
Me)norandum DOL-IOI

~ig1tal Computer Laboratory
Massachusetts Institute of Technology

Cambridge 39, Massachusetts

Tot Scientific and Engi~eering Computation Group

From: M. Douglas McIlroy

Date: 12 September 1955

Page I of 6

SllB1EO'r: ITERATIVE SOLUTION OF LINEAR SYSTEMS HAVING SPARSE MATRICES

Abstract: A preliminary routine for solving large-order linear
systems having sparse matrices is described. An
iterative approach is used in order"to take advantage
of the absence of most matrix elements. Such a routine
could handle a 100 x 100 matrix of this character in
core storage.

1. Introduction

In many problems, suoh as elliptic partial d~tt'erential equa­
tions or network analyses, large'sets of simultaneous .. linear equations
are encountered which 'are characterized by a preponderance ,:ot', zero ele­
ments otf the main diagonal of t~e matrix. These matrices are in addi­
tion symmetric and loaded* on the diagonal. 'In order to capitalize on
these properties, the lacobi iteration described in section 3 was se­
lected as the basis tor a WhirlWind routine. For large systems, the'
iterative approach to solution has two"advantages. In the first place,
only enough storage registers need be provided to "take care of the non­
zero elements in the matrix, whereas reductions suoh as Gauss-Jordan or
Crout can not so profit by the character of the matrix. Secondly, ini­
tial data are used in each stage ot the iteration, obviating the neces­
si ty of carrying large numbers of superfluous digits in' o:~,:r to over­
come round-off. One can expect, though, that the iterati'onW:tll be very
slow in convergence for large systems; and this factor must be weighed
against the advantages.

2. Description of the Program, fc TAPE 141-94-107

2.1 ' Input Data
(

2.1.1 .. Preset Parameters

zm2 • a

order of matrix

number of non-zero superdiagonal
elements

DOL-IOl 2
zm3 ~ location of 1st register of data

zm4 - location of 1st temporary register

zm5 = zm1+zml not assigned by programmer

2.1.2 Data Storage

Data are stored sequentially in the following order
beginning with register zm.3:

a) n double registers containing right-hand side

b) P', any distinctive one-register number, preferably not zero,
to be used for checking purposes

c) index to superd1agonal elements (see 2.2)

d) P', same as b

el a double registers listing superdiagonal elements row-wise

fl p. same as b

g) n double registers containing diagonal elements

h) P, same as b

2.2 Index

In order to identify the proper location of the listed
superdiagpnal elements in the matrix; an index is constructed. An index
group of registers is included for each row of the matrix. The group
must contain a number of binary digits (excluding sign digits) greater
than or equal to the number of superdiagonal elements in the row. Thus
for the i th row the index group will contain r regi sters where

n-i ~ l5r ~ n-i + 14, i=l, 2, ••• n-l

except for i=n, where r is taken to be 1.

The succeeding digits of the group are 1 or 0 according as
the corresponding superdiagonal element of the matrix is non-zero or zero.
The signs of the registers are positive.

Example: Row one of a 40 x 40 matrix has non;"zero elements in columns
10, 20, 30, 40. The index group for this row is

0.00100
0.04002 (octal)
0.00100

The index groups are listed in order row-b;y-row •

.Example: Matrix
It Ii
tIt i
!I

t 1

1

Index
0.54000

0.50000

0.00000

0.00000

0.00000

DOL-lOl 3

Note that the last index register always contains zero.

The number of index reg! sters may be determined by the
formula

1.+ (Qt1) (R+15Q/2)

where Q and R are the quotient and remainder in the division (n-l)/15.

2.3 Length of Routine

Instructions: 238

~~mpo~ary. registers: Sn registers starting at zm 4

Data storage: 4n + 2a + (Q+l)(R+15Q/2) + 5 registers

2.4 Set-up and CheCking

Built into the routine is a checking facility to guard
against gross coding errors in the input data. Before the first entry
to the iteration, the checking procedure must be performed. It is
entered by

sp e8 entry for checking

Check alarms are generated for any of several errors:

Check alarm in register

le1

2el

3e1

e5-2

2.5 Operation and Results

Cause

Incorrect number of elements in
vector b, or incorrect number of
index registers

Number of off-diagonal elements
listed disagrees with zm2

Incorrect number of diagonal ele­
ments

Number of non-zero index bits dis­
agrees with zm2

There are two entries for caleulating with the routine.
The first time the routine is used with new data it must be entered by

sp e7 entry with new data

For further iterations it is entered by

sp b4 entry for iterations

DOL-10l 4

At the end of the kth iteration, the latest results are available in the
temporary registers starting with zm 4:

2n registers contain x3k+2 - x3k+l - AX3k+l

2n registers contain x3k+2

2n regis.ters contain x3k+3

k 1:1 0,1,2, •••

A quick measure of accuracy at this stage is given by the contents of
register gl. This quantity is the exponent of the greatest Aitken cor­
rection made during the iteration. The routine provides, as a guard
against instability, that this quantity does not increase. this is done
by taking

x3k+3 • x3k+2

if the criterion is not met. Thus, for a complete check of precision the
quantities AX3k+l might be examined. One must multiply these by some-

thing like a factor of 5 (this is empirical) to get an estimate of accura­
cy.

2.6 Time and Space Comparisons

In its present far lIl, the routine requires about 22 ms per
superdiagonal element plus 28 ms per row for each complete Aitken-Jacobi
cycle. Since the number of nonvanishing elements in matrices of the type
involved here is practically proportional to the order of the matrix, the
length of an iteration is proportional to n. The number of iterations
required depends on the character of the matrix involved and the accura­
cy deSired, but a fair guess is that (for a given accuracy) this number
is proportional to n, giVing a total operating time proportional to n;,
compared to the time for reduction schemes which is proportional to n •
Input time is of course reduced using the iterative scheme.

For 4-decimal accuracy, in a matrix with 4 off-diagonal
elements per row, limited experience leads one to expect the iterative
method to take about 75n2 me while Crout's method (on numbers in core
memory) takes about 3n3 • Consequently, we expect no profit to be gained
by iteration on matrices of order less than 25. It h~pens that this is
just about the maximum matrix which can be handled by the present Crout
reduction routine. The iterative procedure steps in just at the point
where storage limitations cause the Crout method to break down.

storage requirements are small for the iterative routine.
Instead of 2n(n+2) registers being required for data storage as in the
Crout routine, only 8n registers are necessary for various vectors plus
about n2/30 index registers and the registers for the non-zero ~ff­
diagonal elements. A 100 x 100 symmetrix matrix with 400 non-zero off­
diagonal elements would readily fit into core storage.

3. Theory

In matrix notation, the routine solves

DCL-10l

(1) Ax • b

by the iteration

(2)

for which the error at the i+lst step is given by

(3)

where e
1

;: x1-i and x is the solution of (1).

By the difference equation (3) we see that the iteration converges it

(4) \ 1- >.. 1,1 , j j = 1,2 ••• n

5

where ~j are the eigenvalues of A. In general, this criterion is satis­

fied if the rows of a loaded matrix are normalized by dividing through
by the diagonal elements. l In the case of electric networks with real
impedance or of elliptic partial differential equations, the require­
ment is met, for otherwise a nontrivial solution of the problem

Ax;: 0

With vanishing boundary values would exist.

Apparently convergence is good if the eigenvalues of the nor­
malized problem are clustered about 'unity, but poor if there are eigen­
values near either end of the interval (0,2). A further difficulty of
the process is that it is first-order, with e. decreasing, by a constant
factor at each stage. Roughly speaking, the 1process may be made second
order by using Aitken's, 2 process1

2
0n the components of Xi according to

(Ax3k)
(5) ~k+3 = x3k - -2 --

A x3k

where the symbolic division means a component-by-component operation.
Unfortunately, it is possible for the denominator in (5) to vanish while
the numerator remains different from zero, so the Aitken correction can
lead to instability. Consequently, in the routine, provision is made to
limit the magnitude of this correction by taking

in cases where the Aitken correction would be large.

1. A. S. Householder, Principles of Numerical Analysis, New York, 1953,
p. 148, p. 126.

DCL-10l s

4. Possible Improvements

In cases where four or less decimal digits are required, great
advantage oould be obtained by using single length arithmetic (perhaps
dispensing with the Aitken modifioation, which would require safeguards
for the division)o

For use with elliptic equations, where all the off-diagonal
elements are equal, the listing and looking up of these elements should
be eliminated, resulting in a general relaxation routine. Also, since
all the diagonal elements are equal, the normalizing feature. should be
dropped and the matrix should be put into normalized form before the
calculation. With these two modifications, a total time for 4-place
acouracy in solving elliptic equations in two dimensions might be re­
duced to something like

10n2ms

with storage requirements about 2n + n2/30. A 200 x 200 matrix could be
fit in core storage, but the time it would take is unknown; for an ex­
trapolation to n • 200 of the time estimates based on experience with
n • 20 is of dubious value.

In the case of larger matrioes, the indexing soheme used here
may be replaced by a still simpler one with a resulting improvement in
utilization ot storage. This method is to actually store the indices,
i and j, fae each non-vanishing element. ihese indioes could be packed
in one Whirlwind regi ster if n" 28• When n /30 exoeeds the number ot
superdiagonal elements, this procedure leads to a saving in data storage
space; it also would provide a simpler program.

The method described here could be used for non-symmetric ma­
trioes; but would probably not be useful, for nonsymmetrio problems with
sparse matrices are rare, and the advantages of iteration arise'from
this particular charaoteristio.

Signed:

MDM:gn

