
MASSAC H USETTS INSTl TUTE OF TECHNOLOGY

LINCOLN LABORATORY

TX- 2 USERS HANDBOOK

ALEXANDER VANDERBURGH, Jr. (Ed.)

LINCOLN MANUAL NO. 45

JULY 1961

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology,
with the joint support of the U.S. Army, Navy and Air Force under Air
Force Contract AF 19(604)-7400.

106

LEX INGTO N MASSACHUSETTS

. ,
·~ ' • t

(\

('1

(/

(

(

Note to TX-2 Users -

The TX-2 Users Handbook will be printed in several installments - you

now have t he first . There will be seven chapters - they are listed below i n

order of (expected) appearance :

Chapter 4

II 7
II 6
II 5
II

3
II 2
II 1

In-Out System Sections 46 and 74 (Mag . Tape and

Plotter) to come later .

Charts

M4 Utility System

Lights and Buttons

Operation Code

Functional Description

Introduction

-- Fall 1 61

} Who knows 1

Your comments, criticisms, and (unfortunately,) corrections, are

requested .

a~~
A. Vanderburgh

July 1961

(

(

(

(

(

. I
I

Note to TX-2 Users :

BEHOLD '''

You now have Chapters 3, 4, 6, and 7.

Chapter 5 - Lights and Buttons - i s typed and awaits final proofreading.

A draf t of Chapter 1 - Introduction - is avail able .

Chapter 2 - Functional Description - is being written at last.

And, Chapter 4 - In-Out - is being rewritten . (Time marches on, you know.)

Please report any mistakes or criticisms quietly and discreetly, and I will

try to dissemi nate the required word with dispatch .

A. Vanderburgh

August 1963

(

(

(

(

(

--- So here is Chapter 5 - Lights & Buttons ---

Many TX-2 users have asked for this chapter. Now that it is out, I hope

it teaches them a lesson .

The next installment will be a re - i ssue of the second part of Chapter 4

(IN-OUT). In the past two years, nearly all the IN-OUT units have been

modified or repl aced, and a few new ones have been added to the system.

Please do not stand on one foot waiting for Chapters 1 and 2 . There

may be some delay there.

This technical documentary report is approved for distribution.

November 1963

Hudson, Deputy Chief
Air Force Lincoln Laboratory Office

(

(

(

(

TX-2 USERS HANDBOOK

CHAPTER 3 - OPERATION CODE

TABIE OF CONTENTS

3-1 BRIEF GUIDE TO THE AllBREVIATIONS . . . • . . . • •

3-2 OP CODE DESCRIPTIONS - (For In Out, See Chapter 4.)

3-2.1 LOAD-STORE CLASS ••..•••••

LDP., LDB, LDC, LDD, (LDE) - LOAD -

STA, STB, STC, STD, (STE) - STORE -

EXA - EXCHANGE

3-2 .3

3-2. 4

August 1963

INDEX REGISTER CLASS

RSX - Reset Index

DPX - Deposit Index

EXX - Exchange Index

AUX - Augment Index

ADX - Add Index

SKX - Skip on Index

JPX - Jump on Positive Index .

JNX - Jump on Negative Index .

JUMP-SKIP CLASS

JMP - Jump (with variations)

JPA - Jump on Positive Accumulator

JNA - Jump on Negative Accumulator

JOV - Jump on Overflow

SKM - Skip on Bit ..

SED - Skip if E Differs

SCALE, NORMALIZE CYCLE

SCA, SCB, SAB - Scale

NOA, NAB - Nonnalize

CYA, CYB, CAB - Cycle

3-l

Page

3-3

3-5

3- 5

3-6

3-8

3-10

3-13

3-14

3-16

3-18

3-20

3-22

3-24

3-26

3-26

3- 29

3-30

3- 32

3- 32

3- 32

3-34

3- 36

3-37

3-38

3-40

3-42

Page

3-2. 5 LOGIC, INSERT, COMPLEMENT/PERMUTE . 3-45

ITA, UNA, LGA, ITE - Logic . 3- 46

INS - Insert 3-48

COM - Complement/Permute 3-50

3-2.6 CONFIGURATION MEMORY CLASS 3-53

SPF, SPG - Specify 3- 5L

FLF, FU: - File 3-55

3-2.7 ARITHMETIC CLASS 3-57

ADD, SUB 3-58

MUL . 3-6o

DIV . 3-62

TLY . 3-65

3- 3 1PF.RATTON conp, CHART (WP.~lP.y A. C:lR.rk) 3-67

3-3.1 NUMBER SYSTEM.5 3-66

3-3.2 GLOSSARY OF TERMS 3-66

OPERATION CODE CHART 3-71

3- 3· 3 NOTES ON THE CODING CHART 3-73

3- 4 CHAPl'ER 3 INDEX (Alphabetical and Nurnerical; 3-77

3-2
August 1963

3· 1 BRIEF GUIDE TO THE ABBREVIATIONS

Tj

(Tj)

Fa

(Fa)

a (T)
j

q

L

R

s

SE

==>

Examples :

X Memory Register "j"

Contents of X Memory Register j

STUV memory address "T" (S':'UV memory is "S", "T", "U", and "V" memories)

T + (Xj]

Contents of STUV Memory Register Tj

F memory register a

Contents of F memory register a

[Tj) Configured as specified by a

Quarter

Left Half

Right Half

Sign of

Sign Extended (i .e . "With Sign Extension")

Is copied into (Goes into)

The configured ccntents of STUV memory register T goes i nto the

accumulator .

Sq3(A) ==> q4A The sign of quarter 3 of A is copied into all. of quarter 4 cf the

accumulator .

(xj) ==> L(T)

L(T) ==>
o.llTj) ==>

The contents of X memory register j goes into the left half of STUV

register T.

The left half of STUV register T goes into X register j .

Quarter one of the contents of STUV memory Tj i s copied intc F

memory register a .

The notation below i s borrowed from the M4 Utili ty system. (See Chapter 6.)

(w) Register Containing w

* Deferred address

A,B,C ,D,E The AE addresses : 377604, 377605 , 377606 , 377607 , and 377610

The current location - i.e . t he l ocation of the instruction being perfonned.

August 1963 3-3

(

3-2 Op Code Descriptions

August 1963

3-2 . l LOAD, STORE, EXCHANGE

LDA
LDB
LDC
LDD
LDE

STA
STB
STC
STD
STE

EXA

3-5

LOAD AE (24-27)

LOAD E REGISTER (20)

LDA, 24
LDB, 25
LDC, 26
LDD, 27
LDE, 20

LDA
24

LOAD means copy into the AE from STIJV memory . STUV memory is not changed. Activity, Sign

Extension, and permutation arc used. ALL load instructions except LDE perform the standard

(T) ==> E.

EXAMPLES : **(Standard F rr.emory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCR!Pl'ION COMMENT

T . Since all four quarters [] J [T J) ==>A

i i i J
are active, subword form

l . LDA Tj is immaterial . 20LDI\ or

W4"P.iW..WJ.l&! (T) •c> E
30LDA would bl'.' r>quiv•lPnt . A

I Tj The left half of A is [J R(TJ) ==> R(A)
1LDA T . L---Jl_L

not changed .
2 .

J
(Tj] ==> E

I ~@Zzal A

I [J Tj R(Tj) ==> R{A) The 18 bit word from

11LDA T. J J SR(Tj) ==> L{A)
STUV is "expanded" to

3. 36 bits through "sign J

[Fll I = l4o Wff.ilZZ72ZZZZZtj A (Tj) ==> E extension . "

TJ A "Right Half Load" -l J
L(T J j a"'> R(A)

2LDA T ~ the left half of A is
4 .

j ._______, .._.
(T) =...> E

not affected .
I WJ.Zi~ A

**All examples apply directly to LDA, LDB, LDC, and LDD. LDE is essentially the same - only

the final M to E copy io omitted .

3-6 August 1963

LDA., 24 LDA.
LDB, 25 24
LDC, 26
LDD, 27
LDE, 20

The left half of A is

unchanged . The right

half becomes the same as
A

I I (Before) L(A) ==> R(A) the left . In a similar
2LDA A 22 5.

~ manner, LDA A sets the

'-----' '------' (A] ==> E left equal to the right .
I Vi/Iii/IA A 12LDA would clear the (After)

left half word thr ough

sign extension .

q4(Tj] ==> ql(A) [l Tj The nine bit number in

6 . 16LDA T ~ Sq4[Tj] ==> q2, 3, 4(A) quarter 4 of T . is
j J

expanded to 36 bits in A.
(F16) = 163 w10 t/i11;m-a A (Tj] ==> E

(Tk) j [l This is double indexing .

7. 1
LDA (Tk)J il

R((Tk)j] ==> R(A)
(Tk)j = T+(~]+(Xj] .

((Tk) j) ==> E
(It is not always faster

I E'1L7&A A because t he defer cycle

takes time also.)

P.ugust 1963 3-7

STORE AE (34-37)
STORE E (30)

STA, 34
STB, 35
STC, 36
STD, 37
STE, 30

STA
34

STORE is a non-destructive copy from AE to S'.LUV memory . With a partially active configurat:on

it becomes a partial store . Subword form is meaningless - only active pathways are used . ':'he

E reeister is set from the memory word after the store operation (except for STE which docs not

chanee E) .

EXAMPLES: **(Standard F Memory - Chart 7-2)

CONFIGURATION AllBREVIATED
NO. rnsTRUC'l'ION DIAGRAM DESCRIPTION COl·n.iENT

T. T. is set from A, A is W#'"§'L@"A J (A] ==> 'l' J
j not changed. Since all

1 . STAT . t t t t quarters are active, all J ** L J A are copied into TJ .

T. Since there is no sign I W'M J R(Aj =a> R(Tj) extension, 11STA would

f t 2 . 1
STA Tj have the same affect .

** [J A (F11 J = 14o

IW//4 T. 12sTA would be exactly I J R(A) --> L(Tj)
2STA T.

""""
the same .

3.
(F12 J = 142 J -l J A

This sets the left equal
Wff//11 I A to the right (as does R(A] =..:> L(A)

4. 2STA A ~~
22LDA A) . Since there is

** no sign extension on STA,
[J A 12sTA would do the s!IJ'le.

** After the store operation is complete, the ne~ content of Tj is copied into E except for

the STE instruction which does not change E.

3-8 August 1963

I ~ I

5. 5sTA Tj ~
(F

5
] = 762

I W/AI
6. 1STE Tj t t

(Store ~)
[]

12222?"""...a27~

7. STA (•r)·x-
k j t t t t

[J

August 1963

T.
J ql (A) ==>q3(T .)

J

**
A

Tj

R(E] ==> L(T .)
J

E

(Tk)j
(A) ==> (Tl<) j

**
A

3-9

STA, 34 STA
STB, 35 34
STC, 36
STD, 37
STE, 30

Quarter l is copied into

quarter 3 of T j . The

rest of Tj is unchanged .

Stores in the right half

only - useful for setting

address sections - (For

example, at start of sub-

routines enter ed via hJPQ) .

Double indexing -

(Tk)j:: T+(~]+(Xj]

EXCHANJE A (54)

l
EXCHAfCE A i s a combination of STA and LDA. Sign extension, if any, occurs only in A and after

the exchange of data. Subword form, ActiVity, and permutation are all used.

The E register is set equal to the S'IUV memory word used .

EXAMPLES :

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT

~~ T.
J (T) =•> A

1. EXA TJ t t t t **
(A) ==> TJ

~ A

Tj I ~//./.!
R(Tj) ==> R(A)

1EXA T. Jl 2 . iHI
J '-----' R(A) ==> R(T j)

I W/~ A

I W/fal T.
J

SR(Tj) ==> L(A) Sign extension occurs ;n

11EXA T. t t R(Tj) ==> R(A)
A, but not in Tj .

3.
J -

(F11) = 14o ~~~ A R(A) ==> R(Tj)

w-~ Tj I
L(T) =•> R(A)

I~ .
2

EJCA T ~ ** j_.. '------' R(A) ==> L(Tj)
I Wazd A

** The two copy operations that perform an exchange take place simultaneously . Remember also

that E is changed - it is set equal to the final contents of the STUV memory word.

3-10 August 1963

I ~,al I
5. 5EXA T.

J ~
(F5) = 762 I ~~

V/#~ I
6. 2EXA A

~
I ~

~

7. EXA {Tk)J t t t t
~$A

August 1963

T.
J q3(T. J ==> qlA

J

A
ql (A] ==> q3(Tj)

A
(Before)

R(A) ==> L(A)
A

(After)

(Tk) j
((T)) ==>A k .l

A
(A) ==> (Tk) j

3-11

**

EXA
54

When "A" is used as the

address section, EXA has

the same affect as STA.

No exchange is made, and

there is no sign extension

Double indexing :

(Tk)j = T+(~)+(Xj)

Pllgust 1963

3-2 . 2 Index Register Class

RSX
DPX
EXX
AUX
ADX
SKX
JPX
JN)(

** REX, SEX
INX
DEX
SXD
SXL
SXG
RXF
RDX
RFD

** Supernumerary Mnemonics for SKX.

3-13

RE.Sm' INDEX (RSX, 11) RSX
11

RESET is a non-destructive copy f rom STUV memory into X memory.

Subword form, Activity, and Permutation are used .

The E register is set equal to the STUV memory word use~. (Usually "T", but see example 7 .)

EXAMPLES: (Standard Configurations - Chart 7 -2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION C<M\fEtfl'

T :>RSX would do the same .
I I I I I R(T] ="> x

1RSX . T l l
J

1. (T) ==>E J
1.--...J

~ X.
J

I
r

L[T] =•> XJ
12Rsx would do the same.

I I I I

2. 2RSX. T ~ (Fl2] 142 J (TJ ==> E =

l?Z2TZZl X.
J

r ql(T) ==> R(Xj) l'he right half of XJ is
I I I I I

set from T. The left nine
3. 3RSX. T ~ (T) =•> E bits are not changed. J

~ X.
J

T ql(T) =•> R(Xj) Sign of quarter l of T is
I I I I I

l
Sql(T) ==> L(XJ) extended throughout the

4. l3RSX T left half of xj . The right
j (T] ==>E 33RSX ~ xJ half is set as above .

(F
13

) = 16o would do the oamc . (F
33

) ~ 320

T Nothing happens (other than
I I I I I

2~x T il
changing E) .

5. j (T) ==> E

(F
21

] = 230 D:J x.
J

3-14 August 1963

aRSXj T
[

' '
6.

(Fa) = 030 _J

~

[J
7 . RSXj * (Tk) l l l i

~

8. aRSX T
0 -

August 1963

T

Sq4(T) ==> Xj

(T] ==> E
xj

Tk
R(Tk) ==> x j

(Tk) ==> E
X.

J

(Tj ==> E

3-15

RSX
11

This time xj is cleared

because of sign extension .

With a deferred acdress,

RSX is indexable . Note

that E is set from Tk this

time.

Nothing happens because X

register O cannot be changed.

[x0] = 0 permanently.

DEPOOIT INDEX (DPX, 16)

!EPOSIT is a non-destructive copy from X memory into STUV memory.

Activity and Permutation are used.

DPX
16

'lbe X memory word is expanded to a full 36 bit subword by extending bit 2 .9 (the X register

sign bit) but only active quarters are used. (The subword form is immaterial .)

Tue E register is set equal to the STUV memo:-y used. (Usually "T", but see examples 8 a.nd 10 .)

EXAMPLES: (Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION CCMMEl'fl'

I I" "'I T Only the right half of T

1DPX T t t ~J =>
is changed.

1.
j

R(T)

c::::J X.
J

&"-,,,~1 I T Only the left half of T

2 . 2DPX T
j

""""
~J => L(T)

is changed.

c:::J xJ

I °''-'::I' .1 T ~j] => R(T)
All of T is used. Note

t t t t that DPXO r (or DPX T)
3. DPXj T

sxJ => L(T) is a handy clear instruc-

c.·::: c:::J xj tion . ([x0 J :: +o and can-

not be changed.)

I ""'3 T Only quarter l of T is

4. 3
nPXj T t R[x) => ql(T)

changed.

c:::J xj

,, ' • 1 I T Only quarter 4 is changed

5. 16DPX T
j ~ R~~ => q4(T)

for only one path is active .

(F16] - 163 c:::J xj

3-16 August 1963

('Jl{l@/&f«W~ T SX. ~ R(T) All of T is affected .

~
J

6. 17DPX T (Xj) ~ f,(T) j

(F17 J = 202 ~~~~~-:.-:.i::::=i x j

lm/fff/~ I T Surprisingly enough, this

7. 21DPX T t t
does do something. (See

j
sxj ~ L(T) exa'Dple 5, RSX .)

c::::_-1 I x j
(F21 l = 230

I f'!l/lfl!/1,1 Tit [x) ~ Tk
Deposit is indexable with

a. 1DPX . * t t
deferred addressi ng.

J
(Tk} (Tk] ~E

c:=i xj

I W/Al W.4 T SX. ~ q3(T) Note that bit 2.9 of X.
J

J

9 . 33DPX. T t t
is used even though quarter

J (Xj) ~ ql(T) 2 is not active .

(F
33

J = 320 c::.:.:::r::=J X.
J

(Xj] => R(E) I l T V memory, except ;;he A, B,

10. DPX 37Tf 20 t t t t
c, D, and E regis~ers can

sxj ==;. L(E) not be changed b y o.ny inctruc

c:-:.:::c::=:::J xj t ion. Note t hat E i s set to

"what -would-have-gone -into-
T . II

August 1963 3-17

EXCHAJIGE INDEX (EXX, 14)

~ T
j

··> x
j

EXX is a combination of RSX and DPX . Except for s i gn extension, it does just what its name

implies - i .e . it will interchange words between X memory and STUV memory .

Subword Form, ActiVity, and Permutation are used . The E register is set equal to the STUV

memor.r '-"Ord used .

EXAMPLES : (Standard F Memory - Chart 7-2 .)

CONFIGURATION ABBREVIATED
NO. INSTRUCTI ON DIAGRAM EXPLANATION CG!MENT

I V//AI
1' R(T] ••> x j

l . .1.EXX . T f i [xJ] ==> R(T)

J (T] •=> E ..._____, '---'

~ x.
J

Wffe/4 I
T L(T] ==> X j

2 . 2EXX T ~ (xj J ••> L(T)
j .__, '---' (T] ==> E

~ X,
J

EXX
14

T R(T] ""> Xj Hote that left half of T
w~~

t t t t
(X J ==> R(T) is cleared.

3. EXXj T S(X r ~ ~·> L(T)
:::_-:_---.~ XJ T} ==> E

I ~
T ql(T] ==> R(X) Nine bit exchange.

R°[xj)
j

3EXX . T t
==> ql (T)

4. (T} ==> E J

~ x.
J

~
T R{ xj J ==> q4(T) Sign is extended in XJ

I

16EXX _ T ~I
q4(TJ ••> ~(Xj) but not in T.

5.
J

'
Sq4(T) ==> L(Xj)

(F16J = 163 ~ x. (TJ ••> E
J

3-18 August 1963

~~O"~

6. 17EXX T
j .~,

(F17J = 202 c-_-_::~

~Al I

7 . 21EXX T
j t t

[F21 J = 230
c::::]==:J

I W"~

8 . ~j (Tk) ·x- t t
~

I WA W4

9. 33EXX . T
J ~~

(F
33

) = 320 c====~

(1

10. ~
j 377720 l l l l

~

August 1963

T [xj] ==> T.('1')

L[T)==>X.
J

S(Xj) ==>R(T)

xj [T) ==> E

T
S(X .) ==> L(T)

J

[T) ==> E
X.

J

Tk R[Tk) ==> Xj

(Xj) ==>R(Tk)

X.
(Tk] --> E

J

T
Sql[T) ==> L(X) j
ql(T) ==> R(X)

j
R[Xj) ==> ql (T)

x. S(Xj) ==> q3(T)
J

(T) ==> E

TSS R(377720) ==> X.
J

[X.) ==> R(E)
J

1 (377720) ==> L(E)
xj

3-19

Si gn ot' X J i "' P.xt.P.nclP.rl

EXX
14

into the right half of T.

Sa~e as 21DPX T.
j

EXX is indexable if a

deferred address is used.

Note that bit 2 .9 is used

for sign extension (not i .9) .

Same as 1RsXj 377720 . (Tog-

gle registers must be changed

by hand. Note that E is set

to what would haYe gone into

T .)

AU::M::Nl' INDEX (AUX, 10) AUX
10

AUX fonns an 18 bit ring sum in Xj . There is no overflow detection . All of Xj is affected.

S'l'UV memory is not affected.

Activity and permutation are used. Sign extension applies to the operand taken from STUV mem

ory . If quarters 1 and 2 are active, subvord for11 is immaterial.

If one quarter of the STUV :nemory operand is inactive (as in standard configuration #3, for

example), +o is used for that quarter.

The E register is set equal to the s·ruv memory word . (This is "T" except when a deferred

address is used. See example 6.)

EXAMPIES : (Standard F Memory - Chart 7-2 .)

CONFIGURATION ABBREVIATED
NO. INSTRUC'l'IOU DIAGRAM :EXPLANA'l'I ON CCMMENl.'

T Standard configurations
I I I

1AUX l l
(Xj) + R(T) •=> x #0, 11, 20, and 30 would

1 . T
j

j (T) ==> E
do the same .

~ xJ (F11 = 140 (F20) = 200

[F10 J = 6oo

T standard configuration
I I I

2
AUX . T ~

[x.J + L(T] ==> x /112 would do the same .
2. J j

J (T) a•> E
~ xJ (Fl2 j = 142

T Standard configuration
I I I

l 3AUX T i [x) + ql(T]SE ==> Xj #33 would do the same (but
3 .

j
~ [T) ==> E NOI'#3 !) (See note on next

(F13 J = 16o x. page .)
J (F33J = 320

T This has sign extension
I IZ'4 I

aAUX T l__, [xj] + q2(T]SE ... > xj to the right. (There is
4. j

~ [T) n> E no suitable standard con-
(Fa] = 220

xJ figuration .)

3-20 August 1963

L I J
T

21AUX l l 5. T
j_______. ___,

I ~~ xj

I ~~ Tk

1AUX * ll 6. {Tk) j

~ X.
J

(X) .,.
j (+o) ==> xj

(T] •=> E

(X] + R(T) ~=> X
j k J

[T I ==> E k

AUX
10

Register T is ignored, and

Xj is not changed . Except

for E, this instruction is

i nnocuous .

Same as example 1, but

indexed via a deferred

address.

~OTE : Eis cleared and then loaded as if by aLDE. The sum of R(E] and [xj] then goes into XJ
(cir cui tously) and E is set equal to the STlfV register used (ie - [T) or [Tk j if a deferred

address was used). X. is always set . Note - If either quarter 1 or 2 is not part of
J

an active subword, (as, for example, w'ith standard configuration #3) one opero.nd of the
S\lll is not completely specified and iO will be used as that part of the operand.

Pl1gust 1963 3-21

ADD INDEX (ADX, 15) ADX
15

ADX forms an 18 bit ring sum usually in STUV memory alt!iough only the active quarters are stored.

There is no overflo-J detection . The operands are always 18 bit words - one from X memory the

other from sruv memory. A configuration should be chosen such that the word from STUV memory

has both quarters active, or is an extended 9 bit subword . If only one quarter is active, the
inactiYe quarter of the operand is set to +o.

Activity and Permutation are used . Only active qi:arters are stored, but sign extension applies

to the operand taken from STUV memory.

The E register is set equal to the STUV memory word used . (This is "T" except when a defer is

involved. See example 6.)

l!:X.AMPLl!S : (l>to.ndard ~· Memory - Chart 7 -2)

CONFIGURATION .O.BBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION CO.\ll-!ENT

I
1' (Xj) + R(T] ==> Rl' Left half of T is not

~,.@

1ADX T t t
changed. The sum is

l · standard 18 bit ring J (T] ==>E
c=J xJ sum, also called "ones

complement surn . "

T (Xj) + L(T] Right half of T is not
~.$.di! I ==>LT

2ADX T ~
ch<:>ne;cd.

2 .
J (T J ==> E

c=J X.
J

T This gives a 9 bit ring I ~ (Xjj + ql (T]SE ==> ql(T)

l3ADX T t
sum . Configuration 33

3 . would do the same, #3 J (T] =a> E
[F13J = 16o C=:J xJ would not . See note next -

page. The subword

length should be 18 bits .

3-22 August 1963

llOTE :

4.

5.

6.

J'iOTE:

In example 3, the 9 bit result is an honest

P.XtP.nnP.n 9 hit word. (See RSX, example 4.)
an 18 bit word. Use AUX.

T

9 bit ring sum only when X. contains an
- - J

ADX
15

ADX cannot be used to add a 9 bit word to

Essentially the same as

example 3 except that

aADX . T
I ~ I

(Xj] + q2 (T]SE ==>q2(T)
the left half of X. is

t -- J
J significant . [Fa] illu-

(F] = 220
'-' [T] ==> E strated is 220 . There a C==:J x.

J is no suitable standard

configuration .

L J
T "Nothing" is done here

21ADX T j t t (T) ==> E
because quarters 1 and

2 are both inactive .

[F21] = 230 C=:J xj

Tk Same as example 1, but
I ~ (Xj) + R[Tk] ==> RTk

1ADX * t t
indexed via deferred

(Tkl indexing. j
(Tk) ==> E

c==i xj

E is cleared and then loaded as if by °t.DE. The sum of R[E] and [x. J then goes into E
a J

and an Sl'E is performed. lnactive quarters of the STUV memory word therefore remain

unchanged. If either quarter 1 or 2 is not part of an active subword (as, for exa~ple,

with standard configuration #3), one operand of the su:n is not fully specified and +o

is used to fill out the operand.

August 1963 3-23

SKIP ON INDEX (SKX, 12)

I aSKXj TI

SIC<
12

SKX (or REX, or SEX) provides 32 combinations of setting, adding, comparing, skipping, flag

raising, and dismissing - all relating to X memory and without changing the AE or the E register .

{See examples below.)

F memory is not used. The configuration syllable specifies t he desired combination . (Examples

1 - 8 show the use of bits 4 .6, 5, 4 and examples 10 - 12 illustrate bits 4.8 and 4 .7 .)

"T", the address syllable, (or the final deferred address) is used as an OPERAND.

EXAMPLES:

MN»!ONIC
ABBREVIATION ABBREVIATED

NO. INSTRUCTION (See Chart 7 -3) DESCRIPTION COMMENT

SKXj T STUV memory is not used -

OSKX T
REXJ T "T" is t he operand, not its

l · 'l' ==> x location . The brackets [] j SEXj T j

(Set) were left out on purpose .

"Minus" T - i .e . its ones
2 . 1s KX T

j
(Set negative) -T ==> X j canplement is used to set

xJ .

If the sum is zero, it will

3 .
2sKX . T INXj T (Xj) +T••> Xj be -0 (all ones) unless [xj)

J (Increase) was initially +O .

3SKX T
DEXl "-T" is added to [Xj) . Zero

4 . [xj] + (-T) =·> xJ J (Decrease) is -0 . It cannot be +O .

I f (XJ)f T
Skip if [Xj] di:ffers fran T.

4sKX T
SXDJ T Note : (~) - (-0) o.nd i:f

5. j (Skip if X
Skip -

[Xj] is i nitially (+O), it
differs .)

(i .e. # +2 •=> P)
is changed to (-0) .

(Skip if X If [x J J I -T
Skip if [Xj) differs from

-T . Note : (-0) (+O) a'ld
6. 5SKX T differs from Skip -

if [xj] is initially (-0), j
negative .) (i . e . #+2 ==> P)

it is changed to +O .

Skip i f (xj] is less than T

SXLJ T If (xJ) < T and if [xj] -T does not over-

7 . 6sKX. T (Skip if X Skip - flow. (Skip range: T-377777
J

is less .) (i .e . #+2 ==> P) to T) Note : If [Xj)is ini-

tially (+0) 1 it is changed

to (-0).

3-24 August 1963

8.

9.

:.o .

12.

7sKX T
J

30sKX T
j

SXGj T
(Skip if X
is greater .)

RXFj T

(Reset and

raise flag .)

RXDj T
(Reset and

Dismiss .)
(See note 3)

RFDj T
(Reset, Raise

flag, and Dis

miss.)

If [x.
1

] > -T

Skip

i .e. #+2 ==> P

T ==> Xj

1 ==> Flagj

T ==> X j
1 ==>Flag.

J
DISMISS

SKX
12

Skip if [XJ] is greater than

-T and if (Xj] + T does not
overfl.ov. (Skip range: -T to

377777-T) Note: If [Xj]
is initially (-0), it is

changed to (+o) .

[X,] is set equal. to Tk. e .g .
J *

a) SKXJ (Ok) a set xj

fran ~·

b) 1sKXj (OJ)* a Canpl.e

ment Xj.

For J = 1 to 378, RlCF i s the
0 same as SKX for there are

no flags for these numbers .

Note that flag zero ~ be
raised.

See Chapter 4 for the rami -
fications of "DISMJSS . "

If j = the current sequence

number, "T" is nearl.y imma

terial. for the subsequent

change of sequence will.

change xJ .

This is used to chenge

sequence number - often in

the form - 30sKXj j+1. It

is ignored if j = current
sequence n1.111ber.

Notes:]. . "Skip" means "omit the next instruction." i .e. "Go to #+2 . "

2. The configuration sy1lab1e is united With the rest of the instru~tion. It may be

given redundantly . e .g . DEX is the same as 3sKX or 1INX or 3DEX.

3 . The hold bit cancel.s DISMISS. (h 20SKX is the same as SKX alone .)
4. RXF cannot be used as a Jump. Index register "j'' is indeed set, but it will not

be copied into the P register, ·mless a change of sequence number occurs. (See

Chapter 4.)

August 1963 3-25

JUMP m POSITIVE INDEX (JPX, o6)

JUMP O~ NEGATIVE INDEX (JNX, 07)

JPX o6

JNX 07

JPX and JNX are "Loop-closing", "Index- sensing" jump instructions. Their operation is as

follows :

Note :

EXAf.f>IES :

l.
2 .

[xj] is Sensed :

(Zer o is excluded.
J PX jumps on POSITIVE.
JNX jumps on NEGATIVE.)

J I
If it JUMPS : If it does not :

#+l ==> R(E) #+l ==> p

T ==> p There is no DISMISS

DISMISS occur s unless E i s not changed.
cancelled via "h" .

1
~

J
The increment is added :

n + xj ==> [xj l
(This is done whether
i t jumps or not .)

If the sum is zero, it is - 0 .
"n" is a signed integer: -17 to+ 178.

3. F Memory is not used.
4. A deferred address determines where to jump to , but not if, and the second

index register is not modified.

l . Straight Table Scan (100 register
table located at "TABL. ")

a .) JPX

Start

Loop

-+ REXj 77

-+ LDA TABLj
-1

h JPX. Loop
J

This program scans the ta·~1e
"backward through the manu
script . (i .e . , hi est
memory location first . Note:
X. is initially set to+ (n-1) .

J

3-25

b .) JN)(

Start -+
1sKXj 77

wop -+ LDA (TABL + 77)j
+l

h JNX. Loop
J

This program scans "forward
through the manuscript. " (1. e.,
lowest memory location first .)
Note : Xj is initially set to
- (n-1) .

August 1963

JP)(JN)(

06 07

2 . To scan every nth table register

a) STAR'r - REK. ('l'L - n)
J

LDA TABL .
J

h-n JPXj #-1

b) START -+
1REX. (TL - n)

J

LDA . TABL + TL - n
J

h +n JNl(j #-1

These programs run for (TL) iterations if we assume that TL (Table Length) is an
n

integer multiple of n . As written, they scan the first register of each block of

n registers . To scan register "i " of each block, the LDA instruction could be

written LDA (TABL + i)j for example "a" (JPX) and LDA (TABL + i +TL - n)j for

exa'llple "b " (JNX) .

3. Interlaced Table Scan

Scope f licker can be reduced by an interlaced table scan. The fact that the change

in Xj is matle after the jump decision causes a somewhat peculiar parameter configu

ration, but the progra'll logic is essentially the same as above . For example, if "c"

is the interlace, "TL" is the '.[able Length, and i f "c" is not a factor of "TL, " the

program below scans the whole table with an interlace of c. (If "C" is a factor of

TL, the program degenerates to example 2a .)

START - ~EXj C

INX . TL
J

LDA (TABL + C

h-C JPX. # -1
J

JMP # -3

- 1) .
J

If C = 3, and TL= 7, the table is scanned in the following order : 6, 3, O, 4, 1,

5, 2, 6, 3, O, etc .

NOTE: 1 . "Zero" used as an address (as above) is always +O .

August 1963

2. M4 automatically puts a hold bit on JPX and JNX to cancel the automatic dismiss

(see Chapter 4 and Chapter 6) .
3. The address of a deferred JNX or JPX is completely detennined before the index

-1 --
register is changed. Therefore a JPXala S would jump to Sa as defined by the

original contents of Xa - if it jumps at all.

3-27

. (

(

August 1963

3-2 .3 JUMP SKIP CLASS

JMP
JPA
JNA
JOY
SKM
SED

3-29

JUMP (With Variations)

I a~~ TJ I

JMP
05

JMP is an unconditional. transfer of control. It means go to T (or Tj) for the next set of

instructions . The configuration syllable "a'' does not refer to F memory but is used directly

to provide 32 variations of JMP as illustrated below :

4.8 4.7 4. 6 4. 5 4. 4

DISMISS

(See Chap . 4)

Saves last memory

reference in L(E)

Oo.vcs i·cturn voint

in R(E)t

(#rl)

EXAMPLES : (See #10 .)

SUPERNUMERARY
NO. INSTRUCTION MNEMONIC

l . OJMP T
j JMP Tj

2. lJMP T BRC T.
j J

(Branch)

3. 2JMP T JPS Tj j
(Jump and Save)

4. 3JMP T
j BRS Tj

(Branch and Save)

5. 4JMP T -
j

6 . 5JMP T
j

4BRC Tj

7 . 6JMP T
j

4JPS T
j

JlMPS
TO

'I'

'? j

T

T.
J

T

Tj

T

l = "BRANCH" a A:n indexable JMP
l JMP a BRC a Go to Tj

l = Saves return point (#+l) in Xj
2 JMP a JPS a Go to T, save

t return point in Xj .

COMMENT

xj is ignored .

Indexable Jump a BRANCH

Jump and save return point (#+l) in
the specified index register (X .).

-,,-
Branch and save. Xj is used to
evall1Ate the jump destination Tj

and is then reset to the return

point (#+l) .

xj is ignored, #*l is saved in R(E)

Return point (#+l) is saved in R(E)

Return point (#+l) is saved in R(E)

and al.so in X J .

t In M4 tenninology, the symbol "#" is an abbreviation for the location of the current

ins~ruction . (See Chapter 6.)

3-30 August 1963

8 . 7JMP T
j

4
BRSTj T.

J

lOJMP T 9 . - T
j

10. 14JMP T JPQ T T

11 . 15JMp T.
J

BPQ Tj T.
J

12. 16JMP T.
J

JF,8 T.
J

T

13. 20JMP T
j JPD Tj T

14. 21JMP T .
J

BRD Tj Tj

15. 22JMP T
j

JOO T.
J

T

16. 23JMP T .
J

BD6 T.
J

T .
J

JMP
05

Xj is used to determine the jump

destination T. and is then reset
J

to

the return point (#+l) . The return

point is saved in R(E) as well .

The memory location of the last

data reference is saved in L(E) .
(i .e . the contents of the Q

register)

Jump, save 11p " (1.e . #+l) and "q"

(location of last data reference) .

This is the reconunended jump, for

the information saved is often of

use in checkout .

This instruction is the same as JPQ
except that t he jump dest i nat ion

is indexed.

Jump, save in E, and in xj.

Jump, Dismiss .

Branch, Dismiss.

Jump, Dismiss, Save in X ..
J

Branch, Dismiss, Save in xj .

Jump and save return point (#+l) in the specified index register (X .) .
J

NOTE: A superscript numeral can be used redundantly on supernumerary mnemoni cs. For example :

l6JMP = l6JES =JES= 2JPQ = 14JPS etc . (M4 "unites" them into the word.)

August 1963 3- 31

CONDirIONAL JUMFS

JPA - Jump on Positive Accumulator

JNA - Ju.mp on Neg11ti ve Ac.:c.:wnul11Lur

JOV - Jump on Overflov

JPA {46)
JNA (47)
JOV (45)

The conditional jumps go to Tj if the conditions are satisfied by any active s~bvord . Permuta

tion is ignored. The return point (#t-1) is saved in E if the jump takes place . The accumulator

and overflov flip-flops are not changed. Note that these conditional jumps are indexable .

EXAMPLES :

#1.

1f2 .

A Four-way Svitch :

JOV OF ** voes to OF if overflov exists (Z4 = 1)

JNA Nl - Goes to Nl if A is negative.

JPA Pl - Goes to Pl if A is positive .

- Continues if A is zero.

Overflow :

30JOV TJ is equivalent to 37JOV Tj, for both configurations specify the same active

s:ibwords. If any of the four overflow flip-flops are set to l, control will go to

Tj . The overflow indicators (z4,z
3
,z2,z1) are not cl.eared by JOV.

Active subvords use the overflow indicator associated with the si~n quarter, e . g . z2
is associated with the right half word, z4 with the left half word.

ff3 . To Detect Minuc Zero in an Index Register:

(JNXj Tor JPXj Twill not jump on either+ or - zero.)

DPX A
1oPX A

j
JPA Tl

** (0,, -0) or (o,,+o) now in A

** Goes to Tl if -0 in right half word.

** Continues if +o in both halves .

3-32 August 1963

#4 . 18 Bit Zeros Again:

20JPA lP

20JNA lN

JPA PN

JNA NP

August 1963

** One half (or both) positive - (Goes to lP)

** One half (or both) negative - (Goes to lN)

** Left (i-0), Right (-0) - (Goes to PN)

** Left (-0), Right (i-0) - (Goes to NP)
** Both (i-0) or Both (-0) - (Continue)

3-33

JPA (46)
JNA (47)
JOV (45)

SKIP ON BIT (SKM, 17)

"Skip-on-a-bit" uses a one bit operand . It has :;2 variations - some with M4 Supernumerary

Mnemonics . The basic variations are as follows :

4.9 4.8 4.7 4.6 4 . 5 4 . 4

00 - No skip L oo- No change

01 - Bit is complemented

SKM
17

01 - Skip unconditionally

10 - Skip if bit = 0 10 Bit is set to 0 ("Make Zero")

11 - Skip if bit = 1

("Skip" means "go to (#+2)"

i .e . skip over the next

instruction.)

ll Bit is set to 1 ("Make One")

If 4.6 a 1, T is cycled right once . (Rotated)

The bit in question is identified by its quarter number and bit number as diagrammed below:

4 .9 4.1 3.9 3. 1 2 .9 2 .1 1 .9 1.1

The meta bit is No. 10 (dee.). (SKM is the 2!'.!!r instruction that can affect it.)

TheparitybitisNo. ll {dec,). } Th t ese can no be changed by SKM.
The parity circuit is No. 12 {dee.).

(Any quarter number will do for the parity and meta bits .)

Bits and quarters are numbered from right to left and should be in subscript when used with SK?4.

(See chapter 6, page 6-7 .) The bit designation goes in the "J bits" (3.6 - 3.1), as follows:

3. 6 3. 5 3.4

~u-:rter No . ::J
(00 refers to q4)

3.3 3.2 3 .1

L---• Bit Number (When given in the form indicated abcve,

Bit Numbers are interpreted as Decimo.l.,

e . g . 4.10 is the usual metabit designation.)

SKM is therefore non-indexable except through deferred addressing.

If a non-existent bit is selected, e .g. bit 0 .0,1 .0,2.o,3.o for example, Unconditional Skips

(SKU) and Rotate (CYR) vill still work, but "makes" will do nothing, and conditional. skips

will not skip.

3-34 August 1963

SUPERNUMERARY MNEMONICS (See Chart 7 - 3)

MKC - 1SJO.t - Make complement

MKZ - 2SKM - Make zero

MKN - 3sKM - Make one

SKU - lOSKM - Skip unconditionally, (go to f/+2)

SUC - 11SKM - Skip and complement

SUZ - 12SKM - Skip and make zero
SUN - l3SKM - Skip and make one

SKZ - 20sKM - Skip if bit =O

SZC - 21SKM - Skip on zero and complement

SZZ - 22sKM - Skip on zero and make ze:-o

SZN - 23sKM - Skip on zero and make one

SKN - 30SKM - Skip on one

SNC - 3lsKM - Skip on one and complement

SNZ - 32sKM - Skip on one and make zero

SNN - 33sKM - Skip on one and make one

CYR -
4sKM - Cycle memory once to the :-ight (rotate)

MCR - 5sKM - Make complement and rotate

MZR - 6sKM - Make zero and rotate

MNR - 7SKM - Make one and rotate

SNR - 34SKM - Skip on one and rotate

SZR - 24sKM - Skip on zero and rotate

SUR - 14SKM - Skip and rotate

SKM
17

NOI'E : "Skip" is first , "make" next, and "rotate" last . 4szz a 26sKM =Skip on zero, nake zero,

and then rotate .

:!:XAMPLES :

1 . To copy a bit :

August 1963

Sets bit T1 .
1

equal to

bit ~ . 3

2. To clear n metabits starting at T

3-35

Rexa (n-1)

l•IKZ4.1olaT

-lJPXa #-1

SKIP I? E DIFFERS

Only P can
be changed.

SED
43

SED compares all active quarters of E and T. according to the given pennutation. If any
J

difference exists the next instruction is skipped over. No registers other than P (the central

Program Counter) can be changed. (Eis not changed.) Subvord Form is immaterial .

EXAMPLES: (Standard F Memory - Chart 7-2 .)

NO. INSTIVCTION DIAGRAM COMMENT

I I Tj #+2 -. P if E differs from Tj

1. SED Tj I I I I #+l => P if they are identical

I I E

I I T. The left half of Tj is compared
J

2. 2SED T ~~
to the right half of E. (12sED

j is identical.) [F12J = 142.

I I E

I I E The rig}lt and left halves of E

22sED E / /
are compared. 17sED E 2SED E

3.
, ,

12 22 SED E, or SED E vould have an

I I E identical result .

3- 36 August 1963

3-2 .4 SCALE, NORMALIZE, CYCLE

.<ugust 1963

SCA
SCB
SAB
NOA
NAB
CYA
CYB
CAB

3-37

SCALE SCA, 70
SCB, 71
SAB, 72

"SCALE" multiplies each active subword by "a pover of 2 ," i .e . by 2n where n is a signed integer

specified in T .. Each active subword can be sea.led a different a.~ount. The D register is used
J

to count the binary shifts . The details are as follows :

a) An aLDD Tj is perfonned (with permutation and sign extension as called for) .

b) Each active subword (of A or AB) is scaled according to its sign quarter in D, and

these sign quarters are left set to - 0 .

c) 1.£ an overflow exists for an active subvord, the proper result is recovered by com~e

menting the sign digit after the first shift, and the indicator is cleared. This rule

is used for all operands - left (+), right (_) , and zero . overflow can not affect SCB.

Notice that SCALE amounts to ehifting s.ll the bite except the sign left or right and filling

the vacant positions w1 th copies of the sign bit (i.e. w1 th !O) . SCALE senses overflow and

corrects the sign bit if necessary. SCA and SAE always clear the overflow flip-flop - even if

bits are lost off the left end. SCALE never sets the overflow flip- flop.

EXAMPLES : (SCB is illustrated to avoid overflow complications .)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPl'ION COMMENT

I I (- 4,} (B] -4 x 2 ==> B (- 4,} is a M4 convention

l . !.:CB(-4,} i i i i -0 ==> q4(D)
for A register with -4

in quarter 4. See Ghap-

!Wffffi'~ D q.3,2,l(Tj] ==> q32J,(D) ter 6 , pB8e 6-7 and 6-10 .

2 q4(B] x 2 ==> q4(B) Quarter l of B is not

30scB {N}
I I {N}

q3(B) x 2-
2 ==> q3(B) changed. The sign bits

2 . i i i i x23==>q2
are never changed. Bits

N = 2775003000(8) L-l L-l L...J L__J
q2[B) (B)

may be lost off either
~&/M D -0 ==> D end without any alarm.

2 The left bal ves of 3 and

2
sCB (N}

I I (N) R(B] x 2 ==> R(B)
D are not changed.

3. ~~ -0 ==> q2(D) Note that q4 of (N}
N = 2775003000(8) L-----....1

775 ==> ql(D) specifies the argument
I ~D of the scale operation.

3-38 August 1963

SCA, 70

Note : Scale can of course be i ndexed - e .g . SCA TJ where the argument comes from TJ . It is

more common programming practice to use an RC word - e .g . SCA(-1,).

~ . Overflow: (SCA and SAB)

,.

a) To "recover an overflow" :

Lilt\ (200 000 000 000)

ADD (200 000 000 000)

SCA {- 3,)

b) Only active subwords are processed:

LDA (200 300 4oo 100)

30 ADD (200 300 4oo 300)

21sCA (774 774 774 774)

1sCA (774 774 774 774)

I
**Acc. will now be 40o 000 000 000 (:i nega

tive number) , and z4 (overflow bit #4) will

be 111 ".

I
**-3, e 774 000 000 000. After the scale,

Acc . will be 04o 000 000 000 and Z1i. will be

"O". z
3
,z2,z1 are not sensed nor cha nged.

(Any negative argument will suffi ce .)

**Ace. will be 400 6oo 001 4oo.

**All fou r Z flip- flops will be "l ".

**Only L(A) is scaJ.ed. Acc. will become

04o 06o 001 400. z4 will become 110 11
,

z
3
,z

2
,z

1
will remain "l".

**Only R(A) is changed. Acc. becomes

04o 06o 700 14o and z2 becomes "O" . z
3

and z
1

are still "l" .

Note that z4,z
3
,z2,z1 are overflow indicators. They tell whether overflow has

occurred. An overflow resul ting from negative numbers (as in q2 above) is not

treated any differently.

Subword I'onns !'or the AB regist er:

a) "36" s A B

b) "18 - 1811
Js L(A) L(B) I ls R(A) R(B)

c) "27-9" Js q432(A) q432(B) !Is ql(A) I ql(B) I
d) "9-9-9-9" Is q4(A) ~ q4(B)l ls q3(A) ! q3(B) 11 s q2(A) ! q2(B)l ls ql(A)i ql (B) I

Note that all of B is part of the subword. There is only one sign bit in an AB subword.

August 1963
3-39

NORMALIZE ACOJMULATOR

NORMALIZE AB (Extended Accumulator)
NOA 64
NAB 66

NORMALIZE scales just enough to remove leading zeros or to " recover" f rom OVERFLOW. It clears

the active over flow indicators. The number of leading zeros (nz) is subtracted from the arg..i

ment from Tj (a[TJ)) and this difference is le~ in the Sign Quarter of D. If an overflow con

dition exi sts a t the start , "nz" is -1, t he scale is one pl ace to the r ight , and the s ign is

compl emented - j ust as for SCA or SAB. I f nz is zero, i t is +o . (See Note 4 also .)

NOA and NAB start with an <XwD Tj . "nz" i s subtracted from the sign quarter(s) and the rest
of Dis not changed. The E register becomes a copy of Tj .

t t
EX.AMPl:ES: (Assume that NO OVERFLOW eXist s .)

ABBREVIATED
NO. INSTRJCI'ION DIAGRAM DESCRIPTION C<Jt.W:NTS

"nz" is the number of I I (+o l [A j x 2nz ==>A

! ! ! !
leading "zeros" in the

1. NOA(O) - nz ==> q4(D) original contents of A.

~D +o ==> q3, 2,l(D) ("Zeros" can be positive

zeros or negative zeros .)

The left halves of A
R[A) x 2nz ==> R(A) and D are not changed.

I I t +ol "nz" is the number :>f

2NOA(O) ~~ -nz ==> q2(D) "zero" in the original.
2 .

contents or t he right
L,__J

I ~D +o ==> ql(D) half of A. Not e that
~ht:> r<:>sul~ in D l:; "'

nine bit numeral .

ZR R[Aj x 2 ==> R(A) "ZR" and "ZL" are the

I I I I I (N) a-ZR ==> q2(D) leading zeros of t he

17NOA(N) ~
right and left 18 bit

3. b ==> ql(D) words of A. (N) is a
N = a ,b,, c, d L[A] x 2ZL == > L(A) r egister conta ining

~~~D (F17 J = 202 
c-ZL == > q4(D) a,b, c , and d i n quarters 

~ , 3, 2 , and 1. 
d == > q3(D) 

tt Brackets() are used in the TX-2 M4 Assembly Program to indicate "Register Containing". 

See Chapter 6, page 6- 10 . 

3- lio August 1963 



I I I I I (N) 

~OA(N) t i i1 4. 
N = a,b, , c, d 

Ct = 400 
L J D 

q432[A) x 2nz ==> q432(A) 

a -nz ==> q4(D) 

b ==> q3(D) 

c ==> q2(D) 

ql (A) x 2nz ==> ql(A) 

d-nz ==> ql(D) 

NOA 64 
NA3 66 

Wi th a 27, 9 split, 
both counts vill bP. 
26 if [A) is zero . 
(See note on page 
3- 61 . ) 

5 - A sample program .... Evaluate V = xyz 

This product could have 105 significant bits (3 word lengths ) . One must resort to 

programmed arithmetic to get them a:l , but normalize can be used to get the 34 most 

significant bits. Consider the programs below. 

Without Normalize : 

LDA X 

MUL Y 

MUL Z 

This program puts the 35 left bits 

of the 105 bit product in A and 

essentially worthless numerals in 

B. The answer in A may be too small 

by 1 (in the 35th place) . 

With Normalize : 

LDA X 

MUL Y 
NAB (0) 

STD T 

MUL Z 

SAB T 

With normalize, the product is given 

in AB, to 35+nz places from the sign . 

(It may low by 1 in the (35+nz)th 

place . ) "nz" , the number of zeros, 

is in T (in negative foxm) . nz 

could be as much as 69 so the last 

SAB may not be desired. For example, 

if the NAB instruction above were 

replaced with NAB(34. ,) the answer 

in AB can be considered a 71 bit 

integer. 

NOTE: 1. NOA and NAB leave E set the same as the memory register used. 

2 . If overflow exists, "nz" is -1 sc· [T. ]+1 ==>Sq(D) . 
J 

3. NAB is essentially the same instruction - using the double length word (AB) instead. 
(See page 3-39 - "Subword forms for the AB register" . ) 

4. Normalize i s an ar ithmetic instruction. The sign bi t is not counted. "Leading 

zeros" Will , of course, be plus or minus zeros - i.e ., the same as the sign. 

August 1963 3- 41 



CYCLE 

I aCYA TJ I 

CYA, 6o 
CYil, 61 
CAB, 62 

CYCLE logically falls in a class with LDo\ and STA, for it is ~ost easily considered as a bit 

shifting instruction and the sign bit has no special significance . Bits shi~ed off one end 

are inserted at the other. None are lost . However, since the practical details of its use 

are so similar to SCALE, it is usually grouped with SCALE and NORMALIZE. The use of the 

memory word is the same as SCALE. 

a . ) 

':l . ) 

An °Loo T. is the first step. 
J 

Each active subword is "cycled" or "ro-:;ated" according to its Sign Quarter in D 

and the sign quarter is left at - 0 . For cycle, the active subword has its ends 

connected - and can be considered as a ring of bits . If the number of places 

equals the subword length, the i~struc-:;ion does not change the subword. You can 

therefore arrive at any new position by cy<'l l ne PithPr WAlf - t.hP short W81f takes 

less computer time . The sign bit is handled no differently than the others and 

no bits are lost. 

c . ) Overflow i s ignored. 

d. ) The E register becomes a copy of the memory register used. 

EXAMPLE3 : Assume [A) 123 456 ·r65 432(S) at the start 

CONFIGURATION ABBREVIATED 
NO. INSTRUCTION DIAGRAM DESCRITPION COMMENT 

I I I f +1, J 247 135 753 064 ==>A One 36 bit ring cycled 

1. CYA(+l,) ! ! ! ! -0 ==> q4(D) once to the left . 

~~D +o ~=> q3, 2, l(D) 

I I I I I (N) 246 ==> q4(A) The four quarters 

30CYA(N) 

llll 135 ==> q3(A) arc cycled separately 

2 . 1. e . four nine-bit 
N=l,l, ,l, l 753 ==> q2(A) rings, each one bit 
~D 

065 ==> ql(A) to the left . 

August 1963 



Assume [A] = 123 456 765 432(B) at the start. 

I I I (-3, ) 

~ 
276 543 ==> R(A) 

3. 2 ) CYA(-3, 
L__J -0 ==> R(D) 

I ~ D 

234 567 654 320 ==>A 

I 000 000 000 001 ==> B I I I I (N) 
DPX B 

i i i i -0 ==> q4(D) 
If . CAB(+3,) 

N=3, 2, , 5,-6 +2 ==> q3(D) 
~ D 

+5 ==> q2(D) 

-6 ==> ql (D) 

nOTES: 1 . The E register becomes a copy of the memory word used. 

CYA, 6o 
CYB, 61 
CAll, 62 

TI1e left halYes or 

A and D are not 

changed. The right 

half of A (a ring 

of 18 bits) is cycled 

3 places to the right . 

i . e . one octal place. ) 

The 72 bit ring - AB-

is cycled 3 bits, 
i .e . one octal place 

to the left . 

2 . CYA, CY1l, CAB are indexable, ant, of course, deferred addressing can also be used. 

(Neither of these is common . Most users use RC words . ) 

3. CAB uses the same word structure as SAB and NAB. 

August 1963 3-43 





August 1963 

3-2 . 5 LOGIC, INSERI', CCMPLEME!l'l'/PERMUTE 

ITA 
ITE 
UNA 
DSA 
INS 
COM 

3-45 



BIT LOGIC INSTRUCTIONS ITA 41 
UNA 42 
DSA 65 
ITE 4o 

~TA Tj I cx[Tj) " [A) ~->A 
For these instnictions, the vord is C03sidered as a string of independent bits -

each bit column is a separate entity. For ITA, 'JNA, and 05A, the argwnent cx[Tj], is all the 

active subvords - vith sign extension if applica~le . For these three, the E register is se~, 

as usual, identical to the memory vord used. 

For ITE, the operand is the active quarters only. There is no sign extension. The 

result , of course, goes into E and there is no final E register copy from memory. 

All these instnictions are indexable a3d of course indirect addressing can be used. 

Name INTERSECT UNITE DISTIHGUISH** 

Abbreviation ITA UNA DSA** 

ITE 

Symbol " v ft) 

Other Names "AND" Inclusive OR Exclusive OR 
Partial Add 

cx(T .] 
J 

cx(T J 
j 

cx(T J 
j 

I.ogic 

(A) f: t'. t'. Diagram 
(A) a (Aj a a 

l l 0 

Note that this is Note that this is 
the "carry" that the Partial Sum. 
results f rom 
addition . 

3-46 August 1963 



(ITA) ( UllA) (ISA) 

Typical Masking - e . g . Bit Setting, or Bit Complementing -
if Tj contains 77 clearing to minus if Tj contains 77 

Use ITA T; clears all zero - if Tj contains 
DSA TJ complements 

of A except for the 77, UNA Tj sets the the last 6 bits . last 6 bits . last 6 bits to l with-
out changing the rest . 

Special 30 30 30 SAB ( -9,-9,,-9, -9) SAB (-9, -9,,-9,-9) SAB(-9,-9,,-9-9) 
Example ITA B t- QN~L ______ DSA B f--- ------- -Ir positi~e~ A i-; -- - t-The absolute vaIUe or -
F = 6oo If Negative, A is set 

30 cleared to -+-0 . The to -o. The original magnitude or each 
original (A] goes in- (A] goes into B. quarter goes into A 
to B. The original [A) goes 

All quarters are 
into B. 

active and in-
dependent . 

** Note : DSA affects both the C and D registers . The effect on D is equivalent to LDD T . 
T.~e effect on C is equivalent to fonnin~ the carries and uni ting t hem with the original j 
contents of C. - i . e . ([A) " [T)) v [CJ ==> C. 

No· INSTRJCTION CONFIGURATION 
DIAGRAM 

ABBREVIATED DE.SCRIPI'ION COMMENT 

~Tj I ~ T. R (Tj) v R (A) => R (A) Tj is unaffected. 
l J 

L-Jil The left half of A 
[Tj) => E is also unchanged. 

I ~ A 

R (Tj ) (A) R (A) 
Tj is unaffected . 

I ~ T. " R => Each bit of left half 
11rTA T 

J of A is "intersected" 2 t i SR (Tj) " L (A) L (A) j => with bit 2. 9 of T. -

~ A 
(Tj I 

Hence, if R [Tj] Jis 
=> E positive, L(A) is 

cleared. 

I Tj R (Tj ) " R (A) => R (E) 
Tj is unaffected. 

~ L(E) is unaffected. 

3 
1

1J:TE T j t t There is no sign 
extension on ITE . 

(F
11

) = 140 I ~ E 

R (Tj ) 0 R (A) => R (A) DSA affects registers 

I I Tj R (Tj] => R (D) A, C, D, and E. 
See note above . 

1nsA ll (Tj) => E 
4 Tj (R(Tj) " A]) v R(C) => R(C) 

I ~ A 

klgust 1963 3-47 



INSERi' INS 55 

Insert is a partial STA (store accwnulator ) inst=uction - only those bits marked by a l in 

the corresponding column of Bare stored in Tj . There is no sign extension, and (A] is not 

changed. If (B) is minus zero (all ones), INS is identical to STA. The E register is set 

to the final contents of the memory word used. 

EXAMPLES: (Standard F Memory - Chart 7-2) 

CONFIGURATION MASK 
NO. INSTRJCTIO~ DIAGRAM (CONTENTS OF B) COMMENTS-

WP'~ Tj (A] => Tj . INS is 

l . INS Tj t t t t -0 identical to STA when 

(B] = -0 . 

A 

R(A] =>Tj . This tiJle ~~'W'#~ Tj 

2 . INS Tj t t t t o,, 777777 it looks like a 
1

STA TJ ' 

because of the mask. 

L J A 

Bit 1 . 1 of A is copied 

I ~ Tj into position l . l of Tj . 

3 . 3rns T t 4, 2,,3,1 Quarters 2,3, and 4 are 
j 

inactive . No other bits 

[ J A are changed. l3INS T 
j 

would do the same . 

(F
13

J = lM 

Bit l.l of A is copied 

~ I TJ into position 11 . l of T j . 

4 . 6rns Tj ~ 4,2 ,, 3,1 Note that permutation 

has no effect on the use 

I I I A of B. 16INS T 
j 

is 

identical. 

**In 9.ll cases, there is a final copy into E fro11 the memory register used. 

t "Insert" is also given by ( (A] v [BJ) " ([B] v [T) ) . 

3- W August 1963 



INS 55 

NO. HISTRIJCTION CONFIGURATION MASK 
DIAGRAM __(_ CO?l'I'ENTS OF Jil COMMENTSH 

I ~ (Tk) j ql1Al => qlfTJ • 

5, 3rns{T ) * t 4,5,,6,7 
3 j 

k J 
STA • • • would be 

equivalent . 

I ~ A 

I I TJ Since [BJ = +o, r.othing 

6 . INS Tj t t t t +o 
happens . 

I I /.. 

~ I (a:rter) 
ql[A] => q3(A) . Only 

7 . 2
INS A ~~ 4, 5,,0,7 quarter 3 of A is 

changed . (Because of 

I I A the mask . ) 
(before) 

August 1963 3- 49 



COMPLEMENT - PEF!l!.UTE 

a(T ] => Tj ,1 

Tj is pennuted. 

(PMT) CO!.( 

56 

COM - Complement - perfo1'1lls two basic operations . The active subwords of TJ are 

complenented (one' s complement - all ones become zeros and Vice versa) (with sign extension) 

and all quarters are permuted whether active or not . Note that if all quarters are inactive, 

CCM permutes all quarters of TJ without changing the data. FMl' is another abbreviation -

equivalent to COM. 

There are 4 basic steps : 

1. [T.) => E , pennuted according to a. 
J 

2 . Sign extension occurs in active subwords. 

3. Active subwords are complemented. (a(;) => °l:) 
4. [E] => Tj straight - no permutation . 

Note that, as usual , E is the same as Tj at the end. 

EXAt.fi'LES: (Standard F Memory - Chart 7-2) 

NO. INSTRUCTION CONFIGURATION ABBREVIATED COMMENTS 
DIAGRAM DESCRIPTION 

[TJ ) => All of TJ I I Tj TJ is 

l COM Tj t t t t (befcre) complemented 
--

W"'ffi"A Tj (Tj ] => E 

(after) 

--
I I I Tj L(Tj) => R(Tj) The halves are 

rcvcr~cd nnd the 
2 2COM Tj ~ (before) right half is 

I w~ T. R(Tj ) => L(T) 
complemented. 

J 
(after) 

---
I I TJ q4(Tj ) => ql(Tj) Quarters 2, 3, 

l6COM 

t -------

(before) and 4 are set to 
3 Tj the complemented 

I 
sign extension. 

[F16J = 163 ~~ Tj Sq4 (Tj] => q2,3,4(Tj) 
(after) 

3- 5C August 1963 



NO. 

4 

5 

Note: 

August 1963 

INSTRUCTION CONFIGJRATION ABBREVIATED co~ 
nTA!:RAM DE.<;f:RIP!'ION 

a COM I R(Tj) (T) When all Tj I Tj => L 
quarters are 

-»< inactive, the 
Ct = 172 L(Tj ] => R (Tj) data is not 
(all inactive) I I Tj changed - it is 

(Simultaneously) mere:.Y permuted 
according to 
the given con-
figuration . 

--

I I Tk, j (Tk, j ) => Tk,j This has 
double index-

* i i f i COM (Tk}j ing . 
---

Tk ,j = T + 
I I Tk, J [Tk . J => E 

, J 

[\ l + [xJJ 

Since COM does not use any register other than Tj , there may be some confusion 

as to the meaning of "Activity" . In this chapter, quarters for which arrows are 

drawn are active . To be consistent with other instructions, one should say that 

the permutation comes first, complementing second, and sign extension last . If you 

use the phrase "Active Subwords of Tj", the order of the first two is immaterial 

since both operations can be considered to take place simultaneously. In any event, 

sign extension uses the complemer.ted sign . 

3-51 



( 

( 

( 

( 



August 1963 

3-2. 6 CONFIGURATION ~@.!ORY CLASS 

SPF 
SPG 
FLF 
FLG 

3-53 



SPECIFY FORM (SPF) 

SPECIFY CROUP (SPC) 

cSPF 

cSPG 

T. 
J 

Tj 

q l (Tj] => 

ql {Tj J => 

q2 (Tj ) => 

q 3 (Tj ) => 

q 4 (Tj ) => 

Fe 

F c 

Fc+l 

Fc+2 

Fc+3 

SPF (21) 

SPC (22) 

"Specify" copies from STUV memory i nto F Memory. (STUV memory is not changed . ) SPF 

sets only one F Memory word . SPG sets four . F ~4emory addresses are consecutive modulo 3.78 -

i . e . , O, l , 2, . .. , 368, 378, 0 , 1, 2 , etc . These instruct ions are indexable but not configur

able . The E register is set, as usual , t o t he content s of t he memory register used. 

EXAMPIES : 

NO. INSTRUCTION DESCRIPTION COMMENT 

l 
0 

SPF Tj -- F 0 is permanently set 

to +o and can not be 
changed. 

q 2(Tj ) => Fl 

2 
0

SPG T j q 3(Tj ) => F2 Same as IL 

q 4(Tj ) => F3 

q l (Tj ) => F37 F
0 

is, of course, not 

37SPG T q 3(Tj ) Fl 
changed. The F 

3 j => Memory address "c" is 

q 4[TJ ) => F2 
normally given in O::TAL 

3-~ August 1963 



FILE FORM 

FILE GROUP 

cFLF T 
j 

cFLG T. 
J 

(Fe ] =l> ql(T) 

(Fe ] =l> ql(Tj) 

[F c+l ] =l> q2(T j) 

(Fc+2 J =l> q3(Tj) 

[F c+3 ] =l> q4(T j) 

FLF 31 
FLG 32 

"File" copies f r om F Memory into STUV Memory. (F Memory is not changed. ) File Form (FLl') 

copi es a single 9 bit word, File Group copies four . They a r e indexable, but not configurabl e . 

The F Memory Addressing is modulo 378- i.e . "c" = o, 1 , 2 , ... 368, 378 , O, 1 , 2 , ... e~c . The 

E register is set as usual , to the contents of the memory word used. 

EXAMPLES: 

NO. INSTRUCTION DESCRIPTION COMMENT 

F is permanently 
1. 

0 FLF T +o => ql(T) 0 

j set to +o. 

O=l>ql(T.) 
J 

°FLG T . 

[F1 ] =l> q2(Tj) 

2 . 
[F2 ] =l> q3(Tj) - - -

J 

(F
3

] => q4(Tj) 

[F36] => ql(Tj) The F Memory address 

[F
37

J => q2(Tj) 
"c" is normal~y 

3. 36FLG T given in octa::. . j 
+O =l> q3(T j) 

(F
1

) =l> q4(Tj) 

August 1963 3-55 





August 1963 

3-2 . 7 ARITHMEl'IC CLASS 

ADD 
SUB 
MUL 
DIV 
TLY (TALLY) 

3-'.n 



ADD (67) 

SUBTRACT (77) 

ADD (67) 
StJB (77) 

ADD and SUBTRACT are straightforward one's complement (RINGED) arithmetic instructions. 

The use of configuration is similar to LJAll. . A zero result is negative except when both argu-

ments are zero at the start -(+O) + (+O) = +o ; +o - ( -0) = -t-0 . There are four overflow indica-

tors--a separate indicator for each active subword. The indicator is cleared before the 

arithmetic is done and is set to a one for either type of overflow--(too negative or too positive) . 

(With one ' s complement arithmetic the re i s a sign reversal when overflow occurs. The scale 

instructions take this into account . ) Sign extens ion occurs prior to the arithmetic . The D 

regiater ie oct no if o.n '\.no Tj were done. T:1c C rcgiotcr ia act to the carriee from 

each cohunn. (In the case of subtract, "c" contains the carries from adding the complement 

of (Tj ). ) The B register is unaffected. The E register is set, as usual, to the contents 

of the memory word used. 

EXAMPIES : (Standard F Memory - Chart 7-2) 

CONFIGURATION ABBREVIATED 
NO. DIST RUCTION DIAGRAM DESCRIPl'ION COM!OOlTS 

(A) + (Tj] => A The exyression 
(A] " T j ) => C is 

1 ADD Tj I I T. (A] " (T) => c 
J equivalent to saying ~he 

J i i i (T) => D "carries" of each bit 
(Tj ) => E column go into the cor-

responding bit column of 
~ D c. Z4 is set if over-

!low occurs . 

T. R(A) + L(Tj ) => R(A) The left half of the A, I I 
2ADD 

J c, and D registers is 
2 Tj ~ 

R(A)" L(T) => R(C) unchanged . z2 is set 
L(Tj ) => R(D) if overflow occurs. 

I W0,l D (Tj ] => E 

(A] - (T ) => Z4 I I T. A is set if overflow 
J ~ 

i i i i (A) " (Tj) => c occurs. 

3 SU1l Tj (Tj) => D 

tW"#&~ D (Tj) => E 

3-58 
August 1963 



ADD (67) 
SUB (77) 

CONFIGURATION ABBREVIATED 
NO. INSTRUCTION DIAGRAM DESCRIPl'ION COMMENTS 

3LDA 'l'j 6o6 ql(A) (277) is the M4 repre-(277) I I => 
4. 

1 => zl 
sentation fo r "a register 

3ADD (307 ) l containing 277(8)" . 
207 => ql(C) 

307 => ql(D) 
I ~ D 

307 => E 

"' 201 ql(A) (510,0) is the M4 rep-6LDA I I 'j : > 
{510,0) 

~ 
1 => z1 

resentation for "A 
5. 6ADD 

register containing 510(8) 
(470,0) 410 => ql(C) in quarter 4, and zero 

I ~ 
470 => ql(D) in the rest of the word. " 

D See Chapter 6. 470, 0 => E 

Note : The four OVERFLOW indicators are associated w1 th the subwords by Sign Q.uarter 

Number. See table below : 

SUllWORD OVERFLOW INDICATOR 

Quarter 4 Z4 

Quarter 3 z3 

Quarter 2 z2 

Quarter l zl 

Left Half Z4 

Right Half z2 

Full Word Z4 

27 - 9 z4 and z1 

August 1963 3-59 



MULTIPLY (76) MUL (76) 

a~lUL 

"MUI." fonns the double- length, ones- complement product of (A] and [TJ ] and stores it in 

A and B. The extra bit of B -- at the extreme right -- is set equal to the sign bit of the 

product, 1. e., to+ o. (Bit 1. 1 of B =Bit 4.9 of A after MUL. ) 

~-----A -----~+------ B 

Sign _/~·---------Full Pro:iuct --------
Bit 

'Ihe use of configuration is similar to Lil4 and the relevant overflow indicator (correspon-

ding to the active sign quarter) i s cl eared. No ~verflow can be generated . The active 

subwords of C are cleared to -+-0 and D is set as if an °LDD Tj had been done . The E 

register is , as usual , set to the contents of the memory word used . 

EXAMPLES : (Standard F l·!emory - Chart 7-2 . ) 

COifFIGURATION ABBREVIATED 
NO. rnSTRUC'l'!Oll DIAGRAM DESCRIPITON COMMENTS 

(A] x (T.] I I Tj => AB "AB" is the double 
J length register 

l l·tJl, TJ ! ! ! ! 
±0 =>bit l · l(B) diagrammed above. +O => Z4 It is also used vith 
+ 0 => c SAB, CAB, and Drt. 

V/Tfl///l//A D (Tj ] => D Bit l · l of B is 
set to + 0 --

(Tj ] => E depending on the 
sign of the product. 

(A) I I T . 000 => q 1 With standard con-

3LDA 
J 050 => q 1 (B) fifAration 3, 2 (5) 000 => q 1 ( C) ql AB] is an 18-bit 

'.\.ruL (I~) l 004 => q l (D) register composed of 
0 => z1 quarter 1 of A and 

I VIA D 
quarter 1 of B. The 
other quarters a:e 
not changed 

3-6o August 1963 



NO. 

3. 

4. 

5. 

Note : 

August 1963 

CONFIGURATIO~ ABBREVIATED 
I!ISTRUCTION DIAGRAM DESCR!Pl'ION co~ 

I I Tj + 0 ==> R(A) The left half 
1LDA ( - 3} 000030 ==> R(B) words are not 

ll changed. 

lMUL + 0 ==> R(C) 
(-4} 

- 4 ==> R(D) 

I ~ D - 4 ==> E 

0 ==> z2 

I I Tj - 0 ==> A 

! ! ! 1 
- 3000 ==> B 

LDA ( 3) 
+ 0 ==> c 

MUL (-400} 
- 400 ==> D 

~M D - 400 ==> E 

0 ==> Z4 

==> R(A) I I TJ + 0 
000030 ==> R(B) Only the right 

2LDA (3 0) ~~ 
half words are ,, 

+ 0 ==> R(C) changed. 
2MUL (4 ,, 0) L_____J + 4 ==> R(D) 

I ~ D (+4,,o) ==> E 

0 ==> z2 

When a 27-9 subword fonn is used, the Arithmetic Step Counter is set for the 

27-bit word, if it is active . This results in too many steps for the 9-bit 

word if it is active also . ('This is true for MUL, DIV, NOA, NAB, and TLY. ) 

Nonnal use of this subword fonu is for floating numbers of the fonn N • x · ~ 
(27 bits for "x, " 9 for "y") . Since different operations are performed on the 

two syllables, both subwords ~ill not be active at the same time . 

3-61 



DIVIDE (75) DIV :15) 

cx[AB) cx[T ) ==>A 
°orv 

j 

Tj 
Remainder ==> B 

DIVIDE consider s the contents of AB (except for the lowest order bit of B) as the 

numerator and t he contents of Tj as the denomi~ator . (Note that i t is compatible with MU~ . ) 

Confil9lration is similar to ADD, LDA, etc . The Quotient is stored in A with the appropria~e 

algebraic sign. The remainder is stored in B with the same sign as the original numerator. 

(The sign of the remainder is at the left, as usual . ) (SAB (+n} will bring strange bits into 

A for the remainder (in B) is not an extension of the quotient . ) 

[AB ] = Q + Q ==> A 

R ==> B 

The relevant over:flow 1rulic .. ~or i,; clt::an::ll at the 01.1ts1::t and an overflow will be generated 

if I [A) I exceeds or equals I [Tj) I 

Note : l. If I [A JI < 2 • I [ T j JI overflow, if any, is guaranteed recoverable via 

SCA (-n} SAB (- n} will also recover the correct answer, but it Will 

destroy the remainder . 

2 . If both [AB) and [Tj ] are normalized (as per NAB and NOA) , the condition 

above is met, and any overflow is recoverable. 

3. On overflow, the sign of A is always the reverse of the proper 

algebraic sign. 

4. If overflow is not recoverable, both [A] and [BJ are useless . 

5. _!!._ = N and Overflow is set . (This is true t'or any N. ) 
+ O 

6. N 
N and Overflow is set . {Al so true for any N.) - = 

- 0 

7. Divide clears c (as if by CXLDC (O} ) and sets D (as if by °I.DD Tj). 

8. The contents of the memory register go into E, as usual. 

9. See also note on page 3-61 . 

3-€e August 1963 



EXAMPLES: (Standard F Memory - Chart 7-2 . ) DIV (75) 
CONFIGURATION ABBREVIATED 

NO. INSTRUCTION DIAGRAM DESCR!Pl'ION COMMENTS 

Tj (AB]+ (T .] A Overflow, if any, sets I I => 
J Z4· 1. DIV Tj ! ! ! ! 

Remainder => B 
+O => c 

(Tj ) => D 

~ D (Tj] => E 

Tj R(AB] f R(Tj) R(A) overflow sets z2. The I I => 

2. 1DIV T. 11 
Remainder => R(B) left half of the arith-

J +o => R(C) metic unit is unchanged. 

R(T. J => R(D) 
I ~ J 

D (Tj] => E 

004 => ql(A) The numerator is actually I I T. 
3r..nA 

J half of 000052 since the 
3. (000) 

! 
001 => ql(B) lowest order bit of B is 

3LDB (052} 000 => ql(C) not part of it . In deci-

3niv ( 5) '---' 005 => ql(D) mal, Wt? havt? 21 + 5 or 

I ™ D 4 with a remainier of +l . 
005 => E 

0 => z1 

G LDA T. +4 ql(A) Note that [A] is minus 
( -0 ,} L J => 

J The numerator is 
4. G LDB 

~ 
-1 => ql(B) zero . 

(725'} therefore -21 (decimal) . 
6 DIV ( -5,} 

+O => ql(C) I f [A] were +o, the 
- 5 => ql(D) numerator would be 

I 1?%1 D ( -5,) => E +7~5(8) or 234 (decimaJ ) . 

0 => z1 

August l963 3-63 



.. 



TALLY (74) TLY (74) 

o:[T.) ==> A 
J 

count of ones + [S D] ==> SqD 
q 

TLY (TALLY) loads A (as does LDA) . Then the count of ones i s added t o t he sign quarter 

of D. The rest of D is not affected. The s ign digit is counted also if it is a "one" . 

The E register is set , as usual, tc [T. J. 
J 

EXAMPLES · 

NO. 

1. 

2. 

3. 

Note : 

CONFIGURATION ABBREVIATED 
INSTRUCTI ON DIAGRAM DESCRIPI'ION COMMENTS 

I [Tj ) "n" is the ntunber of I Tj =>A 
ones in [ T j ] . The n+q4[D] => q4D 

TLY Tj + + + t [T) => E additi on is regular 9-bi t 

~.....o~ A 
ring addition with no 
overflow det ection. 

[ J (+o) +O => A The D regi ster is not 

i i i i 
+ 0 => E changed 

TLY (+o) 

Wff~/ZI A 

- 0 => R(A) The l eft half of A is l J ( - 0) 1TLY {-0) 18+q2[D] => q2D 
not changed. Only t he 

ll sign quarter (No. 2) of 
- 0 => E D is affected. 

I E'W/.ZJ A 

When a 27-9 subword fonn is used, the Arithmetic Step Counter is set for the 

27-bit word, if i t is active . This results in too many steps for the 9-bit 

word i f it i s active also. (This is true for MUL, DIV, NOA, NAB, and TLY. ) 

Normal use of t his subword fonn is for floating ntunbers of the fonn N = x · i' 
(27 bits for "x," 9 for "y") . Since different operations are performed on the 

two syllables, bot h subwords will not be active at the same time. 

3-65 



( 

( 



3-3 OPERATION CODE CHARI' (Wesley A. Clark) . 

August 1963 3-67 



3-3.1 

3-3.2 

Number Systems 

Let S be a binary number of length A 
3 number ranges are commonly used: 

1) Positive Integers (e . g., r, P, Q) 

0 < s < 2"' - 1 - -
2) Signed Integers (e . g., Xj) 

- (2A-l - 1) S S S + ( 2A-l - 1) 

3) Signed Fractions (e .g . , A in MUL, DIV) 

( -(f..-1)) - 1 - 2 

Negative number represented by "~ Complement" of corresponding positive 
1 -+ 0 

number. S 
0 

-+ 1 S ( complenent of s). 

Two representations of number zero 0 = 00 

0 = 11 

Reduction Modulo J: 

For positive integer S 0 < S < 2 u 

Glossary 

h 

c 

i 

j 

r 

w 
r 

w * r 

{: s modµ 
- µ 

Example: 6 mod 7 

of Tenns 

Hold bit 

Configuration 

Instruction 

Index 

effective address 

memory operand 

if 

if 

= 6, 

Permuted Memory Operand 

Memory operand (indexed) 

S< µ 

S> µ 

8 mod 7 

Permuted Indexed Memory Operand 

Operand addresses 

Leftmost (sign) quarter of D 

1 

~ I A bits in length 

(W .*)' 
rJ 

Leftmost (sign) quarter of permuted indexed memory operand 

Ge Group c 

3-68 August 1963 



EXAZ.:PLE 1 EXAf/.PLE 2 

S, T A-bit binary numbers s 010 011 101 111 011 010 

s Complement of S (sign bit complemented -
s 101 100 010 000 lCO 101 

<S> Inversion of s < s > 110 011 101 011 011 010 

RS Positive (counterclockwise; left) unit 
rotation 01' s RS 100 111 010 110 110 101 

R- l s Negat ive (clockwise; right) uni t 
R- lS rotation of S 101 001 110 011 lCl 101 

2 x s Unit positive scaling of S (s scaled 
up by one) 2 x s 000 111 010 110 110 101 

2- l x S Unit negative scaling of S (s scaled 
2-1 down by one) x s 001 001 110 111 lCl 101 

(scaling is rotation without change 
of sign bit) 

n(S) Nonnalizer of S (S signed fraction) 
1 s I 2n(S) K S I < 1 n(S) 0 2 
2 

Note : n(o) • n(o) = A -1 . (Used as 
9-bit number . ) 

T(S) Tall y of S (number of ones in S) (used 
as 9-bit number. ) T(S) 5 6 

T 011 010 011 011 010 011 

S A T S and T 

"" bo.J 

for each bit S " T 010 010 001 011 010 010 
b, b=l, 2, 

s v T s or 'I ... ' A s v T 011 011 111 111 011 011 

S E!') T s or T but s0 T 001 001 110 100 001 001 

S e T A-bit binary ring sum of S and T E9 101 110 000 010 101 110 -
No:te · s fll s ~Q 

SGT A-bit binary ring difference = (s e T) S 9 T 111 001 001 100 000 111 

Enclosed expression applies to each acti~e quarter of operand 

Enclosed expression applies to each active subword of operand 

A blank box indicates that no change is made . 

August 1963 3-69 





INSTROcTIOK EXECUTIO!ol TABL£ . l anAuc.rl••.• fh, e.-, '~i,""'-\ ( [ lt'l'(ltS: 
M( . dlJt./·wYt"~!~,:z,;.41;;;/ ,'!(M~;1A1- >/lflLIJl:.S) 

T IM£ p X; ..... W144 • W'"-•KJ' A B c 0 E (o'/Cl\eAUf, i -· HAllil f ~'·•-" Q zt•l 
""'" (.'fH.0 0 c..lol.. VJ.• IN. ,;:, L ...Q. 

0 ti ... , .. ,.<,,.v "°"~~ 
" '~ SNUr't' '40~ P.• I Aw Xi G> 

1 :!: .. ... THC ro1u1 "~ 
2 :::! .. ... fl\.( C.ililOU .. c;,.. ,. LOA lOACI • ~: 

0 
.. tD8 l,O"'" • w.: 
" LO<. LOA O c w. ... 
l1 LDD 1.0AO • ~ ,. >TA STORC' A A ., ~n .STOit( • a 

1. 2 .. STC. SlOIU c c 

" >TD SlOft.£ • 0 .. UA f.a c.H.-'.,.•• ;. Q) A w,,.•, 
z.+ .. ••• INSl'"T 

( l •A) 

!.L•·w.·i 
•• ITA tfilTtlUIC.T • A"'W: 
•• UM VM IT'C' A A ... W,:J 

0 " ... lrllSTW~UISM A A9W...'}_ ~-· W0
l•C 

" . .., ...... r.:--' ... e~ A4\,{,.~ 

'""'' 
71 '"' W •Ta4C:T ~ A~ W.i ..... ~ 

1>JITI8Is ,. 
""' MV\,,T1J>\'r <!) 

P• I A&.X; 0 A• W..j-
0 

p_JlssP~ T$ ... IW'IFIDlr (!} ® t; ( A9/\Y'...j)•••· (Aa/W"'i)•r.. 

C-k.j{ "' CYA CY(U: " -fi-w.<>'. ,.. J ® 

~ A CY(l.C Al ~l"'fl.,..e 
(w4)'<~ ~<w..;>.9 >¢0 •• CYB C'f'ClC • 

70 SCA SCA\ ( A ztAl•O l..;i:,.. 

~:r-· : z<"-i'>:(A) l>O "If 
~~· l-.:··· .. <·-'") VJ .. 0 

»<' ~o 7l ••• .S<Al( Al .C(...,•O 2'"'~): 1'.8 

'·"'·'. z1w.;>'«••> 
® 

ri.r:,0 
.. W.j 

~"'3)'•• z'~>"·· · <i-· · "•> 
71 ~Cl .KA.l[ I 2<w,.;J. a 

•• -lllOltMAU&C A %~~·· z••C.•l. A (W.../(0m(A) 

"% ©I ZI+• ' 
0 

(2"'•A) (\./.:})'•I 

•• . ... MGaJo\A\IKll Al Z(.\)•• z""CMl. A9 (w.;')'e"(-.1) 
1-'o 

(1"' • A8) (\.J.;)'• • 0 Z(•\• I 

11IT.~IsI2 ,. 
'" TAt.t.V © w,; O'EI> cf.<'1> 

0 A 
<<'t P+' 1 -A 

3.b 12 SK< SK1P ,,,., 
z ~tM. © 

(fin<) I1'0#.k 

P+t 3 Xi0A 
~-7 ~ 

'l.O " MT r1•MVTI ~-11 f~} ® co,, (.• ... ""'""" .. ,. ® ~ 
0 lO ••• \.·OAO r "'·' J...2 JO .,. sro111:1 l 

P+ I Af>X/ E· 

•• ITI ltifTltUI<.,. I" , .... w~ 
0 ., SlD Ski, ... ~~ 

t 01rn.,t 
ti'~ P+2 

i 0 17 .... •. ,. . ,. ........ , ~ & ... e 6> 

- - - -
0 II ~u AUST • cw.:1 

TI 14 ••• 01~0\IT • ~~ 
1.2 •• ... 

(,;(."""'' I( 
P• I ... cw:>,.., ~(/<;)X1 <i) 

8 .• ... AU•MlerT " X,$(W!)S! a :"' 
J.2 .. AOX .. .. • ~"'7L - - - -.. ,,. J'\I"' .. x "' 0 

p., @> 
3.Z POl•Tl"I" ,l( (x; >O 

"l!iXf it~,)_: J ~··): 
W<O A 

01 , .. , .. ,.., - . .. 
M•A'fW& X. /{/ > 0 p,. 

' 
u JPA Tll'°'P - A,.o p + I 

ll'OUTI.,. .. A ~>O A•X; ' •+ I 
H H JOA ·-· .. A<O I 

.,...,...,..,.,, A A40 I 

~I 
, 

T •• JOV .. .. .. . ., ...... "" Iii~ ,,.~ .. ' 
t.i OS '"' JV'4r c. ...... ..... @ @)"@ IOL llANCM .... "'t..• t.; 

sr TtD T1,A11•r11 -.."::r ,. 
J.' a.triTA -· ® ·- • +I ~•J.; ® © 

August 1963 3-71 



( 

( 



3-3·3 

August 1963 

Notes on the coding chart 

l. 

2. 

3. 

4. 

5. 

6. 

18 In all expressions P + l , P + 2, SUJTIS are reduced modulo 2 . 

(777777 + l) mod 218 = o. 

For SPF and FLF only quE.rter one of Wrj is used. SPG and FLC use all 

four quarters. F memory addressing is counted modulo 378 (e. g . , 36, 37, 

o, l ... ) 

If r e xj = 377€io4 (aderess of A reg. ) then ElCA has same effect 

Final value of WQ ==> (Q = r, re Xj) . 

ADD, SUB overflow conditions : 

If A$W A + W Then 0 ==> Z(A) 

If A $ W f A + W Then l ==> Z(A) 

Z(A43) - Z(A42) - Z(A41) - Z(A4) m Z4 

Z(A3) z3 

Z(A21) e Z(A2) z2 

Z(~) = z1 

DIV Conditions : 

CONDITIONS Z(A) A B 

""' 
-.... 

""""" IWr /1 > l!J31 0 QUOT REM 

IWrj*I f 0 Twrtb l!J3T l -.... JUNK ""' JUNK -.iii 

IABI 
""""'Ill -

""""" = 0 A 
l -

""""" 
1w *I rj = 0 IABI f 0 A @W * rj 

R-l B 

Sign of nonnal r ema inder = sign of dividend (AB) . 

JUNK is recoverable if IAI < 2 lwrj~I 

as STA. 

7. Exceptions in MUL, DIV, NOA, NAB, TLY : 

Expressions listed are not cor rect for quarter (subword) l of A, B, and D' 

if a 27, 9 subword is chosen, and if quarter l is active . 

8. CYCLE, SCALE, and NORMALIZE instructions begin, in effect, with LDD. 

9. Pl.fl', COM consist of 3 consecutive steps: 

3-73 

W * ==> E rj 

W * ==> E rj 



10. SKM variations : 

j M r . :t.b : selected bit 
q mod 4 b M r . :t. lO(dec) = m 

3.613. 5 3.~3.13.2J3 . 1 
r 

M r+U(dec) = Pr 
q = quarter; b = bit M r. :t· l2(dec) = parity (Mr) 

CONDITIONS ACTIONS 

FUNCTION c 
M 

(SKIP, Then MAKE, 

4.8 4.7 4. 6 4. 5 4. 4 r .q.b Then CYCLE) 

0 0 - - - - P + l a•> p 

SKIP 0 l - - - - p + 2 ==> p 

SKIP on l 0 0 P + 2 m•> p - - -
ZERO l p + l ==> p 

SKIP on l l 0 p + l ==> p - - -
ONE 1 p + 2 ==> p 

- - - - 0 0 - -
COMPLEMENT - - - 0 1 - M ==> M r . q .b r .q .b 

MAKE ZERO - - - 1 0 - 0 ==> M r .q .b 

MAKE ONE - - - 1 l - 1 ==> M r .q .b 

- - - 0 - - - -
CYCLE - - l - - - R-l W r ==> wr 

ll . SG(Xj) is 18-bit number 00 ... O or 11 ... l according as sign bit of Xj 

is O or 1. 

12 . ADX , AUX consist 
of ~equence of steps : 

0 •=> E 

ADX 

E -> W * r 

AUX 
='> x . J 

13. ~ is 18-bit signed integer expansion of c . (0 S c < 37 -17 S ~ .5 + 17) 

3-74 August 1963 



14. JMP, BRC variations : 

c 

FUNCTION d ACTION 
4.8 4.7 4.6 4. 5 4. 4 

JUMP - - - - 0 r ==> p 

BRA."iCH - - - - 1 r $ xj ==> p 

- - - - 0 - -
SAVE - - - 1 - p + 1 ==> xJ 

- - - 0 - - -
p + 1 z> E - - l - - p + 1 ==> E21 

- - 0 - - - -
Q ==> E - 1 - - - Q ==> E43 

- 0 - - - - -
DISMISS 1 - - - - if h - o, 0 => ~L 

15. TSD (Unit Ready) 
assembly ! normal ! ! mode 

in ! mode out out in 

w * => UK => E wrj => lJK UK=> wrj 
rj 

REV FWD 

E => E => W * - 1 
I R wrj wrj I rj R wrj => wrj => 

i i 

August 1963 3-75 





CHA.Pl'ER 3 

INDEX 

NUMERICAL ORDER ALPHAllETICAL ORDER 

CODE NO. OPERATION PAGE OPERATION CODE NO. PAGE 

4 IOO 4-7 ADD 67 3-58 
5 JMP 3-30 ADX 15 3-22 
6 JPX 3-26 AUX 10 3-20 
7 JNX 3-26 COM 56 3-50 

10 AUX 3-20 CAB 62 3-42 
11 RSX 3-14 CTA 6o 3-42 
12 SIOC 3-24 CYB 61 3-42 
14 EXX 3-18 DIV 75 3-62 
15 ADX 3-22 DPX 16 3-16 
16 DPX 3-16 DSA 65 3-46 
17 SKM 3-34 EXA 54 3-10 
20 LDE 3-7 EXX 14 3-18 
21 SPF 3-54 FLF 31 3-55 
22 SPG 3-54 FLG 32 3-55 
24 LDA 3-6 INS 55 3-48 
25 LDB 3-6 IOS 4 4-7 
26 LDC 3-6 !TA 41 3-46 
27 LDD 3-6 !TE 40 3-46 
30 STE 3-8 JMP 5 3 30 
31 FLF 3-55 JNA 47 3-32 
32 FLG 3-55 JNX 7 3-26 
34 STA 3-8 JOV 45 3-32 
35 STB 3-8 JPA 46 3-32 
36 STC 3-8 JPX 6 3-26 
37 STD 3-8 LDA 24 3-6 
4(, ITE 3- 46 LDB 25 3-6 
41 !TA 3- 46 LDC 26 3-6 
42 UNA 3-46 LDD 27 3-6 
43 SED 3-36 LDE 20 3-6 
45 JOV 3-32 Ml.IL 76 3-6o 
46 JPA 3-32 NAB 66 3-40 
47 JNA 3-32 NOA 64 3-40 
54 EXA 3-10 RSX 11 3-14 
55 INS 3- 48 SAB 72 3-38 
56 COM 3-50 SCA 70 3-38 
57 TSD 4-9 SCB 71 3-38 
6o CTA 3- 42 SED 43 3-36 
61 CYB 3- 42 SKM 17 3-34 
62 CAB 3- 42 SIOC 12 3-24 
64 NOA 3- 40 SPF ?l 3-54 
65 DSA 3-46 SPG 22 3-54 
66 NAB 3- 40 STA 34 3-8 
67 ADD 3-58 STB 35 3-8 
70 SCA 3-38 STC 36 3-8 
71 SCB 3-38 S'l'I) 37 3-8 
72 SAB 3-38 STE 30 3-8 
74 TLY 3-65 SUB 77 3-58 
75 DIV 3-62 TSD 57 4-9 
76 MUL 3-6o TLY 74 3-65 
77 SUB 3-58 UNA 42 3-46 

J..ugust 1963 3-77 



( 

( 



TX-2 USERS HANDBOOK 
CHAPl'ER 4 - IN-Our SYSTEM 

TABLE OF CONTENTS 

4-l INTRODUCTION 

4-2 TX-2 INOur JARGON 
4-2 .l SEQUENCE - SUBPROGRAM - PROGRAM 

4-2.2 PLACEKEEPERS, PROGRAM COUNTERS, AND THE P REGISTER 

4-2 . 3 SELECT, CONNECT, TURN ON 

4-3 TX-2 INOur CONTROL LANGUAGE 

4-3 .l CHANGE OF SEQUENCE NUMBER 

4-3.2 THE HOLD BIT 

4-3 ·3 START POINTS 

4-3.4 DROP our - TEMPORARY AND PERMA'IBNT 

4-3· 5 THE "!OS" OPERATION - "INOUT SELECT" 

4-3 .6 THE REPORT BIT 

4-3 ·7 "TSD" - TRANSFER DATA 

4-3.8 CONTROL LANGUAGE SUMMARY 

4-4 NO'l'ES ON CODING FOR INTERLEAVED OPERATION 

4-4.l BRUTE FORCE 

4-4.2 HIGH - LOW - MEDI UM PRIORITY SUBPROGRAMS 

4-5 UNIT BY UNIT DESCRIPTI ONS 

No . 41 INOur ALARMS 

No . 42 TRAPPING 

No . 47 MISCELLANEOUS INPUTS 
No. 50 DATRAC (SAMPLED ANALOG INPUT) 

No. 51 XEROX PRI NTER 
No . 52 PETR (PHarOELECTRIC PAPER TAPE READER) 
No. 54 INTERVAL TIMER 
No. 55 LIGHT PEN 

No. 56, 6o DISPLAY 

No . 61 RANDOM NUMBER GENERATOR 
No . 63 PUNCH 
No . (65, 66, 71, 72) LINCOLN WRITERS 

July 1961 4-l 



CHAPl'ER 4 

TX-2 IN- OIJr SYSTJ!M 

4-l INl'RODUC'l'ION: 

TX-2 was designed for 33 "IN-Ol11'" devices (see chart 7-l) . Each channel is identified 

by its "Sequence Number" - Zero for "STARTOVER" and 4o-77 (a) for "normal" channels . 

(Sequence Numbers are usually given in Octal.) 

The basic In-Out set includes: 

For Input: 

For Output : 

For Bulk Storage : 

Photoelectric Paper Tape Reader 

Keyboard and Reader of Lincoln Writer 

Datrac Analog Sampler 

Xerox Printer 

High Speed Paper Tape Punch 

Printer and Punch of Lincoln Writer 

Display Scopes 

Variable Speed Addressable Magnetic Tape 

(4 units, manually selected at first , about 2 million worcs 

per Wlit . ) 

The subprograms associated with INOUI' units can be written so that the waiting time for 

one unit is automatically used as computation time for others . Only one subprogram is ir. 

operation at any specific time, although the interleaved operation of several subprograme 

mates it possible for several INOl!l' units to be in operation simultaneously . 

In a typical program, a subprogram will continue to run until it must wait for its 

associated unit to complete a data transfer or until it is interrupted to allow a subprogram 

of higher priority to run. Each subprogram he.s a "placekeeper" to remember where it shol.l.d 

resume operation anian indicator ("FLAG") to tell when it is ready to run asain. Since it is 

likely that more than one subprogram will be ready (1 . e . , more than one Flag will be up,) 

at any given time, a priority system is provided and is adjustable (by rewiring the "Pricrity 
Plugboard") . 

Each INOlJI' channel has, therefore, a "Sequence Number" (4o-77 octal.) for identification, 

a placekeeper (the correspondingly numbered index register), and a one bit register - its 

"FLAG" for signaling. Channel number zero is a special case in that its "unit" is the 

STARTOVER and CODABO pushbuttons , its "placekeeper" is the Toggle Start Point Register (TSP), 

and its Priority is the highest and cannot be changed. (The pushbuttons - STARTOVER and 

CODABO - raise Flag {/o . "CODABO" also clears alarms, presets all control flip-flop;;, lowers 

all other Flags, and starts the computer . "STARTOVER" does NO MORE than to raise Flag flo.) 

4-2 July 1961 



Sequence Numbers 76 and 77 have been reserved for non-INOUT purposes . Flags 76 and 77 
must be raised and/or lowered by progranuned instructions . With the standard priority plug

board, they have the lowest Priority position . (Sequence number 4o has the highest . The K 

r egister, a 6 bit FF register, holds tl:e sequence numhPr of t.hP currPnt.ly op<>r,.tine sub

program. ) A hTSD using a non -IHO\ll' Sequence No. will cycle memory one place to the left. 

4-2 TX-2 INOlJl' JARGON 

4-2 . l SEQUENCE - SUBPRCXIRAM - PRCXIRAM 

TX-2 is indeed a "Multiple Sequence" or "Multiple Subprogram" machine . This is 

to say that it can interleave s~bprograms - i .e ., it can keep track of several inter 

leaved progra.~ sequences . This docs not say that it can run several interleaved 

independent programs. So much colusion and cooperation would be required to inter

leave unrelated programs that they should probably be done by the same person . One 

could then argue that the result would be better described as a multi -purpose program. 

The vord "Sequence" is often used as a synonym for "Inout Channel ". 
Sometimes it refers to "Sequence Nmber" . {We often say "Sequence" 77 rather than 

"Sequence Number" 77) . And it is used in the "normal" sense - i .e ., "subprogram" . 

4-2.2 PLACEKEEPERS, PROGRAM COUNTERS, A.ND THE P REGISTER 

The placekeepers - all 33 of them counting l/O, (the Toggle Start Point,) - are 

memory deVices whose purpose is to remember where each subprogram is to res·.lll\e 

operation when it gets a chance . Placekeepers 4o-77(a) are index registers . Place

keeper "ZERO" is the Toggle Start Point register (TSP) (a rov of toggle svi~ches on 

the computer console). 

The P register is an 18 bit flip-flop control register that always holds either 

the location number of the current instruction or that of the next instruct~on . It 

corresponds to the "progra.11 counter" or "instruction counter" of other machines . 

Index Registers 4o-77, the placekeepers, are often called the "program counters" . 

Occasionally the P register is called "The program counter" . 

4-2.3 SELECT, CONNECT, TURN ON 

July 1961 

To "connect", or "Turn on" an INOUT unit means to set the control flip-flop of 

the channel so that data can be transferred, and so that the INOUT unit has access to 

its Flag. The unit is said to be "connected to the computer ". Each regular INOlll' 

unit has a "C" flip-flop - and a corresponding console indicator - to show whether it 
is "connected" or not. 

4-3 



The word "select" is often used as a synonym for "connect" but it is also more 

or less reserved for the day when two or more units must share the same channel . 

This will be true, for example, in the magnetic tape bulk storage system. 

3 TX-2 !NOVI' CONTROL LANGUAGE 

TSD - "Transfer Data" and !OS - "INOlJI' SELECT" are the only !NOVI' operations . The 

channel used for data transfer depends on the "sequence n1.mber" in use rather than the unit 

connected, for many units may be connected, but only one subprogram is in operation at the 

tille a given data transfer is initiated. 

Control of the interleaving - not strictly an INOlJI' function is done through : 

The hold bit(#4 .9) , a syllable of every instruction, 

Resetting placekeepers via X Memory operations, and 

Drop out - permanent or t em?orary. (See 4-3 .4) 

4-3 ·1 CHANGE OF SEQUENCE NUMBER 

A change of sequence n1.mber occurs whenever : 

a) A high Priority INO:Jl' channel takes over by "BREAKING" or 

interrupting a lower priority subprogram. 

b) A subprogram drops out ~ither permanently, or to wait for its 

unit to get ready for another data transfer), and a lower priority sub

program takes over . If no other subprogram is ready, no change of 

sequence number occurs . The computer goes into "LIMBO", a condition 

where it repeatedly scans all the Flags until one is up . If the same 

old Flag (as indicated by the K register) comes up, no change of 
sequence occurs . 

4-4 July 1961 



When a change of sequence number occurs, several internal registers are a!'fected: 

The E Register 

Old Placekeeper :::::> 

P Register 

K Register 

i OLD# NEW# \~ SET FROM THE P RF.GISTER ZI 

Reset from the P register same as the right half 

of E. This will be "p+l" (one more than the location 

number of the last instruction) unless the last 

instruction changed P directly . (E. g. , by SKX, SKM, 

JMP, JNA, JPA, JOV, JMP, SED, JNX, JPX, or TSD) TSD 

will leave "p " rather than "p+l" i f the data transfer 

can not take place . 

Set from the ~ placekeeper . 

Set to the new sequence number . 

Not e t hat the current placekeeper is changed only ~ the sequence number is changed . 

I t can therefore be used as an ordinary index register while its subprogram is in 

operation . 

4-3 .2 THE HOLD BIT 

A typical INOUT subprogran is usually written so that it can be interrupted at 

any time by another subpr ogram of higher priority. To do this completely, one would 

have to refrain from using the Arithmetic Unit and the E register . Since this is too 

severe a restriction, the "hold syllable" or "hold bit" is provided. A hold bit 

insures that no "break" or interruption will occur following the completion of the 

held instruction. 

A break ~ occur before a "held TSD", but only when the I NOUT unit is unable to 

handle the data transfer . (This is called "DISMISS and WAIT". ) 

Since instructions using the E register must nearly always be held, the assembly 

program automatically inserts the hold syllable . (LDE, ITE, and JPX, JNX. ) (JPX 

and JNX are included because their automatic dismiss is usually not wa.ntec. The hold 

syllable cancels "dismiss " whether built in (as in TSD, JNX, JPX) or programmed (as 

in 20
sKX, 2010s, 20 J?.fP)) . 

4-3 · 3 START POitfrS 

July 1961 

To start a subprogram we r.eed only set its placekeeper to the starting place and 

raise its Flag. If the computer is running, the subprogram will start as soon as it 

has highest priority among thoee that are ready. 

4-5 



"Starting" is particularly easy fer sequence number zero. Its placekeeper, 

"TSP", is set by hand. If the computer is running or in "LIMBO" the STARTOVER push

button vill suffice . Flag zero 'Jill go up and a change of sequence number to #0 vill 

nr.r.nr an Annn as an instruction is ~erformed that has no hold bit (or vhen a hTSD that 
can not be initiated is encountered) . CODABO is used when the computer is not 

running, or vhen the user wants to stop all other subprograms and start subprogram 

#0 only . 

A subprogram using sequence number zero has highest priority and therefore can 

not be interrupted. Sequence number zero is used primarily to start other subprograms . 

This amounts to setting placekeepers for the others and raising the Flags of those 

that should start . The following operations are used: 

For setting placekeepers : 

For raising Flag "F": 

For permanent Drop Out : 

RSX, SKX - i . e ., the instructions normally 

used to change the X Memory . 

10 SKJ), or IOSF 50 000 

The dismiss bit (4 .8) - a syllable of SKX, 

JMP, and IOS only. The built in Dismiss 

feature of TSD, JNX, and JPX can also be used 

for permanent drop out . 

•30 II 

Note that the single instruction SKXa 101 (in sequence zero) vould start 

the subprogram that is at 101 operating under sequence number "a". (Providing, of 

course, that a is not zero . ) In fact , the 30sKXa 101 vill vork from any sequence 

number other than a . (It can not be made to look like "JMP 101".) 

4-3.4 DROP OIJl' - PERMANENT AND TEMPORARY 

When a subprogram is finished, it can drop out permanently through the DISMISS 

syllable (bit 4.8) of IOS, SKX, or JMP. When TSD has initiated an output data 
transfer or when it has completed an input data transfer the built in dismiss Will 

cause drop out if "hold" was not used. This drop out Will be temporary - the INOUT 

unit "'111 raise the Flag. For input units the Flag is raised when the next datun is 

ready (e .g., when the next key is pressed or the next line of tape comes up) . For 

output units the Flag is raised when the data transfer is complete and the unit is 

ready for another (e .g., when t he character has been printed, or the paper tape h~s 

been punched) . 

Drop out always lowers the current Flag. It is considered "temporary" if the 

unit is about to raise the Flag and ''permanent" if the Flag vill be raised by another 

subprogram (or if the subprogram is finished for good). Temporary drop out can also 

occur when a TSD operation is not possible - i.e . , when an output unit is still bw;y 

4-6 July l~l 



or when there is no datum available from an input unit (e .g., when the next line has 

not yet arrived) . This form of temporary drop out is called "DISMISS and WAIT" and 

can not be prevented by using the "hold bit". In this case, the TSD that caused the 

drop out has not been done, the P register is not advanced, and the TSD is donP vhPn 

the subprogram resumes operation. 

4-3 ·5 THE IOS OPERATION - "INOlJI' SELECT" 

July 1961 

The primary functions of IOS are "Connection" and "Disconnection" of IllOIJl' units, 

and the specification of operating modes. Some units have several modes - for example, 

the user has the option of punching tape with or without a 7th hole on each line . 

IOS is also used for raising and lowering Flags and will eventually be used for 

selecting mag tape drives . 

The basic IOS operations are : 

IOSJ 20 000 

IOSJ 4o 000 

Disconnect Unit "J" from the computer 

Connect Unit J (if not already connected) , anc set to 

Mode X:XXX 

Lover Flag J 

Raise Flag J 

Select Unit XXX (Not used yet) 

IOSJ 20 0001 Disconnect, has no effect on interleavtng except that a TSD that 

tries to initiate a data transfer will not be performed . (A "Dismiss and \\ait" vill 

occur - waiting for the unit to be ready to transfer the data. In most cases this 

amounts to a permanent drop out . ) 

IOSJ 3XXXX, Connect, has one peculiarity. It Vill raise Flag J whenever : 

Unit J is an OlJI'PlJI' unit, 

and Unit J vas not already connected. 

When a mode change takes much time, the unit involved will generate a raise flag 

signal to indicate that the change has been made, and no data transfer Vill be 

accepted during the intervenine interval . (i .e. , the "buffer is busy". ) 

IOSJ 4o 000,LOWER FLAG J, is not equivalent to drop out if J is the current 

sequence number. The subprogram currently in operation Vill continue to run until 

it drops out or until it is interrupted by a unit of higher priority . If such a 

BREAK occurs, the interrupted subprogram will not resume operation, for Fl~g J is 

indeed lowered. If J is not the current sequence number, IOSJ 4o 000 prevents 

4-7 



subprogram J from resllllling operation until Flag J is raised somehow - (perhaps by 

unit J or by another subprogram) . 

IOSJ 50 000, (and 10sKXJ) Will raise FLAG J , but as before, "J = current sequence " 

is a special case . Note that : 

SKXJ Y 
20IOS 50 000 

J 

or 30sKX Y 
J 

Will change the P register and therefore be similar to a JMP if J is not the current 

sequence number . But if J is the current sequence number, no change of sequence 

number is ordered and the RAISE FLAG cancels the DISMISS . There is effectively no 

change. (Except that 3oSKXJ Y Will set XJ to "Y" but this Will be Wiped out by the 

next change of sequence number .) 

The Flag of the current sequence is never used. Following each instruction 

that is not held, control scans the Flags having higher priority but goes no f urther . 

It does not consider the current Flag. If the instruction was held no scan is made 

at all . When a subprogram drops out, all the Flags are scanned until a r aised Fl ag 

is round . When no Flags are up, and this scanning is taking place, the computer is 

in "UMBO". As soon as a Flag is found, a change of Sequence Number (see 4-3 . 1) 

takes place and normal operation is resumed . 

4-3.6 THE REPORT BIT 

A simple IOS has no effect on the E register . If bit 4 .4 i s set to 1, (a 
1 IOSJ 0 for example) the control flip-flops of the chosen unit are copied into E 

before the rest of the instruction is performed. Thus, if 1IOSJ 3XXXX is used, E 

wil l contain information on the state of affairs before the mode change . Unused 

porti ons of E are cleared. 

The standard report is as follows : 

Bit 3.1 to 3 .6 

" 2.9 

" 2.8 

" 2.7 

" 2 .6 
II 2 .5 

" 2.4 

" 2 .3 - 1.1 

" 3.7 - 4.9 

Sequence Number of Reporting Unit 

Flag 

Buffer Status - 1 = not busy 

0 = busy 

Maintenance 

Connect 

EIA - Equipment Inability Alarm 

MISIND - Missed Data Indicator 

Mode flip-flops - same as in the IOS 3XXXX for most 

units . 

Special indicators - cleared if not used. 

4-8 July 1961 



4-3·7 TSD - TRANSFER DATA 

July 1961 

With a few exceptions (41, 42, 55, 75) each INOUT unit has an INOUT Buffer 

Regi ster (IOB) and a Status FF . STATUS= 1 means it is the computer ' c turn to ucc 

the buffer, STATUS= O means that the "BUFFER is BUSY" - i . e. , the unit is working 

on an uncompleted data transfer. The buffers range in size from 6 to 24 bits . 

TSD - Transfer Data - means either "copy fr<im. IOBk to memory" or 11copy memory to 

IOBk11 where k is the current sequence number (i . e ., contents of the K register) . 

Thus for input units, TSD completes the data t r ansfer and for output uni~s , TSD 

initiates the data transfer. (For input, the transfer is "unit -to-buffer ," then 

'buffer -to-memory "(via TSD) and for output it is "memory-to-buffer" (via TSD) , then 

''buffer -to-unit" . ) 

Except where TSD is used in ASSEMBLY mode, permutation and activity can be used 

in the normal manner . There is no sign extension - eubword form is ignored. 

"Inactive" portions of an output buffer are filled with +O . The buffer is considered 

to be at the far right unless otherwise stated in the unit descriptions . 

TSD has two built-in DISMISS features . If the buffer is busy, the ?SD can not 

be performed and drop out occurs whether a hold is used or not . This is called 

"dismiss and wait" and comes before the P r egister index point in the control cycle . 

(Pis not advanced. ) Once the TSD operation is done, the other built-in DISMISS 

occurs but this time "hold" is effective . Such a hold is used on input devices to 

i nsure use of the new datum as soon as possible and on output devices to utilize the 

processing time without changing the sequence number . It is possible in either case 

to use so much time that lower priority subprograms never have time to operate . 

If an IN0\11' unit is not ~onnected, a TSD Will find the buffer "busy" and "Dismiss 

and wait" Will occur . If the unit is subsequently connected by another subprogram, 

the flag of the first Will be raised and the TSD Will be performed as soon as normal 

interleaving Will allow. 

If a TSD is done using sequence number O, 76, or 77, the specified nemory word 

will be cycled left once. Th? configuration syllable is not used - the cycle is a 

full 36 bit operation . Unless a 11hold" was used, the automatic dismiss syllable of 

TSD will take effect . (This is also true for sequence numbers toi· -w:iich there is no 

INOtJr unit as yet.) 

Note that for sequence n·.llllber 75 (Miscellaneous Outputs) , TSD does !!2i cycle . 

(It Will still dismiss if not "held", however. ) 

4-9 



4-3 .8 CONI'ROL LANGUAGE SUMMARY 

0roo o 
J 

OIOSJ 20000 

0IoSJ 3xxxx 

SKX 

lOSKX N 
J 

20sKX N 
J 

30sKX N 
J 

DISMISS 

Has no effect except to take time . {Dut note that 1103 is 

"Report" . ) 

Disconnect Unit J 

Connect Unit J , Set Mode, Raise Flag J if Unit J was a 

disconnected Output Unit . 

Lover Flag J - ~ot DISMISS, (i .e ., will not cause drop out.) 

Raise Flag J 

Raise Flag J , Set XJ to "N". 

DISMISS, Set XJ to " N" . 

Both of the above for J F k . If J = k, there is no drop out. 

(k =current sequence number .) 

Bit 4.8 for IOS, JMP, SKX (e .g . , 20SKX, 20IOS) 

"Built in" as part of TSD, JNX, JPX 

(otherv.ise not available . ) 

Change of Sequence Number Affects: 

Register E - I OLD# I NEW# CONTENTS OF P 

Old Placekeeper - Contents of Register P 

Register K 

Register P 

l Report - IOS -

°' .; 
I 

*Not Used, J 
Except by 
Magnetic 
Tape . 

- Nev Sequence Number 

- Contents of Nev Placekeeper X 

(bit 4. 4 of !OS) 
r-- \() 

..-i °' ..;!- "" '"""! 

"""" M(IJ (IJ (IJ ..-i 

I I I 
~ L,,. l *2.3 Sequence - 1 . 1 

Number of 
Reporting - MISIND 
Unit . 2.5 - EIA 

2.6 - Connect 
2.7 - Maintenance 
2.8 - Buffer Status 
2.9 - Flag 

Mode Bits 

(o = busy) 

* Register E is cleared before the report . Therefore, all un-used bits 
are zero . 

4-10 July 1961 



4-4 NOTES ON CODING FOR INTERLEAVED OPERATION 

If a program uses but one unit there is no need to interleave any subprograms and the 

entire program can be performed using one sequence number. Even if two or more units are 

to be used, it is sometimes better to use them one after the other rather than simultaneously . 

If the above conditions are true, the only pitfall that may be overlooked is premature drop 

out . Careful use of the dismiss bit and built in dismiss features will prevent this error . 

Interleaved operation of subprograms requires shari ng the f ollowing: 

Main Memory 

X Memor y 

F Memory 

Arithmetic El ement (A, B, C, D, and Overflow FF) . 

TIME 

(Listed i n order of increasing difficulty) 

Main Memory and X Memory must usuall y be par t itioned, except, of course where they are 

used for common data. The F Memory can usually be set at the start to some "Standard 

Configurations" and left unchanged. Two approaches to sharing TIME and AE are given below. 

4-4. l BRUTE FORCE HOLDING 

Whenever t he INOtJr units involved are slow enough, or are not :free-running 

(i .e ., do not dictate timing) a brute force method may be used . (The Li ncol n Writer 

Printer and t he High Speed Fur.ch are two such units . ) The lower priority subprograms 

can use a hold bit on all instructions where a break i s intolerable, (asstnning a 

BREAK will change the Arithmetic Element) . The only limit is that they can ' t hold 

on all i nstructions . The highest priority subprogram has no problem other than the 

fact t hat it must drop out now and then to give t he others a chance . If i t must 

wait for a lower unit it can do so by dropping out and relying on the other sub

program :for restarting. Synchronization can be automatic only if the high priority 

loop contains a temporary dro~ out . The easiest way to obtain a temporary drop out 

is through regular and, if need be, dtnllffiY TSD operations (e .g., non-printing keys on 

the Typewriter, blank tape on the punch, etc .). Another method would be to use the 

Interval Timer (Unit #54) . 

4-4 .2 HIGH-LOW-MEDIUM PRIORITY SUBPROGRAMS 

The Brute Force Holding ffiethod will not work if the timing of one unit requires 

that it receive attention soon after its Flag comes up. In many cases it is necessary 

to r estrict holding to no more than three consecutive operat ions . Fortunately, the 

index memory operations can be used in place of the Arithmetic Element operations for 

many appl ications . This means that all but the lowest priority subprograms do not 

need the Arithmetic Element. The rules for thi s method are as follows: 

July 1961 4-11 



* 

For Lowest Priority Subprogram - l'he only one to use the Arithmetic Element . 

a) * No more than "n" consecutive holds . (It should be possible to limit 

this lowest priority subprogram to holding only on JPX or JNX. ) 
("Consecutive", here refers to TIME, not storage .) 

For Medium Priority Subprograms -

a) No more than "n" consecutive holds . * 

b) No use of the Arithmetic Element 

For Highest Priority -

a) No use of the Arithmetic Element unless it is saved and restored. 

b) "Hold" should be needed only on JNX, JPX, and TSD. In other places, 

it has no effect . When used on TSD, care should be taken to insure 

that some time remains for other units . 

"n" the number of permissable consecutive "holds" is determined by the timing requirements of 

the highest priority subprogram. "n" = 3 is enough to allow considerable flexibility in the 

other subprograms. 

4-12 July ls()l 



No . 41 

U--0\TI' ALARMS 

IN-0\lr ALARMS 

DESCRIPTION: 

This 11device' enables operat ion of an Alarm Subprogram whenever an IN-Ol!l' e.larm occurs . 

FLAG 41 is raised upon EIA {Equipment Inability) or MISAL (Missed Data) for any of the 

devices listed below. TSD is used to determine the type and source of the ala:rm. 

MODE SELECTION : 

Connects alarm circuitry to central computer . FLAG 41 will 

now be raised upon alarms . TSD will now report e.lo.rming 

cond1 tions · "MISAL" (Alann) is suppressed . See NotE J. below. 

TSD I NSTRUCTION: 

TSO TJ la I I I I I r, TSD does not clear u.lu.rm. 111<: 

l ~ ~ ~ 
offending unit must be disconnected 

OR 
(IOS 20000) . See Note 3. TSD 

aTSO TJ D 1084J copies IOB41 into 'l'j . 

BUFFER BIT ALLOCATIONS: 

NOTE : 

Bit Corresponding In-Out 
Octal lnteger Ale.rm 

1.1 001 MI SAL - Datrac 50 

1.2 002 MI SAL - PETR 52 

1 . 3 004 MI SAL - Mag . Tape 46 

1.4 010 EIA - :fag. Tape 46 
1 . 5 020 EIA - Camer a 6o 
1.6 ow EIA - ?unch 63 

1.7 100 EIA - Xerox 51 
1.8 200 EIA - Lincoln Wtr . 65, 66 

1.9 400 EIA - Lincoln Wtr . 71,72 

l. An unsupressed "~USAL" will stop the computer . The two forms of suprcssion, program 
and manual, are independent - both must be off to remove the suprcssic.n . P ·og 'amr~ d 
supression does not light the yellow console light, but the ,·cd light and gong still 
work . 

2 . 

3. 

EIA - "Equipment Inability Al.arm" - does not stop the coir.puter but it lll3.:V ring a 
buzzer or stop the unit involved. 

If an additi onal alarm is g.:nerated before the first has been cleared, IOB111 wi ll be 
set but FLAG 41 Will not be raised . TSD can be used again to see if this Jta:s occur.-ed . 
Note that an IOS 30000 following I OS 20000 will raise FLAGS 60 , 63 and ;1 , but not 
FLAGS 50 or· 52 . FLAG 46 i s a special case . TSD should be used before disconnecting 
the offending unit for i t can not report conditions of uni ts that a 1·e not connected . 

November 1961 



( 



TRAP 

No . 42 

TRAP 

1 of 2 

The TRAP circuits can be set to raise FLAG 42 (thereby starting a special subprogram) 

whenever a metabit is encoW1tered in the operation of other subprograms . FLAG 42 can also 

be raised on change of sequence number or upon a signal from the TX-2 Sync System. The 

circuits can also set metabits . Since metabits can be encountered in 3 basic •ays, there 

are several TRAP modes. See below. TSD is not used (but retains its cycle left and 

dismiss features). Combined modes are al.10\o'ed. For example, IOS42 30007 will set to trap 

on all metab1ts encotmtered, whethe::- by 1nstruction, defer cycle, or operand. 

MODES 

(Programmed) (All Pushbuttons OFF. ) 

10542 20000 
or Clear Clears Mode Selection 

10542 30000 

!0542 30001 Trap on Marked Inst::-uction FLAG 42 is raised before the end of the 

marked instruction . 

10542 30002 Trap on Def erred Address FLAG 42 is raised before the end of the 

instruction using a marked def erred 
address . 

FLAG 42 is raised after a delay of one 

10542 30004 Trap on Operand to several instructions, depending on 
overlap conditions . 

FLAG 42 is raised during change sequence 

cycle if new Place Keeper (index reldster) 

IOS42 30010 Trap on Change Sequence is marked (2·9 = 1) . The "new" (marked) 

sequence number goes into quarter 3 of the 
E Register, and the "old" into quarter 4. 

There is no trap when leaving nunber 42. 

The three "set metabits" modes below arc partly manual in that the "set metabits " 

pushbutton switch on the console must be "ON" . These modes do not raise FLAG 1.2. 

IOS42 30100 Set Metabits of Instructions Sets mctabit of all instructions 
performed. 

10542 30200 Set Metabits of Def erred Sets metabit of all deferred addresses 
Addresses used . 

10542 30400 Set Metabits of Operands Sets metabit of all operands used. --



MANUAL MODE: (Trap on Sync Syctem Signs.1) 

No . 42 

TRkP 

2 of 2 

FLAG 42 can be raised by a signal from the Sync System. The requirements are: 

l . "Sync l" and "Sync 2" pushbutton sWi tches should be OFF. 

2 . The "Sync to Trap" pushbutton sWitch should be "ON" . While it is "ON" all 

other trapping modes are not effective . Setting modes still vork . When 

"Sync to Trap" is turned "OFF" , the original mode is reinstated. 

3. "Gate l to Sync Jacks" pushbutton sWi tch should be ON. (This is located on 

the Sync System Panel . ) 

July 1961 



No . 47 

MISC. I NPUTS 

MISCELLANEOUS INPlJl'S 

Nine one-bit independent input channels - each with a BCN jack and an ON-OFF toggle 

switch are provided . A standard TX-2 transition from - 3V to ground will set the chosen 

buffer digit and raise FLAG 47 . The buffer is cleared upon copying into memory via TSD. 

TW'o Schmidt Triggers with filters are provided on the panel itself, and a 3 channel push

button pulse generator is also available as a separate, movable unit . 

MODE SELECTION 

1os47 30000 CONNECT This allows inputs to raise FLAG 47 . 
It does nothing else . 

TSD 

TSO r, Ila I I I I I T. TSD reads IOB into Tj and clears IOB . , 
OR t t t + 

Permutation is operative - there is no 

s i gn extension - quarter l must be active -
aTSD TJ D IOB 47 activity of q2, 3, 4 is not relevant . 

MANUAL CONTROLS: 

. , .. I I • Filter swit ches Pr ~ .. 
¥ 

Schmidt Triggers .. ~ <i • • • • • • • • • 
1 • 
· ·- Toggles ("on-off" for each .) • 

• -
Three channel push- 'II 
button pulse genera~ 

11 ·- BCN Connectors - (Standard 
---~="1![11f~-"=---'-~ 

TX-2 I nout Transition) 

Notes : l. The input signal must be a "Standard TX-2 Transition" (i .e . from -3 vol ts to ground 
with a rise t ime less than 0.2 microseconds) . 

2 . The Schmidt triggers are completely independent of the rest of the circuitry and 
must be cabled to the channel desired . The input to the Schmidt trigger must be 

July 1961 

a smooth transition from ground to -3 volts . Since the normal open circuit volt
age is about -3 volts, a sine wave of about 5 volt s RMS, or an opening switch 
contact can be used. The filter should be used with the switch contact input or 
with any other noisy source . The Schmidt trigger inverts the input signal producing 
a standard TX-2 Inout Transition as its output . (The circuit switches at -0 . 9 volts 
going down and at about -2 .2 volts going up . The rise and fall time is about 0 .15 
microseconds .) 





No . 50 

DATRAC 

l of 2 

DATRAC - Analog to Digital Numerical Input 

The DATRAC is an analog to digital converter made by Epsco, Inc . It provides numerical 

samples of a continuous electric signal. A measurement or sample is started upon receipt of 

a "t rigger pulse" from the computer or from an external source . (Such as the Interval 

Timer - See No . 54 . ) Pertinent parameters are as follows : (and see notes below - ) 

OPERATIONS 

Maximum Sampling Rate: 27 Kilocycles (37 usec per sample) 

Measuring Time (Trigger to Raise Flag) : 22 usec. 

Nominal Input Signal : -1 volt to +l volt (can be set to ±10 volt 

or !100 volt behind the panel . ) 

Output Signed 18 bit Ones Complement Fraction 

IOS
50 

30000 CONNECT IOS
50 

30000 permi ts FLAG 50 to be raised and sends 

a trigger pulse to the datrac control panel, (where 

it may be sWitched to the DATRAC, or not as desire~ 

by the user . ) 

TSO TJ la I I I I I r, TSD copies an 18 bit signed ones complement 

+ t + t 
fraction into Tj along permuted pathways if so 

OR 
specified- The reliable precision is, however, 

"rso r , I I 108 50 only 8 to ll bits - (at the left end) . There 

is no sign extension in T" J 
TSD also sends a 

trigger to the DATRAC control panel (where it 

may be sWitched to the DATRAC or not as desired . ) 

NOI'E: l . Do not trigger the Da.trac more often than at 37 usec intervals . It is possible 

to damage the circuits . 

2 . TSD copies the measurement taken at the time of the last trigger. 

3. A MISAL is created when a trigger arrives at the Datrac before the previous sample 

has been transferred to the conputer via TSD. (See IN-OUT #41 . ) 

July 1961 



MA.NllAT. C:ON'l'ROT & 

l 
l. 

2 . 

3. 
4 . 

{
Osc. 

Osc . 

TSD} 
IOS 

DATRAC Control Panel 

No. 50 
DATRAC 

2 of 2 

Trigger Inputs (Standard TX-2 Inout 
Transition . i .e . -3 
to ground in less than 
0.2 microsecond~. ) 

Oscillator Inputs (3 volts RMS required) 

"Up" connects programmed triggers to 

DATRAC. These are internally connected, 

General Radio Oscillator (Not an integral ~art 
..__-----or the DATRAC system.) 

DATRAC Signal Input . (Cannon Connector XL3ll 
/ required. Pin l - Shield, pin 2 - Ground, 

/ pin 3 - Signal. ) 

"External Trigger Input" This trigger input is 
----not compatible with TX-2. Use the inputs en the 

"Control Panel" above . They are internally 
connected to this input . 

------ DATRAC Power Supply The Da.trac power is not 
left ON. A warm-up time of from 5 to 30 m:nutes 
is required, (30 minutes is enough to insure that 
it is as stable as it will be.) Users should be 
sure to turn the poWP.r OFF vhPn they are finished. 

July 1961 



No . 51 

XEROX PRINTER 

l of 3 
XEROX PRINTER 

The XEROX i s an electrostatic, high speed (960 lines per minute) printer . It is 

basically a charactron display with automatic continuous xerographic recording. Through 

electronic compensation, the display area or frame is held ''stationary' for about 45 milli 

seconds , and then moved down about 0.1 inch to catch up with the paper . The programmer 

must specify the x,y position as well as the code number for each character to be printed . 

OPERP.TIONS 

ros
51 

30000 CONNECT 11 Connect 11 turns on the xerographic recording 

apparatus and raises FLAG 51 when t he equipment 

is ready . (Warm up time is about 5 seconds . ) 

IOS51 30010 FRAME SYNC If the unit is not connected, "Frame Sync II "111 

"connect" it . FLAG 51 is raised at the start of 

the next Frame period . (Frame period is 45 

milliseconds . ) 

I TSO TJ Ila I I I I T. TSD causes one character to be printed . Since 
J 

~ + + • 
TSD takes about 750 usec, only 6o characters 

OR 
can be printed within one FRAME interval . See 

«TSO TJ I I I I I I 08 5 l diagram below for Xerox buffer layout . 

BUFFER LAYOUT 

Notes : 

X Position 

\.0 

C\J 

Y Positi on Charact er Code 

1 . The "Frame P.rea" is a rectangle approximately 5 by l 1/4 inches . 

2. The "Origin" is at the left end, centered vertically. 

3 · The X position is given by a 9 bit positive integer . (000 to 7778 ) 

4 . The Y position is given by a 6 bit ones- complement signed numeral . (-37 to +378) 
5 . The First TSD starts the paper motion . The paper Will continue to move until 15 

seconds after the last TSD or until 15 seconds after the Xerox is disconnected 
via ros

51
20000 . 

6. A TSD that must start up the paper drive is unpredictable due to noise generated by 
the paper mechanism . The safe procedure is to print one or two ''blank" characters 
(e. g . code 100) and an extra Frame Sync (Ios

51
3ooi o) to ensure that the paper is 

moving smoothly when the data is displayed. 

July 1961 



NU11crico.J. Po.rametere: 

Frame Interval 

Frame Reset Interval 

Character Print Time 

Frame Size 

Character Size 

Paper Speed 

Calculated Parameters : 

Characters per line 

Vertical deflection 

Horizontal deflection 

Frame spacing 

Lines per inch 

Suggested X increment 

MANUAL CO?H'ROLS 

45 milliseconds (approximately) 

2 milliseconds 

750 microseconds 

1 1/4 inches high by 5 inches wide 

Nominally 3/32 high by 1/16 wide 

2 inches per second 

6o 
.02 inches per unit 

.01 inches per unit 

.094 inches 

10 .65 

8 units 

No. 51 

XEROX PRINTER 

2 of 3 

Low paper buzzer alarm 

Note: "Lov Paper" alarm causes an EIA indication and can raise FLAG 41 if IO alarm circuits 

are'connected". See IN-OUT Unit 41. 

July 1961 



No . 51 
3 of 3 

XEROX PRINTER CHARACTER CODES 

CHARACTER 

A 

8 

c 
D 

E 

F 

G 

H 

I 

J 

K 

L 

H 

N 

0 

p 

Q 
R 

s 
T 

u 
v 
w 
x 
y 

z 

" 
< 

> 

OCTAL CODE 

l 54 

142 

361 (os 6X07JXH6) 

3 52 

3 l3 (043) 

344 (054) 

302 (0 1 2) 

354 

l12 ( 157) 

144 

14.J 

u2 (o41Xo62X.J 11) 

360 (055Xo1ox345) 

370 (355) 

3 l2 (042) 

160 ( 145) 

37 l (3 5 6) 

322 (011Xo32X301) 

153 

.J62 (051xo12X.J47) 

152 

343 (0 53) 

l61 (1 46) 

342 (052) 

l62 (147) 

l.52 (ll7) 

ll.J 

220 (205) 

221 (206) 

• (PERIOD) 222 (201) 

+ 

y 

I 
L 
} 
... 

I 
u 

351 

!72 (357) 

340 (050) 

363 (073) 

no (445X460K115) 

70.J (4ll) 

120 (4zs)(ooK1os) 

150 

570 (555) 

140 

114 

131 ( 116) 

103 

CHARACTER 

J ,, 
• 

.. 
" 

• 
II 

8 

'Y 

t. 

c 

1 

2 

3 

4 

5 

6 

7 

II 

9 

o (ZERO) 

? 

, (COHHA) 

n 

IC 

OCTAL COOE 

122 (J07) 

324 (034) 

323 (033 ) 

024 

ll l 

ll 2 

173 

174 

16 3 

164 

310 (040) 

311 (041) 

333 (063) 

203 

354 (06 4) 

023 

001 

002 

003 

004 

020 (005) 

021 (00 6) 

022 (00 7) 

JOO (010) 

301 (011) 

000 

202 

204 

120 ( 1 05) 

121 ( 106) 

l l 3 

0 (CIRCLE) 714 (444) 

" 
# 

I 
0 
{ .. 

• 
* 
c 

3 73 

341 (051) 

364 (014) 

131 (4 46X461)(1 u) 

704 (414) 

121 (416)(431)(706) 

151 

57 l (556) 

141 

l.JO ( 11 5) 

102 

104 

Note : Bit l -9 of the Xerox Cha racter Code is a "s i ze control bit" . "l" means l a rge, and 
"O" means small . The codes a re given above With the "proper" size . 

November 1961 



No . 52 

PEI'R 

2 of 2 

MANlJAT. CONT'ROL.c; 

TAPE DIAGRAMS 

Edge 

~To the 
PETR 

- :I 

•••• .. . . . , .. 

Maintenance 
SWitch 

Note: The manual control 

pushbuttons discon-

nect the PETR . (This 

is equivalent to the 

ros
52

20000 instruction .) 

Reel/Strip Toggle SWitch - Selects the drive for tape 
mo~ion in the "Reel" direction for both manual 
and computer operation. 

'Reel" Up to 2000 lines per sec . Drive 
provided by the reeler. 

"Strip" - About 4oo lines per sec . Drive 
provided by the internal capstan . 

---Wind Pushbutton - Starts tape movement in the "Reel" 
direction . Countermands any canputer originated 
operation. Tape is not read by computer . 

..._ ____ Bin Pushbutton - starts tape movement into the bin, 

!~~ ............ _.._. 
I "Normal" 

(One line) 

I (Read toward the 
7th . hole - i .e . 
From inside to 
outside . ) 

at about 400 lines/sec via internal capstan drive . 
When the "End Mark" (Code 73, no 7th.) is 
encountered tape motion is stopped with the mark 
on the bin side of the reading point . Any 
cooputer originated operation is countermanded. 
Tape is not read. 

"Assembly" 
(Six lines) 

outside . ) 

To the
Reeler 

July 1961 



INTERVAL TIMER 

No. 54 
INTER\IAL TIMER 

l of 2 

The INTERVAL TIMER is essentially a counter that passes every nth pulse of a pulse 

oscillator (the "End Carry Pulse"). The basic counting rate, timed interval , start time, 

and stop time are controllable . The output, a string of accurately spaced pulses, can be 

used to raise FLAG 54, and (or) to trigger an external device (such as the DATRAC for 

example). Control is partly manual, partly by program. 

OPERATIONS 

ros54 30000 STOP COUNTER STOPS the counter and hence the output string . 

(and Connect) * The count for the interval will now be reset 

repeatedly from the buffer (at the counting rate) . 

(Counting rate is selected manually.) 

ros54 301.00 START CO:JNTER STARTS the counter . The pul.se string vil.l. start 

(and Connect) * after one counted interval and will c:mtinue 

until 1t is stopped . In this mode, the string 

is available only at the "EC OOl'PUT" Jack on 

the console . 

IOs54 30200 SET TO RAISE CONNECTS output string to raise FLAG 54 at the 

FLAG 54 end of each timed interval . This mode is used 
(and Connect)* when the int erval timer is to be started by 

hand or by an external trigger . 

I os54 30300 START and RAISE This is a combination of the two operations 

FLAG (and Connect)* just above . The first output pulse a.,d raising 

of FLAG 54 come after one interval as specified 

by the Buffer . ('.llle buffer can be set manually 

from toggle$, or by a TCD in the program.) 

* All IOS54 30000 instructions "connect" the unit if it is not already connected . 

Notes : l. The buffer is "busy" during 'end co.::ry tlme" - i.e . \1hen it 1:; ln use. For 10 kc . , 
100 kc . , and "Ext . Osc ." thi3 is equivalent to the basic counting interval. . For 

July 1961 

1 me . , the buffer is "busy" during the last 16 counts. If the reset va:.ue is l ess 
than 16, the counter must be stopped before the buffer can be changed. 

2 . Any change in the buffer beco!!!es effective only at the end of the current interval 
unless the change is made with the counter stopped. 

3. Manual control overrides program control . 



1( 

( 



SCOPE DISPLAY 

No . 6o 

OSCILLOSCOPE DISPLAY 

1 of 2 

The scope" is a cartesian coordinate, high speed (20 to 8o usec) display With 10 bit 

precision in (x, y) , controllable intensity (4 levels) , and a phosphor persistancy of about 

2 seconds . Each point must be specified separately and the display must be repeated 

endlessly if i t is to be viewed rather than photographed. A camera mount, several cameras, 

and a film index instruction are provided . The usable display area is 7 by 7 inches. 

OPERATIONS 

IOS6o 30000 SELECT SCOPE If the scope is unselected, FLAG 6c is raised . 

(CONNECT) This instruction gives lowest i ntensity and a 

centered origin . See other IOS6o 30000 type 

operations below 

IOS6o 300QO SELECT SCOPE The scope "intensity" is controlled by the 

IOS6o 30010 and set duration of the spot rather than beam 

IOS6o 30020 INTENSITY intensity. 

IOS6o 30030 

30000 - Low - 10 µsec . 

30010 - Med . Low - 20 µsec . 

30020 - Med . High - 40 µsec . 

30030 - High - 80 µsec . 

IOS6o 30000 SELEC'T SCOPE The origi n can be at the center, at the left or 

I036o 30100 and set bottom edge, or at the lower left corner . 

IOS6o 30200 ORIGIN 

I036o 30300 LOCATION 30000 - Center - D 
30100 - Bottom Center - D 
30200 - Left Center - 0 
30300 - Lo·..rer Left Corner - 0 

IOS6o 30004 INDEX FILM The IOE is busy until the return signal comes 

back from the ca.~era . The return signal also 

raises FLAG 6o . 

NCY.l'E : The IOS6o 30004 (Index Film) instruction causes an "EIA" (Equipment Inability Alarm) when 
the film supply in the camera magazine is low. This raises flag 41 if unit 41 i s connected, 
lights the "End of Film" light, and rings a buzzer . (See next page . ) It does not stop 
the computer . The scope and camera can still be used until the film runs out completely . 
When t here is no film at all, the return signal that frees the buffer is not generated, 
TSD operations find the buffer ''busy", and "Dismiss and Wait 11 occurs . 

November 1961 



SCOPE DISPLAY 

np 

D 
I 

x coord . 
4.9 - 3.9) 

D ! 08 60 

' y coord . 
(2.9 - 1.9) 

No. 6o 
OSCILLOS80PE DISPLAY 

2 of 2 

TSD copies from Tj to the scope buffer . The 

10 bit coordinates are interpreted as signed 

ones complement numerals . Therefore, there 

are two zeros - plus zero (all zeros) and 

minus zero (all ones) . Moved origin modes 

are realized by auto~atic complementing of 

the appropriate sign bit . Thus +O = -0 in 

centered origin mode, and 0777(8 ) = 1000(8 ) 

in moved modes . Permutation and activity 

may be used. 

1 . In most cases it is easier to use 9 bit arithmetic . In 18 bit arithmetic , one can use 

"Fractions" and sense end carry by the SKM instruction, or one can use "integers" and 

sense overflow the sa.~e way . In the latter case, one must cycle or scale to the left 

so that the 10 bits will be in the buffer position. 

MANUAL CONrROLS 

• •••• 
• 
• 
• el • ---

.. .. 
--"'-- -

• 

On- Off Pushbuttons Display power 

& 
i 

comes on after a 65 second delay. It 
is best for it to be brought on while 
the computer is stopped, for it often 
causes a spurious raise flag signal . 

For best resolution, i t is neces
sary to wait about 20 minutes for the 
circuits to reach thermal equilibrium. 

Camera Inversion Switch 
wire is "Normal . Away", 
vertically inverted display 
for the mirror inversion in 
mount. 

End of Film Light 

"Toward the 
gives a 
to compensate 
the camera 

End of Film Acknowledgement Pushbutton 
This button Will stop the alarm buzzer, 
but does not clear the EIA flip-flop. 
(See In-Out #41.) 

Manual Film Index - Moves t he film one 
frame . 

November 1961 



RANDOM NUMBER GENERATOR 

No . 61 

RANDOM NUMBER GENERATOR 

The Random Number Generator assembles a 9 bit number "at random" from a radioactive 

Cesiu:n Source . The average t i me required is 57.6 usec - minimum time 28 .8 usec . 

OPERATIONS 

ros
61 

30000 SELECl' AND 

TRIGGER 

TSO r, I~ a I I I I I T . 
J 

OR i + + + 
a Ts o T J D IO r 

6 1 

MANUAL CONTROLS 

• • G) :: G) • II 

On-Off Pushbuttons There is a 6o 
second warm- up del ay . Note : The 
Random Number Generator should be left 
OFF when not in use . 

July 1961 

The select operation also triggers th~ 

generation of a random nu~ber . FLAG ol 

is raised as soon as the number is ready . 

TSD copies the generated nu:nber into Tj . 

(Permutation is allowed, and quarter one 

must be active . ) TSD also triggers t~e 

generation of the next number . FLAG 61 

vill be raised vhen it is ready . 

Note : The meters should read about half scale . 
They are used for maintenance purposes 
only . The maintenance switch is inside 
the box above the control panel . 



( 



PAPEn TAPE PUNCH 

No . 63 

PUNCH 

1 of 2 

The PUNCH is the counterpart u.,it to the PETR . I t is a line-by- line device and can 

be progra."nmed to punch at speeds up to 18o lines per second. A TSD must be given for each 

line . Four modes are defined below. 

OPERATIONS 

th IOs
63 

30000 NORMAL Sets to punch 6 channels - no 7 hole 
NO 7th (used for blank tape, end marks, and 

visual pattern punching . ) 

IOs
63 

30004 NORMAL Sets for 6 channels With automatic 7-:;h 

WITH 7th hole punch on each line . (Used for -:;apes 

to be listed on off l ine Lincoln Wri-:;ers . ) 

10863 30002 ASSEMBLY S.:.t~ for splayed punching - Six TSD 
NO 7th instructi ons punchout a 36 bit computer 

word . 

IOS6
3 

30006 ASSEMBLY Sets for splayed punching With auto~atic 
WITH 7th 7th hole . Used prims.rily f or Binary 

Output . 

NOTE: All the above I os63 30000 instructions "CONNECT" (SELECT) the punch and raise FLAG 63 

if (and only if) the PUNCH was unconnected prior to the i nstruction . 

TS 0 T J II a 

OR 

aTS O T
1 

TSO T, Ila 

OR 

aTSD Ti 

July 1961 

IN NORMAL mode , permutation and/or 

activity may be used . Only 6 bits of T . 
J 

are copied, Tj is not affected. 

In ASSEMBLY mode the configuration 

syllable is ignored . The datum is copied 

as shown (from bits 4 .9, 4 .3, 3 .6 , 2 .9, 

2 .3, 1 .6) and after the copy the full 36 
bit word is cycled left once (in Tj) . 

Six "TSD T/ operations will copy a 36 bit 

word from T . to tape and Will leave Tj 
J ---

cycled 6 places to the left . 



MANUAL r.ONTROLS: ,, 

• 

"Chad" Basket 

No. 63 
PUNCH 

2 of 2 

Buzzer - Sounds when tape is low or jammed. 

~ = Suppression Switch - Normally to the left 
~ (i.e ., Unsuppressed . ) 

-- tt.a.i.ntenance Switch "On tt.aintena.nce" is to the 
right . 

Tape Feed Pushbutton - There is a 5 sec . delay 
~ before tape is fed . (Button must b( held do~m .) 

~Alarm Indicator Light (Low Tape, or Tape Jam) 

Maintenance Indicator Light 

------- Pu:lch Reeler 

Reeler Control Arm - Normally operated by the 
tape as it is being reeled but can be mo•red 
up by hand to energize the reeler brake vhen 
needed. 

Punch Motor Switch - Normally up -
(For use on Maintenance mode only . ) 

TAPE DIAGRAM: 

Normal Mode -
(Read toward the 
7th. hole - i .e ., 
from inside to 
outside edge . ) 7th 

Hole 
Assembly mode (Read from bot~om 

to top, inside to outside . ) 

July l~l 



LINCOLN WRITER 

No. 65, 66 
LINCOLN WRITER No . 71, 72 

1 of 2 

NOTE: Two Lincoln Writers can be ON LINE at once - "65, 66" or "71, 72" 

REFERENCE: Group Report 51-8 (6 October 1959) 

DESCRIPTION: 

The Lincoln Writer Input consists of a double keyboard with automatic case change and 

a Soroban mechanical tape reader . They are interlocked so that only one can be used at 

a time - the keyboard is inactive whil e the reader i s running . The Output is an IBM 

electric typewriter and a Friden paper tape punch . 

Manual controls on the Lincoln Writer permit on-line or off-line use and seemingly 

both at once . The simplest connection for coding is "pure on-line" i.e. , keyboard and 

reader connected to the computer alone - not to punch or writer . 

In this "pure on-line"mode, there are no timing considerations that can cause -crouble . 

TSD operations can be written witho~t regard to the elapsed time between them . The only 

complication that must be remembered is that "carriage return" resets the keyboard to 

"lower case" and "normal script" without transmitting any case or script code . 

Note also that a "carriage retcrn" sent to t he writer via TSD using Sequence ff 66 or 72 

Will also affect the KEYBOARD'S autonatic case memory in same manner . The Lincoln Writer 

input is not completely independent of its output! The situation becomes more complex when 

the keyboard is connected to writer and/or punch as well . These complex cases are to be 

discussed later in a supplement . 

Automatic case codes are generated whenever the user changes from one keyboard to 

another . The key will remain loc.:ked down until two TSD operations have been performed -

the first to accept the case code and the second for the character itself . 

July 1961 



No. 65, 66 
2 of 2 

TX-2 LINCOLN WRITER CODES 

00 0 ,,. 40 Q Cl 

OJ J ~ 4J R A 

02 2 I 42 s , 
03 3 I 43 T c 

04 4 I 44 u l 

05 5 IC 45 v :> 

06 
6 " 

46 w a 

01 1 • 41 X A 

JO B < so y ). 

JJ ' > SJ z 
J2 S2 ( { 

J3 oo 53 ) } 

J4 READ IN S4 + • 

JS BEGIN S5 

J6 NO S6 

J7 YES S1 . * 
20 A • 60 CAR RETURN 

2J B c 6J TAB 

22 c v 62 BACK SPACE 

23 D f fl COLOR BLACK 

24 E y 64 SUPER 

25 F ' 65 NORHAL 

26 G • 66 SUB 

21 H " 61 COLOR RED 

30 I ' 10 SPACE 

.SJ J y 7J WORD EXAH 

32 K • 12 LINE FEED DOWN 

33 L ? 73 LINE FEED UP 

34 H u 1 4 LOWER CASE 

35 N n 75 UPPER CASE 

36 0 J 16 STOP 

37 p l 11 NULLIFY 

July 1961 



KEYBOARD 

OPERATIONS: 

I OS65 30000 CONNECT 

(Ios71 30000 KEYBOARD 

for other unit) 

TSO TJ ~ (l I I I I I 

OR I I I ~ aTSD TJ 
~ ':' - -

MANUAL CONTROLS 

TJ 

10865 

No 65 and/ or No . 71 

LW INPtlr 

This instruction selects the keyboard. 

Pressing a key will now raise FLAG 65 (or 71) 

if the keyboard is connected to the 

computer through the Lincoln Writer 

manual controls-

TSD copies the code number of the 

depressed key into Tj . Permutation 

may be used, quarter one must be 

active . The key is released after the 

copy . If an automatic code for case 

change (75 to UPPER, 74 to LOWER) was 
generated, the key will be released by 
the second TSD. ---

l . The reader must be started by hand via the "start reader" pushbutton. It will then 

read the line at the read station, advance one line, and wait for the datum to be 

accepted (presumably via TSD) . The keyboard is inactivated while the reader is on . 

"STOP Reader" will re-activate the keyboard Maximum speed is 19 lines/sec and if the 

keyboard is connected to the computer alone, it can be programmed to run as slowly as 
desired. 

2 . other manual controls are more or less self-explanatory and are well covered in Group 

Report 51-8. 

3- Only the aix bite (l-l i .6) corrccponding to the buffer are changed by TSD. 

July 1961 



( 

( 

( 

( 



TYPEWRITER O:Jl'PUT 

OPERATI ONS 

I OS66 30000 SELECT 

(Unit l) (CONNECT) 

I OS72 30000 

(Unit 2) 

TSO TJ lu I I I I I TJ 

I I I b OR 
4

TSO TJ 10866 
~ -

MANUAL CONI'ROL 

l. See Group Report 51-8 for deta ils . 

No . 66 end/or No . 72 

LINCOLN WRITER otn'PUT 

This operation selects the output of the 

Lincoln Writer - Typewriter and/or Punch . 

FLAG 66 (or 72) i s raised if (and only if) 

the unit was unselected prior to the 

instruction. 

TSD copies 6 bits frOlll TJ to the Lincoln 

Writer, where it is printed and/or punched 

depending on ma..~ual controls . The Buffer 

remains busy until the printing or punching 

is over and at that t ime FLAG 66 (or 72) is 

raised Permutat ion may be used and quarter 

one shoul.d be active . 

2 . "Computer Output" should be switched to "Punch" and/or "Writer". 

NOl'ES: l. Carriage Return (Code #6o) not onl y returns the carr iage and advances the paper, but 
it also resets the Lincoln Writer to Lowercase and Normal Script . The Keyboard case 
relay is changed too . (In this respect, the keyboard and writer are not independent 
dev1ces . ) 

2 . Certain character codes (14, 15, 16, 17,71, 76, 77) do not print. (They are labeled on 
the keyboard as ''wORD EXAM", "READ IN", etc . ) When such a code is sent to the 
WRITER, it is accepted, and take£ about the s:ame time as a regul.ar character, but 
nothing is printed. 

July 1961 





No . 75 
MISC. OJI'Plrc' 

l of 2 

MISCELLANEOUS 01Jl'PUTS 

Nine one-bit computer controlled relay contacts with G.R. Terminals are provided. 

Channel No . 9 has an high speed output as well . The nine bit word can be shifted left (ring 

or open) under m!lllual control at a 500 KC rate if only high speed output is required or at 

500 cycles per second if the relay contacts arc to be sensed. TSD is not used . (It will not 

cycle the memory vord, but it will DISMISS if no "hold" is used, and it vill change E as if 

it were a 0 LDE operation . ) 

OPERATIONS 

ros
75 

30 000 Clear The nine output channels are set to correspond 

" 001 SET 1 . 1 to quarter l (the righthand nine bits) of the 
" 002 " 1 .2 instruction . ros75 30000 therefore clears all 

" 004 " 1.3 nine - I0~5 30777 cetc all nine . 

" 010 " l . 4 

" 020 " 1 -5 
There is no raise flag indication . It may be 

" 040 " 1.6 assu:ned that the relay has changed after 2 milli -

" 100 " 1-7 seconds . T'ne high speed output "Mll\l-9" 1'1111 change 

" 200 " 1.8 before the instruction is over .* 

" 40o " 1.9 

*Note : Changing bit 1. 9 from "l" to "O" produces a standard TX-2 IN-OUT transition (-3 V 
to ground) at "MOM-9" . Going from "O" to "l" produces a similar transition from 
ground to -3. The rise-fall t ime for t hese transitions is less than 0 .2 'llicro
seconds . 

MANUAL COllTROLS 

.. 
High Speed 
"MCM-9" Output 

Shift-rate Inputs and Input 
Selector Sw1 tch 

November 1961 

----- Relay Contact Terminals 

Shift Control 

Test Pushbutton Sets relays to correspond 
to the Toggle Reset Register . 

Toggle Reset Register 



RELAY CONTACTS 

C. P. Clare High Speed Relay - HGS - 1009 - Make before break. 

Up to 1/4 amp non-inductive load. 

No . 75 
MISC . OUTP1Jl' 

2 of 2 

Up to 1 amp reactive load Vith suppressor only. (Plug-in suppressors are available . ) 

Cycle rate approximately 500 cycles - 2 millisec . period. 

SIDFT CONTROL 

1 . Ring Shift Left 

2 . Open End Shift Left (all nine, 1 .9 is not a sign bit . ) 

3 · No shift 

SHIFT INPUT SELECTOR 

The shift rate i s determined by the external shift input which may be a sinewave or a 

pulse train. The shift input selector is a toggle switch which should be thrown toward the 

source used - up for "SINE", down for "PUISE" . 

SINE WAVE INPUT 

A l5V RMS sine wave is required (e .g . GR Oscillator 1304) . Maximum rate 500 KC for 

High Speed ("MOM-9") output, 500 cycles for relay output . Each cycle produces a one bit 

shift if "SHIFT CONTROL" is in position 1 or 2 . 

PULSE SHIFT INPlTr 

A standard TX-2 Inout Transition ( -3 to Gnd) is required. It gives a one bit shift if 

"SHIFT COm'ROL" is in position 1 or 2 . Maximum rate: 500 KC for High Speed Output (MOM-9), 

500 cycles for relay output . "MCM-9 11 should Nor be used to trigger the shift, for it may 

not ch~ge bit 1 .9 or 1 .1 . (It would shi~ the others reliably . ) 

NOI'E: 

l. The shift and pushbutton inputs are not interlocked and can interfere with programmed 

use . Miscellaneous inputs can be used to synchronize the program and t he shift input 

in use . 

November 1961 



5-1 

5-2 

TX-2 HANDBOOK 

::HAPl'ER 5 
LIGB'l'S AND BU'l'l'ONS 

TABIZ OF OONTENTS 

Computer Room La,yout . . . . . . . . . . . . . . 

5-1. l Frame Contents - Floor Plan (Fig. 5-1) 

5-1. 2 Power On-Off Procedures (Fig. 5-2) 

5-l. 3 Power Alarms - Breakers (Fig. 5- 3) 
5-1.4 Air Conditioning .. . . . 

Console Indicator Lights {Fig. 5-4) .... . 

5-2. l Prilllar,y Indicators . . . . . . . . 

5-2.2 

5-2. 3 

(A, B, C, D, E, K, P & N, Q & M, Nj & X, FA & F) 

Alarms (Fig. 5-5) · · · · · · 
IN-OU'r Indicators (Fig. 5-6) . . 

5-3 Console Pushbuttons (Fig. 5- 5) . · · · · ..... . . . . 
5- 3 . 1 Condition Buttons : (With Lights - "Out" is normal) 

5-3.2 

Suppress Memor,y - u, T, S 

No Overlap 

Stop Conditions 

Pasofa - (Preset and Start over from Alarm) 
Auto Start 

Low Speed Repeat 

Low Speed Pushbutton 

Remote TSP 

Suppress Chime 

Action :aittons (Fig. 5-5) 

Stop 

Preset 

Clear Alarms, Clear Real Time Clock 

Calaco (Clear Alarms and Continue) 
Codabo (Count Down and 31.ast Off) 

5-2 

5-2 

5-3 

5-3 
5-4 

5-5 

5-5 

5-11 
5-14 

5-16 
5-l.6 

5-18 

5-3. 4 Miscellaneous Console Items 

Audio Control (Fig. 5- 8) 

Knob Register - 377620 

External Register - 377621 

. . . . . . . . . . . . . . . . . . 5-20 

5-4 TX-2 Sync System (Fig. 5-9) • · · · · 

5- 5 Miscellaneous Conventions . . . · · · 

5-5. l 

5-5.2 

5-5· 3 

llovember 1963 

Paper Tape Read-in Programs 

Paper Tape Read-in Programs - Listings 

Tape Preparation . . . · · · · · · · • 

5-1 

5-21 

5-25 

5-25 
5-26 

5-28 



5-1 The Computer Room 

POW:R I 
ON·OF'F 

COW\ PUT ER. 
SWITCH 

ROO >JI 
\..lCaHTS 

SPAl::E PLUC.IN5 

IN • OUT ~WITCH l) ~ T 
F E 

0 18 M TAPE 

Oe 

FILE!> ANO l.IAlNTEk llCE 

DESK 

CON T ROL. ARITH. ELEMENT 
c e 

@ @ ROOM 
TEMP. 

AIR. OUCT 

INCIOENT 
CAM ER.A 

All!. 

AIR 
(Ot..IOIT, 
CONTROL 

TX·2 
TAPE ~ la.I 

" < ... 
.; 

"' ~ 
e ..- PLUG80A~D 

MEMO RY PETR.a 

B~ CO>IOITION 

ENT RANCE 
A-054 

N 
.;,. ... 

Sf>Jl.RE PLUG· INS 

ENTftAt.le£. 
A 026 

Fig . 5-1, TX-2 Floor Plan - March 1963 

B 
oP<06~0AR.0 

RACK 

LOtk.~0 DOORS 

5-1 .1 Frame Contents - Floor Plan 

Fl - Console - See Figure 5-3, 5-4, 5- 5, 5-6, 5-7, 5-8 , 5-9 
F2 - Main Frame 

B - Arithmetic Element, and E Register 

C - Control, X Memory, P, Q, M, and N Registers 
D - Sequence Control , Thin Film Memory 

E - U and T Memories 

F - I N- OUT Switch 

F3 - S Memory Register Selection Circuits 

F4 - S Memory Stack 

F5 - S Memory Digit Plane Drivers and Sense Amplifiers 

F6 - TX-2 Mag Tape Drivers and Timing Track Writing Equipment 

F7 - IBM Tape Control , TX-2 Tape Control, Plotter Control , TX-2 Power 

F8 - Lincoln Writer Controls, 0/3 Clock, Display Box, Misc . Inputs Box, 
Speech Filters 

F9 - Plugboards , Datrac., Interval Timer, Misc . Input, Misc. Output, Ampex 
Mag Tape 

5-2 

.. 



5-1.2 

5-1 . 3 

Power ON- OFF Procedures 

• 
• c c c 

c 

• f.C ' • "" ¢ 

(. 

• 

" " ., 
" 

Fig. 5-2 - Power Panel (in the Power Room) 

Power On : 

Hold the button in until the warning horn stops. The computer will 

be "ready" in about 1 l/2 minutes. Run "clear memory" once or twice 

with parity alarms suppressed. Un-suppress the alarms . the computer 

should be ready for use. Log the time. (Fig. 5-3) 'furn on the Lincoln 

Writer(s), and the IEM Tape Units . (They have their own power switcl:es . } 

Power Off : 

Be sure TX-2 tape is at "NAT 000011
, before pushing "OFF" button. Loe 

the time . (Fig. 5-3) 'furn off the Lincoln Writer(s), and IBM Tape l:nits. 

Power Alarms - Breakers 

...... .. ~------- Circuit Breaker Indicators 

...... ; "Time" to be logged 

....- ----. 

I i.1argina1t 
Checking 
Console • 

~--
... t ti I 

. . • 
!~ .. .......... . . I 

• ---- . -u. • • • • ·:..:. , t ••• ,. ? .9';w .:-: ..... ,. ---- --- I I 
• 

Fig. 5-3 - ~!aintenance Console 

5- 3 

Register 377621 
~ (External Input Register) 



The circuit breakers are located at the top of each frame . When a breaker 

"lets go", a horn sounds and a light comes on at the breaker panel and at the power 

panel on the console . The accepted procedure is as follows : 

Frame : What to do : If that fails : 

s, T or U Memory : F2, 3, 4, or 5 a) Dump Power Call for help . 

b) Reset the breaker 

c) Bring Power On 

Computer Frames: Reset Breaker Call for help . 

IN- OlJr Equipment Reset Breaker Call for help -

Set Maintenance Switch 

on Breaker Panel and 

do not use failing unit . 

In any event, log the incident stating the time it occurred, which breaker it 

was, and what was done . 

5-1 .4 Air Conditioning 

There is a room temperature thermometer on the column at frame 9 . It 

usually reads about 70°F . There are two thermometers for the S Memory Stack . 

One i s behind the stack, the other is in the power room . The power room meters 

should read as follows : (They are to the left as you enter from the computer room . ) 

CALL for HELP DUMP PCMER 

Neioory Stack 60 - 70 72 or more 75 or more 

"MIXED AIR" 48 - 58 75 or more 80 or more 

5-4 November 1963 



5-2 The Oper ating Consol e Indicator Lights 

.. . . .. ... . - . 
: . : : ~ : ~ : . . ' .. 

• a! . . 

. . . . . . .. .. . 

• : : ~: : : t : i : : i 

II 

- . 
. . . . . . . . .. 
. . . . .. . . . . . . . . . . . 

' .... . . ! · 1 • • • • • •• :: : : ::: &II 
• • > • . . . . 

. . : . 
. . . .. . •••• • . . . '· .. . 

5-2 . l Primary Indica tors 

. . . . .. ~ . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. 

Fig . 5-4, - Con5ole Indicator Panel 

: · a. 

• 

The indica tor lights for the central machine registers a r e arranged to be 

r ead easily i n O~TAL by grouping the binary indicators in col wnns of 3 lights 

each . - The least significant bit at the bottom . for example : 

. .. . . . . . . . . . . 
• ~ • • @ • • • • • • • 

• • 0 • • • • • • • •• 

0 2 3 4 5 6 7 0 

-• 

Filament bulbs are uacd and therefo:c vo.ry in li{lht output while the computer i s 

r unning . ( Not e also that the bulbs will occasionally b rn 01 t 'lnd i;ive an e r roneous 

indication . ) 

The table below f.l.u:::narlzes the .i.r.for:::at:on •iv n by t'.-,e light:;. 

5-5 



Registers A, B, C, D, E, K 

These indicators always show the contents of the associated flip-flop registers . 

( K shows the sequence number 1.ast used . - See Chapter 4 . ) They are not at't'ect.ed 

by alarms or pushbuttons . The overflow indicators are just above A. 

PK Indicators 

PK0 and PK~ are of interest for the most part to the Techni cians . They show 

the PK1 PK2, and PK
3 

timing levels. P~, PKcf' and PK
0

P show the hold bit, 

configuration bits, and Operation Code of the instruction whose read out cycle is 

in progress . 

QJ< Indicators 

QJ<0 and QJ<~ show the QJ< t i ming levels . QJ<cf and QJ<
0
p show the configuration 

read from F Memory and the last operation that required a data reference . QJ<cf 

is also used to remember the original Index Register Number on deferred address 

cycles . (The original Index Register is used last . ) 

AK Indicators 

AKa and AK~ show the AK timing levels . (There is an indicator for each level . 

AKcf and AK
0
p show the configuration (minus permutation) Operation Code of the last 

Arithmetic Operation . 

ASK - The Arithmetic Step Counter 

ASK is used to count steps for Arithmetic Operations such as Multiply, Tall~ and 

Divide which are different for different word lengths . 

XWK - The X Memory Counter 

XWK sets the timing levels for the writing of the Index Registers . 

CSK - The Chango Reouonce Counter 

CSK sets the timing levels for a Change of Sequence. (CSK > lO(octal) are the 

steps that indicates LIMBO . ) 

Memory Indicators - Interlocks 

~bst of these are not of interest to programmers . The PI1 PI2, PI3' PI
5

, ar,d 

DFA are of use in interpreting N (see page 5-10). PI2 indicates a defer cycle is 

in progress. DFA indicates completior of a defer cycle . 

5-6 November 1963 



START-STOP Control - SPR , Start Point Reg:ster 

The left half of this indicator shows the start-stop interlocks and is of 

interest rr.ainly to Technicians . The right half is the Start Point Register. It 

is set by the RESET, STARTOVER, and CODABO pushbuttons and is used to set the P 

register when a change to sequence zero is performed . (See~ in the table below. ) 

Reeisters P and N 

P and r: are the selector and bu:'fer for readout of instructions from STIN 1-'.emory . 

P is also called the "Central PrograJ!I Counter" and N the "Instruction Register" . 

At the start of any instruction, they are, of course, compatible - P gives the 

address of the contents of N. As the instruction is performed, both are changed . 

The extent of such change depends on when, in the cycle, the computer was stopped . 

There are two indicators to help interpret P . Their use is given below : 

Indicators 

"POD" "P+l" Contents of P 

0 0 p gives the address of the last instruction 
read out of STUV Memory . (It may have been 
changed in N - see PK2 in table on page 5-9. ) 

0 1 P has been indexed, but not yet used for 
read out . It gives the address of the next 
instruction . 

l 0 ''PrnODified" - P has been changed rad'..cally 
and probably bears no relation to N. (As by a 
jump, skip, or sequence change . ) 

1 1 This situation should not occur . Take 
a picture of it . 

The interpretation of the N register depends upon the type of operation be'..ng 

performed, and how far the computer has gone before stopping . Instructions r equire :'rom 

one to five basic cycles . The first cycles for one instruction can be overlapped wi,h the 

final cycles of the previous instruction and it is therefore possible for two cycles to 

be running at the same time . The stop system (stop button, sync system, and slow speed 

control) is synchronized so that once a cycle has started, it must proceed to comple,ion . 

There are indicators that tell what cycle is next, but one must exercise ingenuity to 

determine which one has just finished . The basic cycles are abbreviated as follows : 

No•1ember 1963 5-7 



PKl 
(FKAK) 

CSK 

Instruction Readout Cycle 
(Used by AOP instruction - Instruction Readout followed by Arithmetic 
Cycle) 

Int.P.rmeni A.t.P. AndrP.s,:; C.fr.l P. ( TlP.i'erren Ann rP.ssi ng) 

Final Address Cycle (Deferred Addressing) 

Data Reference Cycle 

Data Reference followe·i by Arithmetic Operation Cycle. They are 
inseparable, but another QK could start before the AK part is over. 

Change Sequence Cycle . 

In practice, their order of occurrence depends on the operations being perfonned and 

on overlap conditions. The t able below shows the cycles for the three basic types of 

computer operations. 

Type Op Code (See Chart 7-3) Cycles Required 

0 - 7 (Jumps and IOS) p~ 
l 

44, 46, 41 With deferred address p~ , PK2 , PK
3 

10 - 57 (Non AE, Non Jump) PKi ' 
QK 

2 (but not 

44, 46, 47) With deferred address PKi , PK2 , PK3 , QK 

(AE operations) PKi ' QKAK 
3 60 - 77 

With deferred address PKi ' PJS ' PK
3
, QKAK 

The CSK cycle can occur only at the end of an instruction - i . e . , only after PKi, 

PK
3

, QK, or QKAK - never between Pl)_ and ~' nor between ~ and PK
3

. 

The effect of these cycles on N is as follows : 

5-8 November I.963 



Cycle 

PK3 

QK 

QKAK 

CSK 

November 1963 

Effect on N 

This is the initial inst:mction readout . N will 

contain the inst:mction located at the address indicated 

by P. 

EXCEPr when the operation i s JNX or JPX (codes 6 
and 7) , for on these two operations the right half of N 

is used for the sign extended index increment (18 bits) . 

(BUT if the JllX or JPX is deferred, the increment is not 

added until PK
3 

so N is not changed during I'Ki.. 

The intermediate deferred address cycle (~) is 

always :'ollowed by PK
3

. The intermed.iate address :s 

read ou~ into N using Q as t he selector . All 36 b~ts 
of N are changed, but the .?:_nit i al index register number 

was saved (in QKIRCF) to be used last (in the PK
3 

cycle). 

Af•er a ~ cycle, N contains the contents of the 

~emory register given by Q. Bit 2 . 9 of Q will be: due 

to the defer bit. 

The final deferred address cycle does not do a 

memory readout . It is known as the "Ultimate Cycle" . 

DFA will be set to l. N is furt her changed by adding in 

t he i ndex contents to get the final address . Then the 

original NJ bits are restored and the instruction 
continues . The rest of N is cleared. 

The QK cycle of all index memory operations a."ld 

SKM (all op codes 10-17) clears the right half of N. 

For RSX, EXX, AUX, and AUX i t is subsequently set from 

the right half of E which was 1n turn set from memory 

and m!llf have sign extension. ADX puts the augend from 

memory there . The next PK cycl e can not be overlapped 

with the QK cycle of these operations . 

QKAK does not change N 

The change sequence cycle always changes NJ to the 

old sequence number. 

If the new nwnber is zero, the right half of N is 

set to the contents of SPR (Start Point Register) . The 

rest of N is not changed by CSK. 

CSK must be followed by PKi· 

5-9 



"Control" does not really care about what bas been done . It is interested only in 

~bat it is allowed to do. Once it bas started a cycle, it goes merrily on to completion, 

·,ut be:fore starting one, it must get past a number of interlocks, one of which is the 

start- stop system . We can therefore tell what cycle is about to start and with that 

information, together with a program manuscript, the P register, and the P + 1 and POD 

indicators , we shoul d be able t o deduce where i t stopped, and therefore what is in N. 

The conditi ons for starting a re f oret ol d by indicators PI1 , PI2, PI
3

, PI
5
, and DFA as 

follows : 

"Interlock Indicators" Next Cycle Stopped 

PI1 PI2 PI
3 

PI 5 
DFA is After 

0 0 0 0 x FKl ? 

0 l 0 l 0 ~ PKi 
0 1 0 0 0 PK3 PIS? 

0 0 0 0 1 HS. PK
3 

or QK, CSK 

0 0 l 0 x CSK ? 

1 0 0 0 x QK or QKAK ? 

Note: " X" means "It can be 0 or 1, it does not matter. " 

"?" means "Any cycle but PK2" . 

Registers Q and M 

Except for defer cycles , Q and M are the selector and buffer for data references to 

S'RJV memory. The memory references for deferred intermediate addresses use Q as the 

selector and N as the buffer (Cycles ~ and PK
3

) . 

Indicator s NJ and X 

The NJ lights are copies of the index tag bits o:f N (bits j . 6 - 'j. l) . 'l'he X register 

is the index memory buffer . NJ and X will always be compatible, for the X memory is 

read out even if it is not used. 

Registers FA and F 

FA and F are the select or (F Address) and buffer for the Configuration Memory. They 

are always compatible . 

5-10 November 1963 



I_ 

5- 2 .2 Alarms 

• .. 

= 1 . J re~ ra I • .. ~ i --- -- -~-

' 

Fig. 5-5, - Alarms, Condi t i ons and Acti on Pushbuttons 

The top row of pushbutton indiNttors in Fig. 5-5 above is used f'or the ten TX- 2 

Ala rms, two special indicators, and the Sync System (Section 5-4) . All of the alarms 

except TSAL, USAL, and the "Mousetrap" can be suppressed by pushing the indicator . These 

pushbuttons have two lights each . The u~per light i ndi cates the alarm, the l ower light 

·shows that it is suppressed. Suppression of an alarm merel y keeps i t f r om st opping the 

computer. In the case of p~rity alarms, the suppression allows t he computer to use the 

incorrect information and a new, presumably correct, parity is computed and stored . The 

light will always come on. The chime must be suppressed separately if not wanted . (See 

5- 3. l for chime details. ) "MISAL" - the Missed Information Alarm - can also raise flag 

41 ( I n Out Alarms) . See Chapter 4, Section 5. 

Detailed information on each alarm is given in the table below: 

** ALARM HAPPENS WRING WHAT 
NAME CAUSE COMPUTER CYCLE TO DO 

Parity Alarm on readout of Take a pictur e . 

data from STUV Memory into the M QK or Report f ailing bit and 
MPAL Register. Q gives the address of QKAK whether it was "dropped" 

STUV Memory register. This alarm or "picked up" . (if 

can not be programmed. you know what should 

have been read out . ) 

Try again . 

Parity Alarm on r eadout of Take a picture . 

instruction into N (location given PKJ. Report f ai l i ng bi t as 

NPAL by P) , or on readout of deferred "drop out" or "pick -or 
intermediate address into N up" . Try again, alarm 

(location given by Q) . ~ not programmable. 

** Because of overlap, another cycle roay be running concurrently and the computer will 

continue until both are completed. 

November 1963 5-11 



ALARM 
NAME 

XPAL 

FPAL 

PSAL 

OCSAL 

IOSAL 

CAUSE 

Parity alann on readout of 

index register into X. 

which index register. 

can not be programmed. 

N. tells 
J 

This alann 

Parity alann on readout 

from F Memory (configuration) into 

the F register. FA tells which F 

memory register. 

P register is set to an 

illegal address. 

Q register is set to an 

illegal address - either a data 

reference or a deferred address. 

Check chart on page 5- 10. 

Operation Selection Alarm : 

An illegal instruction was readout 

into N. 

In Out Alarm: This happens 

on an IOS instruction. The selected 

device is either broken, on "main

tenance", or non-eXistent . The IOS 

has had no affect, even if the alann 

was suppressed. The Nj indicators 

should tell what unit was selected. 

HAPPENS WRING 
COMPUTER CT CLE 

Any 

Cycle 

~ 
QK 

or QKAK 

CSK 

~' 
QK, or 

QKAK 

p~ 

** WRAT 
TO DO 

Take a picture. 

Report failing bit as 

"dropout" or "pickup" 

if you can. Try again . 

Take a picture. 

Report failing bit as 

"dropout" or "pickup" . 

Try again . 

Check your pro

gram, this alann can 

be programmed. If 

machine malfunction 

is suspected, take a 

picture and try again. 

Check your pro

gram. This alann can 

be programmed and is 

not likely to be a 

machine malfunction. 

Check the program . 

Take a picture. 

Check the device 

you are selecting or 

the indicator panel . 

The in out device is 

probably on "mainten

ance" . Unless there 

is a "hands off" sign, 

throw the maintenance 

switch down (i .e . , not 

maintenance) and try 

again. 

** Because of overlap, another cycle may be running concurrently and the computer will 

continue until both are completed. 

5-12 November 1963 



ALARM 
NAME 

MI SAL 

TSAL 

USAL 

Mouse-

CAUSE 

Missed Information Alarm: 
Thli; oc.:c.:un; whtm \,ht: pn.>isram is too 

slow for the in-out device, and a 

new datum or output oppor tunity has 

come along before the last was used. 

MISAL is automatically suppressed if 

sequence 41 (in out Alarms) is 

connected. 

The T memory selection currents 

have not died out before a new 

register selection was demanded. 

(T memory is 200,000 to 207,777) 

Same as TSAL, but for the U 

Memory . (210,000 - 217,777) 

This is an extra alarm 

designed to trap any mouse that may 

be causing computer trouble . It 

will be set differentl y f rom tirr.e 

trap to time . As of now, it is set to 

catch a missed control pulse. 

** HAPPENS WRING 
CX>MRJTER CYCLE 

Any 

Time 

Any 

Cycle 

Except 

CSK 

Any cycle 

except CSK 

Any cycle 

The following indicators are not true alarms . 

Priori ty 

Patch 

A non-standard priority plug

board is in use . (The standard 

priority is consecutive numerical 

Indicator order--lowest number having highest 

priority.) 

Limbo 

The computer is running, but 

all selected sequences are waiting 

for a flee. 

** See Footnote on page 5-12. 

November 1963 5-13 

It doesn't 

happen - it 

exists . 

It doesn't 

happen - it 

exists. 

WHAT 
TO 00 

Probably program 
trouble . Can happen 

with PETR, TX-2 Mag Tape, 

A/D Converter, or IBM 

Mag Tape. Take a picture . 

Take a pictn-e, 

report that it happened, 

and hope it will go 

away . It can not be 

programmed or suppressed. 

Same as for TSAL. 

Same as for TSAt - USAL. 

Replace the 

standard plugboard at 

Frame 2, Bay D. 

For most inter

leaved programs, the 

LIMBO light will be on, 

for some waiting time is 

almost unavoidable. If 

the program seems to have 

stoppe~ completely, check 

the interleaving . 



5-2 . 3 IN-OU'l' Indicators 

The IN-OUT indicators common to most units -
i . e . , 11 Fla.g11

, "Connect 11
, 

11Sta.tus11
, a.nd "Maintenance" -

are on the main indicator panel - Fig . 5-4 and Fig . 5-6 
(to the right) . All sequence numbers have a FLAG, but 

some have no associated IN- OUT unit and hence no "Connect", 

"Status" , or "Maintenance" indicators ("F" , "C" , "S", and 

"M") . The indicators are interpreted as fellows : (see 

also Chapter 4) 

Fig . 5-6 IN-OUT Indicators 

INDI CATOR MEANING 

F - FLAG The Flag is up - The associated program will be operated 

as soon as prior ity conditions allow. 

C - CONNECT The Associated IN-OUT unit is "connected" ; i.e . , 
selected for use. 

S - STATUS I f STATUS= 1 ("ON"), a TSD can be performed. If 

STATUS = 0 ("OFF"), a TSD will have to wait , for the IN-

OUT buff er is still busy processing the last datum. 

M - MAINTENANCE If M = l, the Maintenance Switch (at the uni t) is up. 

A select instruction (IOS) will cause an IOSAL (IN- OUT 

Select Alarm) . The unit can not be connected. 

The IN-OUT Buffers and special indicat~rs are on a separate panel shown on next page : 

(See Chapter 4 also) . 

5-14 November 1963 



·- · 

HI I~: UI Hf 

. . . . . . . .. . . . 

... • • • .1 •t 
! •••• •i• .. , 

• ' .. 

: . • : f' 

QO 

• I 

- .:: . : If 

:. ·:•_ . : · ~ t · .. . . . -. - \ 
., : ; ... ~ : . 

... .... . . . . . ... . . . . . .... . .. 
... - ·-

~- ··- ; . ; 

t : :-~ . 
• • t . 

.... ..... . .. 
· : i ~ I • I • • 

I 

1 
~ . . . . . . . . . . ~ .. . 

• • • . . . . . . . .. . : •. : ~=~ : : t 

Fig . 5-7 - IN-OUT Buffers and Special Indicators 

November 1963 5-15 



5-3 Console Pushbuttons 

1 

11 -_ ·· · - -~I kl · 1 . ~ __ • ~ 
' \ ; 

l. 

t=. ~ , r~ ta I ~ -. "I 
- -- -- - -

,, 
Fig. 5-5, - Alarms, Conditions and Action Pushbuttons 

5-3. l Condition Pushbuttons (Fig. 5-5) 

The center row of pushbuttons and some of the bottom row will change the mode of 

operation and will light up as an indicatio~ that the computer is not in its normal mode . 

The t able below shows what they do : 

NAME FUNCTION 

U Memory Off These prevent the program from using the U, S, or 

T Memory Off T memories . When the indicators are ON, a PSAL or 
S Memory Off QSAL will be generated if an attempt is made to 

use the suppressed memory. 

Overlapped programs will run slower with "NO OVERLAP" 

No Overlap on, but the indicator lights - especially N - should 

be easi er to interpret . 

No Stop on CSK 

~o Stop on QK The computer will not stop before the selected 

No Stop on p~ cycle(s). 

~o Stop on PKi 

"Preset and Start over from Alarm" and "Auto Start" 

are usually used together. Auto Start alone is 
PASOFA equivalent to pushing CALACO about a second after 

AUTO START the alarm. PASOFA is equivalent to an automatic 

CODAllO after alarm. (Except that the alarm is not 

cleared. ) They are used primarily for maintenarice 

and computer repair. 

5-16 November 1963 



NAME 

Low Speed Repeat 

Low Speed Pushbutton 

Hold on lli.l:'.I! 

Remote TSP 

No Chime on SUIT ALMS 

No Chime on SUPP AIMS 

November 1963 

FUNC'l'ION 

This circuit inserts a variable dela.y between ~he 

computer cycles . It operates in conjunction with 
the NO OTOr button~ (i . e., it doee not insert~ 

del!lY before the selected cycle(s)). There can be 

no ~VERLAP when this mode of operation is used.. The 

inserted delay (and therefore the effective conputer 

speed) is controlled by the right-hand switch-knob 

at the bottom left corner of the control panel 

(Fig . 5-5) . (It is labeled L. S. R. ) 

This circuit inserts a "STOP" before each comp'.1ter 

cycle unless the "NO STOP" buttons are on. There 

can be no overlap. 

"Hold on Low Speed Pushbutton" - In this mode, ,!11 

instructions are treated as if their hold bit were 
set. 'nlis allows step-by-step operation of ~ low 

priority program without any interruption due to a 

change of sequence . 

There is a portable control panel that contains 

some of the condition and action buttons and another 

18-switch toggle START register. It can be plugged 

in at Frames 9, 3, and 2, and also behind the 

console. (It contains condition buttons: Low 

Speed Repeat, Low Speed Pushbutton, Remote TSP, the 

Sync Stops; and action buttons : COD.ABO, PRESEl', 

CAIACO, and STOP. 

SUPP means "not suppressed" . The circuits were 
dcoigncd for two different chimes but only one tone 

is commercially available at present . These 

condition buttons have no other effect. 

5-17 



5-3.2 Action Buttons 

I - - - - -~ lill r:.--,ir• -_ Ef -.. •• .1 • 

' 

Fig . 5- 5 - Alanns, Condit:ons and Action Pushbuttons 

There are six buttons that actually do something. Their use is outlined in the table 
below. No infonnation registers (Memory or AE) are affected. There is no clear memory 

button. 

BUTTON 

STOP 

FUNCTION 

"Count Down and Blast Off" - CODABO is the most 

commonly used start button. It is roughly equivaler:t 

to STOP, CLEAR ALARMS, PRESET, STARTOVER, and CALACO 

in that order. Its effect is to clear all flags, preset 

all interlocks, and start the computer at the memory 

location given by the Toggleswitch Start Register (TSP) 

or the remote TSP, if selected. There are 9 CODABO 

buttons - 8 for the fixed addresses - 377710 to 377717 

and the ninth for the two toggle RTART registers (Ccnsole 
and Remote) . COll'UlO leaves the SPR ldtart Point Register) 

set to the chosen starting place . 

"STOP" is synchronized so that the computer will 

complete the cycles it has started. Except for start

stop interlocks, no registers or indicators are directly 

affected. 

5-18 Novembe:!' l963 



BU'lTON 

CALACO 

RESET 

STARTOVER 

PRESEI' 

Clear SUPP ALMS 

Clear SUPP ALMS 

Clear Real Time 

Clock 

(Reg . 377630) 

November 1963 

FUNCTION 

"Clear ALarms and continue" - CALACO merely resumes 

operation where it left off. If no flags are up, the 

computer will go into LIMBO. The combination of STOP 

and CALllCO has no effect on a single sequence non-InOut 

program, but will probably upset IN- OUT and interleaved 

programs because of the timing . 

There are nine RESET buttons - eight of them load 

the SRP with the fixed addresses 377710 to 377717 . 

The ninth loads SRP from the selected Toggle Start 

Register (Console or Remote). RESET has NO OTHER EFFECT. 

The SRP is, in effect, a partial placekeeper for 

sequence zero . If the program raises flag zero, sequence 

zero starts at the place indicated by SRP. SRP is not 

changed when sequence zero drops out as the other place

keepers are. It can be changed only by pushbuttons . 

Nine STARTOVER buttons are available . They are 

equivalent to RESET plus a "Raise Flag Zero" . STOP 

followed by STARTOVER will not do much, for STARTO\'ER 

does not start the computer. If the computer is running 

or in L::J-IBO, STARTOVER will be effective for Flag Zero 

has priority over all others no matter which priority 

pl ugboard is in use . STARrOVER followed by CALACO is 

similar to CODABO, but does not clear the Flags and 

interlocks . 

There is but one PRESET button. Like RESET, it is 

seldom used by programmers . It clears all flags and In

Out "Connect" flip-flops, and sets all interlocks and 

indicators to their proper "PRESET" value . This button 

is interlocked so that it is ineffective unless the 

computer is stopped. 

Suppressed Alarms are handled by separate circuits 
- -and a pushbutton is supplied for each type. SUPP means 

"not suppressed" . 

The Real Time Clock is indexed automatically every 

10 microseconds . It will clear itself every 7. 6 days or 

so if it is left alone. (The toggle switch to the right 

of the indicator turns the indicator lights off but has 

no effect on the Clock Register. ) 

5-19 



5-3. 4 Miscellaneous Console Items : 

Audio Controls 

-' Selector Switch - Mike Input •.. •·· Mike Level Adj . 

Fig. 5- 8 - Audio Controls 

For the convenience in trouble-shooting, to reassure users that the machine is rur.ning, 

and to further the progress of research, TX- 2 has been made audible via two separate, 

independent, and identical Audio Systems. The Selector switches have ten positi ons, five 

o~ which are currently in use and wired as follows : 

l . Quarter l of the X Register (Analog signal decoded from indicator 

Circuit. ) 

2 . Quarter 2 of the x Register (Ana.log signal decoded f r om indicator 

Circuit.} 

3 . Vertical Display Decoder (Sequence 6o) 

4. Horizontal Display Decoder (Sequence 60) 

5. The Patch Panel at Frame 9. 
The inside knob of the selector switch is the main volume control. The microphone input is 

mixed in at all selector settings and has its own level control . 

Knob Register - (377620) 

Register 377620 - The Knob Register - also called the "Shaft Encoded" Register is 

located just below display #1 . It is similar to a toggle register except that i t is set 

by four knobs - one for each quarter. The metabit is a lighted pushbutton switch. (Eight 

revolutions cover the range 000-777. ) 

External Input Register - 377621) 

Register 377621 - The External Input Register - is a set of four plugs just to the 

right of the marginal check panel (Fig. 5-3) . There exists a box with 37 pushbuttons 

intended for use with (or as) the external r egister. These pushbuttons are directly 

analogous to toggles except they must be held down if they are to stay a "l" . (Unlike the 

keyboard, any number may be down together. ) 

Note : Contact bounce is about the same as the toggle contact bounce - a delay 

of 10 ms allows a small safety factor . 

Clock Register - (377630) 

Regi ster 377630 is a 36-bit counter indexed every 10 microseconds by an external 

oscillator. It can be cleared by pushbutton (Fig. 5-5), but not by a programmed 

instruction (such as STA or DPX) . 

5-20 



5-~ TX-2 Sync System 

-.. 111111111111111~ 
lllli 1111111111~ .. ~r:~ ~~~ 111111 n 
~~~~· ~~~ 11111111 • 

~ .. • • • • • • .. • • "'
., • • • ...

..,, • • • • •
.., • I// • • ., I// • •

,., ... • ' •

• • ..
• " .. • •
"' ... • • •

• .. • " c. ..
,.

"
,, • " "

Fig . 5-9 TX-2 Sync System

OUTPUT

Stop on SYAL fl

Stop on SYAL #2

Signal to Sync

Jacks

Raise Flag 42

(trap sequence)

Sync Stop to

Arithmetic Element

November 1963

~i ~
IJ

~

""

.. • .. • •
• ~ • .. ~

• • ' • •
;:

.. I i .. l

• • • J

~ ... • l> I

• • .. • •
) • • • •
• s j, • •

• .. • .. '" • .. •
" • •

SWITCH LOCATION

Top Rov Pushbuttons

(Fig . 5- 5)
Right next to SYAL l

On Sync Panel

(Fig 5-9 above)

The Sync System produces an

output signal vhen certain n:anually
preselected condition& are met .

For example:

a) When (or if) the program gets

to a prespecified memory

location. (i .e ., (P] =preset

value)

b) When a certain memory register

is used for data or deferred

address. (i .e . , [Q) =preset

value)

c) When a certain operation is

used. (i .e ., [PK
0
p) =preset

val ue)

d) When a certain sequence

number is used.

Certain combinations are

possible. The outp.it can be

switched to any or all of tr.e

following:

COMMENT

There are tvo alaxms

and two condition selectors,
but only one set of condition

11arameter switches .

Uses for scope sync

during computer repair and
maintenance .

Bottom Rov Pushbuttons See Chapter 4 - ~rap

(Fig. 5-5) Sequence. This button over-

rides other trap modes .

Top Ro•• Pushbuttons Used mainly for nainten-

(Fig . 5-5) ance to Stop AE operations

within a cycle .

5-21

Figure 5-9 shows the two SYNC SYSTEM panels. The lower panel contains the Sync

Parameter Switches; the upper panel the Syn: Condition Selecting Switches and the output

to-Sync jacks pushbutton switches .

Parameter Switches

There is but one set of switches for each parameter even though there are two sets

of selectors. The parameter switches are laid out in four major rows:

INSTRUCTION (PK , N)

CHANGE SEQUENCE COUNTER, and WSTRUCTION LOCATION (CSK, P)

DATA CYCLE

ARITHMETIC CYCLE

(QK ' Q)

(AK)

Each parameter set is grouped, like the indicators (see Fig. 5-4, and Section 5-2.1)

in colwnns of 3 for Octal interpretation. The least significant bit is at the bottom.

Condition Selector Switches

There are two SYnc stop ALarms (SYAL land SYAL 2) . These are controlled by two

"GATES" (Gate land Gate 2) . The "GATES" are controlled by two sets of condition switches -

32 switches each. Either gate or both can supply output pulses to the sync Jacks or stop

circuits. (Only the alarm indicators are separate.) ALL the selected conditions must be

~et for the output to be generated. (The GATES are AND circuits.)

The conditions available are described below:

CONDITION COMMENT

See upper left corner - Fig. 5-9· PK a refers to
the 32 possible tilne steps (levels) of the PK cycle

counter and therefore determines when the sync signal

J?Ka will be generated. A setting of 16(oct) is recommended,
for it provides a definite time to stop, and is used by

oll in3truetion3. PK a io recommended when any of the
"P" -type conditions are used.

Thi s compares the PK Parameter switch setting op
PK op with the operation most recently read out of memory.

(Bits 4. 3 to 3. 7)

This compares the configuration switch setting with

PK cf the configuration bits most recently read out. (Bits
4.8 to 4 . ~)

~ "h" refers to the hold bit of the instruction 110st
recently read out. (Bit 4.9)

5-22 November 1963

CONDITION COMMENT

* p p refers, of course, to the p register. The

Parameter switches are in the second major r ow.

This condition allows selection of the time step

when the sync pulse is generated. A setting of 2 is

QKa recommended. QKa and Ft< a should not be used concur-

r entl y unless a particular type of overlap condition is

sought .

This set looks for a par ticular operation, just as

does PKop ' but only those instr uctions that require a

QKop
data reference will ever get into QKop . (The QKop
indicator lights are at the left - Fig . 5- 4 . They are

sometimes helpful in debugging, for they tell what

operation made the last data reference.)

Q is used for intermediate deferred addresses as

well as data references, but these two can be separated

Q somewhat Via QKa. With Q and QKa selected, the sync

output will occur only for data references since t:~e

PK counter is used for the defer cycles .

The circuitry is able to detect set metabits on -
instructions but not zero metabits . If the parameter

N4. 10 switch is down and the selector switch i s up, no s;mc

pulse can be generated for the gate in use.

The data reference metabit (M
4

· 10) can be detected

onl y when set -- (just as N4·10 above) . Note that it can

be changed without a memory refer ence for it serves as
M4.10 the metabit of the A, B, c, D, and E registers. (i.e. '

MKc4•10 A or MKc4•10 B will change bit 4. 10 of M.

"Nu
j

refers to the "j" bits of the N register and

Nj hence to the index register in use, or to the bit selection

of an S:<M operation .

* If the instruction that has been interrupted used a deferred address, CAI.A.CO will not

continue the program until the third time it is used. (Since P is not changed until the

last moment, a Sync Stop occurs during the intermediate cycle, and again during the

"ul.timate" cycle.)

November 1963 5-23

CONDITION COMMENT

"AK.a" is the Arithmetic Inst:niction Time Level

counter. There is one sw1tch for each level (it there-

AKCX fore makes little sense to have more than one up) . The

recommended setting is OFF - it is mainly for maintenance

use.

"AK cp " is a 6-bit register that holds the most

AK recent arithmetic operation (code values are a.11 above op
57) . It is not changed until another arithmetic opera-

ti on is i;:erfo:nned.

ASK is a 7-bit counter used for arithmetic opera-

ASK tions that require repetitive steps - for example,

multiply and divide . It clicks along during shifts and

cycles, tut is not used.

~ - S is the sign bit of the X memory buffer. It

~-9 can be used, for example, to detect completion of a JNX

or JPX loop.

N2 1 is the right half of the N register. It is ,
N2,l especially useful for detecting a Jump to a specified

location.

K holds the current sequence number. It is often
K

useful in conjunction with C3K below.

CSK - The Change Sequence Counter - will remain

zero until a change of sequence occurs. A setting of

10 (CSK4 : 1) detects a change into LIMBO, a setting of

CSK 1 is recommended if K is used for the Old Sequence;

a setting of 6 if K is to be set to the New Sequen:e.

In either case, the CSK cycle will be completed before

the computer stops.

These letters refer to open cables at Bays B, C, F,

B, C, D, of Frame 2, the Mag Tape Frames (F6, 7, 8), and Frame 9

l
F, Ml', IOI (IOI) . They are used by the maintenance technicians for

special conditions cooked up as the need arises.

5-24 November 1963

5-5 Miscellaneous Conventions

Pa.per Tape Read-in Programs -

* Plugboard ~:emory (37774-0 - 377777) contains three standard programs. They are as

follows :

CODABO
POINT

3777'XJ
(8)

NAME OF
PROGRAM

"Clear Memory"

or

"Smear Memory"

Sat Configuration

Read In

CONMENT

All of S,T, and u Memory is set to +-0 in
the Left Half word and each register's ovn

location in the right . Metabits are not

changed. This program proceeds automatically

to 3777'}:) - Set Standard Config - and then to

37776o - Read in Reader Leader. (See below.)

All of F Memory i s set to the standard
configurations and the program procoedc auto

matically to 37776o - Read in Reader Leader

This program reads the first 21 words

from paper tape into r egisters 3 through 24 of

S Memory, and then goes to register 3. All

binary tapes start with the "Reader Leader" ,

a block of 21 words t hat is the TX-2 Read in

Program. The TX-2 Read- in program will read

any standard binary block and check the surn

check at the end. (If the check fails, the

program tries aga in .) The meta-bit of each

word being stored is cleared . See listings

below. See Section 6- 3. 4, page 6-23 for
Binary Format .

* There are two plugboards : Plugboard "B" - registers 3m4-0 to 377757, and Plugboard "A" -

registers 3m6o to 377777.

November 1963 5-25

5-5. 2 Program Listi ngs (continued)

"READER LEADER"

TX-2 Paper Tape Input Program [For Bina ry Format]

*
NUMERICAL FORM

LOCATION INSTRUCTION (OCTAL)

0 0 000000 000000

000000 OOOOOJ

2 2 000000 000002

3 J RSX 5 OJJJ54 000005
54

4
36

JHP 20 360554 000020
54

5 11
2

RSX o 42JJ53 000000
53

6
1

STE JJ OJ3000 OOOOJJ

7 36 JHP 54J 7 360554 000017

JO Ill LOE 0 402000 000000

J J STE
53

34 003053 000034

J 2 111
1

JN X 7 410753 000007
53

J 3
36

JHP 20 360554 000020
54

J 4 lllJP X
56

377760 400656 377760

J 5 lllJN X
56

377760 400756 377760

J 6
1 4

J PQ 21 140500 000027

J 7
2

HKZ 4000JJ 02J7J2 4000JJ
4. J 2

20 J RSX
57

3 0JJJ57 000003

2J llTS D o 405700 000000

22 36 JPX572J 360657 000021

J 0JJ056 23 AUX
56

o 000000

24 11
2

A UX o 42J056 000000
56

25
1

STE J6 0J3000 OOOOJ6

26
15

BPQ o J50554 000000
54

27
1

IOS 20000 OJ0452 020000
52

* Registers 0 , 1, and 2 are not part of the Reader Leader itself, but are used as

temporary storage .

5-26 November 1963

5- 5.2 Program * Listings

PLUGBOARD PROGRAMS

NUMERICAL FORM
LOCATION INSTRUC'l'ION (OCTAL)

377740 760,342, ,340,000 760342 340000

377741 410,763, .762,761 410763 762761

377742 160 , 142 , ,l40,4ll 160142 l404ll

377743 2 0 2 ' l 6 3 • ' l 6 2 ' l ,6 l 20 2 l 6 3 l62l6l

377744 732 , 232.,230,200 732232 230200

377745 605 , 731, , 730,733 605731 730733

377746 320,670,,750,600 320670 750600

377747 604,:S:Sl, ,J30,33J 604Jll J 303 JJ

J77750 SPG 377740 002200 :S77740

377751
4

SPG 377741 042200 377741

377752
10

SPG 377742 102200 377742 fl
377753

14
SPG 37 7 7 4 J 142200 J77743 'O

20
SPG

...
377754 377744 202200 :$77744 al

0
24

SPG
p

:S77755 377745 242200 377745 tll>
~

377756 JOSPG 377746 J02200 377746 P!
377757

34
SPG 377747 342200 377747

377760
1

SKX
54

23 011254 000023

377761 REX
52

J77763 001252 J77763

J77762
21

IOS
52

30l06 210452 030106 ;.:
37776J REX

53
5 001 253 000005 'O

k

377764 hTSD
54

26 405754 000026 ~
p

h
36

JPX
53

J77764
tll>

377765 760653 :$77764 ~

P!
377766 h

1
JNX

54
:s77763 410754 377763

377767 l4JPQ 3 140500 000003

377770 REX
77

201111 001277 207777

377771 DPX
77

777776 001677 777776

$77772 l 4 J PQ 37 7 773 140500 377773

J7777J REX 777610 001200 777610

377774 h:s
6

JPX
71

311111 760677 377771

377775 :SOSKN
4

•
12

:s77744 :S0l7l2 377744

:$77776 7 7 t . 0 000077 000000

377777 l4JPQ J77750 l 40500 J77750

* The X Memory is not changed, but each register is "exercised" to remove possible

XPAL alarms .

November 1963 5-27

5-5· 3 Tape Preparation

(See Group Report 51-8, dated 6 October 1959)

An abbreviated manuscript and associated tape is shown below:

**TEST
LOA CC,

ADD FT,.

5-28

This end is inside the reel .

A yard or so of blank tape

is sufficient to reach the

reeler.

"End Mark" - i . e . code 73

(without seventh hole.)

About 2 inches for convenience
Initial Carriage Return

Initial Carriage Return

Manuscript

Final Carriage Return

About 2 inches for convenience

STOP CODE - 76 With a 7th hole

About a foot of blank tape for

protection. This is the outside

end of the reel.

TX-2 USERS HANDBOOK

CHAPTER 6 - TX-2 UTILITY SYSTEM

TABLE OF CONTENTS

6-l INTRODUCTION - TYPICAL USE OF M4 ASSEMBLY PROGRAM

6- l .l MANUSCRIPT, DIRECTIVE, LISTING

6-l .2 META LANGUAGE

6-1 .3 MACRO INSTRUCTIONS

6-2 M4 PROGRAMMING LANGUAGE

6-2 .l INSTRUCTION WOROO

6-2 .2 SYMEX DEFINITION - TAGS - EQUALITIES - AUTOMATIC ASSIGNMENT
6-2 . 3 RUI.ES FOR SYMEX FORMATION

6-2 .4 NUMERICAL FORMAT - USE OF COMMAS

6-2 .5 MEMORY LOCATION OF PROGRAM - ORIGINS

6-2 .6 RC WORDS - RC BLOCK

6-2 .7 WORD ASSEMBLY

6-2 .8 SPECIAL SYMBOLS

6-3 META-LANGUAGE FOR CONTROL OF M4 ASSEMBLY

6-3.1 META-COM!WID FORMAT

6-3 .2 M4 OPERATION - NAME, CLEAN, LW READ, RECONVERT, BINARY STORE, GOTO

6- 3.3 META-COMMAl~OO FOR MAKING CHANGES - INSERT, DELETE, REPLACE, MOVE

6-3 .4 M4 Olll'Plll' - LISTING, DIRECTIVE, ERRORS, PUNCH (BINARY TAPE)

6-3. 5 M4 FORMAT VARIATION - DEC, OCT, T = CR, T = TAB, RC STORE, XXX
6-3.6 USE OF SPECIAL KEYS

6-3.7 MAGNETIC TAPE BULK STORAGE - SAVB, READ, TAPE, CORE

6-3 .8 META-COMMAND SUl1MARY

6-4 MACRO INSTRUCTIONS

6-4 .l MACRO DEFINITIONS - META-COMMANDS "DEFINE" AND "EMO"

6-4.2 THE MNEMONIC ABBREVIATION LINE OF A MACRO DEFINITION

6-4 . 3 MACRO NAMES

6-4 .4 DUMMY PARAMETERS

6-4 . 5 MACRO TERMINATORS

6-4 .6 THE DEFINING SUBPROGRAM

6-4 .7 USE OF MACRO INSTRUCTIONS

October 1961 6-l

CHAPl'ER 6
TX-2 UTILITY SYSTEM

6-1 INTRODUCTION - TYPICAL USE OF M4 ASSEl-IBLY PR<X;RAM

The TX-2 Assembly Program ''M4" is a conventional symbolic assembler, but has

considerable fleXibility and two types of S?ecial features - Meta-Language for control of

the program, and Macro Instructions, a feat•.1re that gives M4 the essential characteristics

of a compiler . The symbolic tags for address sections can be nearly any combination of

letters, symbols, and nU111erals (with a few ~estrictions) . Tags used for the configuration

and index syllables are nearly as flexible . M4 "Will assign all tags that have not been

assigned by the user . The program is designed for on-line keyboard input and control as

well as paper tape input . Aft er checkout has started, a program can be kept in symbol ic

form in magnetic tape bulk storage .

Typical use of M4 begins wi t h off-line t ape preparation using a Lincoln Writer (See

3roup Report 51-8 .). During debugging, the program can be preserved in symbolic and/or

binary form on paper tape or i n mag tape bulk storage as the user wishes . The symbolic form
saved by the program is called a "DIRECTIVE" and is essentially the same as the original

manuscript . Additions, insertions, relocation, rearrangement, and deletion are all handled

by the M4 system - it is not necessary to retype the manuscript .

In addition to DIR~VE output (via Xerox, Lincoln Writer, Paper Tape, or Magnetic

Tape), one can also get a LISTING (via Xerox, Lincoln Writer, or Punch) . A LISTING is a

copy of the program in absolute as vell as symbolic format (side-by-side) . It includes an

alphabetically ordered tag table and a FORMAT ERROR notice if any errors were found . /..

l.ISTING can be obtained on punched paper tape for off-line Lincoln Writer printout, but this
tape is not acceptable as input .

The binary form of the users program can be stored directly in the computer memory,

punched in binary format on paper tape, or stored in magnetic tape bulk storage . When

stored directly, either on mag tape or in memory, the M4 program area is protected and the
storage may be incomplete . If a DIRECTIVE exists in core memory it too is protected.

6-1 . l MANUSCRIPl' - DIRECTIVE - LISTI NG

A "Manuscript" is any program prepared off-line. It may exist in printed, hand
written, or punched tape form .

A DIRECTIVE is the symbolic form created by M4. It may exist within M4 tempo

rary storage, in magnetic tape bulk storage, or in printed or punched form. A

DIRECTIVE closely resembles the manuscript . The following changes are worth noting:

6-2 October 1961

1 .) Any corrections and/or insertions have been made .

2 .) All definitions and equalities are at the beginning . (Equalities may be

anywhere on a manuscript .)

3 .) Redundancies such as extra spaces are removed.
4.) Fractions are converted to the equivalent integer . The Numeral System is

preserved .

5.) A check sum is added at the end.

A LISTING is a program output in absolute as well as symbolic format . The

format is as follO\ls :

Tag Table (Alphabetical)

Equalities

Macro Definitions

Format Errors
Program (in symbolic and absolute)

RC Words (unl ess the RC block location was specified within the program .)

(The Tag Tabl e , Errors, absolute program, and RC block are not part of a

Directive .)

6-1.2 META-LANGUAGE

The control of the M4 program is accomplished through the M4 Meta-Language

instructions . All meta-language commands are to be preceeded by ,,,, (two hands) .

When used on a manuscript, meta-commands are obeyed on read-in and do not appear on

the directive (Except for those :ike ,..,, RC, which is used to specify the location

of the "RC Block" - (Register Containing) .) .

October 1961

The basic types of Meta-Language Commands are :

Input

Correction-making

Output

Mag Tape

Format

Macro Definition

Direct Storage

Single Pushbutton

6-3

6-1. 3 MACRO INSTRUCTIONS

A macro instruction is essentially a convenient flexible abbreviation for a

aimil.arl.y conveniP.nt and fl.exibl.e subprogram . The user \ll'ites the subprogram ~ -

with d\.Ull!llY parameters - as a "MACRO DEFINITION" . Tags, and equalities used in t'l:e

definition are kept separately and are not part of the program proper . ~~en a macro

instruction is used, only those parameters that are needed should be specified. The

portions of the defining subprogram that refer to unspecified parameters are left out

when the macro is converted . For this r eason, and since the parameter of one macro

can be the abbreviation for another, a different set of instructions will usually be

compiled f or each use .

Same standard macro i nstruct i ons will be built into the M4 system . When they

are used on a manuscript, t he definition will appear on the M4 Directive and Listing .

Since Macro Instructions can be redefined, it will not be necessary to avoid using

t he standar d names except to avoid confusion when r eading a program later on .

6-2 M4 PROGRAMMING LANGUAGE

6-2 . l INSTRUCTION WORDS

A TX-2 instruction word has 4 ba~ic syllables and three special indicators as

shown in the diagram below:

0, " "', ., "'N N

lhl c i I j H k

~ \ I /
,,. II a ADO

8 * GEORGE

The three indicators are preassigned symbols as follows :

BIT 4•JO ,,. meta bit (not part of binary tape format)

BIT 4•9
II hold bit

7i no hol d bit (Needed because h is automatically included

with LDE, ITE, JPX nnd JNX.)

BIT 2•9 * defer bit

They must be in normal script, and may appear anywhere in the word.

6-4 October 1961

....

I

The four basic syllables are as follows :

"c" "Configuration" syllable - a 5 bit word (bits 4. 4 - 4.8) used as

the F memory address or as an extension of the instruction syllable

(JMP, !OS, SKM, SKX) . This syllable must be in superscript or

preceeded by 11 . It can be numerical or symbolic, but no spaces

are allowed. For SKM, JMP, and SKX it is specified automat:cally

by the supernumerary mnemonics . (See Table 7-3 ·)

"i" "Instruct ion" syllable - a 6 bit word. This syllable is a normal

script, 3 letter standard mnemonic abbreviation for the instruction.

It is terminated by a space as well as the standard symex ter

minators . The m.~emonic abbr eviations include the configuration

syllable as well for JMP, SKM, and SKX. (See Chart 7-3 .) The

instruction syllable may be specified numerically or with a normal

symex but in these cases it is not terminated by a space . A

r egular symex terminator must be used. (See 6-2 .2, rule #8·)

"j" "Index" syllable - a 6 bit word used as the X memory address, i.e .,

the index register tag. (Except for SKM where it is used for bit

designation.) The " j " syllable is normally i n subscript . :t may

be a numer al or a symex, but no spaces are allowed.

"k" "Base Address" - a 17 bit word. The base address may be synbolic

or numerical and spaces may be used as part of a symex. It is

given in normal script . Redundant spaces are removed upon

conversion.

It is not necessary to use the order shown above . Any ordering is allowed if

the script and symex conventions are carefully used. For example :

6-2 .2 SYMEX DEFINITION - TAGS - EQUALITI~S - AUTOMATIC ASSIGNMENT

October 1961

A "Symex" is a symbolic expression . It is converted to a numeral by M4 vhen a

program is stored, punched in binary format, or listed. A "TAG" is a symex used as

a name for a place in a program. A tag is always terminated by an arrow (-+) , and

is set to the numerical location o~ the word that it tags .

6- 5

A symex can be set equal to a nlllleral. directly - e .g., "apple 6", or to any

36 bit vord. For example a symex may be set equal to an instruction . When such a

symex is used as the instruction syllable in a normal. vord, it must be terminated by

a symex terminator - not by "space " (Only standard mnemonics are t ermi nat ed by space .)

A symex that is not used as a Tag nor defined by equal sign "'111 be assigned by

M4 according to its use "'1thin the program. See chart belov:

Unassigned Symexes :

Used to Specify: Automatically Assigned as or to:

Configuration Only Zero

Index Only The lovest numerical. index register value

not already used. (Except Zero and no

higher t han 77 .)

Configuration and Index Zero

Address only The numer ical memory location of the next

place in the RC vords block. The contents
of this RC vord are set to zero . This
proVision is useful in assigning temporary

storage .

Configuration and Address Zero
Confi g., Index, and Address Zero
Index and Address Same as Index Only.
Origin (i . e . , Memory Location of "N", were N is the numer of vords in the

Block) program including the RC Block.

A symex assigned by M4, or by equals sign may be redefined at any point in a

program manuscript, and the l atest definition "'111 be used throughout . If the symex

vas initiall y assigned as a Tag - i . e., "1th an arrow, a re-definition "'111 be

recorded as a double definition error, and will be accepted, but not corrected. The

only way to remove it from the directive is to use meta-language (REPLACE) and refer

to it "1th a relative address based en a different tag.

6-2 .3 RULES FOR SYMEX FORMATION

1. A symex must contain at least one non-numerical. character.

2 . It may contain as many legal characters as desired.

3 . The single letters A, B, C, D and E are preassigned to the numerals 3776o4 -

377610 . (i.e . , the AE addresses.)

4. The three letter mnemonic instruction abbreViations can not be used as symexes .

5· The preassigned abbreViations and single l etters can be used as part of a
symex if they are not separately terminated. Note that space bar terminates

op codes and single letter AE addresses but does not terminate other symexes.

6-6 October 1961

e.g. "ATYPE" or "TYPE A" are alloved.

"A TYPE" is equivalent to "3776o4 + TYPE".

"ADDY" is allowed - "ADD Y" is not . (ADDY is a legitimate Symex -

ADDY is a two sylJ.able instruction.)

6. The legitimate symbols are:

OJ23456789

A through Z

a8 y<1< ;\

I J k n p q t w ~ y % (NOT 11)

(PERIOD) (APOSTROPHE)

- 0 0 and Space Bar .

7. Compound Characters are allowed when the follo\ling restrictions are applied:

Only one backspace .

Two or three characters only .

Space bar is allowed.

Any sequence of characters is legal. (Except @ , 9 , EB)

8 . The following symbols terminate symexes :

rr / xv/\

(COMM A) -+

#11 +-?

SCRIPT CHANGES , TAB, CARRIAGE RETURN, CO LOR CHAUGES,

LINE FEED UP, DOWN

{}>Cl * [

6-2 . 4 NUMERICAL FORMAT - USE OF CCMMAS

M4 "'111 accept integers or fractions in Decimal or Octal . I t "'111 not accept

mixed numbers , except as a SKM bit designation . The detailG are handled by the

position of the period. See chart below:

Periods Numeral Type Example Equivalent Octal Integer

None Octal Integer 431 000 000 000 431
Preceeding Octal Fraction . 431 214 4oo 000 000
Foll.wing Decimal Integer 431. 000 000 000 657
Both Decimal Fraction .431. 156 2)1~ 020 303
Centered SKM Bit Designation 2.10 000 000 000 052

(i.e ., 10 10102)

Note: The Sl<M Designation is usually given in subscript and is, therefore.• moved

to bits 3 .1 - 3 .6 .

October 1961 6-7

Note : a) The meta-command ,..,.. DECIMAL reverses the meaning of a "follov:ing"

period. ...,..OCTAL restores it to the above .

b) The two parts of an SKM Bit Designation are Decimal integers .

c) Numbers may be preceeded by Plus (+) or Minus (-) . For example :

(Octal Integer 4oo 000 000 000 = - 377 777 777 777 .)
d) M4 converts fractions to Integer form for Directives . The N1.UDeral

System is preserved.

Camnas are used to specify separate subwords as follws :

a) The word is set· to +Q . (Any unspecified portions will therefore

stay at -+O .)

b) The word is assembled from left to right .

c) The numeral (or any other word) is converted to a 36 bit binary word.

d) This 36 bi t word i s inserted into Memory according to the comma chart .

COMMA CHART

CMIAS BEFORE COMMAS AFTER CRAM DIAGRAM EXAMPLE

0 0 • • • • 444 333 222 111

0 l ~ 111 - - -

0 2 ~ 222 ill - -

0 3 //L 333 222 lL -

l 0 • - - - lll

l l // - 222 11:. -

l 2 ~ - ill - -

l 3 • • • 444 333 222 -

2 0

• • - - 222 lll

2 l / - - ll:. -

2 2 >SK 222 lll 444 333

2 3 ~ - - 444 333

3 0 ~ - - - 111

3 l ----.. - - - 444

3 2 ~ - 444 - -

3 3 ~~ - - 444 333

6-8 October 1961

For example: To specify 1/2 in each quarter, write

200 200 200 200

or 200, 200,, 200, 200

.4 .4 .4 .4 or ", " ",

To specify an instruction in the right half vord as velJ. as its normal position

in the left, write

6-2.5 MEMORY LOCATION OF PROGRAM - ORIGINS

October 1961

The location of the f i rst vord of a block is to be specified in numerical or

symex form and is termi nated by a vertical bar . It may be on a line by itself, as

it will be on DIRECTIVES, or it may preceed a normal vord . The symex may be

recursive - i .e ., set equal t o anot her symex . If the recursive symex is circular
(i .e ., eventualJ.y equal to itself,) or if it is undefined, the block will be located

incorrectly, and no alarm i s generated. (It will appear to be located a "n", where

"n " is t he number of words in the program, but the RC words are assigned as if i t

were located at zero .) If there is no origin (i .e. no vertical bar), the whole

program is located (correctly) at 200 OOO(B)" See the examples below.

HAG6 1

22JAC ..

HAG6+100 1

516 I

H ..

HAG6a77

LOA BOSY
STA HUP G

JPQ HOUSE

+4 J.S'. s
-S6J,SJ

LOE TOHH

STE JERRY

JPQ HEH E

If the origin is specified by a symex (as "HAG6" above), the block may be moved by

redefining the symex via equal sign. If the origin vas assigned numerically (e .g .

5161 above) it can be changed by REPLACE, counting back from an nones' tag. For

example, to move the block at 516 to location 5516, the proper metacommand would be

~~REPLACE H-J ssJsl
Note that the O!-igin itself counts as a fulJ. line.

6-9

6-2. 6 RC WORDS - RC BLOCK

Since it is often more convenient to specify an operand directly rather than by

its address, M4 interprets any word Vithin brackets, e.g. fl456) as an operand by

providing a register containing the bracketed word, and using its address wbere\-er

the same vord is used v1thin brackets . (Bracketed vords are call.ed "RC Words"

fran "Register Containing".)

The "RC Block" is made up of RC vords, i .e . bracketed expressions and temporary

storage assigned to unassigned symexes used in address sections . It is located at

the end of the last program block UO:.ess otherwise specified by meta language .

Examples :

- REP
,..,.. REP

SUB {•}

DICK

GEORG E

"v" can be any 36 bit vord .

Words vi t hin the RC Block may be Tagged. If

such a vord is changed via meta language, the

change should be made vhere it is used (i .e . at

"DICK") rather than inside the RC Block

(i.e . at "GEORGE") .

A change made v1thin the RC Block 'Will not

appear on a subsequent DIRECTIVE. To be

lasting, such a change should be made outside
the block.

LOA {G EORGE-+ l}
GEORGE-+J

** PE RMANENT
**TEMPORARY

"RC Words " may contain other RC Words - i.e . the brackets may be "nested".

For example :

LOA {LDE{-J l}}

The brackets must balance - there must be as many right hand brackets as there are
left hand ones.

6-10 October 1961

6-2 .7 WORD ASSEMBLY

The address syllable is f'ol1!led first as a 36 bit integer using normal integer

arithmetic . It may contain parentheses, the arithmetic symbols : + - x /, and the

logic symbols A ("and"), v ("or") , ~ ("exclusive or") . The symbols are in

terpreted f'rom left to right . (i .e . not quite "normal" algebra)

For example:

4G + 5R/6

4G + (5R/6)

4G + 5R is interpreted as 6

is interpreted as 4G + ~

Parenthetical expressions may be nested, but the parentheses must balance - i .e .

there must be as many left parentheses as right . For example :

(77 -(4G + (5R/6)))

The use of another symex is equival ent to using parentheses . e . g.,

4G + a is interpr eted as 4G + ~ if a a 5R/6

The 36 bit address syllable is united (inclusive OR) with the others (configuration,

operation, index) . Extra sylli;,bles of' the latter group are also- united into the

word. The one bit syllables are set last, "not hold" (h) being the final one .

6-2.8 SPECIAL SYMBOLS

I "The current Location" - The symbol ''II" is a special symex which al\18,ys is

equal to the current location. Thus "JMP #" is a jump to itself, "JMP # + l"

is a "jump-to-the-next-register". If# is used within brackets , it refers to

the RC BLOCK rather than the current address .

** "start of Camnents " - A double asterisk - ** - is used before comments or

October 1961

annotations . All symbols are legal in the comment section except irirXXX and

} , and comments are saveC. and included in L1 sting and Directive Printo-:.its .

A carriage return terminates t he comment section. A comment may be used

within an RC word and another on the same line outside the bracket.

The notation , ft T is equivalent to {T } *. , ' The , J t must be in subscript .

For example: REX«faTAGG is equivalent to

A carriage return immediately preceded by m.inus sign (-) will not terminate

the line . This feature is needed because complex nested Macro-instructions

often require more than one line of print. It can not be used for ccmments .

6-ll

6-3 METALANGUAGE - FOR CONTROL OF M4 ASSEMBLY

The M4 conver sion - assembly process is designed for input and control from the key

board or from paper tape. Since keyboard use i s more f lexible and tape is faster , the

normal procedure is to use both. "Metacomnands " are instructions directed to the M4

program itself covering the folloWing areas :

Paper Tape Input

Alterations

M4 Output

Direct Storage

Format Variat ion

Magnetic Tape Bulk St orage

Macro Definition (Section 6-4)

6-3 .1 METACQ.1MA.ND FORMAT

Metacommands may require one line or several, and no address section, or as

many as two . The address section refers to the "Directive" of a program and may

specify one line, or a block of consecutive lines . Note that a line of a directive

may correspond to several program words (c .f . MACRO, Section 6-4) or no program

words at all (e .g . , origins and COllllllents) .

There are three formats for address sections :

l .

2 .

3.

AA - The line at "A.All .

AA+n - The nth line after AA.

AA-n
- The t h n line before AA.

"AA" should be an honest tag (defined by an arrow) , rather than a

numeral or symex defined by equal sign.

AA Jn

AA±fln

AA -+ BB

n lines beginning with the line at AA

(or AA ± q).

The block of lines from AA to BB including AA

but not BB. (Or from A.~~ q to BB~ p .)

A typical metacom:nand is as follows :

,..,..REP GEORGE+7 hSTE TT

I t will replace the line at "GEORGE + 7" With the word "hSTE TT".

6 -12 October 1961

Similarly, the meta- command

AA .. BB GEORGE

11111 move the block "AA to BB" to just before George.

To reduce typing, the follovl.ng conventions are allowed:

3.

is equi·1alent to the end of the program.

means "From before AA to the end" . (Do not use this
with DELETE.)

means "?rom the beginning up to AA" . (Not includ:ng AA)

4. The name of a metacommand can be abbreViated to just the first three

letters .

5. Tab is u~ed to terninate syllables .

6-3 .2 M4 OPERATION - NAME, CLEAN, LW READ, RECONVERT, STORE, ca.re

T'nere are two versions of the M4 program - "M4 from mag. tape" on the Golden

Reel and "i'-14 from paper" on the White Reel. They are essentially identical except

that t~e paper tape version Will ignore all metacammands that use magnetic tape

bulk storage .

M4 is located at registers 160 000 - 174 010 (octal) and uses the rest of

memory as temporary storage . 157 777 down to'Jards zero is used for storage of

your Directive. 174 000 - 200 000 is used for various tables.

There are two CODABO start points :

160 000 - Fresh start, new program, M4 is reset completely, a New Name
is requir ed.

160 001 - Continue same old program.

(see section 6-3 .4)
M4 is reset to OCTAL, and ~ = TAB.

Upon read-in of ei t her r eel, M4 will type NAME and then will wait for the user

to respond by typing his "M4 Name" on the keyboard. The situation is the same as

that produced by the metacommand "NAME" described below:

,..,..NAMf DAO

NAME is the metacommand used to identify the user . The users "naz:ie" is

required by M4 to identify output and to detel'T!line which part of the M4

Magnetic Tape is to be used. All paper tape, and printed output is identified

October 1961 6-13

by the user's M4 initials and a 4 character word derived from the check S'JJD

of his directive .

When "M4 from tape" is used, the users name determines which portion of

Bulk Storage is available. l.f:>st individual users are assigned tape storage

equivalent to one S memory . :;roups of users may co:nbine by using the s1111e

name, thereby extending their available bulk storage to several memories .

Bulk storage is used in blocks of 200(B) words . See section 6-3 .7 for f·.u-ther

details .

Note :

l . M4 names are three characters long.

2 . The special name "FRE" is reserved for users who have no name .

3. "NAME" does not clear M4 .

..,..CLEAN
CLEAN (CL) restores M4 to its pristine state . It is equivalent to

CODABO 160 000 except that CODABO 160 000 types NAME and waits for one, while

CLEAN does not .

LW READ (LW) (Speci al 'Cey "Readin") switches M4 input from Keyboard

to PETR. The PETR Will be in its "Bin and Read" mode (Ios
52

30104) . When

stop code (76) is read by the ?FrR, M4 input is switched back to the keyboard .

All Metacommands may be used on tape except READ and - RECONVERT .

,..,..RECONVERT
RECONVERI' (REC) expands the stored directive into free storage :n a

form similar to its printed or punched version. It then forms a new directive.

The result is the sa'!le as punching a paper tape directive, cleaning M4, and

reading in the new directive . All redundancies are removed, the RC Block is

corrected, - the directive is shorter than before . When there is insufficient

free storage, this command Will produce QSAL and do nothing.

,..,..BINARY STORE AA
BINARY STORE (BIN), (Special Key "BEGIN") completes the conversion

process and stores the program directly in memory. If an address "AA" is

given, a "h JPQ AA" is performed With sequence number 70 selected . The user

can therefore save the return point, run his program, and ret urn to M4 auto-

matically. "AA" must be within the program area .

"BINARY STORE" does not destroy M4 or the directive . If a program is

to be located within these areas of storage, a binary tape should be made -

see section 6-3 .4 unier "PUNCH BINARY" .

,..,..GO TO AA
"GO TO" executes an "h JPQ AA" with sequence 70 selected . It makes

it possible to go to the user's program and return automaticall y to M4 . Th~

address "AA" must be Yi.thin the program area. ?IOTE: M4 leav_s STANDARD CON
FIGURATIONS in F memory only when i t s use i s t erminated by GOTO or filN . Vhen
t h e use r s tarts his ovn progran with CODAl!O F reeis~r #37 ie not etAndaJ"t\ .

6 -14 October 1961

6-3. 3 METAC<l·iMANDS FOR MAKING CHANGES - INSERT, DELETE, REPLACE, MOVE

October 1961

..-..-INSERT
OR

AA

orirINSERT AA

irirEND

ONE LINE

INSERT (INS) puts the new program lines just before "AA". When o:Uy

one line is to be inserted or when the next line will be a metacommand from

this group, the terminating command "END" is not needed.

rirDE LETE AA

..-..-OE LETE AA .. BB

oror DE LETE AA Jn

DELErE (DEL) removes a section of the directive . Symexes that were

assigned Within the re.'lloved area are now undefined. The RC words used only

Within the del eted area are not removed from the RC Block . If an Origin is

removed, subsequent words are located relative to the Origin preceding the
deleted area.

,..,..REPLACE

..-...REPLACE
...,..REPLACE

AA
AA.+BB
AAjn

REPLACE (REP) is a combination of DELETE and INSERT. It can remove an

arbitrary number of lines and put a different arbitrary set in their place.

Note that it deals With lines - not words . For example, to replace an in

struction at a tagged location, one must be sure to replace the tag als~, for

the whole line is removed. If only one line is to be inserted, the new line

can be typed on the same line as the REP instruction . If several are required

they must go on succeeding lines and END (or another meta-command from this

group) must be used as a terminator . See examples below.

-11ovE
irirHOVE

-11ovE

irirRE P

irirEND

AA
AA .. BB

AAjn

G6

AP-+AP+6

cc
cc
cc

G6.+4 LDA r,

}
(To conect one line .)

(To replace one set of lines

with a different set.)

MOVE (AA to CC in this case) is a combination of delete and insert where

nothing is lost .

6-15

Note:

In the example below, a few "second thoughts" have been indicated in hand

written form .

START I

TES T ..

~ Comm -+
our ..

START• 400

The correction tape for the above is shown below.

the corrected program is given in the next section .

BL•l OOO

OOPS•20oo
or..-REP

ororREP

C OHK-+

our ..

TEST
OUT-l .. OUT+l

JPQ BL
30 SKX #+ l

66
IOS

66
.Joooo

TSO TABLa
SKZ

3
•

3
INO

JPQ OOPS

a, . /(J(°)(J

cJors • 10 .. .-0

RE

TEST-l
RE ... LOA {-l}

**SAMPL E PROGRAM FOR USERS HANDBOOK

The symex "START" could not be used in the last metacommand because it is not an

honest, arrow-defined tag.

from an honest t~g .

To i~sert before an origin, one must count ba~k

6-16 October 1961

6-3.4 M4 OUl'PlJI' - LISTING, DIRECTIVE, ERROOS, PUNCH {BINARY TAPE)

-usT
...... usT
-LIST

AA
AA-+BB
AAl11

LIST (LI) (Special Key - WORD EXAM) - List pro
duces a "M4 Listing" Via the Xerox Printer.

-PLIST AA
AA-+BB
AAI ..

-PLIST ~produces a listing via Punched paper tape .
,..,..PLIST

,..,..TYPE
,..,..TYPE
-TYPE

AA
AA-+BB
AAl11

Type produces a listing via the Lincoln Writer .

October 1961

A LISTING tells what M4 did with the Manuscript or Directive receiYed.

Macro instructions are given in expanded form . The program is given in OCTAL

as well as symbolic and is usually preceded by various tables .

format is as follows :

LISTING FORMAT

The overall

:~~=T~~-- -}
~c;s ~~~:I_o~s-_

Given only when the first word of the

Program is included in the area req.iested

by the Metacommand .

PROGRAM:

SYMBOLIC ABSOLUTE

RC BLOCK

SUMCK (Paper tape versions only.)

The SYMEX TABLE i s printed in octal, in three columns and is in alpha-

betical order (4 letters) as if there were but one page . Symexes with an

asterisk were assigned by M4 because they were left unassigned on the manu
script, or because they vere used within a Macro Definition . Symexes llith

a h=d (,..) are MACRO mutes. Symexes used only within macros, and those

defined by equals sign, are listed, but no equivalent numeral is given.

The EQUALITIES TABLE is in one column in alphabetic order. (First Letter)

Symexes with an asterisk are those assigned by M4. An equality definition

can not be deleted but it 11111 be replaced if repeated. The last definition

is the one that is used, anc such repetition does not constitute an error.

MACRO DEF1NITIONS are listed as defined originally .

deleted or changed but they may be re-defined.

6 -17

'.l'hey can not be

The ERROR PRINTot1r is of two types - FORMAT ERROR and DOUBLE ASSIGNMBNT.

An error printout is given on the first listing only - it is not repeated on

subsequent listings even though the error may still exist . A line containing

a FORMAT ERROR is r epri nted in the error printout and the error deleted fran the

Directive . (It therefore can not reoccur .) A DOUBLE ASSIGNMEifl' occurs when

a symex is assigned both by equal sign and by arrow, or tvice by arrow. The

printout gives t he l ocat i on of t he first assignment . The second assignment

i s used and can be fo\Uld i n the symex table . If both defini tions were by

arrow, the offending t ag wil l appear in two places on the directive and or. the

listing, but only the last assignment vill be used throughout the program and

in the Symex table . To delete the first one, it is necessary to cO\Ult from

sane other tag. If the second one was wrong, it can be deleted directly, and

t he first one will take over in subsequent Listings and Directives .
The error printout format is shown by the examples below:

DOUBLE DEFINITION!

FORMAT ERROR I

BADTAG

LOCATION

**FIRST LOCATION

**BAD LINE

Format Errors include such thir.gs as an attempt to defi ne an op code (e .g .

I.DA = DAD 6), extra meta-ccmnai:ds (especially END) , and improper symbols in

MACRO DEFINITIONS. In meta-commands, the line is removed; in other cases, only

the offending character is deleted .

The PROGRAM is pri nted in symbolic form at the lef t , on t wo lines if

necessary . The octal m.nneral form is given at the right vi th its octal

memory location.

The SUMCHECK occurs only on paper tape versions of Listings and Directives

(Plist and Dir) . It is given as a meta-canmand, e .g . -suM 41 6521

The sum is checked on M4 Read-in (...... Lw READ) and if an error is found, the

word "SUMCK" is printed on the Lincoln Writer . The user can proceed at tis

O\l?l risk, or he can try again.

ororERRORS

ERRORS vill type t he error block if there are less than 8, or if there

are more, it vill print them on the Xerox. Once this is done, the error

block vill not appear on subsequent listings .

6-18 October 1961

Example l

Here is a listing of the program of the previous section - before the correction tape was

used .

RE•000404 TABL•0004 J2

OUT•000402 RESET•0004JJ TEST•000400

PR•OOOH o

START• 400

Cit• J

FORMAT ERRORI TEST+J**COH-+ JPQ BL

START I
TEST-+ SKN J•l PR IJOJ76J 0004Jo1000400

COH JPQ BL IJ4s100 0004071 40J

OUT-+ TSO TABL
Cit

I 005 1oi 0004l21 402

HKN J•J PR loJJ76J ooo4i ol 403

RE-+ LOA { o} 1002400 0004061 404

STA RESET 1003400 0004lll 405

0 1000000 00000 01 406

BL-+ 0 1000000 0000001 407

PR-+ 0 1000000 oooooolooo4JO

RESET..,. 0 1000000 0000001 4JJ

TABL..,. 0 1000000 0000001 4J2

OJ 76 02

October 1961 6-19

Exanple 2

Here is a listing of the same example, made after the correction tape was used . Note that

the error notice is always printed once, even if the error is corrected later on . If a listing

is lllade between tapes, the error notice is not included on the second listing .

COMM•00040J

IND•0004J4

BL • J OOO

OOPS• 2000

START• 400

Cl• J

OUT•000404

PR•0004J5

RE•0004l0

RESETa0004J 6

FORMAT ERRORI TEST+l**COM~

**SAMPLE PROGRAM FOR

START I
TEST~ SKZ 3. l PR

COMM~ JPQ BL
30

SKX
66

#+1

IOS 30000
66

our~ TSO TABL
4

SKZ 3. 3 IND

JPQ OOPS

MKN
3 · l

PR
RE~ LOA {-1}

STA RESET

0

-l

IND~ 0

PR~ 0

RESET~ 0

TABL~ 0

056632

6 -20

TABL•0004J7

TE ST•000400

JPQ BL

USERS HANDBOOK

I 20J 76J 0004151000400

IJ40500 0010001 401

1301266 0004031 402

loo0466 0300001 403

I oos 101 0004171 404

1201163 0004141 405

1140500 002000 1 406

1031161 0004151 407

1002400 0004J3I000 4l0

I 003400 0004161 4 l l

1000000 0000001 412

I 111111 7777761 4 l J

1000000 0000001 414

1000000 0000001 415

1000000 0000001 416

1000000 0000001 41 7

October 1961

....-DIR AA

,..,..DIR AA-+88 Directive Via Punched paper tape .

,....DIR AAJ11

..... roIR AA

..... ro I R AA ... 88 Directive Via Typewriter .

..... roIR AAl11

,....LOIR AA

,....LDIR AA ... 88 Directive Via Xerox .

..,.. LDIR AA l 11

The format of a DIRECTIVE is as follows:

EQUALITIES TABLE

MACRO DEFINITIONS

SYMBOLIC PROGRAM

oror SUMCHECK

(No Asterisks or Hands)

432170 (Looks like a Meta-command)

There is no symex table, error table, octal program, or RC Word block. The

sumcheck is a 6 digit octal number . If the tape has been damaged or spliced

so that the sumcheck is wrong, M4 Will type "SUMCK" on the Lincoln Writer ,

and control of M4 will return to the Keyboard.

Partial Listings and Directi ves

October 1961

If no address section is given in the Listing and Directive type meta

colml8llds, the entire program is included in the output . In a partial L~sting

or Directive, the tables and macro definitions are included only if the first

word. or the program is i ncluded in Lhe 11e1:l.iv11 lmli=.Led 1.Jy the address given .

6 -21

(Directive Before Corrections)

START• 40 0

START j

TES T ..

OUT ..

RE ..

(Directive After Corrections)

BL • 100 0

OOPS• 20 0 0

START• 400

START j

TES T ..

COMM ..

OU T ..

RE ..

SKN
3 • l

PR

COM JPQ BL

TSO TA3La
MKN

3 • l
PR

LOA { o}
STA RESET

Oll5l6

**SAMPLE PROG RAM FOR US ERS HA NDBOOK

SKZ J·l PR
JPQ BL
3 0 SKX #+l

66
IOS

66
30000

TSO TABL a
SKZ

3. 3
IND

JPQ OOPS

HKN
3 • l PR

LOA {-l}
STA RESE T

021762

6-22 October 1961

,..,.. PUNCH

,..,.. PUNCH AA

PUNCH produces a puncheC. paper tape in Binary Format. If an address is

given, a JPQ AA goes into register 27(oct.)' If there is no given address,
J'PD 27 is used. Since the readin program ends with an Ios5220000 (DISCON

NECT PETR) in register 26(oct.) the "AA" is essentially a starting address

for the tape . AA must be within the program .

Binary Tape Format is as shown below:

To the Bin To the Reeler

Last First Start Reader • •
• • • •Program • Program· · • • • j3:j.qc)t. • • • · • · Leader • • • • • • ! • • • • for

Block* Block* Register (23 words) • •

October 1961

~7 oct

*There is, in general, one block per M4 Origin .

The "Reader Leader" is the binary version of the Readin Program

Readin Plugboard Program reads the reader leader into registers

and t hen jumps to register 3, t he start of che readin program.

t
End
Mark

itself. The

0 -26 (octa1)
The first

word of a block t ells where the block i s to be located, and how many words

are therein. The last word is an 18 bit 1,;h.,1,;k sum and an address tell.ing

the readin program where to go next . For all but the last block, this

address Will be "3 11
, the start of the readin program. For the last block 1t

will be 26 (oct .) . Registe~4 26 contains "IOS5220000" and 27 will be either
JFQ AA (if AA is given) or J'PD 27 if no address was given . The readin

program therefore will jump to the new program 'With sequence number 52 chosen,

and With the PETR DISCONNECTED. If there is no given starting address, the

readin program leaves the canputer in LIMBO.

6-23

Note: Metabits are not set by the read.in program. They are cleared

wherever the read.in program stores new words.

Note also: The special b:ock for register Zl comes before the program

on the tape. Program material that is to go in register Zl therefore super

cedes this special block created by M4.

5-3.5 M4 FORMAT VARIATIONS - DEC, OCT, T=CR, T=TAB, RC STORE, XXX

-DEC I HAL

-ocTAL

(irir DEC)

c ocT)

All numerals in an M4 manuscript are considered to be of the same numeral

system unless they are followed by a period (in which case, the other numeral

system is used). DEC and OCT remain effective until changed and are not saved

for inclusion in the Directive . M4 preserves Decimal Integers by r eproducing

them with a "following period". Oc-;al is the "normal" mode - CLEAN or CODABO

16000C (Pushbutton) will reset the numer al interpretation to Octal . Note also
that the right hand numeral in a SKM bit designation is always Decimal.

When a table of constants is pa.:-t of a manuscript, . it may be easier to type it in

sever al columns by "tabulation". "T=CR" allows this by making TAB a word termi

nator similar to Carriage Return (CR). In ~his mode, tabs can not be used with-

in words . T=TAB returns M4 to normal .

Note : These meta -commands are not included on a Directive . A table that

was typed i n ·several columns will be reproduced as one column on the Directive.

irirRC STORE

RC STORE means "Put the RC BLOCK here". The RC Block will be at the end of

the program if this meta-command is ~ot used. RC STORE can be inserted via irirINS

and need not be deleted for M4 automatically deletes an existing RC STORE when a

new one is inserted.

6-24 October 1961

irir XXX (or Special Key "NO")

XXX has canplete control. It Vipes out all input information back to the

preVious carriage return and forward to the next CR (or tab if T=CR). It can be

used on any line, anywhere even 'Within a cormnent, but not arter backspace.

6-3.6 USE OF SPECIAL KEYS

The top row of keys on the Lincoln Writer has five special keys which have no

machine function or associated character . They are extras, and can be used for

any purpose. The M4 system uses them as abbreviations for certain meta-comnands .

These special keys terminate the line as far as M4 is concerned. If an address

is to be used, it is to be typed first . The keys are assigned as follows:

October 1961

WORD EXAM (71)
YES (17)

NO (16)

BmIN (1 5)

READ IN (14)

STOP (76)

LIST
MOST F.ECENT OF TYPE, TDIR, DIR, LIST, PLIST, OR LDIR .

XXX (This works backwards only - It does not delete

forward .)

BI!i (BINARY STORE)
LW READ

The stop key means "stop" . It is always active . If M4

is printing too much, if it is "hung-up", or if it is

performing a f\.lnction that i s no longer wanted, the

stop ~.ey will return control to the keyboard and stop

whate,·er is going on .

6-25

6-3.7 MAGNETIC TAPE BULK STORAGE - SAVE, !IBAD, TAPE, CORE

The M4 Magnetic Tape Bulk Storage reel contains a copy of the M4 program

itself (in Binary and Directive form, and 'With 3 Binary back-up copies), and
working space about 30 times the size of S Memory. Working space is assigned in

200 vord blocks, the average allotment being 1000 blocks - i . e. one S Memory.

M4 does all the detailed tape coding. A standard tape format is used vith an

18 bit check sum for error detectin;s. Tape malfunction is autanatically reported

on the typevriter - the report inchdes missed data detected by the alarm circuits

(Sequence #41) as veil as check sum errors. The users "M4 Name" is used to

determine the proper vorking space, and M4 automatically protects the rest of the

tape . The four Meta-commands listed belov permit the user to store and retrieve

his program or other material in Di~ective Format (Save-Read) or in straight
Binary (Tape-Core) .

M4 Ansvers to Mag Tape Meta-Commands

When M4 can not perform the giYen command because of programming limitations ,

it types NO in red on the Lincoln Writer, and it ignores the command . No data
is transferred.

When M4 ~ and does complete ~he given command, it tells the user vhich tape

area vas used, and the associated four character identification derived from the

check-sum. The tape area is speci~ied by the block number of the first block and

the block number of the next free block . For example:

0100 - 01()7 TY7J

means that blocks 100 through lo6 vere used. "TY7J" is the identifying vord.

If there is a tape equipment malfunction vhile M4 is in operation, the vords

"TAPE ERROR" are printed in red on the Lincoln Writer folloved by pertinent data.

This print-out should be saved for the Tape Engineers, and the incident should be
duly reported.

,..,.. SAVE l00-200 **SAVE CURRENT DIRECTIVE

If all is veil, M4 stores the current directive on Mag tape beginning at the

specified block number (100 in this case) , and reports back via the typevriter the

tape area used, and the four character identification. This 'Will be the same

identification as that used on Listings . Saving and retrieving a Directive on

Magnetic tape does not "clean it up" the vay it does vhen paper tape is used. The

6-26 October 1961

Directive comes back exactly as it was .
"RECONVERT" should be used before SAVE.

To "clean it up", the meta-command
The second block number is protectei.

If the directive will not fit in the specified area, M4 types "NO" in red. If

the second number is omitted, the remainder of the user's allotted working space
is assumed to be available . If both numbers are omitted, address "zero" is

assumed. If M4 types "NO", the COOimand has been ignored.

..-..- READ JOO **READ DIRECTIVE FROM MAG TAPE

If the address given is the start of a Directive, "READ" will clean M4 and

read in the Directive from tape . It will then type the tape location (i .e . first

block and the one after the last block), and the four character identification .

If the address given is not the start of a Directive, "READ" types "NO" in

red and does not clean M4 nor read from tape .

TAPE - CORE (Binary Storage and Retrieval)

TAPE and CORE deal with Bi nary (i .e . Absolutely Numerical) information and

therefore require two address sections - one for the working space on tape and the

other for core memory. (The word "to" is understood - 1. e . it is TO TAPE and

TO CC!lE.) Both address sections must be numerical and the tape address comes

first .

.....-TAPE 200-300
(TAPE AREA)

0 -1 1111

(MEMORY AREA, INCLUSIVE)

TAPE copies from core to Tape . Working space on tape is used a block at a

t ime - i .e. in 200(8) word sectior.s. If the second tape block number is omitted,

the rest of the user's allotted •orking space is assumed to be available . If

t he data from core will not fit, r.one of it is copied and M4 types "NO" in red.

If it does fit , M4 types the first block number, the one after the last, and the

four character identification derived from the check sum that is used on tape.

The rest of a partially filled block is set t o zero.
inclusive.

,..,..C ORE JOO 0-1 7777

The memory address is

(TAPE AREA) (MEMORY AREA, INCLUSIVE)

CORE copies from tape to core until the specified core area is full. If all

is well, M4 Vill type the usual message - i . e . tape area used, and four character

identification word. If the meta-command asks for words beyond the user's allotted

October 1961 6-27

space, or if the M4 program itself is threatened, M4 types "NO" in red. (M4 is

located at 160000 - 174010.) The identification word Will be different if only

part of a section is retrieved or i~ a program is stored in several pieces and

retrieved by one command.

6-3 .8 META-CCMMAND SUMMARY

Cl ean

LW Read

Reconvert

Name

Insert

Delete

Replace

Move

List
Type

Plist

Directive punch

Tdir

Ldir

Binary Store

Punch Binary

Goto

Decimal

Octal

T=CR

T=Tab

End

RC

Sumck

Save

Read

Tape

Core

Define

EMD

Demo

Output

Format

} ~Tape

} Macro

BIN

CLEAN

CORE

DEC

DEF

DEL

DEMO

DIR

END

EMD

- Binary Store

- Clear M4 Directive Storage

- Tape to Core

- Decimal

- Define

- Delete

- Demonstrate

- Directive Punch

- End of Multiple Word Meta-Command

- End of Macro Definition

G<Yl'O - Go To User's Program

INS - Insert

LDIR - List Directive on Xerox
LIST - Print Listing on Xerox

LW

MOVE

NAME

OCT

PLIST

PUN

RC

READ

REC

REP

SAVE

3UMCK

TAPE

TDIR

TYPE

T=CR

T=TAB

6-28

- Lincoln Writer Read-in
- Move Program Block

- Set User Identification

- Octal

- Punch Listing

- Punch Binary

- RC Store

- Read Directive from Tape

- Reconvert

- Replace

- Save Directive on Tape
- 3um Check

- Core to Tape

- Type Directive

- Type Listing

- Tab equals Carriage Return
- Tab equals Tab .

October 1961

6-4 MACRO INS'.:'RUCTIONS

A macro-instruction is an abbreviation for a flexible subprogram which is written by

the ~ser (as a Macro Definition) and is inserted into the prop;ra~ by M4 wherever the Macro

Instruction is used. The subprogram is vritten in terms of dummy parameters and when it

i s copied by M4, only those portions that correspond to specified parameters arc used .

For example :

If the definition of "DO A, B, C, D" is

..-..-DEF

..-or EMO

And if the program is :

1001

LI tlE J-+

LI tl E 2-+

LI tlE J-+

Then M4 will produce :

1001

L ItlE 1-

LillE 2-+

L ItlE J-+

October 1961

oojA,B,C,D

A

B

B

c
D

oojLOA T1 ,ADD

DO I LOB Ta
DO I • 6

D'l I LOA r
1

,Ao o

LOA T'
ADD TT

ADD TT

ADO 66

STA cc
DOI LOB T a
LOB Ta
00,6

6

6

6-29

TT, ADD BB, STA CC

TT,ADD BB. STA cc
1002401 OOOll2IOOOJOO

1006700 OOOJJJI JOJ

1006100 OOOJJJ I JO 2

loOG700 000 llO I JOJ

loOJ400 OOOJJJI 1 04

! 002so2 OOOJJ2j JO S

1000000 0000061 106

1000000 0000061 J07

6- l1 .1 Macro Definitions - Meta-conunands "DEFINE" and "EMD"

As shown by the example above, two meta-commands are used With Macro Definiti ons -

..,.. DEFINE (DEF is enough) and ,..... EMD (End of Macro Definition .) A macro definition has

two parts - the abbreviation itself, and the defining subprogram.

must precede the use of a Macro instruction.

6 -4 .2 The Mnemonic Abbreviation Line of A Macro J:efinition

The Macro Defini tion

A Macro Definition starts With the "Macro Name" and dummy parameters as follows :

,..,.- OE F oojA, B,C,O

The "Macro Name" here .is "DO", the "dummy parameters" are A, B, C and D, and conunas were

used as "Macro Terminators" . A Macro Definition must be terminated by the Meta-comma-id

" ,..,..EMD" (~nd of Macro ~finition) .

6- 4 .3 Macro Na..~es

There are two kinds :

a . Any Symex may be used as a Macro Name . It may be used al one, or followed by a

terminator and parameters, (each of which is separated from the other by termi

nators) .

b . A compound character may be used . It may consist of two or three superposed

non-alpha-numeri c characters - e .g., 8 or f or to • It may not be '° , @, or 8.

(These are reserved for M4 .) The characters may be typed in any order . A

compound macro name i s itsel :f a t erminator - i . e . parameters may come before as

well as after . For example :

,..,.. OE F A , a 8 8 -+DO UG

,..,.. E '10

The Macro Name is 13 .

6-30 October 1961

6-/ic .4 Dummy Parameters

Dummy Parameters may be any symex (even three letter mnemonic codes and the single

letters A, B, C, D and E) . A Dummy Parameter may be included as a mnemonic aid ~nd need
not be used in the defining subprogra~. Dtnr.my Parameters must be separated by m~cro

terminators.

6-~ . 5 Macro Terminators

The following symbols may be used.

~ . = ~ r ~ • - < > n v I ~ v A

Other symbols may not be used .

6-4.6 The Defining Subprogram

The defining subprogram is written using the Dummy Parameters and must be terminated
by - EMD (End of Macro Definition) . Note the following rules and conventions .

l . Symexes defined by equal sign (=) or by arrow (-+) within the macro definition

are not part of the program proper and refer only to the macro subprogram.

2. A symex that is not defined vithin the MACRO Will refer to the main program and

if it's not assigned there, it Will be assigned automatically in the RC Elock.

(But only if the Macro is used in the program proper .)

3. The single letter symexes A, B, C, D, E Will refer to the AE unless they are used
as Dummy Parameters .

4. An instruction in a defini tion may use a parameter harmlessly so that it Will be

left out when the parameter is not used . One way to do this is as follcws :

LOA a T J + (DPl - (DP)

("DP" is the dummy parameter .)

5· A Dummy Parameter may not be ~sed as a tag Within the defining subprogram. (You
can, of course, write JPQ DP, but not :

DP-+

6 . A line that uses two Dummy Parameters Will be left out if either is le~ out
when the macro is used.

October 1961 6-31

7. A line that uses a d\.Ullllly parameter may be kept in With that parameter equal to

zero when the parameter is not used. This is done by using another symex that

is set equal to the d\.Ullllly in question. For example:

LOA OU/o\l +OU/o\2

can be written as :

LOA OU/o\l + G6

G6 • OU/o\ 2

6-4.7 Use of Macro Instructions

A macro may be used as a Pseudo Instruction by itself, or "nested" as a parameter of

another macro . It may even be used as a parameter of itself . It may be an RC word.

When used as an RC Word, it Will use several regi st er s of the RC Block and the location

of the first of these will be the associat ed address . Consider the examples below.

Example 1. A Macro used Within bracket s - i .e . as an "RC Word"

- DEF TBS!ct

Cl

Cl

Cl

Cl

Cl

LOA {TS-+TBS I o} **s BLANK RC WORDS

LOA TO/o\H

STA TS+J

The program is expanded as followo :

LOA {TS-+TBS Io} I 002400 OOOlOJ,OOOlOO

LOA TOMI\ !002400 OOOllO I l Ol

STA TS+J I 003400 000l06' l 02

TBS!o

0 !000000 000000 1 l OJ

0 !000000 000000! l 04

0 !000000 000000! l OS

0 !000000 0000001 l 06

0 !000000 0000001 l07

0 !000000 ooooooloooiio

6-32 October 1961

Example 2 . A Macro used to generate a table of squares .
If the manuscript is as follows:

ororOEF

...,..EMO

TABL ..

SQIA

A

A

NSQ•(#-TABL) x(#- TABL)

SQI (S Qj (SQI (NSQ)))

M4 Will produce the program shown in the "Plisting" below .

TABL•OOOJOO

NSQa (#-TABL) x (#-TABL)

...,..DEF SQIA

A

A

i oo I

TABL-+ SQI (SQI {SQI (NSQ)})

(NSQ) 10000 00 oooooojoooioo

(NSQ) 1000000 OOOOOl I l Ol

(NSQ.) 1000000 0000041 1 02

(NSQ.) 10 00000 OOOOlll l 03

(NSQ.) joooooo 0000201 J04

(NSQ) 1000000 oooo;si I J 05

(NSQ) 1000000 00004 4 1 J 05

(NS Q.) 1000000 oooou I J 07

,..,..SUM 0250l5

October 1961 6-33

Example 3. An open subroutine for index memory "integer" multiplication.

The macro below finds the righthand 18 bi ts of the full product of two X Memory

words (a & f:l), prov1ded that said product is no larger than 17 bi ts and sign . The

product goes into X Register "<i', "TXX" is cleared, X Register "l:l" is ruined, and the

symexei; "'l.'IJ'J(" 11.rnl "FX11' are "u:sed up" . (Since oymcx "S" is defined ITT.thin the macro,

it is not "used up" .)

FXl'" l

S•

orirEMD

iool

USE ...

TXX-+

TXXsOOOllO

MUL X, cue a

DPX TXX

'EXXaTXX
4 szz, . , rxx
INXala

INXaja
RSXFXl TXX

JPXFXlS

MULX,lX2

DPX TXX
lEXX TXX
4szz

l • l TXX

I NX
l I 2

INX 2j2
RSX

FXl TXX

JPX FXl s

0

037643

6-34

USE•OOOlOO

f oouoo oooiioloooioo

loll40l oooiiol l Ol

I 26l 72l OOOllOI l02

l o2i2oi 400l071 l 03

lo2i202 400l071 l 04

loollOl OOOllOI l OS

140060l 0001021 l 06

1000002 0000001 l07

1000000 ooooooloooiio

October 1961

Example 4. An open subroutine for "exclusive or" using a compound macro name .

In the macro below, the result goes into X Register "d', TXX is set to (a), c(t3),

and X Register "13" is not changed . An underline was used in the macro name because

the symbols ft) , 0 , and 0 are not available as macro names.

BILL • l

T0/111• 2

loo I
USE~

rxx~

October 1961

TXXaOOOl 06

a§?!&
1 DPX

8
TXX

11
2

DPXaTXX

11
17

COM E

llITE TXX

TOH~BILL

l
OPX BILL

,.2
DPX TO HH

11
1 7

COH E

lo ITE TXX

'- RSX TOMH
2

AU X TO M/1

0

036551

TXX

TXX

E

E

6-35

USE•OOOlOO

1011601 0001061000100

1421602 0001061 l Ol

ls1s500 3776101 l 0 2

14 o .. 000 0001001 l 0 3

1401102 3176101 l 04

102 1 002 3176101 l 05

1000000 0000001 l OE

7 -1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

TX-2 USERS HANDOOOK

CHAPTER 7 - VARIOUS TABLES

TABLE OF COJITENTS

IN-0\11' SEQUENCE NUMBER ASSIGtU'1ENTS

STANDARD CONFIGURATIONS

OPERATION CODE MNEMONICS

META-COMMAND MNE?-lONICS

XEROX CHARACTER CODES

LINCOLN WRITER CHARACTER CODES

M4 COMMA CHART

AVERAGE DURATION OF INSTRUCTIONS

October 1961 7-0

IN-OUT SEQUENCE ASSIGNMENTS FOR TX-2

00 STARTOVER

4 0 60 DISPLAY NO· l

4l ALARM, IN-OUT 6l RANDOM NUMB ER GENERATOR

42 TRAP 62 PUNCH NO· 2

4 3 63 PUNCH NO· l

44 6 4

4 5 IBM MAG TAPE 65 LINCOLN WRITER INPUT NO· l

4 6 MAG TAPE BU LK STORAGE 66 LI NCOLN WRITER OUTPUT NO· l

.. 7 MISCELLANEOUS INPUTS 67

50 DA TRAC 70

5l XEROX 7 l LINCOLN WRITER INPUT NO· 2

52 PETR 72 LINCOLN WRIT ER OUTPUT NO· 2

53 73

5 4 INTERVAL TIMER 7 4 PLOTTER

55 LITE PEN 75 MISC ELLANEOUS OUTPUTS

56 DISPLAY NO· 2 76

57 77

Table 7 -1 October 1961

TABLE 7-2

STANDARD CO NFIGURATION SET

a Fial DESCRIPTOR a FI a I DESCRIPTOR

0 000 4 J 2 l J ~ + +, 20 200 4 J•2 l JJU ----
l J4 0 4 J. 2 l Ll 2l 2JO 4 J. 2 l JJ. --
2 J42 2 l • 4 J ~ 22 2J2 2 l • 4 J ,/~ -- --
J 760 4 . J. 2 · l J., 2J 7J2 2 • l • 4. J ~ - -

4 16l " . 4. :s. 2 ~ 24 7$$ 3•Z'l•4 ~ - -
5 762 2•J•4'.! ~ 25 7JO 4. J. 2 • l l - -
6 76J J. 2 · l. 4 ~ 26 1Jl l. 4. J. 2 ~ -
7 4l0 4 J 2. J LU 27 6 05 l • 2. J. 4 ~ - - - - L-J .._, '-' '-'

JO 4ll l 4 J. 2 .~ JO 600 .~ ... :!.' .. ~ .. !. llll ---
ll l40 4 J 2 l + t 3l 750 4. l. 2. J l I

l 2 l42 2 J 4 J .~. J2 670 4. J. 2 • l l -- -
ll l60 4 l 2 !. t JJ J20 4 J•2 !. ~~ -

14 J 61 l 4 J 2 \ J4 JJJ J 2. l 4 ._(- -
l 5 J62 2 J 4 J I ""'· JS JJO 4 l. 2 l ~ - -
l 6 l 6 J J 2 J !. I '---....., J6 JJl J 4•J 2 I,, -
l 1 202 2 J • 4 J ~ J7 604 3. 4 • l • 2 j(u~ -- -- - - - -

STANDARD PERMUTATIONS

I I I I ~ »< /-1...../.. X'\X ~)X I HI
0 l 2 3 4 5 6 1

October 1961 Table 7-2

'<

TABLE 7-2A

STANDARD CONF I GURATION SET

a Fla! DESCRIPTOR a Fla! DESCRIPTOR

4 3 2 1 4 3 2 l

0 000 4 J 2 l ,I I I I, 20 200 4 J•2 l LlLl ---
l J40 4 J•2 l LL 2l 2JO 4 J•2 l J_L -
2 J42 2 l•4 J ~. 22 2J2 2 l•4 J I-----.---
J 760 4•J•2•l l 2J 6 7l l•4•J•2 ~ - -

4 3 2 1 4 3 2 l

4 76l l•4•J•2 ~ 24 6 7 2 2•l•4•J ~ - -
5 762 2 • l•4•J ~ 25 6 7J J•2•l•4 L -
6 76J J•2•l•4 ~ 26 604 J•4•l•2 x~ - ----
7 4l0 4 J 2•l 11 I I, 27 605 l•2•J•4 ~ - - - -

4 3 2 l 4 3 2 l
lO 4ll l 4 J•2 .~ JO 600 4•J•2•l lll l - - - -
ll l40 4 J 2 l I I ll 750 4•J•2•1 l - -
l2 142 2 l 4 J l~I J2 7l0 4•J•2•1 l - -
ll l60 4 J 2 l

l I JJ 670 4•l•2•l l
4 3 2 l

14 l 6l l 4 l 2 ""'-' l4 To be assigned by the user

15 l62 2 l 4 l --- JS II II II II " " L

l6 llSl l 2 l 4 .-----, J' " II II II " "

~
To be assigned by the user, but

l7 202 .L.!. • .!....!.. l7 also used by Executive System.
(So use hold bit .)

STANDARD PERMUTATIONS

I t I I % >*< m x x ~ >X I ~ I
0 l 2 3 4 5 6 7

*For use vith the TX-2 Executive System Only .

February 19(54

Numerical Order

0
1
2
3
4 - IOS
5 - JMP (1)
6 - JPX
7 - JNX

10 - AUX
11 - RSX
12 - SKX (2)
13
14 - EXX
15 - ADX
16 - DPX
17 - SKM (3)
20 - LDE
21 - SPF
22 - SPG
23
24 - LDA
25 - LDB
26 - LDC
27 - LDD
30 - STE
31 - FLF
32 - FLG

33
34 - STA
35 - STB
36 - STC
37 - STD
40 - ITE
41 - !TA
42 - UNA
43 - SED
44 - JOV
45
46 - JPA
47 - JNA
50
51
52
53
54 - EXA
)) - lNS
56 - COM
57 - TSD
60 - CYA
61 - CYB
62 - CAB
63
64 - NOA
65 - DSA
66 - NAB
67 - ADD
70 - SCA
71 - SCB
72 - SAB
73
74 - TLY
75 - DIV
76 - MUL
77 - SUB

Alphabetical Order

ADD - 67
ADX - 15
AUX - 10
COM - 56
CAB - 62
CYA - 60
CYB - 61
DIV - 75
DPX - 16
DSA - 65
EXA - 54
EXX - 14
FLF - 31
FLG - 32
INS - 55
IOS - 4
!TA - 41
!TE - 40
JMP - 5
JNA - 47
JNX - 7
JOV - 44
JPA - 46
JPX - 6
LDA - 24
LDB - 25
LDC - 26
LDD - 27
LDE - 20
MUL - 76
NAB - 66
NOA - 64
RSX - 11
SAB - 72
SCA - 70
SCB - 71
Sl!:D - ~3
SKM - 17
SKX - 12
SPF - 21
SPG - 22
STA - 34
STB - 35
STC - 36
STD - 37
STE - 30
SUB - 77
TSD - 57
TLY - 74
UNA - 42

OPERATION CODE MNJ:MONICS

Table 7- 3

Supernumerar~ Mnemonics
(1) JMP - OJMP

Make

Skip

Skip
on
Zero

Skip
on
One

BRC - 1.n4P
? JPS - -,n,tp

BRS - 3.nU'
JPQ _14JMP

BPQ - 15 .R.\P

JES _16.RU'

JPD -20JMP

BRD -21
JMP

JDS _22JMP

BDS -23
.Jl.fP

(2) REX - SEX - OSKX

INX -
2

SKX

DEX - 3sKX

SXD -
4

sKX

sxr. - 6sKX

SXG - 7sKX

RXF -
10SKX

rum -20
sKX

RFD -30sKX

Rotate

SUN _l3SKM

SKZ -20
sKM

SZC -
21

SKM

SZZ -
22sKM

SZN -23SKM
SKN -30sKM

SNC -31SKM

SNZ -32sKM

SNN -33sKM

CYR - 4
sKM

MCR - 5SKM

MZR -
6sKM

MNR - 7sKM

SNR -34sKM

SZR -
24

sKM

SUR -
14

sJ<M

October 1961

7-4 META-COMMAND MNEMONICS

Clean } LW Read

Reconvert

Name

Insert } Delete

Replace

Move

List

Type

Plist

Directive punch

Tdir

Ldir

Binary Store

Punch Binary

Goto

Decimal

Octal

T:CR

T=Tab

En<i

RC

Sumck

Save } Read

Tape

Core

Define } EMD

Demo

October 1961

Input

Changes

Output

:'ormat

Mag Tape

Macro

BIN

CLEAN

CORE

DEX;

DEF

DEL

DEMO

DIR

END

:EMD

ooro
INS

LDIR

LIST

1M

MOVE

NAME

OCT

PUST

PUN

RC

READ

REC

REP

SAVE

SUM CK

- Binary St.or<>

- Clear M4 Directive Storage

- Tape to Core

- Decimal

- Define

- Delete

- Demonstrate

- Directive Punch
- End of Multiple Word Meta-Command

- End of Macro Definition

- Go To User's Prognun

- Insert

- List Directive on Xerox

- Print Listing on Xerox

- Lincoln Writer Read- in
- Move Program Block

- Set User Identification

- Octal

- Punch Liztlng

- Punch Binary

- 1iC Store

- F.ca I Jirec~i. ve frcrn Tape

- Heplace

- .~n• 11ircctiYc on Tape

- :;um Check

TAPE - Core to Tape

'!'DIR - '"'vr Directiv<.

TYPE - TIT ' istir. -

T:CR

T=TAB

Table 7-4

- Tab eqi:als Carriage Rct-.rr.

- Tab equals Tab .

XEROX PRINTER CHARACTER CODES

CHARACTER
A

B

c
D

E

F

G

H

I

J

K

L

M

N

0

p

Q

R

s
T

u
v
w
x
y

z
h

OCTAL CODE
154

J42

361 (056){07J){346)

3 52

313 (043)

344 (054)

302 (012)

3 54

J72 (J57)

144

143

332 (047){062){317)

360 (055)(010)(345)

310 (3 55)

3 53

312 (042)

160 (145)

37l (356)

322 (017)(032)(307)

l 53

362 (057)(072){347)

152

343 (053)

l6J (J46)

342 (052)

162 (147)

J32 (117)

J33

< 220 (205)

> 22 l (206)

• (PERIOD) 222 (201)

+

v

I
l:
}
rr

I
u

3 5 l

372 (357)

340 (o5o)

363 (073)

730 (445)(460)(715)

703 (4l3)

720 (4J 5){430){705)

J50

570 (555)

140

ll4

131 (ll6)

103

CHARACTER
J ,.
n

" q

x

"'
13

y

l

2

3

4

5

6

7

8

9

o (ZERO)

?

, (COMMA)
n

)(

OCTAL CODE
122 (107)

324 (034)

3 23 (033)

024

l l l

11 2

F3

174

163

164

3l0 (040)

311 (041)

333 (063)

203

354 {064)

023

001

002

003

004

020 (005)

021 (006)

022 (001)

300 (010)

301 (011)

000

202

204

120 (10s)

121 (106)

113

0 (CIRCLE) 714 (444)

373

II
0
{

...

*
c

34J (051)

3 64 (074)

731 (446){461)(716)

704 (414)

721 (416){431){706)

151

571 (556)

141

130 (us)

102

104

Note : Bit 1.9 of the Xerox Char acter Code is a "size control bit" . "l" means large, and
"O" mea ns srrall. The codes a re given above With the "proper" size .

Table 7 - 5 October 1961

TX- 2 LINCO LN WRITER CODES

00 0 ,.. 40 Q. Cl

oz l 2: 41 R II.

02 2 I 42 s ,
03 3 ~ 43 T £

04 4 I 44 u It

05 5 x 45 v :>

06 6 # 46 w 8

07 7 ... 47 x /\

JO 8 < 50 y x

11 9 > SJ z -
12 52 ({

l 3 oo 53) }

14 READ IN 54 + "

15 BEGIN 55

16 NO 56

17 YES 57 . *
20 A n 60 CAR RETURN

21 B c 61 TAB

22 c v 62 BACK SPACE

23 D q 63 COLOR BLACK

24 E y 64 SUPER

25 F t 65 NORMAL

26 G '° 66 SUB

27 H " 67 COLOR RED

30 I ' 70 SPACE

3 l J)I 71 WORD EXAM

3 2 K " 72 LINE FEED DOWN

33 L ? 73 LINE FEED UP

34 M u 74 LOWER CASE

35 N n 75 UPPER CASE

36 0 J 76 STOP

37 p ,, 77 NULLIFY

October 1961 Table 7-6

7-7 M4 COMMA CHART

COMMAS BEFORE COMMAS AFTER CRAM DIAGRAM EXAMPLE

0 0 t t t t 1144 333 222 111

0 l ~ 111 - - -

0 2 // 222 111 - -

0 3 /// 333 222 111 -

l 0 t - - - 111

l l // - 222 lll -
l 2 / - lll - -

l 3 t t t 444 333 222 -

2 0 t t - - 222 111

2 l / - - 111 -
2 2 ~ 222 111 444 333

2 3 ~~ - - 444 333

3 0 + - - - 111

3 1 ----- - - - 444

3 2 "' - 1144 - -

3 3 ~~ - - 1144 333

Table 7-7 October 1961

7-8 AVERAGE DURATION OF INSTRUCTIONS

This duration chart was r.iade by TX-2 by timing the duration of 800o repetitions of

each operation with various combinations of memories . The columns are lab led as follows :

P MEM - The memory used for the instructions .

OP Code - The instruction being timed .

'1 - The memory used for intermediate deferred address (if any) .

Q MDI - The memory used for final operand (1f any) .

MMS - Average durat~on in microseconds .

The abbreviations used within the columns are as follows :

S S memory

T T memory

VFF Flip-Flop part of V memor·y (A, B,C, etc .)

VT Toggle Memory

The instructions are listed in numerical order (by op codeG) .

October 1961 Table 7-8

p MEM OP CODE Q MEM MHS

s AOP J67000 B•O

T AOP 1~7000 G • 0

s IOS 0 9•2

T IOS 0 7•2

s JMP 7•6

T JHP 5•6

s JPA B • O

T JPA 6 • O

s JNA 8•0

T JNA 6•0

s JOV 8 •0

T J ov 6. 0

s JNX 9•6

T JN X 7 • 6

s JPX 9•6

T JPX 7•6

s SKX l 0. 0

T SKX B • 0

s SKX s 20•4

T SKX s I 8 • 4

s SKX T I B • 4

T SKX T I 6 • 4

s AUX s 13. 6

T AUX s l l • 6

s AUX VFF 12. 4

T AUX VFF 10•4

s AUX VT I 2 • 0

T AUX VT 10•0

s AUX T 11 • 6

T AUX T 9. 6

s RSX s I 2 • B

T RSX s Io• 8

s RSX T IO• 8

T RSX T 8. 8

s RSX VFF I J • 6

T RSX VF F 9•6

s RSX VT 11 • 2

T RSX VT 9•2

s ADX s l 6 •O

T ADX s 10•0

s ADX T JO•O

T ADX T 12•0

s ADX VF F J0•8

T ADX VFF 8•8

Table 7-8, pg . l October 1961

p HEH OP CODE Q HEH llHS

s ADX VT J0•4

T ADX VT 9•4

s DPX s J4•0

T DPX s 7•6

s DPX T 7. 6

T DPX T 10•0

s DPX VFF S • 4

T DPX VFF 6•4

s DPX VT S•O

T OPX VT 6 •0

s EX X s 14•0

T EXX s JI • 2

s EXX T l I • 2

T EXX T 10•0

s EXX V FF JI • 6

T EXX V FF ~·6

s EXX VT J l • 2

T EXX VT 9•2

s SKH s J4•8

T SKH s 9•6

s SKH T 9•6

T SKH T 10•8

s SKH VFF l 0 . 4

T SKH VFF 8. 4

s SKH VT 10•0

T SKH VT 8•0

s SKH s s 25•2

T SK H s s 20•0

s SKH s T 20•0

T SKH s T 21•2

s SKH s V FF 20 . 8

T SKH s VFF 18•8

s SKH s VT 20. 4

T SKH s VT 18•4

s SKH T s 23. 2

T SKH T s 18•0

s SKH T T 18•0

T SKH T T 19•2

s SKH T VFF 18•8

T SKH T VFF J6• 8

s SKH 0 14. 8

T SKH 0 9•6

s LOA s 12•8

T LOA s 6•4

October 1961 Table 7-8, pg . 2

p HEM OP COOE A Q HEM MMS

s LOA T 6•8

T LOA T 9. 8

s LOA VFF 6. 8

T LOA VFF 5•2

s LOA VT 6•8

T LOA VT 4•8

s LOB s l2•8

T LOB s 6•4

s LOB T 6 •8

T LOB T 9 • 8

s LOB V FF 6. 8

T LOB VFF 5. 2

s LOB VT 6. 8

T LOB VT 4•8

s LDC s l2•8

T LDC s 6 •4

s LDC T 6. 8

T LDC T 9•8

s LDC V FF •• 8

T LDC VFF 5•2

s LDC VT 6•8

T LDC VT 4 • 8

s LOO s l2•8

T LOO s 6 •4

s LOO T 6•8

T LOO T 9•8

s LOO VFF 6. 8

T LOO VFF S•2

s LOO VT 6. 8

T LOO VT 4 •8

s LOE s l 2 • 8

T LOE s 6. 4

s LOE T 6•8

T LOE T 9•8

s LOE VFF 6•8

T LOE VFF 5•2

s LOE VT 6•8

T LOE VT 4•8

s SPF s 12•8

T SPF s 9•6

s SPF T 9•6

T SPF T 9•8

s SPF VFF 10•4

T SPF VFF 9•4

Table 7-8, pg . 3 October 1961

p HEH OP CODE Q HEH HHS

s SPF VT JO•O

T SPF VT 8. 0

s SPG s l2 •8

T SPG s S • 6

s SPG T S • 6

T SPG T 8 •8

s SPG VFF J0•4

T SPG VFF S •4

s SPG VT JO •O

T SPG VT 8•0

s STA s J4•0

T STA s 1 • 6

s STA T 6 •8

T STA T JO•O

s STA VFF 6•8

T STA VFF 5•2

s STA VT 6 • 8

T STA VT 4•8

s STB s l 4 •O

T STB s 1•6

s STB T 6 • 8

T STB T JO•O

s STB VFF S•B

T STB VFF 5•2

s STB VT 6•8

T STB VT 4 • 8

s STC s J4. 0

T STC s 7. 6

s STC T 6•8

T STC T JO• 0

s STC VFF 6. 8

T STC VFF 5. 2

s STC VT 6•8

T STC VT 4 •a

s STD s J4. 0

T STD s 7. 6

s STD T 6 • II

T STD T JO• 0

s STD V FF 6 •8

T STD VFF 5•2

s STD VT 6 • II

T STD VT 4•8

s STE s J4. 0

T STE s 7•6

October 19ol Table 7-8, pg . 4

p HEH OP CODE Q HEH HHS

s STE T 6 • 8

T STE T lO•O

s STE VFF 8 • 8

T STE VFF 5. 2

s STE VT 6•8

T STE VT ••8

s EXA s l4•0

T EXA s 1 • 6

s EXA T 6•8

T EXA T JO•O

s EXA VFF 6•8

T EXA VFF 5•2

s EXA VT 1•8

T EXA VT 4•8

s ITA s J 2. 8

T ITA s 1•4

s ITA T ••8

T ITA T f • 8

s ITA VFF 6•8

T ITA VFF 5•2

s ITA VT f•8

T ITA VT 4 • 8

s UNA s J2•8

T UNA s 6•4

s UNA T 6•8

T UNA T 1•8

s UNA VFF 6•8

T UNA VFF 5•2

s UNA VT 6 •8

T UNA VT 4•8

s OSA s ll•e

T DSA s 6•4

s DSA T 6•8

T DSA T 8•8

s DSA VFF 6•8

T DSA VFF 5•2

s DSA VT 6•8

T DSA VT 4•8

s ITE s J2•8

T ITE s 6•4

s ITE T 6•8

T ITE T 8•8

s ITE VFF 6•8

T ITE VFF 5•2

Table 7-8, pg . 5 October 1961

p HEH OP CODE Q HEH KHS

s ITE VT 6•8

T ITE VT 4•8

s SEO s 12•8

T SEO s ,.6
s SEO T ,.5
T SEO T 1•8

s SEO VFF l0•4

T SEO VFF 1•4

s SEO VT lO • O

T SEO VT t•O

s FLF s l 4. 0

T FLF s 7 • 6

s FLF T 6•8

T FLF T lO•O

s FLF VFF 6•8

T FLF V FF 6•0

s FLF VT 6•8

T FL F VT 4 • 8

s FLG s 15•6

T FLG s 3•8

s FLG T 3 • 4

T FLG T l l • 6

s FLG VFF 3•4

T FLG VFF 3•0

s FLG VT 3•4

T FLG VT 6•8

s TSO s 14•4

T TSO s 8•8

s TSO T 7•6

T TSO T J0•4

s TSO VFF 7. 6

T TSO VFF 8. 8

s TSO VT 7•6

T TSO VT 8•8

s INS s 15•2

T INS s 8•8

s INS T 6•8

T INS T l l • 2

s INS VFF 6•8

T INS VFF 6•4

s INS VT 6•8

T INS VT 6•0

s COH s 1 4•8

T COH s 8 •4

October 1961 Table 7-8, pg . 6

p HEH OP CODE A Q HEH HHS

s COH T S •8

T COH T J0•8

s COH VFF $ •8

T COH VFF 6•4

s COH VT 6 •8

T COH VT 6 •0

s ADD s 12•8

T ADD s 6•4

s ADD T 6 •8

T ADD T 8•8

s ADD VFF 6. 8

T ADD VFF 5•6

s ADD VT 6•8

T ADD VT 4•8

s SUB s 12•8

T SUB s 6 • 4

s SUB T 6•8

T SUB T f•8

s SUB VFF 6•8

T SUB V FF 5•6

s SUB VT 6•8

T SUB VT 4•8

s HU L s 20•8

T HUL s 20•8

s HUL T lt•6

T HUL T 20•0

s HUL VFF lt•6

T HUL V FF 20•8

s HUL VT 19•6

T HUL VT lt•2

s 7 HUL s J 7 • 6

T
7 HUL s 17 • 6

s 7 MUL T l 6. 4

T
7 MUL T 15•2

s 7 HUL VFF l 6 • 4

T
7 HUL VFF l 6. 0

s 7 HUL VT l6•4

T
7 HUL VT l6•0

s 1 MUL s 16. 0

T
1 HUL s 14•4

s 1 HUL T 1 l • 6

T
1 HUL T 12•0

s 1 HUL VFF 13•2

T
1 HUL VFF 1 2 •8

Table 7-8, pg . 7 October 1961

p HEH OP CODE A Q HEH HM S

s 1HUL VT J .s • 2

T 1HUL VT J 2. 8

s 3 HUL s J2•8

T 3 HUL s J l • 2

s 3 HUL T JO •O

T 3 HUL T 8•8

s 3 HUL V FF JO • 0

T 3 HUL VFF 9•6

s 3 HUL VT JO•O

T 3 HUL VT 9•6

s DIV s 8 0 •0

T DIV s 80•0

s DIV T 7 7 . 2

T DIV T 7 7. 6

s DIV VFF 78•8

T DIV VFF 78•4

s DIV VT 77•2

T DIV VT 78•4

s 7 DIV s 60. 8

T 7 DIV s 60. 8

s 7 DIV T 59•6

T 7 DIV T 60. 0

s 7DIV VFF 59•6

T 7 DIV VFF 60. 8

s 7 DIV VT 59•6

T 7 DIV VT 59•2

s 1 DIV s 4.S. 2

T 1DIV s 4.S. 2

s 1DIV T 42•0

T 1DIV T 40•8

s 1 DIV VFF 42•0

T 1 DIV VFF 41 • 6

s 1 DIV VT 42•0

T 1 DIV VT 41. 6

s 3 DIV s 22. 4

T 3 DIV s 22•4

s 3 DIV T 19 . 6

T 3 DIV T 20. 0

s 3 DIV VFF 2 l • 2

T .s DIV V FF 20. 8

s .s DIV VT 19•6

T .s DIV VT 20. 8

s TLY s 19•2

T TLY s 19. 2

October 1961 Table 7-8, pg . 8

p f'IEl'I OP CODE Q HEH f'lf'I S

s TLY T J 6 •4

T TLY T J6•8

s TLY VFF J 8•0

T TLY VFF J 7 • 6

s TLY VT J8•0

T TLY VT 11• 6

s 7TLY s J6•0

T
7

TLY s J6•0

s 7 TLY T J 3. 2

T
7 TLY T J3•6

s 7TLY VFF 14•8

T
7TLY VFF J4•4

s 7TLY VT J3• 2

T
1TLY VT J 4 • 4

s 1TLY s J 2. 8

T 1TLY s 1 J • 2

s 1TLY T J O•O

T 1TLY T J2•0

s 1TLY VFF JO• O

T JTLY VFF 11. 2

s 1TLY VT JO• O

T 1TLY VT 9 • 6

s 3 TLY s 12•8

T
3TLY s 8 •0

s 3 TLY T 6•8

T 3TLY T 8•8

s 3TLY VFF 6•8

T
3 TLY VFF 8 •0

s 3
TLY VT 6•8

T
3 TLY VT 8 • 0

s SCA s 12•8 J01•2

T SCA s 8•0 J07 • 2

s SCA T 6•8 104•4

T SCA T 8•8 104•8

s SCA V FF 6. 8

T SCA VFF 8•0

s SCA VT 6•8 J06•0

T SCA VT 8•0 105•6

s 7SCA s 12•8 101. 2

T
7 SCA s 8•0 J 01. 2

s 1 SCA T 6•8 104 •4

T
1 SCA T 8 • 8 104. 8

s
1 SCA VFF 6•8

T
1 SCA VFF 8•0

Table 7-8, pg . 9 October 1961

p MEM OP CODE Q HEH HHS

s 7SCA VT 6•8 J06•0

T 7
SCA VT 8•0 JOS•6

s JSCA s J 2. 8 J07•2

T JSCA s 8•0 J07•2

s JSCA T 6•8 J04•4

T JSCA T 8•8 J04•8

s JSCA VFF 6•8

T J SCA VFF 8•0

s JSCA VT 6•0 JO E•O

T JSCA VT 8•0 JOS•6

s
3

SCA s J2•8 J07•2

T 3
SCA s 8•0 J07•2

s
3scA T 6•8 J04•4

T "scA T 8 •8 J04•8

s "scA VFF 6•8

T "scA VFF 8•0

s "scA VT 6•9 JOo•O

T 3
SCA VT 8•0 JO S•6

s SC e s J2• 8 J07• 2

T SC e s 8•0 J01•2

s see T 6•8 J04•4

T see T 8•8 J04•8

s SC() VFF 6•8 J06•0

T SC ll VFF 8•0 JOS•6

s see VT 6•8 J06•0

T SCB VT 8•0 J05•6

s SAB s J2•8 J07•2

T SAe s 8•0 J01•2

s SAB T 6•8 J04 •4

T SAB T 8•8 J04 • 8

s SAB VFF 6•8

T SAB VFF 8•0

s SAB VT 6•8 J06•0

T SAB VT 8•0 JOS•6

s 7
SAB s J2•8 J07•2

T
7

SAe s 8•0 J 07. 2

s
7

SAe T 6•8 J 04 •4

T 7 SAB T 8•8 J04• 8

s
7

SAB V FF 6. 8

T
7

SAB VFF 8•0

s 7
SAB VT 6•8 J06•0

T
7

SAB VT 8•0 J05•6

s JSAB s J2•8 J07•2

T JSAe s 8•0 J07•2

October 1961 Table 7-8, pg . 10

p HEM OP CODE Q HEM HMS

s JSAB T 6 . 8 l04•4

T JSAB T 8 • 8 l04•8

s JSAB VFF 6•8

T JSAB VFF 8•0

s JSAB VT 6. 8 J0 6•0

T JSAB VT 8. 0 JOS•6

s 3
SAB s l 2. 8 J 01•2

T
3 SAB s 8•0 J01•2

s 3
SAB T 6. 8 J04•4

T
3

SAB T 8•8 l04•8

s 3
SAB VFF 6. 8

T
3 SAB VFF 8•0

s 3
SAB VT 6 • 8 JOS•O

T
3 SAB VT 8•0 J05•6

s CYB s J2•8 J07• 2

T CYB s 8•0 J07•2

s CYB T 6•8 J 04 . ..

T CYB T 8•8 J04•8

s CYB VFF 6•8 l06•0

T CYB VFF 8•0 JOS•O

s CYB VT 6 •8 J06•0

T CYB VT 8•0 J05•6

s 7
CYB s J 2•8 J07•2

T
7

CYB s 8•0 J07•2

s 7
CYB T 6•8 J04•4

T
7

CYB T 8 • 8 J04 • 8

s 7
CYB VFF 6 • 8 J06•0

T
7

CYB VFF 8 •0 J05•6

s 7
CYB VT 6•8 J06• 0

T
7

CYB VT 8. 0 JOS•6

s JCYB s J2 • 8 J07•2

T JCYB s 8 • 0 J07•2

s JCYB T 6•8 J04•4

T JCYB T 8. 8 J04•8

s J CYB V FF 6•8 J06• 0

T JCYB VFF 8•0 JOS•6

s JCYB VT 6. 8 l06•0

T JCYB VT 8•0 J05•6

s "eve s J2•8 J07•2

T "eve s 8•0 J07•2

s 3 cvs T 6•8 J0 4 •4

T
3 CY B T 8•8 J04•8

s 3 cvs VFF 6•8 J06•0

T
3

CYB V FF 8•0 J05•6

Table 7-8, pg . 11 October 1961

p 11 EM OP COOE Q MEM MHS

s SCYB VT 6•8 J06•0

T SCYB VT 8•0 J05•6

s CYA s J2•8 J07•2

T CYA s 8•0 J07•2

s CYA T 6•8 104•4

T CYA T 8•8 J04•8

s CYA VFF 6 • 8 38•2

T CYA VFF 8•0 38•8

s CYA VT 6•8 J 06. 0

T CYA VT 8•0 J05•6

s CAB s J2•8 J07•2

T CAB s 8•0 J 07. 2

s CAB T 6 • 8 J04•4

T CAB T 8•8 J04•8

s CAB VFF 6. 8

T CAB V FF 8 •0 38•8

s CAB VT 6 . 8 J06•0

T CAB VT 8•0 J05•6

s NOA s J 9 . 2 J2•8

T NOA s J 9 . 2 8•0

s NOA T J8•0 6•8

T NOA T J8 • 4 1•8

s NOA VFF J8•0 6•8

T NOA VFF 19•2 8•0

s NOA VT J8•0 6•8

T NOA VT J 7•6 •• 0

s NAB s 33•6 J2•8

T NAB s 3 3. 6 1 • 0

s NAB T $2•4 6•8

T NAB T 32•8 B•8

s NAB VFF 32•4 6•8

T NAB VFF 33•6 B•O

s NAB VT 32•4 6•8

T NAB VT 32•0 8. 0

October 1961 Table 7-8, pg . 12

7-1

7-2

1-3

7-4

7-5

7-6

7-7

7-8

TX-2 USERS HANDBOOK

CHAPTER 1 - VARIOUS TABLES

TABLE OF CONTENTS

IN-OUT SEQUENCE rru.IBER ASSIGNMENTS

STANDARD CONFIGURATIONS

OPERATION CODE MIDMONICS

META-COMMAND MNEMONICS

XEROX CHARACTER CODES

LINCOLN WRITER CHARACTER CODES

M4 COMMA CHART

AVERAGE DURATION OF INSTRUCTIONS

October 1961 7-0

IN-OUT SEQUE NCE ASSIGNMENTS FOR TX-2

00 STARTOVER

40 60 DISPLA Y NO· J

4 J ALARM, IN-OUT 6J RANDOM NUMB ER GENERATOR

42 TRAP 62 PUN CH NO· 2

4J 6J PUNCH NO· J

44 6 4

4S IBH HAG TAPE 65 LINCOLN WRITER INPUT NO· J

46 HAG TAPE BULK STORAGE 66 LINCOLN WRITER OUTPUT NO· J

47 MISCELLANEOUS INPUTS 67

so DA TRAC 70

SJ XEROX 7J LINCOLN WRITER INPUT NO· 2

52 PETR 72 LINCOLN WRITER OUTPUT NO· 2

SJ 7J

54 INTERVAL TI HER 7 4 PLOTTER

SS LITE PEN 75 MISCELLANEOUS OUTPUTS

56 DISPLAY NO· 2 76

S7 77

Table 7-1 Octol:er 1961

TABLE 7-2

STANDARD CONF I GURATION SET

a f la I DESCRIPTOR a Fla! DESCRIPTOR

0 000 4 J 2 l J ~ ~ ii 20 200 4 J. 2 l J.lLi ----
l J40 4 J. 2 l u 2l 230 4 J. 2 l ll -- --
2 34 2 2 l • 4 J ~ 22 23 2 2 l. 4 J ,/~ -- --
J 760 4 • J. 2. l it 23 732 2 • l. 4. J ~ - -

4 76l l • 4. J. 2 '\.i 24 733 3. 2 • l. 4 ~ - -
5 762 2 • l • 4. 3 ~ 25 730 4 . J. 2 • l l - -
6 763 J. 2 • l • 4 ~ 26 7 Jl I • 4. J. 2 \.i
7 4l0 4 J 2. J UJ 27 605 l • 2. 3. 4 ~ - - - - L-..1 ~ '-'L-I

J 0 4ll J 4 3·2 .~ JO 600 II• J • 2 • J iill --- - - - -
JI 140 4 J 2 I i t, JI 750 4. J. 2 • l l I -
J 2 J 42 2 I 4 J .~. 32 670 4. J. 2. J l -- -
J J 160 4 J 2 !. t 33 320 4 3. 2 !. ~._J -

l 4 I 6J l 4 J .! \ 34 JJ3 J 2. J 4 J
15 162 2 I 4 3 I ""· JS 330 4 J. 2 l ~ - -
J 6 163 3 2 l !. I --............. . 36 JJJ I 4•J 2 ·'· J 7 202 2 l • 4 J ~ J7 604 3. 4. l • 2 j(L-J~ -- -- - - - -

STANDARD PERMUTATIONS

I I I I ~ >*< /-1._,(_ X""-X ~ ><'(I 'H. I
0 l 2 3 4 5 6 7

October 1961 Table 7-2

Numerical Order

0
1
2
3
4 - IOS
5 - JMP (l)
6 - JPX
7 - JNX

10 - AUX
11 - RSX
12 - SKX (2)
13
14 - EXX
15 - ADX
16 - DPX
17 - SKM (3)
20 - LDE
21 - SPF
22 - SPC
23
24 - LDA
25 - LDB
26 - LDC
27 - LDD
30 - STE
31 - FLF
32 - Fffi
33
34 - STA
35 - STB
36 - STC
37 - STD
4o - !TE
41 - ITA
42 - UtlA
43 - SED
44 - JOV
45
46 - JPA
47 - JNA
50
51
52
53
54 - EXA
55 - INS
56 - COM
57 - TSD
60 - CYA
61 - CYB
62 - CAB
63
64 - NOA
65 - DSA
66 - NAB
67 - ADD
70 - SCA
71 - SCB
72 - SAB
73
74 - TLY
75 - DIV
76 - MUL
77 - SUB

Alphabetical Order

ADD - 67
ADX - 15
AUX - 10
COM - 56
CAB - 62
CYA - 6o
CYB - 61
DIV - 75
DPX - 16
DSA - 65
EXA - 54
EXX - 14
FLF - 31
FW - 32
INS - 55
IOS - 4
ITA - 41
ITE - 40
JMP - 5
JNA - 47
JNX - 7
JOV - 44
JPA - 46
JPX - 6
LDA - 24
LDB - 25
LOC - 26
LDD - 27
LDE - 20
MUL - 76
NAB - 66
NOA - 64
RSX - 11
SAB - 72
SCA - 70
SCB - 71
Sl:.'D - 43
SKM - 17
SKX - 12
SPF - 21
sro - 22
STA - 34
STB - 35
STC - 36
STD - 37
STE - 30
SUB - 77
TSD - 57
TLY - 7 4
UNA - 42

OPERATION CODE Mrffi.lONICS

Table 7 - 3

Supernurnerar:r Mnemonics
(1) JMP - OJI.IP

BRC -
1

JMP

JPS -
2

JMP

B.~S - 3 .P.·!P

JPQ _14JMP

BPQ _ l 5 Jr.a>

JES - 16 JI.IP

JPD _ 20.n.n>

BRD -
21

.J?.!P

JDS -
22,r..tp

BDS -2 3 Jl·U'

(2) REX - SEX - OSKX

INX -
2

SKX

DEX - 3SKX

SXD -
4
sKX

SXL - 6sKX

SXG - 7sKX

RXF _lOSKX

RXD -
20

sKX

RFD - 30sKX

(3) SKM - OSKM

MKC - 1SKM

Make MKZ - 2
SKM

Skip

Skip
on
Zero

Skip
on
One

- 3sKM
S~ _lOSKM

sue -11
sKM

SUZ -12SKM
SUN _l3SKM

SKZ -20sKM
SZC -

21
SKM

SZZ -22sKM

SZN -23SKM

SKN -30sKM
SNC -31SKJ'1

SNZ -32sKM

SNN - 33sKM

CYR - 4sKM

MCR - 5SKM

MZR -
6sKM

Rotate MNR - 7sKM

SNR -34sKM

SZR -
24

SKM

SUR -
14

sKM

October 1961

7-4 MEI'A-COMMAND MNEMONICS

Clean } LW Read

Reconvert

Name

Insert } Delete

Replace

Move

List

Type

Plist
Directive punch

Tdi1·

Ldir

Binary Store

Punch Binary

Goto

Decimal

Octal

T: CR

T=Tab

Ena.

RC

Sumck

Sa.vc } Read

Ta.pe

Core

Define } am

Demo

October 1961

Input

Changes

Output

::o'orma.t

Mag Tape

Macro

BIN

CLEAN

CORE

DEC

DEF

DEL

DEMO

DIR
END

EMD

GO'ro

INS

LDIR
LIST

LW

MOVE

NAME

OCT
PLIST

PUN

RC

READ

REC

REP

- Binary Store
- Clear M4 Di rec ti ve Storage

- Tape to Core
- Decimal

- Define

- Delete

- Demonstrate

- Directive Punch
- End of Multiple Word Meta-Co:mr.and

- End of Macro Definition
- Go To User's Program

- Insert

- Li st Directive on Xerox
- Print Listing on Xerox

- Lincoln WritPr RPAn -i n

- Move Program Block

- Set User Identification

- Octal

- Punch Li&tinu

- Puncll Binary

- RC Store

- Read Di me ti ve i'rcm Tape

- Reconv•" i·t

- Heplace

SAVE - f>av Oircctl.Yc on Tape

SUMCK

TAPE

TDIR
TYPE

T"'CR

T"'TAB

Table 7-4

- Su.re ChecY.

- Core to Tape

- Type Dit"t'cti ve

- T-r,:;e Listlw.
- Tab equals Carriase Rcturr-

- Tab equals Tab .

XEROX PRINTER CHARACTER CODES

CHARACTER
A

B

c
0

E

F

G

H

J

K

L

M

N

0
p

Q

R

s
T

u
v
w
x
y

z
It

OCTAL CODE
J S4

142

J6J (056){07J){J46)

J 52

J JJ (04J)

J44 (054)

J02 (012)

J54

J72 (J S7)

144

J4J

JJ2 (047){062){Jl7)

J60 (05s)(o1o){J4S)

J70 (355)

J SJ

J l2 (042)

J 60 (l4S)

J7J (JS6)

J22 (OJ7){0J2){J07)

l SJ

J 62 (057){072){J47)

J52

J4J (OSJ)

J6J (146)

J42 (os2)

162 (147)

JJ2 (u1)

JJJ

< 220 (20 s)

> 22 l (2oc;)

• (PERIOD) 222 (201)

+

v

I
L
}

I
u

JS J

J72 (357)

J40 (050)

J 6J (073)

7JO (445){4Ci0){7JS)

70J (4lJ)

720 (4l5}(4J0){705)

JSO

s10 (sss)

140

ll4

JJJ (ll6)

JOJ

CHARACTER
J

11

"

q

..

z

6

y

6

2

J

4

5

6

7

8

9

o {ZERO)

?

, (COHHA)
n

x

OCTAL CODE
J 22 (J07)

J24 (034)

J 2J (033)

024

ll 1

Jl2

FJ

174

HJ

l64

J JO (040)

J Jl (041)

JJJ (063)

20J

J34 (064)

02J

001

002

OOJ

004

020 (oos)

021 (006)

022 (001)

JOO (OJO)

JOJ (01 J)

000

202

204

120 (ios)

121 (JOG)

J JJ

0 (CIRCLE) 714 (444)

J 7J

II

I
0
{

-+

!!

*
c

J4J (051)

J 64 (074)

7J 1 (446){461){7 H)

704 (•14)

121 (•16}(4J1}(706)

151

57 J (sss)

141

JJO (115)

102

J04

Note : Bit 1.9 of the Xerox Ct.a ra cter Code is a "size control bit" . "l" means large, a nd
"O" means Sll'.all . The codes a re given above With tl:e "proper" size .

Table 7- 5 October 1961

TX-2 LINCOLN WRITER CODES

00 0 ,.. 40 Q «

OJ J L 4J R ii.

02 2 I 42 s ,
OJ J II 4J T '

04 4 I 44 u h

05 5 " 45 v :>

06 6 # 46 w ll

07 7 -+ 47 x "
JO 8 < 50 y >..

JJ 9 > 5J z ~

J2 52 (

l3 oo SJ) }

J4 READ IN 54 + "

J5 BEGIN 55

l6 NO 56

l7 YES 57 . *
20 A " 60 CAR RETURN

2J B c 6J TAB

22 c v 62 BACK SPACE

2J D q 63 COLOR BLACK

24 E y 64 SUPER

25 F t 65 NORMAL

26 G ., 66 SUB

27 H " 67 COLOR RED

JO I ' 70 SPACE

JJ J ,, 7J WORD EXAM

32 K z 72 LINE FEED DOWN

33 L ? 73 LINE FEED UP

34 M v 74 LOWER CASE

35 N n 75 UPPER CASE

36 0 1 76 STOP

37 p ~ 77 NULL I FY

October l96l Table 7-6

7-7 M4 COMMA CHART

COt·:l·:AS BEFORE COMMAS ~ CHAH DIAGHAh EXAMPLE

0 0 + + + + 4<14 333 222 111

0 l ------ 111 - - -
0 2 // 222 111 - -

0 3 /// 333 222 111 -

1 0 + - - - 111

1 l // - 222 111 -

l 2 / - 111 - -
1 1 t t t 444 333 222 -

2 0 + + - - 222 111

2 1 / - - 111 -

2 2 >SK 222 ill 444 333

2 3 ~~ - - 1144 33.>

3 0 i - - - 111

3 l ---- - - - 444

3 2 ~ - l11l• - -
3 3 ~ - - 111+/i 33~

Table 1-·r October 1961

7-8 AVERAGE DURATION OF INSTRUCTIONS

This duration cha.rt was made by TX-2 by timine; the duration of' 8()0() '""'I"'t.i t.i nm; nf'

each operation with various combi!IE.tions of memories . The columns are lablcC. as follows :

P MEM - The memory used for the instructions .

OP Code The instruction being timed .

A - The memory used for intermediate deferred address (if any) .

Q MJ1l.1 - The memory used for final operand (if any) .

MMS - Average duration in microseconds .

The abbreviations used within the columns are as follows :

S S memory

T T memory

VFF Flip-Flop part of V memory (A, B, C,etc .)

VT Toggle Memory

The instructions are listed in numerical order (by op codes) .

October 1961 Table 7-8

p MEM OP COOE Q MEM MMS

s AOP 167000 8•0

T AOP 1670 00 6. 0

s IOS 0 9•2

T IOS 0 7 • 2

s JMP 7•6

T JHP 5 • 6

s JPA 8•0

T JPA 6•0

s JNA 8•0

T JNA 6•0

s JOV 8•0

T JOV 6 • 0

s JNX 9•6

T JNX 7•6

s JPX 9•6

T JPX 7•6

s SKX IO• 0

T SKX 8 • 0

s SKX s 20 •4

T SKX s I 8 • 4

s SKX T l 8. 4

T SKX T l 6. 4

s AUX s l J. 6

T AUX s l l • 6

s AUX VFF J2•4

T AUX V FF l 0 •4

s AUX VT l 2. 0

T AUX VT JO•O

s AUX T ll. 6

T AUX T 9•6

s RSX s 12•8

T RSX s 10 • 8

s RSX T l 0. 8

T RSX T 8. 8

s RSX VFF l J • 6

T RSX V FF 9•6

s RSX VT JJ •2

T RSX VT 9 • 2

s ADX s l 6. 0

T AOX s l 0. 0

s ADX T JO•O

T ADX T J 2. 0

s AOX VFF J 0 . 8

T AOX V FF 8•8

Table 7-8, pg . l October 1961

p MEM OP CODE Q MEM llMS

s ADX VT J 0. 4

T ADX VT ' • 4

s OPX s l'•O

T OPX s 7 • 6

s OPX T 7 . 6

T DPX T JO•O

s OPX V FF t•4

T OPX VFF 6 • 4

s OPX VT a • o

T OPX VT 6•0

s EXX s J4•0

T EXX s JI • 2

s EXX T J I • 2

T EXX T JO•O

s EXX V FF J J • G

T EXX VFF 9•6

s EXX VT JI • 2

T EXX VT 9•2

s SKM s J4 • 8

T SKM s 9•6

s SKM T 9 . 6

T SKM T J0• 8

s SKM VFF J0•4

T SKM VFF 8•4

s SKM VT JO•O

T SKM VT 8•0

s SKM s s 25• 2

T SKM s s 20. 0

s SKM s T 20. 0

T SKM s T 2 J. 2

s SKH s VFF 20. 8

T SKM s VFF J8. 8

s SKM s VT 20•4

T SKM s VT 18•4

s SKH T s 2J. 2

T SKH T s J8. 0

s SKM T T J8•0

T SKM T T J9•2

s SKM T V FF J8•8

T SKM T V FF 16•8

s SKM 0 J4. 8

T SKH 0 9•6

s LOA s J2•8

T LOA s 6•4

October 1961 Table 7-8, pg . 2

p HEH OP CODE A Q HEH MHS

s LOA T 6•8

T LOA T I• II

s LOA VFF 6 •8

T LOA VFF $•2

s LOA VT 6•8

T LOA VT 4•8

s LOB s J2•8

T LOB s 6. 4

s LOB T 6•8

T LOB T 1•8

s LOB VFF f•8

T LOB VFF $•2

s LOB VT f •8

T LOB VT 4•8

s LDC s J2•8

T LDC s 6•4

s LDC T 6•8

T LDC T 1•8

s LDC VFF 6•8

T LDC VFF 5•2

s LDC VT 6•8

T LDC VT 4•8

s LOO s J2•8

T LOO s 6 •4

s LOO T 6 •8

T LOO T 8 •8

s LOO VFF 6 . 8

T LOO VFF 5•2

s LOO VT 5. 8

T LOO VT 4 • 8

s LOE s J2•8

T LOE s 6•4

s LOE T 6•8

T LOE T 8. 8

s LOE V FF 6 . 8

T LOE VFF S•2

s LOE VT 6 • 8

T LOE VT 4•8

s SPF s J 2 •8

T SPF s 9•6

s SPF T 9•6

T SPF T 8•8

s SPF V FF JO• 4

T SPF VFF 8•4

Table 7-8, pg . 3 October 1961

p HEH OP CODE Q HEH llHS

s SPF VT 10•0

T SPF VT O•O

s SPG s 1 2•8

T SPG s 9•6

s SPG T 9•6

T SPG T 8•8

s SPG VFF 10•4

T SPG V FF 8•4

s SPG VT 10•0

T SPG VT ,.o
s STA s 14•0

T STA s 1•6

s STA T 6 . 8

T STA T 10•0

s STA V FF •• 8

T STA VFF 5•2

s STA VT 6 • 8

T STA VT 4•8

s STB s 14•0

T STB s 7•6

s STB T 6•8

T STB T 10•0

s STB VFF 6•8

T STB VFF 5•2

s STB VT 6•8

T STB VT 4•8

s STC s 14. 0

T STC s 7•6

s STC T 6•8

T STC T 10 . 0

s STC V FF 6•8

T STC VFF 5•2

s STC VT 6•8

T STC VT 4•0

s STD s 14•0

T STD s 7•6

s STD T 6 • 8

T STD T JO•O

s STD VFF 6•8

T STD VFF 5•2

s STD VT 6•8

T STD VT 4•8

s STE s 14 •O

T STE s 7. 6

October 1961 Table 7-8, pg . 4

p MEH OP CODE A Q MEM !IMS

s STE T 6•8

T STE T 10•0

s STE VFF 6 • 8

T STE VFF 5•2

s STE VT 6•8

T STE VT 4•8

s EXA s 14•0

T EXA s 7•6

s EXA T 6•8

T EXA T 10•0

s EXA VFF 6•8

T EXA VFF 5•2

s EXA VT 6•8

T EXA VT 4•8

s ITA s l2 • 8

T ITA s 6•4

s ITA T 6 • 8

T ITA T 1•8

s ITA VFF 6•8

T ITA VFF 5•2

s ITA VT 6•8

T ITA VT 4•8

s UNA s 12•8

T UNA s 6•4

s UNA T 6•8

T UNA T 1•8

s UNA VFF 6•8

T UNA VFF 5•2

s UNA VT 6 •8

T UNA VT 4•8

s DSA s 12•8

T DSA s 6•4

s DSA T 6•8

T DSA T 8•8

s DSA V FF 6•8

T DSA VFF 5•2

s DSA VT 6•8

T DSA VT 4•8

s ITE s l 2. 8

T ITE s 6 . 4

s ITE T 6 • 8

T ITE T 1•8

s ITE VFF 6•8

T ITE VFF 5•2

Table 7-8, pg . 5 October 1961

p HEH OP CODE Q HEH HHS

s ITE VT 6. 8

T ITE VT 4•8

s SEO s 12•8

T SEO s 9•6

s SEO T 9•6

T SEO T 8•8

s SEO VFF 10•4

T SEO VFF 8•4

s SEO VT 10•0

T SEO VT 8 •O

s FLF s 14•0

T FLF s 1•6

s FLF T 6•8

T FLF T 10•0

s FL F VFF 6•8

T FL F V FF 6. 0

s FLF VT 6•8

T FLF VT 4•8

s FLG s 15•6

T FLG s 8•8

s FLG T 8•4

T FLG T 1 l • 6

s FLG V FF 8•4

T FLG V FF 8•0

s FLG VT 8•4

T FLG VT 6. 8

s TSO s 14•4

T TSO s 8•8

s TSO T 7 • 6

T TSO T 10•4

s TSO V FF 7 • 6

T TSO V FF 8•8

s TSO VT 7 • 6

T TSO VT ••8

s INS s 15•2

T INS s 8•8

s INS T 6 •8

T INS T ll•2

s INS V FF 6•8

T INS V FF 6•4

s INS VT 6•8

T INS VT 6•0

s COH s 14 •8

T COH s 8•4

October 1961 Table 7-8, pg . 6

p MEM OP CODE Q MEM HMS

s COM T 6•8

T COM T J0•8

s COM VFF 6•8

T COM VFF 6. 4

s COM VT 6•8

T COM VT 6•0

s ADD s l 2. 8

T ADD s 6. 4

s ADD T 6•8

T ADD T 8•8

s ADD VFF 6. 8

T ADD VFF 5•6

s ADD VT 6 • 8

T ADD VT 4•8

s SUB s l2•8

T SUB s 6•4

s SUB T 6. 8

T SUB T 8•8

s SUB VFF 6. 8

T SUB VFF 5•6

s SUB VT 6. 8

T SUB VT 4. 8

s MUL s 20•8

T MUL s 20•8

s MUL T l9. 6

T MUL T 20•0

s MUL VFF l9•6

T MUL VFF 20•8

s MUL VT l9•6

T MUL VT J 9. 2

s 7 MUL s l T • 15

T
7 MUL s J7•6

s 7 MUL T l6•4

T
7 MUL T l5•2

s 7 MUL VFF l 6 • 4

T
7 MUL VFF l 6 •O

s 7 MUL VT l6•4

T
7 MUL VT lo•O

s lMUL s J 6. 0

T
1MUL s l4•4

s 1MUL T l 1. 6

T
1MUL T J2•0

s 1 MUL V FF 13 • 2

T
1 MUL VFF l2•8

Table 7-8, pg. 7 October 1961

p HEH OP CODE A Q HEH HHS

s 'HUL VT J3. 2

T 1 MUL VT J 2. (I

s 3 HUL s J2•8

T 3 HUL s J J • 2

s 3 HUL T JO•O

T 3 HUL T 8•8

s 3 HUL V FF JO•O

T 3 HUL VFF 9•6

s 3 HUL VT JO•O

T 3 HUL VT 9•6

s DIV s 80•0

T DIV s 80•0

s DIV T 71•2

T DIV T 71•6

s DIV V FF 78•8

T DIV V FF 78•4

s DIV VT 71•2

T DIV VT 78•4

s 7 DIV s 60•8

T 7 DIV s 60•8

s 7 DIV T 59•6

T 7 DIV T 60. 0

s 7 DIV VFF 59•6

T 7 DIV VFF 60•8

s 7 DIV VT 59 • 6

T
7 DIV VT 59•2

s 'DIV s 43. 2

T 'DIV s 43•2

s 'DIV T 42•0

T 1 DIV T 40•8

s 1 DIV VFF 42•0

T 1 DIV VFF 4 J • 6

s 1 DIV VT 42•0

T 'Div VT 4 J • 6

s 3 DIV s 22•4

T 3 DIV s 22•4

s 3 D1v T 19•6

T 3 DIV T 20•0

s 3 DIV VFF 2 J • 2

T 3 DIV VFF 20. 8

s 3 DIV VT 19•6

T 3 DIV VT 20. 8

s TLY s l 9. 2

T TLY s J 9. 2

October 1961 Table 7-8, pg . 8

p HEH OP CODE A Q HEH HHS

s TLY T 16•4

T TLY T 16•8

s TLY VFF 18•0

T TLY VFF l 1'. 6

s TLY VT 18 • 0

T TLY VT 17•6

s 7
TLY s 16•0

T
7

TLY s 16•0

s 7
TLY T 13 •2

T
7

TLY T J3•6

s
7

TLY VFF J4•8

T
7

TLY VFF 14. 4

s 7 TLY VT 1 J. 2

T
7

TLY VT 14•4

s 1 TLY s 12•8

T
1TLY s JJ•2

s 1
TLY T 10•0

T
1

TLY T J2•0

s 1
T LY V FF 10•0

T
1

TLY VFF 11 • 2

s 1
TLY VT 10•0

T
1TLY VT 9. 6

s 3 TLY s 12•8

T
3

TLY s 8•0

s 3
TLY T 6 • 8

T
3

TLY T 8 • 8

s 3 TLY VFF 6•8

T
3 TLY VFF 8•0

s 3
TLY VT 6•8

T
3

TLY VT 8•0

s SCA s 12• 8 107•2

T SCA s 8•0 J07•2

s SCA T 6•8 l04•4

T SCA T 8•8 l04•8

s SCA VFF 6•8

T SCA VFF 8•0

s SCA VT 6 • 8 106•0

T SCA VT 8•0 J05 •6

s 7 SCA s 12•8 107•2

T
7 SCA s 8•0 J07•2

s 7 SCA T 6. 8 l04•4

T
7 SCA T 8•8 104•8

s 7 SCA VFF 6•8

T
7 SCA VFF 8•0

Tabl e 7-8, pg . 9 Octol:er 1961

p ME/1 OP CODE Q MEit HMS

s 7 SCA VT 6•8 l06•0

T 7 SCA VT 8•0 J0$•6

s 1 SCA s l2•8 J07•2

T lSCA s 8•0 J07•2

s lSCA T 6•8 l04•4

T lSCA T 8•8 l04•8

s l SCA VFF 6•8

T l SC A VFF 8•0

s lSCA VT 6•0 JO 6 •O

T l SCA VT O•O J0$•6

s 3 SCA s l2•8 l01•2

T J SCA s 8•0 J07•2

s 3 SCA T 6•8 l04•4

T 3 SCA T 8•8 l04•8

s 3SCA VFF 6•8

T 3SCA VFF 8•0

s 3SCA VT 6•8 1Oi•0

T
3 SCA VT 8•0 JOS•6

s see s l 2•8 l07•2

T see s 8•0 l07•2

s see T 6•8 l04•4

T see T 8•8 l04•8

s SCB VFF 6•8 l06•0

T SC B VFF 8•0 J0$•6

s SCB VT 6•8 J06•0

T SCB VT 8•0 l0 5 •6

s SAB s l2•8 l01•2

T SAB s 8•0 l0 7 •2

s SAe T 6•8 l04 •4

T SAB T 8•8 l04•8

s SAe VFF 6•8

T SAe VFF 8•0

s SAB VT 6•8 J0 5 •0

T SAB VT 8•0 J05•6

s 7 SAB s l2•8 l0 7 •2

T
7

SAe s 8•0 l 0 7. 2

s 7 SAB T 6•8 l04• 4

T 7 SAB T 8•8 l04•8

s 7 SAB VFF 6•8

T
7 SAB VFF 8•0

s 7 SAB VT 6•8 J06•0

T
7 SAB VT 8•0 l05•6

s lSAB s l2•8 l 07. 2

T lSAB s 8•0 l07•2

October 1961 Table 7-8, pg. 10

p 11 E11 OP CODE Q 11E11 1111 s

s 1SAB T 6•8 J04•4

T
1SAB T 8•8 J04•8

s 1 SAB VFF 6•8

T
1SAB VFF 8 •O

s 1SAB VT 6. 8 J06•0

T
1SAB VT 8•0 l OS • 6

s 3SAB s J2•8 J01. 2

T
3SAB s 8•0 J01•2

s 3 SAB T 6•8 J04•4

T
3 SAB T 8•8 J04•8

s 3 SAB VFF 6•8

T
3 SAB VFF 8•0

s 3SAB VT 6 •8 J06•0

T
3 SAB VT 8•0 J05•6

s CYB s J2•8 l 01. 2

T CYB s 8•0 l 01. 2

s CYB T 6•8 l04•4

T CYB T 8•8 l04•8

s CYB VFF 6 • 8 J06•0

T CYB VFF 8 •0 JOS•O

s CYB VT 6 • 8 106•0

T CYB VT 8•0 J05•6

s 7 cve s 12. 8 107 • 2

T
7 cve s 8•0 J07•2

s 7 cve T 6•8 104•4

T
7 cve T 8•8 l 04. 8

s 7 cve VFF 6•8 106•0

T
7 cve VFF 8 • 0 105 • 6

s 7 cve VT 6•8 106•0

T
7 cve VT 8•0 105• 6

s 1 CYB s 12•8 107•2

T 1 CYB s 8•0 1 07. 2

s 1cve T 6•8 J04•4

T 'eve T 8•8 J04. 8

s 1cv e VFF 6•8 J06 • 0

T 'eve VFF 8•0 J05•6

s 'eve VT 6•8 J06•0

T 'eve VT 8•0 J05•6

s 3 CYe s l2•8 J07•2

T
3 CYB s 8 • 0 J07•2

s .JC YB T 6•8 J04 •4

T
3 CYB T 8•8 J04•8

s 3 CYe VFF 6•8 106•0

T
3 CYB VFF 8•0 l05 • 6

table 7-8, pg . ll October 1961

p HEtl OP CODE Q HEH HMS

s JCYB VT 6•8 J06•0

T JCYB VT 8•0 J05•6

s CYA s J2•8 J07•2

T CYA s 8•0 J07•2

s CYA T 6•8 J04•4

T CYA T 8•8 J04•8

s CYA VFF 6•8 JB•2

T CYA VFF 8. 0 JB•8

s CYA VT 6•8 J0 6•0

T CYA VT 8•0 J05•6

s CAB s 1 2 •8 J0 7•2

T CAB s 8•0 J0 7 •2

s CAB T 6•8 J04•4

T CAB T 8•8 104•8

s CAB VFF 6. 8

T CAB VFF 8•0 J B•8

s CAB VT 6•8 JO , • O

T CAB VT 8•0 J05•6

s NOA s J9•2 l 2 •8

T NOA s l 9. 2 8 •0

s NOA T J8•0 6. 8

T NOA T J 8. 4 8 • 8

s NOA VFF J8 •0 6 •8

T NOA VFF J9•2 8 •0

s NOA VT J8•0 6•8

T NOA VT J7 • 6 8• 0

s NAB s JJ•6 J2•0

T NAB s J3•6 8 •O

s NAB T .5 2. 4 6. 8

T NAB T J 2. 8 8•8

s NAB VFF J 2 • 4 6 • 8

T NAB VFF J3•6 8•0

s NAB VT J 2. 4 6•8

T NAB VT J 2 •O 8•0

October 1961 'Jable 7-8, pg . 12

