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SllB1EO'r: ITERATIVE SOLUTION OF LINEAR SYSTEMS HAVING SPARSE MATRICES 

Abstract: A preliminary routine for solving large-order linear 
systems having sparse matrices is described. An 
iterative approach is used in order"to take advantage 
of the absence of most matrix elements. Such a routine 
could handle a 100 x 100 matrix of this character in 
core storage. 

1. Introduction 

In many problems, suoh as elliptic partial d~tt'erential equa­
tions or network analyses, large'sets of simultaneous .. linear equations 
are encountered which 'are characterized by a preponderance ,:ot', zero ele­
ments otf the main diagonal of t~e matrix. These matrices are in addi­
tion symmetric and loaded* on the diagonal. 'In order to capitalize on 
these properties, the lacobi iteration described in section 3 was se­
lected as the basis tor a WhirlWind routine. For large systems, the' 
iterative approach to solution has two"advantages. In the first place, 
only enough storage registers need be provided to "take care of the non­
zero elements in the matrix, whereas reductions suoh as Gauss-Jordan or 
Crout can not so profit by the character of the matrix. Secondly, ini­
tial data are used in each stage ot the iteration, obviating the neces­
si ty of carrying large numbers of superfluous digits in' o:~,:r to over­
come round-off. One can expect, though, that the iterati'onW:tll be very 
slow in convergence for large systems; and this factor must be weighed 
against the advantages. 

2. Description of the Program, fc TAPE 141-94-107 

2.1 ' Input Data 
( 

2.1.1 .. Preset Parameters 

zm2 • a 

order of matrix 

number of non-zero superdiagonal 
elements 
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zm3 ~ location of 1st register of data 

zm4 - location of 1st temporary register 

zm5 = zm1+zml not assigned by programmer 

2.1.2 Data Storage 

Data are stored sequentially in the following order 
beginning with register zm.3: 

a) n double registers containing right-hand side 

b) P', any distinctive one-register number, preferably not zero, 
to be used for checking purposes 

c) index to superd1agonal elements (see 2.2) 

d) P', same as b 

el a double registers listing superdiagonal elements row-wise 

fl p. same as b 

g) n double registers containing diagonal elements 

h) P, same as b 

2.2 Index 

In order to identify the proper location of the listed 
superdiagpnal elements in the matrix; an index is constructed. An index 
group of registers is included for each row of the matrix. The group 
must contain a number of binary digits (excluding sign digits) greater 
than or equal to the number of superdiagonal elements in the row. Thus 
for the i th row the index group will contain r regi sters where 

n-i ~ l5r ~ n-i + 14, i=l, 2, ••• n-l 

except for i=n, where r is taken to be 1. 

The succeeding digits of the group are 1 or 0 according as 
the corresponding superdiagonal element of the matrix is non-zero or zero. 
The signs of the registers are positive. 

Example: Row one of a 40 x 40 matrix has non;"zero elements in columns 
10, 20, 30, 40. The index group for this row is 

0.00100 
0.04002 (octal) 
0.00100 

The index groups are listed in order row-b;y-row • 

.Example: Matrix 
It Ii 
tIt i 
!I 

t 1 

1 

Index 
0.54000 

0.50000 

0.00000 

0.00000 

0.00000 
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Note that the last index register always contains zero. 

The number of index reg! sters may be determined by the 
formula 

1.+ (Qt1) (R+15Q/2) 

where Q and R are the quotient and remainder in the division (n-l)/15. 

2.3 Length of Routine 

Instructions: 238 

~~mpo~ary. registers: Sn registers starting at zm 4 

Data storage: 4n + 2a + (Q+l)(R+15Q/2) + 5 registers 

2.4 Set-up and CheCking 

Built into the routine is a checking facility to guard 
against gross coding errors in the input data. Before the first entry 
to the iteration, the checking procedure must be performed. It is 
entered by 

sp e8 entry for checking 

Check alarms are generated for any of several errors: 

Check alarm in register 

le1 

2el 

3e1 

e5-2 

2.5 Operation and Results 

Cause 

Incorrect number of elements in 
vector b, or incorrect number of 
index registers 

Number of off-diagonal elements 
listed disagrees with zm2 

Incorrect number of diagonal ele­
ments 

Number of non-zero index bits dis­
agrees with zm2 

There are two entries for caleulating with the routine. 
The first time the routine is used with new data it must be entered by 

sp e7 entry with new data 

For further iterations it is entered by 

sp b4 entry for iterations 
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At the end of the kth iteration, the latest results are available in the 
temporary registers starting with zm 4: 

2n registers contain x3k+2 - x3k+l - AX3k+l 

2n registers contain x3k+2 

2n regis.ters contain x3k+3 

k 1:1 0,1,2, ••• 

A quick measure of accuracy at this stage is given by the contents of 
register gl. This quantity is the exponent of the greatest Aitken cor­
rection made during the iteration. The routine provides, as a guard 
against instability, that this quantity does not increase. this is done 
by taking 

x3k+3 • x3k+2 

if the criterion is not met. Thus, for a complete check of precision the 
quantities AX3k+l might be examined. One must multiply these by some-

thing like a factor of 5 (this is empirical) to get an estimate of accura­
cy. 

2.6 Time and Space Comparisons 

In its present far lIl, the routine requires about 22 ms per 
superdiagonal element plus 28 ms per row for each complete Aitken-Jacobi 
cycle. Since the number of nonvanishing elements in matrices of the type 
involved here is practically proportional to the order of the matrix, the 
length of an iteration is proportional to n. The number of iterations 
required depends on the character of the matrix involved and the accura­
cy deSired, but a fair guess is that (for a given accuracy) this number 
is proportional to n, giVing a total operating time proportional to n;, 
compared to the time for reduction schemes which is proportional to n • 
Input time is of course reduced using the iterative scheme. 

For 4-decimal accuracy, in a matrix with 4 off-diagonal 
elements per row, limited experience leads one to expect the iterative 
method to take about 75n2 me while Crout's method (on numbers in core 
memory) takes about 3n3 • Consequently, we expect no profit to be gained 
by iteration on matrices of order less than 25. It h~pens that this is 
just about the maximum matrix which can be handled by the present Crout 
reduction routine. The iterative procedure steps in just at the point 
where storage limitations cause the Crout method to break down. 

storage requirements are small for the iterative routine. 
Instead of 2n(n+2) registers being required for data storage as in the 
Crout routine, only 8n registers are necessary for various vectors plus 
about n2/30 index registers and the registers for the non-zero ~ff­
diagonal elements. A 100 x 100 symmetrix matrix with 400 non-zero off­
diagonal elements would readily fit into core storage. 

3. Theory 

In matrix notation, the routine solves 
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(1) Ax • b 

by the iteration 

(2) 

for which the error at the i+lst step is given by 

(3) 

where e
1 

;: x1-i and x is the solution of (1). 

By the difference equation (3) we see that the iteration converges it 

(4) \ 1- >.. 1,1 , j j = 1,2 ••• n 

5 

where ~j are the eigenvalues of A. In general, this criterion is satis­

fied if the rows of a loaded matrix are normalized by dividing through 
by the diagonal elements. l In the case of electric networks with real 
impedance or of elliptic partial differential equations, the require­
ment is met, for otherwise a nontrivial solution of the problem 

Ax;: 0 

With vanishing boundary values would exist. 

Apparently convergence is good if the eigenvalues of the nor­
malized problem are clustered about 'unity, but poor if there are eigen­
values near either end of the interval (0,2). A further difficulty of 
the process is that it is first-order, with e. decreasing, by a constant 
factor at each stage. Roughly speaking, the 1process may be made second 
order by using Aitken's, 2 process1

2
0n the components of Xi according to 

(Ax3k) 
(5) ~k+3 = x3k - -2 ...... --

A x3k 

where the symbolic division means a component-by-component operation. 
Unfortunately, it is possible for the denominator in (5) to vanish while 
the numerator remains different from zero, so the Aitken correction can 
lead to instability. Consequently, in the routine, provision is made to 
limit the magnitude of this correction by taking 

in cases where the Aitken correction would be large. 

1. A. S. Householder, Principles of Numerical Analysis, New York, 1953, 
p. 148, p. 126. 
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4. Possible Improvements 

In cases where four or less decimal digits are required, great 
advantage oould be obtained by using single length arithmetic (perhaps 
dispensing with the Aitken modifioation, which would require safeguards 
for the division)o 

For use with elliptic equations, where all the off-diagonal 
elements are equal, the listing and looking up of these elements should 
be eliminated, resulting in a general relaxation routine. Also, since 
all the diagonal elements are equal, the normalizing feature. should be 
dropped and the matrix should be put into normalized form before the 
calculation. With these two modifications, a total time for 4-place 
acouracy in solving elliptic equations in two dimensions might be re­
duced to something like 

10n2ms 

with storage requirements about 2n + n2/30. A 200 x 200 matrix could be 
fit in core storage, but the time it would take is unknown; for an ex­
trapolation to n • 200 of the time estimates based on experience with 
n • 20 is of dubious value. 

In the case of larger matrioes, the indexing soheme used here 
may be replaced by a still simpler one with a resulting improvement in 
utilization ot storage. This method is to actually store the indices, 
i and j, fae each non-vanishing element. ihese indioes could be packed 
in one Whirlwind regi ster if n" 28• When n /30 exoeeds the number ot 
superdiagonal elements, this procedure leads to a saving in data storage 
space; it also would provide a simpler program. 

The method described here could be used for non-symmetric ma­
trioes; but would probably not be useful, for nonsymmetrio problems with 
sparse matrices are rare, and the advantages of iteration arise'from 
this particular charaoteristio. 

Signed: 

MDM:gn 


