
Pa&e 1 of 26

6345
Engineering Note E-516

Digital Computer Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts

SUBJECT: COMPREHENSIVE SYSTEM OF SERVICE ROUTINES

To: S. & E. C. Group and Group 61

From: H. Uchiyamada

Date: December 17, 1,952

Abstract: The Comprehensive System of Service Routines provides for con
version by WWI to binary form from Flexowriter-coded perforated
tapes prepared according to conventions which have been chosen to
facilitate the task of coding programs tor ~II~ In addition to
straightforward conversion of function letters and decimal addresses"
the Comprehensive System (CS) provides for (1) use ot floating
addresses for which assignment of final storage locations is made by
the computer (this has the important advantage of permitting inser-

• tions and deletions of instructions without extensive renumbering in
the program) (2) automatic selection of Input/Output and Programmed
Arithmetic (PA) interpretive subroutines which 'eliminates to a con
siderable degree the time wasted in handling tapes and the possible
errors involved (3) automatic cycle control (patterned after the
Manchester B-tube) available within the PA routines which will re
duce the need for using uninterpreted WWI instructions within an

I

interpreted program and which will generally facilitate programming
(4) th§handling of generali~ed decimal numbers (gdn) of the form
:z x ali x/o~i which enables the programmer to express numerical
data in Whatever form is best sui ted to the particular calculation.

Oomment: The author has acted, in the main, as editor of this E-note. Sec
tions have been written by Eric Mutch, John Frankovichs Frank Helwig
and Edwin Kepley III The CS as a whole represents the wor1$: of many
people in the Scientific and Engineering Oomputation Group_ This
note is i~tended as a reference manual. not as an introductory

'. presentation of programming techniques and conventions, which will
be available later.

Index for Engineering Note E-5l6

A

Accumulator, 12
multiple register, 12, 16, 23

Address, 3, 4
absolute, 5, 7
assignment, 5, 8
current, 5, 6, 10
definite, 10
floating, 3, 4, 6, ~, 9, 10
indefinite, 10
relative, 3, 4, 5, 7, 9
temporary storage, 3, 4, 9

Ambiguities, 9
list of, II·

B

Block counter, 24
Buffer register, 9, 16, 17

C

Carriage return, 5, 8, 10
Characters

special, 25
Comma, 5, 9
Comparison register, 15
Constant syllables, 3

integers, 3
octal numbers, 3
operations, 3

Current address, 6, 7, 9
indicator, 5

Cycle control, 14, 17
count, 9, 15
decrease, 15
exchange, 15
increase, 15
reset, 15

D

Decimal point, 22
integers, 3

Definite address, 10
DITTO, 4, 10, 11

E

Equals sign, 5, 8, 9,.10
Exponents, 23

F

Fence, 4, 10
Floating address, 3, 4, 6, 7

assignment, 8, 9
Format, 23, 24
Frame, 23, 24

example of, 23, 24

G

Generalized decimal number, 8, 10)
13, 14

I

IN, 4, 10, 13
Indefinite address, 10
Index register, 15
Initial zero suppression, 22
In/ Out, 21
Input, 21
Integers, 3

decimal, 3
literal, 3, 9, 15, 16, 17

Interpreted operations, 3, 12,15,1
functions of, 19

Interpretive subroutines, 12
entry to, 13
exit from, 13
automatic asseinbly of, 17

L

Literal integers, 3, 9, 15, 16, 17

M

Magnetic tape units, 21
MOD, 4
Multiple-length number, 4

fixed point, 4
floating point, 4

Multiple register accumulator (MRA)
12, 16, ~

N

NOTPA, 4, 17
Number specimen, 21, 22
Number system, 4, 12, 21

indicator, 4
multiple-length, 4, 12,' 14
single-length, 4, 13, 14

'Numeroscope, 21

o

Octal numbers, 3, 8
Operations, 3

interpreted, 3
WI, 3

Oscilloscope, 21
OUT, 4, 10, 13
Output, 21

equipment, 21
special words, 4
speeds, 21

P

PA, 4, ;1.2
PARAMETER, 4
Parametric syllables, 3

floating address, 4
preset parmeters, 3, 8, 9, 10
relative address, 4, 9
temporary storage, 4, 8, 9

Personal pargmeter, 3, 7, 8
Preset parameters, 3, 7, 8, 9, 10

personal, 3, 7, 8
subroutine, 3, 7, 8
universal, 3, 7, 8

Print, 21
Program, 3
Programmed Arithmetic, 12
Punches, 21

R.

Relative address, 3, 4, 5, 9
indicator, 5

Rules, 8, 9, 10, 11

S

Scale factors, 23
Single-length number, 4

fixed point, 4
floating point, 4

-2-·

Special output characters, 25
Special words, 4, 10, 11, 13
Speoimen number, 21, 22
START AT, 4, 9

i START AT, 4, 9, 10
Stem, 9, 10
Sub-blocks, 17, 18

burfer, 18
cycle count, 18
divide, 18
PA, 18

Subroutine, 5, 8
parameter, 3, 7, 8
interpretive, 12, 13

Syllables, 3, 8, 9, 10, 11
constant, 3
parametric, 3

T

Tab, 5, 8, 10, 24
Tem~rary storage, 3, 4, 8, 9
Terminating characters, 3,. 5

output, 23
Typewriters, 21

u

Universal parameter, 3, 7, 8

v

Vertical bar, 5

VI

Words, 3
output, 4
program title, 4
special, 4

Z

Zero suppression, 22

I

II

Pag.2

Table cf Contents

Introduction --~----------~------------------------------------
Definitions-----------------------------------~T----------------

Progra.m.-------:..--~~------------~---.:...:.------------
Words· --....:---------------'----------------~------------

Syllables ----------------------------------~------
oo;n.stant" -------... ----------------
parametric ------------ -------------------

Special"Words ----------------------------------,-
Number Systems --

Programming -------------------------------~------------------------
Terminating Characters ~nd !heir Functions ---------------------
Abs 01 u te Address es -,--------------------------:------------
Relative Addresses --
Floating Addresses ---
Preset Parameter - ... --------------"!'":----------------.:..--------
Rules for Forming Words Out of Syllables ----. ------... -------
Rules for Forming a Program:.Out('~ Vor4.8::~"""'-----------
List of Ambiguities ----~~--------------------~-----------

~
3
3
3
3
3
3
3

" 4

5
5
5
5
6
7
8

10
11

I I I Programmed 'Ari thmetic' ~~'~~.:...--------------------..:.--- 12
Number Systems and Definitions -------~------------------------ 12
Interpretive Subroutines ----------~----------------------- 12
Entry to and Exit from,Interpretive ~ubroutines ---------------- 13
Generalized Decimal Numbers --------~--~----------------------- 13
Cycle Control -- 14
Buffer Register --- . 16
Automatic Assembly of Interpretive Subroutines ----------------- 17
Sub-blocks and Their Lengths --------------------------~-------- 18
Interpretive Operations and Their Functions -------------------- 19

IV ,Input/ Output ------:---~-~---------~------------------------------ 21
Introduction --- 21 Examples of In/Out Instructions _____________ ---i--_____________ a1
In/Out Order Repeated -- 24
Format Specification -------------------------~----------~------ 24
Special Characters --- 25

v Conclusion -- 26

Page 3

Io Introduction

. A program is an ordered sequence of words, written with the intention of
having it typed on paper tape in the (new) Flexo~ode and inserted in WWI by
the intermediary of the Comprehensive Conversion Program (COP).

A ~ is a finite ordered sequence of syllableso Normally all the sylla
bles forming a word must be separated by a plus or minus sign, but plus signs
may be omitted wherever there is no danger of ambiguityo Details of this and
other rules governing the assembly of syllables will be given in Section 110

. Any word made up of one or more syllables must be followed by a terminating
character. There are four possible terminating characters giving four possible
ways in which the conversion program will treat the wordo These terminating
characters and their functions will be described 'in Section 110 A given word
is m~ningfU1, from the conversion programVs viev~oint only if the words, or
syllW;l.1e~, respectively, are chosen in a manner not contrary to any of the ruleso
Any'combination o~ words or syllables not forbidden by the rules will be accepted
by the conversion programo . Special words will .. be. described later in this section.
A single length word is represented .in WI by ~; ~16 binary digit array.

"\

Syllables may be divided into'two classes, namely, constant syllables
and parametric sYl:l~bleso The class of constant syllables includes opera
tions, integers and 'octal numberso The class of parametric syllables
includes preset parameters, relative'address, temporary storage, and
floating addresso

Constant Syllables
Operations are of two kinds, namely, WWI orders and interpreted

orders. The WWI operations or orders (ca, cs,---slh, sIr, srh, etc.)
are described in detail in M-1624o The interpreted orders (i~a, ics,
etc.) will be found listed with their functions under Section IlIon
Programmed Arithmetic (PA)o'

Integers may be positive or negative decimal integers or the
literal integers, b or co The decimal integers used are 0, I, 2,---,
32767 with an impljcit factor of 2-15 and no decimal point 0 The
literal integers serve a specific purpose which will be described
under Section IlIon PAc

Octal numbers are of the form doodld2d)d4d5 where d , the sign
digit, is either 0 or 1 and where dloood5 are the octal 8igits having
one of the values 0, 1, 29)p 4, 5,6,7. A 10 indicates the start
of a negative octal numbe? the remaining digits being the sevens
complement of the absolute magnitude of 'the number. If an octal
number occurs as a syllable in a word, it must always be the first
syllable, ioeo only one octal number syllable can occur in any word.
An example of a positive octal number is 000457). In order to

-obtain the negative of this number one must change the 00 to 10 and
also get the sevens complement of the five octal digits following the
sign digitp thus the negative becomes 107)204. '

Parametric Syllables
Preset parameters are of the formC4l<:A2#~ whereC(l fs u, p or z

depending on whether the parameter is of the type universal (assigned
particular meaning and never used for anything else), personal (can
be used by anyone to mea~ anything desired) or subroutine (for para
meter in subroutines) respectively; a2 is any letter of the alphabet

+

except 0 and lp and # is' any decimal number of the form 1, 2, 3,
255, with initial zero suppressedo

Page 4

000 ,

A relative addre'ss is one which is used for writing instructions
within a subroutine or within any block of instructions with addresses
relative to the start of the block (that is, as if the block started
in register zero)o Such relative addresses are obtained by including
an Itrlt in the address of the instruction, eogo ca 35r (which consists
of the three syllables ca + 35 + r)o

The single lower case letter Itt" indicates th~ zero-th register
of a block of temporary storage'o' It,s value must be assigned in the
same way as for a preset parametero See Section lIon preset para
meters 0

A floating address is' one which enables a programmer to write
his instructions so that they ~efer to the words of his program and
not to the locations of those words in storage,o

, +
Special Words

The following are different groups of speoial words:

Program titr~ words: TAPE, MOD, PARAMETER, suffixed by
additional information

Output words! TOA, FOR etco (See Section IV under Input/
Output) perhaps suffixed by add~tional
informatio~ and perhaps preceded by an i

Number system indicators: MULTIPLE, SINGLE, (m~n) where
m and n are integral numberso

: For details see Section III
under P~A •.

Entry to and'exit from PA routines: INt OUT*
Word called a fence: 111000/11 (ioeo 25 vertical bars)
Words: DITTO, START AT, i START AT, the last two of which

are suffixed by the, starting addres s
Denial of need for a PA interpretive routine: NOTPA,
Special words which are ignored~ LSR (library of subroutines),

END OF SUBROUTINE

The number system (mSln) indicates a number, m'-binary digits long with
~ the number of binary digits in the exponent of 2, and the number is of
the form ~= x o2Y where x is a m binary digit number and y is ~ B binary'
digit numbero A single length number with a fixed point would be a (15,0)
number 0 An example ofa.single length floating point number would be (15,15)0

, ,An example of. a multiple-length number with a fixed point would be (30,0) 0 "

An example of a multiple-length number with a floating point is (30-j,j)
where l~ j = 140 For a detailed description of multiple length numbers
see Se,ction IlIon PA" Single length numbers with fixed point are
adequately handled by the WWI operationso Multiple-length and,single
length floating point numbers are handled by the interpretive operations
for which see Section IlIon PAo

All special Words must be terminated by a tab or carriage returno ·

Only these Special vTords occupy storage' registers 0

IIo Programing

Terminating Characters and their Functions

Any word made up of one or more ~yllables must be followed by a terminating
character 0 There are four possible terminating characters giving four possible
ways i~ which the conversion program will treat the wordo

Tab (--~I) or
Carriage Return (~)

Vertical bar (I)

Equals sign (=)

. Absolute Addresses

= "",lOrd to be stored" indicator e This causes tQe
word to be stored in the register determined by
the current address indicator, unless the word is
preceded by an equals sien, for which see belowa

= address assignment indicatoro This causes the "
current ~ddress indicator to be set to the value
corresponding to the preceding wordo Thus the
following word to be stored will be placed in the
register thus indicated regardless of consecutivitye

= floating and/or relative address assignment indica
tor (see paragraphs on relative and floating
addresses below)

= parameter assignment indicatoro This causes the
parameter immediately preceding the equals sign
to be set to the value follovling it (which will
be terminated by ~ tab or carriage return) 0 If
no word follows the equals sign (iDeo if the next
symbol is a tab or carriage return) the parameter
will be assigned the value zeroo

At the sta~t of a program and at ~ny point"thereafter a decimal integer
follmved by a vertical bar (eogo 961) indicates the location into which the·
next word is to be placedo In the abse~ce of any further indication words will
be stored consecutively; in the absence 'of an initial indication words will be
stored consecutively starting in register 32 (decimal)o Note that this con
version program does not permit the USe of octal addressesa

Relative Addresses

Instructions within a subroutine-or within any block of instructions may be
written with addresses relative to the start of the blockG Such relative
addresses are obtained by including an "r tl in the addresso This causes the
content of a special register kno\vn as the relative address indicator (roaoi)
to be· added to the instruction during . conversion., The roaoio may be set at
the beginning of the block by the symbols Or, which cause it to be set to the
value of the current address--ioeo the address into which the next word will
be puto If an integer n precedes the letter r instead of the zero the roaoi.
will be set to a value equal to the current address minus the integer n; eogo
if the current address is 90 the symbols 5r~ will set the roa.i. to 850 Note
that a comma following a floating address will also set the roaoio (For details
see the following paragraph on floating addresseso) The current address indica
tor may be set to a desired relative value at any point in a program by punching
that value followed by the letter r and a vertical bar; eogo 35rt will cause the
next word to be stored in 35r regardless of consecutivityo

Floating Addresses

As already stated a flQating .ad.dress system is designed to enable a
~programmer to write his instructions so that they refer to the words of his
prog~am and not to the locations df those words in storage.

For example, consider the following set of instructions with fixed addresses:

321 ca 41
331 ad 100
341 ts 41
351 ca·42
361 ad 100
371 ts·42
381 ca 43
391 ad 100
40 1 ts 43
411 ca 101
421 mr 102
431 ts 103
441 cp 32

Seven of these instructions refer to·the locations of other instructions within
the gr.oupo If any instructions (or words) were to be added to or deleted from
this set, a considerable amount of renumbering would be necessary, in generalo
A floating address system removes the need for.this,by labelling each word to
which reference is made by a floating address label. The floating address is
of the form 0(#, where q is any lower-case letter of the alphabet except 0 and
1, and where # is any integer of the form 1, 2, 3,000, 255 with initial zeros
suppressed 0 This floating address, without the comma, is then used as the
address section of any instruction which is to refer to the word so labelled.
Thus the above program might become:

f3, ca m9
ad 100
ts m9
ca h5
ad 100
ts h5
ca b2
ad 100
ts b2

m9, ca 101
h5, mr 102
b2, ts' 103

. cp f3

Note that floating addresses may be used in any order and that words referring
to a floating address may occur either earlier or later than the word labelled
by the corresponding floating addresso Thus insertions into or deletions from
such a program may be made without any renumbering or any alterations to the
existing words.

The current address is the address of the register into which the next
word will·goo If the next word occupies several registers, then this is the
address of the first register of the word. When a floating address is read,
the donversion program records it,together with the current address, as an

Page 7

entry in a special table. The word following is then stored away in the normal
manner--i.e. in the location specified by the current address. At a later stage
in the conversion--when all the information to be converted has been read--all
words referring to floating addresses have added to them the relevant entries
from this table'~. The letter and numb~r(s) forming a floating address may be
chosen at will (within the limits already set on floating address labels) but
care must be taken that the sum over all letters of the maximum numbers-, used
for each letter does not exceed ~55,(eogo if only floating addresses a3, a17,
d9, x3l, xlOO and~5 were used in a given program, the condition would be
satisfied because 17 + 9 + 100 + 5 = 131< 256).' The comma following a floating
address serves also as a reference for relative addresses which follow, by
setting the relative address indicator to the value of the current address indi
cator (c.a.i.).

EX8lDEles

(Absolute address)--?> 341 ca g7'~_- (floating)
(Floating address)--~ g7, sp 73 ~-- (absolute)

ts 2r cc:.-- (relative)
(Relative address)---~ 4rf si 7a2~-- (floating)
(Floating address)--~ a2, + 3

.. , -.0055

The words in this example would be converted to:

341 ca 35
351 sp 73
361 ts 37
37j (contains +0)
38l ... - (contains +0)
39

1

si 47
40 +3
411 -.0055

A word not itself labelled by a floating address may be referred to in floating
address fashion relative to a preceding or fo11m"ing word ,,,hich has a floating
address. Thus the word "si 7a2" in the above 'example refers to the seventh
word after the word with the floating address "a2 11 • The same word could be
referred to by the floating address 12g7. It is of interest to note in this
respect that a2 = 5g7 and g7 = -5a2 (+ is implicit between -5 and a2). Note
that no additions or deletions may be made between a word referred to by such
means and the word car~Jing the floa.ting address without a certain amount of
renumbering. Corrections may be made to words already labelled by floating
addresses, and to the words following them, by preceding each corrected word by
the relevant floating address terminated by a vertical bar instead of by a comma,
e.g.

g71
la21

sp 72
-.0065

would amend the second and last orders of the above example.

Preset Parameters

The three classes of preset parameters, (universal, personal, and sub
routine) have already been mentioned in the introduction. A preset parameter
consists of two lower case letters followed by a decimal integer less than
256 but greater than zero. The second: letter may be any letter other than 0

Page 8

or 1. The first letter is used to distinguish the three classes of parameters p
ioeo u for universal parameter, p for personal parameter and z for subroutine
parameter 0 (Note that the letter s could not be used to indicate a subroutine
parameter o\ving to ,the fact that the conversion progra.m vTOuld confuse an sa
parameter with an sa 1-lWI operation, etc.) Care must be taken that the sum over
all parameter letter pairs of the maximum numbers used for each letter pair
must not exceed 40 (e.g. if only parameters pa2, za5, za7, pd7, zg4, ug6, ug8
and zzll were used in a given program, the condition would be satisfied because
2+7+7+4+8+11 = 39<41. If the single lower case letter "t" were used anYVlhere
in the program one more would have to be added to the sum which must not exceed
400 In the example given above if a "t" was used anywhere in the program the
,condition would still be satisfied since 39+1 = 40<41). A value may be assigned
to a preset parameter by a Hord consisting of the parameter follovTed by an
equa.ls sign and the value tO'be assigned terminated by a tab or carriage return.
After assignment any number of p~rameters may be added to or subtracted from
any word.', Preset parameters may be assigned values which depend on other preset
parameters. They may also be assigned values which depend on floating addresses.
Subroutine library tapes will begin with the symbols +LSR~ follovTed by the cata
log nurriller and the title of the subroutine. After the title the v?rious para
meters needed by the subroutine 'viII be listed, each follo,.red by an equals sign,
a stop character and a tab or carriage return. Thus, when copying a library
tape onto a program tape, parameter values may be inserted by hand each time the
Flexo\'lTi ter stops. If the value of any parameter is zero, nothing need be in
ser-ted and it is only necessary to restart the Flexowriter.

Examples" illustrating point Ip.ade above on preset parameters, follow:

um3=+3
ca71+um3
pm3=0.00020

/\ slr+pm3
zm3=rsO
zs2=pm3+um3
cs7-zm3
sirzs2

universal parameter
word becomes ca74
personal parameter
word becomes sir16
subroutine parameter
subroutine parameter
word becomes ca7 "',
word becomes s£r19

, I',

The value of a temporary storage parameter is assigned in the same way as
for a preset parameter; e.g. t=190 or t=pn3 or t=f3. To refer to a temporary
storage register in an instruction, the fourth for example, the symbols 3t are
used; e.g. ca3t.

Rules for, forming Hords out of syllables

1) No other syllable may occur in a generalized decimal number but'the
generalized decimal number and the terminating chara~ter.i.~ generalized
decimal number is of the form ~dld2---dk.dk+l---dmx2 ixlo ~ where
O~~m~18 and ~i and~i are integers, signed if negative, otherwise not
signed, and such that the final number is restricted by the number
system indicated by the programmer.

2) Only one octal, number syllable can occur in any vlOrd, i.e. the octal
number syllable must always be the first syllable.

,3) A word, address assignment, parameter assignment, or floating address
assignment can be found by the sum formed by Ifspecialadd tt of
successive syllables contained in them. (Note that the value thus
obtained depends upon the sequence in which the syllables are written.)

p~ 9

4) A plus or minus sign preceding a syllable, indicates that the value of
the syllable is to be multiplied by +1 or -1 respectively before being
added into the word value.

5) A plus or minus sign should always be used when there is an ambiguity
in the meaning of a syllable or pair of syllables. (For examples of
ambiguities see list of ambiguities.)

6) Rules concerning the use of single letters:

i) t is considered exactly as a preset parameter, and is usually
used to indicate the zero-th register of a block of temporary
storage registers.

i1) b has the value of the address of the buffer storage register·
in PA routines.

iii) c adds a value to the word sufficient to change an interpreted
instruction into a cycle count interpreted instruction and
should be used only with its, iex, ica, ics, iad, isa, imr,
idv, isp.

Iv) r is the relative address and is given a value each time a comma
occurs.

r = current address ~ stem.
A word containing the terminal character ",11 and at most one
floating address syllable and one integer syllable, is called
a floating address assignment, e.g. "7g9,". The stem of a
floating address assignment or parameter assignment is the
integer (if it exists) which precedes the lower case letter
in the floating address assignment or parameter assignment.
In the example above (7g9) 7 ~s the stem.

7) Whenever a "," occurs, the floating address in the floating address
assignment is set equal to the current address less the stem.

8) Whenever an "=" occurs, the parameter in the parameter assigriffient is
set equal to the following word less the stem.

9) A starting address ~ord consists of a START AT or i START AT, suffixed
by any word, i.e. 'the starting address including a tab or carriage
return. .

Page 10

Rules for forming a program out of words

1) A fence (at least 25 vertical bars) must occur initially and terminally
in a program.

2) The initial word of a program will go into the initial register of
storage (i.ee register 32) and successive words will go into successive
registers unless an address assignment is made. An address assign
~ consists of constant (except octal numbers) and/or parametric
syllable(s) followed by a vertical bar. ,A definite address is one
where the value is explicitly known. An indefinite address is one
which depends upon floating addresses or parameters, i.e. only implic
itly known. The current address is said to be indefinite, following
an indefinite address assignment, andiS said to be definite as soon as
a definite address assignment is made; but is called indefinite again
if another indefinite address assignment is made. If an address assign
ment (definite or indefinite) is made, the word following such an
address will go into the register indicated by the address assignment.
(Note that in the case of a definite address assignment the current
address is given directly, whereas in the case of an indefinite address
assignment the current address may be found indirectly). If no initial
address assignment is made; the current address is considered to be
definite.

3) No floating address assignments may be made while the current address
is indefinite.

4) The special word "i START AT" must occur just before the last word.

5) Titular special words usually occur immediately after the initial
fence, but may occur anywhere.

6) A fence must occur both before and after any output or titular special
liard.

7) A 'Word containing the terminal character "=" and at most one parameter
syllable and one integer 5,Yllable, is called a parameter assignment,
eog. "SpcIO=". The word following a parameter assignment, less the
stem of the parameter assignment, is the value given to the indicated
parameter. For example, if the '-lord following the above parameter
assignment is ? (i.e. 5pcI0=7), then pclO=7-5, which says in effect
that the parameter is assigned the value 2.

8) A generalized decimal number will be converted to the number system
indicated by the last preceding number system indicator~ i.e. SINGLE
means that the number will be converted to the (15,0) system, and
~ruLTIPLE to the system determined by the preceding (m,n), otherwise
to (15,0).

9) Words occupy one register of storage, generalized decimal numbers
~+~15 registers, output special words and IN and OUT one register
each. No other kinds of words occupy any register of storage.

10) The special "lOrd DITTO, followed by a tab (--71)' or carriage return (ilJ
must be preceded 'by a word or generalized decimal number and followed
by an address assignment. The word or generalized decimal number pre
ceding the DITTO will'be ditto'd up to but not including the address

Page 11

indicated; e.g. ~3ITOJwOuld cause the word or ge~eralized decimal
number preceding DITTO, to be stored in the registers up to but ~
including 131.

11) The special words LSR..;.-, END OF SUBROUTINE-, OCTAL--, and DECIMAL--,·
including all words that follow these special words up to tab or
carriage return are ignored by the conversion program. (One result
is that octal addresses are not permitted).

12) A parameter must be assigned before it is used.

List of common ambiguities

cJ.c VB clo, write 01+c .- if the floating address c1 is meant
sLe VB sIc, write sl+c II n " a sl n ..
aol VB aOl,
bol VB bOl,

write a1}
write bl i.e. initiaf zeros must be suppressed

sol vs sOl, . write 51 .
. .'

Same ambiguities of the conversion program are not obvious to the programmer.
In particular, single letters may not be written without preceding and following
it .by a plus or minus sign; e.g. not tca, but !t!ca

not imrtc, but imr,!t!c
To avoid difficulties always use a+ between two syllables. The + may always be
omitted between function letters and the next syllable.

Page 12

III. ' Programmed Arithmetic

Number Systems and Preliminary Definitions . ,
In the following discussion we sh~ll frequently refer to (m,n) numbers

where (m,n) = (30,0) or (15,15) or (30-j ,j), j = 1, 2, •• ~, 14. We nO\-1 define
these numbers.

(i)

(ii)

(iii)

A (30,0) nurrber is a 30 digit binary number \-lit~the binary point at the
lef.t-hand end ,of the number. Such numb~rs are stored in two consecutive
registers, say q and q+l, with the' most ,significant' par~ of the number
being contained in register q. We shall refer to this nUmber as "the
(30, 0) number contained in "location" q'. II '

A (15,15) number is a number which has been expressed in the form
c..= x·2Y

where x is a 15 binary digit number such that 1/2 =.., x ~ 1 ~r x=O and y is
a 15 binary digit integer. Such numbers are stored in two consecutive
registers, say q and q+l. The number x is stored in register q and the
number y is stored in register q+l. We shall refer to this number as the
(15,15) number contained in "location" q.

A (30~J~j), j = 1, 2, ••• , 14 number is a'number which has been expressed
in the form)

~ = x.2Y
where x is a 30- j binary digit number such that 1/2 -=. xL.. 1 or x=O and y
is a j-digit binary integer. Such numbers are stored in two consecutive
registers, say q and q+l. The 15 most significant digits of x are stored
in register q and the 15-j leastsignificant~ digits of x are stored in
the right-hand 15-j digits of register q+l. The integer y is stored in
the left-hand j digits of register q+l. The sign digit of register q+l
refers to the sign of y. We shall refer to this number as the (30-j,j)
number contained in "location" q.

On the basis of the above definitions it should be noted that ordinary
calculations on 'tontJI are in the (15,0) number system. (30,0) and (15,0) numbers
shall be Ief~red to as fixed (binary) point numbers. (15,15) and (30-j,j)
numbers shall be referred to as floating (binary) point numbers.

Interpretive Subroutines

(m,n) interpretive subroutines shall mean a particular group of coded
programs whose purpose is to facilitate computation using (m,n) numbers. These
enable the programmer to write coded programs using (m,n) numbers which are in
many ways analogous to ordinary t~~I coded (15,0) programs. Such programs, when
called into action, take "interpreted instructions" (more strictly, program
parameters written as instruGtions) one at a time from consecuitve storage
registers and perform the designated Single address operations as defined by
the interpreted instruction code. (For a complete list of interpretive opera
tions and their functions see end of Section III.)

A multiple register accumulator (~ffiA) is used in place of the AC in many
interpreted instructions. The MRA is not a special register as is the AC, but
rather is a group of 3 ordinary storage registers contained within the inter
pretive subroutine.

Pa&e 13

Ent~l to and Exit from Interpretive Subroutines

Entry to the interpretive subroutine is acc<;:>mplished by means of the (15,0)
Hord IN. Thi S Hord is changed int.o a (15,0) sp instruction by the G S ~lhich .
transfers control from the program to the proper register in the interpretive
subroutine. The instructions following the vJorc1 IN are then performed as inter
preted instructions, e.g.

321 IN
331 iCa50J Th· f th f tOh (m,n) numbers in 341 iad52 l.S progrsn erms .e stm 0 e

locations 50 and 52
Exit from the interpretive subroutine 1s accomplished by means of an inter

preted instruction sp. In this partleular case the interpreted ~ns~r~ctionlsp)
and the (15,0) Will instruction) sP, hnve the sane binary value. As a.n example "Ie
have

321 IN
331 ica5Q
341 iad52

~~: ~:, ::J(15 .o):\~ operatiO: 1s resumed at register 60
0· • • ••

Since it is frequently desired to resume (1;,0) WWI operation at the reg
ister follo\ling the interpreted sp the special word OUT has been included in
the conversion vocabulary., If p is the re~i.ster containing the word OUT, then
the special word is converted to an sp(p+l). The previous example can now be
1vri tten as '

321 mo
331 ica50
341 iad60
351 OUT
361 oa 100 (15,0) mf.[operation is resumed at register 36.

Generalized Decimal Numbers

Several words are included in the OS to facilitate the insertion of'
(m,n) numbers into tbe computer.

The most general decimal number which oan be converted and stored by the
OS. ~las the f orm ~ ['

! dld2 ••• dk.dk+l ••• dm x 2 x 10
Such numbers are first converted by the COP into the integer

.:!: dld2 ••• dk ••• dm• °

The associated (exponent: of 2 1s ~ and the as~oeiated exponent of 10 is
b - m + k. This result is then furtller processed in accordance with the last
special vlord (m,n) which appears in the program. This special 'Word causes the
conversion program to convert all subsequent generalized deoimal numbers into
(m,n) numbers unless it is superseded by another speoialvord (m2,n2)~ In the
case of (30,0), (15,15) and (30-j,j) numbers the components of the number are
stored in consoecutive registers. The special word (15,0) gives us of course a
single register number.

Page 14

As an example, to store the (24,6) numbers 2 and 5 in consecutive locations
write

(24,6)
321 +2.
341 +5. but 341 is not necessary.

It should be emphasized here that all generalized decimal numbers must
contain at least a sign and a decimal point.

Two applications of the special word (m,n) are handled by the use of
further special words.

The first of these is the special word SINGLE. All generalized decimal
numbers, converted after this word appears ina program,are converted to (15,0)
numbers. .

The second of these is the sp~cial word MULTIPLE. All generalized decimal
numbers,converted after this word appears in a program)are converted to (ml,nl)
numbers, where (mf,nl) is the last special word (m,n) which appears on the tape.
It should be noted that the word :HULTIPLE in a tape will be redundant unless the
special word SINGLE occurs between it and the last (m,n) on tape.

An example of the use of these words is

(24,6)
'3Z1 +2.} () .341 +5. Converted as 24,6 numbers
SINGLE
'361 +.2 '} () 37.1 +.5 Converted as 15,0 numbers

MULTIPLE
,3~1 +2.} (6) ,40"1 .+5. Converted as' 24, numbers

It is assumed for the most part that a generalized decimal number is of a
magnitude cOmffiensurate with the number system into which it is being converted.
If the number is not commensurate with the number system, an alarm may occur
or an incorrect number occurs.

Cycle Control

The cycle control block of an interpretive subroutine is designed to .
facilitate the writing of cyclic programs and to permit a certain amount of
"red tape" to be handled in the interpretive mode.

The heart of the cycle control block is the cycle control register pair.
This isactuBll~two storage registers located in the interpretive subroutine.
These registers are called the index register, whose contents is "a;'and the com-

. . t h t t · ''h" parlson regls er,w OSe can en s lS •

The following interpreted instructions are now defined:

Int. Inst.

icr m (cycle
reset)

ict y (cycle
count)

Page 15

,Function

Set the index,register to +0 and the cornpar1son,;register. to
+m.

Incr'ea~e the i1dex rE3gister by one and form the quantity
I I a+ll - I b, -. O. If the quantity is) a interpret next
the instruction in register y,' If the qUantity is = -0,
igno~e this instruction and reset, the index register to +0.

If now one of the interpreted instructions ca,cs, ad, su, mr, dv, t~, ex,
sp is'written in the form

ixy 100 c or ixy 100 + c
the interpretive subroutine first forms the instruction

ixy (100 + 2a)
and then executes this instruction. The quantity 100 + 2a is formed instead of
100 + a since we 'deal mainly with arithmetic operations on 2 register numbers.

This procedure is best explained by a simple example. Suppose we wish to
transfer the (24,6) numbers in 100, 102, 104, and 106 to registers 200, 202,
204, 206. We could then write
,I

...

, 321 icr 4 Set up for four cycles
33/ ica 100 c Pick up 0 (100 + 2a) a :;: a" 1, 2, 3
341 its .200 c Store in 200 + 2a a = 0, 1, 2, 3
35

1
i~t 33 Go thru 4 cycles.

Since it will not always be desired to operate on (m,n) numbers stored in
conse~~tive locations we now define the following interpretive instructions

Int. Inst.

ici m (cycle
increase)

icd m (cycle
decrease)

Function

Increase the contents of the index register by +m

Decrease the contents of the index register by +m

As an example of the use of the ici, let us write a program which transfers
the (24,6) numbers in registers 100, 104, 108 and 112 into registers 200, 204,
208, and 212. We have'

321 icr 8
331 ica 100 c
341 its 200 c
351 ici 1
361 ict.33

Set up for '4 cycles
Pick up 0(100 + 2a) a = 0, '2, 4, 6
Store ~n 200 + 2a a = 0, 2, 4, 6
Increase contents of index register by 1
Go thru 4 cycles

Since most programs usually contain cycles within cycles, the following
interpretive instruction, which effectively permits one to use more than one
cycle control register pair, is added to our code to enable these more com
plicated programs' to be treated effectively.

Int. Inst.

icx y (cycle
exchange)

Function

Exchange the contents of the index, register ,,,i th C: (y) and
exchange the contents of the comparison register with C(y+l)

Page 16

To i11ustrate the use of this instr~ction, suppose that it is desired to
form four scalar products. There are ,two sets, each with four four-dimensional
vectors. The coefficients of each vector are. (24,6} numbers~. The coefficients
of the first set of four vectors are stored in four blocks wnose addresses
start with 100, 108, 116 and 124. The coefficients ot e~ch vector are stored

. in· one block. The coefficients of the second set of fo~ vectors are stored in
four blocks \-lhose addresses start with 200; '208, 216 and' 224.. Scalar products
will be formed with the first vector of the 'first set and the first vector of
the second set; the second vector of the first set and, the second vector of the
second set; etc. It is desired to store the results of the. four scalar products
in a block starting with address 300. Register 400 is a register used to store
the temporary sum. The instructions are as follo\OIS:

321 icr 16) Set up for 16 cycles
331 icx 60 r ../("; f r

341 icr 4 } Set up' for 4 cycles --351 icx 70 .'/ I'

l>l I',/,"",}

361 icr 4 Set up for ,4 cycles
371 .. iea 51 ;) Clears register 400 3S1 its 400
391 icx 60

L / . . C I ,

L"OI ica 100

~}
a = 0, 1, 2, 3

411 imr 200 Forms scalar product 42) iad 490
431 its 400

441 lCl 1 , Increase index register by 1
45 icx 60
46/ ict 39 Go through 4 cycles
47/ :ic:x: 70
l{oSI ie8. 400

c} Stores sqalar product
49/ its 300 ,J"

501 ict 35 Go through 16 cycles
~ll +.0

Finally, the fol10'l,..ri:ng interpret~d instructions are added to facilitate the·
handli'n g of "red tape" "lhile in the interpretive mode

Int. Inste Function

'.

iat,y (add and
transfer)

Add the contents of the index regis~er to the C(y) and store
the result in the index register and register y.

iti y (transfer Transfer tbe right 11 digits of the index register into the
index digits) right 11 digits of register y.

These instructions primarily serve as a means of transferring the contents
of the index register into a given storage regist~r. Since the icr, ici and icd
instructions enable one to set and change the contents of the index register,
this register can be looked upop as an interpretive analogue of the single
length, fixed point AC, with iti analogous to td, etc.

The Buffer Register

Although 2 register are used to store a (30-j,j) number, 3 registers are
used for the }~A to avoid the time consuming operation of packing the last l5-j
digits of the number and the j digits of the exponent into a single register

Page 17

after each interpreted instr.uction. A further advantag'8 is gained in that any
sequence of arithmetlc operations is performed t+sing 30 digits for the nurnber
and 15 digits for the exponent. This provides in effect a (30,15) system. The
results of computation are combined into (30-j,j) number only "then the C(~ffiA)
~s stored by the instructionsLts andl-ex.

, ,

The buffer register can be used in 8,ny qf the :i,nstructiQns

icab, icsb, itsb, iexb, iadb, isub, irr~b

In all of these cases "b" should be considered'to represent a 3 register (30 r 15)
location. Each of the instructions is then carried out as the corresponding
instruction in a (30,15) interpretive subroutine ,",ould be carried out.

It should be emphasized that the above words represent the complete vocabu
lary 8-vajlable using the buffer symbol b.

The buffer can be used to store intermediate ;results ~ri a cyclic program
and thus roundine off can be avoided nntt1 after the final cycle.

AutomE~tic Assembly of Interpretive Subroutines
~

Interpretive subroutines for computation in the (30,0), (15,15) and (30-j,j)
number systems have been incorporated into the CCP in such a '.Jay that the type
of subroutine and the features of this subroutine which are called for by the
progtarnner in thA process of 'hTriting his program ?ore automatically punched out
on 5-56 tape.

The kind of interpretive subroutine se:Lected by the CCP will be determined
by the vE:'_lue of the last (m,n) appearine on tape, e.g. if this is (30,0), the
(~C,()) j_nterpretive subroutine "lill be selected.' The corresponding (m,n) sub
routine :i.s 7.;hen punched out onto paper tapc:if a,1Y , interpretive inst,,,,,,,-,+,-j O1l, i=::'i',
"J.,:,; 1c:r~:::<~, in the program. Hm"rever, the special llord :NCTPA (,.,rhich I:1GLll1;" l~'O'T Pr~)L) .. ",:;F;~:t:::,K~
A:.'::,~',;L~(-:"!~;~~'c) appearing anyuhere on the tape overrides the effect of \.Jr~t tine t.he
int8rpl'stive instructions and generalized numbers, and no PA subroutine is 8.uto
I"!at.ically selectod. NefP! is used if a programmer ,·lishes to convert (m,n)
numbers c,Ed use an interpretive subroutine which is not part of the CCP or net
to '~~s (:~ :-:;.ny interpretive subroutii1e.

Particular interpret=ive subroutines, are further specialized in accordance
uith the uords appearing in a program. If the single letters b or c are used
in c~ny of tbe instructions in the program, then the corresponding buffer and
cycle control subblocks in the particular FA selected are punched out. If these
letters are not :used the corresponding subblocks are not punched out. Similarly,
if an idv instruction 'is used 'in a program, the division subblock is ptmched out.
These specializations are made so that parts of the subroutine '\,Thich are not used
'VIill not be read into storage.

The interpretive subroutines are automatically stored by the CCP in a block
of registers endlne in register 1056.' The initial address of the block is found
by adding up the lengths of the several subblocks punohed 6ut and subtracting
the result from +1057.

Paa:e 11
A table of subblocks and their lengths follows:

Subbl k 00 W d t or s necessBrY_ on. a.p,e f or rea d i n L th ene'
: :::-

(30-j ,j)
PA Buffer final (30-j,j), 'b 39

PA final (30-j ,j), ixy 199
Cycle Count final (30-j,j), c 57
Divide final (30-j ,j) , idv 26

, -"
(15,l5)

PA PA final (15,15), 'by 113
Cycle ,Count final (15,15), c 57
Divide final (15,15) , idv 9

(30,0)
PA FA final (30,0), ixy 135

Cycle Count . fina;I. (30,0), 0 57

·' Page 19

Interpretive Operations and their functions

Interpreted Instruction

ica<Wy
(* refets to footnote and
!s not part of' the instruc
tion)

ics~y

iad*y

isu'7

iror*y

idv*+y

its¥y.
iex*y

isp*y
sp Y
icp'*y

ita*y

icr m

ict y

ici m

Function

Clear the MRA and add into it .. the (m,n) number in
location y.

Clear the ~mA and subtract from it the (m,n)
number in locationy.

Add the (m,n) number in the MRA to the (m,n)
number in location y and leave ~he sum in
the MR.A.

S ubtra_ct'.- from the (m;n) number in the MR.A the
(m,n) number in location y and leave the
difference in the MRA.

Hultiply the (m,n) number in the MRA by the (m,n)
number in loc~tion y·and leave the product
in the MR.A.

Divide the (m,n) number in the MRA by the (m,n)
number in location y and leave the quotient
in the MR.A.

Transfer the (m,n) number in the MRA to location y.
Exchange the (m,n) number in the ~mA with the (m,n)

number in location y.
Interpret next,the instruction in register y.
Resume (15·,0)' WI operation at register y.
If the (m,n) number in the MRA is negative interpret

next the instruction in register y;' if positive,
ignore th~s instruction. .

Transfer the address p+l into tpe- right 11 digits
of register y, leaving the left 5 digits
unchangad;p being the address of the isp or
icp most recently interpreted.

Cycle Reset--set the index register to +O.and the
comparison register to +m.

Cycle Count--increase the indeXregiS1er by one
and form the quantity II a+ll- jb I -0. If

. this quantity is >0, interpret next the
instruction in register y. If the quantity
is =-0, ignore this instruction and reset the
index register to +0.

Cycle Increase--increase the contents of the index
register by +m.

Th~s interpretive operation is analogous to the (15,0) WWI operation obtained
by dropping the initial i from the letter triple which designates it. The
binary equivalent of the .interpretive operation will not however be equal
to the binary equivalent of the corresponq.ing (15,0) mil operation.

+ Not available on (30,0).

icd m

icx y

.iat y

iti y

· Page 20

Cycle Decrease--deorease the contents of the index
register by +m.

Cycle Exchaoge--exohange the contents of the index
register with the contents of register y and
exchange the contents of the comparison reg
ister \-/ith" the contents of register y+l.

Add and transfer--add the contents of the index
register tp the contents of register y and
s~ore the result in the index register and
register y.

Transfer index digits--trapsfer the right 11 digits
of the index register into the right 11 digits
of register y.

PagC3 21

IV .. INPUT /otrrPlJr

Introduction

The output media currently available for use with the In/Out ro~tine con
sist of typewriters, punches, oscilloscopes and magnetic tape units. The latter
may be used to record data for subsequent print out ona magnetic typewriter
or as auxiliary storage devices. The oscilloscope may be used in any of three
ways:

a) as a ~ plotting instrument

b) to display information in binary form

c) as' a nu.rneroscope displaying alphabetical or digital characters
(i.e. "alphanumeric" characters) in any desired layout.

Following are the relative speeds of the several media for recording alpha
numeric characters and also their characters/line limits:

a) Typewriter

b) Scope

8 characters/sec.

150 characters/sec.

160 characters/line max.

64 characters/line max.

c) Magnetic·Tape - to be used with Magnetic Typewriter
250 characters/sec.. 90 characters/line max.

The In/Out routine is called into ~se by three upper case letters. The
firstUspecifies the equipment to be used, the second states whether information
is to be fed into or out of the computer and the third specifies the type of
information. The letters used are the initial letters of the following words:

~.

12rum
Magnetic Tape
funch
§cope
TYPewriter
Beader

Examples of In/Out Instructions

Alphameric (alphanumeric)
£!inary
Qurve

TOA will print alphameric characters on. the typewriter
SOC will display a curve on the scope .
MIB will transfer binary information into the computer from magnetic tape.

A typical example of an output instructi~n is
iTOA+p123.l234sx2llx10-

When the In/Out routine is called upon, it will handle the word currently
in the AC or MRA. When a nUmber expressed in any number system other than
(15,0) is to be dealt with, the calling-in letters must be preceded by the
lower case letter i so that the number will be J:n,terpreted. Thus iTOA will
call in the output routine to print the contents of the MRA on the typewriter.
At present, the following number systems are available; (JO-n,n) with scale
factor, (30-n,n) without scale factor, (15,0) with scale factor, (15,0) '\-lith
binary point at extreme left, (15,0) with binary point at extreme right.

When the In/Out routine is required to print, display, or punch a number,
the calling-in letters must be follolved by a specimen number of the following

Page 22

'general form, where the numbers in pt:trentheses refer to paragraphs below:

, :!:oG### ••• # 9 J# .•• # ~j. x 2<Y'i x lOJi
(1) (2) (3) (4) (5) (5)

The components of the number have the follo,.ring meanines: (Note tha.t in
the following description the word "print" is used to mean print, punch or dis
play, depending' upon the medium previously selected).

(1) + = print the number preceded by its sign

- = print the number preceded by its sign if the number is negative, other
wise just print the number

Sign',= print the number with no sign
omitted)

note: By "omitted" we mean that nothing at all is written. We d,o ~ mean
that the word "omitted" is written.

(2) (~ is a lower case letter)
(By initial zeros we mean initial zeros at the left of the decimal point.)

IfoL.. is i

If 0(is p ,

initial zeros are ignored in printing and the first significant
digit of the number is printed on the extreme left of the column.

initial zeros are ,£rinted as spaces.

If~ is omitted initial zeros are printed.

If 0{. is n the number is normalized before printing, e.g., all numbers are
multiplied by such a power of 10 that the first non-zero sign
ificant digit will always be in the same relative position with
respect to the decimal point. This cannot be used with (15,0)
output. i

The actual digits of the numerical part of the specimen number are im
material; they merely serv~ to indicate the number of digits which the pro
grammer desires to have printed on each side of the decimal point. Thus
iTOA + p347.62l0s x 2-3 x 105 would indicate that the programmer wanted 3
digits to the left and 4 digits to the right of the decimal point and the
numbers would be printed in the form ### .####. However, if 0(, is n' the number
would be printed in the form ###.####xlOu which is the normalized case.

(3) If a decimal point is indicate~,

If a decimal point is omitted,

it will be printed in the position
indicated.

none will be printed. This is used
in printing integers.

If a decimal point is replaced by r, no decimal point will be printed but
the r indicates where a decimal point
would have' b;een placed had there been
one.

The latter facility would be of practical use in the case of decimal
fractions' in which it is desired to save printing time by omitting decimal

Page 23

points. Unless ~ indicates .§ decimal point 2E. replaces ~ decimal point .£t
!!!! !:, ~entire number will be treated !lll though it ~ !!! integer.

(4) (p is a'lower case letter)

The s,ymbo1(s) ~i specifY the character(s) with which the printed number
is to be terminated: '

If"~1 is s

If' ~i is ss

If ~i is sss

If ~i is ssss

If ~i is c

If ~i is t

If ~i is omitted

If ~i is r

we get one §.pace

we get t'tvo .§pace s

we get three ~aces

we get four §Paces

we get a sarriage return

we get a]:ab

ve get no terminating character

we get format, i.e., the terminating character will be
determined by the layout section of the In/Out routine which
is in turn controlled by the Format Specification. (See
paragraph on Format Specification)

(5) a) If the number is to be printed as a decimal fraction, then ~ = 0, d = O.

b) If the nurr.ber is to be printed as a. decimal integer, ,then t?f= 15, ~ = o.

c) Every factor ~ be preceded by a lower case x.

rl dl J2 ~2 d) Any number of factors may be utilized, i.e., 2' x 10 x 10 x 2 etc.
. with the follo\~ing restriction: I ~~L I ,l ~~ , ~ 127

,)

e) Hhenever a factor such as 2. {(or 10 J" has a zero exponent, that factor may
be omitted.

f) If any factor has an exponent of 1, the 1 may be omitted.

g) The exponents ~ i, r i are signed if negative, and not signed if positive.

Examples of the use of output instructions in the (30~n,n) syste~ follow:

ex 1: Let the MR.A contain the octal number 0.6277574516 with an exponent of 15
(octal) •
Thus the number = 0.6277574516 x 215 (octal) ,
This is equivalent to +.796812369 x 213 and to +.652748693 x 104(decimal).
Let the output order be iTOA +: nl.2345678c
Then the typewriter would print out+6.5274869/+03~ where the number at
the left of the slash is decimal and the number at the right is its
exponent of 10. Thus the.number is actually +6.5274869 x 103•

ex 2: Let the MRA contain the octal number 1.1500203261 with an exponent of 15
(octal).
Thus' the number = 1.1500203261 x 215 (octal).

Paige 24 .

This is equivalent to -.796812369 x 213 and t·o -.652748693 x 104 (decimal):
Let the output order beiSOA .. 12.3456s x 10-5
Then the I scope "lould display .. 00.0652 sp. (see note below) where sp.
means that a spac~ is provided feral the tscope.
,note: At present no provision· is made for rounding off to -00.0653.

In/Out Order Repeated

A specimen number need not be designated each time the In/Out routine ·is
called in. If the calling-i~ letters are not follovled by anytl?-ing, then the
In/Out routine will provide exactly the same setup as it furnished for the
last In/Out specification. By exactly ~he same we mean that if one wrote iSOA .
following an iTOA + i12.345s x.2-4 x lO , he would automatically get
iTOA + i12. 345 s x 2-4 x lOb. If the progrannner wants the ··same In/Out order as
the last one except for the calling-in letters, he ~ write out the In/Out
order in its entirety. •

Format Specification

The In/Out routine contains a layout section which may be set by the special
word:

FORo(x~xo

a) this word must precede any output order for which it·is·to be used

b) the entire word FORNAT may be written instead of FOR, if desired

c)

d)

e)

f)

eX.. represents the·nwnber of wqrds/line. (maximum is 15)

numbers 0<.. , ~,o should be separated by lower case x ". ,
Bfrepreeeptsdth~ number pf spacesbhetweentwards7 (maximum is 6) I a t.au l.S eSl.red bet.ween ~ords t: en se' t' = ·
({ represents the number of words per block (typewriter)
~ represents the number of wor<Is per frame ('scope)

The maximum ";I is 511. However, if the programmer has· more .than 511 words
to beprihted,_ the block counter becomes automatically reset after each block
is completed •

. ex 1: Let us suppose that ·the programmer wishes to type 2500 words in blocks
of 400 •. If he specifies that?J::;: 400, then he 'will automatically get 6
blocks of 400 words each and a seventh block of 100 words. The blocks
'viII be separated by 2 carriage returns. In order to get t.p.e final 100
words as a separate block one must heed·the following note.
Note: provision is made for one automatic carriage return at the
beginning of the Format routine and two at the end of a block. However,
the programmer should provide carriage return~at the end of his print
out if that doesn 't ·coincide with the end of a block. This carriage
return order is desc.ribed in the· Special Characters section.

ex 2: Let us consider ex. 1 if the scope were being· used instead of the type
writer. The only difference ·is the restriction on the number of lines

, .

per frame which is 36. However, if the programmer requested 8 wordS/line,
400 lineS/block, he would get 288(8x36) words on one frame and 112(400-288)
words on the next frame since provision is made for automatic indexing at
the end of 36 lines and at the end of a block. Thus the programmer would.

Page 25

get altogether 6. frarnes of 288 words' each, 6 frames 'of 112 "lords each
and one frame of lOG words. HO\-Tever, the rast frame of 100 words will
be obtained only if the follouing note is heeded.
Note: The progranuner ~ provide -the order FR.ANE in .order to index the
camera at the end of any particular display since it is unlikely tha.t
the end of a display will coincidevlith the filling up of a frame or the
end of a block. An automatic index is provided at the beginning of the
display routine.

Specia~ Characters

a) One may obtain a -, +, •. , ~. (space), t(tab y, c (carriaee return) at
any time by merely using the call-in letters followed by anyone of the
above six.

exs: TOA +
SOA c

gives a + on the typewriter
gives a carriageretur~ on the Iscope

b) The order COL continues the tscope display in the next column, at the
top of the frame.

The order FR.A takes a picture, and sets the camera up for the next
frame.

One may use the entire word COLUHN, FRAME instead of COL, FRA respectively·
but all letters must be upper case. ".

Page 26

v. Conclusion

.At present the OS is entirely on paper tape. Strides have been made in
the dir~ction of replacing some of the paper tapes with magnetic tapes. The
latter transition will depen~ to a considerable extent upon the availability
of magnetic tape units. At present only one magnetic tape unit is available
wherea~ it is considered that three tape units is the optimum number for the
efficient use of the CS. It is planned to store the CS permanently in the .
magnetic drum'as soon as the drum is available. Post-mortems (PM) and Mistake
Diagnosis (MD) routines will be incorporated into the OS in the near future.
As soon as new In/Out routines are prepared, they will be incorporated into
the CS.

Signed ~1:c~-
Signed---.-..-·C.......".......d~. ~~. ~.,----
·E.~

Approved~_-...,.---o:ttv:;.......;;....·_._d._. _' ______ _
c. W. Adams.

,Index for Engineering Note E-516

A

Accumulator, 12
multiple register, 12, 16, 23

, Address, 3, 4
'absolute, 5, 7
assignment, 5" 8
current, 5,6, 10
definite, 10
floating, 3, 4, 6, ~" 9, 10
indefinite, 10
relative, 3, 4, 5, 7, 9
temporary'storage, 3, 4, 9

Ambiguities, 9 '
list of, 11

B

1310ck counter, 24
Buffer register, 9, 16, 17

C'

Carriage return, 5, 8, 10
Characters

special, 25
Comma, 5, 9
aamparison register, 15
C'onstant syllables, 3

integers, 3
octal numbers, 3
operations, 3

Current address ,. 6, 7.,' 9
indicator, 5

Cycle control, 14, 17
count, 9, 15
decrease, 15
exchange, 15
increase, 15
reset, 15

D

Decimal point, 22
integers, 3

,Definite address, 10
DITTO, 4, 10, 11

E

Equals sign, 5, 8, 9, 10
Exponents,' 23

F

Fence, 4, 10
Floating address, 3, 4, 6, 7

assignment, 8, 9
Format, 23, 24-
Frame, 23, 24

example of, 23, 24

G

Generalized decimal number, 8, 10,
13, 14

I

IN, 4, 10, 13
~definite address, 10

,Index register, 15 .
Initial zero suppression, 22
In/ Out, 21
Input, 21
Integers, 3

decimal, 3
literal, 3, 9, 15, 16, 17

Interpreted operations, 3, 12,15,l~
functions of, 19

Interpretive subroutines, 12
entry to, '13
exit from, ,13 .

, automatic assembly of, 17

L

Literal integer.s, 3, 9, 15, 16, 17

M

Magnetic tape units, 21
MOD, 4
Multiple-length number, 4

fixed point, 4
floating point, 4

Multiple register accumulator {MRA~
, 12, 16, 2

N

NOTPA, 4, 17
Number specimen, 21, 22
Number system, 4, 12, 21

indicator, 4
multiple-length, 4, 12,"14
single-length, 4, 13, 14

Numeroscope, 21

o

Octal numbers, 3, 8
Operations, :3

interpreted, 3
WI, 3

O~c'illoscope, 21
OUT, 4, 10, 13
Output, 21

equipment,' 21
special words, 4
sJ)eeds, 21

P

PA, 4, ;1.2
PARAMETER, 4
Parametric syllables, 3

floating address, 4
preset parmeters, 3, 8, 9, 10
relative address, 4, 9
.temporary storage, 4, 8,·.9

Personal parameter, 3, 7, 8
. Preset parameters , 3, 7, 8', 9, 10

personal, 3, 7, 8
subroutine, 3, 7, 8
universal, 3, 7, ~

Print, 21
Program, 3
Programmed Arithmetic, 12
Punche s, .21

R

Relative address, 3, 4, 5,9
indicator, 5

Rules, 8, 9, 10, 11

S

Scale factors, 23
Single-length number, 4

fixed point, 4
floating' point, 4

-2-

Special output characters, 25
,Special words, 4, 10, 11, 13
Specimen number, 21, 22
START AT, 4, 9

i START AT, 4, 9, 10
Stem, 9, 10
Sub-blocks, 17, 18

burfer, 18
cycle count, 18
divide, 18
PA, 18

Subroutine, 5, 8
parameter, .·3, '7, 8
interpretive, 12, 13

Syllables, 3, 8, 9, 10, 11
constant, 3
parametric, 3

T

Tab, 5, 8, 10, 24
Temporary storage, 3, 4, 8, 9
Terminating characters, 3, 5

output; 23
Typewriters, 21

u

Universal parameter, 3, 7, 8

v

Vertical bar, 5

Words, 3
output, 4
program title, 4
special, 4

Zero suppression, 22

