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Introduction:

Tho purpose of this report is a survey of numerical methods
for solving integral equations. Only linesar integral equations of real
variables will be considered. There are three important tyvee of such
equations:

(a) The Fredholm equations of the mecond k'nd

Sz 90x) + A S: K( x,g) 5(;,)4,3 I ———
f()\) = A (: K(x, *3) 5’(3) ﬂ(g (homo geneous)

(b) The Volterra equation

$)= 90 ¥ S: K(x,y) Hv))da;
and

(¢) The equation of the first kind

9(x)= gbl/\(x,'g) f‘“))"(‘a

In each of the above equations the function f(x) is to be obtained from
the given functione g(x) and K(x,y). Under quite general conditions (a),
and (b) possess unique solutions whereas (¢) will, in general, have many
solutions except under certain restrictive constrainte.

Thus far, at least by comparison, ssy, with linear algebraic
equations and differential equations, little has been sccomvlished in



LGoveloping numzrical methods for colving integral equations., The superi-
ority over differential equations in expreesing many physical nroblems
g8 only recently hesn axploited.-

In general, 1% would be nicest to attack esch equation U
mothod beet suited to its own structure. This puts a premium on snalysis.
The attitude taken here willl be to devaelop quite general numerical neth-
ods which can most easily be treated by a comvuter of the digital type.

On the same level of importance as the design of a solving meth-
od for an equation is an avpreciation of the status of arrors in each
step of the problem. Besides the usual numerical round-off and truncation
errore, all methods of solution introduce an important stadility error
caused by the lapse of a transcendental problem into a discrete ona. In
general, the numerical methods show excellent stability (at lesst where
unique solutione to the problem exist) due chiefly to the smoothing prop-
erties of integration. .
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Tha ““’{].»A,u'l to ‘D\ L".x idsred is

0= ( Kix, Y. ?i z}cws
Ja.

with the functione f(x) and X(x,y) given and gly) to be determined.

Examples of this {yve of equation are:

g(%) = ﬁ"l—% S: eL 3 : 9('2),{.3 (The Fourier transform)
o _ |
and : 5’()() = S‘O e "9 3 (3)4‘9, (The Laplace transform)

Often the eolution g(y) will not be unique; for, to the solution of (1)
must be added solutions, if they exist, of

b
62 (kGG Uy Gy 0

In both of the abhove mentioned examnles definite inversion formulae of
the tyve:

cal\a) z th(x,Q)f(x)Jx (L, a path in the x vlane)

vyield anslytic expressions for g(y). In general, such inversion formulae
do not exist. The integral equation does not always have solutions, since
for a given K(x,y) f(x) must noss=ess certain nroverties dependent upon the
kernel. If K(x,y) is a polynomial in x, then fi(x) must be a volynomial in
x. Likewise if K(a,y) = O for all y and if the equation is satisfied for
all y, then f(a) = 0. The function f(x) ie not perfectly arbitrary, for
if K(x,y) 18 a polynomial in x, then f£(x) muet be a nolynonial. That is,
we must restrict £(x) to a class of functions assoclated with E(x,y).

A theorem to this effdet will be discussed later. In certain special
cases an equation ¢f the first kind cnn be reduced to one of the second
kind and here f(x) can be highly arbitrary.

As rezards the uniquenes= of the solution g(y), where g(y) is
constrained to .be continuous, the followins may be s.id. If the kernel,
K(x,y), is "definite", i.e.

ﬁa lf<(x,'g\wlx)ur(t1)dxda >0
for all contdnudus w(x), then the equation

Sﬁ K(xJa) wlv)

hae no continuous solution w(y) excep -v(y) = 0. In varticular, if two
gontinuous solutions gl(y) and g?(y) of the equation
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Y= KIOx,t) Ky, /gt
Ja / vJ

Since L(x,y) is syrmetric 1its charactoric values are real. PFurthermore,
if (Ph (x) is a characteristic ﬁmc.ion,

$,00= X, & LUx, ) dulyldy

From which 1t follows that Ay %0 since

5 dibterdy = ) gumxwg Lz, g) dulg)dy
M g- Gplx) dp j b, (7)0L3,S IK(x,¢)K(y, t)dt
= f ()b, lodt) de

hence ;\,. %0 » Indeed if the S.On (x)z form a complete .sot,.
%: K(x:£)4}n(")0‘>ﬁ 0 W 4,8, - v )

so thet A >O . Hence L(x,y) is definite and the integral equation:

ulx)= S: LLx,g)7(7)¢(?
At )= S‘ub §(¢) K()‘,‘f)clt

has a unique continuous solution. If the function g(y) 1s restricted to
be continuous f(x) will usually be required to satisfy linear conditions

of the form: " ®
' S@ wixo $)dr =0 , guu(x) K(x,;)dxw

An analogy to linear algebraic equnuona vroves fruitful. The
equntion is analogous to the system:

and can he obtained from %ho eyltem 1n the 1limit as m,n -» o® , The prop-
srties of the system depend on the relation between m nnd n. Hence three
cases Can occur:

and

where



(1) v 7 n implies the existence of relation £
\‘: 'v’“
¥V .
Y Gy K. .= 0 for all'y
s‘\__’ AN \x‘_s,:’ Ll = 1048 AdhL 3
X2 v
=nd then consistency will demand that £_satiafy:
x
X2 M

In the 1imit these relatione may take several forms, an olvidus one bsing:

gba(x) FrR)dx =0

(2) m =n. A unique set of &," exists and is given b*,r

%a:t-ﬁ a, K,‘,} | ‘9,(,,1) i 2o WY

provided no relation Az

‘am . ( |
A Uiy e, W

is satisfied.

(3) m < n ylelds an infinite numdber of sets of solutions but
particular sets may be obtained by immosing (n = m) linesr conditions on .
syo

Hence, in general, it is too much to expect that the solutioen
will be unique. An imvortant question, particularly in numerical calcu-
lations; is the range in x over which f(x) 1s given. Decressing the
range may well involve making g(y) zero over .. portion of the range to
maintain uniqueness. In the particular case of the moment problem of .,
Stieltjes, f(x) is defined only over an enumerable set of values?xi 1=1
and the side conditions induce a unique g(y). -

In general, then, if the conditions are satisfied which will

" make the solution unique we shall expect to obtein an expression of the
form:

%(ka): HR S(‘))
where HK may be built up of linear combinations of the tyve
" o
p(@"‘].;‘ﬂ, Syvp), MU 300dx

In two cases mentioned the inversion formula is of the highly
desirable form:

‘a('ﬂ: S H(?,)() {-(,)dx (L some path)
L .
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eo -WV auous £(x) , henca the integral for gly) must be
- s o : e
s H(y,x) must be discontimous or the limits bLe infini

In those cases whers the eq"la'-:ﬁ.onu of condition are not onbis
fisd it will then not Ve possible %o obtain an exact ;mpraur'»;i\ n of
#(x) by an integral. But by analogy %o the method of least squarss, the
problem of solving the integral equation is essentially equivalen’ t¢ that
of minimizing an integral, i.e. a problem in fthe calculus of variations.
The point being to obtain the best possible approximation to £(x) in the
leant squares sense by an integrsl of the given type. As in the lsnat
squares proceedure we may introduce a positive weight function a(x) which
weights f(x) according to some law. Then if

$(N)= x KL‘:‘Q)Q(‘&)A?
g 300 K(x,5) Flody = g q ) K(x, s)ath Klx v);(y).l\}

or ¢(s) = 5 LEs,) '2(‘3)”{3
where Lis,9)a S‘ Kix,s) KEx,y) %,Cx)dx
and , ¢ls) = S: "(x) K(x,S) Sl x,

If wo assume that k(x,y) is "perfect”, i.e.
)
S K(x,y) u(p)o(va:o

implies, if u(y) 1s contimuous, that u(y) = 0. The L(s,y) is definite,
and symmetric. Hence the solution is unique, but may not possess a con-
tinuous solution g(y). This can be answered by ascertaining the existence
or non-existence of a continuous function g(y) which minimizes

W= g“%m( SO - g: K(x,y) 'j(‘a)o('a. )bo{%

over a sat of values in x. This minimum may not always exiet tut W may
be made as small as desired and tims an approximate representation for
£(x) is obtained.

A rewarding way of examining the integral equation of the first
kind is as an operator equation:

§(x)= S:K(h'))g(yﬂ'g as 5(8)= L 9(s?

and then the problem is to £ind L™  euch that

k

j(s): L;‘ §(s)



and, 1n general, will not be unique. For numerical work the problsm
lqueness becomes largely an academic one, in any caes. The

question here lg¢ under what goneral conditicns canm a solution b

how accurate will it be; and is there a quite general, easily ariihnetised

algorithm which will yield a reasonebly accurate result. A gsnersi theo-

rem by Bateman proves useful.

The equation is:

b :
S6a= G Kk, y) gly)dy,

Either K(x,y) ies symmetric or it is eymmetrized by the overation:

wis) = Sabf(x) y((.ng) 44(_ = SahK(S‘,x)cLyi Lbf’”{(x,;])i(?)’{?
wis)= S: K(s, %) KCx,y) dg {6"3(7)4? = j: L( 5/?)9(7)«5;}

Henceforth K(x,7v) will be mescumed to be symmetric. The theorem then is:

( (1) 1f K(x,y) has a complete set of characteristic functions,
p (x), eatiefying
n .

q)n(x): X S: K(x,‘g)cb.(»;)d\}

and

(11) f£(x) can be expanded in an absolutely and uniformly con=
vercent "Fourier" series

s
S’(x)‘-' 'g C-ﬂ4>no(>
then there exists a g(y) auc}:.that

| £ § Kex ) g &y

may be less than any arbitrary& » 0. The proof of the theorem nrovides
the algorithm for the solution.

Proof:
intl ntdl

) | b
3 ' - -| A g \
Define: [ (z,x) ':L: SVTI-) 7 LK S(x) : L, $60: {aK(x,g)%;;»a

g ©
e PR E 4§

n:g n!
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and 30 each saries becomes lezs than the exmonential series.

Pick an M and write:

iy =2 V\r‘(g) 2)dz.
S: K(K)‘j) g‘j’dg:’- z Sa K('\s)‘-j: d'-? 50 - ('g)Z‘)AZ
& 2 (M'Af_. fba:(g}z)x(x,\j)@ki,r

Integration tarm by term yields el ntQ

23 K(*wg)Fw,Z)o’g % i(—l) Z L, f&x)

W 5[-,Z H('le).

Therefore: M o(

b
(o KOu9) glydy = - \, &2
S‘(x) - H(x,M)

An expression for 1arge ‘M, of R(x M) is to be found.

Use: S(x)= i Cno 4).()0

Form: gn. K(x,y) ‘ﬂ-ﬂol.a

Aleo:

H(z,x)dz

%\- )()_ which converges.

'o

\

L: f(x)= i‘ 'C/-i"' q)‘éx) (n=1,2,....)

S pls
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o C0Z | T )= SENZ (T
HOy =)= A AT K 5(x/ /-ot " A
Now: i‘ im‘.}liéu for m large ezz'>;1(v;’:.g
(x) 00 &
n &
m I pr (X// ' zn.
since )‘nf, > >\v\+z. (by formal ordering of the eigenﬁznct:’.ana)
Hence: o0 ™m
Cr, Q’n()() +
H(x,z) ,Z - niu )
o]
where , ' < e C-z/'\'"
S0 rearranging: - /
2/0%
H(x,z) = “Z' Cadnicre N+,
Finally: o 0 277,\"
Hix,z)= ..Z. Cn 4o (x) €
80 now : z/- 2 -
) - £
l 2 Cn 2 '\"d)"(x)' < l ? qu),.,(x)( < €/e
and f iy for M large enough.
Coe T Malx)|< %o

Therefore , H (X M)l < €,
L £ K(x,?)gha)cba— 50| < €

and so the solution is

9(y)ew 2 § Fly,2)dz

If, in addition, g(y) is constrained to remain finite over the outi‘re
range of integration, more can be said. It has been showd that

| § Kix,y) glgdy = 5001 <€
but not that

un. 4,09 = 3y

€=>0



widd tion to the finiteness condition on gly) the "derived series”

If, in a
B <
’. ‘ , 4 %
\Z !:\5%’4! .8 sonvergent, i = T)»\ E en fa,b) then Lhers
” e
iste a gly) dofined by gly) =2 '.) ™y,z)dz "o

“0
guch that

ca
Goa= ( k |
X)= x,y4)6lydd
JLX a,\C’G)ﬁ" b
where F(y,z) 4is defined by the series on page (7).
Ag an example c¢f thig method of golutlon., consider the enuation:

e = g 9(%) am St dt

o t/q
The solution is known tc be 3(;{;) 5

ﬁ—re

The function F(%, x) ia formed

Fle,x)= xg e coastds - X gumts,as g
| W
Nt

C‘t% f,(i)“((ﬁf—) th-H

3o n! 2\01-0

ens, .,,JSL ) e Vo1, 5

9(x)= g Swe‘t%( f( (r)wﬂ wﬂ)o{x

n+l

-t g“’d %X’

if
i
3
=
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of %he first kind may be rather neatly 1 In terfhis of orthog
functions. The treatment will be restricted %o equations snd fu
satiefying the follewlng conditiona:

(1) The variable y is real on (a,b); the variable x ig weal
on the same finite interval of definition (a,d).

(44) The functions f(x), k(x,y) are resl.
>
(141) The kernel k(x,y) ie bounded end integrable squared '
in x and y; the function f(x) is integrable squared (L°) in (a,b). Hence
ely) 18 12 in (a,b).

It will be convenient to say that if

. (St-gtg)"dy =0

Then #(y) = g(y).

A set of real functions ié'(x)} are ortho-normsl L° on (a,v)
if they satisfy:

b
S- G0 B (X)dX =dn : mAs,LY 3
- Ja

If the set 1s orthogonsl and L2 on (a,b) it may be made ortho-
normal. The set is said to be comnlete if no function u(x) in L? exiets

for which b
o umdxzo  (all n)

If the sctg -‘f}.mjis not complete, it may be completed by mdjoining to it
a “tgb,"(x)( (13) which is called the cormlementary set to Fd,.(x)? I

Bessel 's inequality is: N il | b Iz.
f ({500 paoorde) = ,Z ¥ 18 Yq §(x) dx

If the set §{,(x)} 1s complete the equality holds. In addition, for a
complete set, the relation

g“smgcxm g fgn 0,

& he )



& -9 2 & and n 1 nd % marrm YA & j T ) £ nd A
8 valid. If not commlete the equality helde 4f and onl:
~ b

! E ’
[ T} Ay f gt Na
(%) Q)X =6 net, 2
N4

implies

g: £(x) 3()() d¥=0

for all g(x) on Lz(a,b)o This can be put another way. In order that

£(x) be orthogonal to all g(x) which satisfy the above, it is sufficient
]

that £(x) be orthogonal to the set{ﬂ 6()} complementary to é’ ¢"(&)‘{q

. -~ €D
Tho'.mndamental Riesz=Fischer theorem states: if { f'n} exists
such that E g * then there exists and f£(x) in 12(a,b) c:%;}x
that 95 £ 60

$p= S:: §(x) ¢, (x) Ax h=1,2,

where

Sb CPM(K)(P,.(K)M:Q mENZ),L,
F P i) dee < 0 M=y,

and if the set ; ¢n(*>} is complete, f(x) is unique except possidly for a
set of measure zero.

One point which may now be made clear is that there functioas

for which the equation (1) has no solution. For if f£(x) L2 on some (a,b),
then for some orthogonal set on (a,db):

A &:-5(&) @,.(x)cw < f:Anly)gHHy
SsE Anlq)= 5;" k(r9) @)l
e vz SN A Gy [T gln)dy.
0" A1 dy zan
g0 that Ca be bounded is a necessary condition if £(x) is to be a

' Wi
golution of (1); however it is not sufficient. But:
N

7o (T E AN Tdy < O K lupdydx

nt =1

Let
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Enginsering Notas B-1L3 Pags L3
2
» % - "’
an that S‘l‘ dn eamrorssnt and faeitharmass doameande anl v on the kemned.
v Vel L"i 2.5 e \} pORS AR 3.0, 4 A /SR LI LTEEN b ) A % \s r
p':. { 4 ‘ : 2.- T j’.‘?« .
Mt thers are seriea A Ch and L}' UL a which converge, and vey for
a 3.! Ca S | ~ %o :
5 e » “hnoo :
wnich Sw is unbounded. ¥For example: e 2 Y a1l
i > f
a.¥ 4 Qn '
i 7
o8 o L G
2 Cpz L M&p = 'n i.e. both series ctnverge.
e Nzt W, Nn°*

1t 1s voseidle to reduce the aolution of the given equation %o thal of
the following problem: Being given a demmmeradle set of consbtantn %L‘-n};’
ard a set of fxmct-ionsi&n(y)} » to find a gly) wich satisfien:

,Cn-‘-'g:An(?)'?(thj nzi, v, .

The following may be sald at once: . If the A {y) form sn ortho-morymal
ast on (a,h) the necessary and gufficient conﬁition for a solutio:—z.g(yj

is that -
] ks
Z. Ch™ < oo
=
then the solution is the limit, in the mean, of
N ,
2‘. Ca Al ).
AT
Neturally, :lf%An(y)g be not closed there mist he added, to the above,

Sb Aalq) alylely=o

Ir the) An(y)f are not ortho-normal, they may be mado linearly

golutions of:

1ndopehdent by suppressing those w'ich obasy relstionas of the form:

n=i
Antd= 2 %Ay

This creates similar equations among the c'a: -
i (w)
Cp = i- h i

As i
The remaining equations are ortho-normaiized. Hencs one gets serles of

the form

p 1 ol (n\l i () \
i bn = Z(Q, C, + C(" c”)
s
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which muet converge and the solution 1 the 1imit in tho mean

N
e . saa
Y L K.{v)
l b, Qn{”? /

¢ "z, ‘
whore { B fy)} are the derived ortho-normal se? Conversely if this »ob-
3 ° % % g » " 2%
lem is solved, whore the Cn are the Fourier coefficients of £(x), the

equation is solvad.

The solutions previously given demand knowledge of tha charac-
teristic values and functions of the kernel or of the symmetrized deli-
nite kernel constructed from it.

It will now be show that egolving the integral equation s aqui-
valent to that of meximizing a functional equation whose maximum value,
if attained, is the solution. The conditions that the maximum be attain-
ed, then, are the conditions previcusly obtained which insure the solutions.

The functional H(g) is defined as
H[a—_l____ ( S: §(x) 5}Lx)dx)
S: S\: L(%,v)%(x)a(v)d;&a{v.

where L(x,y) is the previously defined symmetrized kernel:

LOu9) = (TRG4) KOt dt;

f(x) 1s defined by:
: "
$(x) = S‘ K(x,v) 9(7)0/‘7-

and g(x) is any Le(a,b) function. The denominator of H[ g]is bounded
away from zero if L(x,y) is "eclosed” or if f(x) is orthogonal to each
member of the complimentary set of eigen functions of L(x,y)n This will
be essumed. Define now the Fourier coef<icients:

C, = S‘: £(x) 4{-(&.)0’&

.= (500 9.0

whers the f ¢1(x)} are the charscteristic functions of L(x,y). Then R{g]
can be written as:

argpe (L)

N

2

it

N T

N
a——
-

bR

>



Now introduce the identity:

Al vy . 2
N (g “e 4 o y & o
- » . v ’ J

< W ¢
(4
£ A, Z

L (i - J

—

How as N —P 00 , ifi af end 5_- 7)§ converge then L a, b jeonver
n=1 n=1 n=1

hencs %the series

) f(“‘ - Qb))

l‘d’

A
converges. The substitution ay =)i°1'b1 = 9/}' yields, the inequality
7
N
N o T
(& 9.5 )
) c i el
i = 5
A Y
4 Y

Now let N=» o : the right side ap'nroachoe H(g) and if the series con-
verges H(g) is bounded. Murthermore converges so that
> A

the identity can be written: (=

o0 -

H( )‘~'§1:C: ———1.- ey C: X i
L L= Z Azz(i“\" ja :\‘)

& .

Now put g = )\ f g Hence for the function g(x) pououing these Fourier
coefficients H(g) attains the maximum. Hence if the series z' )\‘

(“

converges and 2 \ C " converges, then there exists a E(x) whose

Fourier coefﬁcients are 20 and which maximizes $he funictional H(g);
furthermore, this Z(x) satisfiec the integral equation (1).

For numerical work, one would define g1 = ki 01 for i< N and

E’ =0 for 4§ > N, The N being selected as large as necessary for a good
approximation. The method used for the variational proceedure would be,
perhaps the Trefftz variation of the Rayleigh Ritz method. But here again
a knowledge of the characteristic velues of L(x,y) are necessary.



The sauation %0 be solved le:

<18

f o 0 .:’7 y gir= . o %-.‘ L
3(x) + ‘\-\)aﬁ ;{C;g} a)}],\()}cté =0

We form L (x,y): "

(\" : (’t)’;"
g: 5Cx)K(K,*5)c/x= & K(x y)dx) K(x,t) 9tt)dl

Lo, 8)= [P K Oxp) KGx, ) dx

uly)s 7Ly, gcedt = -vip)

So we wish to find a g (t) such that
('L Ly, ¢)g (1) dt +V(y)z0
i :

and the solution of this prodlem is the same as of (1).
The method of steepest descents can be used as an {terative method

providing certain conditions are satisfied. It will be assumed that L(x,y)
is such that, for all v(y) under consideration,: '

b )
(1) fk wmg&juw vlt)dt > m f ri+)dt ; mdo

(11) Yabg g: L(y,¢) V’(t)thLJ? « M Sab Vl(?““j Mo

() can be written as:

Cdx ( g:"’\(x,q) V(y)a’y)l p m gaLVl(f)dt

Now if the characteristic functions of L (y,t) form a olosgd get, an m can

be found such that (X) holds true for all v(y) which are L5(a,b). If the
characteristic funotions of L (y,t) do not form a closed set, a set $4>'(~,)§
is adjoined to yield the complete setiI(y)}= §90)Y + {'m}

Then for there to exist an m, must all v(y) be orthogenal to the complementary

set SP'(‘])} °
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So (II) follows if the kernel L (y,t) is ia(a,b)e Ag in ths caee oY alge-
bralc aquations the functional W(g), defined by

b b b )
Wiz Jo § gindy (" Liq 0 gtt)de +§ vty glydy
is considered. Squaring

b b b
(gundy § Ly, getidt + [t gtndy,

yields the inoqual‘itya
: ' L
§Z g"@mdj SbL(vb{:) ﬁ(t)dt} Wig) +§§:m> gi)dy{ 0,

Schwartz 's inequality applied to the second integral end coadition (1) apviie-
ed to the first give:

Qm( Y: 6()1(»,)0(7) W(7) + gkf)t(“])d‘a S‘: V‘(\;)dv 20
ence: -1 3 V'l( )Ol
: Wis) > mfa 149

and W(g) hae finite lower bound independant of gly).

Now, to improve and approximation, g(v) (y), we consider the functional:

W(g(wn): W(%(y) 4 wa))

where Y, a real number, end w(y), a function, are to be determined.



(olleoting terms in powers of Y

)] b v \
W(a"") = W(cd”’) E Y{ /ZS Wty dy Sx Ly, k) 97+ )dt

(
b v b v/
+ (el wigddy f v Y‘g w' )“’M?L L, ) w )t

or, uaing an obviously convenlent notation:

Wig"*)= Wig®) + Y W, (47,w™) + Y W, (w

v) y

Then, completing the square in Y:

W(q""")= W(s") + W, (w)

(o i ""m))Z
2
Wy (W)
- |/4 ( W,(’g"’ju“’)) .
WL(VJ(“)
The largest decrease in W(g) occurs when

oL W, (7“)/ w)
Y- /Z W—L (W’U') .

In agreement with tho r 95111; obtained in linear algebraic systems whore
the correction vector Wr is taken along the g(nslient of a functional W
and turne out to be the residue, the function w'V/(y) is taken as:

MOE S" L(yt) g7 (et tily)

Honce, the next approximation is:

%tm)"ﬂ): 9"‘(«1) ¥ chn(") b
= gty -~ wiity) [ (i)

(L0, 8) Wi edydt

o o



fh ’ b ‘y" ! 1>
W) - wi “’"‘"}-»- L (14 ‘2} |
A V M(y)ch} S L(q,ﬂw( ('t)df

Hence the sequenco, W g( )’is monotonic decreasing and it has a finite lower
bound. Therefore the sequonce converges to a unigue limit. It follows that

+0) Y .
lin. (W(g(w) e W(glv )> =0
y-re0 .
and the denominator satisfies (II) so that the equation yields the result

b
(v) LS
ua, | (WP dy =0
Vo0 i
The sequence ) w ' (y) (;convorgee to the mull function.

Hence: 5 L( t)[a U‘ g(v*”‘:\ﬂ] dt =0

But, by (i) and by the Schwartz 1nequa11ty

({ (jm( ) - (" ( ))C/?)[ U q,t) DM('H ?(V*P"(t))zc{;]_
( S (am( y & 2(»’11’(‘“ dyg L(V],'t)( m j(vri, )d‘t)

i Y:[ 9" () - g"””( »1)]1'0‘;;)

H U’i ‘b)(“')m(t) ca(vﬂ’)({_) Af' m Ig n (vfl’( )J‘ai

'I'herqforo the sequence, g(v) (y '» converges to a limit function gly).

Hence:



Then the "triangle® inequality gives:

M b A ; N ,t? ’W y i
W ITIE R I {4 BT, ML o Xollen
f gb Ly, 3(1 Gt \ﬂwg = }MLW, a.ij (+) ¥l

'ff{h ‘H“ 3(05*% 3W'( )’

and, in the limi%, as v-¥2D , it is seen that the 1imit function el%)
satisfies the given equation. $ot

| s glodt ertpl £ Lw V| Kl gtt) —gm(’c)l.

o



The method of back substitution ! AP’ ]
intezral equations of the {irst kind:
7 00y T i
J(._,)‘i)—- L(X \3:) ~ abt'j
where L (x,y) setisfies the condition of the previous section. An i%ere-

tion algorithm,
%(V-H) s j(y’ ) + Y(L"L(m)?(w(x)dx-§{7)))

can be easily obtained, for
b o
S l(x,g)[(ﬁ(q) -«3("(1)) + 9( )(V)]’l‘j = £(x).

Hence:

aly)- 9")(y) = gFlw,x)dx

where the integrnl operator P(y,x)f (x) dx is the operator(if it exists)
that has the pioperty

g: P(w,x)dﬂ( S:L(x,\q)l’(q)Jg Yo f’(;})

for a p(y) in Le(a,b)§ In general, such an operator does not exist; and
in every case of interest is no¢ known: for this is equivalent to having
solved th?'¥{?blemo Then replace the overator by a real scalar opsrator,
o (y) is definedby

%Uf‘)(ﬂ>: ?LH(1) vY 1[: S:L(w,x ) jw(x)dx- Sf‘ﬂ].

This equation is analogous to that obtained in the method of
stespest descent; however, in this case (), being a real constant, does
not vary from one iteration to the nexi., Thie reducee the rate of con-
vergence but lessens considerably the number of calculatione involved.
Furthermore, with the kernel satiefying conditions I and II a ¥ can
always be cheosen such that the iteration method converges, i:e.

lim. v(a"")(v)- 3“'(1))‘—'0

Y =3c0



for almost all y on (a,b). To vrove this selec
-( N N g 7 )
Q (vl — § Ti4s
| 1) ¢ ]

Then, using an obvious operator formaliem,

%“”q)* Y(E+ X ')f y)= Y § 7>

Hence: | -
?(”(‘3)’ Y(E +KL)"3(‘('1} - (¢ +v0) S - v H v,

80 that
G - 2 y)= ¥ (& ry) ).

Then it is necessary and sufficient for convergence of the iteration
process that

un (&4 vL)" = (o]

Y= D
whoroEO ]13 the mull operator.

Since all of the functions g (v )(y), v =0,2;:0- are L2
(a,b), it is sufficlient to consider a fnnction ”1(’) satisfying

HARED TR LLx,»;)cp(;)dj

Hencevli’iﬁo(l: + 21 ¢1(y) = 1im. (1 + h) ¢i (y)

Since both )“ and \ are real it is necessary and sufficient that ¥ satiefy:
—— ? L]
o< n. <\

Furthermore from the nature of L(x,y) it follows that, since all li are
positive, Y must be negative. Let the,l be 80 ordered that

MEXLSEL L X Mardd

Then, convergence is insured 1f 0 < - ¥ < A\, . The conditions on L(x,y)
insure that ), > 0 - ;

An obvious estimate for k min. = 1. is obtained by considering
the defining equation

6,y = 0§, LCG 164y,
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By Schwartz' inequality:

Y ¢, Cx)boi,f & SS | Lix, Y) d»,aix) im :,(',%;}aé,;g

or, using an accepted notation:

]ﬂ > .

IhLix, i,
Hence & possible ) is ,

A
2 L Il

Furthermore, even if L(x,y) is not "closed" but is "definite", the above
estimate will insure convergence.
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us adnroach is o reduce. the ints
. braic squations, whoe al

give an aporoximation to the function gly). Thils may de

savernl vays.

LS

n o S ~ P
2 8e% 0of linear

Lo Firatly, the integral may be approximated over somo set of values
%"J “"by a suitable quadrature formulated. As an example, use rey be
& 8.
Azt ;
made of the Ganss quadrature formule. The range (a,b) is transformed to
(<1, 1) and the integral is apnreximated by:

] n In
S.. K(x,9) glj)da - ;Z“: oA ’V\(X, m) g(t&l;)

where the values 0(4',(!') are real constapts which depend on ths mumber of
points chosen. The set of valuosg yi} =R are the n solutions of Pn(y) =0,
=)
vhere Pn(y) is the n'® Logendre polynomisl. These zeroes ara recl, dise
tinct, and lie in the range (-1,1). They have been tabulated for fairly
large values of n. By this double choice of weight factors and ordinates
the integral, evasluated by n pointe, is exact if the functions integrated
are polynomials of degree 2n = 1 or less. TYor small n this is a decided
improvement over the Lagranglan interpolation polynopial. The given func-
tion f(x) is then evaluated at the set of pointsi xig with each x, =y,

i=1,2,...n and the system of equations:

Stz T ol KOxg, ) g0y YRR}

3

is solved for g(yi) (4 =1,2,...,n) the anewer being obtained as a set
of valuex { g(yi)} . » The integral equation may be used to afford

some idea of the er;'-g}'. Once the avroximations are iatroduced, there
is 1ittle point in debating over uniqueness of solution. Obviously this
method may well give a solution to the algebraic porblem where there is
none to the integral o}uation, However, if no relation of the form

% P Ky, g0 70 (X))

is satiefied, this method should give a ressonable spnroximation com-
mensurate with the number of points used. In actuality if the ranges
in x and y are different, a set of linear equations with s singular
matrix will be obtained providing the intervals in x and y are
different.

i=1



for solving aimultanecus equations mey

Howaver the immortant faster of solution etnbility must b2 kept
fa mind. The roduction to a system of algebraic equations involves one
avprozim:te quadrnture and the remaining caleulations are glgebraic. An
iterative scheme like the pleepest descent or back-substitution methods
involves repeated integrations each of which ia aporoximate btut essential-
1y no solution of a set of linear squations.

It is a matter of extreme complexity to make a precise "error”®
anglysis when an integral equation is solved by numerical methods; howsver,
the need for such an analysis is pressing. Of course once a solution is
obtained the error is immediately calculable from the equation iteelf.

An a priorl estimation of error, i.e. of the needed fineness of the in-
tagration scheme, or of the degrees of avproximating polynomiels, however,
is usually a problem of the spme order of magnitude as the solution of

the given equation. Since iteration mesthods tend to forsstall the un-
limited accrueing of round-off and truncation errors which occur in each
calculation, it appears that an iterative method would show more stability.

The functione can be maintained as tables of functional values
for given ordinates or as tables of coefficiente of intervcleation moly-
nomials, in which case presumably the quadratures can be performed exactly
except for round-off error. Certainly, the cage of the kernel, = function
two variables, if 100 points were required, 10~ values need be ctored,
whereas an interpolation nolynomial of 99 degree would require as much
stor~ge for its co-efficients.
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Tris mathod will be limited to those varticilar cases whers kiz,v) is
of the tyve kiz-y), k(xty) or k(xy). By a simnle varindble trsasformation
each of these can he transformed into k(x-y). So we wieh to solve

§§x)= j:bK(x~%)?M)Jv.

Tormally we can obtair a solution in the following waYy -

Formally: PP )
Fluj = rL g Clx)e' P elx

= S ebu\dxg K(x- v;)gf\j)D(ld
{y (" ke Xl
for I gudy [ Keae

let x =t + y end obtain

ol
iy WWJ:WM»JL Kik)e

- g *© Lt
: %L gy dyet v S’a kiz)e" ¢,

'““(t*91¢t

Therafore:

Flu)y= o G Kw)

where G(u) and K(u) sre the Yourier transforms respectively, of z(y) and
k(t).

Finallyv we obtain:
|

L
W= & 7o

and our desired result ie

e & § R e



(11) K{x) '3
Then 4f and omly if
(111) FlwW) o (-0, 00)
K ) € 3
12 g9ly) & LYU-,0).

Ve are specifically interssted in a numerical solution when
the given function f(x) hae certain properties:

(1) It is defined, oither through leck of comlete informaetion
or foronvenience, at tut a finite number of points.

(11) These noints, except perheps for an assumed constant value
at o0 , are distributed over a finite portion of the real axis.

(£44) It will usually be the case that the values tabulated
over the set of pointsix& will not de t(xi) but f(xi) + & (:ci) or even
more likely f(xi) + € (x), vhere € (x) 18 an error function. That is,

the simplest case is whers the error at any voint is functionally
defined by
- % - ’

Usually, through having interpolatsd by one means of another to obtain
each f(x,), the error at any voint xJ, will depend on all vointe, i.e.
=e(=g?1
Naturally we are going to assume that a unique solution to the
equation exists. And, due to the incompletensss with which f(x) is
given, we must exvect to get at best an apnroximation to g(y).

The Numerical Solution

(2) Flw) = g‘ f[ ouxdx

(hrFlu) = § §lx)e “Edw + T(%,u)
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CO W ¢ =3
. KL =prg
{ o Ko (apgoi) S - 5 =
i.8., g P(t) sin (ﬁﬁgwl*(uwt)d%o Ths praciss effect this has on
- o Re

the sgolution is difficult to ectimate. Hence we have here a first 1li-
mitation. It is necessary that a finite %, exist such thst I(ymgu)

will be sufficiently smell. Since F(u) exists this would aprear trivial,
but if f(x) 1s a tabulated function or an experimentslly measured quan-
tity; knowledge out to Xo? at least, is required. It is poesible then

then that the renge of definition of £{x) may be so limited that I(xb;u)

will be of such a size as to a render a good solution imossibls. This
difficulty will be discuseed later. TFor the moment we will assume I(xo,u)
%0 be sufficiently small.

The evaluation of the transforms requires that there be avall-
able tables of sinee and cosines or thet they may be conveniently manu-
factured in the machine during the procesc of solution. We ageume sata
of trigonometric functions will be sveilable.

Further; on the x scnle, we ascume, since this will usually be
moset convenient, the values ef f(x) to be spaced equidietantly;then let

. eb}l}' __?et“iohw' ; h: 0; |}z) Wi T hmnx
and let Y, — km,_Then h= hu“ X ¥e have:
Wain ke |
ar Flu) = Sh... [scx)]x%e‘mh“’ }-:(-9- dh & Tl )
= b Mmak
We can always make dh = 1. Using, in effect the Buler-MacLsurin summption
fomula;" ’ "m.\x e huf
mFwy = = z "l
Nl e [Hx)]x_ne ,
hmax
Similarly, for the kernel,
bma\ .
Xs VITLhw
for Ko™ 7 Y [Tk, e
May “h
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1ich i3 to ‘913"‘@? ent Flu) at 2 values of w corresponding %o u.
mu) L wrh
2 5 o !
That meana that for 0 € w«' v, wrunsover 0 £ u £ __  MXp
max \< " -(
o

Next wo form:

9= ‘!“"Pcafu)e"""L‘c! —-J? R P 73
m-._) T J, T

. Umg :
e (R oMY, T ()
. Ty K

The Buler«MacLaurin integration scheme gives:
W T,

M -TLmz
am gip, = = Z [ Flu) e Am
J M wax M Kiw) w-am
and agein let & m=1. The variable ronges are as follows:
(1) =x: 0 %o x
(11) h: 0 to H(= hmu); Ah =
(111) w: 0 to W(= oox) (sey 0:250 of a cycle)

hence from H velues of the integrand, we get

w values of *(u).

Aw~
(1v) u: 0 to I-Eitw
2
of the 1—% values of FF(.E‘&)) we may use all, or an equidistant
Rl =y=rw

gubset in eveluating ely).
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apf
(vi) =z Dto2{ =2 )
max
hence from M values ofl- E,l.-'f) we obtain
: Kl dyusur
Z] A z vedues of g
/ ‘ ely) -~
for which:
e M2y = Mz X,
vii) y: 0 to l‘!—“——HW W

Having obtained g(y), the prodlem is essentially solved.

More may be said about the actusl aveluation of the transforms.
We crn always choose our zero on the x axis so as to maintain the follow-
ing aymmstry:

X,
Flw)= W-l%r { g['}()ﬂ)f $ex)) ewdun + 4 [ 5(x- f(-X)]SMuxgdx
0

and likewise for K(u). Both P(u) and K(u) are evalvated over the same
sets of vointe. And

Glw) LR riFuw o (Fo+cF)(Ke—t Ke)
: b K,,(M) + Ko W Ui K‘_l(u) “ K:"‘}A).

Since we integrate over (- @@ , 0© ) all odd terms vanishi., Hence we must
furnish;

(1) x2() + k()
(11) FK,

(111)4'!1(.
and

g(y) over the range 0 to y s Y111 e the (coeine + sgine) transform of
G(u), while being the (cosTAd - sine) tronsform of G(u) over . T to 0.
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accumila

tion f(x), sither through oxpedisncy, or in
fact; is incomrletely defined san, as mentioned hefore, will VeT,

3 5 s 3 3
cop% poseibly for s conetant velue, Ye given over the entire ranzel- P, @

{(i1) In addition, each value, f(xi) will be conianinated by

errore. These will Ve, at least, truncation errors.

(1i1) The infinite integrals rust alweys, unless they can
be evaluated exactily by some analytic procedure, be cui off gt some finite
value. This is equivalent, as mentioned before, to the folding of the
precise transform sgaingt the slep function Sin WX, 5 4 %, is the

U ¥e
cut-0ff value. This nmeans that the frequency spectrum of f(x) is warped
by thie factor. WYhat is rore immortant, though, the warping cannct de
removed form gly) by any unfolding.

However, we can nake some ssmumptions gbout f(x) for large X

and develop an error formule fqr the cut-off. We obsorve that we have
two cut-of“ integrals to evaluate:

(&) g:o §(-x) e X x

® 7 $00 e dx

As x, - o© , these errors —? O; and the high frequency comvonents of
F(u) should ba largely transformed at any reasonadly lerge x, end similar-
ly for the cut-off error in the evaluestion of K(u)

The integrantion scheme

The eveluation of P(u) and G(u) is to be dene mumarically and
in those cases where it cennot easily be evelunated anelytically X(u) will
be also g0 treated.

Since we are evaluating specisl tyves of integrale; i.e. Fourier
transforms, 1t is best that we use an integretion scheme which allows us
$0 make most use of the duplicative pronerties of sines and cosines.
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n=a
the of? :
vhare S (4)= -l Z 39_1«__3,_"1}"5
‘ 2 nNey 2”:’7‘
Vs are to evaluste an integral of the form:
Xo W, 1T thw
(7 $0c) e " “*x = ﬂswm d
0
here ;
whe He %, = h,,,

The sum formula yields:

X:&(h)e‘"‘h"’dh L[ 466) + f(H)e”” gl

L

ZH)”W’(dﬂm T )G

n=)y

An analysis of the error term is desirrble for it develops c¢erteain facts
about the relation of the h and w intervale. Noturally as the number of
intervals —» oo , the function S(h) —» 0. The functional relation-
ship hetween the error and the interval length resides, of course in
$(h). We will assume that | f(h)l & M, M a finite constant, over(0,H).
This is not unreasonabie. Ve coneider the error for W = 0,

Elo)u): m§ ( { = sumnth)d h
= " )i =
-MSO (n-Y% - L] o

([ n)ie the lenst integer in (0,1), (1,2),...etc)
For W =T, TM = integer

©0 M . ‘
! M wemh MH
E(Mu)= E\‘(ln‘lr)?,mmgo € Sim1 11k d T

n=,



mpear that, since ¥ = 0 is a value we-ues, wa ahc

vhough the peak about W = 1 i8 narrow, 1imit W to lie certainl

range 0 €W £ C <1, %c minimize the error. This of courss is a con-
sequence of the fact that we are fortunate 1o be desling with periocdic
functions, &~"iI¥, guper-imposed uvon, as we have assumed, s funciion -
contalining prectically no frequencies above some finite cut-off point.
This concludes the analytic discussion of the errora exclusive of thoase
occurring from round-off, truncation, or in the function f(x) itself.
These latter can probrbly be trented astatisticsally and this may actuslly
be done later.

Convergence Factors

Before going on to the more numerical treatment we must men=
tion some impertant considerntions concerning convergence. We agsume
that F(u) and K(u) exist and are finite. 'ence F(u) must heve a higher
order zero at infinity than X(u) to insure convergence of

L PRy g-tyu
",)(‘1): - TWoe du
W s TKlw)

But it is precisely those features which we lack in any an-roximate
solution which make this extremely difficult to achieve. Every error
that eccours in the procedure has the effect of adding into T(u),
Yourier comvonents which extend the range in u on which F(u) maintains
aporeciable valuve. It is only through a gscrifice in "resolution" of
g(y) that we will be able to obtain a convergent mumerical solution.
Nevertheless, admitting the neceesity, and even justice, of such a re-
solution deplation weo can obtailn solutions which are quite good. The
extent of this "smudging out" of z(y) will depend, then, on the nature’
of g(y), the extent of Gefinition of f(x), and, of course, the accuracy
ve maintain in the numerical computations. A detailed erample will be
shown leter where the function gly) is a sum of § - functions. BEven
though ite tronsform does not converge we are able to obtain a partial-
ly resolved solution; indeed in this worst nossible case we do obtrin a
resolution as fine as desirable by merely extracting an increasing num-
ber of values of £(x) and refining our integration scheme, accordingly.
Hence to obtain a g(y), we must ueually expect to be forcad to introduce
a convergence factor. A convenient cne, since up to cousgant ampl itude
and half-width factore it traneforms inte itself, is e™°* . Anether is
rA

Sm O X  and still a third is x'a”** . As in the formation of
——— \

lax)~
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We introduce the factor T{v) and get:

v oo TURLGY Tratet T
% (3) s B —) ‘K(w) s

g(a -5)4ls)ds,

In short, our eolution u "folded azainst® the tronsform of T(u‘ The
step function yields a g* (y) which has oocillations of decgeasing amp-
Jitudes and obucuras much of the result. The function e~au” transforms

- /
into & o> s UPp to an amplitudo factor. This means that the

greater the wvslus is u at wh:lch 7 remeing well behaved, ths narrowver

will be the spread by which each veint will be weighted in the g*(y).
Thie is almost poatic in its justice.. For in jJust thie way does the
incomplete definition of ¥(x) affect the result. :

A aoecific example

Consider the Laplace integral equation
s8)= CeMatqd
5(8)= So e 'Talqlay

The transformation

- _ ‘
L - y =6 _
olds ) C""‘f) )“v .
e e¥ §(eD= § e” gle )y
o (x ‘1) R )
We form:

Flu) = \f—;’{r gﬁeﬁ ;(Md”%d%
| <o

o T
Kw) = ﬁ";{j 6—@, @tebut—dt

‘o



"’t":t‘ th this ke ,K(u) can be evelusted anslvy¥ic:
™y bt “
tc bo the Euler integral for.l {'(1 + iu) . 88 g necessary and
g = 4 3
it
sufficlient condition for the behavior of f(x) for large x{i.0. %) can

be stated. With respect to the two cut off integrals 1t is as follows:
The cut off integrale are:

o § e Sx)e
o

(v) S:o 8*35’(2‘3 G'L“KJAL.

L

B
dx

Then for convergence, it is both neceasary and sufficlent that, for (a),
for large x, f(-x), be 0(e™), n <1 or £(x) be 0(e=BX), n<1.: and

that for (b), for large x, £{x) bde 0(e™*): n < ~1. TFor both these cases
an error formula can be simply obtained by a single integration by peris

They are: o » e l (n=1) X, |

(a) | (e *0(e™ ) e ok ‘~{‘:‘ ofe A
¢ | ' (n~:W. )e»mxd‘,
o g

1 g: ﬁxo(e“ e’ dxl “ o(e("")xe)

’ Jw=1] =lul.

and (b) yields similarly:

s : (nr1)Xeo
| (TeX fie x| « Oe
Xq (m+1] = ul
A more specific result holds for the cut-off in forming X(u).
We observe that theae two formulae yield an exact expresaion for the
error in the two cut-off's. They are:

g:e etete tuaH. = - Ex(l%’lu) : o r(l+\,m\

and "Xo _oF + tw '

S a™t a" &' ¢ f, O+rw)

-2 whera r (x) referes to the in-
complete garma function of x with integration limit J.

W
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exiotence of undamped Fourier terms in F(u) implies that for somo
value of v, the quotient will begin to grow without bound. We solect

an "a" such that Eﬂ:ﬁ\ Q-GA&? will be essentially zere for all
Kiw)

u beyond this eritical value. Hence we have:

PR j M F(.«) -a..u," -(,v.*j

1 (?') = A’ @ A clu
( LT 2, Flivew)

f e ) T o) gt

and we gen at once the way in which a small "a® (i.0. & large critical
"u") yields & good g*(y). Here then is the crux of the resolution
problem. It is all bound up in the constant "a". The size of "a" will
then depend unon just how well we can demp out the "noiee® in the evalu-
ation of P(u). That 1t can be made to be ar near zero as we wish is a
consequence of the uniqueness of the golution.



- S R & - b
COavLon } 3
y { s ! 1\ A
: v L v 4 Yi.r - )l
qu) (f’l; = “ {'Y\ } ‘ Ay \ “ /W LU G
( \

L
i
-
7
~

The functions w(x), f(x), and E(x,t) aro assumed o be roal
functions of the real variables x,y. As in the preceeding sect 4
K(x,t) is not symmetrical it may bse made to yleld a symastric keraal.
Ths above equation may be written in symbolic form:

wilx)= g(x) + 1T wibel

or .
gx) = (E-I‘T)‘U(X) | (%)

where % is the identity operator and T is the integral operator. Ob-
viously the equation is solved if (B = AT)=! can be obtained. In general,
it will be shown that such ean inverse exists, subject to ceriain condi-
tions, 28 an infinite series in powers of T(i.e. as sums of iterated in-
tegrals) . '

, Left multiplication"of both sides of (k) by (B = 2T)" (the trans-
pose) yeilds !

wix)= (,E-,\L)a(x') ()
where L 18 & symmetric integral operator and hence has only real eigen-

values. The equation to be considered then ie either (¥) or (¥). For
theee equatiors the following existence theorem is fundamental:

1f the known functions g(x) end X(x,t) are integr=ble sguared
over (a,t), then is w(x) integradble saquared over (a,b). Furthermore
if Ais such that the homogenecus equation

) = AT

has only the solution P(x) = O, then there exists a unique solution
w(x). If, however, the homogeneous equatic.. has m independant solutions
" then there exists a w(x) i1f and only if g(x) is orthogonsl to each of the

m solutions of ,
M : AT V)

The solution w(x) is not unique for there can be adjoined to it any linear
combination of the m solutione of the homogeneous asguation.

2. The Simple Iterstion Procedure

Wa form, from:;

ulx)z §(x)+ A g"t.( ) ult)dt

G,
the iteration procedure:

W0 F) 4 AT u i)



let ,u,o(:a),ﬁUy then e
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a necessury and sufficient condition for convergence is that lim. [l Rnﬂ =0

8o thet: . g
Lim INT =0 ;
& sufficient :‘:;Eition is, of course,
IALITH <
ar;
PMAL <)

We define the morm of T by the following equations:

b 1 %
e = | i&lL(x,a)ld&d‘j)z
and

§7 Lk, g ulydy = T uty)
We define:

Hw ool i.8. the least number for which the
inequality is true. It follows that

I TwllFs NLIE huool”

from the Schwartgz inecuality. Hence:

NTH < fei
Furthermore

T w0l < (1TH T el

Hence, if o

we have

IS, < (+UTh +UT 0+
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3 to provide & soluiion 1

 to find a set of 1 3

s adjoined %o
12!} fe \ 4
nabl(x, ¥l %!l .
ni(x) guch thats

N
I Lx, )= 2 A0 Bl <1

as i

Lxy) = T Ao Bily) + MO,y

where N is chosen so that || M(x,y)J< 1. Hence M(x,y) has an inverse, J,
conelsting of convergent infinite series of integral operators. Then:

wiO= T H(x) ¢ _%'(TAJX) ) g: B.(y) u.(q)a(na,

or, using an obvious notation: ;
( B,x), ue)) = (8;00), TIW) + _i(gi(x),TA;(x))(P)L(v)) uly));

J3hx, = )N

b
(B;00,ub0) = § 800 ubxdx

The solution this set of linear equations for (B,(x), ¢(x) ) when sub-
stituted in the equation for u(x) yields the destred solutien u(x).
This method;, in essence, can be regarded as a double iteration scheme,
if the algebraic equations are so solved.
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p) 3 ‘. »
in opsrator form is
(e-2T) .»:9(;&) =9 (x)

and T will e sssumed to be a positive operator. Then, it follows that
the inequalitics

04 M S:Six)"ckx P ga-bﬂx)o(xS:K(K'y) S—('?)A.? & M " (x ) telx
ere satisfied, the first from the positive nature of the operator, the
second from the bounded nature of ths operator and Schwartz's inequality.

The functional w(f) is defined by

wedr= e §1 8 560 = x £oa | Koes) Hodu Ldx + [Fe0g0re

Squaring the expression . ,
| S"§s‘u) - §60 L ROx ) FdyYdx + [ FGageoelx,

ylelds the inequality

(S f5hx) =) $00 0 KU, 9) §Lq)dyldx )W(F) +(L s(mgmolx/
from which follows

2m( fabft(ﬁ)dx) w(f) + S: Pir) du r‘()tcx)ohc 0.
Therefore w(f) has a finite lower bound, independant of f(x), given by

wig)» - S 9‘(;)alx

1f f(')(x) ie an approximation, then an improvement, e
i obtained by coneidering

(*(\Hn)) “ ( #(vt( ).‘_. un("’(&))

v+1)( )

where %, a real number, and r(V)(x) a.re to be determined, 'l‘hen

W{E" ") =W (£ + d\lg TN $%x = A (x)gnlxmh‘ (gl } 4

tu)d 1.1
U !
w13

+0\S;g(*) rtdx + & g A*'tx) = ,\n“"(x)f Kx,9) "l
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or, in shorter notations

Alwél’
LY Vi

B \ RC] - VLY -
‘/wl{,{?i' J=2 W(+"7'] + d®) + A &

ompleting the square in ¢ ¢ )
3 P e \

Vi) ; - ( PRGN R Y

_iQ( ¥ )}.‘ Mj'(‘i{“”} = @LL o //Z'.Q""‘) /4‘((5)1‘/

w(f) decreases most rapidly when

o=~ g

ag before, the function r(vzx) is taken as the residue, i.e.
b v
n"x)= f‘"(x)- )Sa K(x,g)#' '(y)dkj = 9(x),

The next approximation is

§"x) = $%%0 + AT

and this 13' the iteration slgorithm. The sequence, g v(f(v)(m%, being
monotonic decreasing, has a finite lower bound and so converges %o a
unique limit, from which it follows that

Dim LW -w(£7)] =0
V]
which by & previous inequality implies

Rim. g n("(x) dx =

o (v)
from which 1% follows that | £ (x)} converges to the solution £(x),
almost everywhare.



The ation to b . >
[r/ 1 ‘i,“"} \ \‘;r g y',@; 5 ‘]:rv
1 operato n ovesyior oy ha tdafinite b "
) ‘if’ )
r(;j) 2%(&1) b A S,- K ’”U{K}!v i
A
iy

or

§9)= iy + )\L'S; L(x,9) $lx)dx.
The ileration scheme is:

§°% =~ o gly)

S_(vrl)“?) * f(“("a)‘f_ d Il‘ﬂ(‘f)

and

where

b W A
AV (y)e %(w(b’) g L Lix,y) £ (rlelx = vt.,v;)
and y 18 to be chosen so thet lim. | " (y)| =0
W

Then;

/leu/[" {lvrl){‘/)’ N j;b/—(xlﬂfwnﬁua’x ) 7(/)

5 b "
= 00+ A a < A [ L TEThO pan el
- 9(y),
. 7
(v#1) v/ w e tv) 0{
R (v): N"lg)+ o YY) - A(Xfa Lix,9) a'"(x)dX
or, in operator notation:
Ry = (E + (&) 2" (9).
Since the operators sre boundsd end commute this becomes:
ﬂ(,“)(\j)' [ E‘f‘ d\(; AT)JVIZ,“/{y)

and ¢ must naw be chosen so that lim r( vH) (y) = 0. Since the functions

’
considered are L° (2;b) and T is a bounded "positive® operator, it will be
assumed that

o< m L5000y € [ $00 A "Ly fipely & M [ el
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fo 0y f( ) in I (s 373:’_: '‘rem the abev ¢ follows
tedl)e ’ | = 1‘1._\,-,ﬁ\,;“\k IR
| = (| €+ 4Ee-2T07 2%
(v :
o (' ol 1}
fonce lim, ,;L r' 1)(:.) l'é = 0
b= o0
1f anjonly if

| E+ale-nT) <!
S\; S"(x)ck{ +\(§:S“(x)ol¢— i3 Y;f(x)a(xg;bux,q)glq)c{cj Z S: fj"{:c)asi',_u;'

or

Then
3 l+d = ol Am | < |

yields a relation for { . At this point it might be mentioned thet the
convergence criterion is the seme as for Newton's method, withol = = Y
Hence, subject to this change in sign, the two methods converge or di-
verge together. This method also fails, then, for A = A. , a charac-
teristic value of the homogensous equation. Newton's mathod will, in
general, however, converge more rapidly.
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The equation
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can bs represanted in operator fomdas
(- >T) )= 50x)

defined on the interval (a,b), where E is the identity cperator and 7

is a poeitive integral operator. An operator (E = AT)=1 exists and

in the case of |l AK(x,t) ) < 1 is represntable as an infinite ceriee in
iterated integrals operating cn g(x). Fewton's method may be employed
to obtain (¥ = )‘T)"l, in those cases whers | AK(x,t)\ 21.

By enalogy to the Newton algorithm for abteining reciprocals
of numbers, the equation

P(v-n) y mel E - LE -)T)P‘“]
is formed where the operator p'(’) is such that

1w P 2 (g-aTY.

V=) o ( ) )
Conaidrg?tions of commutativity may ?s)ignored it P °) & X, e scalatr.
Then p° ', and hence, by induction, p  '(v =1,2,...) commute with the
integral operater AT. This is quite obviously a sufficient, and oven
convenient, but not necessary comstraint on p‘v v =0, 1,250}

By applying the recurrence relation it is seen that

v
E- (e- RT)F(”: ((; - (e,)\T) P(o))z
Hence |

-
un PV (E-AT)

Yo e
if and only if

Jax & - (e-aT )P ¥z 0

A sufficient condition that this be 20 is that

be~(e-xTip™ %
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By a proper choice of p“ g :-.Xthie can always be arranged. Hence Newbon's
sathod wil always yield a eclution by a —urely iterative schems (vrovids

ing of course the opérstor T is bounded, which will be asrumed £t all
iimas). Obviously if A= ) N ie a characteristic value of the equation,
tlie inequality sbove is not satisfied. Likewise such a A violatse a

necessary condit&?n, 1.e. that all characteristic values of the operator

E-(B=)T p ' lie outside the unit circle in the complex plane for
witha A= 2, the operator has a characteristic value on the ualt

circle.
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i2e  Solution by Approximate OQuadratnre

The Fredbholm equation

3' (k) = :’? ’(3 + A

~h P {

{ i~ r. » ) .-3"‘:1',7" 3
)!} ‘\{" / ()/ s o /3'

nay be regarded (and war so treated originally by Fredholm) as !
limiting case of an simultaneous %near algsbreic equations

§(x;) = 61x; ) +(,\/n;-3.=' Ml gaflys) iz~ n

as n-2o0, If Ais not a charccteristic value of the homogeneous equa-
tion, the above, for n large enough, may be assumed to ymeld a solution
f(x,) 1= 1,2,..,n, which clossly approximates f(x) at leset at n noints.
Since » soluticn can only be obtained for a finite number of points, in
any case, when numerical methods are employed the sbove appsars Yo be an
attractive way to dispose of the Fredholm equation by reducing the trans-
cendental to an algebraic problem.

The above equation represente a solution at "n" distinct points
equidistantly spaced. However, it involves the most primitive guadrature
method. A linear quadrature scheme which best approximstee the integral
is desired. One method is to approximate the functions involved by ine
terpolation polynomisls; and prevail upon an exact integration to glive
the algebraic system. Legrangian or orthogonal polynomials are most
commonly employed. Another method involves the use of non equidistantly
spaced points and the concept of Gaussian mechanical guadratura, Firstly
the interval (a,b) is mapped into (~1,1). The integral is spproximated

n

S'K(x,‘g) H‘g)d‘ﬁ: 2‘ (A;"‘) K(X)"J;m) #{vj(w’).

with a given fizxed n. The & (n) are welghts which vary with j and each
n. The points y n) = 1,2,‘3”11 are the n real, distinct, es‘oas of the
nth Legendre polynSmial and lie in (-1,1). Tables of the y}?/ are avail-
able for n$10 and, in time, will be no doubt aveilable for larger n.
Such a quadrature ylelds an exsct evaluation of the integral if the in-
tengrand is a polynomial of degree 2n -~ 1 by the use of only n points.

The method may be generalized to treat any intervel providing
the points and weights are chosen to depend upon that polynomial ortho-
gonal over (a,b) with respect to & unit weight function. The morekori
"thogonal functions may be used providing the proper weight functiocns are
introduced., For exemple, on (-1,1) the Tchebichef polynomials may be
used if the integral is written asg:

(" LKCng) S T dy = v B ek Hy -

-yv ' L

Here the B(n) are identicel for a2ll 4 and a given n, though the y(n) are

not eqw.diq%antly spaced being the n zeroes of the Tchebichef pol¥ynomial

T (y). Likewise nse may be made of the Laguerre polynomials over (0,00)
th weight function e~X%nd Hermite polynomials over (-0, « ) with

welght e-X B/2,
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