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Abstract: We show in this report that the first problem of ideal filter 
design, that of Detection, 1 is based upon two probability dis
tributions. The first describes the process of measurement, 
or introduction of noise. The second describes the actual function 
it is desired to filter. A method for describing both of these 
statistical processes is given which seems very reasonable and 
useful in the case of sampled data filters. After the description 
of the problem,conl?isting of the specification of these two 
distribution functions, we give the method of combining them 
according to the rules of probability theory. This calculation 
leads to the construction of a probability distribution function 
involving the variables that it is desired to filter. This 
distribution function is the desired output of the ideal detector. 
A complete mathematical analysis is given, and also a simple 
example, to illustrate the technique. 

INTRODUCTION 

In this report we will discuss a method for designing a filter 
on the basis of a statistical analysis of the processes involved. It 
was shownl that the action of any ideal filter can be thought of in two 
independent steps. The first step is that of Detection. The second 
step is Selection. 

The purpose of the ideal detector is to construct the mathematical 
function that represents the probability density distribution of the value 
of the variable being considered. We might illustrate this by assumin~ 
a one-dimensional tracking problem where the position coordinate is (x). 
EW a series of measurements we attempt to find the position of this variable. 
Because of unknown factors and random variables in the process, we can only 
find a probability density distribution function for (x), that is, a 
function that gives the probability that the true value of (x) lies in 
a given small range. The calculation of this probability density distribution 
function is the desired action of the detector. We will see in detail 
how this is accomplished, later. But first, we will see what the Selector 
does. 

In general, when one measures a quantity such as (x) above, 
one intends to take some action based upon these measurements. If this 

1 
"The Philosophy of Statistical Filter Design," M-18l2, W.I. Wells, Jan. 27, 1953G 
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were not the case, then why make the measurement? the question is then~ 
now that we have the distribution function, how do we decide what specific 
action to taKe? This obviously is decided upon by considering the distribution 
function and also by considering the final desired result of the action. 
The influence of the desired result of the action is what one assoeiates 
with the strategy of the situation. Mathematically, it is related to 
a weighting function or Scanning Function. It is the purpose of the 
Selection operation to combine the effects of the probability density 
distribution function with the Scanning Function to make the actual 
selection of the action to be taken. Only the Detection principles 
will be investigated in this report. 

Detection. As we have stated, the action of the Ideal Detector 
is to construct the probability density distribution function for the 
variable being measured. cLet us now see what factors must be considered 
in performing this. 

First we might consider the measurements that are made of the 
variable (call it X). For the type of problem being considered here X 
is assumed to be some function of time. That is, it may have a different, 
though unique, value at each different time. Our purpose is to make 
measurements of I and then try to construct X as well as possible from these 
measurements. By as well as possible we actually mean that we wish to 
construct the probability density distribution function for the value of 
I at each particular time. As a restriction of the problem we will consider 
only those cases where the measurements are made at discrete intervals 
of time. This is then a sampled-data system. We will not require in 
general that the samples be taken at equally spaced times, although this 
is at present the case of most interest. 

When we take these meas~rements or samples, it is in general 
not possible to say the measurements that we make are the exact value 
of X at that time. The reason for this is that all measuring devices are 
inherently inaccurate to some degree. We find in general that the true 
value of X~ for a large number of measurements, is usually distributed 
about the measured values. This distribution function is called the 
distribution function of the .'no.ise 0 It We say that if the measurements 
are not exact, they are noisy, and the value of the "noise" is randomly 
distributed according to a distribution function. This function depends 
upon the partic~lar measuring device. One finds that the measurements 
made with a sensitive galva.nometer are distributed according to a normal 
distribution function about the true values. In case the values of the 
samples are quantized the distribution function is a flat distribution over 
the width of the quantization interval. 

The types of noise that may contaminate the data. are not restricted 
to those caused directly by a measurement device. In case the data is passed 
over some transmission link~ noise is invariably added to the signals.' 
This may be of the thermal type or due to some interfering signals. In 
any case we may still represent this effect by giving the probability density 
distribution fumction of the noise. 
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Measurement. For the moment let us work only with the measurement 
system. We can assume that some function X is to be measured, but nothing 
about this function is known, i priori. Suppose we take several measurements 
and then try to reconstruct X. Obviously since no ~ priori knowledge waS 
given concerning X, it will be impossible to infer anything about X except 
at the time of each sample. Since each measurement is assumed to be 
independent of all the others, we find that the joint probability density 
distribution function of X, at each, sample time, is the product of the 
probability distribution functions for Xat each time. As an example, 
we might suppose that the distribution function for the noise has the form 
of a normal distribution. That is, the,true value of I at the time of 
the sample is normally distributed about the value of the sample. If 
we let Ik be the true value of X at the time t equals k and ak be the value 
of the sample at this time, we write the 'distribution of Xk after the 
reception of ak as 

,1 
= ------

(2;'~ e 

Then we can also write the product which gives the joint distribution of 
X for several times after the reception of several samples •. 

k 

W(Xl' • • .,yap • • ., ~) = 7T 
r=l 

1 

1. 

One notices here that the variance is written as a function of the index, (r). 
Although most measuring systems' accuracy does not depend upon time, many 
of them do depend upon the actual range of values being measured. Thus, 
actually the subscript on the variance might be written so as to show the 
dependence upon the ar rather than (~) itself. This detail is easily 
taken care of in an actual problem. We need only remember for the time 
being that the variance of each measurement may be different. For instance, 
in the case of a quantized function the size of the, quantization interval 
may be a function of the value of the variable. 

The important thing to notice here is that we are able to write 
a joint probability density distribution for the values of X at each time 
a sample is taken. When we do this we have not made use of any other 
characteristics than those of the measurement system or the noise. In 
case we knew nothing whatever about X this would be the final output of 
the detector. Fortunately we often know so~ething about the function X, 
which enables us to sharpen up this joint distribution. 
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The Function Representation. We will now discuss the Representation 
of functions (x} that we will consider. We must be able to describe them 
in some convenierit.and accu,rate way so that the joint distribution found 
above may be sharpeJiEid up and give us a better picture of the function. 
In particula.r, if we wish to find out about the function in between the 
sample times we must know about the general character of X. 

The type of systems to be considered are those normally encountered 
in control problems. Their distinguishing characteristic is their inertia. 
To cause a motion or change thereof it is necessary to apply a force. 
This is, of course, obvious, but the reason for pointing it out is that 
it is the underlying basis for the type of representation that will be used. 
In inertial systems it is the forces that are important, thus it seems 
reasonable to describe such a system by describing the values of the forces 
acting on the system. When we consider one-dimensional motion along the 
X axis, the applied force is proportional to the second derivative of X. 
It seems reasonable therefore that if we characterize the second deri"irative 
of such intertial systems, we will be able to describe its action accurately. 
There are other ways of course, however, since this particular method 
will be seen to be most convenient,we 'Will use it. A slightly different 
approach to this same representation may be found as follows. 

As stated before, we are going to consider only sampled systems. 
Thus, it is possible to describe the function during each sample interval. 
This approach leads also to the idea of describing the derivative. Let 
us suppose that we break I up into sample intervals. Within each interval 
we notice that the function can be a.pproximated very closely, if the 
sampled intervals are small, by a polynomial of fairly low order. Suppose 
that an n'th order polynomial is found to approximate the function X 
in each interval. The polynomial is different in each interval, but of 
the same order. Now by differentiation we see that the n'th derivative 
of our composite function is a constant in each interval. Calling the 
n'th derivative Dn we see that the value of nn is likely to be different 
in each interval but a constant during the interval. Now we ask how this 
fits with the idea of 1n~rtiai systems. If the sample period is chosen 
small enough, a second order polynomial (parabola) will suffice as an 
approximation in each interval. Then it is the acceleration which is a 
constant in the interval. Our physical reasoning leads us to suspect 
that the .forces being applied to most physical systems are constant 
most of the time with changes in value occurring only~ccasi6na1ly., 
We might plot a supposed graph of force against time.(Fig. 1). 

f 

t: 
Fig. 1 
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The changes are not really too abrllpt,. but the .t'act that the .t'orces are 
constant over extended periods checks with our physical reasoning. The 
approximation that we are making here is that this curve will be approximated 
by a step .t'unction. This is done for convenience; however we must have 
made sure that the second integral of the step function does give an acceptable 
approxin'tation to the function X. 

Incase'the function X varies more quickly, it will be necessary 
to use a higher order polynomial than the second, however thessmeideas 
of constant nlth derivative in the interval carry ov:er,drre-etly'~ .In general 
we will consider an n'th order polynomial approximation in each interval. 
The actual order needed depends upon the exact problem. 

Now that the exact form of the representation has been chosen, 
we ask: Exactly what quantities must be specified to determine the function 
Xet)? It is obvious that one of.the thingswesball require will be 
the value of Jil, the nlth derivative, in ''each sample interval. Then in 
addition to these values we must knQw the ttinitia1 conditions." That is, 
if we know X and the first n-l derivatives for some interval, then the 
knowledge of the nn in each interval enables ust()construct Xet). 

Since in the case of interest any or all of these quantities 
will be described statistically, we require the joint probability distribution 
of X and its first n-1 derivatives in one interval and the nlth derivative 
in each interval. This joint distribution is the complete description 
of XTtJ. We write it as .t'ollows: 

4. 

Where nr is the value of the m'th derivative at the beg~nning of the 11th 
interval. 

At this point we can introduce the concept of stationarity • 
Suppose all sample intervals are equal for the moment. Now if the Rrocess 
is stationary in the sense we. have chosen, we:mean that each of the n 
enters the above expression in the same way, except for the e.t'fect of 
the discontinuity at t ... O. This is important merely beca,use we start 
sampling the function at ~ finitely remote time. Iflone will imagine 
that we have taken a very large number of samples, then each nnwi11 
enter the ~xpression in trresame manner. If the process is not stationary, 
then the n will enter the expression in a way that depends upont~. 
I.t' the process changes very slowly, that is, over a longtime the nn 
all have approximately the same distribution, we call it.qnas±rlationQx.y. 
If this is the case and we can find how the variations take place, we 
maysti11 be able to use the information. In general, however, this paper 
will deal only with stationary proces.ses. .In case the sample intervals 
are not equal the condition is that the If1must all enter the expression 
(4) in the same manner except for the effect of variations in length of 
interval. 

With these concepts and definitions in mind we are ready to see 
how the detection process combines the above expressions, i.e., analogous 
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to Eq. 2 and ·Eq. 4 .• in order to accomplish its given function.. Before launching 
into the formal ~lution of this problem it is instructive to get an 
intuitive feeling for the steps involved by going through a very simple 
example. In the treatment of the general case, the number of formal 
manipulations is few but they do not convey the physical reasoning which 
leads to them. Thus we will give an example first. 

Example, Solution A. Instead of beginning with the most general 
problem, we will imagine this very simple one and work through it to 
get the main ideas straight. This example, although very simple, contains 
all of the ideas that are required in the more general treatment. The 
problem is this: 

We are sampling a function I, with a measurement system that 
introduces random errors that are normally dis~ributed about the true 
value. The distribution of the true value lk about the sample value ak is 
then: 

e 

Further, after ex~n1ng the process by which X is generated, it is found 
that the order of the approximating polynomial is two. This means that 
the acceJeration (@) will be assumed a random variable and constant in 
each sample interval. (@) is assumed to be independent of any past values 
and to be normally distributed also: 

6. e 

The initial values of X and the derivative, V, the velocity, are assumed 
to be uniformly distributed. We suppose that we have taken three equally 
spaced samples (~,a2,a3) and are interested in finding the joint distributi~n 

of the three true values of X (~, X2' X3). 

Even if we were not given Eq. 6, we could write a joint distribution 
for (X) on the basis of the measurements and the characteristics of the 
measurement system. This is just the product of terms like Eq. 5. So we 
write the distribution: 

1 - (~_al)2 1 _ (X2-&2)2 1 _ (X2-~3)2 
WO(~,X2,x3/~,a2'~) '" I~ e' -'2 ·I~ e :? ~r.:-r:.~ -'2 

V 21T 6' 2 6- ,2116 2 6- "'V21T6 2 6-

It turns out in the following that the coefficients do not play an important 
part so they will be dropped. One just supposes that a normalizing factor 
is needed to reduce the total probability to one. This then becomes: 

~Xl-~)2 + (X2-~2)2 + (X3-a3)~ 7a. 
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New we weuld like to. alter this distributien to. take into. acceunt 
the fact that we knew semething abeut X itself, namely Eq. 6. There are 
several ways to de this, but since we are interested in the joint distributien 
of the X's we will preceed as fellews. We have in Eq. 7a, a jeint distributien 
of the X's that is independent of aD7 a prieri knewledge that we might 
pessess. If we put the 'd. priori knewledge in the form of a jeint distributien 
ef the X'~we can multiply these two independent distributiens tegether 
to. get the final jeint distributien ef the X's. 

In erder to. get Eq. 6 into. the form we desire we must express 
@ in terms ef the X's. This is very easily done by the fell ewing equatiens: 

@l .. 2(X1 - X2 + V2) 

-2 .. 2(X3 - X2 - '2) 

v~ is the velecityat the beginning of the secend sample interval. Any of 
tfie velocities ceuld have been used but '2 was convenient. The reason 

that this additienal variable must be introduced is that one is, in Eq. 8, 
trying to express three variables, X, in terms of enly two new ~nes, @. 
The reason there are enly two @'s is obvious since there are only two 
sample intervals invelved between three samples. Using equation a we can 
write, frem the form ef Eq. 6, the joint distributien of the X's based 
upen our , priori knewledge: 

e 
- €CI3-X2-V 2f 

2132 

(1:3-X2-V2)J 
Now the desired eutput of the detector is just the preduct ef 7a. and 9a. 
This is the jeint prebability density distributien functien of 11 ,X2,X3, 
after the receptienef the three samples, and taking into. acceunt the 
~ priori knowledge ef the ferm of X. Tl'lus we have:' 

8. 

9. 

9a. 

W(Xl,X2,X3,V2/al,a2,a3) 10. 

= e - ~.s2 [<~""1)2 + (12 .... 2)2 + (I)-a)j - 2~2 [Xl~+V2)2 + (1)"'2-V2>j 

Although th~s is thefina,l output of the Detector, one may net 
rea.lize wh~tall this meanf3 until .. heperferms the precess ef selection. 
'!he reasen is, that this is ajeint distribution in five dimensiens and 
is difficult to. visualize. In the case of normal distributien functiens 
J..t has beensllewnl that the process ef selection practically always 
consistsef finding the ttmest probable" values. To. interpret Eq. 10 we 
will try to find the most prebablevalue for the feur variables invelved. 
That is, we will try to find the values ef the four variables thatare 
jointly most likely to. occur. when the distributio.n function Eq. 10 is 
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visualized as a surface ~Jl fi:-ve dimensions, we see that our p,roblem is 
to find the "highest point" on the surface. That is, the point 
(11'1 2,x3, V 2) for which wO is maximum. We do this by taking the four 
partial derivatives with respect to the four variables and setting each 
equal to zero. This yieldsfQur simultaneous equations wh:i,ch in tu:rn are 
to be solved for the four variables that are the most likely values. 
The solution to these four equations yields: 

where 
2 

k - 13-
7 0 

Xl' = (2k + ,)al + 2a2 - a3 

2(3+k) 

12 = ~ + (1+k)a2 + a3 

3 + k 

X3 = - al + 2a2 + (, + 2k)a3 

2(3 + k) 

The ratio (k) is a convenient measure of the relative effect 
of the distribution. of noise as cOMpared with the distribution of (@). 
For instance, if (k)is zero, we.may infer that (@) is zero. This means 
that the function X 1sknoWn to be a perfectly straight line and, hence, 
if any of the B$Mples vary from a straight· line, this must be due to __ 
the inaccuracies in the measurement system. The Eqs. 11 in this case give: 

Xl = Sal of!> 2a2 - a3 
6 

%")= _ al of!> 2a2 + .5&3 

6 

or since the velocity is always equal to V , we maywri tel 

13 = 12 + V 2' = Xl + 2V 2 

12. 

which is indeed a straight line .• _ Suppose forinstance:we receive samples 
that are not on a straight line; let us see what the filter does with them. 
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Let a -i, a • 2, a - 2. Then: 

v • V.z - 1/2 

x 

Fig. 2 

We see in the plot Fig. 2 that the filter actually pass~s a perfectly 
straight line near to the given sample values. Of course, if the samples 
are themselves on a straight line, the line passes through them exactly. 

Now suppose k • O. Th:i.s is the case of no noise whatever. In 
this case. we would expect to believe the samples as true values and the 
filter should pass the proper curved line exactly through each sample point. 
The Eqs. 11 become: 

x) == a3 

V2 = a3 - a1 
2 

13. 

For the same sample values as above it is easily seen that the 
filter now passes a curved line through the samples that looks as follows: 

._x .3 1-' ----/----f---+---
-' ... 

21----~--~c=~~---

l~--~~--~---+-----

Fig. 3 
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This is seen to .satisfy the condition that that the slope is 1/2 at t III ,2. 

If k has sQme intermediate valu~, this means that there is some 
noise and also a good likelihood of a change in veiocity. In this, case 
onewQuld have great difficulty-weighing these two effec~sbya.n intuitiV'E! 
method. However, now that we have the equations worked out, it is possible 
to get the exact answer, one ,which takes into acc9unt the, poss:ibilities, 
that the samples maybe wrong a certain amount due to noise, and that they 
may be displ,aced a certain all'Dunt due to the changes in velocity. 
Suppose we take the case k ~ 1. Then Eqs. 11 become: 

~ = 7al + 2a2 .. a3 
8 

al + 2a2 + a3 
12 = '4 

. _ - ~ .. 2a~ + 7a3 
13 - 8 . 
V2 = a3 - 8 1 

2' 
For the same samples as ,above these values are: 

~ = 9/8 12 = 14/8 ,13 =.17/8 V2 = 1/2 

I 

I 2 3 t 

Fig. 4 

14 • 

Here again it is, seel;l tha,t the curve does not actually pass through any 
of the sample values; however, it is not necessarily a straight line as 
it was in the first ease. 

Discussion 'of Solution A. It will be recalled that we used V2 as 
one of the variables, and the statement was made that we could have used 
any of the velocities. One sees now why that is possible. The,solutions 
tpat'l(Ei! have obtained, are complete in the, sense that we can calculate 
from them an.y o~ the other· velocities or values o~ X at intermediate points. 
Actually the solution that we have obtainE!<l,is,toc( g'eneral for what is 
needed in control systems or real time problems. In some type of problems 
it is of interest to solve for the values of X at several different times 
Jointly. If the sequence of values was a code word having a certain meaning, 
it would be of interest to determine the entire word together.. On the 
·other hand, in real time ,control systems, it is frequently only of interest 
to determine the value of X at the present time. Actually we do not care 
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for the exact valueoi lai 'some past ii.me" except insofar as it he:tps j:.Q. " 
deterznine the.prese~t v~lue of I. In other words, it would have been sufficient 
to determine the ~istribution of 13 alone, without solving the four simultaneous 
equations for~ll of the I's. OnE)! may ti~~omplish this by integrating Eq •. 10 
over the variables Il,I~V ~:ieav1ng Ii distribution involving 13 only. . 
~ow we can ~ifter~mtiate with resp~ct to X3 and set that equal to zero and 
det~~ne the most likely 13.. • It should not be expected that this value 
will be the same as found frOm the joint distribution, although it may be. 
This seems strange that·the most likely value of 13 should be a different 
number when two different methods are used to determine it. This is really 
a question ot what particular thing we are trying to determine. 

. "Let us illustrate with a more straightforward problem, that of 
drawing colored ba.lls trom urns. Suppose we have three urns with three 
different colors of balls in each. ~rn. The ratio ot the number of each 
color in each urn is indicated in the figure. 

5/8 R.ed o Red 1 Red 
o Blue 1 Blue o Blue 

.3/8 Green 6 GTeen 6 Green 

Urn 1 Urn 2 Urn 3 

1)2 3/8 1/8 

Fig. 5 

The probability of choosing each urn is the fract-iom under each urn in 
the figure. The process is as follows. First, we choose an urn, adeording 
to the probabili ties given below each urn, and .. then we choose a ball 
from that urn according to the probabilities of the colors of the balls 
wi thin that Ul'R. The first question we could ask. is, 'What color ball 
from which urn is most likely to be chosen?" That is, we are asking about 
the color!!!! the lll"Jl, jointly. To .. determine this we can plot the joint 
probability distribution as follows: 

f 
I 

: 5/16 ----r---
1 

'2/16 
---~-.--

I 

Colors 

~ -
., , 

Red 

I 
Blue - - - - -""-. -

I 16/ 16 
.I 

- !---
I 

Green---- ~----~. 
13/16 I 
I 

, 
-" -I - ;-

I 

1 '2 3' 
Urns" 

Fig. 6 
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The .. numbers next to each point are the p rob abili ty of occurrene .. ·.;.~~~.t 
particular event. For instance, it is easily seen tpat the probability 
of drawing a red ball from the first urn is 1/2 x 5/8 ... 5/16. Since 
the operations of choosing the urn and choosing the pall are independent" 
their probabilities are multiplied. Tbis plot is the joint probability 
distribution of colors !!!!!.urns. We see immediately that; the most likely 
event is that of choosing the Elecond 'urn and then a plue ball, which 
occurs with a probability of 6/16. 

Next we could ask which urn is most likely to be chosen. This 
is obviously, from Fig. 5, the first urn which is cllosen nth a probability 
of 1/2. To get thifl fromthejointp~obability distribution, Fig. 6, we 
sum along the direction of the colors; that is, we integr&l.te over the , 
variable we wish to eliminate. This gives us a one-dimensional distribution: 

1/2 
• 
1 

3/8 
• 
2 

Fig. 7 

1/8 
• urns 
3 

where we see that our previous result is substantiated. 

Now let us ask which colorie most likely to be chosen. By 
sunnning along the direction of (urns) we sgain get a one-dimensional 
distribution: 

Colors 

Red 7/16 

Green 

Fig. 8 

where we see that the most likely color to be drawn is red with a probability 
of 7/16. From the result of the last two questions, that the most likely 
urn. is the first and the most likely color is red, one must!2! then conclude 
that the most likel.y.· urn 'and color are one and red, for we saw that the -correct answer to the joint occurrence was the second urn and the color blue. 

From this simple example one sees that the answer he gets depends 
upon the exact question asked. In our particular example we first asked 
for the most probable joint distribution of the variables, ~,I2,I3 and '2-
The reason on.e would desire this joint distribution is if he were a.ctually 
intending to measure or use them, jointly. If; however, we are only going 
to use, say 13, then we would not want to determine the most likely joint 
occurrence of all variables. From the example of the balls we see that 



61 
Memorandum M-1886 Page 13 

such a computation would give erroneus answers. In the case of the balls 
if one were to wage.r on the color of the next ball draw, he certainly 
would -not want to heton the blue one since the red one i~ most likely. 
On the other- hand if one were wagering on both the urn and the ball, 
then the blue color would be chosen, along with the seoOii'd urn. This 
is the reason we wish to integrate over all unwanted variables in Eq. 10 
and get a distribution in the variables in which we are interested, For 
tracking problems it is usually sufficient to find the joint distribution 
of the last value of X and of the last value of V. The value of V is 
important for prediction purposes • . 

In gener81, then, we Wiii only retain the joint distribution 
o.f the last value of X and V, as our final output from the detector. 
The operation of selection will then use this distribution. It may 
turn out in more general cases, as we will see shortly, that the entire 
joint distribution among all the variables must be kept on hand for 
computational purposes within the detection process, even though it 
will be distilled down to the two variables X and V, as a final output. 
The reason for needing the complete dis.t.ribution occurs when the values 
of aece;t.eration in one sa.niple interval depend upon some past values of 
the variable or its derivatives. If this is so, one must keep the distribution 
of these past variables on hand in order to be able to determine the 
distribution of the acceleration in each subsequent sample interval. 
This will be handled rigorously in a moment, but first we sho~d point 
out, tha.t while this may cause added complications, the principles that 
we used in the above example are the same. 

Solution B. With the idea. in mind that the only quantities in which 
we are interested are the last values of X and Vwe can try a slightly 
different approach to the sample problem. Since we are not interested 
in keeping the distribution of past values of X we need notaven put 
them in the distributions, as such. It will be recalled that the distributions 
of the accelerations (@) were transformed into distributions in X. We will 
not do that this time. Instead we will include the values of (@l) and 
then integrate over them, instead of changing to X and then integrating 
over the X. The reason for doing it this way is that a rather nice physical 
p~ctUJ:"e of the wculation process can be formed by: this procedure. 
Exactly the same steps will be taken but in a different order. 

First we take the first sa.niple aI- The distribution of Xi 
about 81 is the Same as Eq. 7a. for only one piece of data; hence 

2 
(Xl-al ) 

W(XI/al ) = e - 2 62 15. 

Since we . have . already determined that the fipal output of the detector 
will be a joint distribution of X and V, we coul~ interpret the above 
distribution as that. joint distribution where V is as yet uniformly 
distributed. Suppose we plot this as follows. 
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)(, 

Fig. 9 

. We visualize this as a plot in three dimensions, the probability 
distribution W(Xl,Vl/!l) versus Xl and Vl • This is just the distribution 
obtained from one mes.surement without knowledge of the process being mea.sured. 
,Suppose now we were to·try to predict the future value of X and V. We 
'would have to take two factors into account. First, the object whose X 
coordinate is being measured may have any velocity, as indicated by Fig. 9. 
Second, this velocity may change, due to some acceleration, during the 
next sample interval. Let us handle these two separately_ 

For the moment let us assume that the acceleration is zero, and 
ask how the function change~ when we try to predic t the future value of I 
and V. Obviously, if the acceleration is zero, the velocity 'Will not change. 
Also one sees that X 'Will increase by the amount of the initial velocity. 
Thus to find the distribution £'unction for the future (one sample) values 
of 12 and V2 we.need only subst~tute in Eq. 15, V2 for Vl and 12 - V2 for 
Xl- Then we have a distribution of X and V for one sample intervaI in 
tne future under the condi tion tha t ~e acceferation is zero. Regarding 
Figure 9, it is easily seen that this operation merely slides each V cross 
section to the right an amount Vl - Thus we get Figure 10. 

/ 

/ 
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This just twists the 'mound' to the right. If at this time we 
found out that the true value of '12 were (a2) we could just trace up th~ 
line 12 = a2 and would see that the distribUtion of V 2 along this line 
would be normal with the maximun. value at V2 = a2 - ale 

If the sample value (a2) were not given to be an exact value of 
~, but were instead distributed similarly to aI' we would as before 
mUltiply the distribution that we have, in Figure 10, by the normal 
distribution of X2 and a2. This would result in a mound as in Figure 11. 

J 

I 

/ 

I I 

I 

Fig. 11 

This is a mound with a normal cross section in all directions JL to X2, V2 
and the cross section parallel to 12, V2 is ellipsoidal. The peak of 
the mound is at X2 = a 2 and V2 = a2 - ale This was formed under the as
sumption of zero acceleration. Let us go back now and see what effect 
possible accelerations would have on this distribution. 
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When we made the substitution of variable that led to Figure 10 
we included the condition that some initial velocity could ha va existed 
at the beginning of the sample interval. Now we have also been given 
that the accelerations have a normal distribution for each sample interval. 
Suppose the acceleration is'l. Then instead of Vl being equal to Vz we 
would have to substitute for VI' ~2 -'1- Also for ~ we must subst~tute 
X2 - V 2 - 1/2 @ 1 _ . Now we couId tfiink. of the distribution as a fmction 
of the three varJ.ables 12, V2, @l' however, since it is not necessary to re
tain the information directly pertaining to @l we merely multiply this 
distribution by W('l) , which is given in Eq. 6. Then to clear the expression 
of @l we integrate over all '1. We ask now, what has this done to the 
func~ion of Figure 10? It is seen that whatever effect on the I dimension 
the effect will be twice as great on the V dimension because of the above 
substitutions. Actually this process of integration will be seen to be a 
convolution of W(@,) with W(X2, V2 al , @l). :'This convolution has the 
effect of Itsmearing1'l' the function along a 11ne X - 2V = constant. To 
visualize this we think of perhaps rubbing our hand over the function of 
Figure 10 along the given line in such a way that the top of the f1Ulction 
is diminished and the slopes of the sides are stretched out. ,This is the 
total effect of allowing the acceleration to be different from zero and 
normally distributed about zero. 

Now again we can receive the second sample a2 and multiple it 
as before. The only change in Figure 11 is that the mound is smeared out 
along the line X - 2V = constant. 

lfter receiving the last sample we again make the same substitution 
of variable as before and the convolve just as before. We see that each 
time a new sample is obtained we do the same steps over and over again • 
In the cases where these processes can be carried out analytically we obtain 
a recursion relationship which enables us to handle as many samples as de
sired, indefinitely many, in fact. At each step one can determine by the 
same methods as before the most probably X and V, if this happens to be the 
process of Selection chosen. 

We see in this process that each time a sample is received the 
distribution has its sides trimmed down and hence its peak sharpened up. 
Then as time goes on the smearing action of 1UlknOwn accelerations tends 
to flatten out the distribution. From this process one can see how it is 
possible to determine how often it may be necessary to take samples to 
insure a distribution meeting certain standards. From this we get ideas 
of sampling rates as compared with the type of function being measured. 

In the ordinary filter, a process of selection follows the de
tector and chooses a specific action based upon the distribution functions 
derived by the detector. By examining the distribution function we can 
describe the quality of the filter, after the selection process is completed. 
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When the derived process may be carried out analytically we get 
mathematical expression for the output of the detector. In case the process 
will not yield to ordinary mathema.t:ical manipulations one must have recourse 
to some type of approximate solution or perhaps numerical solutions. This 
has not been investigated thoroughly as yet, however. 

The solution of the ideal detector problem is the most difficult 
part of the complete filter design as far as mathematics is concerned. 
The selection process which follows is usually very simple mathematically, 
but may be based upon sone very subtle considera ttons. It is impossible 
to describe this process in much detail except for specific situations. In 
view of this, we leave the topic out of the general design method and con
sider the detector design as a large step toward complete filter design. 

The General Case In the general case we have only two functions with 
which to deal. The first is the 'noise' distribution, analogous to the one 
written for the normal distribution in Eq. 1. We denote this distribution 
by 

The second quantity is the distribution describing the process. This is the 
joint distribution of Eq. 4. 

As was pointed out in the example, we are usually only interested 
in the last values of X and its first n-l derivatives, rather than all values 
for all time. Thus, in order to facilitate the calculation of this re
stricted joint distribution we will rewrite Eq. 4 in such a form that it 
expressed the joint distribution of all the nn and of values of X and its 
first n-l derivatives in the last time interval. '!hus we have: 

17. 

The problem now resolves itself into this. We receive the first k 
samples and from the measurement process alone, since the measurements are 
independent, we may write: 

k 

W1 (Xl ,X2, • • .. ,Y":!.,a2, • • • • ,ak) " TT WN(X/aj ) 18. 

j=l 
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Now since only the f'inal values of' X and its derivatives are of 
real interest f'or their own sake J we wi11J by algebraic manipulations J 
express each of theX_1 in terms of'Ik and the derivatives in the kIth in
terval and the nlth d!rivative in all of' the intervals. Then the above 
expression may be considered as a joint distribution of the values of' X 
and its first n-l derivatives in the kIth interval and tha n I th derivative 
in all preceeding intervalsJ conditioned on the reception of' the f'irst 
k samp1esJ thus: 

This is the most we can do if tm function Eq. 17 is not known. 
If' Eq. 17 is given describing the process we multiply these two functions 
together since they are independent statements about the same variables. 
Then to eliminate the yjl J which are not of' 'immediate interest we integrate 
over all])11. This leaves us with· a joint distribution involving only X and 
its derivatives in the kIth interval. This is the desired output of' the 
detector. 

To sum up t~ steps we see that: 

1. We multiply the distributions (Eq. 16) together that 
describe the nois.y sample values. 

2 •. We make algebraic changes of the variables so as to 
express the variables with which we want to work. 

3. We multiply by the joint distribution (Eq. 17) that 
describes the process being mea~Ured. 

4. We integrate over all variables that are not of 
immediate interest. 

We note here J in genera1J that it is necessary to receive a whole 
sequence of' data bef'ore perf'orming a~ integrationSJ since the f'unctions 
may be dependent upon past values. If' tJ:e integrations 'Were carried out 
say f'or k pieces of' dataJ some past information lV"ould be dest,royed. Then 
it would be impossible to accurately determine what the exact distribu
tion of the derivatives would be in the k-l interval. In the special case 
we worked out firstJ the distribution of' present values of' acceleration 
did not depend upon past values of the other variables and thus· we could 
work the problem step by step as the data arrived. It will be recalled 
this was the method used the second time (solution B) the problem was dis
cussed, in order to obtain the graphs of the functionsJ Figure 9, 10 and 
11. 
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Conclusions: 

We see that the information needed for the detector design is in 
two parts. These are the probability density distributions of the function 
to be measured, and the noise contaminating the data. For the representa
tion chosen, we obtained the complete solution of the detector performance. 
We see that one may draw inferences as to best sampling rates under certain 
condi tions. 

WIW/ jmc/mrs 

Signed~{)::_. -*~-~~~....---_ 
W. r. Wells 

APproved~~ • w. K. Lin 


