some initial velocity could have existed ’
at the beginning of the sample interval, Now we have also been given
that the accelerations have a normal distribution for each sample interval.
Suppose the acceleration is @,, Then instead of Vy being equal to V, we
would have to substitute for % >V, -®;. Also for we must substitute
X, -V, - 1/2@ 1+ Now we cou}d tgink of the distribution as a function
o§ the “three varlables X,, V,, @,, however, since it is not necessary to re-
tain the information directly pertaining to @1 we merely multiply this
distribution by W@, ), which is given in Eq. 6., Then to clear the expression
of @, we integrate over all @.,, We ask now, what has this done to the
func%ion of Figure 10? It is Seen that whatever effect on the ¥ dimension
the effect will be twice as great on the V dimension because of the above
substitutions. Actually this process of integration will be seen to be a
convolution of W(@,) with W(X,, V, a;, @,). 'This convolution has the
effect of “smearing; the function &long a line X - 2V = constant. To
visualize this we think of perhaps rubbing our hand over the function of
Figure 10 along the given line in such a way that the top of the function
is diminished and the slopes of the sides are stretched out. This is the
total effect of allowing the acceleration to be different from zero and
normally distributed about zero,

Now again we can receive the second sample a, and multiple it
as before, The only change in Figure 11 is that the mound is smeared out
along the line X - 2V = constant,

After receiving the last sample we again make the same substitution
of variable as before and the convolve just as before, We see that each
time a new sample is obtained we do the same steps over and over again ,
In the cases where these processes can be carried out analytically we obtain
a recursion relationship which enables us to handle as many samples as de-
sired, indefinitely many, in fact., At each step one can determine by the
same methods as before the most probably X and V, if this happens to be the
process of Selection chosen,

We see in this process that each time a sample is received the
distribution has its sides trimmed down and hence its peak sharpened up.
Then as time goes on the smearing action of unknown accelerations tends
to flatten out the distribution., From this process one can see how it is
possible to determine how often it may be necessary to take samples to
insure a distribution meeting certain standards, From this we get ideas
of sampling rates as compared with the type of function being measured,

In the ordinary filter, a process of selection follows the de-
tector and chooses a specific action based upon the distribution functions
derived by the detector. By examining the distribution function we can
describe the guality of the filter, after the selection process is completed,
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When the derived process may be carried out analytically we get
mathematical expression for the output of the detector., In case the process
will not yield to ordinary mathematical manipulations one must have recourse
to some type of approximate solution or perhaps numerical solutions, This
has not been investigated thoroughly as yet, however,

The solution of the ideal detector problem is the most difficult
part of the complete filter design as far as mathematics is concerned,
The selection process which follows is usually very simple mathematically,
but may be based upon some very subtle considerations, It is impossible
to describe this process in much detail except for specific situations. In
view of this, we leave the topic out of the general design method and con-
sider the detector design as a large step toward complete filter design.

The General Case In the general case we have only two functions with
which to deal. The first is the 'noise! distribution, analogous to the one
written for the normal distribution in Eq. 1. We denote this distribution

by

Wy, (xk/ak) 16,

The second quantity is the distribution describing the process, This is the
joint distribution of Eq. L.

As was pointed out in the example, we are usually only interested
in the last values of X and its first n-l derivatives, rather than all values
for all time., Thus, in order to facilitate the calculation of this re-
stricted joint distribution we will rewrite Eq. L in such a form that it
expressed the joint distribution of all the D® and of values of X and its
first n-1 derivatives in the last time interval, Thus we have:

1 n-1

n
Wy (X,,D) 5D 5Dg5D0,. 0Dy 17.

k-l)

The problem now resolves itself into this. We receive the first k
samples and from the measurement process alone, since the measurements are
independent, we may write:

k
wl(xl,xz,....,xk/al,az,....,ak) = // WN(Xj/aj) 18,

j::
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Now since only the final values of X and its derivatives are of
real interest for their own sake, we will, by algebraic manipulations,
express each of the X: in terms of X and the derivatives in the k'th in-
terval and the n'th dérivative in all of the intervals, Then the above
expression may be considered as a joint distribution of the values of X
and its first n-1l derivatives in the k'th interval and the n'th derivative
in all preceeding intervals, conditioned on the reception of the first
k samples, thus:

1
n-1 .n .n 7
wl {xk,Dk’ onooDk ’Dl’D2’.....Dk—l/al’a2;..’.ak) 190

This is the most we can do if the function Eq. 17 is not known,
If Eq, 17 is given describing the process we multiply these two functions
together since they are independent statements about the same variables.
Then to eliminate the D", which are not of 'immediate interest we integrate
over all D7, This leaves us with a joint distribution involving only X and
its derivatives in the k'th interval, This is the desired output of the
detector,

To sum up the steps we see that:

1. We multiply the distributions (Eq. 16) together that
describe the noisy sample values.

2. We make algebraic changes of the variables so as to
express the variables with which we want to work,

3. We multiply by the joint distribution (Eq. 17) that
describes the process being measured.

i, We integrate over all variables that are not of
immediate interest.

We note here, in general, that it is necessary to receive a whole
sequence of data before performing any integrations, since the functions
may be dependent upon past values. If the integrations were carried out
say for k pieces of data, some past information would be destroyed. Then
it would be impossible to accurately determine what the exact distribu=-
tion of the derivatives would be in the k-1 interval., In the special case
we worked out first, the distribution of present values of acceleration
did not depend upon past values of the other variables and thus we could
work the problem step by step as the data arrived., It will be recalled
this was the method used the second time (solution B) the problem was dis-
cussed, in order to obtain the graphs of the functions, Figure 9, 10 and
11.
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Conclusions:

We see that the information needed for the detector design is in
two parts. These are the probability density distributions of the function
to be measured, and the noise contaminating the data, For the representa-
tion chosen, we obtained the complete solution of the detector performance.
We see that one may draw inferences as to best sampling rates under certain
conditions.

Signed Q./ “ﬂ{%

W. 1. Wells

W. K, Linvi

WIW/jme/mrs



