
61
Memorandum M-1624-l

Digital Computer Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts

SUBJECT: SHORT GUIDE TO CODING AND WHIRLWIND I OPERATION CODE

To: Group 61 and Applications Group

From: Philip R. Ba~ley

Date: Septembe~ 2, 1952; Revised November ~8, 1952

Page 1 or 13

Abstract: This note contains an up-to-date version of the Short Guide to
Coding and the Whirlwind I Operation Code.

"I FOREWORD

The following definitions have been adopted and consistently
adhered to:

seguence: the numberical or other arrangement of a set of words stored
or performed

instruction: a l6-digit binary word used to control the computer
operati9.!!': 'the 5' digits of an instruction" vlhichgo to the operation

control switch
command: a control pulse from the control,matrix
process: an automatic manipulation initiated by a command
moaulo: (abbreviated "mod ll) A number p modulo q is defined as the

numerator of the fractiona;J. remainder. when, :p_ is "divided by q
I

60 28
Ex. 1: 60 mod 32 •. 32:;: 1 + 32' hence 60 mod 32 = 28

Ex •. 2: 1.37 mod l. ~ _ 1 + ~,.hence 1.37 mod 1 = .37
1- 1

SECTION 1. SHORT GUIDE TO CODING

COMPUTER PROGRAMS

~Program. A program is a sequence of actions by which a computer
handles a problem. The process ~f' determining the sequence of actions
is known as programming.

t/ Flow diagrams.', A flow diagram is' a series of statements of what the
computer" has ," to do at various stages in a program. Lines of flow indicate
how the computer passes from one stage of the program to another.

61
Memorandum M-1624-1 Page 2

Coded program. Programs and flow diagrams are somewhat idependent
of computer characteristics, but instructions for a computer must be
expressed in terms of a code. A set of instructions that will eriable
a computer to execute a program is called a coded program, and the
process of preparing a coded program is known as coding. Individual
coded instructions call for specific operations such as multiply, add,
shift, etc.

COMPUTER COMPONENTS

Registers and words. A register has 16 digit posi tion's, each able to
store a one or a zero. .A word is a set of 16 digits that may be stored in
a register. A word can represent an instruction or a number.

Arithmetic element. Arithmetic operations take place in the arithmetic
element, whose main components are" three flip-flop registers"; the a-Register,
the Accumulator, and the B-Register (Jill, AC, and BR). The 16 digit positions
of AR starting from the left are denoted by AR. 0, AR 1 ... AR 15. The digit
positions of AC and BR are denoted in a similar fashion. Words enter AC
through AR; BR is an extension of AC to the right.

Storage. The term "registerll by itself refers to the main electrostatic
storage, which consists of 1024 registers, each of which is identified by an
address. These addresses are II-digit binary numbers from 32 to 1055. The
computer identifies a register by its address. Electrostatic storage may at
some future date be expanded to 2048 registers, numbered 0 through 2047.

Input-output 0 All information entering or leaving the computer is
temporarily stored in the input-output register (lOR). The computer
regulates the flow of information between the internal storage and lOR, and
also calls for any necessary manipulation of external units.

Control element. The control element controls the sequence of computer
operations and their execution. The control element takes the instructions
one at a 'time from storage, where the instructions are stored as individual
words.

Inter-connections. The four main elements of the computer (storage,
control, arithmetic, and input-output) are connected by a parallel communica
tions system, known as the bus.

REPRESENTATION OF INSTRUCTIONS

Operation section. When a word is used to represent an instruction the
first (left-hand) 5 digits, or 'operation section, specify a particular
operation in accordance with the operation code.

Address section. The remaining 11 digits, or address section, are
interpreted as a number with the binary point at the right-hand end. For
the majority of instructions this number is the address of the register whose
contents will be used in the operation. In the instructiops slh, ~, srh,
~, clc, and clh, the number specifies the extent of a shift, and also an

61
Memorandum M-1624-l Page 3

additional variant, such as roundo~f; in r§, rd, and !£, the address section
is not used.

Example. The instruction c~ x has the effect of cl~aring AC (making all
the digits zero) and then copying into AC the word that is in the register
whose address is x. Ifq is a quantity in some register, the operation needed
to copy q in AC is not ~ but ~, where x is the a~dress of the register
that contains q. '

REPRESENTATION OF NUMBERS

Singl~~~ord representations. When a word is used to represent a number
the .first djgit iridicates: the sign and the remaining 15 are numerical digits.
For a positive number the sign digit is zero, and the 15 numerical digits with
a binary point at their left specify the magnitude of the number. The nega
tive -y of a positive number y is represented by complementing all the digits,
including the sign digit, that would represent y. (The complement is formed
by replacing every zero by a one and everyone by a zero.) In this way a word
can represent any multiple of 2-15 from -1 + 2-15 to 1 - 2-15• Neither +1 nor
-1 can be represented by a single word.· Zero has two representations, either
16 zeros or 16 ones, which are called +0 and -0 respectively.

Overflow--increase of range and precision.
15

With single-word representation
the range is limited to numbers between -1 + 2- and 1 - 2-15 • Programs must
be so planned that arithmentic operations will not cause an overflow beyond this
range. The range may be extended by using a scale factor, which must be
a 3D-digit number. Overflow will stop the computer in an aritprnentic check
alarm except where special provis,ion has been made to accommodate the overflow
(see ~ operation).

COMPUTER PROCEDURE

Seauence of operations. After the execution of an instruction the program
counter in the control element holds the address of the register from which the
next instruction is to be taken. Control calls for this instruction' and
carries out the specified operation. If the operation is not ~ or £E the
address in the program counter then increases by one so that the next instruc
tion is taken from the next consecutive register. T.he ~ and .£I2 instructions
permit a change in this sequential procedure.

Tranfers. A transfer of a digit from one digit position to another
affects only the latter digit position, whose previous content is lost.

Zero. All sums and differences resulting in, zero are represented as
negative zero {I. III III III III Ill) except in the two cases: (+0) + (+0)
and (+0) - (-0). The sign of a zero resulting from multiplication, division,
or shifting is in accordance with the usual sign convention.

Manipulation of instructions. Words representing instructiont may be
handled in the arithmetic element as numbers.

61
Memorandum M-1624-1 Page 4

Procedure in the arithmetic element. The execution of an addition
includes the process of adding in carries; this process treat~ all16 digits
as if they were numerical digits, a carry from AC 0 being added into AC 15.
(This compensation is necessary because of the method of representing negative
numbers.) A subtraction is executed by adding the complement. Multiplication,
division, scale factoring, shifting (by not cycling) and roundoff are all
executed with positive numbers, complementing being performed before and
after the process when necessary. For roundoff the digit in BR 0 is effectively
added into AC 15.

BR. The final binary value of digits which pass from AC to BR or vice
versa as a result of operations which multiply, divide, scale factor, or
shift (but not cycle} is determined by the sign digit assigned to AC at the
end of the operation. If the sign is negative the digits were in effect
complemented as they crossed the digit-boundary between AC and BR. If the
sign is positive no complementin~ occurred. ~he net effect is that a number
in BR is 'treated as,a positive magnitude, the sign of the nUmber being
indicated by the sign digit of AC. Therefore, if a number is to be recalled
from BR for further operations, it is necessary to compensate for any change
in the sign digit of AC which may have occurred after the number was placed
in BR •. No complementing of any sort occurs in the execution of the cycle
instructions, during which AC and BR may be considered a closed ring of 32
digit positions.

NOTATION FOR CODING

Addresses. A coded program requires certain registers to be used for
specified purposes. The addresses of these, registers must be chosen before
the program can be run on the computer, but for stu~v purposes this final
choice is un~ecessary, and the addresses can be indicated by a system of
symbols or index numbers.

Wri ting a coded program. Reigsters from ''1hich control obtains instructions
may be called action registers, and should be listed separatel~ from registers
containing other information, which may be called data registers. A coded
program is written out in two columns: the first oontains the index number
of each action or data registers, and the second column indicates the word
that is initiall~ stored in that register. In many cases part or all of a
word may be immaterial because the contents of the register in question will
be changed during the course of the program. This state of affairs is indicated
by two dashes,for example, ca--.

Oonventional notation. In order to make a program more readily under
standable to others and more easily remembered by the author himself, it is
desirable to write short descriptions of the functions served by certain key
instructions and groups of instructions. It is also desirable to indicate
breaks and confluences in the "flow" of the program and to indicate instructions
which are altered or otherwise abnormally used during the program. Some
generally accepted symbols-fOr this purpose are exemplified and described below:

start---~

120 td 124

121 ca 161""

122 td 132

initial entry (i.e., start of program)

61
Memorandum M-1624-1 Page 5

139--1 123

124

125

126
I

I

ca 181

su(182)

sr 16

p:p 128

re-entry point, showing origin of re-entry

address altered by program, initial value shown

conditional short break in consecutivity
(note other form below)

127 I ad 140
I .

128

129

130

\

~ad 133

tS) address indicated by arrow (e .g. add~ess = 130 in
'this case), used primarily at early stages of
writing

(ca217/cs217) word altered by program, alternative values
shown

131 sp 78 no break in consecutivity, despite sp operation,
where a closed subroutine is called in

(122,167) 132 ts (-) address altered by program, initial value
immaterial, locations of altering instructions
shown, alternative values not shown

133 Ica 217

134 ~p 95
135 p3

136 x 114

137 .9.P ... :.11.1_

138 ts 114

139 s:2 123

140 Ilrs 0

137, 171-7 141 ts 171

semi-pseudo instruction, serves both as instruction
and number

short break in consecutivity, used especially
where a closed subrouti~e with program
parameters is called for

conditional break in coneecutivity (note short
for~ above)

break in consecutivity (note short form above)

pseudo-instruction, serves only as a number,
not as instruction

entry point, showing origins of entry

The abbreviations RC, CR. Abbreviations used in referring to the
register that contains a certain word or the word in a certain register are

RO 0 0 • = (Address of) register containing • 0

CR •• 0 = Contents of register (whose address is) . . .

61
Memorandum M-1624-1 Page 6

The symbol si x. When an address forms part of an instruction it is
represented by the last 11 digits of a word whose first 5 digits specify an
operation. An address that is not part of an instruction is represented by
the last 11 digits of a word whose first 5 digits are zero, which is equivalent
to specifying the operation siD Thus the word for an unattached address x
may be 'lfri tten~. It may also be "Tri tten as +x or as -fox X 2-15•

SECTION 2. WHIRLWIND I OPERATION CODE

NOTES ON THE OPERATION CODE

Introduction. The Whirlwind I Operation Code has been rewritten to
bring it up-to-date, and to incorporate all notes, wherever possible, with
the specific operations to which they apply, regardless of the undue repetition.
Included under each operation are the average time of execution, the function,
the contents (if altered) of AC, BR, AR, lOR, SAM, and register x after the
operation, and possible alarms.

Abbreviations. The abbreviations used are the following:

AC = Accumula tor lOR = In-Out Register

AR = A-Register ES = Electrostatic Storage

BR = B-Register x IE; address of a storage register

SAM = Special-Add Memory n = a positive integer

Contents of various registers. The contents of AC, BR, AR, lOR, SAM,
and the register whose address is x are undistur.bed unless the contrary is
stated.

Alarms. Arithmetic check, divide error, and check register alarms due
to programming cannot be caused except as specifically noted. M-1623 ,
I1Programming for In-Out Units" discusses in-out alarms.

Execution times. The times given are average times for the execution
of single instructions which are stored in ES and which refer to addresses
in ES. Further details are given in M-1623 and in E-I40.

In-Out Operations. Operations which call for the transmission of informa
tion to and from various uni ts of terminal. equipment termed "in-out operations, n
are described briefly in the Operation Code. Details of the actual applica
tion of these operations (si, bi, rd, bo, and rc) appear in M-1623.

Three-letter operations. The three-letter operations slh, sIr, srh,
~, clc, and clh utilize part of the address section of the instruction
(namely, digit 6) to specify the operation. If an a.ddress is inserted in
one of these instructions by a ta or td operation, care must be taken to
maintain the presence or absence of digit 6 in the address of the modified
instruction. The two-letter designations, ~~, cl, are ambiguous and
cannot be used in programs, but they may be used in general descriptions
and comments.

61
Memorandum ~1624-1 Page 7

Operation Function :Number Binary Time

si pgr select in-out unit/stop 00000 45 micro see

Stop any in-out unit that may be running. Select a particular in-out
unit and start 'it operating in a specified mode, designated by the digits
p g r; or, stop the computer. si 0 will stop the computer; si 1 will stop
the computer only if the "Conditional Stop" switch is ON. An in-out alarm
may subsequently occur if the computer is not ready to receive information
transmitted to it from the selected in-out unit. A transfer check alarm
may resul t from the use of an illegal 'aj. address. For fur the r details, see
M-1623, "Programming For In-Out units."

rs x reset II 00001 30 microsec

Reset any flip-flop storage registers connected to the "reset on rsn
circuit.

s1

rs

bi x block transfer in #2 00010 (see M-1623) bi
AVAILABLE ABOUT JAN 0 1953

Transfer a block of n words or characters from an in-out unit to ES,
whf5e register x is the initial address of the block in ES, and ± n times
2- is contained in AC. The computer is stopped while the transfer is taking
place. After a block transfer, AC contains the address which is one greater
than the ES address at which the last word was placed; AR contains the initial
address of the block in ES. Fur further details, see M-1623, "Programming
For In-Out· Uni ts."

rd x read 00011 30 microsec

Transfer word from lOR to AC, then clear lOR. (Wai t, if necessary,
for information .to arrive in lOR from an in-out unit.) Contents of AR is
identical to contents of AC. The address section of the instruction has
no significance. For further details, see 'M-1623.

bo x block transfer out #4 00100 (see M-1623)
AVAILABLE ABOUT JAN. 1953

Transfer block of n words from ES to an in-out unit, where x is the
initial address of the block in ES, and ± n times 2-15 is contained in AC.
,The computer is stopped'while the transfer is taking place. After the block
transfer, AC contains the address which is one greater than the ESaddress
from which the last word was taken and stored; AR contains the initial
address of the block in ESo For further details, see M-1623, nprogramming
For In-Out Unitso"

rd

bo

, ' .

61
l8morandum K-1624-1 I',' Page ·8

gperation. Binary

:Cr (, .J
./ < 1,((~

Time ~ ~/-
/

Ftmctlon Ntmlber

rc x record 00101 30 miorosec

. Transfer contents of AC 'VIia lOR to an in-out unit. IOR is
cleared only after an rc used as a display instruction. The address
section of the instruction has no significance. For further details,
see)(-1623, "Programming For In-Out Units."

ts x transfer to storafS6 11:.8 01000 86 microsec

Transfer contents of AO to register %0 The original contents
of x is destroyed.

td x transfer di~i ta. 1.9 01001 86 microseo

frans£er last 11 digits of AC to last 11 digit positions of
register %. The original contents of the last 11 d~it positions
of register x is!~destjpyed.

transfer address 01010 86 microsec

Transfer last 11 digits of AR to last 11 digit positions of
register %. The original contents of the last 11 digit positions of
register x is destroyed 0 The!! operation normally to11ows an!E.
or !!. operation.

ck x check #11 01011 48 miorosec

\Compare contents of AC with contents of rs§ister xo .If contents of
Ae is identical to contents of register. x, proceed to next instruction;
otherwise stop the computer and give a ·check-register alarm.· (+0 is not
identioal to -0).

rc

ta.

td

ta

6:X: x exchange 113 01101 86 mioroseo ex

Exchange contents of AC with contents of register x (original
contents of AC in register x, original contents of register x in
J.C .and AR). !!...2. will clear AC without cle~.ing BRo

cp x conditiona1progr~ 114 01110 30 mioroseQ

It number in AC 'is l'lSgative" prooeed as in!R.o If number in AC
1s posit~~1 proceed to next instr~otion, but clear the ARo

I

sp x subpro~ram t15 01111 30 microseo

Take next instruction from register x. If the .!E. instruction was
at 'address y ~ store 1 + 1 in last 11 digit positions of ARo All of the
original con~ents 0 AR is lost.

cp

sp

ca x clear and add 116 10000 48 microsec ca

Clear AC and BR, then obtain oontents of SAJ4 (+1, 0, or -1) times 2-16

and add contents of register x, storing result.in ACo The oontents of
register x appears in ARo SAl! is c1earedo Overflow may occux-, giving an
arithmetic check a1ar.mo

61
Memorandum U-1624-1 Page 9

Operation
(

Funoti~on~ __________ X_'_m_b_e_r _____ B_in_a_ry~ ____ -T-'-me--______ __

. os x olear and subtraot tl'l 10001 48 microsec

Clear AC and BR, then obtain contents ot SAM (+1, 0, or -l)
ttmes·2-15 and subtraot contents ot reg1ste~ x, atortng result in 'c. The contents of r~gister x.appears.in jR. ~ is oleared.
OverflOw may oocur, giving an arithmetic- check. alarm.

_·ad_x ___ &_d_d __________ ·' .. 1_8 __ 10010 48 micros8c

Add . the oontents ot register x to oontents.ot AC, storing result
10 AC. The contents of register x appears in AR. SAM is oleaCed~
Overflow may. oocur, giving. an arithmetic cheok alarm.

au z subtract· 119 10011 48 mioroseo

Subtract contents of register z trom contents of !O, storing
result in AC. The contents of register % ~ppears in AR. SAM is
cleared. Overflow may ooour, giving an ar.ithmetic .oheck alarm.

am. x clear and add magnitude 120· 10100 48 microsec

Clear AC and BR, then obtain oontents of SIM (+1, 0, -1)
t~es 2-15 and add magnitude of content. ot register x, storing
result in AC. The magnitude ot the .contents ot register x.appears
in.lR. SAM is cleared. Overflow may ooour , giving an ari thmetio
aheok alarm.

sa x special add '21 10101 48 mie.ros8e

Jdd contehts of register x·to contents ot AC, storing result in
AC and retaining in SAM any overflow (ineludiDg sign) for use with
next ca os; or em instruction. Between sa and the next ca, cs, or am, .
tor w~h~e sa:rs a preparatlon,the use-ot any instr~ction-Whioh
clears SAM wilrresult in the loss of the overflow, with no other
effect on the normal funotion' of the intervening operat·ion. (In

. addition to ca, os, and am, the follerring operations olear SAMt
~, su, sa, !.2., dm, !!:O, M" dv, .!b sr, and .!!..). If' the overflow
resulting trom the sa is to be disregarded, care must be taken to
destroy it before t!i8 next ~, .2!, or ~ instruction. The content.

o of register x appears in AR. SAM is oleared before, but not atter,
the addition is perfor.med.

ao.x add one 10110 86 mioros8c

-15 . Add the nl.Dllber 1 t1me~ 2 to oontentsof register x, stor1pg
the result in AC and in register x. The original oontents ot reg1steT z
appears in AR. SAIl is oleared. Overflow may ooour, giving an arithmetio .

. oheck alarmo

08

ad

eu

sa

&0·

61
Memorandum M-1624-1 Page 10

Operation Function Number Binary Time

dmx difference magnitudes #23 101ll 48 microsec

Subtract the magnitude of contents of register x from the magni
tude of contents of AO" leaving result in AC. The magnitude of contents
of register x appears in AR. SAM is cleared.

mr x multiply and roundoff #24 11000 65 microsec

Multiply contents of AC by contents of register x. Roundoff
result to 15 significant binary digits and store it in AC. Clear BR.
The magnitude of contents of register x appears in AR. SAM is cleared.

mhx multiply and hold #25 11001 65 microsec.

Multiply contents of AC by contents of register x. Retainthe
full product in AC and the first 15 digit pOSitions of BR~ the last
digit position of ER being cleared. The magnitude of contents of
register x appears in AR. SAM is cleared.

dv x divide #26 11010 120 microsec

Divide contents of AC qy contents of register x, leaving 16 binary
digits of-the quotient in BR and ~ 0 in AC according to the sign of the
quotient. The instruction slr 15 following the dv operation will round
off the quotient to 15 bimry digits and store ftin AC. Let u and v be
the numbers in AC' and register x respectively when the instruction
dv x is performed. If lui <. 11 the correct quotient is obtained and no
overflow can arise. If ~ ut > Iv~ the quotient exceeds unity and a divide
error alarm will result. ~f u = v ~ 0, the dv instruction leaves 16
ones in BR; roundoff in a subsequent sIr 15 will cause oveorflow and give
an arithmetic check alarm. If u = v = 0, a zero quotient of the appropriate
sign is obtained. The magnitude of contents of register x appears in AR.
SAM is cleared.

slr n shift left and roundoff #27 11011 41 microsec

Shift contents of AC and BR (except sign digit) to the left n
places. The integer n is treated modulo 32; digits shifted left out
of AC 1 are lost. (Shifting left n places is equivalent to multiplying
by 2n, with the result reduced modulo l~) Roundoff the result to 15
binary digits and store it in AC. Clear BR. Negative numbers are
complemented before and after the shift, hence ones appear in the
digit 9laces made vacant by the shift of negative number. Digit 6
(the 2 = 512 digit of the address) of the instruction slr n must be
a zero to distinguish slr n from slb n described below. The instruction
slr 0 simply causes roundoff an d clears ER. SAM is cleared. Roundoff
may cause overflow, with a consequent arithmetic check alarm.

dm

mr

mh

dv

sl

6J.
Memorandum M-1624-l Page 11

Operation Function Number Binary Time

slh n shift left and hold #27 11011 41 microsec slh
~~----------~--~------~~----------~~--~~~----~~----------

Shift contents of AC and BR (except sign digit) to the lsft n
places. The integer n is treated modulo 32; digits shifted left out of
AC 1 are lost. (Shifting left n places is equivalent to multiplying by
2n, with the result reduced modulo 1.) Do not roundoff nor clear BR.
Negative numbers are complemented before and after the shift, hence ones
appear in the digit places made vacant by the shift of a negative number.
Digit 6 (the 29 = 512 digit of the address) of the instruction slh n must
be a one to distinguish slh n from sIr n described above. SAM is
cleared.

srr n shift right and roundoff #28 11100 41 microsec srr

Shift contents of ACand BR (except sign digit) to the right n
places. The integer n is treated modulo 32; digits shifted right out
of BR 15 are lost. (Shifting right n places is eq~ivalent to multiplying
by 2-n .) Roundoff the result to 15 binary digits and, store it in AC. Clear
BR. Negative numbers are complemented before and after the shift, hence
ones appear in the digit places made vacant by the shift of a negative number.
Digit 6 (the 29 = 512 digit of the address) of the instruction srr n must be
a zero to distinguish srr n from srh n described below. The instruction
srr a simply causes roundoff and clears BR. SAM is cleared. Roundoff
~in a srr 0) may cause overflow, with a consequent arithemetic check alarmo

srh n shift right and hold #28 11100 41 microsec srh

Shift contents of AC and BR (except sign digit) to the right n
places. The integer n is treated modulo 32; digits shifted right out of
BR 15 are'lost. (Shifting right n places is equivalent to multiplying by
2-n o) Do not roundoff the result nor clear BR. Negative numbers are
complemented before and after the' shift, hence on,esappe~r in the digit places
made vacant by the shift of a negative number. Digit 6 (the 29 = 512 digit
of the address) of the instruction srh n must be a one to distinguish srh n
from srr n described above. SAM is cleared.

,sf x scale, factor #29 11101 97 microsec sf

Multiply the contents of AC and BR by 2 sufficiently often to
make the positive magnitude of the product equal to or greater than 1/20
Leavethe final product in AC and BR. store the number of multiplications in
last 11 digit places of AR and register x, the first 5 digits being
undisturbed. If all the digits in BR are zero and AC contains + 0, the
instruction sf x leaves AC and BR undisturbed and stores the number 33
times 2-15 i'iithe last 11 digi t positions of AR and. register x. Negati ve
numbers are complemented before and after the multiplication (by shifting),
henc,e ones appear in the digit places made vacant by the shift. SAM is
ClealJdo

61
Memorandum H-1624-1 Page 12

Operation Function Number Binar.y~~ _____ T_l_·m_e ____ _

_cl_c_n_,.. __ c...!!ycle left and clear (BR) #30 11110 41 microsec

Shift the full contents of AC and BR (including sign digit) to the
left n places. The integer n is treated modulo 32; digits shifted left
out of AC 0 are carried around into BR 15 so that no digits are lost.
Clear BRo No roundoff. With thecle operation there is no complementing
of AC either before or after the shift; theactual numerical digits in AC
and BR are cycled to the left. The digit fina~lY shifted into the sign
digit position determines whether the result is to be considered a positive
or negative quantity. Digit 6 (the 29 = 512 digit of the address) of the
instruction clc n must be a zero to distinguish cle n from clh n described
below. The instruction clc 0 simply clears BR without affecting AC.

c1c

clh n cycle left and hold #30 11110 . 41 microsec clh

Shift the full contents of AC and BR (including sign digit) to the
. left n places. The integer n istreated modulo 32; digits shifted left out

of AC 0 are carried around into BR 15 so that no digits are lost • With the
elh operation there is no complementing of AC either before or after the

Eililft; the actual numerical digits in AC and BR are cycled to the left. The
digit finally shifted into the sign digit position determines whether the
result is to be ~onsidered a positive or negative quantity. Digit 6
(the 29 = 512 eli. no; t of the address) of the instruction clh n must be a one
to distinguish elh n from cle n described above. The instruction clh 0
does nothing.

61
Memorandum M-1624-1 Page 13

ALPHABETIC LIST OF OPERATIONS

This is an alphabetic list of Whirlwind operations, including operations
and designations which ~~ve become obsolete since 1950.

